STATE-OF-THE-ART MULTIOBJECTIVE
EVOLUTIONARY ALGORITHMS—PARETO
PANKING, DENSITY ESTIMATION

AND DYNAMIC POPULATION

HAIMING LU

Bachelor of Engineering
Tsinghua University
Beijing, China

1995

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirement for
the Degree of
DOCTOR OF PHILOSOPHY
December, 2002

STATE-OF-THE-ART MULTIOBJECTIVE
EVOLUTIONARY ALGORITHMS—PARETO
PANKING, DENSITY ESTIMATION

AND DYNAMIC POPULATION

Thesis Approved:

e)

V Phesis Advisor |
AN Lo Ay

e

V

Twrky .

Dean of ¥aeGraduate College

ii

PREFACE

This study classifies existing Multiobjective Evolutionary Algorithms (MOEAs)
and analyzes several state-of—the-ar[MOEAs based on different design procedures of
those crucial building blocks. A Rank-Density based Genetic Algorithm (RDGA) is
designed by synergistically integrates important features of existing MOEAs in a.unique
way. From the simulation results, RDGA has shown its capability in finding a near-
comﬁlete and near-optimal Pareto set at the final and successfully applied in a neural
network design problem. In addition, an MOEA with dynamic population size—Dynamic
Multiobjective Evolutionary Algorithm (DMOEA) is derived from RDGA. Regulated by
dynamic population strategies, DMOEA generation is found to be competitive with, or
even superior to, other representative MOEAs in terms of keeping the diversity of the
individuals along the trade-off surface, tending to extend the Pareto front to new areas,
finding a well-approximated Pareto optimal front, and achieve optifnal population size
according to desired density value and approximated number of trade-off hyper-areas.
Based on extensive studies on MOEAs, an MOEA Toolbox is designed to provide
flexible choices to the users by combining different building blocks. To increase the
convergence speed of DMOEA, a Particle Swarm Optimization (PSO) technique
combined with genetic selection is proposed in a Dynamic Particle Swarm Evolutionary
Algorithm (DPSEA). The comparison results show that DPSEA improves both efficiency
and efficacy of evolutionary process and can be potentially applied to time varying

multiobjective optimization problems in future work.

1il

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my academic advisor, Professor Gary G.
Yen, for he has guided, instructed, encouraged, inspired and continually motivated me for
four years. I feel fortunate to have him as a mentor and a friend. My genuine appreciation
draws to my other committee members Professor Jong-Moon Chung, Professor Guoliang
Fan, Professor R. Russell Rhinehart and Professor R. K. Yarlagadda whose direction,
reassurance and acquaintance are also worthwhile.

I am indebted to all my friends and colleagues in Stillwater. Many thanks are due
to all of them, especially the past and present members in Intelligent Systems and Control
Laboratory at Oklahoma State University for their supportive help.

I would also like to thank to my family—my parents and brother, for encouraging
me to do a good job all the time, to appreciate the value of hard work, and most
importantly, for never giving up.

Finally, special honor and appreciation is given to my wife, Huan Wang. Without
her understanding love, constant help, happy smile and especially joyful prayer, I would
never have the moral and spiritual strength necessary for the completion of this research

and dissertation.

iv

TABLE OF CONTENTS

Chapter _ Page
I INTRODUCTION ...ttt sttt ete et esete e s eassesssaeseesnsessensesssenns 1
1.1 MOTIVALION . ceuteeuteiteeienteettete sttt et et e e e e e e ae st e anaeteessesssesbeessaseanseaseas 1

L2 ODBJECLIVE cevuiiiiierrieieerte sttt e s rreeetteeteesenesareeeaseeesssesassesvasessssensesenssesssennennns 2

II. EVOLUTIONARY ALGORITHMS.ottt st ste e eseeesneeaessvesnesveesnens 8
2.1 Overview of Optimization AIgorithmsccccoeeevvirercierreierenerceeereee e 8

2.1.1 Random Search (Walk).......cooererrieniriieieseerteciesie et ce et 9

2.1.2 Simulated AnNEaling.......cceceveeerieeeeeeierie et eeee e ere e ere e eaees 9
2.1.3MONLE CATlO ittt 10

2.1.4 TabU SEATCH ...eeiuiiiiieiieiericeee et te e e e st e e aaesaasseas 10

All these approaches are single-point-based methods, which is significantly
different from the population-based searching scheme used by Evolutionary

ALZOTIHRINL. .ttt et ere st esere e s sae e e e e e saneeerseareenraens 10

2.2 What is an Evolutionary Algorithm?cccceveiiiiiiiicieiiie e 11
2.3 Classification of Evolutionary Algorithms..................... e ————————— 11
2.4 Genetic ALZOTIERIML ..ocviieiecriecie et et e e e e stee e rre e snre e are e vnesesebaens 12
2.4.1 REPIESENLALION. .curevreereuieirenienrerieniasireeesteasaresesaeeseessessessaessessesssessesessersens 13
2.4.2 FItNESS @VaAIUATION. .. cccueririeeieeirerieeeeteeresee e e sacesnresereeaesaseseaserssesnnans 13
2.4.3 Genetic SCLECHIONeiviirieriieieceeiee ettt 14
2.4.4 GENELIC OPETALIONS ..eevviureeurenniereererteitetesitesteeeeebeeseresteesneesseessessenaenne 15
2.4.5 StOPPINEG CTILETIA..cuveeueireetertieriertenireteete st e see e e st e ieesrtesbee e esnerseenenans 15

2.5 Difference between GA and Traditional Algorithms........cccecveeveevivrireeeennne. 15
2.6 GA Design and Open Problems........ccciiiiiiiieciienieenieeeiiecireeieesieereeeenenns 16
2.6.1 Chromosome repreSeNtationc..eeererererreriereeienieseesnessesesssesessesensens 17
2.6.2 Objective and fitness fUNCLIONcccevvveecuiercirieiieeecie et eeeeaes 17
2.6.3 Selection Methodscccecueeiieiienienieriere ettt 19
2.6.4 GENELIC OPETAtION ...ueevveeeerierresrerrerresreesteessereseesseeseessessseasssesseessessesssans 21

1. MULTIOBJECTIVE OPTIMIZATIONoiiiiiiiirirt ettt see v e veve e 25
3.1 INtrOQUCHION ...ttt ettt e e ete e et eetbe e sanr s seeesnesanesans 25
3.1.1 Problem SOIULIONeevviiieeieerceteie ettt et et e sire e eenesre e anns 26

3.2 DEfINITION .eeiireciiiiiiei ettt sae e s stae s e e sir e s rare s b e nae b e enns 26
3.2.1 Design variables......coceirieriirieeeiie e st e 26
3.2.2 CONSIAINTS .iuveiiiieriiieereiesieereeeieesieresseesaeesstaesnseesesassseessessseessaesseensernns 27
3.2.3 Objective functionsceeceeecerecveenieercneeereeseneeeenns eeeetr e esnennenaanaeas 28
3.2.4 Standard fOImM......cccieiiriiiceete et 28

3.3 Pareto Optimal and Traditional Decision Making Methodsc.c.ccoerueneenee. 29
3.3.1 INrOQUCHION .c..eiiieicett ettt et eree st esnee s rne s e e saseesabenbesabaens 29

3.3.2 Definition of a Pareto optimummc...ccueeevriieieiieieiieeceee e 29

3.3.3 Popular decision making methodscccccvevieevieeieeinieieeceece e, 30

3.3.4 Weighting objectives Methodc.ccveeieeiiiiiiieeiecie e 31

3.3.5 Goal programming methodcccvceevrierieiieiiiicee e 31

3.3.6 MiN-MaxX OPLIMIUINLecveruerirereiereeetesreesteeeeerneeeseeseeseesseessensessesssensens 32
IV.EVOLUTIONARY ALGORITHMS IN.....c.cooioiriteiiemirereierereeeieseeeeeesse e sseseseeeenns 35
MULTIOBJECTIVE OPTIMIZATIONcooitesircimrerrerieneresieesereaaessseesseensnessessnesaeennens 35
4.1 INtrOQUCHION.eeieiiereeeieniereestes ettt e e e e e et e e e e ae s raeeanebe et sreeess 3D

4.2 Fitness ASSIZNIMENLccceeevrercieririreeriereiseetiessiereeestee st essaesssesseesreessessesesenns 37

4.2.1 Aggregating methods.......ccocveviieiieciniiniireer et 37

4.2.2 Population-based non-Pareto approachescccceeeevvrerierereercveeeneennnnn 38

4.2.3 Population-based Pareto approaches..........ccccevveeveeneeieenieninncrnieeennnn. 40

4.3 Maintenance of DIVEISILY.......ccceverieiiiirienenierirreeretee e s e esteesaesaesenesnens 43

4.3.1 Niched fitness sharing techniquecoccovvueeriiiienireninenieecer e 44

4.3.2 Density estimation teChIIQUE.........cccveveerreerierieeieeeee e 45

4.4 Fitness Assignment Scheme of NSGA-II and SPEA II.........c.ccccovvieveverenennes 47

4.5 Other Significant Techniques Used in MOEAS......ccccocovvciieicviiiececrenienin, 48

4.5.1 ELItiSIN SCREIMIEeeeuviieeiiee ettt ettt setr e eerat e eabeeebee s 48

4.5.2 Mating reStriCtIONcccveeiieiriiiiiesreecteeeeeieecieesneeesreeerse e teesneesareenvenns 49

4.5.3 ATChive tTUNCALION ...ecovveeeiiirreeeeciiiee e cerreeeeeettree e s enee e e s eeraeteesennneeees 49

V. RANK DENSITY BASEDoooteitiiiiieireeireitete st etes e sites e sraesrea s resnesnsesnsessesseens 51
MULTIOBJECTIVE GENETIC ALGORITHMcccoooiiiiiiiiinienreeeentee e 51
5.1 INtrOUCHION..c..iitiiiieiieeteeie ettt ettt sttt s e s e sbe et e b e s anes 51

5.2 Critical Procedures of RDGA DeSiZN......ccoceiieeevvieeciieeeeiieeeereeceres e 52

5.2.1 Automatic Accumulated Ranking Strategy (AARS)cccovveevvnerierennene 52

5.2.2 Adaptive density eStMation........ccecervesirrvieriienrenie st ree s 54

5.2.3 Rank and density based fitness assignmentc.o.cceevvervvervreeseeneeenn 56

5.2.4 Crossover and mutation OPerations..........covveecrererveeseresreeeseeseseeeseessenees 57

5.2.5 Constraint handling..........ccocceveeveiiieniieniereeeeseeie e e 59

5.2.6 EIItISIN SrALEZY ..evvvveverrrieririnrieeieiieeeeeserersseeessensssensessesessesessessssesssenens 60

VI. BENCHMARK TEST FUNCTION STUDY ANDoocoivirtinricinieneeniseeneesieneeseene 61
EXPERIMENTAL RESULTS ..ottt sttt ettt ettt aessea e saessveesnaenan st enne s 61
6.1 INErOAUCHION.....iiuiietietertirieri ettt ettt et et s e e ba e b st seeenne 61

6.2 Performance Merit Indicator DeSignceeevveeivveeiireecieeeireeccireeereeereesreesneens 62

6.3 MOEA Comparison and Genetic Operator Design e ee e eann 64

6.3.1 F1— MOP with discontinuous and concave Pareto front...................... 65

6.3.2 F2-1 & F2-2— Local and global Pareto optimality.........cocccoververeeencnne 68

6.3.3 F3—MOP with high-dimensional decision Spacec..cceccerverereneeneen 77

6.3.4 F4—MOP with high-dimensional objective space.........ccceceeecvvrrecrrnenn. 79

6.4 Neural Network Design by RDGAcocoviiiiriinieeeeeeercereee e 84

6.4.1 Neural network design dilemma........cccceeeecvieeiiieenieieeeeieee e, 85

vi

6.4.2 Hierarchical genetic algorithm in neural network design...................... 88
6.4.3 HRDGA for neural network designcccveeeveecveeienereereereesreeicveeenee 90
6.4.4 Experimental study—Mackey-Glassy chaotic time series prediction ...92

VII. DYNAMIC POPULATION SIZE IN MOEA DESIGN.................... et 101
7.1 INtrOQUCTION..ccutiitirieierieieeteette ettt s te s v e e aeeers e eseeenseensenreereeneens 101
7.2 Incrementing Multiobjective Evolutionary Algorithm.........cccoeveevveeveneennn. 104
7.3 Dynamic Multiobjective Evolutionary Algorithm..........cccceevvvereevreevereennnns 105
7.3.1 Cell-based Rank and Density Calculation Scheme.........ccoveevvveeennene. 106
7.3.2 Cell Rank and Health Indicator........ccceooevviiieeieiriieeiieeereeeee e 109
7.3.3 Cell Density and Crowd Indicators.........occueeeireerieeeceeenreeeeereereeseeenna 110
7.3.4 Population growing Strategyccceeverrererrereeriesieerreenieesssesseeseesenennens 111
7.3.5 Population declining Strategy......ccceevverevrrerieerririeciresireereneraneeeoreeseeennens 113
7.4 Objective Space Compression SrategYcveecreevrrevrveeeireeeirreeerreereeneveeeeenes 118
7.5 Convergence Properties and Final Refinement Methodc.ccevveevennenne. 120
7.6 Simulation I—Testing Study on DMOEA.........ccoceiieieiiereiereeeereeienns 122
7.7 Simulation II—Comparison Study on DMOEA with Other MOEAs.......... 125
7.7.1 F3—MOP with high-dimensional decision Spacecccoeevercveevernnene 127
7.7.2 F6—MOP with high-dimensional objective space.........cccccervervmrurenee. 132
7.7.3 F7—MOP with high-dimensional objective space and local Pareto
fronts 139
7.8 ROBUSTNESS STUDY ..ooottrtiiieienrteiiereseeseeesieessesseeeseesssaesaesneessessessnans 142
VII. EMO TOOLBOX DESIGN ...ttt seecse et see e snessesaeesessesenses 146
8.1 MOEA SEING ..eovveeitirirerteriteerteniesireeeeerereserasseessetessaeeesnseeeseeesseeessesseenas 148
8.1.1 Main procedure of fixed MOEA model designc.cccoceveneecvenueennene 149
8.1.2 Main procedure of free MOEA model designccoceevvervieiecenenenene 152
8.2 ViSUaliZation SEHINZ...coueererrreriirereesteniereeeeeeeeeeeseeeseeeseeeser e neeenesaeenne 156
8.3 Start RUNMING ...veovveerieeiieriierreeieestessieesneeieeesseesbeeesbeeesreeeseeesseessaesseeneeans 157
8.4 Data ANALYSIS .cuveririrrieeiiierieeienieesresaeeneesreesee e seessetr e e e e ete e see e neesaeaeenan 158
8.5 DEMONSIIALIONS ..eeiivieieceieerciieerireeriireeirereeireesireeesteeessareaessssaessseressneseesesane 160
8.6 HEIP FIlES cueieririieieiieieeteecese ettt ettt 160
IX. PARTICL SWARM OPTIMIZATION IN MOEAccooiiiriiiininierierteicienencaens 161
9.1 Particle Swarm OptimiZation.....ccccveerrereverieerrerenseeenreerseeenseeeseeeeseeesseenereens 161
9.2 Dynamic Particle Swarm Multiobjective Optimization (DPSMO) 163
9.3 Simulation Study on DPSMO....cc.ccoiiiiiiriiieirercee et sveae s 166
9.4 Dynamic Particle Swarm Evolutionary Algorithm (DPSEA)cccoceec. 169
9.5 Comparison Study on DMOEA, DPSMO and DPSEA.......ccccocviiininnn. 170
9.5.1 Simulation on Function F3ccccooviiiiiiniiniinieniiniineennciccnes 170
9.5.2 Simulation on Function FOc.cceccviiiiniinniiceecrcreeececeeeees 173
X. CONCLUSIONS AND FUTURE WORKS ..ottt 178
BIBLIOGRAPHY ...ttt ettt et ste ettt e e st e e s st sene oo sesaesanes 184

vii

LIST OF TABLES

Table - Page
Table 2.1 General optimization apPPrOAChES.....ccevviiiereecreeieerreeeteeerreeireeeereesreeeresbeesneens 8
Table 2.2 Comparison of three major types of evolutionary algorithms...........cc.cc.......... 12
Table 2.3 A standard genetic algorithm Process........coevvviervreieiieercieeee et 13
Table 2.4 Rule of Roulette Wheel parent s€lectioncceeveecevevienieeeieenieeceeceseeeeenns 20

Table 6.1 Final simulation results for Function F2-1 by five MOEAs using initial
POPULALION SEL 1 ..eruiiriiieiiiieiiiceree ettt st te e s re et e ere e teeereeereessesanenees 73

Table 6.2 Final simulation results for Function F2-1 by five MOEAs using initial
POPULALION SEE 2 ...ttt sttt e te e s tesetbe e sbeesrseesaaeenreenees 73

Table 6.3 Final simulation results for function /2-2 by five MOEAs using initial
POPULALION SEL L ..eeeiirieieiiie ettt eesbaesae e saresras st e ebeenseenteeneesneans 76

Table 6.4 Final simulation results for function F2-2 by five MOEAs using initial
population Set 2cceevevereerereenineiirenas ettt ettt e bbbttt et aeee 76

Table 6.5 Characteristics of Mackey-(G1ass time SEri€S......ccovevvvevieuirieiivireieiee e e 93

Table 6.6 Structure and performance comparison between KNN, OLS, GRNN and
HRIDIGA ..ottt ettt ettt et sae e beebs e aeeetseentestbeerbestesasseaeenns 97

Table 7.1 Comparison results of computation time of 3 from selected MOEAs and
DMOEA with different SEttngs.......coceeierververeeiienenresrisee e eee e eeen 144

Table 9.1 Comparison results of computation time of 76 from DMOEA, DPSMO and

viii

LIST OF FIGURES

Figure Page
Figure 1.1 Graphical illustration bf the Pareto optimality of a two-objective minimization

Jo170] 01 (<31 o HO PP R OO P USROS 3
Figure 2.1 Illustration of CTOSSOVET OPEIAtION.......crereirireersieeeeeeernreeeeneenneeeesnesnessaens 14
Figure 2.2 Illustration of mutation operation..........cc.ccoveveernnen. eerreeeae e e arraraeenres 14
Figure 2.3 Illustration of random Roulette Wheel parent selection indicator................... 20
Figure 2.4 Three-dimensional cube to explain schemata...........coovvevveevieereereercenniennennen, 21
Figure 2.5 Example of uniform CroSSOVETccccveviiiviniinininiiini s 23
Figure 3.1 Graphical definition of the Pareto optimality..........cceceveeierenreesieeceeieceenns 29
Figure 4.1 Outline of generation replacement 0f VEGAcccoovmvievieeivnreesenneneeens 39
Figure 4.2 Illustration of Goldberg’s Pareto-based ranking schemec.ceecercenennns 40
Figure 4.3 Illustration of Fonseca’s Pareto-based ranking schemecccoceevervienennnnns 41
Figure 4.4 Illustration of the Pareto-based ranking scheme adopted by SPEA 1T 42
Figure 4.5 Illustration of the effect of population diversity preservation...........cccecueennenn. 44
Figure 4.6 Illustration of niched fitness sharing technique..........ccceevvveeevienrenennenennaens 45
Figure 4.7 Ilustration of crowding distance estimation approach..........cccccvveeeceervirneenee. 46

Figure 5.1 Individual rank values resulting from MOGA/NSGA-II/ SPEA 1II/ RDGA

ranking MEthOAS .. cccueeeiiriieie e e 53
Figure 5.2 Illustration of density map and density grid applied by RDGA....................... 55
Figure 5.3 Illustration of the “diffusion” SChemeccccovveeeirieniiiiineeecnens 57
Figure 5.4 Illustration of the valid range and the forbidden region........c.ccoevveecverorevinnens 58

ix

Figure 6.1 Difference between PF, and PF, , «..ccocooerinemicnrecineeniisscssseien: 63
Figure 6.2 (a) Decision space, objective space and Pareto front of Function F1I 66
Figure 6.3 True Pareto front and Pareto fronts resulted by MOGA, NSGA-II, PAES,
RDGA and SPEA II on FUNCHON F1 ..c..covuiiiieiiiiiniienieitecieeteete et see s 66
Figure 6.4 Box plots of average individual rank, density and distance values on Function
FL oottt b e e b ettt a et et e e enae 67
Figure 6.5 Box plots using C measure on Function F/ccceveverievinienecnnnienenieniens 67
Figure 6.6 Decision space, objective space and Pareto fronts of Function F2-1.............. 70

Figure 6.7True Pareto front Pareto fronts resulted by MOGA, NSGA-II, PAES, RDGA

and SPEA IT on FUNCHON F2-1 ...cc.ooiiiiiiieiiniiecienie ettt ettt e e 70
Figure 6.8 Box plots of average individual rank, density and distance values on Function

F2od e ettt s b et e b sttt et et sne e st e et e rneresaes 71
Figure 6.9 Box plots using C measure on Function F2-7cc.ccccevevvininvnienirnenecnennnes 72
Figure 6.10 Illustration of ¢, / ¢, ratio affects MOEAs finding global Pareto front.......... 74

Figure 6.11 Pseudo-global Pareto fronts when x, approaches to
=0.1(q, /q; =10,000) TALIO ...eeuvemerrereierertieecee et seesee st nee s eeeseeenesaeere e 74

X3 global

Figure 6.12 Decision space, objective space and local and global Pareto fronts of
FUNCHON F2-21 ettt n s san e saaeen 75

Figure 6.13 Objective space and Pareto front of Function F3.........cocvceiinciivieicenncne. 77

Figure 6.14 True Pareto front and Pareto fronts resulted by MOGA, NSGA-II, PAES,
RDGA and SPEA II on FUNCHON F3 ..cuooviiiiieeieniererse e rree e s sensseesrnesieesiesssennes 78

Figure 6.15 Box plots of average individual rank, density and distance values on Function

3 et et h e b st st b et s ae e bt srt e heesreesaaenan et e enenee 79
Figure 6.16 Box plots using C measure on Function F3ccccoovvverrireninnienienenneen 79
Figure 6.17 Decision space, objective space and Pareto front on Function F4................ 80

Figure 6.19 Box plots of average individual rank, density and distance values on Function
F ettt bt e st st h e bt e bt sre e bt e e a b e sanenba et e rasenanens 81

Figure 6.22 Genotype and phenotype of HGA based MLP neural network.............c....... 88
Figure 6.23 Genotype and Phenotype of HGA based RBF neural networkccovce... 90
Figure 6.24 Flowchart of the main procedure of HRDGA based neural network design 92

Figure 6.25 Training performances and Pareto fronts for the resulting neural networks
with different number of hidden neurons.........ccocoeeeiveeiievcviencieennnennne. rrvererenesanenaasens 94

Figure 6.26 Testing performances and Pareto fronts for the resulting neural networks with
different number of hidden neurons for testing set #1c.cocvvevecvvervriiniiiinireicieeinnn 95

Figure 6.27 Testing performances and Pareto fronts for the resulting neural networks with
different number of hidden neurons for testing set #2ccceveeeiiriieeeeiireeeceeeeieennns 95

Figure 6.28 Training performances and Pareto fronts for the resulting neural networks
with different number of hidden neurons for testing set #3cccoeevvrveriiiencieeneennen. 95

Figure 6.29 Training performances and Pareto fronts for the resulting neural networks
with different number of hidden neurons for testing set #4........cccoevvircevecrerinnennenns 96

Figure 6.30 Relationship between p values and network complexitiesc.ccoccoreeuennns 99
Figure 7.1 Estimated objective space, initial density matrix and initial rank matrix...... 108
Figure 7.2 Initial population and its corresponding density and rank matrices.............. 108

Figure 7.3 (a) Updated population and its corresponding density matrix and rank matrix
... 108

Figure 7.4 Relationship between rank value and health value...........cccvvveieiienicinnennnns 110

Figure 7.5 Illustration of the pure Pareto ranking for the individuals located in the same

(615 | O OO P T OO U OU R S R POO P OUU PRSPPI 115
Figure 6 Relationship between rank values and 7, values........cccccevcereeenrineeninneniiecnenn 117
Figure 7.7 Illustration of objective space compression Strategy.......coceeovervvecrvereverecnens 120
Figure 7.8 Flow chart 0f DMOEAooiiiiiiiiietcerr et sve e e 121
Figure 7.9 Illustration of Pareto optimal set and Pareto front of function F5 122

Figure 7.10 Evolutionary trajectories for the population size and the values of three
indicators resulting by DMOEA with three different initial population sizes (4, =10)

OFL FUTICHION F5 et eeetre e e etaee s s s tbn s e s annn e st s atnaesatnasetannnsstnnesssemnnnss 123

X1

Figure 7.11 Box plots of three indicators with three different initial population sizes
(4,=10) ONL FUNCHON FJ...uviiiiiiiieiieeitectreit ettt eeveesae e e s ebeesans s evaeenneeeasas 124

Figure 7.12 Comparison of the true Pareto front and the final Pareto front resulted by
DMOEA (P=2) on FUNCHON FJ c..oeoitiiiieiineererceetecre ettt 125

Figure 7.13 Snapshots of objective spaces and populations resulted from DMOEA on
FUNCHON F3 ottt ettt st st e sne et aesr s as e ae e e s e aesseensasaensensanns 127

Figure 7.14 Snapshots of objective spaces and rank values resulted from DMOEA on
FUNCLION F3 ettt sttt s s e et e st e e saeesbesenessnenseannans 128

Figure 7.15 Snapshots of objective spaces and density values resulted from DMOEA on
FUNCHION F3 ittt ettt ettt e e e s ae e be e bsestenae e saeaneseens 128

Figure 7.16 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES, RDGA and

SPEA II 0n FUNCHON F3 ...ttt srceee et sre st et enes 130
Figure 7.17 Box plots of average individual rank, density and distance values on Function
F'3 ettt ettt ettt se e 130
Figure 7.18 Box plots using C measure on Function F3ccceveriinicnniienicnnccnienennen. 131
Figure 7.19 Objective space and Pareto front of Function F6.........cccveeevrvevvnnccninnnnn. 133
Figure 7.20 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES, RDGA and
SPEA IT 01 FUNCHON F6oueeviiireieiiniieieeieiiieeeieeteereseteres st sessne s saesaeenens 134
Figure 7.21 Box plots of average individual rank, density and distance values on Function
IO ottt ettt st sb et sb e bt st et enrenten 134
Figure 22 Box plots using C measure on Function Féc.cocceeveeneinienrencieneenennens 135

Figure 7.23 Evolutionary trajectories of population sizes and average individual rank,
density and distance values from six selected MOEAs over 50 runs on Function £6

... 136
Figure 7.24 Objective space and Pareto front of Function F7.......cccocoveeviieiiiininnnenne, 139
Figure 7.25 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES RDGA and

SPEA II 00 FUNCHON F7 ..oiiiiiiiiienieneceireeseeite e sree st et s et sse e s neesanesevasenea s 140
Figure 7.26 Box plots of average individual rank, density and distance values on Function

F T e a e et a et et r e b e ha bt et e et benns 140
Figure 7.27 Box plots using C measure on Function F7ccccocoeemmiiininninnieenneneenns 141

Xii

Figure 7.28 Evolutionary trajectories of population sizes and average individual density
and distance values from six settings of DMOEA over 50 runs on Function F3... 144

Figure 7.28 Evolutionary trajectories of population sizes and average individual density
and distance values from six settings of DMOEA over 50 runs on Function F6... 144

Figure 7.28 Evolutionary trajectories of population sizes and average individual density
and distance values from six settings of DMOEA over 50 runs on Function F7... 144

Figure 8.1 Comparison of skeletons of two MOEA To0lbOXEScccccvvevrevervnreeriernanen. 146
Figure 8.2 Main graphical user interface of EMO T00lbOXcc.cceevieieincneniicnneniennne 148
Figure 8.3 GUI of model SEIECHIONc.coereeeriniririeirteiesiererte st 148
Figure 8.4 GUI of main désign procedure and eIror MESSAZEcveeeerveevereereeeerereeneene 149
Figure 8.5 GUI of genotype parameter 01Ty a2 FOO USRI 150
Figure 8.6 GUI of decision variable SEtting........coveuvvererierinenirnierenieciesresreneeeseeveenaenns 150
Figure 8.7 GUI of objective function and constraint Settingccceeveevverevervvercverveeennns 151
Figure 8.8 Error message for input SyItax €ITOTc.ceceeevreerierieneeienienrenersieeceresaenennens 151
Figure 8.9 GUI of special parameter SNc.uecvererreriererriecrerenirenieresiesseensseseseans 152
Figure 8.10 GUI of ranking method Setting.........ccoeeveeveierieeierieeeiecieceee e 153
Figure 8.11 GUI of density preservation method Setting.........ecceeevvvevceveecreererecnvenneene. 153
Figure 8.12 GUI of determining niche raditS......cceceeeerveeveinienernrierenee s eeesenens 154
Figure 8.13 GUI of elitism scheme SEtNgcccevvevuereriereiienierireeienrester e 154
Figure 8.14 GUI of local search Setting.......cceoueeeereerieeereriiieienersceeerereecertesneeneeneeanes 155
Figure 8.15 GUI of forbidden region SEttingcccceevveerceerieriierecieeereeene v e 155
Figure 8.16 GUI of viewing all parts of free model settingcccecvvvverevecveeeverecvenneenne. 156
Figure 8.17 GUI of visualization SEtNE.......cccccererereeririierintentesieeertesie e 156
Figure 8.18 GUI of listing of all the chosen parameters...........ccovuevriiiniinncnnnnicnne, 157
Figure 8.19 GUI of visualizing the evolutionary result for certain intervals.................. 158

xiii

Figure 8.20 GUI of loading data files for analysis.........coceeveeveerieeiesienenirenenineniesseeens 158

Figure 8.21 Data analysis for resulting datacccocvvuevveeeerreniieniiceeceeceee e 159
Figure 8.22 GUI of t001box demonstration........cccevuerrerieriereereriereereessesieensesesnsnsnenens 159
Figure 8.23 GUIT of help contents of EMO t001bOXcccecuerierirriirriireireieeeeereseeeenns 160
Figure 9.1 Resulting Pareto fronts by DMOEA and DPSMO on Function F3 167

Figure 9.2 Evolutionary trajectories for the population size and the values of three
indicators resulting by DMOEA and DPSMO on Function F3......cccocevvevveenenen. 168

Figure 9.3 Resulting Pareto fronts by DMOEA, DPSMO and DPSEA on Function £3 171
Figure 9.4 Box plots of three indicators on Function F3......ccccoovevvivieiiecnnnneaieeeienens 171
Figure 9.5 Box plots based on C measure on Function F3.......cccccceeevveceereveneenneeenennnes 172

Figure 9.6 Evolutionary trajectories for the population size and the values of three

indicators resulting by DMOEA and DPSMO and DPSEA on Function F3 173
Figure 9.7 Resulting Pareto fronts from DMOEA, DPSMO and DPSEA on Function F6

... 174
Figure 9.8 Box plots of three indicators on Function F6.........c.ccoceevvereenneencniienceneene 174
Figure 9.9 Box plots based on C measure on Function F6...........cccvvevvveeiirevieneenceennnes 175
Figure 9.10 Evolutionary trajectories for the population size and the values of three

indicators resulting by DMOEA and DPSMO and DPSEA on Function F6 175

Figure 10.1 An example of MOP with time varying objective function and Pareto front
... 181

Xiv

L. INTRODUCTION

1.1 Motivation

Many real-world problems in engineering, science, business, and natural and
social sciences are largely characterized by the need to allocate limited resources to a
collection of activities in application areas, such as inventory control, transportation
networks, queuing analysis, task scheduling, capital investment, delivery of health
services, water-resource management, and energy procurement programs. These
problems involve multiple measures of performance, or objectives, which should be
optimized simultaneously. In certain cases, objective functions may be optimized
independently from each other to achieve the best result in each performance dimension.
However, suitable solutions to the overall problem can hardly be found in this way.
Optimal performance according to one objective, if such an optimum exists, may lead to
unacceptably low performance in one or more of the other ébj ectives. For example, in the
design of an automobile, an engineer may wish to maximize crash resistance for safety
and minimize weight for fuel economy. This is a multiobjective optimization problem
with two conflicting goals; that is, a step towards improving one of the objectives, say
enhancing crash resistance, is generally a step away from improving the other, increasing
weight. Obviously, in this case, the notion of “optimum” has to be redefined since a

single optimal point will not satisfy both objectives simultaneously.

In large-scale systems, these Multiobjective Optimization Problems (MOPs) are

even more complicated. For instance, in a plant production study, one may not be

satisfied with only knowing what actions lead to minimizing production costs. Instead,
the‘ study may be taken so that it identifies additional objectives such as short-term and
long-term capital gains, employee satisfaction and well-being, product diversification,
and energy conservation managements. Obviously, some of these objectives are
competing, or even conflicting, which cannot achieve an optimal solution at the same
time. A suitable solution to such problems involving conflicting objectives should offer
“acceptable” performance, though possibly sub-optimal in the single-objective sense, in
all objective dimensions, where “acceptable” is problem-dependent and ultimately

subjective.

1.2 Objective

The simultaneous optimization of multiple, possibly conflicting, objective
functions deviates from single function optimization in that it seldom result in a single,
global optimal solution. Instead, MOPs tend to be characterized by a family of
alternatives that must be considered equivalent in the absence of information concerning
the relative importance of each objective to the others. The family of solutions to a
multiobjective optimization problem is composed of all those elements of the search
space that are components of the corresponding objective vectors which cannot be all
simultaneously improved. This is known as the concept of Pareto optimality [1]. A
formal definition of Pareto optimality is given as follows [2]. Consider, without loss of

generality, the minimization of the n components f,,k =1,...,n, of a vector function f

of a vector variable x in a universe u, where

f(0) = (£,(®), £3(%)>-.., £, (x)). (L.1)

Then a decision vector x, € u is said to be Pareto-optimal if and only if there is no
x, € u for which v=1(x,)=(v,,...,v,) dominates u =f(x)= (u,,...,u,), that is, there

isno x, € y such that
Viedl,...,n},v, <u, and Jiefl,..,n}|v, <u,. (1.2)

The set of all Pareto-optimal decision vectors is‘ called the Pareto-optimal set of
the problem. The corresponding set of objective vectors is called the non-dominated set,
or Pareto front. Apparently, the Pareto front dominates all other possible solutions and in
most cases, it is. located on the boundary of the objective vector space (i.e., feasible
solution space) as shown in Figure 1.1 for a two-objective optimization problem

(f,and f, refer to two cost functions of interest).

A Points A, B: nondominated points
£ Point C: dom

Pareto front

Figure 1.1 Graphical illustration of the Pareto optimality of a two-objective minimization problem

Conventional optimization techniques, such as gradient-based and simplex-based
methods [3], and less conventional ones, such as simulated annealing [4] and tabu search
[5], are difficult to extend to solve MOPs, because they were not designed with multiple
solutions in mind. In practice, MOPs have to be reformulated as a single objective

function prior to optimization, leading to the production of a single solution per run of the

optimizer. In literature, weighting objectives method [3,6], goal programming method [7-
9] and Min-Max optimum method [10] are some representative decision making
algorithms combined with conventional optimization techniques above to achieve a

single solution in multiobjective optimization problems.

Evolutionary Algorithms (EAs) [11] have been recognized to be well suited to
multiobjective optimization early in their development. In EAs, multiple individuals can
search for multiple solutions in parallel, eventually taking advantage of any similarities
available in the family of possible solutions to the problem. The ability to handle
complex problems, involving features such as discontinuities, multimodality, disjoint
feasible spaces and noisy function evaluations, reinforces the potential effectiveness of
EAs in multiobjective search and optimization, which is perhaps the problem area where

evolutionary computation really distinguishes itself from other algorithms.

Since the 1980’s, several Multiobjective Evolutionary Algorithms (MOEAs) have
been proposed and applied in MOPs [2]. These algorithms share the same purpose—
approximate a uniformly distributed, near-optimal and near-complete Pareto front for a
given MOP. However, this goal is very difficult to be achieved because the true Pareto
front is a high-dimensional solution set instead of a single solution point, which is much
more complicated than many single objective optimization problems. Generally, the
approximation of the Pareto-optimal set involves two objectives: the distance to the true
Pareto front is to be minimized while the diversity of the generated solutions is to be

maximized [9]. Unfortunately, these two objectives are also contradictive. In one respect,

Evolutionary Algorithms encourage those better-fit individuals to restrict their searching
efforts within local areas in order to search for solutions with even higher fitness values.
On the other hand, most of the MOPs require the computational resources to be
homogenously distributed in a high dimensional search space to maintain the diversity of
resulting population. For this reason, a Pareto-based fitness assignment (ranking scheme)
and a density estimation method are usually designed in some existing MOEAs [12-14]
in order to guide the search towards a near-complete approximation of the ideal Pareto
optimal front. Although some of the most advanced MOEAs have been shown to be able
to solve some of the challenging multibojective optimization problems, several critical
issues are still not well attended in both algorithm domain and problem domain.
Therefore, the goal of this research is to study the characteristics of MOPs and exploit the
advantages and disadvantages of the existing MOEAs; and propose some feasible
innovations in MOEA designs in order to develop a state-of-the-art MOEA for practical

uses in real-world multiobjective optimization applications.

The remainder of this dissertation is organized as follows. Chapter II introduces
Evolutionary Algorithm (EAs) and its categories. As the most representative algorithm in
EAs, genetic algorithm is reviewed in details. Its operation procedure, advantages over
traditional heuristic optimization algorithms and open issues are also discussed in
Chapter II. Chapter III defines multiobjective optimization functions and Pareto
optimality. Three traditional decision making approaches for multiobjective optimization
are highlighted therein. Chapter IV reviews existing literature on several well-regarded

MOEAs and the incorporated characteristics applied by these MOEAs (e.g., fitness

assignment, diversity maintenance, and elitism). A Rand-Density based Genetic
Algorithm (RDGA) is proposed and its main design procedures are discussed in Chapter
V. In Chapter VI, based on the study of the challenging characteristics embedded in
different types of MOPs, several representative MOEAs along with the proposed RDGA
are examined by four benchmark MOP test functions. The results show that RDGA is
competitive, or even superior to, the other MOEAs in terms of finding a near-complete
and near-optimal set of Pareto points. Additionally, as a real application, a Radial-Basis
Function Neural Network (RBFNN) design problem is formulated as a bi-objective MOP
and an RDGA with hierarchical chromosome representation is implemented in order to
search for a set of non-dominated neural network candidates to predict a chaotic time
series. Chapter VII explores a study on dynamic population strategies in MOEA. Based
on RDGA, a Dynamic Multiobjective Evolutionary Algorithm (DMOEA) is designed. In
one aspect, a population growing strategy is proposed in order to encourage all of the
created individuals contribute their valuable schemas adequately. On the other hand,
those ill-performed and outdated individuals are eliminated from generation to generation
to control the computation cost by preventing the explosion of the population size. By
examining the selected performance indicators on a benchmark problem, DMOEA is
found to be efficient and effective in regulating an optimal population size, keeping the
diversity of the individuals along the trade-off surface, tending to extend the Pareto front
to new areas, and finding a well-approximated Pareto optimal front. Additionally,
dynamic population mechanism eliminates the guesswork from heuristically assigning an
initial fixed population size. Based on the study of MOEAs, in Chapter VIII, a module-

based, user-friendly MOEA toolbox is designed. Since an MOEA can be divided into

several crucial building blocks, such as ranking methods, density estimation approaches,
fitness assignment strategies, elitism schemes and some other necessary routines.
Synergistic combinations of these building blocks can result in different types of MOEAs
existed, or even some novel ones. Therefore, a module-based toolbox can provide
designers with flexibility in dealing with different types of MOPs with their favorite
design procedures. In Chapter XI, a new class of evolutionary algorithm—~Particle
Swarm Optimization (PSO) is introduced. Based on PSQO’s characteristics of faster
convergence, a Dynamic Particle Swarm Multiobjective Optimization (DPSMO)
algorithm and a Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) are devised.
From simulation results, although DPSMO can significantly improve the efficiency of
evolutionary process, it may also produce relatively poorer quality of final Pareto front
comparing to DMOEA. However, DPSEA shows great potential in improving both
efficiency and efficacy of evolutionary process, which makes DPSEA a potential
approach for time varying or even real-time multiobjective optimization problems.
Finally, Chapter X concludes this report with a few pertinent observations and proposes
future research directions in the field of evolutionary algorithms in mutiobjective

optimization problems.

1L EVOLUTIONARY ALGORITHMS

2.1 Overview of Optimization Algorithms
In general, optimization (or search) techniques can be classified into two
categories [15]: enumerative (deterministic) and stochastic (random). Table 2.1 shows

common examples of each type.

Table 2.1 General optimization approaches

Enumerative Stochastic

(Deterministic) (Random)
Greedy Random Search (Walk)

Hill-Climbing Simulated Annealing

Branch & Bound Monte Carlo
Depth-First Tabu Search
Breadth-First Evolutionary Algorithms
Best-First
Calculus-Based
Mathematical Programming

Enumerative schemes are perhaps the simplest search strategy—each possible
solution is evaluated within some defined finite search space. However, it is apparent that
this technique will be inefficient or even infeasible as search space becomes extremely
large. Since many real world problems are computationally complex, some means of
limiting the search space must be implemented to find “acceptable” solutions within
“reasonable” time. Deterministic search attempts this by incorporating problem domain
knowledge. Many of these are considered as graph/tree search algorithms, such as greedy
algorithms, hill-climbing, branch & bound, etc [16-17,4,18]. Although these techniques

had been successfully used in solving a wide variety of problems [16,19-20], they have

difficulty to deal with problems involving high-dimensionality, multi-modality, or NP-
Complete characteristics According to [15], the problems exhibit one or more of these

characteristics are termed irregular [21].

Because enumerative and deterministic techniques are unsuitable for the irregular
optimization problems, stochastic search and optimization approaches are developed as
alternative approaches for solving these irregular problems. These methods include
Random Search, Simulated Annealing, Monte Carlo, Tabu Search and Evolutionary
Algorithm (EA). Stochastic methods require a function assigning fitness values to
possible solutions and an encode/decode mechanism between the problem and algorithm
domains. In general, they provide good solutions to a wide range of optimization

problems that traditional deterministic search methods find difficult [19].

2.1.1 Random Search (Walk)

A random search is the simplest stochastic search strategy, as it merely evaluates
a given number of randomly selected solutions. A random walk is similar except that the
next solution is randomly selected by using the last evaluated solution as a starting point

[22]. Random searches can generally expect to do no better than enumerative ones [19].

2.1.2 Simulated Annealing
Simulated Annealing is an algorithm explicitly modeled on an annealing analogy.

For example, a liquid is heated and then gradually cooled until it freezes and a “moving”

will be chosen randomly. If the “moving” improves the current optimal point, it is always
executed; otherwise it will be executed with some probability. This probability
exponentially decreases either by time or with the amount by which the current optimum
is worsened [4]. If the liquid’s temperature is cooled slowly enough, it will attain a lowest
energy configuration. Therefore, basic mechanism of Simulated Annealing is to obtain

the global optimum if the “moving” probability decreases slowly enough.

2.1.3 Monte Carlo

In general, Monte Carlo methods involve simulations dealing with stochastic
events; they employ a pure random search where any selected trail solution is fully
independent of any previous choice and its outcome [5]. The current “best” solution and
associated decision variables are stored as a comparator. In the next step, the “best”

solution may be updated, and so on.

2.1.4 Tabu Search

Tabu Search is a meta-strategy developed method in order to avoid getting
“stuck” on local optima. It keeps a record of both visited solutions and the “path”, which
reached the solutions in different “memories”. This information restricts the choice of
solutions to evaluate in the next step. Tabu search is often integrated with other

optimization methods [5].

All these approaches are sir_lgle-point-based methods, which is significantly

different from the population-based searching scheme used by Evolutionary Algorithm.

10

2.2 Whatis an Evolutionary Algorithm?

The principle of evolution is one of the most general conceptions of biology,
which links every organism together in a historical chain of events. Every creature in the
chain is the product of a series of “accidents” that have been sorted out thoroughly ﬁnder
selective pressure from the environment. Over many generations, random variation and
natural selection modify the characteristics of individuals and species to fit the demands
of their living environments. This fit has no intrinsic purpose—it is only the effect of
natural variation acting upon and within populations and species and it makes evolution

capable of “engineering” solutions to the problems of survival.

What advantages does the evolutionary process offer when applied to engineering
problems? It could provide a means for solving problems that are difficult, if not
impossible, to traditional algorithms. Indeed, the field of evolutionary computation is one
of the fastest growing areas in computer science and engineering simply because of this
reason [17]. Engineers and scientists with quite different backgrounds have come
together to tackle some of the most difficult problems using this very promising set of

stochastic search algorithms, Evolutionary Algorithms (EAs) [23,24].

2.3 Classification of Evolutionary Algorithms

There are three main types of EAs: Genetic Algorithm (GA) [11,25],
Evolutionary Programming (EP) [26,27] and Evolutionary Strategies (ES) [28,5]. Each
type has numerous variants due to different parameter settings and implementations.

Which EA is the best depends upon the problem. There is no universally best algorithm

11

that can achieve optimal performance for all problems. Different representations or
encoding schemes, selection schemes, and search operations will define different EA.
For example, GA normally uses crossover and mutation as search operators, while ES
only involves mutation. GA often emphasizes genetic evolution, while EP pays more
attention to the evolution of behavior. Table 2.2 illustrates the key implementation
differences among GA, ES and EP.

Table 2.2 Comparison of three major types of evolutionary algorithms

EA Type Representation Evolutionary Operatotors
GA Normally binary; Mutation, recombination,
Real values can be adopted crossover and selection
ES Real values and Mutation, and (z +A4) or
Strategy parameters (u,A) selection [24]
EP Real values Mutation and (g +A)
selection alone

In this study, due to its flexibility in solving complex optimization problems,
genetic algorithm is chosen as a preferred searching algorithm. Moreover, as both GP
and ES are originated from GA [23], we will mainly discuss the characteristics of genetic

algorithms in this chapter.

24 Genetic Algorithm

The basic principles of Genetic Algorithm (GA) were first proposed by Holland
[29] in 1970’s. Thereafter, a series of literature becomes available [25,30-32]. GA is
inspired by the mechanism of natural selection proposed by Darwin, in which better-
fitted individuals are more likely to be the winners in a competing environment, or so

called “survival of fittest law.” GA uses a direct analogy to natural evolution

12

characteristics, where the optimal solutions can be evolved and represented by the final
winners of the genetic process. Generally speaking, a GA is defined by the following four
elements: representation, fitness evaluation, selection, and genetic operations. The whole

process is described in Table 2.3.

Table 2.3 A standard genetic algorithm process

1. Generate the initial population P(0) at random, and set iteration index i=0;
2. REPAET
(a) Evaluate the fitness of each individual in P(i);
(b) Select parents from P(i) based on their fitness in P(i);
(c) Apply genetic operations to the selected parents and obtain next generation P(i+1);

UNTIL the stop criterion are meet.

2.4.1 Representation

GA presumes that the potential solution of any problem is an individual that can
be represented by a set of parameters. These parameters are regarded as the genes of a
chromosome and can be structured by a string of values in binary form. The chromosome
representation that is encoded from the possible physical solution is called genotype; the
corresponding physical representation is called phenotype. A suitable genetic

representation for the given problem is always a critical part of genetic algorithms.

2.4.2 Fitness evaluation
A nonnegative value, generally known as a fitness value, is used to reflect the
degree of “goodness” of a chromosome for the corresponding genotype, which would be

highly related with its objective value. Fitness evaluation gives the performance of a

13

given chromosome for a specific objective in the phenotype. This is a very important link

between GA and the system it represents.

2.4.3 Genetic selection

After a fitness evaluation, a better chromosome has a higher tendency to survive
and reproduce good quality offspring. In a practical GA application, a population pool of
chromosomes has to be built. These chromosomes can be randomly set initially. The size
of the population varies based on the problem of interest. In each cycle of an evolving
process, a given number of parents are selected by a selection routine to generate a

mating pool for genetic reproduction.

parentl

BOODOE

parent2 I

[o [+ [[0 [o []

Crossover

offspring]

EETEERERFETIFEFIFE RN RN NENE

Figure 2.1 Illustration of crossover operation

parent

Nonnnnnannanonn

mutation

offspring
Celolo[ofolof MM ofaleJo]r]

Figure 2.2 Illustration of mutation operation

14

2.4.4 Genetic operations

In mating pool, the genes of selected parents are mixed and recombined for the
production of offspring for a given proportion of the next generation, which is called
crossover (Figure 2.1). Mutation is occasionally applied (Figure 2.2), to introduce some
new genes into the whole population. It is expected that from this process of evolution
(manipulation of genes), the “better” chromosomes will create a larger number of
offspring, having a higher chance of surviving in the next generation, and emulating the

“survival-of-the-fittest” mechanism in nature.

2.4.5 Stopping criteria

The cycle of evolution is repeated until some desired termination criteria are
reached. These criteria can be set by the number of evolution cycles (computational
runs), the amount 6f variation of individuals between different generations, or a

predefined value of fitness.

2.5 Difference between GA and Traditional Algorithms

Using GA to solve optimization problems is by far the most active area in
evolutionary computation. Compare to those traditional algorithms, the benefits of
applying GA in this field are mainly credited to “no assumption” and “parallel

searching.”

To be applicable, traditional algorithms for discovering the solutions for

optimization problems require users to make many assumptions about how to evaluate

15

the fitness of a solution. For example, linear programming algorithms demand the cost
functions to be linear, i.e.,, a sum of weighted individual cost terms. Another popular
approach, the gradient-based search, by which we try to find the point of zero gradients,
requires a smooth, differentiable cost function. In addition, it is unable to deal with a cost
function having discontinuities. However, GA requires no such assumptions. In GA, the
fitness of each individual solution in a population is evaluated and scored; it means one
solution must be determined to be better than another in some way. This makes a broad
range of problems that are outside the scope of traditional algorithms feasible to genetic

algorithms.

Another attractive feature of GA is that it is population based. This makes GA to
equip with the ability of parallel searching. In each generation, all the individuals of the
population are trying to search in all the directions within the searching space, this allows
GA to avoid entrapment in a local optimum and outperform the traditional pure hill-

climbing algorithms.

2.6 GA Design and Open Problems

GA has thé unique ability to search for and optimize a solution for a complex
system. However, due to its evolutionary characteristics, a standard GA may not be
flexible enough for practical applications which tend to be complicated, multi-tasking
problems with various subgoals. Therefore, a means of modifying the GA structure needs

to be made to meet the design criteria.

16

2.6.1 Chromosome representation

The coding of the chromosome representation may vary according to the nature of
the problem. In general, bit string encoding is the most classic method used by GA

because of its simplicity and traceability.

Recently, a direct manipulation of real-value chromosomes raised considerable
interest. This representation was introduced especially to deal with problems with real
parameters. In [33], the result indicated that floating point representation would be faster
in computation and more consistent from the basis of run-to-run. At the same time, its
performance can be enhanced to achieve a higher accuracy. However, the opinion given
by [15] suggested that a real-value coded GA would not necessarily yield better result in
some situations. By far, there is not sufficient consensus to support the superiority of

either.

2.6.2 Objective and fitness function

An objective function is an assessment mechanism used to evaluate the goodness
of a chromosome. Since each individual has a distinguished behavior, the evaluated
values vary from one range to another. To maintain uniformity, the objective value, O, is
mapped into a fitness value [25], shown in Equation (2.1), with a map ‘¥ where the

domain of F is usually greater than zero.

Y:0>F (2.1)

17

Linear scaling

The fitness value of chromosome 7, f;, has a linear relationship with the objective

value o; as:
f,=ao, +b 2.2)

where a and b are chosen to enforce the equality of the objective value and the average
fitness value and cause the maximum scaled fitness to be a specified multiple of the
average fitness. This method can reduce the effect of genetic drift to produce a very good
chromosome. However, it may introduce a negative fitness value that must be avoided in
the GA operation [32]. Thus, the choice of a and b depends upon the knowledge of the

range of the objective values.

Sigma truncation
This method avoids the negative fitness value and incorporates the problem

dependent information into the scaling mechanism. The fitness value f; of chromosome

i is calculated according to:
fi=0,—(0-co) 2.3)

where ¢ is a small integer, o denotes the mean of the objective values, andois the
standard deviation in the population. To prevent negative values of f, any negative result

(i.e., f <0)is set to zero. The chromosomes whose fitness values are less than co will

not be selected.

18

Power law scaling

The actual fitness values is taken as a specific power of the objective value, o;:

f, =0} (2.4)

where k is problem dependent or even varies during the evolution process [34].

2.6.3 Selection methods

To generate good offspring, an effective parent selection mechanism is essential.
The chance of selecting one chromosome to be a parent should be directly proportional to
the number of offspring produced. Baker [35] presented three measures of performance

for the selection algorithms: Bias, Spread and Efficiency.

Bias defines the absolute difference between individuals in actual and expected
probability of selection. Optimal zero bias is achieved when an individual’s probability

equals its expected number of trials.

Spread is a range of the possible number of trials that an individual may achieve.

If g(i) is the actual number of trials due to each individual 7, then the “minimum spread”

is the smallest spread that theoretically permits zero bias, i.e.

g(i) elet(i), et(i)] (2.5)

19

where ef(i) is the expected number of trials of individual 7, and underlined and overlined
denote floor and ceiling operators, respectively. Thus, the spread of a selection method

measures its consistency.

Efficiency is related to the overall time complexity of the algorithms.

Table 2.4 Rule of Roulette Wheel parent selection

1. Sum the fitness of all the population members; named as total fitness (Fsum);
2. Generate a random number (n) between 0 and total fitness Fsum;,

3. Return the first individual whose fitness, added to the fitness of the preceding

individual, is greater than or equal to n

By far, many selection techniques employ Roulette Wheel Mechanism as listed in
Table 2.4 and shown in Figure 2.3. SSR (Stochastic Sampling with Replacement), SSPR
(Stochastic Sampling with Partial Replacement) and SUS (Stochastic Universal

Sampling) are three popular roulette wheel selection methods [25].

Figure 2.3 lllustration of random Roulette Wheel parent selection indicator

20

2.6.4 Genetic operation
Schema theory and building block hypothesis

Consider a simple three-dimensional space as shown in Figure 2.4, and assume
that the searching space of the solution of a problem can be encoded with three bits; this
can be represented as a simple cube with string “000” at the origin. The corners in this
cube are numbered by bit strings and all adjacent corners are labeled by bit strings that
differ by exactly 1 bit. If “*” represents a “don’t care” or “wild card” match symbol, then
the front plane of the cube can be represented by the special string “0**”. Strings that
contain ‘“*” are referred to as schemata and each schema corresponds to a hyperplane in

the searching space. A schema represents all strings which match it on all position other

than “*”, It is clear that each schema matches exactly 2" strings, where r is the number

of don’t care symbols, ‘*’, in the schema template. Every binary encoding is a

“chromosome” which corresponds to a corner in the hypercube and is a member of the

2% -1 different hyperplanes, where L is the length of the binary encoding.

110

111

01

011

100

101

000 001

Figure 2.4 Three-dimensional cube to explain schemata

21

How can genetic algorithm be formulated to search for good schema?
Michalewicz indicated, “A genetic algorithm seeks for near-optimal performance through
the juxtaposition of short, low-order, high performance schemata, called the building

block [31].”

Crossover and mutation

The genetic operations, which are generally referred to as crossover and mutation,
have the ability to generate, promote and juxtapose (side by side) building blocks to form
the optimal strings. Crossover tends to conserve the genetic information present in the
parent strings. Thus, when these strings are similar, their capacity to generate new
building blocks decreases. Mutation is not a conservative operator but is capable of

generating new building blocks rapidly.

Although one-point crossover method was inspired by biological processes, it has
one major drawback in that certain combinations of schema cannot be combined in some

situations [25].

For example, assume that there are two high-performance schemata:
§S=101 * * * * 1]
S,= ¥ ok ok ok]] %k
There are two chromosomes /; and 7, in the population matched by S, and S, :
Ii=1 0110001

I,=0110110 0

22

If only one point crossover is performed, it is impossible to obtain the chromosome that

can be matched by the following schema (S,) as the first schema will be destroyed,
;=101 * 11 * 1.

A multi-point crossover can be introduced to overcome this problem. As a result, the

performance of generated offspring is greatly improved. Another approach is the uniform

crossover. This generates offspring from the parents, based on a randomly generated

crossover mask. The operation is demonstrated in Figure 2.5. The resulting offspring

contains a mixture of genes from each parent. The number of effective crossing points is

not fixed, but will be averaged to L/2 (where L is the chromosome length).

parent <

Uniform

1]

i

Figure 2.5 Example of uniform crossover

The preference of using which crossover techniques is still a debatable issue.
DelJong [36] concluded that a two-point crossover seemed to be an optimal number for
multi-point crossover. However, no analytical justification is given. Since the uniform

crossover exchanges bits rather than segments, it can combine features regardless of their

23

relative location. This ability may outweigh the disadvantage of destroying building
block solutions and make uniform crossover superior for some problems [37]. Therefore,
the crossover technique used to improve offspring production is very much problem
dependent. The basic concept in crossover is to exchange gene information between
chromosomes. An effective crossover design would greatly increase the convergence rate

of the evolutionary process.

Originally, mutation was designed only for the binary represented chromosomes.
To adopt the concept of introducing variants into the chromosome, a random mutation

[38] for the real number chromosome algorithm was proposed:
g=g+y(uo) (2.6)

where g is the real value gene, ¥ is a random function (Gaussian or normally
distributed), and g, o denote the mean and variance related with the random function,

respectively.

Operational rates setting

Another controversial debate for both analytical and empirical investigations is
the choice of an optimal probability operation rate for crossover and mutation [31-33].
The increase of crossover probability would promote the recombination of building block
and at the same time, it may disrupt the evolutionary process of good chromosomes. On
the other hand, increasing the mutation probability would transform the genetic search

into a random search, but would reintroduce the lost genetic material.

24

III. MULTIOBJECTIVE OPTIMIZATION

3.1 Introduction

In engineering practices, it is often a challenge to formulate a design when there
are several criteria or design objectives to be met simultaneously. If the objectives are
conflicting, then the problem becomes one of finding the best possible design that
satisfies the conflicting objectives under different trade-off scenarios. With these multiple
objectives and constraints taken into consideration, an optimum design problem can then
be formulated. This type of problem is known as a multiobjective, multicriteria, ot vector

optimization problem.

Leibniz (1646-1716) and Euler (1707-1783) used infinitesimal calculus to find the
extreme values of functions. This made it possible for researchers to study various new
fields of mechanics. J. Bernoulli (1655-1705), D. Bernoulli (1700-1782), and Sir Isaac
Newton (1643-1727) used these methods to lead them into their findings; Newton in
minimizing the resistance of a revolving body while the Bernoulli's in solving
isoperimetric problems. Lagrange (1736-1813) and Hamilton (1805-1865) "developed
several theorems that serve as the basis for the solution of all optimum design problems.
Later, function approximations were developed by Rayleigh (1842-1919), Ritz (1878-
1909), Galerkin (1871-1945) and others to solve complicated time-consuming functions,

because they could be approximated relatively accurately.

25

A French-Italian economist named Pareto (1848-1923) first developed the
principle of multiobjective optimization for use in economics. His theories became

collectively known as Pareto's optimality concept.

3.1.1 Problem solution
SO solution

A Multiple-Objective (MO) optimum design problem is solved siinilarly to the
Single-Objective (SO) problem. In a SO problem, the idea is to find a set of values for the
design variables that, when subject to a number of constraints, yields an optimum value

for the sole objective (or cost) function.

MOP ideal solution

In MOPs, the designer tries to find the values for the design variables, which
optimize multiple objective functions simultaneously, in this manner the solution is
chosen from a so-called Pareto optimal set. In general, for multiobjective problems the
optimal solutions obtained by individual optimization of the objectives (i.e., SO

optimization) is not a feasible solution to the multiobjective problem.

3.2 Definition
3.2.1 Design variables

The first step in the optimization process is the formulation of the problem. A
mathematical model needs to be developed which will closely describe the behavior of

the physical system in all possible situations.

26

A general multiobjective optimization problem can be described as a vector

function f that maps a set of m parameters (decision variables) to a set of n objectives
min/max y = £(%) = (£, (%), £, (®),..., f, (X)) 3.1)

subject to x =(x,,x,,...,x,)€ X

Y=Yy ¥,)EY,

where x is called decision vector which includes m decision variables, X 1is the

parameter space, yis the objective vector which includes n objectives, and Y is the

objective space.

3.2.2 Constraints

The next step in the formulation of the problem is to identify the constraints.
Constraints are conditions that must be satisfied, in order for the design to function
according to the physical problems. Constraints are expressed as inequalities and/or

equalities.

Inequality constraints

Inequalities are usually specified by g(x) <0 (where g is a vector representing

the constraints g,, j=1,...,J). The standard form of an inequality constraint is shown
below

2,(0 <0, =1, (3.2)

27

Equality Constraints

Equality constraints are shown as h(x) = 0. In a scalar form they are written as

h,(x)=0, k=1..K. (3.3)

3.2.3 Objective functions
The final step in the problem statement is to define the objective functions. These

are the quantities that the designer wishes to optimize. These functions are expressed as
f(x) =(/,(x), £,(®),..., [,(x). (3.4)

Sometimes the functions may be defined so that they are all maximized.

max f,(x) = —min(—f,(x)) . (3.9

3.2.4 Standard form
The problem, when written in what is termed the standard form, will appear as

follows
min{ /() : h(x) = 0,g(x) S 0} (36)

The above notation can be interpreted as follows: to find the real values of the design

variables (i.e., that belong to R"), which will result in the smallest values of the

objective functions subject to both equality and inequality constraints.

28

3.3 Pareto Optimal and Traditional Decision Making Methods
3.3.1 Introduction

In a multiobjective optimization problem, we wish to find a set of values for the
decision variables that optimizes a set of objective functions. The set of decision

variables that produces the optimal result is designated to be the optimal set and is

denoted by X . The optimal set is referred to as the Pareto optimal set, and it yields a set
of possible answers from which we may choose the desired values of the design

variables.

3.3.2 Definition of a Pareto optimum

7 4

Figure 3.1 Graphical definition of the Pareto optimality

29

As shown in Figure 3.1, a set of points is said to be Pareto optimal if, moving
from one point (e.g., point A) to another point (e.g., point B) in the set, any improvement
in one of the objective functions from its current value would cause at least one of the
other objective functions to deteriorate from its current value. Note that, based on this

definition, point C is not Pareto optimal.

A more formal definition of Pareto optimality is given as follows [2]. Consider,

without loss of generality, the minimization of the » components f,,k=1,...,n, of a

vector function f of a vector variable x in a universe y, where
£(x) = (f,(x), /,(%),.... £,(x)). ' | (3.7)

Then a decision vector x, € 4 is said to be Pareto-optimal if and only if there is no
x, € 4 for which v=£(x,)=(v,,...,v,) dominates u =f(x)= («,,...,u,), that is, there

isno x, € u such that
Viedl,...,n},v, <u, and FJiefl,...,n}|v, <u,. (3.8)

The set of all Pareto-optimal decision vectors is called the Pareto-optimal set of the
problem. The corresponding set of objective vectors is called the non-dominated set, or
Pareto front. Apparently, the Pareto front dominates all other possible solutions and in
most cases, it is located on the boundary of the objective vector space (i.e., feasible

solution space) as shown in Figure 1.1 for a two-objective optimization problem.

3.3.3 Popular decision making methods

30

Several methods have been recognized as popular decision-making methods for
solving multiobjective optimization problem. Among all of these methods, weighting
objective method, goal programming method and Min-Max optimum method are the

most representative ones.

3.3.4 Weighting objectives method

This method [3] takes each objective function and multiplies it by a fraction of

one, the "weighting coefficient", which is represented by w,. The modified functions are

then added together to obtain a single cost function, which can be easily solved using any

SO method. Mathematically, the new function is written as

F®) = zwf ®) (3.9)

k
where 0<w, <1, and Zwizl.

i=1

If the problem is convex, then a complete set of non-inferior or Pareto solutions
can be iteratively found. However, if the problem is not convex, then there is no

guarantee that this method will yield the entire Pareto set.

In this method, the weighting coefficients are determined beforehand. The
coefficients are then varied to yield a set of feasible optima, the Pareto Optimal set. The

designer is expected to pick the values of the variables from this set of solutions.

3.3.5 Goal programming method

31

This is perhaps the most well known method of solving MOPs [9]. This method
was originally developed by Charnes and Cooper [3] and Ijiri [8]. In this method, the
designer must construct a set of goals (which may or may not be realistic) that should be
obtained (if possible) for the objective functions. The user then assigns weighting factors
to rank the goals in order of importance. Finally a single objective function is written as

the minimization of the deviations from these goals.

A "goal constraint" is slightly different than a "real constraint” in goal
programming problems. A "goal constraint” is a constraint that needs to be satisfied for

the given MOP, but a slight deviation above or below this constraint is acceptable.

3.3.6 Min-max optimum

If one solves for the optimization of each of the objective functions individually,
the min-max optimum is the set of points, which will give the smallest values of the
relative deviations from the individual objective function [10]. This optimum assumes
that each of the objective functions is equally important.

Before the min-max optimum can be defined mathematically, a number of

functions must be defined first.

Z, (%) = ’-fil—_j{i‘(—xﬁ | (3.10a)

. = ()]

‘(x) =L S 3.10b
ARy (-109
Z, (x) = max{z, (x),z, (x)} (3.10¢)

32

In the above equations, f;” =min f,(x) and f;” = min(max f,(x)). A point is a

min-max optimum if for every x in the feasible region the following series of steps is
satisfied.

Step 1:

v(x) = min max{z,(x)} (3.11)

where X denotes the decision space. We also define 7, as the index for the value of
z, (x) which is maximized. If there is another set of solutions X, c X that meets the

requirements for the first step, proceed to the second step.
Step 2:

v(x) = min max {z,(x)} (3.12)

Now, I, ={I,,I,}, where I, is the index at which the value of the z vector is

maximized in step 2. The procedure continues on in an iterative manner until there is not
a set of solutions which are feasible that satisfy the conditions established in the previous

(the second to last) step.

Although these conventional algorithms have some differences in their design
procedures, they all are based in a similar spirit that converts a multiobjective
optimization problem into a single objective optimization problem. These conversions are
always directed by the preferences of the decision-maker. However, from the definition
of the Pareto optimality [2], “an MOP tends to be characterized by a family of trade-off

solutions, which must be considered equivalent in the absence of the information of the

33

relevance of each objective relative to the others” [2]. Therefore, with this spirit in mind,
Multiobjective Evolutionary Algorithms (MOEAs) have drawn more and more attentions

from the researchers in this field.

34

IV. EVOLUTIONARY ALGORITHMS IN

MULTIOBJECTIVE OPTIMIZATION

4.1 Introduction

In Chapter III, several traditional multiobjective optimization methods are
introduced. All these methods try to either combine the multiple objectives in an ad hoc
manner so that a scalar objective function is formed, or turn the objectives into
constraints. The goal is to turn multiobjective problems into single-objective problems.
Meanwhile, gradient-based or simplex-based optimization techniques are usually applied
as a searching tool for the optimal solution, which may result in a local optimum solution

for complicated optimization problems.

However, in many real-world multiobjective optimization problems, a suitable
solution for the overall problem can hardly be found via the methods outlined in Chapter
III since the objectives are different, sometimes even conflicting. Generally speaking, the
simultaneous optimization of multiple, possibly competing, and conflicting objective
functions are more attractive in that it seldom admits single, perfect solution. Instead,
multiobjective optimization problems tend to be characterized by a family of alternatives
that must be considered equivalent in the absence of information concerning the
importance of each objective relative to others. A suitable solution to problems involving
conflicting objectives should offer “acceptable” performance in all objective dimensions,

although this solution is possibly sub-optimal for some objectives alone.

35

In their early development, Evolutionary Algorithms (EAs), a class of population-
based optimization approaches, have been recognized to be well suited for multiobjective
optimization. In EAs, multiple individuals search for multiple solutions in parallel,
advantageously producing a family of feasible solutions to the problem. The ability to
handle complex problems involving features such as discontinuities, multimodality and
disjoint objective vector spaces, reinforces the potential effectiveness of EAs in
multiobjective search and optimization, which is perhaps the problem area where EAs

most distinguish themselves from the other algorithms [2].

Since the 1980’s, several Multiobjective Evolutionary Algorithms (MOEAS) have
been proposed and applied in Multiobjective Optimization Problems (MOPs) [13]. These
algorithms share the same purpose—approximate a uniformly distributed, near-optimal
and near-complete Pareto front for a given MOP. However, this purpose is very difficult
to be achieved because the true Pareto front is a high-dimensional solution set, which is
much more complicated than many single objective optimization problems combined
together. Generally, the approximation of the Pareto-optimal set involves two conflicting
objectives: the distance to the true Pareto front is to be minimized while the diversity of
the evolved solutions is to be maximized [12]. For the first objective, a Pareto-based
fitness assignment (ranking scheme) is usually designed in some state-of-the-art MOEAs
[13] in order to guide the search towards the ideal Pareto optimal front. For the second
objective, some successful MOEAs provide a density esfimation method to preserve the
population diversity. In addition, several other techniques have also been adopted such

as: elitism scheme [12,14], crowded comparison [14], archive truncation [12] and etc.

36

Although all of these techniques are very important for MOEAs, the fitness assignment
scheme, population density preservation method and elitism archive are considered the

most crucial approaches, which have been applied in all the most successful MOEAs.

4.2 Fitness Assignment

In all the current studies of multiobjective evolutionary algorithms, assigning the
fitness function is the critical part. Several MOEAs are categorized and different fitness
assignment strategies are introduced. In particular, they are distinguished as plain
aggregating approaches, population-based non-Pareto approaches, and Pareto-based

approaches.

4.2.1 Aggregating methods

Similar to/ the linear weighting method introduced in the previous chapter,
aggregating methods combine the objectives into a single scalar function that is used for
fitness calculation. Linear weighting is still used when applying an EA and these
aggregation approaches have the advantage of producing one single solution. However,
three disadvantages exist in this kind of methods.

e If the objective functions are not commensurable with each other, the
weighted combined objective function may cause difficulty to a user in
choosing an appropriate set of weighting factors to derive a reasonable
solution to the problem.

e Different objective functions may have different ranges of values, thus

producing unequal importance to all objective functions. To avoid this issue,

37

we can normalize the objective functions before solving the optimization
equations. However, this approach requires prior knowledge of the lower and
upper bounds of each objective function. Unfortunately, this kind of domain
knowledge is often not available.

e As mentioned in Chapter II, simple weighting techniques will not be able to
respond to problems having non-convex feasible decision space.

The weighted sum approach, target vector optimization, and the method of goal

attainment [39] are the most popular aggregation approaches.

4.2.2 Population-based non-Pareto approaches

These approaches are able to evolve multiple non-dominated solutions
concurrently in a single simulation run. Known as the Vector Evaluated Genetic
Algorithm (VEGA) (Figure 4.1), the method proposed by Schaffer [40] evolves the
whole population to several sub-populations in the next generation according to each of
the objectives, separately. Crossover and mutation are applied as usual after shuffling all
the subpopulations together. Non-dominated individuals are identified by monitoring the
population as it evolves. Shuffling and merging all subpopulations correspond to
averaging the normalized fitness components associated with each of the objectives. The
overall fitness corresponds to a linear function of the objectives where the weights
depend on the distribution of the population at each generation. Therefore, different non-
dominated individuals are generally assigned different fitness values, in contrast to what

‘the definition of nondominance would suggest.

38

Fourman [41] proposed a method where selection is performed by comparing

pairs of individuals with respect to one of the objectives. In this method, objectives are

assigned different priorities by the user and individuals are compared according to the

objective with the highest priority. If this results in a tie, the objective with the second

highest priority is used, and so on. This is known as the lexicographic ordering, which is

a type of goal programming method that was briefly introduced in Chapter III.

ith generation

population

(i+1)-th generation

\w

Selection

Crossover
&mutation

population

Figure 4.1 Outline of generation replacement of VEGA

VEGA is a pioneering work of multiobjective optimization by GA. However, this

approach has difficulties in that it tends to generate the solutions that one of the

objectives has extremely good performance at the cost of the others. Furthermore, VEGA

can be shown to perform an implicitly weighted sum of the objectives [2]. This leads to

the same difficulty found in aggregation genetic algorithms to search for a Pareto front

when the problem involves a concave trade-off surface [2].

39

4.2.3 Population-based Pareto approaches

All the methods mentioned above attempt to promote the generation of multiple
non-dominated solutions. However, none of them makes direct use of the actual
definition of Pareto optimality. At most, the population is monitored for non-dominated

solutions, as discussed in [40].

f1

Figure 4.2 Illustration of Goldberg’s Pareto-based ranking scheme

Pareto-based fitness assignment was first proposed by Goldberg [25], as a means
of assigning'equal probability of reproduction to all non-dominated individuals in the
population. The method consisted of Pareto-based fitness ranking which assigns rank 1 to
the non-dominated individuals and removing them from contention, then finding a new
set of non-dominated individuals, ranked 2, and so on (Figure 4.2). This ranking
approach was adopted by several MOEAs, including Niched Pareto Genetic Algotithm
(NPGA) [42] and Non-dominated Sorting Genetic Algorithm 1[43] and II [14] (NSGA],

).

40

In the Multiobjective Genetic Algorithm (MOGA) proposed in [44], Fonseca
further improved the ranking method by including the density information into the rank
value—an individual’s rank corresponds to how many individuals in the current

population that dominate it. For example, consider an individual y at generation ¢,

which is dominated by p® individuals in the current generation. Its rank value is given
by [13],

rank(y,t) =1+ p®. 4.1

All the non-dominated individuals are assigned rank value 1, while dominated ones are
penalized according to the population density of the corresponding region of the trade-off
surface. ~ Therefore, by this ranking method, an individual’s rank value not only
possesses its Pareto dominance status, but also incorporates its density information. This
type of ranking scheme will be helpful in preserving the population diversity during the
evolutionary process. Figure 4.3 shows the rank values resulted form this ranking method

for the same population distribution as shown in Figure 4.2.

f1

Figure 4.3 Illustration of Fonseca’s Pareto-based ranking scheme

41

f1

Figure 4.4 Tllustration of the Pareto-based ranking scheme adopted by SPEA II

Another well-known MOEA is Strength Pareto Evolutionary Algorithm I [13] and
IT [12] (SPEA L, II), which devised a “strength” value instead of using the rank value. In
SPEA II, a modified fitness assignment strategy based on strength values are prqposed in
order to overcome some difficulties the existing ranking approach has encountered. In

detail, each individual i in the population P 1is assigned a strength value S§(i),
representing the number of solutions it dominates:

SO={ljePnirji, (4.2)
where |-| denotes the cardinality of a set and the symbol > corresponds to the Pareto
dominance relation. On the basis of the S value, the raw fitness R(7) of an individual i is

calculated:

R = >.5()). (4.3)

jeP,irj

From Equation (4.3), the raw fitness R(7) is determined by the strengths of its

dominators in both archive and main population. In addition, similar to Fonseca’s

42

MOGA, the raw fitness values (rank values) produced by this algorithm also include
some density information. The rank values resulted by this scheme is shown in Figure

4.4,

Therefore, according to how much preference information is incorporated into the
fitness function, the approaches range from complete preference information given, as in
combining objective functions directly or prioritizing them, to no preference information
given, as in Pareto-based ranking. Which approach is best is determined by the problem
to be solved. Although by now, non-informative Pareto-based ranking methods are at the
dominant position in this research field, in some cases, partial preference information is
also studied to restrict the searching to only one part of Pareto set. Although a specified
ranking scheme can maintain the population diversity to some extent based on the
concept of Pareto dominance, it may fail when most individuals do not dominate each
other. For this reason, ranking scheme still cannot replace a real density preservation
strategy. In most state-of-the-art MOEAs, a fitness sharing or density estimation method

is always applied and the population density value is optimized as well.

4.3 Maintenance of Diversity

In solving multiobjective optimization problems, it is required that the solutions
are Pareto-optimal, and at the same time they are uniformly sampled from the Pareto-
optimal set. The Pareto-based approaches mentioned above achieve the first requirement.
However, the approaches by themselves cannot meet the second criterion. In most

evolutionary algorithms, it is known that the genetic diversity of the population is lost

43

due to their stochastic selection processes. This phenomenon is called “genetic drift”
[45,46], by which genetic algorithms can exploit the “good” individuals and explore
better ones by genetic operation. Although “genetic drift” effect has its advantages in
single objective optimization, in MOEAs, loss of diversity due to the “genetic drift”

needs to be restrained as shown in Figure 4.5.

fi fl

(a) Population diversity is preserved (b) Population diversity is not preserved
Figure 4.5 Illustration of the effect of population diversity preservation

4.3.1 Niched fitness sharing technique

To maintain the diversity, a technique, so called “fitness sharing”, is widely used
[25]. In the fitness sharing method, the fitness value of each individual is reduced if there
exists other individuals in its neighborhood. Therefore an individual located in a more
crowded area leaves less offspring [42]. Thus, we can obtain a population distributed
more uniformly over the Pareto-optimal set. Niche induction [42] technique is one of the
representative fitness sharing methods that is adopted by Niched Pareto Genetic
Algorithm (NPGA). In NPGA, a niche radius is chosen and individuals within the
distance defined by the niche radius degrade each other’s fitness, since they are in the

same niche (shown in Figure 4.6). Thus the convergence occurs within a niche, but the

44

convergence of the whole population is avoided. Based on this fitness sharing technique,

the more individuals a niche contains, the more its members’ fitness values degrade.

A Feasible Range
12 | Eesy L e AR ’
{ ‘ S [og o%Aniche
“\A Y ' 060} C 4
‘___‘\; .
5] ®
SiL
Pareto set i
f1

Figure 4.6 Illustration of niched fitness sharing technique

Since NPGA only applies Pareto selection to a portion of the entire population in
each generation, it is relatively fast compared to the other Pareto-based approaches. In
addition, it can produce good non-dominated solutions that can be kept for a large
number of generations. Currently, many MOEAs implement niched fitness sharing
strategies (e.g., [46-49]). The limitation of NPGA is that it requires heuristic choices of
the sharing factor and the size of the tournament, which makes the process relatively
~complex in practice. Moreover, as the sharing technique degrades the fitness value,
“harmful” individuals may be generated that may slow down the speed of the entire

population to evolve in a correct direction to the Pareto front [50].

4.3.2 Density estimation technique
Some newly developed MOEAs apply a “density estimation” technique in order
to provide a density value to each individual. The density value represents the crowdness

of the area the interested individual located in. Crowding distance assignment and .-th

45

nearest neighbor methods belong to this category and have been used in NSGA-IT and

SPEA TI, respectively.

In NSGA-II, to obtain an estimate of the density of individuals surrounding a
particular point in the population, the average distance of two neighboring points on

either side of the concerned individual along each dimension is taken. This quantity i,

serves as an estimate of the size of the largest cuboid enclosing the individual i without
including any other point in the population, which is called crowding distance. As shown
in Figure 4.7, the crowding distance of the ith solution in its front (marked with dark

points) is the average side length of the cuboid.

A Feasible Range

i-1:

Cuboid

Figure 4.7 Illustration of crowding distance estimation approach

The density estimation technique used in SPEA 1I is an adapted k-th nearest
neighbor method, where the density at any individual is a decreasing function of the
distance to its k-th nearest neighbor (data point). The density estimate is taken as the

inverse of the distance to the k-th nearest neighbor, which is denoted as o. In SPEA 11, &

is set to be equal to the square root of a sample size N, thus, &k = JN , and the density

D(i) corresponding to i is defined by

46

1
ol +2

i

D(i) = , (4.4)

where two is added to ensure that D(7) value is greater than zero and less than 1/2.

4.4 Fitness Assignment Scheme of NSGA-II and SPEA 11

As two of the most recent and successful MOEAs, both NSGA-II [14] and SPEA
IT [12] clearly classified individual Pareto rank value and density value as two major
fitness. However, their fitness assignment schemes are totally different. In fitness
assignment, between two individuals, NSGA-II used a tournament scheme, by which
NSGA-II prefers the point with a lower rank value, or the point located in a region with
less numbers of points if both of the points belong to the same front. However, SPEA II
calculates the fitness value for each individual by simply adding density value D(i) to
the raw fitness R(7) . Considering the ranking and density estimation schemes of different
MOEAs, it is impossible to state that which ranking or density scheme is the best without
synergistically integrating them together by an appropriate fitness assignment. On the
other hand, according\to the No Free Lunch (NFL) theorem [51], no formal assurances of
an algorithm’s general effectiveness exists if insufficient knowledge of the problem
domain is incorporated into the algorithm domain. A study of benchmark MOP itself to
exploit specific problem characteristics is also an important issue, ‘WhiCh will be

discussed in Chapter V1.

47

4.5 Other Significant Techniques Used in MOEAs

In order to improve the performance of an MOEA, several interesting techniques
are also designed by different researchers. Among them, elitism scheme, mating

restriction, and archive truncation are the most significant ones.

4.5.1 Elitism scheme

Originated from Evolutionary Strategy (ES), elitism scheme has been applied by
almost all of the advanced MOEAs [12-14] in that it can further improve the performance
of the resulting solutions. In detail, an archive with a fixed number of elitists will be set
up besides the main population and the non-dominated individuals generated by the main
population will be considered as a set of elitists and kept into the archive. Additionally, at
each generation, a certain number of elitists will be copied into the main population to
perform crossover. Therefore, by this two-way communication method, the elitist’s
archive will be updated generation by generation and the valuable schemas of an elitist
can also be inherited by their offspring. For this reason, elitism scheme has the potential

to help the entire population converge into a near-optimal Pareto front.

By now, Pareto Archive Evolutionary Strategy (PAES) is the one of the most
successful MOEAs whose performance mainly depends on elitism. As a local search
algorithm that simulates a random mutation hill-climbing strategy, PAES may represent
the simplest possible, yet effective, nontrivial algorithm capable of generating diverse
solutions in the Pareto optimal set [52]. In PAES, pure mutation operation is adopted to
fulfill local search scheme. A reference archive of previously found non-dominated

solutions is updated at each generation in order to identify the dominance ranking of all

48

the resulting solutions. Although (1+1)-PAES is originated as the simplest version, PAES
can also generate A mutants by mutating one of the u current solutions, which is called
(u+ A)-PAES [52]. Since PAES does not perform population-based search, only
tournament selection can be applied to determine the survivors of the next generation. It
is worthy to mention that although the archive size has to be pre-determined, PAES
implements a population incrementing scheme by continuously adding new non-

dominated individuals to the archive.

4.5.2 Mating restriction

The variability of mating is anothér important aspect as the population distributes
itself around multiple regions of optimality. Different regions of the trade-off surface
generally have very different genetic representations, which constrain mating to happen
only locally to ensure viability [53]. So far, mating restriction has only been implemented
based on the distance between individuals in the objective domain, either directly or
indirectly. The use of mating restriction in multiobjective GAs does not appear to be

widespread.

4.5.3 Archive truncation

In elitism scheme, an elitist’s archive needs to be updated by comparing new
introduced elitist with the existing ones in order to keep the archive size fixed. Therefore,
an archive truncation technique is designed in SPEA II [12]. By this technique, an elitist

that has minimum distance to another elitist is chosen at each stage as a member of the

49

archive, if there are several elitists with the same minimum distance, the tie is broken by

Considering the second smallest distances and so forth.

50

V. RANK DENSITY BASED MULTIOBJECTIVE GENETIC

ALGORITHM

5.1 Introduction

From the literature review, the primary difficulty in the existing MOEAs lies on
designing a suitable fitness assignment strategy in order to search for a near-complete
and near-optimal approximated Pareto front for the given optimization problem.
Unfortunately, these two objecti\}es are contradictory. In one respect, the “genetic drift”
character needs to be exploited to converge the solution to a nearly optimal point. On the
other hand, the “genetic drift” phenomenon must be avoided in order to sketch a
uniformly sampled trade-off surface for the final Pareto front. Based on these
considerations, two of the best-known MOEAS [12-14], (i.e. NSGA-II and SPEA 1II)
attempt to represent the fitness value of an individual by a Pareto rank value and a density
value, and then optimize these two sub-fitness values using a specified assignment
method. However, there remain several deficiencies in these algorithms. Especially, both
NSGA-II and SPEA 1I do not treat rank value and density value equally in their selection
process. In NSGA-II, Pareto rank value is considered mbre important than density value
and the parent selection is mainly based on the rank value, whereas density value is
merely treated as a reference in the tournament selection. SPEA II combines the rank and
density values into a single fitness value by using a linear weighting method. Although
the weights of rank and density are equal, there still exists a bias to rank value calculation
because the maximum density value cannot be higher than 0.5 according to SPEA II. For

this reason, the density value can hardly be minimized until the rank value has almost

51

converged. Therefore, both algorithms prefer taking advantages of “genetic drift” effect
than controlling it, which may result into difficulties to find a uniformly distributed

Pareto front.

To respond to these deficiencies, a Rank-Density based Genetic Algorithm
(RDGA) [54], which synergistically integrates selected features of existing MOEAs in a
unique way, is proposed. Although RDGA also converts a high dimensional MOP into a
bi-objective optimization problem to minimize fitness rank values and cell densities, it
adopts several additional techniques in order to achieve a near-complete and near-

optimal Pareto front [55].

5.2 Critical Procedures of RDGA Design
There are five crucial procedures involved in RDGA design, which are discussed

as follows.

5.2.1 Automatic Accumulated Ranking Strategy (AARS)
In RDGA, we propose an Automatic Accumulated Ranking Strategy (AARS). In
AARS, an individual’s rank value is defined as the summation of the rank values of the

individuals that dominate it. For example, assuming at generation ¢, individual y is

dominated by p“ individuals y,,y,, -, Yo whose rank values are already known as

rank(y,,t), rank(y,,t), -+, rank(yp(,) ,1). Its rank value can be computed by

P(f)

rank(y,t) =1+Zrank(yj,t). (5.1)

j=t

52

By AARS, all the non-dominated individuals are still assigned rank value 1, while
dominated ones are penalized to reduce the population density and redundancy. For
instance, suppose we want to minimize two objectives, f, and f,, and MOEAs generate

eleven individuals, and their rank values based on four ranking techniques proposed by
NSGA-II [14], MOGA [44], SPEA 1I [12] and AARS [54] are illustrated in Figure 5.1,
where eéch dot represents a candidate phenotype solution. Considering all the individuals
located in the lower-right area, AARS provides the exact same rank values as those
computed by pure Pareto ranking method (adopted by NSGA-II [14]) since all the
individuals are clearly aligned and not crowded at all. Therefore, adding extra density
information (resulted by SPEA II) may not be necessary in this case. Meanwhile, AARS
does impose penalty to the dominated individuals located in the upper-left area. The
reason of penalizing all the dominated individuals in this area is because there exist
several non-dominated individuals that can mostly represent the dominated points.
Therefore, without increasing the population size, the population diversity will be

maintained by penalizing those dominated individuals in AARS.

SPEA II

H4}(6)[4]

\ 4

f1

Figure 5.1 Individual rank values resulting from MOGA/NSGA-II/ SPEA II/ RDGA ranking
methods

53

5.2.2 Adaptive density estimation

According to [13], although AARS and other ranking schemes [52,56] provide a
sort of niching mechanism based on the concept of Pareto dominance, they may fail when
most individuals do not dominate each other. Therefore, additional density information is
incorporated to discriminate between individuals having identical raw fitness values. In
RDGA, to deal with this problem, we adopt a modified adaptive cell density evaluation
scheme originated from [52] as shown in Figure 5.2. The cell width in each objective

dimension can be formed as

max f,(x)—min f;(x)

‘ K.

i

i=l..,n, (5.2)

where d, is the width of the cell in the itk dimension, K, denotes the number of cells

designated for the ith dimension (i.e., in Figure 5.2, K, =6 and K, =4), and x is taken
from the whole decision space X . As the maximum and minimum fitness values in
objective space will change with different generations, the cell size will vary from
generation to generation to maintain the accuracy of the density calculation. The density
value of an individual is defined as the number of the individuals located in the same cell.
Note that in PAES [52], the grid location of a solution in objective space is obtained by
repeatedly bisecting the range in each objective and finding in which half the solution is.
However, RDGA uses a different scheme to locate which cell an individual belongs to.

First, the cells are created by dividing the range of current objective space based on X,

and given initial population. Second, the center position of each cell will be obtained and

stored as a matrix. Third, each individual of initial population will search for its nearest

54

cell center and identify this cell as its “home address” and consider the other individuals
who share the same “home addréss” as its “family members.” Then for each of these
“homes,” the number of “family members” who dwell in it will be counted and saved as
its density value. Fourth, when an offspring is generated and accepted, its “home address”
can be easﬂy located by following the third step and the density value of its home will
increase by one. Meanwhile, if an old individual is removed, its “home” will be notified
and the density value of its “home” will decrease by one. Therefore, at each generation,
an individual can access its “home address” and then obtain the corresponding density
value. The “home address” is merely a “pointer” to inform an individual where to find its
density value. For instance, as shown in Figure 5.2, the “home address” and density value
of individual A are (4,3) and 4, respectively. Therefore, if a new generated or a removed
individual does not change the boundary of the range of current objective space, only the
density value of its "home” will changes, the density values of the other “homes” (cells)
will not be affected. This setting can avoid the unnecessary recalculation of unchanged

range of objective space and density values.

4 @
o
41; . 0
e, o)
3
¢ 9
2 Q
1)
&
1 2 3 4 5 6 fl

Figure 5.2 Illustration of density map and density grid applied by RDGA

55

5.2.3 Rank and density based fitness assignment

Because rank and density values represent fitness and population diversity,
respectively, we assigned them as two important attributes to each individual. Therefore,
any multiobjective optimization problem can be converted into a bi-objective
optimization problem. On the other hand, since we need to minimize rank value together

with density value, some further modifications need to be made to the original notation.

First, instead of minimizing the density value of an individual, we minimize the
density value of the entire population. Based upon the definition of the cell density, an
individual located in a crowded cell must have a relatively higher density value, which
contributes much more to the population density value than an individual in the sparse
arca does. For example, a cell containing ten individuals will contribute 10x10 =100 to
the population density value, whereas a cell containing only one indilvidual will

contribute only 1 to the population density value.

Second, after the rank and density values of each individual have been extracted,
a modified VEGA is applied to fulfill fitness assignment. As discussed in Chapter 1V,
VEGA possesses two deficiencies: 1) it does not have a scheme to maintain the diversity
of the evolved Pareto front, and 2) it has difficulty in dealing with the problems with
concave trade-off surfaces. As mentioned above, the goal of RDGA is to find the non-
dominated individuals with the rank value equal to 1 and at the same time reduce the
population density value to obtain a uniformly distributed trade-off surface. In this

setting, there is no concern about keeping the population diversity in the rank-density

56

(algorithm) domain. Furthermore, whether the “Pareto front” in the rank-density domain
is concave or not is not an issue since it is not a real Pareto front for the MO problem
under consideration. Therefore, a simple VEGA is effective enough to fulfill fitness
assignment after the original optimization problem has been transformed into the rank-
density domain. It is worthy of noting that the idea of converting multiobjective into a
domination measure function and neighboring density function was also adopted by
Borges and Barbosa [57]. However, in their paper, two newly formulated objective
functions were chosen from Goldberg’s ranking scheme [25] and Horn’s niche sharing
method [42]. Afterwards, they combined two objective functions into one non-linear
fitness function, which is the final fitness function. Because rank and density values have
totally different characteristics, it is very difficult for this algorithm to designate a

suitable coefficient in ad hoc to bias the preference during the evolutionary process.

Best individual

® 1 — Selected parent

Figure 5.3 Illustration of the “diffusion” scheme

5.2.4 Crossover and mutation operations

For crossover, the parent selection and replacement schemes are borrowed from
Cellular GA [53] to explore the new search area by “diffusion” (see Figure 5.3). For each
subpopulation, a fixed number of parents are randomly selected for crossover. Then, each
selected parent performs crossover with the best individual (the one with the lowest rank

value) within the same cell and the nearest neighboring cells that contain individuals. If

57

one offspring produces better fitness (a lower rank value or a lower population density
value) than its corresponding parent, it replaces its parent. The replacement scheme of the

mutation operation is analogous.

A

fa

L
parent

.
>

A

[[] The cell where the selected parent p locates in
[] Vvalid range where parent p’s offspring can locate in
[[] Forbidden region where parent p’s offspring cannot locate in

Figure 5.4 Illustration of the valid range and the forbidden region

Meanwhile, as RDGA takes the minimization of the population density value as
one of the objectives, it is expected that the entire population may move toward an
opposite direction to the Pareto front where the population density value is being
minimized. Although moving away from the true Pareto front can reduce population
density value, obviously, these individuals are harmful to the population to converge to
the Pareto front. To prevent “harmful” offspring surviving and affecting the evolutionary
direction and speed, a forbidden region concept is proposed in the replacement scheme
for the density subpopulation, thereby preventing the “backward” effect. The forbidden
region includes all the cells dominated by the selected parent. The offspring located in
the forbidden region will not survive in the next generation, and thus the selected parent
will not be replaced. As shown in Figure 5.4, suppose our goal is to minimize objectives

f, and f,, and a resulting offspring of the selected parent p is located in the forbidden

58

region. By RDGA, this offspring will be eliminated even if it reduces the population
density because this kind of offspring has the tendency to push the entire population away

from the desired evolutionary direction.

As discussed in Subsection 5.2.1, Automatic Accumulated Ranking Strategy
(AARS) includes the scheme of punishing the individuals located in a crowded area,
which means we add a bias to avoid the population density value from expanding too
much when RDGA is implementing the minimization of population rank values.
Meanwhile, a forbidden region is brought in to introduce another bias to prevent the
offspring from having higher ranks than their parents when RDGA is evolving a lower
population density value. Therefore, RDGA can be interpreted as trying to convert an
MOP in problem domain into two new single objective optimization problems in
algorithm domain—minimizing population rank and density values, and then performing
an evolutionary process to optimize each of the objectives in turn. It is necessary to note
that these two biases make two objectives of RDGA highly correlated. When one
objective is being optimized, the corresponding bias will take the other objective as a
constraint to keep the computation resources homogeneously distributed between two

objectives.

5.2.5 Constraint handling

To handle the constraints, every new generated offspring will be tested against all
the constraint functions in order to determine if it is a valid solution. If the offspring
satisfies for all the constraints, it will be evaluated by the fitness function to obtain its

fitness value, otherwise, it will be discarded.

59

5.2.6 Elitism strategy

The elitism scheme in [58] is also adopted in RDGA. At each generation, the non-
dominated individuals generated from main population will be copied and stored to an
archive. Meanwhile, a non-dominated solution in archive may also be selected with é

certain probability as a parent to perform genetic operations. This probability p. is called

“elitism intensity” and according to [13], at each generation ¢, the probability of sampling
an individual from the archive is given by

| B]

pi=1-(
4]+ B]

)’ (5.3)

where A and B represents archive of elitists and main population, respectively. After the
evolution process has terminated, the resulting solutions in both main population and

archive will be compared to derive the final Pareto front.

60

V. BENCHMARK TEST FUNCTION STUDY AND

EXPERIMENTAL RESULTS

6.1 Introduction

According to [15], in order to compare the performance of different MOEAs, the
design of a variety of MOP benchmark problems and performance metrics is essential.
Because a multiobjective optimization problem can be closely related to a combination of
Single objective Optimization Problems (SOPs), some literature review on the features of
SOP test functions can be helpful. In De Jong’s SOP test bed study [36], he declared that
six problem characteristics need to be examined: continuous and discontinuous, convex
and non-convex, uni-modal and multi-modal, quadratic and non-quadratic, low and high
dimensionality, and deterministic and stochastic. In addition, Michalewicz [59] addressed
other issues that need to be considered for SOP test bed design, such as the number of
constraints, type of constraints and ratio between the feasible and complete search space.
Apparently, some of these properties are also valuable for an MOP and must be
incorporated into the test bed design. Nevertheless, because the purpose of solving an
MOP is to find a near-complete set of non-dominated solutions (Pareto front), the
features that cause the true Pareto front difficult to be found are the primary concerns in
MOP test function design. Therefore, we focus our investigation on five distinct features
of a Pareto front. They are discontinuity, concavity, global/local optimality high-
dimensional decision space and high dimensional objective space. In addition, since a
neural network design problem can be considered as a bi-objective MOP, RDGA is

applied to design a Radial Basis Function (RBF) neural network.

61

6.2 Performance Merit Indicator Design

Five MOEAs— MOGA, PAES, NSGA-II, SPEA II and the proposed RDGA are
deployed in the simulation and run each of the algorithms for 50 times to obtain the
statistical results. For each run, a new initial population with 100 individuals is randomly
generated and used by each of four population-based MOEAs (i.e., MOGA, NSGA-II,
SPEA II and RDGA), while only one initial individual is generated for PAES according
to its design procedure [52] and the archive size is set to be 100 for all the selective
MOEAs that involve elitism scheme. We use three indicators derived from final
generation of 50 runs to benchmark the comparison results via statistical Box plots. They
are: average individual rank value, average individual density value and average
individual distance. As discussed in Chapter V, for an individual, different ranking
schemes will produce different rank values, which will be used in respective fitness
evaluations and selections. However, for a fair comparison in terms of ranking indicators
of different MOEAs, we use Goldberg’s pure Pareto ranking method [25] to recalculate
the rank value for each individual resulted by each applied MOEAs. Meanwhile, as.
shown in Figure 5.2, the average individual density value is calculated as the mean value
of all the individual density values. Here, according to the population size, we choose the
number of grids for each objective dimension to be 20. This setting will not change the
minimum and maximum individual density values, which are 1 and 100, respectively.
Furthermore, because the rank is a relative value, it must be stated that we cannot
guarantee the final population will be a true Pareto set even if all its individuals have rank
values 1s as shown in Figure 5.3. For this reason, we use “final average individual

distance” as the third indicator to measure how far the non-dominated points on the

62

resulting final Pareto front PF

ma are away from the true Pareto front PF, as shown in

Figure 6.1, where PF, , is known in a priori for the given test functions in this paper.

true

This indicator was originally introduced by Veldhuizen and Lamont [60], where the final

individual distance G is defined as

G _ (Zi’:ldiZ)l/Z

m

: ' (6.1)

where m is the number of individuals in PF

"> a0d d, s the Euclidean distance between

each of these individuals and a point on PF_ that is the closest to it. A result of G=0

true

= PF, ; any other value indicates PF, , deviates from

true final

indicates the convergence PF,,,

PF

true *

&——& True Pareto fromt

L] M MOEA rasutted nondominated |
points

0051

. s s 1 L L .)
0615 062 08625 0B3 063 084 0645 065

Ll

Figure 6.1 Difference between PF, and PF

Sfinal

Moreover, m order to compare the dominance relationship between two
populations resulted by two different MOEAs, the coverage of two sets (C value) [13] is
measured to show how the final population of one algorithm dominate the final

population of another. Function C maps the ordered pair (X,, X) to the interval [0, 1],

63

where X, and X, denote the final populations resulted frorﬁ algorithm i and j,
respectively. The value C(X,,X ;) =0 means that all points in X, are dominated by or
equal to points in X, . The opposite, C(X,, X) =1, represents the situation when none of
the points in X, are coveréd by the set X,. Note that both C(X,X,)=1 and
C(X;,X,)=1 need to be considered independently since they have the distinct

meanings.

Therefore, four indicators represent qualitative measures that describe the quality
of the final result of selected MOEAs— the average individual rank value shows the
dominated relationship between different individuals, the average individual density
value illustrates how good the population diversity is preserved, the average individual

and PF

true 3

distance measures distance between PF which provides the quality of the

final
resulting Pareto front, and the C value compares the domination relationship of a pair of
MOEAs. All values of four indicators generated at the final generation are illustrated by

Box plots to show the statistical comparison results.

6.3 MOEA Comparison and Genetic Operator Design

To examine the performances of the selected MOEAs and the proposed RDGA on
the test functions with different Pareto front features, we explore four numerical test
functions in the simulation study. Function FI is advanced from an existing MOP to
create discontinuous and concave Pareto front [61]. Functions F2-1 and F2-2 are

designed to explore local and global Pareto optimality caused by objective function and

64

constraints, respectively. Function F3 and F4 has a high-dimensional decision space,
while function F4 involves a high-dimensional objective space. For a fair comparison,
the stopping generation, the chromosome length of each decision variable, the crossover
rate and the mutation rate are chosen to be 10,000, 15, 0.7, and 0.1, respectively for all
population-based MOEAs considered. One point crossover is used for all the population
based MOEAs. In addition, we select (1+10)-PAES and a bit flip mutation rate 1/k is

used for a chromosome of £ genes and the tournament'size ¢, is chosen to be 2.

dom

6.3.1 FI— MOP with discontinuous and concave Pareto front

The rationale of exploiting MOPs with discontinuous and concave Pareto fronts is
that some MOEAs using plain aggregating schemes have been proven of having
difficulty in finding the Pareto points on the discontinuous and concave segments.
MOEA’s ability of finding nonconvex Pareto front is one of the most important reasons
of using EA’s other than traditional gradient-based or simplex-based algorithms in

multiobjective optimization.

Here, a modified Tanaka’s MOP [61] is chosen to be the test function with a

discontinuous and concave Pareto front.

Minimize f(x,,x,)and f,(x,,x,), where
Si(x,x,) =X,
[i(x, %) =x, (6.2)
subjecti to
0<x,x, <7m,(x,—0.5) -5, -0.5) <0,

—(x* +x2)+1+0.1cos(16 arctan(>1)) < 0.
2

65

0 02 D4 06 08 1
x1

12 14 1B 18 2

(a) Decision space and Pareto optimal set

—t
0 0% 04 O OB

1

L]

12 14 16 18 r

(b) Objective space and true Pareto front

Figure 6.2 (a) Decision space, objective space and Pareto front of Function FI

P

03 \ c‘ ") -
r‘f [: el pegieten | e RS 02 ‘
b i U 1
"9 % o 5 2 ‘é 03 04 06 08 [SEL
f1 1
(a)True Pareto front and initial population (b) MOGA
12
) . 3
03 . 03 \
o [A
N ‘ LE .
- K
04
] # L H
(i [[[T 08 1‘ 12 14] [04 [[\?1" 2
H 4]
(d) PAES (¢) RDGA

(c) NSGA-TI

[F] 06 08 1 12

"
() SPEA I

Figure 6.3 True Pareto front and Pareto fronts resulted by MOGA, NSGA-II, PAES, RDGA and
SPEA 11 on Function FJ

Indeed, the concave feature is created by the complicated constraints imposed in

Equation (6.2). The Pareto optimal set and the true Pareto front are the same for this

problem since each objective variable is equal to one decision variable. Figure 6.2(a)

shows the Pareto optimal set and Figure 6.2(b) shows the corresponding Pareto front,

which includes five discontinuous segments and all of them possess concavity features.

Figure 6.3(a) shows the true Pareto front and a randomly generated initial population

66

using the same initial population for all population-based MOEAs. Figure 6.3(b) — (f)
show the resulting Pareto fronts by five MOEAs. The Box plots for the average values of
three indicators over 50 runs are illustrated in Figures 6.4(a), (b) and (c), respectively.

The performance measures of C(X,, X) for the comparison sets between algorithms i

and j are shown in Figure 6.5, where algorithms 1 — 5 represent MOGA, NSGA-II,

PAES, RDGA and SPEA 11 in alphabetical order, respectively.

MOGA WSGAJl PAES RDGA SPEAI of MOGA NSGAdl PAES RDGA SPEAN | o5 MOGA NSGAdl PAES RDGA SPEAIl l
9 ° .
8 s 8
8 <
o 7 04
7 °o
] P PR SUUE |
S R T N 03 ° .
5 ° -+ 5 - ¢
4 -";'" | 4 | eepes 02 ° o
; . i i ° 8
3 o i g ; o1 e o
1H-_-B|) IF1=2| 14
1 — — — E L L o = Q —%— - =
° 1 2 3 4 5 1 3 3 K 5 6 [T 3 4 5
(a) average rank value (b) average density value (¢) average distance value
Figure 6.4 Box plots of average individual rank, density and distance values on Function FI
1 — 1 D —_— 1 ———
09 09 09

08 Bl 08 4 08 e -
i H

o7 07 o7 epee i 1
06 [b 06 1 06 B o :

0t 1 D i : | 04 o . j 04 Q -]
01 ; - 01 E g 01

C(XI’XI—S) C(XZ’XI—S) C(X3’X1—5)
A S

07 e e ; ! 1 07 B

06 i : E j 08

05 D l:l . i 05 f

04 - e 4 04 R

b ﬁ - L
] O IO
CX,,X.5) CX,,X.5)

Figure 6.5 Box plots using C measure on Function FI

67

Apparently, comparing the resulting Pareto fronts and indicator values in Figures
6.3 — 6.5, we can see that MOGA has the lowest performance in terms of all the indicator
values, while the other four MOEAs provide competitive results. In particular, RDGA
produces more compléte Pareto fronts than the other four MOEAs and it also provides the

highest C(X,, X, ;) values, which means the solution set resulted by RDGA most likely

dominate the rest of the solution sets resulted by the other selective MOEAs. Howe\}er, it
is worthy to mention that the solution set resulted by RDGA also has relatively high
density and distance values, which can be explained as RDGA creates more Pareto points
than the other MOEAs and some of these points are not true non-dominated points. This
problem can be solved if we let RDGA runs longer time instead of the predetermined

10,000 generations.

6.3.2 F2-1& F2-2— Local and global Pareto optimality

Deb [48] proposed a multimodal two-objective optimization problem that
possesses a local and a global Pareto front. He suggested that MOEAs might have a great
tendency to converge to the local Pareto front instead of the global one if a certain kind of
initial population was used. However, he did not elaborate the detail of the design
procedure and how to make the problem more challenging. Moreover, a further study is
needed if the local optimality is caused by constraints instead of objective functions,

because two different rules behind each of them may result in dissimilar effects.

6.3.2.a F2-1—— Local optimality resulted by objective function

A two-variable, two-objective local-Pareto testing problem with a local Pareto

front can be designed as:

68

Minimize f(x,,x,)and f,(x,,x,), where
Ji(x5%,) = R(x,,x,)
T(x,,x,)
X,X,)=—"%
So(xx,) SCrx)
)’ _G2-n)?

7 _ 92
p,xe >

(6.3)

where T(x,,x,)=A—p, xe
subject to C(x,,x,).

From Equation (6.3), we can see in T(x,,x,), parameter 4 affects the lowest
bound of the feasible solution space and Pareto front; p,and p, determine the optimality
of y, and y,. If p,>p,, y, will be the global optimal point, and y, will be the local
optimal point. Otherwise, y, will be the global optimum, and y, will be the local
optimum. Meanwhile, the deviation between y, and y, determines the distance of the
gap between local and global optima. Parameters ¢, and ¢, determine how sharp the
curves around the optimal points y, and y,will be. If ¢, << g, , a global optimal point is
created with a spike around y,, and the sharper the spike is, the thinner the global Pareto

optimal set will be.

A test function F2-1 is created from the general model in Equation (6.3) as:

Minimize f,(x,,x,)and f,(x,,x,), where

ﬁ(xl,x2>=sin<§—xl>

{mp-0n? (x-08)°

(1—6 0.0001)+(l—0.5€ 08)

X,,X,)= 6.4
S, %) arctan(100x,) 64)

subject to 0<x,,x, <I.
In Equation (6.4), there are two optimal values of x,, X2, tosa =0.1 and

X, o = 0.8, which are global optimum and local optimum for f,(x,,x,), respectively.

69

This effect will construct the final local and global Pareto fronts as shown in Figure
6.6(a) with a sampling rate equal to 0.01 for both decision variables. The true (global)

Pareto front is a very thin curve, which is separated from the major range that contains

the local Pareto front.
1 24
[11:] 22
i Local P-g optirmal sel 4 @0 Global {rue) Pareto kont
a7 8 k=3 © Local Parto froni
08 16
Cos s
o4t 1.2
o3 1
nz e [ik:]
ol Fioal global) Pareto oplimal sal ﬂﬁ-mﬂh.___
GIT o1 CllZ l:llJ o4 08 08 07 o8 o3 1 u"ﬂ ﬂf! DIZ D‘E IJll 0‘5 IJTB III‘T o8 D‘g 1
x1
(a) Decision space and Pareto optimal set (b) Objective space and true Pareto front

Figure 6.6 Decision space, objective space and Pareto fronts of Function F2-1

f i popdtion oh
o ideal (global)Pareto front 2l i

L}

L

14 12h & 12 \\
[R oo A 5 0 i A i ‘[tEita mssdmen mam s es e e
. g '._ . » i
& - ..o

f2

3 . v 4o 05 08
® LA '? 05 o0s
08 el AN e o,-\.'i\ﬂ) {
™ 04 04
g %h-._ o o
", o7 [T 06 08 z] ? CE o 04 [[1 [H [06 [1] 1
f1 i1 1
(a) True Pareto front and initial population (b) MOGA (c) NSGA-II
i i —r —— 2
1 |a»; 13hy
1afe 1t 1ot
lk fl fh
y
12\ 12 \ 12 ¥
oo \""—---—--.... BT p— e i,
02 03 08
) 05 04
L} 04 04
o 02 o
' 53 04 06 (1] i 07 04 a6 [T ! 0z 04 a6 [1
f1 1 f
(d) PAES (¢) RDGA () SPEA II

Figure 6.7True Pareto front Pareto fronts resulted by MOGA, NSGA-II, PAES, RDGA and SPEA 11
on Function F2-/

Figure 6.6(a) shows decision space and local and global Pareto optimal sets, while
Figure 6.6(b) shows the objective space and local and global Pareto fronts for the test

function F2-1. Figure 6.7(b) — (f) show the resulting Pareto fronts by five MOEAs for a

70

randomly generated initial population, which is shown in Figure 6.7(a) with a true Pareto
front. The Box plots for the average values of three indicators over 50 runs are illustrated

in Figures 6.8(a), (b) and (c), respectively. The performance measures of C(X,, X,) for

the comparison sets between algorithms i and j are shown in Figure 6.9, where

algorithms 1 — 5 represent MOGA, NSGA-II, PAES, RDGA and SPEA 1II in alphabetical

order, respectively.

MOGA NSGA PAES RDGA SPEAI
o

.....

O~ m W A& u @ N ® ©
3

1 2 3 4 5

(a) average rank value (b) average density value (¢) average distance value

Figure 6.8 Box plots of average individual rank, density and distance values on Function F2-1

From Figure 6.9, we can see that RDGA and SPEA II provide the best results.
Particularly, RDGA’s lowest C value is greater than 0.8, which means fnost of the
solutions resulted by the other four MOEAs are dominated or equal to the solutions by
RDGA. Moreover, RDGA produces the lowest rank and distance values. The highest
density values generated by RDGA and SPEA II are caused by the partial local and
partial global Pareto fronts as shown in Figure 6.7(e) and (f), which may result in a very
crowded partial global segment. From Figure 6.7, it is obvious that the resulting Pareto
front can be pure global, pure local or partial local and partial global. Indeed, the shapes
of the resulting Pareto fronts significantly rely on different types of initiaI populations for
this test function. Therefore, two sets of initial populations are used for comparison. Set 1

includes 50 initial populations where none of their individuals belongs to the global

71

Pareto front. For set 2, at least one individual is located on the global Pareto front for

each of 50 initial populations.

1 —— 1 —_— 1 1 ———
oaf d 09 d [
08 - [p 08
o7} 07 | o7
03 4 05 : | 4 05 i o
O ; P
05 - 05 - p 05 i
04 1 04 e - ’ I_—:I 1 04 [] E ''''' i
o3t l:l 4 o3} 1 03 ::‘ ﬁ
02 1 mden 1 02 ‘_—:l J 0z :
01l I_—:I E E 1 01 1 aal T
0\- S e e — 1 of T 1 0
1 2 3 7] 3 — 2 3 7] T s i p) 3 4 B 6
C(Xl’Xl 5) C(XZ’XI 5) C(X3’Xl 5)
! I T D oo i -
03 i = 08 e :
08 O 08 l:] [5 Q
07 07 i —elen -
s 05
05 osf ek T
04 04
03 03
a2 02
01 01
9 o
T 5 3 7] 5 6 i 3 3 r 5
CX,,X,.) C(X,,X,,)

Figure 6.9 Box plots using C measure on Function F2-1

Tables 6.1 and 6.2 show the indicator values for set 1 and set 2 correspondingly.
Comparing the observations from Table 6.1 with Table 6.2, we can see that all of the
selected MOEAs are very sensitive to the initial population. When the initial population
contains at least one individual that belongs to the global Pareto front, there will be a
higher probability for the final population to converge to the global Pareto front, and
otherwise it is most likely to converge to a local Pareto front. Moreover, different choices
of parameters A4,p,,p,.4q,,4,,Y,»¥, Wil produce various Pareto optimality
characteristics. For instance, Figures 6.10(a) and (b) show how parameters g, and g,

affect the selected MOEAs in finding a global Pareto front for the initial population Sets

72

1 and 2, respectively. When the ratio of g, /q, increases, the percentage that the final

population is located on the global Pareto front will decrease correspondingly.

Table 6.1 Final simulation results for Function F2-1 by five MOEAs using initial population set 1

Final Final Final Number | Number ;| Number
Number Stop average average average of runs of runs of runs
of runs generation | individual individual | generation | produce | produce i produce
rank value density distance pure local partial
value global Pareto global
Pareto front* Pareto
front front
MOGA 50 10,000 1.02 3.21 0.59 0 49 1
NSGA-II 50 10,000 1 5.03 0.51 1 45 4
PAES 50 10,000 1 3.54 0.55 0 49 1
RDGA 50 10,000 1 6.15 0.43 2 40 8
SPEA II 50 10,000 1.01 5.32 0.46 0 42 8
Table 6.2 Final simulation results for Function F2-1 by five MOEAs using initial population set 2
Final Final Final Number | Number ;| Number
Number Stop average average average of runs of runs of runs
of runs generation | individual individual | generation | produce i produce | produce
rank value density distance pure pure partial
value global tocal global
Pareto Pareto Pareto
front front* front
MOGA 50 10,000 1.03 3.74 0.14 37 0 13
NSGA-II 50 10,000 1.03 3.30 0.05 45 0 5
PAES 50 10,000 1 4.05 0.09 41 0 9
RDGA 50 10,000 1.12 3.44 0.07 44 0 6
SPEA 1L 50 10,000 1.15 3.21 0.06 44 0 6

*Note: In Table 1 and 2, we consider a pseudo-global Pareto front as a local Pareto front

Indeed, when g, /g, =10,000, the global Pareto optimal set is already very thin,

which means there is only a very small deviation from x

Pareto optimality. Even when x, takes a very close value to x

2, global

=0.1 to produce global

2, global

=0.1, such as

x, =0.09995, the resulting Pareto front will not be the global one, which is shown in

Figure 6.11. From Figure 6.11, we also see that the gap between local and global Pareto

73

front is not empty. Some pseudo-global Pareto fronts will emerge when the y value is
getting close to x, ,,, =0.1. Therefore, instead of being trapped by the local Pareto

front, the resulting non-dominated points may be stuck on a pseudo-global Pareto front as
well. This effect becomes prominent when the ratio of ¢, /g, increases. In this scenario,
although RDGA may perform better than the other selected MOEAs on average, it will
still be difficult to find a global Pareto front if none of the individuals of the initial

population are located exactly on the global Pareto front.

i [& noGa Rit 9 moos
P o o g oat
: % e ! g i g |
: _‘t‘s.A- g B A o
b = Ny : :
¢ o i i ¢ "
B : g _
& o
i 8. > § 8 °
T - e : $ v L
E N .D. . = g a
E “ { = 3 o E 0%, o
. — .'_.'_.3_'-_._‘__2;_ e s a e J
o 0 w"b Ll w W . wm o o
(a) using initial population set 1 (b) using initial population set 2

Figure 6.10 Illustration of g, / g, ratio affects MOEAs finding global Pareto front

24

: : ¥ .
- @ y=0.1 global Pareto front
2 e ¥=08 local Parsto front H
: 0+ y=0099 pssudo-global Pareto from
24 & y=0 0993 peeudo-globsl Pareto front |
; -~ y=009931 pssudo-global Pareto front
a7 y=009992 pssudo-global Pareto front | |
-4~ y=009935 peaudo-global Parato front

18t

-
F3
!.S%
& 14
1.2F]

e
1 .

[iT:] 3

06} €

04

L . . s L i 1 n
o o oz 03 o4 05 08 07 08 09 1

Figure 6.11 Pseudo-global Pareto fronts when x, approachesto x, ., =0.1(q, /g, =10,000) ratio

6.3.2.b F2-2—Local optimality resulted by constraint

Applying constraints may also create the similar local and global optimal effect

that is represented by

74

Minimize f (x,,x,)and f,(x,,x,), where

.ﬂ(X.ax2)=Sin(%X.)

(xa-0.1)%] (i—c:).s]g

(I-e °)+(1-05e °°)
X, X,)=
J.(x%) arctan(100x,)
subject to 0 <x, <land 0.0999 <x, <0.1001,0r 0.79<x, <1.

(6.5)

In Equation (6.5), parameter g, =¢q,, implies there will not be any spike in the
function 7'(x, y), thus the search space will not be separated into two parts. Indeed, there

is only one optimal point for 7'(x,y) at x, =0.28. However, as we designed a new

constraint for the decision variables in Equation (6.5), we still can produce similar local-
global optimality results shown in Figure 6.12. Under this scenario, the global Pareto

front and local Pareto front still exists, except they are created by a strict constraint.

2 @0 Glabal (rus) Parsta front

11 G- Local Pareto from

s T : seTrsT
W PRI
or Local Pareto optimal s

Global Parsto oplimal set B
04 s Y nmsesan
o i " x H L " 04 " . L i i
D1 02 03 04 05 O 07 08 08 1 01 02 D3 04 05 08 07 08 08
x1 1

(a) Decision space and local and global Pareto optimal sets (b) Objective space and Pareto fronts
Figure 6.12 Decision space, objective space and local and global Pareto fronts of Function F2-2

Under the same conditions, we run four selected MOEAs and the proposed
RDGA, given the initial population set 1 and set 2 for comparison. Tables 6.3 and 6.4

show the indicator values for Sets 1 and 2 correspondingly.

75

Table 6.3 Final simulation results for function F2-2 by five MOEAs using initial population set 1

Final Final Final Number | Number { Number
Number Stop average average average of runs of runs of runs
of runs generation | individual individual | generation | produce : produce | produce
rank value density distance pure pure partial
value global local global
Pareto Pareto Pareto
front front front
MOGA 50 10,000 1.21 333 0.32 4 18 28
NSGA-II 50 10,000 1 5.01 0.27 6 15 29
PAES 50 10,000 1 3.96 0.35 5 20 25
RDGA 50 10,000 1.13 5.61 0.22 9 13 28
SPEAII 50 10,000 1.08 5.05 0.24 10 15 25

Table 6.4 Final simulation results for functio

n F2-2 by five MOEAs using initial

population set 2

Final Final Final Number | Number ; Number
Number Stop average average average of runs of runs of runs
of runs generation individual individual | generation | produce | produce | produce
rank value density distance pure pure partial
value global local global
Pareto Pareto Pareto
front front front
MOGA 50 10,000 1.04 3.20 0.08 45 0 5
NSGA-II 50 10,000 1 4.61 0.03 48 0 2
PAES 50 10,000 1 3.83 0.08 44 0 6
RDGA 50 10,000 1 4.09 0.02 48 0 2
SPEA 11 50 10,000 1 4.52 0.02 49 0 1

Comparing the indicator values in Tables 6.3 and 6.4 with those in Tables 6.1 and

6.2, we can see that for the function F2-2, the global Pareto fronts, resulted by imposing

constraints, are easier to be found by MOEAs than those resulted from objective

functions. This occurrence can be explained as the local optimality represented in

Equation (6.3) having multilayer pseudo-global Pareto fronts, each of which contributes a

new local Pareto front. In this case, instead of finding the global Pareto front, MOEAs are

easily trapped by a local or pseudo-global Pareto front. Nevertheless, the local optimality

caused by constraints does not enclose these pseudo-global Pareto fronts. The gap

76

between local and global Pareto fronts is completely blank, which means the resulting
non-dominated points are most likely located on either of them, thus simplifying the

searching complexity.

For the local optimality created by Equation (6.5), the smaller the constraint range

for X500 (00999 < x <0.1001in Equation (6.5)) the more difficult for MOEAs to

2 global
find a real Pareto front will be, because the global Pareto optimal set will be a thinner

band when the constraint range is small.

6.3.3 F3—MOP with high-dimensional decision space

Minimize f (x) and f,(x), where

fi(x)=1-e*"sin °(67zx,) (6.6)
f}(x) 2 3 025
(X)) =g(x)(1-—>)" g(x)=1+4()_ x, /49",
7. g 209 g (Z;,

subjectto 0<x, <1, i=1,....5.

3 - . . -
26f
2
st . : 332
L . = 5 EZRIshLe 3N
I g

%.2 L] 04 0s 08 o7 08 09
Hix)

Figure 6.13 Objective space and Pareto front of Function F3

This test function is proposed in [14] as an MOP with high-dimensional decision
space and local Pareto front in objective space as shown in Figure 6.13. Figure 6.14(b) —
(f) show the resulting Pareto fronts by five chosen MOEAs for a randomly generated
initial population, which is shown in Figure 6.14(a) with an ideal Pareto front. The Box

plots for the average values of three indicators over 50 runs are illustrated in Figures

77

6.15(a), (b) and (c), respectively. The performance measures of C(X,,X,) for the

comparison sets between algorithms i and j are shown in Figure 6.16, where algorithms

1 — 5 represent MOGA, NSGA-II, PAES, RDGA and SPEA II in alphabetical order,

respectively.

S —— - = —— & ———— —
25 o - ‘e

F
ol - 1 1
oy -
g g .
o o S
u,
& \1
1 [— deal Parsto front | s
_+_Initial population | ~
&_‘. c3 04 25 [ar o8 09 1 }l] [} o4 1'5 06 o7 08 o9 1 ﬁ? o3 04 25 08 o7 [E:] 09
f f i3]
(a) True Pareto front and initial population (b) MOGA (c) NSGA-II
15 15— + . - ——————— Ve ——
! ‘\. .
et 1 -
l..‘ o b 8]
05 a5 \\.. 05
1\ .
- v
~
. . L ... " L
[] €3 04 5 08 o7 08 o9 1 b:‘ 3 04 s 06 o7 [T} ae }':‘ 03 04 1% o6 or 08 (2]
L} Eil f
(d) PAES (e) RDGA () SPEAII

Figure 6.14 True Pareto front and Pareto fronts resulted by MOGA, NSGA-II, PAES, RDGA and
SPEA Il on Function F3

From Figures 6.14 — 6.16, it is obvious that MOGA has great difficulty in finding
the true Pareto front of this MOP. On the other hand, NSGA-II, SPEA and RDGA always
identify some points on the global Pareto front. Moreover, comparing to NSGA-II and
SPEA II, RDGA has the lowest density value, which means RDGA tends to produce a
more homogenously distributed Pareto front by minimizing individual’s density value

independently.

78

3
MEGA NSGAJl PAES RDGA SPEAI MOGA NSGAJI PAES RDGA SPEAIN 18+ MOGAR NSGAJl PAES RDGA SPEAIl
28 8 9 1 B
28 g 8r 1ar
24 o 7 e o 1 12
22t & B 1
o 3
2 b3 8 o 5 08 8.
18 ° ° H i
o 8 a4 b L e P e 5
14 o 8 1 H 3
3 8 3 b 2 : : 02 ° i
12 ° g ° : °
1 aedeee e T H
1L —— v e ol ol] o - R ﬂ a
0 [el N 5 S5 1 1 3 4 5 5 0 1 3 3 4 5 6

(a) average rank value

(b) average density value

(¢) average distance value

Figure 6.15 Box plots of average individual rank, density and distance values on Function F3

1 ——— 1 a— a—— 1 —
08 08 B e, 09 . 4
o8} 08 . 08 . -
o7} E o7} i - o7} D
os} osf i B 05} e o
0‘4” b el 0‘4 3 ---3--~ 04 B D
03 T : 83 e 03 B S H .
01t Q E ot wl T
Ou 1 2 3 T 5 00' I °L 1 1 3 4 5
C(XI’XI—S) C(XZ’XI—S) C(XB’XX—S)
T g] S .

09 - iz -Q—

Z.? + I =

06 ° 4 08 g o N

04 I é : 04 D o

O 20 T &

a7 3 o1

— : ——
C(X,, X, 5) C(X;, X, 5)
Figure 6.16 Box plots using C measure on Function F3
6.3.4 F4—MOP with high-dimensional objective space

Minimize f(x,y), f,(x,y),and f,(x,y), where
fi(x,»)=0.5(x" + y*) +sin(x* + y*)
Gx-2y+4° (x-y+D)’ .

fr (%)=
fz(xay) =

8

1

(x> +y*+1)
subjectto —30 < x,y <30.

27

-1 1e(—x24y2)

(6.7)

79

Originally designed by Viennet [62], this test function has been adopted by many
researchers in that it provides three partial-contradict objective functions as shown in
Figure 6.17. Figure 6.18(b) — (f) show resulting Pareto fronts by five MOEAs for a
randomly generated initial population, which is shown in Figure 6.18(a). The Box plots
for the average values of three indicators over 50 runs are depicted in Figures 6.19(a), (b)

and (c), respectively. The performance measures of C(X,,X,) for the comparison sets

between algorithms i and j are shown in Figure 6.20, where algorithms 1— 5 represent

MOGA, NSGA-II, PAES, RDGA and SPEA II in alphabetical order, respectively.

L= Lo -~ o

X2
T S I - R

in

s

3 -2 -1 1] 2 3 4 5

x1

(a) Decision space and Pareto optimal set (b) Objective space and Pareto front

Figure 6.17 Decision space, objective space and Pareto front on Function F4

Indeed, test function F4 possesses several challenging characteristics such as:
high-dimensional objective space, discontinuous Pareto optimal set and several local
minima in objective functions. From the resulting Pareto fronts and Box plots of the
performance indicators in Figure 6.18 — 6.20, RDGA, NSGA-II, PAES, and SPEA 1I all
show the ability to approximate the true Pareto front and the population-based MOEAs
(i.e., RDGA, SPEA Il and NSGA-II) provide higher C value as shown in Figure 6.20.
Furthermore, we can see that RDGA produces smallest average individual density value

and distance value comparing to NSGA-II and SPEA II. Because RDGA converts

80

original objective space into a bi-objective rank-density domain, it is not so sensitive to
the complexity of high-dimensional objective spaces. Therefore, RDGA holds the

potential promise in solving these types of MOPs.

a2 025 025
015 02 01
o1 'o‘" .. 0% 015
0.05 . i 0. 0
2 2 2 ve
o a
e E ! by T, em 0 Py TRT o
01, ['— 05 i 05 /0
013 . - ideal Pareto front o . EEa o
‘:5"'“\..,\ L /-f“ﬂin e :?;‘: - H____,_‘;""" w0 -s:Ki\::\' . o s—"’" 10
—~ ~ = “~ -
?n}““ﬁ-._\(_,f 8 I'J:k"-x__,.-‘-;'- 4 i [t -..__‘(___.—n;"_ 4
2 un ™ 2 (3 - 2 o 3 f
(a) True Pareto front and initial population (b) MOGA (c) NSGA-1I
025
024 % 0%
s o2 o
X ars 0154
ﬂ a 0 n
it £f 2 o s
‘ s ...-w““' S < -
¥ f ¥ profperl L ’ gt WY
o .’,' 005 005 'J'
1 s
- e PR i I o
o P 1 185 - T 85 e cew 4 . -.8*" '
o et w o e {1 P
i oo llv'a" 2 ! Ha‘“““__‘h____ -\?' |5‘?“"~E‘ —_
1 ” ¥ a 2 B0 #
(d) PAES (¢€) RDGA (f) SPEA 11

Figure 6.18 True Pareto front and Pareto fronts resulted by MOGA, NSGA-I1, PAES,
RDGA and SPEA Il on Function F4

MOGA NSGAUl PAES RDGA " [moGA wsGaa PAES ROGA SPEAN MOGA NSGANl PAES RDGA SPEAN

2 T g : T H : :
I AP S N 0= O R
(a) average rank value (b) average density value (c) average distance value

Figure 6.19 Box plots of average individual rank, density and distance values on Function F4

As shown in Figure 6.21(b) and (c), Although NSGA-II performs worse than
RDGA and SPEA II in terms of density preservation and distance minimization, it

converges relatively fast in the rank domain (Figure 6.21(a)). This phenomenon can be

81

partially credited from the pure Pareto ranking scheme used by NSGA-II, which will not
be affected by the density information during the evolutionary process. However, fast
convergence of rank value does not imply density and distance values will converge fast
as well, and ves versa. As shown in Figure 6.21(a) — (c), although RDGA converges
much slower than the other three population-based MOEAs in terms of rank indicator, it
has the fastest convergence speed in terms of distance indicator comparing to all the other
selected MOEAs. This effect can be explained by the restricted mating method and
“forbidden region” scheme applied by RDGA. On one hand, instead of using roulette
wheel or tournament selection scheme, RDGA randomly selects an individual as one of
the parent to mate with the best individuals located in the neighboring cells, which
ensures those worst individuals have the same probabilities with the elitists to be selected
and updated by their better fitted offspring, Although this strategy may sacrifice the
convergence speed of an elitist in finding a single true non-dominated point, it yet offers
those ill performed individuals a fair chance to catch up the better ones and draws the
entire population to the true Pareto front. On the other hand, the “forbidden region”
concept prevents an individual leading to a wrong direction when the density
subpopulation is evolved. In this case, whether a new generated offspring can survive is
not only because it has lower density value than its corresponding parent, also because it
has equal or higher rank value comparing to the selected parent. For this reason, as an
extra constraint of RDGA, “forbidden region” concept also helps compress the entire
population and push it closer to the true Pareto front. Therefore, both “restricted mating”
and “forbidden region” techniques contribute low variance and fast convergence of

average individual distance value as shown in Figure 6.19(c) and Figure 6.21(c) (note:

82

these two consequences are particularly significant for function F4, which may easily
result in an extremely high variance of distance value during the evolutionary process if
an ill performed individual has never been updated since the beginning). In addition, it is
worthy to note that PAES is not a population-based algorithm and only non-dominated
individuals are stored in the archive at each generation. These characteristics distinct
PAES from other MOEAs mainly in two aspects: its initial rank and density values are
always equal to one and the average individual rank value will remain to be one during
the entire evolutionary process. From the simulation study, although PAES outperforms
MOGA for all the test functions, it cannot provide competitive results comparing to the
other two most advanced MOEAs (i.e., NSGA-II and SPEA II) and the proposed RDGA

in terms of rank, density, distance indicators and C measure.

08 b 08 08

08 08 : 1 o

07 1 07 H 01

R = R R = g

05 b [H D E 05 H Q

04 ; E : 1 04 b 04 - YT g

03 B : Q 1 03 03 f T
T : T T J] ;

02 i : i 02 - 02
81] 04 s | P
o o 4
0 1 2 3 4 5 6 0 1 2 3 4 B 6 0 1 2 3 4 5 6
C(X, Xy s) C(X,, X 5) C(X5, X1 5)
1 P [1 m—
09 e 4 08

08 : R) 1 08

o B 0.7 g
4 . H 4 o 188

k = T e H q 05 e E E
04k 4 04 -
° :

03 4 03 :
s T % il
02 02
01 0t
[}) [
o 1 7 3 a 5 ® 0 i E 3 7 5 5
C(XzUXl—S) C(X53X1—5)

Figure 6.20 Box plots using C measure on Function F¢

83

‘.
IS

N

R

~r PAES s PAES T SAce
e NSGA-l}
— RDGA

— SPEAI

@
®
o

N
S

5 a0 MIOGA | il iR

A
4 25 »
3 2

3

~
o

Average individual density value
o

Average individual rnak value

Average individual distance value

. t 0
3 o o 2000 4000 8000 8000 10000 8 ’IU’ 101 103 (0‘

o .
10 10 10° 10 10 P i
Generations enerations Generations

3,

(a) average rank value (b) average density value (c) average distance value

Figure 6.21 Evolutionary trajectories of rank, density and distance values on Function F4

6.4 Neural Network Design by RDGA

Since the original emergence of Artificial Neural Network (ANN) in 1940’s, there
has been an extensive qualitative and quantitative analysis on different classes of neural
networks possessing various architectures and training algorithms. Without a proven
guideline, the design of an optimal neural network for a given problem is often regarded
as an ad hoc process. Given a sufficient number of neurons, more than one neural
network structure (i.e., with different weighting coefficients and numbers of neurons) can
be trained to solve a giveﬁ problem within an error bound if given enough training time.
The decision of “which network is the best” is often decided by which network will better
meet the user’s needs for a given problem. It is known that the performance of neura1>
networks is sensitive to the number of hidden neurons. Too few neurons can result in
underfitting problems (poor approximation), while too many neurons may contribute to
overfitting problems. Obviously, achieving a better network performance and simplifying
the network topology are two conflicting objectives. This has promoted research on how
to identify an optimal and efficient neural network structure. AIC (Akaike Information

Criterion) [63] and PMDL (Predictive Minimum Description Length) [64] are two well-

&4

adopted approaches. However, AIC can be inconsistent and has a tendency to overfit a
model, while PMDL only succeeds in relatively simple neural network structures and
seemed very difficult to extend to a complex NN structure optimization problem.
Moreover, all of these approaches tend to produce a single neural network by each run,

which does not offer the designers with alternative choices.

Over the past decade, evolutionary algorithms have been successfully applied to
the design of network topologies and the choice of learning parameters [65]. They
reported some encouraging results that are comparable with conventional neural network
design approaches. However, the multiobjective trade-off characteristic of the neural
network design has not been well studied and applied in the real world applications.
Therefore, in the similar spirit of RDGA, a Hierarchical Rank Density Genetic Algorithm
(HRDGA) is devised for neural network design in order to evolve a set of near-optimal
neural networks. Without loss of generality, the type of the evolved neural networks is

restricted to the Radial Basis Function (RBF) neural network.

6.4.1 Neural network design dilemma
To generate a neural network that possesses the practical applicability, several
essential conditions need to be considered.
1) A training algorithm that can search for the optimal parameters (i.e., weights and
biases) for the specified network structure and training task.
2) A rule or algorithm that can regulate the network complexity and ensure it to be

sufficient for solving the given training problem.

85

3) A metric or measure to evaluate the reliability and generalization of the produced

neural network.

The design of an optimal neural network involves all of these three problems. As
given in [66], the ultimate goal of the construction of a neural network with the input-

output relation y = f,,(x,w) is the minimization of the expectation of a cost function

& (f1s(X.®),Y) as
Elg, (s X,0),)= [[g: (fis (%0, 1) 1., (%, y)dxdy (6.8)

where f, (x,y) denotes the joint pdf that depends on the input vector x and the target
output vector y. Given a network structure NS, a family of input-output relations
F ={f,(x,w)}, parameterized by w, consisting of all network functions that may be

formed with different choices of the weights can be assigned. The structure NS' is said to

be dominated by NS" if F,, < F,,.. In order to choose the optimal neural network, we
need to find the determination of the network function f, (x) (i.e., the determination of

the respective weights « ") that gives the minimal cost value within the family F
f/\:s (X) = st (Xa w ‘) = arg m“m E[gL (st (X»w)> Y)] 2 (69)

and the determination of the network structure NS' that realizes the minimal cost value

within a set of structures {NS'}

- NS" =arg min E[g, (f,(X),Y)]. (6.10)

86

Obviously, the solutions of this task need not result into a unique network. In
[67], if several structures NS;,NS,,--- meet the criterion as shown in Equation (6.10),
the one with the minimal number of hidden neurons is deﬁnedvas an optimal. However,
as a neural network can only tune the weights by the given training data sets, and these
data sets are always finite, there will be a trade-off between NN learning capability and
the variation of the hidden neuron numbers. A network with insufficient neurons might
not be able to approximate well enough the functional relationship between input and
target output. On the other hand, if the number of neurons is excessive, the realized
network function will depend greatly on the resulting realization of the limited training

set. This trade-off characteristic implies that a single optimal neural network is very
difficult to find as extracting f,,(x) from F, by using a finite training data set is a

difficult task, if not impossible [67]. Therefore, instead of trying to obtain a single
optimal neural network, finding a set of near-optimal networks with different network
structures seems more feasible. Each individual in this set of neural networks may
provide different training and testing performances for different training and testing data
sets. Moreover, the idea of providing “a set of” candidate networks to the decision
makers can offer more flexibilities in selecting an appropriate network judged by their
own preferences. For this reason, genetic algorithms and multiobjective optimization
techniques can be introduced in neural network design problems to evolve network

topology along with parameters and present a set of alternative candidates networks.

87

6.4.2 Hierarchical genetic algorithm in neural network design

In the literature of using genetic algorithms to assist neural networks design,
several approaches have been proposed for evolving NN structure together with weights
and biases [65,68-69]. Among all these methods, a hierarchical genotype representation is

incorporated into an RBF neural network design.

Layer
genes

(b) Phenotype of the neural network

Figure 6.22 Genotype and phenotype of HGA based MLP neural network

Hierarchical Genetic Algorithm (HGA) was first proposed by Ke, et. al., [70] for
fuzzy controller design using two layer genes to evolve membership. In the proposed
HGA-NN [69], a three-layer HGA is used to evolve a Multi-layer Perceptron (MLP)
neural network. The chromosome structure (genotype) is shown in Figure 6.22(a). As

shown in Figure 6.22(a), each candidate chromosome corresponding to a neural network

88

is assumed to have four hidden layers (shown in the high-level layer genes), where the
first and the third hidden layers are activated and the second and the fourth hidden layers

are deactivated.

The mid-level neuron genes indicate that two out of three neurons in the first
hidden layer are activated, while only one neuron in the third hidden layer is activated.
The low-level parameter genes are then used to represent the weighting parameters of
each corresponding neuron activated. The active status of one control gene determines
whether the parameters of the next level controlled by this gene will be activated or not.
As an example, a genetic chromosome (genotype) shown in Figure 6.22(a) corresponds to
an individual neural network (phenotype) with two hidden layers and two neurons in the

| first hidden layer and one neuron in the second layer as shown in Figure 6.22(b). By
using this hierarchical genotype design, a problem, so called “one phenotype mapping

different genotypes” can be prevented [69].

In a similar spirit, HGA is tailored to evolve an RBF (Radial-Basis Function)

neural network. A radial-basic function can be formed as
f® =Y 0, exp(-] x-c,) (6.11)

where ¢, denotes the center of the ith localized function, w, is the weighting coefficient

connecting the ith Gaussian neuron to the output neuron, and m is the number of
Gaussian neurons in the hidden layer. Without loss of generality, we choose the variance

as unity for each Gaussian neuron.

89

Control (1Tol1l1l0T0 4
genes EEEEERERESN .

Weight :> .
Center / :
genes D [N [Jessusses

Figure 6.23 Genotype and Phenotype of HGA based RBF neural network

In HGA based RBF neural network design, genes in the genotype are classified
into three categories: control genes, weight genes and center genes. The lengths of these
three kinds of genes are the same. The value of each control gene (0 or 1) determines the
activation status (off or on) of the corresponding weight gene and center gene. The
weight genes and center genes are represented by real values. Control genes and weight
genes are randomly initialized and the center genes are randomly selected from given
training data samples. Figure 6.23 shows the genotype and phenotype of HGA based

RBF neural network.

6.4.3 HRDGA for neural network design

To assist RBF network design, RDGA and HGA are combined as a Hierarchical
Rank-Density based Genetic Algorithm to carry out the fitness evaluation and mating
selection schemes [71]. The HRDGA operators are designed as followed. Figure 6.24

shows the flow chart of HRDGA for NN design procedure.

90

1y

2)

3)

In HRDGA, each individual (chromosome) represents a candidate neural network.
The control genes are binary bits (0 or 1). For the weight and center genes, real
values are adopted as the gene representation to reduce the length of the
chromosome. The population size is fixed and chosen ad hoc according to the
complexity of the problem to be solved.

One-point crossover is used in the control gene segment and two-point crossover
in the other two gene segments. The crossover points were randomly selected,
and the crossover rates were chosen to be 0.8, 0.7 and 0.7 for the control, weight
and center genes, respectively. One-point mutation was applied in each segment.
In the control gene segment, common binary value mutation was adopted. In the
weight and center gene segments, real value mutation was performed by adding a
Gaussian noise with zero mean and unit variance. The mutation rates were set to

be 0.1, 0.05 and 0.05 for the control, weight and center genes, respectively.

Since HRDGA is applied to optimize the neural network topology along with its
performance, we need to convert them into the rank-density domain. Therefore,
the original fitness—network performance and number of neurons—of each
individual in a generation is evaluated and ranked, and the density value is
calculated. Then the new rank and density fitness values of each individual will be
evaluated, and the individuals with higher fitness measures will reproduce and
crossover with other high fitness individuals with a certain probability. Their
offspring replaces the low fitness parents forming a new generation. Mating is

then iteratively processed.

91

4) When the desired number of generations is met, the evolutionary process

stops.

Initialize population and
all HRDGA chromosome
and operator values

y

Evaluate set P
Achieve final
Pareto front

Satisfy stopping
criteria?

No

| Rank and density calculation l

v

| Store all the Pareto points in set P I

v

Randomly divide population into two subpopulation
based on individual's Rank and Density value

v

For each subpopulation, randomly
select a mating pool

v

Do crossover and mutation

Yes

O ffspring locate in forbidden region?

—| Update new population l

Figure 6.24 Flowchart of the main procedure of HRDGA based neural network design

6.4.4 Experimental study—Mackey-Glassy chaotic time series prediction

Since the proposed HRDGA is designed to evolve the neural network topology
together with its best performance, it proves useful in solving complex problems such as
time series prediction or pattern classification. For a feasibility check, we use the

HRDGA assisted NN design to predict the Mackey-Glass chaotic time series.

92

The Mackey-Glass time series is a continuous time-delay data series. The time-

delay differential equation is:

d(x(®) axx(t—71)
d@) (1+x°(-1))

—bxx(t). (6.12)

The chaotic behavior of the Mackey-Glass time series is determined by the delay
parameter 7. Some examples are listed in Table 6.5. Larger values of 7 produce more
chaotic dynamics which are much more difficult to predict. Here a=0.2, 5=0.1 and
¢ =10 are assigned for Equation (6.12). In this experimental study, HRDGA is used to
evolve neural networks to predict a chaotic Mackey-Glass time series with 7=150. The
network is set to predict x(¢ + 6) based on x(¢), x(# —6), x(¢ —12) and x(¢ —18).

Table 6.5 Characteristics of Mackey-Glass time series

Delay parameter 7 Chaotic characteristics
7<4.53 A stable fixed point attractor
4.53<7<13.3 A stable limit cycle attractor
13.3<7<16.8 Period limit cycle doubles
7>16.8 Chaotic attractor characterized by 7

In the proposed HRDGA, 150 initial center genes are selected, 150 control genes

and 150 weight genes are initially generated as well. Population size was set to be 400.
For comparison, three well-known center selection methods—KNN (K-Nearest

Neighbour) [72], GRNN (Generalized Regression Neural Network) [73] and OLS

(Orthogonal Least Square Error) [74] methods are applied on the same time series

93

prediction problem. For KNN and GRNN types of networks, 70 networks are generated
with the neuron numbers increasing from 11 to 80 with the step size of one. Each of these
networks will be trained by KNN and GRNN methods. For the OLS method, the

selection of the tolerance parameter p determines the trade-off between the performance
and complexity of the network. Ideally, p should be larger than, but very close to, the
ratio o2 /o, where o is the variance of the residuals, and o is the variance of the
desired output. A smaller p value will produce a neural network with more neuron
numbers, whereas a larger p value generally results in a network with less number of
neurons. Therefore, by -using different p Vélues, we generated a group of neural
networks with various training performances and numbers of hidden neurons. For the
given Mackey-Glass time series prediction problem, we selected 100 different p values,

which range from 0.01 to 0.4 with the step size of 0.01. The stop criteria for KNN,
GRNN and OLS algorithms is either the epochs exceeds 5,000, or the training Sum
For

Square Error (SSE) between two sequential generations is smaller than 0.01.

HRDGA, the stopping generation is set to be 5,000.

10* : . 10°
~HRDGA
- oS

- GRNN

hdéé

- KNN

--e- HRDGA
-0- OLS
-¥- GRNN
-0- KNN

= =
:
E o 2 . =}
§ % s L%
o R -4 5
& * L ' %
§ 't b § o' e M
w %’ w 1 * i
@ s 4 2 .."o %bv
= b= -y, ---O- 0.,
£ g £ Rt S S - T < Y R - I
§ 8 P TR
- -
100 1 1 1 1 L 1 1 100 1 1 1 1 1 L1 1
10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of hidden neurons Number of hidden neurons
(a) Training performances (b) Resulting Pareto front

Figure 6.25 Training performances and Pareto fronts for the resulting neural networks with
different number of hidden neurons

94

Testing SSE for testing set #1

--- HRDGA
-¢- OLS
~¥- GRNN

L 1 : 1 5
0 10 20 30 40 50 &0

Number of hidden neurons
(a) Testing performances

70

80

Testing $SE for testing set #1

--o- HRDGA
-¢- OLS
-¥- GRNN
-4- KNN

1 1 L

10 20) 40 50
Number of hidden neurons

(b) Resulting Pareto front

Figure 6.26 Testing performances and Pareto fronts for the resulting neural networks with different
number of hidden neurons for testing set #1

Testing SSE for testing set #2

L L . L
0 10 20 30 40 50 60
Number of hidden neurons

(a) Testing performances

80

Testing SSE for testing set #2

10°

; ;
10 20 30 40 50 60
Number of hidden neurons

(b) Resulting Pareto front

Figure 6.27 Testing performances and Pareto fronts for the resulting neural networks with different
number of hidden neurons for testing set #2

Testing $SE for testing set #3

10°

- HRDGA
<~ OLS
¥- GRNN
- KNN

R e a

® .

@

= p<R

£ L g

=

2 . ‘v i

-~ 101 L " \\ 1

5 Y

o g . .

» N fu!

3 »-e .. [= S SR o

o * e ‘"--vv el

'% V.0'-‘—’.:_*() - 'W-‘VWAN'

A g e @

-

10 1 L 1 1 1 1 1 ‘]0D £ il 1 1
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50

Number of hidden neurons

(a) Testing performances

Number of hidden neurans

(b) Resulting Pareto front

Figure 6.28 Training performances and Pareto fronts for the resulting neural networks with
different number of hidden neurons for testing set #3

95

For the given time series, first 250 seconds of the data is used as the training data
set, and then the data from 250 — 499, 500 — 749, 750 — 999 and 1,000 — 1,249 seconds
are used as the corresponding testing data sets to be prédicted by four different
apprdaches. Each approach runs 30 times with different parameter initializations to obtain
the statistical average. Figure 6.25(a) shows the resulting average training SSE of neural
networks with different number of hidden neurons by four training approaches. Figure
6.25(b) shows the approximated Pareto fronts (i.e., non-dominated sets) by the selected
four approaches. Figure 6.26(a) shows the average testing SSEs of the resulting networks
by using the first testing data set for each approach, and Figure 6.26(b) shows their
corresponding Pareto fronts. Furthermore, Figures 6.27(a) and (b), Figures 6.28(a) and
(b) and Figures 6.29(a) and (b) show the same types of results by using the second, third

and fourth testing data sets, respectively.

L]
©- OLS -¢- OLS
a ¥- GRNN I o -y EﬁsN
! KNN 1 “a-
§ - KN 3 .‘* L 0
@Q M o ‘é
w Iy
£ g .\0. I
f 5 PO
- 2, 1
=10 = 10 F
£ 5 o,.. v\‘(‘
] o PR\ N
bt 12 o B Yoe
o =) ot LA G B
£ E Dovmnnn - ‘w
@ k] B N e Ty VS
1)]
- [
10“ L Il 1 1 L I 1 100 1 1 1 1 1
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
Number of hidden neurons Number of hidden neurons
(a) Testing performances (b) Resulting Pareto front

Figure 6.29 Training performances and Pareto fronts for the resulting neural networks with
different number of hidden neurons for testing set #4

For each algorithm, the resulting network that provides the best training result is
selected from the final Pareto front as the best network for the training set. Meanwhile,

each non-dominated individual network will be evaluated by each of the testing set, and

96

the one which provides best testing performance is extracted as the best network for the

corresponding testing set.

Table 6.6 shows the performances and their corresponding numbers of hidden

neurons of the best networks for the training and testing séts.

Table 6.6 Structure and performance comparison between KNN, OLS, GRNN and HRDGA

Best performance | Best performance | Best performance | Best performance | Best performance
for Training set for Testing set #1 | for Testing set#2 | for Testing set #3 | for Testing set #4

Training | Neuron | Testing | Neuron | Testing : Neuron | Testing { Neuron | Testing | Neuron

SSE number SSE number SSE number SSE number SSE number
KNN 2.8339 69 3.3693 42 3.4520 42 4.8586 48 4.8074 19
GRNN 2.3382 68 2.7720 38 .3.071 1 43 2.9644 40 3.2348 37
OLS 2.3329 60 2.4601 46 2.5856 50 2.5369 37 2.7199 54
HRDGA | 2.2901 74 | 2.4633 47 2.5534 52 2.5226 48 2.7216 58

From Figures 6.25 — 6.29, comparing to KNN and GRNN, HRDGA and OLS
algorithms have much smaller training and testing errors for the same network structures.
KNN trained networks produce the worst performances, because the RBF centers of the
KNN algorithm are randomly selected, which make KNN to achieve at best a “local
optimum” solution. Since GA always seeks “global optimum”, and the orthogonal result

is near optimal, the performances of OLS are comparable to HRDGA.
Moreover, from Figure 6.25, it is found that when the network complexity
increases, the training error decreases. This phenomenon can be observed from the results

by all of the selected training approaches. However, this phenomenon is only partially

97

maintained for the relationship between the testing performances and the network
complexity. Before the number of hidden neurons reaches a certain threshold, the testing
error still decreases as the network complexity increases. After that, the testing error has
the tendency to fluctuate even when the number of hidden neurons continuously
increases. This occurrence can be considered as that the resulting networks are overfitted.
The network with the best testing performance before overfitting occurs is called the
optimal network and judged as the final solution by conventional NN design algorithms
[66]. However, from Figures 6.25 — 6.29 and Table 6.6, it is very difficult to identify a
single optimal network that can offer the best performances for all the testing data sets,
since these data sets possess different traits. Therefore, instead of searching for a single
optimal neural network, an algorithm that can result in a near-complete set of near-
optimal networks can be a more reasonable and applicable option. This is the essential

reason that MOEAs can be justified for this type of neural network design problems.

From the simulation results, although KNN and GRNN approaches did not
provide better training and testing results comparing to the other two approaches, they
have share the advantage that the designer can control the network complexity by
increasing or decreasing the neuron numbers at will. On the other hand, although the OLS
algorithm always provides near-optimal network solutions with good training and testing
pérformance, it also has serious problem to generate a set of network solutions in that the
designers cannot manage the network structure directly. The trade-off characteristic
between network performance and complexity totally depends on the value of tolerance

parameter p. Same p value means completely different trade-off features for different

98

NN design problems. In addition, as shown in Figure 6.30, the relationship between p
value and network topology is a nonlinear, many-to-one mapping, which may cause a
redundant computation effort in order to generate a near-complete neural network
solution set. Compared with the other three training approaches, HRDGA does not have
problems in designing trade-off parameters, because it treats each objective equally and
independently, and its population diversity preserving techniques help it to build a near-

uniformly distributed non-dominated solution set.

60 g — : r
O average neuron number resulted
55 5 by each given p value of 30 runs
g ~ g -~ Maximum neuron numbers resufted
o =) by each given p value of 30 runs
€ 50 o — —
[- bt minimum neuron numbers resutted
2 - by each given p vaiue of 30 runs
b 45
E 4 e
0+ T 4
32 ntr
3 RRE-
£ 35¢ B
(™Y
=]
BT BI-)
ﬂ _—
E 25+ i R
= — gy e
Lo LT’ -
20+ w1 Dl
15 . . . ——Limy)
005 0.1 0.15 02 0.25
p value

Figure 6.30 Relationship between o values and network complexities

Therefore, comparing to the other three traditional training approaches, the
proposed HRDGA algorithm offers several benefits for the neural network design
problems in terms of:

a) Providing a set of candidate solutions, which is evolved by GA’s

population-based optimization capability and the definition of Pareto

optimality;

99

b)

Presenting competitive or even superior individuals with high training and
testing performances. This is resulted from GA’s feature of seeking
“global optimum” and HRDGASs’ Pareto ranking technique; and

Offering a near-complete, non-dominated set and long-extended Pareto
front, which is credited from HRDGA’s population diversity keeping
design that can be found in AARS, density preserving technique and the

concept of “forbidden region.”

100

VII. DYNAMIC POPULATION SIZE IN MOEA DESIGN

7.1 Imntroduction

In the previous three chapters, several existing MOEAs were reviewed and
examined by a set of MOP test functions. From the design procedures of these MOEAs,
we know that all of these algorithms share the same purpose—searching for a uniformly
distributed, near-optimal and near-complete Pareto front for a given MOP. However, this
ultimate goal is far from being accomplished by the existing MOEAs in terms of dealing
with some of MOPs with special challenging characteristics as discussed in Chapter VI.
In one respect, most of the MOPs are very complicated and require the computational
resources to be homogenously distributed in a high dimensional search space. On the
other hand, those better-fit individuals generally have strong tendencies to restrict
searching efforts within local areas because of the “genetic drift” phenomenon, which
results into the loss of diversity due to stochastic sampling. This phenomenon is a well-
known trade-off decision pertaining to the efficiency and efficacy dilemma [75].
Additionally, most of the existing MOEAs adopt a heuristically chosen population size to
initialize the evolutionary process. However, as addressed in [76], evolutionary algorithm
may suffer from premature convergence if the population size if too small, whereas a
over estimated population size will result in a heavy burden of undesired computation

and a long waiting time for fitness improvement.

In the case of Single Objective (SO) optimization, several methods of determining

an optimal population size from different perspectives have been proposed [76-79]. Since

101

the purpose of solving an SO problem is to search for a single optimal solution at the
final generation, the distribution characteristics of the final population is not an issue to
be concerned. However, in order to solve MOPs, an MOEA needs to uniformly distribute
its computation effort in all th¢ explored and unexplored areas and locate reasonable
number of possible non-dominated points to sketch a near-complete Pareto front. In
general, the size of final Pareto set yielded by most MOEAs remains to be equivalent to
the size of initial population. As indicated in [6], the exact trade-off surface of an MOP is
often unknown in a priori, it is difficult to estimate an optimal number of individuals
necessary for effective exploration of the solution space as well as a good representation
of the trade-off surface. This difficulty implies that a “guessed” size of the initial
population is not appropriate in a real world application. Therefore, a dynamic population
size autonomously adjusted by the on-line characteristics of population trade-off and
density distribution information will be more efficient and effective than a constant
population size in terms of avoiding premature convergence and unnecessary

computational complexity.

As pointed out in [80], the issue of dynamic population in MOEAs has not been
well attended yet. Although in some elitism based MOEAs, main population and elitist
archive are separated and updated by exchanging elitists between them, the size of the
main population or the sum of the main population and the archive is still fixed [10-12].
Therefore, either a “guessed” size of initial population is needed in some of these
algorithms or a maximum size of archive is predetermined [52]. Tan, Lee and Khor

proposed an Incrementing Multiobjective Evolutionary Algorithm (IMOEA) [80], which

102

devises a fuzzy boundary local perturbation technique and a dynamic local fine-tuning
method in order to achieve broader neighborhood explorations and eliminate gaps and
discontinuities along the Pareto front. However, this algorithm adopts a heuristic method
to estimate the desired population size dps(n) for next generation according to the
approximated trade-off hyperareas of current generation, but not based on the dominance
and density information of the entire objective space. Therefore, the computation load
may be wrongly determined if the approximation of dps(n) value is inaccurate, Wﬁich
may force IMOEA adjust grid density to reach the incorrect “optimal” population size.
Moreover, IMOEA is relatively complicated and not compared with those most recently
designed MOEAs (i.e., PAES, SPEA II, NSGA-II and RDGA). Its robustness needs to be

further examined by different initial populations.

In this Chapter, based on RDGA, a Dynamic population-size Multiobjective
Evolutionary Algorithm (DMOEA) is proposed. In DMOEA, a cell-based rank and
density calculation strategy is devised and an MOP will be converted into a bi-objective
optimization problem in terms of individual’s rank and density values [54]. Meanwhile, a
population growing strategy is designed based on the converted fitness and three types of
qualitative indicators—age, health and crowd— are associated with each individual in
order to determine the likelihood of eliminating an individual. In addition, an 6bjective
space compression strategy is devised and the resulting Pareto front is continuously
refined based on different steady states. Three recently designed complex test functionsi
are used to examine the efficiency and effectiveness of the proposed DMOEA. For a fair

comparison, five representative MOEAs (PAES [52], SPEA II [12], NSGA-II [14],

103

RDGA [54] and IMOEA [80]) are also tested by the chosenv benchmark problems. L‘By
examining four performance measures and the resulting Pareto fronts, DMOEA is found
to be competitive with, or even superior to, the five selected MOEAs 1h terms of keeping
the diversity of the individuals along the trade-off surface, tending to extend the Pareto
front to new areas and finding a well-approximated Pareto optimal front. Moreover, from
simulation results, DMOEA shows the potential to autonomously converging to the

optimal population size, which is found insensitive to the initial population size chosen.

7.2 Incrementing Multiobjective Evolutionary Algorithm

Although Pareto Archive Evolutionary Strategy (PAES) implements a population
incrementing scheme by keeping adding new non-dominated individuals to the archive,
the first MOEA that applies dynamic population strategy is Incrementing Multiobjective
Evolutionary Algorithm (IMOEA) proposed by Tan, Lee and Khor [80]. In IMOEA, the
method of fuzzy boundary local perturbation was incorporated with interactive local fine-
tuning for boarder neighborhood exploration to increase population size with competent
offspring. Considering an m-dimension objeétive space, the desired population size

dps(n), with the desired population size per unit volume, ppv, and the approximated

tradeoff hyperarea of 4, (n)discovered by the population at generation » is defined as
lowbps < dps(n) = ppvx A4, (n) <upbps, (7.1

where lowbps and upbps are the lower and upper bound for the desired population size
dps(n), respectively. In addition, IMOEA applied the method used in [81] to estimate the

approximated number of hyperareas by

104

(m-1)/2 m-1
4 (n)w~ ’fn — x[d(z”)) (7.2)
(> !

where d(n) is the diameter of the hypersphere at generation n. Therefore, based on the

difference between resulting population size and estimated desired population size
dps(n), IMOEA adaptively filled in or filtered out individuals according f__o their rank and

density status. In the simulation results, NSGA and SPEA are compared with IMOEA on
three test functions and IMOEA shown better performance than the other two in terms of
several selected indicators. However, none of the advanced MOEAs (i.e., PAES, SPAE
II, NSGA-II and RDGA) was used and compared with IMOEA aﬁd the robustness of

IMOEA on different initial population size is not carefully examined.

7.3 Dynamic Multiobjective Evolutionary Algorithm

Generally, the approximation of the Pareto-optimal set involves two objectives:
the distance to the true Parcto front is to be minimized while the diversity of the
generated solutions is to be maximized [54]. For the first objective, a Pareto-based fitness
assignment (ranking scheme) is usually designed in many existing MOEAs [12] in order
to guide the search towards the ideal Pareto optimal front. For the sécond objective, some
MOEAs provide a density estimation method to preserve the population diversity.
Unfortunately, these two objectives are conflicting since the diversity preservation
process will slow down the convergence speed, or even degrade the quality of the
resulting Pareto front. In one respect, as a general GA, MOEA exploits the “genetic drift”

characteristic to converge the solution to each of the optimal point. On the other hand, the

105

“genetic drift” phenomenon must be avoided in order to sketch a uniformly sampled
trade-off surface for the final Pareto front. This contradicted issue is very difficult to be
solved by MOEAs with fixed population size, since they have to homogenously distribute
the predetermined computation resource to all the possible directions in the objective
space. Therefore, to cope with this contradiction, a Dynamic Multiobjective Evolutionary

Algorithm (DMOEA) is proposed in this chapter.

Similar to the other advanced MOEAs [12-14,54], DMOEA also converts the
original MOP into a bi-objective optimization problem—minimizing individual rank
value and maintaining individual density value [84]. However, as adding or removing an
individual will affect the rank and density values of other individuals, the rank and
density values of each individual need to be recalculated after the population has been
updated. This recalculation will cost more computation time as the population size
increases to a larger number. Therefore, to solve this problem, we design a novel cell-

based rank and density calculation scheme.

7.3.1 Cell-based Rank and Density Calculation Scheme

In DMOEA, the original n-dimensional objective space is divided into

K, xK, x...x K, cells (i.e. grids), thus the cell width in the ith objective dimension d,

can be formed as

d=—t—""t i=1_.n, (7.3)

106

where F™ and F™ are the estimated high and low boundaries for the ith objective

dimension. After the objective space has been determined and divided, as shown in
Figure 7.1(a), the center position of each cell will be obtained and two matrixes are set up
to store the rank and density values of each cell, which initially are 1 and 0, respectively
(shown in Figure 7.1(b) — (c¢)). Second, each individual of initial population will search
for its nearest cell center and identify this cell as its “home address” and consider the
other individuals who share the same “home address” as its “family members”. Then as
shown in Figure 7.2(a) — (c), for each of these “homes”, the number of “family members”
who dwell m it will be counted and saved as the density value of the “home”. In addition,
the rank values of the cells that dominated by any of these “homes” will be increased by
the density values of those “home”. Third, when an offspring is generated and accepted
(individual C in Figure 7.3(a)), its “home address” can be easily located by following the
second step and the density value of its “home” will increase by one and the rank values
of the cells dominated by its “home” will be increased by one. Meanwhile, if an old
indiv-idual (individual B in Figure 7.2(a)) is removed, its “home” will be notified and the
density value of its “home” will decrease by one and the rank values of the cells
dominated by its “home” will be decreased by one, correspondingly. Therefore, at each
generation, an individual can access its “home address” and then obtain the
corresponding rank and density values. The “home address” is merely a “pointer” to
inform an individual where to find its rank and density values. For instance, as shown in
Figure 7.3, the “home address”, rank and density values of individual A are (5,2), 2 and
1, respectively. Therefore, if the estimated objective space is large enough that a newly

generated or a removed individual does not change the boundary of the range of current

107

objective space, the size of each cell will not change, which means an individual’s “home
address™ will never change if this individual is not removed. By this means, the original
objective of searching for a near-complete, near-optimal and uniformly distributed Pareto
front has been converted to locate as many optimal “home addresses™ as possible, each of

which contains ppv number of these individuals.

o

—

oRIooICCe
fan] e (o) [an] (o] e}
] [] [anl [[} (e}
(oo [an] (o} (e] [})
el e el el e
el el Ll el Ll
. | . | e | b | | .
|t | ek | . | s |

1
1
1
1
1
1

(] (an] [a] {a] [an] =
=] (en] [end{an] (an) an’

e B B IR SR BI
P‘]I‘I‘lll‘] F;l'nﬂx
(a) divided objective space (b) initial density matrix (c) initial rank matrix

Figure 7.1 Estimated objective space, initial density matrix and initial rank matrix

o
olofoloJo]o [1]2]4]5]6]6]
= 0]0(0[1[0]0 11214(4/6|6]
'-B 0/0]/2/0]0]0 1[2(2[4[5]5]
4= 0]0]0]0]0]0 1/2(2]2]3]3]
e . o[1]olo[1]0 1[1[2[2]2]3]
Frl L L, [ofo[olofofo nnnnnn
F'ln'llrl F;max
(a) initial population (b) density matrix (c) rank matrix

Figure 7.2 Initial population and its corresponding density and rank matrices

F‘Zmaﬁl
0/0/0[0{0]|0 1/314(5[/6(6
. 0{0l0[1]0]0 113|4/4/6/6
. 0/0f{1/0]1]0 11313{4(5]5
KE 1/0/0[0]|0|0 1/13|3]2]|3]|3
[e el 0/1/0/0(1]0 1/1({2]2]|2]3
fomin o[ololofo]0 NNnnnn
by = >
F‘[mln F;max
(a) updated population (b) density matrix (c) rank matrix

Figure 7.3 (a) Updated population and its corresponding density matrix and rank matrix

108

Although the genetic operations (i.e., crossover and mutation) are still performed
by genotype chromosomes, the fitness evaluation of whether the resulting offspring is
good or not is based on its location on the rank and density matrices. By this method, the
procedure of updating rank and density matrixes is totally irrelevant to the procedure of
fitness evaluation on an individual. On one respect, as each crossover or mutation
operation can only produce at most two new individuals, the computation load on
updating the rank and density will be trivial for each generation. On the other hand, when
two individuals are compared, they just need to provide their “home addresses™ and the
current rank or density status of their “home addresses” can be evaluated to determine
which individual is better fitted. Therefore, no matter how large the population size is, the
computation effort of both matrixes updating and fitness evaluation will not be affected,
which provide an efficient way in applying dynamic population size in evolutionary

process.

7.3.2 Cell Rank and Health Indicator

Once the rank and density values of each cell have been obtained by using the
method described as Subsection 7.3.1, two indicators that are asso‘ciated with rank and
density values are designed to determine if a cell is “comfortable” enough for an

individual to inhabit. They are health and crowd indicators.

In DOMGA, we convert the rank value of a cell into a health indicator in order to

measure the dominance status of the concerned cell comparing to the other cells. Assume

109

at generation n, a cell ¢ has a rank value rank(c,n), the health value of cell ¢ at

generation » is given as

1

Hie,n)= rank(c,n)

(7.4)

From Equation (7.4), a cell with rank value 1, which is the healthiest, will have an
H value equal to 1 and a cell with higher rank value will have a lower H value that is
more closer to 0 (Figure 7.4). Therefore, an H value indicates the Pareto rank
information of a cell and the relationship between a cell’s rank value and H value is not
linear. In one aspect, H values drop very fast if rank values are greater than 1, which
results in a significant difference between dominated and non-dominated cells in terms of
health condition. On the other hand, H values also saturate very fast, which assigns all
the dominated cells very low H values (near zero) if their rank values are very high. This
characteristic can be used by the individual elimination scheme that will be discussed

later.

0 10 2 3 4 5 & M 68 9% I
Rank value

Figure 7.4 Relationship between rank value and health value.

7.3.3 Cell Density and Crowd Indicators
Referring to [80], consider an m-dimension objective space, the desired

population size, dps(n), with the desired population size per unit volume, ppv, and the

110

explored trade-off hyper-area, 4,,(n), discovered by the population at generation n can
be defined as Equation (7.1). Therefore, with given population size per unit volume,
ppv, the optimal population size can be obtained if an MOEA can correctly discover all
the trade-off hyper-areas for an MOP. In DMOEA, instead of estimate the trade-off

hyper-area A4, (n) for each generation [80], we concentrate on searching for a near-

complete final set of trade-off hyper-areas and ensure each of these areas contains ppv
number of non-dominated individuals. Therefore, by using DMOEA, the optimal

population size and final Pareto front will be found simultaneously at the final generation.

As discussed in Subsection 7.3.1, the density value of a cell is defined as the
number of the individuals located in it. The finer the resolution of the cell is, the better
performance DMOEA can provide. A crowdness is associated with each cell to show
current density information of the concerned cell. Assume at generation n, the density
value of cell ¢ is density(c, n), the crowdness indicator of cell ¢ is defined as

density(c, n)
ppv

D(c,n)= (7.5)

Therefore, by using crowdness indicator, we can obtain the information about how

congested each cell is, comparing to the desired ppv value.

7.3.4 Population growing strategy
In general, if an MOEA has a fixed population size, a “replacement” scheme is
always applied. In this scheme, in order to keep the population size unchanged, a

newborn offspring will replace one of its parents if its fitness value is higher than that of

111

the parent. However, this scheme brings up a problem that some of the replaced parents
may still be very valuable and have not been well exploited yet before they are replaced.
Although some MOEAs (i.e. NSGA-II and SPEA 1I) adopt an elitist archive in addition
to the main population in order to store some of the non-dominated individuals generated
during the evolutionary proéess, this problem is still not completely resolved. Therefore,
DMOEA applies two independent strategies—population growing strategy and
population decline strategy. The first strategy only focus on pure population increment
and ensures each of the individual survives enough generations so that it can contribute
its valuable schemas. Meanwhile a population declining strategy is also designed to
prevent the population size growing excessively. The second strategy will be discussed in

the next Subsection.

Because exploring the cells with minimum rank values and maintaining these
cells densities to a desired value are two converted objectives of DMOEA, crossover and
mutation operations need to be devised to fit both of the purposes. For crossover, a
reproduction pool with a fixed number of selected parents is setup; a Cellular GA [53] is
then applied to explore the new search area by “diffusion”— each selected parent
performs crossover with a randomly selected individual located in the nearest cell that
dominates the concerned cell. If a resulting offspring is located in a cell with a better
fitness (a lower rank value or a lower density value) than its selected parents, it will be
kept to the next generation; otherwise, it will not survive. The mutation operation is
analogous. As a result, this strategy will guarantee that a newborn individual will have a

better fitness value than at least one of its parents, which helps DMOEA to cover all the

112

unexplored cells in the objective space. To prevent “harmful” offspring from surviving
and affecting the evolutionary direction and speed, forbidden region concept is applied

in the offspring-generating scheme for the density subpopulation.

7.3.5 Population declining strategy

As discussed in Subsection 7.3.4, a population declining strategy is necessary to
prevent the population size growing unbounded. In DMOEA, whether an individual will
be removed or not depends on its health and crowdness indicators we mentioned in
Subsection 7.3.2 and 7.3.3. Moreover, to ensure that each appeared individual has enough
lifespan to contribute its valuable schemas, an age indictor is also designed in DMOEA.
For an individual in the initial population, its age value is assigned to be one, and its age
will increase by one if the individual survives at the next generation. Similarly, the age of
a newborn offspring is one and grows generation by generation as long as it lives.

Assume at generation 7, an individual y has an age value age(y,n), its age indicator

A(y,n) is given by

A(y,n) = fg—e(y’:)—_A’”, (7.6)

where 4, is a pre-specified age threshold, which means that an individual will not be

eliminated if its age is less than 4, .

To ensure that an eliminated individual has a low fitness value, DMOEA

moderately removes three types of individuals with different livelihoods:

113

1) Likelihood of removing the most unhealthy individuals

At generation 7, find a set Y, that contains all the individuals with the highest rank value
7.+ Lherefore, if 7, is larger than 1, the likelihood of individual y, €Y, to be

eliminated is given by

I =(1-H(c;,m)* x A(y,,n), (7.7)

where H(c,,n) =L denotes the health indicator value of the cell ¢, that contains

max

individual y, at generation »n.

2) Likelihood of removing the unhealthy individuals in the most crowded cells

At generation n, find a set ¥, that contains all the individuals with the highest density
value, and then find a set ¥, ¥, that includes all the individuals with the highest cell
rank value r, . . In addition, denote the pure Pareto rank of individual y, €Y, tobe r,.
Therefore, if r, . is greater than 1, the likelihood of individual y, to be eliminated is

given by

I, =(1-H(c,,n)’ x(l—;lf)z x(D(c;,m) ~1)x A(y,,n) (7.8)

di

where H(c,,n) = and D(c,,n) represent the health and crowdness values of the cell

d max

c, that contains individual y, at generation . It is noted that R, ={r,} represents the
local rank value of the individuals of set Y, and is calculated by pure Pareto ranking

scheme proposed by Goldberg [25]. Although all the individuals located in the same cell

114

share the same rank value, they may still have local dominance relationship as shown in
Figure 7.5, where individuals A and B have the highest and lowest local (pure Pareto)
rank values, respectively. Therefore, by measuring local rank values among all the
individuals in one cell, DMOEA can determine the likelihood of ecliminating an

individual more precisely.

e
)
)
o * A
X}
o
B
min
F2 min max?
R 2

Figure 7.5 [llustration of the pure Pareto ranking for the individuals located in the same cell

3) Likelihood of removing non-dominated individuals from the most crowded cells
after convergence

At generation n, if r___ is equal to 1, find a set Y, that contains all the individuals with
the highest density value, and their local pure Pareto rank values of individual y, €Y, to

be r, . Therefore, the likelihood of individual y, to be eliminated is given by

1} =(De,sm)=Dx(1=-0)" x A1), (1.9)

di

where D(c,,n) represents the crowdness value of the cell ¢, that contains individual y,

at generation n.

115

To determine if an individual y, will be eliminated, three random numbers
between [0, 1] are generated to compare with the concerned likelihood, /', I! and I,

according to the situation of the given individual. If the likelihood is larger than the
corresponding random number, the selected individual will be removed from the
population. Otherwise, the selected individual will survive to the next generation.

Therefore, from Equations (7.7) — (7.9), we can draw some observations as follows.

1) Because the age indicator A(y,,n) influences all of three likelihood, /,, I, and [,
will be negative number if the age of the concerned individual is smaller than the age
threshold 4,. This implies that if an individual is not old enough, it will not be
eliminated from the population no matter how high its rank and density value is.

2) At each generation, DMOEA will remove those most unhealthy individuals
according to likelihood /;, based on their rank values and ages. Assume the age indicator
of an individual y is A(y,n)~1, the relationship between its rank value and /, value is
illustrated in Figure 7.6. Without considering the effects of other indicators, when an
unhealthy individual in the set Y, has a very high r,, value, it will have a very high
likelihood (/,) to be eliminated, since it is too far away from the current Pareto front.
Moreover, as r,, drops and gets closer to 1, /; will decrease very fast, and the concerned
individual will not be removed easily because it is very likely to be evolved into an elitist
in the future. Therefore, this “shell removing” strategy will keep eliminating the

individuals located on the outside layer with an adaptive probability until the entire

population converges into a non-dominated set.

116

i . A L . . " " .
n a a 40 0 (=1 m a0 a0 00
Rank valus

Figure 6 Relationship between rank values and / values

3) Because all the individuals in the same cell share the fixed computation resource (or
“living resource”), the individuals located in a crowded cell have to compete much harder
for the limited resource than those located in a sparse cell. Therefore, another elimination
scheme based on crowdness indicator values is designed in DMOEA in order to remove
some unhealthy individuals that stay in the most crowded areas. From Equation (7.8), at
each generation, if an individual belongs to the set Y, , it will have the likelihood of /, to
be eliminated based on its age, health, and local rank value and density condition. From
this scheme, the population tends to be homogeneously distributed by eliminating the
redundant individuals.

4) After every individual has converged into a Pareto point, another elimination

scheme is implemented based on /; values. Therefore, the resulting trade-off hyperareas
A, (n) are counted, and the final population is truncated to ensure each cell contains

ppv number of individuals; thus the optimal population size can be calculated by

Equation (7.1).

117

7.4 Objective Space Compression Strategy

Although the cell-based rank and density calculation scheme discussed in
Subsection 7.3.1 can significantly improve the efficiency of DMOEA during its
evolutionary process, it cannot guarantee the accuracy of the resulting Pareto front since
an individual’s rank value is represented by the rank value of its “home address”, not by
its own dominance status. Because the size of true Pareto front is generally unknown, the
boundaries of the objective are usually selected to be very large, which may be far away

from the true Pareto front, to ensure entire true Pareto front is covered by the estimated

objective space. In this case, if the predetermined cell scale X ,...,K, are not chosen to be

correspondingly large enough, the size of a cell will be too spacious comparing to the true
Pareto front, which may result in a set of inaccurate Pareto optimal set. This
phenomenon can be illustrated as Figure 7.7 (a), where the rank value of both cell A and
B is 1 since they contain true Pareto front. In this case, all the resulting individuals
located in cells A and B are non-dominated solutions according to proposed cell-based
rank calculation scheme. However, if we examine these individuals by using pure Pareto
ranking method, we will find that most of these individuals are dominated points. To

address this problem, we can either increase the cell scale X,,...,X, to a very large

number or adaptively compress objective space. Nevertheless, the first method will
increase the computation time because it leaves too many redundant empty cells when the
resulting Pareto front approaches true Pareto front. Therefore, an objective space
compression strategy is designed to adjust the size of objective space and make it suitable

to search for the true Pareto front with a high precision. Assume at generation 7, the high

118

and low boundaries of the ith dimension of the objective space and current population are

Fr, F™ P"™and P™. Then three criteria are evaluated:
1) maximum cell rank value of all the individuals is 1;
2) (F™ —P™)>0.1(F™ —F™) and (P™ - F™)>0.1(F™ —F™) (7.10)
3) minimum age value of all the individuals is greater than predefined age threshold

A

th *
The ratio, 0.1 in Equation (7.10) is chosen heuristically. Therefore, if all of above
three criteria are satisfied, a new-generated high boundary of the objective space is

defined as:
F™ =(P™ + F™)/2, (7.11)
which means the distance between the updated high boundary of the objective space and

the high boundary of fhe current population has decreased to half of its original value.
Similarly,

F™ =(P™ +F™)/2, (7.12)
which means the distance between the updated low boundary of the objective space and
the low boundary of the current population has decreased to half of its original value.
The rationale of introducing the first criterion is to ensure the approximated area of the
true Pareto front has been discovered before the objective space is compressed, which can
avoid incorrect truncation of potential non-dominated cells. Moreover, after a
compression strategy is performed, the cell rank and density value will not remain the
same as before, and the “home address” of each individual may change correspondingly.

As a consequence, the cell rank and density values need to be recalculated, which may

119

cost tremendous amounts of computing time. For these reasons, the objective space is not

compressed at each generation..

Comparing Figure 7.7(a) with 7.7(b), we can see that the proposed objective
space compression strategy results in three effects:

1) Some individuals that are originally considered as Pareto points are pushed out of
the updated non-dominated cells, which implies the resulting Pareto front are
refined.

2) The density values of the updated non-dominated cells are reduced.

3) Some new non-dominated cells may be created (cell C in Figure 7.7(b)).

Therefore, by continuously compressing the objective space, the resulting non-dominated

set can be tuned and a more extended and homogenously distributed Pareto front can be

obtained.

! a L]

A >‘|\‘.' B \EET.

True Pareto F. ‘?mi“ C

front - - =,

Fme _ _ L A K
F‘Imln F‘Im
(a) Original objective space (b) Compressed objective sapce

Figure 7.7 lllustration of objective space compression strategy

7.5 Convergence Properties and Final Refinement Method

Based on all the techniques introduced from Subsection 7.3—7.4, we can

determine if DMOEA has converged by examining the following criteria:

a. The rank values of all cells are 1s.

120

b. The objective space cannot be compressed anymore.
c. Each resulting non-dominated cell contains ppv individuals.

When all three criteria are met, the resulting non-dominated set can hardly be -
refined by DMOEA any further. At this stage, DMOEA will keep running and the cell-
based rank calculation scheme will be replaced by pure Pareto ranking scheme [25],
whereas cell-based density calculation scheme remains unchanged. The reason of this
step is because another criterion “the Pareto ranks of all resulting individuals are equal to
1” should be satisfied as well to guarantee there is no dominance relationship among
resulting Pareto solutions at the final generation. Figure 7.8 shows the flowchart of

proposed DMOEA.

Initial population,calculate F;,"‘i“ = Em pr
for each dimension, initial generation n=0

»

) 4

Are all the
objective space compression
conditions satisfied?

A 4
l Compress objective space

Yes |

A
Population declining strategy ,

Divide main population into

two subpopulations
X h 4
Crossover and mutation in Crossover and mutation in
subpopulation #1 to subpopulatiou #2 to
minimize rank value maintain density value
v h 4

Fitness evaluation and
Population growing strategy

Is population
Converged and stop
criteria met?

No

Stop evolutionary process

Figure 7.8 Flow chart of DMOEA

121

7.6 Simulation [—Testing Study on DMOEA
Here a modified MOP designed by Deb [82] is used as the test function F5 that
has a discontinuous Pareto front to examine the performance of DMOEA. Figures 7.9(a)

and (b) show the Pareto optimal set (i.e., in terms of decision variables, x,,x,) and true

Pareto front (i.e., in terms of objective variables, f,, f,) for this problem.

Minimize f (x,,x,)and f,(x,,x,), where

F(x%,) =%,

X X s
£f(x,x,)=(1+x,)x(1-——)" ———xsin(107x,) (7.13)
I+x,” l+x,

with 0<x ,x, <1.

1

08 + =« Parcto optimal set (genotype) |
06}
04

02}

D oo— p== = = -

02
04
08
-08

Yo o7 02 03 04 05 06 07 08 09 19 o7 0z 03 04 05 06 07 05 63 1

x1 f1
(a) Pareto optimal set of function F5 (b) Pareto front of function F5

Figure 7.9 Illustration of Pareto optimal set and Pareto front of function F5
For the given test function, we select the boundary of the feasible objective space

to be [0, 1] and [-1, 2.5] and the number of cells of each dimension to be K, =50 and
K, =100 . The desired population size per cell is predefined as ppv =S5. Three specified

initial population sizes—2, 30 and 100—are chosen to test the robustness of DMOEA.
The age threshold, the stopping generation, the chromosome length of each decision

variable, the crossover rate and the mutation rate are chosen to be 10, 2000, 15, 0.7, and

122

0.1, respectively in the simulation. DMOEA is run for 50 times for each selected
population size to obtain the average results and for each run, a new initial population
with the specified number of individuals is randomly generated and evolved by DMOEA.
Moreover, three indicators derived from each generation to quantitatively measure the
performance: average population rank value, average population density value and
average generational distance value. The final average population rank value, final
average population density value and final average generational distance are derived from

the last generation and illustrated via Box plots for the test function considered.

m T T T T]
= nitlal pepulation slze P=3 — Iniial pepulation size P=3
== nitlad pepulatiensizeP-38 [} | gm0 e Imitial pepulation size P=38
B0 —— Initial population size P=100 (13 —— Imbrlal population slze P=100

8

g

Bverage 1ank value

i
T

E

Resuhilng pepulattors of sach qenstatdon

B

1]

. ; . A L A . M v i
o 200 o B0 a0 000 120 a0 e00 800 20 1w 0 W 0’ e
Generations

Generatlons (Lsgiithis scale)

(a) Evolutionary trajectories of population sizes (b) Trajectories of average rank values

—— Initial papulation size P=2
----- mitial pepulation size P=30
— Initiad pepulation size P=100 L) S

Y = w.l'iﬂ;wﬁ. P
wee imitial population size P=30
— Initlal popyulation size P=100 [

a
2]

Average dentity valiue
Average distance value

o 20 d0 &0 s;n T 1:{:0 o 1em m‘:n 2000 En’ u;' W 1w w'
Generations Generations |Legiithim scale)
(c) Trajectories of average density values (d) Trajectories of average distance values

Figure 7.10 Evolutionary trajectories for the population size and the values of three indicators
resulting by DMOEA with three different initial population sizes (4, =10) on Function F5

The evolutionary trajectories for the average sizes of populations and the values

of three indicators over 50 runs are illustrated in Figure 7.10(a), (b), (¢) and (d)

123

respectively. The corresponding Box plots of the average final indicator values are shown
in Figure 7.11. Figure 7.12(a) shows the objective space and true Pareto front of the given
test function and Figure 7.12(b) shows the final Pareto front resulted by DMOEA with
initial population size P =2. From Figures 7.10 and 7.11, we can observe that for the
given MOP test function, chosen grid of cells and predefined ppv value, 275 individuals
are determined as the final optimal population size (Pareto set). This implies that there

are 55 trade-off cells (hyper-areas A, (n)) that contain non-dominated individuals

discovered by DMOEA at the final generation.

2 T T T T T ¥ T 8
18}
55}F -
16+
14 r- = pP=2 P=G0 P=100
3 ERN i
% 12+ ‘;_-.
2 4t 545 4
] P2 P=30 P=100 =
2os 3
2 o5l i 4 ° e
04+
35}
02F
4] 05 1 16 2 25 3 35 4 b} 05 1 15 2 25 3 35 4
(a) Box plots for population rank values (b) Box plots for population density valaes
0.085) j) ’]
003+
00251 °©
8 o
§ ooz} B T L U 8.
o H H
£ 0015} H
3 ; ;
s 001} ; :
B
8 0005} l l I
z 1] !]
E 0 0 eeeataaa. ccesbosar emamaewe
Pm2 P=30 P=100
-0.005}
001}
-0.015k L 1 1 2 1 . L E
05 1 15 2 25 3 35 4

(c) Box plots for population distance values

Figure 7.11 Box plots of three indicators with three different initial population sizes (4, =10) on
Function F5

124

o 02f .
I]

04 4

o DJ.I D.‘Z 0.‘3 CI.LI 0‘5 IJIE l:llilr D.lB 0,‘5 1 o D'1 IJ.IZ U..B 0.4 CI.S EI.IE l.'l.? D..B 18]
.. f1 f1
(a) Objective space and Pareto front (b) Kesulting final Pareto front

Figure 7.12 Comparison of the true Pareto front and the final Pareto front resulted by DMOEA
(P =2) on Function F5

7.7 Simulation II—Comparison Study on DMOEA with Other MOEAs

In order to compare the performance of DMOEA with other advanced MOEAs,
three more complex benchmark problems are tested by six MOEAs— PAES, SPEA II,
NSGA-II, RDGA, IMOEA and the proposed DMOEA in the simulation, and each of the
algorithms runs for 50 times to obtain the statistical results. For each test function,
DMOEA will run with the initial population size equal to 2 and achieve an approximated
desired population size dps . Afterwards, for each of fifty runs, an initial population with
dps individuals is randomly generated and used by each of three population-based
MOEAs (i.e., NSGA-II, SPEA II and RDGA), while only one initial individual is
generated for PAES according to its design procedure [52]. The archive size is set to be
100 for all these MOEAs that involve the elitism scheme. For IMOEA, its initial
population size is also set to be 2 for a fair comparison. We use three indicators derived
from the final generations of 50 runs to benchmark the comparison results via statistical
Box plots. They are: average individual rank value, average individual density value and

average individual distance. As discussed in Subsections 4.2.3, for an individual,

125

different ranking schemes will produce different rank values, which will be used in
respective fitness evaluations and selections. Therefore, for a fair comparison in terms of
ranking indicators among different MOEAs, we use Goldberg’s pure Pareto ranking
method [25] to recalculate the rank value for each individual resulted by each applied
MOEAs. Meanwhile, the average individual density value is calculated as the mean value
of all the individual density values. Furthermore, the “final average individual distance”
is also used as the third indicator to show how far the non-dominated points on the

resulting final Pareto front PF,,,are away from the true Pareto front PF,,,, where PF,

is known in a priori for the given test functions. Moreover, in order to compare the
dominance relationship between two final populations resulted by two different MOEAs,
the coverage of two sets (C value) [13] is also measured to show how the final

population of one algorithm dominate the final population of another algorithm.

To examine the performances of the selected MOEAs and the proposed DMOEA
on the test functions with different Pareto front features, three numerical benchmark
problems are used in the simulation study. Function F3 has been used in Chapter VI,
which has a high-dimensional decision space and local and global Pareto fronts in
objective space [82]. Function F6 has a high-dimensional decision and a high-
dimensional objective space [83]; and its true Pareto front is a surface instead of a curve.
Function F7 is advanced from function F6, which also involves high-dimensional
decision and objective spaces and the true Pareto front is 1/8 of a unit sphere. For a fair
comparison, the stopping generation, the chromosome length of each decision variable,
the crossover rate and the mutation rate are chosen to be 10,000, 15, 0.7 and 0.1,

respectively for all population-based MOEAs considered. One point crossover is used for

126

all the population based MOEAs. In addition, we select (1+10)-PAES, and a bit flip
mutation rate 1/k is used for a chromosome of k genes. The tournament size ¢, is

chosen to be 2.

7.7.1 F3—MOP with high-dimensional decision space

As an MOP with a high-dimensional decision space and local Pareto fronts in
objective space, this test function is described as Equation (6.6) and its objective space is
illustrated as Figure 6.11. For DMOEA, the initial population, the age threshold, the

population size per unit volume, ppv and the cell scales K, and K, are selected as 2, 10,

3, 50 and 50, respectively. Figures 7.13(a) — (f) show the snapshots of the objective space
and individuals resulted from DMOEA at generations 1, 100, 250, 750, 1,300 and 10,000,
respectively. Similarly, Figures 14(a) — (f) and Figures 15(a) — (f) show the
corresponding rank and density values of these individuals resulted from DMOEA at

those generations, respectively.

3 P20
P=237

e

e e W
ool e, TRIZI-

p

.'r'-
" i
Y

1oy
H

4]

(a) First generation

O 01 @2 03 64 05 @6 OF as 08 1

01 02 03 04 05 06
H

ar os

(b) 100™ generaion

09

01 02 03 04 05 06 OF 08 08
H

(¢) 250™ generation

3 P=156

| b"'“"-I- o
™.,

-
05 s

0T 02 03 04 0S as Oor 08 09
M

(d) 700" generation

Figure 7.13 Snapshots of objective spaces and populations resulted from DMOEA on Function F3

—

o4

o2

(e) 1,300 generation

127

0 0y 0Z 03 04 05 06 ar o8 039
H

(1) 10,000" generation

(b) 100™ generation (c) 250" generation

. :_ —~ ‘||"r||||m] i
I lI”l I|" HJ 1Hulllllwswl’ : [

ik 1Mk I..I-I LAY |I|

(d) 700" generation (e) 1300™ generation (f) 10,000™ generation
Figure 7.14 Snapshots of objective spaces and rank values resulted from DMOEA on Function F3

w

Density value

(a) First generation

| " y‘l: |III‘ ’W

() 10,000 generation

(d) 700" generation (e) 1300" generation
Figure 7.15 Snapshots of objective spaces and density values resulted from DMOEA on Function F3

128

From Figures 7.13 — 7.15, we can observe that although the initial population size
is selected to be a very small number, DMOEA can find the true Pareto front easily as
shown in Figure 7.13(f). In the beginning, two parents are randomly generated (i.e.,
P=2) and perform genetic operations (i.e., crossover and mutation). As these two
individuals do not dominate each other, and they are located in different “home
addresses”, their rank and density values are all 1 (Figure 14(a) and 15(a)). At the
following generations, because the initial population is far away from the true Pareto
front, and the population size is much fewer than the optimal one, the proposed
population growing strategy affects the evolutionary process more than the population
declining strategy. For this reason, both the population size and rank values of the
dominated cells increase very fast to ensure those newly generated individuals disperse to
the true Pareto front (Figures 7.13(b) and (c) and Figures 7.14(b) and (c)). Meanwhile, as
cell density is preserved by DMOEA, the density values of all the individuals does not
change very much as shown in Figures 7.15(b) and (c). When the population moves
closer to the true Pareto front, it will be more difficult for the parents to generate better-
fitted offspring, which means the population growing strategy has difficulty in balancing
the population declining strategy, and both the population size and the cell ranks will
decrease as shown in Figures 7.13(d) and 7.14(d). When all the cells rank values drops to
1 and density values are 3 (ppv value), the objective space will be compressed, and the
new structure of cells will be created based on the new objective space and the original

K, and K,. This procedure will continue until all the individuals are non-dominated
points, and the density value of each cell is equal to ppv as shown in Figures 7.13(f),

7.14(f) and 7.15(5).

129

1 1 1
.~ -~ .. .
o - . e,
\ Y ~\-
.~ = "
05 e o5 . 05 Son
-, “ “~
‘e \\\. \.\
“ ~ hd
‘h ‘o.
%7 03 04 o5 o6 07 08 08 1 %7035 04 05 06 7 08 6% %2705 04 05 06 o7 08 of
11 f1 f1
(a) IMOEA (b) DMOEA (c) NSGA-II
5 . . . 15 v - . 15 : v —
LK
Su, .
‘w. .
1 ., 1 1
'0.. . -
o) & "t o
~
05 05 \s,. 05
h -
N, .
“ '\.
%203 o4 05 06 07 08 08 1 87755 04 o5 05 07 08 68 9703 o4 65 065 07 05 0%
1 11 fl
(d) PAES (¢) RDGA () SPEA II
Figure 7.16 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES, RDGA and SPEA II on
Function F3
145 10—
1.4 9 SPEAI !
f oo}
103 s > o EAZE_S
162 . oA RoGA ot}
101 R : 06
1 — emm e et owam —— WL moea 05[sPEAN
o paes | o i
o8 : Bl DMOEA N o P{S?H
oe7 3 o= E 02
.) - o1} MgEA oMoEA | S S
056 IMOEA OMOEA NSGAdI PAES RDGA SFEAl i i ol é U s e e
0%, 1 P S B S L e B e R [

(a) Average individual rank value (b) Average individual density value (c) Averge individual distance value

Figure 7.17 Box plots of average individual rank, density and distance values on Function F3

As obtained from the result of DMOEA, the optimal population size for the given

grid scale K, and K, is around 110. Therefore, we run NSGA-II, RDGA and SPEA 1II

with a fixed initial population size of 100 for a fair comparison. In addition, PAES with

one initial individual and IMOEA with two initial individuals are also run for 10,000

generations. The lowbps, ppv and upbps in IMOEA are chosen to be 1, 3 and 5,

respectively. Figure 7.16(a) — (f) show the resulting Pareto fronts by six chosen MOEAs,

while the Box plots for the average values of three indicators over 50 runs are illustrated

130

in Figures 7.17(a), (b) and (¢), respectively. The performance measures of C(X,, X) for

the comparison sets between algorithms i and j are shown in Figure 7.18, where

algorithms 1 — 6 represent IMOEA, DMOEA, NSGA-II, PAES, RDGA and SPEA II,

respectively.
1 anas T] 1 -— - [1 — —
09f E 1 E 0gf Ef : 1 09 ﬁ
08 ey 1 o8} N 1 08 -
o7 1 [ed ' 4 o7f §
06 1 113 : 1 06
o4 - E 04 E 04t
83 s 4 63 o ’ 4 o3f o
02 H - i E 02} R 02
SR NS S B B S - S B P
1 2 3 4 5 & 1 7 3 4 5 6 1 2 3] 5 B
C(Xl > X1—6) C(XZ > XI—G) C(X3 > X1—6)
1 —— s 1 — — 1 e — —
09 ag 4 09
08 o8 e 1 08 D
o7 o7 B 07
08 B 08 E 1 06
a5 E osf e asy ek
o4t 1 04t 4 o4l
o3t 4 e 4 03} °
a2 B T 4 02 4 02
B o o
0.1 H 4 01 i ° ° 4 01 o -
of e e L = o BB . e o = 3
1 Z 3 4 5 s 7 1 2 3 1 B 6 7 0 1 2 3 3 5 s 7
C(X4’X1—6) C(X53X1—6) C(XG’XI—G)

Figure 7.18 Box plots using C measure on Function F3

From Figures 7.16 — 7.18, it is obvious that PAES has great difficulty in finding
the true Pareto front of this MOP. On the other hand, NSGA-II, SPEA II and RDGA can
always identify some points on the global Pareto front. IMOEA and the proi)osed
DMOEA can always find a near-complete, near-optimal Pareto front. In addition, PAES
and IMOEA also result in about 100 individuals at the final generation, which is similar
to the optimal population size found from DMOEA. Nevertheless, many individuals
resulted from PAES are not located on the global Pareto front and thus PAES produces

very low C(X,,X,) values as shown in Figure 7.18. Moreover, as shown in Figure

131

7.17(b), the average individual density value generated by IMOEA is 4 instead of 3 (pre-
defined ppv value). Since IMOEA'’s goal is to meet the desired population size dps(n)
at generation » as estimated by Equations (7.1) and (7.2), the cell density value has to be

higher than ppv to keep the population size close to its optimal value if some of the
hyperareas are not explored. However, for DMOEA, finding dps(n) of each generation is

not its primary concern since the final optimal population size can be easily calculated as
the cell density is preserved and a complete set of hyperareas are discovered. In this case,

DMOEA produces a more complete Pareto front than those by the other five MOEAs,

and it also provides the highest C(X,,X,,) values, which means the solution set that

was resulted from DMOEA most likely going to dominate the rest of the solution sets

resulted from the other chosen MOE As.

7.7.2 F6—MOP with high-dimensional objective space

Minimize f,(x), f,(x)and f,(x), where

filx) = (L4 g (x) eos() cos(722 (7.14)
fxn=a+g@»mx%?nm”?),

£y = A+ g () sing By,

2(x) ——-2(:@. ~0.5)",

subjectto 0<x, <1, i=1,...,12.

This test function is proposed in [84] as an MOP with high-dimensional decision
and objective spaces. Meanwhile, the true Pareto front of F6 is exact the first quadrant of

a unit sphere. As the mathematical expression of the true Pareto front is clearly defined,

132

the distance between the final and true Pareto front can be precisely calculated. The
desired population size can be determined based on the ppv value and the grid scales
K,—K,. According to [84], although NSGA-II can locate most of the population at its
final generation on the true Pareto front, the resulting non-dominated individuals are not
homogeneously distributed, which implies that this test function produces a great

challenge for MOEAs in searching for a good representation of the true Pareto front when

it is a surface instead of a curve.

Figure 7.19 Objective space and Pareto front of Function F6

The objective space (space between two spheres) and the true Pareto front are
shown in Figure 7.19. For DMOEA and IMOEA, the initial population, the population
size per unit volume, ppv and the cell scales K,, K, and K. are selected as 2, 3, 20,
20 and 20, respectively. The age threshold is chosen to be 10 in DMOEA. At the final
generation, DMOEA results in about 1,800 individuals as the approximated optimal
population size. Based on this estimation, the initial population size for NSGA-II, RDGA
and SPEA 11 is chosen to be 1,800. Figures 7.20(a) — (f) show the resulting Pareto fronts
by six chosen MOEAs and the Box plots for the average values of three indicators over

50 runs are illustrated in Figures 7.21(a), (b) and (c), respectively. The performance

133

measures of C(X,,X) for the comparison sets between algorithms i and j are shown

in Figure 7.22, where algorithms 1 — 6 represent IMOEA, DMOEA, NSGA-II, PAES,
RDGA and SPEA II, respectively. Moreover, the evolutionary trajectories of the
population size and average individual rank, density and distance values over 50 runs by

six selected MOEAs are shown in Figures 7.23 (a) — (d), respectively.

(d) PAES (¢) RDGA () SPEA 11

Figure 7.20 Pareto fronts resulted from IMOEA, DMOEA, NSGA-1I, PAES, RDGA and SPEA Il on
Function F6

- - - - 4 - s o
WOEA DWOEA WSGAN PAES RDGA SPEAN WOLA DMOEA WSGAR PAES RDGA SPEAN
Ll &

[T n

o

o Dfmg 11 ,1,1
~ D T8itoaal

|

3 moEs DMOEA NSGAE PAES EDGA SPRAR

Fl . [" 7 [T

L)
1 -
S am

- |
3 ' L B ? w]] 1] 3 [i

(a) Average individual rank value (b) Average individual density value (c) Averge individual distance value

Figure 7.21 Box plots of average individual rank, density and distance values on Function F6

134

1 — 1 — 1 —

09 g 03 4 09

o8 g 08 g 08

or 4 o7 5 o7

08 4 o, 4 08

85 4 05 ° ° 1 o5 °

L o4 . I oaf T

83 o 3 B 03 ‘ Q H ° g 03 : i g

02 e T 1 02 E Q : b 02 E : i

o _sBO0s 9B HYHE 047 HAS

o A M ST [7 5 4 5§ 7 o T PR T 3 R
C(XI’X1;6) C(X29X1—6) C(X3,X1_5)

1 T - T 1 — 1 —

09 4 09 1 03

08 1 o8 1 08

o7 1 o7 f o7

06 1 08 o E 08 o

05 1 05 1 05 e

.7 S 4 04 o Y 4 04 o

03 ° o q 03 o 03 g “ e

02 : T e 1 02 H : i 4 02 i

01 * : : 4 01 e E B 4 0.1 H E Q Q

1H.o a8l 9a_5FH Bi41.08

R I R TR T 7Y T R L I T S O
C(X4aX1_6) C(XS’X1—6) C(XG’X1-6)

Figure 22 Box plots using C measure on Function F6

From Figures 7.20— 7.22, it is obvious that DMOEA produces a more accurate
and homogenously distﬁbuted Pareto front comparing to the other advanced MOEAs.
Indeed, if the initial population size is correctly chosen, the MOEAs with the fixed
population size (i.e., NSGA-II, RDGA and SPEA II) also yield to a competent Pareto
front in terms of rank, density and distance values as shown in Figures 7.21 (a) — (c) and
Figures 7.23(¢) and (d). In addition, as the true Pareto front is a surface instead of a
curve, it is difficult for the resulting non-dominated sets from any two MOEAs to cover
each other. As the result, the C values are relatively low as seen in Figure 7.22. In
particular, because the Pareto points resulting from DMOEA have the lowest average
individual distance values and a converged average individual density value (as shown in -

Figures 7.23(d) and 7.23(c)), they are very competitive, which makes the resulting Pareto

135

front of all the other five MOEAs have great difficulty to cover, and C(X,,X,),

C(X,,X,),-,C(X,,X,)values are all near zero.

w0

EEHE

- BB EEBEES

Population size

Average Individual rank value
a-

0 0 2000 W0 600 G000 B00 7000 6000 %000 10000 0 1000 2000 3000 4000 5000 G0OC /OO0 BOOD 9000 10000
Generations Generations

(a) Population sizes (b) Average individual rank values

o

-
» o

w
n

w

hoom L

Average Individual density value

Average Individual distance value

(=]
n

U0 7000 200 20 400 5000 G000 7000 6000 9000 1000 0 1000 200 300 4000 5000 GXNO /000 G000 9000 10000
Generations Generations
(c) Average individual density values (d) Average individual distance values

Figure 7.23 Evolutionary trajectories of population sizes and average individual rank, density and
distance values from six selected MOEASs over 50 runs on Function F6

Furthermore, Figures 7.23(a) — (d) also show the convergence speeds of chosen
MOEAs. Generally, IMOEA converges very fast since the Fuzzy Boundary Local
Perturbation method is used to assist EA in discovering better-fitted individuals at each
generation. However, as discussed in Subsection 7.2, IMOEA’s primary goal is to
estimate dps(n) by Equation (7.1), however, the cell density value is not carefully
preserved. As a result, the final population size produced by IMOEA is not very accurate,

and the average density value shows an appreciable deviation from ppv value as shown

in Figures 7.23(a) and (c). Indeed, for an MOP whose true Pareto front is known, the

136

optimal population size can be computed if the population per unit volume ppv and cell
scales K, xK,x...xK,_ are given. For instance, for the test function F6, assume
ppv=3 and r =K, =K, =K, =20, the desired population size dps can be calculated

as

dps:%xppvx4ﬂr2 z—z—x4x314x400=1885, (715)

which is very close to the final population size discovered by DMOEA. However,

according to Equation (7.1), for the same setting, the number of hyperareas is

approximated by IMOEA as:
(m-1)/2 -1
A, ()~ = x(d(")) =nx(i§x—2())2 =942. (7.16)
m—1 2 2
(—2—)!

Thus the desired population size dps(n) for IMOEA at generation » is calculated as

dps(n) = ppvx A, (n) =3x942 = 2826, (7.17)
which is much larger than the correct value from Equation (7.15). For this reason, to
reach the infeasible high value of the desired population size, IMOEA is forced to
increase the population size by encouraging more individuals to dwell in the same cell,
which explains the high average individual density values shown in Figures 7.21(b) and
7.23(c). Nevertheless, because the lower and upper bound for dps(n)— lowbps and
upbps are hard constraints, the cell density value cannot be larger than upbps . Therefore,

the final population size resulting from IMOEA is still held at a reasonable level as

shown in Figure 7.23(a).

137

It is also interesting to observe that some fluctuations occur on the population,
rank and density trajectories resulting from DMOEA in Figures 7.23 (a) — (c). This effect
is credited to the proposed objective space coinpression strategy if the original objective
space is greater than the surface of the true Pareto front. Each time when all three criteria
described in Subsection 7.4 are satisfied, the objective space will be compressed to an
extent. As a result, the size of each cell will decrease, and some of individuals originally
located in a non-dominated cell will be pushed into a dominated cell, which implies that
some cells will have higher rank or lower density values comparing to their previous
status. Therefore, the steady state is disturbed, and the population growing and declining
strategies start their process simultaneously to fill those sparse areas and remove
dominated individuals, and then reach a new steady population size. Because the increase
of the rank values is not significant, the likelihood of eliminating those dominated

individuals /, is low as shown in Figure 7.4, which makes the population growing

strategy dominates the population declining strategy and the population size will rise
from this stage. When all the sparse cells are filled with certain numbers of new
individuals, DMOEA will experience difficulty in finding a better-fitted offspring.
Therefore, from this stage, the population declining strategy affects the population more
than the population growing strategy, and the population size will decrease until a new
steady state is reached. This process keeps refining the population as well as the cell size
until the objective space does not have any room to be compressed at the final steady
state. In addition, at the final steady state, all the non-dominated cells discovered by

DMOEA should have a ppvnumber of individuals. It is also worthy to note that the

individual distance value continuous to drop without any oscillation during the objective

138

space compression process (Figure 7.23(d)), which helps DMOEA search for near-

optimal Pareto points.

7.7.3 FT—MOP with high-dimensional objective space and local Pareto fronts

Minimize f(x), f,(x)and f,(x), where

£(x) = (1 + g(x)) cos(%L)cos(”;3), (7.18)
£2(x) = (1+ g(x)) cos(’rzi)sin(’”2‘2),

£,(x) = (1+ g(x)) sin(’rzi),

g(x)=12+ i (x, —0.5)% —cos(207(x, —0.5)) ,

subjectto 0<x, <1, i=1,...,12.

Figure 7.24 Objective space and Pareto front of Function F7

This test function is proposed in [84] as an MOP with high-dimensional decision
and objective spaces. In addition, function g(x) introduces (3" —1) local Pareto optimal
fronts and one global (true) Pareto front as shown in Figure 7.24. For DMOEA and
IMOEA, the initial population, the population size per unit volume, ppv and the cell

scales K, K, and K, are selected as 2, 3, 20, 20 and 20, respectively. The age threshold

139

is chosen to be 10 in DMOEA. At final generation, DMOEA results in about 1,700
individuals as the approximated optimal population size. Based on this value, the initial
population size for NSGA-II, RDGA, SPEA 11 is chosen to be 1,700. Figures 7.25(a) — (f)
show the resulting Pareto fronts by six chosen MOEAs, while the Box plots for the

average values of three indicators over 50 runs are illustrated in Figures 7.26 (a), (b) and

(c), respectively. The performance measures of C(X,,X,) for the comparison sets

between algorithms i and j are shown in Figure 27, where algorithms 1 — 6 represent

IMOEA, DMOEA, NSGA-II, PAES, RDGA and SPEA 11, respectively.

S T

E 05

(b) DMOEA

(d) PAES (¢) RDGA () SPEA-TI
Figure 7.25 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES RDGA and SPEA 1l on
Function F7

—_— — - - - - . -

7 . ©
2
15 o 2
5 - . o
14 o
14] 8
K] o
3 P! (] e a
.} a 3
12 4 | 3 i

J

—J ‘ :
i L

" | ; i e 31 S I = T TR)
MOEA DMOEA NSGA4 PAES RDGA SPEAN o . S e e

1 — — — e— — — . 0 MOEA DMOEA NSGAS PAES ROGA | MOGA DMOEA NEGAd PAES RDGA SPEAN
0 1] :] 5 o ' " 2) F) 5 o Y Wy 1 2) 4 3

(a) Average individual rank value (b) Average individual density value (c) Average individual distance value
Figure 7.26 Box plots of average individual rank, density and distance values on Function F7

140

1l —— v ’ E v 4 1 — o ¥ —eee 4 1 ‘r - e
09 | 09 ‘: E 1 00 D
08 1 08 [9 08
o H H
o7 1 o7t e PO 4 o7}
o8} 1 06 > B : J o}
< T H -":.-
o5F ° B 05 B ° H : 4 i g o H
e T } H ° H
o4t o q 04 : H H q Q4 o
caden . J e T .
03} s 03 4 03} ° B
02} ° : : 4 02 E o2t . ° J
== i : U=
01 - . - 4 01 ki o1 - H
0 — 4 o} - o —
1 2 3] 5 6 7 1 2 3] 5 6 7 1 1 F] 3 4 5 5 7
CX,,X,) C(X,,X,) C(X;, X,)
1t o T —] 1 T —] 1f g —
] w - I e .
08 4 o8t H 1 o8t 4

87 4 07 1 o7
| = o]
08 4 o8} ey ; 1 06 o i 1
05, . 4 05 i 4 85¢ ° 1
.
04} 4 04t Q H ° 4 04 H E
H °
03} ey] o3 i i 4 03 E
02 D . : 1 paf e o o] 02 - ; o i
o1 - g 4 01 1 o1 i e T
o ; -
L , : " . . , . ,
2

C(Xy5 X o) C(Xs, X16) C(Xs» X1 6)

Figure 7.27 Box plots using C measure on Function F7

Apparently, from Figures 7.25— 7.27, test function F7 produces great challenges
for an MOEA to locate the true Pareto front. As shown in Figure 7.24, many local Pareto
fronts exist near the true Pareto front, which means even the rank values of all the
individuals are 1, the resulting population may not represent a true Pareto front (Figures
7.25 (a) — (f)). However, comparing to the other five selected MOEAs, DMOEA yields
the lowest average individual distance value and a constant individual density value,
which implies that DMOEA provides a better performance than the selected MOEAs in
terms of discovering a umiformly distributed, near-optimal and near-complete Pareto
front. At the final generation, the population sizes resulting from PAES and IMOEA are
about 450 and 1,300, respectively, and as shown in Figures 7.25 (a) and (d), many of
these individuals stay on the local Pareto fronts. In addition, DMOEA generates higher C

values than the other chosen MOEAs, and none of the solutions by the other five MOEAs

141

covers the final population of DMOEA since C(X,,X,),C(X,,X,),..., C(X,,X,)

values are all near zero.

7.8 ROBUSTNESS STUDY

From the description in Subsection 7.1, the performance of DMOEA may be

affected by several parameters such as the initial population size P,, age threshold 4,,
the population size per unit volume, ppv and the grid scale X,,...,K, . Among these

parameters, the initial population size and age threshold are the most important ones since
the other two parameters are mostly determined by users based on their preferences and
requirements in the resolution of the resulting Pareto front. In general, a user may not
clearly understand the design mechanism of DMOEA and just randomly select an initial
population size and age threshold. Therefore, the relationship between these two
parameters and the performances of the final Pareto front needs to be characterized in
order to study the robustness of DMOEA based on these two parameters. In Subsection
7.6, DMOEA with different initial population size has been examined by test function
F35. The results imply that DMOEA is not sensitive to the setting of initial population
size. To further investigate the robustness of DMOEA on different parameter settings,

three other test functions—F3, F6 ad F7 are used and DMOEA is run for six settings of

P and 4, on all of three test functions described in Section IV. These settings are:
P =24,=10; P, =2,4,=30; P,=2,4,=100; P,=30,4,=10; P,=100,4, =10

and P, =500, 4, =10. Figures 7.28(a) — (c), Figures 7.29(a) — (c¢) and Figures 7.30(a) —

th
(c) show the evolutionary trajectories of the population size, average individual density

value and average individual distance value resulted from DMOEA for the given six

142

settings over fifty runs on each of three test functions. Note that average individual rank
value is not shown in these figures since the rank values are almost always 1 for all the
individuals at the final generations. In addition, because test function F3 is relatively
simple and DMOEA converges faster on this problem, only the first 3,000 generations
are illustrated in Figure 7.28,>whereas 10,000 generations are exemplified on functions

F6 and F7 as shown in Figures 7.29 and 7.30.

From Figures 7.28— 7.30, it is apparent that no matter which setting we select on
DMOEA, the population size, average individual density and average individual distance
all converge to a constant value at the final generation, which implies different
combinations of initial population size and age threshold may not change the resulting
optimal population size and qualities of final Pareto front. However, convergence speed
may vary according to different settings. In particular, when initial population size or age
threshold values are chosen to be relatively high, the convergence speed will be slow due
to the high population size generated in the middle of evolutionary process. Nevertheless,
based on the objective compression strategy, this significant high-population size only
occurs at the first lobe when the compression action has not started yet. Meanwhile,
according to the cell-based rank and density fitness assignment scheme described in
Subsection 3.1, the computational complexity will not increase remarkably when the
population size increases, thus the computation time will not alter very much even the
population size is extraordinary high. Table 7.1 shows the average computation time for
test function F7 with 10,000 generations from IMOEA, PAES, NSGA-II, RDGA, SPEA

II and DMOEA with six settings over 50 runs.

143

18

il
!

o
[*]

Population size
B 2 E 8B B H B
i
.i s
T
kvuqllntlvlduddsﬂymm .
i
l!
i
Average gﬂl\gu dlghl._u :ﬂn
ihL
ggEoce
§
eetEEl

S 10m (i1 an = i

ey o 1500 an m i) o m gl 15 am A0 k1] (1]
Generations Generations Generations
(a) Population sizes (b) Average individual density values c¢) Average individual distance values

Figure 7.28 Evolutionary trajectories of population sizes and average individual density and distance
values from six settings of DMOEA over 50 runs on Function F3

L

15
2000 i . [il
2 NN Peiptrergrwo=—""1 §F
W) E : é i
% © 25 1 w'
im‘m a i
5 2 — LAk || E2
l — P2, fule3 e
» il —RuEn | F o
— Pl 100, Adh-10
PB-500, Ath-18 < =
Oy im0 a0 @m0 @M &0 0 B0 0 fX x "¢ T 0 W 40 S0 B0 TAD BAD ak0 0 W00 00 00 400 SN0 BI0 J00 GO0 9000 Y0000
Generations Generations Generations
(a) Population sizes (b) Average individual density values ¢) Average individual distance values

Figure 7.28 Evolutionary trajectories of population sizes and average individual density and distance
values from six settings of DMOEA over 50 runs on Function F6

000 — .
— P2, A1 .
i — P2, A8 ® % —iaen
— P02, At i 35 — PO, AS10
ook — PO-30, A0 — PO, A
— P10, Ah=10 PO-500, Arh-10
gowol PO-~500, Ath=10 J 1 ”
€ 500+
- 25 |3
inm i
 Sa! £z — POz Al ®
-
— PO-2. A3
om0 = — P02, At 100 E
15 — PD=20, AS-10
1000 1 = — PO-im, AThw | |
! PO-SI, Ath-10 -
o A " N N 1 i " " o v L i P —
‘0 om0 X0 00 R0 G0 700 G0 %00 1 0 10 A0 00 0 500 60) 00 00 90 im0 W0 @0 oo
Generations Generations

(a) Population sizes (b) Average individual density values c¢) Average individual distance values
Figure 7.28 Evolutionary trajectories of population sizes and average individual density and distance
values from six settings of DMOEA over 50 runs on Function F7

Table 7.1 Comparison results of computation time of F3 from selected MOEAs and DMOEA with
different settings

IMOE | PAE | NSGA- | RDG | SPEA | DMOEA | DMOEA | DMOEA | DMOEA | DMOEA | DMOEA
A S Il A 1 (2,10 230) | (2.100) | (30.10) | (100,10) | (500,10)
Time
(min) | 106 | 133 251 684 | 407 25 25 25 26 26 27

144

The “CPUTIME” command from MATLAB (version 6.1) is used to measure the
time elapsed for each MOEA implemented in MATLAB. Each MOEA is running in a HP
computer with dual 2-GHz processors and 1-GByte RAM. It is worthy of noting the time
shown in Table 7.1 provides only a relative measure among chosen MOEAs based on the

complexity of the algorithms.

From Table 7.1, we can observe that among all chosen MOEAs, DMOEA
demands the shortest running time and the improvement is significant comparing to the
other state-of-the-art MOEAs. In addition, different settings will not change the
computation efforts of DMOEA and makes the final result of DMOEA robust in terms of

both efficiency and effectiveness.

145

VIII. EMO TOOLBOX DESIGN

As discussed in previous chapters, there are many existing MOEAs in literature
and being used by researchers and designers in different research or application fields.
Although most of these algorithms were well designed and the algorithms or pseudo
codes are optimized, they still require the users (designers) equipped with certain
computer programming expertise and an extensive understanding of all the techniques
devised. Since most of MOEAs are quite sophisticated due to the complexity of MOPs,
the programming effort can be tedious and time consuming and needs to be completed
before users can start their design task for which they should really be engaged in [85].
Therefore, a simple solution is to design a user-friendly computer-aided toolbox that
includes certain MOEA modules to assist the designers in dealing with particular MOP.
The designers merely select a series of build-in modules according to their basic
knowledge of MOEAs or help files of the toolbox and input the specific decision

variables, objective functions and constraints for the given problem to be solved.

Block I— Block II— Block N—
ra '.‘.‘ Qch Fatbmath Sed
TLVEGA [— Method 1 | { Method 1 H —{ Method 1 H

¥
]
=
-

— Method 2 HI\Y—{ Method 2 H —{ Method 2 H
s 1\ ... —tuns:mai-:e-

—{Mel:odnl" *'Mu.l:ndnt‘ —1Mu:adr]—

t i]

(a) Skeleton of MOEA Toolbox designed by Tan (b) Skeleton of envisioned MOEA Toolbox

Figure 8.1 Comparison of skeletons of two MOEA Toolboxes

146

By now, an MOEA Toolbox built on MATLAB platform has been designed by
Tan et al [85]. However, this toolbox does not incorporate those most advanced MOEASs
(ie. NSGA-II, SPEA II and RDGA) and a fixed population size needs to be chosen
heuristically by users before the running of a specified MOEA. Furthermore, this toolbox
follows the exact design procedure specified by each MOEA to build a fixed object as
shown in Figure 8.1(a). However, as mentioned in Chapters IV and V, an MOEA can be
divided into several crucial building blocks, such as ranking methods, density estimation
approaches, fitness assignment strategies, elitism schemes and some other supplementary
routines. Different combinations of these building blocks can result in different types of
MOEAs existed, or even lead into some novel MOEAs. For instance, a new MOEA can
be configured as: AARS (RDGA) + Crowding distance estimation method (NSGA-II) +
elitism + mating restriction (RDGA) + archive truncation (SPEA 1I), which may provide
high performances for some kinds of MOPs. Therefore, by using this building block
strategy and dynamic population size, a new Evolutionary Multiobjective Optimization
(EMO) Toolbox is designed. This toolbox offers users more flexibilities in choosing their
favorite method for each building block; and the population growing and declining
strategy can help the resulting algorithms produce a mnear-optimal and near-complete
Pareto front with an optimal number of individuals. The skeleton of the proposed toolbox

is shown in Figure 8.1(b).

The main Graphical User Interface (GUI) of EMO toolbox is shown in Figure 8.2,

which includes eight functions. We will describe each of them in this Chapter.

147

Figure 8.3 GUI of model selection

8.1 MOEA Setting

This function is the main function of toolbox. It provides two alternative choices
to the users. The first choice lists six advanced MOEAs (i.e., DMOEA, IMOEA, RDGA,
NSGA2, SPEA II and PAES) as discussed in previous chapters, a user can choose any
one of them as the algorithm used for the optimization. The design scheme of each of

these algorithms is fixed as a build-in function, whereas the design parameters are

148

specified by users. The second choice offers users more flexible choices when they prefer
to design an MOEA by selecting and combining their favorite modules. The GUI for

selecting a model is shown as Figure 8.3.

MOEA Design Procedure

B

GenoD |*m‘|’ mi*sm| mmm
Dessgn & : and choose decision

rameters for the

(a) main design procedure (b) an error message sample

Figure 8.4 GUI of main design procedure and error message

8.1.1 Main procedure of fixed MOEA model design
As shown in Figure 8.4(a), the main design procedure includes four steps with a
predefined sequence: genotype design (GenoDesign), decision variable design
(DecDesign), objective function design (ObjDesign) and special parameter design
(SpecDesign). The later design procedure cannot be fulfilled until its previous procedure is

finished, otherwise an error message will appear (Figure 8.4(b)).

8.1.1.a Genotype Design

As shown in Figure 8.5, genotype parameters (crossover rate, mutation rate,
selection method, population size, stopping generations) can be chosen and inputted
directly. In addition, current parameter setting can be saved as a MATLAB data file and a
previously saved setting can also be loaded to the MATLAB workspace from an existing

data file and read by the sliders and editors of the GUI.

149

Figure 8.5 GUI of genotype parameter design

8.1.1.b Decision variable setting
As shown in Figure 8.6(a), for each decision variable, there are three parameters

need to be determined, maximum value, minimum value and chromosome length (gene
number). For each design page, at most 9 variables can be set and if the number of
variables are larger than 9, the next design page will appear automatically. Similar to
genotype design, the decision variable setting can be saved and loaded (Figure 8.6(b) as

well.

(a) GUI of starting a new setting (b) GUI of loading an existing setting

Figure 8.6 GUI of decision variable setting

150

Figure 8.8 Error message for input syntax error

8.1.1.c Objective function and constraint setting
As shown in Figure 8.7, for each objective function, there are three parameters

need to be determined, maximum value, minimum value and expression of each objective

151

function. The mathematical function expression should be compatible to MATLAB
format. Moreover, the number of constraints and the constraint expression can also be
determined through this GUI (Figure 8.7). When “OK” button is clicked, the function
expression will be crosschecked and error messages will appear if there is any syntax
error in the expression (Figure 8.8). The error must be corrected before next design

procedure starts.

8.1.1.d Special parameter setting

For each specified MOEA model, there are several key parameters need to be
determined. For example, Dynamic Multiobjective Evolutionary Algorithm (DMOEA)
needs “age threshold”, “density grid scale” and “population per cell to be set before the
algorithm can properly run (Figure 8.9). After all four steps of main design procedure

have been completed, the setting of MOEA parameters is over.

Age Theshod[10
Densiy Grid Scale| 20
Populsion Per Cel[3

Figure 8.9 GUI of special parameter setting
8.1.2 Main procedure of free MOEA model design
The first three steps of free model design (i.e., genotype, decision variable and
objective function) are the same as those in fixed model design. However, in free model
design, designers need to choose a particular method for those key schemes (i.e., ranking,

density preservation and elitism) in MOEA design.

152

J Ranking scheme

File Help

|Pure Ranking (NPGA) =]

Ranking #1(MOGA]
Ranking #2 (SPEA)
Ranking #3 (RDGA)

H*!I

lustration of Ranking Scheme
12t ® 03 Purc Ranking
g
"* 2
‘0
i &
2 4
@ 3
1% 2

Figure 8.10 GUI of ranking method setting

8.1.2.a Ranking scheme setting

As shown in Figure 8.10, there are four types of ranking methods can be selected
by the designers. For each method, a figure is illustrated in order to visualize how the

selected method will work. If none of the method is selected, Pure Ranking method used

in (NPGA) will be considered as the defaul.

<) Density_scheme

File Help

lllustration of Density Scheme

|Niching Method [NPGA)

K-nearest neighbor [SPEAZ]
Neasast neighbor (NSGAZ)

Adaptive Density (RDGA)

Niching Method(NPGA)

stk HEtHTE
SN ﬁ!‘ st Hit
1 il i

') T L

Xl n

_ Carcel |
Hdp|

Figure 8.11 GUI of density preservation method setting

8.1.2.b Density scheme setting

As shown in Figure 8.11, there are four types of density preservation methods can

be selected by the designers. For each method, a figure is illustrated in order to visualize

153

how the selected method will work. If none of the method is chosen, the Niching method
will be considered as the default and the niche radius needs to be determined as shown in

Figure 8.12

Figure 8.12 GUI of determining niche radius

8.1.2.c Elitism scheme setting
As shown in Figure 8.13, there are three ratios need to be input when designing an

elitism scheme. The figure on the right side illustrates the meaning of each ratio. If all the

ratios are 0%, there will be no elitism scheme used in the algorithm.

Figure 8.13 GUI of elitism scheme setting

8.1.2.d Local search setting
As shown in Figure 8.14, the local search computation can be restricted within a

single cell or the neighboring cells around the concerned cell. The figure on the right side

154

illustrates how these tow settings will work. If none of the methods are chosen, the

designed algorithm will not include local search scheme.

{Method H2fincluding neighbor cels) ¥]

Method #1 cell
hﬁ“ 7

1

Concerned individual 1

Figure 8.14 GUI of local search setting

8.1.2.e Forbidden region setting
As shown in Figure 8.15, the forbidden region concept will be applied in the

designed algorithm if “Yes” button is clicked. Otherwise, the free model MOEA will not

apply forbidden region during its evolutionary process.

J Fobudden Fegion

Fie Heb
in your algorithm?

Yo | Mo | _How |

Horbidden Region

Concerned individual
T

Ilustration of Forbidden Region

Figure 8.15 GUI of forbidden region setting

After all the schemes have been set, the setting information can be viewed as
shown in Figure 8.16. Moreover, if the designers are not satisfied with the current setting,

they can change any of them by click the “Reset” button.

155

Figure 8.16 GUI of viewing all parts of free model setting

Figure 8.17 GUI of visualization setting

8.2 Visualization Setting

In order to help the users to view the quality of the results during the evolutionary
process, visualization parameters need to be set before the algorithm starts running. For
example, as shown in Figure 8.17, for each 10 generations, the evolutionary trajectory of

the population size, average rank value and average density value will be displayed.

156

Meanwhile, the resulting Pareto front and the statistical box plots of current population
rank and density values will be shown as well. The resulting data will be saved to a user

specified data file for each 10 generations according to the setting in Figure 8.17.

8.3 Start Running
When the “Start” button is clicked, Figure 8.18 will show the chosen settings for
all the parameters. If the users are satisfied with current setting, the specified MOEA will

start running. Otherwise, the parameters will be reset.

Figure 8.18 GUI of listing of all the chosen parameters.

When the MOEA starts running, it will not stop till the pre-determined
visualization interval is met. When the evolutionary result is shown in Figure 8.19, the
user can choose “Save Figure” to save the illustrated figure, “Save Data” to save the

resulting data, “Continue™ to continue running or “Stop” to stop program running.

157

Figure 8.20 GUI of loading data files for analysis

8.4 Data Analysis
EMO toolbox can also help users to analyze existing data as shown in Figure
8.20. By loading an MOEA resulting data file, the history record of evolutionary

trajectories, statistical Box plots and final Pareto front can be visualized (Figure 8.21(a)).

158

Moreover, the toolbox allows users to perform comparisons of more than one data files

resulting from different MOEAs. The Box plots of final rank, density and C values can be

compared (Figure 8.21(b)).

(@) GUI of single data set analysis; (b) multiple data sets comparison

Figure 8.21 Data analysis for resulting data

Figure 8.22 GUI of toolbox demonstration

159

8.5 Demonstrations

To guide the complete procedure of designing an MOEA by using EMO toolbox,
a RDGA is designed as the demonstration for the MOP test function described as
Equation (6.2). Each design step can be illustrated by clicking one of five buttons above
the figure. The figure will show the movie file of how the population and resulting Pareto

front will evolve as RDGA runs with given parameter settings (Figure 8.22).

8.6 Help Files
A complete help file is created and associated with each “Help” button in all the

GUISs. Figure 8.23 illustrates the “Help Contents™ of EMO toolbox.

Figure 8.23 GUI of help contents of EMO toolbox

160

IX. PARTICL SWARM OPTIMIZATION IN MOEA

Although evolutionary algorithms have shown their unique advantages in solving
multiobjective optimization problems, their drawback is also obvious—need relatively
longer time in producing a high quality Pareto front comparing to the traditional
optimization methods (i.e., linear weighting method). This low-efficiency problem is
resulted from EA’s population-based information sharing and random variation
characteristics, which cannot be overcome by evolutionary algorithm itself. Although in
Chapter VII, Dynamic Multiobjective Evolutior.lary Algorithm (DMOEA) proposed a
promising way to improve the computational efficiency of MOEA by applying dynamic
population strategies, it is still restricted by EA’s intrinsic properties. Therefore, in order
to aim at improving efficiency of MOEA, we need to search for a clever techmque to
assist MOEA to achieve a near-complete, near-optimal and uniformly distributed Pareto
front with a faster convergence speed. Particle Swarm Optimization (PSO) is considered

to be such a candidate.

9.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first proposed by Kennedy and Eberhart
[86] in 1995, which was inspired by the choreography of a bird flock. This technique can
be seen as a distributed behavior algorithm that performs multidimensional search [87].
According to PSO, the behavior of each individual is affected by either the best local or
the best global individual to help it fly through a hyperspacé. Moreover, an individual can

learn from its past experiences to adjust its flying speed and direction. Therefore, by

161

observing the behavior of the flock and memorizing their flying histories, all the
individuals in the swarm can quickly converge to near-optimal geographical positions

with well-preserved population density distribution.

Normally, PSO is considered as an evolutionary computation approach in that it

uses the common evolutionary computation techniques such as:

1. It is initialized with a population of random solutions.
2. It searches for the optimum by updating generations.
3. The adjustments of individuals are analogous to real value crossover operation in

evolutionary algorithms.
4. Fitness evaluation is evaluated by objective functions.
However, the updates of the individuals are not accomplished by random crossover or
mutation of genes, an equation can compute the new velocity of each individual i at the
Jjth dimension based on its current location x(i, j), previous velocity V,(i, j), previous
location p,_,(i,j) at which the highest fitness value this individual has been achieved,
and the population global location (g, (/7)) at which the highest fitness value the

population has achieved. Therefore, the velocity updating equation is

V, 7Y =0V,) + R (Dyey (4>) = X, J)) + R, (8,0 (/) = X2, 7)) » O.1

where @ is an inertia weight value [88] and R, and R, are two random numbers
between 0 and 1. After the velocity is updated, the new location of i4 individual at the

Jjth dimension can be calculated as

162

x(i, j) = x(i,) +V,(,) (9.2)

Comparing to evolutionary algorithms, the information sharing mechanism in PSO is
significantly different. In EAs, individuals share their information with each other by
crossover and the whole population moves like one group towards an optimal point. In

PSO, only g,,,(j) provides the information to other individuals to adjust their speeds. It

is a one-way information sharing mechanism [89]. The entire population focuses on the

best individual and converges to the best solution quickly.

Due to PSO’s single-point-centered characteristic, it is unable to locate the Pareto
front since there are more than one best individuals exist in the population. However,
with certain modifications (i.e., Pareto ranking [43]+ niche sharing [42], neighborhood
method [54]), PSO can become suitable to solve MOPs. By now, there are very few
papers [89-92] found to extend PSO in solving MOPs, this research area is still in its

beginning stage.

9.2 Dynamic Particle Swarm Multiobjective Optimization (DPSMO)

In this research, to tackle multiobjective optimization problems, PSO is devised
with dynamic population size proposed in Chapter VI. In another word, DMOEA’s
crossover and mutation scheme is replaced by PSO’s information sharing method in order
to improve convergence speed. To prevent the degradation of the effectiveness and

efficiency of the algorithm, the following strategies are applied in the new algorithm:

163

The genotype of each individual will be a real number instead of binary genes.
For each individual, its genotype will includes two types of velocity parameters—
rank velocity and density velocity. On each dimension of the decision vector, an
individual will be assigned with a rank and a density velocity.

Cell rank value of each indivyidual is still calculated, all the individuals with rank
value equal to 1 are the global best (rank) individuals. However, for any
individual A, only those best (rank) individuals that dominate it will be

considered as the candidates of A’s g, ,.,- If more than one candidates of
Zrest_rame €XIStS, the one with lowest density value will be selected as the g,,, ..
of individual A.

For any individual A, its local best (rank) individual p,,, ., is randomly selected
from the individuals that are located in the same cell and dominate A. If there is
no such kind of individual exists, p,,, .., Will be individual A itself.

Cell density value of each individual is calculated. For any individual A, its best
(density) global individual g, ,, is the individual that has the lowest cell
density value (except those reside in “forbidden region™).

For an individual A, its local best (density) individual p,,, ,, is randomly

selected from the individuals that are located in the same cell or neighboring cells
(except those reside in “forbidden region™) and has the lowest cell density value.

The entire population is equally and randomly divided into two subpopulations
that responsible for minimizing rank value and maintaining density value,

respectively. All the individuals will be cloned and the location of its copy will be

164

10.

updated based on its new rank or density velocities according to the subpopulation
it belongs to.

Both offspring and its parent will survive to the next generation.

Population declining strategy performs the same task as described in DMOEA.

Objective compression strategy performs same as described in DMOEA.

From the procedures of Particle Swarm Multiobjective Optimization with

Dynamic population size (DPSMO), we can see:

1.

As final result will be a set of solutions instead of a single solution, the geography
restriction described as step 3 or 5 has to be applied to assign an individual a
global best target to follow. Otherwise, any non-dominated individuals may affect
an individual’s new location at each generation, thus we may see all the
individuals jump around and converge slowly.

To obtain optimal solutions with uniformly distribution, the population density
value needs to be preserved as well as the minimization of population rank value.
Therefore, each individual has two types of velocities, rank velocity and density
velocity, which will guarantee both Pareto optimality and uniform distribution of
the final resulits will be achieved.

Dynamic population strategy is applied. For an individual, Equations (9.1) and
(9.2) update its velocities and locations on each dimension of the decision space.
Indeed, this action implies a crossover operation among an individual, its local
best and its global best. The newly updated individual can be considered as an

offspring. For this reason, “population growing strategy” in DMOEA is not

165

9.3

applied in DPSMO since an individual is supposed to know “where to go” before
it moves in particle swarm. Moreover, instead of applying “population growing
strategy”, using simple offspring updating method based on Equation (9,1) and
(9.2) will save significant running time spent in DMOEA on evaluating an
offspring’s fitness value and comparing with its parents.

As there may be more than one particles affect an individual’s moving speed and
direction, and most importantly, there are two types of velocities associated with
each individual, the “cloning” method in step 7 implements an elitism scheme to
keep the newly explored better-fitted individuals. This method is crucial for
DPSMO because it guarantees the population converges to the correct direction.
I1l-fitted individuals will be removed based on “population declining strategy”,
thus the population size can be controlled and the population quality will be

increased.

Simulation Study on DPSMO

To validate proposed DPSMO, we selected Function F3 as the benchmark

problem in the simulation. Equation (6.6) and Figure 6.13 show the mathematic formula

and true Pareto front of this problem respectively. For a fair comparison, the initial

population, the age threshold, the population size per unit volume, ppv and the cell

scales K, and K, are selected as 2, 10, 3, 50 and 50, respectively, which are same with

those for DMOEA in Subsection 7.7.1. Both algorithms run 50 times and the stopping

generation is set to be 2,000. Figure 9.1 shows the true Pareto front, resulting Pareto front

by DMOEA and DPSMO. The evolutionary trajectories of the population size and

166

average individual rank, density and distance values over 50 runs by DMOEA and

DPSMO are shown in Figures 9.2 (a) — (d), respectively.

-

.' True I;aram fm'm
09k + DPSMO resulting Pareto front |
o DMOEA resulting Pareto front

0DBf
07f
06}

05+

f2(x)

D.4F

03F

D2f

0.1F

1 L 1 A1 1 1 1
lEI.Z' 03 0.4 05 0E 0.7 08 09 1
f{x)

Figure 9.1 Resulting Pareto fronts by DMOEA and DPSMO on Function F3

Form Figure 9.1, apparently, there are many final solutions resulting from
DPSMO are dominated by those from DMOEA. This result can also be verified by
Figure 9.2(d), which shows the final Pareto front of DMOEA is closer to the true Pareto
front than that of DPSMO. This effect can partly explained by the intrinsic characteristics
of Function F3’s local and global optimality—when the resulting Pareto front is getting
closer to the true (global) Pareto front, both algorithms have more difficulty to yield
better-fitted offspring. Moreover, for DPSMO, since only the global best individuals and
local best individuals can provide the moving information to the entire population, it is
more possible for DPSMO to stuck on a middle stage if all the current individuals are
Pareto optimal and there is no even better-fitted g, is generated. This problem will hold
DPSMO from locating true Pareto front, especially when the given MOP has more than

one local Pareto fronts.

167

NER

g

Average population size
g

8

)

0

(a) Evolu

i5 v

0 200 400 600 ©00 1000 1200 1400 1600 1800 2000

Generations

tionary trajectories of population sizes

W

[
bl

o

Average individual density value

2

..... DM;:!EA

2
o

0 20 40 60 60 1000 1200 140 1600 180 2000

Generations

(c) Trajectories of average density value

B R 8 B 5 & B

[

Average individual rank value
=]

th

=}
=1

200 400 600 600 1000 1200 1400 1600 1600 2000

Generations

(b) Trajectories of average rank values

Average individual distance value

=

T

A0 40 60 AW (M0 120 1400 1600 1A00 2000

Generations

(d) Trajectories of average distance values

Figure 9.2 Evolutionary trajectories for the population size and the values of three indicators
resulting by DMOEA and DPSMO on Function F3

Comparing to DPSMO, DMOEA does not have this problem because
evolutionary algorithm applies a population-based information sharing mechanism. A
better-fitted offspring can be generated by a crossover operation between any two
individuals, no matter how good these parents are. However, from Figure 9.2 (a) - (c), we
can also see the advantage of DPSMO since it produces much faster convergence speed.
In DPSMO, each particle knows its moving direction and how fast it should go if there
exists another individual with better performance. Therefore, before it is trapped by a
local Pareto front, the probability that an individual generates a better-fitted offspring by

DPSMO is much higher than that of DMOEA. This characteristic will result in both less

168

evaluation time and less generation numbers, which are the major reasons that DPSMO is
almost much faster than DMOEA on Function F3 in terms of converging entire

population to a uniformly distributed Pareto front.

9.4 Dynamic Particle Swarm Evolutionary Algorithm (DPSEA)

Since both DMOEA and DPSMO have significant benefit and drawback, we can
integrate particle swarm and evolutionary algorithm together in order to take advantages
of both algorithms and improve the quality of the evolved solutions. In one aspect,
evolutionary algorithm can help each individual share its information with any other
individuals instead of only focusing on the best individuals. On the other hands, particle
swarm can inform an individual which direction will be the best way to go and how fast
its velocities should be. Therefore, inspired by both algorithms, a Dynamic Particle
Swarm Evolutionary Algorithm (DPSEA) is designed to improve efficiency and efficacy

of evolutionary process.

The main skeleton of DPSEA is constructed based on DPSMO. Nevertheless, in
addition to the location updating strategy of particle swarm, the individuals will perform
crossover operation as well. At each generation, an offspring may be generated through
two mechanisms—updating the location of a cloned individual or performing crossover
between two selected parents. Population growing strategy will be used to determine if an
offspring generated through crossover can survive to the next generation and population
declining strategy is applied to remove an existing ill-fitted individual. Therefore,

comparing to DPSMO, the only change in DPSEA is adding a crossover operation and a

169

population growing strategy borrowed from DMOEA in both of rank and density
subpopulations. By adding these two operations, the running interval for each generation
may increase comparing to DMOEA and DPSMO because there are two information-
sharing actions performed in DPSEA. However, this sacrifice will be worthy if these two
actions can prompt each other and find more valuable individuals than using only one

information sharing action.

9.5 Comparison Study on DMOEA, Di’SMO and DPSEA

To compare the performance of DPSEA with DMOEA and DPSMO, two
benchmark problems— Function F3 and F6 are tested. For Function F3, the initial
population, the age threshold, the population size per unit volume, ppv, the cell scales
K, and K, and stopping generations are selected as 2, 10, 3, 50, 50 and 2,000,
respectively. For Function F6, the initial population, the age threshold, the population
size per unit volume, ppv, the cell scales K, K, and K, and stopping generations are
selected as 2, 10, 3, 20, 20, 20 and 10,000, respectively. For each test function, final
Pareto front, trajectories of population size, average rank, density and distance values,
Box plots of final rank, density and distance values and C values resulting from all three

algorithms are illustrated.

9.5.1 Simulation on Function F3
Figure 9.3 shows the zoomed sample of the true Pareto front and the resulting
Pareto fronts by DMOEA, DPMO and DPSEA. . Figures 9.4(a) — (c) show the Box plots

for the final rank, density and distance indicators over 50 runs, respectively. The

170

performance measures of C(X,, X) for the comparison sets between algorithms i and

j are shown in Figure 9.5, where algorithms 1 — 3 represent DPSMO, DMOEA and
DPSEA, respectively. Moreover, the evolutionary trajectories of the population size and
average individual rank, density and distance values over 50 runs by three algorithms are

shown in Figures 9.6 (a) — (d), respectively.

07t + True Pareto front i
+ Pareto front resulting from DMOEA
o Pareto front resulting from DPSMO
065 o Pareto front resulting from DPSEA |
06F
$c055;
]
05}
D45+
04F
' i

06 062 064 066 068 07 072 074 076
fi(x)
Figure 9.3 Resulting Pareto fronts by DMOEA, DPSMO and DPSEA on Function F3

(a) Final rank value (b) Final density value (¢) Final distance value

Figure 9.4 Box plots of three indicators on Function F3

From Figures 9.3 — 9.6, we can see that all three algorithms have the capability to
converge to a Pareto front with rank value and density value equal to 1 and 3,
respectively. However, from Figures 9.3 and 9.4(c), it is obvious that DPSEA’s resulting

Pareto front is closer to the true Pareto front than those produced by the other two

171

algorithms. In addition, Figure 9.5 (c) shows that about 70% and 45% of final
populations resulting from DPSMO and DMOEA are covered by DPSEA and 0% and
10% of population resulting from DPSEA are covered by DPSMO and DMOEA,
respectively. This result proves that DPSEA produce better Pareto fronts than the other
two algorithms in terms of finding near-optimal, near-complete and uniformly distributed

Pareto front.

asp 08 - asE

r] 4 o8 4 et :
o7t 1 07t E 1 o7t

088 B 1) 88

05 1 05 1 08 :
73 4 04 ° 1 (23 g
o3t 1 oap 1 o3f
02 1 02 i 1 02
(313 ° 1 (313 E 4 o1 °

o — n— 4 Q meeden | B

o os T 18 2 25 3 35 1 g 05 1 15 2 25 & 35 4 o o5 i 15 2z 28 3 35 ¢

v A A
CX,, X)) CX,, X)) CX;, X))

Figure 9.5 Box plots using C measure on Function F3

Form Figures 9.6 (a) — (d), it is observed that DPESA is even faster than DPSMO
in terms of generation numbers to converge. This phenomenon shows that two
information-sharing techniques can promote each other and help entire population
converges relatively faster than any one of them. When both of the techniques assist
evolutionary process, it will be much easier for an individual to find a better-fitted
offspring. These newly generated offspring will keep approaching true Pareto front and
push previously non-dominated individual into a dominated one, which will be
eliminated by population declining strategy. This mechanism explains why DPSEA
produces lowest distance value within smallest number of generations as shown in Figure

9.6(d).

172

450
...... DMOEA 50
= DPSMO ||
A0 --- DPSEA 5
&30 % o}
" - i
20 |
$ £
e 1
%’w 3
b3
2 >
@ H b
gm { 1 |
915 i
™ L
< '™ s U
10 y
50 < LS
u i i A - e A A A L .‘
0 200 400 600 600 1000 1200 1400 1600 1800 2000 o

0 20 40 60 B0 100 1200 1400 1600 1800 2000
Generations ordlss M
(a) Evolutionary trajectories of population sizes (b) Trajectories of average rank values

1
s - - T T v T T T T 10— —

] o = DPSMO
'E 3 - § === DPSEA
,,,,,, DMOEA @ 1|]n 2
£ — DPSMO g
£ s ~—- DpsEA 5
g =
=
2 ® w0’
3 :
3 3
Es =
o @ 0L
(=]
1]
< <
I A i L i i L i L 2 A i i i n L i i I
E"é;l:l 200 400 600 600 1000 1200 1400 1600 1800 2000 0 1] 200 400 600 €00 1000 1200 1400 1600 1800 2000
Generations Generations
(c) Trajectories of average density value (d) Trajectories of average distance values

Figure 9.6 Evolutionary trajectories for the population size and the values of three indicators
resulting by DMOEA and DPSMO and DPSEA on Function F3

9.5.2 Simulation on Function F6

The mathematical formula and true Pareto front for Function F6 are given in
Equation (7.14) and Figure 7.19. The first quadrant of a unit sphere is exactly the true
Pareto front. Figure 9.7(a) — (c) shows the resulting Pareto fronts by DMOEA, DPMO
and DPSEA, respectively. Figures 9.8(a) — (c) show the Box plots for the final rank,
density and distance indicators over 50 runs, respectively. The performance measures of

C(X,,X,) for the comparison sets between algorithms i and j are shown in Figure 9.9,

where algorithms 1 — 3 represent DPSMO, DMOEA and DPSEA, respectively.

Moreover, the evolutionary trajectories of the population size and average individual

173

rank, density and distance values over 50 runs by three algorithms are shown in Figures

9.10(a) — (d), respectively.

LA e PR
PR T
R
‘._ % \”.
\ . ."\‘f - Q‘
ORI R L5
R R T

(a) DMOEA (b) DPSMO (c) DPSEA
Figure 9.7 Resulting Pareto fronts from DMOEA, DPSMO and DPSEA on Function F6
:: i DMOEA DPSMO DPSEA 4
i i 5 e
® i 1

=== |1] BR &
oo DMOEA DPSMO DPSEA 3
t:: e, s 3 " DMOEA DPSMO DPSEA

(a) Final rank value (b) Final density value (c) Final distance value

Figure 9.8 Box plots of three indicators on Function F6

From Figures 9.7(a) — (c), we can see that all three algorithms result in completive
Pareto fronts from their appearances. Meanwhile, from Figures 9.8 (a) — (c) and 9.9 (a) —
(c), we cannot find significant differences from the indicators of final results from all
three algorithms as well. Since Function F6 does not generate any local Pareto front,
there will be no hindrance for DPSMO to locate true Pareto front. However, by applying
two information-sharing techniques, DPSEA still shows its ability to approximate more

accurate Pareto front than the other two algorithms as shown in Figure 9.8(c) and 9.10(d).

174

) =]
0sE as 08k
o ag o
0z ar a7
0E [13 b1
ns s s
nap o4 04
n3 03 Lk
oz [¥] [
o Ly gt s ang g p—— v
] os 1 15 i“ 25 3 35 L] o ns 1 15 25 3 as i o ns 1' IIE ;‘ 25 3 35]
Al
CIEX) CX,,X,,) CX,.X,,)
Figure 9.9 Box plots using C measure on Function F6
200 — W e
L e S [DMOEA
1800 ,l"., —— DPSMO
v --- DPSEA
1600 7ot S
H /N0 I, DHOEA]
% 140 i — DPSMO | =
B { == DPSEA
g!m £
E_ﬂm g '
g 3
o 50 E
el :
< w z
20 = M~
¢ L
007660 200 300 4000 5000 G0 7000 8000 9000 10000 00000 2000 000 4000 500 00D 700D BOCD 5000 10000
Generations Generations

(a) Evolutionary trajectories of population sizes

15 10’
...... DMOEA
— DPSMO
- === DPSEA
f 2
s S ‘
3 3 f
= |
E
% alﬂ‘l
< 15¢ E
107

Generations

(¢) Trajectories of average density value

1D 1000 2000 3000 4000 5000 B5OOO 7000 8000 9000 10000

(b) Trajectories of average rank values

0 1000 20 3000 4000 5000 6000 7000 BOG0 9000 10000
Generations

(d) Trajectories of average distance values

Figure 9.10 Evolutionary trajectories for the population size and the values of three indicators

resulting by DMOEA and DPSMO and DPSEA on Function F6

However, by examining the evolutionary trajectories as shown in Figures 9.10 (a)

— (d), we can see remarkable difference among three algorithms in terms of convergence

175

property. It only takes DPSMO less than 1,000 generations to converge and DMOEA
needs about 7,000 and 35,00 generations, respectively. Table 9.1 shows the average
running time per generation for each of three algorithms. The “CPUTIME” command
from MATLAB (version 6.1) is used to measure the time elapsed for each algorithm
implemented in MATLAB and a HP computer with dual 2-GHz processors and 1-GByte
RAM is used for simulation. From Table 9.1, we can see that DPSMO runs than DMOEA
and DPSEA faster at each generation. This is contributed by DPSMO’s population
growing method, which does not evaluate newly generated offspring and filter the
incompetence ones as described in Subscetion 9.2. DPSEA is a bit slower than DMOEA
since it applies two information-sharing techniques at each generation. However, because
the most time consuming parts are population declining strategy and . objective
compression strategy, which are used by all three algorithms, the difference of time
consuming per generation for these algorithms is not remarkable. Therefore, from the
above observations, it is clear that DPSMO has the fastest convergence speed since it -
spends least time on each generation and takes smallest number of generations to
converge. Although DPSEA will spend a bit longer time on each generation tham-.-
DMOEA, the total time consuming of convergence for DPSEA is still significantly
shorter than DMOEA since DPSEA takes much smaller generations to converge. In-..-

addition, we need to keep in mind that DPSEA will produce more accurately -

approximated Pareto front than the other two algorithms in terms of distance values and-..... ..

DPSMO may generate less competitive Pareto front, especially there are local Pareto

fronts exist for the given MOP. Nevertheless, combining particle swarm optimization

176

with evolutionary algorithms provides a potential way to design an MOEA in solving real

world MOPs that need fast processing time to generate qualified Pareto fronts.

Table 9.1 Comparison results of computation time of 6 from DMOEA, DPSMO and DPSEA

DMOEA DPSMO DPSEA

Time 0.18 0.15 0.20
(sec)

177

X. CONCLUSIONS AND FUTURE WORKS

Although the conventional algorithms, such as linear weighting, goal
programming and min-max optimization are still widely used to solve MOPs,
multiobjective evolutionary- algorithms have drawn growing attentions from more and
more researchers in that they are designed to deal simultaneously with a set of candidate
solutions. This characteristic allows MOEAs to find an entire set of Pareto optimal
solutions in a single run of the algorithms, instead of having to perform a series of
separate runs as in the cases of the conventional mathematical prégramming techniques.
In addition, evolutionary algorithms are less susceptible to the concavity, discontinuity
and local optimality of the Pareto front, whereas these issues are critical concerns for

those conventional approaches.

According to the No Free Lunch (NFL) theorem [51], no formal assurances of an
algorithm’s general effectiveness exists if insufficient knowledge of the problem domain
is incorporated into the algorithm domain. Therefore, some of the studies on the MOP
test suite are included in this research and seven benchmark MOP test functions are
examined by some state-of-the-art MOEAs (i.e. NSGA-II, SPEA II). From the
comparison and analysis of the simulation results, although some of the difficulties
cannot be thoroughly addressed by these MOEA, it is clear that three techniques are the
crucial building blocks in a successful MOEA design procedure. These techniques
include: a Pareto ranking scheme, a density estimation and preservation method and an

elitism scheme. A Pareto ranking scheme helps the initial population converges to a

178

Pareto front at the final generation, a density estimation and preservation method can
prevent the emergence of the “too crowded” areas, and an elitism scheme stores those
non-dominated individuals to avoid losing any the Pareto points generated throughout the
entire evolutionary process. By synergistically integrating these techniques and other
schemes (i.e., mating restriction, forbidden region), a Rank-Density based Genetic
Algorithm (RDGA) [54] is designed and investigated by the given MOP test suite. By
examining the selected performanc¢ indicators, RDGA is found to be competitive with,
or even superior to, the other advanced MOEAs in terms of keeping the diversity of the
individuals along the trade-off surface, tending to extend the Pareto front to new areas,
and finding a well-approximated Pareto optimal front. Moreover, RDGA is manipulated
by using a hierarchical gene representation to solve a real multiobjective optimization

problem—a radial basis neural network design problem.

Although RDGA shows its capability in coping with several types of challenging
MOPs, it still cannot tackle the confliction between avoiding and exploiting “genetic
drift” phenomenon. In fact, if an MOEA has fixed population size, it will be difficult, if
not impossible, to solve this problem since the limited computation resource cannot be
congregated and homogeneously distributed simultaneously. Therefore, based on the
principal ideas of RDGA, a Dynamic Muleiobjective Evolutionary Algorithm (DMOEA)
[84] is proposed in this research. In DMOEA, in one aspect, an offspring will be added
into the population if its fitness value is higher than one of its parents while the
corresponding parent is still maintained. This intention constructs a pure population

growing strategy in order to excite the population covering those unexplored areas. On

179

the other hand, three kinds of probabilities of “eliminating” individuals are computed
based on the dynamic situations of the individuals’ rank and density values. By
adaptively removing those incompetent individuals in terms of their rank and density
values, DMOEA can control the population size within a reasonable number. In addition,
the cell-based rank and density calculation technique and objective compression strategy
offers DMOEA less computation effort on fitness evaluation even a large population size
if involved. From the experiment fesult, DMOEA cah effectively exploit an optimal
| population size by locating all the trade-off hyper-areas and approximate a near-optimal,
near-complete Pareto front. Meanwhile, DMOEA shows its potential in solving
complicated MOPs with different characteristics (i.e., local optimality, non-uniformly

distributed and high dimensional decision and objective spaces).

Based on the extensive study of MOEAs, a module-based EMO Toolbox is
designed on MATLAB platform. This toolbox most of the advanced MOEAs (i.e.
NSGA-II, SPEA II, RDGA, IMOEA, PAES and DMOEA) are provided to the users.
Moreover, as an MOEA can be considered as a hybrid of several key techniques (ranking
scheme, density estimation, elitism, etc.) and for each technique, there are several
variations exist in literature, this toolbox provides users a free model design function. A
designer or user can have more flexibility in choosing their favorite method for each
building block; and the population growing and declining strategy can help the resulting
algorithms produce a near-optimal and near-complete Pareto front with optimal number
of individuals. The user-friendly visualization Graphical User Interface (GUI), Data

Analysis GUI and on-line Help link and Demonstrations also help users effectively

180

design a MOEA and efficiently apply it to solve real world multiobjective optimization

problems.
]] 1

Lo \ 1=0~1min L 1=0~2men o 1=0~3mn
6. o6 05

a4 04 4

a2 02 02

o oo oo

o 02 a2

a4 a4 a4}

a8 a8 a8

o8 E a8 an

3 2 : r:| |I 2 3 ;] ‘.1 ; ; ; |I1 1 3 ‘-l 3 I} lll 1 il‘ &
Ly} 4] Lyl
(a) t=0~1 min (b) t=0~2 min (¢) =0~3 min
1

o8 t=0rdimin o8 t=0-5mn 08 1=0-6min
08 08 o5}

04 04 4l

02 LH 02

| e o eoo

a 82 a2

ELES a4 a4

o8 o6 a8

a8 a8 a8

Y= = a4 & 1 Z = i & X 2 o 0 3 T T v 2 3 5
M n H
(d) t=0~4 min (e) t=0~5 min (f) t=0~6 min

Figure 10.1 An example of MOP with time varying objective function and Pareto front

Although evolutionary algorithms have been successfully applied in solving many

multiobjective optimization problems, it is also worthy to note that MOEA is not an

efficient approach in dealing with MOPs with time-varying decision variables, objective

functions and Pareto fronts. For example, Equation (10.1) represents an MOP with such

characteristics.

Minimize f (x) and f,(x), where
fi(x) =x,(1)x x,(t),
S (x) = x,(2),
x,(t) = sin(100),
&) = 8™
x,(t) = cos(100 1)
subject to 0 <7 < 6min

181

(10.1)

The objective space and Pareto fronts for different time interval are illustrated in
Figures 10.1(a) — (f). It is apparent that MOEAs will not satisfy the time constraint and
response fast enough to cope with this type of problem. Therefore, a Dynamic Particle
Multiobjective Optimization (DPSMO) algorithm is designed by combining Particle
Swarm Optimization (PSO) technique with dynamic population strategy. According to
PSO, as an individual will know where to fly and how fast its speed should be, it can
quickly move to an optimal position based on its historical trajectories and the knowledge
of the location of the best individual in the swarm. However, as PSO only performs av
point-centered, one-way information sharing mechanism, it may have difficulty in
approximating true Pareto fronts on MOPs with local Pareto optimality. For this reason, a
hybrid Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) is devised to take
advantages of PSO’s fast convergence characteristic and EA’s population-based
information sharing capability. From the simulation results, DPSMO dramatically
improves the convergence speed comparing to DMOEA and DPSEA produces better
Pareto fronts than DMOEA and DPSMO. Although DPSMO and DPSEA provide a novel
solution for MOEA in dealing with MOPs that need fast convergence speed, further study
and investigation are still needed to test the abilities of these two algorithms and improve

their performances.

Some other interesting issues may also be studied in future work. These issues
include: convergence characteristics of MOPs, dynamic or noisy fitness evaluation in
MOEA, on-line and real time MOEAs, mathematical representation of true Pareto front

and the existence and uniqueness quantification of Pareto front. In summary, these issues

182

can be categorized into three types: theoretical study, algorithm development and the
investigation of the real applications. Especially, a suitable MOP in real world
environment needs to be developed and studied to examine all kinds of state-of-the-art

multiobjective evolutionary algorithms.

183

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

BIBLIOGRAPHY

H. Eschenauer, J. Koski and A. Osyczka, Multicriteria Design Optimization :
Procedures and Applications, Springer-Verlag, New York. 1986.

C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in
multiobjective optimization,” Evol. Comput., vol. 3, pp. 1-16, 1995.

A. Charnes, and W. Cooper, Management Models and Industrial Applications of
Linear Programming, John Wiley & Sons, New York. 1961.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, NJ. 1995.

H. Schwefel, Evolution and Optimum Seeking, John Wiley & Sons, New York.
1995.

K. Iwata, Y. Murotsu, T. Iwatsubo, and S. Fuji, “A probabilistic approach to the
determination of the optimum cutting condition,” ASME, Journal of Engineering
Jor Industry, vol. 4, pp. 1099-1107. 1972

S. Fenster and A. Ugural, Advanced Strength and Applied Elasticity, Elsevier,
New York. 1987.

Y. Ljiri, Management Goals and Accounting for Control, North Holland,
Amsterdam. 1965.

R. Philipson, and A. Ravindran, “Application of goal programming to
machinability data optimization,” ASME, Journal of Mechanical Design, vol. 3,
pp- 286-291. 1978.

A. Osyczka, Multicriterion Optimization in Engineering with Fortran Programs.

John Wiley & Sons, New York. 1984.

184

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

J. Holland, Adaption in Natural and Artificial Systems, MIT press, 2" Ed,
Cambridge, 1992.

E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the Strength Pareto
Evoluﬁonary Algorithm, Technical Report TIK-Report 103, Swiss Federal
Institute of Technology, 2001.

E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach,” IEFE Trans. Evol. Comput., vol. 3,
pp- 257-271, 1999.

K. Deb, S. Agrawal, A. Pfatap and T. Meyarivan, “A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-IL,” in Proc.
Parallel Problem Solving from Nature—PPSN VI, pp. 849-858, 2000.

D. A. Van Veldhuizen, Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and
Computer Engineering, Air Force Institute of Technology, Wright-Patterson AFB,
Ohio, May 1999.

G. Brassard and P. Brately, Algorithms: Theory and Practice, Prentice Hall, NJ,
1988.

P. Husbands, “Genetic algorithms in optimization and adaptation,” Advances in
Parallel Algorithms, pp. 227-276, 1992.

J. Pearl, Heuristics, Addison-Wesley, MA, 1989.

D. E. Goldberg, From Genetic and Evolutionary Optimization to the Design of
Conceptual Machines, Technical Report 98008, University of Illinois at Urbana-

Champaign, 1998.

185

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Neapolitan and N. Kumarss, Foundation of Algorithms, D. C. Heath and
Company, MA, 1996.

G. B. Lamont (ed.), Compendium of Parallel Parograms for the Intel iPSC
Computers. Department of Electrical and Computer Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, 1993.

A. Vicini and D. Quagliarella, Multipoint Transonic Airfoil Design by Means of a
Multiobjective Genetic Algorithm, Technical Report AIAA-97-0082,
Washington, D.C., ATAA, 1997.

L. Eshelman, (ed.). Proc. Of the Sixthe Int’l Conf. On Genetic Algorithms.
Morgan Kaufmann, San Mateo, Cambridge, 1995.

J. McDonnell, R. Reynolds and D. Fogel (ed.). Evolutionary Programming IV:
Proceedings of the Fourth Annual Conference on Evolutionary Programming.
MIT Press, 1995.

D. Goldberg, Genetic Algorithms in Search, Optimization, and Maéhine Learning.
Addison-Wesley, Reading, 1989.

L. Fogel, A. Owens and M. Walsh, Artificial Intelligence Through Simulated
Evolution. John Wiely & Sons, New York, 1996.

D. Fogel, System Identification Through Simulated Evolution: A Machine
Learning Approach to Modeling, Ginn Press, Needham Heights, 1991.

H. Schwefel, Numerical Opﬁmization of Computer Models, John Wiley & Sons,
Chichester, 1981.

J. Holland, Adaption in Natural and Artificial Systems. MIT Press, 1% Ed.,

Cambridge, 1975.

186

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

L. Davis, Handbook of Genetic Algorithms. Van Nostrand Reinhold, Amsterdam,
1991.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Program. 2™
Ed., Springer-Verlag, New York, 1993.

D. Beasley, D. Bull and R. Martin, “An overview of genetic algorithms: Part 1,
Fundamentals,” University Computing, vol. 2, pp. 58-69, 1993.

C. Janikow and Z. Michalewicz, “An experimental comparison of binary and
floating point representations in genetic algorithms,” in Proc. 4* Int. Conf
Genetic Algorithms, pp. 31-36, 1991.

A. Gillies, Machine Learning Procedures for Generating Image Domain Feature
Detectors. PhD thesis, University of Michigan, Ann Arbor, 1985.

G. Baker, “Adaptive selection methods for genetic algorithms”, Proceedings of
the 2™ Int. Conf. Genetic Algorithms, pp. 14-21, 1987.

K. De Jong; The Analysis and Behavior of A Class of genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, 1985.

G. Syswerda, “Uniform crossover in genetic algorithms,” in Proc 3 Int. Conf.
Genetic Algorithms, pp. 2-9, 1989.

L. Davis, “Job shop scheduling with genetic algorithms,” in Proc I* Int. Conf.
Genetic Algorithms, pp. 136-140, 1985.

G. Syswerda, “Schedule optimization using genetic algorithms,” Handbook of
Genetic Algorithms, pp. 2-9, 1989.

J. Schaffer, “Multiple objective optimization with vector evaluated genetic

algorithms,” in Proc. I* Int. Conf. Genetic Algorithms, pp. 93-100, 1985.

187

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Fourman, M., “Compaction of symbolic layout using genetic algorithms,” in
Proc. I Int. Conf. Genetic Algorithms, pp. 141-153, 1985.

J. Horn, N. Nafpliotis and D. E. Goldberg, “A niched pareto genetic algorithm for
multiobjetcive optimization,” in Proc. 1% IEEE Cong. Evolutionary Computation,
pp- 82-87, 1994.

N. Srinivas and K. Deb, “Multi-Objective function optimization using non-
dominated sorting genetic algorithms,” Evol. Comput., vol. 2, pp. 221-248, 1994,
C. Fonseca and P. Fleming, “Genetic algorithms for multiobjective optimization:
formulation, discussion and generalization”, in Proc. 5" Int. Conf Genetic
Algorithms, pp. 416-423, 1993.

S. W. Mahfoud, “Genetic drift in sharing methods,” in Proc. I IEEE Cong.
Evolutionary Computation, vol. 1, pp. 67-72, 1994.

G. W. Greenwood, X. S. Hu and J. G. D’Ambrosio, “Fitness functions for
multiple objective optimization problems: Combining preferences with Pareto
rankings,” in Foundations of Genetic Algorithms 4 (FOGA96), pp. 437-455, 1996.
D. S. Todd and P. Sen, “A multiple criteria genetic algorithm for containership
loading,” in Proc. 7" Int. Conf. Genetic Algorithms, pp. 674-681, 1997.

A. G. Cunha, P. Olivera and J. Covas, “Use of genetic algorithms in multicriteria
optimization to solve industrial problems,” in Proc. 7% Int. Conf Genetic
Algorithms, pp. 682-688, 1997.

H. Meunier, E. G. Talbi and P. Reininger, “A multiobjective genetic algorithm for
radio network optimization,” in Proc. 7" IEEE Cong. Evolutionary Computation,

pp. 317-324, 2000.

188

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[571

[58]

D. H. Loughlin and S. Ranjithan, “The neighborhood constraint-method: A
genetic algorithm-based multiobjective optimization technique,” in Proc. 7* Int.
Conf. Genetic Algorithms, pp. 666-673, 1997.

D. H. Wolpert and W. G. Macready, “No free lunch theorem for optimization,”
IEEE Trans. Evol. Comput., vol.1, pp. 67-82, 1997.

J. D. Knowles and D. W. Corne, “Approximating the non-dominated front using
the Pareto archived evolutionary strategy,” Evol. Comput., vol. 8, pp.149-172,
2000.

T. Krink and R. K. Ursem, “Parameter control using agent based patchwork
model,” in Proc. 7"* IEEE Cong. Evolutionary Computation, pp. 77-83, 2000.

H. Lu and G. G. Yen, “Rank-density based multiobjective genetic algorithm,” in
Proc. 9" IEEE Cong. Evolutionary Computation, pp.944-949, 2002.

H. Luand G. G. Yen, “Multiobjective optimization design via genetic algorithm,”
in Proc. 2001 IEEE Conf. Control Applications, pp.1190-1195, 2001.

C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple
constraint handling with evolutionary algorithms—part I: A unified formulation,”
IEEE Trans. System, Man, and Cybernetics, vol. 28, pp. 26-37, Jan. 1998.

C.C. H. Borges and H J. C. Barbosa, “A non-generational genetic algorithm for
multiobjective optimization,” in Proc. 7" IEEE Cong. Evolutionary Computation,
pp. 172-179, 2000.

M. Laumanns, E. Zitzler, and L. Thiele, “ A unified model for multi-objective
evolutionary algorithms with elitism,” in Proc. 7" IEEE Cong. Evolutionary

Computation, pp. 46-53, 2000.

189

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Z. Michalewicz, “Genetic algorithms, numerical optimization, and constraints,” in
Proc. 6" Int. Conf. Genetic Algorithms, pp. 151-158, 1995.

D. A. Van Veldhuizen and G. B. Lamont, “On measuring multiobjective
evolutionary algorithm performance,” in Proc. 7% IEEE Cong. Evolutionary
Computation, pp. 204-211, 2000.

M. Tanaka, “GA-based decision support system for multicriteria optimization,” in
Proc. Int. Conf. Systems, Man, and Cybernetics, pp. 1556-1561, 1995.

V. R. Vemuri and W. Cedefio, “A new genetic algorithm for multiobjective
optimization in water resource management,” in Proc. 2™ IEEE Cong.
Evolutionary Computation, pp. 495-500, 1995.

N. Murata, S. Yoshizawa and S. Amari, “Network information criterion—
determining the number of hidden units for an artificial neural network model,”
IEEE Trans. Neural Networks, vol. 5, pp. 865-872, 1994.

X. M. Gao, S. J. Ovaska and Z. O. Hartimo, “Speech signal restoration using an
optimal neural network structure,” in Proc. IEEE Int. Conf. Neural Networks, pp.
1841-1846, 1996.

X. Yao, “Evolving artificial neural network,” International Journal of Neural
Systems, vol. 4, pp. 203-222, 1993.

A. Doering, M. Galicki and H. Witte, “Structure optimization of neural networks
with the A*-Algorithm,” IEEE Trans. Neural Networks, vol. 8, pp. 307-317,
1997.

S. Geman, E. Bienenstock and R. Dousat, “Neural networks and the bias/variance

dilemma,” Neural Comput., vol. 2, pp. 303-314, 1989.

190

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

B. Zhang and D. Cho, “Evolving neural trees for time series prediction using
Bayesian evolutionary algorithms,” in Proc. I* IEEE Symp. Combination of
Evolutionary Computation and Neural Networks, pp. 17-23, 2000.

G. G. Yen and H. Lu, “Hierarchical genetic algorithm based feed-forward neural
network design,” International Journal of Neural Systems, pp. 31-45, 2002.

T. Y. Ke, K. S. Tang, K. F. Man and P. C. Luk, “Hierarchical genetic fuzzy
controller for a solar power plant,” in Proc. IEEE Int. Symp. Industrial
Electronics, pp. 584-588, 1998.

G. G. Yen and H. Lu, “Hierarchical rank density genetic algorithm for radial-basis
function design,” in Proc. 9" IEEE Cong. Evolutionary Computation, pp.25-30,
2002.

T. Kaylani and S. Dasgupta, “A new method for initializing radial basis function
classifiers,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, pp. 2584-
2587, 1994.

P. D. Wasserman, Advanced Method in Neural Computing, New York: Van
Nostrand Reinhold, 1993

S. Chen, C. F. Cowan and P. M. Grant, “Orthogonal least square learnmg

algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol.

2, pp. 302-309, 1991. e

S. Ricardo and B. Amnon, “Evolutionary strategies for a parallel multi-objective--

genetic algorithm,” in Proc. 9" Int. Conf. Genetic Algorithms, pp. 227-234, 2000.

191

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

J. Arabas, Z. Michalewicz and J. Mulawka, “ GAVaPS-A genetic algorithm with
varying population size,” in Proc. 1* Cong. Evolutionary Computation, pp. 73-74,
1994.

N. Zhuang, M. Benten and P. Cheung, “Improved variable ordering of BDDS
with novel genetic algorithm,” in Proc. IEEE Symp. Circuits and Systems, pp.
414-417, 1996.

J. Grefenstte, “Optimization of control parameters for genetic algorithms,” /IEEE
Trans. Systems, Man and Cybernetics, vol. 16, pp. 122-128, 1986.

J. Alander, “On optimal pbpulation size of genetic algoriths,” in Proc. IEEE
Conference on Computer Systems and Software Engineering, pp. 65-70, 1992.

K. Tan, T. Lee and E. Khor, “Incrementing multi-objective evolutionary
algorithms: performance studies and comparisons,” in Proc. 1* Evolutionary
Multi-Criterion Optimization (EMO’2001), pp. 111-125, 2001.

K. Tan, T Lee and E. Khor, “Evolutionary algorithms with goal and priority
information for multi-objective optimization,” in Proc. 6” IEEE Cong. Evol.
Comput., pp.106-113, 1999.

K. Deb, “Multiobjective genetic algorithms: problem difficulties and construction
of test problems,” Evol. Comput., vol. 7, pp. 205-230, 1999.

K. Deb, L. Thiele, M. Laumanns and E. Zitzler, “Scalable Multi-objectvie
optimization test problems,” in Proc. 9" IEEE Cong. Evol. Comput., pp. 825-830,
2002.

H. Lu and G. G. Yen, “Dynamic population size in multiobjective evolutionary

algorithm,” in Proc. 9" IEEE Cong. Evol. Comput., pp. 1648-1653, 2002.

192

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

K. Tan, T. Lee, D. Khoo and E. Khor, “MOEA toolbox for computer aided multi-
objective optimization,” IEEE Trans. Systems, Man and Cybernetics, vol. 31, pp.
537-556, 2001.

J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int.
Conf. Neural Networks, pp. 1942-1948, 1995.

J. Kennedy, “The particle swarm optimization: social adaptation of knowledge,”
in Proc. 4" IEEE Cong. Evolutionary Computation, pp. 303-308, 1997.

Y, Shi and R.C. Eberhart, “A modified particle swarm optimizer,” in Proc. 5
IEEE Cong. Evolutionary Computation, pp. 69-73, 1998.

X, Hu and R.C. Eberhart, “Multiobjective optimization using dynamic
neighborhood particle swarm optimization,” in Proc. 9% IEEE Cong. Evol.
Comput., pp. 1677-1681, 2002.

J. Moore and R. Chapman, Application of particle swarm to multiobjetcive
optimization, Department of Computer Science and Software Engineering,
Auburn University, 1999.

T. Ray, T. Kang and S. K. Chye, “Multiobjective design optimization by
evolutionary algorithm,” Engineering Optimization, 2002 (in Press).

C.A.Coello and M. S. Lechuga, “MOPSO: A proposal for multiple objective
particle swarm optimization,” in Proc. 9" IEEE Cong. Evol. Comput., pp. 1051-

1056, 2002.

193

VITA
Haiming Lu 7
Candidate for the Degree of

DOCTOR OF PHILOSOPHY

Thesis: STATE-OF-THE-ART MULTIOBJECTIVE EVOLUTIONARY ALGORITHM
S—PARETO PANKING, DENSITY ESTIMATION AND DYNAMIC
POPULATION

Major Filed: Electrical Engineering
Biographical:

Personal Data: Born in Changchun, P. R. China, On February 23, 1972, the son of
Jun Lu and Kun Wan.

Education: Graduate from Tsinghua University, Beijing, P. R. China with the
Degree of Bachelor of Science in Electrical Engineering in July
1995.Completed the requirements for the Doctor of Philosophy with a
major in Electrical Engineering at Oklahoma State University in August
2002.

Experience: Technical Develop Engineer, Lucent China, Qingdao, China
(08/1995-01/1998). Technical Supervisor, Angels Company, Beijing,
China (02/1998-07/1998). Research Assistant, School of Electrical and
Computer Engineering, Oklahoma State University (08/1998-08/2002).
Teaching Assistant, School of Electrical and Computer Engineering,
Oklahoma State University (08/2001-05/2002).

Professional Memberships:
The Institute of Electrical and Electronic Engieers.

