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Chapter I

Introduction

1.1 Background

The School of Civil and Environmental Engineering at Oklahoma State University is

engaged in a project to improve and validate tbe accuracy, reliability, and repeatability of

target pollutant emissions estimates through monitoring, process unit sampling, and

computer modeling of the OC-ALC (Oklahoma City Air Logistics Center) / IWTP

(Industrial Wastewater Treatment Plant) air emission sources for Tinker Air Force Base.

The sources of air emissions include: the primary paint chip clarifier, oil-water

separators, aerated equalization basins, storage / stabilization tanks, metals treatment

basins, solid contract clarifiers, lift stations, and gravity thickener. In addition, this

project will include development of an air emission sampling strategy to improve the

accuracy of the air emissions reporting data (Veenstra, et aI., 200 l).

In production and maintenance processes at the OC-ALe, industrial wastewater

streams are generated which contain organic and inorganic compounds. Most of the

wastewater is generated from electroplating, chemical cleaning, and chemical depainting

operations (Hall, 1999). Before being discharged from the treatment facihty to the city of

Oklahoma City, these wastewaters are conected and treated in a variety of ways.

However, since many of these collection and treatment systems are open to the

atmosphere, they allow organic-containing, heavy metal-laden wastewaters to contact

ambient air. Based on logs of chemi.cal consumption and field monitoring, benzyl
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alcohol, phenol, acetone, 2-butanone, and methylene chloride are the main pollutants

emitted via the air phase from this IWTP (Hall, 1999).

The Clean Air Act Amendments of 1990 requires wastewater treatment facilities to

identify sources and quantify emissions of volatile organic compounds and hazardous air

pollutants. Regulation under 40 CFR Paft 63, National Emission Standards for Hazardous

Air Pollutants: Publfucly Owned Treatment Works, require operations to quantify and

report chemical releases to the environment (CFR Title 40: Protection of Environment,

US EPA, 1995).

Since residential neighborhoods are located in close proximity to the IWTP,

residents are potentially exposed to the chemicals released from the IWTP and could be

at risk. To evaluate effects of these chemicals on the environment and residents,

measurements of the air contaminants are required.

The overall research project involves three phases. Phase 1 involves the acquisition

of facility data and application of various air emission models. Most work for this phase

bas been accomplished. Two air emission models have been chosen, i.e., WATER9

(USEPA) and TOXCHEM+V3 (Enviromega Inc, Canada). Phase 2 includes the analysis

of model output and comparison to field and pilot plant data, while Phase 3 will involve

establishing the emission factors from each of the individual industrial wastewater

treatment plant process units. The project now is in Phase 2.

- 2-



Based on the summary of Phase 1, it was found that variability of components in the

influent is significant (Veenstra, et a1, 2001). For example, benzyl alcohol is not actually

measured but estimated, based on the measured concentration of phenol since the

consumption of benzyl alcohol is proportional to that of phenol in the chemical

consumption logs. It is estimated to have a mean concentration of 15.4 mgll if the

diffusivity of benzyl alcohol and phenol in the liquid phase are considered, and an

estimated mean concentration of 52.4 mgll if the diffusivity of both chemicals are not

considered (Veenstra, et aL, 2001). The concentrations of the contaminants of concern

vary seasonaUy. Methlyene chloride averages range from 18.8 mgll in winter to 22.75

mgll in summer. 2-butanone averages 7.97 mg/l in the winter and 8.35 mg/l in the

summer, while acetone averages range from 14.75 mg/I to 18.05 rngll in summer and

winter, respectively. Phenol is estimated to have a mean concentration of 14.3 mg/l over

1999-2001, in both summer and winter (Veenstra, et al., 2001).

1.2 The emission uncertainty of the IWTP

WATER9 and TOXCHEM+V3 were used to estimate air emissions from the IWTP

based on the concentrations of the five compounds mentioned above. But it is not known

which value is more representative and should be selected for use in determining the

emission factors. Thus, uncertainty inevitably exists. Generally, uncertainty has three

sources: modeling uncertainty, parameter uncertainty and input uncertainty (Monte,

1996). The more that is known about the model, parameter, or input value, the less

uncertainty remains. Therefore, exactly modeling the actual units for the treatment

facilities is important, and it helps reduce the uncertainty in the estimation of air
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emissions from this system. Sensitivity studies can help determine which factor the

system is the most sensitive to and potentially has a high contribution to the uncertainty.

In this thesis, the uncertainty contributed by the variability of concentrations of

compounds in water is the primary focus and will be discussed in detail.

1.3 General Fate Models (GFMs)

Field measurements and general fate models (GFMs) are the two main means to

estimate the emissions from IWTPs (Curto and Daly, 1995). GFMs are computational

models that perform a mass balance around each specified wastewater unit operation and

certain solids handling facilities, as well as the whole wastewater treatment facility. The

mass balances are usually performed considering five mechanisms in the treatment

system: 1) volatilization across the exposed wastewater-atmosphere interface, 2) stripping

to diffused air bubbles, 3) adsorption to solid particles or biomass, 4) absorption to

immiscible liquids, and 5) biodegradation (Corsi and Olson, 1998). The development of

GFMs for air emissions was prompted by the complexity and high cost of direct air

samphng and measurement from wastewater treatment facilities. Using GFMs, it is

possible to estimate emissions from complex treatment configurations while considering

split flows, liquid streams, quiescent surfaces, weirs, drops, as well as aerated, biological,

and covered processes or any single operation or process (Curto and Daly, 1995). Influent

wastewater characteristics, physical design characteristics, and operational data are

required to set up and run one of these models. Furthermore, GFMs are particularly

advantageous when projecting potential emissions under varying flow and design

conditions (Curto and Daly, 1995). The comparisons between field measurements and
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1.4 Significance of VOCs emissions analysis from IWTPs

Volatile Organic Compounds (VOCs), such as benzyl alcohol, phenol,

methylene chloride, 2-butanone and acetone, emitted from Tinker's lWTPs, can cause

serious environmental problems due to their odor and toxicities. Some of them are

harmful and carcinogenic if they are directly contacted or inhalated. For example,

methylene chloride, is carcinogenic and might cause hepatocellular adenomas or

carcinomas, hepatocellular cancer and neoplastic nodules with oral exposure ORIS

data base, USEPA, 1986). Potential health problems created by these VOCs would

affect not only the workers of the treatment plants, but aJso the general public and

residents in the surrounding area. Before measures are taken to protect the

environment from being polluted and people from being at risk, the VOCs emission

inventory of the IWTPs and the emission rate should be determined. The emission

inventory and emission rate determine what protective actions should be taken.

However, the variation and uncertainty of VOCs emissions make it tougher for

decision makers, especially in environmental risk assessment. The analysis of

variation and uncertainty of VOCs emissions are very important and necessary for an

efficient action of protection; however, uncertainty analysis of VOCs emissions from

IWTPs was not discussed in literature.

This thesis presented a method for uncertainty analysis of VOCs emissions from

IWTPs with a case study.

- 6 -



Chapter II

Literature Review

2.1 Determination of Emission Inventory

The determination of an emission inventory for air phase pollutant-releasing

facilities is essential for overall environmental management, environmental risk

assessment, and environmental impact assessment. It is required and regulated by the

USEPA (United States Environmental Protection Agency) (Curto and Daly, 1995).

Methods that are available to estimate air emissions include stack/field testing, published

emission factors, engineering equations, and a new and innovative tool/method--general

fate modeling (Curto and Daly, 1995). Some authors have also llsed the input-output

table method to predict the emissions from facilities (Jin, 1986; Ni, et aI, 2001). USEPA

AP-42 (Compilation of Air Pollutant Emission Factors) is widely used in the prediction

of ail" pollutants from mobile sources, coal-fired power plants and other energy facilities,

for which published emissi.on factors for the regulated facilities are available. For the

prediction of emissions of Volatile Organic Compounds (VOCs) from wastewater

treatment facilities, the general fate model is a new and innovative method to estimate the

emissions.

GFMs are computational models that perform a mass balance around each specified

wastewater unit operation and certain solids handling facilities, as well as the entire

wastewater treatment facility. Available GFMs include BASTE (Bay Area Sewage

Toxics Emissions) by R.L. Corsi of the University of Texas at Austin, WATER8

(USEPA), CINe} CUSEPA Cincinnati model) by Richard Dobbs at the University of
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Cincinnati, CORAL (Collection System Organic Release Algorithm) by R.L. Corsi of the

University of Texas at Austin while at the University of California-Davis, EPA FATE

(Fate and Treatability Estimator) by ABB Environmental, NOCEPM (NCASI Organic

Compound Elimination Pathway Model) by D.A. Barton with the National Council of the

Paper Industry for Air and Stream Improvement (NCASI), PAVE (Programs to Assess

Volatile Emissions) by the U.S. Chemical Manufacture Association, SIMS (Surface

Impoundment Modeling Systems-1990) by RADIAN for USEPA Office of Air Quality

Planning and Standards, TORONTO (specially for biological wastewater treatment

facility) by B. Clark and n. Mackay of the Institute of Environmental Studies, University

of TORONTO, and TOXCHEM+V3 (Enviromega, Canada). Among these models,

WATER8 and TOXCHEM+V3 were the only two models with temperature correction

for Henry's Constant, which is important for volatiles in a wastewater plant (Hall, 1999).

Furthermore, WATER8, BASTE, and TOXCHEM were selected by USEPA as

appropriate models for wastewater treatment systems (Card, 1995). WATER9 is the

newly version of WATER8 developed by USEPA for estimating air emissions from

water and wastewater sources.

2.2 Principles of GFMs

Corsi and Olson (1998) discussed the fundamental principles of these emission

estimating models or VOC fate models. Under steady-state condition, the mass balance in

a treatment system can be expressed as follows:

de
V - =QCo - QC + Rv + R~ + Rad + Rab + Rb

d/
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where:

V: reactor volume (m\

C, Co: dissolved contaminant concentration leaving and entering the reactor,

respectively (mg/m3
),

Q : volumetric flow rate entering into the reactor (m'/s).

Rv, Rs. Rad, Rab• Rb: contaminant removal rate by volatilization, stripping, adsorption,

absorption, and biodegradation, respectively (mg/s).

Since absorption is generally a complex process that is not well understood,

absorption is not considered for applications involving municipal wastewater, but may be

important in industrial wastewater systems (Corsi and Olson, 1998). The rate of

volatilization, stripping, adsorption and biodegradation can be modeled by the following

equations:

The rate of volatilization is typically modeled as:

where:

KL is an overall mass transfer coefficient (m/s),

A is the interfacial area over which mass transfer occurs (m\

(2)

CO" is the contaminant concentration in the gas phase adjacent Lo the well-mixed liquid
b

He is the Henry's law constant for chemical interested (mli//ffigas\

The rate of stripping by air bubbles can be modeled as:

where:

- 9 -
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Qb is the bubble volumetric flow rate (m3/s),

Yis a variable which represents the degree of saturation.

The adsorption rate can be modeled as:

where:

Qw is the volumetric sludge wastage rate (m3/s),

Cs is the solids or biomass concentration (mg/m3
),

Kp is a linear liquid-solid partition coefficient (m3/mg).

(4)

The rate of biodegradation is assumed to follow Monod kinetics and can be modeled as:

where:

kb is the first order biodegradation rate constant (rn3/mg.s),

X is the active biomass concentration (mg/m\

Combining all the above from equations 1 through 5, for a steady-state condition and

open process (Cg = 0), yields:

1
= -------------------

1+ K1.A/ Q + (Qh / Q)yf(. + (Q". / Q)KpC, + kbX / Q

(5)

(6)

Equation 6 serves to illustrate differences in existing models for estimating VOC

emissions from wastewater. For example, some models account for all the terms in the

denominator, while others do not. In addition, models differ in how they estimate or

prescribe parameters such as KL, He, y. Kp, and kb (Corsi and Olson, 1998).
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2.3 Uncertainty and Variability in an Emission Inventory

Most emissions inventories are not obtained by field acquisition of data, but

predicted based on mass balance and computational models (McKay, et a1., 1998). The

GFMs are based on computational equations to simulate the actual scenarios occurring in

a wastewater plant, and as such, variability and uncertainty will inevitably exist.

Emission inventory uncertainty and variability analysis is not a new concept and many

studies on this topic have been conducted over several decades (McKay, et aI., 1998).

The U.S. Environmental Protection Agency (EPA) and the State and Territorial Air

Pollution Control Officers' Association and Association of Local Air Pollution Control

Officers (STAPPNALAPCO), published guidelines for evaluating the uncertainty of

emission estimates as part of the Emission Inventory Improvement Program in 1997 (Roe

and Reisman, 1998). Uncertainty and variability are confusing concepts. A dear

understanding of these two terms is required before using these two concepts to express

the analysis results when there is uncertainty or variability. or both, in an emission

inventory. USEPA (1997) has laid out a detailed definition and deseri ption of the two

concepts in "Guiding Principles for Monte Carlo Analysis" (USEPA, 1997).

"Uncertainty refers to lack of knowledge about specific factors, parameters,

or models. For example, we may be uncertain about the mean concentration of a

specific pollutant at a contaminated site or we may be uncertain about a speci fic

measurement of uptake. Uncertainty includes parameter uncertainty

(measurement errors, sampling errors, systemic errors), model uncertainty

(uncertainty due to simplification of real-world processes, mis-specification of the

model structure, model misllse, use of inappropriate surrogate variables), and
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scenario uncertainty (descriptive errors, aggregation errors, errors in professional

judgment, incomplete analysis), while variability refers to observed differences

attributed to true heterogeneity or diversity in a population or exposure parameter.

Sources of variability are the result of random processes and stem from

environmental, lifestyle, and generic differences among humans. Examples

include human physiological variation (e.g., natural variation in bodyweight,

height, breathing rates, and drinking water intake rates), weather variability, and

variation in soil types and differences in contaminant concentrations in the

environment. Variability is usually not reducible by further measurement or study

(but can be better characterized) (USEPA, 1997)."

2.4 Methods of Uncertainty Ana ysis

Many authors also provided commentary and examples to help the non-expert reader

have a better understanding of these two concepts using actual applications (Frey, et aI.,

1995; 1998; 1999). Uncertainty refers to lack of knowledge and mea 'uremenl error while

variability refers to temporal variation. Usually, the uncertainty of the output of an

estimating model is the mixture of uncertainty and variability.

Simulation variability, input uncertainty, and structure uncertainty are three sources

of uncertainty or variability in the prediction of simulation models (McKay et aI., 1999).

Many authors have tried different ways to study uncertainty of models. Hanson (1999)

presented a framework for assessing uncertainties in simulation predictions. The methods

used in the framework included individual experiment analysis, many experiment
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anajysis, mathematical approximation (i.e. Gaussian approximation), and Markov Chain

Monte Carlo simulations. Monte, et aJ. (1996) used:

where:

d2 is the error term,

M j is experimental value,

OJ is the predicted value, and

n is the number of couples of experimental and predicted value,

(7)

as a measure to perform uncertainty studies and validate environmental models. This

method is also called EBUA (empirically based uncertainty analysis). McKay et.al (1999)

used:

11 2 =V(y)/V(y)

where:

V(y) is the restricted predicted variance,

V(y ) is the predicted vadance, and

11 2 is the Pearson relation coefficient.

(8)

.
(

as a measure to address the uncertainty of predictive models. Wallach and Genard (998)

used mean squared error of prediction (MSEP) with Taylor series expansion La study the

effect of uncertainty in input and parameter values on model prediction error. The authors

used the following equation:

-
(

where:

MSEP =E{ {yO- f(u,p,q(p»)}2}

- 13 -
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y. is the value of the output of interest for an individual chosen at random from the

population of interest.

f(u,p,q(p») is tbe corresponding model prediction.

In this paper, Taylor series expansion was used to adjust the effect of parameters. The

error propagation was estimated based on the error term of the Taylor series expansion.

The Taylor series expansion is shown in the following equation (Chapra and Canale,

2002):

(10)

where:

rn+l)(r) represents the (n+ 1)lh derivative of the function f(x) when x=r,

h = x-r, r is in very close proximity to x.

Their work showed that the uncertainty in model inputs always increases the model

variance contribution to MSEP. However, one of the properties of these above methods is

that while adequate data are required for the uncertainty analysis, sufficient data are

usually not present. In addition, these equations (7 through 10) assume that the variables

or parameters have normal distribution. This decreases accuracy if the variable does not

have a normal distribution. The importance of the input distribution has been proven to

be very critical in uncertainty analysis by Frey et a1. (1995; 1998; 1999). Roe and

Reisman (1998) recently summarized the methods of uncertainty analysis. In their

summary, all of the methods typically can be categorized as qualitative, semi-quantitative

and quantitative. For the qualitative method, sources of uncertainty are listed and

discussed, emission factors are listed and subjectively ranked, and then the uncertainty is

estimated in this way. For the semi-quantitative method, some statistical properties of the

• 14 -
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data are studied, such as tbe probability distribution, mean, and standard deviation, and

then the error propagation is estimated with standard statistical techniques, i.e. Taylor's

series expansion. For the quantitative method, simulation techniques, i.e" Monte Carlo,

Latin Hypercube, or Bootstrapping. are used to estimate the confidence intervals of

factors of interest. Also, modeling methods based on adequate field measurements are

used to achjeve high accuracy. A summary table is produced in Table 1 (Roe and

Reisman, 1998).

In a general sense, all of the methods used for uncertainty analysis can fit one of the

categories discussed above. But to some extent, it is not easy to follow. Hence, if the

analysis methods were based on the estimation of emissions from operational units, the

uncertainty and variability analysis would be more straightforward. The uncertainly

analysis would be conducted based on the variation of the estimation of emissions. The

analysis methods then include direct emission analysis, emission factors analysis with

simple equations, input-output table analysis, and GFMs (general fate models)

uncertainty analysis. Of these methods, the most accurate one is direct emission analysis.

However, it requires adequate field emission elata, which most facilities do not usually

have. Though it is technically feasible, it is not always cost-effective.

Some authors have used the input-output table method to estimate the emissions, i.e.

CO2, natural gas and other air po1]utants, from power plants, manufacture factories and

wastewater plants (Jin, 1986; Caloghirou, et al., ]996; Ni, et al., 2001). The idea behind

this method is application of the principles of mass balance and energy movement.

However, based on this method, the uncertainty analysis can be done only when the

emissions have a linear and simplified relationship with the input and output. Under such

- 15-
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Table 1. Summary of methods used to estimate emissions uncertainty

Methods Description Relative Level of
Effott

Qualitative Methods

Qualitative Source of uncertainty are listed and discussed;
Discussion general direction of bias and relative magnitude of Low

imprecision are given, if known.
Subjective Data Subjective rankings based on professional Low
Quality Rating judgment are assigned to each emission factor or

Darameter.
Semi-Quantitative

Methods
Data Attribute Numerical values representing relative uncertainty Moderate
Rating System are assigned through objective methods.

Emission distribution parameters (e.g., mean,
standard deviation, and distribution type) are

Expert Estimation estimated by experts. Simple analytical and

Method graphical techniques can then be used to estimate Moderate
confidence limits from the assumed distributional
data.
Emission parameter means and standard
deviations are estimated using expert judgment,

Propagation of measurements, or other methods. Standard

Errors Method statistical techniques of error propagation Moderate
typically based on Taylor's series expansions are
then used to estimate the composite uncertainty.

Quantitative
Methods

Monte Carlo, latin hypercube, bootstrap, and other

Direct Simulation numerical methods are used to estimate directly

Method the central value and confidence intervals of Moderate to High
individual emission estimates.

Direct or Indirect Direct or indirect field measurements of emissions

Measurement are used to compute emissions and uncertainty High

(Validation Method) directly.

Receptor Modeling Can be used to provide a measure of the relative

Method contribution of each source type but noL absolute High
emission eSlimates.
Air quality simulation models are used In an

[nverse Air Quality inverse, iterative approach to estimate the High

Modeling Method emissions required to produce observed
, concentrations.,

(Roe and Reisman, 1998)
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a scenario, the uncertainty of the emission can be expressed with variance. For example,

the propagation of errors of input and output-variables contributes to the uncertainty and

variability of the emissions.

Suppose:

(11)

where F(x) stands for the emission and is a function of input and output.

It can easily be expressed as:

Emission =Input - Output

then,

where:

Var(x) represents the variance of x,

Cov(Xj,Xj) represents the covariance of Xi and Xj.

If the variance of input and output are independent, then

Var(Emi) =Var (Input) + VOIr (Output)

(12)

(13)

(14)

I....

I
'1
I

.\

(

If the appropriate measurement of the statistics of the population is chosen, the

uncertainty can then be easily estimated by statistical calculation.

The theoretical treatment of inference is handled in most introductory statistics

books such as Ross' (1998) book "A First Course in Probability (5 th ed.)". Models are

usually simplified when using emission factors and engineering equations to perform

uncertainty analysis of an emission inventory, and the models are called engineering

equations and comprised of most subjective factors. Roe (1998) provided an example of

this method, while he used a Monte Carlo simulation to estimate the emission inventory

- 17-



uncertainty. As addressed above, GFMs are widely used for estimation of emission

inventories. For its uncertainty, simulation techniques, i.e. Monte Carlo simulation, Lati.n

Hypercube simulation and Bootstrapping simulations, etc., are widely used. Frey (1998)

presented a paper on uncertainty analysis of air pollutants using the Bootstrapping

simulation method, where he also used a two-dimensional approach to probabilistic

simulation. When using simulation techniques to estimate the uncertainty, knowledge of

the random variables' distributions is very critical. Wrong assumptions concerning the

distribution of variables, especially the input distribution, will result in unrealistic

outcomes. For the purpose of filling in the gaps due to lacking knowledge of input

distributions, Frey and Cullen (1995) published a methodological handbook as practical

guidance for uncertainty analysis. Since most of the methods mentioned above are simply

based on a single distribution to represent variability and uncertainty in the input of the

model, Zheng and Frey (2001) presented another method. They applied mixed

distributions to represent the variability in the input of the model. Frey, et at. (1999)

summarized the general steps of unceltainty analysis:

1. Assemble and evaluate a database,

2. Visualize data by developing empirical cumulative distribution functions for

individual variables and preparing scatter plots to evaluate dependencies among pairs

of variables,

3. Select, fit, and critique alternative parametric probability distribution models for

representing variability in activity and emissions factors,

4. Characterize uncertainty in the distributions for variability,

- I R-
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5. Evaluate tbe effect of averaging, over both time and space, on variability and

uncertainty, and

6. Propagate uncertainty and variability in activity and emissions factors to estimate

uncertainty in emissions.

2.5 Distributions in Uncertainty Analysis

Usually, inputs for models are randomly sampled from specific distributions during

a simulation. Normal distribution is the most prevalent, the best known and most widely

used distribution in the world (Hahn and Shapiro, 1967). Normal distributions are

symmetric with scores more concentrated in the middle than in the tails. They are known

to have a bell shape. They are defined by two parameters: the mean (m) and the standard

deviation (s). Many kinds of behavioral data are approximated well by the normal

distributi.on. Many statistical tests assume a normal distribution. Most of these tests work

weB even if the distribution is only approximately normal and in many cases as long as it

does not deviate greatly from normality. The density function of a normal distribution can

be expressed as:

).
J.
)

:I

.. \..~

. .:J
-;~
.~i3
I"~..J)

<l:I
Eo
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f(x) = .~ 2ncr 2

where:

Il =the mean of samples

(15)

cr = the standard deviation of samples
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When 11=0, (J' = I, the normal distribution is called a standard normal distribution as
shown in Figure 1.

--

Normal (0, I)
X <= -1.6448

5.0%
X <= 1.6448

95.0%

--

0.4 .-

0.3

0.2

0.1

0

-3 -2 -I 0 2 3

Figure 1. Standard normal distribution

When the scores are not concentrated in the middle, but skewed in the left tail, the

distribution will not be symmetric or bell shaped. The distribution will not be a normal

distribution, but might be an exponential distribution, Pearson distribution. elC. The

following figures are some examples of these skewed distributions.

- 20-

.\

).
j

)

J



X <=0.051
5.0%

0.8 -

0.6 .

0.4 --.

0.2 --

.'

1.5 2 2.5 3 3.5 4 4.5 5

o +---JL--,--------r.::.....,~~_.=~~~-~

-0.5 0 0.5

Figure 2. Standard exponential distribution

PearsonS (3, 3)

)..
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x <= 3.669
95.0%
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Hgure 3. PearsonS (3,3) distribution

The general t~onnula for the probability density function of the exponential distribution is

.-

....~

f(x) = ~.e-(\-J.lJI /3, X ~ ~; ~ > 0

- 2\ .
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where Il is the location parameter and ~ is the scale parameter (the scale parameter is

often referred to as A. which equals l/~ when the scale parameter is expressed as A). The

case where 11 =0 and ~ = 1 is called the standard exponentiat distribution. The equation

for the standard exponential distribution is

f(x) =e-X, for x ~ 0 (17)

Pearson5 distribution is the transition form of the Pearson distributions (Jeffreys, L961).
1..\

Each family in the Pearson system can be generated as a soLution to the differential

equation

df (x) (x - <1>',)1 (x)
--=

dx <1>0 +<1>IX+<1'>2X2
(18)

'...;

For the random variable x, a probability density function f(x) is determined by proper

choice of the four parameters <1>0. <1>1. <1'>2, and 4>3. Different choices of the four parameters

win lead to different distributions. The solution of this equation leads to a large number

of distribution families, including normal, Pearson I, and Pearson3 (Pearson distribution

families) distributions (Hahn and Shapiro, 1967). Equation 18 can be transformed to

..
. ~

(

"..J

(19)

When the roots of the denominator in Equation 19 are equal, real and finite, then

Equation 19 can be written in the form

1 df(x) a f3----- =- --+ --'----::-
f(x) dx x-c (X-C)2

- 22-
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whence

where

f(x) = A(x-ct'-exp[-~/(x-c)] (21)

A will be fixed by the condition that the integral of f(x) is 1,

C is the zero of the denominator in equation (18)

( \ a, pare shape parameter and scale parameter, respectively.

For detailed discussions of these distributions the reader is referred to Jeffreys (1961) and

Hahn and Shapiro (1967).

Once the distribution is determined, random numbers are sampled from the specific

distribution. Models are then run hundreds of times based on the required accuracy of the

results. But there is a prerequisite to achieving this goal. The model must be easily

mathematically expressed as an equation or the applicable models have the integrated

simulation function. All of the methods for uncertainty analysis mentioned above have

the same prerequisite, which is the models can be easily entered into Excel or other

spreadsheet, and then used with some statistics software, i.e., @RISK (Palisade, Inc.),

Crystal Ball (Decisioneering, Inc.), etc. However, estimating software for emission

inventories from wastewater treatment facilities such as WATER9, TOXCHEM+V3

focus mostly on air emissions based on mass balances, so that there is no such uncertainty

function built into the software. Under such a scenario, there are two alternatives. One is

coding the uncertainty function into the software, which is a complicated task. The other

is to assume the model is certain based on the expert advice and validation experience,

·23 -
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hence assuming the uncertainty and variability of the input parameters contribute all to

the uncertainty of the emissions. Since WATER9 (a newly version of WATER8), and

TOXCHEM were selected by USEPA as appropriate models for estimating air emissions

from water and wastewater resources (Card, 1995), TOXCHEM+V3 (a newly version of

TOXCHEM) and WATER9 were selected for this thesis and assumed to be certain for

the process of uncertainty analysis. The operation units were exactly modeled as they are

surposed to be in these two programs.

<-
The uncertainty analysis of emissions from wastewater treatment plants has not been

adequately studied and discussed in literature. Instead, the uncertainty analysis of air

emissions was seen to date mostly to focus on coal-fired power plants. Since GFMs were

developed as a deterministic tool to estimate the emissions from wastewater treatment

systems, it makes the uncertainty analysis of emissions from wastewater plants, or the

probabilistic analysis of emissions from wastewater plants, difficult. This thesis strives to

present a method to conduct uncertainty analysis of air emissions from wastewater

treatment plants.

- 24 -
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Chapter III

Methodology

3.1 Emission estimating models

Emission estimating models mainly refer to general fate models (GFMs). Models used

to estimate emissions of volatile organic compounds from wastewater plant include

<';OXCHEM+, WATER8, BASTE, CORAL (Corsi and Olson, 1998). Since

TOXCHEM+ and WATER8 are considered as appropriate models for estimating air

emissions from water and wastewater resources (Card, 1995), and TOXCHEM+V3 and

WATER9 are the newly versions and similar in estimation of emission from process

drains (Corsi and Olson, 1998), WATER9 and TOXCHEM+V3 were chosen to be used

in this thesis.

3.2 Monte Carlo Simulation

Monte Carlo techniques have been used since the J940's, when they were first

developed by physicists working on the Manhattan project (Hammersley and

Handscomb, 1964). Only recently, however, have personal computers become

sufficiently powerful and widespread for Monte Carlo techniques to be widely applied for

health risk assessments.

Modem spreadsheet programs, such as @RISK (Palisade, Inc.), Crystall Ball

(Decisioneering, Inc.), and Xlsim (AnalyCorp, Inc) now provide a range of critical

factors to illustrate and order a model, including advanced statistical functions, charting,

- 25 -
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etc. The ongm of the name "Monte Carlo" relates to the famous gambling city in

Monaco, but the relation to gambling applies only to the probability of a given event

occurring over the long term. Although one cannot know precisely which number will

appear on the next roll of a craps die or the spin of a roulette wheel, one can predict over

the long term (and as precisely as desired) the frequencies associated with each outcome

(Vose, 1996). Monte Carlo simulation techniques similarly cannot predict exactly which

exposures will occur on any given condition to any specific individual, but can predict

the range of potential exposures in a large population and each exposure's associated

probability. Monte Carlo simulation is conducted by randomly sampling from input

probability distributions for sufficient times to produce an output distribution, which

reflects the expected range and frequency of exposure. Once the model and distribution

are determined, the sampling method becomes the most critical issue because it will

affect the efficiency and accuracy of the simulations. Monte Carlo sampling and Latin

Hypercube sampling are two techniques widely used for Monte Carlo simulations.

3.2.1 Monte Carlo Sampling

Monte Carlo sampling is entirely random (with replacement). Sampling with

replacement means that a value might be sampled twice or more since sampling is totally

random. Over the whole range of the input distribution, samples are drawn randoml y

within the range. Therefore, some areas would have higher probabilities of occurrence,

which inevitably causes uneven sampling. Only after sufficient sampling can it be

assured that the sampled input stands for the input distribution. Figure 4, shows this

sampling method (Palisade Corporation, 2001).
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Five Iterations of Monte Carlo Sampling With Clustering

MaXilrum
DJstributlon
VlIlJUO

Values
sampled

Random
number
generate

r
,~5 - - - - - - - - - - - - - - -

.51 - - - - - - - - - - - - - - _

.52

.46

....1 _

.2

.3

o
Mininurn
Distribution
Value

1.0

.9

t B

.7

CumUl!ltlve
.6

Probability

.5

Figure 4. Monte Carlo Sampling. (Palisade Corp., 2001)

3.2.2 Latin Hypercube Sampling

Compared to Monte Carlo sampling, Latin Hypercube sampling is pseudo random
..'
k

(without replacement). Sampling without replacement means that a value might not be

sampled twice. Depending on the numbers of samples, the whole range of the
" ~

distribution is divided into even intervals. Then the values are sampled from these

intervals without replacement.. Obviously, it reduces time for sampling to achieve a
-,

simulated distribution that stands for the input distribution. Figure 2, Latin Hypercube "

sampling, shows this sampling method (Palisade Corp., 2001).
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Five Iterations of Latin Hypercube Sampling

Figure 5. Latin Hypercube Sampling. (Palisade Corp., 2001)
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Since Monte Carlo sampling is entirely random, unless sampling is sufficient, it is not

even over the distribution. Since Latin Hypercube sampling is pseudo-random, samples
"

are drawn equivalently without replacement. Hence, even a few samples can represent the

distribution. Therefore, Latin Hypercube sampling is more effective than Monte Carlo

sampling (Palisade, 2001). The common nature of these two sampling techniques is that

sampling is based on the known or assumed distributiono If the distribution is not known,

acceptable assumptions are then required.

OJ

.~

3.3 Bootstrapping

The Bootstrapping technique was introduced by Efron in 1979 for the purpose of

estimating confidence intervals for a statistic using numerical methods (Frey and

Burmaster, 1999). The key advantage of this technique is that it can provide estimates of

confidence intervals in situations for which analytical mathematical solutions may not

exist. Therefore, it is used for confirmation of a distribution by fitting the assumed
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statistics (i.e. mean, standard deviation) to the confidence intervals that the bootstrapping

simulation produces. It is very helpful when there are only limited data and a specific

distribution is assumed for a variable. As defined by Efron and Tibshirani (1993) and

summarized by Frey and Burmaster (1999), bootstrap simulationts based upon drawing

multiple random samples, each of size fl, with replacement, from an empirical

distribution F. This approach is referred to as resampling. Each random sample of size n

is referred to as a bootstrap sample. The empirical distribution is described by an actual

dataset. If the original dataset is:

x =(Xl, X2, .•• , XII) (22)

~.
S
)

.~

The asteri.sks indicate that x* is not the actual dataset x, but rather a randomized or

The bootstrapping sample is drawn from the sample set equivaJently with the same

probability of lin. The bootstrapping sample of size n is denoted by

X* = (X*l ,X*2, •.. ,X*II)

resampled version of it. The resampled data describe an empirical distribution,

(23)

.,
)
.~

....

........

any given bootstrap sample.

Calculation of a statistical value (8) for each bootstrap sample, i.e. mean, standard

Since the sampling is done with replacement, it is possible to have repeated values within

(24)F( "\'"* x* x* ):'" I, 2,···, II

deviation, 95th percentile is done such that

8 =s(X*) (25)

where s(X*) is a statistical estimator applied to a bootstrap replication (bootstrapping

sample) of the original dataset. To estimate the uncertainty in the statistic, n bootstrap

samples may be simulated to yield n estimates (replicates) of the statistic.
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8N=S(X*N), where n = 1,2, ... , n (26)

The n estimates of the statistic may be used to construct a sampling distribution for the

statistic (Frey and Burmaster, 1999).

Bootstrapping simulations are usually applied to provide the confidence intervals

and prove the assumed distribution of unknown variables, which have limited field data

and unknown distributions. As a rule of thumb, the assumption would be acceptable if the

expected value lies in the range of statistics of the bootstrapped samples.

3.4 Maximum Likelihood Estimators (MLEs)

The maximum likelihood estimators (MLEs) are the parameters of the function that

maximize the likelihood of the distribution given a set of observations. The MLEs are

derived from the input data set and are different for each distribution function. For any

density distribution f(x) with one parameter, a., and a corresponding set of observational

'-.

data, Xi, define an expression called the l.ikelihood: (Palisade, ]997)

L =ITf(X j , a)

To find the MLEs, simply maximize L with respect to a:

dLldo. =0

and solve for a.

(27)

(28)

'-.0,.

" ..

Based on this method, all of the parameters that fit the distribution would be estimated.

The distribution wm be fitted using goodness of fiL Usually, there are three methods for

achieving goodness of fit. (Palisade, 1997)

1. The Chi-Square Test

2. The Kolmogorov-Smimov (K-S) Test
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3. The Anderson-Dading (A-D) Test

The Chi-square statistic is defined as:

where

Pi = the observed probability value for a given histogram bar,

(29)

Pi =the theoretical probability that a va]ue will fall with x range of the histogram

bar.

The Kolmogorov-Smirnov statistics is defined as:

Dn=Sup[lFn(x) - F(x)1l

where:

Sup(x) refers to the maximum value of the function, it equals to Max(x)

n =total number of data,

F(x) = the hypothesized distribution,

N
Fn(x) = _x ,

n

Nx =the number of x/s less than x.

The Anderson-Daring statistic is defined as:

-+«>

A/ =n J[Fn (x) - F(X)]2l1'(x)f(x)dx

where:

? 1
''1'-= ,

F(x)[l- F(x)]

f(x) =the hypothesized density function,

F(x) =the hypothesized distribution,

- 3 ~ -
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F - N,
n - ,

n

Nx =the number of Xi'S less then x.

Each of these methods has its advantages and weakness. The Chr-Square is the most

common goodness of fit test (Palisade, ]997). The weakness is that there are no clear

guidelines for selecting intervals. A different conclusion might be reached depending on

how the intervals are specified. The Kolmogrov-Smirnov test does not depend on the

number of intervals, which makes it more powerful than the Chi-Square test (Palisade,

1997). However, it does not detect tail discrepancies very well. While the Anderson-

Darling test is similar to the Kolmogrov-Smirnov test it places more emphasis on tail

values, and can only be used with actual sampling data (Law and Kelton. 1993; Walpole

and Myers, 1993). In selecting the fitted distribution, the A-D method was used in this

work.

3.5 Analysis Tools

Although a proper model for a specific prohlem is the first step of running a Monte

Carlo simulation, the variable distribution used in conjunction wilh the selected model is

the most critical item during a simulation event because all the simulating values will be

sampled from the distribution. Analysis software @RISK® (Palisade, Inc.) was used for

this thesis. @RISK® is a professional analysis software for risk assessment that uses the

Excel® spreadsheet. @RISK® uses Monte Carlo simulation techniques to combine all the

1.mcertainties identified in the modeling situation to predict the likelihood of occurrence

for each possible value. Minitab® (Minitab Inc.) is another professional software used for
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statistics. In this thesis, Minitab® was used for bootstrapping sampling to produce

confidence intervals for chemicals in the influent and the ambient conditions based on the

actual data measured.

3.6 Model Setup for IWTP with TOXCHEM+V3 and WATER9

The treatment facility was mainly modeled as units in series and parallel. These units

included a primary paint chip clarifier, two covered blending basins, two oil-water

separators, two storage tanks, two aerated equalization basins, three mixing basins and a

solid contact clarifier, a sand filter and a chlorine contact chamber. Among these units,

the blending basins, oil-water separators, equalization basins and aerator basins were in

parallel while the others were in series (Veenstra, 200 I). The layout of the plant

configuration is presented in Appendix A-i.

For the two different estimating softwares, the plant configurations were slightly

different. Since there are several parallel units in the plant, the configuratlon should

assure the flow into each of parallel units is exactly half of the lotal i.nfluent. WATER9

and TOXCHEM+V3 have different configurations to set up parallel units. Figures 6 and

7 below are the modeled plant configurations by WATER9 and TOXCHEM+V3,

respectively.
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Figure 6. IWTP Configurations with WATER9
Notes:
1: Primary municipal clarifier modeling stripping waste clariifier
2: Storage tank modeling D I-blending tank
3: Storage tank modeling D2-blending tank
4: Open sump modeling venturi pipe from Building 3001
5: Weir/waterfall modeling the mixing unit of two influents
6: Covered separator modeling oil-water separator-l
7: Covered separator modeling oil-water separator-2
8: Storage tank modeling storage tank-l
9: Storage tank modeling storage tank-2
10: Equalization basin modeling equalization basin-l
11: Equalization basin modeling equalization basin -2
12: Mix tank modeling mixing basin-l
13: Mix tank modeling mixing basin-2
14: Weir/waterfall modeling diversionary structure (DS) between mixing basin 2 and 1
15: Mix tank modeling mixing basin-3
16: Weir/waterfall modeling diversionary structure (OS) between mixing basin 2 and

SCC
17: Circular clarifier modeling solid contact clarifier (SCC)
18: Weir/waterfall modeling diversionary structure between SCC and wet well
19: Open sump modeling wet wen
20: Hard piped, no space unit modeling sand filter
21: Open sump modeling chlorine contact chamber
22: Circular darifier modeling thickener
23: Porous solids unit modeling filter press
24: Oil film unit modeling the final unit of sludge treatment, plate and frame filter
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Figure 7. IWTP Configuration with TOXCHEM +V3
Notes:
B5: Primary clarifier modeling stripping waste clarifier
C5: Blending tank modeling DI-blending tank
D5: Blending tank modeling D2-blending tank
B9: Channel modeling venturi pipe from building 3001
C9: Wastewater mixer modeling the mixing unmt of two influents
D9: Drop structure-open modeling diversionary structure (DS)
DlO: Drop structure-open modeling diversionary structure (DS)
F9: Dissolved air-floatation modeling oil-water separator-l
G9: Dissolved air-floatation modeling oil-water separator-2
H9: Equalization basin modeling storage basin
19: Equalization basin modeling storage basin
19: Equalization-mixed/aerated basin modeling aerated equalization basin-l
K9: Equalization-mixed/aerated basin modeling aerated equalization basin-2
L9: Equalization-mixed/aerated basi n modeling mix ing basin-l
M9: Equalization-mixed/aerated basin modeling mixing basin-2
09: Equalization-mixed/aerated basin modeling mixing basin-3
P9: Drop structure-open modeling weir (diversionary structure) between mixing basin

and SCC
R9: Secondary clarifier/sludge thickener modeling solid contact clarifier (SCC)
S9: Channel modeling wet well
T9: Force main modeling sand filter
U9: Drop structure-open mode.ling pump station between sand filter and chlorine

contact chamber
V9: Channel modeling chlorine contact chamber
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3.7 General procedures

The work steps in this thesis can be summarized as follow:

1. Field data acquisition

There are two potential SOUl'ces of field data for this thesis. One is from the record

logs (consumption of chemicals) over the past several years, from 1999 through 2001.

The other source is field sampling and measurement. A flux chamber was used for

field sampling of emissions. The flux chamber is one of the most promising

technologies for direct measurement of VOCs emissions devdoped by USEPA (Shen,

et al., 1993). SUMMA canisters, where the contents were analyzed by a gas

chromatography and mass spectrometer (GC-MS), and an online FTIR (Fourier

Transform Infrared Spectmscopy) were used to measure the concentration of

chemicals in gas phase samples taken from the flux chamber. The liquid phase

constituents were measured by GC-MS. The data used in this thesis is historic data. In

addition, methyl.ene chloride, acetone and 2-butanone must be backsolved to the

concentration at the fmnt end of the plant since they were sampled at the transfer pit

which is in the middle of the plant.

2. Sensitivity study

TOXCHEM+V3 has an integrated subroutine for conducting a sensitivity study. The

subroutine was used to detennine which variables in the model, such as site

parameters, influent characteristics, or chemicals' physiochemical properties, would

have significant effect on the air emissions. The results were then applied to

WATER9 since WATER9 does not contain such a subroutine.
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3. Fit distribution

One of the subroutines ill @RISK®, called "Best Fit", was used to fit the distribution

for the input data. The fitted distributions were ranked using Chi-Square test,

Kolmogorov-Smirnov test and Anderson-Darling test based on the least square

method. The Anderson-Darling test was used to select the distribution that had best

fit. The lower the value of the A-D statistic of a distribution that the test ends up with,

the better the distribution fits the actual data. For each distribution fitting, the fitting

results were presented by a histogram, Probability-Probability (P-P) plot and

Quantile-Quantile (Q-Q) plots. For the best fitted distribution, these two plots would

be nearly linear.

4, Distribution confirmation

Since the distributions of most variables used in the model were not known,

assumptions concerning these variables had to be made or they must be fitted from

actual data. Bootstrapping simulation was used to make the assumed or fitted

distribution more appropriate and acceptable. Bootstrapping constructed a confidence

interval for each variable of interest based on actual data. If the statistical values of

the assumed or fitted distributions fell in the range that the Bootstrapping simulation

constructed, the assumption or fitted distribution was then acceptable.

5. Generation of random sample data sets for each model, WATER9 and

TOXCHEM+V3

Generating random numbers was an important step in simulation. Since the

WATER9 and TOXCHEM+V3 cannot generate random numbers themselves,

random numbers were generated externally. At this step, @RISK@ generated
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hundreds of random number sets with the Latin Hypercube sampling method based

on the assumed or fitted distributions.

6. Running of models

All of the generated random number sets were substituted into the models manually.

The models were run with these data sets for two hundred times. The number of

simulations was determined based on the study of adequacy of simulations.

7. Results analysis and uncertainty estimate

Data analysis had as a focus the construction of a cumulative distribution for each
l~

variable, on which uncertainty estimates were based. Furthermore, comparisons of ..
'.

detenninistic and probabilistic results helped evaluate the model itself, i.e.

applicability. The general procedure is illustrated in Figure 8.

"
,)

Rel;ultl;

Analysis
ModelSamplingProbability

distribution
Field
Dala

Figure 8, Diagram of simulating procedures
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Chapter IV

Results

4.1 Sensitivity study

Sensitivity studies of all of the chemicals in the influent by TOXCHEM+V3 were "

performed by ranging the values of parameters from 0.2 to 5 times their values. These

studies showed that VOCs emissions are mainly sensitive to influent flow rate,

concentration and slightly sensitive to influent water temperature, but not sensitive to air

temperature, pH, plant elevation, oil/grease concentration in the influent, volatile

I

\
.
.I

distributions, of the other parameters in the models can be substituted.

of the flow rate and concentration, the averages over years, also called the single value

(Figure 9, Figure 10 and Figure 11). Thus, when the models were run, with the exception

i

-- ._.-

---..- acetone

--*-- benzyl alcohol

---- butanone

--+- phenol

• --==----• • • •2 - .-==11=.

8-.---------------------,
7 -1----------,----------1

~ 6--@ 5 -1------------------1

.~ 4 t===:::~;~~~~~~::==J.- 3 - A''''-

~

suspended solid ratio and wind speed. The results are presented in the following figures

methylene
chloride

252015JO5

]-1------------------1
....o ..~=*=*~=_~~t:;=t;;;;;;;;;t:;~-__l

o

Wind Speed (mph)

Figure 9. Sensitivity of wind speed on emission rate.
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4.2 Models inputs set-ups

Both models were run two hundred times. Based on the results of the sensitivity

studies, the yearly averages were substituted into the models for those insensitive

parameters, i.e., total solids, suspended solids, oil/grease concentration, dissolved solids,

volatile S5 ratio, radius of pipe, air temperature, wind speed, pH, wastewater temperature

and plant elevation. The influent wastewater temperature had an average of 68.7 OF with

a standard deviation of 8.5 OF. As such, it appears to be relatively stable and uniform.

These parameter values mentioned above remained unchanged during the simulations.

The inputs of these parameters are listed as follows:

Table 2. lnputs of variables for WATER9 and TOXCHEM+V3 simulation

I Parameter 1Units IWATER 91 TOXCHEM 31 Note (TOXCHEM) I
Total solids pom 827 724 Suspended solids
Oil/qrease mall 14.04 14.04

Dissolved solids ppm 588 24% Volatile SS ratio

Radius of pipe em 15.24 15.24
Air temperature F 61.02 61.02

Wind speed MIs 3.25 3.25
pH SU 7.79 7.79

Wastewater temp OF 68.7 68.7

Elevation ft 1250 1250

Note: SU-standard unit

Since benzyl alcohol was nol actually sampled and measured, its concentration was

estimated from the concentration of phenol according to a proportionality between these

two chemicals. The benzyl alcohol and phenol were assumed to follow the same

distribution. The equation for calculation of benzyl alcohol by this method could be

expressed as foHows (Veenstra, et al., 2001):
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where

Cba is the concentration of benzyl alcohol,

Cp is the concentration of phenol,

Xba, Xp is the composition of benzyl alcohol and phenol in water, respectively,

Uoa, Up is the amount of benzyl alcohol and phenol used, respectively,

Hba, Hp is the Henry's constant of benzyl alcohol and phenol, respectively,

VPba. Vpp is the vapor pressure of benzyl alcohol and phenol, respectively, and

Dba. Dp is the diffusivity coefficient of benzyl alcohol and phenol, respectively.

Whether the diffusivity of benzyl alcohol and phenol is considered or not, it depends on

value of the last item on the right side of equation 32. If the diffusivity is considered, the

value of the last item on the right side of equation 32 is 0.29289. If the diffusivity is not

considered, the value equals 1 (Veenstra, et aI., 2001). In equation 32, the estimated

concentration of benzyl alcohol in the influent would be higher if diffusivity of benzyl

alcohol and phenol was not considered. Then benzyl alcohol air emission rate would be

higher as a result. This scenario can be considered a worse case and was the main

approach used in this work. When diffusivity was not considered, the estimated influent

concentration of benzyl alcohol is about 3.64 times that of phenol (Veenstra, et aI, 2001).

4.3 Fitting Distributions

Distributions were developed for the individual compounds based on the analysis of

wastewater constituents in the transfer pit at Tinker's IWTP in 1999 and 2000. Since
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these chemicals' probability density curves have a strong tail shape, the Anderson-

Darling method, which places more emphases on the tail, was used for data distribution

fitting and the results are presented as follows:

I. Benzyl alcohol and phenol

Benzyl alcohol and phenol were assumed to fonow the same distribution since

the concentration of benzyl alcohol was estimated based on the concentration of

phenol. Phenol data was best fitted to be a Pearson5 distribution. Pearson5 (a,~)

distribution is defined by the shape factor a and the scale factor ~. Its statistics are

calculated as follow:

Mean =~/(a-I)

Variance = ~2/(a-1)\a-2) if a> 2

(33)

(34)

i

"Ill
j~

These calculations are the theoretical values of mean and variance when samples

are continuous. The fitting figures are shown as follows:

..1
,to,-,
rl
j
"I,
" ....

Pearson5 (1.3910, 30.945) Shift =-3.4339

x<= 4.8922 X <= 212.46
3 .-__~~.02!,o/o'--- ~~°I!L- --,

600500400300200100o
0-1-----+

-100

2

2.5 "

0.5

~
<o,....
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~ 1.5
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~
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Ii:
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Figure 12. Fitted distribution of phenol

The P-P and Q-Q plots of phenol are shown as Figures 13 and 14.
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Figure 13. P-P plot of fitted distribution for phenol
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Figure 14. Q-Q plot of fitted distribution for phenol

Probability-Probability (P-P) graphs plot the distribution of the input data vs.

the distribution of the result. If the fit is "good", the plot will be nearly linear.

Similarly, Quantile-Quantile (Q-Q) graphs plot the plot percentile values of the

input distribution vs. percentile values of the result. If the fit is "good", the plot

will be nearly linear. The linearity of all the P-P and Q-Q plots in this thesis is the
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best among all fitted distributions for each compound. The mean calculated with

equation (33) is 79.14 mgll. A summary of the statistics is presented as follows:

Table 3. Summary of statistics for phenol

Fit Input
Distribution Pearson5 (1.3910, 30.945\ N/A

Shift -3.434 N/A
a 1.391 N/A
b 30.945 N/A

Left X 4.892 4.892
Left P 5.00"10 6.67%

Riqht X 212.457 212.457
Riqht P 95.00% 95.00%
Diff. X 207.565 207.565
Diff. P 90.00% 88.33%

Minimum -3.434 2.5
Maximum Infinity 540

Mean 75.711 55.408
Mode 9.508 15.000 rest

Median 25.339 25.5

Std. Deviation Infinity 87.265

Variance Infinity 7488.25
Skewness 6.240 [est1 3.608

Kurtosis 48.650 [est1 18.239
Note: [est] is the abbreviation of estimate. This note is applicable to all of

the tables in this thesis.

The mean of 79.14 mg/l calculated from equation (33) stands for the theoretical

value of the Pearson5 distribution with certain a and ~ values when samples were

continuous, while the mean of 75.711 mg/l from Table 3 was obtained from actual

data being fitted. Using different test methods, i.e., Chi-Square, Anderson-Darling

(A-D) and Kolmogorov-Smirnov (K-S), the fitting will present different statistical

results. Table 4 presents different statistics of different te t method, i.e. test value,

P value, critical value at 0.05 significance level, number of bins and data points.

For each distribution fitted, a similar table will be produced.
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Table 4. Comparisons of test methods for phenol

Chi-SO A-D K-S
Test Value 15.6 0.4153 0.1099

P Value 0.0485 N/A N/A
Critical Value 15.5073 N/A N/A

# Bins 9 N/A N/A
Data points 60 60 60

2. Acetone

Acetone data was best fitted to a Pearson5 distribution. The filling figures

are presented as follows:

Pearson5 (4.1981, 1200.6) Shift =+66.950

J

:»
l
I.

"-.

i

I •..

1.10.9
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M
<I 2.5
o....
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~
:c 1.5
(lI

.0o 1

~
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Figure 15. Fitted distribution of acetone
"
~:....
"

The P-P and Q-Q plots of acetone are shown in Figure 16 and Figure 17.
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Figure 16. P-P plot of fitted distribution for acetone
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Figure 17. Q-Q plot of fitted distribution for acetone

According to equations (33) and (34), the mean and variance are 375.41 f..lgll and

64118.8, respectively. A summary of the statistics is presented as follows:
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Table 5. Summary of fitting statistics of acetone

Fit Input
Distribution Pearson5 (4.1981, 1200.6\ N/A

Shih 66.950 N/A
A 4.198 N/A
B 1200.594 N/A

Left X 216.374 216.374
Lett P 5.00% 4.17%

Riaht X 876.970 876.970
Riaht P 95.00% 95.83%
Diff. X 660.596 660.596
DiU. P 90.00% 91.67%

Minimum 66.95 189
Maximum Infinitv 988

Mean 442.36 437.29
Mode 297.92 267.00 restl

Median 377.19 395
Std. Deviation 253.22 208.11

Variance 64117.9 41504.29
Skewness 2.371 restl 1.205
Kurtosis 10.962 rest] 3.690

Table 6 lists the different statistics of different test methods.

Table 6. Comparisons of test methods for acetone

Chi-Sq A-D K-S

Test Value 2.6667 0.2485 0.1173

P Value 0.6151 N/A N/A

C.Val @ 0.05 9.4877 N/A N/A

# Bins 5 N/A N/A

Data points 23 23 23

3. Methylene chloride

Methylene chloride was best fitted to be a Pearson5 distribution. The fitting

figures are shown as follows:
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Figure 18. Fitted distribution of methylene chloride

The P-P plot and Q-Q plot are shown in Figures 19 and 20.
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Figure 19. P-P plot of fitted distribution for methylene chloride
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Figure 20. Q-Q plot of fitted distribution for methylene chloride

According to equations (33) and (34), the mean and variance are 243.224 J.lgl1 and

24236.14, respectively. A summary of the statistics is presented as follows:

Table 7. Summary of fitting statistics for methylene chloride

Fit Input
Distribution Pearson5{4.4409, 836.91) N/A

Shift 13.988 N/A
a 4.441 N/A
b 836.906 N/A

Left X 113.896 113.896 ._-
Left P 5.00% 4.17%

Riaht X 528.394 528.394 -
Riqht P 95.00% 100.00%

Ditt. X 414.498 414.498.._-
Diff. P 90.00% 95.83%

Minimum 13.988 94.2
Maximum Infinity 523

Mean 257.21 253.84
Mode 167.8 143.00 [est]

Median 217.49 223.5

Std. Deviation 155.68 126.13

Variance 24234.87 15245.39

Skewness 2.270 [estl 0.891

Kurtosis 10.318restl 2.592
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Table 8 lists the different statistics of different test methods.

Table 8. Comparisons of test methods for methylene chloride

Chi-Sq A-D K-S
Test Value 2.25 0.3379 0.1065

P Value 0.6899 NJA N/A
C.Val @ 0.06 9.4877 N/A N/A

# Bins 5 N/A N/A
Data points 24 24 24

4. 2-Butanone

2-butanone, however, was best fitted by an Exponential distribution. For the

Exponential distribution [Expon (~)], ~ is the only parameter and refers to mean.

Then

Mean = ~

Variance = ~2

The fitting plots are presented in the following figures.

Expon (139'.03) ShUt = +3.5972
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Figure 21. Fitted distribution of 2-butanone
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Figure 22. P-P plot of fitted distribution for 2-butanone
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Figure 23. Q-Q plot of fitted distribution for 2-butanone

In term of equations 35 and 36, the fitted mean and variance for 2-butanone

are 139.03 I-lg/I and J9329.34, respectively. A summary of the statistics is

presemed as follows:
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Table 9. Summary of fitting st.atistics for 2-but.anone

Fit Input
Distribution Expon(139.03) N/A

Shift 3.597 NIA
B 139.026 N/A

Left X 10.728 10.728
Left P 5.00% 4.1,7%

RiQht X 420.083 420.083
RiQht P 95.00% 91.67%
Ditf. X 409.3541 409.354
Ditt. P 90.00% 87.50%

Minimum 3.597 9.39
Maximum Infinity 567

Mean 142. 162 148.42
Mode 3.5972 114.00 1est

Median 99.963 104.45
Std. Deviation 139.03 147.94

Variance 19328.3 20974.11
Skewness 2 1.378
Kurtosis 9 4.215

Table1 0 lists the different statistics of different test methods.

Table 10. Comparisons of test methods for 2-butanone

Chi-Sq A-D K-S
Test Value 0.5833 0.3135 0.1243

P Value 0.9649 >0.25 > 0.25
C.Val @ 0.05 9.4877 0.8572 0.2128

# Bins 5 N/A N/A
data points 23 23 23

5.. Flow rate

Flow rate was best fitted to a Nonnal distribution. A normal distribution has

two parameters; one is the mean (1-1), the other is standard deviation Co). The fitting

plots are shown in the foHowing figures.

- 53 -

•



x <= 0.50048

Normal (0.74348, 0.14773.)

x <= 0.98648

110.90.80.70.60.5

4 ..------?-JI.Po---------------.~()'J<>~-__,

0.5

0+---­

0.4

35

3

g 2.5
E
2 2"
f?
a. 1.5

Flowrate (MGD)

Figure 24. Fitted distribution of flow rate
(Note: MGD-million gallon per day)

The P-P and Q-Q plots of flow rate are shown as Figure 25 and Figure 26.
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Figure 25. pop plot of fitted distribution for flow rate
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Figure 26. Q-Q plot of fitted distribution for flow rate

The fitted mean and variance are 0.743 million gallons per day (MOD) and 0.148,

respectlvely. A summary of statistics is presented in Table 11.

Table 11. Summary of fitting statistics for flow rate

Fit Input
Distribution Normal (0.74348, 0.14773 N/A

m 0.743 N/A --
s 0.148 N/A

Left X 0.500 0.500 .-
Left P 5.00% 9.78%

Riqht X 0.986 0.986
Riqht P 95.00% 93.48%
Diff. X 0.486 0.486
Diff. P 90.00% 83.70%

Minimum -Infinity 0.5
Maximum +Infinity 1

Mean 0.743 0.743
Mode 0.743 0.900 [est]

Median 0.743 0.7

Std. Deviation 0.148 0.148

Variance 0.022 0.022

Skewness 0 -0.0158

Kurtosis 3 1.865
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Table 12 lists the different statistics of different test methods.

Table 12. Comparisons of test methods for flow rate

Chi-Sq A-D K-S
Test Value 101.696 2.76 0.160

P Value 0 < 0.005 < 0.01
C.Val @ 0.05 18.307 0.746 0.093

# Bins 11 N/A N/A
data points 92 92 92

As an alternative to using concentration, the mass of each contaminant 10 the

influent was used to generate the best-fitted distribution. The results showed that the

same distribution was arrived at for each contaminant using either mass or

concentration. This result is detailed in the discussion section that follows.

4.4 Bootstrapping simulation

To confirm these fitting distributions, the Bootstrapping simulation was also

applied. Samples were bootstrapped from the actual field data (historic concentration

data from Tinker's IWTP) with replacement, and the mean and standard deviation of

each bootstrapped sample were calculated and then the cumulative distribution

function was plotted for all bootstrapped samples. A bootstrapping sample consisted

of 20 samples taken from field data. In total, 100 bootstrapping samples were

developed. The results are presented in the following section.

The bootstrapping results for flow rate are presented in Figure 27. The mean of

each bootstrapping sample was calculated. Figure 27 shows the cumulative

distribution of the means of lOa bootstrapping samples for flow rate.
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Figure 27. Cumulative distribution of flow rate with bootstrapping

The standard deviation of each bootstrapping sample was calculated and the

cumulative distribution of the standard deviation is presented in Figure 28.
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Figure 28. Cumulatlve distribution of the standard deviation of tlow rate with
bootstrapping

The bootstrapping results for acetone are presented in Figure 29. The mean of

each bootstrapping sample was calculated. Figure 29 shows the cumulative

distribution of means of all bootstrapping samples for acetone. [n Figure 30, the
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standard deviation of each bootstrapping sample was calculated and the cumulative

distribution of the standard deviation is presented.
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Figure 29. Cumulative distribution of acetone with bootstrapping
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The bootstrapping resutts for methylene chloride are presented in Figure 31. The

mean of each bootstrapping sample was calculated. Figure 31 shows the cumulative

distribution of means of all bootstrapping samples of methylene chloride.
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Figure 31. Cumulative distribution of methylene chloride with bootstrapping

The standard deviation of each bootstrapping sample was calculated and the

cumulati ve distribution of the standard deviation is presented in Figure 32.
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Figure 32. Cumulative distribution of standard deviation of methylene chloride with
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The Bootstrapping results for 2-butanone are presented in Figure 33. The mean of

each bootstrapping sample was calculated. Figure 33 showed the cumulative distri.bution

of means of all bootstrapping samples of 2-butanone.
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Figure 33. Cumulative distribution of 2-butanone with bootstrapping

The standard deviation of each bootstrapping sample was calculated and the

cumulative distribution of the standard deviation is plotted in Figure 34.
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Figure 34. Cumulative distribution of standard deviation of 2-butanone with
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The bootstrapping results for phenol are presented in Figure 35. The mean of

each bootstrapping sample was determined.
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Figure 35. Cumulative distribution of phenol with bootstrapping.
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The standard deviation of each bootstrapping sample was calculated and the

cumulative distribution of the standard deviation is presented in Figure 36.

The results of fitting distributions and bootstrapping simulation are presented in the

tables below (Tables 13 and 14):

Table 13. Comparisons of fitted and bootstrapped means

Parameters Fitted distribution Bootstrapping Mean

Distributions Mean 5% 50% 95%

Phenol/Benzyl Alcohol PEARSON5 (a, ~) 79.14 34.02 60.58 97.8

Acetone .PEAIRSON5 (a, ~) 375.41 376.04 438.75 521.35

Methylene Chloride PEARSON5 (a. ~) 243.22 208.97 250.82 297.35

2-Butanone EXPON (~) 139.03 93.14 146.53 189.50

Flow rate NORMAL (11, 0:) 0.74 0.69 0.75 0.8
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Table 14. Comparisons of fitted and bootstrapped standard deviation

I
Parameters

I
Fitted distribution ' Bootstrappinq standard deviation

Distributions SO 5% 50% 95%

Phenol/Benzyl Alcohol !PEARSON5 (lX. ~) N/A 27.7 82.7 157.9
Acetone PEARSON5 (lX, ~) 253.2 147.2 203.4 274.6

Methylene Chloride PEARSON5 (lX, ~) 155.7 84.5 122.4 152.8
I

I

2-Butanone EXPON (~) 139.03 81.6 147.2 189.7
Flow rate NORMAL (~, cr) 0.15 0.12 0.15 0.17

Note: the standard deViatIOn of Pearson5 dlstnbutIOn for phenol IS not available because
ex is less than 2 in equation 34.

In summary, the distributions of all the chemicals and the flow rate are listed in Table 15.

Table 15. Summary of fitted distributions for compounds and flow rate

Parameters Fitted distribution
Phenol PEARSON5 (1.3910.30.945)

BenzyI Alcohol PEARSON5 (1.3910,30.945)
Methylene Chloride PEARSON5 (4.4409, 836.91)

Acetone PEARSON5 (4.1981,1200.6)
2-Butanone EXPON (139.03)
Flow rate NORMAL (0.74348,0.14773)

Note: Benzyl alcohol follows the same distribution as phenol, but the values are
3.64 times more.

4.5 Backsolver study

Since acetone, methylene chloride, and 2-butanone were sampled in the transfer pit,

which is almost in the middle of the treatment plant, these values are not representative of

the influent concentrations to the pl,ant. Therefore, the backsolver routine inside

TOXCHEM+V3 was used to project the influent concentrations of methylene chloride, 2-

butanone, and acetone. This method was applied and backsolving was done during phase

1 of the Tinker project (Veenstra, et aI, 2001). The influent concentrations of acetone,

methylene chloride and 2-butanone were backsolved again during this work. Sampling of
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37. These random number sets were used for the simulat.ions.
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Figure 37. Linearity of backsol ver for chemicals of concern

result the compounds I dislribUlions in both locations are the same because the

transfer pit. But what was needed is the influent concentrations of compounds. Therefore,

from the fitted distribution stood for the random concentration of compound in the

multiplying generated random numbers by the slope of each compound's curve in Figure

random number sets for the influent concentrations of compounds were produced by

basins following the primary clarifier. These phenol concentrations were regarded as the

distributions were determined based on the field data in the transfer pit. The influent

proportional to those in the transfer pit. The results are shown in Figure 37. The fitted

concentrations in both locations are simply related linearly. Random numbers generated

concentration was obtained based on samples taken from D I1D2, which are mixing

concentrations have a linear relationship with the concentrations in the transfer pit. As a

influent concentration. The backsolver showed the concentrations in the influent were

the transfer pit was performed during October and November in 1999. For phenol, the



Table 16 presents the details of the backsolving studies and the slope of each

compound. The slope of each compound will be used for estimating the influent

concentrations.

Table 16. Backsolving studies of all the compounds

Chemicals Concentration (uo/l) SloDe
10 20 35 50 100

Benzyl alcohol 346.1 692.13 1211.31 1730.32 3460.96 34.61
Acetone 272.03 544.11 952.19

I
1360.14 2720.32 27.20

Methylene chloride 376.46 752.98 1317.67 1882.35 3764.28 37.64
2-butanone 308.63 617.23 1080.19 1543.12 3086.28 30.86

Note: In the tabular area of concentration, the top numerical row stands for the
concentrations of compounds in the transfer pit. The rest are the backsolved influent
concentrations of compounds.

Then, the influent concentration for each compound was calculated using the following

equation:

Cin =C tp x Slope

where:

Cin =concentration in the influent

C.p = concentration in the transfer pit.

4.6 Simu~ation adequacy study

(37)

The adequacy of the number of simulations was studied to determine whether more

simulations are needed. The results are presented in the following figures (Figures 3R, 39,

40, 41 and 42). Due to the different scales of the y-axis, the adequacy studies are

presented in Figures 38 and 39 for TOXCHEM+V3; the adequacy studies are presented

in Figures 40, 41 and 42 for WATER9. These results showed that running 200
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simulations was adequate, because the results began to converge at a constant value for

each compound.
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Figure 38. Adequacy of simulation using TOXCHEM+V3 for benzyl alcohol.
phenol, acetone and 2-butanone.
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Figure 39. Adequacy of simulations using TOXCHEM+V3 for methylene
chloride
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Figure 40. Adequacy of simulations using WATER9 for benzyl alcohol
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Figure 41. Adequacy of simulations using W ATER9 for phenol

The curve in Figure 41 starts to tail up at the end is probably due to the

variation of the average concentration of phenol substituted into the model.
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However, it tends to flat again after 200 simulations. The tendency is clearer in

Figure 45 where the standard deviation is used.
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Figure 42. Adequacy of simulations I.lsing WATER9 for methylene chloride,
2-butanone and acetone

Simulation adequacy studies were also performed on the standard devjation of

aU the simulated results. These results are shown in Figures 43, 44 and 45. These

results show that 200 simulations is adequate for lhis study because the standard

deviation of these compounds start to converge on a constant value.
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4.7 Model simulation results

Two hundred random number sets were generated from the fitted distributions. Each

set included flow rate, as well as benzyl alcohol, phenol, methylene chloride, 2-butanone

and acetone concentrations. The concentrations of these compounds were backsolved and

then each random number set was substituted into TOXCHEM+V3 and WATER9 to

serve as model input. The two models were then run. The pooled results from these

simulations are called probabilistic results. In addition, the determini.stic runnings of

these models were also performed. The actual field data for flow rate from logs of record

and the compounds concentrations from the transfer pit were also averaged and the

averaged concentrations were backsolved. The backsolved concentrations were then

substituted into the models and the models were run. Then, the deterministic results were

obtained. Since the Henry's constants in both models were different, simulations using

TOXCHEM+V3 were run four hundred times, two hundred times with the Henry's
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constants in its library, the other two hundred times with the same Henry's constants as

WATER9. TOXCHEM+V3 does not have a Henry's constant for benzyl alcohol in its

library, the Henry's constant of 1.60E-5 for benzyl alcohol was derived from the

Michigan Environmental Response Division website. These results are presented below.

a. TOXCHEM+V3 simulation results with Henry's constants from its library (except

benzyl alcohol)

Simulation results are presented in Figures 46, 47,48, 49 and 50.
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Figure 46. Simulation results of benzyl alcohol by using TOXCHEM+V3.
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Figure 47. Simulation results of phenol by using TOXCHEM+V3.
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Figure 48. Simulation results of methylene chloride by using TOXCHEM+V3.
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Figure 49. Simulation results of2-butanone by using TOXCHEM+V3.
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Figure 50. Simulation results of acetone by using TOXCHEM+V3.

b. WATER9 simulation results using Henry's constants contained in its database

Simulation results are shown in Figures 51, 52, 53,54 and 55.
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Figure 51. Simulation results of benzyl alcohol by using WATER9.
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Figure 52. Simulation results of phenol by using WATER9.
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Figure 53. Simulation results of methylene chloride by using WATER9.
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Figure 54. Simulation results of 2-butanone by using WATER9.
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Figure 55. Simulation results of acetone by using WATER9.

C. TOXCHEM+V3 simulation results with Henry's constants from WATER9 library

Simulation results are presented in Figures 56, 57, 58, 59 and 60.
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Figure 56. Simulation results of benzyl alcohol with WATER9 Henry's constant
using TOXCHEM+V3
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Figure 57. Simulation results of phenol with WATER9 Henry's constant using
TOXCHEM+V3
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Figure 58. Simulation results of methylene chloride with WATER9 Henry's constant
using TOXCHEM+V3
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Figure 59. Simulation resulls of2-butanone with WATER9 Henry's constant using
TOXCHEM+V3

-77 -



~,
- I,

j ,

j
,

100.00%

90.00%
80.00%

r---
~ 70.00%

~ 60.00%
...... 50.00%c:
o 40.00%
~
~ 30.00%

20.00%
10.00%

0..00%

0.000 2.000 4.000 6.000 8.000 10.000 12.000

Emission rate (1b/d)

Figure 60. Simulation results of acetone with WATER9 Henry's constant using
TOXCHEM+V3

With different Henry's constants, the simulations produced different results. The

detailed discussions are presented in the Discussion chapter. The Henry's constants

used during the simulations and a summary of these results is presented in Tables

17, 18, 19,20 and 21.
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Table 17. Summary of probabilistic and deterministic simulations of emission rates
(TOXCHEM+V3 and WATER9 using their own Henry's constants)

Emission rate (Ibid)

Simulation Models Benzyl alcohol Phenol Methylene chloride 2-Butanone Acetone

5% 0.048 0.070 1.087 0.061 0.540

TOXCHEM+V3 Probabilistic 50% 0.196 0.236 2.445 0.685 1.108

95% 1.171 2.365 5.577 2.648 3.348

TOXCHEM+V3 Determi nistic 0.38 0.538 2.873 1.044 1.648

5% 0.001 1.904 0.995 0.035 0.317

WATER9 Probabilistic 50% 0.002 6.723 2.194 0.419 0.679

95% 0.009 66.199 4.906 1.695 2.122

WATER9 Deterministic 0.003 16.352 2.590 0.629 1.029

Table 18. Summary of probabilistic and deterministic simulations of emission rates
(TOXCHEM+V3 and WATER9 using same Henry's constants)

Emission rate (Ibid)

Simulation Models Benzyl alcohol Phenol Methylene chloride 2-Butanone Acetone

5% 0.011 1.979 1.079 0.060 0.495

TOXCHEM+V3 Probabilistic 50% 0.045 6.904 2.429 0.682 0.682

95% 0.314 68.020 5.519 2.644 2.644

rOXCHEM+V3 Deterministic 0.074 16.362 2.822 0.999 1.570

5% 0.001 1.904 0.995 0.035 0.317

WATER9 Probabi listie 50% 0.002 6.723 2.194 0.419 0.679

95% 0.009 66.199 4.906 1.695 2.122

WATER9 Deterministic 0.003 16.352 2.590 0.629 1.029
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Table 19. Cumulative frequency of deterministic results on the simulated cumulative distribution
(TOXCHEM+V3 and WATER9 using their own Henry's constants)

Benzyl alcohol Phenol Methylene chloride 2-Butanone Acetone
TOXCHEM+V3 74.0% 76.5% 65.7% 65.0% 77.0%

WATER9 72.8% 72.1% 65.8% 65.0% 76.3%

Table 20. Henry's constants used in both models (dimensionless)

Benzyl alcohol Phenol Methylene chloride 2-Butanone Acetone
TOXCHEM+V3 1.60E-05 5.32E-05 1.21 E-01 5.32E-03 1.50E-03

WATER9 4.54E-06 0.522 1.02E-01 9.80E-03 1.36E-03
Note: the Henry's constant for benzyl alcohol in TOXCHEM+V3 is obtained from Michigan Environmental

Response Division.

Table 21. Cumulative frequency of deterministic results on the simulated cumulative distribution
(TOXCHEM+V3 and WATER9 using same Henry's constants)

Benzyl alcohol Phenol Methylene chloride 2-Butanone Acetone

TOXCHEM+V3 66.6% 71.3% 64.1% 64.3% 77.8%
WATER9 72.8% 72.1% 65.8% 65.0% 76.3%
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Chapter V

Discussion

5.1 Distributions fitting

As discussed in the section on Monte Carlo simulation, a proper model for a specific

problem is the first step of running a Monte Carlo simulation. Variables distributions

used in conjunction with the selected model are the most critical elements during a

simulation event because all the simulating values win be sampled from the distribution.

Based on the principle of mass balance, the emission rate of VOCs is proportional to

the concentration in the influent. If the exact amount of these chemicals is known in the

influent, the emission rates can be determined with few uncertainties. However, the

chemicals in the influent fonow speci.fic distributions. It is critical for accurate

simulations to know the chemical's distribution. If there were adequate concentration

data available to fit a distribution for these chemicals, the fitted distribution would match

the actual distribution better. The fitted results would be more accurate. As the shapes of

the fitted distributions for the chemicals of interest were generally skewed, the Anderson­

Darling test method, which places more emphases on the tail, was utilized to select the

proper fitted distribution. Distribution fitting of these chemicals was performed using the

sampled concentrations and calculated masses. The selection of the best-fit distributions

was based on the concentration data. The distribution developed using masses was used

for reference, or to confirm the distribution that was selected based on concentration, and

to try to help limit scatter in the data. The results were consistent except that there was a

slightly different ranking of the fitted distribu60n for 2-butanone. An Exponential

(EXPON (~) distribution was ranked best and a LOGNORM2 (Il, d) distribution ranked
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second using the A-D test with concentration, while the ranking were reversed when they

were fitted with mass. The mass was calculated by multiplying the flow rate and the

concentration of each compound on the same day at the sample unit The sample unit is

the transfer pit for acetone, 2-butanone, and methylene chloride. It is DlID2 for phenol

and benzyl alcohol. The flow rate used for fitting distribution was obtained from the

effluent record of the first quarter 2001 of the treatment plant. Since the flow

measurement is at the tail end of the plant and there is a lag time within the plant, the

EXPON (~) distribution was still considered to be the best fit for 2-butanone in the

influent. For phenol, the fitted distribution using both concentration and mass were the

same. Both data sets were best fit by the PEARSON5 (a., ~) distribution. For acetone, the

top three fitted distributions were INVGAUSS (~,A), LOGNORM2 (Jl, 0'2) and

PEARSON5 (a., ~) based on mass and concentration. For methylene chloride, the top

three fitted distributions were INVGAUSS (Il,A), LOGLOISTlC (y, ~, a.) and

PEARSON5 (a., ~) based on mass and concentration. To pick a distribution thought to be

the best among these fitted ones, Bootstrapping simulation was used to provide a range of

the mean and standard deviation of the actual field data of chemicals. The theoretical

values of the mean and standard deviation of each distribution were calculated and

compared to the Bootstrapping results. The closer the mean and standard deviation of the

fitted distribution were to the mode of the bootstrapped values, the better the fitted

distribution would represent the true distribution. The theory behind this procedure was

discussed in detail in the Methodology section. On the other hand, the more data that is

used for fitting, the more accurate the result would be (Palisade, 1997). Since the quantity

of the fitting data is so limited, it is not possible to select an absolutely representative

- 82 -



distribution for each compound. Among the four chemicals for which data exist, phenol

had the most data so that the fitted distribution could be considered to be the most

repres.entative. Therefore, among the distributions thal fit the input data well, the one that

was similar to that of phenol was preferentially selected. Benzyl alcohol, phenol,

methylene chloride. and acetone aU followed the PEARSON5 (a, ~) distribution.

However, 2-butanone followed the EXPON (~) distribution.

Tables 3, 5, 7, 9, and 11 present summaries of the statistics of the fitted distributions

for all compounds. It was found that the mean and standard deviation calculated from

Equations 33, 34, 35 and 36, are slightly different from those listed in these tables for

each compound. For example, the mean phenol concentration calculated from Equation

33 was 79.14 mgll while Table 3 lists a mean of 75.71 mg/I. The difference exists

because 79.14 mg!1 calculated from Equation 33 stands for the theoretical value of the

Pearson5 distribution with certain a, I~ values (n =1.3910; ~ =30.945), while 75.71 rngll

was obtained from samples being fitted. The theoretical equations assume that the

samples are continuous. However, as a matter of fact, samples being fitted are discrete.

When the bootstrapping results were used to confirm the fitted distribution, the

theoretical values of each statistics for each distribution were used.

5.2 Interpretations of probabilistic results

Simulations provided cumulative distributions for each compound. When USIng

TOXCHEM+V3, with 90% confidence interval (5% to 95%), the OC-ALC/IWTP was

estimated to release benzyl alcohol ranging from 0.048 IbId to 1.171 IbId (i .C., 5% and

95% values, respectively), phenol ranging from 0.070 IbId to 2.365 Jb/d, methylene
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chloride ranging from 1.087 IbId to 5.577 Ibid, 2-butanone ranging from 0.061 IbId to

2.648 IbId, and acetone ranging from 0.54 IbId to 3.348 IbId. From WATER9, with a 90%

confidence rnnterval (from 5% to 95%), the OC-ALC/IWTP was estimated to release

benzyl alcohol ranging from o.om IbId to 0.009 IbId (i.e.. 5% and 95% values,

respectively), phenol ranging from 1.904 IbId to 66.199 IbId, methylene chloride ranging

from 0.995 IbId to 4.906 IbId, 2-butanone ranging from 0.035 IbId to 1.695 IbId, and

acetone ranging from 0.317 IbId to 2.122 IbId.

Table 17 also presents the simulation results using average concentrations and flow

rate, which is the deterministic mode of the models. By using TOXCHEM+V3, the

estimated annual VOCs emission is 2366 lblyr (6.48 IbId), while WATER9 predicts an

annual VOCs (five compounds discussed in this thesis) emission of 7520 Ib/yT (20.60

IbId). [f the Henry's constants used in TOXCHEM+V3 were adjusted to the same as

those used in WATER9, the annual estimated emissions of VOCs would be 7966 lb/yr

(21.83 IbId). Card (1995) conducted a study on comparisons of mass transfer models

with direct measurement for free liquid surfaces at municipal wastewater plants and

found that WATER7 over estimated by a factor of fi ve and TOXCHEM over estimated

by a factor of two compared to the actually measured results. In Card's study it was

shown that the average measured emission rate for those IWTPs was about 70 pounds per

year per MOD of the influent flow. Compared to Card's (1995) results, TOXCHEM+V3

and WATER9 both predicted significantly larger emissions from the [WTP for this study,

which was 7000-8000 lb/yr with an average flow rate of IMGD. The huge difference

between these two estimations of VOC emissions might be due to the different industrial

processes in the plants of Card's study and this thesis. Different industrial processes
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would use different chemicals with different amount. Hence, more attention should be

paid to reduce the emissions from Tinker's IWTP and protect the residents from

exposure. However, these deterministic simulation results only represent a point on the

cumulative distribution curve of each compound. Information consisting of one-point is

not enough to make a good decision relative to protective action. To make a better

decision, not only the emission rate is needed, but also the probability of the emission

rate is needed. The cumulative frequency of these values corresponding to the cumulative

distribution curve are shown in Tables 19 and 21. Comparing to probabilistic results, the

deterministic results could only tell there is about a 70% probability that the VOC

emissions rate from the IWTP would be or less as Tables 19 and 20 both indicate, or tell

that there is still 30% probability that the emission rate would be more. In this study for

the OC-ALC/IWTP, the total emissions simulated by WATER9 are significantly higher

than that by TOXCHEM+V3 if each model uses Henry's constants contained in its

library. Henry's constants for aU compounds in each model are different from each other.

These Henry's constants are listed in Table 20. If the Henry's constants in

TOXCHEM+V3 are adjusted to be the same as those used in WATER9, it was found that

both models have very similar estimations of emission rates. The simulation results are

presented in Table J8. The total estimated emission rate with TOXCHEM+V3 is 21.83

Ibid (3.98 tonlyr) while it is 20.60 Ibid (3.76 ton/yr) with WATER9. TOXCHEM+V3 has

slightly higher estimation of emission rate than WATER9.

Table 17 showed that the deterministic results predicted by WATER9 and

TOXCHEM+V3 are very different for benzyl alcohol and phenol. For benzyl alcohol, the

prediction derived from TOXCHEM+V3 is about 100 times greater than that predicted by
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WATER9. But for phenol, the simulation result from WATER9 is about 30 times greater

than that from TOXCHEM+V3. One of the reasons for these differences is the different

Henry's constant used in these two models, especially for phenol where there is four

orders of magnitude of difference in the dimensionless Henry's constant. These Henry's

constants are listed in Table 20. These Henry's constants are integrated in each model's

data library, with the exception of benzyl alcohol for TOXCHEM+V3. The data library in

TOXCHEM+V3 does not have Henry's constant for benzyl alcohol. The Henry's

constant was obtained from the Michigan Environmental Response Division website,

(website source, 2002). More work is needed to figure out why different Henry's

constants are used in WATER9 and TOXCHEM+V3. This area of research is partly

beyond the scope of this thesis.

When the Henry's constant for phenol in TOXCHEM+V3 was greatly increased after

it was adjusted to be the same as in WATER9, the emission rate increased. The emission

rate of phenol ranged from 1.079 ibId to 68.020 IbId with 90% confidence interval (from

5% to 95%) with TOXCHEM+V3. The prediction range of emission rates for henzyl

alcohol was changed to 0.012 Ibid to 0.314 Ibid with 90% confidence interval (from 5%

to 95%). While for the other compounds the emission rates were almost the same as those

using their own Henry's constants in the library of TOXCHEM+V3. For methylene

chloride, it ranged from 1.079 IbId to 5.519 Ibid, for 2-butanone, it ranged from 0.060

IbId to 2.644 Ibid, and for acetone it ranged from 0.495 Ibid to 2.644 Ibid. The percentage

of the detenninistic estimation on the cumulative distribution curve is presented in Table

21. The simulated cumulative distribution curves are presented in Figures 53, 54, 55, 56
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and 57. The deterministic simulations were done by using the same Henry's constants in

both models. Furthermore, only the Henry's constants in the library of TOXCHEM+V3

were changed is because the database in WATER9 was not editable.

Due to different unit's definition in TOXCHEM+V3 and WATER9, the actual units

were modeled differently in each model. The emissions were different for each unit in

both models, though the total emissions for the whole plant were close. For example, the

diversionary structure ahead of the oil/water separator was modeled as an open drop­

structure in TOXCHEM+V3, while it was modeled as weir/waterfall in WATER9. Thus,

the emissions from both units were different. The emissions were 206 lb/yr from the open

drop-structure in TOXCHEM+V3 and 48.7 lb/yr from weir/waterfall in WATER9 with

the same model's setups for deterministic simulations. The detailed comparisons of these

units with different models are listed in Table 22, Figure 61, and Figure 62.
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Table 22. Comparisons of unit emissions in TOXCHEM+V3 and WATER9 (deterministic simulation with same Henry's constants)

Units TOXCHEM+V3 WATER 9

BenzYl alcohol Phenol Methvlene chloride 2-Butanone Acetone Cpds Sum BenzYl alcohol Phenol Methylene chloride 2-Butanone Acetone Cpds Sum

IbId Ibid IbId IbId IbId IbId IbId ibid IbId IbId IbId IbId

Primary Clarifier 0.01 2.68 0.47 0.16 0.24 3.560 0.003 2.000 0.400 0.152 0.362 2.917

lBlending Tank DI/D2 0.04 3.48 0.6 0.24 0.46 4.820 0.000 3.162 0.571 0.229 0.533 4.495

!oiversionarv Structure 1.23E-05 0.26 0.02 7.19E-04 5.1IE-04 0.281 0.000 0.133 0.000 0.000 0.000 0.133

Pil Water Separators 8.64E-04 0.26 0.04 1.41£-02 0.02 0,335 0.000 9.905 0.914 0.076 0.038 10.933

Storage Tanks 2.50E-l1 1.08E-06 4.55E-08 1.39E-09 9.28E-IO 0.000 0.000 0.610 0.076 0.000 0.000 0.686

Equalization Basins 0.02 9.2 1.64 0.56 0.8 12.220 0.000 0.514 0.495 0.076 0.038 1.124

~ixing Basin-I 2.97E-04 0.Q3 4.95E-03 3.34E-03 6.23E-03 0.045 0.000 0.000 0.038 0.019 0.000 0.057

~ixing Basin-2 2.97£-04 0.03 4.75E-03 3.3IE-03 6.2IE-03 0.045 0.000 0.000 0.038 0.019 0.000 0.057

~ixing Basin-3 5.26E-04 0.06 0.01 8.48E-03 0.01 0.089 0.000 0.019 0.038 0.019 0.000 0.076

Iweir fTom the Mixing Basin 6.07E-05 0.06 5..53E-03 1.29E-03 1.84E-03 0.069 0.000 0.000 0.000 0.000 0.000 0.000

~CC-N 1.88E-03 0.01 3.15E-03 5.69E-03 0.02 0.041 0.000 0.010 0.019 0.038 0.038 0.J05

Iwet Well 9.7 IE-OS 2.43E-04 5.35E-05 1.76E-04 9.26E-04 0.001 0.000 0.000 0.000 0.000 0.000 0.000

~and Filter 0 0 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

rump staLion 3.36E-05 0.03 2.86E-03 7.08E-04 1.02E-03 0.035 0.000 0.000 0.000 0.000 0.000 0.000

/;::hlorine Contact Chamber 2.28E-04 5.24E-04 1.21E-04 4. 12E-04 2.17E·03 0.003 0.000 0.000 0.000 0.000 0.000 0.000

!oiversionarv Structure 1.23E·05 0.26 0.02 7. 19E-04 5.IIE-04 0.281 0.000 0.000 0.000 0.000 0.000 0.000

hickener 1.17E-05 9.54E-04 I 86E-04 1.76E-04 2.96E-04 0.002 0.000 0.000 0.000 0.000 0.019 0.019
-

Belt filter 0 0 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sum 0.074 16.362 2.822 0.999 1.570 0.003 16.352 2.590 0.629 1.029

Total 21.827 20.603

Note: For blending tanks D l1D2, oil/water separators. storage tanks and equalization basins. the emissions are a combination of (WO parallel units.



When the Henry's constants were adju ted to be the same, TOXCHEM+V3 has higher

estimation of emission rates than that. of WATER9. Figure 61 shows the determini t.ic

results with same Henry's constants from WATER9.

iJ Benzyl alcohol
o 2-Butanone

-Phenol
-Acetone

o Methylene chloride

25 ~--------------------,

~ 22.5 t==~~~~=====~;;~===1"0 20 -
:0
o 17.5 +--------j
~ ]5 +----
I-<
c;) 12.5 +---­
t:o 10 -1---

'U:)
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TOXCHEM+V3 WATER9

Figure 61. Prediction of VOC emissions with GFMs

From Table 22, it is obvious that the top four units that have the most emissions are

the equalization basins, blending tanks, primary clarifier, and oil water separators for

TOXCHEM+V3, while the sequence for WATER9 is the oil-water separators, blending

tanks, primary clarifier, and equalization basins. It is also clearly found that phenol is the

major VOC emitted from the Tinker'slWTP and mainly controls whi.ch unit is the major

emitter for WATER9 and TOXCHEM+V3. For TOXCHEM+V3, the equalization hasin

has the most emission of 9.2 Ibid while the oil-water separator has the most emissi,on of

9.9 Ibid for WATER9. More work is needed to figure out the reason for the big difference

in the future. A comparison of emission rates from major emitter for both models is

presented in Figure 62. The comparison is based on the deterministic simulation with the

same Henry's constants from WATER9.
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Figure 62. Estimated VOCs emissions by process.

During the Phase 2 of this project, field sampling (March 8, 20(2) was performed

by the Department of Civil and Environmental Engineering of Oklahoma State

University and Southwest Lab of Oklahoma. Three covered units (primary clarifier,

blending t.anks and oil water separator) and two uncovered units (storage tanks and

equalization basins) were sampled and the total emission rate was estimated. The results

of liquid phase samples analyzed were not received in time to be used in this thesis; only

the gas phase data was available. Moreover, benzyl alcohol and phenol was not

measured. The field measurements showed that the emissions of methylene chloride,

acetone and 2-butanone were relatively low compared with the predicted emissions. The

predicted emission rate of all five compounds with TOXCHEM+V3 and WATER9 was

around 20 Ibid based on the historic liquid phase concentration data, while the actual

estimation of the emission rate was only 0.885 IbId. The field test results are listed in

Tabk 23. The compounds concentrations were analyzed and determined by GC/MS.
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Table 23. Emission rate of compounds based on field measurement

Sampling Compounds Emission
velocity Opening Flow concentration (Jlg/m

3
) rate (Ibid)

Covered Methylene Methylene
units at vents Area Rate chloride 2-Butanone Acetone chloride 2-Butanone Acetone

(fpm) (ft2) m3/d (llg/m1
) (llg/m3

) (1J.g/m3
) Ibid IbId Ibid

DI/02 50 7.8 15905 5630 47.85 594.3 0.197 0.002 0.021
Primary
clarifier 10 2.56 1044 7995 1104 54.1 0.002 0.00 0.00

Oil water
separator 15 2.56 1566 5590 24.5 217.2 0.019 0.00 0.001

SUM 0.219 0.002 0.021

Subtotal 0.242

Surface Flux Flow Compounds Emission
area of chamber concentration (ug/m3

) rate (Ibid)
Uncovered uncovered X-cross Rate Methylene Methylene

units unit area chloride 2-Butanone Acetone chloride 2-Butanone Acetone I
(£12) (£12) Umin (ug/m3

) (l!g/m3
) (ug/m3

) Ibid Ibid Ibid
Storage

tanks 4570 3.043 22 3,025.00 161.75 607.00 0.317 0.017 0.064
Equalization

basins 5005 3.043 22 1425 271.75 440 0.164 0.031 0.051

SUM 00481 0.048 0.114 I

Subtotal 0.643

Tala] 0.885

Note:
The calculation equations of emission rate are:
For Covered units, Emission rate (mass/d) :: Velocity (mid) * Opening Area (m2

) * Concentration (uglm3
)

For uncovered units, Emission rate (mass/d) =Flow rate (m3/d) * Concentration (uglm3
) * Surface area (fe) I Flux chamber area ere)



Chapter VI

Conclusion and suggestions

Uncertainty analysis of an emission inventory from an IWTP is a new issue, though

uncertainty analysis is widely applied in risk assessment. This thesis has presented a

method to perform this type of uncel1ainty analysis and its application in a case study.

Model uncertainty. parameter uncertainty and input uncertainty are three important

sources of uncertainty. Once the source of uncertainty is to be studied, the distribution of

the variables of interest becomes the most critical factor in the study. This thesis used

simulation techniques to fit the distribution for the variables of interest. Since the source

of uncertainty in this study was categorized as input uncertainty, all of the input variables

were discussed. The distributions for the influent flow rate and chemicals concentrations

were fitted and selected. The emissions rate of each compound was simulated using

TOXCHEM+V3 and WATER9. The simulation results presented a range of VOCs

emissions from the IWTP. When the same Henry's constants (from WATER9library) are

used, with WATER9, emission rate of benzyl alcohol ranged from 0.001 IbId to 0.009

IbId wilth 90% confidence interval (5%-95%); phenol ranged from 1.904 IbId to 66.199

IbId; methylene chloride ranged from 0.995 IbId to 4.906 IbId; 2-butanone ranged from

0.035 IbId to 1.695 IbId, and acetone ranged from 0.317 IbId to 2.122 IbId; with

TOXCHEM+V3, benzyl alcohol ranged from 0.012 IbId to 0.314 IbId, phenol ranged

from 1.979 IbId to 68.020; methylene chloride ranged from 1.079 IbId to 5.5 I9 IbId, 2­

butanone ranged from 0.060 IbId to 2.644 IbId, and acetone ranged from 0.495 IbId to

2.644 IbId. The average emission rate of Tinker's IWTP was 21.83 IbId (3.98 tonlyr) with
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TOXCHEM+V3 and 20.60 Ibid (3.76 tonlyr) with WATER9. However, there is only

about a 70% probability for both models to tell that the emission rate would be or less

based on these deterministic simulation results.

Uncertainty analysis of the emission inventory of the industrial wastewater treatment

plant can provide a range of VOC emission rates with confidence intervals. Monte Carlo

simulation was used to analyze the emission uncertainty. Based on the simulation results,

the emission rate and its probability can be easily read from the cumulative distribution.

This idea would be very useful for uncertainty analysis of environmental systems and

would be of great significance in environmental risk assessment.

The emission estimating models, TOXCHEM+V3 and WATER9, do not have a

simulation subroutine, i.e., Monte Carlo simulation; this makes it extremely difficult to

take other sources of unceltainty into consideration. More work is needed to solve this

problem, i.e. coding a simulation subroutine. In addition, more study is needed in finding

other possible reasons for the differences between these two estimating models, with the

exception of Henry's constants, such as the fundamentals of how the individual process

units are modeled in both models. FUfther exploration on these differences would be very

useful in the application of these two models.

Due to the limited time of study, the liquid phase concentrations of compounds of

interest sampling on March 8, 2002 are not analyzed yet, and thus those concentrations

are not substituted into models for deterministic simulation. The deterministic simulation

results with the field samples liquid phase cOll1centrations Inight provide useful

information for comparisons between field measurement and models estimates.
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Appendix A-I. The unit process diagram of the IWTP used in case study
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IWTP PROCESS FLOW DIAGRAM

••O~e~
\D
\D

W-.._tromR!<lltJOOI

"'-"P</I'I

EFFUJEIIT

~()re:

Oil MpInlon. 81endlna Tlinn. Swh-gt TlnkJ.. DId Equafu.atioo Balin in- pnalk-I umbo
Thf' 1"C50 a.rt!' in .writ'S ..-b~· thC)" aR put in optr.tion.

Sludg. from all uints in It>. planl ..... cIiftdftl '" It>. dudgr thid<CD<r fD' furlb<r It..""",,;,

This 6gu....... modiJi'" bPtd 01\ lb••c:rlIl*I inform.•Qoo pro<idNl by Dr. Frrddi. Hall from
tho IWTP of OC-ALC .1 TmluT, 01.:.

.....
t1!wr Disposal



Appendix A-2. The units dimensions of the IWTP in case study

Unit. Unit Name and Parameters Field Data
No Measured

l Oil Water Separators
Weirs \8 sections with 15 plates per section and a length of 12 ft

per section. Height =0.3 ft. Top of polygon =0.5 ft.
headspace (ft) 2.2

inside measured circumference (ft) 203.9
depth (ft) 9.1

wall thickness (ft) 0.7
outside measured circumference (ft) 207

inside radius (ft) 31
outside radius (ft) 32 ft (note that the wall thickness was measured to be 0.7

ft, therefore one of the measurements may be inaccurate)
measured inside diameter (ft) 64.8

distance from outside of inlet to 27.7
inside of wall (ft)
raker arm speed Travels 12 ft in I min 25 sec (12 ft is the length of one

weir section)
outlet dimensions (ft) Length = 1.8, width = 1.4,

depth = 9
capacity (gal)

2 Oil Water Diversionary Structure
outside dimensions (ft) lOx 7.7 measured on the olltside of the concrete tower

inside dimensions for entire 8.5 x 6.2 (this measurement includes the concrete
diversion structure (ft) partitions in the structure)
sluice gate width (ft) 2

wall and partition thickness (ft) 2
side well length (ft) 6.2
side well width (ft) 1.9

side well de'pth to top of waterfall 1.9
(ft)

side well depth to top of water 3.9
surface (ft)

side well depth to bottom (ft) 5.1
center well length (ft) 6.2
center well width (ft) 2.6

center well depth to water surface 1.7
(ft)

center well depth to water bottom I 1.1
(ft)

dimensions (ft)
capacity (gal)

3 Blending Tanks

diameter (ft) 60
depth (ft) 12

4
Paint Stripper

inside radius (ft) 31.6
measured diameter (ft) 60

headspace (ft) 2.7
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depth (ft) 15.1
waterfall drop height (ft) 2

weir length(ft) 29.6

5 Oil Water Separators
inside radius (ft) 32.6

inside diameter calculated from 65.2
measured inside radius (ft)

measured inside diameter (ft) I 63
depth (fl) 10

raker arm speed Travels 12 ft in Imin 25 sec (12 ft is the length of one
weir section)

outlet dimensions (ft) Length = 1.8, width = lA, depth = 9
capacity (gal)

6 EQ Basins
outside length (ft) 102
inside length (ft) 100.1
inside width (ft) 50

outside width (ft) 52
sidewalk width (ft) 4

sidewalk overhang (ft) 1.5 (on both sides)
backwash recycle influent pipe 1.7

circumference (ft)
depth to water surface (ft) 6.35
depth 10 basin bottom (ft) 11.6

spray pattern diameter from field 16
estimation (ft)

spray pattern diameter from photo 18.5
estimation (ft)

7 Storage Tanks
diameter (ft) 76.3

specified total height (fl) (taken of 32
label on tank)

measured total height (ft) 3204 ...-
depth to water (ft) 9.7

measured tank circumference (ft) 240.1
capacity (gal)

8 Mixin~ Basin 1
inside lengtb (ft) 13.2
inside width (ft) 16

depth to water surface (ft) 2.5
depth to basin bottom (ft) [5.g

mixing impeller rev. speed (rpm) 64
9 Mixing Basin 2

inside length (ft) 13.2
inside width (ft) 16

depth to water surface (ft) 2.5
depth to basin bottom (ft) 15.8

mixing impeller rev. speed (rpm) 64

10 Mixing Basin 3

inside length (ft) 9

inside width (ft) 9
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depth to water surface (ft) 2.5
depth to basin bottom (ft) 11.7

mix.ing impeller rev. speed (rpm) 48
II Mixine Basin Weir

Type broad crested weir
change in water height across weir 0.25

(ft)
lenRth of wier (ft) 9

tailwater depth (ft) 10
12 Diversionary Structure between

the mixine basins and the sec
drop heiRht (ft) 2.8

outside dimensions (ft)
sluice gate width (ft) 3.1

wall and partition thickness (ft) I
side well 1 length (ft) 6.3
side well I width (ft) 1.8
side well 2 length (ft) 6.2
side well 2 width (ft) 1.8

side well 2 depth to top of waterfall 2.R
(ft)

side well 2 depth to top of water 3.R
surface (ft.)

side well 2 depth to bottom (ft) 5.8
center well length (ft) 6.2
center well width (ft) 2.7

center welI depth to water surface 2.8
(ft)

center well depth to water bottom 10
(ft)

J3 North see
weir information 18 sections, 17 plates per section, top of polygon = 0.3ft,

bottom = 0.5ft, length = 12 fL
raker arm speed 50 sec per 6 feet of arc length (6£1*25 six foot se<:tions +

I*6.4ft section = 156.4 leet total in one complete
revolution.

headspace (ft) na
inside measured circumference (ft) not measured

depth from top of water to bottom of 16.6
sludge blanket (ft)
wall thickness (ft) I

outside measured circumference (ft) not measured
inside radius (ft) 30

outside radius (ft) 31
diameter of outer inlet baffle (ft) jH

diameter of inner inlet baffle (ft) 14.1
outlet dimensions (ft) Length = lA, width = 1.3 (trouj:(h is 1.3 ft in width)

sludge blanket depth (ft) 2
depth from top of wall to bottom of 4.2

trough (ft)

distance from inside of wall to weir 1.6

ring (ft)
distance from weir ri ng to weir 0.5

baffle (ft)
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capacity (gal) ,

diameter (ft)
Depth

14 Chlorine Contact Chamber
distance from inlet pipe discharge to 2

water surface (ft)
basin length (ft) 24.7
basin width (ft) 15.4

distance from top of wall to water 8. f
surface (ft)

distance from top of wall to bottom 12.6
of basin (ft)

waterfall height (ft) 2
capacity (gal)

basin height (ft)
15 Thickener

depth (ft) 9.1
diameter (ft) 30.2
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Appendix A-3. Raw flow rate data for distribution fitting in case study

The recorded flow rate into the plant is in units of MOD. The following data were not

consecutive and recorded in calendar year 200 I.

Flow rate 0.90 0.60 0.70

(MGO) 0.80 0.60 0.70

0.90 0.60 0.80

0.90 0.60 0.80

1.00 0.60 0.90

1.00 0.60 0.90

0.90 0.60 0.80

0.90 0.60 0.70

0.90 0.60 0.80

0.90 0.60 0.90

0.90 0.60 0.90

0.90 0.60 0.90

0.80 0.60 0.90

0.70 0.60 0.80

0.70 0.50 0.70

0.90 0.50 0.60

0.90 0.60 0.60

1.00 0.70 0.60

1.00 0.60 0.70

0.70 0.50 0.80

0.70 0.50 0.90

0.80 0.50 0.90

0.80 0.50 0.80

0.80 0.60 0.80

0.70 1.00 0.80

0.70 1.00 0.80

0.70 0.70 0.80.-
0.70 0.60 0.90

0.70 0.50 0.90

0.80 0.50 0.90

0.70 0.50

I Mean i I
0.74

I ISO 0.15

Note: SD-standard deviation
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Appendix A-4. Raw compounds data for distribution fitting in case study

In 1999 all of the chemicals listed here, except phenol, were sampled at the transfer pit

in unit of J..lg/l. Phenol was sampled at DI-D2, toward the very front end of the plant and

was reported in units of mgn. There were 3 shifts a day. For each shift, one sample was

analyzed.

Note: SD-standard deviation

Sample Date I Acetone IMethylene chloride' 2-Butanone

10/19-10/20 267.00
I

433.00 567.00
10/19-10/20 452.00 221.00 444.00
10/19-10/20 442.00 251.00 398.00
10/22-10/26 189.00 287.00 68.50
10/22-10/26 i 262.00 421.00 18.60
10/22-10/26 487.00 457.00 19.30
10/26-10/27 267.00 311.00 188.00
10/26-10/27 387.00 270.00 243.00

10/26-10/27 351.00 226.00 97.90
10/29-10/30 242.00 144.00 9.39
10/29-10/30 266.00 189.00 25.00

10/29-10/30 350.00 272.00 31.60

11/02-11/03 237.00 505.00 90.60
11/02-11103 ~ 294.00 523.00 202.00

11102-1 1/03 420.00 140.00 114.00

11105-11106 403.00 176.00 212.00

11/05-11/06 577.00 143.00 111.00

: 11/05-1 1/06 736.00 142.00 196.00

J 1/09-11110 338.00 163.00 117.00

1l/09-11/10 490.00 159.00 28.50

I 11/09-11110 451.00 248.00 35.80

11112-11/13 734.00 94.20 50.60

11/12-11113 988.00 134.00 36.20

11/12-11/13 865.00

± 437.29

I
256.92

I
143.65

SD . 208.11 128.04 149.37
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Sample date Phenol (mgfl) Sample date Phenol (mgll) Sample date Phenol (mg_1l

I-Jun-99 130.0 29-Jan-00 51.0 10-Dee-OO 15.0
2-Jun-99 140.0 6-Dee-99 45.0 30-Dee-OO 18.0
8-Jun-99 10.0 7-Dec-99 42.0 1-Jan-0 1 15.0
9-Jun-99 46.0 8-Dee-99 44.0 2-Jan-Ol 17.0

I

10-Jun-99 30.0 9-Dee-99 70.0 3-Jan-Ol 15.0
I-Jul-99 165..0 10-Dee-99 40.0 29-Jan-O1 6.0
2-Jul-99 150.0 I-Jun-OO 20.0 30-Jan-0l 6.0

14-Jul-99 240.0 2-Jun-00 10.0 I-Feb-Ol 3.0
15-Jul-99 540.0 8-Jun-00 15.0 2-Feb-Ol 4.0

30-Jul-99 24.0 9-Jun-00 15.0 3-Feb-Ol 6.0

l-Aug-99 310.0 27-Jun-OO 26.0 27-Feb-01 4.0

2-Aug-99 200.0 I-Jul-OO 15.0 28-Feb-Ol 11.0
28-Aug-99 42.0 2-Jul-00 20.0

, 29-Aug-99 41.0 3-Jul-00 10.0

30-Aug-99 50.0 26-Jul-00 20.0

I-Dee-99 60.0 27-Jul-00 26.0

2-Dee-99 54.0 5-Aug-OO 12.0

21-Dee-99 50.0 6-Aug-00 11.0

22-Dee-99 50.0 7-Aug-OO 12.0

23-Dee-99 50.0 29-Aug-00 15.0

25-Jan-OO 40.0 30-Aug-00 25.0

26-Jan-00 80.0 7-Dee-00 11.0

27-Jan-OO 80.0 8-Dee-00 2.5

28-Jan-00 50.0 9-Dee-00 15.0

Mean 55.41

SD
, 87.26
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8

Appendix B-l. Units' parameters set-up for TOXCHEM+V3

Primary Blending Venturi Oil Storage Equalization Mixing Mixing Solid Wet I'ump chlorine

UnilS of IWTP - . . D.-8. . - - Basin Basin D.-S. contact - - contact

Clarifier Basin pipe Separator tank Basin (1,2) (3) Clarifier well Station chamber

W []J GJGJMark in the Layout CS DS B9 DlO F9. G9 H919 19 K9 L9 M9 R9 59 U9 V9
Depth (ft) 12.4 12 NIA NIA 6.9 9.7 5.25 11.3 9.2 NIA 16.6 7.6 NIA 4.5

Surface area (fI2) 3135.5 2826 NIA NIA 3017.5 4570 5005 211.2 81 NIA 2826 NIA NIA NIA

Weir length (ft) 29.6 NIA NIA NIA 216 NIA NIA NIA NIA NIA 216 NIA NIA NIA

waterfall height (ft) 2 NIA NIA NIA 2.2 NIA NIA NIA NIA NIA I NIA NIA NIA

Diameter (ft) NIA NIA 2.8 NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA

Slope (%) NIA NIA 0.05% NIl! NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA

length (ft) NIA NIA 12.5 NIA NIA NIA NIA NIA NIA NIA NIA 16.7 NIA 24.7

roughness NIA NIA 0.013 NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA
No.ofCSTRs NIA NIA I NIA NIA NIA 2 I I NIA NIA NIA NIA NIA

tailwater depth (ft) NIA NIA NIA 9.4 ,\'/A NIA NIA NIA NIA 7.2 NIA NIA 2 NIA

Drop hei ghl Cft) NIA NIA NIA 1.7 NIA NIA NIA NIA NIA 28 NIA NIA 2 NIA

Stream width (ft) NIA NIA NIA 2 NIA NIA NIA NIA NIA 3.1 NIA 9.7 2 15.4

Oxygen Transfcr (aT) eff.(%) NIA NIl! NIA NIA NIl! NIA 6% 6% 6'« NIl! NIl! NIA NIA NIA

SId. O.T. rale (Ib 02/hp.hr) NIA NIA NIA NIl! NIA NIA 0.25 2 2.8 NIA NIA NIA NIA NIA

Dirty/clean water correclion NIA NIA NIA NIA NIA NIA 0.8 0.8 0.8 NIA NIA NIA NIl! Nlit

Total mixer power (hp) NIA NIA NIA NIA NIA NIA 15 0.25 0.5 NIl! NIl! NIA NIA NIA

SS removal eff. (%) NIA NIl! NIA NIA 50% NIA NIA NIA NIA NIA NIA NIA NIA NIA

Oil removal err. (%) NIA NIA NIA NIA 95% NIA NIA NIA NIA NIA NIA NIA NIA NIA

Effluent SS cone. (mgll) 724 NIA NIA NIA NIA NIA NIl! NIA NIA NIA 19 NIA NIA NIA

Sludge SS cone. (mgfl) 61 NIl! NIl! NIA NIl! NIA NIA NIA NIA NIA 6429 NIA NIA NIA

Air now rate (cfm) NIA NIA NIA NIA 0 NIA 0 0 0 NIA NIA 0 NIA 0
Flow rale of float stream

(MGD) NIl! NIA NIA NIA 0.004!! NIl! NIA NIl! NIA NIA NIl! NIA NIA NIA

Covered (YeslNo) y Y NIA NIA Y y N N N NIA N N NIA N

Venlilizalion (cfm) 763.14 2325.2 NIA NIA 763.14 I.E-OS NIA NIl! NIA NIl! NIA NIA NIA NIA

Note: D.-S.: Diversionary structure



Appendix B-2. Units' parameters set-ups for WATER 9

The following is a list of input specifications for each unit with WATER 9

Type of unit is primary municipal clarifier

1 Description of unit
2 Wastewater temperature (C)
3 primary clarifier diameter (m)
4 primary clarifier depth (m)
5 clarifier solids removal efficiency
6 waterfall drop height (em)
7 clarifier weirlcircumference
8 Center well present, = 1
10 Number of identical units in parallel
15 vent air emission control factor
16 Cover vent rate (m3/s per m2 surface)
17 If covered, then enter 1

Type of unit is storage tank

1 Description of unit
2 Wastewater temperature (C)
3 Open surface area of tank (m2

)

4 Density of liquid in tank (glee)
5 tank waste M wt, water= 18
6 tank storage time (days)
7 tank paint factor
8 tank diameter (m)
9 tank vapor space height (m)
10 diurnal temp. change (deg.C)
11 tank height (m)
12 oil in composite wastewater (wt. %)

Type of unit is storage tank

I Description of unit
2 Wastewater temperature (C)
3 Open surface area of tank (m2

)

4 Density of liquid in tank (glcm3
)

5 tank waste Mwt, water=18
6 tank storage time (days)
7 tank paint factor
8 tank diameter (m)
9 tank vapor space height (m)
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Primary Clarifier
25.83
9.632

3.7795
0.7
20
0.5
o
o

0.03601
0.01

o

2 Blending Basin-l
25.83

216.011
1

18
2

1.2
9.9

1
5.3

4.72
0.2

3 Blending Basin -2
25.R3

216.011
I

18
2

1.2
9.9

1



10 diurnal temp. change (deg.C)
II tank height (m)
12 oil in composite wastewater (wt. %)

Type of unit is open sump

1 Description of unit
2 Underflow T (C)
3 Total water added at the unit. (l/s)
4 Area of openings at unit (em2

)

5 Radius of drop pipe (em)
6 Drop length to conduit (em)
7 Open surfaee=1
8 Subsurface entrance=1
9 subsurface exit =1
10 radius of underflow conduit (em)
11 distance to next unit (em)
12 slope of underflow conduit
13 area of surface (em:!)
14 flow entrance depth under surface (em)
15 depth of liquid in sump (em)
16 velocity air at opening (ft/min)
17 municipal waste in conduit =1
18 Assume equilibrium in unit, =1

Type of unit is weir, waterfall

I Description of unit
2 Underflow T (C)
3 Total water added at the unit (lIs)
4 waterfall width at surface (m)
5 waterfall drop height (em)
6 tailwater depth (m)
7 Open surface= I
8 Subsurface entrance=l
9 subsurface exit = 1
10 radius of underflow conduit (em)
11 distance to next unit (em)
12 slope of underflow conduit

Type of unit is covered separator

1 Description of unit
2 Wastewater temperature (C)
3 area of run vent or opening (cro2/unit)
4 velocity air at opening (ftlmin)
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5.3
4.72

0.2

4 Influent from Bldg.3001
25.83

30
50
5

61
1
o
o

12
2374.4

0.015
10000

10
50
88
o
o

:) lift station
25.83

o
0.7925
0.5182
2.8651

o
o
o

30.48
500

0.Ol5

6 Oil-water separator-l
25.83
3000

88



5 length of unit (m)
6 width of unit (m)
7 depth of unit (m)
8 cover vent rate (m3/s per m2 surface)
9 headspace depth (ern)
11 fraction of oil recovered from water
12 oil in composite wastewater (wt. %)

Type of unit is covered separator

1 Description of unit
2 Wastewater temperature (C)
3 area of run vent or opening (cm2/unit)
4 velocity air at opening (ftlmin)
5 length of unit (m)
6 width of unit (m)
7 depth of unit (m)
8 cover vent rate (m3/s per m2 surface)
9 headspace depth (em)
11 fraction of oil recovered from water
12 oil in composite wastewater (wt. %)

Type of unit is storage tank

1 Description of unit
2 Wastewater temperature (C)
3 Open surface area of tank (m2

)

4 Density of liquid in tank (glee)
5 tank waste Mwt, water=18
6 tank storage time (days)
7 tank paint factor
8 tank diameter (m)
9 tank vapor space height (m)
10 diurnal temp. change (deg.C)
1L tank height (m)
12 od in composite wastewater (wt. %)

Type of unit is storage tank

1 Description of unit
2 Wastewater temperature (C)
3 Open surface area of tank (m2

)

4 Density of liquid in tank (glcm3
)

5 tank waste Mwt, water= 18
6 tank storage time (days)
7 tank pain t factor
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19.873
19.873
3.048

0.0005
67.06

0.8
0.2

7 Oil-water separator-2
25.83
3000

88
19.873
19.873
3.048

0.0005
67.06

0.8
0.2

8 Storage Tank-l
25.83

o
1

18
2.79

I
23.256
2.9566

5.3
9.876

0.2

9 Storage Tank-2
25.83

o
I

18
2.79

1



8 tank diameter (m)
9 tank vapor space height (m)
10 diurnal temp. change (deg.C)
11 tank height (m)
12 oil in composite wastewater (wt. %)

Type of unit is equalization

I Description of unit
2 Wastewater temperature (C)
3 kngth of unit (m)
4 width of unit (m)
5 depth of unit (m)
6 Area of agitation (each aerator, m2

)

7 Total number of agitators in the unit
8 Power of agitation (each aerator, HP)
9 Impeller diameter (em)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/¥ bio-hr)
15 Aeration air flow (m Is)
16 active biomass, (gil)
17 vent factor (covered=l)

Type of unit is equalization

1 Description of unit
2 Wastewater temperature (C)
3 length of unit (m)
4 width of unit (m)
5 depth of unit (m)
6 Area of agitation (each aerator,m2

)

7 Total number of agitators in the unit
8 Power of agitation (each aerator,HP)
9 Impeller diameter (em)
10 Impeller rotation (RPM)
II Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/¥ bio-hr)
15 Aeration air flow (m Is)
16 active biomass, (gil)

- 11I -

23.256
2.9566

5.3
9.876

0.2

10 Equalization Basin-l
25.83
31.09
15.85

3.5357
47
1

15
60

1200
0.83
0.83

o
19
o

0.05
0.0005

11 Equalization Basin-2
25.83
31.09
15.85

3.5357
47
L

15
60

1200
0.83
0.83

o
19
o

0.05



17 vent factor (covered=1)

Type of unit is mix tank
1 Description of unit
2 Wastewater temperature (C)
3 length of unit (m)
4 width of unit (rn)
5 depth of unit (m)
6 Area of agitation (each aerator, m2

)

7 Total number of agitators in the unit
8 Power of agitation (each aerator, HP)
9 Impeller diameter (em)
10 Impeller rotation (RPM)
13 if there is plug flow, enter J
15 Aeration air flow (m3/s)
16 vent air emission control factor
17 If covered, then enter 1

Type of unit is mix tank
1 Description of unit
2 Wastewater temperature (C)
3 length of unit (m)
4 width of unit (m)
5 depth of unit (m)
6 Area of agitation (each aerator, m2

)

7 Total number of agitators in the unit
8 Power of agitation (each aerator, HP)
9 Impeller diameter (em)
10 Impeller rotation (RPM)
13 if there is plug flow, enter 1
15 Aeration air flow (m3/s)
16 vent air emission control factor
17 If covered, then enter 1

Type of unit is weir, waterfall

1 Description of unit
2 Underflow T (C)
3 Total water added at the unit (lis)
4 waterfall width at surface (m)
5 waterfall drop height (ern)
6 tailwater depth (m)
7 Open surface=1
8 Subsurface entrance=1
9 subsurface exit =1
10 radius of underflow conduit (em)
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0.0005

12 Mixing Basin-l
25.83

4.0234
4.8768
4.8158

47
1

0.25
60

1200
o
o
o
o

13 Mixing Basin-2
25.83

4.0234
4.8768
4.8158

47
1

0.25
60

1200
o
o
o
o

14 W eir/Watef drop
25.83

o
0.7925
0.5182
2.8651

o
o
o

30.48



11 distance to next unit (em)
12 slope of underflow conduit

Type of unit is mix tank

1 Description of unit
2 Wastewater temperature (C)
3 length of unit (m)
4 width of unit (m)
5 depth of unit (m)
6 Area of agitation (each aerator, m2

)

7 Total number of agitators in the unit
8 Power of agitation (each aerator, HP)
9 Impeller diameter (em)
10 Impeller rotation (RPM)
13 ifthere is plug flow, enter 1
15 Aeration air flow (m3/s)
16 vent air emission control factor
17 If covered, then enter 1

Type of unit is weir, waterfall

1 Description of unit
2 Underflow T (C)
3 Total water added at the unit (l/s)
4 waterfall width at surface (m)
5 wate.rfall drop height (ern)
6 tailwater depth (m)
7 Open surface=}
8 Subsurface entrance= 1
9 subsurface exit =1
10 radius of underflow conduit (em)
11 distance to next unit (em)
12 slope of underflow conduit

Type of unit is circular clarifier

1 Description of unit
2 Wastewater temperature (C)
3 secondary clarifier diameter (m)
4 secondary clarifier depth (m)
5 clarifier solids removal efficiency
6 waterfall drop height (em)
7 clarifier weir/circumference

Type of unit is weir, waterfall

- } 13 -

500
0.015

IS Mixing Basin-3
25.83

2.7432
2.7432
3.5662

47
1

0.5
60

1200
o
o
o
o

16 WeirlWater drop
25.83

o
0.7925
0.5182
2.8651

o
o
o

30.48
500

0.015

17 Solids Contact Clarifier
25.83

18.288
5.0597

0.7
20

0.57



1 Description of unit
2 Underflow T (C)
3 Total water <lidded at the unit (Us)
4 waterfall width at surface (rn)
5 waterfall drop height (em)
6 tailwater depth (m)
7 Open surface=1
8 Subsurface entrance=1
9 subsurface exit =1
10 radius of underflow conduit (em)
11 distance to next unit (em)
12 slope of underflow conduit

Type of unit is open sump

1 Description of unit
2 Underflow T (C)
3 Total water added at the unit (lIs)
4 Area of openings at unit (crn2

)

5 Radius of drop pipe (em)
6 Drop length to conduit (em)
7 Open surface=1
8 Subsurface entrance= 1
9 subsurface exit =1
10 radius of underflow conduit (em)
11 distance to next unit (em)
12 slope of underflow conduit
13 area of surfaee(em2

)

14 flow entrance depth under surface (em)
15 depth of liquid in sump (em)
16 velocity air at opening (ftlmin)
17 municipal waste in conduit = 1
18 Assume equilibrium in unit, =]

Type of unit is hard piped, no headspace

1 Description of unit
2 Underflow T (C)
3 Total water added at the unit (lIs)
7 Open surface= 1
8 Subsurface entrance= 1
9 subsurface exit = 1
10 radius of underflow conduit (em)
11 distance to next unit (em)
12 slope of underflow conduit
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18 Weir/water drop
25.83

o
0.7925
0.5182
2.8651

o
o
o

30.48
500

0.015

19 Wet Well
25
o

50
5

61
o
o
o

12
500

0.015
10000

to
137.2

88
o
o

20 Sand Filter
25.83

o
o
1
1

12
500

0.015



Type of unit is open sump

1 Description of unit
2 Underflow T (C)
3 Total water added at the unit (lis)
4 Area of openings at unit (cm2

)

5 Radius of drop pipe (em)
6 Drop length to conduit (em)
7 Open sUlface=l
8 Subsurface entrance= 1
9 subsurface exit =1
]Q radius of underflow conduit (em)
11 distance to next unit (em)
12 slope of underflow conduit
13 area of surface(cm2

)

14 flow entrance depth under surface (em)
15 depth of liquid in sump (em)
16 velocity air at opening (ft/min)
l7 municipal waste in conduit =1
18 Assume equilibrium in unit, = 1

Type of unit is circular clarifier

1 Description of unit
2 Wastewater temperature (C)
3 secondary clarifier diameter (m)
4 secondary clarifier depth (m)
5 clarifier solids removal efficiency
6 waterfall drop height (em)
7 clarifier weir/circumference

Type of unit is porous solids unit

1 Description of unit
2 temperature in porous solids (C)
3 depth of waste layer (em)
4 total porosity
5 air porosity
6 mwt oil
7 time of calculations (days)
8 active biomass (g/cc)
9 loading glee soil
10 Wind velocity (cm/s at 10 m)
11 area of land treatment (m2

)

- 115-

21 Chlorine Contact chamber
25
o

50
5

61
o
o
o

12
500

0.015
10000

10
l37.2

88
a
o

22 Thickener
25.83

60
5.0597

0.7
20

0.57

23 Filter Press
o
o
o
a
o
o
o
o
o
o



Type of unit is oil film unit

1 Description of unit
2 Wastewater temperature (C)
3 oil in composite wastewater (wt. %)
4 oil film impoundment length (m)
5 oil film impoundment width (m)
6 oil film impoundment depth (m)
8 Density of oil (glee)
9 Months for disposal (0 flow through)
10 Oil molecular weight
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24 Sludge Treatment Unit
25.83

o
50
50
4

0.7
o

180



Appendix C. An Example of Bootstrapping Simulation

The following is an exampk of the steps utilized in performing a bootstrapping

simulation. The original data set for acetone was used in this example. This data set

consisted of only 24 data points and has a very wide range from 189 Ilgll to 988 Ilg/l. The

data set is listed as foHows:

{267, 452, 442, 189,262,487,267,387,351,242,266,350,237,294,420,
403,577,736, 338,490,451,734,988, 865}

As discussed in the chapter on Methodology in this thesis, the bootstrapping sample

is drawn from the sample set equivalently with the same probability of lin. Minitab® was

used to generate random numbers from the original data set mentioned above with

replacement. Actually, all of the data in the original data set has the same probability

being sampled. The probability is 1/24 = 0.041. From the main menu of Minitab ®, go to

Calc to Random Data to Discrete, foHow the prompt windows and input the desire values.

For example,

{988, 577, 350,403, 351,577,577,403,490, 189,490,442,189,403,736,189,
452,736,865, J89}

is just a bootstrapping sample from the original data. The mean and standard deviation of

the bootstrapping sample were then calculated, which were 479.8 and 224.55,

respectively.

In this thesis, for each compound, a bootstrapping sample consists of 20 data points

and the bootstrapping was repeated 100 times. Then, there were 100 means and standard

deviations of the bootstrapping samples. These statistics were then analyzed to provide

confidence intervals. These data are listed in the following Table CL

Table C1. Bootstrapping samples of acetone
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2 3 4 5 6 7 8 9 10 II 12 13 14 IS 16 17 18 19 20 Mean SD

577 350 403 351 577 577 403 490 189 490 442 189 403 736 189 452 736 865 189 479.8 224.554

2 237 490 403 487 294 865 242 734 736 338 242 350' 403 338 267 865 734 387 .B8 242 449.6 215,153

3 487 452 451 189 267 420 420 242 487 734 267 865 262 294 736 262 487 237 267 351 408.9 187.612

4 577 262 452 237 351 242 988 734 442 734 988 865 350 267 487 403 490 403 403 988 533.2 258.197

5 420 189 988 350 865 338 237 350 865 351 420 267 736 442 351 988 189 351 865 865 521.4 283.463

6 237 442 242 487 262 865 267 351 237 237 865 237 490 420 451 189 350 338 734 189 394.5 208.951

7 988 294 736 865 338 577 487 262 734 865 865 189 :!37 442 237 266 988 262 242 266 507 289.1
I

8 452 736 262 387 267 442 189 734 734 242 452 490 267 338 734 577 451 490 294 237 438.8 183.613

9 267 988 267 237 350 442 242 736 988 988 420 487 865 189 350 451 237 294 420 189 470.4 280.869

10 736 267 267 381 736 403 266 387 294 351 242 988 387 237 403 242 266 451 577 350 411.9 200.933

\I 736 261 267 420 487 294 865 487 734 403 736 577 403 865 242 338 189 734 237 451 486.6 220.926

12 242 338 490 338 237 l89 387 577 451 '577 865 577 189 420 262 351 487 451 420 451 415 162.204

13 420 242 242 D8 420 338 262 734 189 267 736 487 350 237 865 387 451 266 351 577 408 187.81

14 242 420 420 387 988 490 734 420 350 487 266 420 403 189 420 988 442 736 451 865 505.9 231.101

15 262 403 736 237 237 267 350 452 266 577 242 577 242 490 189 338 420 577 442 267 378.6 151.652

16 734 267 267 487 988 350 267 351 420 490 ,387 237 865 294 262 351 262 237 351 487 417.7 212.293

17 387 736 338 487 338 403 420 451 237 442 736 988 242 490 351 294 403 237 490 988 472.9 222.325

18 242 267 577 442 242 267 865 988 988 350 237 403 487 338 490 734 242 262 242 487 457.5 250.964 '

19 350 242 267 988 451 577 403 865 452 338 262 266 350 9BB 387 350 487 451 267 420 458.1 229.001

20 451 237 351 242 387 736 420 487 351 988 387 403 350 266 487 487 237 442 865 242 440.8 204.902

21 189 487 577 865 420 577 577 350 420 865 267 387 351 387 242 262 403 267 350 189 421.6 192.169
I

22 237 442 189 420 262 487 452 452 294 387 490 490 387 262 487 442 403 387 242 734 397.3 125.232

23 262 350 734 452 237 487 262 988 266 451 452 403 736 577 487 487 237 487 294 189 441.9 201.592
,

24 988 442 403 734 294 338 338 451 487 387 267 452 237 237 338 338 387 267 350 403 406.9 176.064

25 350 242 237 387 350 988 294 267 294 266 490 189 266 294 267 387 267 487 294 294 345.5 169.916

26 451 403 1262 577 988 237 266 487 189 338 294 351 267 420 267 736 242 267 350 452 392.2 193.055

27 267 988 189 338 736 736 988 487 442 452 294 387 988 716 242 231 267 266 420 242 4&5.1 274.64

28 267 266 294 865 J89 387 577 350 490 452 452 452 242 442 734 442 736 350 267 442 434.8 178.961

29 387 267 988 351 267 988 338 442 351 387 734 294 351 865 267 734 351 442 452 988 512.2 262.489

30 490 294 736 262 267 442 267 487 189 267 734 442 350 294 490 262 338 487 988 487 428.7 200.093

31 451 338 577 487 338 865 262 736 338 351 487 442 267 736 237 35l 420 266 189 403 427.1 180.749

32 189 351 267 4i17 267 262 490 734 350 452 988 242 451 266 577 189 452 736 451 736 446.9 216.198
,

237 338 189 267 451 734 577 1577 351 351 865 442 988 451 267 734 294 266 442 577 469.9 221.76133

34 266 237 350 242 988 452 487 403 736 420 262 294 262 452 338 267 338 403 487 267 397.6 184.086

35 189 242 338 242 350 865 294 267 403 487 338 442 451 734 267 338 452 387 442 442 398.5 162.412

36 387 420 267 338 577 490 420 381 338 387 452 267 403 338 237 267 189 736 487 267 382.7 128.002

37 1,267 351 736 387 451 351 267 387 577 452 242 865 451 267 267 267 490 262 451 294 404.1 166.631
,

38 262 237 338 267 266 988 490 734 577 865 338 267 577 294 350 734 338 403 189 420 446.7 227.268

39 338 451 267 736 736 577 442 452 237 387 420 577 577 387 988 736 452 35J 403 237 487.6 193.678

40 736 267 338 487 351 338 267 242 988 420 338 865 294 736 350 387 294 403 294 988 469.2 246.7/5

41 420 350 189 452 237 736 490 577 490 442 294 338 487 865 487 442 350 262 490 442 442 159.476

42 351 387 452 736 267 294 351 237 734 351 242 237 452 262 267 338 350 266 237 242 352.7 147,253

43, 351 338 237 403 294 266 451 242 267 577 736 451 266 403 865 387 865 237 451 351 421.9 195.564

44 387 577 490 442 242 351 189 865 338 451 420 237 351 420 351 351 736 734 ,865 242 452 202.894

45 487 420 988 988 420 988 442 865 487 420 242 262 736 734 403 267 242 266 351 452 523 261.892

46 351 988 338 267 350 420 350 865 350 442 189 490 865 266 490 451 338 266 294 266 431.8 220.506

47 442 736 266 338 988 487 262 242 734 452 237 734 189 350 350 865 350 487 242 242 449.7 236.488
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4& 736 736 351 387 403 577 988 420 242 403 266 490 442 350 266 242 262 294 403 420 433.9 193.549

49 452 577 267 351 294 350 734 736 452 577 487 442 451 351 237 387 442 490 452 294 441.2 137.143

50 350 351 451 490 865 242 451 189 736 33& 452 267 189 490 736 736 237 452 403 262 434.4 197.908

51 266 403 350 221.188
I

451 988 577 262 267 242 490 267 451 237 267 988 577 237 350 452 452 428.7

52 338 294 242 262 387 338 338 451 442 420 451 420 262 487 387 266 452 988 .:n8 734 414.9 174.55

53 267 267 294 487 242 266 350 338 865 45\ 387 577 487 420 262 577 242 577 267 338 398.1 160.569

54 451 442 266 267 351 338 387 420 266 267 98& 577 237 490 262 487 266 734 267 865 431.4 213.311

55 267 988 350 262 266 351 487 403 988 865 577 452 988 736 451 294 266 338 988 350 533.4 280.581

56 267 267 266 262 487 490 577 442 734 351 865 442 387 267 262 865 338 267 338 294 423.4 . 196.264
, 57 . 242 734 736 189 237 988 267 267 242 451 442 420 865 490 338 294 865 387 267 262 449.2 248.742

58 452 420 242 267 294 734 262 988 189 734 242 266 736 267 266 242 736 736 237 487 439.9 244.304

59 294 734 577 734 420 338 736 350 338 262 487 451 442 266 387 865 403 338 420 452 464.7 174.375

60 237 338 262 189 490 237 262 736 267 734 403 451 387 865 351 403 988 865 267 577 465.5 244.579

61 237 242 338 351 736 189 420 338 452 442 442 267 865 452 267 481 442 736 266 387 417.8 179.765

62 865 403 294 734 266 403 294 351 988 734 294 736 338 351 294 865 387 267 242 262 468.4 246.455

63 734 490 403 420 988 577 734 865 487 988 452 452 487 420 442 267 237 387 266 490 529.3 221.179

64 451 267 487 736 381 452 736 350 267 451 189 267 294 350 189 403 294 452 487 403 395.6 148.841

65 267 734 451 350 262 351 420 736 451 736 387 577 865 452 387 267 736 865 262 189 487.3 216.832

66 865 350 294 577 420 988 490 865 189 189 350 736 734 403 403 387 351 490 242 242 478.3 239.067

67 189 734 338 736 865 734 266 350 267 420 865 294 420 266 338 487 262 242 338 242 432.7 223.356

1490
:

68 865 266 420 451 988 242 577 242 267 387 442 988 350 577 237 387 736 351 403 483.3 237.835

69 452 189 452 451 451 481 452 242 490 736 865 351 387 351 351 237 403 267 452 487 427.7 157.982

70 237 294 267 387 189 988 237 487 267 452 487 420 351 734 267 338 577 338 294 267 393.9 192.937

71 865 865 865 267 294 262 577 338 420 242 237 420 262 736 189 267 267 338 734 734 459 I 246.389

,72 267 420 351 490 267 267 242 490 242 242 387 577 267 403 267 481 734 736 577 189 395.1 165631

73 189 262 338 242 403 452 266 294 865 237 420 /89 350 45] 988 387 237 350 351 350 381.1 203.883

74 351 267 267 267 338 734 487 262 242 266 387 294 267 267 490 189 387 237 714 242 348.8 153.988

I 75 237 451 294 403 338 242 237 350 294 262 865 420 442 403 267 736 242 267 734 988 423.6 225.525

76 267 351 577 487 403 267 490 577 420 736 442 420 490 242 403 577 267 262 736 266 434 152.254

77 189 577 267 865 267 189 350 338 267 338 350 452 442 420 451 242 988 237 237 189 382.8 214.26

78 387 451 490 267 294 351 189 714 487 189 490 262 420 294 451 420 442 865 451 351 414.:1 164.008

79 189 350 442 237 266 387 189 420 490 451 865 267 350 338 189 734 266 865 451 3:18 404.2 203.355

80 387 577 242 266 266 451 189 865 294 451 267 988 294 988 267 267 189 266 736 490 437 259.7

81 267 266 266 242 487 267 420 262 387 490 351 865 988 403 487 7:14 451 490 577 403 455.2 204.714

82 189 237 266 338 865 736 267 736 577 734 988 734 734 387 267 736 988 267 403 734 559.2 267.888

83 487 988 350 452 267 865 267 487 403 351 350 294 338 267 262 734 442 487 451 487 451.5 199.015

84 487 988 267 242 736 487 451 387 351 351 262 403 294 487 :lSI 865 237 351 451 490 446.9 202.116

85 487 350 189 387 734 189 403 451 266 189 266 338 242 351 442 734 242 387 242 237 356.3 158.427

86 351 262 237 338 403 487 :187 189 266 189 865 490 865 267 865 452 350 237 736 267 425.2 228.355

87 350 294 189 267 736 7:14 865 420 865 237 577 420 420 403 242 490 2:17 577 294 736 467.7 219.511

88 ; 420 387 267 266 403 237 734 452 350 734 420 403 266 189 351 294 351 267 387 350 376.4 141.282

89 451 452 403 189 242 420 420 865 490 517 451 442 338 442 452 267 487 420 267 988 453.2 IB8.697

90 865 262 262 266 ,487 242 487 734 237 189 577 736 338 267 865 734 487 267 487 451 462 223.266

91 490 267 442 865 294 577 403 338 734 262 267 736 338 294 490 351. 487 736 451 865 484.4 201.828

92 403 262 487 451 988 338 490 988 451 351 267 350 577 242 387 451 262 351 266 734 454.8 218.585

93 734 267 267 988 387 237 865 237 452 403 294 451 294 266 262 294 242 350 350 189 391..5 219

94 189 262 451 865 736 350 451 736 350 487 387 350 487 350 403 294 577 42U 294 420 443 170727

95 420 420 267 387 387 338 237 237 294 490 736 452 262 262 988 267 442 237 338 294 387.8 185.341
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96 452 262 487 734 237 338 734 403 734 420 442 736 442 988 267 577 577 442 577 452 515.1 193.0':1

97 338 442 451 988 267 262 294 451 442 266 988 294 734 452 242 442 452 442 267 577 454.6 219.591

98 490 403 420 403 403 242 189 490 734 442 267 294 577 242 351 403 189 442 237 865 404.2 174.083

99 262 267 734 451 189 988 267 294 189 267 988 338 266 865 442 988 351 294 237 490 458.4 285.046

100 294 487 189 351 487 189 237 267 266 350 490 338 189 577 577 189 237 577 403 262 347.8 1.39.289

Note: SO - standard. deVIatIOn

An EXCEL ® integrated tool "Data Analysis" was used to analyze the standard

deviation of these bootstrapping samples. From EXCEL ® main menu, go to Tool to Data

Analysis, choose Rank and Percentile, specify the data set, a report of rank and percentile

was then generated. Using the chart wizard, a cumulative distribution curve of the

statistics of interest was then produced. A report is listed in the following Table C2.

Table C2. Ranking and percentiles of the bootstrapping samples of acetone

Point Column 1 Rank Percent Point Column 1 Rank Percent

7 289.. 1 1 100.00% 44 202.894 51 49.40%

99 285.046 2 98.90% 84 202.116 52 48.40%
, 5 283.463 3 97.90% 91 201.828 53 47.40%

9 280.869 4 96.90% 23 201.592 54 46.40%
,

45.40%55 280.581 5 95.90% 10 200.933 55

27 274.64 6 94.90% 30 200.093 56 44.40%

82 267.888 7 93.90% 83 199.015 57 43.40%

29 262.489 8 92.90% 50 197.908 58 42.40%

45 261.892 9 91.90% 56 196.264 59 41.40%

80 259.7 10 90.90% 43 195.564 60 40.40%

4 258.197 11 89.80% 39 193.678 61 39.30%

18 250.964 12 88.80% 48 193.549 62 38.30%

57 248.742 13 87.80% 96 193.09 63 37.30%

246.715 14 86.80% 26
I

193.055 64 36.30%40

62 246.455 15 85.80% 70 192.937 65 35.30%

71 1246.389 16 84.80% 21 192.169 66 34.30%

60 244.579 17 83.80% 89 188.697 67 33.30%

58 244.304 18 82.80% 13 187.81 68 32.30%

66 239.067 19 81.80% 3 187.612 69 31.30%

68 237.835 20 80.80% 95 185.341 70 30.30%

47 236.488 21 79.70% 34 184.086 71 29.20%

14 231.701 22 78.70% 8 183.613 72 28.20%

19 229.001 23 77.70% • 31 180.749 73 , 27.20%

- 120-



86
,

179.765228.355 24 76.70% 61 74 26.20%
38 227.2-68 25 75.70% 28 178.961 1 75 25.20% !

75 225.525 26 74.70% 24 176.064 76 . 24.20%

1 224.554 27 73.70% 52 174.55 77 23.20%
67 223.356 28 72.70% 59 174.375 . 78 22.20%

90 223.266 29 71.70% 98 174.083 79 21.20%

17 222.325 30 70.70% 94 170.727 80 20.20%
33 221.761 31 69.60% 25 169.916 81 19.10%

51 221.188 32 68.60% 37 166.631 82 18.10%

63 221.179 33 67.60% 72 165.631 83 17.10%
111 220.926 34 66.60% 78 164.008 84 16.10%
46 220.506 35 '65.60% 35 162.412 . 85 15.10%

97 219.591 36 64.60% 12 162.204 86 14.10%

87 219.511 37 63.60% I 53 160.569 87 13.10%

93 219 38 62.'60% 41 159.476 88 i 12.10%

92 218.585 39 61.60% 85 158.427 89 11.10%

65 216.832 I 40 60.60% 69 157.982 90 10.10%

32 216.198 41 59.50% 74 153.988 91 9.00%

2 215.153 42 58.50% 76 152.254 92 8.00%

77 2114.26 43 57.50% 15 151.652 93 7.00%

54 213.311 44 56.50% 64 148.841 94 6.00%

16 212.293 45 55.50% 42 147.253 95 5.00%

6 208.957 46 54.50% 88 141.282 96 4.00%

20 204.902 47 53.50% 100 139.289 97 3.00% ,

81 204.714 : 48 52.50% 49 137.143 98 2.00%

73 203.883 49 51.50% 36 128.002 99 1.00%

79 203.355 50 50.50% 22 125.232 100 .00%

Based on the above table, the following pIal (Figure C3 )fOf acetone was then

generated.
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Acetone bootstrapping
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Figure C3. Bootstrapping of acetone on standard deviation
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