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Ancient DNA Analysis and Stable Isotope Ecology of Sea 
Turtles (Cheloniidae) from the Gold Rush-era (1850s) 
Eastern Pacific Ocean
Cyler Conrad*, Laura Pagès Barceló*, Jeffrey A. Seminoff†, Calandra Turner Tomaszewicz†, 
Marie Labonte‡, Brian M. Kemp‡, Emily Lena Jones*, Michael Stoyka§, Kale Bruner‖ and 
Allen Pastron¶

Historical and archaeological evidence documents the importation of sea turtles from the eastern Pacific 
Ocean (Baja California) to California during the Gold Rush (1848–1855) and through the end of 19th 
century, but it is unknown whether these 19th century sea turtles foraged in similar ways to their modern 
counterparts. To identify the species of two Gold Rush-era sea turtle specimens recovered from archaeo-
logical deposits in San Francisco, California, we first analyze ancient DNA (aDNA). We then analyze carbon 
(d13Ccol), nitrogen (d15N), and hydrogen (dD) stable isotopes of bone collagen and carbon (d13Cap) and oxygen 
(d18Oap) stable isotopes of bone apatite to test if eastern Pacific sea turtle diets have changed over the 
past 160 years. Ancient DNA confirms that both archaeological specimens are green sea turtles (Chelonia 
mydas). The stable isotope values from the 19th-century specimens are statistically indistinguishable from  
the modern comparatives in both d13Ccol and d15N, suggesting that green sea turtle dietary intake has 
remained relatively unchanged since the 1850s. However, the values are unclear for dD and d18Oap and 
require additional research.

Social Media: Ancient DNA and isotopic analysis of 1850s sea turtles suggest stability in sea turtle 
foraging through time despite environmental changes.

Keywords: ancient DNA; stable isotopes; sea turtle; Cheloniidae; Gold Rush; San Francisco

1. Introduction
From the 1960s through the 1980s sea turtle (Cheloniidae) 
populations in the Eastern Pacific, especially those of green 
sea turtles (Chelonia mydas), declined in abundance to the 
point of near extinction (Cliffton et al. 1982; Delgado-Trejo 
and Alvarado-Diaz 2012; Early-Capistrán et al. 2017; Plotkin 
et al. 2012; Seminoff et al. 2012a). Hunting of sea turtles 
from the mid-19th through the mid-20th century seems 
to have been one driver of this decline (Caldwell 1963; 
Conrad and Pastron 2014; Early-Capistrán et al. 2017;  
Nichols 2003; O’Donnell 1974), but previous studies have 
not explored the potential role of habitat change in the 
historic turtle population crash (Early-Capistrán et al. 2017; 
Plotkin et al. 2012; Delgado-Trejo and Alvarado-Diaz 2012). 

As habitat change contributes to declining sea turtle abun-
dance today (Hawkes et al. 2009; Saba 2012) and known 
sea surface temperature changes have occurred since the 
mid-19th century in the eastern Pacific Ocean (Douglas 
1980), it is possible that changes in turtle diet, reflecting 
the habitat and sea surface temperature changes, contrib-
uted to sea turtle population declines in the 20th century.

Research on this this topic has likely not occurred previ-
ously for two logistical reasons: a lack of credibly-dated 
historic zoological and zooarchaeological specimens; and 
difficulties in determining the correct taxon of those 
specimens, particularly those from archaeological sites. 
Whalers, mariners and maritime passengers, the primary 
groups hunting sea turtles during the 1800s, typically dis-
carded turtle carcasses overboard in open water after con-
suming the animals (Conrad and Pastron 2014; O’Donnell 
1974), with very few specimens, if any, arriving in museums 
for curation. Compounding the paucity of specimens is 
the difficulty in identifying sea turtle remains using bone 
morphology (e.g., Armitage 2013; Frazier 2005; Smith et 
al. 2007). Different sea turtle species share gross morpho-
logical skeletal characteristics (Wyneken 2001). Elements 
that are distinct morphologically (e.g., entoplastron) are 
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easily fragmented and often absent from skeletal zooar-
chaeological collections.

Here, we use ancient DNA analysis to identify two 
archaeological sea turtle specimens that date to the mid-
dle 19th century to species level. We then compare the 
carbon (d13Ccol/ap), nitrogen (d15N), oxygen (d18Oap) and 
hydrogen (dD) isotopic data from archaeological and 
modern specimens to assess dietary change between 19th 
century and present-day eastern Pacific Ocean sea turtles 
and what it may indicate about the influence of habitat 
modification on 20th century sea turtle populations.

1.1. Gold Rush Sea Turtle Exploitation
The human population increase associated with the 
California Gold Rush led to a shortage of food in the 
booming towns and cities throughout the San Francisco 
Bay and the Sierra Nevada region (Bancroft 1888; Soulé 
et al. 1854). Eastern Pacific sea turtles were one resource 
exploited to satisfy this need (Conrad and Pastron 2014). 
The maritime migration to the gold fields created a large 
demand for food resources, and this coincided with the 
proliferation of sea turtle hunting in northwestern Mex-
ico and eventually a direct sea turtle trade bringing turtles 
from the Baja California area to northern California dur-
ing the 1850s and after (Conrad and Pastron 2014).

The transport of sea turtles to be used as food is seen in 
the archaeological record. At Thompson’s Cove (CA-SFR-
186H), located near the Financial District of modern-day 
San Francisco, excavations recovered a single sea turtle 
(Cheloniidae) flipper phalanx in food refuse deposits 
dating to the early 1850s (Figure 1; Conrad et al. 2015; 
see Pastron and Bruner 2014 for additional chronologi-
cal information). Morphological similarity in sea turtle 
phalanges (with the exception of leatherback sea turtles 
[Dermochelys coriacea]; Wyneken 2001) did not allow a 
species identification, but this specimen matched the size 
and morphology of a comparative green sea turtle skeleton 
from the Museum of Vertebrate Zoology, Berkeley.

At CA-SFR-195H, an archaeological site on the San 
Francisco waterfront, excavations recovered the remains 
of a single sea turtle represented by 23 carapace, plastron 
and appendicular skeletal elements dating to the early 
1850s (Figure 1; see Praetzellis 2017 and chronological 

information therein). Cutmarks on the carapace suggest 
this individual was butchered. A comparison with sea tur-
tle specimens of known species at the California Academy 
of Sciences, San Francisco, suggested this was either a 
green or olive ridley (Lepidochelys olivacea) sea turtle.

1.2. Eastern Pacific Ocean Environmental Change
Global climate change impacts sea turtle populations via 
a complex web of physical and biological interactions 
(Fuentes et al. 2010a, 2010b; Hawkes et al. 2009; Saba 
2012). Sea turtles are at risk of losing nesting habitat and 
beaches due to both rising sea levels and anthropogenic 
modifications to limit sea level rise (e.g., sea walls). Repro-
duction loss or sex-ratio skewing (i.e., femininization) is 
also likely, due to changes in temperature that drive turtle 
sex determination during incubation (Jensen et al. 2018). 
Most importantly for this study, changes also occur in sea 
turtle diets due to shifts in sea surface temperature and, 
thus, habitat structure and prey abundance in nearshore 
areas (Koch et al. 2013). The exact impacts and responses 
of these processes are region- and species-specific, but 
changes in climate clearly impact modern sea turtles (Fish 
et al. 2005; Fuentes et al. 2010a, 2010b). As an example, 
long-term shifts in atmospheric pressure, temperature, 
and rainfall impact sea turtle nesting patterns in northern 
Australia due to decreases in herbivorous food resources 
for turtles (especially green sea turtles) which affect fat 
reserves required for breeding (Limpus and Nicholls 2000; 
see also Saba et al. 2007 for the eastern Pacific).

In the eastern Pacific Ocean, climate-related events 
may also directly affect sea turtle populations by impact-
ing food web dynamics (Chavez et al. 2003; Hernández-
Carmona et al. 2011; Kahru and Mitchell 2000; Saba 2012; 
Turk et al. 2001). Green sea turtles are primarily herbivo-
rous, consuming seagrass, but dietary studies suggest 
that this species may also exhibit omnivorous behavior 
depending on foraging location and condition (Amorocho 
and Reina 2008; Lopez-Mendilaharsu et al. 2005; Seminoff 
et al. 2002, 2008). Because sea turtles are sensitive to oce-
anic and terrestrial temperature shifts (Davenport 1997; 
Fuentes et al. 2010a, 2010b) and marine primary produc-
tivity is also influenced by temperature changes (Koch et 
al. 2013), long-term climatic changes may have impacted 

Figure 1: Gold Rush-era sea turtle bones analyzed in this study. A: CA-SFR-186H phalanx and B: CA-SFR-195H 
costal carapace.
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habitat conditions and resource availability for eastern 
Pacific sea turtles in the past. An example of this process is 
the decline of sea grass (Zostera marina) in modern eastern 
Pacific coastal lagoons (Riosmena-Rodriguez et al. 2013).

Few long-term sea turtle habitat studies exist for the 
eastern Pacific, but sea surface temperatures have fluc-
tuated through time in this region, particularly during 
the mid-19th century (D’Arrigo et al. 2005). Sea surface 
temperatures were cooler during the 1800s than today 
(Kennedy et al. 2011; Rayner et al. 2003), but in the 
eastern Pacific Ocean the 1840s–1860s experienced an 
anomalous period of warm summers (~21–23.5°C) with 
temperatures +2.0°C greater than the period between 
1671–1800 (Douglas 1980). This suggests that sea turtle 
diets may have shifted during the mid-19th century due 
to broad changes in sea surface temperature that directly 
affected predator-prey relationships and dietary resources 
(Etnoyer et al. 2006).

These background changes in sea surface temperatures 
and thus sea turtle habitats leave an unanswered ques-
tion: were sea turtle diets significantly different in the 19th 
and 20th centuries? We analyze Gold Rush-era sea turtle 
bone stable isotopes, as a proxy for dietary and habitat 
ecology, and compare these values with modern speci-
mens to determine if there is evidence for change in turtle 
diet between the 1850s and today.

2. Methods
Because sea turtles forage on a diverse range of resources, 
even within the same species (Jones and Seminoff 2013), 
identification of changing ecology is only possible if the 
data under consideration derive from the same species 
and geographic area. We therefore use ancient DNA analy-
sis to assign a species affiliation to the archaeological 
specimens, and then bone collagen and apatite stable iso-
tope analyses to identify diet (i.e., trophic status) in both 
archaeological turtles and modern comparatives.

Carbon (d13Ccol) and nitrogen (d15N) bone collagen 
stable isotopes provide information regarding habitat 
and resource use (DeNiro and Epstein 1978, 1981). d13Ccol 
is used as a proxy to differentiate sources of primary 
production (i.e., plants) due to isotopically defined dif-
ferences in their physiological pathways (Kharlamenko et 
al. 2001; Maberly et al. 1992; McConnaughey and McRoy 
1979) whereas d15N is used to estimate trophic level 
since it predictably fractionates when moving up within 
the food chain (Cabana and Rasmussen 1996; Minagawa 
and Wada 1984; Post 2002; Reich et al. 2007). Hydrogen 
isotopes (δD) in bone collagen (protein) are also used to 
trace basal energy sources in ecosystems where primary 
producers present a high range of isotopic variation (Estep 
and Dabrowski 1980; Cole et al. 2011; Doucett et al. 2007; 
Pagès Barceló 2018). Finally, bone apatite carbon (δ13Cap) 
stable isotopes also identify sources of primary produc-
tion, but in terms of aggregated protein, carbohydrate and 
lipid macronutrients, while oxygen (δ18Oap) stable isotopes 
provide information regarding sources of body water, 
whether from consuming food (water in diet), ingest-
ing water (sea water) or breathing (Coulson et al. 2008; 
Langlois et al. 2003). These stable isotopes provide a 

quantifiable technique to systematically examine dietary 
and habitat information for both 19th century and modern 
sea turtles.

This mixed method approach, using ancient DNA 
analysis alongside the analysis of multiple isotope 
systems, allows for the identification of Gold Rush-era 
sea turtle samples and a comparison of past and present 
dietary ecology.

2.1. Ancient DNA (aDNA) extraction, PCR analysis
All pre-polymerase chain reaction (PCR) activities 
were conducted in the ancient DNA laboratory at the 
Laboratories of Molecular Anthropology and Microbiome 
Research (LMAMR), University of Oklahoma, Norman, OK. 
This laboratory is a dedicated workspace for processing 
degraded, aged, and low copy number (LCN) DNA samples. 
Precautions aimed to minimize and monitor the introduc-
tion of contamination are practiced in the laboratory.

DNA was extracted from bone samples CA-SFR-186H 
and CA-SFR-195H in separate batches, each accompanied 
by an extraction negative control to which no bone was 
added. Approximately 39.2 mg was carefully subsampled 
from CA-SFR-186H and 30 mg from CA-SFR-195H. Each 
subsample was submerged in 6% (w/v) sodium hypochlo-
rite (NaOCl) for 4 min and the bleach poured off. The sam-
ples were then twice submerged in DNA-free water, with 
the water poured off following submersion. Samples were 
transferred to 1.5 mL tubes, to which aliquots of 500 μL 
of Ethylenediaminetetraacetic acid (EDTA) were added, and 
gently rocked at room temperature for >48 hours. DNA 
was extracted following the WSU method described by 
Kemp et al. (2014).

DNA extracts were tested for the presence of co-extracted 
PCR inhibitors following Kemp et al. (2014), using ancient 
turkey DNA as a positive control. Neither extract con-
tained sufficient inhibitors to prevent amplification of 
turkey DNA control.

Primers were designed to amplify a 167 base pair (bp) 
region of the cytochrome oxidase I (COI gene), spanning 
nucleotide position 5590 to 5756 of the loggerhead 
turtle (Caretta caretta) full mitochondrial DNA reference 
sequence (NC_016923.1). Sequences of this amplicon span-
ning 5614 to 5734 can be used as a barcode to discriminate 
between all extant sea turtles (e.g., Elmeer and Almalki 
2011): loggerhead turtle, green, Kemp’s ridley (Lepidochelys 
kempii), olive ridley, hawksbill (Eretmochelys imbricata), 
flatback (Natator depressus), and leatherback (Table 1).

PCRs of 15 μL contained 1× Omni Klentaq Reaction 
Buffer, 0.32 mM dNTPs, 0.24 μM of each primer, 0.3 U 
of Omni Klentaq LA polymerase, and 1.5 μL of template 
DNA. PCR cycling conditions consisted of: 1) a 3 min hold 
at 94°C, 2) 60 cycles of 15 second holds at 94°C, 56°C and 
68°C, and 3) a 3 min hold at 68°C. Successful amplifica-
tion was confirmed by separating 2 μL on 2% agarose 
gels, which were stained with GelRed and visualized under 
ultraviolet light. PCRs were conducted with full concentra-
tion extracts and 1:10 dilutions of those extracts.

Following unsuccessful amplification of the CA-SFR-
195H specimen 1:10 dilution, Rescue PCR was employed in 
an attempt to replicate results from the full concentration 
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amplicon. Rescue PCR was conducted, as described by 
Johnson and Kemp (2016) by increasing the concentra-
tions of dNTPs, buffer, primers, and Klentaq by 25%. PCR 
reaction conditions were as described above.

Amplicons were sequenced in both directions at MC 
Lab (South San Francisco, CA). Sequencher (version 5.4.6) 
was used to align the sequences to the full Caretta caretta 
mitochondrial genome (NC_016923.1).

2.2. Collagen Analysis (d13Ccol, d15N, dD)
After cutting a small portion of bulk bone, we demineral-
ized the sea turtle samples in 0.5 N hydrochloric acid (HCl) 
at 5°C for 24 hours and rinsed all samples to neutrality 
using deionized water. Lipid extraction involved immers-
ing the samples in a solution of 2:1 chloroform:methanol 
(C2H5Cl3) for 24 hours (repeated three times). We sonicated 
samples for 15 minutes to ensure complete chemical satu-
ration after each immersion. At the end of 72 hours we 
rinsed all samples to neutrality and lyophilized the sam-
ples for 24 hours. Approximately 0.5–0.6 mg of bone col-
lagen was then placed into tin capsules for carbon (d13Ccol) 
and nitrogen (d15N) stable isotope analysis. For hydrogen 
(dD) isotope samples, approximately 0.1–0.2 mg of bone 
collagen was placed into silver capsules for analysis.

Carbon and nitrogen samples were measured on a Costech 
4010 elemental analyzer (Valencia, California, USA) cou-
pled to a Scientific Delta V isotope ratio mass spectrometer 
at the University of New Mexico, Center for Stable Isotopes 
(UNM-CSI), Albuquerque, NM. We measured hydrogen sam-
ples on a Finnigan high-temperature conversion elemental 
analyzer (TC/EA) coupled to a Thermo Scientific Delta V 
Plus mass spectrometer by a Conflo IV (see Sharp et al. 2001 
for details on the high temperature conversion method) at 
UNM-CSI. Atmospheric N2 is the internationally accepted 
standard used for nitrogen and V-PDB for carbon.

We weighed hydrogen standards and samples into sil-
ver capsules and allowed the samples to sit in the labo-
ratory for at least two weeks before analysis to ensure 
equilibrium between the exchangeable hydrogen in tis-
sue and local atmosphere (Sauer et al. 2009). Hydrogen 
data is corrected using three laboratory keratin stand-
ards (dDnon-ex = –174‰, –93‰, and –54‰) of which 
the dDnon-ex values were previously determined through 
a series of atmospheric exchange experiments. Since 
the samples under analysis are bone collagen, a UNM-
CSI cow (Bos taurus) bone collagen standard was also 
analyzed and gave a within-run standard deviation of 
<1.5‰. Internal-lab hydrogen standards are corrected to 
Vienna-Standard Mean Ocean Water (V-SMOW). The H3 
factor is 5.6. Weight percent carbon and nitrogen con-
centrations provide a measure of collagen contamination 
(Ambrose 1990). Sea turtle samples ranged between 2.7 
and 2.9 suggesting intact and preserved collagen with-
out contaminates. Collagen precision (SD) for within-run 
analyses is <0.1‰ for d13Ccol and d15N, and <1.5‰ dD. 
We report isotope values in delta (d) notation, calculated 
as: [(Rsample/Rstandard) – 1] × 1000, where Rsample and Rstandard 

are the ratios (e.g., 13C/12C, 15N/14N) of the unknown and 
standard material. Delta values are reported as parts per 
thousand, or per mil (‰).

2.3. Apatite analysis (δ13Cap, δ18Oap)
We powdered and homogenized bone apatite (structural 
carbonate) samples and cleansed both samples of organ-
ics with a treatment of 3% hydrogen peroxide (H2O2) for 
24 hours. After the removal of organics the samples were 
rinsed to neutrality using a combination of deionized 
water and centrifugation. For removal of labile carbonates 
we treated the samples with 0.1 M buffered acetic acid 
(CH3COOH) for 30 minutes. All samples were vortexed 
after 15 minutes to ensure chemical saturation. Samples 
were rinsed to neutrality and then left to air-dry for 24 
hours in a fume hood. Finally, approximately 8.0–10.0 
mg of homogenized bone apatite powder was placed into 
exetainer vials and reacted with phosphoric acid at 50°C 
for 6 hours. This reaction produced CO2 for carbon (d13Cap) 
and oxygen (d18Oap) stable isotope analysis. We analyzed 
samples at the UNM-CSI on a Thermo Scientific GasBench 
(Bremen, Germany) coupled to a Delta V isotope ratio 
mass spectrometer. Apatite precision for within-run anal-
ysis is <0.5‰ for d13Cap and d18Oap (see 2.2 for definition 
of delta values). Vienna Pee Dee Belemnite (V-PDB) is the 
internationally accepted standard used in this study for 
bone apatite carbon and oxygen isotopes.

2.4. Isotopic Comparative Data, Corrections and Analysis
Studies of living sea turtle stable isotopes are typically con-
ducted on skin, blood and plasma tissues non-invasively to 
understand Cheloniidae isotopic discrimination, foraging 
ecology, and migration (Arthur et al. 2014; Hatase et al. 
2002, 2006; Reich et al. 2007; Seminoff et al. 2006, 2009, 
2012b; Shimada et al. 2014; Wallace et al. 2006). The addi-
tion of bone collagen and apatite analyses also provides 
insights into the latter processes, specifically foraging 
ecology, and for the purposes of this study, helps provide 
a dataset to compare modern and archaeological samples. 
Pioneering work on sea turtle bone stable isotopes has 
demonstrated their value in understanding sea turtle and 
ocean water physiological processes, species-specific iden-
tifications (Biasatti 2002, 2004), isotopic assimilation and 
paleoclimatic relationships (Coulson et al. 2008), and the 
effects of bone preparation protocols, ontogenetic shifts, 
migration, residency duration and tissue-specific isotopic 
discrimination (Turner Tomaszewicz et al. 2015, 2016,  
2017, 2018). We include bone apatite d13Cap and d18Oap com-
parisons with modern leatherback, olive ridley and green 
sea turtles from the Caribbean (Biasatti 2002, 2004). In 
addition, bone collagen comparisons occur in two forms. 
First, a direct bone-to-bone d13Ccol and d15N analysis and 
second, corrected bone-to-skin d13Ccol and d15N analysis 
from eastern Pacific green sea turtles (Figure 2; Lemons 
et al. 2011; Lewis 2009; Rodríguez-Barón 2010; Turner 
Tomaszewicz et al. 2015, 2016, 2017, 2018).

As the archaeological samples were from bones that were 
over 150 years old, there are two corrections required to 
make our dataset comparable with modern eastern Pacific 
sea turtles. We apply a –0.8‰ d13Ccol&ap “Suess effect” cor-
rection to the Gold Rush samples to account for changes 
in atmospheric carbon between the 1850s-today (Francey 
et al. 1999; Indermuhle et al. 1999; Leuenberger et al. 
1992; Sonnerup et al. 1999), and we use the following two 
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equations to account for sea turtle bone-to-skin isotopic 
discrimination (from Turner Tomaszewicz et al. 2017):

13 13
bone-to-skin bone

15 15
bone-to-skin bone

C  = 0.54* C 8.31

N  = 0.89* N  + 2.55

δ δ

δ δ

−

These corrections allow our archaeological bone samples 
to more directly compare with bone and non-bone 
tissues from modern sea turtles. All analyses and visuali-
zations were conducted in R (3.4.1) and RStudio (1.0.143) 
and are available open-access as source code deposited in 
the UNM digital electronic repository, LoboVault (Conrad 
et al. 2017).

3. Results
3.1. Ancient DNA
Both CA-SFR-186H and CA-SFR-195H specimens were 
identified as green sea turtles (Chelonia mydas) based 
on COI sequence (Table 1). Independent amplifications 
for each sample (full and 1:10 concentration for CA-SFR-
186H and full and rescue for CA-SFR-195H) confirm these 
species identifications.

3.2. Gold Rush-Modern Sea Turtle Foraging Ecology
Direct bone-to-bone d13Ccol and d15N comparisons indicate 
similarity in Gold Rush-era and modern sea turtle protein 
sources (Figure 3). There are no significant differences 
in d13Ccol (Wilcoxon: W = 25, p = 0.16) or d15N (Wilcoxon: 
W = 17, p = 0.82) between the 1850s samples and mod-
ern green sea turtles from Playa San Lázaro, Baja Cali-
fornia Sur, Mexico (see Turner Tomaszewicz et al. 2015; 

2017; 2018) when examining these isotopic systems. Only 
one Gold Rush sea turtle is slightly more d13Ccol enriched 
(–14.4‰) than the mean of Playa San Lázaro turtles 
(–15.4 ± 1.16‰). However, after correcting bone collagen-
to-skin (Table 2) and comparing with a larger sample of 
green sea turtles, the pattern of d13Ccol enrichment in our 
1850s samples disappears (Figure 4). There are no signifi-
cant differences in d13C (Wilcoxon: W = 5.5, p = 0.77) or 
d15N (Wilcoxon: W = 11, p = 0.33), and the larger sample 
of green sea turtle skin values encompasses the d13C vari-
ation present between the 1850s (–16.6‰ and –16.1‰) 
and modern (–15.6 ± 2.03‰) samples.

Isotopic spacing (∆d13Capatite-collagen) between Suess-
corrected bone apatite and collagen is +11.8‰ and 
+5.6‰ for the specimens from CA-SFR-186H and CA-SFR-
195H, respectively. The Gold Rush sea turtles have differ-
ent oxygen (+7.5‰ and –3.5‰) and hydrogen (–3.9‰ 
and –76.0‰) stable isotope values (Table 2). The 1850s 
sea turtle specimen more enriched in d18Oap is also more 
enriched in dD (Table 2).

4. Discussion
4.1. Species Identification
Both Gold Rush-era archaeological samples were identi-
fied as green sea turtles using aDNA analysis. Historical 
records suggest that green turtles were the species of 
choice for maritime passengers traveling to San Francisco 
during the 1850s because of their taste and relative 
abundance throughout the eastern Pacific (Conrad and 
Pastron 2014; O’Donnell 1974). However, zooarchaeologi-
cal analysis was unable to distinguish these specimens as 
green sea turtles due to morphological similarity between 

Figure 2: Map of the location of eastern Pacific Ocean sea turtle specimens discussed in text. Archaeological: SF = 1850s 
Gold Rush samples from San Francisco, California. Modern: SD = San Diego Bay, LOL = Laguna Ojo Liebre, LSI = Laguna 
San Ignacio, PSL = Playa San Lázaro and BM = Bahía Magdalena.
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the recovered elements and modern sea turtle skeletal 
comparatives. Only the application of aDNA techniques 
provided final confirmation.

Difficulty in identifying archaeological sea turtle remains 
is a common problem for zooarchaeologists. For example, 
in an analysis of archaeological sea turtle remains from the 
western coast of Mexico, only 4–5% of specimens were 
identifiable to species (Smith et al. 2007). Bone apatite 
studies have suggested that it is possible to identify sea tur-
tles based on differences in carbon isotopes (Biasatti 2002, 
2004), but results from our study can neither support nor 
refute this argument, due to our small sample size.

4.2. Long-term Eastern Pacific Sea Turtle Diet
Modern eastern Pacific green sea turtles are omnivorous 
and consume sea grasses, algae and invertebrates, but this 
varies with foraging location (i.e., pelagic versus neritic) 
and between green sea turtle populations (Arthur et al. 
2008; Bjorndal 1997; Hatase et al. 2006; Seminoff et al. 
2002, 2006, 2008; Turner Tomaszewicz et al. 2018). These 
location-specific variables make comparisons between 
Gold Rush and modern sea turtle specimens difficult, 
especially given that both 1850s samples lack exact data 
on their ontogenetic age, date of capture and location 
of capture. However, our sea turtle stable isotope results 

Figure 3: Comparison of bone collagen-to-collagen values for two Gold Rush samples from San Francisco, California 
and 15 dead-stranded eastern Pacific green sea turtles collected between 2004–2011 along a 45-km stretch of beach 
at Playa San Lázaro, Baja California Sur, México (see Turner Tomaszewicz et al. 2015).

Table 2: Summary of stable isotope results for the Gold Rush-era sea turtle specimens from San Francisco, California. 
*Calculated following equations in Turner Tomaszewicz et al. 2017.

CSI ID ST01 ST02

Taxon Chelonia mydas Chelonia mydas

Site Number CA-SFR-186H CA-SFR-195H

d13Ccol –14.6 –13.6

d13CcolSuess –15.4 –14.4

d15N 18.2 15.0

d13Cskin* –16.6 –16.1

d15Nskin* 18.7 15.9

d13Cap –2.8 –8.0

d13CapSuess –3.6 –8.8

d18Oap 7.5 –3.5

dD –3.9 –76.0

%N 15.5 15.2

%C 42.6 43.6

C:N (weight %) 2.7 2.9
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indicate overall dietary consistency through time for 
d13Ccol, d

15N and d13Cap. Given that bone collagen primar-
ily reflects dietary protein sources (Ambrose and Norr 
1993; Lee-Thorp et al. 1989), these values suggest con-
sumption of a consistent protein source in the eastern 
Pacific (Amorocho and Reina 2007; Seminoff et al. 2002) 
and high intrapopulation variation in foraging (Turner 
Tomaszewicz et al. 2018; Pagès Barceló 2018).

The differences in d18Oap and dD between archaeological  
and modern samples have other implications. It is possible  
that differences in d18Oap indicate environmental differ-
ences in the eastern Pacific in the 1850s. Modern Caribbean 
sea turtle populations exhibit d18Oap values that are only 
slightly enriched (<+3‰) from 0‰ (Biasatti 2002). Since, 
by definition, mean ocean water d18O = 0‰ (Sharp 2017) 
these sea turtle d18Oap values are consistent with physi-
ological fractionation of oxygen isotopes after consum-
ing (water from plants/animals), ingesting (sea water) or 
breathing water sources (Coulson et al. 2008; Langlois et 
al. 2003).

However, the large spread in d18Oap values in our Gold 
Rush samples suggests different processes: diagenetic 
alteration (see Koch et al. 1997; Wang and Cerling 1994) 
and stress induced fractionation are two possibilities. 
These Gold Rush-era sea turtles were removed from ocean 
water and were kept alive aboard ships for weeks, if not 
months, without food (Conrad and Pastron 2014), during 
their transport to San Francisco. In plants and birds, stress 
can cause oxygen, hydrogen (Farris and Strain 1978; Yakir 
et al. 1990) and nitrogen (Fuller et al. 2005; Hobson et 
al. 1993) isotopic fraction. It is unknown how, or if, stress 
relates to oxygen isotope fractionation in sea turtles (or 
the potential turnover time for stress-related fractionation 

in bone tissues), but we suspect that removal from their 
aquatic environment for an extended period may have 
influenced their individual d18Oap values. Analysis of sea 
turtle bone phosphate oxygen isotopes also indicates that 
bone growth occurs over a consistent and narrow body 
temperature range (≤ ±2.0 °C; Coulson et al. 2008), provid-
ing further evidence that our Gold Rush samples fall out-
side of their expected known normal range of variation.

Finally, stable hydrogen isotopes from bone collagen 
may also provide an alternative source for understand-
ing foraging ecology for both Gold Rush-era specimens. 
Hydrogen isotopes assimilate into tissues from diet and 
water (Hobson et al. 1999) and tend to correlate with nitro-
gen isotopes from protein derived food sources (Birchall 
et al. 2005). It is therefore likely that the dD values in our 
1850s sea turtles reflect foraging trophic level (e.g., Pagès 
Barceló 2018), but their large range and relationship with 
d18Oap (indicating possible stress-induced fractionation) 
requires further investigation.

5. Conclusion
Eastern Pacific sea turtle populations are currently recov-
ering from steep declines during the 20th century. The 
results of this study show little difference in eastern 
Pacific Ocean environmental and foraging dynamics since 
the 1850s, but sample size limits more definitive conclu-
sions. On one hand, isotope results may support evidence 
suggesting that major declines in sea turtle populations 
derive from anthropogenic over-exploitation, egg collec-
tion, by-catch and not habitat change, but on the other 
hand, these results may simply indicate that our 19th cen-
tury samples fall within the range of modern sea turtle 
isotopic variation due to other unknown reasons.

Figure 4: Comparison of corrected bone collagen-to-skin values in both Gold Rush sea turtles (see methods; following 
Turner Tomaszewicz et al. 2017), and bulk skin values for eastern Pacific green sea turtle populations. Mean and stand-
ard deviation bars reported, if available. Data from the following sources: Bahía Magdalena, México (Rodríguez-Barón 
2010), Gold Rush, San Francisco, CA, USA (this study), Laguna Ojo Liebre, México (Rodríguez-Barón 2010), Laguna 
San Ignacio, México (Lewis 2009; Rodríguez-Barón 2010), Playa San Lázaro, México (Turner Tomaszewicz et al. 2017, 
2018), and San Diego Bay, CA, USA (Lemons et al. 2011). The Playa San Lázaro green turtle samples represent a bulk 
skin dataset and a bone collagen-to-skin dataset (Turner Tomaszewicz et al. 2018).
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We emphasize the need for additional historic ecologi-
cal studies combining modern and ancient samples, and 
future controlled feeding and dietary studies to under-
stand how carbon, nitrogen, oxygen and hydrogen stable 
isotopes assimilate, discriminate, and turn over between 
tissues in sea turtles. With these additional data it will be 
possible to employ long-term testing of sea turtle remains 
from archaeological sites worldwide (e.g., Frazier 2003) 
to understand shifts in environmental and population 
dynamics throughout the past. These data may help iden-
tify habitat and genetic changes that can support current 
and future conservation and protection programs for 
these important, endangered species.
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