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CHAPTER I 

INTRODUCTION 

Summary 

Software reusability and extendibility may be facilitated by imposing an ap­

propriate structure on software systems. Object-oriented design together with the 

client and heir relations has attempted to address these issues. However, there 

exists a vast resevoi'r of routines already written in different languages that may 

be reused. This research describes a model to interconnect multiparadigm routines 

using the concept of possible worlds. The structure imposed on such a system 

facilitates reusability and extendibility.-

Problem Statement 

This research uses the concept of possible worlds to develop a model for mul­

tiparadigm systems. A software system is composed of uninstantiated modules, 

module interfaces, and propositions, called possible worlds. Specifically, the model 

should provide structure to a system of multi paradigm routines. Structure, allowing 

"used in" ui and "used instead of" uio relations based on the concept of views, fa­

cilitates reusability and extendibility. A view is a set of interfaces and propositions. 

1 
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The choice of a programming language is but one step in the software devel­

opment cycle. According to Zave [Zav89], complex systems have characteristics 

and complexities that are inherent to the process and not to the current way of 

doing things. In such cases the problem characteristics may be completely satisfied 

only by the use of more than one programming language; e.g., one may require 

the use of a database query language, the sophisticated array manipulation of Cor 

Pascal, the simple list manipulation of Lisp, and the declaratives and rules of Pro­

lag. The characteristics of these languages are classified under different models or 

paradigms and systems consisting of programs from different paradigms are called 

multiparadigm systems. Each paradigm may be the basis for a class of program­

ming languages. Some of the well known paradigms are: procedural, functional, 

object-oriented, logic, rule-based. While a paradigm offers a focused and cohesive 

view, a single paradigm may not be able to describe all the aspects of a system. 

Thus in a multiparadigm system different paradigms offer the raw material to solve 

problems. 

Importance of the Topic 

How easy is it to decompose a problem into manageable subproblems, fit the 

methods and structures required to solve each subproblem to the methods and 

structures available in a large library of multiparadigm codes, interconnect the 

encoded subproblems so that they may communicate, and execute the system? 

Although much work has been done, common experience shows that we continually 
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start from scratch to build a system. Among the many reasons cited in the literature 

[BR87,Gog86,Pri87,Mey87] are the following: 

1. We are biased towards one programming language and prefer to use it. 

2. Even if we are proficient in several languages, the decomposition of a prob-

lem into subproblems and the mapping· of the structures and methods to a 

language may be difficult and is done in an ad hoc manner. 

3. It is likely that for many subproblems, solutions written in several different 

languages already exist in software libraries or in one of our directories. How-

ever, we tend to not reuse multiparadigm software. 

In large software systems, there is the potential for a large gain in productivity 

if software can be reused. Lewis and Oman [1090) predict that in the future, 

programs and data will be interchanged and mixed at the users request. Developers 

will be able to use off-the;-shelf code that can intemperate. Users will have the 
,, 

choice of either buying or building. Users will have available large libraries of 

multiparadigm routines and they will have to compose and coordinate these routines 

to form a multiparadigm system '[Zav89): 

Working systems are beginning to appear for the construction of multi paradigm 

systems. Several advocate the use of a module interconnection language to glue 

together programs written in different languages [MHS86b,MHS86a,Pur86,Zav89). 

Other systems advocate the marriage of paradigms and introduce new languages or 

new features in existing languages [Hai86a,Hai86b,Sea87]. 
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Reusability is one of the most significant factors in improving software devel­

opment productivity and quality [RGP86). Reusability can be useful during the 

entire software life cycle such as specification, design, and testing. One of the prob­

lems of reuse is that code may be written in a different language. The difficulty of 

mixed language code reusability from large software libraries is to find a software 

from a description of it. This semantic retrieval is a fundamental problem of AI. 

The model proposed in this thesis will address the issue of integrating the selected 

software into the system. This involves the correct binding of interfaces. 

Meyer [Mey87) makes a strong argument for designing reusable code using 

the object-oriented design paradigm. He argues that the problem of software reuse 

is a technical one and cannot be solved by the design of better libraries, library 

retrievals, or management. Instead, reuse is limited because designing reusable 

software is difficult. Attempts have been made to design programming languages to 

support reusability. E.g., Algol-68 and Ada offer overloading, and Ada and Clu offer 

genericity. These techniques are useful in developing reusable code but they do not 

go far enough. They are not flexible because a complex hierarchy of representations 

that have different levels of characterization cannot be described. They offer only 

two levels: generic and fully instantiated modules. Neither technique allows a 

client to use various implementations of a data abstraction without knowing which 

implementation is used in each instance. 

In object-oriented design, software is constructed as a structured collection of 

abstract data-type implementations. An abstract data-type is a class of objects 
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characterized by the operations available on them and the abstract properties of 

these operations. Object-oriented design actually identifies modules with imple­

mentations of abstract data-types. Such a dual purpose structure is called a class. 

Classes may be structured using two different relations: client and inheritance. 

Class A is a client of B if A co:r;ttains a declaration of the form bb:B. A may 

manipulate bb only through the features defined in the specification of B. 

Class C defined as a heir to class A has all the features of A, to which it may 

add its own. 

The powerful combination of object-oriented design and the client and inheri­

tance relations is a key element in achieving extendibility and reusability. Unfortu­

nately, current implementations of the object-oriented paradigm compromise these 

key benefits. 

1. Exposure of instance variables. Consider the design of a class stack whose op­

erations push, pop, top, empty may be implemented in an array or with point­

ers. Since clients of stack are allowed to access the instance variables of stack, 

the designer can no longer change an instance variable without the risk of ad­

versely affecting descendant classes that access stack instance variables. 

2. Exposure of Inheritance. Define a class Deque with the following methods: 

push, pop, top, empty, nq, dq, front. Define another class Stack with the fol­

lowing methods: push, pop, top, empty. An undesirable effect of defining Stack 

to inherit from Deque is that Stack inherits the extra operations nq, dq, front 

from Deque (Figure 1 ). If all operations are visible to clients of Stack then 
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switching to the self contained implementation of Stack (which does not sup­

port them) could be an incompatible change. Similarly, Queue inherits the 

extra operations push, pop, top from De que. 

top, empty 

push, pop 

top, empty 

nq, dQ 

front 

Figure 1. Possibility relations from stack & queue to deque 

This research provides structure to a multiparadigm system using a possible 

worlds model. In the possible worlds model, a software system is composed of 

worlds. Each world is related to other worlds by possibility relations based on 

views. Both the client and inheritance relations are embodied in the possibility 

relation. 



CHAPTER II 

RELATED WORK 

A panel of 15 representatives from industry and academia was asked to identify 

the software challenges for the next five years [1090]. Portability across architec­

tures, distributed transaction based computing, user programming, smart systems, 

interoperability, and object-oriented design are on their list.< The development of 

heterogeneous systems has tried to address these challenges. 

In a heterogeneous system, multiparadigm software communicates across a 

variety of architectures. Notkin [Not90] reports on the development of the Het­

erogeneous Computer System (HCS) at the University of Washington. The goal of 

HCS is to increase the sharing of services across systems, while decreasing the cost of 

integrating new types of systems and services into the environment. HCS provides 

a set of network services such as electronic mail, filing, and remote computation 

to a diverse collection of systems using heterogeneous remote procedure calls and 

naming services. Although multiple standards are accommodated economically, ex­

isting programs are not guarenteed transparent access to other existing programs. 

Proxy subclasses are defined to implement the different HCS services on different 

machines. A proxy subclass supplies a specific systems method for providing an 

abstract heterogeneous service. An object-oriented design is used to develop the 

7 
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abstract and proxy classes: 

Einarsson and Gentleman [Ein85,EG84] point out that two kinds of difficulties 

affect mixed language programs. 

1. Differences in language definition 

(a) Unique data structures; e.g., Fortran has no record structure and Pascal 

has no complex type. 

(b) Differing I/ 0 abstractions or file structure abstractions; e.g., Fortran as­

sumes discrete record I/b operations versus byte stream I/0 operations 

for many other languages.. Random access files cannot be defined in 

standard Pascal but are defined in many Fortran dialects. 

(c) Parameter passing semantics; e.g., InC, copy-in/copy-out semantics are 

implemented using the address of the operand but this is difficult for 

Fortran to support. 

(d) Binding time differences; e.g., Can files be opened and closed during 

execution or should they be attached before execution? 

(e) Exception handling. Should exceptions be carried over from the caller 

to the callee routine? 

(f) Asynchronism: processes, interrupts, semaphores, rendezvous .... These 

various models of programming withffi:ultiple processes are quite incom­

patible. 

2. Incompatible implementation 
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(a) Data structure representation; e.g., Fortran stores multidimensional ar­

rays by columns while Pascal does so by rows. 

(b) I/0 buffering. I/0 support packages for each language tend to do their 

own buffering, so interaction with the users' terminal produces messages 

that are out of order. 

(c) Labels and transfer of control. The problem is one of cleaning the envi­

ronment being left and re-establishment of the execution environment. 

(d) Passed procedures. A calls B and passes it C as a parameter. The 

problem is one of establishing an environment in which C can execute. 

(e) Incompatible storage management. Details of implementation such as 

how the stack is organized and what pointers are kept, the levels of 

indirection used to access dynamically allocated blocks, etc. 

(f) Separate compiled/interpreted execution. In most cases it is assumed 

that the basic unit of execution is a procedure. However not all language 

processors support separate compilation and some are interpretive. 

(g) Integrated programming environments. The Lisp environment has ed­

itors and debuggers built in to support a single language. These tools 

may not tolerate a foreign language in the environment. 

(h) Environment setup and initialization can be awkward. 

Einarsson (Ein86] suggests three maJor methods to rmx programming lan-

guages. 
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1. The system developer makes inter language communication possible with some 

of the languages supported by the manufacturer of the system. 

2. A virtual program library can be written in a portable computer oriented 

language (PCL) and called from a user oriented language (UL). 

3. Two or more programs written in different languages can interact by writing 

and reading ASCII files on an external memory device. 

Darondeau et al. [DGR81] define communicating entities as separately com­

piled program components. The authors assume that some universal connections 

and control passing mechanisms have been defined as a common extension of every 

communicating language. This allows program components to be linked indepen­

dent of their respective languages. The'authors define two means of communication 

between languages. 

1. Standard Types. Extending a set of languages with a common set of stan­

dardized data types provides a means of inter language communication. Each 

language is provided with a means of conversion between shared standard 

types and other local data types. 

2. Foreign Types. A disadvantage of the standard type is its fine granularity. 

Compound types must be converted to/from standard types for inter language 

communication with the associated expense. For a given program component, 

a foreign type is one which is referenced under the generic form M.T with M 

being the universal name of a program component which exports type T. 
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Foreign parameters are passed by name as in Algol-60. The only operations 

on a foreign type M.T outside Mare those that have been explicitly exported 

byM. 

Goguen [Gog86] suggests that an environment library be constructed. In it, 

program components from which many different but r.elated systems may be con­

structed are stored. Store design information and knowledge that went into con­

structing the code. Stored documentation of each component in the form of formal 

specifications (i.e. sets of axioms) describes what each component is supposed to 

do. This knowledge of design objectives and decisions is stored with the code so 

that it is available during debugging and maintenance when 80% of the sotware 

effort is expended [KG87]. Program composition is achieved by the use of a library 

interconnection language LIL. A LIL package and make clauses allow for separate, 

independent, and incremental compilation. Each LIL package may have multiple 

versions in multiple programming languages. To construct new entities from old 

ones, several different approaches may be used: 

1. Sew together two entities along a common interface. 

2. Enrich an existing entity with some new features. 

3. Hide some existing features of an entity. 

4. Slice an entity to eliminate unwanted functionality. 

5. Implement one abstract entity using features provided by others. 
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Goguen proposes the following major semantic concepts: 

1. Vertical composition involving top-down and/or bottom-up hierarchy of ab-

stract machine levels. 

2. Horizontal composition involving moP,ularization at a given level. 

3. Theories which declare the properties that an actual parameter must have to 

meaningfully substitute for the formal paramet~r of an entity. 
- > 

4. Views that describe semantically correct bindings at interfaces and thus de-

scribe interconnections. 

Balzer [Bal71], defines Ports as a data element used for communication with 

files, terminals, physical devices, other programs, and the monitor. One logical 

implementation is with Incremental System Programming Language ISP L. In 

this implementation, Ports are defined in terms of data semaphores, which are 

Dijkstra semaphores with -data~ A Port data type consists logically of a pointer 

to the Port to which the connection is made and a data semaphore representing 

the availability of and the actuai data being passed through the Port. The same 

mechanism that is used for transmitting data to a subroutine is used for Ports. 

Thus, the data passed is a pointer to an actual parameter list, the contents of 

which are accessed by the receiver through a formal parameter list. Two Ports 

communicate using the commands CONNECT, DISCONNECT, SEND, RECEIVE, 

CONDITIONAL RECEIVE, and REQUEST. Terminals and physical devices are 

handled by connecting the Port to a-Port in a device dependent system program 
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for the terminal or physical device that transforms the communication into I/0 

commands appropriate for the device, and which then requests the supervisor to 

perform the I/0 through the MONITOR Port. In ISPL, each job has a MONITOR 

Port which is used for all communication with the jobs monitor. Files are handled 

similarly, except that- the determination of the program to which the connection 

should be made is based on user supplied routines (for each file type) to create, 

destroy, connect, disconnect, and communicate with that file type. 

Balkovich et al. and Gettys [BLP85,Get84] describe Project Athena, an exper­

iment at MIT to explore the potential uses of advanced computer technology in the 

university curriculum. Corporate sponsors are DEC and IBM. By the end of the 

project, MIT will have a network of 2000 high performance graphics work stations. 

The system will provide facilities that will make it possible to share information and 

to access data and programs from any computer. The communications network is 

implemented with multiple technologies and is based on a high-speed backbone 

network. There are three major problems involved in building large distributed 

systems: 

1. Scale 

2. Different machine architectures 

3. Different operating systems 

Project Athena uses the UNIX operating system which provides the foundation 

needed to port all applications to all types of workstations. A working hypothesis of 
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the Project is that ~ost scientific and engineering applications can usefully interact 

only when employing a small number (20-30) of data types (e.g., graphs, arrays, 

\ 

tables). Interfaces between diverse applications may be defined with common repre-

sentations of these data types and methods for manipulating them. This motivates 

keeping the number of supported.programming languages small. 

Hailpern [Hai86a) suggests four ways t~ build a multiparadigm language. 

1. Combine the syntax and semantics of several languages; e.g., Combine the 

syntax and semantics of Prolog, Lisp, and C into one language. An advantage 

is that users can start using the system quickly as they are already familiar 

with one component of the system. A disadvantage is the unintended side 

effects caused by the complex interactions of different semantics. 

2. Add new structures to an existing language; e.g., adding objects and methods 

to Pascal. 

3. Redefine an existing language in the light of new theoretical discoveries. This 

allows for corrections to be made to existing languages. 

4. Start from scratch and build a new system. The a:dvantages are consistency 

and elegance but the effort to attract a user community may be prohibitive. 

Stefik et al. [SBK86) working at the Xerox Palo Alto research center are de-

veloping a multiparadigm system called the Loops knowledge programming system. 

The Loops system integrates the following paradigms: 
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1. Functional. A pure mathematical specification of the solution to a problem, 

eliminating the conventional von Neumann model of memory and variables; 

e.g., pure Lisp, Backus's FP language. 

2. Rules-oriented. Speci(ying the constraints of the problem, rather than the 

algorithm for finding a solution; e.g., Prolog, OPS5 

3. Object-oriented. Grouping data· into objects or abstract data types, where 

each object (or class of objects) has a set of operations·(methods) to manip­

ulate the data stored in that object'; e.g., Smalltalk, Simula, CLU. 

4. Access-oriented. The specification of side-effects or demons attached to the 

manipulation of variables; e.g., an extension of Loops. 

Researchers at the University of Texas at Austin [Kor86] have tried to apply 

the relational data model to the following: 

1. User interfaces: the'use of relational languages to access directories and mail­

boxes modeled as rel~tions. 

2. Design databases: where design environments such as CAD. and software de­

velopment are being modeled as relations. 

These applications are not the traditional data processing applications to which 

the relational model was exclusively applied initially. One drawback to the natu­

ralness of expression in Relational languages was the restriction to atomic domains 
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(first normal form). Allowing set-value and record-value domains will make repre­

sentations more compact and provide the user with an intuitive view of the data. 

Another drawback: only three kinds of operators (i.e. insert, delete, update) to 

modify tuples. rwo approaches are suggested for additional semantic rich opera­

tions. 

1. Relations with side-effects 

• A queue relation is defined for each non-relational' operation 

• To print a file, a tuple representing the file is enqueued 

• The file is ultimately printed and the tuple dequeued 

2. Operator relations. Relational expressions may be embedded within a host 

programming language (C, PL/1 or COBOL) and a special call is used to 

execute the relational operations. 

In the object-oriented view, both data and methods need to be expressed and 

the internal structure must be hidden from the users. The object is represented as a 

tuple with attributes for the data and a single set valued attribute for the methods. 

Thus, two paradigms may exist. 

1. Operation-oriented programming: when the data is brought to an operation 

in the form of a queue relation. 

2. Object-oriented programming: where a message is sent to an object to perform 

a method. 
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A scheme to translate between these two is used so that one may work with either. -

According to Tu and Perlis [TP86], functional programming creates more com-

pact programs. Functional programming maintains referential transparency which 

means that variables can take a single value within a given scope. Programs are 

thus easier to debu~ and maintain. Functional, programs show more parallelism be-

cause of the absence of side effects. The non-functional language, APL, offers array 

processing capabilities that enable condensed programs and highly parallel compu-

tation. However, a major weakness of APL is its semantics: gotos and side effects. 
,, 

It uses dynamic' binding instead of lexical binding. The authors have attempted a 

functional APL langu~ge called FAC that combines the strengths and eliminates 

the weaknesses of the two paradigms. FAC has the same syntax as APL but FAC 

has functional semantics - lexical binding and no side effects or gotos. 

Jenkins et al. [JGM86] describe the programming language Nials (Nested In-

teractive Array Language) which supports several styles of programming including: 

1. Imperative; e.g., assembly language, Basic. These languages have constructs 

closely related to the intruction sets found in a von Neumann architecture. 

They include commands such as assignment and branching. They can evaluate 

formulae involving arithmetic and logical expressions. 

2. Procedural; e.g., Algol, Fortran, PL/1, Pascal, C, Euclid, and Ada. The 

procedural style of programming includes imperative programming facilities, 

but supplements them with an abstraction mechanism to build procedures 

that generalize the concepts of a command and an expression. 
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3. Applicative; e.g., Lisp, ISWIM, Lucid. The applicative style of programming 

uses function applications and recursive function definitions as the main means 

of computation. 

4. Lambda-free; e.g., Backus's FP language. This style limits the use of func-

tional mechanisms to two levels; i.e., functions on data and combining forms 

that construct functions from other ones. 

5. Array-oriented; e.g., APL. This style uses array data structures as the values 

in the data domain and has operations that map these values as a whole. 

6. Relational; e.g., Prolog. The programmer provides a description of the prob-

lem and an underlying interpreter deduces the solution based on some pre-
. ' 

sumed semantics. 

The term "style of programming" has been used in a generic sense and means 

the style associated with a particular paradigm of computing. The design of Nial has 

been influenced by the de~ire to provide a multiparadigm programming language, 

suitable for teaching various styles. Nial is an exampe of a programming language 

based on More's array theory [Mor79,Mor81]. In array theory all data objects 

are arrays. Operations are functions that map arrays to arrays. Transformers are 

functions that map operations to operations: In essence, array theory is similar to a 

typed lambda calculus that is limited to functional objects of order two. While Nial 

does not directly support relational or object-oriented styles, they may be embedded 

in it. 
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Hailpern [Hal86] showcases nine multiparadigm research projects. 

1. Arctic: a functionllanguage for real-time control 

2. C++: an imperative, object-oriented language 

3. CaseDE design environments (imperative and specification) 

4. Lore: object-oriented, set-based 

5. Orient84/K:, object-oriented, rule-based, access-oriented, parallel 

6. Smallworld: imperative, object-oriented 

7. Tablog: functional, rule-based 

8. Algebraic specifications in Prolo9: specifications, rule-based 

9. Integrating functional and logic programming: functional, rule-based 

Hayes et al. [HS87 ,HMS88,MHS8~b] describe a mixed language programming 
- ' 

system using distributed computing. A mixed language program or MLP is written 

in two or more programming languages. A MLP consists of components. Each 

component is composed of one or niore procedures written in the same language 
' ' ' 

called a host language. A MLP system consists of six parts. 

1. UTS Language: It consists of two parts. The first part is a collection of types 

and type constructors; e.g., integer, float, array(lO, 5) of integer. The second 

part makes use of symbols to construct signatures that denote sets of types. 
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A typical use may be to describe a parameter in a signature whose actual 

argument type may vary from call to call. 

2. Language Binding: Defined for each host language. They specify the mappings 

between the host language types and the UTS language types. Only some 

mappings may have an ex_act equivalence. 

3. Agent: Each program component has an envelope process called an agent for 

the language binding. An agent has a set of outgoing routines to handle calls 

to procedures outside the component and to translate arguments from the 

host language into UTS. An agent has a set of incoming routines to handle 

invocations of procedures and to translate arguments from UTS into the host 

language. An agent uses inter-process communication to implement cross­

language calls. 

4. Interface Specification: A list of interfaces exported from a component to­

gether with a list of imported interfaces. These imported and' exported inter­

faces are specified in the fiTS language as signatures that describe the number 

and type of arguments of the given procedure. For example: 

export "procname" <export signature> 

import "procname" ·<import signature> 

5. MLP Translator: Each host language has one,MLP translator. Its basic func­

tion is to take a program component and produce object code. Besides, a 

MLP translator has other tasks. 
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(a) insert code for the agent. 

(b) place export and import signatures at known locations in a file. 

(c) change calls to external cqmponent procedures into calls on the local 

agent. 

6: MLP Linker: It performs static type-checking of arguments of the inter com­

ponent calls. The MLP linker inserts prologue code and epilogue code into the 

main program component. Prologue code establishes inter-process communi­

cation links and distribute~ the proces~es among different machines. Epilogue 

code sends messages to terminate' a process when the program has terminated. 

Manweiler et al. [MHS86a] describe how to add a new language to the Berkeley 

UNIX implementation of the Mixed L'anguage Programming system. Hayes et al. 

[HHS88] describe the integration of the object-oriented, distributed programming 

language Emerald into the M LP system. 



CHAPTER III 

A MODEL FOR MU:LTIPARADIGM SOFTWARE REUSE 

World Interconnection Model 

This section introduces a new model for software design and development. 

The model called "World Interconnection Model" is based on the "Possible Worlds 

Model" described by Kripke (Kri63r. This model attempts to provide structure to 

a system composed of multiparadigm routines. The structure will allow "used in" 

ui and "used instead of" uio r'elations between two worlds based on the concept of 

v1ews. 

A world interconnection model is made up of several worlds. If it is possible to 

specify a sub-problem as an abst~act data-type then this abstract data-type can 

be associated with a world. A = { a 1 , a 2 , ... } is a set of agents. An agent is an 

instantiation of a world. An agent considers the world of which it is an instance 

the real world. It considers another world as "possible" if it cannot distinguish this 

other world from the real one; i.e., if its ·view o{ the real world is OK in the other 

world. In the world interconnection model, a software system is broken down into 

worlds. Let :E = ( S, 1r, W) be a software system. S = { 81, 82, .•• } is the set of all 

worlds. Methods, method interfaces, and propositions are defined at each world. 
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Define each world s~ = M~ U E~ U I~ U P.. M, is the set of methods defined at world 

s,. An example of a method would be an algorithm to implement a procedure or 

function for the stack abstract data-type described in Figure 2. 

Each method has an interface that describes it. Ei is the set of interfaces 

describing methods defined at woi-ld s.- AI;l example of interfaces is given by the 

specification of procedures and functions for the stack abstract data-type (Figure 2). 

Some accessible methods may be 'from other worlds. World s, has a set of inter­

faces I~ corresponding to methods it can access. Accessible methods may be used 

in a method at a wotld. This "used in" relation, .ui resembles the object-oriented 

paradigm client relation. Accessible methods may be used instead of methods de­

fined at a world. This "used instead, of" relation uio correspon<;ls to the object­

oriented paradigm inheritance relation. 

P, is the set of propositions defined at s .. Propositions may be modal formulas 

such as Dp or Op. Language, com.Inunication, and architecture specifications may be 

included in propositions. This information may be used during design, compilation, 

and maintenance. 

Worlds may be dormant ot instantiated. An example of a dormant world is 

an abstract data-type description of a stack while an instantiation is an execution 

of an instance of a stack abstract data-type also called an agent. Worlds may also 

be classified as abstr~ct and concrete. An abstract world has no defined methods; 

i.e., M = {}. For a concrete world, M =I {}. 



• procedure Push(var S: stack; x: T); 

pre: '""full(S) 

post: S =X'"" S'; 

• function Pop(var S: stack): T; 

pre: '"" empty(S) 

post: S' = RESULT '"" S; 

• function Top(S: stack): T; 

pre: '"" empty(S); 

post: RESULT = first(S); 

• procedure Clear(var S: stack); 

post: S = <>; 

• function Empty(S: stack): boolean; 

post RESULT = (S = <> ); 

• function Full(S: stack): boolean; 

post: RESULT = (length(S) = maxstack); 

Figure 2. Specification of a stack ADT [WSHF81] 
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Every world has a set of views associated with it. Let ~be the set of all views 

possible at world si. Define ~ = 2E,ui,uP,; i.e., Vi is the set of all subsets of the 

present and accessible method interface, and proposition sets. An agent a has view 

Va of world s.- Va is defined as a set of method interfaces and formulas that are 

well-defined at that, world. An agent a'may cho~se or be assigned a view V 01 of a 

world. If an age]lt is allowed to choose its view of the world then va E 2E,ui,uP,. If 

an agent is assigned a view of the world then Va E X, X C 2E,ui,uP,. For a stack 

abstract data-type, a view may be a subset of the method interfaces [WSHF81] 

described in Figure 2. 

w = {w\ w2., •• • } is the set of all possibility relations between worlds. With 

view Va, agent a may develop possibility relation Wa. An ordered pair (s1,s2) E Wa 

if agent a's view Va of world s1 is OK at world s2; i.e., if agent a considers world 

s 2 a possible world when its view of world s1 is Va. Since different views may exist, 

for the same world, different possibility relations can develop with different worlds. 

To define Wa, view va needs to b'e OK at worlds. Define 1r as a function from the 

set S x V ~---+ {OK, -,OK}. Function 1r either OK's or -,OK's a view at a world. 

A view Va is OK at a world s if all the inter:faces t in the view .are supported by 

methods m from the set of methods M defined at world s and if all propositions c.p 

in the view are true at worlds. 

Definition 3.1 

1r(s,va) =OK if (Vt EVa, t 1--+ m, mE M) 1\ (Vc.p EVa, 'P 1--+ true) 

M is a set of methods at s. 
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A view Va is not 0 K at a world s if there exists atleast one interface t in the 

view that is not supported by any method m from the set of methods M defined 
' ' 

at world s or if there exists atleast one proposition t.p in the view that is false at 

worlds. 

Definition 3.2 

As an illustrative example, consider the Stack ang Deque ADT's. Stack may con-

sider deque as a possible world because the stack view is 0 K at deque. Therefore, it 

is possible to introduce a meaningful relation between stack and deque that relates 

to the world interconnection model. The world interconnections can be represented 

using a directed graph. Nodes represent worlds and arcs represent possibility rela-

tions. A possibility relation from stack to deque is indicated using an arrow from 

stack to deque. (Figure 3). 

For a queue abstract data-type, a view may be a subset of the method interfaces 

[WSHF81] in Figure 4. This vi~w is also OK at deque. So, a possibility relation 

may exist from queue to deque (Figure 3). Thus two different abstract data-types, 

stack and queue, regard deque as a possible world and they have two completely 

different views of deque. This structure intuitively mimics the relation between 

a class (deque) and the subclasses (stack and queue) as defined in one model of 

object-oriented inheritance [HN87]. For a deque abstract data-type, a view may be , 

a subset of the method interfaces [WSHF81] described in Figure 5 and 6. 

Can an agent that considers deque as the real world consider either stack or 
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Figure 3. Possibility relations from stack & queue to deque 

queue as a possible world? Yes, if its view of deque is OK in the stack or queue 

worlds. This arguement is more readily acceptable if you consider the many possible 

values that a view may hav~. This constitutes a mutual relationship in which worlds 

access methods defined at each <;>ther (Figure 7). 

Now suppose deque considers table as a possible world. This does not nec­

essarily mean that agents at stack ~d queue automatically consider table as a 

possible world. This is because the possibility relation between deque and table 

has been formed through the deque view. This view is different from the stack and 

queue views. The agents at stack and queue will have to independantly establish 

possibility relations with table. This allows for a flexible model of structure. 



• procedure Nq(var Q: queue; x: T); 

pre: rv full(Q) 

post: Q = Q' rv x; 

• function Dq(var Q: queue): T; 

pre: rv empty( Q) 

post: Q' = RESULT "' Q; 

• function Peek(Q: queue): T; 

pre: rv empty(Q); 

post: RESULT = front(Q); 

• procedure Clear(var Q: queue); 

post: Q = <>; 

• function Empty( Q: queue): boolean; 

post RESULT = (Q = <> ); 

• function Full(Q: queue): boolean; 

post: RESULT = (length(Q) = maxqueue); 

Figure 4. Specification of a queue ADT [WSHF81] 
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• procedure Push(var D: deque; x: T); 

pre: "' full(D) 

post: D = x "'D'; 

• procedure Nq(var D: deque; x: T); 

pre: "' full(D) 

post: D = D' "' x; 

• function Pop(var D: deque): T; 

pre: "' empty(D) 

post: D' = RESULT "' D; 

• function Dq(var D: deque): T; 

pre: "' empty(D) 

I ' 

post: D = D "' . RESULT; 

• function Front(D: deque ): T; 

pre: "' empty(D); 

post: RESULT = first(D); 

• function Rear(D: deque ): T; 

pre: "' empty(D); 

post: RESULT = last(D); 

Figure 5. Specification of a deque ADT (first part) 



• procedure Clear(var D: deque); 

post: D = <>; 

• function Empty(D: d~que ): boolean; 

post RESULT = (D = <> ); 

• function Full(D: deque): boolean; 

post: RESULT = (length(D) 2 maxdeque); 

Figure 6. Specification of a d~que A.DT (second part) [WSHF81] 

Figure 7. Possibility relations between stack, queue, & deque 
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In the hierarchical model (Figure 8), Stack and Queue inherit from Deque, 

and Deque, Stack and Queue inherit from Table. If some change is made to T 

that is acceptable to S but not to Q then the hierarchy relations are compromised. 

In the world interconnectiqn model, S and Q have views that are OK at D and 

T. D has a view that is OK at T. ,This results in the formation of possibility 

relations -wsn, wQD, -wsT, wQT, wDT (Figure 8). Any change made at T may affect 

the possibility relations -wsT', wQT, wDT., These changes will' not affect possibility 

relations WSD '· WQD. 

There may be a main program world containing a main program method. The 

main program may contain subroutine calls or invocations to methods in other 

worlds. A call or invocation has an interface and these interfaces may be incorpo­

rated into views. Based on views, a possibility relation may be formed with another 

world. This concludes a description of the static structure of the system. 

Execution may begin at the main program or it may begin with a concurrent 

instantiation of several agents. Inter agent communication takes place based on 

which views are in use. 

An Example 

Integer, real, and complex numbers are represented by three worlds i, r, and 

c respectively. Following our established notation, M is a set of methods, E the 

corresponding interfaces, and I a set of interfaces of methods to be "used in" or 

"used instead of". 



Figur:e '8. Hier.archical & world interconnection models 

M, = { +J, E 1 = { var1 = exp, oper1 exp1 } 

Mr = { +r }, Er = { varr = expr operr expr} 

Me= { +c}, Ec = { vare = expe opere expe} 
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Figure 9 gives the possibility relations. between worlds in' the sense of "used 

instead of" uio. Therefore, +r can be used instead of +z at world i; +e can be used 

instead of +i and +rat worlds i and r respectively. The reflexive relations at worlds 

i, r, and c are ui "used in" relations. +z, +r and +c are used in the respective 

worlds i, r, c. 



33 

+ + 

Figure 9. Relations between i, r, c with view+ 

The operations of complex subtraction -c, complex multiplication *c, and 

complex division /c may be defuied in terms of real operations. 

(w,x) -c (y,z) = (w -r y,x -r z) 

( W, X) * c ( Y, Z) = ( W *r Y - r X *r Z, X *r Y + r W *r Z) 

(w,x) _ (w*rY+rX*rZ, X*rY-rW*rZ) 
(y,z) - y2+,.z2 

Figure 10 gives the possibility relations between worlds. The relation from r 

to c illustrates the "used instead of" uio relation while the relation from c to r 

illustrates the "used in" ui relation and "used instead of" uio relation. 

A possibility relation from c tor allows +r, -r, *r, /r to be used in a method 
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. +-*/ 

I I 
* * 

+ + 

Figure 10. ui, uio relations .between i, r, c with view ( + - * I) 

defined at c. Alternately, the possibility relation allows for methods defined at r 

corresponding to +c, -c, *c, I c to be used instead of these at c. For world i, the 

operations +n -n *n +c, -c, *c may be used instead of the corresponding integer 

operations. I r and I c may be used in some method that duplicates the I, operation. 

An Introduction to Modal Logic 

Necessity, impossibility, contingency and possibility are modal notions and 

modal logic is the logic of these notions. Chellas [Che80] defines modal logic as the 

logic of necessity and possibility. According to Konyndyk [Kon86], a modal logic 
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should provide a way to exhibit the logical structure of those inferences that use 

modal concepts in a way which affects their validity. The following symbols are 

commonly used to represent the modal operators. 

1. Op : "p is necessary." Konyndyk [Kgn8~] defines a necessity as that whose 

denial is self inconsistent. Examples of necessity are: 

(a) Vp, q, if p =true 1\ p ~ q, then. q =true 

(b) 7 + .5 = 12 ' 

(c) AUB=BUA 

The other modal operators may be defined in terms ofnecessity. 

2. Op : "p is possible." A propo.sition p is possible in case it is not necessary 

that it be false. Op = -,0-,p 

3. Jp : "p is impossible." A proposition p is impossible in case it is necessary 

that it be false. Jp = 0-,p 

4. A contingent proposition is one that is both possibly true and possibly false. 

5. Two propositions are consistent or compatible iff their conjunction is possible. 

6. Two propositions are inconsistent or incompatible iff their conjunction is im­

possible. 

7. Two propositions are contradictory iff both cannot be true and both cannot 

be false. 
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Historical Note 

Lemmon and Scott (LS77] have summarized the historical development of 

modal logics. Aristotle explored the modal notions in his "De Interpretation" ch. 

12 and ch. 13. He arrived at the followin,g results: 

1. DA and -,DAis a contradiction. 

2. (>A and -,(>A is a contradiction .. · · 

3. DA and o'-,A is not a contradiction. 

4. <>A and <>•A is not a contradiction. 

Aristotle detected two senses of the p<:>ssibility operator: 

1. DA-+ <>A which is possibility proper. 

2. <>A-+ <>•A eg. contingency. 

Aristotle gave two equivalences ·for impossibility: 

1. lA = o.A 

2. lA =·<>A 

From these we may derive the famous equivalences: 

1. OA = .o.A 

2. DA = •<>•A 
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The Megarians and the Stoics developed theories concerning modality that 

suggest a connection between modalities and temporal notions. This connection is 

supported by recent work on the logic of time. They defined the possible as that 

which either is or will be; the impossible as that which being false, will not be true; 

the necessary as that which being true, will not be false; and the non-necessary as 

that which either is already or will be false. 

In the middle ages, Pseudo-S<;otus added these variations: 

He also considered modes such as ",to doubt, to ~now, to wish" and pointed 

out similarities between these and the usual modalities. Recent work in epistemic 

logic corroborates his observations. 

Contemporary Work 

Modern work in modal logic is attributed to C. J. Lewis. Lewis tried to 

define an implication without the paradoxes of Russel and Whitehead in "Principia 

Mathematica." In "Symbolic Logic", Lewis and Langford defined strict implication 

=? in this way. 

This definition of strict implication, also called entailment, expresses the fact that 

a conditional is true precisely when the negation of the consequent is incompatible 
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with the antecedent. Lewis intended that if A entails B then B should follow 

logically from A. This definition led to the following paradoxes: 

1. Anything whatsoever follows from the impossible 

-,OA ~(A:::::> B) 

2. The necessary follows from anything whatsoever 

DB --+ (A :::::> B) 

Lewis accepted thes~ paradoxes because they are the consequence of acceptable 

and straightforward rules that are in everyday use. Lewis describes five systems of 

modal logic, Sl- S5 each with its own rules and theorems. 

Structure and Modality 

Different systems of modal logic are described by Konyndyk [Kon86]. Each 

has different theorems and validates different inferences. Saul Kripke suggested the 

idea of possible worlds and possibility relations between worlds as a way of looking 

at differences bet~een modal systems. In this ~ection we discuss applications of 

different systems of modal logic to the world interconnection model. 

Read 8 I= v as "view v is OK at world 8.", In the formulas below, 8 1 and 8 2 

are not necessarily distinct. 

World 8 1 considers world 8 2 a possible world if a view of 8 1 is OK in 8 2 • 
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A view v is possible in a world s1 if it is OK in some world related to 8 1 by a 

possibility relation W. 

A view v is necessary in a world s1 if it is OK in every world related to 8 1 by 
'' ' 

a possibility relation W. 

In the rest of this section, the modal systems T, X, S4, S5 are applied to the 
' ' 

world interconnection model using as example the worlds stack, queue and deque. 

The modal system T has the characteristic formula Dcp :) cp; i.e., whatever is 

logically necessary is OK. If the possibility relations at a world in a possible worlds 

model are reflexive, the characteristic formula ofT holds. A view that includes the 

formula Dcp requires cp to ~e defined (for a method) or true (for a proposition) at 

that world. In Figure 11, view Vstack = Dpush. By definition, Dpush must be OK 

in all worlds possible from stack;j.e., Dpush must be OK at stack and deque. Bince 

the relation at stack is reflexive, the the characteristic formula ofT, Dpush :) push 

must hold at stack. Thus 

Dpush :) push 

Dpush 

push (modus ponens) 

Therefore push must be defined at stack. Since Dpush holds at stack, by definition, 

push must be defined at deque. 



I Opush I 
push 

Dpush 

push 

Opush 

Figure 11. Reflexive relations at worlds 
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The system X has the characteristic formula c.p :J DOc.p. If the possibility 

relations at a world are reflexive "and symmetric, the characteristic formula of X 

holds. A view that includes the formula r.p requires DOr.p to be true at that world. 

In Figure 12, view V 8 tack = push. By definition, push must be OK in all 

worlds possible from stack; i.e., push must be OK at stack and deque. Since the 

relation at stack is reflexive and symmetric, the the char~cteristic formula of X, 

push :J DOpush must hold at stack. Thus 

push :J DOpush 

push 

DO push (modus ponens) 

Therefore DOpush must hold at stack. Since the relation at stack is reflexive, the 



characteristic formula ofT, D(Opush):) <)push must hold at stack. Thus 

O<)push :::><)push 

O<)push 

<)push 

I push I 
push? 
opush 

(modus ponens) 

Do push 

push? 

¢push 

Figure 12. Reflexive & symmetric relations at worlds 
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Therefore <)push must hold at stack. Since D<)push holds at stack, by the 

definition of D, <)push must hold at stack and deque. By the definition of<), it is 

sufficient that push be defined at either stack or deque. 

The system S4 has the characteristic formula Dcp :::> DDcp. If the possibility 

relations at a world are reflexive and transitive, the characteristic formula of S4 
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holds. A view that includes the formula Dcprequires DD<p to be true at that world. 

In Figure 13, view V 8 tack = Dpush. By definition, Dpush must be OK in all 

worlds possible from stack; i.e., Dpush must be OK at stack, deque and table. 

Since the relation at sta-ck is reflexiveand transitive, the the characteristic formula 

of S4, Dpush :> DDpush must hold at stack. Th~s 

Dpush :> D Dpush 

Dpush 

DO push (modus ponens) 

Therefore DDpush J;ll.Ust hold at stack. Since the relation at stack is reflexive, the 

characteristic formula ofT, D(Dpush) :> r:,Jpush must hold at stack. Thus 

DDpush :> Dpush 

DO push 

Dpush (modus ponens) 

Therefore Dpush must hold at stack. Since DDpush holds at stack, by the definition 

of D, Dpush must hold at deque., 

Since the relation at stack is reflexive, the characteristi'c formula ofT, Dpush :> 

push must hold at stack. Thus 

Dpush :> push 

Dpush 

push (modus ponens) 

Therefore push must hold at stack. Since Dpush holds at stack, by the definition 

of D, push must hold at deque. 
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At deque, vdeque = Dpush. By definition, Dpush must be OK at all worlds 

posible from deque; i.e., Dpush must hold at table. From the definition of D, it is 

necessary that push be defined at table. The definition of push and the truth of 

' 
Dpush at table is also justified by the transitive relation from stack to table. 

push 
Opush 
OOpush 

jopushl 

push 
Opush 

Figure 13. Reflexive & transitive relations at worlds 

push 
Opush 

jopush I 

The system S5 has the characteristic formula O~.p :) DO~.p. If the possibility 

relations at a world are reflexive, symmetric and transitive, the characteristic for-

mula of S5 holds. A view that includes the formula O~.p requires DO~.p to be true at 

that world. 

In Figure 14, view V 8 tack = Opush. By definition, Opush must be OK in all 

worlds possible from stack; i.e., Opush must be OK at stack, deque and table. 
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Since DOpush holds at stack, applying the definition of 0 we have Opush true at 

stack, deque and table. From the definition of 0, push may be defined at stack, 

deque, table, or any possible world of deque or table. 

push? 

opush 

Do push 

lopushj 

push? 
<>push 

Figure 14. Reflexive, symmetric & transitive relations at stack 

push? 

<>push 

The immediate question is "How may all this be used?" In CHAPTER IV, 

a language specification corresponding to the model is defined. The compiler for 

such a language may establish a possibility relations graph. From such a graph, 

the compiler can distinguish which modal systems are present. The corresponding 

moda.l formulas that hold are established. Consistency questions about the system 

may be answered based on these formulas. The questions addressed in the previous 
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discussion provide a framework for a general application of modality. 

The possible worlds model, when combined with a modal logic, allows a user 

to reason about its knowledge. A user knows a formula if that formula is true 

in all worlds it considers possible. But what is so important about what a user 

knows? We have already stated that the possible worlds model establishes a certain 

structure on the system. This structure is based on the concept of a view. If this 

view changes, then the worlds that are possible may change because a possibility 

relation may not hold. Thus, the system is dynamic. 

To know a formula means to establish the truth of the formula in all possible 

worlds. This is written as 

A formula may be true in atleast one possible world. We write this as 

By asking questions about what is possible, a user can identify those possible worlds 

that are useful to it. These questions may be as explicit as "Is a Prolog routine 

available for the stack abstract data-type?" 

Thus, from a partitioning of the system into worlds based on abstract specifi­

cations, we have created structure. This enables a user to get replies to questions 

on necessity and possibility and this allows for the construction of extendible, mul­

tiparadigm systems. 



CHAPTER IV 

THE LANGUAGE AND ITS DESCRIPTION 

A model for softw~re reuse in a multiparadi.gm environment is of little prac-

tical value without a compatible language. A problem may,be described in a way 

compatible wit~ the 'model, using a "yYorld .Interconnection Language." A specifi-
, ,•' 

cation for such a language is given below. A.n informal description of the semantics 

of the phrase structures is provided.·. BNF D;Otation is used to describe production 

rules. Non-terminals (representing conc~pts) are enclosed in< > brackets. 

World Interconnection Language 

< world_system >::= < world_system >< module > I < module > 

The model describes a system as. composed of several modules that may be of two 

different types. 

<module>::=< world..:.module >I< agenLmodule > 

The system has two kinds of modules. A world_module is an uninstantiated world 

description while an agenLmodule specifies instances of several agents. Each agent 

46 
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is an instantiated world_module. 

< world_module >::= world< world_name >: { 

< method_list ><inter face_list >< proposition_list >} 

A world_module corresponds to a world in the inodel. It specifies a collection of 

available methods, a list of interfaces to be used in or used instead of existing meth­

ods, and a list of propositions that are OK at the world. Any two world_modules, 

though belonging to the same system, are independant ~f each other. This avoids 

any committment to object-oriented style client and inheritance relations in the 

external interface of a world_module. Thus, the system is reusable and extendible. 

This aspect of the model is discussed and illustrated in Example 2. 

< agenLmodule >::= create< agenLmodule_name >: { 

< agenLlist >< possrel.:.Zist >} 

An agenLmodule corresponds to a system of instantiated agents. 

< method_list >::= implementation : { < implementation_spec_list >} 

1 comment : { < < any_text > >} 

The method_list specifies the path of a file_name containing the source code of 

the method. The comment statement includes text for descriptive or debugging 

purposes. 

<inter face_list >::= < inter face_list ><inter face> I < inter face> 

< proposition_list >::= < proposition_list ><proposition > I <proposition > 

< proposition >::= < debug_query > I < system_info > 
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Remember that a view may consist of a list of interfaces and propositions. A view 

containing interfaces is used to construct possibility relations. A view may contain 

a debug query that traces an execution of an agent. In Example 2, modal operators 

are introduced to guide the compiler. 

< agenLlist >::= < agenLlist >agent< agenLname >:< world_name > 

I agent< agenLname >:< world_name > 

< possreUist >::= < possreUist > possrel < agenLname > · 

< world_view >< world_list > 

I possrel < agenLname >< world_view >< world_list > 

The agenLlist is a list of agents that are instances of some world. An agent is 

associated with a world_view. This world view may be satisfied in any of the worlds 

in the world_hst. This corresponds to the formation of a possibility relation. The 

world_list specifies an agent name and interface names. If sufficient semantics are 

present in a world, the world_list may only contain agent names. The interface 

description combines the work of Hayes et al. and Purtilo [HS87,Pur86]. 

<interface>::= < interface_name >: {< interface_spec >} 

< znter face_spec >::= < type_spec > I < record_spec > 



< type_spec >::= < type_name > 

I < type_spec > ( *) I < type_spec > ( +) 

I < type_spec > ( < < integer _value > >) 

I < type_spec >; < type_spec > 

I < type_spec >, < type_spec > 

< record_spec >::= record< record_name >: { < type_spec >} 

< type_name >::= int I real I char I boolean 

49 

The set of< type_name > defined herein contains the fundamental types integer, 

real, char and boolean. This may be modified to include other types or objects. The 

semi-colon denotes a sequential relationship between arguments while the comma 

operator denotes an alternation relation. 

Repeated elements as in lists or arrays are indicated by a parenthesized integer, 

asterisk, or plus. The exact number of components is indicated by an integer. A 

non-negative number of components is indicated by an asterisk. A plus sign indi­

cates a positive number of components. An interface may also contain a collection 

of< type_spec > in a < record_spec >. 

< world_list >::= < world_list >< agent_name >< world_view > 

I < world_list >< agenLname > 

I < agenLname >< world_view > 

I < agenLname > 

< world_view >::= < inter face_names > I <propositions > 
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Example 1: Multiparadigm Software Reuse 

This example, first presented by Purtilo [Pur86], is an illustration of software 

reuse in a multiparadigm environment. The world interconnection language is used 

to partition the system into worlds. Instantiated worlds called agents are created 

and possibility relations between agents are developed by binding interfaces. 

Some lisp application requires the generation of a cubic spline to interpolate 
' 

data. The data is represented as a list of ordered pairs. 

Xi and Y~ represent the abscissa and ordinate respectively of any one data point. A 

fortran library routine paraphrased in Figure 15 is used. 

If the spline routine is being invoked from a main lisp routine then the problem 

may be represented using the world interconnection language. Each of the two 

routines is identified as a world. The implementations are in files. The spline 

view of world userlisp sends a list of tuples and accepts a list of triples. World 

fmmobject also has a view called spline. This interface accepts aninteger number 

representing the number of points and two arrays of points. It returns three arrays 

of points. The world description is given below. 

world userlisp: { implementation: {/v/brenjprogl.lisp} 

spline : {{float, float}(*), {float, float, float}(*)}} 

world fmmobject: { zmplementation: {/v/brenjprog2.fortran} 

spline: { int, float(*), float(*), float(*), float(*), float(*)}} 



subroutine spline(n, x, y, b, c, d) 

integer n 

double precision x(n), y(n), b(n), c(n), d(n) 

The coefficients b( i), c( i), and d( i), i = 1, 2, ... , n 

are computed for a cubic interpolating spline 

s(x) = y(i) + b(i) * (x- x(i)) + c(i) * (x- x(i))2 + d(i) * (x- x(i))3 

for x(i) ::; x ::; x(i + 1) 

input 

n =the number of data points (n ~ 2) 

x = abscissas of points in stridly increasing order 

y =ordinates of the points , 

output 

b, c, d =arrays of spline coefficients as defined above 

Figure 15. Paraphrased excerpt from library 
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Let Land F be agents of the respective worlds. Using view spline of agent L, 

a possibility relation is constructed to agent F. 

create example : { agent L : userlisp 

agent F: fmmobject 

possrel L spline F spline} 

As things stand, the interfaces do no mesh si:qce the argument patterns do no match. 

What is necessary is another routine to perform coercion as shown below. 

world newrule : { implementation : {/v /brenjprog3.pascal} 

. input : {{float, float}(*), {float, float, float}(*)} 

output : { int,jloat( *),float(*), float(*), float(*), float(*)}} 

create example : { agent L : userlisp 

agent F: fmmobject 

agent N : newrule 

possrel L spline N input 

possrel N output F spline} 

Example 2: Exposure of Inheritance 

Alan Snyder [Sny87] questions whether or not the use of inheritance in the 

construction of a software component should be exposed to clients (inheriting or 

instantiating). Object-oriented inheritance allows a subclass to inherit methods 

from any ancestor. A client of a subclass may access instance variables of an ancestor 

class. Consequently, a change to a variable name or a method in any ancestor class 



53 

will affect all dependant subclasses and clients. In the world interconnection model 

connections between world modules are defined using the world interconnection 

language which defines possibility relations between independant modules using 

views. The possibility relations .relate·one world to another and no further. Views 

allow access to allowed methods only. All varia~les may be accessed only through 

interfaces. Changes to any method will affect all worlds that access that method 

through a possibility relation. 

Consider the deque and stack abstract data-types defined in CHAPTER III. 

Deque and stack have operations push, pop, top, and empty. In addition, deque 

has the operations nq, dq, front. In order to implement the abstraction defined in 

Figure 16, define the class stack to inherit (in the sense "use instead of") operations 

from the class deque, ignoring the additional operations. 

A self-contained definition of the operations may also be included for stack. 

Clients of stack should be able to switch between the inherited and self-contained 

definitions. However, in some cases the absence of the extra operations nq, dq, and 

front could lead to an application break-down. This occurs when some client of 

stack, using the 'operations defined at deque, starts to use the·operation:s defined at 

a stack, at which the extra operations that it used are missing. It is necessary to 

exclude the extra operations from the external interface of stack. This exposure of 

inheritance introduces a dependancy between stack and deque. The designer is not 

free to change the inheritance hierarchy without affecting clients of stack. 
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push nq 
DE QUE 

dq pop. 

top front 

empty 

/ " push 
pop. 

top STACK 
empty 

Figure 16. Implementing stack using deque 

This exposure of inheritance is avoided using the world interconnection lan­

guage. The view of the stack w9rld does not include the operations nq, dq, and 

front. Thus the possibility relations between stack and deque is formed from a view 

that excludes these extra operations. No client of stack can use these extra oper­

ations because the view will not allow i.t. An illustrative implementation is given 

below. 
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world deque: {{ implementation: {/vfbrenfpush.pas} 

push{ real, real(*)}} 

{implementation: {/v/bren/pop.pas} 

pop{reaZ, real(*)}} 

{implementation : {/v fbrenftop.pas} 
' 

top{ redl, real(*)}} 

{implementation: {/v/brenfempty.pas} 

empty{ boolean, real(*)}} 

{implementation: {fvfbrenfnq.pas} 

nq{ real, real(*)}} 

{implementation: {/v/bren/dq.pas} 

dq{ real, real(*)}} 

{implementation : {/v /bren/ front.pas} 

. front{ real, real(*)}}} 

world stack: {{ implementation: {/vfbrenfpush.pas} 

push{ real, real(*)}} 

{implementation : {/v /brenfpop.pas} 

pop{ real, real(*)}} 

{implementation : {/v fbrenftop.pas} 

top{ real, real(*)}} 
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{implementation: {/v/bren/empty.pas} 

empty{boolean, real(*)}}} 

If clients of stack want to use operations defined at deque then possibility 

relations need to be established. 

create exec_module : { agent D : deque 

agent S : stack 

possrel S push, pop, top, empty D push, pop, top, empty} 

It may be that the S push interface may be OK at, agent D, the S pop interface 

be OK at agent E, and the S top and S empty interfaces be OK at agent F. In 

this case we can use the modal operator <> to guide the compiler. The possibility 

operator <> indicates the existance of at least one world among D, E, F at which 

the interfaces of S are OK. The specification is given below. 

create exec_module : { agent D E, F : deque 

agent S : stack 

possrel S <>(push, pop, top, empty) D E F} 

Example 3: Multiple Versions 
,' 

Bertrand Meyer (¥ey87] cites the example of table search to illustrate software 

that is "neither ever quite the sa:tne, nor ever quite another." This means that while 

table search programs tend to do the same kinds of things, they are not exactly the 

same. A general description of the code would be: 

1. Start at some position in the table t 



57 

2. Check to see if the search element exists at that position 

3. If not, move to another position 

4. Terminate the search either when the element has been found or the entire 

table has been searched 

A more precise description is given in Figure 17. Details that may change (vari­

ants) include all the types and routines in uppercase. Now it is virtually impossible 

to write code corresponding to every combination of variant. However, it is likely 

that the few variants that are required will have already been written and exist in 

some library. These different versions of the table search constitute different worlds. 

Eg. there may be a search routine ~ith an array implementation of table and one 

with a pointer implementation. A user who wants to change implementations from 

one to the other must consider both array _search and pointer_search as methods of 

one world. A change from array to pointer implementation is accomplished without 

alteration to any method. 

If the array _search is being invoked from a main routine then the problem may 

be represented using the world interconnection language. The two il!lplementations 

are made methods of the same world. The user selects the correct implementation 



Search (x:ELEMENT, t:TABLE_QF_ELEMENT) return boolean 

pos: POSITION 

begin 

end; 

pos := INITIAL_PQSITION(x,t); 

while not EXHAUSTED(pos,t) and then not FOUND(pos,x,t) do 

pos := NEXT(pos,x,t); 

Figure 17. A schema for table search 

and establishes a possibility relation between the appropriate views. 

world search: {{ implementation: {/v/brenjarray_search.pas} 

a_search : { x : int, t : int( +)}} 

{implementation : {/v jbrenjpointer _search. pas} 

p_search : {x : int, t: pointer}}} 

world main : { implementation : {/v jbrenj examplel.pas} 

x_search: {x: int, t: int( + )} } 

create exec_module : { agent search: search 

agent main : main 

possrel main x_search search a_search} 
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Alternately, array _search and pointer_search may be considered as separate worlds. 

In this case the representation becomes: 

world array_search: { implementation: {/v/brenjarray_search.pas} 

a_search : { x : int, t : int( +)}} 

world pointer _search : { implementation: {/v /brenjpointer _search.pas} 

p_search : { x : int, t :pointer}} 

world main: { implementation: {/v/bren/examplel.pas} 

x_search: { x : int, t: int( + )}} 

create exec_module : { agent search : search 

agent main : main 

possrel main x_search array_search a_search} 

The three examples show different uses of the world interconnection model. 

' 
A common thread is that the world interconnection model may be used to build 

extendible and reusable software. 



CHAPTER V 

SUMMARY, CONCLUSIONS, .AND FUTURE WORK 

Software productivity in large software systems may be improved by the reuse 

of multiparadigm software. This dissertation develops a possible worlds model ap-

plicable to the problem of software reuse. The model provides structure to a system 

' ' 

composed of multi paradigm routines. This structure allows "used in" and "used in-

stead of" relations between worlds based on the concept of views. A view consists of 

interface names and propositions. Each interface name has a corresponding interface 

pattern description.and provides access to a method. Bindings between' interfaces 

across multiparadigm worlds allows for multiparadigm software reuse. Propositions 

in a view may be used for verification·, debugging or to guide the compiler. 

A world interconnection language is developed based on the model. The de-

scription of the language is informal and intuitive. The language is used to illustrate 

multiparadigm software reuse. 

Exposure of inheritance is a problem of some object-oriented languages. This 

model avoids this problem by developing possibility relations between agents based 

on v1ews. 

This work may be extended to include multiparadigm systems runmng on 

different architectures using different communication paradigms. Future work may 
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include an implementation of the world interconnection system. This would include 

a system of compiler, linkers, debuggers, and interconnection language. The model 

may be extended. to include the run-time. By keeping histories of runs, tools may 

be developed to reason about an agent's knowledge. The model holds the promise 

of a new programming paradigm based on the theory of modal logics and possible 

worlds. 

This work could unify the current efforts towards a new generation of inter­

connection larrg:uages and systems. 



[Bal71] 

[BLP85] 

[BR87] 

[Che80] 

[DGR81] 

[EG84] 

[Ein85] 

[Ein86] 

[Get84] 

[Gog86] 

[Hai86a] 

[Hai86b] 

[Hal86] 

BIBLIOGRAPHY 

R. M. Balzer. Ports-a method for dynamic interprogram communication 
and job control. In Spring Joint Computer Conference, pages 485-489, 
1971. 

E. Balkovich, S. Lerman, and R. P. Parmelee. Computing in higher 
education: the athena experience. Communications of the ACM, 1214-
1224, November 1985. 

T. Biggerstaff and C. Richter. Reusability framework, assessment, and 
directions. IEEE Software, 41-49, Mar 1987. 

B. F. Chellas. Modal Logic. Cambridge University Press, 1980. 

Ph. Darondeau, P. Le Guernic, and M. Raynal. Types in a mixed lan­
guage system. BIT, 21:246-254, 1981. 

B. Einarsson and W. M. Gentleman. Mixed language programming. 
Software-Practice and Experience, 383-395, April 1984. 

B. Einarsson. The Structure of Mixed Language Programming Realiza­
tion. Technical Report LITH-IDA-R-85-01, Linkoping University Swe­
den, 1985. 

B. Einarsson. Mixed language programming realization and the provi­
sion of data types. IEEE Software, 2-9, 1986. 

J. Gettys. Project athena. In USE NIX Summer Conference Proceed­
ings, pages 72-77, June 1984. 

J. A. Goguen. Reusing arid interconnecting software components. IEEE 
Computer, 16....:.28, Feb 1986. 

B. Hailpern. Multiparadigm languages. IEEE Software, 6-9, Jan 1986. 

B. Hailpern. Multiparadigm research: a survey of nine projects. IEEE 
Software, 70-77, Jan 1986. 

J. Y. Halpern. Reasoning about knowledge: an overview. In Proceedings 
of the Conference on Theoretical Aspects of Reasoning About Knowledge, 
pages 1-17, Morgan Kaufmann, 1986. 

62 



[HHS88] 

(HMS88] 

(HN87] 

(HS87] 

[JGM86] 

[KG87] 

[Kon86] 

[Kor86] 

[Kri63] 

[1090] 

(LS77] 

(Mey87] 

63 

R. Hayes, N.C. Hutchinson, and R. D. Schlichting. Integrating Emerald 
into a System for Mixed-Language Programming. Technical Report 88-
36, Dept. of C.S. The University of Arizona Tucson, Oct 1988. 

R. Hayes, S. W. Manweiler, and R. D. Schlichting. A simple system for 
constructing distributed, mixed-language programs. Software-Practice 
and Experience, 641-660, July 1988. 

B. Hailpern and V. Nguyen, A model for object-based inheritance. In B. 
Shriver and P. Wegner, editors, Research Directions in Object-Oriented 
Programming, MIT Press, 1987. 

R. Hayes and R. D. Schlichting. Facilitating mixed language program­
ming in distributed systems. IEEE Transactions on Software Engineer-
ing, 1254-1264, Dec 1987. 

M. A. Jenkins, J. I. Glasgow, and C. D. McCrosky. Programming styles 
in nial. IEEE Software, 46-55, Jan 1986. 

R. R. Korfhage and N. E. Gibbs. Principles of Data Structures and 
Algorithms with Pascal. WM. C. B~own, Dubuque, Iowa, 1987. 

K. Konyndyk. Introductory Modal Logic. Notre Dame Indiana, 1986. 

H. F. Korth. Extending the scope of relational languages. IEEE Soft­
ware, 19-28, Jan 1986. 

S. Kripke. Semantical considerations of modal logic. Zeitschrift fur 
Mathematische Logik und Grundlagen -der Math-ematik, 9:67-96, 1963. 

T. G. Lewis and P. W. Oma~. The challenge of software development. 
IEEE Software, 9-12, Nov 1990. 

E. J. Lemmonand D. Scott. The Lemmon Notes. American Philosoph­
ical Quarterly Monograph Series, 1977. 

B. Meyer. Reusability: the case for object-oriented design. IEEE Soft­
ware, 50-64, March 1987. 

[MHS86a] S. W. Manweiler, R. Hayes, and R. D. Schl~chtin.g. Adding New Lan­
guages to the MLP System. Technical Report 86-9, Dept. of C.S. The 
University of Arizona Tucson, June 1986. 

(MHS86b] S. W. Manweiler, R. Hayes, and R. D. Schlichting. The MLP System 
Users Manual. Technical Report 86-4, Dept. of C.S. The University of 
Arizona Tucson, Feb 1986. 

(Mor79] T. More. The nested rectangular array as a model of data. AP L Quote 
Quad, 9( 4):55-73, 1979. 



[Mor81] 

[Not90] 

[Pri87] 

[Pur86] 

[RGP86] 

[SBK86] 

[Sea87] 

[Sny87] 

[TP86] 

64 

T. More. Notes on the diagrams, logic, and operations of array theory. 
In Bjorke and Franksen, editors, Structures and Operations in Ep,gi­
neering and Management Systems, Tapir'Publisher Trondheim Norway, 
1981. 

D. Notkin. Proxies: a software structure for accommodating hetero­
geneity.- Software-Practice and Experience, 357-364, April1990. 

R. Prieto-Diaz. Classifying software for reusability. IEEE Software, 
6-16, Jan 1987. 

J. M. Purtilo. A software interconnection technology to support specifi­
cation of computational environments. PhD thesis, University of Illinois 
at Urbana-Champaign, 1986. 

C. V. Ramamoorthy) V. Garg, and A. Prakash. ·Programming in the 
large. IEEE Transactions on Software Engineering, 769-783, July 1986. 

M. J. Stefik, D. G. Bobrow, and K. M. Kahn. Integrating access-oriented 
programming into a multiparadigm environment. IEEE Software, 10-
18, Jan 1986. 

IEEE Software. Seamless. Systems, Nov 1987. 

A. Snyder. Inheritance and the development of encapsulated software 
components. In B. Shriver and P. Wegner, editors, Research Directions 
in Object-Oriented Programming, pages 219-252, MIT Press, Cam­
bridge, MA, 1987. 

H. Tu and A. J. Perlis. Fac: a functional apllanguage. IEEE Software, 
36-45, Jan 1986. 

[WSHF81] W. Wulf, M. Shaw, P~ Hilfinger, and L. Flon. Fundamental Structures 
of Computer Science. Addison-Wesley, 1981. 

[Zav89] P. Zave.• A compositional approach to multiparadigm programming. 
IEEE Software, 15-25, Sept 1989. ' 



VITA 

Brendan Machado 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: A MODEL FOR SOFTWARE REUSE IN A MULTIPARADIGM 
ENVIRONMENT 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Bombay, India, March 22, 1963, the son of Raphael 
and Grace Machado. 

Education: Attended St. Stanislaus Junior College, Bombay, upto May 
1981; attended St. Xavier's College, Bombay, upto May 1985; received 
Bachelor of Science Degree in Physics and Chemistry from The 
University of Bombay in May 1985; completed requirements for the 
Doctor of Philosophy degree at Oklahoma State University in 
December, 1991. 

Professional Experience: Teaching Assistant, Department of Computer 
Science, Oklahoma State University, August, 1987, to May, 1991. 


