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CHAPTER 1

INTRODUCTION

1.1 Research Objective and Background

A flutter boundary can be defined as the point at which an area of interest in the
model or aircraft begins to inherently have an instability. More specifically, the damping
becomes neutral or even worse, unstable. Flutter boundaries can primarily be estimated
either from numerical simulations of an aircraft model or analytical examinations of
aircraft flutter test data. The goal is to determine the flutter onset speed, being the flutter
boundary, by examining areas in the aircraft that have been predicted to have marginal
stability at sub-critcal speeds. In aircraft flutter testing, the obtained data must be reduced
in a nearly real-time sense to determine the modal parameters (damping frequency, @,
and damping factor, {) in question. These modal parameters are then used to analyze the
closeness to the flutter boundary. This method involves several hours of engineering and
flight time, costly instrumentation, noisy data, risky decistons, and most importantly
safety issues. Today, anything from classical methods such as fast-fourier transform
coupled with power spectral density analysis to more modem methods such as system
model identification have been applied to flutter test results at sub-critical speeds to

determine such modal parameters.



On the other band, pumerical simulation of an aircraft model can be used to
predict the flutter boundary. This method uses an effective and efficient computational
simulation for determining the aeroelastic response resulting from an excitation.
However, these results are usually backed up by flutter testing, but the flight time, safety,
and engineering hours are significantly reduced.

A useable aeroelastic response, being the mode shapes of the model or aircraft,
should be determined wvsing an aerodynamic code coupled with a structural dynamics
code (Dowell, 1995). The Structural Analysis RoutineS or STARS program and its
derivatives, currently implemented at NASA Dryden Flight Research Facility, is a
computational method of this kind. STARS is a multidisciplinary program integrating
modules from structural, to computational fluid dynamics, to aeroservoelasticity which is
capable of performing linear and non-linear modeling and simulation of advanced
aerospace vehicles (Gupta & Peterson, 1992). Its non-linear Aeroservoelastic Stability
Analysis (ASE) module (ASENL_UNSTEADY code) provides

1) an initial finite element structural modeling and free vibration analysis

yielding natural frequencies of all modes and

2) the solution to the generalized equation of motion in the state-space equation

form thus yielding “noise-free” response data in the shape of generalized
displacements and velocities for each individual mode for the model in
question.

The positive aspect of this method is that the ASE Module provides multiple independent

mode shapes. Specifically, a single time history of ALL the modes in question is not



resulted in as in flight test obtained data, but a single time history for EACH mode is

resulted in without any noise.
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Figure 1. Example of Mode Shape Responses From STARS -
Nine Mode GHV Model



Theoretically, each mode shape may contain any or ail of the other modes inherent
within the system. These mode shapes include an excitation, but once the excitation is
complete, the response is basically free from any other structural excitation. However,
aerodynamics forces are applied during the response. Figure 1 shows an example of each
independent mode shape from the ASENL_Unsteady Program in STARS. These mode
shapes were determined using the Generic Hyperspace Vehicle (GHV) model resulting in
nine modes. Future references to this type of data will be called ASENL data.

The negative aspect of the time marching approach used in the ASENL_Unsteady
Program 1is that it only provides time history data of each individual mode in terms of
generalized displacements and veloctties. It does not provide modal parameters or other
types of stability parameters. Currently with this ASENL data, the method to identify the
flutter onset boundary is to run the program for a model at several specific speeds, pre
and post flutter boundary, for several seconds or cycles of response which could take days
or even weeks of computational time. The generalized displacements are then graphically
plotted, and the responses are visually examined to determine whether the response is
converging, diverging, or neutral. Therefore, this method can only result in a flutter
boundary prediction with an error of determination due to human judgment.

The objective of this research is to replace this graphical method. A method must
be determined which will autonomously assist in predicting the system’s flutter boundary
from multiple mode time history data, specifically the results from the ASENL_Unsteady
Program in STARS. The boundary shall be determined without knowing any information

about the magnitudes of the aerodynamic forces or excitation dunng the responses in the



least amount of cycles (data samples) and computational time. Whether using the most
common method of plotting the damping factor against the dynamic pressure for each test
case or some other method of determining the flutter boundary, this research shall
investigate several methods. Once a complete method is determined, it will be developed
into a stand-alone, autonomous program which will be used in conjunction with the
ASENL_Unsteady Program in STARS to determine the flutter boundaries of any multiple

mode system.

1.2 Literature Review

1.2.1 Modal Parameter Identification

In the past, several methods have been employed to determine the damping
frequency and the damping factor. When these two parameters are determined,
specifically the damping coefficient, the idea is to plot the damping coefficient against 2
speed or dynamic pressure, and determine the flutter boundary when the damping factor
is zero, being neutral damping. In flutter flight testing, subcritical speeds are analyzed
and a flutter boundary is determined. It is determined through some sort of extrapolation
of the damping factor because the actual flutter point cannot be determined in flight due
to safety. Unlike in flutter flight testing, numerical simulation can be accomplished at the
flutter boundary and beyond if need to be. Therefore, no extrapolation, a cause for error,
needs to occur.

The next sections discuss methods to identify modal parameters which have been

used extensively with aircraft flutter test data and numerical simulations.



1.2.1.1 Curve-Fitting

The curve-fitting method extracts frequency, damping, amplitude, and phase
information from unforced transient response data (Bennett & Desmarais, 1975). This
method is designed to curve fit digitized time history data in a least squares sense using
the non-linear exponential function:

M

Y(t)=a, + E e-ck't ~[ak-cos{<md>k-t} + bk‘sir{ (md)k-t]

k=1
This equation minimizes the squared error difference between the output fit and the

input time history for which this error is given by

B, (Y()-)

i=1

This method does require the number of exact modes in the input data to be
known and a very good starting guess for all five parameters (ay, ax, bk, G, and (Wg)k ).
From the initial guess and an inputted step size, the data is sequenced through until the
error is minimized. This method is sound, however, Bennett and Desmarais ounly
provide a method up to two modes. Recall, more than two modes are feasible to be
embedded in each individual mode shape output from the ASENL Program of STARS.

A similar method was applied as a class assignment. This method involved using
a least squares non-linear curve fit using the non-linear equations above coupled with
Newton’s Method (Gerald and Weatley, 1994) to determine the five parameters of

interest. The results were obtained for only one mode, but, the initial guess had to be



almost equal to the final results for the method to work. Also, several points were
needed from the input time history.

The problem with curve-fitting is that it usually is feasible for one mode. With
two or more modes, the difficulty of applying the above equation becomes greater and
accuracy is degraded due to more calculations (Bennett and Desmarais, 1975). The
results of this method have been said to depend strongly on the initial parameters and
requires several data points (Pak and Friedman, 1992), which will be shown later in this
paper. This method has never been shown for three or more modes, and this method
requires the number of modes to be known. In the ASENL data for each mode shape,
the number of modes embedded within is not known and may very well be more than
three. Even if all the mode shapes were normalized and summed together, the pumber
of modes are known, but, in some cases there are nine modes, thus requiring a very
complex curve equation and a very good initial guess. Due to these negalive aspects,

the curve-fifting routine is not feasible for a solution to this research.

1.2.1.2 Fast Founier Transform Coupled With Power Spectral Density (FFT/PSD)

FFT has been a very popular method. When used along with Power Spectral
Density (PSD) data plots, the damping frequency and damping factor can be estimated.
The damping frequency can directly be determined from the PSD plot of local
maximas, and the damping coefficient can be determined using the half-power law or
some sort of curve fit (Lenz & McKeever, 1975; Dobbs & Hobson, 1979; Kehoe,

1988).



Another similar method is the Moving-Block Analysis (MBA) developed in 1975
(Bousman & Winkler, 1981). The MBA first uses the entire data set to determine one
frequency of interest using an FFT and PSD analysis. A block length of time is then
selected, usually a % to Y2 of the signal length, and the natural log of the so-called
moving block function, which is developed from the finite fourier transform of the
damped sinusoidal response equation, is obtained. This procedure is repeated for the
next block and so on until all the data set has been reduced. These resunlts are plotted
against the period of the sample set which results are linear. The slope of this curve
results in the damping factor. This method usually involves the filtering of data and
hands-on decisions of block sizes and the cntical frequencies of interest. This method
has only been proven with two modes or less and has difficulty with closely spaced
modes.

Some other difficulties with FFT with PSD analysis in is filtering. Determining
which type of filter and cutoff frequencies to use to either to reduce the noise in the data
(flight test data) or to obtain only the frequencies of interest. This can be complex and
is usually a hands-on decision by the engineer. Along with filtering, auto-correlation,
zeroing, and data smoothing are also used to assist in determining each mode. With all
these factors involved, each one plays an important role in obtaining good accuracy, and
it usually determines only one mode of interest (Kehoe, 1988). The ASENL data is
“noise-free” so these routines to cancel noise will not be a problem. However, due to
the multiple modes contained within each mode shape, it may be difficult to determine

all modal frequencies.



Another difficulty with FFT/PSD is closely spaced modes and/or very dominant
modes, whether it be two or nine. Figure 2 shows an example of a simple FFT/PSD
using MATLAB 4.0 for each mode shape plot from the time history data in Figure 1.
From Figure 2, it is obvious that a very dominant mode exists in each mode shape, the
other modes are not seen very clearly. Even for a normalized summation of all nine
modes presented in Figure 3, it provides difficulties in determining all nine modes
without using extensive filtering and knowledge of good cutoff frequencies which must

be a hands-on decision.
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1.2.1.3 Single Input - Single Output (SISO) Auto-Regressive (AR) and Auto-
Regressive Moving Average (ARMA) Models

Unlike AR or ARMA models, FFT/PSD methods usually do not determine all
modes, and curve-fitting becomes mathematically very complex and require very good
initial guesses.

Both AR and ARMA models are system identification methods based upon time
difference equations. An AR model models any type of free response, and an ARMA

model models any type of forced response. Both models are strictly time domain based
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unlike FFT/PSD being frequency domain based. These methods have improved
capabilities over the frequency based methods because they offer potential advantages
when attempting to identify a system with closely spaced modes and multiple modes
from multiple outputs (Pinkleman, Batill, and Kehoe, 1995).

ARMA models have been used more extensively to model measured flutter test
data or simulated data (Ljung, 1987), while AR models have not. Both the AR and
ARMA models (time difference equations) can be coupled with a method to determine
the AR and MA coefficients which are usually not known. The AR coefficients are
only required to identify the system’s modal parameters. The AR coefficients can be
determined either by using a transfer function method (Walker & Gupta, 1984; Roy &
Walker, 1985), a Recursive Maximum Likelihood (RML) Method (Torit and Matsuzak,
1997; Cooper, 1990), some type of Least Squares Method (Pak and Friedman, 1992;
Cooper, 1990; Pinkleman and Batill, 1995), or even a General Instrumental Variables
(IV) Method (Cooper, 1990). All of these methods have been proven to be very
effective and feasible.

The RML method statistically produces the best estimates for sub-critical flutter
points, but this method takes five times the number of calculations as the Least Square
methods (Cooper, 1990). Also, the RML method has convergence problems with
lightly damped systems. This has only been recommended for sub-cntical flutter
points. The General IV method performs well in the off-line estimation form.
However, it requires twice as many calculations as the Least Squares. The Least

Squares methods have been proven to require smaller data samples and are simpler to
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apply when compared to all others (Cooper, 1990; Pinkleman and Batill, 1995). Due to
the negative aspects of the RML and IV methods such as the number of calculations and

the convergence problems, these two methods will not be considered for this research.

1.2.2 Flutter Margin and Stability Parameter

Two other methods used to predict flutter boundaries, but not based npon plotting
the damping coefficient against a dynamic pressure, are the Flutter Margin and Stability
Parameter Estimation Methods. These two methods are based uwpon plotting the “flutter
margin” pararmeter or the “‘stability’” parameter against the dynamic pressure.

The first method is the Flutter Margin Method (Zimmermann and Wiessenburger,
1964; Applicaation: Hammond & Doggett, 1975). The Flutter Margin is a stability
criterion which is based strictly on Routh’s Stability criteria applied to the equations of
motion from a simple bending/torsion mode] (two degrees of freedom) with no structural
damping. This results in an equation for the flutter margin which is a function of
frequency and decay rates (or damping coefficient). Once the flutter margin has been
determined from the flutter test results at several dynamic pressures, it can be plotted
against the dynamic pressure and is said to be quadratic due to the nature of the
characteristic equation from the equation of motion. A quadratic curve can be applied to
predict the flutter boundary using the results at very low sub-critical speeds as much as
50% lower than the flutter onset speed.

The problem with this method is that it only involves two degrees of freedom

because it is based upon a simple two degree of freedom equation of motion. Therefore,
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more than three modes cannot be accurately determined. The author even states that for
one mode, the method has inaccuracies due to the quadratic curve fitting. This method
was further improved to three modes (Price and Lee, 1993), however, the same problems
in inaccuracies occurred especially when structural damping was inbherent within the data.
Because of these negative aspects, this method is not feasible for this research.

Another method, similar to the Flutter Margin, except that it was based upon
Jury's Stability Criteria (Jury, 1982), is called the Stability Parameter Method (Toni and
Matsuzaki, 1992). This method uses an ARMA model and applies Jury’s Stability
Criteria to the characteristic polynomial of the difference equation from the ARMA
model. The stability parameter becomes a function of the AR coefficients. The AR
coefficients are determined by solving the difference equation using the Maximum
Likelihood technique. Once the stability parameter has been determined for several
dynamic pressures, the stability parameter is plotted against the dynamic pressure and
then quadratic curve fitted. The curve is then extrapolated to the flutter boundary (when
the stability parameter is zero). Because of the ARMA model, multiple modes with
characteristics of closeness and dominating modes can be analyzed (Tori and Matsuzaki,
1992). Therefore, this method is very feasible for the ASENL data and prides itself in
situations of explosive flutter because of the use of the time marching ARMA Model.
However, this method requires the knowledge of the modal order in the data set which 1s
not the case in the ASENL data as previously explained. And, since STARS is a program
providing simulated results, the program can be ran all the way to the flutter boundary.

Therefore, no curve fitting, a cause for more inaccuracies, has to be accomplished. This
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method could be applied to a normalized summation of the data resulting in a known
model order (Figure 4), however, it is believed that a much simpler method can be
applied. More will be discussed later on the difference between the normalized
summation of each mode shape, where the model order is known, and using each

independent mode. Therefore, this method will not be further discussed.

U

_6 ) PR F SR N GRS TR N W R G S [ G Y SO R S | S PR ) PR

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 4. A Typical Normalized Summation of a Nine Mode System

1.2.3 Focus of Research Based Upon Modal Parameter Identification
In summary, the Least Squares Curve Fitting and the Moving Block analysis have
been proven to be successful but are very limited to the number of modes (two or

lower). They also require substantial amount of data points when compared to AR or
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ARMA models, and are strongly dependent upon initial decisions (Pak and Friedman,
1992). Some comparisons will be made to the curve fitting method in this report.

Fast Fourier Transforms requires good knowledge of the modal frequencies and
an extensive amount of work in filtering, zeroing, auto-correlation, and data smoothing
using hands-on decisions. All of this requires several hours of engineering time. Also,
for closely space modes, dominant and multiple modes, FFT/PSD can be very difficult
to apply and possibly obtain very inaccurate results. Because of this and because of the
example in Figures 2 and 3, FFT/PSD will not be further considered in this research.

AR or ARMA models coupled with a good method, primarily Least Squares, to
determine the AR coefficients have been very popular and have been proven to provide
accurate results using shorter data samples from single to multiple mode systems even
for closely spaced modes. Through this literature review no attempt by any others has
used ARMA models for system of five modes or higher.

Due to the more positive aspects of AR and ARMA models, this research will
provide further insight upon the application of these models to higher mode systems for
one specific pre or post flutter boundary point. Types of Least Squares methods will be
the primary focus to identify the AR coefficients from the AR or ARMA models because
of the their advantages of using smaller data samples and are simpler algorithms. Once
the AR coefficients are identified for one specific flutter point, the modal parameters
from these coefficients will be determined. After the damping factor for several pre and
post flutter boundary points have been determined, it can plotted against the dynamic

pressure for each point thus resulting in flutter boundary prediction.
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CHAPTER 2

DEVELOPMENT OF THE MODAL PARAMETER
IDENTIFICATION METHODS
2.1 Basis of AR and ARMA Models
A Single Input-Single Output ARMA model can be simplistically represented by an
simple time difference equation for a finite number of modes with 2M Anto-Regressive
(AR) coefficients, a; and W Moving Average (MA) Coefficients, b; shown below (Pak
and Friedman, 1992).

M W

Wt Z AV ;i T Z b _;

This equation is shown in block form in Figure 5.

Excitation or Response, y
= Dynamic System of >
other forces, u AR and MA Coefficients

Figure 5. Block Diagram of SISO ARMA Model of Dynamic System
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This difference equation can also be written as

2M W
"
M Z ANt 1 LA W

—

i=1 1=

(1a)

which expresses the response of a dynamic system at any time, vy, as a function of previous
response (regressive) values in the data output, y,;, and the past data input, u,;, while
knowing a finite set of system AR and MA coefficients, a; and b;, respectively. However,
in the case of this research these coefficients are not known. Therefore, the measured
response and input forces are used to determine these coefficients. As for the AR Model,
it 18 simply Equation 1 except the right hand side is zero.

The order of the model is the number of AR coefficients. The number of AR
coefficients should be at least twice the number of modes in the system or 2*M. The
number of MA coefhcients is usually set to one less than 2*M Auto Regressive coefficients
if no pror information is known about the input. If the input is known then Akaike’s
Information Theoretic Criterion (AIC) can be used to determine the correct number of MA
coefficients to include. Since one of the goals of this research was to identify the system
modal parameters without knowing the dynamics of the input excitation or forces, this
crteria is not useable. However, ASENL data does include an inherent bias or static offset
due 10 the excitation. To account for this bias, instead of using W Moving Average
coefficients, as defined earlier, one MA coefficient, b, can be used with a fictitious system
input, u,, equal to 1 (Pak and Friedman, 1992). With this, the ARMA model or difference
equation reduces to

Yo = - Yk - QY2 * oo - AamYeam T by (2)
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The bias in the system response is accounted for, but will never be determined due to its
value being unimportant in predicting modal parameters. The only thing that is important
about Equation 2 1s the AR coefficients (a;). These coefficients are used to determine
directly the system modal parameters for a finite number of modes. How these AR
coefficients are determined depends upon a type of parameter estimation techmique.
Section 2.2 discusses three methods that will be compared with each other to determined

which method is best to use for this research.

2.2 Techniques To Determine Auto-Regressive (AR) Coefficients

Section 1.2.1.3 stated that Least Squares techniques for determining the AR
coefficients required less data samples than all other methods discussed and were easier
to implement. The next few sections will focus on the algorithms of the following three
types of Least Squares techniques which will be used to determine the AR coefficients.

1. Method of Overdetermined Set of Simultaneous Equations (MOSE)

2. On-Line Least Squares (ON-LS)

3. On-Line Double Least Squares (ON-DLS)

These three methods of Least Square are methods that are very popular and are most
suitable for the ASENL data. These three methods will be compared between each other
that best determines the AR coefficients from either the AR or ARMA Model (the time

difference equations).
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2.2.1 Method of Overdetermined Set of Simultaneous Equations (MOSE)
Batill, Pinkleman, and Kehoe proposed to determine the AR coefficients by
writing a system of overdetermined set of simultaneous linear algebraic difference

equations for the entire data set of N points.

Yk = - a1¥k1 - 22Yc2 - ... - @aMYkaoM + by
Virl =- a1V - A2Yk-1 - --.. - A2MYk-aMa1 + by
YN =-a1YN-1 - AYN2 - el - aMYNoM + by (3)

Usually for a linear solvable set of equations the number of equations should equal the
number of unknowns. Here, the unknowns are 2*M AR coefficients and one MA
coefficient, therefore making 2¥M+1 equations. However, Pinkleman, Batill, and
Kehoe suggested to overdetermine the number equations, as shown above, to obtain
accurate results in determining the AR coefficients.

The above overdetermined set of simultaneous equations can be written in a linear

matrix form being

{y} = [®){O}) (4)
where
(0} '=[-a; -a2 -a3 ... -am b1 (5)
and
(W) =Yk Yrel Yee2 --- YN (6)
Yeo1 Yk-2 k-3 ' ' Yeoom !
o Y-t Ye-2 ' " Ye-omar !
[®] = 1 1 1 10 ] ]
| 1 t | . | [ | [ |
1 N
[ IN-1 YN-2 N3 'Y N-am
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Again, if [®)] was a square matrix, then {©} could simple be determined from

(©) =@ {y).
However, when there are more equations than unknowns, then the system is said to be
overdetermined. If closeness between the right and left hand sides of Equation 4 is
defined in the least squares sense, then the overdetermined linear problem reduces to a
solvable linear system called the linear least squares problem. Therefore, {®} can be
solved from (Press, 1992; Pinkleman and Batill, 1995)
(0} = ((I' el (21" (w) (8)

This method becomes the Method of Overdetermined Set of Equations (MOSE) or an
Off-Line Least Squares problem of determining the unknown coefficients. This is
considered an off-line method because the entire data set from k to N points, resulting
in N-k equations is used to determine the AR coefficients. Its solution is the vector,
{©]}, of 2*M AR coefficients and one MA coefficients.

As for the initial starting k point for this method, from looking at the matrix [®] at
time k = 1, the first row of the matrix becomes

Yo ¥4 y2 ... Yiam 1]

where the data does not exist for these points. Therefore, the initial starting point for
this method must be at k = 2M+1 points. When using ASENL data, the initial starting
point cannot start until the transient excitation is complete. k must be equal to 2M+142
where z is the last point of the excitation which is a known parameter.

Instead of using the entire data set, this method can be used to sequence through
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the data by deterrnining a vector of AR coefficients first using k and k+! set of
equations to determine {®}, then incrementing by one and determine a new vector of

AR coefficients. This is accomplished until N points has been reached or regressive
convergence of the AR coefficients can be observed. Once regressive convergence has
occurred there is no reason to continue sequencing through the data set, and at this point
the AR coefficients are said to be correct if the model order is correct (Pinkleman,
Batill, & Kehoe, 1995). However, since the model order is not really defined for each
mode shape, improvement to this method must be made. This is further discussed in

Section 2.4.

2.2.2 On-Line Least Squares (ON-LS)

On-Line methods are methods primarily used with non-stationary data, when the
damping and frequency of a mode changes with time. On-Line methods march through
the data thus determuning a new vector of AR coefficients at each data point using a
“corrector” type of equation instead of an overdetermined set of equations. On-Line
methods also allow forgetting of the data, where Off-Line methods or MOSE does not.
The Off-Line methods use every past data point in a single matrix while On-Line
method updates a new vector of data points at each time marching step. Since the
ASENL data is considered stationary, the forgetting factor does not have to be used,
therefore, the forgetting factor can be set to one (Cooper, 1990).

The development of the On-Line Least Squares problem for this research begins

with Equation 2 of the ARMA model.

Yk = - A1¥k1 - A2Yk2 - ... - 22MYk2M + Dy (2)
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or in matrix form
Y= {0} k(D ©)
where {®)y is the data vector at time k (i.e. {®}x = {¥k1 Vk2 ---... Viam}). As

mentioned, On-Line methods are “corrector” type methods so the AR coefficient vector

1s determined as follows which is written for stationary data thus no forgetting (Cooper,

1990)
{Oh= (O}t + Pl {Wh [{Wh TPler {Whe + T WK (Ol - ) (10)
where:
[Pl = [Pt = [Pl (W [{wh TPt {Whe + 177 {whe Py (11
and
(W = [Vt Yx2 - - - Yeomer 1] (12)

The data sequencing must begin at k=2M+1+z for the reasons provided earlier, and
everything is known at this point except the initial conditions for [P]i.; and {©}«.;. The
initial condition for {P)oms, (k = 2¥*M+142), 1s a*[I], where (I] is the identity matrix and
o i1s a large number. The larger o is the quicker the convergence while marching
through the data. Here, o, will be set to 10*° (Cooper, 1990; Pak and Friedman, 1992).
The initial condition for {©},m4, can be anything from zeros to the full solution from
all data points (Cooper, 1990; Pak and Friedman, 1992). For this research {O}oms:

will be a vector of zero's, because this initial condition had very little effect upon the

final resutts.
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2.2.3 On-Line Double Least Squares (ON-DLS)

On-Line Double Least Squares was developed to reduce the bias from noise
corruption in flight test data since damping coefficients are very sensitive to noise
(Cooper, 1990). This method averages two solutions in which the damping estimated
has a positive and negative bias and the bias is hoped to cancel out. This method really
should only be applied to noisy flight test data. Even though the ASENL data is “noise-
free”, this method will be applied in this research to show some compansons with the
previous two methods.

Mathematically, the only difference between On-Line Least Squares and On-Line

Double Least Squares is the vector {y}y which is represented by two vectors, {a}x and
{B)x being
[o)" = [ Yit Yier Yert Ve - - - - YoM + Yioms1 2] (13)

and Bh =[Ver Vo2 -+ - Yeama 1) (14)

where the equation for {©}y and [P}y are now

(@)= (O}t + [Pl foth [{B) [Plr {at}i + 1T [{ B (© ket - Y
[Pk = [Pt - [Pher{o)x [{B)i (Pl {ct}i + 1TH{B) [Pli.s

This method is said to provide more accurate results than the On-Line Least

Squares method, but does take more calculations (Cooper, 1990).

2.3 Extraction of Modal Parameters from AR Coefficients

With {©)"=[-a; -2, -a3 ... -asy by] now determined from any of the three
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methods discussed, the modal parameters can be determined using one of two following
methods.

The first method involves finding the roots from the following characteristic 2*M
order polynomual which represents the AR part of the ARMA model.

AM pa a™M ™2, +agm (15)

Only the complex roots, which determine modal parameters, to this equation becomes the
modal parameters of the system. All other type of roots, called calculated roots, are
discarded.

Many simple root finding methods exist for polynomials such as Bisection, False
Position, Newton’s, and Bairstow’s Method which are only a few. The common factor
between all of these methods is an initial guess is required. The initial guess usually
strongly affects the results as in Bisection and False Position (Gerald and Wheatly, 1994).
Many of these methods can be excluded due to the fact that they due not work well with
complex numbers. Newton’s method can be used, but it does require a complex inttial
guess and special complex arithmetic. Only Bairstow's Method for Quadratic Factoring
is best when working with complex numbers because special complex arithmetic is not
required. The negative aspect to all of these methods is that all of them have difficuity
with repeated roots being identical modes (Press, 1992).

The second method for determining the modal parameters from the AR
coefficients involves finding eigenvalues from the following matrix (Pak and Friedman,

1992).
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Ay, 0 0 01

iy 0 0 0 0 (16)

This general real matrix is determined from the state-space form of the difference
equation (Eq. 2) (Pak and Freidman, 1962). When finding the eigenvalues of this matrix,
it usually requires one more step than finding the roots of a polynomial when the
following equation is applied.
det(Matrix - Al) a7
The resnlts of this equation is a polynomial similar to Equation 15. Therefore, why
introduce more calculations which could cause more round off error thus affecting the
fmal results. Both the Bairstow’s method and Pack & Friedman method will be
exarmnined for final application.
Once the roots of the polynomial or eigenvalues, usually several pairs of cormplex
conjugates (u+iv);, have been determined from either method, the modal parameters can

be determuned using the equations below.

1 -
a)Dj=Eatan(;'le). (18)

1
where o; = -5 In(u;*+v;?) (20)
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2.4 Noise in Input Data and Determination of Model Order

Usually in most cases of flutter data, two factors are inherent, noise in the data and
the modal order is not known. With the ASENL data being “noise-free”, this reduces the
complexity of the method, and the method also require more data points. Therefore, this
will not be a problem and not addressed any further.

Theoretically, each individual mode may contain any or all other modes. Because
of this, the finite modal order is not known, therefore, two methods were approached.
The first was to normalize all modes then sum them together (i.e. Figure 4), then apply
each method discussed with the finite known model order. Several days of analysis were
accomplished, and the final conclusion was that several points were required to obtain all
system modes. Therefore, the more modes that exist or trying to identify using a single
data stream the more points required for regressive convergence, especially for large
mode systems such as the GHV model. Chapter 3 will provide more reasons with
normalizing and summing each mode shape is not feasible.

The second method uses model overspecification to obtain the modal parameters
desired (Pinkleman and Batill, 1995). Model overspecification is not required if the
model order is known (Cooper, 1990; Torii & Matsuzaki, 1997). For example, if one
known mode exists in Mode 1 then the model order may be overspecified with an order
of two or higher. The problem with this is that both additional unwanted parameters,
called calculated parameters, and the actual system modal parameters are obtained. One
method of avoiding the calculated modes is to input the response data in reverse order

called the Reduced Backward Method (RBM) (Pinkleman and Batitl, 1995). When using
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the RBM, the stable systern parameters are driven unstable and the stable calculated
parameters are forced stable. Therefore, the resulting unstable parameters are considered
the systemn parameters then the sign is changed on the damping coefficient making it
stable and the calculated parameters are discarded. This method only works with stable
systems because unstable systems are stable in the backwards sense in which both the
calculated and system modal parameters are driven stable when RBM is applied.
Therefore, the unstable system parameters will never be identified among the clutter of
the calculated parameters. Recall, one of the desires of this research i1s to identify
unstable modes, therefore RBM cannot be applied for this research.

Another method of only finding system modal parameters when using model
order overspecification is to compare the results of two or even three overspecified
models of different model order. This idea came from Pinkleman and Batill, when they
were showing that accuracy of the damping coefficients was increased for higher
overspecified model orders. Similar modes existing between the two results are usually
the system modes after eliminating unreasonable calculated modes usually having
negative or zero frequencies. This method will be used in this research to make the
complete algonrithm of a very direct method of determining modal parameters.

Model order overspecification is usually not applied to On-Line methods due to
convergence problems (Cooper, 1990). This may only be true if noise is inherent in the
data. Model overspecification will be adapted with the on-line methods to see if

convergence 1s achieved.
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2.5 Re-Sampling of Input Data

Most response data, if obtained or developed correctly, usually has a sample
frequency much greater than the Nyquist frequency by orders of magnitude from 5 to 500.
In most of the literature, when these system identification methods were applied,
especially to complex high mode systems and highly sample systems, the input data or
data trying to be modeled was re-sampled closer to the Nyquist frequency (Cooper, 1992;
Pak & Frnedman, 1995; and Pinkleman and Batill, 1995). More often, the data was
usually re-sampled 2.5 times the Nyquist frequency, which itself is defined as two times
the frequency of interest. Thus, the re-sample frequency should be at least five times the
frequency of interest. No explanation was every seen on why the original or high sample
frequencies from the input were never used. Different re-sampling frequencies will be

examined in Chapter 3.

2.6 Complete Algorithms of The Three Modal
Parameter Identification Methods

2.6.1 Method of Overdetermined Set of Simultaneous Equations (MOSE)

The complete algorithm of the Method of Overdetermined Set of Simultaneous
Equations (MOSE) for any model order is shown in Figure 6. Model overspecification
is not included in this algorithm because a study will be done using different model

order for each system analyzed.
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Read in response data:
Last Point of Excitation, z
Step Size, h
Number of Points to Use, N
Determine if need to re-sample input data

l

Choose Modal Order, M and
Determine Initial Point, k=2M+z+1

:

Start Marching Through Data, | g
form =k, N-1

v

Fill Regression Data Matrix, [®], and
Data Vector, {y}, with m and m+1 points.

:

Determine AR Coefficients,
{0} = (@] (@) [ {w}

Determine roots of the polynomial
or eigenvalues using the AR coefficients

Y

Determine good roots:
if Real <O then r=0
if Imaginary = 0 then r=0 else r=1.
(r is just a flag for non-system modes)

!

From roots with r=1 determine ®p and &

Does m =N-1 or No

Convergence Achieved

Have results

Figure 6. Algorithm for Method of Overdetermined Set of Equations For
Any Modal Order (NOT including Model Overspecification).
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2.6.2 On-Line Least and Double Least Squares
The complete algorithm, again not including model overspecification, of both On-
Line and Double Least Squares is shown in Figure 7. The only difference between

double and basic Jeast squares is the determination of {0}y and {B}y instead of {Wy},

which was discussed earler.
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Read in response data:
Last Point of Excitation, z
Step Size, h
Number of Points to Use, N
Determine if need to re-sample data

]

Choose Modal Order, M and
Determine Initial Point, m=2M+z+1

g

Initialize:
{0} 1 =[-a, -2, -a3 ... -aq by] where a;,a,.b, =0
{a)xand {P}x
(P2 = a*[I) where a=10%°

;

Start Correcting Loop, |
fork=m,N

Y

Update AR Coefficient Vector
(O}= {0}t + [Pl { o) B[Pl { )i + 17 B} {©)ker - Wi

i

Determine roots of the polynomial
or eigenvalues using the AR coefficients

Y

Determine good roots: Update
if Real <0 then r=0 (P]x,
if Imaginary = O then r=0 else r=1. {ot)y, (B}
v or {¥]k

From roots with r=1 determine @Wp and ©

Y

Check for convergence of good modal @_NQ_

f Yes

| Have recnits |

Figure 7. Algorithm of On-Line Least Squares and Double Least Squares For
Any Modal Order. (NOT including Model Overspecification)
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2.7 How These Three Modal Parameter Identification
Methods Will Be Compared

To determine the best of these three complete system identification methods, each
method will be compared by using both simulated and actnal data sets (ASENL data) at
one specific pre or post fluiter point as input. For comparison only, MATHCAD v6.0
will be used as a tool to apply each method. A MATHCAD example of each method,
which basically follows the algorithms in past two sections, is provided in Appendix A.

When applying all three methods, the entire data set will be used to analyze the
characteristics of the regressive convergence and the final results. Once each method
begins marching though each data point, starting from k, the modal parameters are stored
in a matrix in the order as they are determined. For example, if a model of order three 1s
used with a data stream of 500 points, then the final matrix size for each modal parameter
will be a 500-k by M matrix (M is the number of modes in the system). Once the entire
data set is used, each column will be plotted for each modal parameter. From this plot the
regressive convergence of the model parameters can be analyzed.

The criteria for selecting the best of the three methods will be based upon the

following two criteria.

1. Examining the convergence of each modal parameter when marching though
the data stream, which will be called regressive convergence. This
examination will mainly determine which method requires the least number of
points to provide good results. Obviously, the best accuracy for regressive

convergence is 0.0% error, and in most references the best accuracies obtained

33



have been as low as 5.0% (Cooper, 1990 and Pinkleman and Batill, 1992). An
accuracy limit for this research will be at least 5% error, however, the best
accuracy will try to be achieved. This is only a goal for this research, If this
goal 1s obtained, the results are no worse than past research accomplished by
others.

2. Examining the convergence when applying model overspecification will be
called mode convergence. This will further justify the number of points
required and the accuracy of the modal parameter. In most of these systems
being analyzed in the next few sections, the exact number of modes to
determine the model order are not known. Therefore, model overspecification
has to be applied.

In some of the simpler systems being analyzed, these identified modal parameters
will be used with a sinusoidal damped equation and plotted against the inputted ASENL
data to determine if they are indeed accurate.

Recall the ASENL data includes both the generalized displacements, q, and
velocities, qdot, for each independent mode which may or may not include some or all of
the other modes. This is very different than in flight test data where a single data stream
includes all modes of interest. The best of the three modal parameter identification
methods will be based npon the earlier criteria, and they will determine

1. which ASENL data set to use, the generalize displacements or velocities;
2. whether a normalized summation of all the independent mode shapes will be

used since the modal order will be known is better, or to apply the methods to

34



3.

each individual mode shape, and

if re-sampling needs to occur.
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CHAPTER 3

RESULTS FROM COMPARING ALL THREE MODAL
PARAMETER IDENTIFICATION METHODS
USING DIFFERENT SYSTEMS

3.1 Using Simulated Single Mode System.

A very common, method proving system is a simple single mode sinusoidal
damped system. This system, being of the form
y(t) = C + e cos(wpt)
where: o=5,0p=30,C=1,
was first used in the basic curve-fitting application (Bennett and Desmarass, 1975). A
plot of this system’s time history is shown in Figure 8. The frequency ratio, F, in this
figure, is defined as the sample frequency over the system frequency. This data set will
be used by applying all three methods with and without the static offset term (one MA
term) in the ARMA model. This will show why an ARMA over an AR model must be
used and prove why only one MA coefficient is required.
The input data contains 64 data points with a step size of 0.0098663 seconds, or a
sample frequency of 101.36 Hz (636.83 rad/s) giving a frequency ratio, F, of 21.2. The
starting data point is k = 2M+z+1 or 3 since only one mode (M = 1) and no excitation (z

= 0) exists. The results of all three methods using these ARMA models are shown
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Figure 8. Time History of Simulated Single Mode System

o Points needed
(rad/s) for convergence
5.0 64
5.0 4
5.0 8
5.0 10
3.095 After 63 Points
- Method Failed
becanse r=0
- Method Failed
becauser=0

* AR modc (no account for the static offset, C)
** ] east Squares Curve Fitting Method (LSCFM) (Bennett and Desmarats, 1975)

Table 1. Modal Parameter Results From Application of Several Methods Using
A Simulated Single Mode System
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directly from MATHCAD 6.0 in Appendix A and are summarized in Table 1. Table 1
also provides comparisons with the Least Squares Curve Fitting Method (Bennett and
Desmarais, 1975).

It is apparent from Table 1, the ARMA model with the static offset term (one MA
coefficient) for any of the three system identification methods must be used. The AR
model, no MA coefficients, provided inaccurate results or regressive convergence never
occurred. The LSCFM results identified the modal parameters, but it required several
data points compared to the other methods. The ARMA model with MOSE determined a
solution after only 4 points while the other two ARMA model ON-LINE methods
required slightly more points.

Re-sampling at a lower frequency ratio had no affect on the accuracy or regressive
convergence of this data, however, this is a very simple system. Also, no model

overspecification was used because the model order was known.

3.2 Using ASENL Data

3.2.1 Two Mode System (AGARD)

3.2.1.1 Description of Data

This two mode system using the AGARD Wing configuration, which is a standard
aeroelastic test case experimentally investigated in the Langley Transonic Dynamics
Tunnel, is a result from the ASENL Program in STARS. This geometry is shown in
Figure 9. This module applies a transient structural excitation resulting in a response

where one of the two modes is unstable. Table 2 provides the properties of the input
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data for the AGARD data set. This data set contains two independent modes of
generalized displacements, q, and velocities, qdot, which is plotted in Figures 10 and 11

for both modes.

Figure 9. Planform of AGARD Wing Configuration

Item : _...;,_._ i Value
Number of Total Modes ' f; _-je >
Sample Frequency, @, CRaﬂ/S) | 4,829.51
Number of Points, N =~ 1 000
Last Point ofmetatmn,cz ; 4
Natural Frequencies @ Q-.

60.312
e M 239.798

Frequency Ratio, F _coJm,,, ) SR,
..... DI ;l\i&"ib'i 80.1
~ Mode 2 20.1

Table 2. Properties of Input Response Data From AGARD
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Mode 1

Gen Disp, q

Q.7
Mode 2
0.4 0.5 0.6 0.7
Time, a
Figure 10. Time Histories of Generalized Displacements For Each
Independent Mode Shape From AGARD
Mode 1
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Mode 2
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&
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_1000 1 1 Y L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 11. Time Histories of Generalized Velocities For Each Independent
Mode Shape From AGARD
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3.2.1.2 Results of Re-Sampling the Data and Model Overspecification

When all three methods were applied to both the displacement and the velocity
data using higher mode] orders at the original frequency ratios, F, regressive
convergence of the modal parameters was never obtained. This was due to noisy
outputs of the modal parameters while regressing through the data stream. This
occurred primarily with MOSE. An example of this is shown in Figure 12 being the
results from applying MOSE to the generalized displacements of Mode 2 with a model
order of six (M=6). The dashed lines represent the 5% error band for regressive

convergence.

0.080

[ |Sample Rate, 768.4 Hz
{500 Points

0.075

0.070 |

.| LK 1 [l
! | { ) ‘l‘l h
! |
: ;
| ‘ \
'l ! 1

Damping Factor, {
[=4
&
ol

=)
3

0.055

0'050 L 1 n' 1 L | I TS SUUN IR QRN | 1 i 2 1 i by 1 1 ( 2

50 150 250 350 450
Number of Pointa

Figure 12. Example of Applying MOSE Using the Original Frequency Ratio
(Frequency Ratio, F = 20.1)
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This problem can be solved by reducing the sample frequency of the input data as
explained in Section 2.5. Recall, the data was recommended to be re-sampled for input
five times the frequency of interest or in other words, at a re-sample frequency ratio, F,
equal to at least five.

Before a specific re-sample frequency of 5 is chosen as fact, several re-sample
frequencies were applied using overspecified models for each of the three modal
parameter identification methods. Before these results are shown, the term re-sample
factor, n, must be defined. The re-sample factor is a number which divides the original
sample frequency which in turns defines the re-sample frequency. For example, if n =
1, the re-sample frequency is equal the original sample frequency given. If n = 4, then
the re-sample frequency is four times lower than the original re-sample frequency.

Mode 1, again, of AGARD was used to analyze the effect of re-sampling at Jower
sample frequencies, or higher re-sample factors. This effect using all three methods for
several model orders are shown in Figures 13 through 15. The damped frequency of
this mode is not plotted because it was determined with any modal order at almost all
re-sample factors. It is only the damping product that had difficulty in regressively
converging upon a good result. This is seen in the results provided in Appendix B.

The first observatioo from Figures 13 through 15 is as the re-sample factor and the
model order is increased the convergence of the damping product improves for any
method. The best results for all methods were obtained when the re-sample factor was
greater than two (F < 33.6) for model orders greater than two. A model order of eight

provided the best results for any method. Noisy results were apparent at lower re-



sample factors especially for n = 1 for the MOSE method.

2.5 - .
o M=1
20 0O M=2
° A M=4
. 15 X M=8
3 1.0 o Damp. Product -0.028
o]
©05 | ¢
€
Q.
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-0.5
-1.0
-1.5 L 2ot : L
0 6 8 i0 12 14
Re-Sample Factor, n
Figure 13. Damping Product, 6, Versus Re-Sample Factor, n, Using
MOSE at Various Model Orders Applied to Mode | of AGARD
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Figure 14. Damping Product, G, Versus Re-Sample Factor, n, Using On-Line
Least Squares at Various Model Orders Applied to Mode 1 of AGARD
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Figure 15. Damping Product, 6, Versus Re-Sample Factor, n, Using On-Line

Double Least Squares at Various Model Orders Applied to Mode 1 of AGARD

It has been shown the convergence or say the accuracy of the damping product
was improved with a greater re-sample factor aod higher model orders. What about the
advantage between each method? Figure 16 provides the damping product plotted
against the model order at a specific re-sample factor of n = 8 (F = 8.4) as a direct
comparison between all three methods. This figure shows very good results for model
orders two or greater for all methods, but here no advantage between any method is

really apparent.
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Figure 16. Damping Product, &, Versus Model Order, M, Comparing

All Three Methods at a Re-Sample Factor of 8 Using Mode 1 of AGARD

Now that the accuracy of the damping product has been shown to increase with
increasing re-sample factor and model order, how many points does it take for the
regressive convergence of the results shown in Figures 13 though 16?7 Figures 17
through 19 provides the number of points to converge upon 5% of the damping product
provided in Figures 13 through 15. Results for a re-sample factor of n = 1 are not
shown because of the inaccurate results of the damping product shown in Figures 13
through 15. Also, for these figures when points are shown plotted at 1,000, this means
that the damping product after 1,000 points did not regressively converge upon 5% of
the damping product primarily due to noisy results.

In terms of number of points for regressive convergence, re-sampling the data for

input had the greatest effect on the MOSE method. With n = 2, regressive convergence
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Versus Model Order Using MOSE for Various Re-Sample Factors, n,
Applied to Mode | of AGARD
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Figure 18. Number of Points to be Within 5% of the Damping Product Versus
the Model Orders Using ON-LS for Various Re-Sample Factors
Applied to Mode 1 of AGARD
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Figure 19. Number of Points to be Within 5% of the Damping Product Versus
The Model Orders Using ON-DLS for Various Re-Sample Factors
Applied to Mode 1 of AGARD

was never obtained, however, with an increase in n from 2 to 4, the number of points
for regressive convergence were much lower.

Re-sampling the data at a lower frequency, higher re-sample factor (n > 6 or
F < 12.6), only causes more total points to be used from the input response data due to
larger step size. This is why re-sampling the data at a frequency ratio of five did not
provide the best results in terms of number of points for regressive convergence.
Therefore, a limit on the re-sample factor must be specified.

During this research, while analyzing several highly sampled systems at given
frequency ratios, F, from 5 to 500, typical results as shown in Figure 20 occurred. This

figure provides what occurs to the damping factor and the number of points for
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regressive convergence while increasing the re-sample factor, n, or decreasing the new
frequency ratio, F. Above a certain new frequency ratio, usually F > 25, the accuracy of
the damping factor decreased due to noisy results (the step size was too small for the
time difference equation), and thus no regressive convergence. Below a certain new
frequency ratio, almost always (F < 5), the accuracy of the damping factor decreased
due to the method is aliasing the input data. Therefore, this analysis concluded that for
given frequency ratios below 225, good results were obtained when the re-sample
factor, n, was eight or less (giving new frequency ratios of 28 and less, but never less
than 5), and for given frequency ratios greater than 225, the new frequency ratio was set
at 12 instead of 5. These set limits are provided to obtain the data in less amount of
points and still maintain good accuracy.

For re-sample factors of 4 and 8 the different methods are compared in Figures 21
and 22 to determine which of the three methods are better. From these two plots and
plots of the damping product previously, the ON-LINE methods produced the best
results in the least amount of points for all model order. The MOSE method for a
model order of 2 was poor, however, for model orders near 4 the results between all
methods were similar. When the model order was increased beyond 6, the MOSE
method required the most points while the ON-LINE methods required almost the exact
number of points between model orders. All methods provided very similar results in
terms of the damping product for these high model orders. This is why the damping

product is not plotted.
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Figure 20. Typical Results Concerning The Accuracy of The Damping
Factor and The Regressive Convergence Using the Same Model Order
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Figure 21. Number of Points to be Within 5% of the Damping Product Versus

Model Order Using All Three Methods at a Re-Sample Factor of n =4
Applied to Mode 1 of AGARD

49

AATFY 2 TUR E 4 T o Py ¥ v
VDLARUMA 1AL UIN



L —— — - —

450 [ CIMOSE
g | & ONLS L
% ON-DLS a

S

(o]

(=]
™

&
ey

€]
[~
(]

Number of Points to be
within 5% of Damping Facto
N n
g &
M

Y

150

[ "

g x
100 |
50

0 P U S DU Y TS S S G T S T SEPUUD NN S DD SR U S DU SIS TEDK WA TN WU TP SR W VS T S SR T T SR SR TV S A
0 1 2 3 4 5 8 7 8 9 10

Model Order, M
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Mode} Order Using All Three Methods at a Re-Sample Factorof n=§
Applied to Mode 1 of AGARD

3.2.1.3 Methods Applied to A Normalized Summation of All Modes or To Each
Independent Mode Shapes?

The normalized summation of all modes is accomplished by normalizing each
independent mode shape and summing these results together. The advantage of this is
the model order is known, thus model overspecification is really not required (Cooper,
1990; Toni & Matsuzaki, 1997). However, for this unique set of independent mode
shapes and for high mode systems such as the system presented in Figure 1 (GHV),
normalized summation of the data can cause inaccurate results and several data points
required for convergence. This was discussed briefly in Chapter 2.4. Another reason

why not to use a normalized summation of all independent modes is based upon the
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results of the last section. A good re-sample factor cannot be chosen to be appropniate
for every mode. If the lowest re-sample factor was chosen based upon the highest
modal frequency, then the lowest modal frequency will be difficult to obtain and will
take several points for regressive convergence. The lowest mode will have a very high
frequency ratio compared to the highest mode. Section 3.4 provides two other reasons
why a normalized summation of all modes shapes is not feasible. Because of these
reasons all analysis will be applying each method to each independent mode using

model overspecification to determine accurate modal parameters.

3.2.1.4 On Using Generalized Displacements or Velocities

Appendix B provides tables of all results from applying each method to both the
generalized displacements and velocities at the properly determined re-sample factors
ofn=8 (F=8.4) for Mode | and n = 4 (F = 5.6) for Mode 2 of the AGARD system,
Recall, one of the objectives for this system was to determine which set of data to use.
All past data for this system has been using the generalized velocities. As shown below
in Figure 23 and in Appendix B, the Generalized Displacement data for both Mode 1
and 2 produce poor results for convergence due to regression and model
overspecification. This primarily occurs for the MOSE method, and was more
prominent in Mode 1 than in Mode 2.

For the ON-LINE methods, the difference between using the generalized
displacements or velocities based upon the number of points for regressive convergence
and the accuracy of the damping factor was very small compared with the MOSE

method. To determine the best method using further amalysis and for the best
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comparisons between each of the three methods, the generalized velocities will be used

as the 1nput response based upon the results in Figure 23.
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Figure 23. Number of Points to be Within 5% of the Damping Product
Versus the Model Order Using MOSE with Proper Re-Sampling Factor
Comparing The Number of Points for Regressive Convergence
Between the Generalized Displacements and Velocities
3.2.1.5 Results For Both Modes
Using the previous findings in the past few sections both modes can be
specifically analyzed using all three methods. To obtain the model parameters for each
mode, these results in Appendix B for generalized velocities are compared between
each mode] order. Modes that compare very well between different model orders are
usually the system modal parameters. The damping products for the most common

damping frequencies for Mode 1 and 2 from applying all three methods are provided in

Table 3 for more finite model orders from M = 2 to 6. The damping frequencies are
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provided in Appendix B.

| Model Order__MOS] ON-LS

-0.028
-0.028
-0.028
-0.028
-0.028

(o JV, Q- UL R &

15.205
15.206
15.206
15.206
15.205

- et A Pubmi 0 b

AW

Table 3. Most Common Damping Products From Each Independent
Mode from AGARD
The damping products for all methods were very similar, but based upon accuracy, the
ON-LINE Methods provided the best results for all model] orders.

Figures 24 and 25 provide plots examining the number of points for regressive
convergence for each mode to obtain the results in Table 3. Figure 24 for Mode 1 just
re-iterates some of the findings already, however, it does provide more details of a more
feasible model order range. In both Figures 24 and 25, generally, the MOSE method
converged in less amount of points than the other two methods for model orders of
three or less, but more points were required for model orders greater than 4. Overall,
the difference in the amount of points was very small, and the number of points for the
ON-LINE methods were almost identical. The number of points were less for Mode 2,

compared to Mode 1, because the frequency ratio was closer to five and not exceeding
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the re-sample factor limit of 8 (for a given F < 250) like Mode 1.
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Figure 24. Number of Points to be Within 5% of the Damping Product,
-0.028, Versus the Model Order For the Independent Mode 1 of AGARD
Using All Three Methods at a Re-Sample Factor of n = 8 (F = 8.4)
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Figure 25. Number of Points to be Within 5% of the Damping Product,
15.206, Versus the Model Order For the Independent Mode 2 of AGARD
Using All Three Methods at a Re-Sample Factor of n =4 (F=5.1)
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3.2.2 Six Mode System (Flat Plate)

3.2.2.1 Description of Data

This set of response data is the results from a exciting six modes of a simple flat

plate model, which the an isometric view is shown in Figure 26.

Figure 26. Isometric View of the Flat Plate

This particular data set includes six independent modes at a sub-critical flutter condition
thus resulting in six very stable modes. The aspects that were learned when analyzing
the two-mode system in Section 3.2.1 will be applied here, however, some these aspects
will be briefly presented to re-iterate why they are used.

Figure 27 provides the time history of each independent mode and Table 4
provides the properties required to set up each method including the required re-sample

factor resulting in new re-sample frequency ratios.
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Value

6
3.717.86
500

8

18.591
76.179
137.802
183.732
277.414
371.785

200.0
48.8
27.0
20.2
13.4

10.0

N L A oo R[S

25
6.1
5.0
5.0
50

5.0

Table 4. Properties of Input Response Data From Flat Plate Model
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Figure 27. Six Independent Mode Shapes from Generalized
Velocities of Flat Plate Model
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3.2.2.2 Re-Sampling of Data and Model Overspecification

For these modes, the results of re-sampling the data at a lower sample frequency
(lower frequency ratio) were very comparable to the results for the two mode system in
Section 3.2.2. As the re-sampling factor increased (re-sample frequency decreased), the
damping product’s accuracy improved. Also, model overspecification increased the
accuracy of the damping product. Figures 28 and 29 provides an example of these
results of the damping product and the number of points for convergence from using

both the MOSE and ON-LS methods on Mode 4 for this system.

45 s egy e e Qum wimian o SRR
L ¢ MOSE
45 L o 0O ON-LS
i i Damp. Product. 4,356
g L
m -
(-]
b5 L
a o o)
E 4.4 [ w & 4‘
k- L
()
43 | °
a
4.3 i 1 n n ) H— 1 n L L i L L L L 'R L i L 1 Y
0 2 4 6 8 10
Model Order, M

Figure 28. Damping Product, o, Versus Model Order, M, Using Both MOSE
and ON-LS Methods on Mode 4 of the Flat Plate System at a
Re-Sample Factor of n =4 (F=5.1)
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Figure 29. Number of Points to be Within 5% of the Damping Factor,
4.356, Versus the Model Order, M, Using Both MOSE and ON-LS
Methods On Mode 4 of the Flat Plate System at a Re-Sampling
Factorn =4 (F=5.1)

From these two figures for model orders from 4 and below, the number of points
for regressive convergence were lower using MOSE and the accuracy of the damping
product was generally better. For model orders greater than four, the accuracy for both
methods were very similar, but, the number of points for regressive convergence

increased more rapidly for MOSE method than with the ON-LS method. The exact

same results was seen the two mode AGARD system.

3.2.2.3 Results For All Modes
Simtlar to the AGARD system, the modal parameters are identified by finding the

most common modal parameters between models of different order. Other modes may
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Figure 30. Common Damping Products From Each Mode For All Methods using
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be present and the modal parameter for that independent mode response may not be the
most common. However, if starting from Mode | and finding the most common, Mode
1 is identified. Then when moving on the Mode 2, if Mode 1 is present and it being the
most common then Mode | can be ignored and then the next most common may be
identified being most likely Mode 2. This critena is used with all subsequent modes.
Figures 30 and 31 provide the results of only the identified damping products and the
number of points for convergence for these damping products comparing all three
methods for each mode.

The accuracy of the damping products for this system was generally good for all
model orders greater than three. For model orders of one and two the resunlts were
varying. For model orders greater than three the MOSE method did provide the best
results in the accuracy because the two ON-LINE methods sometimes would produce
an inaccurate result (Mode 3 through 6). As for the number of points for regressive
convergence in Figure 31, all results were basically similar in the amount of points
except the MOSE method generally converged in a less amount of points for all model
orders and still providing good accuracy of the damping factor. Based upon these
results, these findings proved that MOSE did provide overall better results for all mode
orders below six which was enough model overspecification to obtain accurate damping
products. This conclusion is similar to the findings of the last two systems in terms of
low model orders.

To verify the correct modal parameters were obtained and being that these modes

were obtained at a sub-critical flutter state, most likely each mode shape can be
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represented using 2 single mode sinusoidal damped equation. However, this
assumption will not be entirely accurate because other modes were found to exist.
Table 5 provides the modal parametess for each mode using the MOSE method of

model order of six.

(rad/s)
22.90

74.98

138.33
182.65
277.10
371.79

Table 5. Modal Parameters For Flat Plate System

Figure 32 provides the normalized input response for each mode shape from the
ASENL data plotted with the single mode sinusoidal damped representation using the
appropriate modal parameters from Table 5. The single mode model almost modeled
every mode exactly except maybe Mode 1. The point of regressive convergence is

based upon a model order of 6 using the MOSE method.
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3.2.3 Nine Mode System (GHV)

3.2.3.1 Description of Data

This data set is the result of exciting a nine mode system of a model of the

Generic Hyperspace Vehicle (GHV), shown in Figure 33.

Figure 33. Geometry of GHV Model

This system is at a condition just beyond the flutter boundary resulting in three of the
nine modes being usually unstable as shown in the Figure 1. This set of data provided
the greatest difficulty in identifying the system modal parameters. This system not only
contains nine modes, which is the Jargest system analyzed, but, it also contains three

sets of two modes that are very closely spaced. This can be seen from the natural
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frequencies in Table 6. Table 6 also provides the necessary properties of the systemn and
the pre-determined new frequency ratios for re-sampling the input data for each method.
Not only does this system have closely spaced modes, but the damping products are
also very close as will be shown later. Therefore, this system is very complicated.

Each of the three methods were applied to each independent mode using model
overspecification and the appropriate re-sample factor shown in Table 6. Several
higher model orders were used on several of the modes. This was accomplished
primarily with the closely space modes because convergence, due to model
overspecification, of the damping product was sporadic as the model order increased.

This issue will be discussed in the next few sections.
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Value

943.42
500

19.993
25.312
25.462
34918
43.435
43.801
45.657
59.069
59.286

472
373
37.1
27.0
21.7
21.5
20.7
16.0
15.9

W W ha pdndNoos

5.9
5.3
53
5.4
5.4
54
5.2
53
5.3

Table 6. Properties of Input Response Data From GHV
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3.2.3.2 Re-Sampling of Data and Model Overspecification

Re-sampling this data at a lower frequency ratio and wusing model
overspecification had very similar results to the previous two systems. Above a model
order of four, accuracy of the damping product improved for both methods as shown in
Figure 34 using Mode 4. The number of points for regressive convergence for modes
that were not so closely spaced to other modes was nearly the same for both the MOSE
and ON-LS method for all modes. An example of this is shown in Figure 35 for Mode
4. For closely space modes the performance of each method varied. This will be

discussed in more detail in the next section.
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Figure 34. Damping Product, o, Versus Model Order, M, Comparing Both
MOSE and ON-LS Methods Using Mode 4 of the GHV System At A
Re-sample Factorn =4 (F=5.2)
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Figure 35. Number of Points to be Within 5% of the Damping Factor, 2.525,
Versus the Model Using Comparing Both MOSE and ON-LS Methods Using
Mode 4 of the GHV System At a Re-sample Factor of n = 4 (F = 5.2)
3.2.3.3 Results For All Modes
To 1dentify the modal parameters between different mode! orders, the same
criteria as in the six mode system was used. For this complex nine mode system, the
system modal parameters were more difficult to identify due to the closeness of several
modes and the number of modes existing. The damping product generally varied
sporadically with increasing model order for closely spaced modes. Sometimes the
other closely spaced mode was approached as in Mode 2 for a model order above five.
Being that the damping product and frequency are similar between the closely spaced
modes, this criteria was even more difficult. However, if enough higher model orders
were used and each mode is carefully examined then each mode can be identified.

Usually in most cases, the modal parameters for the mode of interest in that mode shape
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between the closely spaced modes had better characteristics of regressive convergence
with higher model orders.

Figures 36 and 37 graphically provide the results of the identified modes from
each independent mode shape in terms of the damping product and the number of
points required to regressively converge upon an accurate damping product. If no
values are seen for a particular model order then regressive convergence failed.

The main observations for all three methods is that with increasing model order,
the accuracy of damping factor did improve. The most significant improvement was
made for model orders greater than three to five depending upon the mode. Sometimes
the MOSE method was not as good as compared to the other methods as shown for
Mode 2, however, the MOSE method was better than the other methods as in Mode 6.
For Mode 6 at a model order of 8 the common damping product was never obtained for
the ON-LINE methods. As for the number of points for convergence, the MOSE
method was generally better than the other two methods for model orders below six,
and for higher model orders the ON-LINE methods were not much improvement.

After examining all methods applied to the complex nine mode system, the
MOSE method provided results that were not as accurate as the ON-LINE methods,
however, did produce the results in less amount of points at Jower model orders. The
results of the ON-LINE methods in obtaining the damping factor were not much
improvement over the results from the MOSE method until higher modes were reached.
Usually with these higher model orders, more calculated and system modes are

obtained, therefore, the difficulty of identifying common modal parameters becomes
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greater especially for closely space modes.
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For example, when examining a2 mode

A Yy W EF & (WT ¢TI T VR YVTY ey Mty

Faus

A ™I ale NIV RNSEN;Y

¥
-

UValARAny

3.3 Mode 1
o ;
£ 2.8 ; A
3 o
| 2.3 r
E - & =
1.8 C v 0 1 1 — sl a1 SV B (
0 1 2 3 4 5 6
Mode 2
5 0.00 ¢ oce
3 -0.05
-0.10 £ o]
s 015 f =8 g - -
& -0.20 E r 8 = & @ ]
£-025 p °
.0.30 EBS P Y VAT S S Y S SRS TR ¢ P 1 L9 el ey,
0 2 4 8 8 10 12 14
. 1.4 : = Mode 3
3 12 F
E 1.0 E A
= 0.8 E % &= ) 3 N
= =
'E‘, 0.6 E
s 04 7 o
0.2 e — ‘ S , ,
0 2 4 10
g 20 g _Mode 4
§ 1.5 F D o
£ 10 § gt —— ®
2 05 : °
—E 0'0 :
Ot ﬂ
8 o5 B ' : -
0 2 4 10
Mode 5
5 50
3 E
B 40 F g
[ E A
> 3.0 o 3 o
20 f
E E
o 1.0 . . LS . 1 P ) ._A
0 1 2 3 4 5 6
Modesl Order, M
|
| o MOSE o ON-LS A ON-DLS

Figure 36. Most Common Damping Product From Each Mode For the GHV
Systemn Comparing All Three Methods

72



14

_ 38 |
S 4 A
g 3.3 £ g
Ea'a ;- > @ [2 v g’ L4 z
a " ]
E 23 F
8 g @ [
1.8 C 1 L [l A 1 i ) a1 1 1 ) JE |
0 2 4 6 8 10 12
Mode 7
15 ¢
§ f 0
810 ©
N
.g‘ £ o
S5t
3 . = & & B
0 L ) 1 { 1 1 i 1 1 A 1 1 1 L 1 1
0 1 2 3 4 5 6
Mode 8
_‘8 oae
S o
36 =
=¥
=
E2
3 3 —- = =
0 ._;;L.A—i Ly ) 1 N 1 n \ 1 f 1 1 M
0 1 2 3 4 5 6
5 . Mode 9
E LAY
o] .
M °
Al ——————— —» = n
0 F
-3
52 |
_4“ .u.|.t.‘x-|4...1..;-|L‘L11JLJ_;
0 2 4 6 8 10 12
Modae! Order, M
o MOSE OoON-LS A ON-DLS

Figure 36 Continued. Most Common Damping Product From Each Mode

For The GHV System Comparing All Three Methods

73

A51812 UNIVERSITEY

URIAIIUY

Y PO BN



500
400
§3oo
5200
100

500
400

S00

3200
*100

500
2400
5300
%200

=}

*100

500
E400
E300
200
*100

500
2400
E300
$200
=100

Modg,1

: b =
B
3 o
3 ° H
0 1 2 3 4 5 6
;—U—E—e—ﬂ—@—g“““u—i FS o ¢
° o 1)
3 A ] a
3 o
4] 2 4 6 8 10 12 14
= Mode 3
i A i
E g a ° ) a
3 'S
0 2 4 6 8 10
— g——a—n—» Moged
E A
3 A
g 7} B R
0 2 4 6 8 10
- = - Mode 5 o ,
% A o
E E o] o L3
0 1 2 Mode ol:ilodo!, ] 4 5 6
o MOSE o ON-LS AON-DLS

Figure 37. Number of Poiuts to be Within 5% of the Damping Product for
Each Mode of GHV Comparing All Three Methods

74

I (RYYr reNT o

suva

IR AFIIMESG N1 01K JI)DINIVHNSIE'Y

I T



500

{
1

T

g400 :
E300 |
o

5200 |
100 E

[m|

K
o

o
gV
F Y
»
[»+]
S

500 | s
4 2
s 00 f
£ 300
o
%200
*100

T

a
>
e -3

(@]
—
3%
w
1N
(4}

2

= N
o O
o o O

¥ of Polnts
i
83
o O
O e
- |
- |

500 ¢
400 ¢

N

£ 300

o

5 200

100 ﬁ g & D

0'4-|4||A_:p1| Y TR R RS ST R T N SN S W NS SAPUN VTN S S S

IREARASEEEEREN]
°
o p
>gin|

0 2 4 &odelOrdor,a 10 12

‘ oMOSE OON-LS AON-DLS

14

Figure 37 Continued. Number of Points to be Within 5% of the Damping
Product for Each Mode of GHV Comparing All Three Methods

75

[ER e S pp—

UBIJAOIA Sl a(n IV MNITY



spaced with another mode, the other mode usually does not get identified until model
orders greater than six. Therefore, for low model orders, if results are soundly obtained,
then the less amount of the unwanted calculated modes and other system modes would
make it easier in identifying the mode of interest for that particular mode shape. The
MOSE method does this for mode] orders near four and five. Again, this method may
not provide the most accurate results for this particular system, but it results are still
within 5% of the actual result. This statement can only be made with this nine mode
system of closely space modes, because for the other three systems analyzed the MOSE
method did provide very good accuracy for lower model orders.

The final modal parameters for this system using the resulits of the MOSE method

are shown in Table 7.

(rad/s)
2.005
-.190
0.793
1.069
3.016
2.813
2.521
1.361
1.337

Table 7. Final Modal Parameters of GHV Model Taken From
the MOSE Method

3.3 Stability of Regressive Convergence Upon Modal Parameters
Before a method is actually decided upon, one more aspect about these three

methods, that has not been discussed, is the instability of the regressive convergence. For
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all methods, the instability of regressive convergence increases with higher model orders.
The instability for the ON-LINE methods usually lasts longer than the MOSE method.
Figure 38 provides an example of the characteristics of this phenomenon comparing the
regressive convergence between all three methods. This data was obtained from the GHV
system for Mode 8 and a model order of six. In this figure, the instability is stated as
“switching”. After examining the instability closer, the eigenvalues or roots obtained
from the AR coefficients, are not necessarily obtained in the same order while marching
through the data. Thus, the modal parameters are ordered differently during the march.
Pinkleman and Batill realized for higher model orders that sorting of the eigenvalues
must be done for each point so that actual regressive convergence can be seen. Sorting
the eigenvalues this way can be difficult for closed space modes.

In Appendix B, showing the results of the all methods applied to the AGARD
wing previously discussed, the last two columns provide when the modal parameters were
first encountered to be within 5% of the actual damping product and the point at which
the instability quit and regressive convergence of the modal parameters was obtained. It
is shown here that the ON-LINE methods provide poor results, in terms of instability of
regressive convergence compared to the MOSE method. In these tables if a dash 1s seen
in the last column this means the instability never quit up until the last point of the data
was used. This usually occurred more frequently for the ON-LINE methods. Therefore,
the MOSE method provides better results in terms of the instability of regressive

convergence.
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3.4 Nommalizing of ASENL Data

As previously mentioned, re-sampling a normalized summation of all mode
shapes at a lower frequency ratio based upon the highest mode may cause accuracy and
convergence problems of the lower modes. It was also discussed, the number of modes
trying to identify in the single data stream requires more points for regressive
convergence which is also true for higher mode systems. This was why only individual
modes were analyzed.

Two other reasons can be used to support why normalizing each mode and
summing them all together is not feasible as input data for these methods. The primary
reason was developed from the results of the nine mode GHV system. By looking at the
results from Table 7. The damping frequency from Mode 4 was less than the damping
frequency from Mode 3. The same can be said about Mode 8 and 9. From looking at the
natural frequencies given in Table 6 for these modes, Modes 4 and 9 have decreased so
much as to be less than Mode 3 and 8, respectively. When using a normalized summation
of the input response data, this phenomenon could not be recognized. When all model
parameters were identified using a high model order, at least 9, with any method the
modes would then be sorted based upon frequency. Thus Mode 3 and 8 would be less
than Mode 4 and Mode 9, respectively, which is not actually the case. Therefore, this
closely space nine mode model would not be analyzed correctly using a normalized
summation as the input data.

The second reason for not using a normalized summation is based upon the

occurrence of “switching” occuiring for higher model orders. For these models it would

19




be more difficult to identify all modes comectly and efficiently due to regressive

convergence.

3.5 Method of Choice

Primarily based upon the results of analyzing the nine mode system, the ARMA
model using the MOSE method will be developed into a stand-alone, autonomous,
FORTRAN 77 program to assist in estimating flutter boundaries. For the MOSE method,
the modal parameters were determined in less points and for lower model orders for any
mode system. With lower model orders, the model parameters can be identified more
easily because less system and calculated parameters exist, and the chance of another
closely space mode to be inherent is lower. Also, both critena of convergence based
upon regression and model overspecification can be used more easily to assist in

identifying all mode} parameters.
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CHAPTER 4

A PROGRAM CALLED MOSE

4.1 FORTRAN 77 Source Code

The source code for this program, called MOSE, is presented in Appendix D and
three necessary input files for this program are shown in Appendix C. These three input
files (*.arrays, *.scalars, and xn.dat) must be used and in the same directory path as the
MOSE program. The ‘x’ is the project name the user inputs. The circled areas in
Appendix C for each file is the only information required by MOSE. The user also is
given the chance to pipe the data to the screen or to a file called *.txt. If the user inputs in
the project name followed by * .” (i.e. ‘ghv .”) then the program pipes all results to the file,
else everything is outputted to the screen.

The flow chart for MOSE is shown in Figure 39. When developing this program
two aspects of the application of the ARMA model with the MOSE method were
changed. The first aspect is how many model orders to use to determine common modal
parameters for each mode shape. From the results of all analyzed systems, model orders
from two through four for two or less mode systems, and model orders from three and stx
for higher mode systems provides the best results using the MOSE method. This range of

model orders was high enough to obtain an accurate damping product and good
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regressive convergence. This range was also low enough so that the number of points for
regressive convergence was low, and instabilities during this convergence does not occur.
Therefore, this range of model] orders was used in the program.

The second aspect 1s how regressive convergence was handled for each mode
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Read Input Data From Input Stop to N Points
<Call INPUT>

!

|
—

Start Loop To Evaluate Each Mode l

Calculate Re-Sample Factor For This Mode

)

Start Loop To Evaluate Each Mode For
Overspecified Model Orders (See Figure 39)

;

<Call MODA]L._PARAMETERS>

Start Loop For N-2 and N Points

:

Develop ARMA Model and Overdetermined
Set of Equations [¢¥] and {y}

Determine AR coefficients

(0} = (@1"[®]' (] {y)

i

From {©®}, Determine Quadratic Factors From

AM g g AM a™M 2y L + dgm

<Call QUADFACT_OF_THETA>

;

Determine Modal Parameters From Quadratic Factors

<Call MODAL_V ALUES>

v

Check For Regressive Convergence By Comparing

Results From N-2 and N Points

No MPCONV=0

‘ Yes MPCONV = 1

;

Figure 39. MOSE Flow Chart
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'

Determine Common Modal Parameters Between
Each Model For Thrs Mode
<Call MP_COMMON>

:

| Found Common Mode Between Models?  |— No - Stop*

l Yes

Found Common Mode Between Model, But
It Did Not Regressively Converge At Least With —— No - Stop*
Two Models?

' ves

| Have Common Modal Parameters (Store Away) |

.

Determine Each Independent Modal Parameters, and
Keep Other Modes Found.
<Call MP_SORT>

:

Were All Independent Modal Parameters Found — No - Stop*

' v

Print Out Final Results (End of Program) |

* When the program stops more points are asked for.

Figure 39 Continued. MOSE Flow Chart

shape. Instead of determining when regressive convergence occurs (i.e. the number of
points for convergence), the program will read in ALL points for each mode shape
included in the xn.dat file. The model order to use for each mode shape will depend
upon the system being analyzed (Figure 40). The decision for this algorithm was based

upon analyzing all systems.
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Yes
| 1f System Modes <2 | Use a M =2, 3, 4 Model

lElse
Yes

| SystemModes>3 |—» UseaM=3,4,5,6Mode!

Figure 40. Algorithm for Model Order Determination

For each mode shape, the program will determine if regressive convergence has
occurred by comparing the modal parameter results between N and N-2 points for each
model order for all mode shapes. If regressive convergence has not occurred for that
model order, a flag called MPCONV is set to 0. After the results from all three model
orders have been calculated, common model parameters are determined between these
models. Several sets of common modal parameters may be determined which may
include system and calculated modal parameters for each independent mode shape. If
common modal parameters are determined and if MPCONYV is O at least for two different
model orders, the program stops and asks for more points. If MPCONYV is I, a good
result has been obtained for this mode shape and uses the results from the highest model
order. All subsequent modes are handle the same way. If the program pauses and tells
the user that more points may be required, therefore, the ASENL_Unsteady Code of
STARS must be ran again for more data points. To avoid repeated runs for more points,
it is recommended to run the ASENL_Unsteady code to develop a minimum of 4 data

cycles for systems of six modes and less and a minimum of 10 data cycles for systems of
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more than six modes. The is based upon the lowest frequency being Mode 1.

After all comsnon modal parameters have been determined for each mode shape,
each independent mode is identified by starting from Mode 1 and determining its lowest
damping frequency from all resulting frequencies. This frequency along with its damping
factor becomes the modal parameter set for Mode 1. All other modes become other
existing modes for that mode shape. Mode 2 is then analyzed keeping in mind the results
from Mode 1. The lowest frequency of the results for Mode 2 are first determined. If this
damping frequency and factor are the same as Mode 1, then it is discarded, then the next
lowest frequency is determined. If this set of modal parameters does not compare to the
previous rnode then this set becomes the modal parameters for Mode 2 or so on until this
mode has been correctly identified. Once Mode 2 has been tdentified, then all subsequent
modes are identified in a similar matter. This method can handle cases such as the GHV
system previously analyzed. For example, the frequency for Mode 9 was less than Mode
8. It can handle this because this comparison method compares both damping frequency
and factor. However, two problems do occur and are discussed in Section 4.2.

After all independent modes are identified, the damping frequency in Hz and the
damping factor are placed in an output file called *.txt in a section at the end of this file.
An example is shown in Appendix E. This section also includes other modes that exist,
but not limited to, in this mode shape.

Three other main areas of this file exists. The first main areas provides all modal
parameter (system and some ‘“calculated”) identified from each model order for each

mode shape using the ARMA model and MOSE method. These results are provided if
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the final modal parameters at the end of this file seem unreasonable for any doubt because
of the two problems discussed in Section 4.3. Therefore, the systemn modes can be
identified hands-on from this section. The second main area provides the common modal
system parameters between each model found in each mode shape. This section can also
be used for hands-on purposes if necessary. The final area just before the final results
provides the number of modes, the number of points read in from xn.dat and used for
analysis, and the dynamic pressure of the ASENL test case. Recall, the program will not

determine or stop at the point of regressive convergence of the modal parameter values.

4.2 Validation of The MOSE Program

The validation of MOSE will be accomplished by comparing the results of the
MOSE program with the results presented earlier for each ASENL system. Only the
damped frequency and damping factor will be compared, but not the number of points for

regressive convergence due to how the program was set up.

4.2.1 Two Mode System (AGARD Wing)

Table 8 shows good comparisons, the last two columns, between the results from
Section 3.2.1 and the results from the MOSE program. Figure 41 provides the time
history from the complete data file for each mode shape showing the actual points of

regressive convergence. This point was determined using the MATHCAD templates.
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Results From Section 3.2.1 MOSE Program Results Comparisons
Mode| Damping Damping | Damping | Damping | %
frequency Factor frequency Factor |Difference|Delta of {
f4 (Hz) £ fa (Hz) [4 of fa
1 11.428 -0.00041 11451 | -0.00041 020 | 0.00000
v 37.403 0.06455 37.475 0.06452 0.19 0.00003
Table 8. Comparison Between Section 3.2.1 Results and
the MOSE Program Using The AGARD System
Mode 1
30 ¢
o 20 F
g 10¢
8 0}
> -10
§ 20 |
-30 Conv. @ 140 pts
_40‘.._1.: L 1 P IOV IONN WU VU ST S VY R Y RS S S
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7
Time, 8
Mode 2
100.0
- . Conv. @ 84 pts
2 50.0 g
$ 00§ AVAYA
§ -50.0 |
-100.0 - VD P L - PR L 1 1 o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time, 8
— Actual = Paint of Regressive Comnv.

Figure 41. Generalized Velocities Vs. Time for AGARD Wing System Showing
Points of Regressive Convergence with Model Order = 4
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4.2.2 Six Mode System (Flat Plate)

Table 9 shows good comparisons, the last two columns, between the results from
Section 3.2.2 and the results from the MOSE program. Figure 42 provides the time
history from the complete data file for each mode shape showing the actual points of

regressive convergence. Again, this point was determuned using the MATHCAD

templates.
Results From Section 3.2.2 M@SEP[O am Results Comparisons
Mode | Damping Damping
| frequency Factor % Difference| Delta of
fq (Hz) ¢ of {4 4

1 3.645 0.03295 0.00 0.00000
2 11.935 0.02809 0.01 0.00000
3 22.017 0.02234 0.00 0.00000
4 29.070 0.02385 0.01 0.00003
) 44.098 0.02217 | ¢ 9 | ‘.Q.ml6 0.00 0.00001
6 59.172 0.02117 | ‘59’15,& 'i | 0.02113 0.03 0.00004

Table 9. Comparison Between Section 3.2.2 Results and
the MOSE Program Using The Flat Plate System
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Mode 1 s Mode 2
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10 [ Conv. @ 136 pts
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Figure 42. Generalized Velocities Vs. Time for Flat Plate System Showing Points
of Regressive Convergence with Mode] Order = 6
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4.2.3 Nine Mode System (GHV)

Finally, Table 10 shows good comparisons, the last two columns, between the
results from Section 3.2.3 and the results from the MOSE program. Figure 43 provides

the time history from the complete data file for each mode shape showing the actual

points of regressive convergence,

templates.

This point was determined using the MATHCAD

Results From Section 3.2.3 | MOSE P Comparisons
Mode| Damping Damping | Dampin %

frequency Factor - frequen Difference | Delta of

fq (Hz) £ - RH of fa 4

[ o L |

1 3.659 0.08691 | 3.660 | 0.08691 003 | 0.00001
2 4.957 -0.00596 | 4958 | -0.00597 0.00 | -0.0000!
3 4.892 0.02579 4894 | 0.02581 0.00 0.00002
4 5.544 0.03105 546 | 0.03097 0.00 0.00008
3, 6.078 0.07846 [ | 0.07812 0.00 0.00034
6 6.092 0.07475 STI007518 0.01 -0.00040
7 7.357 0.05455 | 0.05447 0.00 -0.00008
8 | 10383 0.02088 | 0.02089 0.00 -0.00001
9 10.218 0.01883 | 0.01906 0.00 -0.00023

Table 10. Comparison Between Section 3.2.3 Results and the

MOSE Program Using The GHV System
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Figure 43. Generalized Velocities Vs. Time for GHV System Showing Points of
Regressive Convergence with Model Order = 6
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4.3 Problems with the MOSE Program

The program has been shown validated, and its results have been very useful.
However, some remarks must be made about its usefulness. From analyzing several test
cases from different types of system, two problems occur with MOSE.

The first problem is when two modes are identical. When two modal parameter
sets are identical, the ARMA model results with model overspecification, outputted at the
top of the output file, provide good results. However, the program has a difficuolty in
sorting these identical modes from each other to produce the final results section of the
output file. The final results may be in error, and therefore, a hands-on decision using the
output file more thoroughly is recommended.

The second problem occurs in the post-flutter region and only occurs for very
complex systems such as the GHV model (nine modes with six modes closely spaced).
In the post-flutter region of a complex system, the unstable mode becomes very dominant
in each mode shape, therefore, the ARMA model fails to identify every single mode
accurately. However, the final results will show that the system is unstable because the
unstable mode will show up for several of the final results. Therefore, these results will

have some usefulness in identifying the flutter boundary.
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CHAPTER 5

AN EXAMPLE OF FLUTTER BOUNDARY PREDICTION
USING THE MOSE PROGRAM

5.1 Method

This program can only be applied to one test case from the ASENL_Unsteady
Code of STARS for any model. Now if one test case was accomplished and the MOSE
program identified a set of system modal parameters for this case, the user would have a
better understanding of how close this case was to the flutter boundary. Recall, the
previous method for determining the closeness to the flutter boundary was a visual
examination of the time history data. Now, a better judgment for the conditions for the
next test case can made. Once several test cases have been ran, the identified modal
parameters for each test case, specifically the damping factor, can be plotted against the
dynamic pressure for each test case. When the damping factor is equal to zero, the flutter
boundary is estimated. This method was applied to two different systems, the AGARD

Wing and the GHV Systems.

5.2 AGARD Wing - Six Test Cases

5.2.1 Given Test Cases

Six general and different test cases using the AGARD system were provided. The
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flutter boundary was not identified until all cases were obtained. Figure 44 provides the
time history data for all six test cases for Mode 1 and Mode 2. Again, the point of

regressive convergence using M = 4 was determined using the MATCAD template.

Taat Casa 1

Mode 1 Conv. @ 136 pt
Mode 2 Conv. @ 68 pt

Gen. Veloclty
o o
o [

)
”

a L i L i1 L i L L ] 3 L ol oy L i

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-—TestCase 2 —\y0de 1 Conv. @ 128pt~
Mode 2 Conv. @ 68 pt

&en. slociy
o o>

[¢)]

v
-—h
o

Modet1  eeeee. Mode 2

Mode 1 Recursive Convergence Point — — Mode 2 Recursive Convergence Point

Figure 44. Normalized-Generalized Velocity Time History Piots of All Six
Test Cases for AGARD Model and Showing Points of
Regressive Convergence For M =4
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

Test Case 6
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Mode 1 Recursive Convergence Point = =— Mode 2 Recursive Convargence Polnt |

Figure 44 Continued. Normalized-Generalized Velocity Time History Plots
of All Six Test Cases for AGARD Mode) and Showing Points
Regressive Convergence For M = 4
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5.2.2 Flutter Boundary Prediction for AGARD Test Cases

Table 11 provides the modal parameter results using the six different test cases.

These resulting modal parameters are shown plotted against the dynamic pressure for

each tests case in Figures 45 and 46 for the damping frequency and damping factor,

respectively.
__ Mode |
~Test | Rho-Inf Damped | Damping |
‘Case | (slug/in’) frequency | Factor | fi
5 L.:;]. | fd (HZ) C Lrj
TR 9.599 :
' ; | L.04E-09 10.313 0.01270 |
2 | 2.00E-09 10.967 0.00545
3 | 2.70E-09 11451 | -0.00041 |
"4 | 3.00E-09 11.660 | -0.00309 |
5 | 4.00E-09 12363 | -0.01299 |
6 | 5.00E-09 13.078 -0.02468 |
Table 11. Modal Parameter Results For Six AGARD Test Cases
(Including Natural Frequencies)
o S R — — -
4.5- ————— B — = — A — -~ — A A — o — — — — —
35
——— Mode 1
g 30 | — A — Maoda 2
2o
g 20
i 15 | e
r o6 o—
E 10 g0 —o—
g i
o L . e L . .
0.00 0.02 0.04 0.08 0.08 0.10 0.12 0.14
Dyneamlic Pressure (Ib/ft*2)

Figure 45. Resulting Damping Frequencies Vs. Dynamic Pressure For Both
AGARD Modes For Six Test Cases
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Figure 46. Resulting Damping Factors Vs. Dynamic Pressure For Both
AGARD Modes For Six Test Cases
From Figure 46 the flutter boundary can be estimated using a linear interpolation between
test cases two and three. Or to be more accurate, another test case can be ran for a slightly
lower dynamic pressure than Test Case 3 to avoid a linear interpolation. This was not
accomplished for this research. However, these results do show how a more accurate
determination of the flutter boundary can be obtained using the damping factor versus the
dynamic pressure, instead of using the graphical representation for visual examination,

Figure 44, to determine the flutter boundary.

5.3 GHV - Eight Test Cases

5.3.1 Given Test Cases

Again, to show how a flutter boundary can be predicted using the MOSE program,
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a more complex system eight different test cases for the GHV system were provided. The
flutter boundary was not identified until all cases were obtained. Figure 47 through 54
provides the time history data for all eight test cases for Modes 1 through Mode 9. The

regressive convergence points was determined using the MATCAD template
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Figure 47. GHV System - Test Case 1, Dynamic Pressure is 16.3 Ib/ft®
Showing Points of Regressive Convergence From M = 6 Model
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Figure 48. GHV System - Test Case 2, Dynamic Pressure is 27.7 1Y i
Showing Points of Regressive Convergence From M = 6 Model
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Figure 49. GHV System - Test Case 3, Dynamic Pressure is 32.6 Ib/ft?
Showing Points of Regressive Convergence From M = 6 Model
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5.3.2 Flutter Boundary Prediction for GHV Test Cases

Table 12 provides the modal parameter results using the eight different test cases.

These resulting modal parameters are shown plotted against the dynamic pressure for

each tests case in Figures 55 and 56 for the damping frequency and damping factor,

respectively.

:'I;ﬂ Q_ [Mode 1] Mode 2 [Moded 5] Mode 6 | Mode 7| Mode 6 | Mode

Case| (Ib/t°) e : Mﬂ
Damped Frequency, f4 (Hz)

0 | 00 [ 81820 4.052 "amaq 6.9710{ 7.2670| 9.4010] B.&

1 | 163 | 8:254 4.2262) § 6.8913 7.3870| 9.7628| 9.70%

2 | 27.7 | 82959 4.6229 4.4386 6.8180 7.4358] 10.0133| 0,868

3 | 326 | 33013 4.7661( 4.559 : 9 6.769 7.4538L10.1168; 19.964

4 | 39.1 | 8.3001 4.9918(| 4.757 55117&3@.; 6.6801| 7.4454] 10.2509) 10,088

5 | 40.7 | 3.3074 2510 55155|~ Q';{_ 6.6699 7.4152 10.2873[1(

6 | 42.3 | 3.3040 5.5234] 6.3444] 6.6490] 7.3841| 10.321410.120"
"7 | 440 | 82974 5.5355] 6:8040| 5.6326| 7.3616) 10.3573 10
"8 | 489 | 92745 52688 5047§| 55776 AT 6.4147| 7.3522| 10.4589 102

Damping Factor, {

1 | 163 [0.08057] 0.02459(,0:03598] 0.01352]0.03560] 0.02584] 0.04535/ 0.0013 000870
2 | 277 [0.15677] 0.02983{0.04330| 0.02427) *9;’:‘ 112] 0.05127]0.07703 0.00234] 0.01207

3 | 32.6 |0.19412 0.0254 o‘qq,w 0.02984 1] 0.06591| 0.09501| 0.00271| 0.01414
4 | 391 [0:24912] 0.01121[{0.02825 0.03968{0-12802 0.09349] 0.11108| 0.00261( 0.016850)

5 | 40.7 |0.26308] 0.0048310.02306 0.0426210:1 0.10056{ 0.10805| 0.00326{ 0.01698
" 6 | 423 |0.27856/-0.00246{0.01674) 0.0454 0.10953] 0.10331 0.00356{ 0.

7 | 44.0 |0.29528-0.01014)/0.00980) 0.04771 gcrgga@qomon 0.10188] 0.00343|C
J_"_a‘_ 48.9 |0.3441’a] 0.03323:0.01697 o.oagosc‘ql 894 0.11715]0.10858) 0.00375| €

Table 12. Modal Parameter Results For Eight GHV Test Cases
(Including Natural Frequencies)
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Figure SS. Resulting Damped Frequencies Vs. Dynamic Pressure For
All GHV Test Cases
From Figure 56 the flutter boundary can be estimated using a linear interpolation between
test cases five and six to obtain the first flutter boundary. Notice another mode goes
unstable. Again, these results do show how a more accurate determination of the flutter

boundary can be obtained using the damping factor versus the dynamic pressure, instead
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of using the graphical representation for visual examination, Figure 52, to determine the

flutter boundary. In Figure 52, the flutter boundary is not really obvious either.
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Figure 56. Resulting Damping Factor Vs. Dynamic Pressure For Al GHV ........
Test Cases Showing Flutter Boundary

Similar to Figure 32 which provides a matching of the input data with a
sinusoidal representation with corresponding modal parameters, Figure 57 is provided
below. Again, this was to ensure identification was achieved using the MOSE program.

Figure 57 only provides results for Mode 2 through 4 from Test Case 6, and it provides
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once again a good identification was accomplished.
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Figure 57. Modeling of Original Normalized Input Response Data From the
GHV System (Test Case 6) Using Identified Modal Parameters
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions
Recall, the objective of this research was to replace the current method of
determining the flutter boundary for any model. Specifically, a method was determined
that autonomously assisted in predicting the system’s flutter boundary from multiple
mode time history data, specifically the results from the ASENL Module of STARS
(ASENL_Unsteady Code). The following conclusions are made using the findings during
this research.

1. Based upon a literature review and a simple analysis using a simulated single
mode system, a siroplified Single Input - Single Output Auto-Regressive Moving
Average Model ( 2*M Auto-Regressive Coefficients and 1 MA coefficient 1o
account for the bias due to the initial excitation) was determined to be the best
method to identify system model parameters for each independent mode shape.
Based upon further analysis with more highly complex, “noise-free” data systems
with several closely spaced modes, the SISO ARMA model foundation was fusther
proved to be an adequate method, and the method does not have to account for
noise.

2. With the ARMA model as the foundation, three methods for determining the AR
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coefficients which in turn are used to determine the finite modal parameters for each
mode were investigated. These three methods being

o Method of Overdetermined Set of Simultaneous Equations (MOSE)

¢ On-Line Least Squares (ON-LS)

* On-Line Double Least Squares (ON-DLS)
were extensively analyzed to determine which method identified the modal
parameters more efficiently, accurately, and without any convergence problems.
When compared to previous methods obtained from literature, these three methods
identified modes using significantly less data samples. Even though when
compared between each other, all three methods provided very good results,
generally, the MOSE method with an ARMA model foundation provided the best
results. This was more significant in the analysis of the nine-mode GHV system
with closely space modes.

When analyzing these three modal parameter identification methods, model
overspecification was used to avoid from knowing the model order of the each
mode. At first a normalized summation of all modes was considered since the
model order is known in this case. However, analyzing each mode shape was more
efficient based upon the difficulty with analyzing the normalized summation of ail
modes. Also, the accuracy of the modal identification was further improved using
model overspecification with these methods. Specifically, model orders from M =2
through 6, depending upon the system, with the MOSE method provided the best

results between all methods in terms of using low data samples, the stability of
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regressive convergence, and accuracy of the identification.

Four reasons were provided in this paper on why analyzing a normalized
summation of all independent modes, especially for large mode system, was
difficult. The first reason was that to identify more modes in a single data stream,
more points are required for regressive convergence. The second reason was for
high mode system, thus higher model orders, more data points were required to
identify ali modes. This also caused “switching”. The third reason was choosing a
good re-sample factor. No single re-sample factor can be used to efficiently identify
all modes. The last reason was if all modes were identified, how can one determine
which modal parameter set was belong to which mode when modal values tend to
cross each other as the dynamic pressure increases.

When used as input, the generalized velocity data streams resulted in a better
modal parameter identification. Also, re-samnpling this data closer to five times the
modal frequency of interest instead of using the always greater sample frequency of
the data provided more accurate results with lower data samples.

Finally, an efficient and autonomous stand-alone program called MOSE was
developed and validated against the resulting modal identifications previously made
for all systems. The program showed how autonomously it could identify all modal
parameters from a simple, two mode system to a highly complex system with
closely space modes. Being that the program can only be applied to a single test
case at a time, the flutter boundary can be applied to several different tests cases to

identify the flutter boundary. This was shown, by example, from plotting the
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resulting identified modes, specifically the damping factor, for each test case.

Two problems with MOSE were discussed. The program does not provide good
sorted results for identical modes, and the program will not identify modes in the
post-flutter region for complex system very accurately. The first problem was
obvious, but the second problem was due to the fact that the unstable mode was
very dominant. Overall, if the second problem is seen to occur, the general flutter
boundary can still be determined because the dominant unstable mode will be

shown for all modes. Therefore, these results are still useful.

6.2 Recommendations

The MOSE program could be made completely autonomous in terms of
identifying the flutter boundary. This can be accomplished by further developing the
program to read in multiple and different test cases then provide recommendations on the
conditions to achieve the flutter test case or to exactly determine the flutter boundary.

The size of the data streams was recommended to be at least 4 data cycles for six
mode systems and less and 10 or more data cycles for greater than six modes. The
number of cycles is based upon the lowest frequency, and this was to only avoid repeated
runs of the same test case. Sull, compared to data streams used in obtained literature,

these data streams at similar sample rates are significantly less.
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APPENDIX A: EXAMPLE OF THREE METHODS
DEVELOPED IN MATHCAD v6.0

Method of Overspecification of Equations:
Obtaining time history data from single mode system discussed in Section 3.2:

Read in data file and obtain lime and y data vectors:

data - READPRNdata) wata -=daa"” ydaa -data”
Determine length of data and vectorize data:
N zlength(tdata) N =63 i=1.N vy ::ydfnai L =tdata,

Resample data if necessary:
_ length(y) - 0
n

n=1 N =63 i:=1.N y -=ydata, t -=ldata
1N | rn

Set last point of excitation and determine step size:

0.7

2:=0 h = (LN . 1) h =0.00986630 N, here, is the number of points
Plotting vectorized data: instead of n.
2 | T T T T T
%
—_ —
l I ! L |
) 0.1 0.2 0.3 a4 0.5 0.6

Input Modal Order and determine starting point and set some initial conditions:

M =1 k:=2M, D42z k=3 0 =1.2M Mauixolo::o
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Method of Overspecification of Equations Continued:

Algorithm for

eigen(0) =

to determine modal parameters at each

me€ k. N_ 1
for g€ 1..2M
¢

Set ¢ andy atm

Ilql—- (-Y)k_q

eigenvalue Determination: Algarithm
data point.
for q€ 1.22M _
q ] modes ‘= for
. (.8
Matnxq.l ( )CI
Matrix 1
9.9+ 1
Mamxn»m,l‘_('e)zm

eig eigenvals (Matrix)

Set ¢ and y atm+1

Determine AR Coefficients
Determine eigenvalues

Determine modal parameters

Condition of modal

¢ 1

L2My 1T
\Vr-yk
for n€ 1..2-M

$ —(y)

m-k4 2.0 (m41Y—(n)
¢m-k+2.2-M+l‘_l

W(m_k)+2‘_ ym 1

0. (676)
eig. eigen(9)
for ue 1. M

o (g R )
Im(eagz

Re(eng

2)
o)

‘4‘

2

/

1
« —-atan
h

w

rn.u

)
) |
Mt D if Rc(e132 <0

1 if Rc(clg2

parameters
0 if Irn(eig2 =0
c
Vector of modal parameters ©
r
Organizing results to oblain modal parameters at N-1
b =N_1 bn =62 e:=1 (N_e)n=62
Gz |for i€ 1.M ®-=|for i€ 1.M r=|[for i€ 1. M
<> <G>
p._[(modes)l]<> pf_[(modes)z] ! p._[(modes)s]
Ci—Py O Py =P
o] © Y
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Method of Overspecification of Equations Continued:

Modal Parameters and conditions of each mode at N-1 M=l N

Il
[=,3
%

Plot of damping and frequency for each data point and each mode u.

n.=1 n=1 i1:=k.N_e k=3 e=) N=63
6 -=[(modes) 1> 2.5% error band p.:=(0), -.025,(0) q. =0, _o_, -.025
t i N_e N_e¢ i N_e N_e
20 1
o, 16
i
b
— B
g
— 4
0 ! | |
0 0 20 30 40 30 &0 70

in

® -:[(n'wtfes)2 25%erorband  p,-=(0), .025.(0), g =0  _o 025

70

End of Method of Overspecification.
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On-Line Least Squares Method:

Obtaining time history data from single mode systern discussed In Section 3.2:
Read in data file and obtain time and y data vectors:
data .- READPRN data ) idata - data~'"> ydata -data<®”
Determine length of data and vectorize data:
N -length(tdata) N =463 i =1.N Y, :ydaxai ti_;tdami

Resample data if necessary:

NoJesh(D -0 e LN
n

n =1 Y, _ydaxai_n li :tdami_n

Set last point of excitation and determine step size:

z:-0 h.- (tN _t \ h = 0.00986630 N. here, is the number of points

N-1)
. ) inst of n.
Plotting vectorized data: nstead

Input Modal Order and determine starting point and set some initial conditions:

M-l m-2M,1 m=3 k.omyz a-- 1001 -aidentity(m) p _1.0
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On-Line Least Squares Method Continued:

Algorithm for eigenvalue determination: Algorithm to determine modal paramatars at each

data point.
eigen(B) = |a..6 modes = | for q€ 1.m Set Initial
for ge i..2M _ 1} VoY Conditions
Matri e q+1
t
any =@y v 1
Matri
A ar1e ! for re 1.2M 1
Matri = (D 8,1
eig, eigenvals(Matrix) P_al
for ie kK..N Start LOOp
. (T Yior
Update AR Coefficients 8,.6_Py N Py, u) -(w 9 y_)
{
Determine eigenvalues eig. eigeo(9)
for ue 1. M
: ) s
Determine modal parameters 6 - ( ( ( [m{elgzlu) )}

i
o, -atan Im(e‘g )
v Re(mg2 )J
Condition of modal e [O 1 Re(eig, ) <0
parameters 1 if Re(eigz_u) >0
)

0 if lrn(eigz'u =0

P py (v Py, u)Al-(wT‘P)

Updata P andy P :
tor next data point "
for g€ 1..m_ |
¥ ._yl apl
y 1
m
G
Vector of modal parametsrs @
I
Organizing results to obtain modal parameters at N-1
b--N_1 b-n =62 e-=1 (N_e)n=62
o.-- |forie .M o - |for ie 1.M r.= | for ie .M
<> <> <>
ph[(modes)l_] ph_[(modes)z] D.-[(H)Odts)g]
G-I'— pb mit—Pb rif— pb
g O r
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On-Line Least Squares Method Continued:

Modal Parameters and conditions of each mode at N-1 M=1 N =63
oT =5
o= 30
rT =1
Plot of damping and frequency for each data point and each mode u.
u-=1 n=} i-k.N_e k=3 e=1 N=63
<ud>
o ::[(mOdes),} * 2.5% error band P :=(0)y 025, (o), , gq =Gy - Oy 025
200
o 160 —— -
— 120
P
4
ol_—
0 0 20 30 40 50 0 70
in
2.5% error band -0 ® -.025

p:=(w)y 025, (w), ,

———— A A e S e A e e o e e e e B e e e b — —— =

—r—ar—ar——ay

End of On-Line Least Squares Method
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On-Line Double Least Squares Method:

Obtaining time history data from single mode system discussed in Section 3.2
Read in data file and obtain time and y data vectors:

data -- READPRNdata) tdata -data~'> ydata - data>"

Determine length of data and vectorize data:
N clength(tdata) N=63.000 i =-I..N Y, :=ydata, L = tdata,
Resample data if necessary:

N length(y) _ 0
n

n = l N=63W) | = I.N y] '-:ydatﬂ}n Li ;:!datam

Set last point of excitation and determine step size:

z:=:0 h - (LN . 1) h =0.00986630 N, here, is the number of points

instead of n.
Plotting vectorized data: : n

L
1

Input Modal Order and determine starting point and set some initial conditions:

M-l m=2M,1 m=3000 k:-m,z 22101 identity(m) . 1.0
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On-Line Double Least Squares Method Continued:

Algorithm for eigenvalue determination:

eigen(8) - |a_86 modes -~
for qe 1..2M _ 1

Matix
Ay (a)q

Matrix 1
q.q+1

Marrix
MO (a)Z-M

etg._ eigenvals (Matrix)

Update AR Coefficients

Determine eigenvalues

Determine modal paramesters

Congition of modal
parameters

Updata P, o, and B
for next data point

Vector of Modal
Paramaeters

Algorithm to determine modal parameters at each
data point.

for qe 1..m

B

a .y
Q7 Tk-g4
B 1

« 2
m

Set Up Initial Conditions
0 Ykoqpl

1+ Y g2

for re 1.2M 1
8.1

'
P._al

for i€ k..N_ Start Loop
6_6_Po(pTPo,p) ‘-(ﬁteﬁ yl)
eig, _eigen(6)

for ve 1. M

ol o)

Re(cigziu)
r, o~ |0 if Re(cig2_u)<0

I.a

1 if Rc(cig2_“)>0

0 if Im(elgz_u)-o

Ny
T T

p P _Pa(pPa,u) (p7P)
n m

for g€ l.m_ 1
Bq._yi_qf,
TaY a1 tYiayg

B 1

@ .2

o

]
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On-Line Double Least Squares Method Continued:

Organizing results to obtain modal parameters at N-1

b.-N_1 bn=62000 e--1 (N_e)-n =62.000

G =-|for ie 1. M ®» - | for ie .M r - |for ie 1. M
p._[(modes)|]<i> p,_[(modes)z]q> p,_[(mod&s)lrp
P, 0, Py =Py

[e) (1)) r
Modal Parameters and conditions of each mode at N-1 M =1.000 N =63.000
T =5.000
" =30.000
T =1.000

Plot of damping and frequency for each data point and each mode u.

u =1 n =1.000 i-=k.N_e k =3.000 e=1.000 N =63.000
<>
o .=[(m0d65 ),} 2.5% erorband P, :=(0) 025, (0), , q =0, .0, 025
200 '
5, 140 - _ - |
%0
P
- 0| _ |
K : |
— 49 | 1
| |
100 10 20 30 40 50 60 70
in
® -:[(modc‘s)z](u> 2.5%errorband P, =(@), 025, (0), g -0, _0©, -025
40 1 ]
©, R S
Y I N s - i b et —
P] |
— 6 2
q‘l 1
— 8 - 18
0% | 10 20 0 40 50 6 70

End of On-Line Double Least Squares Method
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APPENDIX B: RESULTS OF TWO MODE SYSTEM (AGARD WING)

Damping Frequency,
. Wy {rad/s) @ N=500

78977
71.858
71.854
71.857
145.429
71.858
133.926
71.856
124.203

No Switching
After This P

72.037
71.856
71.856
71.856
71.856
71.856
107.298

71.942 |

71.856
71.856
71.856
71.856
105.335
71.856
95.437
139.342

Table 13. Results From Applying of Each Method Using Generalized
Displacements, q, From Mode 1 of AGARD with F = 8.4 (or n = 8)
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Damping Frequency,
| @y (radls) @ N=500

S
After This Pt

73.040
71.871
71.856
71.858
138.769
71.855
71.856
122.822

360
125
140

72540
71.856
71.856
71.856
71.856
139.381
71.856

72,094
71.856
71.856
99.976
71.856
71.856
71.856
85.357

Table 4. Results From Applying of Each Method Using Mode |
Generalized Velocities, gdot, On Mode | From AGARD
with F=8.4 (orn = B)
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235.145

Damping Frequency, No Switching
p (rad/s) @ N=500 After This Pt
232.447 330
70.828 -
234.981 60
71.852 -
235.145 | 60
71.916 -
235.143 88
71.843 -
235.145 -
71.847 -
235.134 190
228.863 | -
71.851 | 190
235.145 | 52
71.849 | 160
235.145 160
71.849 160
235.145 | 160
71.849 | 304
234.145 | 400
71.849 | -
149.814 | -
235,145 -
233.336 e -
71.851 | 250
235.145 | &4
71.849 © -
235.145 | -
71.849 © -
235.145 | -
71.849 -
178.337 -
235.145 -
71.849 -
131.007 -

Table 15. Results From Applying of Each Method Using Mode 2
Generalized Displacements, q, of (AGARD)
with F= 5.6 (or n=4)

130




Damping Frequency, No Switching
Wy, (rad/s) @ N=500 After This Pt
234899 50
72.101 -
235.165 36
71.842 -
235,142 52
71.849 -
235.143 84
71.856 -
235.143 88
71.855 -
235.145 .
234.596 -
71.849 330
235.145 64
71.849 164
235.145 164
71.849 260
235.145 200
71.849 | 470
235.145 | 375
71.849 -
234,145 -
234,312 | 80
71.849 300
234.145 64
71.849 250
235.145 | 250
71.849 300
235.145 260
298.562 -
71.849 -
206.906 -
235.145 425
71.849 -
110.704 -
235.145 -
283.115 '

Table 16. Results From Applying of Each Method Using Mode 2
Generalized Velocities, gdot, From AGARD
with F=5.6 (orn=4)
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IN

APPENDIX C: INPUT FILES FOR MOSE.F

PUT FILE: *.scalars

$ aeroelastic scalars data file ( factor=0.50 at mach=2.0)

$®u. ibc ( O=full modes, 1=q(1) = 0.01, 2=q(nr+1)=0.01 )

§ iread, iprint

OI.%P‘ Number of Modes

2, 1

$d

$ shift factor and gravity consta

$ flag, ff, ns,
2, 10.0, 2,
$cfa, cfi

imensional params; mach-inf, rho-inf(sl/in**3), a-inf(in/sec), gamma, pinf
1.04185957«:—8 14 00

0.0, 1.0

Used for Qinf calculation

(P

$n

$n
2,

A
2
3
3
4

terms, nsteps
20, 2
a, nb

3

Last Point of Input becomes
INPUT_STOP which is then
multiplied times 3

.4505e-9
1.80381%9-9
4.05859375e-9

5 5.52419705e-9
7.21527777e-9

<End of Data File>
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INPUT FILE: *.arrays (output file consisting of natural frequencies)

$ DESCRIPTION OF MODEL
3 nna, nela

10013 20022
$ Frequencies (in hz )
3.182
4.029
4.052

5.557 | Natura! Frequencies of

6.913 Each Independent Mode
6.971

7.267
9.401
9.436
$ Restart Option
0
$ COMPLETE GENERALIZED STIFFNESS MATRIX
438649, 0.0
00 , 207834
$ COMPLETE GENERALIZED MASS MATRIX
1.2056e-3, 0.0
0.0 , 3.6143e-4
$ COMPLETE GENERALIZED Damping MATRIX
0.002908%945 , 0.0
00 . 0.003467299

<End of Data File>
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INPUT FILE: xn.dat

TITLE
NCHANS 27
NAMES
X1

X3
X4

X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X8
Fl
F2
F3
F4
FS
F6
F7
F8
F9
DATAOO!

Start of Time

q data not nsed

000000E+00 .000D00E+00 ..............
.133240E-01 -.188670E-02 .............
199861E-01 -.747877E-02 ..............
266481E-01 -.166700E-01 ..............
333101E-01 -.294991E-01 ..............
399721E-01 -461688E-01 ..............

332437E+0] -215349E+00 .............
333103E+01 -.220359E+00 .............

<End of Data File>

.000000E+00
.232247E+00
442354E+00
.610002E+00
.719607E+00
.760892E+00
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Start of gdot
being y(N,I)

.000000E+0
A433781E+0
777978E+0
963052E+0
.969542E+0
.803093E+0

.652379E-02 -.338264E+0
.531898E-02 -.409151E+0




APPENDIX D: SOURCE CODE FOR MOSE.F

C=
C THIS PROGRAM, MOSE.F, DETERMINES MODAL PARAMETERS FROM ASENL'S OUTPUT
C TIME HISTORY DATA FROM ASENL_CODE. IT USES AN ARMA MODEL TO MODEL THE
C DATA. THE AR COEFFICIENTS OF THE ARMA MODEL ARE DETERMINED USING

C SIMULTANEOUS OVERDETERMINED SET OF EQUATIONS COUPLED WITH MODEL

C OVERSPECIFICATION. THE MODAL PARAMETERS ARE DETERMINED FROM A

C CHARACTERISTIC EQUATION OF AR COEFFICIENTS. THE ROOTS OF THIS

C CHARACTERISTIC EQUATION ARE DETERMINED USING BAIRSTOW'S METHOD OF

C QUADRATIC FACTORING. THE MODAL PARAMETERS ARE THEN FOUND FROM EACH
C QUADRATIC FACTORIAL.

C

C EACH INDEPENDENT MODE SHAPE OF STARS IS ANALYZED USING THE ABOVE

C DESCRIPTION. FROM THESE RESULTS, COMMON MODAL PARAMETERS ARE

C DETERMINED. AFTER ALL MODE SHAPES ARE ANALYZED, ALL COMMON MODAL

C PARAMETERS ARE SORTED AND THE SPECIFIC MODE FOR THAT MODE SHAPE IS

C DETERMINED.

C

C THIS PROGRAM CAN HANDLE UP TO 10,000 DATA POINTS OF TIME HISTORY DATA

C AND UP TO 20 INDEPENDENT MODES.

c
C PROGRAMMER: COREY L. ECKHART SPRING 1998

C

C _

C

C MAIN PROGRAM

c

C -

C

C GLOBAL VARIABLES:

c

C NMAX MAXIMUM NUMBER OF POINTS PROGRAM CAN HANDLE (= 10000)
C MODEMAX MAXIMUM NUMBER OF INDEPENDENT MODE SHAPES PROGRAM
C CAN HANDLE (= 20)

cJ THE COUNT OF X VALUES IN MOSE.DAT (TWICE THE NUMBER

C OF MODES)

CN NUMBER OF DATA POINTS WORKING WITH

C FLAG1 FLAG TO DETEMINE IF COMMON PARAMETERS BETWEEN EACH
C MODEL FOR EACH MODE WERE FOUND. IF NONE WERE FOUND
c PROGRAM STOPS AND MORE POINTS ARE NEEDED.

C FLAG2 ANOTHER FLAG TO DETERMINE IF ENOUGH POINTS WERE USED
C IN SORT SUBROUTINE FOR REGRESSIVE CONVERGENCE

C FLAG3 ANOTHER FLAG TO DETERMINE IF ENOUGH POINTS WERE USED
C IN SORT SUBROUTINE FOR MODE CONVERGENCE

C FLAG4 ANOTHER FLAG USED TO REQUIRE MORE POINTS IF PHIM

C CANNOT BE INVERTED DUE TO IT BEING SMALL AND SINGULAR
C TIME(NMAX) ARRAY (MAX=2000) FOR THE TIME COLUMN

C Y(NMAX,MODEMAX) MAXIMUM 2000X20 ARRAY FOR ALL QDOT DISPLACEMENT DATA
C QINF FREE-STREAM DYNAMIC PRESSURE (0.5°RHO*(MACH*A}A2)
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C FREQ(MODEMAX)
c

C INPUT_STOP
C

C MODES

C DTORIG

C MODE

C COUNT

C RE_SAMP_FACTOR
C

C

C MODEL

C THETA(MODEMAX)
C MPR

C

C MPSIGMA

C

C MPOMEGA

C MPCONV

C

C MP(MODEMAX, 4)
C

C NMODE

C FINAL_MODES

C OTHER_MODES

ARRAY (MAX=20) OF UNDAMPED NATURAL FREQUENCIES AT
QINF=0

LAST POINT OF STRUCTURAL EXCITATION INPUT IN MOSER
FILE

NUMBER OF MODES IN SYSTEM

ACTUAL INPUT DATA SAMPLE PERIOD (DELTA TIME),SECONDS
MODE WHICH TO USE MODEL ON

COUNT HOW MANY TIMES SUBROUTINE MODAL_PARAMETERS C
IS USED

DATA RE-SAMPLE FACTOR TO RE-SAMPLE INPUT DATA WITH
TO WORK WITH HOWEVER NO LESS THAN 25/200 PTS OR
RE_SAMP_FACTOR=8

MODEL OF MOSE TO USE

ARRAY OF AR COEFFICIENTS

MATRIX OF R VALUES (CONDITION OF OMEGA) FOR EACH MODE
AND EVERY MODEL

MATRIX OF DAMPING FACTORS FOR EACH MODE AND EVERY
MODEL

MATRIX OF DAMPING FREQUENCIES FOR EACH MODE AND
EVERY MODEL

IF = 1 THEN HAVE REGRESSIVE CONVERGENCE FOR THAT
MODAL VALUE

MATRIX OF COMMON MODAL PARAMETERS DETERMINED FROM
MPR, MPSIGMA, AND MPOMEGA

NTH COMMON MODE

MATRIX OF FINAL MODAL PARAMETERS FOR ENTIRE SYSTEM
MATRIX OF OTHER EXISTING MODES IN EACH MODE SHAPE

C DUMMY USED FOR MODAL PARAMETER CONVERSION

C

C LOCAL VARIABLES TO MAIN PROGRAM:

C

C NOLD SET N TO NOLD TO BE USED LATER FOR OTHER MODES
C SAMPLE_FREQ ORIGINAL SAMPLE FREQUENCY OF MOSER DATA

C CALIAS USED FOR CHECKING FOR MAXIMUM RE-SAMPLE FACTOR
CPi Pl= 4.D00 *"DATAN(1.D0)

CKT USED FOR MISCELLANEOUS DO LOOPS

C

C [ — —_ —_—

cC

PARAMETER (MODEMAX=20)
PARAMETER (NMAX=10000)

INTEGER J.N,FLAG1,FLAG2,FLAGS,INPUT_STOP,MODES,MODE,

+ COUNT,RE_SAMP_FACTOR,MODEL,FILEN,SCREEN,
+ MPCONV(MODEMAX , MODEMAX),NMODE,FLAG4,
+ OTHER_MODES(MODEMAX,MODEMAX),NOLD,CALIAS KT,

HIGHMODRE,LOWMODE
DOUBLE PRECISION TIME(NMAX),Y(NMAX,MODEMAX),QINF,FREQ(MODEMAX),

+ 4+ + + 4+

Pl

DTORIG,THETA(2*MODEMAX+1) MPR(MODEMAX,MODEMAX),
MPSIGMA(MODEMAX,MODEMAX),
MPOMEGA(MODEMAX,MODEMAX),MP(MODEMAX*MODEMAX,4),
FINAL_MODES(MOBEMAX,MODEMAX),DUMMY,SAMPLE_FREQ,

CHARACTER PROBNAME®20

136



C PRINTING OUT START OF PROGRAM AND ASKING FOR FILE NAME

WRITE(*,") ' “** Program MOSE ***'
WRITE(*,*) ' ASENL Modal Parameter Identification Program v1.1'

WRITE(",'(/,a,$)") ' Enter problem name : '
READ(*, '(A)",ERR = 1001) PROBNAME

J=0

N=1

FLAG1 =0
FLAG2 =0
FLAG3=0
FLAG4 =0
SCREEN =0

C CALLING SUBROUTINE TO READ INPUT DATA (TO GET ALL TIME AND Y DATA)

CALL INPUT(TIME,Y,J,N,QINF,FREQ,INPUT_STOP,PROBNAME,FILEN,
+ FLAGS)

C CHECK TO SEE IF RESULTS ARE PIPED TO A FILE
C SYNTAX TO PIPE TO A FILE IS TO ADD A SPACE THEN A PERIOD

IF (PROBNAME(FILEN+2:FILEN+2) .EQ. ") THEN

WRITE (*,*) 'PIPING TO ‘,probname(1:FILEN)//".txt’

WRITE (*,7)

SCREEN=2

OPEN(SCREEN,FILE = PROBNAME(1:FILEN)//.txt', STATUS="UNKNOWN)
ENDIF

NOLD =N

C DETERMINING NUMBER OF MODES, MODEL ORDERS TO USE, AND SAMPLE
FREQUENCY

MODES=J
SAMPLE_FREQ = 1/(TIME(N)-TIME(N-1))
DTORIG = 1/SAMPLE_FREQ

IF (MODES .LE.2) THEN
LOWMODE = 1
HIGHMODE = MODES+2

ELSE
LOWMODE =1
HIGHMODE =6

ENDIF
C PRINT OUT HEADER INFORMATION
IF (SCREEN .EQ. 2) THEN

WRITE(2,") 'ARMA MODEL WITH MODEL OVERSPECIFICATION RESULTS'.
+ ' SHOWING MODAL PARAMETERS'
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WRITE(2,*) ‘'CONVERGED UPON IN EACH MODE.’

ELSE

WRITE(*,") 'ARMA MODEL WITH MODEL OVERSPECIFICATION RESULTS',
+ ' SHOWING MODAL PARAMETERS'

WRITE(*,*) 'CONVERGED UPON IN EACH MODE.

ENDIF

C LOOP TO MOVE THROUGH EACH MODE

DO 10 MODE=1,MODES
COUNT =0
N =NOLD

WRITE (*,*) '"ANALYZING MODE ''MODE
C DETERMINE RE_SAMP_FACTOR FACTOR AND CHECK IF PROPER AND NEW N
RE_SAMP_FACTOR = SAMPLE_FREQ/(5*'FREQ(MODE))

IF ((SAMPLE_FREQ/FREQ(MODE)) .LE. 40) THEN
CALIAS= 200/RE_SAMP_FACTOR
IF (CALIAS .LT. 25) THEN
RE_SAMP_FACTOR = 8
ENDIF

ELSE
RE_SAMP_FACTOR = SAMPLE_FREQ/(5*FREQ(MODEY))

ENDIF

C LOOP TO DETERMINE MODAL PARAMETERS FOR EACH MODEL ON EACH MODE

OO 20 MODEL=LOWMODE ,HIGHMODE, 1
N=NOLD

C DETERMINE AR COEFFICIENTS

CALL MODAL_PARAMETERS(THETA,Y,MODEL,MODE,N,RE_SAMP_FACTOR,
+ DTORIG,MPR,MPSIGMA MPOMEGA,MPCONV,COUNT,

+ FLAG4)

IF (FLAG4 .EQ. 1) THEN
WRITE (*,")
PAUSE 'NEED MORE POINTS. A MATRIX CANNOT BE INVERTED, SMALL'

STOP
ENDIF

C END OF MODEL LOOP
20 CONTINUE
C WRITE OUT HEADER INFO FOR EACH INDEPENDENT MODE
IF (SCREEN .EQ. 2) THEN

WRITE(2,")
WRITE(2,500) MODE,FREQ(MODE),RE_SAMP_FACTOR,SAMPLE_FREQ

ELSE
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WRITE(®,")
WRITE(".500) MODE,FREQ(MODE),RE_SAMP_FACTOR,SAMPLE_FREQ
ENDIF

C CALL TO DETERMINE COMMON PARAMETER FOR EACH MODE BETWEEN EACH
C MODEL ORDER USED

CALL MP_COMMON(MP,MPR,MPSIGMA,MPOMEGA,MPCONV,COUNT,MODEL,
+ MODE,NMODE FLAG1,FLAG2,SCAEEN,LOWMODE,
+ HIGHMODE)

C STOP IF REGRESSIVE CONVERGENCE BETWEEN N-2 AND N POINTS IS NOT FOUND

IF (FLAG2 .EQ. 1) THEN
WRITE(*,700) MODE

WRITE(*.")

PAUSE 'HIT ENTER TO CONTINUE'
ENDIF

C STOP IF MODE CONVERGENCE IS NOT FOUND

IF (FLAG1 .EQ. 1) THEN

WRITE (*,*)

WRITE(*,*) 'WARNING! MAY NEED MORE POINTS. MODE ',
+ 'CONVERGENCE FAILED FOR MODE', MODE

WRITE(",)

PAUSE 'HIT ENTER TO CONTINUE'

ENDIF

C END OF MODE LOOP
10 CONTINUE

C CALL SORT TO DETERMINE FINAL MODAL RESULTS AFTER COMMON PARAMETERS
C WERE FOUND

MODE = MODE-1

CALL MP_SORT(MP,NMODE,MODE,FLAGS3,FINAL_MODES,OTHER_MODES,SCAEEN,
+ FREQ)

IF (FLAG3 .EQ. 1) THEN
WRITE (*,*)
WRITE(*,*) 'WARNING: MAY NOT BE ENOUGH POINTS, OR MODES ARE',
+ ' VERY CLOSE TO CORRECTLY'
WRITE(",*) 'DEFINE PARAMETERS. USE ABOVE LISTS TO DETERMINE',
+ *MODAL PARAMETERS'
PAUSE "HIT ENTER TO CONTINUE'
ENDIF

C CONVERSION OF MODAL PARAMETERS TO DAMP. FREQ IN HZ AND ZETA FOR
C DAMPING FACTOR

Pl =4.D0 *DATAN(1.D0)
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DO 30, K = 1,MODE
IF (FINAL_MODES(K,1) .NE. 0DO0 .OR. FINAL_MODES(K,2) .NE. 0D0) THEN
DUMMY = FINAL_MODES(K,2)/(SQRT(FINAL_MODES(K.2)**2 +
+ FINAL_MODES(K,1)*"2))
FINAL_MODES(K,2) = DUMMY
FINAL_MODES(K, 1) = FINAL_MODES(K,1)/(2*PI)
ENDIF
30 CONTINUE

C WRITE OUT FINAL MODAL RESULTS FOR SYSTEM TO *.TXT OR TO SCREEN

IF (SCREEN .EQ. 2) THEN
WRITE(2,")
WRITE(2,100) MODES
WRITE(2,300) INPUT_STOP
WRITE(2,400) NOLD
WRITE(2,200) QINF
WRITE(2,")
WRITE(2,") 'FINAL ESTIMATED MODAL PARAMETERS'
WRITE(2.")
WRITE(2,")' NATURAL DAMPING DAMPING'
WRITE(2,")' FREQUENCY FREQUENCY FACTOR'
WRITE(2,") ' MODE (HZ)  (H2) g
+ ‘OTHER MODES*"
DO 40, T=1,MODE
WRITE(2,600) T,FREQ(T),

+ (FINAL_MODES(T,K),K=1,2),
+ (OTHER_MODES(T K) .K=1,MODE-1)
40 CONTINUE

IF (FLAGS .EQ. 1) THEN
WRITE(2,*) 'LAST MODE WAS A CONTROL MODE!
ENDIF

WRITE(2,602)

WRITE(2,")

WRITE(2,*) WARNING: IF ABOVE RESULTS LOOK UNREASONABLE DUE',

+ ‘TO IDENTICAL MODES '

WRITE(2,%) 'USE RESULTS FROM THE ARMA MODELS FOR EACH MODE,

+ ' SHAPE. IF IN THE POST-FLUTTER

WRITE(2,*) 'REGION AND AN USTABLE MODE IS SEEN FOR SEVERAL MODES',
+ ' THEN THE SYSTEM IS’

WRITE(2,*) 'UNSTABLE AND MODES COULD NOT BE CLEARLY IDENTIFIED."

ELSE
WRITE(*,)
WRITE(*,100) MODES
WRITE(*,300) INPUT_STOP
WRITE(*,400) NOLD
WRITE(*,200) QINF
WRITE(*,*)
WRITE(",") ‘FINAL ESTIMATED MODAL PARAMETERS’
WRITE(".*)
WRITE("")' NATURAL DAMPING DAMPING'
WRITE(",")' FREQUENCY FREQUENCY FACTOR'
WRITE(*")'MODE (HZ) (H2) 3

+ 'OTHER MODES*
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DO 50, T=1,MODE
WRITE(*,600) T,FREQ(T),
+ (FINAL_MODES(T,K),K=1,2),
+ (OTHER_MODES(T,K) ,K=1,MODE-1)
50 CONTINUE

IF (FLAG5 .EQ. 1) THEN
WRITE(",") 'LAST MODE WAS A CONTROL MODE'

ENDIF

WRITE(*,602)

WRITE(",")

WRITE(*,*) 'WARNING: IF ABOVE RESULTS LOOK UNREASONABLE DUE',

+ 'TO IDENTICAL MODES

WRITE(*,*) 'USE RESULTS FROM THE ARMA MODELS FOR EACH MODE',

+ “SHAPE. IF IN THE POST-FLUTTER

WRITE(*,*) 'REGION AND AN USTABLE MODE IS SEEN FOR SEVERAL MODES',

+ ' THEN THE SYSTEM (S’

WRITE(*,*) 'UNSTABLE AND MODES COULD NOT BE CLEARLY IDENTIFIED.’

ENDIF

WRITE (*,")
PAUSE ‘Program MOSE Complete. Check Datal'

IF (SCREEN .EQ. 2) CLOSE(SCREEN)

100 FORMAT(' NUMBER OF MODES:",12)

200 FORMAT{(' FREE-STREAM DYANAMIC PRESSURE (0.5*RHO*(MACH*AY2): ',
+ £9.5)

300 FORMAT(' LAST POINT OF INPUT: ',I5)

400 FCRMAT(' NUMBER OF POINTS READ IN AFTER INPUT AND USED FOR ',
+  ANALYSIS: ' I5)

500 FORMAT( MODE=',12," NAT. FREQ="'F10.5, RE-SAMPLE FACTOR=',
+ 13,' ORIG. SAMPLE FREQ. ='F6.1)

600 FORMAT(I3,” ,F10.5,',F10.5,' 'F10.8," ',1013)

602 FORMAT('* OTHER MODES FOUND BUT NOT LIMITED TOO.")

700 FORMAT (' WARNING! MAY NEED MORE POINTS. HEGRESSIVE CONV. ",

+ 'FAILED FOR MODE',i2,". CHECK ABOVE LISTS.")
800 FORMAT(' PIPING TO',A20,"TXT")
STOP

1001 WRITE(",") ' ERROR READING PROBLEM NAME FROM SCREEN'
END

C END OF MAIN PROGRAM
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START OF ALL SUBROUTINES

OO0000

C J—— ——

Cc

C SUBROUTINE INPUT: READS IN INPUT DATA FROM XN.DAT,”. ARRAYS, *.SCALARS
C

c

C LOCAL VARIABLES:

Cc

C XVALUE: CHARACTER OF LENGTH 6 USED FOR DETERMINATION OF NUMBER
Cc OF MODES

C MACHINF: FREE-STREAM MACH NUMBER FROM *.SCALARS

C RHOINF:  FREE-STREAM DENSITY FROM ".SCALARS (SLUGS/INA3)

C AINF: FREE-STREAM VELOCITY OF SOUND  (IN/SEC)

CR COUNT HOW MANY NATURAL FREQUECIES FROM *.ARRAYS
C DATA(25) FOR READING IN EACH LINE OF TIME HISTORY DATA

CIlK USED FOR DO LOOPS

CP NOT USED

C

C

SUBROUTINE INPUT(TIME,Y,J,N,QINF,FREQ,INPUT_STOP,PROBNAME,FILEN)

PARAMETER (NMAX=10000)
PARAMETER (MODEMAX=20)

CHARACTER XVALUE*6,PROBNAME*20
INTEGER P,N,INPUT_STOP K,G,FILEN
DOUBLE PRECISION ~ DATA(25), TIME(NMAX),Y(NMAX,MODEMAX),FLAG(4),
+ QINF,MACHINF,RHOINF,AINF,FREQ(MODEMAX), DUMMY (MODEMAX)
K=1
R=1

C DETERMINING PROGRAM NAME LENGTH CALLING NAMLEN FUNCTION
FILEN = NAMLEN(PROBNAME)
C OPENING NECESSARY INPUT FILES FOR READING DATA
OPEN(UNIT=1,FILE="xn.dat', STATUS='OLD',ERR=2001)
OPEN(UNIT=3,FILE = PROBNAME(1:FILEN)//.scalars', STATUS="OLD',
+  ERR=2003)
OPEN(UNIT=4,FILE = PROBNAME(1:FILEN)// arrays', STATUS="OLD",
+  ERR=2004)
C DETERMINING NUMBER OF MODES FROM *.SCALARS
1 READ(3,(A),ERR=2010)

READ(3,'(A) ERR=2010)
READ(3,*, ERR=2010) J
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C READING IN THE LAST POINT OF THE EXCITATION AND CALCULATING Q
C FROM *.SCALARS

DO 10,P = 1,4
READ(3,(A)',ERR=2011)
10 CONTINUE

READ(3,",ERR=2011) MACHINF RHOINF AINF
QINF = 0.5"RHOINF*MACHINF*MACHINF*AINF*AINF

DO11,P=13
READ(S,'(A),ERR=2012)
11 CONTINUE

READ(3,* ERR=2012) (FLAG(K),K=1.4)
INPUT_STOP = FLAG(4)

C READING IN THE NATURAL UNDAMPED FREQUENCY AT QINF=0 FROM *.ARRAYS

DO13,P=14
READ(4,'(A) . ERR=2013)
13 CONTINUE

DO 14,R=1,J
READ(4,".ERR=2013) FREQ(R)
14 CONTINUE

C READING IN ACTUAL QDOT TIME HISTORY DATA FROM XN.DAT FROM ASENL_CODE

4 READ(1,'(A),ERR=2014) XVALUE(:4)
IF (XVALUE(:4) .EQ. ' DAT") GOTO 2
GOTO 4

2 DO 15,1=1,INPUT_STOP*3
READ(1,”) DUMMY(I)
15 CONTINUE

5 READ(1,",END=97,ERR=2014) (DATA(G),G=1,J"2+1)
TIME(N) = DATA(1)
DO 6, G=1,J
Y(N,G) = DATA(J+G+1)
6 CONTINUE
N=N+1
GOTO S

C DETERMINE IF LAST MODE IS A CONTROL MODE
CMSUM =0.D0

97 DO 98, 2Z = 1,50
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CMSUM = DABS(Y(ZZ,J)}+CMSUM
98 CONTINUE

IF (CMSUM .LT. .01) THEN
J=J-1

FLAGS =1

ENDIF

C COUNTING BACK ON N
99 N=N-1

CLOSE(UNIT=1)
CLOSE(UNIT=3)
CLOSE(UNIT=4)

8 RETURN

2001 WRITE(",*) 'ERROR WHEN OPENING XN.DAT FILE'
2OOSST8|I:ITE(',') 'ERROR WHEN OPENING SCALARS FIiLE'
2008'4T821TE(',') ‘ERROR WHEN OPENING ARRAYS FILE!'
201SOTV%EITE(’.') 'ERROR WHEN READING SCALARS FILE - NROOTS
201S1TV%SITE(’,‘) 'ERROR WHEN READING SCALARS FILE - MACH, RHO, OR AINF'
20182T321TE(’,‘) 'ERROR WHEN READING SCALARS FILE - NEND'
201SSTV%:ITE(',') 'ERROR WHEN READING ARRAYS FILE - FREQUENCIES'
201S4TVOVEITE(‘,') 'ERROR WHEN READING ARRAYS FILE - GENERALIZED ',

+ VELOCITY DATA'

STOP

END
C END OF INPUT SUBROUTINE
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SUBROUTINE MODAL_PARAMETERS:

THIS SUBROUTINE FIRST DETERMINES THE AR COEFFICIENTS

USING THE ARMA MODEL AND OVERDETERMINED SET OF EQS. FROM
A THEN DETEMINED RE-SAMPLED INPUT FOR N-5 AND N

NUMBER OF POINTS. FROM THE AR COEFFICIENTS BAIRSTOWS
METHOD OF QUADRATIC FACTORIALS IS USED ON THE
CHARACTERISTIC EQUATION OF AR COEFFICIENTS. {(CALL
QUADFACT_OF_THETA). FROM THESE FACTORIAL THE MODAL
VALUES OF EACH IF USEABLE ARE DETERMINED (CALL
MODAL_VALUES). FROM THESE MODAL VALUES FOR BOTH N-5

AND N SETS OF POINTS, REGRESSIVE CONVERGENCE IS DETERMINED
BY COMPARING THE MODAL VALUES FROM EACH SET. THE RESULTS
FOR N POINTS ARE RETURNED.

LOCAL VARIABLES:
C FLAG IF PHIM IS SINGULAR, FLAG =1,INCREMENT K BY 1
CFACT NUMBER OF BAIRSTOW FACTORIALS (EQUAL TO MODEL)
C MPCOUNT USED TO COUNT FOR STORAGE OF TEMPORARY ARRAYS
C BETWEEN N-5 AND N POINTS
C NOLDAR OLD NUMBER OF POINTS AFTER RE-SAMPLING
C RCOUNT COUNT NUMBER OF DATA POINTS RETRIEVED
cZz FIRST DATA POINT OF Y DATA
C NEWY() RE-SAMPLED INPUT DATA FOR THAT MODE SHAPE
CK FOR STARTING POINT (2M+1) OF MOSE METHOD
C PHI()) REGRESSION DATA MATRIX
C PSI{) DATA VECTOR
C PHIT(,) TRANSPOSE FO PHI
C PHIM(,) MULITPLICATION OF PHIT AND PHI AND THEN ITS
C INVERTED
C NEW(,) MULTIPLICATION OF INVERTED PHIM AND PHIT
C TEMP USED FOR MATRIX MULTIPLICATIONS
C QUADFACT(,3) MATRIX OF QUADRATIC FACTORIALS RETURNED
CDT NEW SAMPLE PERIOD BASED FROM RE-SAMPLE FACTOR
C MPR_OLD(,) MATRIX OF R VALUES (CONDITION OF OMEGA) FOR
C EACH MODE RETURNED FROM MODAL_VALUES
C SUBROUTINE
C MPSIGMA_OLD(,) MATRIX OF DAMPING FACTORS FOR EACH MODE
C RETURBNED FROM MODAL_VALUES SUBROUTINE

C MPOMEGA_OLD() MATRIX OF DAMPING FREQUENCIES FOR EACH MODE

C RETURNED FROM MODAL_VALUES SUBROUTINE

C MPR_TEMP(,) TEMPORARY MATRIX OF R VALUES (CONDITION OF

C OMEGA) FOR EACH MODE AT N-5 POINTS TO COMPARE
Cc WITH MPR_OLD RETURNED FROM MODAL_VALUES SUB-
C ROUTINE

C MPSIGMA_TEMP(,) TEMPORARY MATRIX OF DAMPING FACTORS FOR EACH

C

MODE AT N-1 POINTS TO COMPARE WITH MPSIGMA_OLD

C MPOMEGA_TEMP(,) TEMPORARY MATRIX OF DAMPING FREQUENCIES FOR

C
Cc

EACH MODE AT N-1 POINTS TO COMPARE WITH
MPOMEGA_OLD

C OMEGA_TEMP_DIFF % DIFFERENCE BT OMEGAS FROM N-1 AND N POINTS
C SIGMA_TEMP_DIFF DIFFERENCE BT SIGMAS FROM N-2 AND N POINTS
CTOLS TOLERANCE USED WITH SIGMA_TEMP_DIFF
CV.LMQAQW.LJ USED FOR DO LOOPS
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Cc —_—
SUBROUTINE MODAL_PARAMETERS(THETA,Y,MODEL ,MODE,N,RE_SAMP_FACTOR,
+ DTORIG,MPR,MPSIGMA ,MPOMEGA ,MPCONV,
+ COUNT,FLAG4)

PARAMETER (NMAX=10000)
PARAMETER (MODEMAX=20)

INTEGER K,QM,W,RCOUNT H,RE_SAMP_FACTOR,Z FLAG,MODEL,

+ FACT,COUNT,NOLDAR,MPCONV(MODEMAX,MODEMAX),

+ MPCONV_OLD(MODEMAX),FLAG4

DOUBLE PRECISION PHI(NMAX,2*"MODEMAX+1),PHIT (2*MODEMAX+1,NMAX),

+ THETA(2*MODEMAX+1), TEMP,PSI(NMAX),
+ PHIM(2*MODEMAX+ 1,2"MODEMAX+1), Y (NMAX, MODEMAX),

+ NEW(2*MODEMAX+1,NMAX),NEWY (NMAX),

+ QUADFACT(MODEMAX,3),DT,DTORIG,

+ MPR(MODEMAX,MODEMAX),MPOMEGA(MODEMAX.MODEMAX),
+ MPSIGMA(MODEMAX,MODEMAX),

+ MPR_OLD{MODEMAX),MPOMEGA_OLD(MODEMAX),

+ MPSIGMA_OLD(MODEMAX),MPR_TEMP(MODEMAX),

+ MPOMEGA_TEMP(MODEMAX),MPSIGMA_TEMP(MODEMAX),

+ OMEGA_TEMP_DIFF,SIGMA_TEMP_DIFF,TOLS

FLAG = 0

FLAG4 =0

FACT =0

MPCOUNT =0

C DETERMINE NEW NUMBER OF POINTS

N=(N/RE_SAMP_FACTOR})
NOLDAR =N

C START LOOP TO DETERMINE MODAL PARAMETERS IF REGRESSIVE CONVERGENCE
C IS SEEN

DO 40 V=2,0,-2

RCOUNT=0

N = NOLDAR-V

Z=1

100 IF (FLAG .EQ. 1) THEN

IF(N .LT. 20 ) THEN
FLAG4 =1

RETURN

ENDIF

Z2=2+1

ENDIF

C DETERMINE NEW Y VECTOR USING RE-SAMPLE FACTOR
DO20L=2N

NEWY (L)=Y/((L-1)"RE_SAMP_FACTOR+1,MODE)
20 CONTINUE
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C DETERMINING PHI MATRIX AND PS|I VECTOR WHICH
C DEVELOPS ARMA MODEL AND OVERDETERMINED SPECIFIED EQUATIONS.

K=2"MODEL+1

DO 1, M=K N-1
DO 2, Q=1,2"MODEL
PHI(1.Q)=-NEWY (K-Q)

2 CONTINUE
PHI(1,K)=1
PSI{1)=NEWY(K)
DO 3, W=1,2"MODEL
PHI(M-K+2,W)=-NEWY (M+1-W)

3 CONTINUE
PHI(M-K+2,K)=1
PSIM-K+2)=NEWY (M+1)
RCOUNT=RCOUNT+1

1 CONTINUE

C TRANSPOSE OF PHI

DO 4 H=1,K
DO 5, Q=1,RCOUNT
PHIT(H,Q)=PHI(Q,H)

5 CONTINUE

4 CONTINUE

C MULTIPLICATION OF PHIT*PHI MAKING PHIM

DO 6I=1K
DO 7d=1K
TEMP =0.0
DO 8 Q=1,ACOUNT
PHIM(1,J) = PHIT(1,Q)"PHI(Q,J)+ TEMP
TEMP=PHIM(],J)
8 CONTINUE
7 CONTINUE
6 CONTINUE

C MATAIX INVEASE OF PHIM IN ITS PLACE
CALL MATRIX_INVERSE(PHIM,K.FLAG)
IF (FLAG .EQ. 1) GOTO 100
C MULTIPLICATION OF PHIM*PHIT
DO 9 I=1,K
DO 10 J=1,RCOUNT
TEMP = 0.0
DO 11 Q=1K
NEW(1,J) = PHIM(L,Q)*PHIT(Q,J)+ TEMP

TEMP=NEW(.J)
11 CONTINUE
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10 CONTINUE
9 CONTINUE

C MULTIPLICATION OF NEW*PSI MAKING THETA BEING THE ARRAY OF AR
C COEFFICIENTS
DO 12 I=1,K
TEMP = 0.0
DO 13 Q=1,RCOUNT
THETA(l) = NEW(1,Q)*PSI(Q)+TEMP
TEMP=THETA(l)
13 CONTINUE
12 CONTINUE

C CALL TO DETERMINE QUADRATIC FACTORJALS FOR CHARACTERISTIC EQUATION
C OF AR COEFFICIENTS

CALL QUADFACT_OF_THETA(THETA,QUADFACT MODEL,FACT)
C RESET DT
DT = DTORIG*RE_SAMP_FACTOR

C CALL TO DETERMINE ROOTS OF FACTORIALS AND FREQUENCIES AND DAMPING
C FACTOR

CALL MODAL_VALUES(MPA_OLD,MPOMEGA_OLD,MPSIGMA_OLD,
+ QUADFACT,FACT,DT)

C PUTTING RESULTS FOR N-2 POINTS IN TEMPORARY ARRAYS FOR COMPARING
C LATER

[F (MPCOUNT .NE. 1) THEN
DO 30 W=1,MODEL
MPOMEGA_TEMP(W)=MPOMEGA_OLD(W)
MPSIGMA_TEMP(W)=MPSIGMA_OLD(W)
MPR_TEMP(W)=MPR_OLD(W)
30 CONTINUE
ENDIF
C SETTING MPCOUNT FOR {F STATEMENT ABOVE
MPCOUNT = MPCOUNT + 1
C END OF REGRESSIVE CONVERGENCE OF N-2 AND N POINTS
40 CONTINUE
C LOOKING FOR REGRESSIVE CONVERGENCE
DO 50 W=1,MODEL

MPCONV_OLD(W) = 0
IF (MPOMEGA_OLD(W) .NE. 0.0 .AND. MPR_OLD(W) .NE. 0.D0) THEN
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OMEGA_TEMP_DIFF = 100*(MPOMEGA_TEMP(W)-MPOMEGA_OLD(W))/
+ MPOMEGA_OLD(W)
IF (ABS(MPSIGMA_OLD(W)) .GT. 1.D0) THEN
SIGMA_TEMP_DIFF = 100°(MPSIGMA_TEMP (W)-MPSIGMA_OLD(W))/
+ MPSIGMA_OLD(W)
TOLS = 5.00
ELSE
SIGMA_TEMP_DIFF = (MPSIGMA_TEMP(W)-MPSIGMA_OLD(W))
TOLS = .5D0
ENDIF

IF(ABS(SIGMA_TEMP_DIFF) .LE. TOLS .AND. ABS(OMEGA_TEMP_DI{FF)
+ LE. 10.D0 .AND. MPR_OLD(W) .NE. 0.00) THEN

MPCONV_OLD(W) = 1

ELSE
MPCONV_OLD(W) = 0

ENDIF

ENDIF

50 CONTINUE

C COUNTING HOW MANY TIME BEEN THROUGH THIS SUBROUTINE
COUNT = COUNT+1
C SETTING WORKING ARRAYS INTO FINAL ARRAYS TO RETURN
DO 60 J=1,MODEL
MPOMEGA(COUNT.J) = MPOMEGA_OLD(J)
MPSIGMA(COUNT,J) = MPSIGMA_OLD(J)
MPR(COUNT, J) = MPR_OLD(J)
MPCONV(COUNT,J) = MPCONV_OLD(J)
60 CONTINUE

RETURN
END

C END OF MODAL_PARAMETERS SUBROUTINE
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C=—

C

C SUBROUTINE MATRIX_INVERSE: INVERT PHIM

c

C THIS ROUTINE WAS TAKEN FROM NUMERICAL RECIPES IN FORTRAN 77: THE ART
C OF SCIENTIFIC COMPUTING, CHAPTER 2.1. THIS ROUTINE INVERTS A GENERAL
C MATRIX OF (NXN) USING GAUSS-JORDAN ELIMINATION WITH FULL PIVOTING IN

C PLACE. THE ORIGINAL MATRIX A IS DETROYED AND REPLACED BY THE INVERSE
C OF THE ORIGINAL MATRIX A.

c

C LOCAL VARIABLES:
c

C IPIV(MODEMAX)
c8IG

C A(IMODEMAX,MODEMAX)
C IROW

C IcoL

C DUM

CN

C INDXR(MODEMAX)
C

C INDXC(MODEMAX)
c

INTEGER ARRAY USED FOR BOOKKEEPING OF PIVOTING
USED FOR PIVOTING COLUMNS

DUMMY VARIABLE FOR PHIM (MATRIX TO INVERT)

ITH ROW VALUE FOR SORTING

ITH COLUMN VALUE FOR SORTING

USED FOR INTERCHANGING ROWS,COLUMNS, AND ETC.
NUMBER ROW OR COL

INTEGER ARRAY USED FOR BOOKKEEPING OF RCW
PIVOTING

INTEGER ARRAY USED FOR BOOKKEEPING OF COLUMN
PIVOTING

C PIVINV USED FOR DIVIDING PIVOT ROW BY PIVOT ELEMENT
CJLLQLLK USED FOR DO LOOPS

C

C =<==

SUBROUTINE MATRIX_INVERSE(A,N,FLAG)

PARAMETER (MODEMAX=20)

INTEGER N,1LICOL,IROW,J,Q,L LL,INDXC{2"MODEMAX+1),
+ INDXR(2°*MODEMAX+1),IPIV(2*MODEMAX+1),FLAG
DOUBLE PRECISION A(2°MODEMAX+1,2*MODEMAX+1),81G,DUM,PIVINV

DO 11 J=1,N
IPIV(J)=0
11 CONTINUE

C MAIN LOOP OVER THE COLUMNS TO BE REDUCED

DO 22 1=1,N
BIG=0.

C SEARCH FOR PtVOT ELEMENT OF EACH COLUMN

DO 13 J=1,N

IF(IPIV{J).NE.1) THEN

DO 12 K=1,N

IFIPIV(K).EQ.0) THEN
IF(DABS(A(J,K)).GE.BIG) THEN

BIG=DABS(A(J,K))

IROW=J
JICOL=K
ENDIF
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ELSE IF(IPIV(K).GT.1) THEN
PAUSE 'PHIM IS A SINGULAR MATRIX. CANNOT INVERT'
FLAG = 1
RETURN
ENDIF
12 CONTINUE
ENDIF
13 CONTINUE

C HAVING THE PIVOT ELEMENT, ROWS ARE NOW INTERCHANGED TO PUT THE PIVOT
C ON THE DIAGONAL. THE COLUMNS ARE NOT PHYSICALLY INTERCHANGED, JUST
C RELABED.

IPIV(ICOL)=IPIV(ICOL)+1

IFOROW.NE.ICOL) THEN

DO 14 L=1,N
DUM=A(IROW,L)
A{IROW,L)=A(ICOL, L)
A(ICOL,L)=DUM

14 CONTINUE
ENDIE

C NOW READY TO DIVIDE THE PIVOT ROW BY THE PIVOT ELEMENT, LOCATED AT
C 'ROW AND ICOL

INDXR(1)=IROW
INDXC(l)=ICOL
IF (A(ICOL,ICOL).EQ.0.) THEN
PAUSE 'PHIM IS A SINGULAR MATRIX. CANNOT INVERT’
FLAG = 1
RETURN
ENDIF
PIVINV=1./A(ICOL,ICOL)
A(ICOL,ICOL)=1.D0
DO 16 L=1,N
A(ICOL,L)=A(ICOL,L)*PIVINV
16 CONTINUE

G NOW REDUCE THE ROWS EXGEPT FOR THE PIVOT ONE.
DO 21 LL=1,N
IF(LL.NE.ICOL) THEN
DUM=A(LL,ICOL)
A(LL,ICOL)=0.D0
DO 18 L=1,N
A(LL,L)=A(LL,L)-A(ICOL,L)*DUM
18 CONTINUE
ENDIF
21  CONTINUE
22 CONTINUE

C END Of MAIN LOOP OVER COLUMNS OF REDUCTION. HAVE INVERSE EXCEPT
C COLUMNS ARE OUT OF PLACE SO MUCH PUT THEM IN THE RIGHT ORDER BY
C THE NEXT LOOP.

DO 24 L=N,1,-1
IF(INDXR(L).NE.INDXC(L)) THEN
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DO 23 Q=1,N
DUM=A{Q,INDXR(L))
A(Q,INDXR(L))=A(Q,INDXC(L))
A{Q,INDXC(L))=DUM
23 CONTINUE
ENDIF
24 CONTINUE

C HAVE INVERSE IN MATRIX A SO NOW RETURN
RETURN

END
C END OF MATRIX_INVERSE SUBROUTINE
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SUBROUTINE QUADFACT_OF_THETA:

COEFFICIENTS USING BAIRSTOWS METHOD FOR QUADRATIC

C
C
C
C DETERMINE ROOTS OF CHARACTERISTIC EQUATION OF AR
C
C

FACTORING.
C LOCAL VARIABLES:

C

CM ORDER OF CHARACTERISTIC POLYNOMIAL OF AR COEFFICIENTS
CTOL TOLERANCE VALUE FOR CONVERGENCE ON R AND S

CR,S PARAMETERS IN TRIAL FACTOR XA2 - RX - S

CITER NUMBER OF ITERATIONS FOR BAIRSTOWS METHOD, NO SET LIMIT
CK NUMBER OF QUADRATIC FACTORS

C COEFF() DUMMY VECTOR OF AR COEFFICIENTS

C B() ARRAY HOLDING THE COEFFICIENTS WHEN THE INTIAL

C CHARACTERISTIC POLYNOMIAL IS DIVIDED BY TRIAL QUADRATIC
Cc FACTOR

CC) ARRAY HOLDING THE PARTIAL DERIVATIVES

C DENOM DENOMINATOR FOR DELR AND DELS

C DELR,DELS RATIO OF DETERMINANTS FOR ADJUSTMENTS TO IMPROVE R AND S
C

c e

SUBROUTINE QUADFACT_OF_THETA(THETA QUADFACT,MODEL,FACT)

PARAMETER (MODEMAX=20)

INTEGER

LITERKJ,FACT

DOUBLE PRECISION COEFF(2*MODEMAX),B(2*MODEMAX),C(2*"MODEMAX),

+
+

THETA(2*"MODEMAX+1),R,5,TOL,
QUADFACT(MODEMAX,3),DENOM,DELR DELS

C INITIAL NECESSARY PARAMETERS

M =2"MODEL

TOL =1.D-8
R=1.D0
S=1.0D0
ITER =1

K=0

C FILL IN STARTING COEFFICIENTS WITH AR COEFFICIENTS

COEFF(1) = 1.D0

DO1,1=1M

COEFF(1+1) = THETA())

B(l) = 0.D0
() = 0.D0
1 CONTINUE

C CALCULATE B AND C VECTORS

3B(1)=1.D0
C(1) = 1.D0

4 B(2) = COEFF(2) + R*B(1)
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C(2) = B(2) + R*C(1)

DO 2, J=3 M+1
B(J) = COEFF(J) + R*B(J-1) + S*B(J-2)
C(J) = B(J) + R*C(J-1) + S°C(J-2)

2 CONTINUE
DENOM = C(M-1)*C(M-1) - C(M)*C(M-2)
C CHECK TO SEE R AND S GUESS PROVIDE BAD AESULTS

IF (DENOM _EQ. 0.D0) THEN
R=R+1.D0
S=R+1.D0
ITER=1
GOTO 3

ENDIF

C COMPUTE NEWR AND S

DELR = (-B(M)*C(M-1) + B(M+1)*C(M-2))/DENOM
R=R + DELR

DELS = (-C(M-1)*B(M+1) + C(M)*B(M))/DENOM
S=8S+DELS

C CHECK IF CONVERGENCE UPON R AND S IS FOUND. IFIT HAS SET
C FIRST QUADRATIC FACTOR.

IF ((DABS(DELR) + DABS(DELS)) .GT. TOL) THEN
ITER = ITER+1
GOTO 3
ELSE
K=K+1
QUADFACT(K,1) = 1.D0
QUADFACT(K,2) =-R
QUADFACT(K,3) = -8
ENDIF

C IF CONVERGENCE FOUND FIND NEW REDUCED POLYNOMIAL FROM ONE OF THE
C CASES

C CASE 1: IF LINEAR EQUATION RESULT SET THEN STOP (NEVER OCCURS)

C CASE 2: IF QUADRATIC EQUATION RESULTS SET THEN STOP

C CASE 3: IF HIGHER ORDER POLYNOMIAL SET AND DIVIDE OUT NEW FACTORIALS
C BY RETURNING TO 4

M=M-2

SELECT CASE (M)
CASE (1)
K=K+1
DO 5 J=1,2
QUADFACT(K,J) = B(J)
5 CONTINUE
CASE (2)



K =K+1
DOs6,J=1,3
QUADFACT(K,J) = B(J)
6 CONTINUE
CASE (3:MODEMAX)
DO 7, J=1,M+1
COEFF(J) = B(J)
ITER=0
R=1.D0
S=1.Do
7 CONTINUE
GOTO 4
END SELECT

FACT=K

RETURN
END

C END OF QUADFACT_OF_THETA SUBROUTINE
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SUBROUTINE MODAL_VALUES:
DETERMINE ROOTS FROM QUADRATIC FACTORIALS
USING BASIC QUADRATIC EQUATIONS THEN TAKING ROOTS
AND DETERMINE MODAL PARAMETERS (SIGMA AND OMEGA)

LOCAL VARIABLES;

sloXoNoXoRoNoXNoNQ

(@]
v

B VALUE OF QUADRATIC EQUATION

A VALUE OF QUADRATIC EQUATION
CC C VALUE OF QUADRATIC EQUATION

C REALROOT REAL VALUE OF COMPLEX ROOT

C IMAGROOT IMAGINARY VALUE OF COMPLEX ROOT

@]
>

C SIGMA DAMPING PRODUCT (RAD/S)

C OMEGA DAMPING FREQUENCY (RAD/S)
cJ USED FOR DO LOOPS

C=

SUBROUTINE MODAL_VALUES(MPR_OLD,MPOMEGA_OLD MPSIGMA_OLD,
+ QUADFACT,FACT,DT)

PARAMETER (MODEMAX=20)

INTEGER J,FACT.R

DOUBLE PRECISION MPR_OLD(MODEMAX), QUADFACT(MODEMAX,3),
+ SIGMA,REALROOT,IMAGROOT,A,B.C,DT,OMEGA,
+ MPOMEGA_OLD(MODEMAX),
+ MPSIGMA_OLD(MODEMAX)

C DO LOOP TO DETERMINE MODAL PARAMETERS FROM EACH QUADRATIC
FACTORIALS

DO 1, J=1,FACT
C SET QUADRATIC EQUATION COEFFICIENTS

A = QUADFACT(J,1)
B = QUADFACT(J,2)
C = QUADFACT(J,3)

C CHECK IF COMPLEX OR NOT AND THEN DETERMINE REAL AND/OR IMAG VALUES
C OF ROOT

IF ((B*B - 4*A"C) .LT. 0.0) THEN
REALROOT = -B/2°A
IMAGROOT = SQRT(DABS(B*B-4"A*C))/2"A
ELSE
REALROOT = (-B+(SQRT(B*B-4*A*C}))/2"A
IMAGROOT = 0.D0
ENDIF

C CALCULATE SIGMA AND OMEGA FROM ALL ROOTS

SIGMA = -DLOG(REALROOT“REALROOT+IMAGROOT"IMAGROOT)/(2.D0*DT)

156



OMEGA = DATAN(IMAGROOT/REALROOT)/DT
C CONDITION CHECK OF ROOTS TO SEE IF ROOTS ARE GOOD ESTIMATES

IF IMAGROOT .EQ. 0.D0) THEN

R=0
SIGMA =0.D0
OMEGA = 0.D0
ENDIF
IF (REALROOT .GT. 0.D0) THEN
R=1
ELSE
R=0
SIGMA = 0.D0
OMEGA =0.D0
ENDIF

C CONDITION TO CHECK IF OVERDAMPED MODAL PARAMETERS

IF(SIGMA .GE. OMEGA) THEN

R=0

SIGMA =0.D0

OMEGA =0.D0
ENDIF

MPOMEGA_OLD(J)=OMEGA
MPSIGMA_OLD(J)=SIGMA
MPR_OLD(J)=R

1 CONTINUE

RETURN
END

C END OF MODAL_VALUES SUBROUTINE
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C—

C

C SUBROUTINE MP_COMMON:
Cc DETERMINES COMMON MODAL PARAMETERS FROM EACH MODEL FOR
C EACH MOOE.

C

C LOCAL VARIABLES:

C

CPI Pi=4.D0 *“DATAN(1.D0)

C PRINT_SIGMA USED FOR PRINTING DAMPING FACTOR VALUES FOR EACH MODEL

C AND MODE IN TERMS OF DIMENSIONLESS ZETA

C PRINT_OMEGA USED FOR PRINTING OMEGA VALUES FOR EACH MODEL AND MODE

C IN TERMS OF HERTZ

C TEMP COUNTER USED TO DETERMINE |F NO MODAL PARMATERS ARE

C MATCHED BETWEEN MODEL FOR THAT MODE

C MATCHMODE COUNTER USED TO DETERMINE HOW MANY MATCHED MODAL

C PARAMETER SETS OCCURED BETWEEN EACH MODEL FOR THAT C
MODE

C CONVCOUNT COUNTER USED TO DETERMINE IF REGRESSIVE CONVERGENCE

C OCCURRED BETWEEN ALL MODELS FOR THAT MODE

C SIGMATEMP TEMPORARY STORAGE OF SIGMAS FOR LATER COMPARISON

C OMEGATEMP TEMPORARY STORAGE OF OMEGAS FOR LATER COMPARISON

C SIGMADIFF USED FOR DETERMINING COMMON SIGMAS BETWEEN EACH MODEL

C OMEGADIFF USED FOR DETERMINING COMMON OMEGAS BETWEEN EACH MODEL

CTOLS TOLERANCE WHEN COMPARING SIGMAS

C NMODE PLACEMENT OF NTH MATCHED MODAL PARAMETER SET

CGJKU USED FOR DO LOOPS

C===

SUBROUTINE MP_COMMON(MP.MPR,MPSIGMA,MPOMEGA MPCONY,COUNT,MODEL,

+
+

MODE ,NMODE,FLAG1,FLAG2,SCREEN,LOWMODE,
HIGHMODE)

PARAMETER (MODEMAX=20)
PARAMETER (NMAX=10000)

INTEGER MODE,COUNT,MODEL,K,NMODE,MATCHMODE  TEMP,G,U,
+ FLAG1,CONVCOUNT MPCONV(MODEMAX MODEMAX) FIAG2,
+ SCREEN,LOWMODE HIGHMODE
DOUBLE PRECISION MPR(MODEMAX,MODEMAX),MPOMEGA(MODEMAX,MODEMAX),
+ MPSIGMA(MODEMAX,MODEMAX),SIGMADIFF,OMEGADIFF,
+ MP(MODEMAX*MODEMAX,4), TOLS,DUMMY,
+ PRINT_OMEGA,PI,OMEGATEMP,SIGMATEMP,CONVTEMP

Pl = 4.D0 *"DATAN(1.D0)

C PRINT OUT ALL MODAL PARAMETERS FOR EACH MODEL AND MODE
C THIS 15 THE DATA USED FOR BACKUP JUST IN CASE SOMETHING GOES
C WRONG WITH FINDING COMMON PARAMETERS AND SORTING

DO 1, G = 1,HIGHMODE-LOWMODE+1

IF (SCREEN .EQ. 2) THEN
WRITE (2,100) G+LOWMODE-1

ELSE

WRITE (*,100) G+LOWMODE-1
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ENDIF

DO 2, J = 1,MODEL-1
IF(MPR(G,J) .NE. 0.D0 .AND. MPOMEGA(G,J) .NE. 0.D0) THEN
DUMMY=MPSIGMA(G,J)/(SQRT(MPSIGMA(G J)**2 +

+ MPOMEGA(G,J)**2))
PRINT_OMEGA = MPOMEGA(G,J)/(2"Pl)

IF(SCREEN .EQ. 2) THEN

WRITE(2,200) PRINT_OMEGA,DUMMY,MPCONV(G,J)
ELSE

WRITE(*,200) PRINT_OMEGA,DUMMY,MPCONV(G.J)
ENDIF

ENDIF
2 CONTINUE
1 CONTINUE

TEMP =0
C START OF COMPARISON LOOP

DO 3, J = 1,MODEL-1
MATCHMODE =0
CONVCOUNT =0

C |F USEABLE MODE AND MODAL PARAMETERS ARE NOT ZERO THEN CONTINUE
C START COMPARING FROM LAST MODEL

IF(MPR(COUNT,J) .NE. 0.D0 .AND. MPOMEGA(COUNT.J) .NE. 0.D0) THEN
OMEGATEMP = MPOMEGA(COUNT J)
SIGMATEMP = MPSIGMA(COUNT.J)
CONVTEMP = MPCONV(COUNT.J)
IF(MPCONV(COUNT.J) .EQ. 0 ) THEN
CONVCOUNT=CONVCOUNT +1
WRITE(2,") 'HERE1' MATCHMODE,CONVCOUNT
ENDIF

OO0

C COMPARE EACH MODAL PARAMETER TO PREVIOUS TO MODELS
DO 4, K=COUNT-1,1,-1
C START COMPARING EACH MODAL PARAMETER BT. MODELS

DO 5, U=1,MODEL-1
OMEGADIFF = 100.D0"(OMEGATEMP-MPOMEGA(K,U)/OMEGATEMP
IF (ABS(SIGMATEMP) .LT. 2.D0) THEN
SIGMADIFF = SIGMATEMP-MPSIGMA(K,U)
TOLS = .5D0
ELSE
SIGMADIFF = 100.D0"(SIGMATEMP-MPSIGMA(K,U))/SIGMATEMP
TOLS = 20.D0
ENDIF

C IF MATCHED A MODE BETWEEN THE MODELS
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IF(DABS(OMEGADIFF) .LT. 10.D0 .AND.
+ DABS(SIGMADIFF) .LT. TOLS) THEN

C CHECK TO SEE IF MATCHED MODE REGRESSIVELY CONVERGED

IF(MPCONV(K,U) .EQ. 0 .AND. K .GT. 2) THEN
CONVCOUNT = CONVCOUNT + 1
ENDIF

C COUNT IF A MODE IS MATCHED

MATCHMODE = MATCHMODE + 1
IF (MATCHMODE .EQ. 1) THEN
NMODE = NMODE+1

ENDIF
MP(NMODE,1) = OMEGATEMP
MP(NMODE,2) = SIGMATEMP
MP(NMODE,3) = MODE
MP(NMODE 4) = MATCHMODE
TEMP = TEMP+1
ENDIF

5 CONTINUE

4 CONTINUE

ENDIF
3 CONTINUE

C iIF NO MATCHES OF MODES BETWEEN EACH MODEL DUE TO REGRESSIVE
CONVERNCE
C PROGRAM STOPS AND ASKS USER TO SUPPLY MORE POINTS

FLAG2=0

IF (CONVCOUNT .GE. 2) THEN
FLAG2 = 1
RETURN

ENDIF

C IF NO MATCHES OF MODES BETWEEN EACH MODEL FOR THAT MODE SHAPE
C PROGRAM STOPS AND ASKS USER TO SUPPLY MORE POINTS

FLAGT =0
IF (TEMP .EQ. 0) THEN
FLAGT = 1
RETURN
ENDIF

100 FORMAT( MODEL ',I2)
200 FORMAT(F10.4,F10.6,12)
RETURN
END

C END OF MP_COMMON SUBROUTINE
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SUBROUTINE MP_SORT:
FROM COMMON MODAL PARAMETERS FOR EACH MODE AND ALL MODES THIS
SUBROUTINE SORTS THE MODE WITHIN EACH MODE BY THE FREQUENCY
THEN DETERMINES FROM ALL MODES THE EXACT MODAL PARAMETERS FOR
EACH MODE

C LOCAL VARIABLES:

C

cP COUNTER OF HOW MANY COMMON MODAL PARAMETERS
C TEMPO() TEMPORARY ARRAY OF TEMPERARY COMMON OMEGAS FOR
C THAT MODE FOR SORTING AND FINDING FINAL MODES

C TEMPS() SIMILAR TO TEMPO, BUT FOR SIGMAS

C TEMPM() SIMILAR TO TEMPS, BUT FOR NUMBER OF MATCHED

C MODES WITHIN EACH MODE SHAPE

C JMIN PLACEMENT Of MINIMUM OMEGA

C TEMP1,2,4 NEEDED FOR SORTING COMMON MODES WITHIN EACH

cC MODE SHAPE COUNTING NUMBER OF COMMON MODES

C WITHIN ECH MODE SHAPE

C ANS1 =1 |[F OMEGA IS GREATER THAN LAST MODE OMEGA

C ANS2 =1 |[F MODE IS COMPARABLE TO A PREVIOUS MODE

C DIFFO,DIFFS DIFFERENCES NEEDED FOR COMPARING PRESENT MODES
C WITH PAST MODES

CTOLS TOLERANCE FOR COMPARING SIGMAS

CUKJLYE FOR DO LOOPS ONLY

C

C N -

SUBROUTINE MP_SORT(MP NMODE,MODE,FLAG3,FINAL_MODES,OTHER_MODES

+

,SCREEN)

PARAMETER (MODEMAX=20)
PARAMETER (NMAX=10000)

INTEGER
+

NMODE MODE,P,U,K,J,I.T,FLAGS,
OTHER_MODES(MODEMAX,MODEMAX),E,Y,SCREEN

DOUBLE PRECISION MP(MODEMAX*"MODEMAX,4),TEMPO(MODEMAX),

+
+
+

TEMPS(MODEMAX), TEMPM(MODEMAX),
TEMP1,TEMP2,TEMP4,DIFFO,DIFFS, TOLS,
FINAL_MODES(MODEMAX,MODEMAX),DUMMY

Pl =4.D0 *DATAN(1.D0)

C SORTING ALL MATCHED (CALCULATED AND SYSTEM) MODES WITHIN EACH MODE BY

C FREQUENCY

DO 4, U=1,NMODE

P=0

DO 1, K=1,NMODE
{F (MP(K,3) .EQ. U) THEN

P=P+1

TEMPO(P) = MP(X,1)
TEMPS(P) = MP(K,2)
TEMPM(P) = MP(K,4)

ENDIF
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1 CONTINUE
DO 2, I=1,P-1
JMIN = |
DO3,J=141,P
IF (TEMPO(J) .LT. TEMPO(JMIN)) JMIN = J
3  CONTINUE
TEMP1 = TEMPO(j)
TEMP2 = TEMPS()
TEMP4 = TEMPM())
TEMPO(!) = TEMPO(JMIN)
TEMPS(l) = TEMPS(JMIN)
TEMPM(]) = TEMPM(MIN)
TEMPO(JMIN) = TEMP1
TEMPS({UMIN) = TEMP2
TEMPM(JMIN) = TEMP4
2 CONTINUE

DO 5, Y=1,P

R = R+1

MP(R,1)= TEMPO(Y)

MP(R,2)= TEMPS(Y)

MP(R,4)= TEMPM(Y)
5 CONTINUE

4 CONTINUE
C PRINT OUT SORTED MATCH MODES

IF (SCREEN .EQ. 2) THEN
WRITE(2,")
WRITE(2,")
WRITE(2,*) 'ALL MATCHED MODAL PARAMETERS FROM ABOVE RESULTS'
WRITE(2,")
WRITE(2,Y' DAMPING DAMPING’
WRITE(2,*)' FREQUENCY FACTOR  # OF
WRITE(2,") 'MODE  (HZ) MATCHES'
DO 40, KK=1,NMODE
DUMMY = MP(KK,2)/(SQRT(MP(KK,2)**2 +MP(KK,1)**2))
WRITE(2,500) MP(KK,3),MP(KK,1)/(2.D0"Pl), DUMMY,MP(KK,4)
40 CONTINUE
ELSE
WRITE(",")
WRITE(*,")
WRITE(*,*) ‘ALL MATCHED MODAL PARAMETERS FROM ABOVE RESULTS'
WRITE(",")
WRITE(*")' DAMPING DAMPING'
WRITE(**)' FREQUENCY FACTOR # OF'
WRITE("*) 'MODE (HZ) MATCHES'
DO 41, KK=1,NMODE
DUMMY = MP(KK,2)(SQRT(MP(KK,2)"*2 +MP(KK,1}**2))
WRITE(*,500) MP(KK,3),MP(KK,1)/(2.D0*P1),0UMMY ,MP (KK, 4)
41 CONTINUE
ENDIF

500 FORMAT(''F3.1, 'F7.4,F10.6/ ‘F3.1)
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C DETERMINE FINAL MODE RESULTS FOR SORTED RESULTS

DO 6, U=1,MODE
ANS1 =0

ANS2 =0

P=0

C FILL UP WORKING ARRAY OF OMEGA AND SIGMA

DO 7, K=1,NMODE

IF (MP(K,3) .EQ. U) THEN
P=P+1
TEMPO(P) = MP(K,1)
TEMPS(P) = MP(K,2)
TEMPM(P) = MP(K,4)
ENDIF

7 CONTINUE

C CHECK TO SEE IF FIRST MODE

IF (U .EQ. 1) THEN
FINAL_MODES(U,1) = TEMPO(1)
FINAL_MODES(U,2) = TEMPS(1)
GOTO 6

ENDIF

C CHECK TO SEE IF ONLY ONE COMMON MODE RESULT fOR THIS
C MODE SHAPE

IF (P .EQ. 1) THEN
FINAL_MODES(U,1) = TEMPO(P)
FINAL_MODES(U,2) = TEMPS(P)
GOTO 6

C IF MORE THAN ONE COMMON MODE COMPARE TO PREVIOUS EXACT MODES
GATHERED

ELSE
NOM = 0
ANST = 1
DO 9, E=1.P
ANS2 = 0
FREQDUM = TEMPO(E)
IF (DABS(FREQDUM - FREQ(U)*2*Pi) .LE. 10.D0) THEN
DO 11, Y = 1,U-1

DIFFO = 100*(FINAL_MODES(Y,1)-TEMPO(E))/TEMPO(E)

IF (DABS(TEMPS(E)) .LT. 1.D0 .AND. FINAL_MODES(Y,2) .LT. 1.D0
+ ) THEN

DIFFS = FINAL_MODES(Y,2)-TEMPS(E)

TOLS =.25D0
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ELSE
DIFFS = 100.D0*(FINAL_MODES(Y,2)-TEMPS(E)) TEMPS(E)
TOLS = 7.0D0

ENDIF

IF (DABS(DIFFO) .LT. 5.D0 .AND. DABS(DIFFS) .LT. TOLS) THEN
ANS2 = 1
ENDIF

11 CONTINUE
C IF NO MODES MATCH PREVIOUS MODES USE IT AND FIND DOMINANT MATCH

IF(ANS2 .EQ. 1) THEN
NOM = 0
GOTO 9
ANS1=0

ENDIF

IF(TEMPM(E) .GE. NOM) THEN
FINAL_MODES(U,1) = TEMPO(E)
FINAL_MODES(U,2) = TEMPS(E)
NOM = TEMPM(E)

ANS1=0

ENDIF

ENDIF
9 CONTINUE

ENDIF

IF (ANS1 .EQ. 1) THEN
FINAL_MODES(U,1) = TEMPO(E-1)
FINAL_MODES(U,2) = TEMPS(E-1)
ENDIF

6 CONTINUE

C CHECK TO DETERMINE [F ENOUGH POINTS WERE USED AND ALL MODES WERE
C IDENTIFIED

DO 15, T=1,MODE
IF (FINAL_MODES(T,1) .EQ. 0.00 .OR.
+  FINAL_MODES(T,2) .EQ. 0.D0) THEN
FLAG3=1
ENDIF
15 CONTINUE

C DETERMINE IF OTHER MODES THAT MAY EXIST BUT NOT LIMITED TO
DO 12, U=1,MODE

Y=0
DO 13, K=1,NMODE
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IF (MP(K,3) .EQ. U) THEN
DO 14 T=1,MODE
IF (FINAL_MODES(T,1) .NE. 0.D0) THEN
DIFFO = 100.D0*(MP(K, 1)-FINAL_MODES(T, 1))/FINAL_MODES(T. 1)

IF (DABS(FINAL_MODES(T,2)) .LT. 1.D0 .AND. MP(K,2) .LT.
+ 1.DO)THEN
DIFFS = FINAL_MODES(T,2)-MP(K,2)
TOLS =.3D0
ELSE
DIFFS = 100.D0*(MP(K,2)-FINAL_MODES(T,2))/FINAL_MODES(T,2)
TOLS =5.D0
ENDIF
ENDIF

IF (DABS(DIFFOQ) .LT. 2.D0 .AND. U .NE. T _.AND. DABS(DIFFS)
+ LT. TOLS) THEN
Y =Y+1
OTHER_MODES(U,Y) =T
ENDIF
14 CONTINUE
ENDIF
13 CONTINUE
12 CONTINUE

RETURN
END

C END OF MP_SORT SUBROUTINE
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FUNCTION NAMLEN:
THIS FUNCTION DETERMINES THE CHARACTER LENGTH OF THE PROBLEM
NAME ENTERED BY THE USER

oloXoNeNoNQONO NS

INTEGER FUNCTION NAMLEN( FILEN )
CHARACTER*20 FILEN

NAMLEN = 0
DO | =1,30
IF ( FILEN(EI) .NE. **} THEN
NAMLEN = NAMLEN+1
ELSE
GOTO 101
ENDIF
ENDDO
101 RETURN
END
C END OF FUNCTION NAMLEN AND SOURCE CODE
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APPENDIX E: OUTPUT FILE *. TXT FROM MOSE.F AND TO SCREEN
OUTPUT FILE:

ARMA MODEL WITH MODEL OVERSPECIFICATION RESULTS SHOWING MODAL
PARAMETERS CONVERGED UPON IN EACH MODE.

MODE=1 NAT. FREQ= 3.18204 RE-SAMPLE FACTOR= 8 ORIG. SAMPLE FREQ. = 150.2
MODEL 3
MODEL 4
3.3786 .479601 1
MODEL S
3.4779 .338666 1
MODEL 6
3.2668 .349334 0

MODE=2 NAT. FREQ= 4.02851 RE-SAMPLE FACTOR= 7 ORIG. SAMPLE FREQ. = 150.2
MODEL 3

016670 1 Damped Frequency for this mode

5:2696/°.033264 1 and model order.
M?_gﬂ_< Damping factors for this
5.2683 0333481 mode and model order.
MODEL 5
5.0478 -.01 6894@ < If = 1, then these parameters
5.2691 -.033248 have regressively converged.
MODEL 6

5.0474 -.017189 1
5.2688 -.033234 1

MODE=3 NAT. FREQ= 4.05237 RE-SAMPLE FACTOR= 7 ORIG. SAMPLE FREQ. = 150.2
MODEL 3
5.0452 -.016799 1
5.2694 -.033213 1
MODEL 4
5.0470 -.015857 1
5.2685 -.033329 1
MODEL 5
5.0489 -.017099 0
3.3195 .391550 1
5.2688 -.033208 1
MODEL 6
5.0478 -.016974 1
3.2547 .326707 1
5.2688 -.033233 1

MODE=4 NAT. FREQ= 5.55738 RE-SAMPLE FACTOR= 5 ORIG. SAMPLE FREQ. = 150.2

MODEL 3
5.3849 .014703 1
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5.2637 -.0311921
MODEL 4

5.2710 -.031966 1

5.9743 .0443500

512986 .0055101
MODEL 5

5.2714 -.032784 1

5.7542 .038391 1

6.0796 -.008618 1
MODEL 6

6.3306 .175831 1

5.5776 .049054 1

5.0472 -.016760 1

5.2691 -.033224 1

MODE=5 NAT. FREQ= 6.91297 RE-SAMPLE FACTOR= 4 ORIG. SAMPLE FREQ. = 150.2
MODEL 3
5.2402 .038059 0
5.2631 -.036314 1
MODEL 4
5.2683 -.033067 1
6.7402 .208362 1
5.0578 -.017902 1
MODEL 5
6.5493 .207436 1
5.0513 -.017882 1
5.2689 -.033124 1
MODEL 6
6.4773 228936 1
9.3721 .381071 1
5.0511 -.0176111
5.2697 -.033102 1

MODE= 86 NAT.FREQ= 6.97122 RE-SAMPLE FACTOR= 4 ORIG. SAMPLE FREQ. = 150.2
MODEL 3
5.2246 .0319050
5.2680 -.029445 1
MODEL 4
5.2683 -.033376 1
6.5850 .133175 1
5.0450 -.018216 1
MODEL 5
6.4912 .118702 1
5.0463 -.018723 1
5.2682 -.033422 1
MODEL 6
7.2741 .3843620
6.4147 1171471
5.0469 -.018792 1
5.2687 -.033175 1

MODE=7 NAT.FREQ= 7.26663 RE-SAMPLE FACTOR= 4 ORIG. SAMPLE FREQ. = 150.2
MODEL 3

6.2727 110399 1

5.2896 -.039026 1
MODEL 4
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§.1122 -.015335 1
7.5330 .106581 1
5.2540 -.032529 1
MODEL 5
7.2423 1060860
5.0595 -.019073 1
5.2669 -.032638 0
MODEL 6
4.4404 .355047 1
5.2643 -.032839 1
7.3522 .109533 1
5.0699 -.017089 1

MODE=8 NAT. FREQ= 9.40107 RE-SAMPLE FACTOR= 3 ORIG. SAMPLE FREQ. = 150.2
MODEL 3

6.3573 .1219160
5.2755 -.037683 1
10.4524 .003213 1
MODEL 4

5.0757 -.014608 1
5.2665 -.032963 1
10.2978 .022802 1
10.4585 .003877 1
MODEL 5

8.5613 607777 1
5.0682 -.017288 1
5.2682 -.032728 1
10.2217 .016902 1
10.4587 .003698 1
MODEL 6

6.2986 .192675 1
5.0523 -.0173121
10.2221 .019284 1
5.2640 -.033534 1
10.4589 .003746 1

MODE=9 NAT.FREQ= 9.43561 RE-SAMPLE FACTOR= 3 ORIG. SAMPLE FREQ. = 150.2
MODEL 3
6.6417 .1312550
5.2531 -.030888 1
10.2630 .017290 1
MODEL 4
5.1100 -.007635 1
5.2756 -.032086 1
10.1917 .020735 1
10.4104 .008522 1
MODEL 5
5.1053 -.008146 1
5.2740 -.032206 1
10.2092 .021731 1
10.4464 .0D8656 1
MODEL 6
5.2699 -.033664 1
6.7337 .134047 1
5.0460 -.0183320
10.2255 .0197820
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10.4580 .003747 0

ALL MATCHED MODAL PAF{AMETEﬁS FROM ABOVE RESULTS

DAMPING

FREQUENCY FACTOR

MODE (H2)
1.0 3.2668
20 50474
2.0 52688
30 5.0478
3.0 5.2688
40 50472
40 5.2691
40 55778
50 5.0511
50 5.2697
50 6.4773
6.0 50469
6.0 5.2687
6.0 6.4147
70  5.0699
70 52643
70 7.3522
8.0 5.0523
8.0 5.2640
80 10.2221
8.0 10.4589
9.0 5.0460
9.0 5.2699
9.0 6.7337
90 10.2255
9.0 10.4580

NUMBER OF MODES: ¢

LAST POINT OF INPUT: 7
NUMBER OF POINTS READ IN AFTER INPUT:
FREE-STREAM DYANAMIC PRESSURE (0.5"RHO*(MACH*A)"2): 129.44746

DAMPING
# OF
MATCHES
349334 1.0
-.017189 3.0
-.033234 3.0
-.016974 3.0
-.033233 3.0
-.016760 1.0
-.033224 3.0
.049054 2.0
-.017611 2.0
-.033102 3.0
.228936 20
-.018792 3.0
-.033175 3.0
117147 2.0
-.017089 20
-.032838 4.0
109533 2.0
-017312 2.0
-.033534 3.0
.019284 2.0
.003746 3.0
-.018332 5.0
-.033664 3.0
134047 1.0
.018782 3.0
.003747 2.04

FINAL ESTIMATED MODAL PARAMETERS

MODE

COXINOMEOLN =

* OTHER MODES FOUND BUT NOT LIMITED TOO

NATURAL
FREQUENCY

(HZ)

3.18204
4.02851
4.05237
5.55739
6.91297
6.97122
7.26863
9.40107
9.43561

DAMPING
FREQUENCY

(HZ)

3.2668
5.0474
5.2688
5.5776
6.4773
6.4147
7.3522
10.2221
10.4580

DAMPING
FACTOR

.349334
-.017189
-.033233
.048054
.228936
17147
109533
.019284
.003747

All parameters that
regressively converged and
converged with increasing
model order.

Header information for final
results determined from above
data.

——

Final estimated results based
upon above data.

-

OTHER MODES*

NN NDOMDDDDDW
WOWwwWwww

o ©

WARNING: IF ABOVE RESULTS LOOK UNREASONABLE DUE TO IDENTICAL MODES
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USE RESULTS FROM THE ARMA MODELS FOR EACH MODE SHAPE. IF IN THE POST-
FLUTTER REGION AND AN USTABLE MODE IS SEEN FOR SEVERAL MODES THEN THE
SYSTEM IS UNSTABLE AND MODES COULD NOT BE CLEARLY IDENTIFIED.
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