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CHAPTER 1

INTRODUCTION

A common procedure in today’s data acquisition and signal processing is capture-

and-compress, where physical information is captured and recorded by certain type

of sensors, and then compressed for efficient data storage and communication. While

working generally well in the past, this leads to a significant waste of data acquisition

effort, as most of information captured are thrown away in the compression stage.

A natural question is then raised: is it possible to combine data acquisition and

compression in one stage?

The answer is positive for signals that can have a sparse representation in a proper

basis, and the solution is the so-called Compressive Sensing (CS) [1–4]. In compressive

sensing, a signal of length N is sampled by takingM measurements, with each being a

random linear projection of the signal, and the measurement is said to be compressed,

as M ≪ N .

The under-sampled random measurements now become the compressed represen-

tation of the original signal. To extract, one needs to uncompress the measurement

by solving an under-determined system of linear equations. Without any additional

knowledge, this task is ill-posed, as there are more unknowns than the equations.

What compressive sensing theory [1–4] states is that, reliable reconstruction of the

signal is possible, provided that the signal is adequately sparse/compressible, and

the sampling matrix satisfies the so called Restricted Isometry Property. Here by

sparse/compressible, it is intended that the energy of the signal is primarily carried

by a few coefficients (in a proper basis), referred to as significant coefficients, whereas
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the energy of the rest of coefficient is insignificant.

The advantage of compressive sensing in solving under-determined systems makes

it attractive in fields where increasing sampling rate is costly, and a great number of

applications have been inspired. For instance, compressive sensing has found great

applications in remote sensing [5], medical imaging [6], wireless communication sys-

tems [7], wireless sensor networks [8], multimedia processing [9, 10], and anomaly

detection [11,12].

Video coding employing compressive sensing is an emerging field. Since the recon-

struction of under-sampled frames depends on the sparsity of the target signal, most

endeavours in this area lie in exploiting the correlation, either temporally or spatially,

to prompt sparsity of a video sequence. Authors in [13] studied a compressive sensing

based video streaming technique for wireless multimedia sensor networks. It is shown

that the difference frames of a video sequence coded by compressive sensing technique

are more resilient to channel error compared to other coding techniques. In [14], a

motion compensation based residual reconstruction for compressive sensing of video

was proposed to explore the temporal correlation of video frames.

Aside from the temporal and spatial correlations, the structural feature of the

video frames is of great importance for the compressive sensing reconstruction prob-

lem. Authors in [15] studied the sparse reconstruction task for clustered sparse signal.

The clustered sparsity is modelled by the Ising model, and a novel algorithm, referred

to as LaMP [15], was proposed to explore this structural feature. However, LaMP

is sensitive to model parameters and the performance may degrade when a not very

accurate model is selected. In order to explore the clustered sparsity, several parame-

ters in the Ising model need to be estimated accurately, which may not be feasible for

a resource limited encoder. In [16], a three-pattern model was proposed to prompt

the clustered sparsity. Markov Chain Monte Carlo sampling (MCMC) is then used

to infer the signal coefficients from the random samples. While no parameter needs
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to be estimated before the reconstruction, CluSS [16] suffers from the huge compu-

tation time inherent in MCMC sampling. Moreover, the convergence of CluSS is not

guaranteed.

Given these limitations, in Chapter 3 we study compressive sensing of difference

frames in videos, and introduce a novel reconstruction method that exploits the struc-

tural characteristic, i.e., clustered sparsity in difference frames. Our method, referred

to as structured reweighted ℓ1 minimization (SRL1), estimates the signal support,

and adjusts the weights associated with the signal coefficients in a weighted ℓ1 min-

imization in an iterative fashion. For the signal support estimation we propose local

exploration, and global purification to promote the clustered sparsity in difference

frames. It is shown that by exploiting the clustered sparsity, isolated non-zero noise

can be eliminated, and undiscovered signal coefficients can be retrieved. It should be

noted that these steps are done based on the clustered sparsity, rather than the exact

signal support distribution. This makes our method robust and distinct from many

sophisticated algorithms. Experimental results show the effectiveness of our method.

Compressive sensing and reconstruction for binary sparse signals plays a key role

in engineering fields including control engineering, aerospace engineering and more.

One example is the fault identification problem, where the fault pattern is represented

by a binary vector x ∈ {0, 1}n, with “1” indicating a fault has happened. The task

is to locate the set of faults pattern given a set of measurements.

What makes the binary compressive sensing unique is that, unlike conventional

compressive sensing tasks, the magnitude of non-zero coefficients is fixed to “1”. As

discussed in [17], this congruity of the non-zero coefficients makes the reconstruc-

tion of the binary sparse signal more challenging than those signals whose non-zero

coefficients have random magnitudes.

Many efforts have been taken to explore the binary feature and sparsity of the

signals. In [18], the binary prior is explored by the unique sum property. In [19], a

3



two-modal Gaussian distribution with peaks centering at “0” and “1” is served as

the prior distribution of the message passing compressive sensing framework, and the

resulted algorithm is referred to as NBP, which represents the state-of-the-art and

has limit approaching performance under large noise conditions. In [20], an interior

algorithm is proposed to promote the binary signal reconstruction quality. In [17], to

avoid the challenge in binary compressive sensing, a pre-processing stage is involved

to map the binary signal to a random signal. After this pre-mapping process, the

binary reconstruction problem turns to a general compressive sensing problem.

In Chapter 4, we are trying to solve the binary sparse reconstruction task from a

different perspective. We handle the task by formulating it as an convex optimization

task with a novel regularization term. Specifically, it is well known that among the

infinite candidates, compressive sensing selects the sparest solution that agrees with

the projection by the sparsity promoting property of ℓ1-norm minimization. On the

other hand, ℓ∞-norm minimization, favors the representation whose coefficients are

roughly in the same absolute magnitude [21–23]. We show that these two extremes can

be combined in the binary compressive sensing problem to promote the reconstruction

quality. This is done by minimizing the sum of the ℓ1-norm and ℓ∞-norm, up to a

scaling factor and a shifting vector.

With the benefits of the two norms, our novel formulation is able to promote

both sparsity and binary property effectively. The new formulation is convex and

can be solved by a general convex optimization solver. We will see that although

NBP [19] exhibits limit approaching property under large noise, our method gives

better reconstruction under small noise. Besides, our technique turns out to be more

robust when an inaccurate signal model is selected.

The sparse reconstruction techniques developed in Chapter 3 and Chapter 4 are

built on the success of basis pursuit and LASSO [2,24]. In the meantime, the sparse

reconstruction task can be treated from a Bayesian aspect as well, where the distri-
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bution of the signal is modelled by a mixture of density components. For example,

in [25] and [26], the signal is modelled by a mixture of Laplace densities, and the

coefficients are inferred by approximate message passing (AMP). In [27], two types of

mixture models, i.e., a Bernoulli-Gaussian mixture, and a two-state Gaussian mix-

ture, are utilized as the prior distributions of the wavelet transform coefficients of

images.

It can be seen that, the density components in these studies [25–28] are sym-

metrically distributed around their means. In practice, the underling density of the

signal coefficients could be asymmetric. One example can be found in sensor net-

works, where certain type of weather data, let us say outside air temperature, when

subtracted from the historical average, is asymmetrically positive or negative when

the disrupting weather phenomena is heat or cool, respectively. Additionally, it is

found that in microarray time course data analysis [29], the gene expressions involved

in embryo are more often developed with an increasing trend.

Therefore, distributions including normal and Laplace in this case may not be a

proper model to capture all the salient features, and dealing with asymmetric signals

calls for more sophisticated approaches. Two related work can be found in [30] and

[31]. In [30], a normal density mixture is employed as the prior distribution, and a

powerful algorithm is put forward to estimate the signal while learning the mixture

via Expectation Maximization [32]. In [31], an effective technique is developed to

handle non-negative sparse signals by modelling the signal with a non-negative normal

mixture.

While being highly effective in general, both [30] and [31] have limitations. Con-

cretely, the mixture using normal components in [30] is known to be sensitive to

outliers, and the performance degrades with smaller sample size [33]. Meanwhile,

the work [31] is designed exclusively for non-negative signals, and is not capable in

handling signals with mixed positive and negative significant elements.
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Given these limitations, in Chapter 5, we are aiming to develop a new and more

generalized framework to solve for CS-based reconstruction of asymmetrical signals.

To this end, a two-state normal and skew normal mixture density is proposed. The

significant coefficients of the signal are represented by a skew normal density [34],

which is more general than the normal one, and comes with more flexibility in dealing

with the asymmetric features. A message passing algorithm is developed to estimate

the signal from the measurements. A fast gradient-based estimator is designed to

infer the density of each state.

The performance of our proposed technique is examined under a variety of tests,

including phase transition, noisy reconstruction, support set recovery rate, and run-

time tests. Furthermore, our technique finds promising application in real world data

set. We show that in weather sensor network application, the disrupting weather phe-

nomena can be successfully learned by our proposed technique. Overall, experimental

results of both simulated and real-world tests show that, our technique can effectively

exploit the asymmetric feature of the signal, while being competitively efficient in

solving large scale problems.

Following Chapter 5, we move one step further in Chapter 6 by approaching the

compressive sensing of clustered sparse signals, where the magnitudes of each cluster

are distributed asymmetrically about the corresponding cluster mean. One typical

example for such signals can be found in sensor networks, where multiple events

of different types and intensities are likely to occur simultaneously, and clusters of

different events may in turn exhibit varying features.

To get a faithful reconstruction of the signals, we adopt a divide-and-conquer

methodology, and a technique consisting three modules is developed.

First of all, to address the skewness feature, a finite skew normal density mixture

is utilized to model the prior distribution of the signal. Skew normal density [34] gen-

eralizes normal density, and is more effective in accommodating asymmetric features.
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An efficient approximate message passing algorithm, which takes the mixture density,

and the hidden states of signal coefficients as inputs, is designed to iteratively derive

the marginal posterior, and the Minimal Mean Squared Error (MMSE ) estimate of

the signal.

Subsequently, following the approximate message passing module, an Expectation-

Maximization based algorithm is developed to estimate the mixture density from the

MMSE estimate of the signal. The number of mixture components is estimated in

an efficient and non-parametric way.

Moreover, given theMMSE and the mixture density estimates from previous mod-

ules, a loopy message passing based algorithm is designed, where the compatibility

of neighboring coefficients is regularized by the Potts model [35], after which the hid-

den states of signal coefficients can be estimated, and the clustered property can be

promoted.

Overall, our proposed technique alternates between exploiting the measurement,

drawing inference of the finite mixture model, and taking advantage of the clustered

property. These three modules work sequentially and iteratively, after which, a refined

reconstruction of the signal can be obtained.

To the best our knowledge, our method is among the first few work taking both

asymmetry and clustered sparsity into account in compressive sensing tasks. Com-

pared to [7] which analyzed general asymmetrical sparse signals, our developed tech-

nique [36] is designed to exploit the clustered features on top of asymmetry. Moreover,

compared to the two-states mixture model [7] with fixed location parameter, our tech-

nique utilizes a finite mixture model, which allows for multiple skew normal density

components with arbitrary location parameters, and can therefore accommodate more

general signals.

Existing studies [27, 37, 38] utilized Markov random field and Ising model [39] to

exploit the clustered property. While being highly effective in recovering the support
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sets of signals, they are incapable of discriminating diverse hidden states of significant

coefficients. Taking advantages of the Potts model, our developed method not only

can promote clustered property, but is also adequately responsive to different hid-

den states of signal coefficients. Therefore, compared to existing methods, clustered

property is exploited in a more efficient way.

Compressive sensing combines data acquisition and compression in one stage,

and permits efficient utilization of data collected by recording devices. Next, we

are going to investigate wireless radio spectrum, which is another resource that calls

for better utilization. Nowadays, the spectrum is pre-allocated to license holders by

governmental agencies. While performed reasonably well in general, it is observed

that usage of spectrum is highly imbalanced [40], where the majority of usage is

carried over a certain portions of the spectrum, with the remaining being highly

under-utilized.

To deal with this inefficiency, Cognitive Radio [41] was proposed to improve the

usage of the valuable spectrum. This is achieved by allowing unlicensed users to

operate on the licensed spectrum in an opportunistic manner.

Spectrum sensing is a critical part of cognitive radio. It involves detecting the

primary/licensed user’s signals which may be contaminated by noise, and enables

efficient utilization of temporarily unoccupied radio frequency bands. Eigenvalue

based spectrum sensing techniques [42–49], relying on the statistical characteristics of

the eigenvalues of the receiving sample covariance matrix, have been recently proposed

and shown to outperform classical energy detection based techniques [44,47,50]. This

advantage comes from the inherent feature of eigenvalue based methods that no prior

knowledge on primary user signal or noise power level is needed.

Spectrum sensing technique based on the statistics of eigenvalue typically consists

of two steps. The first step is to describe the distributions of the extreme eigenvalues.

Next, the distributions of those eigenvalues are used to calculate test statistics for
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hypothesis tests. However, this is not an easy task, and the major discouragement

comes from the descriptions of extreme eigenvalues. This is due to the fact that exact

distributions of these eigenvalues lead to infinite series, and cannot be calculated

efficiently, except under extreme small settings.

Given the difficulty in large dimensional settings, depending on the way of how

the distributions of extreme eigenvalues are treated, efforts taken in this area can be

divided into two directions. The first discuss the properties of extreme eigenvalue

under an extreme small setting [42,43], which cannot be extended to a more general

and larger dimensional setting due to unfavorable computational cost. The second

is based on asymptotic and limiting assumptions on sample size and the number of

cooperated sensors [44, 46, 47, 49, 50], which is also not suitable for real application

scenarios.

As we can see, neither of these two methods provide practical solutions for real

world scenarios in which the dimensional setting is finite. Therefore, in Chapter 7,

we investigate a more realistic region where the sample size or number of sensors is

finite. We begin our efforts by analyzing the properties of the eigenvalues under a

small dimensional setting where the samples and sensors’ size are finite. Inspired from

recent development in multivariate analysis of variance (MANOVA) [51], we derive the

distribution of the largest eigenvalue of finite sample covariance matrix in the form of

sum of two gamma random variables. Next, noticing the connection between moment

generating function of standard condition number and confluent form of Lauricella

function, we obtain compact expressions for its Probability Density Function as well as

Cumulative Distribution Function. Further, these results are then applied to analyze

the detection performance of Generalized Likelihood Ratio Test. Simulations results

show that the proposed method outperform other eigenvalue based spectrum sensing

techniques for finite number of samples and sensors.

Finally, Chapter 8 summarizes the dissertation, and discusses potential extensions
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and future research directions of this work.
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CHAPTER 2

BACKGROUND

In this section, we first provide a brief overview of related vector norms that are used

frequently in the thesis. Next, system of linear equations is reviewed, and different

settings of linear equations are discussed. Additionally, we introduce compressive

sensing, and show that under certain conditions, the under-determined system of

linear equations can be solved effectively by ℓ1-norm minimization technique. Further,

we show compressive sensing tasks can be treated from a Bayesian perspective, and

describe belief propagation, which is able to take inference of the target signal by

exchanging local beliefs. Moreover, approximate message passing is introduced as a

powerful technique to solve compressive sensing tasks at a reduced complexity.

2.1 Vector Norms

Given a vector x = [x1, .. ., xN ]
ᵀ ∈ RN×1, vector norm is a function that assigns a non-

negative magnitude to the vector. One commonly used vector norm is the ℓp-norm.

Specifically, for a real number p ≥ 1, the ℓp-norm of x is evaluated as,

∥x∥p = (|x1|p + |x2|p + . . .+ |xN |p)1/p. (2.1)

ℓp-norm is referred to as the ℓ2-norm when setting p = 2 in (2.1), i.e.,

∥x∥2 =
√
x21 + x22 + . . .+ x2N , (2.2)

and (2.2) is also known as the Euclidean norm in the literature.
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Similarly, ℓ1-norm can be obtained by setting p = 1, and (2.1) is then reduced to

∥x∥1 =
N∑

n=1

|xn|, (2.3)

where |xn| represents the absolute value of xn.

Another useful vector norm is the ℓ∞-norm, and it is defined as the maximum of

the absolute values of the entire entries, i.e.,

∥x∥∞ = max
n

|xn|, (2.4)

with 1 ≤ n ≤ N .

It is also helpful to count the number of nonzero entries of a vector, as it gives

a measure of complexity and sparsity of a vector. Therefore, defining 00 = 0, the

ℓ0-norm is equal to,

∥x∥0 = |x1|0 + |x2|0 + . . .+ |xN |0. (2.5)

It should be noted that, as (2.5) is not homogeneous [52], using the term norm in

ℓ0-norm is abuse of terminology. Nevertheless, following [2], the term norm is kept

for its zero-counting property.

2.2 System of Linear Equations

System of linear equations is a collection of linear equations over a certain set of

variables. Concretely, a general system of M linear equations and N variables can be
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written as,

y1 = a11x1 + a12x2 + . . . + a1NxN

y2 = a21x1 + a22x2 + . . . + a2NxN (2.6)

...
...

yM = aM1x1 + aM2x2 + . . . + aMNxN ,

with x1, x2, . . . , xN denoting the unknowns variables, y1, y2, . . . , yM being the mea-

surements, and a11, a12, . . . , aMN being the coefficients of the system.

The above linear equations can be expressed in a matrix form as well. Specifically,

let x = [x1, .. ., xN ]
ᵀ ∈ RN×1, and y = [y1, .. ., yM ]ᵀ ∈ RM×1, then (2.6) can be written

as

y = Ax, (2.7)

where A ∈ RM×N represents the coefficients matrix, with amn being the entry at row

m and column n, where 1 ≤ m ≤M , and 1 ≤ n ≤ N .

Given the system of linear equations (2.7), our task is to solve for the correct

solution x, with y and A being known as a priori. When A is square, i.e., M = N ,

and rows of A are independent, the system is said to be well-determined, and exact

and unique solution of x can be found in a variety of ways. For instance, multiplying

the matrix inverse A−1 on both sides of (2.7) leads to,

x = A−1y. (2.8)

It should be noted that most of systems of linear equations utilized in practice are

not well-determined. For example, predictive modelling and regression analysis tasks

generally involves analyzing over-determined systems, where M ≫ N . Besides, in
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what will be described later, the target of interest of compressive sensing is an under-

determined system, where M < N . In both cases, finding the exact and unique

solution of (2.7) becomes more challenging.

2.3 Compressive Sensing

Compressive sensing [1–4] is a powerful technique for solving certain under-determined

linear inverse problems. In compressive sensing, the signal is sampled by random

linear projections as,

y = Ax+ e, (2.9)

where x ∈ RN×1 is the unknown sparse/compressible signal, A ∈ RM×N is the known

sampling matrix with M ≪ N , y ∈ RM×1 is the observed measurements, and e ∈

RM×1 is the measurement noise. It should be noted that, by sparse/compresisble, it

is intended that K ≪ N entries of the signal have significant magnitudes, with the

remaining entries being insignificant, and the ratio K/N is referred to as the sparsity

rate.

Similar to system of linear equations, in compressive sensing, the task is to solve

for the unknown target signal x, given the measurement y and sampling matrix A.

It is noted that M ≪ N in (2.9), therefore, the inverse problem has infinitely many

solutions.

One plausible solution is to find an approximate x̂ that making Ax̂ as close to y

as possible. This can be casted as the following ℓ2-norm minimization procedure

x̂ls = argmin
x

∥y −Ax∥
2
, (2.10)

where x̂ls is referred to as the least square solution. However, it turns out that solving

(2.10) cannot reconstruct the sparse signal. One illustrative example can be found
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in Fig. 2.1, where a signal x is generated with length N = 100, and is made sparse

by setting 80 entries to 0. The remaining K = 20 entries is made to be significant

entries by drawing from normal distribution with mean 0, and standard deviation

20. The signal is then sampled by (2.9), where coefficients of A is generated from

standard Gaussian ensemble, with each column being normalized to unit norm, i.e.,

∥A·n∥2 = 1, for n = 1, . . . , N , and the the measurement is noiseless. As can be seen
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Figure 2.1: Least square estimate of a sparse signal.

in Fig. 2.1, the solution found by the least square method (2.10) deviates from the

ground truth severely, and fails to recover the sparse signal.

Compressive sensing is a paradigm to solve for the under-determined system, and

it permits reliable reconstruction of the signal by exploiting the sparsity. Concretely,

under the conditions [53], [54]:

1. the signal x is sufficiently sparse/compressible,

2. the sampling matrix A obeys a uniform uncertainty principle,

15



then solving the following ℓ1 minimization,

x̂ = argmin∥x∥1, (2.11)

s.t. ∥y −A ∗ x∥
2
≤ ϵ,

leads to a solution that is within the noise level of the unknown sparse signal, i.e.,

∥x̂− x∗∥2 ≤ Cs ∗ ϵ, (2.12)

where ϵ = ∥e∥2 is the noise level, x∗ is the sparse solution and, Cs is a constant

determined by the so called S-restricted isometry constant [3, 53] of sampling matrix

A.

As a continuation of previous example, (2.11) is utilized to reconstruct the signal,

and the results are plotted in Fig. 2.2. As can be seen, ℓ1-norm minimization faithfully

reconstructs the signal, and effectively recovers the sparsity the signal.
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Figure 2.2: Reconstruction of a sparse signal by ℓ1-norm minimization.
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2.4 Bayesian Inference and Belief Propagation

The sparse reconstruction task of compressive sensing can be solved from a Bayesian

perspective. Concretely, the signal x is assumed to be the outcome of random variable

vector X, where the distribution is determined by the prior distribution p(X = x).

Besides, the measurement vector y is assumed to be realization of Y . Under Gaussian

measurement noise environment, the distribution is determined by conditional dis-

tribution as, p(Y = y|X = x, σe), with σe being the standard deviation of Gaussian

measurement noise. Therefore, the measurement model can be written as [55],

p(Y = y|X = x, σe) = (2πσ2
e)

−M/2 exp

(
− 1

2πσ2
e

∥y −Ax∥2
)

(2.13)

and Bayesian inference involves calculating the following posterior,

p(X = x|Y = y) =
p(X = x, Y = y, σe)

p(Y = y)
(2.14)

However, unless N and M are very small, p(Y = y) cannot be evaluated analyti-

cally in practice, exact derivation of (2.14) is generally intractable. Message passing,

also known as belief propagation decoding [28, 56], allows efficient approximation of

the marginal posterior (2.14), by exchanging messages between variable nodes x and

check nodes y, where the messages carry the probability distribution of the corre-

sponding variable nodes.

Specifically, let ν i
xn→ym(xn) be the message sent from variable node xn to check

node ym at i-th iteration, and denote ν i
ym→xn

(xn) as the reverse, with both messages

encoding the belief, namely probability density function (pdf ) of xn.

The message from variable node xn to check node ym, ν
i
xn→ym(xn), is calculated

in a way similar to Fig. 2.3. Concretely, it is evaluated as the product of the prior

distribution of xn, i.e., f(xn), and all incoming messages to xn from check nodes y,
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with the exception of the one from ym [28], i.e.,

νixn→ym(xn)
∼= f(xn)

∏
u∈{1,...,M}\m

νi−1
yu→xn

(xn), (2.15)

where ∼= denotes identity up to a normalization constant.
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Figure 2.3: The sent message from xn to ym

The message from check node ym to variable node xn, ν
i
ym→xn

(xn) can be evaluated

in a similar way. Specifically, as shown in Fig. 2.4, νiym→xn
(xn) is calculated as the

product of the constraint on ym, and all incoming messages of ym from variable nodes

x, with the exception of the one from xn. Under white Gaussian noise environment,

the constraint on ym is

con(ym, x)=
1√
2πσe

exp
(
−(ym−Aᵀ

m·x)
2

2σ2
e

)
, (2.16)

where Am· represents the m-th row of A. In what comes next, Amn is the entry at

the m-th row and n-th column of A. Similarly, A·n denote the n-th column of A.
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Figure 2.4: The sent message from ym to xn

Since con(ym, x) involves all variable nodes x , the product is then marginalized
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by sum over all x but xn [28], i.e.,

νiym→xn
(xn)∼=∫

· · ·
∫

︸ ︷︷ ︸
N−1

con(ym, x)
N∏
t=1
t̸=n

νixt→ym(xt) dx1· · ·dxt · · ·dxN︸ ︷︷ ︸
t∈{1,...,N}\n

. (2.17)

2.5 Approximate Message Passing

2.5.1 Minimal-Mean-Squared-Error (MMSE) Inference by Approxima-

tion

In [28] authors proposed an effective technique, CSBP, where the compressive sensing

of sparse signal x is formulated as a graphical model, and approximate Bayesian

inference of the signal is realized by exchanging messages1 between x and y. It

should be noted that in [28], each message is represented by ∆ = O(σL/σS) uniform

samples of the corresponding pdf, where σL and σS denotes the standard deviation

of the significant, and insignificant coefficients, respectively. Therefore, a storage of

O(∆N log(N)) is needed.

While being reasonably effective in some cases, this procedure calls for consider-

ably large memory space, and is not satisfactorily efficient under large signal dimen-

sionality and very small σS.

Approximate Message Passing (AMP), on the other hand, is more efficient. Specif-

ically, let

N(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(2.18)

be the Gaussian density with mean µ, and variance σ2. Under adequately large M

and N , messages in AMP are approximated by Gaussian density, which is further

1Each message encodes the marginal distribution of signal coefficient xn, for n ∈ [1, . . . , N ]
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parameterized by the corresponding mean and variance [25–27], i.e.,

νixn→ym(xn) ≈ N
(
xn;µ

i
xnm

, σ2
xnm

i
)
, (2.19)

where

µi
xnm

=

∫ ∞

−∞
xnν

i
xn→ym(xn) dxn, (2.20)

σ2
xnm

i =

∫ ∞

−∞
(xn − µi

xnm
)2νixn→ym(xn) dxn, (2.21)

and

νiym→xn
(xn) ≈ N

(
xn;µ

i
ymn

, σ2
ymn

i
)
, (2.22)

in which

µi
ymn

=
1

Amn

×

ym −
∑

t∈{1,...,N}\{n}

Amtµ
i
xtm

 , (2.23)

σ2
ymn

i =
1

A2
mn

×

σ2
e +

∑
t∈{1,...,N}\{n}

A2
mtσ

2
xtm

i

 . (2.24)

Following the notation in [25] and [26], define the mean operator F(κ, ς), and

variance operator G(κ, ς) as,

F(κ, ς) = Efv→c(X), (2.25)

G(κ, ς) = Varfv→c(X), (2.26)

where the pdf of X is fv→c(x) ∼= N(x;κ, ς)f(x), with f(x) denoting the prior distri-

bution of X.
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Therefore, with the above approximation, νi+1
xn→ym can be written as,

νi+1
xn→ym(xn)

∼= N(xn;κ
i
nm, ς

i
n)f(xn)

∼= N
(
xn;µ

i+1
xnm

, σ2
xnm

i+1
)
, (2.27)

where

κinm =
M∑
u=1
u̸=m

Aunµ
i
yun , ς in =

1

M

M∑
u=1

A2
unσ

2
yun
i , (2.28)

µi+1
xnm

= F(κinm, ς in), σ2
xnm

i+1 = G(κinm, ς
i
n). (2.29)

As can be seen, following the above update rule, variable node xn sends a unique

pair of
(
µi
xnm

, σ2
xnm

i
)
to ym, for m = 1, . . . ,M . In turn, check node ym sends a unique

pair of
(
µi
ymn

, σ2
ymn

i
)
to xn, for n = 1, . . . , N . As a result, the memory requirement

scales with 2MN .

The work [25] and [26] further show that, with mild accuracy compromise, the

storage requirement can be further reduced by first order approximation.

Specifically, by first order approximation, it is intended that variable node xn

sends a uniform message to all check nodes, i.e., νixn→ym = N
(
µi
xn
, σ2

xn

i
)
, for m =

1, . . . ,M . Similarly, check node ym sends a uniform message to all variable nodes,
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i.e., νiym→xn
=N
(
µi
ym , ς

i
)
, for n = 1, . . . , N , in which [25–27],

µi
xn

= F(κi−1
xn
, ς i−1), (2.30)

σ2
xn

i = G(κi−1
xn
, ς i−1), (2.31)

µi
ym = ym−

N∑
n=1

Amnµ
i−1
xn

+
µi−1
ym

M

N∑
n=1

F ′(κi−1
xn
, ς i−1), (2.32)

ς i = σ2
e +

1

M

∑N

n=1
σ2
xn

i , (2.33)

κi−1
xn

=
∑M

m=1
Amnµ

i−1
ym + µi−1

xn
, (2.34)

with F ′(κi−1
xn
, ς i−1) being the first order derivative of F(κi−1

xn
, ς i−1) with respect to κi−1

xn
.
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CHAPTER 3

SRL1: Structured Reweighted ℓ1 Minimization for Compressive Sampling

of Videos

In this chapter, we investigate the compressive sensing of difference frames in videos,

and develop a novel and effective reconstruction method that is capable of boost-

ing the reconstruction quality by exploiting the structural characteristic of video

sequences.

3.1 Introduction

Video coding employing compressive sensing is an active field of research. What

makes this topic unique is that, aside from the sparsity, video frames are correlated

both temporally and spatially. As discussed in previous chapters, the reconstruction

quality of compressive sensing task depends heavily on the sparsity of the target

signal. Therefore, most endeavours in this area lie in prompting sparsity of a video

sequence by exploring the corrections of video frames.

In this chapter, we aim to solve the compressive sensing task of videos by taking

advantage of the clustered sparsity of the difference frames. In our technique, the

difference frame is calculated as the algebraic difference of the non-reference frame

w.r.t. the reference frame, and is then compressive sampled by projection with a

random matrix.

The clustered sparsity of the difference frame in a video sequence is explored by

our proposed structure-aware reconstruction technique, referred to as SRL1. The

proposed method reconstructs the difference frame of a video sequence and estimates
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its signal support in an iterative fashion. The clustered sparsity of current recon-

struction is utilized to estimate the signal support with which the weights associated

with signal coefficients can be estimated. The weights are then used to direct the

reconstruction of the difference frame in the next iteration. It is shown that through

what we call local exploration and global purification, unrecovered signal coefficients

can be prompted, and isolated non-zero noises can be eliminated.

Our method is distinguished from other model based algorithms including LaMP

[15] and CluSS [16] in two major aspects. First of all, unlike LaMP [15], our method

takes advantage of the connectivity of the non-zero pixels in the difference frame,

and there are few parameters which need to be tuned. In this sense, our method is

more robust than LaMP [15] and will not suffer from selecting an inaccurate model.

Secondly, since our algorithm is an ℓ1 based method, the convergence of the algorithm

is guaranteed. As one can see from the experiment results, our method provides more

stable reconstruction results than CluSS [16], which is based on MCMC sampling.

The remainder of this chapter is organized as follows: our architecture is described

in Sec. 3.2. Sec. 3.3 shows the details of the proposed algorithm. Experimental results

are illustrated in Sec. 3.4, and Sec. 3.5 concludes this chapter.

3.2 System Architecture

3.2.1 Group of Pictures and System Diagram

We adopt a similar setting as [13], where the structure of a Group of Pictures (GoPs)

is shown in Fig. 3.1. Let xbj be the reference frame in the jth GoPs in a video. xbj is

followed by G non-reference frames, denoted as x1tj, x
2
tj, . . . , x

G
tj. The difference frame

between the ith non-reference frame in the jth group of pictures and its reference

frame is calculated as a pixel-by-pixel algebraic difference:

dij = xitj − xbj, (3.1)
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for i = 1, 2, . . . , G.

Group  

Reference 

Frame 

Non-reference 

Frames 

Figure 3.1: Reference frame and non-reference frame in a Group of Pictures.

Next, the difference frame is then hard thresholded and is calculated as:

Di
j(n) =

 dij(n) if dij(n) ≥ τ ;

0 else,
(3.2)

for n = 1, 2, . . . , N , where τ is a threshold value. The thresholded difference frame

Di
j is then sampled using compressive sensing, e.g.,

V i
j = A ∗Di

j. (3.3)

In the reconstruction phase, sparsity promoting algorithm is used to recover the

under-sampled difference frame. Eventually, adding non-reference frame back to the

reconstruction leads to an estimate of the non-reference frame, and the above process

is illustrated in Fig. 3.2.

It is known that when the number of compressed samples, M , is above the weak

threshold O (Klog(N/K)), the reconstruction by ℓ1 minimization is generally very

accurate. However, compressive sampling reconstruction degrades a lot when M is

below the weak threshold. Now, we are interested in answering the following question:

if the number of compressive sensing samples (M) is less than O (Klog(N/K)), given

the full knowledge of the reference frame and the compressive sampling measurements
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Figure 3.2: Diagram of video frame sampling and reconstruction.

of difference frames, could we reconstruct the video sequence better than the state-

of-the-art methods? As we will see in the following sections, by taking advantage of

the clustered sparsity, the answer is positive.

3.2.2 Iterative Reweighted L1 Minimization

Compressive sensing involves solving the under-determined system of linear equations.

Without other prior knowledge, the ℓ0 minimization (3.4),

x̂ = argmin ∥x∥0 , (3.4)

s.t. y = A ∗ x,

finds the optimal solution, as ∥x∥0 represents the number of non-zero coefficients of x,

and (3.4) directly minimizes the number of the non-zero signal coefficients. However,

the ℓ0 minimization is NP-hard, the ℓ1 method (2.11), which is a convex relaxation

of ℓ0, is utilized in practice in finding the sparse solution.

It should be noted that in the ℓ0 norm minimization (3.4), the penalization is

uniform regardless of the magnitude of the coefficients. On the other hand, the ℓ1
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minimization method (2.11) penalizes signal coefficients according to their magnitude

[57]. This difference explains why ℓ1 norm minimization is suboptimal in finding the

sparsest solution that agrees with the measurements. To fill the gap between ℓ0 norm

method and ℓ1 norm method, an iterative reweighted ℓ1 norm minimization, IRWL1,

is proposed in [57,58]. The basic idea of IRWL1 is to penalize large signal coefficients

with weights smaller than those for small coefficients. This can be summarized as,

x̂ = argmin
∥∥Witerx

∥∥
1
, (3.5)

s.t. y = A ∗ x,

where Witer is a diagonal reweighting matrix with entries

witer
n,n = (

∣∣xiter−1
n

∣∣+ ϵ0)
−1 (3.6)

with ϵ0 denoting the regularization constant, and iter ≥ 1 denoting the iteration. In

practice, as no prior knowledge of the signal magnitude is known, all of the entries in

W 1 are set to 1 in the first iteration. As long as a current reconstruction is obtained,

the reweighting matrix Witer can be updated.

3.3 SRL1: Structured Reweighted L1 Minimization

We propose a novel structured reweighted ℓ1 optimization technique, called SRL1, to

explore the clustered sparsity of the difference frames. We will first show two key

components of our technique in the first two subsections and the algorithm is then

summarized in the last subsection.
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3.3.1 Clustered Sparsity

Definition 1 1 A cluster is the set of contiguous non-zero pixels and the size of a

cluster is defined as the cardinality of the set.

Definition 2 1 Two pixels are said to be connected in the sense of dilation by Struc-

tural Element (SE) [59] if the clusters dilated by SE from these pixels are contiguous

or intersected; similarly, a non-zero pixel is said to be isolated in the sense of dilation

by SE if the cluster dilated from this pixel is not contiguous or intersected with other

clusters.

In this work, the shape of the SE is a disk. As shown in Fig. 3.3b, the SE around

the black pixel at the top right corner is shown by gray pixels. The size of the SE is

5. Besides, for brevity, connected and isolated are used as connected in the sense of

dilation by SE and isolated in the sense of dilation by SE, respectively.

Fig. 3.3a is an example where each grid represents a pixel. Three out of 7 ∗ 7

pixels are non-zero and marked with solid black. As shown in Fig. 3.3b, the clusters

(marked with solid gray) dilated from the two black pixels at the bottom left are

intersected and thus these two pixels are connected; the non-zero black pixel at the

top right is isolated.

(a) (b) (c)

Figure 3.3: Local exploration and global purification steps.
(a) Initial reconstruction; (b) Local exploration by SE; (c) Global purification has
removed the isolated non-zero pixel.
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One of the structural characteristics of the difference frame is the clustered sparsity

in which non-zero pixels tend to cluster. Here is an example. Fig. 3.4a is the

(a) (b)
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Figure 3.4: Clustered Sparsity of difference frame.

thresholded difference frame between 3rd frame and 1st frame (reference frame) of

“Foreman” video sequence while Fig. 3.4b is derived from Fig. 3.4a by removing

isolated non-zero pixels. As one can see, most of the non-zero pixels in the thresholded

difference frame are clustered, and just a small fraction of the non-zero pixels are

isolated. Fig. 3.4c shows the ratio of the number of the isolated non-zero pixels to

that of non-zero pixels. 10 video sequences each with 90 frames are tested. Clearly, in

all 10 videos tested, most of the non-zero pixels are not isolated. Specifically, 7 out of

the 10 videos have isolated pixel ratios smaller than 5%. Video sequences including

“Hall”, “Akiyo” and “Clarie” have isolated pixel ratios between 5% to 10%.

As discussed in the previous section, when the number of compressed samples

(M) is less then O (Klog(N/K)), the reconstruction is inaccurate. In the context
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of difference frame reconstruction, that is to say, some non-zero pixels may not be

recovered and some zero pixels may be reconstructed as non-zeros. The clustered

sparsity of the difference frame gives rise to two heuristics that can be used to analyze

and enhance the reconstructed difference frame D̂
i

j for videos:

1. If a pixel D̂i
j(n) is zero but is connected (in the sense of dilation) to other non-

zero pixels, there is a high probability that this pixel is actually non-zero rather

than zero;

2. If a pixel D̂i
j(n) is non-zero and is isolated (in the sense of dilation), there is a

high probability that this pixel is actually zero rather than non-zero.

In the following subsections, we will see these two heuristics give rise to two key steps,

Local Exploration and Global Purification, in signal support estimation. With these

two steps, even when the number of compressed samples is below the weak threshold,

difference frame reconstruction could be improved where unrecovered non-zero pixels

can be prompted and non-zero errors can be eliminated.

3.3.2 Signal Support of Difference Frame and Weights Allocation

Signal support estimation is of great importance in the compressive sampling recon-

struction step. Our signal support estimation starts from the initial reconstruction

D̂
i

j and is followed by two steps, local exploration and global purification.

The local exploration stage is inspired by the first heuristic and is to find the

unrecovered signal pixels. In the Local Exploration stage, we first make D̂
i

j a binary

frame, and the pixel of the resulting binary frame is expressed as:

Bi
j(n) =

 1 if D̂i
j(n) > τ ;

0 else,
(3.7)

This give rise to the binary frame Bi
j and is illustrated in Fig. 3.3a. In Fig. 3.3a,
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two black pixels at the bottom left represent recovered non-zero pixels. The black

pixel at the top right represents a non-zero error. The three shaded pixels at the

bottom left represent unrecovered non-zero pixels. Then, each non-zero pixel in Bi
j

(see Fig. 3.3a) serves as an anchor and is morphologically dilated by the Structuring

Element (SE ) [59], and the dilated frame is denoted as Li
j. As a result, after the

Local Exploration stage, (see Fig. 3.3b), each non-zero pixel (anchor) is dilated to a

cluster.

The global purification stage is inspired by the second heuristic and is to eliminate

non-zero errors. In the global purification stage, depending on the size, certain clusters

and their corresponding anchors will be deleted from Li
j. There are two cases for the

size of the cluster. If two anchors in Bi
j are connected (in the sense of dilation by SE ),

the clusters dilated from these two anchors will intersect and form a larger cluster.

As a result, these two connected anchors will locate in the same larger cluster with

size greater than the size of SE. On the other hand, if a anchor in Bi
j is isolated,

the size of the cluster dilated from this anchor will be equal to the size of SE. To

eliminate non-zero errors, the clusters with size smaller than a predefined threshold1,

Nconn, are deleted from Li
j and the resulting binary object (see Fig. 3.3c), is our

estimation of the signal support of Di
j , denoted as Si

j.

Then the weights vector is calculated based on the signal support Si
j and (3.6) is

restated as:

witer(n, n) =

 1/(w1 + ϵ) if Si
j(n) = 1;

1/(w0 + ϵ) if Si
j(n) = 0,

(3.8)

where w1, w0 and ϵ are set to 1, 0 and 0.1 respectively in our tests, and witer(n, n) is

the n× n element of the re-weighting matrix W iter.

1The threshold value is calculated based on the size of SE and is set to 6.
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3.3.3 The Proposed Algorithm Summary

The proposed structured reweighted algorithm, SRL1, is summarized in Algorithm

1. In Step 1, an initial reconstruction of difference frame can be obtained through a

variety of solvers, for example, SPGL1 [60,61]. This initial reconstruction is served as

side information for further refinement and will be updated in each iteration. In Step

2, the reconstructed difference frame is then thresholded and converted to a binary

frame based on (3.7). Local Exploration and Global Purification are implemented in

Step 3 and Step 4. Signal support and weights vector are then updated in Step 5 and

Step 6 correspondingly.

Algorithm 1: SRL1-Structured Reweighted L1 Minimization.

Input: V i
j,A, xbj

Output: x̂itj
Algorithm:
Initialize: W 1 = I, iter = 1;
while iter ≤ ITER do
Step 1: Solve (3.5):

D̂
i

j = argmin
∥∥W iterDi

j

∥∥
1
, s.t. V i

j = A ∗Di
j

Step 2: Convert Di
j to binary frame Bi

j as in (3.7);
Step 3: Perform local exploration using SE;
Step 4: Perform global purification by removing clusters with size small small
than Nconn;
Step 5: Estimate signal support: Si

j;
Step 6: Update Weight using (3.8), iter = iter + 1;

end while
Return: xitj = xbj + D̂i

j

3.4 Simulation Results

Experiments are taken to show the effectiveness of the proposed algorithm. In all of

the experiments, each frame is gray scale with size 128 ∗ 128 pixels, and the value of

each pixel has been scaled to [0,1]. As in [62] and [63], to relieve the computational
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burden at the video encoder which is resource-constraint, instead of using dense ma-

trices, we use sparse random A with row weight 16. It should be noted that non-zero

elements of A are drawn from normalized Gaussian distribution and are uniformly

distributed across the columns.

In the first experiment, we test the number of iterations iter on reconstruction

quality. The 1st (reference frame) and 3rd frames of “Foreman” are picked. The

difference frame is calculated and then sampled at 40% (M/N = 0.4). Then, recon-

structions by our proposed algorithm SRL1 and IRWL1 [58] are compared and the

PSNRs of the reconstructed 3rd frame are shown in Fig. 3.5. Clearly, our proposed

technique outperforms IRWL1 considerably. Compared to IRWL1, SRL1 increases

the PSNR of the reconstructed video frame by 3.01 dB in the second iteration and

the gain is 3.85 dB after five iterations. Similar results are also observed on other

pairs of frames.
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Figure 3.5: PSNR comparison between SRL1 and IRWL1 as a function of reconstruc-
tion iterations for the 3rd frame of Foreman video.

In the second experiment, 1st and 3rd frames of “Foreman” and 1st and 2nd frames

of “Flower” are selected. The 1st frame is set as the reference frame and the dif-

ference frame is calculated as (3.1). The sampling rate (M/N) is set as 40% for

both of these two tests. ITER is set 5. Threshold τ is set 0.08. The comparision

of the performance of different reconstruction techniques applied for “Foreman” and
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“Flower” are shown in Fig. 3.6. The reconstructed difference frames have been con-

verted to binary frames with threshold value 0.08 for illustration purpose here. The

PSNRs of the reconstructed non-reference frame for “Foreman” are 31.35 dB (SRL1),

27.31 dB (IRWL1) and 26.84 dB (SPGL1). The PSNRs of the reconstructed non-

reference frame for “Flower” are 31.32 dB (SRL1), 29.22 dB (IRWL1) and 28.28 dB

(SPGL1). Comparing these results, we can see that SRL1 can eliminate non-zero

errors. Moreover, unrecovered non-zero pixels could be prompted.

(a) “Foreman” (b) SRL1 (c) IRWL1 [58] (d) SPGL1 [60]

(e) “Flower” (f) SRL1 (g) IRWL1 [58] (h) SPGL1 [60]

Figure 3.6: Demonstration of difference frame reconstruction using different tech-
niques.

In the last experiment, more frames from “Flower” are tested. The size of GoP is

set 5 and maximum iteration (ITER) is set 5. The sampling rate (M/N) is set based

on the sparsity (K/N) of each difference frame and is set below the weak threshold.

Specifically, the sampling rate (M/N) for the 1st, 2nd, 3rd, 4th non-reference frame in

each GoP is set 40%, 55%, 60%, 65% for “Flower”2. Threshold τ is set 0.08 for each

1st non-reference frame and 0.09 for 2nd, 3rd, 4th non-reference frame. The PSNR of 15

reconstructed non-reference frames in the video sequence using our proposed method,

2The sparsity (K/N) increases as the frame distance becomes larger. As a results, we gradually
increase the sampling rates (M/N) within each GoP.
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SRL1, and Block-CoSaMP [64], CluSS [16], IRWL1 [58], SPGL1 [60] are shown in Fig.

3.7. It can be seen that even though the sampling rate is set below the weak threshold,

taking advantage of the clustered sparsity, SRL1 still gives decent reconstruction and

outperforms other schemes.
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Figure 3.7: Comparison of SRL1 with other techniques.

3.5 Conclusion

In this chapter, a novel structured reweighted ℓ1 minimization algorithm, referred

to as SRL1, is proposed to reconstruct difference frames in the video sequences.

It is shown that by exploiting the clustered non-zero coefficients, isolated non-zero

noises could be eliminated and unrecovered signal coefficients could be prompted. We

showed that SRL1 can reconstruct the difference frame much better than many other

state-of-the-art algorithms.

35



CHAPTER 4

Binary Compressive Sensing via Sum of ℓ1-norm and ℓ∞ norm

Regularization

In this chapter, we study the compressive sensing tasks for binary sparse signals. A

novel convex optimization technique is proposed, where ℓ∞-norm is combined with ℓ1-

norm to regularize the optimization process. Numerical results confirm the proposed

technique is capable of promoting both sparsity and the binary feature of the signals.

4.1 Introduction

Conventional compressive sensing tasks involve finding correct solutions for under-

determined systems of linear equations, where the target signals are sparse. In this

chapter, we are interested in solving a special case of the problem, in which the

target signal is binary sparse. Signal of this type is prevalent in engineering fields,

including control engineering, aerospace engineering, and environment monitoring.

One running example can be found in fault identification, where the fault pattern is

represented by a binary vector x ∈ {0, 1}N , with “1” indicating a fault has happened,

and “0” indicating a normal behavior. Given a set of measurements, the task is to

locate the set of faults pattern if there are any errors/events occurred in a system.

The unique binary feature of the signal makes the reconstruction more challenging

than conventional compressive sensing tasks [17]. One line of research lies in adding

heuristics to promote binary sparse features. For example, the binary prior is explored

by the unique sum property in [18]. In [19], a density mixture model with peaks cen-

tering at “0” and “1” is served as the prior distribution of the signal, and the resulted

36



algorithm, NBP, achieves the state-of-the-art and limit-approaching performance un-

der large noise conditions. In [20], a method based on the convex relaxation of the

Boolean constraint is proposed to promote the binary signal reconstruction quality.

Technique proposed in [17] represents another line of research. Concretely, to avoid

the challenge of binary compressive sensing, a pre-processing stage is utilized to map

the non-zero entries of binary signal, i.e., “1”s, to varying magnitudes. After this pre-

mapping process, the binary reconstruction problem turns to a general compressive

sensing problem, which after reconstruction, the signal is transformed back to binary

by applying the inverse transform.

In this chapter, we are aiming to solve the binary compressive sensing task by

designing a novel regularization strategy. Specifically, the convex optimization regu-

larized by ℓ1-norm (2.11) promotes the sparsity of the solution. On the other hand,

regularization by ℓ∞-norm favors the representation whose coefficients are roughly

in the same absolute magnitude [21–23]. In this chapter, we show that these two

regularization can be combined in binary compressive sensing problem to promote

the reconstruction quality. This is achieved by minimizing the weighted sum of the

ℓ1-norm and ℓ∞-norm, up to a shifting vector. Besides, the proposed new formula-

tion is convex1, and can therefore be solved effectively by general linear programming

solvers. We will see that although NBP [19] exhibits limit approaching property in

large noise, our method gives better reconstruction under small noise. Moreover, our

technique turns out to be more robust when an inaccurate signal model is selected.

It should be noted that sparse regression regularized by mixed norms has been

reported in several different scenarios [65–68] where the signal vector is divided into

several groups according to the specific features. Then different norms are applied

to two levels (individual feature level and group feature level) disjointly. The within

group feature is explored by regularization such as ℓ2-norm and ℓ∞-norm. To promote

1The new formulation is convex due to the fact that both ℓ1-norm [57] and ℓ∞-norm [21] are
convex.
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the sparsity across the groups, the group norms are then summed together in the form

of ℓ1-norm. For example, [66] analyzed the multi-layered expansion problem using

ℓ1,2-mixed norms. In [65], lasso (ℓ1-norm) and group lasso (ℓ1,2-norm) are merged and

the penalty function is able to induce a solution which is sparse at both individual

and group feature level. In [68], within group correlation is explored by ℓ∞-norm and

sparsity is explored by ℓ1-norm.

Our technique is distinguished from other schemes mainly in two aspects. First of

all, to the best of our knowledge, we are the first to bring sparse representation [69–71]

and democratic representation2 [21–23] together to solve binary compressive sensing

problem. Secondly, unlike [65–68], both ℓ1-norm and ℓ∞-norm are applied to the same

level, i.e., the whole signal vector. Thus, ℓ1-norm minimizer and ℓ∞-norm minimizer

can work jointly to promote the binary sparsity in our problem.

The remainder of this paper is organized as follows: Our formulation of the prob-

lem is detailed in Sec. 4.2. Numerical results along with comparison with other

state-of-the-art methods are illustrated in Sec. 4.3. Sec. 4.4 concludes this chapter.

4.2 Regularization by Sum-of-Norms

In this section, we will first define the binary compressive sensing problem. Next, the

unit ball of ℓ1-norm and ℓ∞-norm is studied, and our formulation is developed.

4.2.1 Binary Compressive Sensing Problem

We follow the notations in Chapter 2, and denote the length of the signal as N . For

fault identification, this indicates the total number of possible faults in the system

is N . Let a binary vector x ∈ {0, 1}N be the fault pattern where xi = 1 shows the

fault has occurred at i ∈ {1, . . . , N}. Assume faults, i.e., the “1” s, are identical and

independent distributed, and let K be the total number of faults in the system. The

2By democratic, we mean the coefficients of the signal have roughly the same absolute magnitude.
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measurement vector y ∈ RM is obtained by projecting x ∈ {0, 1}N with a M × N

random sampling matrix, a.k.a., fault signature matrix, A, and (2.9) can be restated

as,

y = A ∗ x+ e, (4.1)

where e ∈ RM represents a noise vector, with each component ei identical and inde-

pendent distributed following N(0, σ2). To estimate the fault pattern, one need to

solve the ill-posed problem.

4.2.2 Two extremes: ℓ1-norm and ℓ∞-norm minimizers

The ℓ∞-norm solution for a linear system involves solving the following:

x̂ = argmin ∥x∥∞ , (4.2)

s.t. y = A ∗ x,

(4.3)

where ∥x∥∞ = maxi |xi|.

ℓ1-norm and ℓ∞-norm minimizers are two extremes in finding a solution for a linear

system. This is because ℓ1-norm seeks a solution as sparse as possible, and thus it is

widely used in compressive sensing (or sparse signal representation) [69–71]. On the

other hand, ℓ∞-norm minimizer favors a dense solution and finds its application in

democratic (or spread) signal representation [21–23,72].

Fig. 4.1 is a two dimensional illustration of the comparison of ℓ1-norm and ℓ∞-

norm minimizers in finding a solution for the linear system y = A ∗ x with N = 2

and M = 1. As one can see in Fig. 4.1a, the ℓ1-norm minimization finds the sparse

solution, due to the shape of the ℓ1 ball. On the contrary, we can see in Fig. 4.1b that

the solution found by the ℓ∞-norm minimizer is not sparse. Moreover, the absolute

value of the magnitude of the two coefficients are the same (|x1| = |x2|).
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(a) (b)

Figure 4.1: Two dimensional illustration of ℓ1 norm and ℓ∞ norm minimizers for the
linear system. The solution in each case is marked with solid red.
(a) ℓ1 norm minimizer finds the sparsest solution; (b) ℓ∞ norm minimizer finds the
solution with equal magnitude;

It should be noted that Fig. 4.1b is an exemplary illustration of the ℓ∞-norm

minimizer in solving a linear system. In practice, the coefficients of the optimum may

not share exactly the same absolute magnitudes as stated the following proposition

from [23].

Proposition 1 1 Denote the optimal solution for a linear system yielded by ℓ∞-norm

minimizer as x∗. Then n −m + 1 out of n signal coefficients of x∗ have magnitude

equal to ±∥x∗∥∞ and the remaining m− 1 coefficients of x∗ have magnitudes between

−∥x∗∥∞ and ∥x∗∥∞.

Based on what so-called uncertainty principle [72], authors in [21] further analyzed

the condition under which ℓ∞-norm minimizer gives democratic representation with

high probability and one may refer to [21] for more details of the property of ℓ∞-norm

minimizer.

4.2.3 Sum-of-Norms Regularization

As discussed above, ℓ1-norm and ℓ∞-norm minimizers are two extremes in finding

a solution for a linear system. It seems that they may not have any connection in
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solving the binary compressive sensing problem. However, we showed that they can

be combined to promote the underlying binary sparsity. This is done by summing

ℓ1-norm and ℓ∞-norm together, up to a scaling factor λ and a shifting factor vector

c. The new formulation is then expressed as follows:

x̂ =argmin(∥x∥1 + λ ∗ ∥x− c∥∞), (4.4)

s.t. ∥y −A ∗ x∥2 ≤ ∥e∥2,

and 0 ≤ xn ≤ 1 for 1 ≤ n ≤ N

where λ is a scalar and c represents the shifting vector which is of the same length with

the signal vector x. Since both ℓ1-norm and ℓ∞-norm are convex, the summation of

these two norms is convex as well. Thus one can employ general linear programming

operators, such as CVX [73] to solve (4.4).

4.2.4 Discussion on the Parameters

As one can see, unlike the classic formulation, in our novel formulation (4.4), the

binary compressive sensing problem is regularized by two penalties: ℓ1-norm and

ℓ∞-norm. Just like the classic formulation, the ℓ1-norm term is aimed to promote

the sparsity. The ℓ∞-norm, aside with the shifting vector c, on the other hand, are

employed to exploit the binary property in the problem. Consequently, the balance of

these two terms is controlled by the scaling factor λ. We give the following proposition

regarding how to set up the shifting vector c directly without theoretical proof.

Proposition 2 1 Provided the binary prior on the fault pattern (x ∈ {0, 1}N), all

the coefficients of the shifting vector c in (4.4) should be set to a same magnitude,

which is 1/2 in our case.

To see why the proposition makes sense, one can see Fig. 4.2. It is known that the

non-zero coefficients of x are located at 1. That is also to say, the coefficients of x

41



are equally separated w. r. t. 0.5. We recall that the ℓ∞-norm minimizer is able

to spread the magnitudes evenly across all the coefficients. Therefore, by setting the

shifting vector to 0.5, the two penalty terms in (4.4) can work constructively.

Figure 4.2: Illustration of the Formulation

To summarize, the combined effect of the two norms in (4.4) is two fold. First of

all, the sparsity of the fault pattern is promoted by the ℓ1-norm term and thus some

of the coefficients are deviated from 0. The binary property is then explored by the

ℓ∞-norm term which encourages those non-zero coefficients to be centered at 1.

4.2.5 Numerical Analysis

We will evaluate the goodness of our choice of scaling factor λ and shifting vector c by

feeding our method with different combinations of these two parameters. Specifically,

N and M are set to 200 and 60. Besides, the sparsity K/N are set to 0.09 and the

variance of the noise is set to 0.1. We use random Gaussian matrix with normalized

columns as our sampling matrix, and the error metric is mean ℓ2-norm reconstruction

error (MLRE), which is calculated as
√∑N

i=1(xi − x̂i)2/N . The formulation (4.4)

is then solved by CVX package [73]. Fig. 4.3 shows the results averaged on 50

independent trials. It can be seen that the global minimum happens when c = 0.5

and λ = 100.

Then, we further test our scheme with different combinations of scaling factor λ
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Figure 4.3: Performance on different combinations of scaling factor λ and shifting
vector c.

and signal sparsity K/N while the shifting vector c is fixed at 0.5. We follow the

previous setting and thus N is fixed at 200 and M is set to 60. The variance of

the noise is set to 0.1. Then 50 Monte Carlo trials are executed and the results are

summarized in Fig. 4.4. We can see from Fig. 4.4 that for a fixed sparsity K/N , the

reconstruction error (MLRE) decreases as scaling factor λ increases from 0 (λ = 0

corresponds to solely ℓ1 norm minimization) to 100. Besides, it can be seen that the

MLRE turns out to be relatively stable when λ is set in the range [100, 200] and the

reconstruction deteriorates with further increment of λ ( λ = ∞ corresponds to solely

ℓ∞ norm minimization).

This confirms that by proper combining ℓ1-norm and ℓ∞-norm, our scheme is

able to do better than generic ℓ1-norm minimization and ℓ∞-norm minimization.

Moreover, another favorable feature is that λ in the range [100, 200] yields satisfactory
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Figure 4.4: Performance on different combinations of scaling factor λ and signal
sparsity K/N . c is set to 0.5.

reconstruction for all sparsity values K/N . Based on these results, we will set c to

0.5 and λ to 100 in later comparisons3.

4.3 Simulation Results

In this section, we will compare our method with several sophisticated algorithms

in solving fault identification problem. Specifically, we compare our method with

NBP [19], IP [20], classic ℓ1-norm [69–71] and ℓ∞-norm technique [21–23]. Since we

are working on noisy measurements, the method in [18] will not be compared here.

To obtain a binary solution, we employ two useful packages: Variable threshold

rounding and Local optimization search from [20] as the post-process stage for all the

algorithms compared. We use success rate as our metric to measure the goodness of

3We also notice that λ = 100 turns out to be a good choice for larger signal length, such as
N = 200, 500, 1000.
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the reconstruction where a successful trial is defined as the one of which the recon-

struction is exact (x̂ = x). Besides, as in [19], sparse sampling matrix with non-zero

elements drawn independently from {−1, 1} is employed as the sampling matrix for

all the schemes. We set the percentage of the non-zero elements, i.e., the sparsity of

A, to 0.2, which is the same value as in [19]. Also, c is set to 0.5 and λ is set at 100.

The first simulation is set up to evaluate the effect of the sparsity (K/N) on

reconstruction quality. In this test, N is set to 100 and M is set to 40. Noise

variance σ is set to 0.1. The results averaged on 500 Monte Carlo trials are sum-

marized in Fig. 4.5. It can be seen that, by taking advantage of the binary prior of
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Figure 4.5: Comparing Several Schemes with varying Sparsity
(a) Without Local Optimization (b) With Local Optimization;

the fault pattern vector, our technique outperforms generic method which is based

on ℓ1-norm minimization. Also, our technique gives better fault pattern estimation

quality than ℓ∞-norm minimization technique where the sparsity prior has not been

explored. Moreover, our scheme do better than the two sophisticated algorithms for

fault identification problem: NBP [19] and IP [20].

It should be noted that in Fig. 4.5 the quality of Max-norm (ℓ∞-norm) [21] is not

very good. This is because Max-norm technique requires the sampling rate (M/N) to

be at least 0.5 to get decent quality [22]. Also, it can be seen that the reconstruction
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when sparsity K/N equals to 0.03 is worse than those when sparsity K/N equals

to 0.06. This is because IP [20] requires the sparsity K/N to be known to operate

properly4, and the performance degrades when K/N is very small.

Next, we test the performance of our method with varying noise variance σ. As

in the first simulation, N and M are set to 100 and 40 respectively. K/N is set to

0.09. Fig. 4.6 summarizes the results averaged on 500 trials. It can be seen that our

technique outperforms NBP [19], which represents the state-of-the-art, under small

noise condition. Yet we also notice that NBP [19] yields better quality when noise

variance σ is larger than 0.25.
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Figure 4.6: Comparing Several Scheme with varying Noise Variance
(a) Without Local Optimization (b) With Local Optimization;

In the last simulation, we are interested in analyzing the robustness of our method.

Specifically, we test the sensitivity to the sparsity K/N on different reconstruction

schemes. To do so, we fix K/N to 0.09 in generating the signal and then feed these

schemes with several different sparsity values at the reconstruction stage. It is ex-

pected that our scheme could provide better results since it does not need the sparsity

value to reconstruct the fault pattern. Following the setting in previous simulations,

N andM are set to 100 and 40, respectively. The noise variance is set to 0.1. Fig. 4.7

4To get the fault pattern, sparsity K/N is required in [20] to calculate the posterior probability
and loss function.
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shows the results averaged on 500 Monte Carlo runs. Clearly, our technique is more

robust and provides more stable reconstruction quality when an inaccurate estimation

of the sparsity K/N is selected. Also, NBP [19] and IP [20] are more vulnerable to

model mismatch and thus call for more efforts in tuning the algorithms.
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Figure 4.7: Sensitivity on Sparsity
(a) Without Local Optimization (b) With Local Optimization;

4.4 Conclusion

In this chapter, we presented a novel formulation for the binary compressive sensing

problem. The binary sparsity is exploited by the sum of two norms: ℓ1-norm and

ℓ∞-norm. When applied in fault identification problem, our method is able to give

decent results and outperforms other techniques especially under small noise. Besides,

our scheme turns out to be more robust when an inaccurate signal model, i.e., the

sparsity level, is selected.
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CHAPTER 5

A Framework for Compressive Sensing of Asymmetric Signals using

Normal and Skew-Normal Mixture Prior

In this chapter, we study the compressive sensing of sparse signals whose significant

coefficients are distributed asymmetrically with respect to zero. To properly capture

the asymmetrical features, a framework utilizing a two-state normal and skew normal

mixture density as the prior distribution of the signal is developed. An efficient

approximate message passing based algorithm is designed to estimate the signal.

Experimental results on both synthetic data and real-world data, i.e., weather sensor

network, confirm the developed method is powerful in exploiting the asymmetrical

feature.

5.1 Introduction

In this chapter, we are aiming to solve the compressive sensing task of asymmetrical

signals. Signal of this type can be found in a number of engineering fields. One

example can be found in biomedical research [29], where the gene expressions involved

in embryo are more often developed with an increasing trend. Another example can

be found in sensor networks, where certain type of weather data, let us say outside air

temperature, when subtracted from the historical average, is asymmetrically positive

or negative when the disrupting weather phenomena is heat or cool, respectively.

The sparsity promoting capability of ℓ1-norm minimization lies in the heart of

compressive sensing. While being robust and working decently in exploiting the

sparse feature, optimization-based techniques in general lack the flexibility in accom-
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modating other salient features of the signals. Aside from convex optimization based

techniques, Bayesian inference based methods provides another effective perspective

to reconstruct the signal from under sampled measurements. In a typical Bayesian

inference setup, the prior knowledge of signal is modelled by a prior distribution, and

the measurement process is represented by the likelihood function. The reconstruction

is obtained by estimating the posterior distribution of the signal.

In this chapter, we adopt a Bayesian methodology. Concretely, to properly address

the asymmetrical features, we develop a framework utilizing a two-state normal and

skew normal mixture density as the prior distribution of the signal. The significant

and insignificant coefficients of the signal are represented by skew normal and normal

distributions, respectively. A novel approximate message passing based algorithm is

developed to estimate the signal from its compressed measurements. A fast gradient-

based estimator is designed to infer the density of each state. Experiment results on

simulated data and real-world tests, i.e., weather sensor network, confirm that our

proposed technique is powerful in exploiting asymmetrical feature, and outperforms

many sophisticated methods.

The remainder of this chapter is organized as follows. The signal model and

system architecture are introduced in Section 5.2. The approximate message passing

algorithm utilizing the two-state normal and skew normal mixture density are detailed

in Section 5.3. Gradient-based parameter estimation is detailed in Section 5.4. The

complexity of our technique is analyzed in Section 5.5. Experimental results are

summarized in Section 5.6, and Section 5.7 concludes this chapter.
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5.2 Approximate Message Passing based on Normal and Skew Normal

Mixture Density

5.2.1 Skew Normal Density

In this work, we are aiming to estimate sparse signals whose significant coefficients

are distributed asymmetrically with respect to zero.

Signals with this asymmetrical feature can be either right-skewed, or left-skewed.

Specifically, for right-skewed, the majority of the significant coefficients are of positive

sign, with the remaining few being negative. Similarly, for left-skewed, the majority of

the significant coefficients are of negative sign, with the remaining few being negative.

As discussed, due to the symmetry, neither normal nor Laplace densities could

encapsulate the asymmetric nature of signals with such prior information. In this

work, we employ a normal and skew normal density mixture as the prior distribution

of such signals. More specifically, the distribution of the significant coefficients is

modelled by a skew normal density, the probability density function of which was

formally defined in [34] as,

SN(x; ξ, ω, α) =
2

ω
ϕ

(
x− ξ

ω

)
Φ

(
α
x− ξ

ω

)
, (5.1)

where ξ, ω, and α represent the location, scale, and shape parameters, ϕ(·) and Φ(·)

denote the pdf and the cumulative density function (cdf ) of the standard normal

distributed random variable, respectively.

Compared to the normal pdf, a noteworthy aspect of (5.1) is the additional term

Φ

(
α
x− ξ

ω

)
, which controls the skewness of the density. It is readily seen that (5.1)

reduces to a normal density when α is set to 0, and approaches to positive/negative

half normal density in the limits α → ±∞.

Fig. 5.1a and 5.1b show two curves of the skew normal densities with (ξ, ω, α)

being set to (0, 100,−10) and (0, 100, 10), respectively. It can be seen that both of
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these two densities are asymmetric with respect to x = 0, where the density with

negative shape parameter α in Fig. 5.1a is left-skewed, and the density with positive

α in Fig. 5.1b is right-skewed. Besides, as compared to the non-negative normal

density [31], the skew normal density is more flexible in accommodating both positive

and negative elements.
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Figure 5.1: Skew Normal Density. (a) Left-skewed with α = −10. (b) Right-skewed
with α = 10.

Similar to [28], the distribution of the insignificant coefficients is modelled by

normal density. Meanwhile, we consider the case where the location parameter ξ = 0.

Overall, the pdf of the signal can be written as,

f(x) ∼= (1−λ)×N(x; 0, σ2
S) + λ× SN(x; 0, ωL, αL), (5.2)

where λ = K/N denotes the sparsity rate. For convenience, let Θ = [σ2
S, ωL, αL] be

the characterizing parameters set of the mixture.

5.2.2 System Diagram

Our proposed method consists of two functionality modules, with each module being

iterative. Fig. 5.2 is the system diagram of our technique.

The first module, as shown in the left of Fig. 5.2, involves the estimation of

the signal using the approximation message passing with skew normal and normal
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Figure 5.2: System Diagram

mixture density. After the message passing completes, the estimation x̂ is then fed

to the second module, where the parameters of the mixture, Θ̂ = [σ̂2
S, ω

∗
L, α

∗
L], are

inferred. These two modules execute alternatively and repeatedly until convergence

is achieved.

5.3 Bayesian Inference by Approximate Message Passing

In this section, we will detail our message passing algorithm utilizing the proposed

skew normal and normal mixture density.

Specifically, given (2.19) to (2.24), and recalling the skew normal and normal

mixture density (5.2), the message from xn to ym at (i+1)-th iteration can be written

as,

νi+1
xn→ym(xn)

∼= N(xn;κ
i
nm, ς

i
n)f(xn)

= (1− λ)N
(
xn;κ

i
nm, ς

i
n

)
N(xn; 0, σ

2
S)

+λN
(
xn;κ

i
nm, ς

i
n

)
SN(xn; 0, ωL, αL), (5.3)

where κinm =
M∑
u=1
u̸=m

Aunµ
i
yun , and ς

i
n =

1

M

M∑
u=1

A2
unσ

2
yun
i .

With the above, the next step is to approximate (5.3) by normal density (2.19).

This calls for the evaluation of the mean and variance of νi+1
xn→ym . For our specific

problem, in which the prior density is a normal and skew normal mixture, one needs
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to analyze the product N(x|κ, ς)SN(x|0, ω0, α0) in (5.3). Therefore, Lemma 1 to

Lemma 3 are derived below.

Lemma 1 Let U ∼ N(µ, σ2) be a Gaussian random variable. We have E
(
Φ(hU +

k)
)
= Φ(

k + hµ√
1 + h2σ2

) for any h, k ∈ R.

Proof. Lemma 1 is a direct extension of Lemma 2 in [34], which states that

E
(
Φ(hV + k)

)
= Φ(

k√
1 + h2

) for V ∼ N(0, 1). By change of variable, V =
U−µ
σ

,

Lemma 1 follows.

Corollary 1 Let G(x) = N(x;κ, ς)SN(x; 0, ω0, α0) be the product of the pdf of normal

and skew normal densities, then C0

∫∞
−∞G(x)dx = 1 for a C0 ∈ R+.

Proof. To prove Corollary 1 , it is sufficient to show that
∫∞
−∞G(x)dx has a finite

value. Recalling G(x) ≥ 0 and Φ(x) ≤ 1 for x ∈ R, it is derived that,

∫ ∞

−∞
G(x)dx < 2

∫ ∞

−∞
N(x;κ, ς)N(x; 0, ω2

0)dx (5.4)

<

√
2

πω2
0

∫ ∞

−∞
N(x;κ, ς)dx =

√
2

πω2
0

.

Additionally,
∫∞
−∞G(x)dx is found to be,

∫
G(x)dx =

∫
N(x;κ, ς)SN(x; 0, ω0, α0)dx (5.5)

=

∫
1

πω0
√
ς
exp

(
−(x− κ)2

2 ς
− x2

2ω2
0

)
Φ

(
α0x

ω0

)
dx (5.6)

=
1

πω0
√
ς
exp

(
−κ2

2(ς + ω2
0)

)∫
exp

(
−(x− µ)2

2σ2

)
Φ

(
α0x

ω0

)
dx (5.7)
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=

√
2

π(ς + ω2
0)

exp

(
−κ2

2(ς + ω2
0)

)∫
N(µ, σ2)Φ

(
α0x

ω0

)
dx, (5.8)

where µ =
κω2

0

ς + ω2
0

, σ2 =
ςω2

0

ς + ω2
0

, and all integrals are from −∞ to ∞.

Applying Lemma 1 on the integral term in (5.8), it is derived that, C0 =

υ exp(γ) Φ(η)−1, in which υ =

√
π(ς + ω2

0)

2
, γ =

κ2

2(ς + ω2
0)
, η =

hµ√
1 + h2σ2

, h =
α0

ω0

.

Lemma 2 Let the pdf of the random variable X be C0 × N(x;κ, ς)SN(x; 0, ω0, α0).

The moment generating function of X is found to be,

MX(t) = exp

(
µt+

σ2t2

2

)
Φ−1(η)Φ

(
η +

hσ2t√
1 + h2σ2

)
. (5.9)

Proof.

MX(t) = C0

∫
exp(tx)N(x;κ, ς)SN(x; 0, ω0, α0)dx (5.10)

= Φ(η)−1

∫
exp(tx)N(µ, σ2)Φ

(
α0x

ω0

)
dx (5.11)

=

exp

(
µt+

t2σ2

2

)
Φ(η)

∫
N(µ+ tσ2, σ2)Φ

(
α0x

ω0

)
dx, (5.12)

= exp

(
µt+

σ2t2

2

)
Φ−1(η)Φ

(
η +

hσ2t√
1 + h2σ2

)
, (5.13)

where (5.11) holds due to Corollary 1 , and (5.13) holds due to Lemma 1 , and all

integrals are from −∞ to ∞.

With the moment generating functionMX(t), the mean and variance of the density

function C0 ×G(x) are derived.

Lemma 3 Let the pdf of the random variable X be C0 × N(x;κ, ς)SN(x; 0, ω0, α0).
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Then the mean and variance are given by

E(X) = µ+
θσ2

√
2π

Φ−1(η) exp

(
−1

2
η2
)
, (5.14)

and

Var(X)=µ2+σ2+
(
E(X)− µ

)
ρ−(E(X))2, (5.15)

respectively, where θ =
h√

1 + h2σ2
, and ρ =

2µ+µh2σ2

1+h2σ2
.

Using Lemma 1 to Lemma 3 and omitting the iteration superscript i and

subscripts n and m for coefficients, (5.3) can be approximated by normal density as,

νx→y(x)
∼= N(µx , σ

2
x ), (5.16)

µx = F(κ, ς) = p1µ1 + p2µ2, (5.17)

σ2
x= G(κ, ς) = p1

(
µ2
1 +σ

2
1

)
+p2

(
µ2
2 +σ

2
2

)
− (p1µ1+p2µ2)

2, (5.18)

where µ1, σ
2
1, p1, µ2, σ

2
2, p2 are calculated in Table 5.1.

µ1=κρS , µ2 = µ0+
θσ2

0√
2π

Φ−1(η) exp
(
− 1

2
η2
)
,

σ2
1= ςρS , σ2

2=µ
2
0+ σ2

0 − µ2
2 + (µ2 − µ0)ρ0,

p1 = (1− λ)
C

C1

, p2 = λ
C

C2

, C1=υSβ,

C2 = υL exp(γ)Φ(η)−1, µ0 = κρL, σ2
0 = ςρL,

ρS=
σ2
S

ς + σ2
S

, ρL=
ω2
L

ς+ω2
L

, ρ0 =
2µ0 + µ0h

2σ2
0

1 + h2σ2
0

,

γ=
1

2σ2
0

(
κ2ρL−µ2

0

)
, η=

hµ0√
1+h2σ2

0

, θ=
h√

(1+h2σ2
0 )

,

h=
αL

ωL
, β=exp

(
κ2

2(ς+σ2
S)

)
, υS=

√
2π(ς+σ2

S),

υL=

√
π(ς+ω2

L)

2
, C =

C1C2

λC1 + (1− λ)C2

.

Table 5.1: Message Passing Parameters for F(κ, ς) and G(κ, ς)

Omitting the iteration superscripts and coefficient subscripts, F′(κi−1
xn
, ς i−1) in
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(2.32) is calculated as,

F′(κ, ς )=(1−λ)
(
µ1ζ1+

C

C1

ρS

)
+λ

(
µ2ζ2+

C

C2

δ

)
, (5.19)

in which ζ1, ζ2 and δ can be calculated as Table 5.2.

δ =ρL−
θσ2

0√
2π

exp
(
− 1

2
η2
)(
τ0Φ

−2(η)+ηρLθΦ
−1(η)

)
.

τ=(1−λ)τ2υL+λ(τ1Φ(η)+βτ0)υS ,

ζ1=
υLτ2β0−υLexp(γ)τ

β2
0

, ζ2=
υSβ0(τ1Φ(η)+βτ0)−υSβΦ(η)τ

β2
0

,

τ1 =
βκ

ς + σ2
S

, τ2 =
(κ − µ0) exp(γ)ρL

σ2
0

,

τ0 =
exp
(
−0.5η2

)
ρLθ√

2π
, β0=(1−λ)υL exp(γ) +λβυSΦ(η).

Table 5.2: Message Passing Parameters for F ′(κ, ς)

Therefore, similar to the approximate message passing (2.30)-(2.34) for arbitrary

prior density, our approximate message passing utilizing the proposed normal and

skew normal density (5.2) is concluded as (5.17), (5.18), (2.32), (2.33) and (2.34),

where F ′(κi−1
xn
, ς i−1) in (2.32) is calculated as (5.19).

5.4 Gradient Based Parameter Estimation

We now detail the parameter estimation for the density of each state. To estimate

the parameters, we fit the reconstruction of AMP to the proposed normal and skew

normal prior density model (5.2). It is expected that, the prior density model, and

the learned parameters can regularize later AMP reconstructions.

Our strategy is divide-and-conquer. First of all, the reconstruction is divided

into two sets, i.e., large state set and small state set, according to the sparsity rate1

λ = K/N . Specifically, Let T be the set of K largest coefficients of x̂ = [µId
x1
, . . . , µId

xN
].

Meanwhile, denote T c as the set containing the remaining N −K coefficients.

1As [28], the sparsity rate, λ = K/N , is assumed to be known at the reconstruction stage.
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For the small state, its variance can be estimated as the unbiased sample variance,

i.e.,

σ̂2
S =

1

N −K − 1

∑
x̂i∈T c

x̂2i . (5.20)

Given the large state set T , the parameters are estimated by maximizing the

log-likelihood of the large state set T , with respect to ωL and αL, i.e.,

ω∗
L, α

∗
L = argmax

ωL, αL∈R
ℓ(T ;ωL, αL), (5.21)

where

ℓ = K log
2

ωL

− 1

2

∑
x̂i∈T

(
x̂i
ωL

)2

+
∑
x̂i∈T

log

(
Φ

(
αL

x̂i
ωL

))
. (5.22)

Besides, the gradients of ωL and αL with respect to (5.22) are found to be,

dℓ

dωL

= −K

ωL

+
∑
x̂i∈T

x̂2i
ω3
L

− αL

ω2
L

∑
x̂i∈T

ϕ

(
αL

x̂i
ωL

)
Φ

(
αL

x̂i
ωL

) x̂i, (5.23)

dℓ

dαL

=
1

ωL

∑
x̂i∈T

ϕ

(
αL

x̂i
ωL

)
Φ

(
αL

x̂i
ωL

) x̂i. (5.24)

With (5.22) and gradients (5.23) (5.24), one can choose from a variety of solvers,

including trust-region-reflective [74,75], interior-point [76] algorithms to find the opti-

mum ω∗
L and α∗

L, after which Θ̂ = [σ̂2
S, ω

∗
L, α

∗
L] is fed back to the approximate message

passing (6.9).

It should be noted that (5.22) is not convex in general. As a result, the proposed
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gradient estimator can only find local solutions, and a good initialization strategy

becomes consequential for our task.

In this work, we find that initializing ωL and αL such that the expected mean and

variance of the skew normal density match the sample mean and variance of the large

state coefficients of x̂ works satisfactorily. Therefore, ωL is initialized at,

ω0 =
√
µ2
T + σ2

T , (5.25)

and the initial value of αL can be found by solving the following,

α2
0

1 + α2
0

=
π

2

µ2
T

µ2
T + σ2

T

, (5.26)

where µT and σ2
T are the sample mean and variance of large state set T .

Give the reconstruction, the noise variance can be estimated based on the residual,

i.e.,

σ̂2
e =

1

M

M∑
m=1

(ym − Am·x̂)
2. (5.27)

5.5 Complexity Analysis

Thanks to the efficient AMP framework, and together with the fast gradient-based

parameter estimation, our proposed technique is highly computationally effective.

Similar to [25, 26, 77], the complexity of each message passing iteration in our

AMP module is dominated by multiplying sampling matrix A ∈ RM×N with vector

x̂ ∈ RN×1. Besides, as can be seen in (5.23) and (5.24), the parameter estimation

module involves only vector operations. This makes the complexity of our proposed

technique dominated by the AMP module.

It is worth pointing out that in our derivation, evaluating functions including

ϕ(·), Φ(·), as well as their division ϕ(·)/Φ(·), will incur sizable computation overhead.
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Table 5.3 summarizes the running time of several frequently evaluated functions in

our scheme.

The test is implemented in Matlab [78] and is performed on a computer with dual

core 2.67 GHz CPUs, and 8 GB of 1333 MHz RAM, where the input argument of each

function is a scaler, and the results are the average of 108 random and independent

trials.

add multiply divide square ϕ Φ ϕ/Φ
5.93 6.08 6.24 6.39 30.42 34.94 80.5

Table 5.3: Average running time (in nanoseconds, 10−9 seconds) of frequently evalu-
ated functions.

It can be seen in Table 5.3, compared to scaler addition, evaluating ϕ(·) and Φ(·)

are generally 5 to 6 times slower, while the division ϕ(·)/Φ(·) is about 14 times slower.

Therefore, as a rule of thumb, a Floating Point Operations (FLOP) proportional

to 10M × (2N − 1) ≈ 20MN is expected at each iteration. As will be seen in the

test, the runtime of our proposed method scales decently as the signal dimensionality

N increases, making it one of most efficient techniques in the community.

5.6 Simulations

In this section, the performance of our proposed method is evaluated under phase

transition, noisy reconstruction, support set recovery, and runtime tests. Besides, our

technique is examined under real world application, i.e., weather sensor network.

The sampling matrix A is generated from standard Gaussian ensemble, with each

column being normalized to unit norm, i.e., ∥A·n∥2 = 1, for n = 1, . . . , N .

In reconstruction, our method alternates between approximate message passing

and parameter estimation. Unless otherwise specified, these two modules execute

up to 8 times, or stopped when consecutive normalized reconstruction difference

∥x̂new − x̂old∥22/∥x̂new∥22 ≤ 10−6. In approximate message passing, µ1
xn

is initialized

at 0 for n = 1, . . . , N , µ1
ym is set to ym for m = 1, . . . ,M . Besides, ς1 is set to 104
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to make the inference robust. The message passing is executed up to 50 iterations,

or until the convergence, which is claimed when ∥µ̂i+1 − µ̂i∥2 is less than 10−7, where

µ̂i = [µi
x1
, . . . , µi

xN
].

In estimating the parameters, we employ the classic trust-region-reflective [74,75]

as the optimizer, where ωL is bounded by [0,∞]. Additionally, αL is bounded by

[−15, 15] for numerical stability. The optimization is terminated after 500 iterations,

or when the consecutive log-likelihood difference ≤ 10−6, whichever comes earlier.

5.6.1 Phase Transition

In the first test, the proposed method is examined under the empirical phase transition

test [79]. The support set of the signal is generated uniformly at random, namely,

index n = 1, . . . , N is sampled with a uniform probability λ = K/N . In generating

the magnitude of the significant coefficients, two cases are considered.

In the first case, the significant coefficients are generated identically and inde-

pendently from normal distribution N(0, σ2), where the standard deviation σ follows

a prior uniform distribution U[5, 25]. Besides, the significant coefficients are made

strictly non-negative by taking the absolute values.

In the second case, the significant coefficients are generated identically and inde-

pendently from uniform distribution U[bl, bu], where the lower bound follows a prior

uniform distribution bl ∼ U[−20, 0], and the upper bound follows a prior uniform

distribution bu ∼ U[0, 200].

The insignificant coefficients are generated from normal distribution with mean

0 and variance 10−4. In the first execution of approximate message passing module,

Θ = [σ2
S, ωL, αL] is set to [10−5, 50, 0], which in later executions, will be updated at

the solution found by the gradient based parameter estimator Θ̂ = [σ̂2
S, ω

∗
L, α

∗
L]. The

signal length is set to N = 1000. Meanwhile, M/N is set from 0.05 to 0.5 at steps

of 0.025. For each value of M/N , K/M is varied from 0 to 1 at steps of 0.025. 500
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independent trials are executed for each combination of M/N and K/M , and the

Normalized Square Error (NSE), evaluating as NSE , ∥x̂ − xtrue∥22/∥xtrue∥22 with

xtrue denoting the ground truth, is recorded for each trial.

As in [79], the maximum value ofK/M , up to which the corresponding success rate

is ≥ 50% is registered. Besides, a success trial is defined as the one with NSE ≤ 10−4.

The performance is compared with two AMP based techniques, namely EMG-

MAMPMOS [30], and EMNNAMP [31]. Besides, SPGL1 [80], and CVX [81] are in-

cluded in the comparison to solve LASSO [24]. It should be noted, CVX [81] is aided

with side information, where the optimization is constrained with upper bound being

the maximum of xtrue, and lower bound being the minimum of xtrue. Additionally,

several powerful Bayesian and greedy algorithms, including Sparse Bayesian Learning

(SBL) [82], Bayesian Compressive Sensing (BCS) [55], and Orthogonal Matching Pur-

suit (OMP) [83] are also included in the tests. Furthermore, since the sparsity rate λ

is assumed to be known in our scheme, for fairness, the sparsity ratio in EMGMAMP-

MOS [30], EMNNAMP [31], and OMP [83] are fixed to λ = K/N . The simulation

results are plotted in Figures 5.3a and 5.3b.

As can be seen in Fig. 5.3a where all significant coefficients are strictly non-

negative, EMNNAMP [31] gives the benchmark phase transition curve by taking

advantage of the non-negative normal density mixture. It is also noted that in Fig.

5.3a, although without any prior of the non-negativity, our proposed scheme is capable

of exploiting the asymmetric feature of the significant coefficients, and provides very

competitive performance.

Since EMNNAMP [31] is designed exclusively for non-negative signals, its plot is

omitted in Fig. 5.3b, where the significant coefficients consist of both positive and

negative components. As can be seen in Fig. 5.3b, comparing to many sophisticated

techniques, our method provides the most competitive performance. This shows our

technique can effectively exploit the underlining skewness of the signal, while being

61



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M/N

K
/M

 

 

Proposed

CVX−bounded [81]

SPGL1 [80]

EMGMAMPMOS [30]

EMNNAMP [31]

SBL [82]

BCS [55]

OMP [83]

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M/N

K
/M

 

 

Proposed

CVX−bounded [81]

SPGL1 [80]

EMGMAMPMOS [30]

SBL [82]

BCS [55]

OMP [83]

(b)

Figure 5.3: Phase transition test. (a) Significant coefficients are strictly non-negative.
(b) Significant coefficients are a mix of positive and negative elements. The signal
length is set to N = 1000.

sufficiently flexible to accommodate both positive and negative elements.

5.6.2 Noisy Reconstruction

In the second test, the performance of our technique is examined under noisy envi-

ronments. The significant coefficients are generated in ways similar to previous phase

transition test. To make the reconstruction more challenging, unlike the phase transi-

tion test where the magnitudes of insignificant coefficients are negligible, in this test,

the insignificant coefficients are generated from normal distribution with mean 0 and

variance 0.5. It should be noted that similar setups, referred to as heavy-tailed tests
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2, can be found in [30] where Student’s-t and log-normal prior densities are utilized

to generate the signals.

The length of the signal is set to N = 500. The number of significant coefficientsK

is set to 50, and the number of samplesM is set to 125. The noise vector e is sampled

from Gaussian density, i.e., e ∼ N(0, σ2
eIM×M), and is added to the measurement.

The variance of the noise, σ2
e , is adjusted such that SNR = 10 log10(∥Axtrue∥22/∥e∥22)

is varied from 10 dB to 30 dB at 2 dB increments. Meanwhile, Θ = [σ2
S, ωL, αL] are

set to [1, 50, 0] at the first execution of approximate message passing module. The

noise variance is initialized at 1, and is estimated as (5.27) in later reconstruction

iterations.

The performance of our proposed technique, EMGMAMPMOS [30], EMNNAMP

[31], SPGL1 [80], and CVX (bounded) [81], SBL [82], BCS [55], and OMP [83] are

compared and the results are summarized in Fig. 5.4, where each data point is the

average of 500 independent trials. As can be seen, our technique yields superior

results in both Fig. 5.4a and 5.4b.

5.6.3 Support Set Recovery

In this test, the capability of support set recovery is examined. As previous tests,

two types of signals are generated, i.e., strictly non-negative, and mix of positive and

negative, where for each type of signals, the parameters characterizing both significant

state and insignificant state, as well as the initialization of Θ = [σ2
S, ωL, αL], are set

identical to those of phase transition test. The measurement is noiseless.

The length of signal is set to N = 500, and the number of random samples is fixed

at M = 125. We gradually vary the number of significant coefficients K by adjusting

K/M from 0.025 to 1, at steps of 0.025, where for each value of K, 500 independent

2By default, the heavy-tailed tests in EMGMAMPMOS [30] assumes a symmetrical signal, and
the means of the density components are fixed to 0. For fairness, we turn on the update of means
for EMGMAMPMOS.
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Figure 5.4: NSE vs. SNR. (a) Significant coefficients are strictly non-negative. (b)
Significant coefficients are a mix of positive and negative elements.

random trials are performed. Besides, the support set recovery rate is calculated by

counting the trail with correct recovery of support set, i.e., the trial whose estimated

support set matches exactly with the ground truth. Since not all techniques are able

to yield strictly sparse solutions, a threshold of 0.1 is applied to get the estimated

support from the raw reconstruction.

We compare our proposed technique with EMGMAMPMOS [30], EMNNAMP

[31], SPGL1 [80], and CVX (bounded) [81], SBL [82], BCS [55], and OMP [83], and

the results are plotted in Figures 5.5a and 5.5b. As can be seen, for each method,

the support set recovery rate decays with increasing K. Yet, thanks to ability of

exploiting the asymmetrical feature of the signal, our proposed technique is capable
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of providing reliable support recovery over a decently large region ofK in both Figures

5.5a and 5.5b.
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Figure 5.5: Support Recovery Rate vs. K/M (a) Significant coefficients are strictly
non-negative. (b) Significant coefficients are a mix of positive and negative elements.

5.6.4 Runtime

We are now testing the Runtime of our proposed technique. In this test, the length

of signal, N , is varied from 500 to 5000, at steps of 500. Meanwhile, without lose

of generality, we fix M/N = 0.5, and K/M = 0.4, for all values of N . Signals are

generated such that all significant coefficients are strictly positive, where the charac-

terizing parameters of the densities, as well as the initialization of Θ = [σ2
S, ωL, αL],

are set similar as phase transition test. The test is performed on a computer with
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hex core 2.0 GHz CPUs, and 32 GB of 1333 MHz RAM.

We compare the runtime of our technique with EMGMAMPMOS [30], EMN-

NAMP [31], SPGL1 [80], and CVX (bounded) [81], SBL [82], BCS [55], and OMP [83],

where all methods are implemented with Matlab [78].

The mean runtime are plotted in Fig. 5.6, where each data point is the average

of 50 independent trials. Clearly, similar to the two AMP relatives, namely EMG-
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Figure 5.6: Signal Length N vs. Average Runtime (in seconds)

MAMPMOS [30] and EMNNAMP [31], our proposed technique is computationally

effective. This advantage is most remarkable under relatively large signal dimen-

sionality. For example, when N = 5000, our technique yields an average runtime of

6.204 Seconds (sec), which is more than 650 times faster than CVX, and 6.27 times

faster than SPGL1. Besides, comparing to OMP, our technique runs 26 times faster.

Moreover, our technique has advantage over Bayesian algorithms, with BCS and SBL

being 3.73 and 299 times slower.

5.6.5 Weather Data Test

We evaluate our proposed technique with a dataset collected from a real weather

sensor network. The data is referred to as cooling degree day departure from normal
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[84]. Cooling degree day is derived from outside air temperature, and is widely used

in estimating the energy needed to cool a structure [84]. The phrase departure from

normal suggests that a 30-year historical average is subtracted from the data. Our

data is obtained from Automated Surface Observing System (ASOS) [85], and is

accessible at National Climate Data Center [84].

The data is of length N = 395, and has K = 143 nonzero coefficients. As can be

seen in the histogram plotted in Fig. 5.7a, the nonzero coefficients are asymmetrically

positive. The data is down-sampled by projection with a Gaussian random sampling

matrix A. The measurement is noisy, and the noise variance σ2
e is adjusted such

that the SNR is varied from 10 dB to 30 dB at 2 dB increments. For each value

of SNR, 100 realizations of random sampling matrix A are generated, and M =

2K. For each trial, our method performs approximate message passing decoding and

parameter estimation up to 8 times, or stopped when ∥x̂new − x̂old∥22/∥x̂new∥22 ≤ 10−2.

Additionally, Θ = [σ2
S, ωL, αL] is initialized similar to phase transition test, and the

noise variance is estimated as (5.27).

We compare our technique with EMGMAMPMOS [30], SPGL1 [80], and CVX

(bounded) [81], SBL [82], BCS [55], and OMP [83]. Since the significant coefficients

contain negative elements, EMNNAMP [31] is excluded from the test. Fig. 5.7b

summarizes the reconstruction NSE as SNR varies. Overall, our scheme provides

satisfactory results in most of the range. It is noteworthy that, although not be-

ing designed for asymmetrical signals, BCS [55] gives very competitive results by

exploiting the sparsity of the signal in this test.

5.7 Conclusion

In this chapter, the compressive sensing of the sparse signals whose significant coef-

ficients are distributed asymmetrically with respect to zero is analyzed. To properly

capture the asymmetry, a two-state normal and skew normal mixture density is pro-
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Figure 5.7: Temperature Data Test (a) Histogram of the temperature data. (b)
NMSE vs. SNR.

posed to model the density of the signal. The significant and insignificant coefficients

of such signals are represented by a skew normal distribution and a normal distri-

bution, respectively. An approximate message passing algorithm is then designed to

take inference of the signal from the compressive sensing measurement while providing

fitting to the model. A gradient-based parameter estimator is put forward to infer the

underlining density of each component. Experiment results on simulated data and

real-world data, i.e., weather sensor network, show our proposed technique can effec-

tively exploit the asymmetrical feature, and provides competitive results compared

to the state-of-the-art techniques.
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CHAPTER 6

Compressive Sampling of Clustered Sparse Signals with Asymmetric

features

In this chapter, we investigate the compressive sensing task of clustered sparse signals,

where the magnitudes of each cluster are distributed asymmetrically w.r.t the cluster

mean. To address the skewness feature of the signal, a finite skew-normal density

mixture is utilized to model the prior distribution, where the marginal posterior of

the signal is inferred by an efficient approximate message passing based algorithm.

An Expectation-Maximization-based algorithm is developed to estimate the mixture

density. The clustered property is then modelled by the Potts model, and a loopy

belief propagation algorithm is designed to promote the spatial feature. Experiments

results show that our technique is highly effective and efficient in exploiting both

the clustered feature and asymmetrical feature of the signals, and outperforms many

sophisticated techniques.

6.1 Introduction

Reconstruction of clustered sparse signal is an active line of research of compressive

sensing community. In multimedia processing [10], it is found significant pixels of

video difference frames tend to form clusters, due to the temporal redundancy of

consecutive video frames. Another promising application can be found in sensor

networks for abnormal environment event detection [85], where in the presence of

abnormality, sensors close to the event give significant and correlated outputs, while

those outside the scope of the event return outputs resembling the no-event average.
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Many sophisticated strategies have been proposed to exploit the clustered property

in compressive sensing tasks. In Struct-OMP [86], a pruning stage is designed to

encourage clustered property based on Orthogonal Matching Pursuit (OMP). In [87],

a Markov Chain Monte Carlo strategy is employed, and the proposed technique,

CluSS, turns out to realize faithful reconstruction in dealing with block clustered

sparse signals. In SRL1 [10], a structural re-weighted ℓ1 norm minimization technique

is developed, where signal coefficients are allocated with weights determined by the

magnitudes of their corresponding neighbors. In LaMP [37,38], the clustered sparsity

of the signal is modelled by the Ising model, from which the signal support is estimated

and the reconstruction is directed.

Compressive sensing of asymmetrical signals is another line of research, and signals

of this type can be found in Multi-Input Multi-Output (MIMO) wireless communi-

cation systems [88], and weather sensor networks [7,84,85]. In [31], A Bernoulli non-

negative Gaussian mixture is employed to model the distribution of sparse signals

with non-negative coefficients, and an efficient approximate message passing based

algorithm is proposed. An effective framework is proposed in [7] to deal with sparse

signals with skewness feature, where a two-state normal and skew normal mixture

density was utilized to model the prior distribution of the signals. The asymmetrical

feature is captured by the skew normal density component, and the signal is estimated

by a approximate message passing based algorithm.

Following Chapter 5, in this chapter, we move one step further by approaching the

compressive sensing of clustered sparse signals, where the magnitudes of each cluster

are distributed asymmetrically about the corresponding cluster mean. One typical

example for such signals can be found in sensor networks, where multiple events

of different types and intensities are likely to occur simultaneously, and clusters of

different events may in turn exhibit varying features.

To get a faithful reconstruction of the signals, we adopt a divide-and-conquer
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methodology, and decompose the task into three modules. First of all, to address

the skewness feature, a finite skew-normal distribution mixture is utilized to model

the prior distribution of the signal. Skew normal distribution [34] generalizes normal

distribution, and is more flexible in dealing with asymmetric features. Based on

the finite skew normal distribution model, an efficient approximate message passing

based algorithm is developed to infer the signal by estimating the corresponding

marginal posterior. Next, an Expectation-Maximization based algorithm is developed

to estimate the mixture density. Additionally, the clustered property is modelled by

the Potts model, and a loop belief propagation algorithm is designed to promote the

spatial feature. A variety of experiments are conducted to test the performance of

the proposed technique. Experiments results show that our developed technique is

highly effective and efficient in exploiting both the clustered feature and asymmetrical

feature of the signals, and outperforms many sophisticated methods.

The remainder of this paper is organized as follows. The signal model, and the

framework of our proposed technique, are introduced in Sec. 6.2. Approximate mes-

sage passing employing the skew normal mixture prior is detailed in Sec. 6.3. In Sec.

6.4, an Expectation-Maximization based algorithm is put forward to infer the finite

skew normal density mixture. The hidden states estimate using loopy message pass-

ing and Potts model is derived in Sec.6.5. The complexity of our proposed technique

is analyzed in Sec. 6.6, and simulation results are summarized in Sec. 6.7, and Sec.

6.8 concludes the work.

6.2 Signal Model and Problem Definition

In this section we will introduce the signal model and formally define the problem.
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6.2.1 Signal Model

Signal Representations

Denote the two dimensional signal x = (xij) ∈ Rd×d as the outcome of random

variable X = (Xij) ∈ Rd×d, where 1 ≤ i, j ≤ d, and d 2 = N . For ease of notation,

in this work, the two dimensional signal x is also represented as a one dimensional

column vector, x = [x1, .. ., xn, .. ., xN ]
ᵀ, where xij is mapped to xn in one dimensional

form with n = (i − 1) × d + j, and 1 ≤ n ≤ N . Similarly, X = [X1, .. ., Xn, .. ., XN ]
ᵀ

is the one dimensional representation of X.

It is also convenient to represent the signal as a concatenation of clusters. Specif-

ically, let G be the total number of clusters, out of which, 0 ≤ Gs < G clusters are

significant, with the remaining being insignificant. Therefore, the signal can be writ-

ten as, x = [xᵀ1, . . . , x
ᵀ
g, . . . , x

ᵀ
G]

ᵀ, with xg = [xg(1), . . . , xg(dg)]
ᵀ denoting the g-th cluster,

where 1 ≤ g ≤ G. Besides, dg denotes the cardinality of cluster g, and
∑

G

g=1 dg = N .

In this work, it is assumed that signals are drawn from a probabilistic density en-

semble ofK density components. Let Sn ∈ {1, .. ., K} be a random variable indicating

the corresponding state of signal coefficient Xn, and denote S = [S1, .. ., SN ]
ᵀ ∈ RN×1

as the state random vector, with the corresponding realization s = [s1, .. ., sN ]
ᵀ being

the state vector.

Without any constraint, the state vector s lies in the {1, · · · , K}N subspace of RN .

To realize clustered property, we restrict the states within a cluster to be homogenous,

i.e., s(i) = s(j) for any xi, xj ∈ xg.

Additionally, let V = (Vnk) ∈ RN×K be the state probability matrix, where Vnk

denotes the probability of Xn taking state k, with the non-negative probability con-

straint 0 ≤ Vnk ≤ 1, and unitary row sum constraint
∑

K

k=1 Vnk = 1.
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Mixture Skew Normal density Model

In this work, it is assumed that the clusters of signal coefficients are drawn indepen-

dently from a mixture of K density components,

f (xg;Θ) ∼
K∑

k=1

λkp(xg; θk), (6.1)

for g = 1, . . . , G, where λ = [λ1, . . . , λK]
ᵀ is the non-negative mixing weight vector

satisfying
∑K

k=1 λk = 1, and λk ≥ 0. Besides, θk denotes the parameter vector

specifying the k-th density component, with Θ = [θ1, . . . , θK]
ᵀ being the parameter

matrix.

Moreover, it is further assumed that signal coefficients of any cluster are indepen-

dent, conditioned on the states vector. Therefore, the joint distribution of the signal

coefficients of any cluster g ∈ [1, . . . , G] can be factorized as,

p (Xg = xg|S(xg) = k) =
∏
x∈xg

SN(x|ξk, ωk, αk)

=
∏
x∈xg

2

ωk

ϕ

(
x− ξk
ωk

)
Φ

(
αk
x− ξk
ωk

)
, (6.2)

where skew normal density (5.1) is employed as the density component of the mixture

(6.1).

Fig. 6.1a is a toy example of a clustered sparse signal, generated from the cor-

responding skew normal mixture density shown in Fig. 6.1b. Following previous

notations, the signal in Fig. 6.1a can be written as a concatenation of G = 3

clusters, i.e., x = [xᵀ1, x
ᵀ
2, x

ᵀ
3]

ᵀ, where xᵀ1 is insignificant cluster (a cluster with in-

significant data values), xᵀ2 and xᵀ3 are significant clusters. Besides, x1 is drawn

from p(x1; θ1), with θ1 = [ξ1 = 0, ω1 = 1, α1 = 0]ᵀ, x2 is drawn from p(x2; θ2), with

θ2 = [ξ2 = −10, ω2 = 2, α2 = −10]ᵀ, and x3 is drawn from p(x3; θ3), with θ3 =

[ξ3 = 10, ω3 = 2, α3 = 10]ᵀ. The mixing weight in Fig. 6.1b is set to λ = [λ1 =

73



0.8, λ2 = 0.2, λ3 = 0.2].
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Figure 6.1: Clustered Sparse Signal and Skew Normal Mixture Density (a) Signal
with G = 3 clusters, where Gs = 2 clusters are significant. (b) Mixture density of
K = 3 Skew Normal density components.

6.2.2 Problem Definition and System Architecture

We adopt a Bayesian perspective in the reconstruction phase of the compressive sens-

ing task, with the goal being set to derive a faithful estimate of signal by maximizing

the posterior distribution p
(
x|y,V,Θ

)
. As neither mixture parameters Θ nor the

state probability V is known, an effective algorithm is developed to seek a reliable

reconstruction of the signal by iteratively applying the sub-modules shown in Fig.

6.2.
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Figure 6.2: Diagram of CL-SNM-BP

As can be seen in Fig. 6.2, at iteration i, CL-SNM-BP starts with an ap-

proximate message passing module, where an MMSE estimate of the signal is ob-

tained, by calculating the conditional expectation of the posterior, i.e., x̂iMMSE =

E
[
X|Y = y,Vi−1,Θi−1

]
.

Subsequently, x̂iMMSE is fed to the second module to get an estimate of the mix-

ture density parameters Θ. In our technique, this is realized by seeking a maxi-

mum likelihood estimate (MLE) solution, Θ̂i
EM = argmax p (X = x̂iMMSE|Θ), using a

Expectation-Maximization-based method.

The last module involves estimating the probability state V. Specifically, taking

mixture density estimate Θ̂i
EM, and the reconstruction of signal x̂iMMSE as inputs, a

loopy belief propagation based technique is set forth to infer the probability state,

while promoting the clustered property.

The above completes the work flow of our technique. The proposed method, CL-

SNM-BP, alternates between these modules, and works in an iterative fashion, where

at the end of iteration i, the state probability matrix V̂ i, and the parameters of the

skew normal mixture Θ̂i
EM, are fed back to the approximate message passing module,

and iteration i+ 1 starts.

6.3 Approximate Message Passing employing Skew Normal Mixture

Prior

In this section, to capture the skewness feature, we employ a finite skew normal

density mixture (6.1) as the prior distribution of the signals. Given V̂ i−1 and Θ̂i−1
EM,
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an efficient approximate message passing algorithm is proposed to make inference of

the signal by exchanging beliefs between variable nodes x and check nodes y.

It is worthy noticing that, a similar technique can be found in [7], where a two-state

normal and skew normal mixture was employed to model signals whose significant

coefficients are skewed about the origin x = 0. Our work here considers a multi-

state skew normal mixture with arbitrary location parameters, and is capable of

accommodating varying number of mixture components. Therefore, [7] can be viewed

as a special case of our work.

6.3.1 Bayesian Inference by Approximate Message Passing

Approximate message passing [25, 26] is a powerful method enabling efficient and

reliable Bayesian inference of the posteriors. Following the notations of Chapter 5,

let x = [x1, .. ., xn, .. ., xN]
ᵀ be the variable nodes, and denote y = [y1, .. ., ym, .. ., yM]

ᵀ

as check nodes. The marginal posteriors are estimated by iteratively exchanging local

beliefs between variable nodes x and check nodes y. Specifically, as Chapter 5, at

iteration i, let ν
(i)
xn→ym(xn) denote the message from the variable node xn to the check

node ym, and ν
(i)
ym→xn(xn) represent the message from the check node ym to the variable

node xn, where

ν(i)xn→ym(xn) = N(xn;µ
(i)
xnm

, σ2
xnm

(i) ), (6.3)

ν(i)ym→xn
(xn) = N(xn;µ

(i)
ymn

, σ2
ymn

(i) ), (6.4)

with the mean and variance being evaluated as,

µ(i)
xnm

=

∫ ∞

−∞
xnν

(i)
xn→ym(xn) dxn, (6.5)
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σ2
xnm

(i) =

∫ ∞

−∞
(xn − µ(i)

xnm
)2ν(i)xn→ym(xn) dxn, (6.6)

µ(i)
ymn

=(ym −
∑

t∈[1,...,N ]\{n}

Amtµ
(i)
xtm

)/Amn, (6.7)

σ2
ymn

(i) = (σ2
e +

∑
t∈[1,...,N ]\{n}

A2
mtσ

2
xtm

(i) )/A2
mn. (6.8)

Combining the skew normal mixture density prior (5.1) and (6.1), the message

from xn to ym is updated in (i+1)-th iteration as,

ν(i+1)
xn→ym(xn)

∼= N(xn; a
(i)
nm, b

2
n
(i))

K∑
k=1

λkSN(xn; ξk, ωk, αk). (6.9)

where

a(i)nm ,
∑

u∈[1,··· ,M ]\{m}

Aunµ
(i)
yun , (6.10)

b2n
(i) , 1

M

∑
u∈[1,··· ,M ]

A2
unσ

2
yun
(i) . (6.11)

It is noteworthy that (6.9) involves the product of normal density function and

skew normal density function, i.e., N(x; a
(i)
nm, b2n

(i))SN(x; ξq, ωq, αq). A special case of

this problem, where the location parameter is fixed to ξ = 0, was studied in Ch. 5

for signals that are asymmetrical about the origin x = 0. For arbitrary value of ξ, we

come up with the following Lemma 4 and Lemma 5 to evaluate the corresponding

statistics.

Lemma 4 Denote SN(x; ξ, ω, α) as the skew normal density with parameters being

(ξ, ω, α), and let N(x; a, b2) be the normal density function with mean value a and
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variance b2, then the product Z(a, b, ξ, ω, α)× SN(x; ξ, ω, α)N(x; a, b2) is a probability

density function, i.e., Z(a, b, ξ, ω, α)
∫∞
−∞ SN(x; ξ, ω, α)N(x; a, b2)dx = 1, with

Z(a, b, ξ, ω, α) =
ς

2ϕ

(
a− ξ

ς

)
Φ(η)

(6.12)

where ς =
√
b2 + ω2, η =

κ+ hµ√
1 + h2σ2

, h =
α

ω
, κ = −hξ, µ =

aω2 + ξb2

ς2
, and

σ2 =
b2ω2

ς2
.

Proof.

SN(x; ξ, ω, α)N(x; a, b2) (6.13)

=
2

ωb
ϕ

(
x− a

b

)
ϕ

(
x− ξ

ω

)
Φ

(
α
x− ξ

ω

)
(6.14)

=
1

πωσ
exp

(
1

2σ2

(
µ2 − b2ξ2+ω2a2

ς2
− (x− µ)2

))
Φ

(
α
x− ξ

ω

)
(6.15)

It is noticed that (6.15) involves Φ(αx−ξ
ω
), therefore, applying Lemma 1 of [7], the

above Lemma 1 holds.

As a direct extension of Lemma 3 in [7], the following Lemma 2 is derived.

Lemma 5 Let a random variable X follows the distribution X ∼ Z(a, b, ξ, ω, α)×

N(X; a, b2)SN(X; ξ, ω, α), then the mean E(X) is given by,

E(X) = µ+ ζ
ϕ(η)

Φ(η)
, (6.16)

and the variance is,

Var(X)=µ2+σ2+ρζ
ϕ(η)

Φ(η)
−E2(X), (6.17)
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where ζ =
hσ2

√
1 + h2σ2

, and ρ =
2µ+µh2σ2− κhσ2

1+h2σ2
.

As a result of Lemma 5, and omitting the iteration superscript, (6.9) can be

approximated by the normal density as,

νxn→ym(xn)
∼= N(µxnm

, σ2
xnm

), (6.18)

in which

µxnm
= F(anm, b2n,Θ,V) = Cn

K∑
k=1

Vnk
Znk

Enk, (6.19)

σ2
xnm

= G(anm, b
2
n,Θ,V)

=
K∑
k=1

pnk(E
2
nk + Varnk)− (

K∑
k=1

pnkEnk)
2, (6.20)

where Enk and Var2nk can be calculated as (5.14) and (5.15) with corresponding pa-

rameters κ
(i)
nm, ς

(i)
n , ξk, ωk and αk of (6.9). It should be noted that, in evaluating the

mean and variance of (6.9), instead of using a uniform mixing weight λ = [λ1, .. ., λK ]

for all coefficients, the state probability matrix V is utilized, where signal coefficients

are assigned with non-uniform weights. More specifically, in (6.9), λ = [λ1, .. ., λK ] is

replaced with [Vn1, .. ., VnK ] for signal coefficient xn, where n ∈ [1, . . . , N ]. Therefore,

pnk = Cn
Vnk
Znk

, Cn = (
∑

k

Vnk
Znk

)−1, and Znk can be calculated in (6.12).

6.3.2 First Order Approximation by Chain Rule and Matrix Operations

The above message updating strategies (6.3), (6.4) and (6.18) enable an approximate

MMSE solution by tracking O(MN) messages. To further simplify the belief propa-

gation, we adopt a first order approximation strategy [26], where a variable node xn

sends a uniform message to all check nodes y = [y1, .. ., yM]. Similarly, a check node

ym sends a uniform message back to all variable nodes x = [x1, .. ., xN], after which
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only O(N) messages are needed to be updated in each belief propagation iteration.

It should be noted that the first order approximate strategy involves taking the

derivatives of (6.19) with respect to κnm. As anm is involved in equations, taking the

derivative directly on (6.19) as [7] is complicated, and intractable for varying number

of mixture density components K. Therefore, we apply the Chain Rule, where the

derivative is obtained by decomposing (6.19) into simpler constituent functions, the

derivatives of which are then evaluated, and eventually chained together to form the

target derivative.

To this end, the following update rules (6.21) to (6.25) are derived,

a(i)xn
=
∑M

m=1
Amnµ

(i)
ym + µ(i)

xn
, (6.21)

µ(i+1)
xn

= Fn(a
(i)
xn
, b2 (i)) =

∑K

k=1
pnkE

(i)
nk , (6.22)

σ2
xn

(i+1) = Gn(a
(i)
xn
, b2 (i))

=
∑K

k=1
pnk[(E

(i)
nk)

2 + Varnk
(i)]− (

∑K

k=1
pnkE

(i)
nk)

2, (6.23)

µ(i+1)
ym = ym −

∑N

n=1
Amnµ

(i)
xn

+
µ
(i)
ym

M

∑N

n=1
F′

n(a
(i)
xn
, b2 (i)), (6.24)

b2 (i+1) = σ̂2
e +

1

M

∑N

n=1
σ2
xn

(i+1) , (6.25)

where F′
n , dFn

daxn

and related parameters are calculated as Table 6.1, with iteration

i being omitted for simplicity.

At implementation, µ
(1)
ym in (6.21) is initialized at ym for m ∈ [1, . . . ,M ], and µ

(1)
xn

is set to 0 for n ∈ [1, . . . ,N]. Besides, b2 in (6.22) to (6.24) is initialized at 104

for robustness. Additionally, a maximum iteration of 100 is set for the approximate

message passing module, and the convergence criteria is set to ∥µ̂i+1 − µ̂i∥2 ≤ 10−8,

where µ̂(i) = [µ
(i)
x1 , . . . , µ

(i)
xN ].
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dFn

daxn

= [

K∑
k=1

Vnk
Znk

Enk]
dCn

daxn

+ Cn

K∑
k=1

Vnk
d (Enk/Znk)

daxn

, (I.1)

dCn

daxn

= C2
n

K∑
k=1

Vnk
Z2
nk

dZnk

daxn

, (I.2)

d (Enk/Znk)

daxn

=
1

Z2
nk

(
Znk

dEnk

daxn

− Enk
dZnk

daxn

)
, (I.3)

dEnk

daxn

=
dµnk

daxn

+ ζnk
d (ϕ(ηnk)/Φ(ηnk))

daxn

, (I.4)

dµnk

daxn

=
ω2
k

b2 + ω2
k

, (I.5)

d (ϕ(ηnk)/Φ(ηnk))

daxn

=
dϕ(ηnk)

daxn

Φ−1(ηnk)−
dΦ(ηnk)

daxn

ϕ(ηnk)

Φ2(ηnk)
,

(I.6)
dϕ(ηnk)

daxn

= −ηnkϕ(ηnk)
dηnk
daxn

, (I.7)

dΦ(ηnk)

daxn

= ϕ(ηnk)
dηnk
daxn

, (I.8)

dηnk
daxn

=
hk√

1 + h2kσ
2
nk

dµnk

daxn

, (I.9)

δnk =
axn

− ξk√
b2 + ω2

k

, (I.10)

τnk = −1

2

√
b2 + ω2

k (ϕ(δnk)Φ(ηnk))
−2
, (I.11)

dZnk

daxn

= τnk

(
dϕ(δnk)

daxn

Φ(ηnk) +
dΦ(ηnk)

daxn

ϕ(δnk)

)
, (I.12)

dϕ(δnk)

daxn

= −axn
− ξk

b2 + ω2
k

ϕ(δnk) (I.13)

Table 6.1: Message Passing Parameters

6.4 Parameter Estimation: an Expectation-Maximization approach

In this section, given the current reconstruction of the signal x̂iMMSE from the approx-

imate message passing module, a novel Expectation-Maximization based algorithm is

designed to learn the underlying parameters Θ that specifying the mixture.

6.4.1 Learning the Parameters

In our technique, the mixture density Θ is obtained by seeking a MLE solution,

Θ̂i
EM = argmax p (X = x̂iMMSE|Θ), using a Expectation-Maximization based method.

For ease of derivation, in estimating the density parameters, it is assumed that

signal coefficients are jointly independent. Therefore, the log-likelihood function can
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be written as,

ln p(x̂|λ,Θ)=
N∑

n=1

ln

{
K∑
k=1

λkSN(x̂n|ξk, ωk, αk)

}
+π(

K∑
k=1

λk−1), (6.26)

where the last term comes from the constraint
∑K

k=1 λk = 1, and π is a Lagrange

multiplier.

Taking the derivative of (6.26) with respect to the mixing weight λk, and set it to

0, the following is derived,

d ln p(x̂|λ,Θ)

dλk
=

N∑
n=1

SN(x̂n|ξk, ωk, αk)∑K
k=1 λkSN(x̂n|ξk, ωk, αk)

+ π = 0. (6.27)

Meanwhile, let

γnk =
λkSN(x̂n|ξk, ωk, αk)∑K
k=1 λkSN(x̂n|ξk, ωk, αk)

(6.28)

be the probability1 of density component k on signal coefficient xn. Given the above,

and multiplying λk with (6.27), it is derived that,

π = −N, (6.29)

λ̂k =

∑N
n=1 γnk
N

, (6.30)

where (6.29) holds due to fact
∑K

k=1

∑N
n=1 γnk = N , and

∑K
k=1 λk = 1.

Besides, denote ψnk = ϕ

(
αk
x̂n−ξk
ωk

)/
Φ

(
αk
x̂n−ξk
ωk

)
, and ξk can then be updated

by taking the derivative of (6.26) with respect to ξk, and setting it to 0,

d ln p(x̂|λ,Θ)

dξk
=

N∑
n=1

γnk

[
x̂n − ξk
ω2
k

− αk

ωk

ψnk

]
= 0. (6.31)

1Also known as soft responsibility in [89].
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Similarly, taking the derivative of (6.26) with respect to ωk gives

d ln p(x̂|λ,Θ)

dωk

=
N∑

n=1

γnk
ω3
k

[(x̂n−ξk)2−ω2
k−ωkαk(x̂n−ξk)ψnk], (6.32)

and ωk is updated as

ω2
k

N∑
n=1

γnk+ωkαk

N∑
n=1

γnkψnk (̂xn−ξk)−
N∑

n=1

γnk(x̂n−ξk)2 = 0. (6.33)

Additionally, αk can be updated by solving

d ln p(x̂|λ,Θ)

dαk

=
N∑

n=1

γnkψnk
(x̂n − ξk)

ωk

= 0. (6.34)

Therefore, (6.28), (6.31), (6.33) and (6.34) complete one iteration of the Expectation-

Maximization update for γnk, ξk, ωk, and αk, where k ∈ [1, . . . , K], and n ∈ [1, · · · , N ].

To summarize, our proposed Expectation-Maximization module starts with an

initialization Θ(0) and λ(0) = [λ1, . . . , λK ], and alternates between the following Ex-

pectation and Maximization steps,

1. Expectation step: Given the current mixture parameters Θ(i), evaluate the soft

responsibility γnk for k ∈ [1, . . . , K], and n ∈ [1, · · · , N ].

2. Maximization step: With updated soft responsibility, for k ∈ [1, . . . , K], re-

estimate ξk, ωk, and αk using (6.31), (6.33), and (6.34), respectively.

where as in [90,91], parameters are updated sequentially in our proposed method.

It should be pointed out that the learning rules (6.31), (6.33), and (6.34) for

ξk, ωk, and αk are not in closed forms, and thus the solutions cannot be calculated

explicitly. In this case, one can take advantage of root-finding routines, including

Golden Section, Newton’s method, or Secant’s Method [92], to solve for the solution.
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6.4.2 Approximate ψnk using piecewise functions

It is worth noticing that the learning rules of ξk (6.31), ωk (6.33), and αk (6.34)

involve evaluating the inverse mills ratio [93], ψ(t) =
ϕ (t)

Φ (t)
, where t =αk

xn−ξk
ωk

, for

k ∈ [1, . . . , K], and n ∈ [1, · · · , N ].

Since Φ(t) → 0 as t → −∞, the inverse mills ratio ψ(t) is evaluated as Not a

Number (NaN) when the operand goes to extremes, which prevents the Expectation-

Maximization and root finding procedure from updating properly. As a motivating

example, ψ(t) is evaluated as NaN at t = −40, which will cause the root finding

procedure terminate before convergence, and thus the correct solution cannot be

found.

Given the fact ψ(t) is not an elementary function2, our strategy is to substitute

it with an approximate that allows for reliable and efficient evaluation for all real

numbers t ∈ R.

Inspecting the limit of ϕ(t)/Φ(t) as t→ −∞, and recall the L′Hospital ′s rule [94],

the following is derived,

lim
t→−∞

ϕ(t)/Φ(t)

t
= lim

t→−∞

(ϕ(t))′

(tΦ(t))′
(6.35)

= lim
t→−∞

(ϕ(t))′′

(tΦ(t))′′
(6.36)

= lim
t→−∞

(t2 − 1) exp(−t2/2)
(2− t2) exp(−t2/2)

= −1, (6.37)

where (6.35) holds due to

lim
t→−∞

tΦ(t)= lim
t→−∞

Φ(t)

1/t
= lim

t→−∞

−t2√
2π

exp

(
−t

2

2

)
= 0, (6.38)

2ψ(t) = ϕ(t)/Φ(t) is not elementary because the denominator Φ(t) is not elementary. As [7],
evaluating ψ(t) = ϕ(t)/Φ(t) is more than 10 times slower than scaler operations.
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and (6.36) holds due to

lim
t→−∞

(tΦ(t))′ = lim
t→−∞

(Φ(t) + tϕ(t))

= lim
t→−∞

t√
2π

exp

(
−t2

2

)
= 0. (6.39)

Meanwhile, taking the limit of ψ(t) as t→ +∞ gives,

lim
t→+∞

ϕ(t)

Φ(t)
=
ϕ(t)

1
= ϕ(t). (6.40)

The above limits suggest that ψ(t) is asymptotically equivalent to −t, and ϕ(t), in

the limit of t→ −∞, and t→ +∞, respectively. Therefore, a plausible approximate

of ψ(t) can be formed by joining an affine function, and a normal pdf function. To

be more specific, it is intended to approximate ψ(t) by ψ̂(t) as,

ψ̂(t) =


a1t+ a2, if t ≤ ∆

c0ϕ(
t− µ0

σ0
), if t > ∆

(6.41)

where ∆ is the boundary dividing the domain, a1 and a2 are the parameters defining

the affine function, and c0, µ0, σ0 are the corresponding parameters specifying the

scaled normal pdf function.

We adopt a numerical approach, where the goal is set to solve for the approximate

ψ̂(t) by fitting (6.41) to the samples of ψ(t) = ϕ(t)/Φ(t). Since the approximate

(6.41) is not piecewise linear, finding the optimal parameters (∆, a1, a2, c0, µ0, σ0) is

intractable [95]. To this end, an effective k-means [89] based greedy algorithm is

designed in Algorithm 2 to find the parameters of (6.41).

Algorithm 2 starts with a pre-partition step, and is followed by a loop that

alternates between piecewise fitting and re-partition steps. In pre-partition, a set of

evenly spaced sampling points δ = [δ1, . . . , δq] are drawn from the interval [δ−, δ+],
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Algorithm 2: Approximating ψ(t) = ϕ(t)/Φ(t) by a piecewise function

Initialize: ∆(0) = 103, ∆(1) = −2, ϵ = 10−4, tol = 10−8,
δ− = −30, δ+ = 30, Imax = 100, and i = 1
Algorithm:
Pre-partition:

1. Build the sampling vector δ = [δ1, . . . , δq] by drawing
samples evenly from the interval [δ−, δ+], with a step ϵ

2. Split δ as δl and δu at the boundary ∆1, such that
[δl, δu] = δ, and v ≤ ∆1 < w holds for v ∈ δl, w ∈ δu.

3. Build the regressands vectors ψ
(1)
l and ψ

(1)
u by applying

ψ(t) to t ∈ δl, and t ∈ δu, respectively.

while i ≤ Imax and |∆(i) −∆(i−1)| ≤ tol, do
4) Fit affine function a1t+ a2 to ψl

(i),

[â
(i)
1 , â

(i)
2 ] = fit(ψl

(i))

5) Fit scaled normal pdf function c0ϕ(
t− µ0

σ0
) to ψu

(i),

[ĉ0
(i), µ̂0

(i), σ̂0
(i)] = fit(ψu

(i))

6) Find the intersection t∗ of two fitted functions by solving,

â
(i)
1 t∗ + â

(i)
2 = ĉ0

(i)ϕ

(
t∗ − µ̂0

(i)

σ̂0(i)

)
,

and update the boundary ∆(i+1) = t∗

7) Update ψ
(i+1)
l and ψ

(i+1)
u as of the steps in Pre-partition

using the boundary ∆(i+1)

8) i = i+ 1
end while
Return: ∆ = ∆(i), a1 = â

(i)
1 , a2 = â

(i)
2 , c0 = ĉ

(i)
0 , µ0 = µ̂

(i)
0 ,

and σ0 = σ̂
(i)
0 .

with a step size ϵ. Subsequently, δ is split at the boundary ∆ into two vectors as δl and

δu , where [δl, δu] = δ, and v ≤ ∆ < w holds for v ∈ δl, w ∈ δu. Additionally, applying

ψ(t) to elements of δl, and δl, leads to the regressands ψ
(1)
l , and ψ

(1)
u , respectively.

To find the parameters of the approximate, at iteration i, ψ
(i)
l and ψ

(i)
u are fitted

by the affine function, and normal function (6.41), respectively. In Matlab [78], the

least square error fits of (6.41) can be obtained by calling polyfit and fit functions,

leading to â
(i)
1 t+ â

(i)
2 , and ĉ0

(i)ϕ

(
t− µ̂0

(i)

σ̂0(i)

)
, correspondingly.

Moreover, the intersection of two fitted functions can be found by solving for t∗
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of the following,

â
(i)
1 t

∗ + â
(i)
2 = ĉ0

(i)ϕ

(
t∗ − µ̂0

(i)

σ̂0(i)

)
. (6.42)

The above completes one iteration of the piecewise fitting step. At iteration i+1,

the data is re-partitioned by setting the boundary to the intersection of two fitted

functions, i.e., ∆(i+1) = t∗, and the loop continues until the convergence of the bound-

ary.

The fitted results utilizing Algorithm 2 are shown in Fig. 6.3, where for nu-

merical stability and efficiency, the interval [δl, δu] is fixed to a limited range with

δl = −30, δu = 30, and the sampling step is set to ϵ = 10−4.

Let Root Mean Square (RMS ) of a vector ϵ ∈ Rn be ϵrms =
√

1
N
(ϵ21 + ϵ22 + · · · ϵ2n).

As can been seen in Fig. 6.3a, the RMS of the fit error gradually decreases as the

iteration increases, and eventually converges to RMS = 0.022, where the parameters

are found to be ∆ = −3.1727, a1 = −0.994, a2 = 0.1795, c0 = 8.944, µ0 = −4.0153,

and σ0 = 2.2836. Moreover, as can be seen in Fig. 6.3b, the approximate (6.41)

resembles the ψ(t) = ϕ(t)/Φ(t) quite decently.
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Figure 6.3: Fit piecewise function to ϕ(t)/Φ(t). (a) Root Mean Square (RMS) Errors
of Fit. (b) Comparison of ψ(t) = ϕ(t)/Φ(t) and its piecewise approximate a1t + a2

for t ≤ ∆, and normal function c0ϕ(
t− µ0

σ0
) for t > ∆, where ∆ = −3.1727, a1 =

−0.994, a2 = 0.1795, c0 = 8.944, µ0 = −4.0153, and σ0 = 2.2836.

87



6.4.3 Initialization Strategy

It is worth noticing that, as Expectation-Maximization only finds local optimums, a

good initialization strategy is critical in building an effective parameter estimation

procedure. In our work, given the number of mixture components K, the parameters

are initialized by matching the moments of mixture component.

Specifically, the coefficients of current estimate x̂ is divided into K groups, x̂ =

[x̂1, . . . , x̂K], by utilizing k-means algorithm [89].

Additionally, given the K clusters, the parameters for each density component is

initialized in a way where sample mean, variance, and skewness match the population

mean, variance, and skewness, respectively. Concretely, denote mk as sample mean,

vk
2 as sample variance, and gk as sample skewness, respectively. Then the location,

scale, and shape parameters of skew normal density component k is initialized at ξk,

ωk, and αk by solving,

mk = ξk + ωk
αk√

π(1 + α2
k)/2

, (6.43)

vk
2 = ω2

k

(
1− 2α2

k

π(1 + α2
k)

)
, (6.44)

∣∣∣ αk√
1 + α2

k

∣∣∣ = (π
2

|gk|
2
3

|gk|
2
3 + ((4− π)/2)

2
3

) 1
2

, (6.45)

where the sample skewness gk is capped to a maximum absolute value of 0.95 for

numerical stability, and the sign of αk is same as gk.

6.4.4 Estimate the number of density components K

Selection of the number of components K is fundamental for techniques utilizing

mixture model, and a variety of methods have been proposed to develop effective

way for estimating K. In our work where the mixture component is skew normal, a

non-parametric method is developed, where the number of components is estimated
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based on the modality of the kernel density estimate.

Specifically, given the signal coefficients, x̂ = [x̂1, . . . , x̂N], a kernel U :R → R+,

is placed at sample point t ∈ R, and each signal coefficient x̂n ∈ x̂ contributes a

non-negative density mass U(t − x̂n). Utilizing the Gaussian kernel U(t) = ϕ(t),

the density at sample point t ∈ t, can be estimated by summing up the normalized

contributions from all coefficients as,

f̂(t) =
1

NW

N∑
n=1

ϕ

(
t− x̂n
W

)
, (6.46)

where t = [t1, . . . , tL] is a vector of L = 200 evenly spaced sampling points drawn in

the range of x̂, and W is the bandwidth that controls the spread of the density mass,

and ultimately the smoothness of the density estimate.

It should be noted that the kernel density estimate found by (6.46) is highly

sensitive to the choice of bandwidthW , where a large value leads to an over-smoothed

estimate that under-fits the real density, and a small value makes the estimate under-

smoothed, and over-fits the real one. Therefore, a proper value ofW is a good balance

of under-smoothing and over-smoothing, where a well-behaved W is generally set

manually by cross validation procedures.

In our work, the problem is tackled by a robust two-stage procedure. In the

first place, the kernel density is estimated as (6.46), where the bandwidth is set to

W = 0.05 to pick up the local variability of the density. Subsequently, a Gaussian

weighted moving average filter [78] is followed as the second stage to capture the

overall modality of the underline density, i.e.,

f̂g(t) =

Wf∑
j=1

f̂(t− j + 1)V (j), (6.47)

where V (i) = exp( −i2

2σf2
) is the Gaussian smoothing kernel, with window size Wf = 10,
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and standard deviation σf = 0.2 ×Wf = 2. It is found out that although a good

choice of W , Wf and σf are problem dependent, the above settings work decently in

practice.

Given the above, the number of components K is estimated by counting the

number of modes, i.e., f̂g(i− 1) < f̂g(i) < f̂g(i+ 1) for i ∈ [1, . . . , L]. In Matlab [78],

this can be obtained by calling the function findpeaks.

6.4.5 Evaluations of Parameter Estimation

Fig. 6.4 is a demonstration of the proposed Expectation-Maximization based mixture

density estimation. To test the effectiveness of the module, a signal x is generated by

drawing N = 2000 random samples from a mixture of K = 4 skew normal density

components, with the parameters being shown in Table 6.2. Specifically, the insignif-

icant coefficients of x are generated from skew normal density with parameter θ1.

Besides, the significant coefficients are generated from θ2, θ3, and θ4. The mixing

weights are set to λ1 = 0.7, λ2 = 0.1, λ3 = 0.1, and λ4 = 0.1, respectively. The

density of significant coefficients is plotted in Fig. 6.4a as solid line.

The signal x is then sampled by (2.9), i.e., y = Ax+ e, with length of y being set

toM = 1650. Meanwhile, the measurement white Gaussian noise e is added such that

SNR = 10 log10(
∥Ax∥
∥e∥ ) = 30 dB, where ∥e∥ =

∑M
m=1 |em|2. Additionally, the signal

reconstruction x̂ is obtained by employing the proposed signal inference module with

an uninformative prior.

The proposed Expectation-Maximization module is applied to x̂ to estimate the

mixture density, with the maximum iteration being set to 100. The log-likelihood

of each iteration is tracked by evaluating (6.26), where convergence is reached when

the consecutive difference of log-likelihood ≤ 10−6. Besides, the parameters found at

each iteration are tracked, and the proposed module returns the one that leads to

maximum log-likelihood as the solution.
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As can be seen in Fig. 6.4b, the log-likelihood of the density estimate improves

gradually as the iteration increases, and eventually converges with a gain of 1697.3.

The estimated significant densities are plotted in Fig. 6.4a as dashed line. The true

and estimated density parameters are compared at Table 6.2. As can be seen, the

proposed module recovered the number of mixture components as K̂ = 4 precisely.

Besides, although deviated mildly in θ̂2, our technique faithfully recovered the overall

modality, and skewness of the signal.

Table 6.2: True and Estimated Parameters

Density Parameters Weight

θ1 [ ξ1 = 0, ω1 = 1, α1 = 0 ] λ1 = 0.7

θ̂1 [ ξ̂1 = 0, ω̂1 = 0.19, α̂1 = 0 ] λ̂1 = 0.65

θ2 [ ξ2 = −50, ω2 = 5, α2 = −50 ] λ2 = 0.1

θ̂2 [ ξ̂2 = −65, ω̂2 = 39.05, α̂2 = 12.73 ] λ̂2 = 0.15

θ3 [ ξ3 = 100, ω3 = 5, α3 = 50 ] λ3 = 0.1

θ̂3 [ ξ̂3 = 97.85, ω̂3 = 8.38, α̂3 = 2.96 ] λ̂3 = 0.1

θ4 [ ξ4 = 50, ω4 = 5, α4 = 50 ] λ4 = 0.1

θ̂4 [ ξ̂4 = 47.90, ω̂4 = 7.92, α̂4 = 3.02 ] λ̂4 = 0.1

(a) (b)

Figure 6.4: Expectation-Maximization Mixture Density Estimate. (a) True and esti-
mated mixture density of the significant coefficients. (b) Log-likelihood evaluated at
Expectation Maximization iterations.
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6.5 States Estimation using Belief Propagation and Potts Model

Given the reconstruction of the signal x̂iMMSE, and the estimated mixture density

parameters Θ̂i
EM, in this section, we are aiming to promote the clustered property, and

take inference of the underlining hidden states S, by estimating the state probability

matrix V.

We approach the task by modelling the clustered property using the Potts model

[35], where neighboring hidden state pairs are encouraged to be consistent, through

the regularization of the compatibility function. A belief propagation based tech-

nique is then employed to infer the hidden states, and exploit clustered property by

exchanging local beliefs.

6.5.1 Potts Model

In this work, a K -state Potts model is considered. Specifically, let Si,j ∈ [1, . . . , K] be

the hidden state variable of signal coefficient Xi,j, and 1 ≤ i, j ≤ d. Besides, Sn and

Xn correspond to Si,j and Xi,j respectively, with the transform n = (i − 1) × d + j,

and 1 ≤ n ≤ N.

Borrowing the terminology from Statistical Mechanics, the energy of a hidden

state configuration S = s ∈ [1, . . . , K]N is defined as [56],

E(s) = −
∑
⟨u,v⟩

J0(su, sv)−
N∑

n=1

H0(sn, x̂n), (6.48)

where J0(su, sv) is the interaction function that measures the consistency of neighbor-

ing hidden state pairs, H0(sn, x̂n) is the field function that quantifies the coherence

between estimated signal coefficients, and the corresponding hidden states, and ⟨u, v⟩

denotes neighboring pairs.

Subsequently, denote J(su, sv) = exp(J0(su, sv)) as the compatible function, and

let H(sn, x̂n) = exp(H0(sn, x̂n)) be the evidence function, the joint probability func-
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tion of a hidden states s can be evaluated by Boltzmann’s law as [56],

P (s) =
1

Zp

exp(−E(s))

=
1

Zp

∏
⟨u,v⟩

J(su, sv)
∏
n

H(sn, x̂n), (6.49)

where Zp is a normalization constant.

As can be seen from (6.48) and (6.49), Potts model can be configured by proper

choice of compatibility and evidence functions3, such that compatible and evident hid-

den state configurations are preferred probabilistically over the chaotic counterparts.

6.5.2 Hidden State Inference by Belief Propagation

Given the Potts model, our goal is set to build appropriate compatibility and evidence

functions, and then estimate the hidden state sn for n ∈ [1, . . . , N ], by computing

the corresponding marginal probability from the joint probability (6.49). It should

be noted that calculating the marginal probability involves summing over all other

hidden state nodes, and unless N is very small, exact derivation is intractable in

practice.

To this end, belief propagation is utilized to get an approximate estimate of the

marginal probability by exchanging local beliefs.4 Specifically, in the work, each

density component of Θ̂i
EM is associated to a value of sn ∈ [1, . . . , K], where the

evidence H(sn, x̂n) is utilized to measure the responsibilities of mixture components

on the specific signal coefficient. Therefore, the evidence function can be written as

a K-by-1 column vector,

Hn = H(sn, x̂n) ∼= [Hn1, . . . , HnK]
ᵀ, (6.50)

3Or equivalently, interaction function and field function.
4Similar to the message in Sec. slowromancapiii@, belief in this context encodes the marginal

probability.
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with Hnk = SN(x̂n|ξ̂k, ω̂k, α̂k).

Additionally, to promote clustered property, the compatibility function is defined

in a way where neighboring pairs are encouraged to take identical hidden state. There-

fore, following the vector representation of evidence function, the compatibility func-

tion is defined accordingly as a K-by-K state transition matrix [96],

J(t)(su, sv)=J(t) =τ (t)IK×K + υ(t)(1K×K−IK×K), (6.51)

where t represents iteration, IK×K denotes identity matrix of size K-by-K, and 1K×K

represents matrix consisting of all ones. Besides, to promote compatible pairs, the

compatibility function is made to be diagonally dominant by setting τ (t) ≫ υ(t), with

the constraints τ (t) + (K − 1)υ(t) = 1, and 0 ≤ τ (t), υ(t) ≤ 1.

Given the above, the state probability vector hidden state sn can be calculated as

the of product of corresponding evidence, and all incoming messages as [56,96],

b̂(t)n
∼= Hn •

•∏
j∈Neighbor(n)

m
(t)
jn , (6.52)

where m
(t)
jn ∈ RK×1 denotes the message sending from sj to its neighbor sn, and can

be evaluated as,

m
(t)
jn

∼= J(t)

(
Hn •

•∏
k∈Neighbor(j)\n

m
(t−1)
kj

)
, (6.53)

with • representing the Hadamard product [97] of vectors5, and Neighbor(j)\n denoting

the set of neighboring nodes sj except sn.

At implementation, the messages are initialized non-informatively at

m
(0)
ij = [

1

K
, . . . ,

1

K
]ᵀ,

5Hadamard product of two vectors a = [a1, a2]
ᵀ
and b = [b1, b2]

ᵀ
gives another vector a • b =

[a1b1, a2b2]
ᵀ
.
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for all neighboring pairs ⟨i, j⟩. The messages are then propagated, and updated

asynchronously [96, 98] by iteratively calling the message update rule (6.53) for 3

iterations. Besides, a first order neighborhood system is employed, where the hidden

state Su,v statistically interacts with the four adjacent neighbors, i.e., Su,v+1, Su,v−1,

Su+1,v, and Su−1,v, for 1 ≤ u, v ≤ d.

Additionally, the hyper-parameters τ (t) and υ(t) are set based on the compatibility

as,

τ (t) =
r
(t)
s

r
(t)
s + r

(t)
d

, (6.54)

υ(t) =
1

K − 1

(
1− τ (t)

)
, (6.55)

where r
(t)
s and r

(t)
d are updated with the corresponding momentum, and compatibility

measure as,

r(t)s = r(t−1)
s +

κ(t)

ϑ(t) + κ(t)
, (6.56)

and

r
(t)
d = r

(t−1)
d +

ϑ(t)

ϑ(t) + κ(t)
. (6.57)

It should be noted that in the above, the compatibility measures κ(t) and ϑ(t) are

evaluated as the number of compatible pairs, and incompatible pairs, respectively,

where at iteration t, a pair ⟨u, v⟩ are said to be compatible if they have identical

dominant state, i.e., argmax
(
b̂
(t)
u

)
= argmax

(
b̂
(t)
v

)
, and incompatible otherwised.
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6.6 Complexity Analysis

Similar to other approximate message passing based techniques [7, 25, 26], our signal

inference module is highly efficient. Concretely, the complexity of the module is dom-

inated by two major operations. The first comes from evaluating (6.21), which when

implemented by matrix, leads to the multiplication of a matrix of size RM×N , with a

vector of size RN×1. Therefore, a Floating Point Operations (FLOP) proportional to

O(M(2N − 1)) is expected. The second rises from (6.22) and (6.23), which calls for

the element-wise product of size RN×K , leading to a FLOP of O(NK). As K ≪ M

holds in practice, the overall FLOP of the approximate message passing module is

O(M(2N − 1)).

The parameter estimation module involves finding the root of the function consist-

ing of N terms, for each of K density components. Considering the overhead [99] of

root finding procedure6, and the fact that each density component has 3 parameters,

a FLOP of O(15KN) is needed for each Expectation-Maximization iteration.

The state estimation module enjoys great computation efficiency as well. Specifi-

cally, as (6.53) involves only element-wise product, a FLOP of O(4KN) is expected

for each iteration of belief propagation, where the leading constant comes from the

size of neighborhood.

Therefore, although involving multiple modules, our proposed technique is highly

efficient in exploring the salient features of the signals. As a rule of thumb, the time

complexity of our proposed technique is estimated to be O(M(2N − 1)) FLOP.

6.7 Experiments

In this section, the performance of our proposed method is evaluated under a variety

of numerical simulations. For each test, the signal x is sampled by (2.9), where the

6A factor of log2(32) = 5 is anticipated for root finding procedure using Newton’s method with
a 32 digits precision representation.
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coefficients of the sampling matrix A are drawn from i.i.d. Gaussian ensemble, with

the columns of A being normalized to unit ℓ2 norm, i.e., A = [A1
ᵀ, .. ., AN

ᵀ]ᵀ, and

∥An∥2 = (
∑M

m=1A
2
mn)

1
2=1, for 1 ≤ n ≤ N .

At the reconstruction phase, the signal is estimated by the proposed technique

that alternates between signal inference, mixture density estimate, and hidden state

inference modules. The process is executed for a maximum of i = 4 iterations, or till

the convergence of reconstruction, i.e., ∥x̂i − x̂i−1∥22/∥x̂i∥22 ≤ 10−4.

At iteration i = 1, an un-informative setting is adopted, where the mixture is

assumed to consist K = 2 normal density components, and the parameters are set to

Θ̂0 = [θ1, θ2], where θ1 = [ξ1 = 0, ω1 = 0.5, α1 = 0], and θ2 = [ξ2 = 0, ω2 = 50, α2 =

0]. Besides, the corresponding mixing weights are assumed to be λ1 = 0.8, and

λ2 = 0.2. At iteration i = 1, the state probability matrix is set to b̂0 = [b1, . . . , bN]
ᵀ,

with bn = [λ1, λ2]
ᵀ, for n ∈ [1, . . . , N ]. The variance of measurement noise in (6.25) is

initialized at σ̂2
e = 1, and can be estimated based on residual as σ̂2

e = 1
M
∥y−A ∗ x̂∥22.

6.7.1 Pictorial Demonstration

As a demonstration, in this test, our proposed technique is examined by reconstruct-

ing an artificial signal x ∈ R63×63 shown in Fig. 6.5a, with the length of the signal

being N = 3969. The coefficients are drawn from a mixture consisting of K = 6

density components shown in Table 6.3, where without loss of generality, θ1 denotes

insignificant density component, and θ2 to θ6 represent significant density compo-

nents.

As can be seen in Fig. 6.5a, the signal x consists of Gs = 13, disk -like significant

clusters, with each cluster composing of 69 coefficients. In Table 6.3, the Weight of

each density component is adjusted by the number of clusters, which are set to 3, 2,

3, 2, and 3, for θ2, θ3, θ4, θ5, and θ6, respectively. The signal is sampled by (2.9),

where the number of samples is set to M = 1794, and the measurement is noisy with
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SNR = 35 dB.

Table 6.3: Mixture Density Parameters

Density Parameters

θ1 [ ξ1 = 0, ω1 = 0.5, α1 = 0 ]

θ2 [ ξ2 = 50, ω2 = 20, α2 = 5 ]

θ3 [ ξ3 = −50, ω3 = 20, α3 = −5 ]

θ4 [ ξ4 = 200, ω4 = 20, α4 = −10 ]

θ5 [ ξ5 = −200, ω5 = 20, α5 = −10 ]

θ6 [ ξ6 = 300, ω6 = 120, α6 = −10 ]

The signal is then reconstructed by our proposed technique, and Fig. 6.5b, and

6.5c show the reconstruction obtained at 1st, and 4th iteration, respectively. As can

be seen in Fig. 6.5b, the reconstruction of 1st iteration missed 5 clusters, and the

signal estimate is corrupted by a large number of salt-and-pepper noises. After a few

iterations, our proposed technique manages to recover all clusters, and as can be seen

in Fig. 6.5c, the reconstruction of the last iteration reliably resembles the ground

truth of the signal.

The reconstruction error is tracked by evaluating NMSE , 1
N
∥x̂ − x∥22/∥x∥22 at

each iteration, and is plotted in Fig. 6.5d. As can be seen in Fig. 6.5d, our proposed

technique faithfully reduces the reconstruction error, which eventually delivers NSE =

0.0104 at the last iteration.

6.7.2 Phase Transition

In the second test, the performance of our proposed algorithm is evaluated under

the phase transition test. Concretely, the size of the signal is fixed to 54-by-54,

with the length N = 2916. Besides, M/N is varied from 0.1 to 0.5, at 0.05 intervals.

Additionally, for each value ofM , the number of significant clusters Gs, is varied from

1 to ⌊M
d
⌋, at steps of 1, where similar to previous tests, the shape of cluster is disk,

and each cluster consists 69 coefficients7. The signal coefficients are drawn from the

7⌊M
d ⌋ represents the largest integer ≤ M

d .
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Figure 6.5: Pictorial Demonstration. (a) Ground truth of the signal of size 63-by-63,
that consists of GS = 13 significant clusters. (b) Reconstruction at iteration i = 1,
with NMSE = 8.24 × 10−5. (c) Reconstruction at iteration i = 4, with NMSE =
2.62× 10−6. (d) NMSE vs. iterations.

density mixture shown in Table 6.3, where a maximum of 5 significant densities, i.e.,

θ2 to θ6, are considered. 20 independent trials are performed for each combination of

M and Gs, and for each trial, the number of clusters corresponding to each significant

density, are generated uniform randomly.

Our proposed method is compared to several sophisticated structure-aware meth-

ods, including Struct-OMP [86], Turbo-AMP [27], and SRL1 [10]. Besides, for com-

pleteness, we also include a number of general purpose sparse reconstruction tech-

niques, including EM-GM-AMP [30], SPGL1 [80], BCS [55], and MSBL [82]. Addi-

tionally, our proposed algorithm also compared to SNAMP [7] which is designed for

asymmetrical sparse signals. It should be noted that, Struct-OMP requires the prior
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knowledge of the number of significant coefficients. Therefore, for fairness, similar to

the setting of our proposed technique, the sparsity in Struct-OMP is set to 0.2.

Similar to [79] and [7], success rate is employed to measure the goodness of the

methods, and a successful trial is defined as the one with NMSE ≤ 10−4. The results

are summarized in Fig. 6.6, where Q/M vs M/N is depicted, and Q = 69 × Gs

represents the number of significant coefficients. Similar to [79], the area under each

curve represents the range at which the corresponding success rate ≥ 50%.
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Figure 6.6: Phase Transition tests. The size of significant cluster is set to d = 69,
and the number of significant coefficients is Q = 69 × Gs. M/N is varying from 0.1
to 0.5 at 0.05 intervals, and Q/M is varying by increasing Gs from 1 to ⌊M

d
⌋ at steps

of 1.

It can be seen in Fig. 6.6 that our proposed method gives competitive results in the

phase transition tests. Specifically, our technique is most effective when M/N > 0.3.

We believe this advantage comes from the fact that mixture estimation requires sizable

significant coefficients to be efficient. It is also worthy pointing out that, our proposed

technique managed to outperform the Approximate Message Passing relatives , i.e.,

Turbo-AMP, EM-GM-AMP, and SN-AMP, confirming that the proposed technique

is highly effective in taking advantage of both clustered property and the skewness

features.
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6.7.3 Noisy Reconstruction

In this test, our scheme is tested under noisy environments. Specifically, Gaussian

random noise e is added to the measurements as in (2.9). Similar to Phase Transition

tests, the size of signal is set to 54-by-54. The signal coefficients are drawn from

the density mixture defined in Table 6.3. A total of Gs = 15 significant clusters are

generated, with each significant density, i.e., θ2 to θ6, contributing 3 clusters.

Fig. 6.7 shows the reconstruction NMSE under noisy environments, where SNR

is varied from 12.5 dB to 30 dB, at 2.5 dB intervals, and each data point is averaged

over 200 independent trials. It can be seen from Fig. 6.7 that, our proposed technique

CL-SNM-BP gives superior results under varying SNRs.
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Figure 6.7: NMSE vs. SNR

use same markers as Runtime.

6.7.4 Runtime tests

The time complexity of our proposed algorithm is evaluated by the Runtime tests.

The size of signal is set to d-by-d, where d varies from 18 to 72, at steps of 9. The

shape of significant clusters is disk, with each containing 69 coefficients. Besides,

the number of significant clusters are fixed to Gs = 2, with one cluster drawing
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from θ3, and the other sampling from θ4 of Table 6.3. Additionally, the number of

measurements is set to M = 276.

The experiments are performed on a desktop with hex core 3.2 GHz CPUs, and

16 GB of 1333 MHz memory. 20 independent trials are performed for each value of

d, and Fig. 6.8 shows the average runtime of each method as the size of the signal N

increases.

It can be seen that, as multiple modules are involved in our proposed technique,

the runtime of our scheme is slightly longer than the other approximate message

passing relatives, i.e., Turbo-AMP, EM-GM-AMP, and SN-AMP. Yet it should be

pointed out that, our proposed algorithm scales decently with the increment of N .

Specifically, reconstruction of the signal with N = 324 leads to an average runtime of

1.94 seconds, which is then scaled to 12.08 seconds when N = 5184.
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Figure 6.8: Signal Length N vs. Average Runtime (in seconds)

6.7.5 Robustness Test

In this experiment, we are interested in analyzing the robustness of our scheme by

feeding signals with density components of different levels of skewness. This is done

by generating the signal coefficients from Table 6.4, and varying shape parameters
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from −40 to 40, at steps of 10.

The size of the signals is 54-by-54, with N = 2916, and M = 1449. Besides,

Gs = 12 significant clusters are generated, with each significant density contributing

6 disk clusters of size 69. Our proposed scheme is tested under noisy environments,

where SNRs is varied from 10 dB to 25 dB.

The results are summarized in Fig. 6.9, where each data point is averaged over

200 independent trials. It should be noted that, in Fig. 6.9, αr = +40 (αr = −40)

represents approximately the positive (negative) half-normal density. On the other

hand, αr = 0 resembles the normal density. As can be seen, in general, our pro-

posed technique can adapt to different skewness, and provides robust and consistent

reconstruction when the signal is generated from varying shape parameters αr.

Table 6.4: Robustness Test Mixture Density Parameters

Density Parameters

θ1 [ ξ1 = 0, ω1 = 0.5, α1 = 0 ]

θ2 [ ξ2 = 200, ω2 = 20, α2 = αr ]

θ3 [ ξ3 = −200, ω3 = 20, α3 = αr ]
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Figure 6.9: NMSE vs. shape parameter αr
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6.8 Conclusion

In this chapter, we investigate the compressive sensing task of clustered sparse sig-

nals, where the magnitudes of each significant cluster are distributed asymmetrically

w.r.t the cluster mean. To capture the skewness feature, a finite skew normal density

mixture is utilized to model the prior distribution of the signal. The clustered prop-

erty is modelled by the Potts model. An effective algorithm is developed to estimate

the signal by alternating between exploiting the measurement, drawing inference of

the finite skew normal mixture, and taking advantage of the clustered property. Ex-

periments under a variety of settings show that our technique is effective in exploring

both the skewness, and the clustered features of the signals.
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CHAPTER 7

Eigenvalue-based Cooperative Spectrum Sensing with Finite

Samples/Sensors

In this chapter, we study the spectrum sensing problem for cognitive radios. Based

on the statistics of the eigenvalues of sample covariance matrix, an effective algorithm

is developed to detect the presence of primary user.

7.1 INTRODUCTION

Cognitive Radio [41] is a technique that has the potential to improve the usage of the

valuable wireless spectrum. This is achieved by allowing unlicensed users to operate

on the licensed spectrums, and therefore vacant spectrum bands can be used more

efficiently. One prerequisite of cognitive radio is that the licensed bands are used by

unlicensed users, a.k.a secondary users, in an opportunistic manner, where unlicensed

users shall stop the occupancy and vacate whenever primary users are present. Due

to the variance of wireless channels and noise levels, sophisticated spectrum sensing

techniques is needed, such that the spectrum can be monitored reliably.

Eigenvalue-based spectrum sensing techniques have drawn lots of attention re-

cently. The major challenge in this field lies in the fact that, exact descriptions of

extreme eigenvalues of sample covariance matrix lead to infinite series, and cannot

be evaluated explicitly and efficiently. Therefore, existed research [44, 46, 47, 49, 50]

mainly focused on the asymptotic or limiting distributions of extreme eigenvalues,

which require extremely large numbers of samples and sensors.

In this chapter, we investigate a more realistic region where the sample size or
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number of sensors is finite. Exploiting a recent result on multivariate analysis of

variance, we derive a new expression for the distribution of the largest eigenvalue of

the sample covariance matrix, which is more accurate than existing methods based

on asymptotic or limiting distributions. Next, noticing the connection between the

Moment Generating Function (MGF ) of the distribution of the largest eigenvalue

and Lauricella function, compact expressions for the probability density function

(pdf ), and cumulative distribution function (cdf ) of largest eigenvalue of non-central

Wishart matrix are derived. These results are further applied to analyse the detection

performance of the presence of primary user. Experiments results show the proposed

method outperform other eigenvalue based spectrum sensing techniques for finite

number of samples and sensors.

The remainder of the paper is organized as follows. The system model and pre-

vious results are presented in Sec. 7.2. The distribution of the largest eigenvalue of

non-central Wishart matrix is derived in Sec. 7.3. Analysis of the detection perfor-

mance of Generalized Likelihood Ratio Test using proposed distribution is presented

in Sec. 7.4. Simulation results are summarized in Sec. 7.5, and Sec. 7.6 concludes

this chapter.

7.2 System Model and Existing Results

7.2.1 System Model

Here we assume a system model similar to [46]. We consider a cooperative detection

setting in which K sensors collaborate to detect the presence of a signal, with each

sensor takingN samples during the sensing period. Let yk(n) be the discrete baseband

complex sample at receiver k at time n and y(n) = [y1(n), . . . , yK(n)]
ᵀ denotes the

K × 1 received vector at time n. Given this, the task is to differentiate between

two hypotheses: under null hypothesis H0(no primary signal), the received vector
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contains only noise

y(n)|H0 = υ(n), (7.1)

where υ(n) ∼ NC(0K×1, σ
2
υIK×K) satisfy multivariate circularly symmetric complex

Gaussian distribution.

Under alternative hypothesis H1(presence of primary signal), the received vector

consists of both signal and noise

y(n)|H1 = x(n) + υ(n) = hs(n) + υ(n), (7.2)

where s(n) ∼ N(0, σ2
s) is the transmitted sample of primary user signal, and h =

[h1, . . . , hK ]
ᵀ is a K × 1 unknown complex vector, with element hk representing the

channel coefficient associated with sensor k, for 1 ≤ k ≤ K.

For simplicity, it is assumed that the channel is constant and memoryless during

sensing period. Under H1, we define the signal to noise ration (SNR) at the receiver

as

ρ
△
=

E∥x∥2

E∥υ∥2
=
σ2
s∥h∥2

Kσ2
υ

. (7.3)

The received sample matrix Y is a K ×N matrix, with n-th column being y(n), i.e.,

Y
△
= [y(1), . . . , y(N)] = h ∗ sᵀ + υ, (7.4)

where υ
△
= [υ(1), . . . , υ(N)] is a K ×N matrix noise matrix, and s

△
= [s(1) . . . s(N)]ᵀ

is the received signal vector.

Therefore, the sample covariance matrix R can be written as,

R
△
=

1

N
YY H , (7.5)
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where superscript H represents conjugate transpose, with the non-ascending sequence

λ1 ≥ . . . ≥ λK being the eigenvalues of R.

In hypothesis testing, due to the fluctuations caused by inherent probabilistic

behavior of test statistics, two error events are considered, namely the probability of

false alarm defined as

Pfa = Pr(T > t|H0) (7.6)

and the probability of detection defined as

Pd = Pr(T > t|H1) (7.7)

where T is the test statistic used by detector and t is the threshold usually set by

probability of false alarm.

We focus on blind detection methods with no prior knowledge regarding the tar-

geted primary signal. Besides, noise level is assumed to be unknown. In this case, sev-

eral tests can be employed, such as Standard Condition Number detector [44,47,49],

defined as

TSCN =
λ1
λK

, (7.8)

and Generalized Likelihood Ratio Test (GLRT) [46,100]:

TGLRT =
λ1

1
K
tr(R)

. (7.9)

Compared to TGLRT , as noticed in [46], TSCN is suboptimal unless K = 2. We choose

GLRT as our method due to its optimality of statistical power over SCN.
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7.2.2 Previous Results

Eigenvalues of Central Wishart Matrix

Under H0, the receiving sample covariance matrix follows a Central Wishart distribu-

tion. By proper centering and scaling, λ1 and λK follow a second-order Tracy-Widom

distribution [101] asymptotically as K,N → ∞.

Eigenvalues of non-Central Wishart Matrix

Under H1, the receiving sample covariance matrix follows a non-central Wishart dis-

tribution. Paul [102] and Nadler [45] studied the distribution of the eigenvalues of a

non-Central Wishart Matrix, asymptotic in K and N . λ1 follows Gaussian distribu-

tion with,

E[
λ1
σ2
υ

] = (1 +Kρ)(1 +
K − 1

NKρ
), (7.10)

and,

Var[
λ1
σ2
υ

] =
1

N
(1 +Kρ)2. (7.11)

7.3 LARGEST EIGENVALUE DISTRIBUTION

Due to the difficulty in describing the exact distribution of the largest eigenvalue of

a Wishart matrix, computable expressions of the approximated distribution is given

by [47, 49, 50, 100] which are asymptotic in K and N . Question raised here whether

there is any method to better describe the distribution of λ1. In this section, exploiting

the latest development in MANOVA, we express the approximated distribution of λ1

in small dimensional setting.

Lemma 6 In the limit σ2
υ → 0, the distribution of the ratio of largest eigenvalue λ1

and noise variance σ2
υ satisfies

λ1
σ2
υ

∼ Γ(α1, β1) + Γ(α2, β2), (7.12)
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with expected value and variance:

E[
λ1
σ2
υ

] = α1β1 + α2β2, (7.13)

Var[
λ1
σ2
υ

] = α1β
2
1 + α2β

2
2 , (7.14)

where α1=N/2, β1=2(1 +Kρ)/N , α2=(K − 1)/2 and β2=2/N .

Proof. As discussed in previous section, in the presence of primary user signal the

matrix R follows a non-central Wishart distribution. Instead of asymptotic in sample

size or the number of sensors, using matrix perturbation and asymptotic in the SNR,

recent work [51] gives almost accurate approximation under small dimensional setting.

It is stated that in the limit σ2
υ → 0, the distribution of the largest eigenvalue λ1 can

be expressed as the weighted sum of two independent Chi-squared random variables:

λ1 ∼
1

N
· ((σ2

s + σ2
υ)χ

2
N + σ2

υχ
2
K−1 +O(σ2

υ)). (7.15)

Based on this, plugging (7.3) into (7.15), we get:

λ1
σ2
υ

∼ 1

N
· ((1 +Kρ)χ2

N + χ2
K−1). (7.16)

Considering the relation between χ2 and Gamma random variables, Lemma 6 holds.

It is noted that in Lemma 6, the distribution of λ1/σ
2
υ is given as the sum of

two independent gamma random variables. Inconsistent with the concise form of

(7.12), the exact expression of this distribution is an open problem and always leads

to infinite series [103,104]. Recent work [105] investigates the distribution of the sum

of correlated gamma variables. Taking advantages of the connection between the
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MGF of targeted function and Confluent form of Lauricella function, the author gives

the exact expression of the distribution for the sum of correlated gamma variables. It

should be noted that in [105], however, only the case that all gamma random variables

having the same shape parameter α has been treated. In the following part, we extend

the results to a more general case in which shape parameters αk are not necessarily

the same. By employing the relation between Lauricella function and a certain type

of hypergeometric function, we first give the exact distribution of considered statistic

that can effective be numerically evaluated.

Lemma 7 In the limit σ2
υ → 0, the pdf of the ratio of largest eigenvalue λ1 to noise

variance σ2
υ is

fQ(q) =
qα1+α2−1

β1β2Γ(α1 + α2)
(7.17)

× e
− q

β2 × 1F1(α1;α1 + α2;
q

β2
− q

β1
), (7.18)

where 1F1(; ; ) stands for confluent hypergeometric functions of the first kind.

Proof. Let Q =
M∑

m=1

Pm be sum of M independent distributed gamma random vari-

ables with parameters αm and βm. Denote the Laplace transform of an arbitrary

function Ψ(x) as L[Ψ(x); s]. The MGF of Q is given in [103] as:

MQ(s) = L[fQ(q);−s] =
M∏

m=1

(1− βms)
−αm . (7.19)
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Thus the Laplace transform of the pdf of Q can be written as:

L[fQ(q); s] =
M∏

m=1

(1 + βms)
−αm


M∏

m=1

β−αm
m

Γ(
M∑

m=1

αm)

 (7.20)

×


Γ(

M∑
m=1

αm)

s

M∑
m=1

αm


{

M∏
m=1

(1 +
1

βms
)−αm

}
. (7.21)

Employing the inverse Laplace transform function for Hypergeometric function, the

pdf of Q can be expressed as:

fQ(q) =
q

M∑
m=1

αm−1

M∏
m=1

(βm)Γ(
M∑

m=1

αm)

(7.22)

× ΦM
2 (α1, . . . , αM ;

M∑
m=1

αm;−
q

β1
, . . . ,− q

βM
), (7.23)

which in our case M = 2, and (7.22) can be written as:

fQ(q) =
qα1+α2−1

β1β2Γ(α1 + α2)
(7.24)

× Φ2
2(α1, α2;α1 + α2;−

q

β1
,− q

β2
), (7.25)

where in (7.24), ΦM
2 (; ; ) stands for the confluent form of Lauricella function and the

exact calculation of general confluent form of Lauricella function [106,107] again leads

to infinite series. However, in our case, using the result [108]:

Φ2
2(a, c− a; c;x,−y) = e−y

1 F1(a; c;x+ y), (7.26)

(7.24) can be further reduced to (7.17).
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The cdf of λ1/σ
2
υ is given as:

Lemma 8 In the limit σ2
υ → 0, the cdf of the ratio of largest eigenvalue λ1 and noise

variance σ2
υ is,

FQ(q) =
qα1+α2

β1β2Γ(1 + α1 + α2)
(7.27)

× Φ2
2(α1, α2; 1 + α1 + α2;−

q

β1
,− q

β2
). (7.28)

To the best of our knowledge, there is no simple reduction formula for (7.27).

Nevertheless, as we will show in Sec. 7.5, approximated expression for the cdf works

reasonably well under a relaxed condition.

7.4 DETECTION PERFORMANCE EVALUATION

In this section, by using Theorem 1, probability of detection can be better described

under a small dimensional setting.

7.4.1 Threshold Setting

Proper centering and scaling, the distribution of TGLRT under H0 is similar to the well

studied distribution of λ1 of a central Wishart matrix [46,47,49,50,100] where TGLRT

follows a second-order Tracy-Widom distribution1 in the joint limit K,N → ∞:

Pr[
TGLRT − µ

ξ
< s] → FTW2(s), (7.29)

where

µ = [(
K

N
)1/2 + 1]2, (7.30)

ξ = N−2/3[(
K

N
)1/2 + 1][(

K

N
)−1/2 + 1]1/3. (7.31)

1Readers are referred to [101] for definition and calculation of Tracy-Widom distribution FTW2(s).

113



It should be noted that even though (7.29) is asymptotic in K and N , it has been

tested to approximate the real distribution well even with small K and N [101].

Given this and (7.6), an approximate expression for the threshold t is given as

t(α) ≈ µ+ FTW2(1− α)ξ. (7.32)

7.4.2 Probability of detection

As noted in [46], (7.9) can be written as:

λ1
U
> t̃(α), (7.33)

where

U
△
=

1

K − 1

K∑
i=2

λi, (7.34)

t̃(α) =
K − 1

K − t(α)
t(α), (7.35)

and U is Gaussian distributed:

E[
U

σ2
υ

] = 1− 1

N

Kρ+ 1

Kρ
, (7.36)

Var[
U

σ2
υ

] = O(
1

N2
). (7.37)

Comparing (7.36) and (7.37) with (7.13) and (7.14), we can see that fluctuations of

λ1 is much bigger than those of U . Thus an approximation of (7.33) is:

λ1
σ2
υ

> t̃(α)E[
U

σ2
υ

], (7.38)

where asymptotically in SNR, λ1/σ
2
υ satisfies the distribution of the sum of two gamma

random variables given in Lemma 6. Its pdf and cdf are given in Lemma 7 and
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Lemma 8, respectively. Thus the Pd can be calculated by plugging the right hand

side of (7.38) into (7.27). However, as been discussed in previous section, the cdf

given in (7.27) involves infinite series and is hard to numerically evaluate. It is noted

in [51] that, in (7.14), the fluctuation of Γ(α1, β1) is much larger compared to that of

Γ(α2, β2) under large SNR. Thus the variation of λ1/σ
2
υ mainly comes from Γ(α1, β1)

and it is plausible to approximate Γ(α2, β2) as its mean value. Following this, the

probability of detection is:

Pd = 1− FG(t̃(α)E[
U

σ2
υ

]− α2β2;α1; β1), (7.39)

where

FG(x; a; b) =
γ(a, x/b)

Γ(a)
(7.40)

is cdf of Gamma distributed random variable X with scale parameter b and shape

parameter a.

7.5 SIMULATION RESULTS

We first compare the proposed approximated density of λ1/σ
2
υ given in (7.17) to its

empirical density and the classical Gaussian approximation described in (7.10) and

(7.11). Simulation are taken with K = 8, N = 10 and SNR = 0.75. As shown in

Figure 7.1, the proposed approximation is very close to actual value and can better

describe the distribution than classical Gaussian approximation.

Next, in Figure 7.2, we compare the probability of detection of GLRT using the

proposed theoretical approximation given in (7.39) to the empirical probability and

approximated expression using classical Gaussian distribution. A small size setting

where K = 8 and N = 10 is tested. False alarm rate α is set to 0.005. As can be

seen, the proposed theoretical approximation is more accurate than the results given

in [46] where the Pd is calculated based on classical Gaussian approximation.
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Figure 7.1: Comparison of the density of the ratio of the largest eigenvalue and noise
variance. K=8, N=10, and SNR=0.75.

Figure 7.2: Comparison of the detection performance curves as a function of Signal
to Noise Ratio (K=8, N=10, α = 0.005).

7.6 CONCLUSION

The performance of eigenvalue-based spectrum sensing under a small dimensional

setting has been studied in this chapter. Asymptotically in signal to noise ratio, the

distribution of the largest eigenvalue of receiving sample covariance matrix has been

given as sum of two Gamma random variables. Utilizing the relation of Moment Gen-

erating Function and confluent form of Lauricella function, a closed-form expression

of the pdf has been given. Simulation results show the proposed expression of pdf is

almost accurate and better than classical Gaussian approximation under a small di-

mensional setting. Besides, the detection performance using proposed approximation

is analyzed. Simulation shows that the proposed method can describe real detection
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performance faithfully.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, we investigated signal recovery and detection tasks utilizing com-

pressive sensing. We designed an effective structural aware reconstruction technique

for the compressive sensing task of videos [10]. Next, we investigated the recon-

struction task for binary sparse signals, and a novel optimization based algorithm is

proposed to exploit both the binary and sparse features [11]. Additionally, compres-

sive sensing for asymmetrical signals are studied [7], and we developed an efficient

algorithm that is capable of learning the skewness of the signals, while promoting

the sparsity features. Further, sparse reconstruction of clustered sparse signals with

asymmetrical features are investigated [36], and a powerful technique is developed to

take inference of the signal, estimate the mixture density, and exploit the clustered

features. Moreover, eigenvalue based wireless spectrum sensing for cognitive radio is

studied [109]. We summarize our contributions and our suggested future research in

what follows.

8.1 SRL1: Structured Reweighted ℓ1 Minimization for Compressive

Sampling of Videos

Although ℓ1 minimization is able to promote the sparsity of signals in compressive

sensing tasks, it is incapable of recovering other salient features. To solve the com-

pressive sensing task of videos, we began our efforts by analyzing the difference frames

of video sequence. It is found that due to the temporal redundancy of consecutive

frames, the difference frames of videos are dominated by clusters formed by non-zero
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pixels, with only a few of nonzero pixels being isolated. Therefore, if a pixel in the

reconstructed difference frame is zero but is connected to other non-zero pixels, there

is a high probability that this pixel is actually non-zero rather than zero. Similarly, if

a pixel is non-zero and is isolated, there is a high probability that this pixel is actually

zero rather than non-zero.

Noticing this characteristic, a two-step strategy is developed to exploit the clus-

tered features of by refining the signal support of difference frame. The first step

involves identifying unrecovered non-zero pixels, and is achieved by exploring the

local neighborhoods of recovered non-zero pixels. The second step is designed to

eliminate isolated non-zero noises, by analyzing the connectivity of clusters. The re-

fined support estimate is then transformed and served as the weights of the iterative

reweighted ℓ1 minimization scheme.

Our proposed technique reconstructs the difference frame and estimates the signal

supports in an iterative fashion, and experimental results show that by exploiting

clustered property, isolated non-zero noise can be eliminated, and undiscovered signal

coefficients can be recovered.

8.2 Binary Compressive Sensing via Sum of ℓ1-norm and ℓ∞-norm

Regularization

We considered the task of reconstructing a sparse binary signal vector from a limited

number of noisy measurements employing compressive sensing technique. Compared

to general sparse signals, a unique feature of this type of signals lies in the fact that

signal entries are equally separated with respect to 0.5.

We approached the task based on convex optimization, and a novel regularization

term is developed. Concretely, it is known that among the infinite candidates, ℓ1-

norm minimization selects the sparest solution that agrees with the projection. On

the other hand, ℓ∞-norm minimization, favors the representation whose coefficients
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are roughly in the same absolute magnitude. We showed that these two extremes can

be combined in binary compressive sensing problem to promote the reconstruction

quality. This is done by minimizing the sum of the ℓ1-norm and ℓ∞-norm, up to a

scaling factor and a shifting factor.

The new formulation is convex, and can be solved effectively by many convex op-

timization operators. Experimental results confirmed that our developed technique is

able to promote both the sparsity and binary features of the signals, and outperformed

many sophisticated techniques.

8.3 A Framework for Compressive Sensing of Asymmetric Signals using

Normal and Skew-Normal Mixture Prior

We investigated the compressive sensing task of sparse signals whose significant coeffi-

cients are distributed asymmetrically with respect to zero. We developed a framework

utilizing a two-state normal and skew normal mixture density as the prior distribu-

tion of the signal, where the significant and insignificant coefficients of the signal are

represented by skew normal and normal distributions, respectively. Next, an efficient

approximate message passing based algorithm is developed to estimate the signal from

its compressed measurements. Further, a fast gradient-based estimator is designed to

infer the density of each state.

The performance of our proposed technique is examined under a variety of tests,

including phase transition, noisy reconstruction, support set recovery rate, and run-

time tests. Our developed technique finds promising applications in real world data

set. We show that in weather sensor network application, the disrupting weather phe-

nomena can be successfully learned by our proposed technique. Overall, experimental

results show that our technique can effectively exploit the asymmetric feature of the

signal, while being competitively efficient in solving large scale problems.
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8.4 Compressive Sampling of Clustered Sparse Signals with

Asymmetric features

We investigated the compressive sampling task of clustered sparse signals, where the

magnitudes of each cluster are distributed asymmetrically w.r.t the cluster mean.

To address the skewness feature, a finite skew-normal density mixture is utilized to

model the prior distribution of the signal. An efficient approximate message passing

algorithm, which takes the mixture density, and the hidden states of signal coefficients

as inputs, is designed to iteratively derive the estimate of the signal, by propagating

local beliefs between the measurements and the signal estimates.

Next, following the approximate message passing module, an Expectation Maxi-

mization based algorithm is developed to estimate the mixture density from the es-

timate of the signal. The number of mixture components is estimated in an efficient

and non-parametric way.

Moreover, given the estimate of the signal, and the mixture density estimates,

a loopy message passing based algorithm is designed, where the compatibility of

neighboring coefficients is regularized by the Potts model, after which the hidden

states of signal coefficients is estimated, and the clustered property is promoted.

Overall, the proposed technique alternates between exploiting the measurement,

drawing inference of the finite mixture model, and taking advantage of the clustered

property. These three modules work sequentially and iteratively, after which, a refined

reconstruction of the signal can be obtained. Experiments results showed that our

technique is highly effective and efficient in exploiting both the clustered feature and

asymmetrical feature of the signals, and outperformed many sophisticated techniques.
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8.5 Eigenvalue-based Cooperative Spectrum Sensing with Finite

Samples/Sensors

In this chapter, we studied the spectrum sensing problem for cognitive radios. Based

on the statistics of the eigenvalues of sample covariance matrix, an effective algorithm

is developed to detect the presence of primary user.

We derived a new expression for the distribution of the largest eigenvalue of the

sample covariance matrix, which is more accurate than existing methods based on

asymptotic or limiting distributions. Next, noticing the connection between the Mo-

ment Generating Function of the distribution of the largest eigenvalue and Lauricella

function, compact expressions for the pdf, and cdf of largest eigenvalue of non-central

Wishart matrix are derived. These results are further applied to analyse the detec-

tion performance of the presence of primary user. Experiments results confirmed the

proposed method outperform other eigenvalue based spectrum sensing techniques for

finite number of samples and sensors.

8.6 Suggestion for Future Research

In this dissertation, we investigated several new research areas in compressive sens-

ing and spectrum sensing. In the following, we summarize potential future research

directions.

• In the study of compressive sensing for videos, a fixed threshold is utilized to

obtain the signal support from the difference frame. Although this static strat-

egy works reasonably well in a variety of tests, a fixed setting is not necessarily

optimal in general. Therefore, optimal threshold value can be potentially inves-

tigated for better reconstruction quality.

• Although convex optimization based technique with mixed norm regularization

solved the binary compressive sensing tasks decently, it is an interesting exten-
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sion to develop a greedy, and faster algorithm to recover the binary and sparse

features of the signals.

• In the study of sparse reconstruction of asymmetrical signals, aside from the

numerical study, theoretical analysis of the developed technique is an interesting

topic for future research.

123



BIBLIOGRAPHY

[1] E. J. Candes, “The restricted isometry property and its implications for com-

pressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9-10, pp. 589–

592, 2008.

[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4,

pp. 1289–1306, 2006.

[3] E. J. Candes, “Compressive sampling,” Int. Congress of Mathematics, 2006.

[4] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag, vol. 24,

no. 4, pp. 118–121, 2007.

[5] Z. Pan, J. Yu, H. Huang, S. Hu, A. Zhang, H. Ma, and W. Sun, “Super-

resolution based on compressive sensing and structural self-similarity for remote

sensing images,” IEEE Trans. Geoscience and Remote Sensing, vol. 51, no. 9,

pp. 4864–4876, 2013.

[6] Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, “Low-dose x-ray ct

reconstruction via dictionary learning,” IEEE Trans. Medical Imaging, vol. 31,

no. 9, pp. 1682–1697, 2012.

[7] S. Wang and N. Rahnavard, “A framework for compressive sensing of asymmet-

ric signals using normal and skew-normal mixture prior,” IEEE Trans. Com-

mun, vol. 63, no. 12, pp. 5062–5072, 2015.

124



[8] A. Talari and N. Rahnavard, “Cstorage: Distributed data storage in wireless

sensor networks employing compressive sensing,” in Proceedings of IEEE Global

Telecommun. Conf, pp. 1–5, 2011.

[9] S. Pudlewski, A. Prasanna, and T. Melodia, “Compressed-sensing-enabled video

streaming for wireless multimedia sensor networks,” IEEE Trans. Mobile Com-

put, vol. 11, no. 6, pp. 1060–1072, 2012.

[10] S. Wang, B. Shahrasbi, and N. Rahnavard, “SRL1: Structured reweighted l1

minimization for compressive sampling of videos,” in Proceedings of Int. Symp.

Inf. Theory, pp. 301–305, 2013.

[11] S. Wang and N. Rahnavard, “Binary compressive sensing via sum of L-1 norm

and L-infinity norm regularization,” in Proceedings of IEEE Military Commun.

Conf, pp. 1616–1621, 2013.

[12] U. Nakarmi and N. Rahnavard, “BCS: Compressive sensing for binary sparse

signals,” in Proceedings of IEEE Military Commun. Conf, pp. 1–5, 2012.

[13] S. Pudlewski, T. Melodia, and A. Prasanna, “Compressed-sensing-enabled video

streaming for wireless multimedia sensor networks,” Mobile Computing, IEEE

Transactions on, vol. 11, pp. 1060–1072, 2008.

[14] S. Mun and J. E. Fowler, “Residual reconstruction for block-based compressed

sensing of video,” Data Compression Conference (DCC), vol. 15, 2011.

[15] V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk, “Sparse signal re-

covery using markov random fields,” in Proceedings of the Workshop on Neural

Information Processing Systems (NIPS), 2008.

125



[16] L. Yu, H. Sun, J. P. Barbot, and G. Zheng, “Bayesian compressive sensing for

clustered sparse signals,” Acoustics, Speech and Signal Processing (ICASSP),

vol. 92, no. 1, pp. 259–269, 2011.

[17] X. Zhang, Z. Chen, J. Wen, J. Ma, Y. Han, and J. Villasenor, “Relaxed maxi-

mum a posteriori fault identification,” in Data Compression Conference (DCC),

2011.

[18] N. Ukash and N. Rahnavard, “Bcs: Compressive sensing for binary sparse sig-

nals,” in Military Communication Conference (MILCOM), 2012.

[19] D. Bickson, D. Baron, A. Ihler, H. Avissar, and D. Dolev, “Fault identification

via nonparametric belief propagation,” Signal Processing, IEEE Transactions

on, vol. 59, no. 6, pp. 2602–2613, 2011.

[20] A. Zymnis, S. Boyd, and D. Gorinevsky, “Relaxed maximum a posteriori fault

identification,” Signal Processing, IEEE Transactions on, vol. 89, no. 6, pp. 989–

999, 2009.

[21] C. Studer, W. Yin, and R. G. Baraniuk, “Signal representations with minimum

ℓ∞-norm,” in Allerton Conf. on Comm. Control, and Computing (Allerton),

2012.

[22] O. L. Mangasarian and B. Recht, “Probability of unique integer solution to a

system of linear equations,” European Journal of Operational Research, vol. 214,

no. 1, pp. 27–30, 2011.

[23] J. J. Fuchs, “Spread representations,” in Signals, Systems and Computers

(ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Confer-

ence on, pp. 814–817, 2011.

126



[24] R. Tibshirani, “Regression shrinkage and selection with the lasso,” J. Royal.

Statist. Soc, vol. B(Methodological), pp. 267–288, 1996.

[25] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for

compressed sensing: I. motivation and construction,” in Proceedings of IEEE

Inf. Theory Workshop, pp. 1–5, 2010.

[26] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for

compressed sensing: II. analysis and validation,” in Proceedings of IEEE Inf.

Theory Workshop, 2010.

[27] S. Som and P. Schniter, “Compressive imaging using approximate message

passing and a Markov-tree prior,” IEEE Trans. Signal Process, vol. 60, no. 7,

pp. 3439–3448, 2012.

[28] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive sensing

via belief propagation,” IEEE Trans. Signal Process, vol. 58, no. 1, pp. 269–280,

2010.

[29] A. Farcomeni and S. Arima, “A Bayesian autoregressive three-state hidden

Markov model for identifying switching monotonic regimes in microarray time

course data,” Stat. Appl. Genet. Molec. Biol, vol. 11, p. 4, 2012.

[30] J. Vila and P. Schniter, “Expectation-Maximization Gaussian-mixture approx-

imate message passing,” IEEE Trans. Signal Process, vol. 61, no. 19, pp. 4658–

4672, 2013.

[31] J. Vila and P. Schniter, “An empirical-Bayes approach to recovering linearly

constrained non-negative sparse signals,” IEEE Trans. Signal Process, vol. 62,

no. 18, pp. 4689–4703, 2014.

127



[32] A. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-likelihood from im-

complete data via the EM algorithm,” J. Royal. Statist. Soc, vol. 39, pp. 1–17,

1977.

[33] M. Svensen and C. M. Bishop, “Robust Bayesian mixture modelling,” Neuro-

computing, vol. 64, pp. 235–252, 2005.

[34] A. Azzalini, “A class of distributions which includes the normal ones,” Scandi-

navian J. of Stat, vol. 12, pp. 171–178, 1985.

[35] R. B. Potts, “Some generalized order-disorder transformations,” Mathematical

proceedings of the cambridge philosophical society, vol. 48, no. 1, pp. 106–109,

1952.

[36] S. Wang and N. Rahnavard, “Compressive sampling of clustered sparse signals

with asymmetric features,” 2017.

[37] V. Cevher, M. F. Duarte, C. Hegde, and R. Baraniuk, “Sparse signal recov-

ery using markov random fields,” Advances in Neural Information Processing

Systems, pp. 257–264, 2009.

[38] V. Cevher, P. Indyk, L. Carin, and R. Baraniuk, “A tutorial on sparse signal

acquisition and recovery with graphical models.”.

[39] B. M. McCoy and T. T. Wu, The two-dimensional Ising model. Courier Cor-

poration, 2014.

[40] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “Next genera-

tion/dynamic spectrum access/cognitive radio wireless networks: A survey,”

vol. 50, no. 13, pp. 2127–2159, 2006.

[41] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more

personal,” IEEE personal communications, vol. 6, no. 4, pp. 13–18, 1999.

128



[42] G. T. F. de Abreu, W. Zhang, and Y. Sanada, “Spectrum sensing algorithms

via finite random matrix theory,” in IEEE Int Communications (ICC) Conf,

pp. 1–5, 2011.

[43] G. T. F. De Abreu, W. Zhang, and Y. Sanada, “Finite random matrices for blind

spectrum sensing,” in Conference of Asilomar Conference on Signals, Systems

and Computers, pp. 116–120, 2010.

[44] L. S. Cardoso, M. Debbah, P. Bianchi, and J. Najim, “Cooperative spectrum

sensing using random matrix theory,” in Proceedings of 3rd Int. Symp. Wireless

Pervasive Computing ISWPC, 2008.

[45] B. Nadler, “Finite sample approximation results for principal component anal-

ysis: A matrix perturbation approach,” Annals of Statistics, vol. 36, pp. 2791–

2817, 2008.

[46] B. Nadler, F. Penna, and R. Garello, “Performance of eigenvalue-based signal

detectors with known and unknown noise level,” in Proceedings of IEEE Int

Communications (ICC) Conf, 2011.

[47] F. Penna, R. Garello, and M. A. Spirito, “Probability of missed detection in

eigenvalue ratio spectrum sensing,” in Proceedings of IEEE Int. Conf. Wireless

and Mobile Computing, Networking and Communications, 2009.

[48] T. Ratnarajah, C. Zhong, A. Kortun, M. Sellathurai, and C. B. Papadias,

“Complex random matrices and multiple-antenna spectrum sensing,” in Pro-

ceedings of IEEE Int Acoustics Speech and Signal Processing (ICASSP) Conf,

2011.

[49] Y. Zeng and Y. chang Liang, “Eigenvalue-based spectrum sensing algorithms

for cognitive radio,” IEEE Trans. on COMM., vol. 57, no. 6, pp. 1784–1793,

2009.

129



[50] S. Kritchman and B. Nadler, “Non-parametric detection of the number of sig-

nals: Hypothesis testing and random matrix theory,” IEEE J. on Signal Proc.,

vol. 57, pp. 3930–3941, 2009.

[51] B. Nadler and I. M. Johnstone, “Detection performance of roy’s largest root

test when the noise covariance matrix is arbitrary,” in in Proceedings of IEEE

Statistical Signal Processing Conf, 2011.

[52] “Lp-space.” https://en.wikipedia.org/wiki/Lp space.

[53] E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete

and inaccurate measurements,” Communications on pure and applied mathe-

matics, vol. 59, no. 8, pp. 1207–1223, 2006.

[54] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projec-

tions: Universal encoding strategies?,” IEEE Trans. Inf. Theory, vol. 52, no. 12,

pp. 5406–5425, 2006.

[55] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans.

Signal Process, vol. 56, pp. 2346–2356, June 2008.

[56] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief propagation

and its generalizations,” Exploring artificial intelligence in the new millennium,

vol. 8, pp. 236–239, 2003.

[57] E. J. Candes, M. B. Wakin, and S. Boyd, “Enhancing sparsity by reweighted

l1 minimization,” Journal of Fourier Analysis and Applications, vol. 14, no. 5,

pp. 877–905, 2008.

[58] M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Improved sparse

recovery thresholds with two-step reweighted l1 minimization,” International

Symposium on Information Theory (ISIT), pp. 1603–1607, 2010.

130



[59] R. Boomgard and R. Balen, “Methods for fast morphological image transforms

using bitmapped images,” Computer Vision, Graphics, and Image Processing:

Graphical Models and Image Processing, vol. 54, no. 3, pp. 254–258, 1992.

[60] E. van den Berg and M. P. Friedlander, “SPGL1: A solver for large-scale sparse

reconstruction,” 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

[61] E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for ba-

sis pursuit solutions,” SIAM Journal on Scientific Computing, vol. 31, no. 2,

pp. 890–912, 2008.

[62] B. Dror, S. Sarvotham, and R. G. Barniuk, “Bayesian compressive sensing via

belief propagation,” Signal Processing, IEEE Transactions on, vol. 58, no. 1,

pp. 269–280, 2010.

[63] A. Wani and N. Rahnavard, “Compressive sampling for energy efficient and loss

resilient camera sensor networks,” in Proceedings of IEEE Military Communi-

cation Conference (MILCOM), 2011.

[64] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based

compressive sensing,” Information Theory, IEEE Transactions on, vol. 56,

pp. 1982–2001, 2010.

[65] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso and a

sparse group lasso.” arXiv preprint, 2010.

[66] M. Kowalski, “Sparse regression using mixed norms,” Applied and Computa-

tional Harmonic Analysis, vol. 27, no. 3, pp. 303–324, 2009.

[67] H. Ohlsson, L. Ljung, and S. Boyd, “Segmentation of arx-models using sum-of-

norms regularization,” Automatica, vol. 46, no. 6, pp. 1107–1111, 2010.

131



[68] Y. Chen and A. O. Hero, “Recursive ℓ1,∞ group lasso,” Signal Processing, IEEE

Transactions on, vol. 60, no. 8, pp. 3978–3987, 2012.

[69] D. L. Donoho, “Comprssive sensing,” Information Theory, IEEE Transactions

on, vol. 52, no. 4, pp. 1289–13061, 2006.

[70] R. Baraniuk, “Comprssive sensing,” IEEE Signal Processing Magazine, vol. 24,

no. 4, pp. 118–121, 2007.

[71] E. Candes, “Comprssive sensing,” in Int. Congress of Mathematics, Congress

of Mathematics, 2006.

[72] Y. Lyubarskii and R. Vershynin, “Uncertainty principles and vector quantiza-

tion,” Information Theory, IEEE Transactions on, vol. 56, no. 7, pp. 3491–3501,

2010.

[73] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-

ming, version 2.1.” http://cvxr.com/cvx, 2014.

[74] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear

minimization subject to bounds,” SIAM J. on Optimization, vol. 6, pp. 418–

445, 1996.

[75] T. F. Coleman and Y. Li, “On the convergence of reflective Newton methods

for large-scale nonlinear minimization subject to bounds,” Mathematical Pro-

gramming, vol. 67, no. 2, pp. 189–224, 1994.

[76] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for

large-scale nonlinear programming,” SIAM J. on Optimization, vol. 9, no. 4,

pp. 877–900, 1999.

132



[77] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for

compressed sensing,” Proceedings of National Academy of Sciences, vol. 106,

pp. 18914–18919, November 2009.

[78] “Matlab 2013a.” The MathWorks Inc.

[79] D. Donoho and J. Tanner, “Observed universality of phase transitions in high-

dimensional geometry, with implications for modern data analysis and signal

processing,” Phil. Trans. R. Soc. A: Math., Phys. and Eng. Sci, vol. 367,

no. 1906, pp. 4273–4293, 2009.

[80] E. V. D. Berg and M. P. Friedlander., “Probing the Pareto frontier for basis

pursuit solutions,” SIAM J. on Sci. Comp, vol. 31, no. 2, pp. 890–912, 2008.

[81] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex pro-

grams,” in Recent advances in learning and control, pp. 95–110, 2008.

[82] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,” IEEE

Trans. Signal Process, vol. 52, pp. 2153–2164, August 2004.

[83] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pur-

suit: Recursive function approximation with applications to wavelet decompo-

sition,” in Proceedings of 27th Asilomar Conference on Signals, Systems and

Computers, vol. 1, pp. 40–44, 1993.

[84] “National Centers for Environmental Information.”

http://www1.ncdc.noaa.gov/pub/download/asos/.

[85] “National Weather Service Automated Surface Observing System,”

http://www.nws.noaa.gov/asos/.

[86] J. Huang, T. Zhang, and D. Metaxas, “Learning with structured sparsity,”

Journal of Machine Learning Research, vol. 12, pp. 3371–3412, Nov 2011.

133



[87] L. Yu, H. Sun, J. P. Barbot, and G. Zheng, “Bayesian compressive sensing for

cluster structured sparse signals,” Signal Processing, vol. 92, no. 1, pp. 259–269,

2012.

[88] M. E. Eltayeb, T. Y. Al-Naffouri, and H. R. Bahrami, “Compressive sensing

for feedback reduction in MIMO broadcast channels,” IEEE Trans. Commun,

vol. 62, pp. 3209–3222, September 2014.

[89] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[90] T. I. Lin, J. C. Lee, and S. Y. Yen, “Finite mixture modelling using the skew

normal distribution,” Statistica Sinica, pp. 909–927, 2007.

[91] X. L. Meng and D. B. Rubin, “Maximum likelihood estimation via the ecm

algorithm: A general framework,” Biometrika, vol. 80, no. 2, pp. 267–278, 1993.

[92] S. S. Rao, Engineering optimization: theory and practice. John Wiley & Sons,

2009.

[93] J. P. Mills, “Table of the ratio: area to bounding ordinate, for any portion of

normal curve,” Biometrika, pp. 395–400, 1926.

[94] M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions: with

formulas, graphs, and mathematical tables,” Courier Corporation, vol. 55, 1964.

[95] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,” Optimization

and Engineering, vol. 10, no. 1, pp. 1–17, 2009.

[96] Z. Yin and R. Collins, “Belief propagation in a 3d spatio-temporal mrf for mov-

ing object detection,” in Proceedings of IEEE. Computer Vision and Pattern

Recognition (CVPR), pp. 1–8, 2007.

[97] “https://en.wikipedia.org/wiki/hadamard product (matrices).”

134



[98] M. F. Tappen and W. T. Freeman, “Comparison of graph cuts with belief

propagation for stereo, using identical mrf parameters,” in in Proceedings of

IEEE Int. Conf. on Computer Vision, 2003.

[99] “Newton’s method.” http://en.citizendium.org/wiki/Newton%27s method.

[100] P. Bianchi, M. Debbah, M. Maida, and J. Najim, “Performance of statistical

tests for single-source detection using random matrix theory,” IEEE Trans. on

Information Theory, vol. 57, no. 4, pp. 2400–2419, 2011.

[101] I. M. Johnstone, “On the distribution of the largest eigenvalue in principal

components analysis,” Annals of statistics, pp. 295–327, 2001.

[102] D. Paul, “Asymptotics of sample eigenstructure for a large dimensional spiked

covariance model,” STATISTICA SINICA, vol. 17, pp. 1617–1642, 2007.

[103] P. Moschopoulos, “The distribution of the sum of independent gamma random

variables,” Annals of the Institute of Statistical Mathematics, vol. 37, pp. 541–

544, 1985.

[104] D. G. Kabe, “On the exact distribution of a class of multivariate test criteria,”

The Annals of Mathematical Statistics, vol. 33, pp. 1197–1200, 1962.

[105] J. F. Paris, “A note on the sum of correlated gamma random variables,” arXiv

preprint arXiv:1103.0505, 2011.

[106] L. J. Slater, Generalized hypergeometric functions. Cambridge, England: Cam-

bridge University Press, 1966.

[107] H. Exton, Multiple hypergeometric functions and applications. New York: E.

Horwood, 1976.

135



[108] J. L. Burchnall and T. W. Chaundy, “Expansions of appell’s double hyper-

geometric functions (ii),” The Quarterly Journal of Mathematics, vol. 12,

pp. 112–128, 1941.

[109] S. Wang and N. Rahnavard, “Eigenvalue-based cooperative spectrum sensing

with finite samples/sensors,” in Proceedings IEEE Information Sciences and

Systems, pp. 1–5, 2012.

136



VITA

Sheng Wang

Candidate for the Degree of

Doctor of Philosophy

Dissertation: SPARSE SIGNAL RECOVERY AND DETECTION UTILIZING
SIDE INFORMATION

Major Field: Electrical and Computer Engineering

Biographical:

Personal Data: Born in Hefei, Anhui, China on October 24, 1986.

Education:
Received the B.S. degree from Hefei University of Technology, Hefei, Anhui,
China, 2008, Measuring and Control Technology & Instrument,
Received the M.S. degree from Tianjin University, Tianjin, China, 2010,
Measuring Technology and Instrument,
Completed the requirements for the degree of Doctor of Philosophy with a
major in Electrical and Computer Engineering, Oklahoma State University
in October, 2017.



Name: Sheng Wang Date of Degree: October, 2017

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SPARSE SIGNAL RECOVERY AND DETECTION UTILIZING
SIDE INFORMATION

Pages in Study: 136 Candidate for the Degree of Doctor of Philosophy

Major Field: Electrical Engineering

In this dissertation, we investigate the signal recovery and detection task for com-
pressive sensing and wireless spectrum sensing. First, we investigate the compressive
sensing task for the difference frames of videos. Exploiting the clustered property, we
design an effective structural aware reconstruction technique that is capable of elim-
inating isolated nonzero noisy pixels, and promoting undiscovered signal coefficients.

Further, we develop a novel optimization based method for the compressive sensing
of binary sparse signals. We formulate the reconstruction task as a least square min-
imization procedure, and propose a novel regularization term based on the weighted
sum of ℓ1 norm and ℓ∞ norm.

Moreover, we study the compressive sensing for asymmetrical signals. We devise an
efficient algorithm that greatly improves the reconstruction quality of asymmetrical
sparse signals. Further, we investigate sparse reconstruction of clustered sparse signals
with asymmetrical features. We develop a powerful technique that is capable of taking
inference of the signal, estimating the mixture density, and exploiting the clustered
features.

Finally, we investigate the spectrum sensing task for cognitive radio. We develop an
eigenvalue based technique that notably improve the primary user detection perfor-
mance under finite number of sensors and samples.

ADVISOR’S APPROVAL:


