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Abstract 

Travel time (TT) is a major concern for commuters and those who implement 

traffic management systems. This indicator provides information to operators about 

road conditions and helps travelers plan trips, avoid congestion, and save fuel. A 

number of technologies are currently used in the transportation industry for estimating 

TT and detecting vehicles (e.g., radar, inductive loop detectors [ILD], Bluetooth [BT] 

scanners, cellular phone signals, surveillance cameras, and others). This research 

centers on ILD and BT scanners for providing a real-time TT estimation system. 

This thesis proposes Internet of Things (IoT) system architecture for detecting 

vehicles and estimating real-time TT. Several techniques were investigated for re-

identifying vehicles based on inductive loops by preprocessing signature signals and 

searching for correlations to estimate TT between two locations. The proposed ILD 

system will be accompanied by a BT scanner, serving as a complementary system to 

compare and validate TT estimation efficiency. 

This research introduces new approach for vehicle re-identification by 

computing Relative Entropy and Pearson correlation between ILD signatures, and then 

estimating TT based on the highest correlated signatures. To clear measure noise, TT 

for vehicles is assumed to follow the same pattern within a certain time frame. Thus, TT 

values are arranged in time series groups before applying a spike detection algorithm to 

determine the TT range with the highest number of vehicles. A data spike is considered 

for estimating TT. Given that the number of vehicles within the spike is greater than 

number of vehicles in all other data groups, TT will be the mean value of TT within the 

spike. 
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Chapter 1: Introduction 

The popularity of utilizing just-in-time manufacturing processes and complex 

supply chain networks highlights the value of travel time (TT) reliability to businesses, 

as well as commuters and individuals traveling for leisure. An increasing emphasis on 

customer-based performance metrics makes network and TT reliability essential 

measures for rating transportation agency performance and determining the effectiveness 

of mitigating roadway congestion and transportation delays. TT is also a time-based 

performance measure of transportation quality, aiding departments of transportation in 

planning highway expansions and scheduling maintenance activities. TT has proven 

reliable for traffic surveillance on a day-to-day basis for detecting traffic bottlenecks, 

incidents, work zones, special events, and other major traffic conditions.   

Probe-based data has primarily been used by departments of transportation to 

measure TT on road segments and compare TT between commercial and passenger 

vehicles. Probe-based TT data is historical data collected on a daily basis in 5-minute 

intervals [6]. 

Ever evolving technologies and the rapid growth of the Internet of Things (IoT) 

systems during the past decade have made the precise measurement of real-time TT easier 

than ever before. Many technologies are now implemented to detect vehicles and estimate 

TT-per-vehicle in real time (e.g., Bluetooth [BT] scanners, surveillance cameras, toll tag 

readers, inductive loops detectors, cell phone signals, and GPS, among others) [7], [8]. 

IoT systems form a network for the physical world, which enables various 

embedded devices to connect to the internet and exchange data in real time. This 

technology senses and remotely controls different types of systems. IoT systems have 
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been gaining more attention in the last few years in both academic and industrial domains. 

Currently, IoT applications range from health monitoring and smart grid systems to 

intelligent transportation systems. [9], [10], [11]. 

This research presents an overview of IoT system architecture for two devices that 

estimate real-time TT—one based on BT technology and the other based on inductive 

loop detectors (ILD). Both consist of on-ground units placed on various highway 

segments that have been identified throughout the state of Oklahoma. The units are 

connected to either BT scanners or ILD. The former can detect passing vehicles equipped 

with BT devices; the latter senses passing vehicles based on the magnetic field generated 

when a vehicle passes over an ILD. Both systems send their data to the cloud for 

estimating real-time TT. 

An algorithm is proposed using the magnetic signatures of ILD to re-identify 

vehicles crossing a highway segment in Oklahoma City. The algorithm preprocesses the 

data to clean the noise; estimates vehicle speed and length; applies speed-based 

normalization for vehicle signatures; and then calculates TT between origin-destination 

pair by correlating signatures using Pearson correlation and relative entropy. A spike 

detection algorithm is applied to cancel out noise in detected TT values.  

The main goal of this project is building a sustainable IoT system for estimating 

real-time TT by evaluating BT technology and ILD performance. Evaluation is based 

on the following factors. 

1. Data penetration 

2. Distance-based TT estimation accuracy 

3. Individual vehicle TT estimation accuracy 
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4. Alert detection (e.g., short term for accidents and long term for road work)   

5. Speed estimation 

6.  TT reliability (i.e., probability of a traveler to complete a given origin-

destination trip within a prescribed time). 

This thesis is organized as follows. Chapter 2 provides necessary background 

information for describing the motivation for the research presented in this thesis, 

including 

o TT and traffic metrics, describing data metrics required by ODOT for estimating 

TT, monitoring roadways, determining the efficiency of road conditions, and 

planning maintenance procedures, 

o Methods for TT estimation, describing systems currently used to estimate TT, as 

well as technologies available for vehicle detection and TT estimation, and 

related research work, describing related work for estimating TT using BT and 

ILD. 

Chapter 3 describes the IoT system used to collect the data, including 

o IoT system overview with a brief history of IoT systems,  

o IoT system design concepts, describing different types of IoT systems, as well as 

design concepts that should be included, and 

o REECE system architecture, describing the REECE IoT device and briefly 

discusses hardware system and software design. 

Chapter 4 describes methods for estimating TT using BT scanners, including 

o Background of BT technology,  

o Ubertooth hardware used for sniffing vehicles equipped with a BT device, and 
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o Vehicles detection based on BT devices and BT TT analysis, discussing 

estimated TT values for reliability and alert detection.  

Chapter 5 describes ILD systems and data, including  

o ILD overview, describing hardware components and measurement methods, 

o ILD signature physical description, describing signatures generated by ILD 

and the features that identify a certain vehicle, the quality of an ILD signature, 

and signature uniqueness,   

o Vehicle identification utilizing ILD Signatures, describing methods used for 

preprocessing ILD signatures, as well as correlation methods for re-identifying 

vehicles based on their signatures, and 

o ILD TT analysis, discussing estimated TT values relative to reliability and 

alerts detection.  

Chapter 6 provides a comparison for TT values between ILD and BT, including  

o TT reliability, comparing BT and ILD, and 

o Real-time TT estimation, comparing the quality of data reported by the BT 

and ILD systems, as well as the frequency of reporting accurate TT estimations.  
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Chapter 2 – Background 

TRAVEL TIME AND TRAFFIC METRICS 

Travel time (TT) is one of the best indicators of traffic system performance. An 

accurate real-time traffic surveillance system is crucial for determining metrics for 

intelligent transportation systems (ITS) [15], [16]. TT information aids individual 

travelers with travel route decisions, improves roadway efficiency, increases 

transportation systems safety, and maximizes existing transportation infrastructure 

capacity.  Retailing and shipping businesses are better prepared to manage their delivery 

systems and optimize shipping costs. 

The U.S. Federal Highway Administration (FHWA) predicts a 23% increase in 

vehicle miles traveled by 2032 [12]. According to the World Health Organization 

(WHO), 1.25 million people die and up to 50 million injuries occur each year on the 

world’s roads [13]. Furthermore, 44% of the U.S. roadways are classified as congested. 

According to the 2015 Urban Mobility Scorecard report [14], traffic congestion costs 

the U.S. $160 billion each year. Therefore, it is of great importance to monitor traffic in 

a robust and accurate manner. 

A reliable traffic monitoring system should detect traffic conditions not only in 

free flow but also when bottlenecks result from increased merging/diverging demand 

at on/off-ramps and lane drops or when traffic becomes congestion due to 

exceeding demand for limited roadways. A more accurate TT estimation system 

should detect highway performance per lane, providing short-term alerts due to 

accidents or storms and long-term alerts for work zones and infrastructure 

maintenance. [17], [18]. 
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Following is a list of traffic monitoring technologies currently used by 

transportations agencies to estimate TT. 

1. Automatic license plate readers 

2. Global positioning system 

3. Cell phone signal monitoring 

4. Crowdsourcing 

5. Vision-based vehicle re-identification systems 

6. BT identification detectors 

7. In-pavement magnetic detectors 

METHODS FOR TRAVEL TIME ESTIMATION:  

Automatic License Plate readers for travel time estimation:  

Automatic License Plate Matching (ALPM) techniques are based on collecting 

license plate numbers with a time stamp at a collection points (i.e., check points), and 

then matching the numbers between consecutive check points by computing the 

difference of arrival to estimate TT [20]. 

Several methods have been introduced for this purpose. The most commonly 

used method utilizes cameras to capture vehicle images, identify the license plates, and 

automatically process the license plate text/numbers. Cameras are typically equipped 

with infrared lighting to facilitate image capture during daytime and nighttime [21], 

[22]. Cameras are often installed on automatic toll collection points and inside law 

enforcement vehicles. 

ALPM can determine TT based on a large sample of vehicles. This method is 

useful for understanding variability of TT among vehicles within the traffic stream. 
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Another benefit of this technique is equipment portability. It should be noted that 

ALPM provides a continuum of TT data only during short collection periods (e.g., 15-

minute average of continuous data), and TT data is limited to locations where video 

cameras can be positioned or other means of visual data capture is possible. 

Travel Time based on Global Positioning System:  

TT based on a Global Positioning System (GPS) utilizes probe vehicles for 

monitoring traffic and estimating TT (i.e., probe vehicles report locations, speed, and 

time stamps to the main system). TT between two locations is estimated using a 

dynamic Bayesian network after properly scaling the routes that vehicles travelled, and 

then matching the map discretization [23], [24]. Systems that report these types of data 

measure traffic performance on a monthly and yearly basis and categorize the 

information under a historical data reporting system. 

The major disadvantage of a GPS-based system is the low penetration rate of traffic 

flow (i.e., a vehicle sends one sample every minute, and number of samples at each road 

segment is three to eight samples every 5 minutes). Also, vehicles do not provide 

detailed information about roadway delays.  

Cell Phone Signal Monitoring:  

Cell phone signal monitoring takes advantage of the fact that mobile phones 

must conform to the standards of the global system for mobile communications (GSM), 

which has the ability to measure the signal strength from the associated cell tower and 

the six strongest neighboring cell towers [26] (i.e., received signal strength [RSS]). 

Recently, cellular networks have reached 100% coverage in all major cities with 

slightly lower coverage on highways that connect cities. Although high cellular 
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technology usage and the ability to measure cell phone fingerprints using cell phone 

signals creates a rich environment for estimating TT by leveraging GSM and 4G 

networks, disturbances in radio propagation caused by movement and changes in 

atmospheric conditions cause fluctuations in received signal strength. The result is 

erroneously associating cell phones with cell towers over time.  

Determining TT using cell phone signals can be estimated by determining the 

location of the vehicles on road segments based on RSS fingerprints, and then 

estimating the direction and speed of a vehicle based on the changes of the signal power 

levels [25].    

Crowdsourcing:  

Widespread accessibility to the internet and the influence of social media 

networks are increasing the importance of connecting virtual communities for 

knowledge sharing. Two types of internet platforms can be leveraged for traffic 

surveillance.  The first type relies on gathering geo-tagged pictures, video, and posting 

information that people share on social media networks about traffic related news, like 

accidents and congestions [27], [28]. The second uses dedicated navigation web-based 

services (e.g., Google maps, Bing maps) in which commuters agree to share their 

location coordinates when using the service [29]. Although the former reports 

information and images, its use for real-time traffic monitoring is unsafe, as it 

encourages motorists to use their cell phone while driving. Doing so will distract a 

driver from paying attention to the road. The latter is becoming more reliable for 

estimating TT and planning travel routes, as an increasing number of people are using 
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such web-based service. This method does not require drivers to proactively share 

information. 

Vision-based vehicle re-identification systems:  

Vision-based, re-identification systems consist of multiple video cameras 

strategically placed to record traffic flow at consecutive locations. Video images of 

vehicles are captured by applying several object recognition algorithms so that 

recognizable features (e.g., color, vehicle dimensions using 3D and 2D boxing, light 

shape, manufacturer trade mark) can be extracted. This method has proven highly 

successful for estimating TT [30], [31].  

Notably, however, many vision-based, TT estimation studies use simulated data 

because current technologies for identifying vehicles are not compatible with systems 

that require low-power consumption, low data traffic, and low cost.  

Related Research Work: 

Bluetooth Identification Detectors:  

A BT device can be connected via spectrum scanning mechanism to determine 

its Media Access Control addresses (MAC address), which is a unique 48-bit identifier 

that is available in the coverage area [32]. Next, a hand shaking step with a selected 

device can be deployed to authenticate the connection and commence data transfer. 

Similarly, Bluetooth Traffic Monitoring Systems (BTMS) scan the spectrum at specific 

checkpoints to capture all available BT devices and temporarily store their MAC 

addresses with a detection time stamp. When the same MAC address appears at another 

checkpoint, BTMS measures TT between the two checkpoints by calculating the 

difference of detection times [35]. 
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BTMS is unable to estimate TT, however, unless the MAC address of a BT 

device is detected at both an origin and a destination point. Even so, BTMS is a 

valuable tool for Intelligent Transportation Systems (ITS) due to its simplicity in 

estimating TT and low cost for deploying BT scanning sites. 

Applying BTMS in the traffic domain started some 10 years ago with the goal of 

enhancing ITS applications (i.e., using TT to perform traffic light management, 

suggesting alternative routes to avoid work zones). The city of Houston, TX is well 

known for its comprehensive BTMS operation [4], [39]. 

 The WHO reports [34] that using cell phones while driving is a major cause of 

accidents, primarily because their usage distracts drivers. As a result, many countries 

now restrict the use of cell phones and ban drivers from using hand-held mobile 

smartphones. Consequently, the 12 leading, global vehicle manufacturers have agreed 

to install BT devices for supporting hands-free smart phone communication [33]. The 

number of vehicles using BT devices continues to rise significantly, which improves the 

accuracy of BTMS as BT device penetration in the traffic flow increases. 

In spite of the rapid growth in applying BTMS in ITS, BT TT estimation suffers 

measurement spatial error due to the fact that BTMS calculates zone-to-zone instead of 

point-to-point TT. Spatial error occurs when detector coverage area is determined by 

antenna type, transmission power, and environmental conditions, which affect vehicle 

distance, TT, and velocity measurements [36], [37], [38]. 

Recommended suggestions for improvement include using a directional antenna, 

shortening the coverage area of the BT detectors, or using a received signal strength 

indicator (RSSI) for locating the vehicle within the coverage zone. Directional antennas 



11 

improve accuracy because BT detectors are limited from detecting BT devices traveling 

on unmonitored roads. However, using RSSI as a measurement metric is not a viable 

approach because each BT chip class transmits a variable power. Also, shortening a 

detector’s coverage area reduces the number of detected vehicles. Increasing a 

detector’s transmission power increases the number of detected vehicles, such that 

spatial error can be compromised when averaging the values of all detected vehicles.  

In-pavement magnetic detectors:  

Magnetic detectors, especially ILD, were first introduce as part of traffic 

monitoring back in the 1960s, and they have since become the most widely used sensor 

in traffic management systems. ILD creates a magnetic signature of a detected vehicle 

when passing over the sensor [41]. ILD has aperture, which means that information 

about the vehicle geometry is “masked” in its magnetic signature due to the averaging 

properties of ILD. Quantitatively, this process is characterized by spatial transfer 

function (i.e., spatial impulse response) of the sensor. Information recovery from the 

signal is conditioned by the knowledge of this transfer function [40]. 

ILD applications are beneficial when high-resolution data is required. For 

example, the method has been applied for point-based measures (e.g., vehicle counts, 

classification) [46]; section-based measures (e.g., emission estimation, TT estimation, 

speed), and origin destination-based measures (e.g., long distance TT estimation). 

Authors in [45] proved vehicles could be classified according to generated ILD 

signatures. Their work developed a novel approach for classifying vehicles into five 

classes by applying discrete Fourier transformation to clear the noise. Principle 

component analysis was used for decorrelation and dimensionality reduction. Finally, 
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parameters were classified into a supervised, three-layer backpropagation neural 

network. Accuracy reached 64% without the use of a fault threshold and 85% when the 

threshold was applied to the correlation metric. 

Common practices for estimating TT using inductive loop detectors include 

measuring volume and speed at detection locations and assuming identical traffic 

conditions prevail along the entire segment between detection points. Many studies 

have proven that these estimates are not accurate and may contain significant 

errors [5], [43], [44] [47].  

Few studies have investigated origin-destination TT estimation based on 

vehicle re-identification using inductive loops signatures. A well-known study by 

researchers at the University of California at Irvine developed a real-time, inductive 

loop signature-based vehicle re-identification algorithm (RTREID-2) that utilized 

piece-wise slope rate to compare similarities between signatures [3]. The algorithm 

was tested on a dataset collected from three checkpoints located 0.33mi and 1.3 mi 

apart during peak morning hours travel between 6:30 and 10 a.m. The system was 

equipped with video recording, and data was divided into nine discrete time 

periods, each 5-minutes in length at 6:35, 7, 9, and 9:35 a.m. for uncongested road 

status and 7:35, 8, 8:10, 8:20, and 8:35 a.m. for congested road status. A number of 

preprocessing steps (e.g., data cleaning of corrupted signatures, vertical 

normalization, noise elimination by dropping the lower 20% values of the 

magnitude, data interpolation using cubic spline method ensuring each pair of 

signatures was equal in length) were applied to the signatures prior to comparing 

piece-wise slope rates. The final step in the algorithm subtracted differences in the 

piece-wise slope rates and selected correlated signatures based on the minimum of 
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the total differences between signatures. Only 43.8% of vehicles were re-identified 

using this algorithm with 75% of TT accuracy in the free flow state and 52% of TT 

accuracy in congested state. 

Another study [48] used cross correlation as a factor to re-identify vehicle 

signatures. Data was limited to signatures captured on lead and lag loops at each 

checkpoint and validated with a video recording as a ground truth. Low pass filtering 

was applied to reduce signature noise, and speed-based normalization was used to 

preprocess the signatures. Finally, cross correlation was implemented to compare lead 

signature on checkpoint 1 with lead signature on checkpoint 2; lag signature on 

checkpoint 1 with lead signature on checkpoint 2; lead signature on checkpoint 1 with 

lag signature on checkpoint 2; and lag signature on checkpoint 1 with lag signature on 

checkpoint 2. The goal was determining highly correlated signatures and estimating TT 

based on detection time differences. TT results were clustered into two groups, 

separating accurate TT measures from erroneous measures. Under controlled traffic for 

1 hour and 15 minutes and 0.7 miles distance, this algorithm provided 40.57% TT 

accuracy. 
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Chapter 3 – IoT Systems 

IoT Systems overview 

 The term Internet of Things (IoT) was first introduced by Kevin Ashton in 1998 

[49]. However, the idea of connecting things to the internet was first conceived in the 

1970s. In the last few years, however, IoT has grown rapidly and gained more attention 

with improvements like embedded hardware capabilities and the expansion of internet 

coverage and bandwidth. The number of things connected to the internet has now 

reached six billion with expected growth to 20 billion by 2020 [19]. 

 IoT has been implemented in multiple contexts (e.g., smart houses and offices, 

e-health, intelligent transportation systems, autonomous automobiles). The impact of 

IoT systems on everyday life, along with anticipated advantages of providing users with 

insights about their daily routines to aid them in making important decisions, remains to 

be seen. IoT system data currently aids businesses by informing about rapid changes in 

the marketplace and industries through enabling automation for faster product 

prototyping and manufacturing [50]. 

 Many challenges to IoT systems related to technology and societal aspects 

remain. Lack of standard system architecture affects compatibility between IoT 

systems. Often, deploying additional hardware or software is required to connect 

various devices. Remote accessibility to IoT systems makes security a serious concern 

(e.g., hacking health IoT systems makes individuals vulnerable to IoT hack attacks). 

Also, the increased amount of data recorded about individuals’ personal lives raises 

concerns about user data privacy. 
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IoT Design Concepts 

Having a reliable architecture for easy connectivity, control, and communication 

between things, the cloud, and other IoT systems is paramount [51]. Before implementing 

an IoT system, many fundamental needs should be considered about hardware, cloud 

connectivity, security, and embedded operating systems (OS). 

Hardware Devices: 

Hardware devices should be selected according to necessary processing power 

for sensing data. The system should manage severe environment in intended areas for 

deployment. Power consumption should be estimated in the prototyping phase, as 

different methods for powering the devices affect operating time. Designing an IoT 

system powered directly from the grid is quite different from designing an IoT system 

powered from a rechargeable battery connected to a solar panel. In the latter, the 

available amount of energy related to the weather conditions is required. A single use, 

regular battery has a number of constraints, which increases device operational time. 

Internal storage memory should be ample for running the OS, storing data, and 

maintaining system log records. A final consideration for selecting hardware 

components is to consider the intended method for connectivity with other hardware 

devices. Many applications require combining multiple embedded devices from various 

manufacturers over USB, ADC, GPIO, and/or RS232. Design considerations include 

minimizing the number of wires between devices. This is especially important, since 

wires are prone to errors due to interference in any embedded application. 
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Wireless Connectivity and Internet:  

Given multiple wireless IoT devices in a single location, best practice calls for 

utilizing a local area network between them using BT or Wi-Fi. Internet access should 

be available for each device, saving data traffic usage and reducing the number of 

registered public IPs. Notably, in some scenarios, this design consideration is 

disadvantaged by slowing down the connection between devices and the cloud. 

Real Time Operating Systems (RTOS):  

An IoT device OS should be designed to operate for a reasonably long time 

without reboot. Embedded software should be optimized, and the required number of 

system services should not exceed device CPU and RAM capabilities. The OS should 

have a watchdog time to detect instances when the device stops working and requires 

rebooting. A second watchdog protocol should be designed specifically for detecting 

internet access and rebooting the connected internet broadband modem in the event that 

internet connection is lost. Another important feature is automatically updating software 

without human intervention (over-the-air updates).  

Security: 

Security is a major concern for IoT. As such, it should be considered at each 

design phase—not as an afterthought. Critical security issues include data ethics, 

privacy, and liability [52]. Solutions for improving security include: 

a. Encrypting the Linux box storage memory, 

b. Encrypting messages transmitted between the cloud and IoT embedded 

devices, and 

c. Securing the update process. 
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REECE IoT System 

 REECE (Roadside Embedded Extensible Computing Equipment) is a Linux box 

designed to store and process sensor data connected via different types of interfaces 

(e.g., ADC, USB, RS232). REECE controls communication between sensors and the 

cloud using a websocket connection to facilitate real-time sensing and environment 

monitoring. 

 

Figure 1. IoT system architecture. 
 

 REECE hardware architecture, depicted in Figure 1, is composed of: 

1. Arm cortex Linux-based development board (e.g., BeagleBone Black), 

2. Extension cape from Innovative Traffic Systems & Solutions (ITSS), LLC, and 

3. Internet broadband modem, 

 BeagleBone Black (BBB) is a low-cost development platform with 1 GHz ARM 

Cortex A8 preprocessing power, 512MB DDR3 RAM, 4GB 8-bit eMMC onboard flash 

storage, and 2x PRU 32-bit microcontrollers. BBB has USB client for power and 
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communication, USB host, Ethernet, HDMI, and 2 x 46pin headers [53]. Figure 2 

details BBB on board components [54]. 

 

Figure 2. BeagleBone Black components. 
 

For the extension cape, a PCB board was developed ITSS, LLC (See Figure 

3; http://itrafficsystems.com) extend the number of peripherals for BBB from one to 

four USB ports; b) expanded the UART pins to two RS232 ports; and c) provide 

easy access to the onboard analog digital channels. 
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Figure 3. BBB extension cape by ITSS, LLC 
 

The internet broadband modem is the most important component of any IoT 

system, as it provides connectivity to the internet. Various types of broadband 

modems were tested. Table [1] provides a list of tested broadband modems and their 

performance. 
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Table 1. Deployed Modems. 
Modem Operator  Performance 
Netgear 341U Sprint Modest Performance; 

loses connectivity 
overnight and requires 
reboot every 12 hours. 

Netgear 340U AT&T Good Performance; 
remains connected 24-
hours-a-day 

Franklin U772 Sprint Poor Performance; 
crashes after 2 hours of 
connectivity 

Sierra Wireless AC250 Sprint Modest Performance; 
loses connectivity 
overnight but it requires 
to be reboot every 12 
hours. 

ZTE Velocity Hotspot AT&T Great Performance; 
remains connected more 
than 30 days without 
disturbance 

Sierra Wireless LS3000 Verizon Great Performance; 
remains connected more 
than 30 days without 
disturbance 

 

REECE software architecture is powered by a customized Linux OS for 

running applications, managing interfaces, and connecting to the internet. The 

proposed system’s Linux OS follows the general Linux hierarchy structure (See 

Figure 4) and has four main components: 

1. Linux kernel, 

2. System management tool, 

3. Database management tool, and 

4. Javascript engine for real-time connectivity with the cloud. 
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The Linux kernel is the core software of any Linux OS. It controls hardware 

resources (e.g., CPU, main memory, data storage devices) via multiple subsystems (e.g., 

process scheduling subsystem, memory management subsystem, virtual files subsystem, 

network subsystem). A number of kernel distributions are provided by open source 

communities; others are provided by manufacturers (e.g., Texas Instruments) to support 

proprietary hardware systems. Two Linux kernels, namely 3.8 and 4.1, were tested and 

proved stable over long-term deployments. Kernels between 3.9 and 3.18 had 

significant problems that caused the IoT system to reboot or stop working only 10 hours 

after deployment. 

 

Figure 4. Linux system hierarchy structure. 
 

 The system management tool operates as a background process to self-start 

activities in the user space after booting up. The system was adopted in the Linux OS 

after a large number of Linux distributions replaced older system daemon tools (e.g., 

Unix System V and Berkley Software Distribution (BSD) with Systemd serving as an 

initialization system). Note that the system is written systemd—not system 
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D or SystemD, as it is system daemon and resides under Unix/Linux d, which is lower 

case [55]. Systemd is a cost-free software. Its system management tool can be 

redistributed or modified under GNU Lesser General Public License. Systemd provides 

aggressive parallelization capabilities, uses B-bus socket to start services, monitors 

processes using Linux control groups, and includes automatic logging daemon to save 

system activities as system journals.  

The importance of having a lightweight database management tool has emerged 

as a key concept in IoT systems for processing data on the edge device before sending it 

to the cloud, saving internet data traffic and offers additional beneficial information. 

The tool increases IoT system reliability by decreasing data loss. Collected data is 

maintained as a backup source when connection with the cloud is interrupted or lost. 

The project reported herein used MySQL lite, which proved to be a very powerful, 

embedded rational database management tool for the proposed IoT system. It is an open 

source SQL databases implementation for embedded systems; supports various data 

types, provides single user access sufficient for IoT applications, and consists of one file 

on the storage disk [56]. 

Real-time connectivity with the cloud is supported by a javascript engine. 

Device-to-cloud communication involves an IoT device connected directly to an 

internet cloud for exchanging data and controlling message traffic. Many protocols have 

been used for device-to-cloud communication (e.g., HTTP, CoAP, TLS, DTLS, TCP/IP, 

UDP/IP). Javascript is currently dominating the physical world due to its event driven 

feature, non-blocking model. Node.js [57] is a lightweight engine used in the proposed 

system and paired with the Websocket communication protocol to complete the 
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communication app architecture. Websocket is a full standalone duplex communication 

TCP-based protocol. The apps only relationship to HTTP was during the handshake 

stage when interpreted by HTTP servers. Figure 5 illustrates the handshake and data 

transfer sequence. The Websocket protocol enables interaction between the embedded 

device and the cloud, allowing messages to be transmitted while keeping the connection 

open [58]. 

A Javascript Object Notation (JSON) message format is used to transfer data 

from REECE to the cloud. JSON is a standard format that uses human readable text to 

transmit data objects consisting of attribute value pairs [59]. A typical communication 

system will consist of four different types of messages: registration message, single data 

sample message, multiple data samples message, and acknowledgment message. A 

description of each is provided below. 

1. Registration message: A message sent from REECE to the cloud for 

validating the security key with the cloud and authorizing REECE to transfer 

data to the server. 

2. Single data sample message: A message sent from REECE to the cloud for 

one measurement of data, often in real-time. 

3. Multiple data samples message: A message sent from REECE to the cloud 

for data collected as a group of measurements, often when there is no 

connection with the cloud. 

4. Acknowledgment message: A message sent from the cloud to REECE to 

confirm that data sent to the cloud was received without interruption. 
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Maintaining continuous connectivity with the cloud is the primary concern for 

any IoT system. Hence, it is important to mention the worthiness of developing a 

watchdog timer for the internet modem. Internet broadband modems might fail to keep 

a constant internet connection with cloud for any number of reasons (e.g., losing 

coverage, saving energy in rural areas during the overnight period via ISP shutting 

down base stations, or addressing hardware fault due to the modem). These 

considerations prompted the development of a 

timer to verify internet connectivity and reboot 

the modem in the event that internet connection 

failed. Figure 6 describe the watchdog work flow 

to check internet connectivity. 

 

 

 

 

 

 

Figure 5. Websocket connection. 

Figure 6. Internet connectivity watchdog. 
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Chapter 4 - Bluetooth For Travel Time Estimation 

Background 

Brief idea on Bluetooth Protocol: 

A Bluetooth (BT) device can function as either a master or slave at any given 

point in time. As master, the device initiates data exchange; as slave, the device responds 

to a master. A BT network (i.e., piconet) can be either point-to-point, including one 

master and one slave, or it can include several slaves and one master. Notably, a slave 

can request a role change at any time and become master of the piconet, causing the 

master to switch to slave mode. Earlier generation BT devices transmit 1Mbps (i.e., basic 

rate); later generations transmit up to 3 Mbps, which is referred to as Enhanced Data Rate 

(EDR). 

Frequency of Bluetooth devices: 

Although BT devices operate in the 2.4 GHz unlicensed band, they do not transmit 

at a fixed frequency. Instead, they hop across a range of 79 frequencies (from 2402 to 

2480 MHz), staying at each frequency for 625 us (i.e., one time slot) and followed by a 

hop to another frequency. 

Hopping sequence is not in order. Rather, it is calculated from the master’s device 

clock, as well as the BT device MAC address. Since all devices in a piconet must hop at 

the same sequence, all will follow the hopping sequence of the master. In other words, 

the piconet master is responsible for synchronizing connected slaves.  
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MAC address of a Bluetooth device: 

Each BT device has a unique MAC address with 48 bits, consisting of three 

parts, as explained in Figure 7: 

 

NAP 
16 bits 

UAP 
8 bits 

LAP 
24 bits 

Figure 7. BT MAC address structure. 
 

1. NAP (Non-significant Address Part) is 2 bytes and refers to the manufacturing 

company. 

2. UAP (Upper Address Part) is 1 byte and is detected by observing several BT 

packets. 

3. LAP (Lower Address Part) is 3 bytes and is the one part transmitted with every 

BT packet. 

BT sniffers are interested in only UAP and LAP, as these are sufficient to 

identify and connect to a BT device. The easiest part to detect is LAP, as it is 

transmitted as clear text (i.e., not encoded) in the header of every packet. 

 

Bluetooth Packet Contents: 

Figure 8 depicts a simplified BT packet: 

 
 
 

 
 Figure 8. BT packet structure. 

  

Access Code  
(72 bits) 

Header  
(10 bits) 

HEC  
(8 bits) 

Playload  
(0 2745) bits 

CRC 
 (16 bits) 
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The following information is contained in the BT packet. 

• LAP of node master device is found in the Access Code. 

• Header contains the MAC address of the slave device with transmitting packet. 

• HEC (Header Error Check) and CRC (Cyclic Redundancy Check) are used to 

calculate the Master device UAP. 

• Payload is data. 

LAP of piconet master is included in every transmitted BT packet. This is important 

because, as shown below, Uberooth can detect LAP addresses for transmitted packets. 

Ubertooth 

 Ubertooth (See Figure 9) is an extremely inexpensive 

($119 USD) BT sniffer invented by Micheal Ossmann. Although 

the device’s main purpose is decoding BT packets, it is also 

responsible for determining the master piconet MAC address, 

obtaining the packet’s Signal to Noise (SNR) ratio, uncovering 

the master device’s hopping sequence, and, finally, utilizing the 

spectrum analyzer to show any Wi-Fi or BT activity in the 2.4 

GHz band. 

Ubertooth consists of an antenna, RF front end, and a wireless transceiver 

composed of two integrated circuits, which are responsible for conditioning the received 

signal and preparing it for processing by the micro-controller (i.e., ARM Cortex-M3)—

also located on the Ubertooth board [60].  

 

 

Figure 9. Ubertooth. 
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Travel time estimation methodology using Bluetooth 

To estimate TT based on detected vehicles traveling from checkpoint A to 

checkpoint B, a set of processes must be applied on the measurements. Figure 10 

represents a typical BT traffic monitoring system. 

Note: since the term MAC address is more recognized than LAP. This thesis uses the 

term MAC to describe detecting a BT device. To clarify, readers should understand that 

the sniffer only detects the Lower Address Part (LAP) of the BT MAC address.  

System Installation: 

 Multiple Ubertooth sniffers were deployed with variant distances on highways to 

detect vehicle MACs. 

 

Figure 10. Bluetooth traffic monitoring system. 
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Removing unwanted duplicated MACs: 

Ubertooth was configured to sniff BT device MACs 

traveling on the highway. Since sniffing MACs occurs in just 

microseconds and estimated time for a vehicle to remain in the 

Ubertooth sniffing zone is more than 1 second, the same MAC 

might be detected multiple times. Consequently, modifications to 

the proposed system were made to eliminate duplicated MACs 

before uploading to the cloud. A buffer can store 128 MACs. 

Hence, for every newly detected BT device, a window search 

occurs inside the buffer looking for duplicates among the last 32 

MACs. Two considerations were made. First, eliminate Ubertooth 

dongle MAC. Second, state when the index of buffer is smaller than 

the size of the searching window (i.e., index of the buffer < size of 

search window 32). A search operation continues to look for 

duplicates among LAPs stored in the end of the buffer. Figure 11 

describe the flowchart for eliminating BT duplicates.  

Data Collection: 

Collected data is saved on REECE before transmitting it to a server on the cloud 

using a simple MySQL lite database. Each MAC address is accompanied by a time 

stamp and unique ID. The database table structure shown in Figure 12. 

Figure 11. 
Flowchart of BT 
eliminating 
duplicates. 
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Figure 12. Bluetooth MySQL database on REECE. 
 

The database consists of one table with six columns, as follows. 

• Seq: Sequence of BT device in the database 

• MAC: MAC of the detected BT device 

• Det_TIME: Detection time of BT device 

• Trans_TIME: Transmission time of information packet to the server 

• Exp_TIME: Time to determine it is unnecessary to send detected BT device 

information; fixed value not in use  

• ACK_TIME: Acknowledgment time wherein REECE receives a message from 

the cloud containing sent packet sequence. 

Vehicle Re-identification: 

A vehicle can be re-identified by searching for the same MAC address at 

consecutive checkpoints. Matched MAC addresses provide a TT value based on 

differences in detection times. Vehicle speed is based on A known distance between 

checkpoints. 

  



31 

TT per vehicle can be calculated using the following equation: 

𝑇𝑇"#$	&#'()*# = 𝐷𝑇- −	𝐷𝑇/ 

where DT is the detection time at one checkpoint.  

Outliers can occur when one vehicle travels between two points on a different 

journey. For an accurate estimation, outliers must be identified and removed. The 

following three-step process is proposed for this purpose.  

1. Find TT distribution of observed segment. 

2. Calculate the mean TT and standard deviation σ. 

3. TT is considered an outlier given it meets the following equation: 

𝑇𝑇"#$	&#'()*# > 	𝑇𝑇1#/2 + 2𝜎 

Travel time estimation: 

TT can be estimated by finding the mean of the distribution of TT per vehicle 

measurements. Figure 16 shows the distribution of TT over one segment. 

Experiments and Analysis Results 

Many experiments were conducted to collect and analyze travel data to achieve 

an accurate estimation for TT. Using single and multiple BT stations, we can estimate 

number of vehicles, TT, and speed estimation.  

Multiple Site Deployment: 

The deployment was tested during March 2017 in Tulsa, OK. Details are 

summarized below.  

1. The testing deployment had seven units running throughout the city of Tulsa, 

OK during a10 day period.  
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2. TT calculated between the selected locations were approximately equal to 

Google TT estimates. 

3. Traveling vehicles between locations were detected at distances of 5 and 10 

miles. 

Data insights were made following data collection. Daily average of detected 

vehicles was over 5.000 per day. Table 2 provides detailed information for each unit. 

Figure 13 shows the location of units deployed in the city of Tulsa. 

Table 2. Tulsa, OK Deployments  
station ID Daily average 

Detected Vehicles 
Antenna Location and Distance from 

Highway 

BT-054 8790 5 dbi internal Side highway, apx 1 meter far 

BT-061 5140 5 dbi internal Under Bridge , apx 8 meters far 

BT-062 4560 3 dbi internal Above highway, apx 15 meters far 

BT-063 6010 3 dbi internal Side highway, apx 1 meter far 

BT-064 3950 5 dbi internal (tilted) Side highway, apx 1 meter far 

BT-065 6160 3 dbi internal Side highway, apx 1 meter far 

BT-066 5550 3 dbi internal Above highway, apx 5 meters far 
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Figure 13. Locations of deployed units in Tulsa, OK. 
  

Deployment-calculated TT was approximately equal to Google TT estimates. An 

average of over 200 vehicles were detected per day between two locations among all 

deployed units. 

Number of detected vehicles depends on a number of factors, including: 

1. distance between the two locations, 

2. traffic flow, 

3. attractions approximate to deployed units (e.g., downtown, main apartments 

complexes, city exits), and 

4. antenna type/distance between cabinet and the highway. 

Figure 14 and Table 3 provide detailed information for detected vehicles traveling 

between two locations. 
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Figure 14. Average TT and average daily detected vehicles between two locations. 
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Table 3. Average TT and Average Daily Detected Vehicles  
Units Average TT Average daily detected vehicles 

BT-054 BT-061 12:52 70 

BT-054 BT-062 07:35 34 

BT-054 BT-063 05:30 220 

BT-054 BT-064 06:21 67 

BT-054 BT-065 02:10 124 

BT-054 BT-066 05:36 165 

   

BT-061 BT-062 08:00 45 

BT-061 BT-063 06:40 372 

BT-061 BT-064 10:30 25 

BT-061 BT-065 11:05 4 

BT-061 BT-066 13:20 6 

   

BT-062 BT-063 07:44 8 

BT-062 BT-064 07:38 10 

BT-062 BT-065 06:40 38 

BT-062 BT-066 10:00 11 

   

BT-063 BT-064 04:36 285 

BT-063 BT-065 05:10 22 

BT-063 BT-066 08:50 9 

   

BT-064 BT-065 04:00 113 

BT-064 BT-066 07:34 55 

   

BT-065 BT-066 03:52 672 
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Study of Travel Time between Two Units 

In this section, the results of data collected between two different road segments will be 

discussed. 

TT between Units BT-061 and BT-063 

Distance between units BT-061 and BT-063 is 5.2 miles. BT sniffers detected an 

average of 372 vehicles/day and calculated TT of 06:40, which is one minute longer 

than Google estimates. However, road work may have had an effect on the difference 

between the two values. During rush hour (time between 2:00pm and 06:00 p.m.), the 

hourly rate of detected vehicles was approximately 40. 

 

Figure 15. Bluetooth monitoring system for 5.2-mile distance on I-44 in Tulsa, OK. 
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Figure 16 TT distribution 
 

 

Figure 17 TT values based on Bluetooth on I-44 in Tulsa, OK 
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Figure 18 Hourly Average TT on A Single Day 
 

 

 

Figure 19 Hourly Number of Detected Vehicles on A Single Day 
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Two factors of rush hour traffic and the presence of road work increased TT by more 

than 200 seconds. 

Units BT-065 and BT-066 

Distance between unit BT-065 and BT-066 is 4.1 miles.  BT sniffers were able 

to detect an average of 672 vehicles/day and calculate TT as 03:52, which is the same as 

the Google estimate. During rush hour (between 03:00 and 05:00 p.m.), the hourly rate 

of detected vehicles was approximately 70 vehicles. Figures [20, 21, 22, 23, 24] show 

the location of the segment, TT distribution, daily number of detected vehicles, hourly 

number of detected vehicles on a single day, hourly average TT on a single day. 

 

Figure 20. Bluetooth monitoring system for 4.1-mile distance, on BA-Expressway 
in Tulsa, OK. 
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Figure 21. TT values based on Bluetooth on BA-Expressway in Tulsa, OK. 

 

Figure 22. Number of detected vehicles on one segment 4.1-mile length, over 5-
Day period. 
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Figure 23. Hourly number of detected vehicles on a single day. 

 

Figure 24. Hourly average TT on a single day. 
 

No major changes were detected in TT between two locations over a period of 24 hours. 
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Improvements of The Bluetooth System: 

Previous experiments show that the number of vehicles detected between two 

locations is extremely low. An alternate antenna was tested to improve traffic system 

penetration. Table [5], depicts two antennas considered for BT detection. 

Table 5. Bluetooth Sniffer Antennas 

  

The used antenna in the previous 
experiments is an internal omni-
directional antenna with 5dBi gain 
and 50 Ω impedance. 

Alternative antenna: TP-Link TL-
ANT2414A) 
 An External directional antenna with 14dBi 
and 50 Ω impedance. 
 

 

Figures [25, 26] show a substantial change in number of detected vehicles when using 

an external directional 14dBi antenna instead of internal 5dBi antenna. 
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Figure 25. Hourly number of detected BT devices on a single site. 
 

 

Figure 26. Daily number of detected BT devices on a single site. 
 



44 

Chapter 5 - Inductive Loops Detectors for Travel Time Estimation 

Background 

An inductive loop consists of wire "coiled" to form a loop shaped as a square, 

circle or rectangle that can be installed into or under the surface of the roadway.  

Inductive loops work like a metal detector, measuring the change in magnetic field 

when objects pass over them. Once a vehicle drives over a loop sensor, the loop field 

changes and the detection device detects the presence of an object (e.g., vehicle). 

Inductive loops are referred to as presence detectors. Traffic detection are often used in 

combination with axle sensors to collect classification data, such as speed and length. 

 
Figure 27. Square inductive loop. 

 

There are two commonly used shapes for inductive loops: rounded loops or 

square/ rectangular loops. Many loop designers have theorized that circular loops 

provide optimum detection because a uniform magnetic field is produced without dead 

spots. Proponents of the round loop argue that the circular design maximizes loop 

sensitivity for detection of motorcycles, as well as high-bed trucks while eliminating 
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splash over from adjacent lanes. Other cited advantages include the elimination of sharp 

corners and the reduction in wire stress. Modern cutting techniques have mitigated 

difficulties associated with cutting a circular shape in the pavement. 

The loop is a continuous length of wire that enters and exits from the same 

point. Both ends are connected to the loop extension cable, which in turn connects to 

the vehicle detector. The detector powers the loop, causing a magnetic field in the loop 

area. The loop resonates at a constant frequency monitored by the detector. A base 

frequency is established when there is no vehicle over the loop. When a large metal 

object, such as a vehicle, passes over the loop, the resonate frequency increases. The 

change is sensed and, depending on the design of the detector, forces a normally open 

relay to close. The relay will remain closed until the vehicle leaves the loop and the 

frequency returns to the base level.  

Study of the Inductive Loop Signature 

Generated ILD signals vary from one vehicle to another. An ILD signature 

depends on vehicle length, metal surface, speed, and the way in which a vehicle will 

pass over the loops. Table [6] shows the difference in signatures between SUV and 

sedan vehicles. Signature length and amplitude of the magnetic field vary. While the 

sedan has one peak point, an SUV has two. Also, signatures of the same vehicle will not 

be identical on another loop. The red and blue signatures for each vehicle represents the 

signature detected on the lead and lag loops, respectfully, with 8ft distance between 

them. Variations will increase for longer distances between two loops. ILD signals have 

many applications in length-based vehicle classifications due to accurate measure of 

vehicle length. Hence, magnetic field strength will vary among vehicles of the same 
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class.  

 

Table 4. ILD Signatures of Two Vehicles 

  

  

 

Loop Shutdown 

Two phenomena might cause the inductive loop to malfunction: 

• Lightning Strike: Given that lightning strikes relatively close to a road-

embedded loop, it is possible that a large static charge will be transmitted 

through the loops into the loop board circuitry. Although the loop board is 

equipped with a certain level of electronic protection against this type of event, 

lightning strikes might cause the loop board to lock up or shut down. A strike is 
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unlikely to cause damage to a unit that is grounded [61]. 

• Other Electrical Noise: Similar to a lightning strike, other sources of strong 

electronic signals could cause the loop board to detune.  

In some cases, inductive loops do not shutdown even though they add noise to the ILD 

signals and require retuning to fix the issue. Figure 28 show some noisy signatures. 

   

Figure 28. Noisy ILD signals. 
 

Phoenix II Diamond Traffic 

Phoenix II is a multi-lane time interval counter/classifier designed for permanent 

installs or large portable applications. The classifier can count from one to eight lanes 

using axle sensors; 16 lanes with loops; or one to eight lanes with gap, headway, and 

speed by axle type. The system can be fitted with four road tube sensors, two to eight 

remote inputs, four to 16 presence inductive loop sensors, and four to eight piezo or 

resistive sensor inputs.  

When Phoenix II is activated in VO=CMA (vehicle output in comma delimited 

output), it generates the signatures as a string of a time series data sample and each 

vehicle signature will be separated by CR/LF.  
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Figure 29. Phoenix II Diamond Traffic unit. 
 

Deployment setup 

The following steps are necessary for deployment. 

• Phoenix II Diamond Traffic with 1KB sampling rate is connected to a standard 

6’ by 6’ rectangular inductive loop.  

• REECE is connected over RS-232 with Phoenix II and over Ethernet to the 

cloud. 

Figure 30 shows the ILD Traffic Monitoring System setup at Hefner parkway in 

Oklahoma City, OK. 
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Figure 30. ILD traffic monitoring system. 
 

Preprocessing the data 

The process of signature re-identification is accomplished in the following 

approach. 

1. Data Cleaning to ensure incomplete or distorted signatures are ignored. 

2. Speed Based Normalization on the time domain. 

3. Vehicles Length estimation. 

4. Amplitude Normalization between 0 and 1. 

Vehicle re-identification and Travel Time Estimation 

1. Comparing signatures with time window less than 300 seconds. 

2. Comparing signatures with vehicle length difference less than 40 cm. 

3. Vehicle re-identification by way of matching signatures, accomplished through 

either Pearson Correlation or Relative Entropy. 

5. TT calculation indicates the time difference between the best matched 

signatures. 
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6. Data spike detection. 

7. TT estimation from the mean value of spike data. 

Data Cleansing:  

Some signatures were interrupted due to vehicle lane change or a hardware 

faults, or loop errors. All signatures contained interruptions that were deleted from the 

data. Figure 28 show a sample of a noisy signature.  

Speed based Normalization: 

Signature length were dependent upon vehicle length and speed. In the test 

setups, there were two loops: one at the upstream (lead) location and another at the 

downstream (lag) location. Distance between the two loops is 8ft, and detection time at 

each loop is provided by Phoenix II. Speed can be calculated using the following 

equation: 

𝑉 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑇> −	𝑇?

 

where distance is the amount of separation between the two loops at one site; T1 is the 

detection time at the lead loop; and T2 is the detection time at the lag loop. 

The signature can be normalized by fixing the speed for all vehicles to 60 mph so that a 

new signature length can be calculated from the fixed speed. 

𝑙2A$1/*(B#C = 	
𝑙A$(D(2/*	×	𝑣GH	1"'

𝑉
 

where V is vehicle speed;  𝑙A$(D(2/*		is  signature length at speed (V);  𝑣GH	1"'	is the 

fixed speed for all vehicles at 60 mph; and 𝑙2A$1/*(B#C is the speed normalized signature 

length. 
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Cubic Spline interpolation was applied to shrink or compress the signature to the 

normalized length. Cubic spline interpolation is an interpolation polynomial method 

that provides a smoother when compared to other interpolation polynomials [62]. 

The device suffered from hardware issues, causing signatures from four lanes to 

go undetectable on both sites. To mitigate this problem, one lane detected 90% of 

vehicles on both loops and was subsequently selected for the study. Vehicle speeds that 

was not reported by Phoenix II controller was estimated based on the speed mean of all 

detected speeds within the same minute. Figures [32, 33, 34] compare the number of 

detected vehicles between the lead and lag loops on a single site and number of detected 

vehicles between the two sites. 

 

Figure 31. Normalized signature. 
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Figure 32. Number of vehicles detected on both loops at Britton site. 

 

Figure 33. Number of vehicles detected on both loops at Hefner site. 
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Figure 34. Number of detected vehicles on Britton and Hefner sites. 
 

Vehicle Length Estimation: 

After normalizing, the signature length based on speed, vehicle length can be 

estimated from the length of the signature. Phoenix II sampling rate was set to 1000/s. 

Therefore, the signature length can be considered the time required for a vehicle to 

cross over a loop. Based on this, we can estimate vehicle length from the following 

formula: 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒	𝐿𝑒𝑛𝑔𝑡ℎ = 𝑉𝑒ℎ𝑖𝑐𝑙𝑒	𝑆𝑝𝑒𝑒𝑑	×	𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒	𝐿𝑒𝑛𝑔𝑡ℎ 

Vehicles re-identification: 

Two methods were tested to determine the most correlated signatures (e.g., 

Pearson Correlation or Relative Entropy). Pearson Correlation was used to find linear 

dependences between the two signatures. Pearson Correlation depends on the shape of 

the signature. Two signatures are correlated if they are similar in their slope rates. 
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𝑟 = 	
𝒏∑ 𝒙𝒚 −	( 𝒙)( 𝒚)

(𝑛 𝑥> − ( 𝑥)>)(𝑛 𝑦> − ( 𝑦)>)
 

where n is the number of samples (signature length). When r =1, both signals are 

identical and correlated. 

 

Figure 35. TT using Pearson's r Correlation. 
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Figure 36. Correlated signatures using Pearson Correlation. 
 

Relative Entropy assumes signatures of the same vehicle will have the same 

value of the area under the curve, since the amount metal in vehicles is invariant. 

However, slope rate and strength of the magnetic field can change based on the way a 

vehicle is passing over the loop. Relative Entropy was used to compute the relativity of 

the pdf value between two signatures.  

𝑑 = 	 𝑝Y	𝑙𝑜𝑔>(
𝑝Y
𝑞Y
)

2

Y

 

where 𝑝Y	, 𝑞Y = the probability functions for both signatures. When d = 0 =>, both 

signatures have the same P.D.F value and are correlated. 
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Figure 37. TT using Relative Entropy. 
 

 

Figure 38. Correlated signatures using Relative Entropy. 
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Both methods were successfully used in re-identifying vehicle signatures. 

Relative Entropy was characterized with higher noise levels than Pearson Correlation. 

Both methods were applied to achieve an improvement in correlating vehicle signatures. 

Tables 6 and 7 show TT values of ILD traffic monitoring systems divided into five 

periods: 00:00-07:00, 07:00-10:00, 10:00-16:00, 16:00-20:00, 20:00-24:00. The 

percentage under each Figure represents total number of vehicle with TT between 45-

70mph compared to total number of re-identified vehicles. Clearly, noise ratio increases 

during the rush hour periods from 7 to 10 a.m. and 4 to 8 p.m. 

 

Figure 39. Correlated signatures using Pearson Correlation and Relative Entropy. 
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Table 5.  TT Values of ILD Traffic Monitoring System on Monday 

 
505 / 1372 

36%  

 
545 / 2976 

18% 

 
1232 / 5594 

22% 

 
516 / 3909 

13% 

 

471 / 1612 
29% 

 

3269 / 15464 
21% 
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Table 6. TT Values of ILD Traffic Monitoring System During Weekend 

 
313 / 840 

37% 

 
472 / 1701 

27% 

 
1026 / 4029 

25% 
 

794 / 3384 
23% 

 
815 / 2750 

30% 
 

3420 / 12704 
27% 
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Travel Time Using Data Spike Detection Algorithm: 

Correlated signatures contained a significant amount of noisy data, where 27% 

provided the correct TT and 73% experienced errors. Computing overall mean of 

correlated signatures resulted in a TT value longer than expected. To illuminate the 

noise, spike detection algorithms where applied. TT values were binned into 10-second 

groups, and a spike was selected for estimating TT given that half of the samples inside 

the spike were greater than number of samples in other binned groups. Subsequent to 

detecting spikes, TT can be estimated as the mean value of all samples within the spike. 

Spike Detection: ](B#^_`ab	c
>

= 𝑆𝑖𝑧𝑒	D$Ae"	(	; 𝑖	 ∈ 1, 𝑛 ; 𝑖	 ≠ 𝑥 

TT Estimation: 𝑇𝑇 = 𝑚𝑒𝑎𝑛	(𝑇𝑇k"(Y#	D$Ae") 

 

Figure 40. Travel Time data spike. 
 

Figure 40 shows a sample of TT values for a single hour, where search window was 300 

seconds. The data spike was considered to estimate TT value. Figure 41 illustrates 
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estimated TT values for a single day where TT values were grouped into 20-minute 

segments. Total number of segments was 72. Unfortunately, the algorithm was not able 

to function well during morning rush hour (7:20 to 9:00 a.m.) and evening rush hour 

(15:20 to 18:00 p.m.). For 17 segments, the algorithm wasn’t able to detect a data spike 

or estimate TT. Figure 42 shows examples for which the algorithm was unable to detect 

data spikes. 

 

Figure 41. Estimated TT values for 1 mile distance. 
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Figure 42. Data spikes during rush hour. 
 

Several methods have been investigated to improve real-time TT accuracy (e.g., 

reducing correlation search window from 5 minutes to 2 and ½ minutes for 1 mile 

distance). The 5-minute search window proved more accurate than the shorter period, 

primarily because it aided in flattening error values. See Figure 43. 

 
Figure 43. TT for a 2:30-minute vs. 5-minute search window. 

 

Improving TT Accuracy Based on Vehicle Length 

Longer vehicles have unique signatures, which provides a higher accuracy in 

signature correlation and TT estimation (See Figures [44, 45]). However, sedans are the 

most common vehicle type for the deployment site that was investigated. The majority 
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of class 2 vehicles have the same signature shape; hence, this excessive number of this 

class of vehicles contributed to errors in estimating TT (See Figure 46). The optimized 

algorithm replaces missing TT values with estimates using long vehicles only. Figure 

47 shows how number of segments missing TT estimation reduced from 17 to 13 after 

applying the length-based TT estimation enhancement. 

 

Figure 44. Correlated signatures for long vehicles. 
 

 

Figure 45. TT for long vehicles. 
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Figure 46. Correlated signatures for sedan vehicles. 

 

Figure 47. TT estimation using vehicles length enhancement. 
 

 Another enhancement to the algorithm aided in increasing system reliability. 

When searching for a data spike, the algorithm will compare neighboring data groups to 

the group with the maximum number of vehicles. If this neighboring group has number 

of vehicles more than half the number of the group with the maximum number of vehicles, 
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both data groups will be combined as a single data spike, and then compared with all 

other groups to estimate TT based on average of all TT values inside this new data group. 

Figure 48 shows how this final optimization reduced the number of segments with 

missing TT from 13 to 4 out of 72 total number of segments. These optimizations made 

the system able to estimate TT up to 94% of the time and update TT estimation every 20 

minutes. 

 

Figure 48. TT estimation using optimized spike detection algorithm. 
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Chapter 6 - Comparison between ILD and BT signatures 

Table 7. Comparison Between ILD and BT Traffic Monitoring Systems 
 

 Bluetooth System ILD System 

Number 
of detect 
vehicles 

 
 

Travel 
Time 
Estimation 

  

 

The following highlights the similarity and differences between TT calculations using 

BT sniffer versus ILD detectors. 

• The ILD system demonstrated higher detection rate than the BT system, 

although both were characterized by the same distribution. Only 20% 

penetration was achieved using BT sniffer with external directional antenna. 

• Both systems detect TT, permitting TT estimation. However, the ILD system 

experienced more noise—only 27% of the data within the correct TT. Thus, the 

ILD system requires advanced processing to filter out noise and estimate TT. 
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•  Both systems are reliable for estimating TT. The BT system provides accurate 

TT estimation 99.9% of the time; while the ILD system provides correct TT 

estimation 94% of the time. 

• The BT system provides a real-time TT estimations per site; while ILD-based 

system provides TT estimates per lane every 20 minutes.   

• The ILD-based system provides additional traffic information: vehicle length, 

classification, and speed on a single site; while the BT system provides only TT. 

• Many factors can affect the accuracy of ILD-based systems (e.g., vehicles 

changing lanes, vehicles changing speed while crossing the loops, congestion, 

distance between two sites, and other environmental factors causing electrical 

noise); while BT-based systems have fewer factors that affect performance (e.g., 

type of the antenna, distance between sniffer and the roadway). 
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Chapter 7 - Conclusion and Future Work 

Conclusion 

This thesis described the architecture of real-time IoT systems used in the 

Intelligent Transportation Systems (ITS). The systems improved traffic surveillance 

system performance, enabling traffic operators to detect rapid changes in traffic 

conditions and to provide commuters with information to help them avoid congestion 

and work zones. 

The focus of the research was to leverage BT technology and ILD to re-identify 

vehicles for TT estimation. Both systems adequately estimated TT. Although BT 

sniffers proved to have lower traffic penetration, 95% of the calculated TT was 

accurate. Conversely, ILD had a higher detection rate, but TT estimation was prone to 

greater error. Only 27% of correlated signatures were able to estimate TT. TT based on 

BT is a straight forward method in which the transportation system searches for 

matching MAC addresses recorded at two checkpoints, and then reports TT of the re-

identified vehicle MAC by subtracting detection time and computing the mean of TT 

values detected at both locations. BT systems can provide accurate TT measures 99.9% 

of the time. 

ILD-based systems require a greater number of computational processes to 

normalize signatures and determine TT based on highly correlated signatures. A spike 

detection algorithm can be applied to filter out erroneous TT values and determine the 

mean of all TT values within the spike. ILD-based systems can detect a data spike and 

estimate TT only 94% of the time, as higher noise values occur during traffic 

congestion.  
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Both systems are characterized by advantages and disadvantages. While ILD-

based systems are less accurate and require a longer period (e.g., 20 minutes) to report 

TT values, they provide rich information about road capacity, vehicle speed, and 

vehicle length. Such information is necessary for length-based vehicle classification. 

Although BT-based systems report more frequently and accurately TT estimates, they 

are unable to provide additional traffic information details. 

Future work 

Future work could combine BT sniffers and ILD for correlating both data to similar 

vehicles traveling on urban roads. 
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