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Abstract:  

 

This study was conducted to evaluate the combined effects of nitrogen and cropping 

systems on biomass yield and quality and to describe the spatial variation of biomass 

yield, soil carbon and nitrogen within a switchgrass field. Field plots at Stillwater and 

Woodward in Oklahoma consisting of five nitrogen treatments and three cropping 

systems were used for the nitrogen x cropping system study and an 8 ha switchgrass field 

at Chickasha, Oklahoma was used to describe the spatial variability at fine (2.5 m 

sampling distance) and coarse scale (10 m sampling distance). Remote sensing technique 

was used to monitor biomass yield and quality to better understand N requirement and 

usage for production. Semivariogram were used to evaluate spatial variability of the soil 

parameters and biomass yield. The results of this study showed that maximum yield was 

produced at both locations with less than 84 kg N ha
-1

 and high biomass sorghum has 

potential to produce biomass yield > 20 Mg ha
-1

 under normal conditions in Oklahoma. 

The study results also showed that perennial grass systems are more reliable sources of 

biomass yield, especially under adverse climatic conditions of Oklahoma. Final biomass 

yield of high biomass sorghum could be predicted using both broadband (aerial 

photograph) and narrowband (GreenSeeker) normalized difference vegetation index 

(NDVI) from July to close to harvest, while biomass yield in the perennial grass was best 

predicted during June to July. Comparing simple ratios and best narrowband indices with 

partial least square regression (PLSR) models suggested that while PLSR calibration 

models produced significantly lower error and higher r
2
 for predicting biomass yield and 

N concentration within a growing season, the simple ratios and best narrowband indices 

were more stable and reliable when used for prediction across growing seasons. Spatial 

pattern in switchgrass field was described using both ground and aerial imagery. The 

NDVI computed from aerial imagery provided good precision at the fine scale in 

describing the spatial distribution of switchgrass yield. Remote sensing application in 

biomass production systems can greatly improve prediction models for predicting 

biomass yield and quality in feedstock materials with use of optimal hyperspectral 

narrowband.  
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CHAPTER I 
 

INTRODUCTION 

Background 

Energy crops such as switchgrass (Panicum virgatum L.) and sorghum (Sorghum bicolor 

L.) have the potential to produce large quantity of biomass that is not currently available from 

forest land without disrupting the food supply. To develop such a biomass production system 

three important concepts, biomass yield, biomass quality and sustainable production or 

reliability, must be addressed.   The challenges in developing sustainable biomass production 

systems are to characterize variation in biomass yield, quality and reliability in space and time to 

provide farmers with useful information for making management decisions. Recently, 

Wullschleger et al. (2010) identified growing season precipitation, annual temperature, N 

fertilizer and ecotype as the reasons for variation in biomass yield. In the Ozzano Dell’Emilia 

valley area in Spain, Di Virgilio et al. (2007) conducted a study using GIS and geostatistic 

methods to produce thematic maps of soil parameters and biomass yield to quantify the 

relationship between biomass yield spatial variation and soil parameters (nitrogen (N), 

phosphorous (P), soil moisture, soil texture and organic matter (OM)) in a small plot (5 ha) in 

2004 and 2005. The maps produced from the study showed significant variability in the 

relationship between switchgrass biomass yield and nearly all the soil parameters. In the northern 

US location (Wisconsin), variation in switchgrass population for nine variables (biomass yield, 

survival, dry matter, lodging, maturity, plant height, 

http://en.wikipedia.org/wiki/Sorghum_bicolor
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holocellulose, lignin, and ash) was partly due to temperature and eco-region defined by soil type 

(Casler, 2005). Likewise, Schmer et al. (2010) reported switchgrass yield to vary across 10 

locations in the Great Plains, North Dakota (Munich and Streeter), South Dakota (Bristol, 

Highmore, Huron and Ehtan) and Nebraska (Crofton, Atkinson, Douglas and Lawrence). Kiniry 

et al. (2005) simulating switchgrass yield using the ALMANAC (Agricultural Land Management 

Alternatives with Numerical Assessment Criteria) model for locations in three southern states, 

Texas (Dallas, Stephenville, and College Station), Arkansas (Hope) and Louisiana (Clinton) 

found that changing the runoff curve number used to determine potential runoff water from the 

soil by 15% increased the mean annual biomass from 1 to 31% depending on location.  These 

findings suggest that weather factors are of paramount relevance for biomass yield variation.  

Remote sensing, a process of acquiring information about an object by a device separated 

from it by some distance such as ground-based booms, aircraft, or satellite offers great 

opportunity for monitoring and providing information on variation in biomass yield, quality and 

reliability within a field and across fields. Barnes et al. (1996) outlined three applications for 

using remote sensing data in site specific agriculture. In the first application, multispectral 

images are used for detection of plant stresses (such as, pest, water stress and nutrient 

deficiency). In the second application, variation in spectral responses is correlated to specific 

variables such as soil properties. Once these site-specific relationships are developed, 

multispectral images can be translated directly to maps of fertilizer applications and yield 

variability.  In the third application, multispectral data is converted to quantitative units such as 

vegetative indices (VIs) with physical meaning. Vegetation indices are computed as ratios, 

indices, and by forming linear combinations of spectral bands of two or more wavelengths 

(Jackson and Huete, 1991; Pinter et al., 2003).  For example, the normalize difference vegetation 
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index (NDVI), where red reflectance (Rred) and near-infrared reflectance (Rnir) are used (NDVI = 

Rnir – Rred/ Rnir + Rred ) is a classic index that is widely used for modeling and estimation of crop 

biomass and N status.  In addition to the use of VIs, few studies have explored the use of the full 

spectrum in estimating plant biomass [grasses and wheat, (Hansen and Schjoerring, 2003;Cho et 

al., 2007)], LAI [wheat (Hansen and Schjoerring, 2003)], N [wheat and rice, (Hansen and 

Schjoerring, 2003; Nguyen and Lee, 2006)] and chlorophyll [wheat, (Hansen and Schjoerring, 

2003)] concentration using canopy reflectance measurements through partial least square 

regression (PLSR) methodology.  These studies have also reported that PLSR improved the 

prediction of biomass yield and N concentration over that of the best vegetative indices. The VIs 

and full spectral canopy reflectance to assess crop yield potential for bioenergy crop production 

can play a significant role in providing reliable and consistent information about biomass yield 

and quality.  

Aim 

The overall aim of this research was to evaluate the potential of remote sensing 

applications to estimate variation in biomass yield and quality in different biomass crop 

production systems.  

Objectives 

The objectives of this dissertation are to: 

1.  Evaluate the effect of N fertilization on feedstock yield and quality of three bioenergy 

production systems.  

2. Estimate biomass yield using narrowband and broadband NDVI collected at different 

times during the growing season.  
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3. Identify the optimal hyperspectral narrow-bands at leaf and canopy scale to discriminate 

N rates and to determine the ability of leaf and canopy scale hyperspectral reflectance 

data to discriminate N application rates. 

4. Compare performance of PLSR (Partial Least Square Regression) and best narrow-band 

NDVI (Normalize difference vegetation index) linear regression models based on canopy 

hyperspectral reflectance data for predicting N concentration and end of season biomass 

yield in bioenergy crop production systems. 

5. Estimate biomass composition (TN, ADF, NDF and ADL) in feedstock materials using 

linear regression of simple waveband ratios and PLS regression models with selected 

waveband approach. 

6. Describe the spatial patterns of selected soil properties and biomass yield at fine and 

coarse scale in a switchgrass field to determine the appropriate sampling approach to 

enable the calculation of means with minimum variance.  
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CHAPTER II 
 

BIOMASS YIELD, QUALITY AND N RESPONSE OF THREE BIOENERGY CROP 

PRODUCTION SYSTEMS IN OKLAHOMA 

 

ABSTRACT 

Successful development of biofuels from feedstocks depends on the ability to produce high 

yields with acceptable quality using minimal inputs, particularly N fertilization.  The objectives 

of this study were to evaluate the effect of N fertilization on feedstock yield and quality from 

three bioenergy production systems and to estimate biomass yield using narrowband and 

broadband NDVI collected a different times during the growing season.  Variable biomass yield 

was generated by supplying N at different rates (winter legume (hairy vetch (Vicia villosa Roth) 

2012 and crimson clover (Trifolium incarnatum L.) 2013), 0, 84,168, and 252 kg N ha
-1

) in a 

field plot study at Stillwater, Oklahoma. Plots were planted with switchgrass “Alamo” (Panicum, 

virgatum L.), “ES 5200” high biomass sorghum (Sorghum bicolor L.) and mixed grasses 

(“Cheyenne” Indian grass (Sorghastrum nutans L.), “Kaw” big bluestem (Andropogon gerardii 

Vitman) and “Alamo” switchgrass) in a split plot design with three replications. Nitrogen was 

applied in the spring and biomass was harvested in fall after killing frost.  . Biomass yield was a 

function of the environmental condition. The highest yields were achieved under normal 

condition in 2013.  The high biomass sorghum producing 24 Mgha
-1

, mixed grass 15.7 Mgha
-1

  

at Stillwater and  6.8 Mgha
-1

   at Woodward  and switchgrass 12.7 Mgha
-1

  at Stillwater and 7.2 

Mgha
-1

 at Woodward. Applied N fertilizer significantly affect biomass yield in Woodward in 

http://en.wikipedia.org/wiki/Sorghum_bicolor
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2012 and 2013, but combined with cropping system to affect yield at Stillwater in 2013. 

Feedstock cellulose and hemicellulose content varied with production system. Higher lignin, 

cellulose and hemicellulose content were observed in switchgrass and mixed grass systems, 

while high biomass sorghum had the highest N content in the biomass.  Biomass yield of high 

biomass sorghum could be predicted with either narrowband (r
2
=0.52) or broadband NDVI 

(r
2
=0.60) spectral measurements collected early July. Predicting biomass yield in the perennial 

grasses was more challenging, but was best achieved with the narrowband NDVI when LAI was 

< 3.  These results suggest that biomass yield and biomass quality were dependent on the crop 

species within the production systems. 
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INTRODUCTION 

Successful development of a biofuels from feedstocks will be dependent on the ability to 

identify high yielding feedstock with acceptable quality (Xue et al., 2011). The US department of 

energy in the early 1990s identified switchgrass as the model bioenergy feedstock because of its 

high biomass yield and adaptability to diverse environmental conditions (McLaughlin and 

Walsh, 1998). Two other potential candidate feedstocks are mixed perennial grass systems and 

energy sorghum. Mixed grass systems have the potential to provide more stable long-term 

biomass yield (Jarchow and Liebman, 2012), while energy sorghum are annual crops with high 

water use efficiency, drought tolerance, low N requirement and very high biomass yield (Rooney 

et al., 2007; Maughan et al., 2012). 

In the early years, studies of switchgrass focused on the use of the grass in mixed 

cropping systems with other native grasses.  Studies and management of switchgrass in 

monoculture started in the 1970s (Balasko and Smith, 1971; Berg, 1971; Parrish, 2005). The 

monoculture production systems for switchgrass were largely for forage production, where the 

grass in general was either grazed or cut for hay. Similarly, energy production switchgrass is 

largely managed as monoculture (Sanderson et al., 1999; Muir et al., 2001; Vogel, 2002; Berdahl 

et al., 2005; Cassida et al., 2005). Several studies on switchgrass as a bioenergy feedstock were 

conducted across the USA including the Midwest (Vogel, 2002; Lemus, 2008; Kering et al., 

2012), the south (Sanderson et al., 1999; Muir et al., 2001; Cassida et al., 2005) and northern 

great plains (Berdahl et al., 2005; Lee and Boe, 2005).  These studies have concluded that 

switchgrass yield is dependent on the latitude of origin. Higher yields were observed in the 

lowland ecotype from southern latitudes in comparison to the cold tolerant upland ecotype from 

the northern latitudes. The enhanced ecosystem services (nutrient cycling, reduction in 
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greenhouse gas emission and clean water) promoted to be provided by prairie vegetation has led 

to renewed interest of switchgrass mixed systems with other native grasses as an alternative 

bioenergy feedstock source (Tilman et al., 2006; Hill, 2007). 

Prairies are native ecosystems comprising of four broad group of plants cool season (C3) 

grasses, warm-season (C4) grasses, leguminous forbs, and non-leguminous forbs (Kindscher and 

Wells, 1995; Craine et al., 2002). Increasing the dominance of warm season grasses has been 

reported to be correlated with increasing aboveground biomass (Adler et al., 2009; Jarchow et 

al., 2012) . In contrast, increasing the non-leguminous forbs was found to reduce the prairie 

biomass production (Kucharik et al., 2001). Jarchow and Liebman (2012) reported that fertilized 

and unfertilized mixtures of big bluestem (Andropogon gerardi Vitman), switchgrass (Panicum 

virgatum L.), and Indiangrass [Sorghastrum nutans (L.) Nash]   produced as much total biomass 

as corn. They also found corn biomass yield to decrease over the 3-yr period of the study 

whereas yields of the fertilized grass mixtures were stable and the yield of the unfertilized 

mixtures increased to equal that of the fertilized.  

Sorghum is a grass species that is widely dispersed throughout Africa, India and Australia 

(Price et al., 2005; Dillon et al., 2007). The recent genetic characterization of a regulatory system 

that modulates photoperiod sensitivity and flowering time in sorghum has led to the development 

of highly photoperiod sensitive, late flowering energy sorghum hybrids that exhibit long duration 

of vegetative growth and high biomass accumulation (Rooney et al., 2007). Therefore, for much 

of the Great Plains these varieties are unlikely to produce a head before a hard freeze kills the 

plant (Marsalis et al., 2010).  These photoperiod sensitive energy sorghum have been reported to 

produced yields of 40 Mg DM ha
-1

 in a study at El Reno, OK (Venuto and Kindiger, 2008), 24.0 
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Mg DM ha
-1 

in Bushland, TX (McCollum et al., 2005), 35.1 Mg DM ha
-1 

in College Station, TX 

(Miller and McBee, 1993) and 30.1 Mg DM ha
-1

in Illinois (Maughan et al., 2012).   

Management practices for bioenergy production include fertilization in spring and annual 

harvest at the end of the growing season.  It is well documented that perennial grasses remobilize 

nutrients from the aboveground materials, thus nutrient removal is dependent on the harvest 

timing.  It is recommended that harvesting perennial grasses in the early winter after a killing 

frost  reduces mineral concentrations in biomass producing a more desirable feedstock for direct 

combustion and thermochemical conversion systems and optimizes biomass yields and stand 

(Adler et al., 2006; Sanderson et al., 2006; Mitchell et al., 2008; Heaton et al., 2010; Guretzky et 

al., 2011).  Studies evaluating N fertilization in bioenergy production systems for biomass have 

produced varied results, partly due to difference in management practices and site to site 

variation.  Numerous studies were conducted or currently ongoing to evaluate N response in 

bioenergy crops, switchgrass (Vogel, 2002; Thomason, 2004; Lemus, 2008; Kering et al., 2012) 

and most recently in biomass sorghum (Marsalis et al., 2010; Maughan et al., 2012) and mixed 

grasses (Jarchow et al., 2012). In switchgrass studies, highest yields were obtained with varied 

rate of N fertilizer. For example, Lemus et al. (2008) obtained the highest yield with 112 kg N 

ha
-1

 in Iowa, Vogel et al. (2002) with 120 kg N ha
-1

 in Nebraska and Thomason et al. (2004) with 

448 kg N ha
-1

 in Oklahoma.  In biomass sorghum, the highest yields were reported with  224 kg 

N ha
-1 

(Maughan et al., 2012) in Illinois and 108 kg N ha
-1

 in Texas under limited irrigation 

(Tamang et al., 2011). Few studies have evaluated the effect of N fertilization on warm season 

mixtures for bioenergy. Jarchow and Liebman (2012) reported that fertilization increased yield 

of mixtures over unfertilized, but became more similar to the unfertilized over time.    
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Nitrogen fertilization of bioenergy crops not only affects the yield, but also biofuel 

quality.  Studies have reported that with increasing N applied, cellulose, lignin and nitrogen 

content increased, while hemicellulose and ash content decreased (Lemus, 2008; Waramit et al., 

2011). Biomass that has high lignin and cellulose and low N content is considered to be more 

suitable for co-firing, while high cellulose, N content and non-structural carbohydrate content 

(sugar and starches) is desirable for biofuel production using microbial and enzymatic 

conversion (Sanderson et al., 1996; Labbé et al., 2008).  The nutrient content and energy density 

and other bioenergy related quality characteristics vary widely among biomass feedstock source 

(Cherney et al., 1988; Sanderson et al., 1996; Labbé et al., 2008; Lemus, 2008; Pauly and 

Keegstra, 2008; Waramit et al., 2011).   

The cost of nitrogen fertilization, which is one of the most unsettling concerns for 

farmers, is guaranteed to play a major in the decision to include bioenergy crops into their 

conventional system.  Information on nitrogen fertilization recommendation for bioenergy crops 

such as switchgrass and sorghum is useful to aid farmers’ decision.  Tradition approach for 

determining N recommendation involves soil sampling obtained before planting, pre-plant soil 

testing, or early spring in the case of perennial grasses. In most cropping systems, growing 

condition and soil N levels are dynamic and are generally not accounted for when making 

recommendation based on pre-plant soil testing and early season sampling. In season monitoring 

of the plant N status can provide information about the soil N status with regards to the current 

growing condition that could guide N management decision improving the precision of N 

recommendation.  Several studies have reported success from using sensor based technology that 

measures plant reflectance to accurately predict crop physiological variables such as above 

ground forage biomass (Tucker, 1979; Mutanga and Skidmore, 2004; Fava et al., 2009; Numata, 
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2012) and plant N status (Hansen and Schjoerring, 2003; Xue et al., 2004; Zhu et al., 2007; Yao 

et al., 2010; Foster et al., 2012).  

Vegetation indices  (VIs) are computed from  mathematical combination of wavebands in 

different region in the spectrum  to minimize the influence on solar irradiance, canopy 

architecture  and soil background in the measurement of plant reflectance information 

(Haboudane et al., 2002; Pinter et al., 2003; Zarco-Tejada et al., 2004; Hatfield et al., 2008). The 

most commonly used vegetation index is the normalize difference index (NDVI). The NDVI 

defined as (RNIR–RRED/RNIR+RRED) takes advantage of reflectance in both NIR and red region 

reducing measurement variability due to soil type, sunlight intensity and angle of sunlight 

incidence (Lusch, 1999). The NDVI has been reported to be strongly correlated with biomass 

when the leaf area index (LAI) is less than 3 (Weiser et al., 1986; Serrano et al., 2000; Flynn et 

al., 2008). The NDVI can be computed either using broad wavebands (50-100 nm scale) from the 

Landsat Thematic mapper satellite using the TM-spectrometer ™, or narrow wavebands (<10 nm 

scale) from field-based spectroradiometers such as GreenSeeker, ASD, and crop scan.  In 

principle, vegetation index computed from average spectral information over broad waveband 

widths results in loss of critical information available in specific narrow wavebands (Blackburn, 

1998; Thenkabail et al., 2000). 

The objectives of this field study were to evaluate the effects of N fertilization on 

biomass yield and quality and to compare biomass yield prediction model of narrowband NDVI 

and broadband NDVI.  
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MATERIALS AND METHODS 

Study Locations and Experimental Design  

The experiment was carried out at two research sites in Oklahoma from 2010 through 

2012. One location was at the USDA rangeland research facility in the city of Woodward 

(36.42˚N, 99.414˚W) and the other at the Oklahoma State Agronomy Farm Research facility 

(EFAW) (36.130˚N, 97.104˚W). At both locations, pure grass stands of switchgrass ‘Alamo”, a 

mixture of big bluestem, Indiangrass and switchgrass in a 50-25-25 mix and high biomass 

sorghum  was seeded  using a no-till drill planter. Switchgrass was seeded at a rate of 3.5 kg ha
-1

 

pure live seed, sorghum at 8.5 kg ha
-1

 pure live seeds and mixture at 3.5 kg ha
-1

 pure live seed.  

Stand appraisal using visual observation was done in April in Stillwater and May in Woodward 

in 2011, 2012 and 2013.  The experimental design was a split block randomized design with 

three replications at each location.  Each replication included five plots randomly assigned to 

nitrogen fertility treatments of 0, 84, 168, and 252 kgNha
-1

 applied to generate varying yield 

potential. In the split plot design, species was the main plot and fertilizer treatment was the 

subplot. The site characteristics and management practices performed are summarized in Table 

2.1.  No fertilizer was applied in the establishment year of 2010. Nitrogen was applied as UAN 

on 4 June 2011 in energy sorghum and perennial grasses and on April 2012 in perennial grasses 

and June 2012 in energy sorghum.  Sevin (Carbaryl [1-naphthyl N-methylcarbamate]) was 

applied for grasshopper control at the Stillwater location. Plots were 9 m wide and 9 m long at 

Stillwater and 7.6 m wide and 9 m long at Woodward.  Soil samples were collected from each 

plot before fertilization at both Stillwater and Woodward sites in the 2012 and 2013 growing 

seasons. Soil fertility characteristics are summarized in Table 2.2.  
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Field Data Collection 

Biomass Yield  

Plots were harvested for total seasonal yield after the first killing frost. Table 2.1 

summarizes the harvest date and area for the two sites.  Plots were cut to stubble height of 10-

15cm with a John Deere 630 moco pull type swather (Deere and Company, Moline, IL, USA) 

and baled with a John Deere 568 round baler (Deere and Company, Moline, IL, USA)  into 

round bales which were individual weighed at Stillwater.   At Woodward, each plot was 

harvested with a swift machine forage harvester (Swift Current, Saskatchewan, Canada). 

Subsamples from each N treatment were collected weighted and dried for dry matter and quality 

determination.  

Canopy NDVI  

 Color aerial photographs of the entire experimental plots (Fig 2.1) were taken from an 

airplane on cloud free days at both Stillwater and Woodward locations. The digitized and geo-

reference images were provided by Geovantage (Peabody, MA, USA).  The NDVI was 

computed for each image using the raster calculator in ArcGIS (ESRI).  Mean NDVI was 

estimated for each plot by overlaying the plot boundaries and averaging the NDVI for each pixel 

within the plot boundary.  Canopy NDVI readings were also collected using a GreenSeeker 

(Ukiah, CA) NDVI hand unit from an area of about 3 to 4 m
2
 by holding sensor approximately 

0.6-1.0 m above the canopy and walking at the same speed in each plot.  Table 2.3 summarizes 

the sampling dates for NDVI measurements from aerial photograph and GreenSeeker sensor at 

both locations. The GreenSeeker handheld optical reflectance sensor uses active radiation from 

red (650 ± 10 nm) and near infrared (770 ± 15 nm) band independent of solar radiations 
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(Freeman et al., 2007).  The device uses built-in software to calculate NDVI directly.  The NDVI 

is computed according to the formula. 

NDVI = 
           

           
     1 

Where:      is the fraction of emitted NIR radiation returned from the sensed area (reflectance)/ 

or NIR band in photograph, and      is the fraction of emitted red radiation returned from the 

sensed area (reflectance)/ red band in photograph. The GreenSeeker NDVI is referred to as a 

narrowband  NDVI as it is computed using  average of  less than fifty  (< 50 nm) wavebands, 

while the aerial photograph  is referred to as a broadband  NDVI as it is computed using 

wavebands average across greater than fifty (> 50 nm) wavebands.  Throughout this paper the 

GreenSeeker NDVI will be referred to as narrowband NDVI and the aerial photograph NDVI as 

broadband NDVI.  

Leaf Area Index  

Leaf area index readings were taken about the center point of the plots with the Li-Cor 

LAI 2000 leaf canopy analyzer. Average LAI was determined by the leaf canopy analyzer 

through measuring the light attenuation difference between the three above canopy and nine 

below canopy readings. The differences in light attenuation resulted from either the absorption or 

reflection of incident light by the vegetation.  Using the attenuation values obtained, a standard 

attenuation coefficient was used automatically within the instrument to derive an output resulting 

in LAI value (Harmoney et al., 1997). 
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Biomass Quality Analysis 

The biomass quality was determine by measuring concentrations of the cell wall 

constituents, neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 

(ADL), and total nitrogen (TN) content.  In 2011, the NDF, ADF, and ADL measurements were 

determined based on wet chemistry and total N content with the combustion method using a 

Leco elemental analyzer (Leco TruSpec CHN, St. Joseph, MI, USA).   Regression equations 

developed using the 2011 season data based on near-infra-red spectroscopy calibration with the 

laboratory measurement were used to estimate the TN, ADF, NDF, and ADL in the 2012 and 

2013 seasons (Foster et al., 2013).  Samples were scanned using an Analytical Spectral Device 

(ASD) with spectral range of 350 -2500 nm. Hemicellulose was calculated as NDF-ADF and 

cellulose as ADF-ADL.  Validation was performed for each biomass quality parameter with an 

independent dataset for the 2012 (TN: r
2
 =0.84 and RMSE = 0.30 %; NDF: r

2
 =0.10 and RMSE 

= 4.0 %; ADF: r
2
 =0.12 and RMSE = 3.5 %; and ADL: r

2
 =0.23 and RMSE = 1.0 %) and  2013 

(TN: r
2
 =0.95 and RMSE = 0.20 %; NDF: r

2
 =0.48 and RMSE = 5.3 %; ADF: r

2
 =0.41 and 

RMSE = 6.2 %; and ADL: r
2
 =0.40 and RMSE = 1.3 %). 

Statistical Analysis  

 The data was analyzed separately for each location and year using a split plot design 

with species as the whole plot and N rates as the subplot. The PROC GLM procedure in SAS 

(SAS, 2009) was performed to determine the main effects and interactions of N rate and species. 

Significance was determined at the p <0.05 level. The PDIFF feature of the LSMEANS 

procedure was used to compare means. Analysis using the GLM model procedure was also 

conducted to determine main effects and interactions of N rate and species on biomass quality 

(hemicellulose, cellulose and TN).  Single degree of freedom contrast was used to test linear and 
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quadratic effects of N rate on biomass yield and quality parameters. Regression analysis was 

performed using PROC REG procedure to determine the relationship between in-season 

narrowband NDVI and broadband and harvestable biomass. All regression analysis was 

performed separately for the perennial grasses at Woodward and for the perennial grasses and 

high biomass sorghum at Stillwater.  

RESULTS 

Growing Condition  

The growing condition for Woodward and Stillwater from 2010-2013 was dominantly 

dry with all four years reporting precipitation lower than the 30 year average and a 1-5 °C higher 

average temperature throughout the growing seasons (Table 2.4). Precipitation was on average 

slightly above the 30-year average in the 2010 growing season, but was below for the other three 

growing seasons (16-56%). The 2012 season had above normal precipitation in March and April, 

but was dry for the period of May to July. Precipitation was above normal for the months of 

April, May and July at Stillwater and for July and August at Woodard in the 2013 season. 

Warmer temperature during March of 2012 resulted in the perennial grasses breaking dormancy 

and growth started in late March. In contrast, cooler temperatures in the 2011 and 2013 seasons 

in March result in perennial grasses breaking dormancy and starting growth in April. In general, 

growing conditions during the months of May, June and July for the 2011 and 2012 seasons were 

below normal precipitation (>50%) and 1-5˚C above normal temperature. The growing 

conditions of the 2010 and 2013 seasons were with slightly above to normal precipitation and 1-

2˚C below the normal temperature. 
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Satisfactory stands were maintained at both locations in the perennial grass systems for 

the three seasons data was collected based on annual visual appraisals.  Dry condition affected 

biomass production throughout the three production seasons reported within this paper.  At the 

Stillwater location, biomass yields were not only restricted by drought, but were also reduced 

due to grasshopper infestation in July of the 2011 season. Perennial grass systems were more 

severely affected by the grasshopper that reduced yield by upwards of 40-50%.  At the 

Woodward location, dry condition affected crop growth more severely compared to Stillwater. 

Hence, no harvestable biomass was obtained for the high biomass sorghum for both the 2011 and 

2012 season at Woodward. To address the challenge of weather condition and grasshopper 

infestation  that occurred in 2011 management practices for the  subsequent years included 

fertilizing of perennial grass at or within weeks after greening up and earlier planting of sorghum 

and a July spraying of sevin insecticide (at Stillwater) for grasshopper control (Table 2.1). The 

goal of the earlier planting (sorghum) and fertilizing (switchgrass and sorghum) was to maximize 

growth under the cool and moist condition in the months of May and June.  

Biomass Yield 

Stillwater 

 The biomass yield obtained during each growing season was a function of the growing 

environment. The 2011 growing season was the second year of establishment for switchgrass. 

Biomass yield of 2011 growing season was independently affected by the nitrogen treatments 

(P=0.03). Whereby, the highest yield (5.5 Mg ha
-1

) was achieved without fertilizer, but it was not 

significantly different from applied N fertilizer rates of 84 and 168 kg N ha
-1

 (Table 2.5).  In 

contrast, application of 252 kg N ha
-1

 was over 2 Mg ha
-1

 lower than the yield achieved without 

fertilizer. Cropping system and the combined effect of N treatment and cropping system did not 
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affect the biomass yield. Moreover, the CV value greater than 30 is an indication of the variation 

in the stand density.  The perennial grasses were significantly affected by grasshopper in late 

July which affected the stand density. In subsequent years sevin insecticide was applied in late 

July to control the grasshoppers.  

 In the 2012 growing season, cropping system, nitrogen treatment did not affect the 

biomass yield independently or in combination (Table 2.5). The average dry matter yield of 2012 

(7.3 Mg ha
-1

) more than doubled that of the 2011 (2.4 Mg ha
-1

) season.   In the 2013 growing 

season, cropping system and N treatment combined to affect the biomass yield (Table 2.5).  The 

highest biomass yield was produced by the high biomass sorghum with the 84 kg N ha
-1

, but did 

not differ from the 252 kg N ha
-1

.  The highest switchgrass yield was achieved from the 252 kg N 

ha
-1

 and mixed grass from the 168 kg N ha
-1

, but was the same as that of the 84 kg N ha
-1

 for 

both cropping system (Fig 2.2).   High biomass sorghum was more productive compared to the 

switchgrass and mixed grass, producing the same amount of biomass for the legume and 

unfertilized to that of the heavily fertilized switchgrass and mixed grass systems. Likewise, the 

unfertilized mixed grass system produced more biomass than the heavily fertilized mixed grass 

system.  In switchgrass, biomass yield of the fertilized (168 kg N ha
-1

= 13 Mg ha
-1

) was not 

significantly different from that of the legume treatment (12 Mg ha
-1

), but differed from the 84 

kg N ha
-1

 (16 Mg ha
-1

) and the 252 kg N ha
-1

(16 Mg ha
-1

). Soil N concentration before 

fertilization did not significantly affect the biomass yield (Table 2.2). Therefore, these results 

indicate that applied N increased biomass compared to the unfertilized, particularly in the 

monoculture crop production systems.  
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Woodward 

  The dry and hot condition was more severe in Woodward than in Stillwater for both the 

2011 and 2012 growing seasons. The condition was so severe that the high biomass sorghum 

crop failed in both seasons at this location.  While growing condition was adequate in the 2013 

season the high biomass sorghum with applied N was severely lodged that it was impossible to 

harvest the biomass.  Therefore, no harvestable biomass yield for the high biomass sorghum will 

be reported for Woodward in this study.  The perennial grass system was also affected by the 

environmental condition, but was more robust and produced harvestable biomass in all three 

years of the study.  In the 2011 season the second year after establishment, biomass yield was not 

affected by cropping system, N treatment or the combined effect (Table 2.5).  Application of N 

increased biomass yield in the 2012 and 2013 seasons compared to the legume and unfertilized 

(Table 2.5), but was similar for all three rates of applied N. Biomass yield of 2013 approximately 

doubled that of the 2012 season. However, in 2012 the 84 kg N ha
-1

 was similar to the 

unfertilized and again was similar to the legume treatment in 2013.  Cropping system and the 

combine effect of N treatment and cropping system did not affect the biomass yield. Likewise, 

soil N concentration before fertilization did not affect biomass yield (Table 2.2).  

Biomass Quality  

Stillwater 

Cell wall components, cellulose, hemicellulose, and lignin, were found to be very stable 

across the years, but N concentration varied from year to year. High biomass sorghum 

consistently had lower hemicellulose, cellulose and lignin concentration in the biomass 

compared to the perennial grass systems (Table 2.6).  Nitrogen concentration in the biomass 

increased with increased rate of N application, but N concentration was similar with 252 and 168 
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kg N ha
-1

, 168 and 84 kg N ha
-1

, and with 84 kg N ha
-1

, legume and unfertilized in the 2011 

season (Table 2.6 ).  In the 2012 season, N concentration in the biomass was not affected by the 

applied N. These results indicate that in a high yielding environment applied N seems to have 

less effect on increasing biomass N concentration.  

Woodward 

Similar to Stillwater, cell wall component was stable across years, but N concentration 

varied. Hemicellulose, cellulose and lignin concentrations in biomass were similar for 

switchgrass and mixed grass system (Table 2.6). Variation in these cell wall components from 

year to year was less than 5%.   Statistical significance was observed for the cellulose 

concentration in the mixed grass and switchgrass in 2013, but this difference was not of practical 

significance (about 1%). Likewise, applied N of 252 kg N ha
-1

 resulted in a 1% lower 

hemicellulose concentration compared to the other N treatments.  Nitrogen concentration was 

greater with applied N than the legume treatment, but surprisingly was similar to the unfertilized 

in the 2011 season. However, in the 2012 season N concentration again was greater with the 

applied N, but significantly higher than the legume and unfertilized treatments.  So clearly, 

applied N increased N concentration in the biomass compared to the unfertilized, but applying 

greater than the 82 kg N ha
-1

 offered no benefit with respect to increasing biomass N 

concentration.  

Nitrogen Response  

Biomass yield did not respond to the applied N fertilizer at either location in 2011, but 

did respond to applied N at Woodward in 2012 and 2013 and at Stillwater in 2013 (Table 2.5).  

A quadratic relationship described the response to N at Woodward in 2012 (P <0.05) and 2013 

(P <0.001).  Nitrogen response at Stillwater was linear for the high biomass sorghum (P<0.01) 
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and switchgrass (P<0.01).  In Woodward, biomass yield increased up to 168 kg N ha
-1

, while in 

Stillwater applied N increased biomass yield up to 252 kg N ha
-1

.  However, the increase in 

biomass with greater than the 84 kgNha
-1

 was not significant.   

The response of N concentration in biomass to the applied N rates could be explained by 

a linear relationship in 2011 at Stillwater and in 2013 at both locations, but no relationship was 

observed in 2012 (Table 2.6).   

Estimating Biomass yield 

A moderately strong relationship (r
2
=0.65) was observed between the 2 July narrowband 

and broadband NDVI readings for the perennial grasses and a strong correlation (r
2
 = 0.95) for 

the high biomass sorghum (Fig 2.3) at the Stillwater location.  At Woodward, narrowband and 

broadband were strongly correlated (r
2
 =0.70 - 0.85) across all three sampling periods. Figure 2 

shows the relationship between the narrowband and broadband NDVI for the 26 August and 8 

September sampling, respectively. Prediction model for biomass yield was similar for the 

narrowband and broadband NDVI in perennial grass system at Stillwater at the 2 July sampling 

date (Table 2.7).  Prediction of perennial grass biomass yield using the narrowband NDVI 

collected on 21 June (r
2
=0.38) and 2 July (r

2
=0.43) reported similar r

2
 to that of the broadband 

NDVI on 8 September (r
2
=0.37).  In high biomass sorghum, broadband NDVI was more strongly 

correlated (r
2
=0.60-0.73) with biomass yield closer to harvest, but similar prediction was 

observed for the narrowband and broadband NDVI for the July sampling date (Table 2.7). At 

Woodward, biomass prediction models using the broadband NDVI were stable with r
2
=0.42, 

0.40 and 0.45 for the 2 July, 11 August and 8 September sampling dates, respectively.  In 

contrast, model predictability increased for narrowband NDVI with sampling date of 23 June, 24 

July and 24 August with r
2
 of 0.25, 0.55 and 0.61, respectively. 
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DISCUSSION 

Biomass Yield  

Biomass yield, quality and reliability or persistence are three concepts that are important 

to the development of a successful bioenergy feedstock production system. This study was 

conducted over three years with contrasting environmental conditions that greatly influenced 

these three concepts in relation to the bioenergy production systems and management.  In each 

year of the study, biomass yield at the Stillwater location almost doubled that of Woodward 

location for the perennial grasses. One difference between these two sites is the amount of 

precipitation (Table 2.4).  Clearly, the amount of biomass yield produced at each sites is related 

to the amount of precipitation.  Wullschleger et al., (2010) also reported switchgrass yield to vary 

due to temperature and precipitation.  They observed yield to increase with increase temperature 

up to a point and then decrease and lower yield with low precipitation during the growing 

season.  Precipitation is the only one factor contributing to soil available moisture and thus the 

timing and size of rainfall event during critical portion of the growing season is most important 

for high biomass yield production (Sanderson et al., 1999; Wullschleger et al., 2010).  In this 

study, the highest yields (6-25 Mg ha
-1

) were produced in 2013 followed by 2012(2-8 Mg ha
-1

) 

and 2011 (1-3 Mg ha
-1

).  The 2011 and 2012 growing seasons received less than 50% of the 30 

year average season during the critical growing periods of April to September, with exception of 

April of 2012 in Woodward (Table 2.4).  In both these years, June and July were extremely dry 

and hot with temperatures 2-3 ˚C above normal.  In contrast, 2013 received above normal 

precipitation during the period of March-August and cool temperature 1-2 ˚C below normal.  

Clearly, high yields were associated with high precipitation in April to August in combination 

with cool temperature.  Likewise, Sanderson et al. (1999) also reported an association of high 
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switchgrass yield with years of high precipitation in April to September at five locations in east 

Texas, and Muir et al. (2001) also correlated yield with March to August precipitation at 

Stephenville, TX.    

Harvestable biomass from the high biomass sorghum was unsuccessful at Woodward in 

all three years of the study.  Extreme dry condition during the May to June period of 2011 and 

2012 resulted in total failure in establishment, while favorable growth condition led to extreme 

lodging of more than 90% in each plot, except for the unfertilized and legume treatments in 

2013.   

Management in terms of N fertilization and cropping systems also plays a role in the 

productivity of these systems. Greater response to N fertilization was observed in the drier 

location in Woodward. A quadratic response to the applied N was found in Woodward in both 

2012 and 2013, whereby biomass yield increased with application of N up to the 168 kg N ha
-1

 

and then decrease with addition N application.  

In Stillwater, N application did not affect biomass yield in 2011 and 2012, but interacted 

with cropping system to affect the biomass yield in 2013. In 2011, N treatment significantly 

affected the biomass yield, whereby the unfertilized treatment produced significantly higher 

biomass yield that the highest applied fertilized rate. This is a confirmation of the extreme dry 

condition during the 2011season and not necessarily an indication of the N response within the 

production systems. In 2012, N application did produce more biomass compared to the 

unfertilized, but the difference was not significant. With favorable condition for crop growth in 

2013, N treatments and cropping systems interacted to affect biomass yield.  The highest 

biomass yield (32.7 Mg ha
-1

) was produced by the high biomass sorghum fertilized with the 84 

kgNha
-1

.  Similarly, highest switchgrass yield (16 Mg ha
-1

) was obtained with 252 kg N ha
-1

, but 
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did not differ significantly (P < 0.05) from the 16Mg ha
-1

 obtained with the 84 kg N ha
-1

.  Mixed 

grass yield was highest with the 168 kg N ha
-1

, but again did not differ from the 15 Mg ha
-1

 

obtained with the 84 kg N ha
-1

.  In the high biomass sorghum and switchgrass production 

systems, biomass yield was significantly higher with applied N compared to the unfertilized, but 

biomass from applied N was similar to the unfertilized and legume treatment in the mixed grass 

system (Fig 2.2).  These results contradict the finding of Griffith et al. (2011) for the perennial 

grasses that unfertilized C4 grass monocultures produced more harvestable biomass than 

unfertilized mixtures containing multiple functional groups, but regarding the perennial verses 

the annual these results confirm Griffith et al. (2011) findings.  Likewise, the non-responsiveness 

to N fertilizer in the mixed grass system was also reported by with Jaschow and Liebman (2012). 

Biomass yield is an important attribute for any production system, and no doubt that the right 

cropping system that is capable of producing high yield is essential for success. These results 

demonstrate that precipitation is a key factor that influences biomass yield. Benefits of high 

biomass yield from management variables such as N fertilization and cropping systems were also 

found to be dependent on environmental factor such as precipitation and temperature.  The high 

biomass sorghum has potential for producing large amount of biomass yield with minimal 

amount of N fertilizer under favorable condition. However, failure in Woodward in 2011 and 

2012 and similar productivity to the perennial grass systems in adverse condition at Stillwater are 

strong indications for concerns in terms of reliability.   

Biomass Quality  

The second concept of biomass quality is important, particularly because the conversion 

of biomass to bioenergy is dependent on the material composition. Biomass materials that are 

high in lignin and cellulose and low in N concentration are considered more desirable for 
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thermochemical conversion, while those with high cellulose, N concentration and non-structural 

carbohydrate content (sugar and starches) are suitable for biofuel production using microbial and 

enzymatic conversion (Sanderson et al., 1996; Labbé et al., 2008). Nitrogen is an important 

nutrient for plant growth and biomass production, but high N concentration in biomass can 

inhibit deoxygenation activity in the catalytic pyrolysis conversion process (Wilson et al., 2013). 

According to Wilson et al. (2012) high N content in feedstock is one of the many challenges to 

overcome with upgrading conversion technologies. Nitrogen concentration of biomass was not 

affected by applied N at Stillwater in 2012, but did in 2011. In 2011, biomass yield with applied 

N was similar to the unfertilized and legume treatment. This was attributed to the severe dry 

condition during the growing season. At Woodward, N concentration did not differ among the 

applied N rates from 2011 to 2013. Overall, N concentration increased with applied N compared 

to the unfertilized, but increased fertilizer rate did not significantly increase N concentration in 

the biomass  These results were contrary to those reported by Lemus et al. (2008) that found 

increased in N concentration in switchgrass with increased rate of N in Iowa.  

Cellulose, hemicellulose and lignin were not affected by N treatments at either location.  

Biomass quality was more affected by the cropping systems.  Higher N concentration and lower 

lignin, hemicellulose and cellulose were observed in the high biomass sorghum compared to the 

perennial grasses. Moreover, quality parameters such as lignin, cellulose and hemicellulose were 

fairly stable from year to year for each cropping system.   For the perennial grasses, biomass 

quality varied by about 5% for the mixed grasses and switchgrass throughout the entire period of 

the study.  The low N concentration <3% (Kumar et al., 2009) and small variability in lignin, 

hemicellulose and cellulose due to management are strong indications that these material are 

suitable for conversion to biofuel using the thermochemical conversion approach.     
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Estimating Biomass Yield  

To effectively plan year round operation for bio-refineries, efficient and reliable methods 

for estimating harvestable biomass are warranted.  Profitability of these refineries will be 

dependent on the ability to maintain a reliable supply of feedstock material (Schmer et al., 2010).  

In this study, biomass yield prediction models using plant reflectance measurement from a hand 

held GreenSeeker sensor (narrowband NDVI) and aerial photograph (broadband NDVI) were 

compared.  GreenSeeker measurements were obtained early in the season while aerial 

photograph were obtained late in the seasons (Table 2.4).   Because GreenSeeker will need to be 

attached to tractor for large scale operations, measurements were collected early and frequently 

during the season.  To minimize cost and maximize benefits, aerial photographs were collected 

late in the season at the time of greatest potential for estimating the final harvestable biomass 

yield. The goal was to provide producers as well as refineries with realistic options for in season 

estimation of biomass yield.    Strong correlation (r
2
 > 0.6) was observed between the 

narrowband and broadband NDVI for the 2 July sampling date for the Stillwater and for all three 

sampling period at Woodward.  The strong correlation observed was attributed to the lower LAI 

at sampling for Stillwater and Woodward.  Leaf area index for Stillwater was below 4 for the 

perennial grasses and below 3 for the high biomass sorghum during the 2 July sampling, but 

increased for the subsequent sampling to >4 in the perennial grass system. At Woodward, LAI 

remained below 3.5 for the entire sampling period. It is well documented that NDVI saturate at 

high biomass or LAI in several studies (Tucker, 1979; Mutanga and Skidmore, 2004).   

According to (Kumar et al., 2002) the reason for the saturation problem is that LAI greater than 3 

(>3) the amount of red light at about 600-680 nm that can be absorbed by leaves reaches a peak 

while NIR reflectance continues to increase due to multiple scattering effects.  The disparity 
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between the red adsorption and NIR reflectance results in slight change in the NDVI and the 

result is a poor relationship with biomass (Mutanga and Skidmore, 2004; Cho et al., 2007).  

Therefore, the strongest relationship between biomass yields and the narrowband or broadband 

NDVI occurred during sampling times when LAI was on average below 3.5. In addition, 

biomass prediction in perennial grass systems are more challenging compared to the annual 

biomass sorghum, because of the high vegetation density and the presence of non-photosynthetic 

vegetation that masks spectral responses in the red and NIR (Numata, 2012).  Therefore, the 

ability to better predict the biomass in the high biomass sorghum was not surprising.   

In field variability is an important criterion in comparing the prediction models of the two 

NDVI sources. The GreenSeeker sampling area is a subset of the entire plot compared to the 

entire plot area captured by the aerial photograph. Therefore, variation between the narrowband 

and broadband NDVI could also be attributed to inherent plot variability. However, at large scale 

where multiple GreenSeeker sensors could be mounted on a tractor to increase coverage area to 

of the aerial photograph, reducing the inherent plot variability.  

CONCLUSIONS 

Minimal N fertilizer (< 84 kg N ha
-1

) is required by these bioenergy crop production 

systems to produce maximum biomass yield, but the perennial grasses may be more reliable 

sources of biomass, particularly in dry conditions.  Biomass quality differed between the high 

biomass sorghum and perennial grass systems.  The high biomass sorghum had higher N and 

lower lignin, hemicellulose and cellulose concentration compared to the perennial grasses. Cell 

wall components such as lignin, cellulose and hemicellulose were not affected by management, 

but N concentration in biomass increased with applied N compared to the unfertilized and 

legume treatments. But, N concentration did not differed among the applied N treatments.  
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In general, narrowband NDVI has been reported to improve biomass prediction, however 

the results of this study indicates that biomass prediction was similar for narrowband and 

broadband NDVI, but was greatly affected by the cropping system.  Narrowband and broadband 

NDVI performed poorly in perennial grass systems with LAI >3, but narrowband performed 

better at LAI (2-3).  In high biomass sorghum, narrowband and broadband performed similarly 

for measurements collected at the same time.  Early July sample was found to appropriate for 

collecting spectral reflectance of high biomass sorghum using the GreenSeeker or aerial 

photograph, while NDVI was only appropriate for estimating biomass in perennial grasses with 

LAI < 3. However, spectral reflectance of high biomass sorghum using aerial photograph could 

be collected as late as September.  
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Table 2.1. Site characteristics, cultural practice, harvest date and sampling intervals for 

parameters evaluated in the study. 

  

 Site Characteristics 

 Stillwater Woodward 

Location 36.130 °N 97.104 °W 36.42°N , 99.414°W 

Soil texture  Easpur loam (Fine-loamy, mixed, 

superactive, thermic Fluventic 

Haplustolls) 

Carey silt loam (Fine-silty, mixed, 

superactive, thermic Typic 

Argiustolls) 
Plot size 9 m x 9 m 7.6 m x 9 m 

Cultural practice 

Planting  Switchgrass and mix grass was 

planted on 12 May 2010; high 

biomass sorghum  5 May 2011;16 

April 2012 and 29 April 2013; 

Legumes; Hairy vetch on 23 February 

2011 and 4 March 2013; Crimson 

clover on  27 February 2012 

Switchgrass and mix grass was 

planted on 24 May 2010; high 

biomass sorghum  on 3 May 2011, 

9 April 2012 and 10 May 2013; 

Legumes; Hairy vetch on 3 March 

2011 and  15 March 2013; 

Crimson clover on  15 March 2012 

   

Fertilizing  All plots  except legume treatments 

were fertilized on 23 May 2011, 

switchgrass and mixed grass on 19 

April 2012 and  30 April 2013;  high 

biomass sorghum on 4 May 2012 and 

7 June 2013 

All plots except legume treatments  

fertilized on 9 June 2011, 3 May 

2012 and  11 June 2013 

   

Spraying  30 July 2012 and 23 July 2013 

sprayed Sevin insecticide for 

grasshopper control at rate of 2.3 L ha
-

1
  

1 April 2011 sprayed Dual 

herbicide for weed control in all 

non-legume treatments 

Final Harvest Date 

Plot Harvest  All plots 16 November, 2011, 27 

November, 2012 and 25 September 

2013; Harvested area was 45 m
2
 in 

2011 and 2012 season and 1 m
2
 for 

2013. 

Switchgrass and mix grass on 4 

January, 2012, 14 November, 2012 

and 23 September 2013; Harvested 

area was 14 m
2
 for 2011 and 2012 

season and 1m
2 

for 2013. 
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Table 2.2. Soil fertility characteristics (0-15 cm) at locations in 2012 and 2013 (Stillwater-12, 

Stillwater-13, Woodward-12, and Woodward-13). Samples were obtained within each plot 

before fertilization and are expressed as mean values. 

 

Location  No. pH P K NO3-N 

   mg kg
-1 

Stillwater-12 45 6.1 (0.28)† 30 (5.0) 176 (28) 4 (2.4) 

Stillwater-13 45 6.8 (0.37) 22 (5.8) 153 (50) 20 (19) 

Woodward-12 45 6.4 (0.30) 30 (4.4) 160 (24) 6 (3.3) 

Woodward-13 45 6.3 (0.45) 25 (8.0) 159 (43) 8 (5.7) 

† Standard deviation in parenthesis. 
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Table 2.3. Narrowband NDVI (GreenSeeker) and broadband NDVI (aerial photograph) data 

collection for perennial grasses (PG) and high biomass sorghum (HBS) at Stillwater and 

Woodward locations for the 2013 growing seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Perennial grasses (PG) started greening up around 30 April at both locations, high biomass 

sorghum (HBS) was planted 29 April and 10 May at Stillwater and Woodward respectively. 

†Severe lodging (>90%) in late September at Woodward did not allowed for harvest of high 

biomass sorghum.  ‡Four band (red, green, blue and NIR) aerial image was provided by 

Geovantage inc for computation of the NDVI. 

 

 

NDVI Date Days after greenup/ planting 

 Stillwater 

Narrowband   PG HBS 

1 May 16 17  

2 Jun 3 35  

3 Jun 10 42 41 

4 Jun 14  45 

5 Jun 21 53 52 

6 Jul 2 65 64 

Broadband  PG SG 

1 Jul 2 65 59 

2 Aug 12 105 104 

3 Sep 8 132 131 

 Woodward 

Narrowband  PG HBS† 

1 Jun 23 55 45 

2 Jul 24 86 76 

3 Aug 26 119 109 

Broadband  PG HBS† 

1 Jul 2 64 54 

2 Aug 12 105 105 

3 Sep 8 132 132 
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Table 2.4.Precipitation and temperature across 2010-2013 growing season (March – October), and 30-year average for Stillwater and 

Woodward, Oklahoma, USA.  

    Mar Apr May Jun Jul Aug Sep Oct Total /Mean 

Stillwater 30-yr average (mm) 85 89 131 114 73 74 94 82 742 

  rainfall 2010 (mm) 42 92 181 139 112 64 71 44 744 

  rainfall 2011 (mm) 21 50 99 43 19 3 79 15 329 

  rainfall 2012 (mm) 100 156 28 55 2 67 28 15 452 

  rainfall 2013 (mm) 28 135 153 100 141 65 43 40 705 

  30-yr  average (˚C) 10 15 20 25 28 28 23 16 21 

  Average Temperature 2010 (˚C) 10 17 20 27 28 28 23 17 21 

  Average Temperature 2011 (˚C) 11 18 20 29 32 31 21 16 22 

  Average Temperature 2012 (˚C) 16 18 23 26 31 27 23 15 23 

  Average Temperature 2013 (˚C) 9 13 20 26 26 27 24 15 20 

 

Woodward 30-yr average (mm) 52 55 96 98 57 69 55 60 542 

  rainfall 2010 (mm) 22 58 171 38 124 40 68 30 551 

  rainfall 2011 (mm) 6 26 14 62 37 33 22 39 239 

  rainfall 2012 (mm) 112 106 12 35 7 59 46 41 417 

  rainfall 2013 (mm) 61 38 28 98 85 87 82 10 489 

  30-yr average (˚C) 7 13 19 24 27 26 21 14 19 

  Average Temperature 2010 (˚C) 8 16 19 27 27 28 24 17 21 

  Average Temperature 2011 (˚C) 10 16 20 29 32 30 22 16 22 

  Average Temperature 2012 (˚C) 15 17 22 27 31 27 23 15 22 

  Average Temperature 2013 (˚C) 8 11 20 26 27 26 24 14 20 
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Table 2.5. Effects of nitrogen treatment and cropping system on biomass yield at Stillwater and 

Woodward in 2011-2013. 
Treatments   Biomass Yield (Mg ha

-1
) 

 Stillwater Woodward 

 2011 2012 2013 2011 2012 2013 

 N Treatment 

0 kgha
-1

 3.1 (1.0) 6.6 (2.2) 12.8 (5.8) 1.2 (0.4) 2.0 (0.6) 3.7 (2.0) 

84 
 

2.5 (1.3) 7.8 (1.5) 21.0 (9.2) 1.3 (0.3) 2.5 (0.7) 7.9 (2.4) 

168  2.8 (0.6) 7.9 (2.4) 20.0 (7.1) 1.6 (0.7) 2.7 (0.7) 8.6 (1.4) 

252  2.0 (1.1) 7.2 (1.3) 20.2 (9.3) 1.6 (0.5) 2.7 (0.7) 8.9 (1.8) 

Legume 2.1 (1.0) 7.1 (1.8) 14.3 (4.9) 1.5 (0.4) 1.6 (0.5) 5.9 (3.3) 

LSD (P<0.05) 0.8 1.4 3.6 0.5 0.6 2.1 
a 
Linear NS NS ** NS NS *** 

a 
Quadratic NS NS * NS * *** 

 Cropping System 

Switchgrass 2.9 (1.4) 7.3 (2.4) 12.7 (4.1) 1.5 (0.4) 2.4 (0.7) 7.2 (3.2) 

Mixed grass 2.1 (0.6) 6.9 (1.2) 15.7 (5.3) 1.3 (0.5) 2.1 (0.7) 6.8 (2.7) 

High Biomass Sorghum 2.5 (1.4) 7.7 (1.8) 24.4 (8.5) NA NA NA 

LSD (P<0.05) 2.0 3.3 5.0 0.7 2.0 5.6 

  

Source of variation   Probability of significance 

Block  NS† * NS ** * NS 

Cropping system (CS) NS NS ** NS NS NS 

Nitrogen Treatment (N Trt) * NS *** NS ** ** 

CS x N Trt NS NS ** NS NS NS 

CV  35 20 21 29 21 24 

†NS: not significant, * significant at p<0.05, **significant at p<0.01 and *** significant at 

p<0.001. ‡ Number in parenthesis indicates standard deviation. NA - not available. HBS was not 

harvested due to crop failure to severe drought in 2011 and 2012 and severe lodging (> 90% of the fertilized plots) 

in 2013.
a 
Linear and quadratic contrast was performed for 0 kgNha

-1
 and applied fertilizer rates. N 

rates were applied in kgha
-1

. 
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Table 2.6. Effects of nitrogen treatment and cropping system on biomass quality [TN, 

hemicelluloses (Hem), cellulose (Cell) and lignin (ADL)] of feedstock material from three 

cropping system at Stillwater and Woodward across the 2011-2013. 

Treatments  Biomass Quality (%) in biomass 

 2011 2012 2013 

 TN Hem Cell ADL TN Hem Cell ADL TN Hem Cell ADL 

 STILLWATER 

0 0.70 27 36 7.3 1.03 25 32 6.9 0.54 27 32 6.7 

84
 

0.83 25 33 7.3 1.12 25 31 6.7 0.89 27 33 7.0 

168  1.02 25 34 7.5 1.12 25 31 6.4 0.76 27 32 7.0 

252  1.09 27 34 7.0 1.10 25 31 6.7 0.97 27 32 6.8 

Legume 0.82 27 36 7.0 1.04 25 31 6.6 0.61 27 32 6.8 

LSD (P<0.05) 0.2 2.2 2.5 0.8 0.1 0.5 1.2 0.6 0.2 0.4 1.4 0.8 
a 
Linear ** NS NS NS NS NS NS NS ** NS NS NS 

a 
Quadratic ** NS NS NS NS NS NS NS NS NS NS NS 

 Cropping System  
SWG 0.54 27 38 8.5 1.07 26 34 7.6 0.50 27 34 7.7 

MIXED 0.56 27 36 8.5 1.09 26 34 7.8 0.44 27 34 7.5 

HBS 1.60 24 30 4.5 1.09 24 27 4.5 1.21 26 28 5.3 

LSD (P<0.05) 0.4 1.2 2.0 1.4 0.3 0.7 1.7 0.7 0.3 0.4 1.8 0.9 
Source of variation   Probability of significance 

Block  NS NS NS ** * NS NS NS NS NS NS NS 

CS ** ** *** ** NS ** *** *** ** ** ** ** 

N Trt ** NS NS NS NS NS NS NS ** NS NS NS 

CS x N Trt NS NS NS NS NS NS NS NS * NS NS NS 

CV  24 9.0 7.5 11.1 9.6 2.0 4.0 9.5 31.3 1.5 4.4 11.7 

 WOODWARD 

0  0.93 30 29 6.5 1.08 25 33 7.2 0.78 27 32 7.0 

84 
 

1.07 30 29 5.8 1.43 25 32 6.8 1.20 27 33 6.8 

168  1.07 30 29 6.8 1.40 25 32 6.7 1.24 27 32 7.2 

252  0.98 29 28 6.7 1.43 25 32 7.0 1.28 26 32 6.5 

Legume 0.73 30 29 6.7 1.13 25 33 6.8 0.72 27 32 6.7 

LSD (P<0.05) 0.20 1.9 2.0 1.1 0.23 0.8 1.5 0.6 0.2 0.4 1.3 0.7 
a 
Linear NS NS NS NS NS NS NS NS * NS NS NS 

a 
Quadratic NS NS NS NS NS NS NS NS * NS NS NS 

 Cropping System 

SWG 0.93 30 29 6.3 1.25 25 33 6.9 1.25 27 32 6.7 

MIXED 0.98 30 29 6.7 1.34 25 32 6.9 0.83 27 33 6.9 

LSD (P<0.05) 0.5 3.0 2.2 2.3 0.2 0.9 2.0 0.8 0.5 0.6 0.3 0.5 
Source of variation   Probability of significance 

Block  * * NS ** NS NS NS * NS NS NS NS 

CS NS NS NS NS NS NS NS NS NS NS ** NS 

N Trt * NS NS NS ** NS NS NS *** * NS NS 

CS x N Trt NS NS NS NS NS NS NS NS NS NS NS NS 

CV  17.2 5.2 5.6 13.6 14.5 2.5 3.7 7.5 15.1 1.4 3.3 8.2 

†NS: not significant, * significant at p<0.05, **significant at p<0.01 and *** significant at p<0.001. ‡ CS: cropping 

system, N Trt: Nitrogen treatments, SWG: switchgrass, HBS: High biomass sorghum, Mixed: Mixed grass (50% 

switchgrass, 25% Indian grass and 25% Big blues stem). HBS was not harvested due to crop failure to severe 

drought in 2011 and 2012 and severe lodging (> 90% of the fertilized plots) in 2013.
a 
Linear and quadratic contrast 

was performed for 0 kgNha
-1

 and applied fertilizer rates. N rates were applied in kgha
-1

. 
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Table 2.7.  In-season prediction model parameters for final biomass yield of perennial grass (PG) 

at Woodward and Stillwater and high biomass sorghum (HBS) at Stillwater for the 2013 growing 

season using narrowband NDVI (GreenSeeker) and broadband NDVI (aerial photograph ).  

NA- not available. 

  

NDVI Date Prediction Models 

 Stillwater 

Narrowband   PG HBS 

  Equation R
2
 Equation R

2
 

1 May 16 Y=2.5x+12.7 0.002   

2 Jun 3 Y=54x-30 0.15   

3 Jun 10 Y=100x-67 0.31   

4 Jun 14     

5 Jun 21 Y=85x-54 0.38 Y=40x-6.2 0.14 

6 Jul 2 Y=95x-60 0.43 Y=123x-69 0.52 

Broadband  

1 Jul 2 Y=47x-20 0.15 Y=47.7x -2.1 0.60 

2 Aug 12 Y=16.5x + 5.8 0.01 Y=109x -34 0.73 

3 Sep 8 Y=129x-26.7 0.37 Y=98x -22 0.70 

 Woodward 

Narrowband  PG  HBS 

1 Jun 23 Y=17.3x -4.7 0.25   

2 Jul 24 Y=25x -7.0 0.55 NA 

3 Aug 26 Y=25x-7.9 0.61 

Broadband  

1 Jul 2 Y=14.2x -0.72 0.42 NA 

2 Aug 12 Y=17x -0.4 0.40   

3 Sep 8 Y=19x -1.4 0.45   
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Fig. 2.1.  Illustration of plot layout for Stillwater and Woodward locations and broadband NDVI 

values obtained from aerial photograph. Top: Stillwater and Bottom: Woodward. Aerial image 

was taken by Geovantage inc. (Peabody, Ma, USA). 
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Figure 2.2. Combined effect of cropping systems (switchgrass, mixed grass and high biomass 

sorghum) and N treatments (0, 84, 168 and 252 kgNha
-1

) on final biomass yield and N 

concentration biomass at Stillwater, Oklahoma for the 2013 growing season. A: Nitrogen 

concentration at harvest and B: Final biomass yield. 
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Figure 2.3. Relationship between narrowband NDVI (GreenSeeker sensor) and broadband NDVI 

(aerial photograph). A: Perennial grass at Woodward (26 August for GreenSeeker and 8 

September for aerial photograph); B: Perennial grass at Stillwater (2 July GreenSeeker and 2 July 

for aerial photograph); C: High biomass sorghum at Stillwater (2 July GreenSeeker and 2 July 

for aerial photogra
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CHAPTER III 

 

DISCRIMINANT ANALYSIS OF NITROGEN TREATMENTS IN SWITCHGRASS 

AND HIGH BIOMASS SORGHUM USING LEAF AND CANOPY-SCALE 

SPECTROSCOPY 

 

ABSTRACT 

The recent advances in imaging spectroscopy provide a unique opportunity to obtain critical 

information needed for understanding nitrogen management in crop production systems. 

Therefore, the objectives of this study were to identify the optimal hyperspectral narrow-bands at 

leaf and canopy scale to discriminate N rates and to determine the ability of leaf and canopy 

scale hyperspectral reflectance data to discriminate N application rates. Leaf and canopy imaging 

spectroscopy was collected using an ASD FieldSpec FR spectroradiometer (350-2500nm) at 

monthly intervals in the 2011 and 2012. The crops evaluated in the study were switchgrass 

“Alamo” (Panicum virgatum L.) and high biomass sorghum “Blade 5200” (Sorghum bicolor) 

grown to evaluate N applications rates on biomass yield and quality. The optimal hyperspectral 

narrow-bands were determined based on principal component analysis (PCA) and the separation 

of the N treatments was done using stepwise discriminant analysis (SDA). Results showed 

similar canopy and leaf scale reflectance for high biomass sorghum but not for switchgrass. 

Wavebands occurring most frequently for separating the N treatments were 520-560, 650-690 
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nm (visible region), and 710-730 nm (red edge region).Triangular Greenness Index (TGI)was the 

most frequently occurring index in discriminating N application rates. The timing of separation 

in the N treatments indicates that N application should be done within 4-6 weeks after planting in 

high biomass sorghum and within 4 weeks after green-up in switchgrass. In general, indicate that 

hyperspectral reflectance is a viable tool that could be used to estimate biochemical and 

biophysical characteristics in bioenergy crop production systems.  
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INTRODUCTION 

Soil testing and plant analysis are the most common methods used to determine N 

content.  However, soil test and plant analysis don’t always reflect the present N status.  This is 

because N content in sample is dependent on soil moisture, growing condition at the time of 

sampling, time of year and depth of sample (Raun et al. 2008).  Moreover, it is difficult to detect 

N deficiencies in actively growing crops without comparing the crop to crops with sufficient N. 

The easiest way to detect N deficiency in actively growing crops is to create a strip with 

sufficient N (N is non-limiting) and compared that strip to the other crops within the field (Raun 

et al. 2005).  If no difference is detected, no additional N is needed as enough N had been 

mineralized from soil organic matter and/or deposited in the rainfall to meet all the plant needs or 

growth was possibility restricted by some other variables (Raun et al. 2008).  Remote sensing of 

crop canopy and/or leaf reflectance could allow for detection of difference in N status of the 

reference strip and the rest of field, because our eyes are not as sensitive in picking up these 

differences. In season evaluation of N reference strip could assist in determining the appropriate 

N rates for bioenergy crop.  

Imaging spectroscopy provides a unique opportunity to obtain critical information needed 

for understanding nitrogen management in crop production systems. Current uses of imaging 

spectroscopy application in agricultural cropland include detection of plant stress, measurement 

of chlorophyll and nitrogen content of the plant, modeling biophysical and yield characteristics, 

detection of moisture variation and discriminating crop type (Kokaly and Clark 1999; Huete et 

al. 2002; Johnson et al. 2008; Ray, Singh, and Panigrahy 2010; Foster et al. 2012; Numata 2012; 

Thenkabail, Lyon, and Huete 2012; Zhang 2012; Zhu, W. Wang, and Yao 2012).The leaf optical 

properties and canopy structure are the two main domains of remote sensing used to determine 

the signals originating from vegetation surfaces (Hatfield et al. 2008; Zhang 2012).  Leaf optical 
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properties are dependent on leaf structure, leaf biochemical composition, distribution of leaf 

biochemical components, and the complex refraction index of these components, while the 

canopy optical properties depend on the leaf optical properties, soil reflectance, solar 

illumination conditions, viewing geometry of the remote sensing instrument and the canopy 

structure (Baret and Guyot 1991; Haboudane et al. 2004; Gitelson et al. 2005; Zhang 2012). It is 

well documented, that leaf optical properties contribute directly to canopy level reflectance 

(Baret and Guyot 1991; Myneni and Asrar 1993; Haboudane et al. 2004; Gitelson et al. 2005; 

Kokaly et al. 2009; Gitelson 2012; Zhang 2012). Leaf scale sampling requires many leaves from 

a number of plants to obtain a representative average value and to adequately assess the spatial 

variability with a field.  In contrast, measurement of canopy reflectance has the capability to 

sample a plant population or community rather than individual plants and to rapidly assess the 

spatial viability (Xue et al. 2004). Furthermore, the spectral signature of crop canopies in the 

field is more complex and often different from those of single green leaves measured under 

carefully illuminated conditions (Pinter et al. 2003; Kokaly et al. 2009).  However, leaf level 

radiometric measurement is critical for accurate estimation of the canopy level biochemical 

properties such as chlorophyll and N content using imaging spectroscopy imaging.   

Imaging spectrometer data is much more complex than multispectral data, collecting 

large volume of data in a short time leading to numerous complex challenges in data handling 

(Thenkabail et al. 2004; Thenkabail, Lyon, and Huete 2012). For example, Hyperion, the first 

space borne hyperspectral sensor onboard Earth observing-1(EO-1), gathers near continuous 12-

bit data in 220 discrete narrow spectral bands ranging from 400-2500nm at a spatial resolution of 

30m (Thenkabail et al. 2004; Thenkabail, Lyon, and Huete 2012). The continuous spectral 

coverage provided with many narrowbands does not necessary means more information as most 
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of these bands especially those that are close together provide redundant information (Thenkabail 

et al. 2004; Thenkabail, Lyon, and Huete 2012). Thenkabail et al. (2012) suggested that a better 

option is to focus on the design of an optimal sensor with selected optimal bands for a given 

application, such as vegetation studies. The analysis of the large number of bands in an imaging 

spectroscopy set is complex and time consuming. Therefore, various attempts have been made to 

select the optimum set of narrow-bands for characterization of crop biophysical and biochemical 

properties (Thenkabail et al. 2004; Xue et al. 2004; Ray, Singh, and Panigrahy 2010; Gitelson 

2012; Zhu, W. Wang, and Yao 2012).   

There are many methods available for selection and extraction of the optimal wavebands 

from imaging spectroscopy such as (Bajwa and Kulkarni 2012; Numata 2012; Thenkabail et al. 

2013) 1) feature selection (i.e. principal component analysis and derivative analysis); 

2)   versus  R
2
 - plots between the different wavebands; (3) partial least squares (PLS), (4) 

stepwise linear regressions; and (5) hyperspectral vegetation indices (HVIs).  These approaches 

are often used for identifying optimal wavebands, eliminating redundant bands and extracting of 

unique information from imaging spectroscopy in agricultural cropping systems (Thenkabail et 

al. 2004; Kosaka, Uto, and Kosugi 2005; Ray, Singh, and Panigrahy 2010; Thenkabail et al. 

2013). There are numerous other methods of imaging spectroscopy analysis for eliminating 

redundant wavebands and reducing the  large number of wavebands to a manageable number, 

while retaining optimal information such as continuum removal (Clark and Roush 1984; Kokaly 

and Clark 1999; Jollineau and Howarth 2008), derivative vegetation indices (Thenkabail, Smith, 

and De Pauw 2000), neural networks (Ingram, Dawson, and Whittaker 2005; Trombetti et al. 

2008; Liu, Wu, and Huang 2010), uniform design (Filippi and Jensen 2006); wavelength 

transformation (Bruce, Koger, and Li 2002; Hsu 2007), spectral mixture analysis (Adams et al. 



55 
 
 

1995; Roberts et al. 1999) and others (Thenkabail, Lyon, and Huete 2011). Selection of an 

extraction method should be dependent on the ability to identify the optimal set of features that 

would extract the information of interest with the highest possible accuracy and reliability in the 

least amount of time and computational effort and cost (Bajwa and Kulkarni 2012). 

Spectral signatures of crop canopies in the field are more complex and are often different 

from that of single green leaves measured under carefully controlled illuminated conditions 

(Pinter et al. 2003). Moreover, several narrow hyperspectral wavebands and VIs are required to 

assess the crop status throughout the season, as no single index or wavebands are able to describe 

the evolution of a crop within a single season or across seasons (Strachan, Pattey, and Boisvert 

2002; Hatfield and Prueger 2010). Timely information is important in agricultural crop 

production system for detecting nutrient deficiencies, pest infestation and other crop stress.  

Early detection is critical to reduce large yield loss and minimize economic loss. Therefore, 

approximate analyses; quickly obtained using one or more hyperspectral vegetation indices may 

be more useful than slow detailed retrievals based on continuum removal or similar approaches 

(Thenkabail et al. 2013). Recent, research has demonstrated that  vegetation indices derived from 

imaging spectroscopy for estimation of a target variable have shown better performance than the 

traditional red-NIR band combinations (Thenkabail, Smith, and De Pauw 2000; Mutanga and 

Skidmore 2004; Cho 2007; Fava et al. 2009). Furthermore, N reference strip within a field could 

be separated easily and more efficiently using sensors with optimal wavebands.  Thus, the 

objectives of this study were 1) to determine the optimal wavebands at leaf and canopy scale that 

discriminate N application rates, and 2) to determine if leaf and canopy scale imaging 

spectrometer data differed in discriminating among N application rates at different times 

throughout the growing season. 
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MATERIALS AND METHODS 

Field Experimental Design  

A field experiment was established the Stillwater Research Station (EFAW site, 36.13 N, 

97.10 W) to evaluate the combined effect of nitrogen treatments and bioenergy crop species on 

biomass yield. The nitrogen treatments were: 4 applied N rates of 0, 84, 168 and 252 kgNha
-1

 

and a winter legume [hairy vetch (Vicia villosa Roth) planted in 2011 and crimson clover 

(Trifolium incarnatum L.) planted in 2012], and two bioenergy crop species; [switchgrass 

(Panicum virgatum L) “Alamo” established in 2010 and high biomass sorghum (Sorghum 

bicolor L) “Blade 5200” planted in June 2011 and April 2012. Site characteristics and cultural 

practices are summarized in Table 3.1. The switchgrass and high biomass sorghum were seeded 

at rates of 5.04 and 9.5 kg ha
-1

 of pure live seeds using a no-till planter. The winter legume was 

planted in February each year. All plots were fertilized on 3 June 2011, while in 2012, 

switchgrass was fertilized on 19 April and high biomass sorghum on 4 May. The five different N 

treatments were applied to plots arranged in a split plot randomized design with three 

replications to generate plots with varying yield potential. In the split plot design, species was the 

main plot and fertilizer treatment was the subplot. The experimental plots (30) dimensions were 

9 m x 9 m dimension.  

 Leaf Sampling 

To separate N treatments at leaf scale to determine the need for N fertilization, the top 

most fully expanded green leaf was excised from 6 and 3 random switchgrass and high biomass 

sorghum plants, respectively, in each plot. The leaves were immediately placed in a sealed 

plastic bag in an ice chest and transported to the laboratory for spectral measurements. These 
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samples were collected between 10:00 and 15:00 local time ([UTC-06:00] Central Time [US & 

Canada]).  

Measurement of Hyperspectral Reflectance 

Imaging spectrometer data were collected from switchgrass and high biomass sorghum at 

leaf and canopy scale throughout the 2011-2012 growing season using a spectroradiometer 

(FieldSpec Pro FR: Analytical Spectral Devices [ASD], Boulder, Co, USA). The ASD measures 

spectral reflectance in the 350-2500 nm waveband range and has a spectral sampling of 1.4 nm 

in the 350-1000 nm range, and 2 nm in the 1000-2500 nm range. The spectral resolution is 3 nm 

in the 350-1000 nm range, and 10 nm in the 1000 nm range, which were calculated as 1 nm 

resolution wavelength for the output data using software (RS2 for Windows; ASD). A spectralon 

(Labsphere, Sutton, NH, USA) white reference panel was used to optimize the ASD instrument 

prior to taking two canopy reflectance measurements per plot. The white reference was measured 

at 15-30 minutes intervals to check the stability for 100% reflectance during reflectance 

measurement. To reduce the amount of data for analysis, spectral data were averaged at 10-nm 

wavelength intervals (e.g., a band center at 400 was the averaged value between 395–405 nm) 

giving a total of 211 spectral bands between 400–2500 nm (Foster et al. 2012). Spectral data at 

start and end of spectrum due to noise (350–395 nm and 2460–2500) and in the atmospheric 

water absorption spectral regions (1360–1420 and 1800–1960 nm) were deleted from the data 

before analysis leaving 185 spectral bands for analysis. 
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Leaf Spectral Data 

Leaf samples were collected from June to August 2011 and May to September 2012 

between 10:00-14:30 hours local time ([UTC-06:00] Central Time [US & Canada]).  Spectral 

reflectance was measured for the leaf samples using the procedure for switchgrass leaf 

reflectance that used by Foster et al. (2012). However, to measure the leaf reflectance of the high 

biomass sorghum, a single leaf rather than two leaves was used due to the larger surface area. 

The spectral reflectance was obtained by sandwiching a single leaf for the high biomass sorghum 

or two leaves for the switchgrass between a non-reflecting black body and the light probe 

(Kakani et al. 2004). Three replicated spectral measurements were taken on each of the leaf 

collected from each plot. Each measurement was the average of 25 spectral readings to enable 

noise reduction within the spectra (Muchovej and Newman 2004; Miphokasap et al. 2012). 

Canopy Spectral Data 

Canopy reflectance measurements were made on clear-sky days from June to August 

2011 and May to September 2012 between 10:00-14:30 hours local time ([UTC-06:00] Central 

Time [US & Canada])using an ASD spectroradiometer To measure the canopy reflectance the 

sensor head was held approximately 60 cm above the canopy at the nadir position at each 

sampling interval. The radiometer was mounted on the back of pickup and raised to a height of 

200 to 290 cm above the ground (Figure 1).Table 3.3.2 shows height of radiometer, canopy 

height and height of the sensor from ground at each sampling date. The radiometer had a 25° 

field of view (FOV), producing a view area of 88-128 cm diameter at ground level. 

Hyperspectral reflectance was collected from 30 plots of switchgrass and high biomass sorghum 

with varied rate of nitrogen fertilizer to create variation in biomass and quality within the plots. 
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Two replicated spectral measurements were taken from each plot, with each measurement being 

an average of 25 spectral readings to enable noise reduction within the spectra. 

Vegetation Indices 

Vegetation indices are designed to either detect vegetation structural parameters such as 

LAI, biomass, or chlorophyll/pigment concentrations (Pinter et al. 2003). The information 

generated from vegetation indices are dependent upon the phenological stage and plant 

parameter to which the index is closely related (Hatfield and Prueger 2010). Therefore, indices 

used in this study were selected from the most common VIs and grouped into three categories, 

structural indices, chlorophyll/pigment related indices and red edge indices that are related to 

pigments (Table 3.3). 

Data Analysis  

The principal component analysis (PCA) was performed using the PROC PRINCOMP 

procedure in SAS to identify the optimal wavebands, while stepwise discriminant analysis 

(SDA) was performed to find the best indices and wavebands that could distinguish the nitrogen 

treatments at different sampling intervals throughout the growing season. The SDA was 

performed using the PROC STEPWISE procedure in SAS.  To determine the optimal wavebands 

that best described the vegetation characteristics at different time throughout the growing season 

a comprehensive analysis using PCA was performed.  The PCA was used as a method because of 

its reliability and ease in determining selecting best wavebands to model biophysical and 

biochemical quantities. While, the SDA was carried out to identify the best vegetation indices 

(Table 3.3) and wavebands (from 186 bands) at each sampling intervals in the switchgrass and 
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the high biomass sorghum for separation of the N treatments. Stepwise discrimination (SDA) 

was used because it provides the most rapid and straight forward results in discriminating among 

multiple groups (Thenkabail et al. 2004).  

The PCA is a method that transformed the original data into a set of new uncorrelated 

variables called principal components (PC), thereby reducing the number of variables. The value 

of the PCA is that the importance of each wavebands in each PC can be determined by the 

magnitude of the eigenvectors or factor loading  as the higher the eigenvector the greater the 

importance of the waveband  in relation to the switchgrass and the high biomass sorghum N 

status. Therefore, the magnitude of the eigenvector in each PC was used to determine the 

wavebands with the greatest influence in PC1, PC2 and PC3.  The PCA also provides the percent 

variability explained by each PC (eigenvalues). This approach allows for the selection of the best 

wavebands associated with the switchgrass and high biomass sorghum N status.  

The SDA is a method that reduces the data set to those variables that maximize between 

statistical group variability while minimizing within group variability. The Wilk’s lambda 

statistics was used to select the best indices and wavebands for differentiating the N treatments at 

the different sampling intervals and at the leaf and canopy scale. In addition to the Wilk’s 

lambda, there are other SDA methods for discrimination such as Pillai’s trace and canonical 

correlation (SAS 2009). However, the Wilk’s lambda is the most commonly used and reported 

(Thenkabail et al. 2004; Thenkabail, Lyon, and Huete 2012; Thenkabail et al. 2013).  Low 

Wilk’s lambda value suggests a great degree of separation (Thenkabail et al. 2004; Thenkabail, 

Smith, and De Pauw 2002). Therefore, indices or wavebands identified at each sampling date 

and at leaf and canopy scale with the lowest Wilk’s lambda value resulted in the greatest degree 
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of separation among the N treatments. The difference between the PCA and SDA is that the PCA 

creates new set of uncorrelated variables that defines the axes of greatest variability in the data 

and the SDA identifies from amongst the original variables the best variable that describes 

differences between given groups. 

RESULTS AND DISCUSSION 

Growing Condition  

Severe drought conditions affected the state of Oklahoma which significantly affected the 

productivity of crops in 2011. Stillwater received 44% and 61% of the 30 yr. average rainfall in 

2011 and 2012, respectively (Table 3.1). Nitrogen fertilizer was applied in June and the plants 

were almost completely non-photosynthetic with little to no green material following August 

resulting in only three spectral samples for the 2011 season. In 2012, to take advantage of the 

early season moisture switchgrass was fertilized in April and high biomass sorghum planted in 

May. Five spectral measurements were taken in 2012 (May, June, July, August and September). 

The use of a mount attached to the pickup for the instrument to get above the crop canopy 

allowed for easier and more frequent sampling (Figure 3.1).  

Visual evaluation of figure 3.2 showed greater variation in the canopy reflectance 

compared to the leaf reflectance across the species and the sampling dates. Variation in spectral 

measurements can easily be observed between species particularly at the leaf level, with greater 

variation in the high biomass sorghum in comparison to switchgrass. Within a species, variation 

was observed in switchgrass at canopy scale in comparison to at leaf level, while spectral 

measurement varied in leaf and canopy for high biomass sorghum with greater variation at the 
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canopy scale in 2012. The variability in the canopy reflectance can be attributed to the changes 

in the proportion of soil and vegetation and architectural arrangement of plant components 

(Pinter et al. 2003). Moreover, the shape of the leaf spectra was very dissimilar from that of the 

canopy spectra of the same species. This finding was not surprising, as spectral signatures of 

crop canopies in the field are more complex and often quite dissimilar from those of a single 

green leaves measured under carefully controlled illuminated light (Pinter et al. 2003). 

Figures 3.3 and 3.4 show canopy and leaf reflectance of switchgrass and high biomass 

sorghum at different N treatments collected at the different sampling dates in 2011 and 2012. 

Greater variability was observed among the five N treatments at the canopy scale in comparison 

to that at leaf scale that showed little to no variability. The figures at leaf scale reveal minimal 

separation of the N treatments in May (2012), July and August of 2011. At canopy level, 

significant separation could be seen in May (2012), June (2011 and 2012), July (2011), August 

(2011) and September (2012) with the greatest separation in July (2011) and September (2012). 

Greater variability was observed among the N treatments at the canopy scale in the high biomass 

sorghum. However, greater variability could be seen at the leaf scale in comparison to at the leaf 

scale of switchgrass. Visual examination of the spectral curves at leaf scale reveals significant 

separation in June (2011) and July (2012). At the canopy scale significant separation was seen in 

June (2011 and 2012), July (2011) and August (2011 and2012) with the greatest separation in 

June (2011 and 2012). 

 In general, visual examination of the spectral curves reveals that separation was greatest 

either early or late in the season for switchgrass and early in the season for biomass sorghum 

(Figures 3.3 and 3.4). Moreover, the greatest separation observed occurred in the near infrared 

(750-1350 nm) and mid-infrared (1400-2500 nm) regions of the spectrum, with minimal 
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separation in the visible region (400-700 nm) (Figures 3.2-3.4). Leaf reflectance in green leaves 

is determined mainly by, water content, pigment and carbon content, which can be seen by the 

shape in the reflectance curve in the visible, NIR and mid-infrared regions of the spectrum. In the 

near infrared (NIR) region of the spectrum reflectance is high (40-60%) and is physically 

controlled by the leaf internal structures (Lusch 1999). While, in the mid infrared region (1350-

2500 nm) of the spectrum reflectance decreases (5- 40%), the primary physical control is vivo 

water content and internal leaf structure plays a secondary role in controlling energy-matter 

interactions (Lusch 1999). It is expected that throughout the growing season water content, 

pigment and carbon in the individual leaf and canopy will vary (Pinter et al. 2003). Therefore, 

greater variability is most likely in regions of the spectrum controlled by these physical 

parameters. Furthermore, in a green leaf water absorption can obscure other constituents 

(Numata 2012), which could explain the somewhat lower variability in the visible region of the 

spectrum.  

Principal Component Analysis  

The first three principal components (PCs) explained 93-100% of the variability in 

switchgrass and high biomass sorghum (Tables 3.4, 3.5, 3.6 and 3.7). The amount of variability 

explained by the three PCs in switchgrass (Tables 4 and 5) and high biomass sorghum (Tables 

3.6 and 3.7) at canopy and leaf scale for both years was greater than 90%. These results suggest 

that in order to explain greater than 90% of the variability, 186 wavebands can be reduced to 

three PC wavebands (PC1 to PC3). Tables 3.4 and 3.5 (switchgrass 2011 and 2012) and Tables 6 

and 7 (high biomass sorghum2011 and 2012) provides the five wavebands with the highest factor 

loading for each principal components resulting in 15 bands in different regions of the spectrum. 

The order the bands are listed in Tables 3.4, 3.5, 3.6 and 3.7 indicates the magnitude or ranking 
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for that band based on its factor loadings. For example, for PC waveband centered at 1770 has 

the highest factor loading followed by 1660, 1670, 1760 and 1650 nm (Table 3.4).  

The PCA analysis of 2011 switchgrass spectral data (Table 3.4) showed that PC1 was 

dominated by mid-IR bands explaining 53 and 89% of the variability at leaf and canopy levels. 

The PC2 was dominated by NIR bands at the leaf scale accounting for 29% of the variability and 

mid-IR at the canopy scale explaining 7% (Table 3.4). Blue bands dominated PC3 explaining 

14% of the variability at leaf scale and 2% at canopy level (Table 3.4). Overall, PC1 and PC2 

dominated by mid-IR bands explained 71 and 18%, respectively, and PC3 dominated by blue 

bands explained 5% of the variability in switchgrass at both leaf and canopy levels (Table 3.4). 

Similar to 2011, the PCA of 2012 switchgrass spectral data (Table 3.5) showed that PC1 

was dominated by mid-IR bands explaining 64 and 71% of the variability at leaf and canopy 

levels. The PC2 was dominated by NIR bands at the leaf and canopy scale accounted for 22 and 

23% of the variability (Table 3.5). Blue and red bands dominated PC3 at leaf scale explaining 

9% of the variability and green bands dominated at canopy levels accounting for 4% of the 

variability (Table 3.5). Overall, PC1 dominated by mid-IR bands explained 68%, PC2 dominated 

by NIR bands explained 22% and PC3 dominated by red bands explained 7% of the variability in 

switchgrass at both leaf and canopy levels (Table 3.5). 

The PCA of high biomass sorghum spectral data of 2011 (Table 3.6) showed that PC1 

was dominated by mid-IR bands explaining 64 and 68% of the variability at leaf and canopy 

levels. The PC2 was dominated by NIR bands accounting for 26% of the variability at the leaf 

and canopy levels (Table 3.6). Green bands dominated PC3 at leaf scale explaining 7% of the 

variability and blue bands dominated at canopy scale accounting for 4% of the variability (Table 



65 
 
 

3.6). Overall, PC1 was dominated by mid-IR bands explained 65%, PC2 dominated by NIR 

bands explained 26% and PC3 dominated by blue and green bands explained 6% of the 

variability in high biomass sorghum at both leaf and canopy levels (Table 3.6). 

Similar to 2011, the PCA of 2012 high biomass sorghum spectral data (Table 3.7) 

showed that PC1 was dominated by mid-IR bands explaining 66 and 68% of the variability at 

leaf and canopy levels. In contrast to 2011, the PC2 was dominated by red bands accounting for 

23% of the variability at the leaf scale and by NIR at the canopy scale explaining 28% of the 

variability (Table 3.7). NIR bands dominated PC3 at leaf scale explaining 8% of the variability 

and green bands dominated at canopy scale accounting for 3% of the variability (Table 3.7). 

Overall, PC1 dominated by mid-IR bands explained 67%, PC2 dominated by NIR bands 

explained 26% and PC3 dominated by green bands explained 5% of the variability in high 

biomass sorghum at both leaf and canopy levels (Table 3.7). 

In general, the PCA found mid-IR to be the dominant wavebands in PC1 explaining 

approximately 60% of the variation, NIR for PC2 explaining just over 20% of the variation and 

visible bands (red, blue and green) for PC3 explaining about 5% of the variability in switchgrass 

and biomass sorghum. Thenkabail et al., (2004) also found mid-IR to be the dominant waveband 

for PC1 accounting for a similar 62% of the variability in various weeds species and agricultural 

crop species. Likewise, Ray et al., (2010)  studying the use of  using imaging spectroscopy data 

in detecting crop stressed measured reflectance from 375-1075 using the PCA reported PC1 to be 

mostly dominated by NIR bands and PC2 and PC3 by the red region for seven nitrogen 

treatments in potato.   The results from our study and those reported above indicate the overall 

importance of mid-IR and NIR wavebands in monitoring vegetation characteristics using 
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imaging spectroscopy. Moreover, cropland biotic factors such as canopy height, basal area, 

biomass and LAI are often best predicted through a combination of visible and shortwave 

infrared (SWIR, [1100-2500 nm]) (Cho et al. 2007; White et al. 2010; Thenkabail, Lyon, and 

Huete 2012). The most frequent wavebands with the highest factor loading occurring more than 

five times among the PCs were 560 (11), 770 (10), 430 nm (7), 810 (7), 1660 (6), 500 (5) and 

650 nm (5). These wavebands were similar or near-similar to waveband centers (495, 555, 

495,735,885,1675-1705 and  645-665 nm)of the 22 wavebands identified by Thenkabail et 

al.,(2004) as the best narrow bands for discriminating among agricultural crops. 

 Selecting the Best Wavebands and Indices 

Table 3.8 summarizes the best wavebands identified for separating the N treatments and 

their Wilk’s lambda values. The Wilk’s lambda values are indicative of discriminatory power of 

the wavebands, with the lesser the Wilk’s lambda the greater the degree of separation between 

the N treatments. 

Selecting Best Wavebands 

The optimal Wilk’s lambda for the different wavebands separating the N treatments in 

switchgrass was achieved in May 2012, June 2011 and 2012, July 2012, August 2011, and 

September 2012 at leaf level (Table 3.8). At canopy scale optimal Wilk’s lambda was achieved 

in June 2011, August 2012 and September 2012. The lowest Wilk’s lambda values obtained at 

leaf scale were achieved with seven wavebands (560, 410, 470, 430,650, 690 and 730 nm) in 

June 2011(Wilk’s lambda = 0.00002) and with the single waveband (730 nm) in May 2012 

(Wilk’s lambda = 0.067). At the canopy scale the lowest Wilk’s lambda values were achieved 
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with the singlewaveband (400 nm) in June 2011(Wilk’s lambda = 0.457) and with three 

wavebands (640, 1300 and 500 nm) in September 2012 (Wilk’s lambda =0.018). Close to zero 

Wilk’s lambda values were obtained at leaf level in switchgrass for the 2011 sampling, 

indicating a great degree of separation among the N treatments, but  higher Wilk’s lambda values 

in 2012 indicates that the narrowbands weren’t has effective in separating the N treatments as in 

the previous year (Table 3.8).   

The optimal Wilk’s lambda for the different wavebands separating the N treatments in 

high biomass sorghum was achieved at similar sampling intervals to that observed in switchgrass 

at leaf scale with the exception of August 2012 (Table 3.8). Optimal Wilk’s lambda at the 

canopy scale was also achieved in June 2011 and 2012, July 2012 and September 2012 in the 

high biomass sorghum (Table 3.8). The lowest Wilk’s lambda at leaf scale in high biomass 

sorghum was achieved with five wavebands in June 2011 (720, 680,570,520, and 560 nm, 

Wilk’s lambda = 0.0014) and 2012 (730,710,550,540, and 990 nm, Wilk’s lambda = 0.002). At 

the canopy scale the lowest Wilk’s lambda was also achieved with four wavebands (1000, 1430, 

520 and 560 nm) in June of 2011 and three wavebands (710,510 and 520 nm) in 2012 with 

Wilk’s lambda values 0.0008 and 0.023 respectively (Table 3.8). The most frequent wavebands 

selected for separating the N treatments across species and years were 520-560,650-690, and 

710-730 nm (Table 3.8). These wavebands represent the red, green and red edge region of the 

spectrum. Moreover, they were also similar or near similar to the wavebands were identified 

using PCA by Thenkabail et al. (2004) as the best narrow bands for discriminating among 

agricultural crops. Lower Wilk’s lambda values( closer to zero) were achieved for the high 

biomass sorghum at both leaf and canopy scale indicating that the narrowband data performed 

better in separating the high biomass sorghum compared to the switchgrass. 
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Selecting Best Vegetation Indices 

 The results of the SDA for the five N treatments showed that the optimal Wilk’s lambda 

values were achieved with different VIs at each sampling date for the switchgrass and the high 

biomass sorghum at both canopy and leaf scale (Table 3.9). Table 3.9 summarizes the best 

indices identified for separating the N treatments at the different sampling date. Pigment related 

indices [TGI (7), Clred edge (3), PRI (4), TVI (4) and TCARI (3)] were the dominant indices 

occurring most frequently for separating the N treatments (Table 3.9). The lowest Wilk’s lambda 

that is indicative of the degree of separation occurred in July 2011 (0.035) with TVI, EVI, NPCI 

and RE740 and May 2012 (0.044) with TGI at leaf scale and in August 2011 (0.131) with Clred 

edge and Clgreen and September 2012 (0.186) with the Red edge NDVI at canopy scale for 

switchgrass. In the high biomass sorghum, the lowest Wilk’s lambda occurred in June 2011 at 

leaf scale with TGI, SR and TCARI (0.031) and at canopy scale with ZTM and Red edge (R740–

R720) (0.031). Likewise, the lowest Wilk’s lambda occurred in June 2012 at leaf scale (0.202) 

with TVI and at canopy scale (0.029) with TGI and MCARI. Similar to the individual 

wavebands (Table 3.8), lower Wilk’s lambda values were observed in 2011 and at the leaf scale, 

except for the high biomass sorghum that showed greater separation at canopy scale in 2012 

(0.029) than that of the 2012 leaf scale (0.202) and canopy scale 2011 (0.040) from the VIs 

(Table 3.9).  
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Individual Wavebands versus Vegetation Indices 

Traditionally, the advantage of VIs over individual wavebands is that they take advantage 

of the reflectance of the wavebands in different regions of the spectrum. For example, TCARI 

takes advantage of reflectance in the red and red edge regions, TGI in the visible region and 

RNDVI in the red and NIR regions of the spectrum. Each VI has its own unique combination of 

wavebands that have been related to specific crop parameter (Hatfield and Prueger 2010). 

Therefore, it is not surprising that the lowest Wilk’s lambda value or greatest separation of the N 

treatments occurred with different VIs (Table 3.9). Lower optimal Wilk’s value was obtained 

with individual wavebands compared to the VIs. This indicates that the individual wavebands 

performed better in separating the N treatments in both the switchgrass and the high biomass 

sorghum. However, optimal Wilk’s lambda for separation of the N treatments in the switchgrass 

at canopy scale were obtained in July (0.345) and August (0.150) of 2011 and May (0.237) and 

June (0.486) of 2012 and at leaf scale in July (0.035) 2011, whereas no optimal Wilk’s lambda 

were obtained for individual wavebands at these sampling dates. These Wilk’s lambda values 

were much higher than those of the individual wavebands, but they do indicate that VIs may be 

useful for the extraction of information from complex canopy structure where individual 

wavebands was not able to. Especially, if VIs could be improved by using hyperspectral 

narrowbands more closely related to the crop and target variable.  As many VIs derived from 

hyperspectral narrowbands in recent studies have shown improved performance compared to the 

traditional red-NIR based VIs used in this study ((Hansen and Schjoerring 2003; Mutanga and 

Skidmore 2004; Chan and Paelinckx 2008; Thenkabail, Lyon, and Huete 2012).   
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Several authors have reported correlation between wavebands and N content and VIs and 

N content (Everitt, Richardson, and Gausman 1985; Chappelle, Kim, and Mcmurtrey 1992; 

Peñuelas et al. 1994; Hansen and Schjoerring 2003; Xue et al. 2004; Zhu et al. 2007; Feng et al. 

2008; Fava et al. 2009; Stroppiana et al. 2009; Abdel-Rahman, Ahmed, and Van den Berg 2010; 

Chen et al. 2010). However, there is great disparity in the literature regarding the best wavebands 

and VIs for studying the N status in crops. The most frequent occurring wavebands with the 

lowest Wilk’s lambda value for separating N treatments at leaf scale identified in this study were 

all in the visible and red edge regions of the spectrum (Table 3.8). This finding further 

substantiates that the visible and red edge wavelengths are an important spectral regions for N 

assessment and could be better suited than NIR wavebands which are considered to be strongly 

influenced by canopy parameters (Stroppiana et al. 2009). Therefore, it was not surprising that 

NIR wavebands were more frequent at the canopy level (Table 3.8). More so, the most frequent 

occurring VI was highly sensitivity to chlorophyll content and is a ratio of wavebands in the 

visible region of the spectrum. To accurately estimate plant N content base on reflectance data, 

wavebands and VIs highly related to chlorophyll content are required (Hatfield and Prueger 

2010).  Nitrogen primarily occur in proteins and chlorophylls in the leaf cells and of such many 

researchers have associated spectroscopic estimation of nitrogen to that of chlorophyll pigments 

(Hansen and Schjoerring 2003; Mutanga, Skidmore, and van Wieren 2003; Xue et al. 2004; 

Kokaly et al. 2009; Stroppiana et al. 2009; Mitchell et al. 2012; Numata 2012; Stroppiana et al. 

2012; Zhu, W. Wang, and Yao 2012). Therefore, VIs capable of estimating or separating 

chlorophyll content in the plant was found to dominate. 

The variation in the VIs  are an indication of the different seasonal trends and the benefits 

of using multiple VIs to assess crop characteristic throughout the growing season and across 
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growing seasons (Table 3.9). Hatfield and Prueger (2010) also concluded that multiple VIs best 

capture the crop characteristic throughout the growing season to quantify agricultural crop 

characteristics. The result of this study does suggest that imaging spectroscopy do offer the 

advantage for the computation of multiple indices to capture the temporal variation that could be 

lost using individual wavebands or a single VI for the assessment of crop characteristics. 

However, the greater separation from the individual wavebands suggested that performance of 

VIs could be improved by the use of selected optimal narrow wavebands for the computation of 

the indices (Thenkabail et al. 2013). 

 Canopy versus Leaf Spectra 

The individual wavebands identified for separation of the N treatments at leaf and canopy 

levels were overall similar or near similar with the exception of the addition of the NIR 

wavebands at the canopy level. Majority of the wavebands were in the region of 400-740 nm at 

leaf scale and 400-1430 nm at the canopy scale (Table 3.8). Similarly, wavebands around 680 

nm and those in the green reflectance region (550-580 nm) were reported to be the most 

important in the prediction of plant nutrient status (Mutanga et al. 2005). On the other hand, 

weak correlation was observed between mid-IR and plant nutrient (Mutanga, Skidmore, and 

Prins 2004), while biomass and LAI estimation was reported to improve with the inclusion of 

mid-IR wavebands (Darvishzadeh et al. 2008; Fava et al. 2009). 

The VIs varied in separating the N treatments at each sampling date based on the lowest 

Wilk’s lambda achieved at the leaf and canopy scale (Table 3.9). In switchgrass, the RENDVI, 

Clred edge and Clgreen were the indices observed for the separation of the N treatments at the canopy 

scale in 2011 and 2012. These indices are computed from wavebands in the red edge (680-740 
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nm) and NIR (750–1350 nm) regions of the spectrum. On the other hand, at leaf scale TCARI, 

ZTM and TGI were the indices that separated the N treatments. The indices at the leaf scale were 

computed from wavebands in the visible, red and red edge regions of the spectrum. Likewise, in 

the high biomass sorghum red edge VIs dominated at the canopy scale, while VIs computed from 

visible and NIR wavebands dominated at leaf scale. The difference between the VIs at the leaf 

and canopy scale is the dominance of the red edge wavebands in the VIs at the canopy scale. 

This is not surprising as the red edge region has been well documented for use in the estimation 

vegetation nutritional status and productivity (Filella and Penuelas 1994; Lamb et al. 2002; 

Mutanga and Skidmore 2004). Wavebands and VIs identified at the canopy scale indicates that 

canopy scale data could provide information related to both the biochemical and biophysical 

characteristics. 

The individual wavebands were more constant at the leaf scale for both 2011 and 2012 

season in comparison to at the canopy scale. The relative constant wavebands for the leaf spectra 

throughout the growing season agreed with Pinter et al.(2003).They noted that leaf spectra tends 

to remain relatively constant throughout the season, while canopy spectra changes dynamically 

as the proportions of soil and vegetation change and the architectural arrangement of plants 

components vary. The variation in VIs and wavebands for separating the N treatments at the 

canopy and leaf reflectance suggest that species, growth habits and canopy structures play a 

critical role. In this study, the switchgrass differs from the high biomass sorghum due to growth 

habit. The switchgrass produces numerous amounts of tillers resulting in many leaves per 

individual plants and has a more erectophile leaf orientation. While the high biomass sorghum 

produces only a few tillers resulting in fewer leaves per individual plant and larger leaves in a 

more planophile leaf orientation. Kimes (1984) modeling the directional reflectance from 
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complete homogeneous vegetation canopies with various leaf-orientation distribution found 

simulated reflectance distribution was unique to classical leaf-orientation (electophile, spherical, 

planophile, and diahelotropic). Kimes (1984) study also pointed out that erectophile canopy 

showed the greatest variation in reflectance as a function of view angle and planophile the least 

variation in reflectance. The larger leaf and planophile leaf orientation of the high biomass 

sorghum was considered the reason for the frequency of VIs related to biochemical properties 

occurring at the canopy scale and the greater separation based on Wilk’s lambda value for both 

individual wavebands and VIs.  These results confirms that leaf spectra data are less variable and 

may provide good estimation of the biochemical composition within the plant using chlorophyll 

related VIs and canopy spectra to be more variable, but could be used to estimate both 

biophysical such as biomass and biochemical composition of the vegetation. Greater separation 

in N treatment based on individual wavebands and VIs was observed at leaf scale compared to 

canopy scale and in the high biomass sorghum compared to the switchgrass.  

Timing of Fertilization  

In general, it can be expected that the time of greatest separation in N treatment is also an 

indication of the time of greatest N demand by the plant.  Therefore, separation of N treatment 

could be indicative of the response to the N fertilization. The results of this study demonstrate 

that the time of greatest separation for the N treatments were early in the growing season within 

four weeks following N application. Similarly, Lofton et al. (2012) also reported strongest 

relationship between a NDVI response index and harvest response index occurring four weeks 

after N application in sugarcane. Detecting of N deficiency is very difficult in active growing 

crops (Raun et al. 2008; Lofton et al. 2012). Therefore, the use of the nitrogen reference strip 
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approach proposed by Raun et al. (2008) for wheat production systems in Oklahoma for 

midseason N application could also be useful in bioenergy crop production systems, particularly 

for the high biomass sorghum.  The ability to discriminate among N treatment in high biomass 

sorghum within 2-4wks after N fertilization suggested that the nitrogen reference strip approach 

could be of value in these crop production systems.  

In bioenergy crop production systems, nitrogen fertilizer will most likely be applied in a 

single rate across the whole field at planting or within a few weeks after planting. The timing of 

the separation of N treatments suggests that N reference strip could be established within the 

high biomass sorghum at planting and switchgrass at or before green-up.  Separation of the N 

reference strip using appropriate an optimal hyperspectral sensor could be determined as early as 

4-6 weeks after planting in the high biomass sorghum and within 4-8 weeks after green-up in 

switchgrass. The lack of separation in switchgrass at the early stage may imply that application 

of N prior to or closer to green up could increase responsiveness. In fact, increase responsiveness 

was observed, in 2013 from N application at green-up in switchgrass.  Because N response is 

strongly tied to the climatic condition of each growing season, it is not usually that degree of 

separation (Wilk’s lambda value) varied greatly across seasons at both leaf and canopy scale.  

However, results of this study indicate that both leaf and canopy scale data could be used to 

separate the N treatments, but greater separation was observed at the leaf level. Leaf sampling at 

field scale impractical, due to the intense labor and cost factor, but canopy separation offers a 

more realistic approach for field scale sampling.   

Optimum rate of N fertilization changes dramatically from year to year due to the 

dynamics of the amount of N supplied into the cropping system from residual N (previous year 
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application), organic matter and atmospheric deposition.  Soil test taken early in season does not 

account for the contribution of N released from organic matter. While plant testing to obtain a 

representative sample of an entire field would be similar to leaf sampling, labor intensive and 

expensive.  The N reference strip approach has shown replicability across 36 on farm trials in 

wheat fields in Oklahoma (Roberts et al. 2011).  

In addition, the results of the study also indicates that late season acquisition of crop 

spectra could also provide important information that could be used for forecasting the coming 

year nutrient status and/or current crop yield and identify portions of field affected by 

environmental stress.  Detection of N deficiency late in the season could be used as an indication 

of soil N status that could be addressed in the coming growing season, as well as be used in 

regression models for predicting crop yield.  Areas in fields affected by environmental stress 

could be identified and monitored for early detection in the coming season. For example, areas of 

weed infestation could be identified from late season spectral measurements, providing 

information for  and early season application at a time weeds are more susceptible resulting in 

increased weed control.   

 

CONCLUSIONS 

Sampling dates with the greatest separation did not differ for high biomass sorghum 

using leaf and canopy scale reflectance data, but differed for switchgrass. The greatest separation 

of the N treatments in switchgrass occurred late in the season at canopy scale and early in the 

season at leaf scale. High biomass sorghum was best separated early in the season at leaf and 

canopy scale approximately four weeks after N application. Separation using individual 
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wavebands was found to be more constant across seasons at the leaf and canopy levels in 

comparison to using VIs that varied greatly across season and at the leaf and canopy scale. Leaf 

scale spectra was found to be more easily separated by VIs and wavebands more strongly 

correlated with plant chlorophyll, while the canopy spectra was more easily separated by VIs and 

wavebands related to biomass and LAI. The benefit of hyperspectral reflectance is that it allows 

for the computation of multiple VIs that take advantage of wavebands in the different regions of 

the spectrum for monitoring changes in crop characteristics. These results indicate that 

hyperspectral reflectance could offer great potential for the development of models for the 

estimation of biomass yield and quality.  
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Table 3.1.Characteristics of the experimental plot and cultural practices used for the management 

of crops and sampling dates 

Site Characteristics 

Location 36.130 °N 97.104 °W 

Soil texture  Easpur loam (Fine-loamy, mixed, superactive, thermic 

Fluventic Haplustolls) 
Soil fertility  (2012)† pH:6.1, NO3-N: 4 mgkg

-1
, P:30 mgkg

-1
, and K:176 

mgkg
-1

 

Annual precipitation, mm 403 (2011) and 563 (2012) 

Annual air temperature 

°C(Min/Max) 

-28.5/43.6 (2011) and  -9.8/45 (2012) 

Cultural practice 

Planting  Switchgrass was planted on 5 May 2010; high biomass 

sorghum  on 5 May 2011 and 6 April 2012; Legumes; 

Hairy vetch on 23 February 2011; Crimson clover on  

27 February 2012 

Fertilizing  Switchgrass was fertilized  on 23 May  2011 and 19 

April 2012 ; high biomass sorghum on 23 May 2011 

and 4 May 2012 

Spraying  30 July 2012 sprayed Sevin insecticide for grasshopper 

control at rate of 2.3 L ha
-1

 at Stillwater. 

Sampling 

May  16 May 2012 

June 17 June  2011; 14 June 2012 

July 26 July 2011; 18 July 2012 

August 27 July 2011; 20 August 2012 

September 12 September 2012 

*Normal annual precipitation based on 30 year average is 918 mm for Stillwater, † Soil samples 

were collected within each plot before fertilization and are expressed as a mean values for the 

Stillwater site. 
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Table 3.2.Sampling date (June – August 2011 and May – September 2012), canopy height, 

sensor height, diameter of field of view (FOV) and number of samples for canopy reflectance 

collected by ASD spectrophotometer on high biomass sorghum and switchgrass in Oklahoma for 

the 2011 and 2012 growing season 

Sampling 

Date 

Canopy height 

(cm) 

Diameter of FOV  

(cm) 

Sensor height 

aboveground 

(cm) 

No. of 

Samples 

collected 

 High 

Biomass 

Sorghum 

Switchgrass High 

Biomass 

Sorghum 

Switchgrass   

2012  

May  30-45 80-140 67-74 26-52 200 60 

June  80-180 110-180 26-69 26-56 240 60 

July  130-220 110-200 30-69 39-78 290 60 

August  170-240 110-220 22-52 30-78 290 60 

September  180-250 110-220 18-48 30-78 290 60 

2011  

June  40-80 90-120 65-82 48-60 230 60 

July  40-80 90-130 65-82 47-60 230 60 

August 60-140 100-150 39-73 35-56 230 60 
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Table 3.3. Narrowband Hyperspectal Vegetation Indices used in the study. 

Index Wavebands References 

Structural Indices 
Simple Ratio (SR) SR = RNIR/Rred (Birth and Mcvey 1968) 

Normalized Difference 

Vegetation Index (NDVI) 

Red NDVI = (RNIR – Rred)/ (RNIR + Rred) (Rouse et al. 1973) 

Green NDVI(RNIR – Rgreen)/ (RNIR + Rgreen) (Gitelson, Gritz, and 

Merzlyak 2003) 

Red Edge NDVI = (RNIR – Rred edge) / (RNIR 

+ Rred edge) 

(Gitelson, Gritz, and 

Merzlyak 2003) 

Renormalized Difference 

Vegetation Index (RDVI) 

RDVI = (R800 - R670) / (R800 + R670)
0.5 

(Roujean and Breon 1995) 

Enhanced Vegetation Index 

(EVI) 

EVI = 2.5(RNIR – Rred)/ (RNIR + 6Rred – 

7.5Rblue + 1) 

(Huete et al. 2002) 

Plant Senescence Reflectance 

Index (PSRI) 

PSRI = (R660 – R510)/ R760 (Merzlyak et al. 1999; 

Hatfield and Prueger 2010) 

Soil Adjusted Vegetation Index 

(SAVI) 

SAVI = (1+0.5)(R800 – R670) / (R800 + R670 

+ 0.5) 

 

Chlorophyll/Pigment Related Indices 

Chlorophyll Indices (Cl) Clgreen = (RNIR /Rgreen) -1 (Gitelson, Gritz, and 

Merzlyak 2003; Gitelson et 

al. 2005) 

Clred edge = (RNIR /Rred edge) -1 (Gitelson, Gritz, and 

Merzlyak 2003; Gitelson et 

al. 2005) 

Normalized Pigment Chlorophyll 

Ratio Index (NPCI) 

NPCI = (R660 – R460) /(R660 + R460) (Merzlyak et al. 1999) 

Modified CARI (MCARI) MCARI = [(R700 – R670) -0.2(R700 – R500) 

(R700/R670)] 

(Daughtry et al. 2000) 

Transformed CARI (TCARI) TCARI = 3[(R700 – R670) -0.2(R700 – R500) 

(R700/R670)] 

(Haboudane et al. 2004) 

Triangular Vegetation Index 

(TVI) 

TVI = 0.5[120(R750 – R550) -200(R670 –R550) (Broge and LeBlanc 2000) 

Structural Insensitive Pigment 

Index (SIPI) 

SIPI = (R800 –R430) / (R800 + R680) (Penuelas et al. 1995) 

Triangular Greenness Index 

(TGI) 

TGI = -0.5[190(R670 – R550) -120(R670 –

R480)] 

(Hunt et al. 2011) 

Photochemical Reflectance 

Index (PRI) 

PRI =(R550 – R530) / (R570 + R531) (Gamon, Penuelas, and Field 

1992) 

Red Edge Indices 

Red edge (750 ~700) R750 – R700 (Gitelson and Merzlyak 

1997) 

Red edge (740 ~720) R740 – R720 (Vogelmann, Rock, and 

Moss 1993) 

Zarco Tejada and Miller (ZTM) ZTM = R750 / R710 (Zarco-Tejada et al. 2001) 

R: spectral reflectance, NIR: Near infrared (750-1350 nm), Green (520-590 nm), Red (600-680 nm), Red edge (690-

740 nm) 
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Table 3.4.  PCA results with five wavebands, highest factor loadings (eigenvectors) and the percent variability explained by each principal for 

characterizing leaf and canopy spectral reflectance of five N treatments in switchgrass (2011). 

 Waveband center (nm) with first 15 highest factor loadings Percent variability explained Cumulative variability explained 

by first three PCs (%) 

LEAF SPECTRA 

 

 PC1 PC2 PC3 PC1 PC2 PC3  
117-June-11 1770;1660;1670; 1760;1650 

 

2000;2010;1990; 1980;2020 

 

520;510;580; 610;600 

 

50 32 15 97 

Dominating waveband Mid-IR Mid-IR Green     
127-Jul-11 1620;1600;1650; 1610;1630 

 

780;790;800; 770;810 

 

500;490;510; 480;470 

 

54 32 10 96 

Dominating waveband Mid-IR NIR Blue     
126-Aug-11 1730;1760;1740; 1770;1730 

 

950;990;980; 930; 970 

 

520;510;640; 620;630 

 

55 23 17 95 

Dominating waveband Mid-IR NIR Red     

Dominating waveband 

for  leaf spectra  

 

Mid-IR 

 

NIR 

 

Blue 

    

Mean (%)    53 29 14 96 

 

CANOPY SPECTRA 

 
117-June-11 1540;1550;1530; 1560;1510 

 

670;680;660; 690;650 

 

400;410;430; 420;440 

 

90 6 2 98 

Dominating waveband Mid-IR Red Blue     
127-Jul-11 2210;2200;2220; 2230;2140 

 

2450;2440;2430; 2420;720 

 

1970;2000;1980; 1990;2010 

 

87 7 3 97 

Dominating waveband Mid-IR Mid-IR Mid-IR         
126-Aug-11 1590;1700;1600; 1580;1630 

 

1970;1980;1990; 2000;2010 

 

410;500;400; 460;450 

 

89 8 2 99 

Dominating waveband Mid-IR Mid-IR Blue         

Dominating waveband 

for  canopy spectra  

 

Mid-IR 

 

Mid-IR 

 

Blue 

    

Mean (%)    89 7 2 98 

Dominating waveband 
for all above 

 
Mid-IR 

 
Mid-IR 

 
Blue 

    

Overall Mean (%)    71 18 8 97 

Blue (400-520 nm); Green (520-590); Red (600-690 nm); NIR: near infrared (700-1350 nm); Mid-IR: Middle infrared (1350-2500 nm). 1Date of data collection.  
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Table 3.5.  PCA results with five wavebands, highest factor loadings (eigenvectors) and the percent variability explained by each principal for 

characterizing leaf and canopy spectral reflectance of five N treatments in switchgrass (2012). 

 Waveband center (nm) with first 15 highest factor loadings Percent variability explained Cumulative variability explained 

by first three PCs (%) 

LEAF SPECTRA 

 

 PC1 PC2 PC3 PC1 PC2 PC3  
116-May-12 1330;1320;1310; 1340;1300 500;510;490; 650;660 700;710;570; 720;590 

 

67 19 8 94 

Dominating waveband NIR Blue NIR     
118-Jun-12 2030;2040;2020; 2060;2050 

 

530;700;570; 580;520 

 

410;420;400; 430;440 

 

79 9 7 95 

Dominating waveband Mid-IR Green Blue     
116-Jul-12 1460;1430;1440; 1450;1480 

 

750;760;770; 740; 780 

 

630;620;610; 700;600 

 

63 23 7 93 

Dominating waveband Mid-IR NIR Red     
116-Aug-12 1340;1350;1330; 1320;1660 

 

790;770;780; 810;800 700;600;610; 620;630 

 

57 28 9 94 

Dominating waveband Mid-IR NIR Red         
118-Sep-12 2250;2060;2140; 2160;2050 

 

970;960;980; 820;950 

 

510;470;500; 490;480 

 

53 30 12 95 

Dominating waveband Mid-IR NIR Blue     

Dominating waveband 

for  leaf spectra  

 

Mid-IR 

 

NIR 

 

Red/Blue 

    

Mean (%)    64 22 9 95 

CANOPY SPECTRA 

 
116-May-12 1790;1780;1770; 1500;1490 

 

2460;2450;2430;2440;2410 

 

650;630;640;660;690 

 

86 7 4 97 

Dominating waveband Mid-IR Mid-IR Red     
118-Jun-12 1700;1690;1680; 1660;1670 

 

780;790;760;770;750 

 

710;720;560; 570;550 

 

87 9 2 98 

Dominating waveband Mid-IR NIR Green         
116-Jul-12 1540;1530;1550; 1520;1790 

 

1110;1100;1010;1020;1090 

 

550;560;720; 570;540 

 

62 30 5 97 

Dominating waveband Mid-IR NIR Green         
118-Aug-12 2220;1520;2080; 2110;2090 

 

980;990;970;1120;1000 

 

540;550;560; 530;720 

 

66 26 5 97 

Dominating waveband Mid-IR NIR Green     
118-Sep-12 1690;1680;1660; 1670;1630 

 

750;780;760; 770;790 

 

650;640;630; 700;690 

 

55 41 3 99 

Dominating waveband Mid-IR NIR Red         

Dominating waveband 

for  canopy spectra  

 

Mid-IR 

 

NIR 

 

Green 

    

Mean (%)    71 23 4 98 
2Dominating waveband 

for all above 

 

Mid-IR 

 

NIR 

 

Red 

    

Overall Mean (%)    68 22 7 97 

Blue (400-520 nm); Green (520-590); Red (600-690 nm); NIR: near infrared (700-1350 nm); Mid-IR: Middle infrared (1350-2500 nm). 1Date of data collection 
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Table 3.6.  PCA results with five wavebands, highest factor loadings (eigenvectors) and the percent variability explained by each principal for 

characterizing leaf and canopy spectral reflectance of five N treatments in high biomass sorghum (2011). 

 Waveband center (nm) with first 15 highest factor loadings Percent variability explained Cumulative variability 

explained by first three 

PCs (%) 

LEAF SPECTRA 

 

 PC1 PC2 PC3 PC1 PC2 PC3  
117-June-11 2200;2190;2210; 2220;2170 

 

410;420;430; 1970;1980 

 

550;570;560; 540;530 

 

68 23 6 97 

Dominating waveband Mid-IR Blue Green     
127-Jul-11 750;740;760; 770;790 

 

1630;1610;1640; 1620;1650 

 

690;600;560; 580;610 

 

52 36 8 96 

Dominating waveband NIR NIR Red     
126-Aug-11 1530;1520;1540; 1660;1510 

 

920;910;900; 890; 930 

 

560;550;710; 570;720 

 

73 20 6 99 

Dominating waveband Mid-IR NIR Green     
Dominating waveband 

for  leaf spectra  

 

Mid-IR 

 

NIR 

 

Green 

    

Mean (%)    64 26 7 97 

 

CANOPY SPECTRA 

 
117-June-11 1530;1590;1610; 1570;1540 

 

820;830;840; 850;810 

 

550;530;540; 560;570 

 

60 31 6 97 

Dominating waveband Mid-IR NIR Green     
127-Jul-11 1590;1580;1600; 1570;2190 

 

830;820;840; 850;810 

 

400;410;420; 430;440 

 

69 25 4 98 

Dominating waveband Mid-IR NIR Blue         
126-Aug-11 1590;1580;1600; 1570;1610 

 

770;760;780; 790;800 

 

440;430;420; 410;400 

 

76 23 1 100 

Dominating waveband Mid-IR NIR Blue         

Dominating waveband 

for  canopy spectra  

 

Mid-IR 

 

NIR 

 

Blue 

    

Mean (%)    68 26 4 98 

Dominating waveband 

for all above 

 

Mid-IR 

 

NIR 

 

Blue/Green 

    

Overall Mean (%)    65 26 6 97 

Blue (400-520 nm); Green (520-590); Red (600-690 nm); NIR: near infrared (700-1350 nm); Mid-IR: Middle infrared (1350-2500 nm). 1Date of data collection.  
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Table 3.7.  PCA results with five wavebands, highest factor loadings (eigen vectors) and the percent variability explained by each principal for 

characterizing leaf and canopy spectral reflectance of five N treatments in high biomass sorghum (2012). 

 Waveband center (nm) with first 15 highest factor loadings Percent variability explained Cumulative variability explained 

by first three PCs (%) 

LEAF SPECTRA 

 

 PC1 PC2 PC3 PC1 PC2 PC3  
116-May-12 2050;2030;2040; 2060;2070 510;690;650; 520;630 

 

800;770;840; 780;790 

 

70 21 5 96 

Dominating waveband Mid-IR Red NIR     
118-Jun-12 2360;2340;2350; 2330;2370 

 
710;580;590; 600;570 

 
1060;1070;1080; 1090;1050 

 
76 11 9 96 

Dominating waveband Mid-IR Green NIR     
116-Jul-12 2440;2450;2460; 2430;2420 

 

700;600;610; 620;630 

 

1010;1020;1140; 1130;1030 

 

75 21 3 99 

Dominating waveband Mid-IR Red NIR     
116-Aug-12 1720;1700;1730; 1710;1690 

 
510;520;680; 500;740 

 
420;430;410; 440;450 

 
55 32 9 96 

Dominating waveband Mid-IR Blue BLUE         
118-Sep-12 2340;2250;2260; 2330;2280 

 
790;810;780; 770;820 

 
710;720;560; 550;580 

 
53 32 12 97 

Dominating waveband Mid-IR NIR Green     

Dominating waveband 
for  leaf spectra  

 
Mid-IR 

 
Red 

 
NIR 

    

Mean (%)    66 23 8 97 

CANOPY SPECTRA 

 
116-May-12 1510;2170;2180; 2190;2160 

 

1250;1180;1260; 1230;1240 

 

450;520;430; 440;490 

 

58 37 4 99 

Dominating waveband Mid-IR NIR Blue     
118-Jun-12 1560;1550;1570; 1780;1770 

 

1970;1980;1990; 2000;2450 

 

550;560;540; 530;570 

 

70 24 4 98 

Dominating waveband Mid-IR Mid-IR Green         
116-Jul-12 1570;1560;1580; 1550;1760 

 
790;780;800; 810;770 

 
440;420;430; 410;400 

 
74 23 2 99 

Dominating waveband Mid-IR NIR Blue         
118-Aug-12 1670;1690;1680; 1700;1660 

 
780;790;800; 770;810 

 
720;550;710560;570 

 
76 22 2 100 

Dominating waveband Mid-IR NIR Green     
118-Sep-12 2170;2190;2220; 2180;2230 

 
1140;1150;1160; 1130;980 

 
720;550;560; 540;710 

 
61 35 3 99 

Dominating waveband Mid-IR NIR Green         

Dominating waveband 

for  canopy spectra  

 

Mid-IR 

 

NIR 

 

Green 

    

Mean (%)    68 28 3 99 

Dominating waveband 
for all above 

 
Mid-IR 

 
NIR 

 
Green 

    

Overall Mean (%)    67 26 5 98 

Blue (400-520 nm); Green (520-590); Red (600-690 nm); NIR: near infrared (700-1300 nm); Mid-IR: Middle infrared (1350-2500 nm). 1Date of data collection. 
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Table 3.8.  Stepwise discriminant analysis of N treatments by individual wavebands for 

switchgrass and high biomass sorghum at leaf and canopy levels at the different sampling dates.  

 2011  2012  

Sampling Date Waveband (nm) Wilk’s lambda Waveband (nm) Wilk’s lambda 

  

Switchgrass Leaf  

May   730 0.067 (0.93)* 

June 560, 410, 470, 

430, 650, 690, 730 

0.00002 (0.97)
 

720 0.520 (0.48) 

July    410 0.325 (0.68) 

August 710, 690, 680,  0.00035 (0.97)   

September   730, 710 0.166 (0.55) 

  

Switchgrass Canopy 

May     

June 400 0.457 (0.54)   

July      

August   420, 700,1300 0.033 (0.58) 

September   640, 1300, 500 0.018 (0.79) 

  

High Biomass Sorghum Leaf 

May   1480 0.382 (0.62) 

June 720,680,570,520, 

560 

0.0014 (0.73) 730,710,550,540, 

990 

0.002 (0.73) 

July    1060, 1070 0.103 (0.74) 

August   1540,680,630,620 0.011 (0.60) 

September   530, 570 0.149 (0.51) 

  

High Biomass Sorghum Canopy  

May     

June 1000, 1430, 520, 

560 

0.0008 (0.94) 710,510,520 0.023 (0.54) 

July    520, 1500 0.139 (0.72) 

August     

September   520 0.500 (0.50) 

*Values in parenthesis indicate coefficient of determination. 
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Table 3.9.  Stepwise discriminant analysis of N treatments by Vegetation Indices for switchgrass 

and high biomass sorghum at leaf and canopy levels at the different sampling dates.  

 2011  2012  

Sampling date Vegetation index  Wilk’s lambda Vegetation index Wilk’s lambda 

  

Switchgrass Leaf  

May   TGI 0.069 (0.93)* 

June TGI 0.367 (0.63)
 

Clred edge 0.365 (0.64) 

July  TVI, EVI, NPCI , 

RE740 

0.035 (0.65) TGI 0.486 (0.54) 

August TCARI, ZTM 0.150 (0.51)   

September   TCARI 0.372 (0.63) 

  

Switchgrass Canopy 

May   NPCI, PRI 0.237 (0.50) 

June   PRI 0.486 (0.51) 

July  NPCI 0.509 (0.49)   

August Clred edge, Clgreen 0.131 (0.68)   

September   RENDVI 0.186 (0.81) 

  

High Biomass Sorghum Leaf 

May     

June TGI, SR, TCARI,  0.031 (0.62) TVI 0.202 (0.80) 

July  TGI 0.345 (0.65)   

August PRI, EVI 0.172 (0.65) RNDVI 0.380 (0.62) 

September   PSRI 0.265 (0.74) 

  

High Biomass Sorghum Canopy  

May     

June ZTM, RE740 0.040 (0.63) TGI, MCARI 0.029 (0.62) 

July    Clred edge, ZTM 0.124 (0.59) 

August   PRI, TGI 0.065 (0.75) 

September     

*Values in parenthesis indicate coefficient of determination. 
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Figure 3.1. Illustration of canopy reflectance measurement with an ASD spectrophotometer 

mounted to the back of a pickup truck. A – Analytic spectral Device (ASD) Spectrophotometer 

in holding case and B – fiber optic sensor at viewing angle above canopy. The instrument was 

raised to > 60 cm above the canopy during sampling (sampling area of 24 cm diameter and 60 

cm above canopy).  

60 cm 

ccnm 

A B 

26 cm 26 cm 
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Figure 3.2.Mean canopy and leaf spectra for switchgrass and high biomass sorghum collected at 

different times during the growing seasons of 2011 and 2012. Spectral measurements were 

collected in June to August in 2011 and May to September in 2012. Measurements were 

collected across five nitrogen treatments (0, 82, 168, 252 kgha
-1

 and a legume treatment seeded 

with hairy vetch in 2011 and crimson clover 2012). 
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Figure 3.3. Mean canopy and leaf spectra for switchgrass and high biomass sorghum collected 

across five N treatments [N1-0: 0 kgNha
-1

, N2-84: 84kgNha
-1

, N3-168: 168 kgNha
-1

, N4-252: 

252 kgNha
-1

, and N5-WL: Winter legume (hairy vetch)] collected in June, July and August of 

2011. Six spectral measurements were taken at each monthly sampling interval. 
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Figure 3.4.Mean canopy and leaf spectra for switchgrass and high biomass sorghum collected across five N treatments [N1-0: 0 

kgNha
-1

, N2-84: 84kgNha
-1

, N3-168: 168 kgNha
-1

, N4-252: 252 kgNha
-1

, and N5-WL: Winter legume (crimson clover)] from May to 

September during the 2012 growing season. Six spectral measurements were taken per N treatment at each sampling interval.
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CHAPTER IV 
 

ESTIMATION OF BIOENERGY CROP YIELD AND N STATUS BY 

HYPERSPECTRAL CANOPY REFLECTANCE AND PARTIAL LEAST SQUARE 

REGRESSION 

 

ABSTRACT 
 

The objective of this study was to compare performance of PLSR (Partial Least Square 

Regression) and best narrowband NNVI (normalize nitrogen vegetation index) linear regression 

models for predicting N concentration and best narrowband NDVI (normalize different 

vegetation index) for end of season biomass yield in bioenergy crop production systems. Canopy 

hyperspectral data was collected using an ASD FieldSpec FR spectroradiometer (350-2500nm) 

at monthly intervals in 2012 and 2013. The cropping systems evaluated in the study were 

perennial grass [mixed grass (50% switchgrass (Panicum virgatum L.), 25% Indian grass 

“Cheyenne” (Sorghastrum nutans (L.) Nash) and 25% big bluestem “Kaw” (Andropogon 

gerardii Vitman)) and switchgrass “Alamo”] and high biomass sorghum “Blade 5200” (Sorghum 

bicolor (L.) Moench)  grown under variable N applications rates to estimate biomass yield and 

quality. The predictive performance of the best narrowband NNVI and NDVI and PLSR models 

were determined and compared. The best narrowband NNVI was computed with the wavebands 

pair of 400 and 510 nm for the high biomass sorghum and 1500 and 2260 nm for the perennial 

grass that were strongly correlated to N concentration for both years. Wavebands used in 

computing best narrowband NDVI were highly variable,
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but the wavebands from the red edge region (710-740 nm) were the most dominant. Narrowband 

NDVI was weakly correlated with final biomass yield of perennial grass (r
2
=0.30 and RMSE 

=1.6 Mgha
-1

 in 2012 and r
2
=0.37 and RMSE =4.0 Mgha

-1
, but was strongly correlated for the 

high biomass sorghum in 2013 (r
2
=0.77 and RMSE = 4.2 Mgha

-1
. The PLSR model improved 

model performance for estimation of the N concentration and final biomass yield. Compared to 

the best narrowband VI, the RMSE of the PLSR model was 19-41% lower for estimating N 

concentration and 5-471% lower for final biomass. These results indicates that PLSR was best 

for predicting the final biomass yield using spectral sample obtained in June to July and 

narrowband NNVI was more robust and useful in predicting N concentration in the biomass.  
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INTRODUCTION 

Traditional measurement of crop biochemical characteristics normally relies on plant 

sampling from the field followed by laboratory analysis.  This approach is relatively reliable, but 

is a laborious, time consuming process and unable to provide real-time diagnostics of crop 

(Hansen and Schjoerring, 2003; Nguyen and Lee, 2006; Zhu et al., 2012). Likewise, 

measurement of harvestable biomass in perennial grass production systems has always been a 

challenge to producers. The most accurate method of measuring harvestable biomass in a 

grassland system requires clipping of samples, which is laborious and time consuming 

(Sanderson et al., 1996; Schmer et al., 2010; Starks and Brown, 2010; Ward et al., 2011). It is 

our perspective that the intense labor and time requirements of these methods are a major 

limitation for producers using these methods. Remote sensing techniques have been recognized 

as a reliable method that can provide real-time estimation of biophysical, physiological or 

biochemical characteristics with sufficient accuracy in several crops (Hansen and Schjoerring, 

2003; Nguyen and Lee, 2006; Cho et al., 2007).  Thus, the seasonal variation  that is often 

missed by destructive sampling because of the limitations imposed by the time and human 

resources  required for  intensive  sampling can now be  achieved  through remote sensing that is 

fast, non-destructive, relatively cheap, with potential for expansion to regional level (Bouman, 

1995; Hatfield and Prueger, 2010).        

 Monitoring  of crop biophysical and biochemical characteristics at the canopy scale using 

canopy spectral reflectance measurements can be  challenging, because canopy spectral 

reflectance provides a comprehensive information of the plant population, including leaf 

properties, canopy structure, soil background and atmospheric noise (Pinter et al., 2003; Zhu et 

al., 2012).  Therefore, to extract only the green plant reflectance, vegetation indices were 
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developed to minimize solar irradiance, canopy architecture and soil background effects to some 

extent (Pinter et al., 2003; Zhao et al., 2007; Hatfield et al., 2008). Vegetation indices are 

computed as ratios, indices, and by forming linear combinations of spectral bands of two or more 

wavelengths (Jackson and Huete, 1991; Pinter et al., 2003). Vegetation indices to estimate crop 

yield and N status are either broadband or narrowband indices.  For example,  the normalize 

difference vegetation index (NDVI), where  red reflectance (Rred) and near-infrared reflectance 

(Rnir) is used ( NDVI = Rnir – Rred/ Rnir + Rred ) a classic index that is widely used for modeling 

and estimation of crop biomass and N status, can be computed either using broad wavebands 

(50-100 nm scale) from the Landsat Thematic mapper satellite using the TM-spectrometer ™, or 

narrow wavebands (<10 nm scale) from field-based sensors such as Greenseeker or crop scan 

and spectroradiometers such as ASD.  In principle, vegetation index computed from average 

spectral information over broad waveband widths results in loss of critical information available 

in specific narrow wavebands (Blackburn, 1998; Thenkabail et al., 2000). The selection of 

specific narrow wavebands for the construction of an index requires the use of spectrometers 

capable of acquiring images in many (<10 nm) wavebands. Hyperspectral remote sensing 

acquires images in narrow (< 10 nm) continuous spectral bands that provide a continuous 

spectrum for each pixel. Therefore, hyperspectral imaging allows for the selection of narrow 

wavebands and for the construction of narrowband indices, which are sensitive to specific crop 

variables. In general, most studies select the most sensitive wavebands for the construction of a 

single spectral index by pooling spectral reflectance data collected across several experiments 

during the entire growing period. However, the environmental conditions are not homogeneous 

across experiments/sites and the canopy backgrounds as well as spectral reflectance are changing 

with growth stages (Pinter et al., 2003; Hatfield and Prueger, 2010). Moreover, vegetation 
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indices and wavebands are reported to be strongly correlated with the plant biophysical and 

biochemical characteristics which are a function of growth stage or time of sample collection 

(Hatfield and Prueger, 2010; Foster et al., 2012).  Therefore, the selection of the most sensitive 

wavebands for construction of a single index for establishing a relationship with crop 

characteristics is expected to affect the  growth stage of the crop or the time during the growing 

season the spectra was measured. As a consequence different measurement conditions often 

results in some degree of disagreement in the selection of wavebands as well as inconsistency in 

the relationships between vegetation index and crop status during different growing stage and 

across locations (Zhu et al., 2012). Thus, it is necessary to explore time sensitive crop monitoring 

models with high accuracy that can be associated with crop phenology and management 

practices. 

The partial least square regression (PLSR) method was developed to construct predictive 

models when the explanatory variables are many and highly collinear such as hyperspectral 

reflectance data (Yeniay and Goktas, 2002). It is a multivariate statistical technique that is widely 

used by chemometricians (Cho et al., 2007).  The PLSR is closely related to principal component 

regression (PCR). A  PCR is a linear regression which first decomposes the spectra into a set of 

principal components (PCs) that provides the maximum variation of the spectra with the aim of 

optimizing the predictive ability of the model and then regresses the PCs against the response 

variable (Yeniay and Goktas, 2002; Cho et al., 2007). The difference between PLSR and PCR is 

that while PCR uses only the variation of the spectra to construct the new factors (PCs), the 

PLSR uses both the variation of the spectra and the response variable to construct new factors 

(PCs) that will play the role of explanatory variables (Yeniay and Goktas, 2002; Cho et al., 

2007).  Partial least square regression is a  widely accepted laboratory calibration method  used 
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with great success with NIR spectra for predicting forage quality  parameters such as crude 

protein (CP), acid detergent fiber, acid detergent lignin and neutral detergent fiber (Starks et al., 

2004; Kawamura et al., 2008; Labbé et al., 2008; Foster et al., 2013). 

The PLSR models use reflectance data from all the wavebands in developing the 

calibration equations and depend on cross-validation to prevent over fitting. Using the full 

spectra eliminates the inconsistency that often occurs with selected wavebands and VIs due to 

change in spectral reflectance from changing canopy characteristics and crop type.  Therefore, 

PLSR models may have potential for the development of more robust multiple crop models for 

predicting crop biomass and N concentration. However, few studies have explored the use of 

PLSR for predicting plant biomass (grasses and wheat), LAI (wheat), N(wheat and rice) and 

chlorophyll (wheat) concentration using canopy reflectance measurements (Hansen and 

Schjoerring, 2003; Nguyen and Lee, 2006; Cho et al., 2007). Cho et al. (2007) reported that 

PLSR produced lower prediction error (SEP =149 to 256 g m
2
) in comparison to NDVI (SEP 

=264 to 331 g m
2
) and red-edge position (REP) (SEP =261 to 295 g m

2
). Similarly, Hansen and 

Schjoerring (2003) found PLRS to improve the prediction of green biomass (GBM) and N 

concentration by lowering the RMSE by 22% and 24%, respectively, compared to the best 

narrowband indices. In general, all these studies reported that PLSR improved the accuracy in 

creating reliable models for predicting crop biophysical and biochemical characteristics in 

comparison to the best narrowband indices. Therefore, the objective of this study was to compare 

the performance of PLSR and NDVI linear regression models based on canopy hyperspectral 

reflectance data for predicting N concentration and end of season biomass yield in bioenergy 

crop production systems.  
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MATERIALS AND METHODS 

 Study Area  

The study site is located at the Stillwater Research Station (EFAW site, 36˚.13ʹ N, 

91˚.10ʹ W) at Oklahoma State University, Stillwater, Oklahoma USA. The soil type is an Easpur 

loam with pH: 6.8; P: 49.3 kg ha
-1

; K: 342.7 kg ha
-1

; OM: 21.7 g kg
-1

; total N: 1.3 g kg
-1

 sampled 

17 March 2013.  Perennials grasses were established at site in June 2010.  In 2012, perennial 

grasses (switchgrass and mixed grass cropping) season started growing from early-March 

(greened up) and annual grass (high biomass sorghum) was planted in mid-April 2012. In 2013, 

perennial grasses started in April and high biomass sorghum was planted in late-April 2013. The 

study site received annual precipitation of 562 mm (2012) and 623 mm (2013) with a mean 

annual air temperature of 23 ˚C (2012) and 21 ˚C (2013). Table 4.1 summarizes the annual 

precipitation and temperature for the site. 

Field Experiment Design and Management 

The experiment was a split plot design with three replications and two factors:  cropping 

system (main plot factor) and nitrogen (N) treatment (subplot factor).  The N treatments and 

energy crop cropping systems were randomly assigned into main and subplots, respectively.  The 

subplot size was 81 m
2
. The experiment included three cropping systems; two perennial grass 

systems 1) ‘Alamo’ switchgrass (Panicum virgatum L.) and 2) perennial grass mixture (50% 

‘Alamo’ switchgrass, 25% ‘Cheyenne’ indiangrass (Sorghastrum nutans (L.) Nash) and 25% 

‘Kaw’ big bluestem (Andropogon gerardii Vitman)); and 3) an annual grass system of ‘ES5200’ 

high biomass sorghum (Sorghum bicolor (L.) Moench). The N treatments were cover crop [hairy 

vetch (Vicia villosa)] as a source of N and four N fertilization rates (0, 84, 168, 252 kg N ha
-1

).  

The winter legume was planted in February each year and the high biomass sorghum on 16 April 
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2012 and 29 April 2013.  In 2012, perennial grass was fertilized on 19 April, high biomass 

sorghum on 4 May, and all plots sprayed with Sevin (Carbaryl [1-naphthyl N-methylcarbamate])  

insecticide (Bayer  Environmental Science, Research Ttriangle Park, NC, USA) for grasshopper 

control at rate of 2.3 L ha
-1

 on 31 July. In 2013, perennial grass was fertilized on 30 April, high 

biomass sorghum on 15 May, and all plots sprayed with Sevin insecticide for grasshopper 

control at rate of 2.3 L ha
-1

 on 24 July. 

Measurements of Hyperspectral Reflectance 

Canopy spectral reflectance measurements were made under cloudless days on a monthly 

basis between 10:00-14:30 hrs local ([UTC -06:00] Central Time [US & Canada]) using a 

spectroradiometer (FieldSpec Pro FR, Analytical Spectral Devices [ASD], Boulder, Co, USA). 

Measurement of canopy reflectance started in the month of May for all cropping systems in 

2012, while it was May for perennial grass and June for high biomass sorghum in 2013, and 

ended in August in 2012 and July in 2013 for all cropping systems (Table 4.2). The measurement 

range was from 350-2500 nm with spectral resolution of 3 nm in the 350-1000 nm range, and 10 

nm in the 1000 -2500 nm range, which were calculated as 1 nm resolution waveband for the 

output data using software (RS2 for Windows; ASD) and has a spectral sampling of 1.4 nm in 

the 350-1000 nm range, and 2 nm in the 1000-2500 nm range. A spectralon (Labsphere, Sutton, 

NH, USA) white reference panel was used to optimize the ASD instrument prior to taking 

canopy reflectance measurements. The white reference was measured at 15-30 minutes intervals 

to check the stability for 100 % reflectance during canopy reflectance measurement. To reduce 

the amount of data for analysis, spectral data were averaged at 10-nm waveband intervals (e.g., a 

band center at 400 was the averaged value between 395–405 nm) giving a total of 211 spectral 

bands between 400–2,500 nm (Foster et al., 2012). Spectral regions between (350–395 nm and 
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2460-2,500) and (1,360–1,420 and 1,800–1,960 nm) which are associated with noise and 

atmospheric water absorption respectively were excluded from the analysis. 

Field Data Collection 

To measure the canopy reflectance the sensor head was held approximately 60 cm above 

the canopy at the nadir position at each sampling interval. The radiometer was mounted on the 

back of vehicle (pickup truck) and raised to a height of 200 to 290 cm above the ground (Figure 

4.1). Table 4.2 shows height of radiometer, canopy height and height of the sensor from ground 

at each sampling date. The radiometer had a 25° field of view (FOV), producing a view area of 

88-128 cm diameter at ground level. Hyperspectral reflectance was collected from all 45 plots of 

switchgrass (15), mixed grass (15) and high biomass sorghum (15). Two replicated spectral 

measurements were taken from each plot, with each measurement being an average of 25 

spectral readings which enables noise reduction within the spectra. Following the measurement 

of the canopy spectra, a biomass subsample from 0.5 m within a row from each plot was 

collected.  Samples were oven dried at 70°C for 72 h, then ground in a shear mill (Cyclone 

Sample Mill, Udy Corp., Fort Collins, CO) to pass a 1 mm screen. Total N concentration was 

determined based on near-infrared spectroscopy calibration with wet chemistry from a simple 

NIR ratio equation [TN =38 x (2080 nm/2190 nm) -35] developed by Foster et al. (2013). 

Calibration equation was validated with laboratory analyzed samples for 2012 (r
2
= 0.83 and 

RMSE =3.0 gkg
-1

) and 2013 (r
2
=0.95 and RMSE = 2.0 gkg

-1
). Nitrogen concentration was 

determined from monthly samples of a 0.5 m row from each plot. Biomass yield was obtained 

from a plot area of 44.59 m
2
 cut to stubble height of 10-15cm following the first frost on 27 

November 2012 with a farm size swather (Deere and Company, Moline, IL, USA) and baled 

with a John Deere 568 round baler (Deere and Company, Moline, IL, USA)  which were 
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individually weighed. In 2013 biomass yield was obtained from a plot area of 1 m
2
 cut to stubble 

height of 10-15 cm on 25 September. In both years, subsamples were collected from each plot 

weighed and dried for dry matter.  

Data Pre-treatment 

 A database was established consisting of all observations from the 2012-2013 growing 

seasons.  Dataset comprising of normalize different vegetation index (NDVI) and normalized 

nitrogen vegetation index (NNVI) computed from wavebands averaged across 10 nm 

(narrowband) were created.  The narrowband NDVI was computed from two-waveband 

combinations using equation1.  

NDVI and NNVI = 
(     )

(      )
    (1) 

where λ1 =540-740 nm  and  λ2 =750-1350 nm for biomass, and λ1 = 400-2500 nm, and λ2 = 400-

2500 nm for N concentration. The short-wave infrared wavebands were included in the 

prediction of N concentration, because estimation accuracy has been reported to improve by 

using sharp absorption features in the short-wave infrared wavebands (Inoue et al., 1998; 

Mutanga and Skidmore, 2004). Figure 4.2 shows representative correlation contour plots for the 

two-waveband combinations used in computing the narrowband NNVI for estimating the N 

concentration and NDVI for final biomass yield.  From all the possible two-waveband 

combinations the best narrowband NNVI that strongly correlate with N concentration and NDVI 

with end of season biomass yield of the high biomass sorghum and perennial grasses were 

selected. Separate narrowband NNVI that best correlated with N concentration for each season 

and cropping system was selected. Likewise, the narrowband NDVI that across all sampling 

dates that best correlated with the final biomass yield was selected for each season and cropping 

system. The index with the highest r
2
 was determined to be the best index. 
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Data Analysis  

Models were developed using simple linear regression and partial least square regression 

(PLSR).  Simple linear regression prediction models were computed using the best selected 

NDVI for predicting final biomass and NNVI for N concentration for the annual and perennial 

cropping systems (Switchgrass and Mixed grass combined). Partial least square regression 

prediction models were computed using the entire spectra (400-2500 nm) excluding the 

wavebands associated with noise (350-395 nm and 2460-2500 nm), water and atmospheric 

absorption (1360-1420 and 1800-1960 nm). Likewise, PLSR was carried out per sampling period 

to determine the best sampling time for predicting final biomass yield and using N concentration 

collected throughout each growing season to predict N concentration. This was done to make the 

relationship between crop variables and reflectance measurements more realistic and universal as 

possible.  

The simple linear regression analysis was performed using PROC REG procedure in SAS 

9.3 (SAS, 2009). Partial least square regression (PLSR) was performed using the Partial Least 

Square procedure using one at a time cross-validation to select the number of factors. This cross-

validation technique involves using all the observations except one for calibrated model which 

then was used to predict the left out observation. This process was repeated for every 

observation. The calibration equations developed from the 2012 season was also applied to the 

2013 season to evaluate the predictive accuracy of the models across seasons. 

Performances of the prediction models were summarized and reported in terms of the 

coefficient of determination (r
2
), root mean square error (RMSE) and predicted residual sum of 

squares (PRESS) for the PLSR models. Partial least square regression model that is associated 

with the best sampling time for estimating biomass yield determined based on the regression 
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model with the lowest PRESS. The RMSE was determined by the equation 3 of Yeniay and 

Goktas, 2002:  

RMSE =√
∑ (  
 
     ̂ )

 

 
   (3) 

where the ŷi are the estimated samples from validation test data, yi are the measured samples in 

validation dataset and n is the number of observations.  

The optimal model for predicting in-season N concentration and end of season biomass yield was 

selected based on low RMSE and high r
2
.   

 

RESULTS AND DISCUSSION 

Growing Condition 

The 2012 and 2013 growing seasons differed significantly in terms of the weather 

conditions.  In 2012, perennials greening up started as early as March and reached reproductive 

stage by late June to early July. Conversely, in 2013 perennials started greening up in early 

April, but was affected by a late spells of freeze in April that setback early season growth to mid-

May.  The availability of moisture from the above normal precipitation and cooler temperatures 

in 2013 for the months of June and July was contrast to the 2012 season that was dry and hot 

during the same period (Table 4.1).  Wetter condition in 2013 in combination with lodging of the 

perennial grasses significantly affected the frequency of spectra data collection.  

Variation in N Concentration and Final Biomass Yield 

The wide range of N concentration and high standard deviation  reported in Table 4.3 are 

a representation of samples collected throughout the growing season from May to August  in 

2012 and May to July in 2013.  Higher N concentration was found in high biomass sorghum 
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compared to the perennial grasses (Table 4.3).  Nitrogen concentration in biomass was 6.6 and 

5.1 g kg
-1

 higher in 2013 (24.0 and 19.6 g kg
-1

) compared to the 2012 (17.4 and 14.5 g kg
-1

) for 

high biomass sorghum and perennial grass, respectively.  Final biomass yield for 2012 and 2013 

was also high with dry matter yield for high biomass sorghum ranging from 5.5 – 12.8 Mg ha
-1

 in 

2012 and 9.5 – 36.7 Mg ha
-1

, respectively and for perennial grass 2.3-10.5 Mg ha
-1

 and 5.7 – 24.6 

Mg ha
-1

, respectively (Table 4.3).  On average, the high biomass sorghum produced more 

biomass compared to the perennial grass.  

Canopy spectra collected throughout the growing season were highly variable due to 

changes in architecture and arrangement of plant components and changes in the proportion of 

soil and vegetation. Figure 4.3 shows the variations, magnitude and position of absorption 

between the cropping systems and sampling dates. In general, the spectra for the high biomass 

sorghum and the perennial grass were consistent across the growing seasons for samples 

collected around the same period. The mean spectrum of the high biomass sorghum 

discriminated from the perennial grasses in the Mid-IR (SWIR) region of the spectrum.   

Estimating N Concentration in Biomass 

The wavebands for estimating N concentration with both the NNVI were mainly in the 

visible (blue) and Mid-IR (SWIR) region of the spectrum.  Waveband ratio λ1= 400 nm and λ2 = 

510 nm in high biomass sorghum and λ2 =1500 nm and λ2 =2260 nm in perennial grass constitute 

the sensitive wavebands for determining the nitrogen status (Table 4.4). The waveband pairs 

were the same for estimating N concentration for both seasons in the high biomass sorghum and 

the perennial grass.  The two-waveband combinations derived from the hyperspectral data for 

estimation of N concentration did not include wavebands of the classical NDVI (red and NIR 

combination). The NNVI with 400 nm and 510 nm reported strong correlation with N 
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concentration in both 2012 and 2013 for the high biomass sorghum. Likewise, NNVI with 1500 

and 2260 nm was moderate and strongly correlated with N concentration in the perennial grass in 

2012 and 2013 respectively. Hansen and Schjoerring (2003) also found wavebands in the visible 

spectral range, mainly in the blue (440-501 nm) region paired with a green (573-586 nm) or a red 

(692 nm) wavebands to be strongly correlated with N concentration. Similarly, Stroppiana et al. 

(2009) also found that the combination of two visible wavebands (λ1= 483 and λ2 =503nm) 

produced the highest correlation with field measurements of nitrogen concentration.  In general, 

a strong relationship between the visible absorption wavebands and nitrogen concentration is not 

uncommon in the literature. However, the best waveband combinations for computing NNVI for 

the perennial grass system occurred with wavebands from the SWIR.  It is reported, that 

presence of water can often mask the biochemical absorption features, particularly in the SWIR 

region that could often lead to a weak correlation between nutrients and hyperspectral data in this 

region (Kokaly and Clark, 1999; Mutanga et al., 2004).   Mutanga and Skidmore (2004) included 

the SWIR in estimating nitrogen concentration in African savanna rangeland reported a 

calibration equation with r
2
=0.92 and RMSE =0.02, while the predictive ability with a test 

dataset reported r
2
=0.60 and RMSE=0.13. Similarly, when the 2012 dataset was used for 

calibration and the 2013 for validation, the SWIR wavebands remain strongly correlated with N 

concentration in the perennial grass system. Measurement of canopy NDVI using red and NIR 

wavebands is reported to saturate at LAI exceeding 2.5 (Mutanga and Skidmore, 2004).  In this 

study, LAI ranges from 2.0 – 6.5 for the perennial grasses and 1.4 – 4.5 for the high biomass 

sorghum during the sampling period. According to Hansen and Schjoerring (2003) plant N 

concentration  is supposed to be related to the color of the canopy, therefore the amount of 

biomass is of less importance at least when LAI exceeded 2.5. Therefore, saturation due to LAI 
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exceeding 2.5 is expected to have more of an effect on biomass rather than on N estimation. 

Moreover, a denser canopy should result in a stronger linear relationship. These results indicates 

that visible wavebands used to compute NNVI were more strongly correlated with N 

concentration in high biomass sorghum, while SWIR were more strongly correlated with N 

concentration the perennial grass system.   

 The most important aspect of PLSR is selecting the number for factors. Selecting models 

with too many factors can result in over fitting, reducing the potential of the model for prediction 

on a validation dataset. The number of factors was determined using one at a time cross-

validation and the model with lowest PRESS was selected as the best prediction model.  An 

eleven factor model was selected as the best model for estimating the N concentration in the high 

biomass sorghum in 2012 and a six factor in 2013 (Table 4.5). Prediction models of seven and 

eight factors were best for estimating the N concentration in the perennial grass for 2012 and 

2013 respectively. Overall, the PLSR models performed very well in estimating the N 

concentration for years, 2012 and 2013.  In fact, the PLSR models reported decrease in RMSEP 

of 19-41% compared to the best narrowband NNVI linear fit (Table 4.6). Similarly, Hansen and 

Schjoerring (2003) showed PLSR models to improve prediction of N concentration in wheat 

lowering RMSE by 24% compared to the best narrow-band indices.  

Estimating Final Biomass Yield  

The best narrow-band NDVI was most strongly correlated with the final biomass yield 

occurred in July of both years for the high biomass sorghum and the perennial grasses (Table 

4.4). Likewise, the best PLSR models for estimating final biomass yield were observed in July 

and June of both 2012 and 2013 for the high biomass sorghum and perennial grasses respectively 

(Table 4.6). Overall, the optimum sampling time observed with the PLSR was similar to that 
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obtained with the best narrow-band index, except for perennial grass in 2012.   The optimal time 

for estimating above ground net primary productivity (ANPP) in central Great Plain grassland at 

the Rannells Flint Hills Prairie Preserve (RFHPP) (39◦ 08_ N, 96◦ 32_ W), and the Washington 

Marlatt Memorial Park (WMMP) (39◦ 13_ N, 96◦ 37_ W), all near Manhattan, Kansas, USA, 

using AVHRR NDVI composite was late July (An et al., 2013). This period was determined 

from derived relationship between NDVI computed from images obtained from the AVHRR 

satellite and ANPP from the period of 1989-2005.  Based on the site locations, the June to mid-

July period are most appropriate for estimating the final biomass yield in the high biomass 

sorghum and the perennial grass.  

Wavebands in the red edge (680-750 nm) were represented in 50% of all selected 

wavebands in 2012 and 100% in 2013 (Table 4.4).  The waveband combinations for the NDVI 

most strongly correlated with the final yield were in the green (580 nm), red edge (730-750 nm) 

and NIR (1080-1240 nm). The best NDVI in 2012 was weakly correlated with the final yield r
2
= 

0.46 and RMSE=1.4 Mg ha
-1

 and 0.30 and RMSE=1.6 Mg ha
-1

 for high biomass sorghum and 

the perennial grass in respectively.  However, in 2013 the best NDVI was strongly related with 

final yield for the high biomass sorghum r
2
= 0.77 and RMSE= 4.2 Mg ha

-1
, but was again 

weakly correlated for the perennial grass r
2
= 0.35 and RMSE= 4.0 Mg ha

-1
. Improved 

performance of modified NDVI not including the classical red and NIR waveband combinations 

have also been observed by Mutanga and Skidmore (2004). They demonstrated that modified 

NDVI (r
2
 =0.78) with 746 and 755 nm to be more strongly correlated with biomass of tall grass 

compared to the standard NDVI (r
2
=0.25). In general, the final biomass yield of the perennial 

grasses was not strongly correlated with the best narrow-band indices in both years of the study. 

Unlike the high biomass sorghum that showed strong correlation in 2013. Lower LAI (< 4) at the 
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time of sampling due to the later planting date in 2013 and the benefit of the red edge wavebands 

was considered reasons for the improvement in the prediction using narrow-band indices. The 

inclusion of red edge band in computing NDVI has been reported to be more strongly related to 

LAI and biomass and more robust to the saturation problems at LAI values < 3.0 often suffered 

by the classical NDVI (Danson and Plummer, 1995; Gitelson et al., 1996; Hansen and 

Schjoerring, 2003). The improvement with the modified NDVI using the red edge waveband in 

estimating biomass reported by Mutanga and Skidmore (2004) was a result of the ability of the 

red edge to overcome saturation in the dense tall grass. Likewise, Cho et al. (2007) also reported 

improved predictive performance of NDVI involving red edge bands compared to the classic 

NDVI.            

 Predictability of final biomass yield improved significantly with the PLSR model for the 

high biomass sorghum and the perennial grass in both years (Table 4.5). The PLSR models 

produced higher r
2
 and lower RMSE compared to narrow-band NDVI regression models.  The 

greatest improvement with the PLSR was observed for the perennial grasses with 100 and 471 % 

reduction in RMSE for 2012 and 2013, respectively, compared to the best narrow-band NDVI 

linear fit (Table 4.6).  Reduction in RMSE for the high biomass sorghum of 5 and 75% in 2012 

and 2013, respectively, was also observed with the PLSR. Similarly, Improvement with PLSR 

model by lowering the RMSE  over narrow-band NDVI was also observed by Cho et al. (2007)  

in estimating grass/herb biomass compared to  NDVI and red-edge position  and  by Hansen and 

Schjoerring (2004) in estimating wheat biomass compared to the best narrow-band NDVI.  

According to Geladi et al. (199) the improvement in predictability using the PLSR compared to 

the narrow-band NDVI, could be a result of a non-linear relationship between the narrow-band 

NDVI and final biomass yield.  
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Model Predictability  

To test the predictability of the model developed for estimating the final biomass in 2012. 

The 2012 model was used as a calibration equation for estimating the final biomass yield in 

2013. In all occasions, validation of the 2012 model on the 2013 dataset was weak.  The inability 

to predict the 2013 yield using the 2012 data indicates that multiple years of data is required to 

develop models for accurately predicting the final biomass yield. Growing environment are 

dynamic and require large amount of data that includes seasons or multiple locations of high (i.e. 

2013), average and low yield variation. Conversely, application of 2012 calibration equation 

(Table 4.7) for the high biomass sorghum and perennial grass in estimating the N concentration 

in 2013 reported a validation r
2
=0.80 and RMSEP = 2.0 g kg

-1
 for high biomass sorghum and r

2
 

=0.71 and RMSEP = 3.6 g kg
-1

 for the perennial grasses. However, application of the 2012 

calibration equation for predicting the N concentration in 2013 for both high biomass sorghum 

and the perennial grasses were unsuccessful with the PLSR models. The models reported r
2
=0.25 

and RMSEP =6.0 g kg
-1

 for high biomass sorghum and r
2
=0.35 and RMSEP = 4.1 g kg

-1
 for the 

perennial grasses. These results confirm earlier findings by Foster et al. (2013) that a simple ratio 

of two NIR wavebands was more stable in estimating N concentration in feedstock material 

across different growing seasons. Having continuous spectral coverage with many narrow-bands 

does not necessary mean more information  as most of these bands, especially the ones that are 

close to one another provide redundant information (Thenkabail et al., 2012).  Prediction using 

PLSR is based on a high number of factors. A high number of factors might result in over fitting 

and poor predictability of the PLSR model.  
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CONCLUSIONS 

The results of this study show that use of PLSR models improved model performance for 

estimation of the N concentration and final biomass yield. In fact, RMSE of the PLSR model was 

19-41% lower for estimating N concentration and 5-471% lower for final biomass compared to 

the best narrowband VIs. However, despite the large reduction in the RMSE obtained with the 

PLSR model, the best narrowband NNVI was more robust and stable in predicting N 

concentration across seasons.  Biomass yield seems to be more a function of the environment 

affected by factors such as the combination of rainfall and temperature for each growing season. 

Therefore, PLSR might offer great potential for model development for predicting biomass yield, 

while narrowband NNVI might be more useful for predicting N concentration.  Finally, in 

predicting the final biomass yield, spectral measurements collected during June and July were 

the best for predicting the final biomass yield in the bioenergy cropping systems.   
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Table 4.1. Monthly precipitation (mm) and average temperature (°C) at Stillwater, Oklahoma, 

during 2012 and 2013 growing seasons. 

 
 

  

Months Rainfall (mm) Temperature (°C) 

  2012 2013 2012 2013 

Mar 100 28 16 9 

Apr 156 135 18 13 

May 28 153 23 20 

Jun 35 100 26 26 

Jul 2 141 31 26 

Aug 67 65 27 27 

Sep 28 43 23 24 

Oct 15 40 15 15 

Total/ Mean 452 705 23 20 
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Table 4.2. Sampling date (May – August 2012 and May – July 2013), canopy height, sensor 

height, diameter of field of view (FOV) and number of samples for canopy reflectance collected 

by ASD spectrophotometer on high biomass sorghum and perennial grass in Oklahoma for the 

2012 and 2013 growing seasons. 

 

Sampling 

Date 

Canopy height 

(cm) 

Diameter of FOV  

(cm) 

Sensor height 

aboveground 

(cm) 

No. of 

Samples 

collected 

 High 

Biomass 

Sorghum 

Perennial 

Grass 

High 

Biomass 

Sorghum 

Perennial 

Grass 

  

2013  
22 May  - 40-70 - 44-57 170 60 
7 June  10-50 60-120 53-70 22-48 170 90 
21 June 25-80 75-130 57-81 35-59 210 90 
12 July 35-130 90-190 48-90 22-66 240 90 

2012  
16 May  30-45 80-140 67-74 26-52 200 90 
14 June  80-180 110-180 26-69 26-56 240 90 
18 July 130-220 110-200 30-69 39-78 290 90 
20 August 170-240 110-220 22-52 30-78 290 90 
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Table 4.3. Descriptive statistics of the end of season biomass yield and biomass average nitrogen 

concentration throughout the growing season (May to August in 2012 and May to July in 2013) 

measured with NIR in high biomass sorghum, mixed grasses and switchgrass. Nitrogen 

concentration was measured monthly and final biomass yield following first frost in November 

2012 and before first frost in September 2013. 

Year # of Samples Mean  STD†  Min Max 

Biomass yield (Mg ha
-1

)
 

High biomass sorghum  

2012 15 7.7 1.7 5.5 12.8 

2013 15 24.4 8.5 9.5 36.7 

Perennial grasses  

2012 30 7.0 1.9 2.3 10.5 

2013 30 14.1 4.9 5.7 24.6 

 

N (g kg
-1

) 

High biomass sorghum  

2012 60 17.4 7.2 5.0 33.0 

2013 45 24.0 6.9 8.2 34.5 

Perennial grasses  

2012 117 14.5 4.3 7.0 34.0 

2013 120 19.6 5.1 7.6 30.0 

†Standard deviation  
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 Table 4.4. Performance of selected narrow-band normalized nitrogen vegetation index (NNVI) 

calculated from spectral reflectance for estimating nitrogen concentration and normalized 

difference index (NDVI) for final biomass yield in perennial grasses (switchgrass and mixed 

grass) and high biomass sorghum in 2012 and 2013 growing seasons.   

  R1/R2 (nm) Model Performance 

   R
2
 RMSE 

 Nitrogen Concentration in Biomass (gkg
-1

) 
2012 High Biomass Sorghum 400/510 0.74 3.8 

Perennial grass 1500/2260 0.50 3.1 

2013 High Biomass Sorghum 400/510 0.79 3.2 

Perennial grass 1500/2260 0.71 2.7 

  
2012   
 Dry matter yield for high biomass sorghum (Mgha

-1
) 

 16 May  710/1170 0.30 1.6 

 14 June  580/1170 0.36 1.5 

 18 July 740/1080 0.46 1.4 

 20 August 730/1060 0.34 1.5 

 Dry matter yield for  perennial grass (Mgha
-1

) 
 16 May  670/950 0.15 1.8 

 14 June  660/1070 0.12 1.8 

 18 July 580/750 0.30 1.6 

 20 August 740/1100 0.32 1.6 

  
2013  

 Dry matter yield for high biomass sorghum (Mgha
-1

) 
 7 June  730/880 0.46 8.2 

 21 June 730/1280 0.66 5.2 

 12 July 730/1240 0.77 4.2 

 Dry matter yield for  perennial grass (Mgha
-1

) 
 22 May  730/1140 0.15 4.6 

 7 June  740/820 0.37 4.0 

 21 June 740/780 0.31 4.1 

 12 July 730/1080 0.35 4.0 

 

  



129 
 
 

Table 4.5. Performance of partial least square regression models (PLSR) in estimating the 

nitrogen concentration nitrogen concentration and final biomass yield in perennial grasses 

(switchgrass and mixed grass) and high biomass sorghum in 2012 and 2013 growing seasons. 

  No. Factors Model Performance 

   PRESS R
2

 RMSE 

 Nitrogen Concentration in Biomass (gkg
-1

) 
2012 High Biomass Sorghum 11 0.59 0.86 2.7 

Perennial grass 7 0.62 0.67 2.5 

2013 High Biomass Sorghum 6 0.62 0.85 2.7 

Perennial grass 8 0.44 0.84 2.1 

  
2012  
  Dry matter yield for high biomass sorghum (Mgha

-1
) 

 16 May  6 1.52 0.67 1.1 

 14 June  4 1.62 0.56 1.2 

 18 July 6 1.37 0.83 0.80 

 20 August 6 1.48 0.65 1.1 

 Dry matter yield for  perennial grass (Mgha
-1

) 
 16 May  7 1.42 0.73 1.0 

 14 June  8 1.01 0.83 0.80 

 18 July 6 1.13 0.55 1.3 

 20 August 7 1.07 0.70 1.0 

  
2013  
 Dry matter yield for high biomass sorghum (Mgha

-1
) 

 7 June  3 0.79 0.62 5.4 

 21 June 3 0.66 0.76 4.3 

 12 July 3 0.73 0.79 4.0 

 Dry matter yield for  perennial grass (Mgha
-1

) 
 22 May  6 0.91 0.68 2.8 

 7 June  10 0.86 0.98 0.70 

 21 June 5 1.12 0.46 3.7 

 12 July 4 0.95 0.44 3.7 
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Table 4.6. Results comparison of Partial least squares regression (PLSR) and the best narrow-

band NNVI linear models for estimating N concentration and NDVI for final biomass yield in 

high biomass sorghum and perennial grass [switchgrass and mixed grass (Switchgrass, Indian 

grass and big bluestem)] systems  for the 2012 and 2013 growing seasons.  

   PLSR The best narrowband VI linear fit 

    No. 

Factors 

R
2
 RMSE RMSE % difference to PLSR 

    Nitrogen concentration Biomass (g kg
-1

) 

2012 High biomass sorghum 11 0.86 2.7 3.8 41 

  Perennial grass 7 0.67 2.5 3.1 24 

    Final  Biomass yield  (Mg ha
-1

 ) 

  High biomass sorghum 6 0.83 0.8 1.4 75 

  Perennial grass 8 0.83 0.8 1.6 100 

    Nitrogen concentration Biomass (g kg
-1

) 

2013 High biomass sorghum 6 0.85 2.7 3.2 19 

  Perennial grass 8 0.84 2.1 2.7 29 

    Final  Biomass yield  (Mg ha
-1

 ) 

  High biomass sorghum 3 0.79 4.0 4.2 5 

  Perennial grass 10 0.98 0.7 4.0 471 

 

 

 

Table 4.7. Linear regression equation for the best NNVI for estimating the N concentration and 

NDVI for final biomass yield high biomass sorghum and perennial grass in 2012 and 2013.  

  Regression Equation R
2 

P value 

 Nitrogen Concentration in Biomass (g kg
-1

) 
2012 High Biomass Sorghum TN = 3.3-4.1* NDVI 0.74 < 0.0001 

Perennial grass TN=3.8 +13.8* NDVI 0.50 < 0.0001 

2013 High Biomass Sorghum TN = 4.5-6.8*NDVI 0.79 < 0.0001 

Perennial grass TN =3.0 + 9.1 *NDVI 0.71 < 0.0001 

  Dry matter yield (M gha
-1

) 
2012 High Biomass Sorghum  (18 July) FY = -2.0 + 131*NDVI 0.46 0.005 

 Perennial grass (18 July) FY= -13.0 +145*NDVI 0.30 0.004 

2013 High Biomass Sorghum (18 July) FY= -2.0 + 131*NDVI 0.77 < 0.0001 

 Perennial grass (7June) FY = -13.0 + 145*NDVI 0.37 < 0.0001 
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Figure 4.1.  Illustration of canopy reflectance measurement with an ASD spectrophotometer 

mounted to the back of a vehicle (pickup truck). A – Analytic spectral Device (ASD) 

Spectrophotometer in holding case and B – fiber optic sensor at viewing angle above canopy. 

The instrument was raised to > 60 cm above the canopy during sampling (sampling area of 24 

cm diameter and 60 cm above canopy). 
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Figure 4.2.  Representation of contour plots for determining the two -wavelength combinations 

of the normalized difference vegetation index (λ2 – λ1)/ (λ2 + λ1); λ2-Y-axis wavelength and λ1-x-

axis wavelength.  The two-wavelength combination was selected from the region with high 

coefficient of determination (r
2
) between NDVI and nitrogen concentration and between NDVI 

and final biomass yield. (A) Represents contour plot of nitrogen concentration in the 2013 high 

biomass sorghum and (B) the final biomass yield in the 2013 high biomass sorghum.   
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Figure 4.3. Mean canopy reflectance spectra of high biomass sorghum (N= 15 for each sampling 

period) and perennial grass (switchgrass and mixed grass) systems (N= 30 for each sampling 

period) collected at different period during the 2012 and 2013 growing seasons.  (A) High 

biomass sorghum spectra collected in 2013; (B) Perennial grass spectra collected in 2013; (C) 

High biomass sorghum spectra collected in 2012; (D) Perennial grass spectra collected in 2012.  

 

A

Wavelength (nm)

0 500 1000 1500 2000 2500 3000

R
e

fle
c
ta

n
c
e

 F
a

c
to

r

0.0

0.2

0.4

0.6

0.8

Early June

Late June

July 

B

Wavelength (nm)

0 500 1000 1500 2000 2500 3000

R
e

fle
c
ta

n
c
e

 F
a

c
to

r

0.0

0.2

0.4

0.6

0.8

May  

Early June

Late June

July

D

Wavelength (nm)

0 500 1000 1500 2000 2500 3000

R
e

fle
c
ta

n
c
e

 F
a

c
to

r

0.0

0.2

0.4

0.6

0.8

May 

June 

July 

August 

C

Wavelength (nm)

0 500 1000 1500 2000 2500 3000

R
e

fe
c
ta

n
c
e

 F
a

c
to

r

0.0

0.2

0.4

0.6

0.8

May 

June 

July 

August 



 

134 
 

CHAPTER V 
 

 

RAPID ASSESSMENT OF BIOENERGY FEEDSTOCK QUALITY BY NEAR 

INFRARED REFLECTANCE SPECTROSCOPY 

 

ABSTRACT 

The portability, quick turnaround time, and low long-term maintenance costs of Near 

Infrared Reflectance Spectroscopy (NIRS) offers rapid determination of feedstock quality. The 

objective of this study was to estimate biomass composition [total nitrogen (TN), acid detergent 

fiber (ADF), neutral detergent fiber (NDF) and acid detergent fiber (ADL)] with NIRS. Linear 

regression of simple ratios (SR), and partial least square (PLS) regression models with all 

wavebands (WB) and selected waveband (SB) approach were used. Laboratory analysis was 

conducted for TN, ADF, NDF and ADL. Samples from thirteen switchgrass (Panicum virgatum 

L.) cultivars, and ‘ES5200’ high biomass sorghum (Sorghum bicolor (L.) Moench) cultivar, and 

mixed grasses composed of ‘Alamo’ switchgrass, ‘Cheyenne’ Indian grass (Sorghastrum nutans 

(L.) Nash) and ‘Kaw’ big bluestem (Andropogon gerardii Vitman) fertilized at different rates of 

nitrogen (N) ranging from 0 to 252 kg N ha
-1 

yr
-1

 were collected from two locations in 

Oklahoma. Spectral reflectance between 1000 nm and 2500 nm was collected with an ASD 

FieldspecPro spectrometer from all samples. Results showed that TN can be estimated using SR 

of R2080/R2190 (r
2
=0.84), while an SR of R2190/R2230 (r

2
=0.65) was able to estimate ADF (r

2
=0.70), 

NDF (r
2
=0.65) and ADL (r

2
=0.67). In comparison with SR, SB PLS model gave better

http://en.wikipedia.org/wiki/Sorghum_bicolor
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 prediction accuracy with 9 wavebands for TN (r
2
=0.93) and 7 wavebands for ADF (r

2
=0.78), 

NDF (r
2
=0.78), and ADL (r

2
=0.65). In conclusion, the success of both SR and SB PLS for 

estimating bioenergy feedstock composition indicates opportunities for instrument development 

for practical purposes. 
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INTRODUCTION 

The growing interest in use of biomass for liquid fuels and other energy related products 

has increased the need for cost effective, efficient, and accurate analytical methods for 

determining nitrogen, cellulose, hemicellulose and lignin in biomass. The ability to predict the 

biomass composition of a feedstock could be used for assessing N concentration for fertilizer 

management and biomass quality for ethanol conversion (Labbé et al., 2008). The cost of 

nitrogen fertilization, which is one of the most unsettling concerns for farmers, is guaranteed to 

play a major role in the decision to include bio-energy crops  into their conventional system (Di 

Virgilio et al., 2007). Likewise, the composition of available feedstock will also play a critical 

role in the process used in conversion of biomass to fuel (Labbé et al., 2008). Direct methods for 

determining composition of feedstock are labor intensive, expensive and time consuming 

(Sanderson et al., 1996; Labbé et al., 2008; Ward et al., 2011). Biomass composition can be 

determined using the near infrared (NIR) portion of the spectrum (Sanderson et al., 1996; Labbé 

et al., 2008; Ward et al., 2011).  

Lignocellulosic biomass can be converted into liquid fuels and other energy related 

products using biochemical processes or thermochemical processes (Sanderson et al., 1996; 

Labbé et al., 2008). Both ethanol and methane are the products from the biochemical processes, 

while methanol, synthesis gas, and pyrolysis oils are the products of the thermochemical 

processes. The quality of the lignocellulosic biomass for energy conversion depends on the 

conversion method. Elevated N, cellulose, sugar and starch concentration are desired for ethanol 

conversion using biochemical processes, while greater lignin and cellulose concentration are 

more suitable for the thermochemical conversion processes (Sanderson et al., 1996; Labbé et al., 

2008). Greater N concentration in feedstock material reduces hydrocarbon yields during 
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thermochemical conversion and increase nitric oxide (NOx) emissions. On the other hand, 

greater N is favorable for biochemical processes (Sanderson et al., 1996), as N is essential for 

microbial metabolism and growth.  Similarly, greater lignin concentration is favorable for the 

thermochemical processes but can interfere with biochemical conversion by reducing the 

availability of cellulose and non-structural carbohydrate (Sanderson et al., 1996; Labbé et al., 

2008).   

Furthermore, near infrared reflectance spectroscopy is a proven analytical method in 

forage research to estimate neutral detergent fiber (NDF), acid detergent fiber (ADF),  acid 

detergent lignin (ADL), and crude protein(CP) in forage crops (Sanderson et al., 1996;  arc  a-

Ciudad et al., 1999; Gislum et al., 2004; Starks et al., 2004; Zhao et al., 2007; Kawamura et al., 

2008; Labbé et al., 2008). Recently, Labbé et al., (2008) evaluated a dispersive NIR (D-NIR) 

using  an Analytical Spectral Device (ASD) with scan range of 350-2500 nm and a Fourier 

Transform (FT-NIR) using a Varian Excalibur instrument with scan range 1000 – 2500 nm 

developed PLS models for estimating starch, sugar, total non-structural carbohydrate and N 

concentration in different switchgrass cultivars. They concluded that NIR can be used as a tool 

for rapid analysis of switchgrass composition and that the spectra collected by the D-NIR 

resulted in more accurate models than the FT-NIR.  The use of NIR spectrum is not limited to 

developing prediction models for a single feedstock, but is capable of developing robust models 

that can predict the N concentration of a broad-range of feedstocks (Sanderson et al., 1996). 

Currently, the PLS regression method is the most common method of NIRS calibration and has 

been used by various studies in the development of models for the prediction of forage quality 

parameters such as CP, ADL, ADF, and NDF (Sanderson et al., 1996; Starks et al., 2004; Zhao et 

al., 2007; Kawamura et al., 2008; Labbé et al., 2008) and forage mineral composition (Ward et 
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al., 2011). The PLS method is a full spectral calibration method that uses reflectance data from 

all wavebands in developing the calibration equations and depends on cross-validation to prevent 

over-fitting. However, (Kawamura et al., 2008) noted that waveband selection can refine the 

performance of the PLS analysis. The PLS models combine the most useful information from 

hundreds of wavebands into the first several factors, whereas less important factors might likely 

be  included  as background effects with little to no contribution to the model (Bolster et al., 

1996). The PLS  procedure  in SAS (SAS, 2009) offers the regression coefficient profile and 

variable importance plots that give a direct indication of which predictors are most useful for the 

dependent variable. This approach can improve waveband selection and prediction capability of 

the PLS model. Partial least square models using the waveband selection were reported by 

Kawamura et al. (2008) to improve model coefficient of determination (r
2
) for ADF from 0.30 to 

0.65 and for CP from 0.38 to 0.62. The coefficient of determination (r
2
), which indicates the 

proportion of variability explained by the model, is the most common tool for determining the 

performance. Davies and Fearn (2006) reported that r
2
 is not a good evaluator of the performance 

of a model as it is dependent on the range of the dataset. In contrast, the RMSEP which measures 

the variability in the difference between the predicted and measured values for a set of validation 

samples is a much better evaluator of model performance (Davies and Fearn, 2006). Likewise, 

the RPD is a good evaluator that relates the RMSEP to the range of the measured data (Malley et 

al., 2005; Ward et al., 2011). 

From a practical standpoint, simple linear models offer more usefulness with greater 

potential for wider adaptation. Furthermore, simple instruments similar to the greenseeker 

handheld and pocket sensors can easily be developed with ratios of two or more wavebands that 

could be utilized by farmers in the field to estimate the composition of feedstock material 
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(Lukina et al., 2001; Raun et al., 2002; Crain et al., 2012). The computation of ratios provides a 

very simple method for extracting the nutrient quantity signal from the sample spectra (Kakani 

and Reddy, 2010). Ratios are often calculated by using a ratio, differencing, ratio differences and 

sums, and by forming linear combinations of spectral band data (Jackson and Huete, 1991; Pinter 

et al., 2003).  For example, vegetation indices such as normalized difference vegetative index 

(NDVI) are ratios that take advantage of reflectance relationship in different portion of the 

spectrum.  

Development of prediction model to estimate the composition of plant standing in the 

field is often very challenging. Pinter et al. (2003) noted that spectral signatures of crop canopies 

in the field are more complex and often dissimilar from those of single green leaves measured 

under controlled conditions. Measurements of optical properties of plants canopies are strongly 

affected by illumination and viewing angles, row orientation, topography, climatic condition and 

other factors that are not directly related to agronomic or biophysical plant properties (Pinter et 

al., 2003). The use of dried ground samples to developed models for predicting feedstock 

composition provides a more stable source which optical properties are mostly by the material. 

In addition, the fewer external interfering factors allows for greater repeatability from NIR 

models developed for estimating nutrient concentration in the dried ground samples.  Few studies 

have used the waveband selection approach in developing PLS models and simple ratios for N 

content prediction from NIRS in bioenergy feedstock materials. The objective of this study is to 

estimate bioenergy feedstock composition (TN, ADF, NDF and ADL) using linear regression of 

simple wavebands ratio and PLS regression models with both all and selected wavebands. 
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MATERIALS AND METHODS 

 Plant Materials 

Biomass samples were collected from different experimental plots across two locations in 

Oklahoma during the 2011 and 2012 growing season. The plots, from which majority of the 

samples were collected from was a switchgrass variety trial located in Stillwater, Oklahoma 

(36.12⁰N, 97.09⁰W). The variety trial consisted of thirteen cultivars of switchgrass and was 

harvested on a biweekly basis. The remaining samples were obtained from a nitrogen rate x 

species experiment with sites located near Woodward (36.43 °N, 99.41°W) and Stillwater, 

Oklahoma (36.13⁰N, 97.10⁰W). The treatments were a cover crop (hairy vetch in 2011 and 

crimson clover in 2012) as a source of N and four N fertilization rates   (0, 84, 168, 252 kgNha
-

1
), whereas the cropping systems treatments were ‘Alamo’ switchgrass (Panicum virgatum L.), 

‘ES5200’ high biomass sorghum (Sorghum bicolor (L.) Moench), and a perennial grass mixture  

of ‘Alamo’ switchgrass, ‘Cheyenne’ indiangrass (Sorghastrum nutans (L.) Nash) and ‘Kaw’ big 

bluestem (Andropogon gerardii Vitman). The Stillwater site was harvested at approximately 14 

day intervals during each growing season. Final harvests were taken following the first frost in 

November 2011 and 2012. The final harvest for 2011 growing season at the Woodward site was 

done in January 2012.   

Subsamples were collected from 0.5 m within a row from each plot biweekly from April 

to September. Samples were oven dried at 70°C for 72 h, then ground in a shear mill (Cyclone 

Sample Mill, Udy Corp., Fort Collins, CO) to pass a 1 mm screen. A total of 404 samples 

collected in 2011 were analyzed for TN using dry combustion analysis (LECO TruSpec CHN, 

St. Joseph, MI, USA) and 143 samples also collected in 2011 were analyzed for ADF, NDF and 

ADL using acid detergent and neutral detergent extractions (Van Soest, 1963; Goering and Van 
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Soest, 1970). Twenty six (26) samples collected during the 2012 growing season from the three 

experiments used in 2011 were also analyzed for TN, ADF, NDF, and ADL. The samples 

represent sampling dates from April to the final harvest in November 2012. The ADF was 

considered to be the sum of the lignin and cellulose components, NDF the sum of hemicellulose, 

cellulose and lignin and ADL the lignin component of biomass. Therefore, the cellulose 

component of biomass can be computed from the difference between ADF and ADL and the 

hemicellulose from the difference between NDF and ADF. The TN samples comprised of the 

biweekly and the final harvest samples, while the ADF, NDF, and ADL samples were from final 

harvest and a few random biweekly samples. 

Spectral Data 

Near infrared spectra were collected on the ground plant samples using an ASD Field 

Spec Pro spectrometer (Analytical Spectral Devices Inc., Boulder, CO, USA) that consisted of a 

spectral range of 350-2500 nm and a 25° field of view. The spectrometer is equipped with three 

sensors (visible and near infrared-VNIR, shortwave infrared- SWIR1 and SWIR2) with spectral 

sampling of 3, 10 and 10 nm, respectively. The instrument was periodically calibrated to white 

spectral reflectance using a standard white reference panel (Labsphere Inc., North Sutton, NH, 

USA). The white reference was measured at 15 min intervals to check the instrument stability for 

100% reflectance. To measure the sample reflectance, the samples (1 mm) were sandwiched 

between a petri dish painted black to create a non-reflecting black body and the light probe. This 

ensured that no extraneous light entered the sensor during these measurements. Thirty scans were 

collected and averaged into a single average spectrum. Two average spectra were obtained for 

each sample. Built-in spectral resolution output of the data from the ASD spectrometer is 1 nm 

along the whole spectrum. To reduce the amount of data for analysis, spectral data were 
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averaged at 10-nm wavelength intervals (e.g. a band center at 1000 was the averaged value 

between 995-1005 nm) giving a total of 151 spectral bands between 1000 – 2500 for the NIR 

spectra.   

Calibration Procedure 

Feedstock Composition 

Model calibration and validation were performed using procedure used by Ward et al. 

(2011) and Sanderson et al. (1996). The TN models were constructed using 293 samples 

collected throughout the growing season as the calibration dataset. Likewise, the ADF, NDF, and 

ADL models were constructed with 95 samples, mostly from the final harvest and a few random 

samples throughout the growing season. Samples used in the model calibration dataset were 

obtained from both the switchgrass variety trial and nitrogen x species experiments. The 

accuracy and precision of the predictive equations were validated using an actual test set of 

laboratory values of 111 selected samples for TN and 48 samples for ADF, NDF, and ADL as 

well as from both switchgrass variety trial and nitrogen x species experiment not included in the 

calibration of the model. To further validate the models a second validation dataset of 26 samples 

collected in 2012 from April to September from both switchgrass variety trial and nitrogen x 

species experiment were evaluated.  

Linear Model  

A total of 22650 simple ratios were computed using all the 1000-2500 nm wavebands as 

the numerator and 1000-2500 nm as the denominator in all the possible combinations in SAS. 

Coefficients of determination (r
2
) were calculated and used to evaluate the linear relationships of 

TN, ADF, NDF, and ADL concentration with the computed reflectance value obtained from each 

ratio.  
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Partial Least Square (PLS) Models 

The spectra were also used to create PLS regression calibration models for N 

concentrations. Partial least square regression is a full spectrum bilinear regression method that is 

widely used in laboratory calibrations of pasture nutritive value. This method uses reflectance 

data from all wavebands in developing calibration equations and relies on cross-validation to 

prevent over-fitting (Shenk and Westerhaus, 1991; Sanderson et al., 1996). All prediction models 

were developed using a single constituent determination and validation dataset. The regression 

equation used to describe a PLS model is defined as: 

                 (1) 

where Y is a (n x 1) vector with the measured variables of interest, X is a (n x p) matrix with 

reflectance values per spectral band, βo is an unknown constant, β is a (p x 1) vector of regression 

coefficients and ε is a (n x 1) vector of errors identically and independently distributed with mean 

zero and variance σ
2
 vector.  In principle, the regression equation is similar to multivariate linear 

regression (MLR) except the values of the weighted coefficients (βw) are calculated using PLS.   

Whereby, the βw is calculated directly from the PLS loading corresponding to the model with the 

optimum number of latent factors, according to the following equation (Kawamura et al., 2008): 

     (    )           (2) 

where W is the X-weight loading matrix, P is the X loading matrix and Q is the Y loading matrix. 

The latent factors are computed as certain linear combinations of the spectral amplitudes, and the 

responses are predicted linearly based on these extracted factors (SAS, 2009). The minimum 

value of root mean square error from the validation with test dataset was used as the criterion to 

select the appropriate number of latent factors and the coefficient of determination for the 

validation (r
2
) to access the performance of the model. 
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Waveband Selection for PLS Model 

There is increasing evidence indicating that PLS models include some redundant 

wavelengths and that waveband selection might improve the predictive accuracy of the model 

(Kawamura et al., 2008). Kawamura et al. (2008) pointed out that large absolute coefficients βw 

indicates an important X variable. This implies that wavebands with large absolute coefficient 

explain more variability, thus identifying the more informative wavebands. The wavebands with 

the largest absolute βw were selected from the PLS models with all the wavebands. After which, 

stepwise removal of wavebands was done based on the βw value. The updated predicted residual 

sums of squares (PRESS) and coefficient of determination (r
2
) were recorded at each step. 

PRESS is the sum of squares prediction error that SAS calculated for the number of factor 

included in the model (Yeniay and Goktas, 2002). The best PLS model was determined by 

choosing the one with the smallest PRESS and largest r
2
. The result obtained for the PLS model 

with all the spectra was compared to the PLS model with selected wavebands. 

Model Evaluation  

The root mean square error of prediction (RMSEP) estimates the likely difference 

between prediction and measured values when the model is used with another dataset (Yeniay 

and Goktas, 2002). Thus, RMSEP is considered a good criterion to assess the performance of 

models (Davies and Fearn, 2006). The RMSEP was determined by the equation  of (Yeniay and 

Goktas, 2002): 

RMSEP =√
∑ (  
 
     ̂ )

 

 
      3 

where the ŷi are the values of the predicted variables obtained from the validation dataset, yi are 

the measured values from the validation dataset and n is the number of observations. Calibration 

models were also evaluated using the coefficient of determination (r2), which indicates the 
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proportion of variability explained by the model and the residual prediction deviation (RPD). 

This is actually the standard deviation of the reference data divided by the RMSEP, thus relating 

the RMSEP to the range of the reference measurements.  

These parameters were used to classify the success of the predictions using the criteria 

described by Malley et al. (2005); excellent- r
2
 is greater than 0.95 and RPD greater than  4; 

successful - r
2
  0.9–0.95 and  RPD 3–4; moderately successful - r

2
 0.8–0.9 and RPD 2.25–3; and 

moderately useful - r
2
 0.7–0.8 and  RPD 1.75–2.25.In addition to these criteria, some calibrations 

with r
2
< 0.70 were considered to be useful for screening purposes (Malley et al., 2005). 

 

RESULTS AND DISCUSSION 

Representative spectral samples show small variation at the baseline in the range of 1000 

– 1400 nm for the thirteen (13) switchgrass cultivars (Fig. 5.1) and N treatments in high biomass 

sorghum and switchgrass (Fig. 5.2). Greater variation was observed among the species (Fig. 5.2) 

and N treatments in the mixed grass (Fig. 5.2) across the NIR spectra. Near infrared region of the 

spectrum is a unique representation of a substance or a mixture that consist of signals from bonds 

such C-O, C=O, O-H, C-H and N-H (Sanderson et al., 1996; Labbé et al., 2008; Kawamura et al., 

2008). Therefore, the determination of TN, ADL, ADF, and NDF by NIRS in the dry ground 

sample can be explained by the absorption of infrared radiation by the N-H, C-H and O-H bonds 

present in the plant dry material. The N-H bond is primarily associated with TN, while the C-H 

and O-H with cellulose, hemicellulose, and lignin (Curran, 1989; Elvidge, 1990; Kawamura et 

al., 2008).  

In general, the mean spectral reflectance across N treatments was greater in high biomass 

sorghum than for switchgrass and mixed grass (Fig. 5.2). Similar difference was also observed 

by Sanderson et al. (1996) in switchgrass, black locust, bagasse, sericea lespedeza, corn stover, 
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and hybrid poplar in the 1100 – 1400 nm range. They attributed the difference to particular size 

of the materials as larger particles tend to absorb more infrared radiation than smaller (Windham 

et al., 1991). In this study, all samples were treated similarly and all the necessary steps were 

taken to achieve homogeneity as best as possible. All samples were ground to pass through 1 mm 

sieve. Windham et al. (1991) reported that high ash concentrations (7- 33wt %) as a result of soil 

contamination of forages may also cause similar baseline differences in reflectance. Ash 

concentration was not determined in this study, but the variations observed among the species 

indicate some variability in feedstock composition. As the variation is often greater in the 1000-

1400 nm range, Sanderson et al. (1996) developed calibrations with and without this region and 

reported little to no effect on models performance and predictive ability. 

Calibration Models 

Summary data for calibration and validation data are presented in Table 5.1. Calibration 

equations were developed for ADF, NDF, ADL, and TN using PLS regressions of the entire 

spectrum (WB) 1000-2500nm and with selected wavebands (SB) based on the regression 

coefficient of each waveband obtained in the whole band PLS model and linear regression of 

simple ratios computed from all the reflectance wavebands (Rγ/Rγ). In general, the best calibrated 

model has the greatest coefficient of determination (r
2
) and least root mean square error of 

calibration (RMSEC). Similar r
2
 and RMSEC were obtained for all three model approaches. 

For simple ratio (SR) model, the linear regression with the greatest coefficient of r
2
 was 

selected and the calibration equation developed by regressing the SR with TN, ADF, NDF, and 

ADL in the calibration dataset (Fig. 3). The SR (R2080/R2190) selected for the TN range was from 

0.90 -1.02 (Fig. 5.4). The range of SR is an indication of the variation of N concentration in 

biomass material due to cultivars, species and N treatments differences. A single SR (R2190/R2230) 
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was found to be highly correlated with ADF, NDF, and ADL concentration in the biomass (Fig. 

5.4). The SR values ranged for ADF, NDF, and ADL ranges from 0.99-1.03 (Fig. 5.4). The 

narrow range of SR values is an indication of the small variability in lignin, cellulose and 

hemicellulose in the feedstock materials. The calibration equation reported r
2
 and RMSEC for 

TN of 0.92 and 2.0 g kg
-1

, respectively, 0.78 and 27.0 g   kg
-1

, respectively, for ADF, 0.82 and 

27.0 g kg
-1

, respectively, for NDF, and 0.78 and 8.0 g kg
-1

, respectively for ADL (Table 5.2). 

Among the PLS models, WB PLS model results indicate that r
2
 and RMSEC for the 

calibration of the TN was 0.96 and 1.2 g kg
-1

 respectively, 0.82 and 25.0 g kg
-1

, respectively, for 

the ADF, 0.82 and 27.0 g kg
-1

, respectively, for the NDF, and 0.77 and 8.0 g kg
-1

 respectively, 

for the ADL (Table 5.2). The SB PLS model reduced the number of wavebands in PLS model 

and resulted in nine selected wavebands (1450, 1580, 1630, 1830, 2030, 2100, 2180, 2250, and 

2490 nm for TN and six (1610, 1730, 2160, 2230, 2310, 2420, and 2500 nm) for ADF, NDF, and 

ADL (Fig. 5.6). The number of wavebands selected represents 3 to 4% of the total wavebands. 

Calibration equations reported r
2
 and RMSEC of 0.94 and 1.6 g kg

-1
 respectively, for TN, 0.85 

and 23.0 g kg
-1

, respectively, for ADF, 0.81 and 28.0 g kg
-1

, respectively, for NDF, and 0.80 and 

8.0 g kg
-1

, respectively, for ADL (Table 5.2). 

Prediction Models 

Predictive ability of models was determined using several different criteria in the literature. 

Sanderson et al. (1996) used r
2
, SEP and bias, Labbé et al. (2008) used r

2
 and root mean square 

error of cross-validation (RMSECV), while Kawamura et al. (2008) used r
2
 and RMSEP. The 

predictive ability of the models (SR, WB PLS and SB PLS) developed in this study were 

evaluated based on RMSEP, the r
2
, and RPD criteria described by Malley et al. (2005).  
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Calibration of our SR model based on Malley et al. (2005) criteria using the 2011 and 

2012 validation datasets indicates that the model was moderately successful and moderately 

useful for TN, respectively, moderately useful and unsuccessful, respectively for ADF, and 

unsuccessful with both datasets for NDF and ADL (Table 5.2).  

Application of the WB-PLS model calibration equation to the 2011 and 2012 validation 

datasets were excellent and moderately useful, respectively, for the prediction of TN, and 

moderately successful and unsuccessful, respectively, for predicting ADF, NDF and ADL (Table 

2). Similarly, the application of SB PLS calibration equations to the 2011 and 2012 validation 

datasets indicates that models were successful and moderately useful, respectively for TN, 

moderately useful and unsuccessful, respectively for ADF and NDF, and unsuccessful with both 

datasets for ADL (Table 5.2). In general, the reduction of wavebands was found to improve 

model predictive ability for ADF, NDF, and ADL. The best SB PLS model comprised of 9 

wavebands for TN and 7 wavebands for ADL, ADF, and NDF (Table 5.2). Similarly, Kawamura 

et al. (2008) reported improvement using waveband reduction model with 6 wavebands for ADF 

and 47 for NDF out of a total 277 wavebands. 

Models Comparison 

The application of the calibration equations to two different validation datasets yielded 

varied results. As evaluation of the predictive ability of the models using the r
2
, RMSEP and 

RPD suggest similar predictive ability for the WB and SB PLS and the SR models for ADF, 

NDF, ADL, but not TN (Table 5.2). Higher RMSEP and lower r
2
and RPD values were observed 

with the 2012 validation dataset in comparison to the 2011 dataset for all the parameters (TN, 

ADL, ADF, and NDF) and all three models (Table 5.2). All three models performed poorly 

ranging from moderately useful to unsuccessful for the prediction of ADF, NDF and ADL. The 
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poor model performance for the 2012 dataset can be attributed to the narrow range and minimal 

variability of ADL, ADF and NDF concentrations within the biomass materials. This can be 

attributed to the fact that majority of the calibration dataset used in the ADL, ADF and NDF 

models were obtained at the final harvest in 2011, while the 2012 validation dataset was obtained 

from random samples collected throughout the growing season. The cell wall components are 

reported to vary less within a species, while the variation is greater among species, plant parts 

and maturity (Jung and Vogel, 1992). Our study only had amalgamated samples of switchgrass, 

mixed grass (Indian grass, switchgrass, and big bluestem) and high biomass sorghum feedstock 

sources.  

All three models (SR, WB and SB PLS) were somewhat successful for predicting TN in 

the feedstock materials. All models reported lowest RMSEP and highest RPD and r
2
 values with 

the 2011 dataset. However, WB PLS model reported lowest RMSEP and highest RPD and r
2
 

with both validation datasets. Figure 6 shows the regression plot of predicted versus measured 

values for each biomass component for the 2011 validation dataset. The spread of the points 

around the regression line for ADF, ADL and NDF indicates the large variation in the estimation 

of the measured values.  However, in the TN plots the points are clustered around the regression 

line (Fig. 5.6). In general, the models predict TN, ADF, NDF, and ADL with greater precision 

for the 2011 validation dataset than the 2012 validation dataset. For example, prediction of the 

TN was most precise with the WB PLS model (RMSEP = 1.2 g kg
-1

 and RPD =5) for the 2011 

validation dataset, but did not differ (RMSEP =3.0 g kg
-1

 and RPD 1.80-1.97 for WB, SB and SR 

models) among the models for the 2012 validation dataset. The greatest variation was found 

among the PLS models, while variation within SR model for the 2011 (RMSEP = 3.0 g kg
-1

 and 

RPD = 2.20) and 2012 (RMSEP = 3.0 g kg
-1

 and RPD =1.87) dataset was small. These results 
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indicate that the performance of the SR model was most reliable across multiple datasets. The 

variation of the calibration equation when applied to the two datasets can be attributed to the 

year-to-year variation that exists within the samples as well as possible variation in the selected 

waveband identified using 2011 samples. It is suggested that the best way to overcome year-to-

year variation and selected wavebands would be to include samples from multiple years in the 

calibration dataset and develop a new calibration equation (Shetty et al., 2011). But our study 

demonstrates the stability of the SR model suggests the robustness and applicability of the SR 

model across years. 

The main purpose of a PLS model is to extract the minimum number of factors that can 

explain as much sample variation as possible. The more extracted factors  improve the model fit 

to the observed data, but can also  result in tailoring the model to the current data, thus affecting 

the  usefulness of the model in making future predictions (SAS, 2009). In SAS PLS procedure, 

the number of factors to be included in the model is determined by the cross-validation. 

Therefore, while both PLS models have somewhat similar RSMEP and r
2
 values for each 

component, they differed in the number of extracted factors. Four factors were able to explain 

more than 75% of the predictor sample variation in the models with SB PLS model for 

estimating ADL, ADF, and NDF and five factors were required to explain more than 75% 

variation with the WB PLS models. Likewise, four factors explained 94% in the SB PLS model 

for TN and seven factors were required to explain 96% with the WB PLS model. These results 

agrees with Kawamura et al. (2008) that waveband reduction actually improved the predictive 

ability of the PLS models.  

The wavebands identified in the TN prediction models presented in this study were 

similar to those previously published for biomass feedstock. Previous studies of several plant 
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species suggest that tissue concentration of TN, ADL, ADF, and NDF in dry ground materials 

are most highly correlated with reflectance wavebands in the range of 1200-2400 nm (Garcia-

Ciudad et al., 1999; Labbe et al., 2008; Kawamura et al., 2008). Moreover, wavebands 1510, 

1700, 1690, 2150, 2180, 2300, and 2350 nm were reported to be associated with TN in plant 

materials (Curren, 1989; Elvidge, 1990). Wavebands 1200, 1580, 1685, 1690, 2100, 2270, 2276, 

2280, 2336, 2340 and 2350 nm are reported to associate with lignin and cellulose concentration 

in dried plant material (Curran, 1989; Elvidge, 1990). The wavebands identified in this study 

were found to be similar or almost similar to those reported for each of the measured feedstock 

components.  

The predictive ability of the models is also consistent with earlier published work 

estimating TN concentration in plant material (Sanderson et al., 1996; Gislum et al., 2004; Ward 

et al., 2011) and ADF and NDF in dried plant materials using NIR reflectance (Kawamura et al., 

2008), but not for ADL (Sanderson et al., 1996). However, few studies reported using two 

validation datasets across years. Sanderson et al. (1996) reported r
2
of prediction and RPD values 

of 0.90 and 3.33 for N and 0.99 and 6.83 for lignin across numerous bioenergy feedstock 

materials (switchgrass, sugarcane bagasse, corn, lespedeza and various woody species). More 

recently, Ward et al. (2012) reported an r
2
 of prediction value of 0.76, RMSEP value of 3.2g kg

-

1
, and RPD of 2.33 for N in meadow fescue; Labbé et al. (2008) reported r

2
of prediction value of 

0.97 and RMSEP value of 27 kg N ha
-1

 within the switchgrass biomass. The samples used in this 

study were not as diverse as those used in Sanderson et al. (1996), but were more diverse than 

that of Labbé et al. (2008). Kawamura et al. (2008) reported r
2
and RMSEP values of 0.35 and 

29.4 g kg
-1

 for ADF and 0.24 and 45 g kg
-1

 for NDF with whole band and 0.53 and 2.49 % for 

ADF and 0.31 and 4.28% for NDF with selected PLS models from canopy reflectance of  
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perennial pasture (ryegrass, orchardgrass, and white clover). Clearly, a global model that 

includes more diverse feedstock materials cannot be expected to have the same predictive ability 

as one or two species model (Gislum et al., 2004). However, our results demonstrate excellent 

potential for prediction of TN by NIR in botanically diverse biomass feedstock materials using 

WB PLS regression models. The predictive accuracy of the TN model using remote sensing is 

not expected to be better than laboratory methods because both plant materials and 

measurements configurations are much better controlled (Kawamura et al., 2008). However, 

these approaches can provide rapid assessment of biomass quality, particularly TN on a near real 

time basis.  

To the best of our knowledge this is the first report of simple ratio NIR models for 

predicting the quality of bioenergy feedstocks. Therefore, predictability of the SR model was 

determined in relation to the WB PLS model. In general, both WB PLS and SR models were 

successful in predicting feedstock quality, particularly N. The success of the SR model, 

particularly for predicting N concentration suggests possible application for use by farmers and 

bio-refineries. Feedstock with high N concentration is more desirable as a feedstock source for 

the biochemical process and is less desirable for the thermochemical process. However, since it 

is unlikely that bio-refineries would employ the use of both conversion processes, or even if the 

refineries utilize both processes, rapid quality assessment of feedstock will be essential to 

maximize the efficiency of the conversion process. In addition, feedstock materials have several 

uses such as hay for animal feed and paper pulp production. The robust SR model identified in 

this study has potential for the development of simple inexpensive instrumentations that could be 

used by farmers to rapidly assess the feedstock quality. The potential for farmers to rapidly 
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determine feedstock quality in a labor and cost efficient manner could improve management 

decisions for feedstock use.  

The use of dried ground samples can be seen as a disadvantage due to the amount of 

labor required to prepare the sample for analysis. However, this process can be mechanized at 

factory gate to sample and grind for analysis. Moreover, ground samples do not require 

immediate analysis and thus can be stored and used at a later date, are more homogeneous, 

reduce the effect of tissue moisture on spectral reflectance and have been used in many previous 

studies (Sanderson et al., 1996;  arc  a-Ciudad et al., 1999; Gislum et al., 2004; Labbé et al., 

2008; Ward et al., 2011).   

 

CONCLUSIONS 

Based on r
2
, RMSEP and RPD calibration models for ADL, ADF and NDF performed 

better with selected wavebands suggesting that these parameters can be predicted with only a few 

selected wavebands and the TN WB PLS performed excellently using 2011 dataset and was 

moderately useful with 2012 dataset. Significant year-to-year variation was observed when 

calibration equations were applied across year for all models and quality parameters, except for 

the SR model. The SR model was found to be moderately useful for estimating TN across years. 

This result suggests that a SR linear equation could be used to estimate TN concentration for 

many feedstocks.  The simplicity of the SR linear model could provide opportunities for 

development of simple and inexpensive instrumentation with practical application at the farm 

and field scale.  
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Table 5.1. Descriptive statistics of samples total nitrogen (N) content (%) acid detergent fiber 

(ADF), neutral detergent fiber (NDF) and acid detergent lignin (ADL) measured in laboratory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†Standard deviation (SD) and n is the number of samples. Validation 1 and validation 2 datasets 

were collected in 2011 and 2012 from the switchgrass variety trial and species x nitrogen 

treatment experiments. 

 

 

  

Data  Parameter TN 

 

ADF 

 

NDF 

 

ADL 

 

 _______________________________
g kg

-1________________________________ 

Calibration  N 293 95 95 95 

 Min 2.5 280 490 40 

 Max 41.1 520 820 110 

 Mean 11.6 410 677 73.5 

 Range 38.6 240 330 70 

 SD† 7.1 63.4 70 19.4 

Validation1 N 111 48 48 48 

 Min 4.0 290 510 40 

 Max 41.4 540 770 90 

 Mean 11.3 390 660 60 

 Range 37.4 250 260 50 

 SD† 6.3 58.8 53.7 16.2 

Validation2 N 26 26 26 26 

 Min 5.0 300 530 40 

 Max 25.0 460 700 90 

 Mean 12.5 370 610 65 

 Range 19.6 160 170 50 

 SD† 6.3 58.8 53.7 16.2 
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Table 5.2. Optimum number of factors, coefficient of determination from PLS models, root mean 

square error for the calibration and validation datasets, and residual prediction deviation for PLS 

models with all wavebands (1000-2500nm), selected wavebands (SB) and simple ratio (SR). 

Method TN (g kg
-1

) ADF (g kg
-1

) NDF (g kg
-1

) ADL (g kg
-1

) 

WB-PLS R
2

calibration 0.96 0.82 0.82 0.77 

RMSECcalibration 1.2 25.0 27.0 8.0 

R
2

val1 0.96 0.70 0.76 0.60 

RMSEPval1 1.2 30.0 28.0 10.0 

R
2

val2 0.77 0.01 0.22 0.01 

RMSEPval2 3.0 36.0 38.0 11.0 

No. F. 7 5 5 5 

 RPDval1 5.00 1.80 1.93 1.60 

 RPDval2 1.97 1.00 1.11 1.00 

SB- PLS R
2

calibration 0.94 0.85 0.81 0.80 

RMSECcalibration 1.6 23.0 2.80 8.0 

R
2

val1 0.93 0.78 0.78 0.65 

RMSEPval1 2.0 25.0 2.50 9.0 

R
2

val2 0.63 0.22 0.23 0.28 

RMSEPval2 3.4 38.5 4.70 11.0 

No. F. 5 4 4 4 

No. WB 9 7 7 7 

 RPDval1 3.10 2.08 2.21 1.70 

 RPDval2 1.80 1.11 1.12 1.16 

SR R
2

calibration 0.92 0.78 0.82 0.78 

RMSECcalibration 2.0 27.0 2.70 8.0 

R
2

val1 0.84 0.70 0.65 0.67 

RMSEPval1 3.0 23.0 3.30 9.0 

R
2

val2 0.70 0.12 0.10 0.23 

RMSEPval2 3.0 35.0 40.0 10.0 

RPDval1 2.20 2.10 1.70 1.70 

RPDval2 1.87 1.03 1.04 1.12 

Ratio R2080/R2190 R2190/R2230 R2190/R2230 R2190/R2230 

No.F- number of factors used in PLS model; No.WB – number of wavebands used in model; 

RMSEC – root mean square error of calibration; RMSEPval1 – root mean square error of 

prediction using validation dataset from samples collected in 2011; RMSEPval2 -root mean square 

error of prediction using validation dataset from samples collected in 2012; RPD- residual 

prediction deviation using validation datasets for 2011 and 2012. 
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Fig.5.1. Representative NIR (1000-2500 nm) spectra for thirteen (13) switchgrass cultivars used 

in the study. 
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Fig.5.2. Representative  near infrared (NIR) spectra, the effects of N treatments on the NIR 

spectra, and the meas spectra across N treatments of three biomass feedstocks:  high biomass 

sorghum, switchgrass, mixed grass.  
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Fig.5.3. Coefficients of determinations (r
2
) for reflectance ratios of Rλ/Rλ to highlight the 

selected ratio with highest r
2
 value. The r

2
 values were based on a linear model using the 

calibration dataset.  
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Fig.5.4. Calibration equation development for SR for predicting ADF, NDF, ADL, and TN 

concentration in feedstock material obtained from switchgrass variety trial and species x nitrogen 

treatment experiments in 2011. 
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Fig.5.5. Selection of the optimum number of wavebands based on their large regression 

coefficient (βw) calculated by the whole band PLS model for each waveband. 
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Fig.5.6. Regression of NIRS predicted values for biomass extractives ADF, NDF, ADL, and TN 

on measured laboratory values obtained from PLS model using the whole band (1000-2500nm), 

selected waveband and simple ratio of NIR waveband using validation dataset for samples 

collected in 2011. 
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CHAPTER VI 
 

 

SPATIAL VARIABILITY WITHIN A SWITCHGRASS FIELD AT FINE AND COARSE 

SCALE SAMPLING IN OKLAHOMA 

 

 

ABSTRACT 
 

The objective of this study was to describe the spatial patterns of selected soil properties 

and biomass yield at fine and coarse scale in a switchgrass field to determine the appropriate 

sampling approach to enable the calculation of means with minimum variance.  Spatial 

variability of biomass yield and soil properties at fine (2.5m sampling interval) and coarse (10m 

sampling interval) scales was assessed through semivariogram analysis. The site was located in 

Chickasha, Oklahoma, consisted of two soil types a Dale silt loam (Fine-silty, mixed, 

superactive, thermic Pachic Haplustolls) and McLain silty clay loam (Fine, mixed, superactive, 

thermic Pachic Argiustolls).  Eighty soil samples were collected along two 100m transects at 2.5 

and 10 m intervals established across each soil type in 2012 and 2013. The semivariograms 

revealed coarse scale OC to be strongly correlated with range values from 56 – 78 m for both 

soils.  A strong correlation with a range of 5 m was observed for switchgrass yield at the fine 

scale McLain silty clay for both years. The fine scale Dale silt loam switchgrass yield showed a 

weak spatial dependence over a range of 36 m in 2012 and 5 m in 2013. NDVI was consistently 

moderately correlation with a distance less than 30m at the fine scale for both years. Conversely, 

a reliable spatial dependence could not be identified for TN.  These results indicates that spatial 
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correlation of coarse scale OC might have been imposed by the cropping system, while spatial 

correlation of switchgrass yield  was influenced by the soil texture, particularly clay content .  

The use of the NDVI measurement was useful to describe the spatial distribution of switchgrass 

yield with good precision at the fine scale. Based on the results presented the appropriate 

sampling approach to obtain the best estimate of OC could be achieved by systematic sampling, 

while random sampling maybe the most practical way for estimating switchgrass yield.  
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INTRODUCTION 

The challenge for agronomy researchers is to characterize crop yield variation in space 

and time to provide farmers with useful information to make good management decision 

(Larscheid and Blackmore 1996). Several studies have identified a number of reasons for the 

difficulties in charactering crop yield variation in space and time. Growing season precipitation, 

annual temperature, N fertilizer and ecotype are some of the reasons for variation in switchgrass 

yield (Wullschleger et al. 2010).   In the Ozzano Dell’Emilia valley area in Spain, Di Virgilio et 

al. (2007) conducted a study using GIS and geostatistic methods to produce thematic maps of 

soil parameters and switchgrass yield to quantify the relationship between biomass yield spatial 

variation and soil parameters (N, P, soil moisture, soil texture and OM) in a small plot (5 ha) in 

2004 and 2005. The maps produced from the study showed significant variability in the 

relationship between switchgrass yield and nearly all the soil parameters (Di Virgilio et al. 2007).   

In the northern US, variation in switchgrass population for nine variables (biomass yield, 

survival, dry matter, lodging, maturity, plant height, holocellulose, lignin, and ash) was partly 

due to temperature and eco-region defined by soil type (Casler 2005).    Likewise, switchgrass 

yield was found to vary across 10 locations in the Great Plains [North Dakota (Munich and 

Streeter), South Dakota (Bristol, Highmore, Huron and Ehtan) and Nebraska (Crofton, Atkinson, 

Douglas and Lawrence)] (Schmer et al. 2010).  Kiniry et al. (2005) simulating switchgrass yield 

using the ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment 

Criteria) model for locations in three southern states [Texas (Dallas, Stephenville, and College 

Station), Arkansas (Hope) and Louisiana (Clinton)] found that changing the runoff curve number 

used to determine potential runoff water from the soil by 15% changed the mean annual biomass 

from 1 to 31% depending on location.   
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A quantitative estimation of spatial variability of soil properties and crop yield can be 

obtained using semivariogram modeling (Di Virgilio et al. 2007; Huang et al. 2001; Reese and 

Moorhead 1996; Warrick et al. 1986). A semivariogram describes the relationship between 

spatially separated data points as a function of distance (Buchter et al. 1991; Isaaks and 

Srivastava 1989; Warrick et al. 1986).    The relationship is described for each variable by the 

semivariogram parameters:  nugget, sill (total semi-variance) and range.  Nugget is the variance 

at distance of zero and represent inherent variability or experimental error; sill is the semi-

variance value at which the semivariogram reaches the upper bound after its initial increase; 

range is the distance at which  each variable becomes spatially independent ( samples closer to 

the range are related , samples further apart are not). Traditionally, one of the main reasons for 

deriving a semivariogram is to use it to predict or estimates values at unsampled locations in 

kriging interpolation (Di Virgilio et al. 2007; Huang et al. 2001; Curran 1988).  However, a 

semi-variograms can also be used to relate semivariance of spatial separation and provides 

concise and unbiased description of the scale and pattern of spatial variability (Curran 1988; 

Journel and Huijbregts 1978).   For example, spatial distribution of soil properties, erosion and 

crop yield along a cultivated transect and an adjacent transect in virgin grassland was studied by 

Moulin et al (1994). The statistical distribution of soil properties and crop yield in the landscape 

was found to be affected by erosion that was a result of the interaction between elevation and 

surface curvature.  Likewise, Huang et al. (2001) observed a periodic behavior for soil total 

carbon along transect that was mainly dependent on field topographic position and not on land 

use.  

Site specific crop management using remote sensing and geographic information systems 

that make use of semivariogram modeling has been proposed as a means of managing the spatial 
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and temporal variation of soil related, biological, landform and meteorological factors that 

influence crop yield (Corwin et al. 2008; Corwin and Lesch 2005; Reuter et al. 2005; Kitchen et 

al. 2003).  Remote sensing is the process of acquiring information about an object by a device 

separate from it by some distance such as ground-based booms, aircraft, or satellite.   Barnes et 

al. (1996) outlined three applications for using remote sensing data in site specific agriculture.   

In the first application, multispectral images are used for detection of plant stresses (such as, 

pest, water stress and nutrient deficiency).  In the second application, variation in spectral 

responses is correlated to specific variables such as soil properties. Once these site-specific 

relationships are developed, multispectral images can be translated directly to maps of fertilizer 

applications and yield variability.  In the third application, multispectral data is converted to 

quantitative units such as vegetative indices (VIs) with physical meaning. Vegetative indices can 

be integrated into physically based growth models used for assessing crop growth and 

development. Remotely sensed measurements through various VIs can assess crop yield 

potential for switchgrass production and can provide reliable and consistent information about 

spatial and temporal variability at regional production scale.  

Characterizing of variation within a field is dependent on the sampling method used. The 

selection of the appropriate sampling approach is important to enable the calculation of means 

with the minimum variance. Curran and Williamson (1986) reported that systematic as opposed 

to random sampling offers the potential to increase the precision.  Semivariogram analysis has 

demonstrated in a various studies that the proportion of nugget to sill or total semivariance is a 

strong indicator of whether the precision of a parameter can be increased with systematic as 

opposed to random sampling (Cambardella et al. 1994; Curran and Williamson 1986).  

Furthermore,Curran (1988) suggested that the semivariograms can be used for remote sensed and 
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ground data to aid the choice of sample units and sample numbers. Thus the objective of this 

study was to describe the spatial patterns of fine and coarse scale sampling of OC, TN, NDVI 

and switchgrass yield to determine the appropriate sampling approach to enable the calculation 

of means with minimum variance.   

MATERIALS AND METHODS 

Experimental site  

This study was conducted on an 8 ha switchgrass (Alamo) field established in 2010 at 

Chickasha, Oklahoma (35.042° N, -97.917°W).  The field comprises of two soil types a Dale silt 

loam [Fine-silty, mixed, superactive, thermic Pachic Haplustolls] (~60%) and McLain silty clay 

loam [Fine, mixed, superactive, thermic Pachic Argiustolls] (~40 %). Soil P and K were 

maintained at the levels recommended by the Oklahoma State Soil testing laboratory for warm 

season grasses. Annual N fertilization (82 kg ha
-1

) was applied in the second year after the 

establishment and each subsequent year.  Table 1 describes the climatic condition of the site for 

the 2012 and 2013 growing seasons.  

Yield and soil measurements 

Each year 2012 and 2013, the field was sampled at fine and coarse scale to permit spatial 

modeling of biomass yield and soil properties.   For coarse scale sampling, switchgrass biomass 

and soil samples will be collected within 0.5 m
2
 area centered on geo-referenced-grid nodes 

spaced every 10 m.  Fine scale sampling of feedstock biomass and soil samples will occur within 

0.5 m
2
 distributed every 2.5 m along the two 100 m transects spaced between grid nodes to 

capture spatial variability at short distances. After randomly establishing transects in 2012, it was 

later discovered that majority of transect 1 was located on the Dale silt loam and the entire 

transect 2 on the McLain silty clay loam. In 2013, transects were randomly established on each 
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of the soil type (Fig 1). Subsamples of the switchgrass biomass yield [0.1 m
2
 (0.5 m row at 0.20 

m row spacing)] were hand-clipped and processed for determination of dry matter yield.  Soil 

samples were collected in March of both years from 0-15 cm depth and analyzed for total 

organic carbon (OC) and total nitrogen (TN).  Soil OC and TN concentrations were determined 

by dry combustion using LECO CN analyzer (LECO Corp., St. Joseph, MI).   

Acquisition of Sensor Reflectance Measurements 

Spectral data was collected from aerial photograph taken in August of 2012 and 2013. 

Imagery was converted into reflectance to compute the normalize difference vegetation index 

(NDVI).   

Spatial analysis  

 Spatial variability of feedstock (NDVI and yield) and soil properties (TN and OC) at fine 

and course-scales was assessed through semivariogram modeling to quantify the spatial variation 

for each variable (Warrick et al. 1986).  Traditionally, modeled semivariogram are used in 

kriging interpolation, but the parameters of a semivariogram can also be used to describe  the 

spatial dependence (pattern) of a variable with distance (Huang et al. 2001).  There are several 

models to describe semivariogram. However, in this study, spatial variation was characterized 

using circular and spherical models.  

Calculating Semivariogram 

For a transect running across the field of equally spaced samples and measurements of 

soil properties, NDVI (pixel) and biomass yield there will be m pairs of observations separated 

by the same lag (distance). Thus, the semivariance γ(h) is estimated as:  

 

 ( )  
 

  ( )
∑ [ (  )   (    )]

  ( )

   
.    (1) 
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Where N(h) is the number of pairs separated by lag distance h; Z(xi) is measured sample value at 

point i; and Z(xi + h) is measured sample value at point i+h. 

To obtain the best fitted model, the model data frequency distribution was compared to a normal 

distribution. The shape of the data distribution is often described by the skewness coefficient. An 

absolute value greater than 2, the distribution is considered as skewed (Huang et al. 2001). A 

significant positive value indicates a long right tail; a negative value indicates a long left tail.    

Statistical Analysis 

Data analysis for each transect dataset was done to determine normality, descriptive 

statistics (mean, standard deviation, maximum, minimum and CV) and semivarigorams were 

defined and differences in nugget and total semivariance and range examined for each of the 

variable. The ArcView software package (Arcmap) was used to analyze the spatial structure of 

the data and to define the semivariograms.  Selection of the best fitting semivariogram model 

was based on the lowest RMSE (root mean square error) and confirmed by visual inspection.  

The lag-distance used was between 2 and 8 depending on the variable.   

Spatial correlation with distance for each variable was assessed quantitatively by dividing 

the nugget by the sill.  The classification classes describe by Cambardella et al. (1994) was used 

to describe the nugget/sill ratio: 1) < 25%, strong spatial dependence; 2) 25-75% moderate 

spatial dependence; 3) >75% spatially independent or pure nugget; and 4) Random when the 

slope of semivariogram is close to zero, regardless of nugget ratio.   
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RESULTS AND DISCUSSION 

Descriptive Statistics 

The descriptive statistics for TN, OC, NDVI and biomass yield  for 2012 and 2013  at 

fine (2.5 m) and coarse (10 m) scale sampling distance  for each transects were presented in 

Table 1. Mean TN was similar between soils, while higher OC and biomass yield was observed 

for the McLain silty clay loam for both years. Switchgrass yield increased for each soil from 

2012 to 2013, while OC and NDVI value decreased.  Distributions of TN, OC, NDVI and 

biomass yield were normally distributed for the fine scale sampling distance based on the 

skewness value (skewness Coefficient < 2). The McLain Silty Clay Loam NDVI was 

significantly negatively skewed at the coarse scale for both years of the study.  Log 

transformation generally reduced skewness, but skewness values for NDVI increased after the 

log transformation. The standard deviation and CV were used as estimates of variability (Table 

2). In general, greater variation for the soil parameters (OC and TN) were observed in the Dale 

silt loam, but the McLain silty clay loam reported greater variability for yield parameters (NDVI 

and switchgrass yield) based on the standard deviation and CV values. Switchgrass yield was 

highly variable with CV greater than 40% for Dale silt loam and 50% for McLain silty clay loam 

at fine and coarse scale. The yield ranges from 150 -816 g/0.10m
2
 in 2012 and 260 – 1463 

g/0.10m
2
 in 2013 for the Dale silt loam at fine and coarse scale. Yield for the McLain silty clay 

loam ranges from 35 -1655 g/0.10m
2
 and 55 -1498 g/0.10m

2
 in 2012 and 360 -2670 g/0.10m

2
 

and 390 -2580 g/0.10m
2
 in 2013 at the fine and coarse scale respectively.  The variation observed 

between the soils for the soil parameters and yield parameters may be attributed to intrinsic 

characteristics related to each soil and extrinsic sources. Rao and Wagenet (1985) define intrinsic 

variation as the natural variations within a soil and extrinsic variation as the variations that 
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imposed on a field as part of crop production practices.  However, since the same production 

practice was imposed on the entire field, the variation in soil parameters can be considered to be 

more intrinsic, whereas variation in yield parameters maybe attributed to a combination of 

intrinsic and extrinsic sources.   

Semivariogram Models 

The geostatistical parameters describing the soil and yield parameters from the transect 

datasets were listed in Table 3. Spatial variation was characterized using spherical and circular 

models.  For circular and spherical models, semivariance increases with distance between 

samples (lag distance) to a constant value (sill or total semivariance) at a given separation 

distance called the range of influence (Cambardella et al. 1994).   Samples separated by range 

distance are related spatially, and those separated by distance greater than the range are not 

spatially related. In other words, semivariogram models where the slope is not equal to zero 

describes samples that are spatially related, while models with slope that is close to zero (where 

the total variance equals the nugget variance) describes samples that are not related.  The 

semivariogram for the McLain silty clay loam fine and coarse scale TN exhibits a slope close to 

zero in 2013, suggesting that TN was not related at either the fine or coarse scale sampling 

distance. Likewise, coarse scale TN and switchgrass yield also reported slope close to zero on 

the Dale silt loam and the McLain silty clay loam  coarse scale NDVI for both 2012 and 2013.  

Semivariogram slope for OC was positive, except at the 2013 fine scale.   A positive slope means 

that samples within the distance of influence (range) were closely related. Positive slope was also 

observed for the fine scale NDVI and yield for both soils in 2012.  

According to Webster, (1985) estimates of range tend to be landscape dependent that 

may be interpreted to indicate the distance across distinct soil type.  However, in this study the 
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estimate of range can be attributed to small landscape changes within a soil type (i.e. wet 

spots). Range values were considerable variable among the different parameters. There were 

some similarities in range values for OC, TN and NDVI for the Dale silt loam at the fine scale 

sampling distance across both years. While, greater variation in range values were observed for 

the McLain silty clay loam and at the coarse scale sampling distance.  

 The distinct classification of spatial dependence based on Cambardella et al.(1994)  that 

uses a nugget ratio expressed as percentage of the total semivariance was used to determine the 

spatial dependence of  fine and coarse scale TN, OC, NDVI and switchgrass yield  of  Dale silt 

loam and McLain silty clay loam soils within the same field  for the 2012 and 2013 growing 

seasons. Semivariograms indicated strong spatial dependence for variables such as coarse scale 

OC for both soils in 2012 and 2013,  McLain silty clay loam fine scale switchgrass yield in 2012 

and 2013, and the Dale silt loam coarse scale  NDVI in 2013 (Table 3). Strong spatial 

dependence of OC was also reported for several other studies under different production 

practices. For example, Cambardella and Karlen (1999) reported strong spatial dependence of 

OC under conventional and organic field in Iowa, Huang et al. (2001) for soils under 

conservation reserve program land for 10 years and partially continuously crop land, and 

Cambardella et al. (1994) under tillage and no-till fields.  All these studies reported sampling 

distance greater than 10 m separating each sampling points. Therefore, the strong spatial 

dependence of the coarse scale OC reported in this study is a strong indication that the coarse 

scale sampling (10 m) was appropriate for determining the spatial dependence of OC. Moreover, 

the variations of spatial dependence for the fine scale OC.  Whereby, strong and close to a weak 

spatial dependence was observed for the Dale silt loam in 2012 and 2013 respectively, and weak 

and no spatial dependence for the McLain silty clay loam in 2012 and 2013 respectively, suggest 
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that the fine scale sampling  was not the most appropriate. Considering that the transects location 

differed each year of the study (Fig 1), the results of this study and others mention above are 

strong indication that spatial distribution of OC can be determined systematically from  samples 

collected at distance greater than 10 m apart.    

Spatial dependence of fine scale NDVI did not change from 2012 to 2013, but 

switchgrass yield spatial dependence did for the Dale silt loam. In 2012 and 2013 growing 

seasons, fine scale NDVI was moderately correlated for both soils, but fine scale switchgrass 

yield was weak and moderately correlated in 2012 and 2013 for the Dale silt loam respectively, 

and strongly correlated for the McLain silty clay loam (Table 3). In contrast, spatial dependence 

was more variable at the coarse scale.  The difference in the range distance was small from year 

to year. Similar range was observed for switchgrass yield at the fine scale for the McLain silty 

clay loam for both years, but differed for the Dale silt loam. The range of influence for the 

McLain silty clay loam was 5m for both years and the Dale silt loam was 36 and 5m in 2012 and 

2013 respectively. The larger range of influence in 2012 for the Dale silt loam could be a result 

of the inclusion of a few samplings from the McLain silty clay loam (Fig 1).   The small nugget 

ratio and small range values for the fine scale McLain silty clay loam switchgrass yield for both 

years (Table 3) is an indication of the high variable in stand density (Cambardella and Karlen 

1999) that was observed within the field. Likewise, the small range for the Dale silt loam in 2013 

is also an indication of a patchy distribution of switchgrass yield (Di Virgilio et al., 2007).  The 

McLain silty clay loam high clay content resulted in an extended wet period during the early 

spring precipitation that impacted the germination and stand establishment.  The average number 

of plants harvested per 0.1 m
2
 was 2.3 for the Dale silt loam and 1.4 for the McLain silty clay 

loam. Therefore, the higher biomass yield observed on the McLain silty clay loam was a result of 
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increased tillering as individual plants took advantage of the available space and less competition 

(Table 2). In addition, switchgrass stand established at row spacing of 0.2m have been observed 

to thin over time resulting in a more patchy distribution. This could very be the scenario with the 

Dale silt loam.  Di Virgilio et al. (2007) also reported a smaller range in describing the spatial 

distribution of switchgrass in a field from 2004 to 2005.   Spatial dependence at the coarse scale 

was inconsistent, thus a reliable spatial correlation could not be identified to describe the spatial 

patterns of NDVI and yield in this field.   

There was a consistent pattern in the spatial correlation between NDVI and switchgrass 

yield.  Moderate spatial correlation for fine scale Dale silt loam NDVI corresponds with a weak 

and a moderate spatial correlation for yield in 2012 and 2013 respectively. Similarly, a moderate 

spatial correlation for fine scale McLain silty clay loam NDVI corresponds with a strong spatial 

correlation for yield in 2012 and 2013.  At the coarse scale, weak spatial dependence for the Dale 

silt loam NDVI correspond to a random distribution for the Dale silt loam yield in both years.  

The McLain silty clay loam coarse scale NDVI and yield were both randomly distributed in 

2012, but NDVI was randomly distributed and yield was strongly spatial correlated within a 

distance of 65m in 2013.  Curran (1986) pointed out that consideration of sample size is of 

particular importance when remotely sensed data are correlated to ground data or whenever 

ground data are being estimated from remotely sensed data. The sample size in this study was 

identical for ground and remotely sensed data. Therefore, the small variation was assumed to be 

a result of difference in sample area used to compute the NDVI (0.25 m
2
) and sampling area (0.1 

m
2
)  for the biomass.  The computed NDVI is based on the extraction of a value for the transect 

point within a pixel in relation to the point location, while the actual sampling collection involve 

harvesting of a 0.5 m row within the location of each transect point.   Based on the sampling 
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approach, the consistency in the spatial pattern observed is a strong indication that remotely 

sensed data could be used to describe the spatial distribution of switchgrass yield across the two 

soil types within this field.   

In general, remote sensing approach for determining the best sampling approach to 

enable the calculation of means with minimum variance offers numerous advantages over actual 

field samples, but should always be support by ground sampling data.  For example, in this study 

a systematic sampling at distance of samples 2.5 m apart was found to be appropriate to describe 

the spatial distribution of NDVI for both soils.  On the contrary, the actual ground sampling 

suggests that a random sampling approach might be appropriate for the Dale silt loam and 

systematic sampling at 2.5 m for the McLain silty clay loam. Sampling at 2.5m distance is 

impractical to most producers as it is labor intensive and time consuming.  The use of remote 

sensing for the estimation of switchgrass yield can be done at this sampling distance 

inexpensively and with less labor and time.  These results indicate that remote sensing 

measurements could be used to adequately describe the spatial distribution of switchgrass yield 

at fine scale.   

To evaluate temporal variation from year to year, fine scale NDVI was computed for the 

2012 and 2013 transect points using the aerial imagery of 2013 and 2012 respectively.  The 

result shows similar spatial correlation for fine scale NDVI using the 2013 NDVI values and 

2012 transects points for both soil types (Table 3).  When  NDVI was computed from the 2013 

aerial image for the 2012 transect points  the Dale silt loam fine scale NDVI was moderately 

correlated over a range of 39 m an increase of 10 m and the McLain silty clay loam was 

moderately correlated over a range of 5 m a decrease of 5m compared to the 2012 NDVI. 

Similarly, when  2012 NDVI  was computed with the 2013 transects points the Dale silt loam 
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was strongly correlated over a range of 9 m a decrease of 18m  and the McLain silty clay loam 

strongly correlated over a range of 23 m a decrease of 1m compared to the 2013 NDVI. These 

results further suggest that variation was small from year to year for each of the soil type within 

the field and also illustrates the benefit of using remote sensed data for describing spatial 

distribution of switchgrass yield.  

Spatial dependence of TN was ranked moderate, weak or random (no spatial 

dependence). Total N in 2012 was strong and moderate spatial dependence at the coarse scale 

over a distance of 54 and 66 m for the Dale silt loam and the McLain silty clay loam 

respectively. In 2013, randomness dominated at the coarse scale for both soil types. At the fine 

scale, weak spatial dependence was observed for both soils in 2012 and for the Dale silt loam in 

2013, but was random for the McLain silty clay loam (Table 6.3).  Spatial pattern of OC and 

biomass yield was in general somewhat stable within soil type for both years, but TN varied 

greatly.  The variation of spatial dependence of TN is not surprising.  It is well documented that 

soil nitrogen is influenced by environmental factors such as temperature and moisture. Therefore, 

the warmer temperature and wetter condition prior to sampling in 2012, opposed to cooler 

temperature and drier condition prior to sampling in 2013 could have attributed to differences in 

the spatial patterns observed.    

Some researcher hypothesized that strongly spatially dependent properties may be 

controlled by intrinsic variations in soil characteristics such as texture and mineralogy and weak 

spatially dependence properties may be controlled by extrinsic variations such as fertilizer 

application and cropping practice (Rao and Wagenet, 1985; Cambardella et al., 1994).  

Therefore, the weak to random spatial correlation observed for TN at the fine and coarse scale 

could be seen as indicators of the influence of extrinsic variations, such as fertilizer application 
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and cropping practice and the medium  spatial dependence of NDVI controlled by  the combined 

effect of the intrinsic and extrinsic factors. On the contrary, the consistent strong spatial 

dependence of coarse scale OC across the different soil type suggest that it may be controlled by 

extrinsic factors such as cropping system and residue removal. Whereas, the differences in 

spatial correlation for switchgrass yield between the two soils further suggest that soil surface 

texture was the dominant influence.  Di Virgilio et al. (2007) study evaluated  the spatial 

dependence of  numerous soil characteristics (silt content, clay content, sand content, organic 

matter , soil strength, soil moisture, pH, P and N) based on nugget/ sill ratio (Cambardella et al., 

1994) in a switchgrass field found only clay content to have strong  spatial correlation with 

distance.  The soils used in this study are almost identical with only difference is that the McLain 

silty clay loam contain 31% clay to 20 % of the Dale silt loam (Web Soil Survey, 2013).  

 

CONCLUSIONS 

Since most spatial analysis studies of a field involved multiple soil types.  Similar spatial 

pattern of OC across soil type and variation in yield and TN could suggest that the best precision 

of OC maybe achieved by systematic sampling. While the best precision of switchgrass yield and 

TN could be achieved by random sampling.  The coarse scale sampling was appropriate for 

determining the spatial variation of OC, while fine scale sampling was appropriate for 

switchgrass yield. The relationship between the spatial dependence of NDVI obtained from 

aerial imagery and the spatial dependence of switchgrass yield from ground sampling suggested 

that NDVI may be used to determine the appropriate sampling approach for measuring the 

switchgrass yield.  Finally, spatial patterns described for the different parameters indicates that 
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spatial dependence of coarse scale OC was independent of soil type, fine scale switchgrass  yield 

was greatly influenced by the soil type (clay content)  and  spatial dependence of TN could not 

consistently be identified from year to year on the same soil type.   
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Table 6.1 Precipitation (mm) and temperature (ᵒC) at Chickasha, Oklahoma during 2012 and 

2013. 

Months Rainfall (mm) Temperature (ᵒC) 

  2012 2013 2012 2013 

Jan  50 38 5 4 

Feb 16 73 7 6 

Mar 113 27 15 9 

Apr 79 269 18 13 

May 150 76 22 20 

Jun 71 113 26 26 

Jul 48 145 30 27 

Aug 43 24 28 27 

Sep 117 49 24 28 

Oct 14 58 16 16 

Mean/ Total 701 872 19 18 
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Table 6.2.  Statistical parameters of selected soil properties, NDVI and switchgrass yield along 

two 100 m transects at two sampling distance over two growing seasons.  

Transects (T1 and T2) were 100 m long with sample points every 2.5  and 10 m apart, T1 was located on a Dale silt 

loam and  T2 on a McLain silty clay loam within  the  same switchgrass field in Chickasha Oklahoma.  

  

Parameter Transect and 

Sampling distance 

Sample 

No. 

Mean Stand. 

Dev 

Minimum
 

Maximum Skewness Coeff. Var. 

  

 2012 

TN (g kg
-1

)   T1@2.5 m  40 1.10 0.20 0.70 1.60 0.29 19 

   T1@10 m  9 1.10 0.20 0.70 1.40 -1.01 20 

   T2@2.5 m 40 1.30 0.20 0.90 1.60 -0.01 14 

   T2@10 m 9 1.30 0.20 1.00 1.40 -1.01 13 

OC (g kg
-1

)   T1@2.5 m  40 11.2 2.60 7.80 20.7 1.26 23 

   T1@10 m  9 13.0 2.40 8.10 15.30 -0.61 18 

   T2@2.5 m 40 14.9 1.40 12.20 18.70 0.72 9 

   T2@10 m 9 14.7 1.50 12.60 16.90 0.45 10 

NDVI     T1@2.5 m  40 0.491 0.03 0.416 0.545 -0.45 7 

   T1@10 m  9 0.492 0.02 0.464 0.519 -0.68 4 

   T2@2.5 m 40 0.488 0.08 0.153 0.611 -1.85 16 

   T2@10 m 9 0.470 0.13 0.150 0.610 -2.10 28 

BM (g 0.1 m
-2

)   T1@2.5 m  40 403 185 150 816 0.66 46 

   T1@10 m  9 385 238 150 816 0.94 62 

   T2@2.5 m 40 619 383 35 1655 0.72 62 

   T2@10 m 9 720 505 55 1498 0.47 70 

  

 2013 

TN (g kg
-1

)   T1@2.5 m  40 1.10 0.10 0.90 1.30 -0.15 8 

   T1@10 m  9 1.10 0.10 1.00 1.20 -0.18 7 

   T2@2.5 m 40 1.20 0.10 1.10 1.30 -0.07 6 

   T2@10 m 9 1.20 0.00 1.20 1.30 1.33     0.3 

OC (g kg
-1

)   T1@2.5 m  40 11.0 1.10 9.00 13.7 0.29 10 

   T1@10 m  9 11.1 1.20 9.50 13.7 0.88 11 

   T2@2.5 m 40 13.4 0.60 12.4 15.5 0.98 4 

   T2@10 m 9 13.3 0.20 12.4 14.0 -0.39 5 

NDVI   T1@2.5 m  40 0.358 0.05 0.267 0.455 0.04 13 

   T1@10 m  9 0.348 0.04 0.267 0.401 -0.72 12 

   T2@2.5 m 40 0.444 0.07 0.267 0.600 -0.24 17 

   T2@10 m 9 0.437 0.01 0.267 0.497 -1.97 2 

BM (g 0.1 m
-2

)   T1@2.5 m  40 538 228 260 1463 1.80 42 

   T1@10 m  9 712 342 260 1463 1.04 48 

   T2@2.5 m 40 1051 515 360 2670 1.28 49 

   T2@10 m 9 1087 681 390 2580 1.20 63 
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Table 6.3. Semivariogram models and spatial distribution parameters of switchgrass yield, total 

nitrogen and organic carbon collected across two seasons (2012 and 2013)  at different sampling 

distance (2.5m and 10m) along two 100 m transects on different soil types (Dale silt loam and 

McLain silty clay loam) within the same field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†Nugget ratio = (Nugget semivariance/sill)*100 , 
1 
NDVI computed  for T1@2.5m  using 2013 aerial image, 

2
NDVI 

computed for T2@2.5m   using 2013 aerial image, 
3
NDVI computed for T1@2.5m   using 2012 aerial image, and 

4
NDVI computed for T2@2.5m  using 2012 aerial image. ‡Spatial Class: S= strong spatial dependence (% Nugget 

ratio <25); M = moderate spatial dependence (% Nugget ratio between 25 and 75); W= weak spatial dependence (% 

Nugget ratio >75); R = random (slope of semivariogram close to zero, regardless of nugget ratio). 

Parameter Transect and 

Sampling distance 

Model Range (m) Nugget Ratio† Class‡ RMSE 

  

 2012 

TN (g kg-1)   T1@2.5 m  Spherical  35 75 W 0.02 

   T1@10 m   0 100 R 0.02 

   T2@2.5 m Spherical 56 80 W 0.02 

   T2@10 m Spherical 66 49 M 0.02 

OC (g kg-1)   T1@2.5 m  Spherical 90 20 S 0.13 

   T1@10 m  Spherical 56 22 S 0.17 

   T2@2.5 m Spherical   8 80 W 0.15 

   T2@10 m Spherical 65 0 S 0.07 

NDVI     T1@2.5 m  Spherical 29 48 M 0.03 

   T1@10 m  Spherical 56 76 W 0.03 

   T2@2.5 m Spherical 10 38 M 0.07 

   T2@10 m  0 100 R 0.14 

 T1-NDVI131 Spherical 39 70 M 0.04 

 T2-NDVI132 Spherical 5 63 M 0.07 

BM (g 0.1 m-2)   T1@2.5 m  Spherical 36 87 W 191 

   T1@10 m     0 100 R 258 

   T2@2.5 m Spherical   5 11 S 366 

   T2@10 m    0 100 R 524 

  

 2013 

TN (g kg-1)   T1@2.5 m  Spherical 52 75 W 0.01 

   T1@10 m   0 100 R 0.01 

   T2@2.5 m  0 100 R 0.01 

   T2@10 m  0 100 R 0.01 

OC (g kg-1)   T1@2.5 m  Circular 5 74 M 0.08 

   T1@10 m  Spherical 78 5 S 0.08 

   T2@2.5 m  0 100 R 0.05 

   T2@10 m Circular 54 9 S 0.03 

NDVI   T1@2.5 m  Spherical 27 64 M 0.05 

   T1@10 m  Spherical 65 2 S 0.03 

   T2@2.5 m Circular 24 70 M 0.07 

   T2@10 m  0 100 R 0.08 

 T1-NDVI123 Spherical 9 0 S 0.03 

 T2-NDVI124 Spherical 23 25 S 0.04 

BM (g 0.1 m-2)   T1@2.5 m  Spherical 5 60 M 244 

   T1@10 m   0 100 R 391 

   T2@2.5 m Spherical 5 32 M 534 

   T2@10 m Spherical 65 6 S 468 
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Figure 6.1.  Site map with location of sampling transects in relation to soil map units for the 2012 

and 2013 growing seasons. Transect 1  (T1) was located on a Dale silt loam (Fine-silty, mixed, 

superactive, thermic Pachic Haplustolls)  and transect 2 (T2) on a McLain silty clay loam (Fine, 

mixed, superactive, thermic Pachic Argiustolls). Sample data was collected at points 2.5 m apart 

(fine scale) and 10 m apart (coarse scale). 
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CHAPTER VII 

GENERAL CONCLUSIONS 

 

High biomass yield, acceptable quality and reliable supply of feedstock material are three 

important components for the success of a bioenergy industry.  However, for profitability of the 

industry production cost need to be low.  Bioenergy crop production systems and nitrogen 

management was the central focus of this project.  Nitrogen is one of the major players in 

limiting biomass yield , as well as nitrogen concentration in the biomass can affect the efficiency 

of the biomass conversion into biofuel.  Evaluating nitrogen management on biomass yield and 

quality was the ultimate goal of this project.  Remote sensing technique which has shown 

potential in crop management for number of years was employed as a major tool for monitoring 

crop N status, predicting biomass yield and N concentration within the plant and biomass 

material and describing the spatial variability of biomass yield within a switchgrass field.  

 In terms of high biomass yield, minimal amount of N fertilizer < 84 kg ha-1 was required 

to produce maximum biomass yield. The amount of biomass produced was directly related to the 

amount of rainfall received. For example, Woodward reached less rainfall than Stillwater and 

consistently produced less biomass yield and above normal rainfall in 2013 result in high 

biomass yield at both locations.  Several researchers across the USA have already concluded that 

rainfall is the major driver for biomass yield.  Crop species have different yield potential and is 

also important in the puzzle of achieving high biomass yield. High biomass sorghum produced 

significantly higher biomass yield (24Mg ha-1) than the perennial grass systems of monoculture  
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switchgrass (13 Mg ha-1) and switchgrass within a mixture (16 Mg ha-1) under normal condition 

with adequate rainfall at Stillwater. At Woodward in 2013, no yield was available for the high 

biomass sorghum due to severe lodging, but switchgrass (7 Mg ha-1) and mixed grass (7 Mg ha-

1) yields were about 50% lower than that of Stillwater.   High biomass sorghum also failed in 

Woodward in 2011 and 2012 due to dry condition during the growing season. In Stillwater, high 

biomass sorghum produced yields similar to the perennial grasses during the dry period of 2011 

and 2012. Clearly, high biomass sorghum has the potential to produce high yields, while the 

perennial grasses are a more reliable source of biomass yield that has a wider adaptability to 

extreme conditions.  

 Biomass yield of the high biomass sorghum and the perennial grasses could be 

successfully predicted using canopy spectral reflectance collected in the months of June and July. 

However, identification of the optimal wavebands that are more strongly related to the biomass 

in the different species could significantly improve prediction models.  The use of partial least 

square regression (PLSR) models that make use of the entire spectra also improve biomass 

estimation significantly over the use of the best narrowband indices, but  the narrowband indices 

were more stable and reliable in estimating biomass across growing seasons.  The most useful 

prediction model can be achieved by identifying the optimal wavebands that is strongly related to 

the biomass yield of the specific crop.   

 Nitrogen concentration in biomass is critical with regards to the crop productivity, but 

can also affect the efficiency of the conversion process into biofuel. While high N concentration 

(>3%) is desirable for the enzymatic conversion process, low N (< 3%) is more suitable for the 

thermochemical conversion process.  Biomass quality (hemicellulose, cellulose, and lignin) was 

affected by the species, but not N management and environmental condition.  High biomass 
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sorghum had lower hemicellulose, cellulose and lignin than the perennial grasses. These 

components also showed little variation (< 10%) across the years and locations. The greatest 

variation occurred in the extreme dry condition of 2011.  Nitrogen concentration as expected was 

influenced by N application, as application of N increased N concentration compared to 

unfertilized. However, increasing N application rate beyond the 84 kg ha-1 did not significantly 

increase N concentration in the biomass. Most importantly, N concentration at final harvest was 

below 3% throughout the entirety of this study, indicating that these feedstock materials can be 

efficiently converted into biofuel by the thermochemical conversion process with minimal 

environmental concern.  

 Simple ratios R2080 /R2190 for TN and R2190/R2230 for ADF, NDF and ADL were 

similar to the full spectra calibration in estimating the feedstock composition in grounded 

samples. Likewise at canopy level NNVI computed with R400 and R510 for high biomass 

sorghum and R1500 and R2260 for perennial grasses were similar to the full spectra calibration 

in estimating N concentration.  Therefore, identification of the optimal wavebands is essential in 

developing vegetation indices and simple ratios for estimating of biochemical components within 

a plant.  These results suggested that the full spectra do not provide more information, because 

only a few of the wavebands are actually useful as the majority is redundant.  This study has 

identified optimal wavebands that are strongly associated with estimating N concentration and 

biomass yield in high biomass sorghum and perennial grass systems of monoculture switchgrass 

and mixed grasses.  The results of this study agree with other researchers that the focus should be 

on the design of optimal sensors for specific application rather than having a continuous spectral 

coverage. Knowledge of these optimal wavebands can save time and resources in future studies 

of these cropping systems.  
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