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Abstract: Gizzard Shad (Dorosoma cepedianum) are an important prey species that are 
commonly sampled with gill nets.  However, horizontally-oriented methodologies have 
the potential to produce better Gizzard Shad data with less effort. Before horizontal 
beaming can be used as a sampling gear for Gizzard Shad, accuracy and precision need to 
be examined to determine if this approach provides reliable and consistent data. Further, 
Gizzard Shad-specific relationships between acoustic target strength (TS) and total length 
(TL) should be derived to ensure density estimates are accurate. I tested the accuracy and 
precision of horizontal beaming by sampling known populations of Gizzard Shad in a net 
pen (15-m long x 15-m wide x 4.5-m deep with 6.35-mm square mesh). I found 
horizontal beaming accurately detected changes in density (R2=0.63) with increased 
precision (mean CV of 6% among all trials) than other gears used to sample Gizzard 
Shad. Given that TS changes with fish orientation, I developed an orientation-based TS-
TL equation to increase accuracy of hydroacoustic estimates. A catenary (U-Shape) 
function was best at representing the change in TS at different fish orientations 
(conditional R2 = 0.71 and marginal R2 = 0.67). I also compared echo integration results 
using six different TS-TL equations (2 from this paper and 4 from previous literature) 
using 23 fish aggregations imaged in the field. Equation choice had a significant effect on 
density estimates (P<0.01) indicating care should be taken when selecting TS-TL 
equations for use in hydroacoustic surveys. 
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CHAPTER I 
 

 

LITERATURE REVIEW 

Gizzard Shad (Dorosoma cepedianum) are an important prey species in lakes and reservoirs 

throughout southern and mid-latitudes of the United States, and routinely have the highest density 

and largest biomass of all prey types within these systems (Miranda 1983; Carline et al. 1984; 

Johnson et al. 1988). High age-0 Gizzard Shad density can increase growth rates of piscivorous 

fish, leading to increased winter survival (Stahl et al. 1996; Michaletz 1998; Allen et al. 1999) 

and ultimately larger harvestable populations. In many aquatic systems, piscivore populations are 

supplemented or maintained by stocking (Boxrucker 1986; Terre et al. 1993), providing an 

opportunity to use information about juvenile Gizzard Shad abundance to determine appropriate 

stocking numbers for sportfishes (Donovan et al. 1997). However, this will only work if estimates 

of prey abundance are accurate (Donovan et al. 1997). If Gizzard Shad abundance is over-

estimated, erroneously high stocking rates for predators could result in depleted prey populations 

and poor survival of stocked fish due to density-dependent growth and resultant mortality (Post et 

al. 1997). Conversely, if Gizzard Shad abundance is under estimated, erroneously low stocking 

rates for predators could lead to an over-abundant Gizzard Shad population with a large size-

structure, which can compete with larval sportfish that feed on zooplankton (Roseman et al. 

1996). Further, Gizzard Shad populations with large size-structure typically exhibit low 

reproduction, thus decreasing available prey for juvenile sportfish (Sammons et al. 1998; 

Schramm et al. 1999; Ostrand et al. 2001).  Therefore, accurately estimating age-0 Gizzard Shad 

abundance is critical to effective and sustainable piscivore management. 
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Currently, gill nets are the most common gear used to collect Gizzard Shad population 

characteristics, but hydroacoustics have the potential to produce better data with less effort. 

Gillnet-derived estimates of Gizzard Shad abundance can be time and labor intensive, lack 

precision, and may lack accuracy (Van Den Avyle et al. 1995a; Van Den Avyle et al. 1995b). 

Hydroacoustic sampling has potential to provide precise estimates of pelagic prey fish abundance 

with reduced time and effort (Van Den Avyle et al. 1995a; Taylor et al. 2005; Taylor and 

Maxwell 2007). For example, surface-set gill nets take seven times more person-hours than 

hydroacoustics to collect sufficient samples to detect a 25% difference in mean catch rates of 

Gizzard Shad (includes data processing time for hydroacoustics; Van Den Avyle et al. 1995a). 

Therefore, sampling Gizzard Shad populations with hydroacoustics would result in reduced time 

and effort to acquire Gizzard shad population characteristics (Van Den Avyle et al. 1995a; 

Dennerline et al. 2012).   

Traditional hydroacoustic sampling procedures utilize a transducer oriented vertically, beaming 

straight down or at a slight angle (Vondracek and Degan 1995; Stanley and Wilson 2000; 

Boswell et al. 2010), but this approach can be ineffective in shallow water for several reasons.  

First, data collected in the nearfield of the transducer is inaccurate and needs to be omitted 

(Simmonds and MacLennan 2008), and this can constitute a large proportion of the water column 

in shallow systems (e.g. 1-3 m deep).  Second, fish may avoid the boat when they are close 

enough to detect it (Draštík and Kubečka 2005; Godlewska et al. 2009).  Because vertical 

beaming samples water beneath the vessel, boat avoidance behavior could result in fish vacating 

the sampled volume of water and result in consistently biased observations. Third, the small 

portion of the water column that is far enough from the boat to be out of the near field and 

prevent boat avoidance behavior by fish is even further reduced by the  poor differentiation of 

fish from substrate when they are located near bottom (Ona and Mitson 1996; Thorne 1998; 

Totland et al. 2009). The net result of all these factors is that only a small proportion of the water 
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column is available for sampling fish with vertically-oriented echosounders, and very little data 

can be collected from this approach, especially at shallow depths near the boat (where nearfield 

and boat avoidance are issues). Further, reduced sample volume combined with the non-normal 

distribution of fish can result in highly variable estimates (Bodine et al. 2011). Therefore, Gizzard 

Shad, which are typically found near the surface, would not be sampled effectively using vertical 

beaming, but may be sampled effectively with horizontally-oriented echosounders (Miller 1960; 

Kubecka et al. 1994; Kubecka and Wittingerova 1998; Knudsen and Sægrov 2002; Frouzova et 

al. 2005; Boswell et al. 2007; Godlewska et al. 2012).  Horizontally-oriented echosounders 

consist of directing the acoustic beam horizontally or slightly downward from horizontal 

(Kubecka and Wittingerova 1998; Thorne 1998; Yule 2000; Knudsen and Sægrov 2002; Boswell 

et al. 2007; Boswell and Wilson 2008; Godlewska et al. 2012). Because the beam is oriented 

horizontally data can be collected over large distances on the horizontal plane increasing the 

volume of water sampled (Thorne 1998). Also, because the transducer is typically lowered to 

approximately 1 m in depth, near surface fishes are also sampled efficiently when beaming 

horizontally (Kubecka and Wittingerova 1998; Thorne 1998; Knudsen and Sægrov 2002). 

Therefore, horizontal beaming could be an alternative to current sampling methods in shallow 

waterbodies while vertical beaming would be ineffective. 

Before a horizontal hydroacoustic sampling protocol for Gizzard Shad can be developed, gear 

accuracy and precision must be addressed. Without accuracy and precision estimates, conclusions 

from data collected with horizontal beaming may be incorrect. Previous literature has addressed 

the sampling precision (precision associated with natural variation), but do not address the 

experimental precision (variability associated with measurement error of the gear) or accuracy of 

vertical hydroacoustic sampling (Van Den Avyle et al. 1995a; Gangl and Whaley 2004). There is 

limited literature addressing experimental precision or accuracy of horizontal hydroacoustics and 

none for Gizzard shad (Yule 2000).  Therefore, measures of gear accuracy and precision are 
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needed to determine if horizontally-oriented echosounders provide quality data to quantify 

Gizzard Shad populations. 

One limitation of horizontally-oriented approaches is that the orientation of the insonified fish can 

have an effect on the measured target strength (Boswell and Wilson 2008; Rodríguez-Sánchez et 

al. 2015). Currently, when analyzing acoustic data collected from horizontally-oriented 

echosounders, ensonified fish are assumed to be either randomly oriented (Frouzova et al. 2005) 

or perpendicular (Lilja et al. 2000; Boswell and Wilson 2008) to the acoustic axis and an average 

or maximum TS-TL equation is used. There has been one attempt to model the change in TS as 

fish orientation changes, finding a cos3 function to best describe to change in TS (Lilja et al. 

2000). By neglecting to test the fit of non-cosx functions, the possibility of different functions 

providing a better fit was ignored. Before developing an orientation-based equation for Gizzard 

Shad, different function shapes should be compared to ensure the curve shape that best describes 

the change in TS is selected. 

Managers need precise and accurate Gizzard Shad data to better manage piscivore populations. 

Horizontally-oriented echosounders have potential to be a superior sampling method for 

collecting data describing the abundance and spatial variation on Gizzard Shad, but more 

information is needed before it can be implemented as a sampling gear. Accuracy and precision 

data are needed to determine if horizontally-oriented echosounders provide reliable and consistent 

data. Data from an orientation-based TS-TL equation could be used to provide more accurate 

information used in hydroacoustic analyses resulting in increased accuracy of density and 

biomass estimates. In this study I estimated the experimental precision and accuracy of 

horizontally-oriented echosounders and developed an orientation-based TS-TL equation for 

Gizzard Shad that can be used in the implementation of a sampling protocol. 
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CHAPTER II 
 

 

ACCURACY AND PRECISION OF HYDROACOUSTIC ESTIMATES OF GIZZARD SHAD 

ABUNDANCE USING HORIZONTAL BEAMING 

Abstract 

Gizzard Shad (Dorosoma cepedianum) are an important prey species in lakes and reservoirs 

throughout much of the United States. Gizzard Shad abundance and size-structure data are often 

used when making management decisions for piscivorous fish species (i.e. stocking rates 

determined by juvenile Gizzard Shad abundance). Currently, gill nets are the most common gear 

used to collect Gizzard Shad population characteristics, but this gear can be time and labor 

intensive, lacks precision, and may lack accuracy. Horizontally-oriented echosounders may be a 

better alternative, but accuracy and precision must be measured to determine if this sampling 

technique produces reliable data. I released Gizzard Shad into a net pen (15-m long x 15-m wide 

x 4.5-m deep with 6.35-mm square mesh) to produce several different densities of fish. Data were 

collected using a Simrad EK60 120 kHz split-beam echosounder operating at 10 Hz using five 

replicate passes per fish-density treatment. Target counting and echo integration were used to 

estimate fish density (fish/m3) from each sampling pass. Mean density estimates were then 

compared to known densities using linear mixed effects model and a CV was calculated for each 

trial from the five sampling passes. I found that the slope was not significantly different from one 

(F1,13=62.99, P=0.42) but the intercept was significantly greater than zero (t=2.89, d.f.=88, 

P<0.01) indicating horizontally-oriented echosounders can accurately detect changes in Gizzard  
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Shad density, but may overestimate actual density. Mean CV (6%) from echosounder samples 

was lower than CV reported for other gears when sampling Gizzard Shad. Horizontally-oriented 

echosounders estimated relative Gizzard Shad density with high accuracy and precision 

indicating data collected with this method would be reliable when making management decisions. 

Introduction 

Gizzard Shad (Dorosoma cepedianum) are an important prey species in lakes and reservoirs 

throughout southern and mid-latitudes of the United States, and routinely have the highest density 

and largest biomass of all prey types within these systems (Miranda 1983; Carline et al. 1984; 

Johnson et al. 1988). When abundant, age-0 Gizzard Shad density can increase growth rates and 

over-winter survival of piscivorous fish (Stahl et al. 1996; Michaletz 1998; Allen et al. 1999). 

However, when age-0 Gizzard Shad are not abundant, piscivore communities may have limited 

population size and poor growth (Evans et al. 2014). In many aquatic systems, piscivore 

populations are supplemented or maintained through stocking efforts to improve recreational 

fishing (Boxrucker 1986; Terre et al. 1993), providing an opportunity to use information about 

juvenile Gizzard Shad abundance to determine appropriate stocking numbers for sportfishes (i.e. 

saugeye and hybrid striped bass; Donovan et al. 1997). However, this opportunity relies on 

accurate estimates of prey abundance (Donovan et al. 1997). If Gizzard Shad abundance is over-

estimated, erroneously high stocking rates for predators could result, depleting prey populations 

and lowering survival of stocked fish or naturally-reproducing piscivores due to density-

dependent growth and resultant mortality (Post et al. 1997). Conversely, if Gizzard Shad 

abundance is under estimated, erroneously-low stocking rates for predators could lead to an over-

abundant Gizzard Shad population with large size structure, which can compete with juvenile 

sportfish that feed on zooplankton (Roseman et al. 1996). Further, Gizzard Shad populations with 

large size-structure typically exhibit low recruitment, thus decreasing available prey for juvenile 

sportfish (Sammons et al. 1998; Schramm et al. 1999; Ostrand et al. 2001).  Therefore, accurately 
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estimating age-0 Gizzard Shad abundance is critical to effective and sustainable piscivore 

management. 

Currently, gill nets are the most common gear used to collect Gizzard Shad population 

characteristics, but hydroacoustics have the potential to produce better data with less effort at the 

same level of precision (Van Den Avyle et al. 1995b). Gillnet-derived estimates of Gizzard Shad 

abundance can be time and labor intensive, lack precision, and may lack accuracy (Van Den 

Avyle et al. 1995a; Van Den Avyle et al. 1995b). Hydroacoustic sampling has potential to 

provide precise estimates of pelagic prey fish abundance with less time and effort (Van Den 

Avyle et al. 1995a; Taylor et al. 2005; Taylor and Maxwell 2007). For example, surface-set gill 

nets take seven times more person-hours than hydroacoustics to collect sufficient samples to 

detect a 25% difference in mean catch rates of Gizzard Shad  (includes data processing time for 

hydroacoustic sampling; Van Den Avyle et al. 1995a). It takes 30-40 net nights to detect a 25% 

difference in Gizzard Shad abundance using gill nets (Wilde 1995), but only 14-25 5-minute 

hydroacoustic transects (14-25 total person-hours for sampling and processing; Van Den Avyle et 

al. 1995a). Therefore, sampling Gizzard Shad populations with hydroacoustics would result in 

reduced time and effort to acquire Gizzard shad population characteristics (Van Den Avyle et al. 

1995a; Dennerline et al. 2012).   

Traditional hydroacoustic sampling procedures utilize a transducer oriented vertically, beaming 

straight down or at a slight angle (Vondracek and Degan 1995; Stanley and Wilson 2000; 

Boswell et al. 2010), which can be ineffective in shallow water due to reduced sample volume 

(nearfield exclusion and bottom differentiation) and fish behavior (boat avoidance or avoidance 

of hypoxic conditions in the hypolimnion; Simmonds and MacLennan 2008; Godlewska et al. 

2009; Roberts et al. 2009). As a result, only a small proportion of the water column is available 

for sampling fish with vertical hydroacoustics in shallow systems. Further, reduced sample 

volume combined with a non-homogenous distribution of fish (i.e., patchy distributions) can 



12 
 

result in highly variable estimates (Bodine et al. 2011). Gizzard Shad are typically found near the 

surface and would not be sampled effectively using vertical beaming, but may be sampled 

effectively with horizontally-oriented echosounders (Miller 1960).  

There is limited literature addressing precision of horizontal beaming (Yule 2000), but literature 

measuring precision of vertical beaming may provide insight. In comparative studies, vertical 

beaming had higher precision than seining, trawling, rotenone, surface and bottom-set gill nets, 

electrofishing, (Van Den Avyle et al. 1995a; Achleitner et al. 2012) drop traps (Nellbring 1985), 

and experimental gill nets (Hansson 1984). Horizontal beaming may have similar precision to 

vertical beaming, but because horizontal beaming samples near-surface fish, surface disturbances 

may have an increased effect on precision (Gangl and Whaley 2004; Totland et al. 2009). Further, 

spatial heterogeneity in fish abundance may differ for near-surface fish and fish inhabiting deeper 

locations, resulting in variation in precision estimated between horizontal and vertical 

approaches.  As such, further research is needed to quantify precision for data collected with 

horizontal echosounders.  Like precision, accuracy of horizontal echosounders have also not been 

evaluated.  Comparisons between Horizontally-oriented echosounder estimates and gillnets 

(Kubecka et al. 1994; Boswell et al. 2007; Tátrai et al. 2008), purse seining (Yule 2000), and push 

trawls (Boswell et al. 2007) identified differences in relative abundance, but these studies could 

not confirm which, if any, gear was more accurate. The accuracy of fisheries sampling gears has 

been difficult to estimate because we rarely know the true population characteristics for fish 

species.  Knowledge of the experimental accuracy and precision of horizontally-oriented 

echosounders would determine if Gizzard Shad population data collected with this gear provides 

better data for management decision making. 

Gizzard Shad population characteristics are often considered when making sportfish management 

decisions, but current sampling techniques are inefficient and may be unreliable. Horizontal 

beaming has real promise as a method to collect precise and accurate data with less effort than 



13 
 

current sampling methods, but research is needed to confirm this (Van Den Avyle et al. 1995a). I 

propose to test the precision and accuracy of hydroacoustic estimates by sampling known 

populations of Gizzard Shad.  

Methods 

Gizzard Shad of various sizes (60-300 mm TL; variable numbers) were collected from Lake Carl 

Blackwell, Stillwater, OK, daily, using boat electrofishing, counted, and released into a nylon net 

pen (15-m long x 15-m wide x 4.5-m deep with 6.35-mm square mesh) located within the lake. 

Fish were given >30 minutes to acclimate based on observations that fish behavior inside the pen 

was similar to unconstrained fish within the lake after this period of time (observations made with 

an ARIS® Explorer 1800 imaging SONAR operating at 1.8 MHz). The pen remained in the water 

for no more than four consecutive days and fish were added to increase total density between 

trials. The number of fish added was not predetermined, but I ensured that a wide range of fish 

abundances were sampled, typically with some low- and some high-density trials from each net 

set (37-526 individuals; Table 1). For analyses, known abundance was divided by the volume of 

the net (1,012.5 m3) to acquire a density. A total of 22 trials (8 total net sets) with different fish 

densities were conducted. 

To estimate handling mortality, dead fish (5-25 individuals per net set) that were observed were 

collected from the net daily and counted. At the end of each 3- or 4-day net set, the net was 

retrieved and remaining dead fish (i.e., fish that did not float) were also counted. All fish removed 

were enumerated and measured (mm TL).  Density (0.04-0.52 fish/m3) estimates for each trial 

were adjusted assuming a constant initial mortality rate for all fish introduced through the week 

(i.e., total mortalities were attributed proportionally based on number of fish added between 

recordings). 
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Hydroacoustic data were collected simultaneously using a Simrad® EK60 120 kHz echosounder 

and an ARIS® Explorer 1800 imaging SONAR equipped with an 8o condensing lens operating at 

1.8 MHz. Echosounder data was collected at 10 Hz and a threshold of -70 dB. Transducer 

properties can be found in Table 2. Imaging SONAR data were used to ensure fish had natural 

behaviors and echosounder transducer was at the proper angle, but were not used in analyses. 

Both transducers were mounted on a bracket that was lowered to a depth of 1m within one side of 

the net pen facing across the pen (Figure 1). The split-beam transducer was angled 3.5o 

downward from horizontal to reduce surface noise and maximize sample volume. Recordings 

were collected by pulling the boat along one side of the net five times consecutively with a mean 

speed of 0.1 m/s. Trials occurred at night because shad species become less aggregated and 

further from the net walls, making echo-counting possible (Schael et al. 1995). Daytime 

observations using the imaging SONAR indicated shad were attracted to plankton growing on the 

net, making separation of fish targets from pen edges difficult. Trials were conducted in late 

summer when water temperatures ranged from 23o-30o C with a mean of 26.8o C (SD=1.96) 

during trials. 

Hydroacoustic analyses were completed using Echoview® 8.1. A target-detection algorithm 

(detection parameters are in Table 2) was used to detect fish targets that were then manually 

converted to fish tracks (consisting of at least five targets). When aggregations of fish occurred, 

an echo-integration technique was used to estimate the number of fish within the aggregation 

(volume backscattering strength of each aggregation was scaled by mean TS of individual fish 

tracks from the same sampling pass to estimate the number of fish in each aggregation), which 

were then added to the total abundance (Boswell et al. 2007; Busch and Mehner 2009). The net 

pen returned a strong, consistent echo approximately 15m from the transducer and at closer 

distances when approaching perpendicular sides. Any potential targets that were not clearly 

differentiable from the net pen echo, were not included. Estimated densities (from hydroacoustic 
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analysis) were compared to known densities (based on number of fish in the pen) and a 

coefficient of variation was calculated from the five replicates of each trial. 

A linear mixed effects model was used to compare estimated fish densities to known densities 

with net set and trial as random effects in program R (lme; Pinheiro et al. 2017). An ANOVA was 

used to test for differences in density between the five replicate recordings to detect any influence 

of previous recordings on subsequent recordings (e.g., boat avoidance) with trial as a random 

effect (ANOVA; R Core Team 2016). All analyses were completed using Program R (R Core 

Team 2016) and significance was evaluated with α < 0.05.  Coefficients of variation of the mean 

(CV; SE/Mean from each set of five replicate measurements at each fish density) were tested to 

determine if CV was consistent across known fish densities with simple linear regression (lm; R 

Core Team 2016). 

Results 

Estimated density increased as actual density increased with a slope of 0.89 and intercept of 0.13 

(Figure 2). The slope was not significantly different from one (F1,13=62.99, P=0.42), but the 

intercept was significantly greater than zero (t=2.89, d.f. = 88, P<0.01). There were no significant 

differences between the five measurements in each trial (F4,105 = 0.38, P=0.82). The mean CV was 

6.8 % and ranged from 2-14% across all densities. There was no apparent trend for CV as density 

changed (F1,20= 0.02, P=0.88, Figure 3).  

Discussion 

My results suggest hydroacoustic sampling can accurately detect differences in Gizzard Shad 

density (i.e., slope of known abundance and estimated abundance was not significantly different 

from one), but may overestimate at all densities (intercept was significantly greater than zero). 

Over-estimation is expected because Gizzard Shad often aggregate near the surface (Miller 1960; 
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Bodola 1966; Becker 1983), suggesting there was a greater density (fish/m3) of fish in the portion 

of the net pen that was sampled by the acoustic beam. This phenomenon should be minimized in 

shallow water and when sampling distance isn’t artificially restricted because a larger portion of 

the water column will be sampled, including deeper areas with lower abundances of fish. Over-

estimation could also result from boat avoidance (Draštík and Kubečka 2005), increasing the 

number of fish in the far-field of the acoustic beam. However, boat avoidance seems unlikely 

because fish tracks were detected both near and far from the transducer and no difference in 

density was detected among the five repeated measurements for each trial (i.e., if boat avoidance 

occurred, an increase in abundance at the opposite end would have been observed).  

Gear accuracy in lakes and reservoirs has been difficult to estimate because we often do not know 

true abundance; therefore, limited literature is available investigating accuracy with known 

populations (Fujimori et al. 1996; Santucci Jr et al. 1999). However, research without known fish 

densities has determined that accuracy of hydroacoustic estimates can be affected by uncertainty 

in standard sphere calibration, TS estimates, species delineation, and fish behavior (Demer 1994; 

Simmonds and MacLennan 2008), spatial sampling error (Simmonds and MacLennan 2008), and 

analysis techniques and parameters (Rose et al. 2000; O'Driscoll 2003; Simmonds and 

MacLennan 2008) among other factors. Without knowing the true density of fish in the sample 

area, a true accuracy cannot be determined. Controlling the number of individuals can be difficult 

to accomplish on a large scale, but can be addressed on a smaller scale, as I did with a large net 

pen.  

I found horizontally-oriented echosounder density also has a high degree of precision compared 

to other gears used to sample Gizzard Shad. In a multiple-gear evaluation, the precision of 

various gears when sampling shad species (Dorosoma spp.) ranged from 11-61% (Van Den 

Avyle et al. 1995a). These values are all higher than my mean CV (6%) and the lowest CV 

estimate of many of these gears is higher than my highest measured CV from any individual trial 
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(14%). No prior studies have compared precision of Gizzard Shad abundance estimates from 

horizontally-oriented echosounders with other gears, but horizontally-oriented echosounders 

abundance estimates have less variation than purse seining for salmonids (Yule 2000) and 

combining data from split beam echosounders with DIDSON data increases precision of 

anadromous fish abundance estimates (Warren 2006; Hughes 2012). My results are, therefore, 

consistent with other literature suggesting that hydroacoustics may produce more precise data 

than other gears that measure fish abundance.  

Some aspects of study design affect precision, so it is possible that precision will differ between 

different sampling applications with the same gear (Clarke and Green 1988; Kritzer et al. 2001; 

Snijders 2005; Kowalewski et al. 2015).  For hydroacoustic sampling, samples from small spatial 

scales (as done in my study) leads to greater precision, but short transect lengths and limited 

replication (also characteristic of my study) can lead to reduced precision estimates (Kritzer et al. 

2001; Kowalewski et al. 2015). Because my results suggest that horizontal beaming has a high 

precision despite low replication and small transect length, there is potential to further improve 

precision with increased sample size (Kritzer et al. 2001) and duration (Vondracek and Degan 

1995; Kowalewski et al. 2015). However, reduced spatial heterogeneity in my study, caused by 

confining fish in a net pen, may have reduced measured variance and consequently artificially 

increased my precision estimate (Baroudy and Elliott 1993). Additional research should be 

conducted to evaluate the precision of horizontal echosounders when sampling Gizzard Shad at 

larger spatial scales (i.e., whole-lake sampling), but my study provides an estimate of precision at 

smaller scales (i.e. within a transect or group of transects in a similar area), and suggests this 

approach may generate estimates with increased precision relative to other sampling methods. 

My results suggest horizontal echosounders should be considered for sampling Gizzard Shad in 

shallow reservoirs because they produce accurate relative abundance data, have a high degree of 

precision at the scale tested, and efficiently sample near-surface fish that vertically-oriented 
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echosounders would not. Hydroacoustic sampling (including data processing time) typically 

requires less person-hours than other common Gizzard Shad sampling methods at a given level of 

precision (Van Den Avyle et al. 1995a). The use of hydroacoustic sampling techniques to collect 

Gizzard Shad population data could therefore increase the accuracy and precision of biomass 

estimates in shallow reservoirs which would improve overall fisheries management.  
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Tables 

Table 1. Trial number, net set, abundance and density for each net pen (15-m long x 15-m wide x 
4.5-m deep) trial to evaluate Gizzard Shad (Dorosoma cepedianum) density estimation with a 
horizontally-oriented echosounder. 

Trial Net Set Abundance Density (fish/m3) 
1 1 308 0.30 
2 1 352 0.35 
3 2 43 0.04 
4 2 104 0.10 
5 2 154 0.15 
6 2 204 0.20 
7 2 335 0.33 
8 2 385 0.38 
9 3 72 0.07 
10 3 387 0.38 
11 3 461 0.46 
12 3 468 0.46 
13 3 526 0.52 
14 4 37 0.04 
15 4 333 0.33 
16 5 299 0.30 
17 5 384 0.38 
18 6 66 0.07 
19 6 174 0.17 
20 6 229 0.23 
21 7 139 0.14 
22 8 90 0.09 
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Table 2. Echosounder, transducer and analysis parameters used during data collection and 
analyses for net pen trials with Gizzard Shad. 

  System parameters Value 
SIMRAD EK60 split-beam echosounder 

 Operating Frequency 120 kHz 
Pulse Duration 0.256 ms 
Pulse rate 10 Hz 

Transducer parameters 
 Two-way beam angle -20.7 

Collection Threshold -70 dB 
Beam width 7⁰ 
Nearfield range 2 m 

Analysis Threshold 
 Target strength -65 dB 

Single target detector 
 Pulse length determination level 6 dB 

Minimum normalized pulse length 0.5 
maximum normalized pulse length 1.8 
Maximum beam compensation 6 dB 

Maximum standard deviation of 
 Minor axis angle 1.0⁰ 

major-axis angles 1.0⁰ 
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Figures 

 

Figure 1. Plan-view diagram depicting the net pen used to test the accuracy and precision of 
Gizzard Shad abundance using hydroacoustic sampling. 
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Figure 2. Regression line (dashed line) depicting the change in estimated density (fish/m3) at 
different known fish densities measured with a horizontally-oriented echosounder. Shaded area 
represents the 95% confidence interval of the slope; solid line is the 1: 1 slope line that would 
indicate complete accuracy. 
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Figure 3. Coefficient of variation (SE/mean) for hydroacoustic density estimates measured at 
different known Gizzard Shad densities in net pen trials. Coefficients of variation are based on 5 
replicate passes of the net with the same fish assemblage. 
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CHAPTER III 
 

 

HORIZONTAL-ASPECT TARGET-STRENGTH EQUATIONS FOR GIZZARD SHAD 

DOROSOMA CEPEDIANUM: INCORPORATING FISH ORIENTATION INTO TARGET 

STRENGTH-TOTAL LENGTH EQUATIONS 

Abstract 

Horizontally-oriented echosounders have become more common for sampling pelagic prey 

species in shallow waterbodies, where vertical beaming can be ineffective. Gizzard Shad 

(Dorosoma cepedianum) are an important pelagic prey species in shallow reservoirs. To properly 

sample Gizzard Shad with horizontally-oriented echosounders, target strength to total length and 

relationship must be developed to acquire reliable density data. However, when sampling with 

horizontal beaming, measured TS depends on fish orientation. Currently, a target strength (TS)-

total length (TL) equation that is based on TS data from individual fish measured at all 

orientations is used to convert between TL and measured TS. By assuming all fish encountered in 

a survey are randomly oriented, each orientation has equal probability of occurring and a mean 

TS would be representative of all individuals sampled. However, fish may not be randomly 

oriented for a variety of reasons. Therefore, I developed an orientation-based equation to increase 

the accuracy of size estimates from direct TS measurements. Target strength measurements were 

collected from euthanized Gizzard Shad, in a tank, at orientations from 0-180 degrees (0 and 180 

being perpendicular to acoustic beam and 90o parallel with head facing the transducer) in five-

degree increments. I derived orientation-specific and non-orientation-based TS-TL equations for  
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Gizzard Shad. A catenary (U-Shape) function best represented the change in TS for at different 

fish orientations and had a conditional R2 = 0.71 and marginal R2 = 0.67.  My orientation-based 

equation can be used to acquire more accurate Gizzard Shad biomass estimates when orientation 

information is available. I also compared density estimates from previously published, non-

orientation-based TS-TLMean equations to determine if equation choice had a significant effect on 

density estimates from fish aggregations. Equation choice had a significant effect on the resulting 

density estimates from in individual schools (P<0.01), indicating species-specific equations 

provide greater accuracy.  

Introduction 

In recent years, the use of horizontally-oriented echosounders for sampling pelagic prey species 

has become more common in shallow waterbodies where vertical beaming can be ineffective 

(Simmonds and MacLennan 2008). Vertically-oriented techniques are ineffective in shallow (e.g., 

<10 m) water because they do not sample near-surface or near-substrate areas effectively, 

resulting in a small volume of water sampled (Thorne 1998; Simmonds and MacLennan 2008). 

Hypoxic regions caused by thermal stratification can further reduce the portion of the water 

column available as fish habitat for ensonification (Roberts et al. 2009). The net result is reduced 

ability to collect meaningful hydroacoustic data in shallow systems. However, horizontally-

oriented echosounders shows promise as a potential sampling gear for pelagic prey species in 

shallow waterbodies because they can efficiently collect large amounts of data and efficiently 

sample near-surface fish (Thorne 1998). 

 Gizzard Shad (Dorosoma cepedianum) are an important pelagic prey species in shallow 

reservoirs, so it is important for managers to have accurate Gizzard Shad population data to 

sustainably manage these systems (Miranda 1983; Carline et al. 1984; Johnson et al. 1988). 

Currently, gill nets are typically used to collect Gizzard Shad abundance and size structure data 

for use in fisheries management, a sampling method that is time and labor intensive and imprecise  
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(Van Den Avyle et al. 1995; Wilde 1995). Horizontally-oriented echosounders may be an 

alternative to gill nets for Gizzard Shad data collection.  

Target strength is an acoustic measurement that is used as a size proxy (i.e. larger TS indicates 

more reflected sound energy, suggesting a larger scattering surface). When sampling fish with 

hydroacoustics, target strength (TS)-total length (TL) and target strength-weight (TS-W) 

equations are used to estimate fish length and weight from TS data. These TS-TL and TS-W 

equations can have species-specific relationships (Lilja et al. 2000; Frouzova et al. 2005). Use of 

appropriate mean TS values is imperative to acquiring accurate density and biomass estimates 

(Traynor et al. 1990). When species-specific TS-TL equations are unavailable, equations derived 

from similar species or multiple species are used (e.g., Love 1971), which can at times result in 

inaccurate biomass and density estimates (Traynor et al. 1990; Frouzova et al. 2005). Therefore, 

Gizzard Shad-specific TS-TL and TS-W equations are important for acquiring reliable population 

characteristics from horizontally-oriented hydroacoustic data. 

Equations used to convert between TS and TL or weight are often used in echo-integration to 

acquire density and biomass data from fish aggregations that are too dense to detect individual 

targets. There are two typical outputs when analyzing hydroacoustic data; TS and volume 

backscattering strength (Sv). Target strength is a measurement describing fish length (Simmonds 

and MacLennan 2008) whereas volume backscattering strength is an acoustic variable that is an 

integration of scattered energy from multiple targets over a set volume of water (Maclennan et al. 

2002) and is used as a biomass proxy (Simmonds and MacLennan 2008). By scaling Sv by mean 

TS, a density estimate is calculated. Echo-integration derived density estimates are combined 

with data from individual targets to acquire total biomass and density estimates for a sampled 

waterbody. 
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When sampling with horizontally-oriented echosounders, there is a change in measured target 

strength (TS) as fish orientation changes (Boswell and Wilson 2008; Rodríguez-Sánchez et al. 

2015).  For fish that have air bladders, the air bladder reflects 90-95% of the total energy reflected 

by an individual.  Air bladders have an elongate shape that has a smaller ensonified cross-

sectional area when the fish faces the transducer than when it is oriented perpendicular to the 

main axis (Foote 1980; Kubecka and Duncan 1998a). Fish orientation is less problematic with 

vertical beaming because the dorsal surfaces of sampled fish are almost always ensonified (hence 

the long axis of the air bladder), unless data are collected during periods of vertical migration 

(Harden-Jones et al. 1981). Currently, when sampling with horizontally-oriented echosounders, 

an average TS-TL or TS-W equation is used, where TS is averaged from measurements at all fish 

orientations (Frouzova et al. 2005). As long as fish orientation is random, a mean TS-TL equation 

is acceptable and produces minimal bias (Lilja et al. 2000; Boswell et al. 2008). However, fish 

may not be randomly oriented due to boat avoidance, fish facing into current, migratory 

movements or schooling patterns (Weihs 1973; Lilja 2004; Draštík and Kubečka 2005). 

Therefore, incorporating fish orientation into TS-TL equations could increase accuracy of 

hydroacoustic data analyses in cases where the assumption of random orientation is not met. 

Kubecka (1994) proposed a model to describe the change of TS with orientation, but the equation 

only considered a single curve shape and did not account for fish length (Kubečka 1994).  Lilja et 

al. (2000) added fish length to the aspect equation proposed by Kubecka (1994) and derived 

coefficients for Atlantic Salmon (Salmo salar), Pike (Esox Lucius) and Whitefish (Coregonus 

lavaretus). However, more potential relationships between measured TS and fish orientation need 

to be tested before Kubecka (1994)’s equation can be widely used.  

There are multiple ways target orientation could be estimated. Early attempts to estimate 

orientation involved tracking targets on successive pings and recording the largest TS, thus 

improving chances the fish was perpendicular to the transducer (Ehrenberg and Torkelson 1996). 
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More recent approaches infer fish orientation from track trajectory as measured by position 

within the sound cone of split-beam transducers (Rodríguez-Sánchez et al. 2015). There is 

potential to further refine horizontal data by combining split-beam transducers with multi-beam 

imaging systems (i.e. ARIS® or DIDSON®) that can measure fish orientation directly.  With these 

methods to detect fish orientation, TS equations can be developed that more accurately identify 

fish size from TS measured at any angle.   

Horizontally-oriented echosounders may provide more reliable data for Gizzard Shad population 

characteristics than current sampling methods, but only if fish sizes can be accurately estimated 

from TS. Development of species-specific TS-TL and TS-W equations can increase accuracy of 

biomass estimates, but no horizontal TS-TL or TS-W equation exists for Gizzard Shad. 

Incorporating target orientation may further increase accuracy of hydroacoustic biomass estimates 

when orientation information is available. My goal is to develop TS-TL and TS-W equations for 

Gizzard Shad and then compare my non-orientation-based equations with previously described 

equations for other species to determine if there was a difference in density estimates among 

equations when using echo-integration to estimate densities from individual schools.  

Methods 

Target strength measurements were collected in a 5.5-m diameter tank, filled to 1-m depth, inside 

the Fisheries and Aquatic Ecology Wet Laboratory (FAEWL) at Oklahoma State University. 

Gizzard Shad were collected from nearby Lake Carl Blackwell using boat electrofishing and were 

transported live in an aerated live tank to the FAEWL. Fish were transferred to an aerated holding 

tank with a mean water temperature of 22o C (SD =1.65, range 20-25 o C) and allowed to 

acclimate for at least 24 h before experimentation.  

Hydroacoustic data were collected with a Simrad® EK60 split-beam echosounder (See Table 3 for 

parameter settings) operating at 120 kHz with a 7o beam angle. The transducer was mounted 
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along the tank wall facing horizontally across the tank at 0.5-m in depth (Figure 4). A pulse 

duration of 0.256 ms was chosen based on the Great Lakes freshwater sampling protocol (Parker-

Stetter et al. 2009). The echosounder was calibrated using a 38.1-mm diameter tungsten-carbide 

calibration sphere following standard sphere methodology (Foote 1987a). A threshold of -70 dB 

was used, which was more than adequate to eliminate background noise and echoes from the 

monofilament line. Measured TS was back-transformed to backscattering cross-section (𝛔𝛔bs) 

before all computations (σ𝑏𝑏𝑏𝑏 =  10(𝑇𝑇𝑇𝑇/10)). 

Forty-seven Gizzard Shad (60-321 mm TL) were euthanized individually prior to each trial using 

an overdose of Aqui-S 20E and tethered upright, one at a time, to a rotating carousel 4 m from the 

transducer at a depth of 0.5 m using four strands of 6 lb. monofilament fishing line (Figure 4). 

The distance of four meters was more than two times the nearfield of the transducer. Individual 

wet weights (g) and total lengths (mm) were recorded for individuals prior to tethering. Once 

tethered, fish were positioned at least 1 m from the back wall. The back wall of the tank which 

was more than twice the pulse length of 0.37 m, had a much stronger TS than tethered fish (≥ -10 

dB), and did not interfere with TS measurements allowing for clear separation of the target from 

the back wall. Underneath the carousel, a horizontal monofilament line was stretched tight along 

the tank bottom between two cinder blocks that were outside the acoustic beam. Two vertical 

pieces of monofilament line were used to suspend fish between the carousel and the horizontal 

line at the tank bottom.  One piece of monofilament was threaded through flesh at the dorsal 

surface of the fish and attached to the carousel, the other was threaded through the ventral surface 

of the fish and attached to the horizontal line at the tank bottom.  Two separate monofilament 

lines were then threaded through flesh at the mouth and caudle peduncle and connected to the 

carousel to maintain fish at the desired orientation. All monofilament lines were attached to the 

fish in a way that did not puncture the air bladder (Figure 4). The rotating carousel was built 

using a 72-tooth rotating sprocket, allowing for rotation in 5 degree increments. Tethered fish 
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were centered in the acoustic beam prior to recording. Data were collected at 4 Hz for at least 1 

min at each orientation from 0-180 degrees in 5-degree increments (0 and 180 being 

perpendicular to acoustic beam and 90⁰ being parallel with head facing the transducer) resulting 

in 36 positions and at least 8,600 TS measurements for each fish.  

I derived orientation- and non-orientation-based TS-TL equations and a TS-W equation for 

Gizzard Shad using the data recorded from tethered fish. Non-orientation-based TS-TL equations 

were of the form 𝑎𝑎 ∗ log10 𝑇𝑇𝑇𝑇 + 𝑏𝑏 and a variant of the equation with coefficient a fixed at 20, as 

proposed by Foote (1987b). These equations were fit for mean (TSMean), maximum (TSLateral) and 

minimum (TSHead/Tail) of all target strength measurements for individual fish as suggested by 

Frouzova et al. (2005). Slope and intercepts were tested for significant differences (α=0.05) 

between the basic and Foote (1987b) variant TS-TL relationships for the three pairs of equations 

(i.e., equations derived from mean, maximum and minimum target strength). Based on the 

observation that target strength was strongest at 0o and 180o and weakest at 90o (Figure 5), I 

identified five different functions that create U- or V-shaped curve (Table 4) for developing 

orientation-specific TS-TL equations.  I compared these five functions with three variants of 

equations proposed by Kubecka (1994), as modified by Lilja et al. (2000) to include TL, and the 

non-orientation-based equations that were derived from mean target strengths (Table 4).  

I fit each equation to TS data from individual fish using maximum likelihood estimation and 

assessed the most parsimonious equation using AIC. Target strength responses from all fish were 

fit simultaneously using a linear mixed effects model with fish size (log10(TL)) and orientation 

(in radians) as fixed factors and individual fish as a random factor (to account for repeated 

measurements on individuals) using Program R package nlme  (Pinheiro et al. 2017). I tested all 

models with all interaction terms iteratively and removed non-significant interaction terms. 

Conditional and marginal R2 values were then calculated to estimate the model fit. 
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Field test of TS-TL equation: 

To test the accuracy of my best orientation-based equation, I paired a Simrad® EK60 120 kHz 

echosounder with an ARIS® Explorer 1800 imaging SONAR operating at 1.8 MHz and recorded 

individual Gizzard Shad simultaneously in a natural environment (Lake Carl Blackwell, 

Stillwater, OK) to examine how well TS-derived fish size estimates matched fish size estimates 

derived from the imaging sonar. To ensure that only Gizzard Shad data were collected, fish were 

collected by boat-mounted electrofishing and placed within a nylon net pen (15-m long x 15-m 

wide x 4.5-m deep with 6.35-mm square mesh) located within the lake. The echosounder data 

were collected using settings specified in Table 3. Both systems were mounted in tandem on a 

bracket and lowered to a depth of 1 m within one side of the net pen.  The transducers were aimed 

across the pen and angled 3.5o downward from horizontal to reduce surface noise. During data 

collection, the boat was pulled along one side of the net. This experiment was conducted at night 

when shad species are less aggregated, making it easier to measure isolated targets (Schael et al. 

1995). Fish length and orientation were estimated using the ARIS® imaging SONAR, capable of 

collecting high-resolution data (3-mm resolution).  During the analysis, both data from the 

echosounder and the imaging sonar were synchronized in Echoview® 8.1 to facilitate direct 

comparisons of sampled volumes.  I randomly selected 235 fish from the ARIS data by selecting 

a random starting ping within a recording and selecting the first fish observed after this starting 

ping.  I manually measured the length and orientation of each selected fish from the ARIS® data, 

then recorded ten TS values from the corresponding fish track observed with the split-beam 

echosounder.  The ten TS values were converted to backscattering cross-section (σbs =  10(𝑇𝑇𝑇𝑇10)), 

averaged and back-transformed to derive a mean TS estimate. I converted the ARIS®-derived 

lengths to expected TS’s using the best performing TS-TL orientation-based equation. Fish 

orientations were categorized as lateral (perpendicular to transducer; 330o – 30o or 150o – 210], 

oblique [30o – 60o, 120o – 150o, 210o – 240o, or 300o – 330o], or parallel [facing towards or away 



36 
 

from transducer; 60o – 120o or 240o – 300o]; Figure 6). I then compared estimated TS (based on 

ARIS®-measured TL and orientation and my regression equation) with measured TS (from the 

split-beam echosounder) using an ANOVA with estimated TS, length bin (25-mm groupings 

from 50 to 275 mm TL), and orientation group (lateral, oblique, or parallel) as fixed effects, trial 

(specific recording/date) as a random effect and measured TS as the response variable using SAS 

(SAS Proc Mixed; SAS Institute Inc 2017). A total of 235 individual Gizzard Shad of various 

lengths (60-267 mm) and orientations were analyzed. 

Comparison of echo-integration results applying different side-aspect TS-TL equations: 

To compare my non-orientation equations with other published horizontal-aspect equations, I 

collected data from fish aggregations (multiple individual fish too densely aggregated to detect 

individual fish tracks) while drifting in Lake Carl Blackwell, Stillwater, Oklahoma using the 

ARIS® imaging SONAR operating at a frequency of 1.8 MHz and the Simrad® 120 kHz 

echosounder operating at a frequency of 10 Hz (table 5). Both transducers were mounted on an 

aluminum bracket that was angled downward 3.5o from horizontal and lowered to a depth of 1 m. 

Total length data were collected from all fish in each aggregation using the ARIS®. Using these 

total length data, I calculated a mean TL for each of 23 individual schools. Mean TLs were then 

converted to a mean TS using each of six TS-TL equations (Table 6). In addition to the two non-

orientation based mean TS-TL equations from the current study, I also tested Boswell and Wilson 

(2008) equations from pooled data for Gulf Menhaden (Brevoortia patronus) and Bay Anchovy 

(Anchoa mitchilli), Frouzova’s (2005) European pooled freshwater fish equation, and Kubecka’s 

(1994) brown trout (Salmo trutta) equation. These six different mean-TS estimates for each 

school were used to echo-integrate each aggregation, resulting in aggregation density estimates 

from all 23 aggregations based on each of the six equations. Echo-integrated aggregation 

densities from each of the six equations were then compared using an ANOVA with TS-TL 
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equation as a fixed factor and aggregation as a random factor (SAS Proc Mixed; SAS Institute Inc 

2017). 

Results 

Mean TS of all fish at all measured orientations was -40.11 dB (SD= 7.4) with highest TS 

frequencies occurring from -45 to -50 dB (Figure 7). Target strength distributions for fish of 

different sizes had substantial overlap when they had different orientations, even for individuals 

of vastly different sizes. (Figure 8).  

Regression equations for the TSLateral, TShead/tail and TSMean (both with fitted slopes and the Foote 

(1987b) variant with slope=20) produced significant relationships (Figure 9). For the TSMean 

equations, the slope of fitted-slope equation was significantly higher than the Foote (1987b) 

variant equation (t=2.32, d.f.= 91, P=0.02), whereas slopes of the Foote (1987b) variants were not 

significantly different for the TSLateral (t=1.65, d.f.= 91, P=0.10) and TSHead/Tail (t=0.62, d.f.= 91, 

P=0.53) equations (Table 7). There were no significant differences in intercept between basic and 

Foote (1987b) variants for TSMean (t= 1.77, d.f.=91, P=0.08), TSLateral (t=0.81, d.f.= 91, P=0.41) or 

TSHead/Tail (t=0.33, d.f.= 91, P=0.73) equations (Table 7). TS-W relationships from mean, 

maximum, and minimum TS data had R2 values of 0.85, 0.69, and 0.63 respectively (Table 7). 

Measured TS of all fish increased as fish were rotated from head/tail perspective to lateral 

orientations (Figure 5). The range of TS for individual fish also increased as fish size increased. 

The best orientation-based model was a catenary function with a significant interaction between 

the catenary term and log10 𝑇𝑇𝑇𝑇 , which fit as: 

𝑇𝑇𝑇𝑇 = �−4.57 ∗ 1.58 ∗ cosh �𝛳𝛳−90
0

1.58
��  + 2.68 ∗ log10 𝑇𝑇𝑇𝑇  +  9.63 ∗ �1.58 ∗ cosh �𝛳𝛳−90

0

1.58
� ∗

log10 𝑇𝑇𝑇𝑇�  − 83.57  
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(Table 8). The catenary model produced a U-shaped response for individual fish (Figure 10) and 

formed a U-shape plane that curved upward when all fish sizes are considered (Figure 11). All 

model parameters were significant and the conditional and marginal R2 values were 0.71 and 0.67 

respectively. 

Field test of TS-TL equation: 

The catenary model predicted a significant amount of the variation in TS measured by the split-

beam echosounder when orientation and fish length (determined from imaging SONAR) were 

incorporated (F1,185=38.12, P<0.01).  The catenary function did not produce a significantly 

different TS estimate for any size class (F8,185=1.13, P=0.34) or fish orientation (F2,185=1.10, 

P=0.33) when compared to the split-beam-measured TS of live individuals (Figure 12), indicating 

the catenary equation properly accounted for all of the variation in TS related to these two 

variables.  

Comparison of echo-integration results applying different side-aspect TS-TL equations: 

Equation choice had a significant effect on density estimates from individually echo-integrated 

schools. FrouPooled had a significantly higher density estimate than all other equations (P<0.01, 

Figure 13). JohnAll, JohnFoote, and BosPooled had significantly greater density estimates than 

BosFoote and KubAll, but less than FrouPooled (Figure 13). Density estimates using the FrouPooled 

equation were almost twice as large as any other equation (Figure 13). 

Discussion 

I developed a side-aspect equation that predicts TS using TL and fish orientation that could 

improve density estimates for Gizzard Shad from horizontal echosounders when fish orientation 

is known or can be measured. One previous attempt to develop an orientation-specific TL-TS 

equation has been published (Kubečka 1994).  This study found a cos3 function best described the 
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effect of fish orientation on TS for a single size of fish (Kubečka 1994). Lilja et al. (2000) added 

TL to Kubecka (1994)’s aspect model and calculated coefficients for Atlantic Salmon, pike and 

whitefish. These studies did not consider other functions (other than changing the exponent on the 

cosine function).  I tested 6 different functions and found a catenary function was considerably 

more parsimonious than the cos3 function used by these previous studies. My new equation will 

provide more accurate Gizzard Shad TL estimates than non-orientation equations when 

orientation information is available. 

There are multiple ways to acquire orientation information required by my equation. First, 

orientation can be estimated by movements of a target on an x-z plane, tracked using a split-beam 

echosounder (Rodríguez-Sánchez et al. 2015). This approach does not estimate instantaneous 

orientation, but infers orientation based on linear movements of a target track over time 

(Rodríguez-Sánchez et al. 2015). This idea has also been implemented with a dual-beam 

echosounder and was able to estimate the slope of a moving fish (mm/ping) by using change in 

range from a fixed transducer (Kubecka and Duncan 1998b). A second approach, which I used 

when validating my orientation-based-equation, is pairing an imaging SONAR with a split-beam 

echosounder. Imaging SONARs can estimate orientation of individual fish that are solitary as 

well as fish at the edge of aggregations by calculating the range difference from end to end of a 

target (Rose et al. 2005). Because fish aggregations often consist of similar-sized individuals, size 

estimates of fish distributed along the periphery of an aggregation can be representative of 

individuals comprising the aggregations (Hoare et al. 2000). Therefore, collecting orientation 

information from the edge of aggregations with an imaging SONAR may also be a viable method 

of collecting target orientations. However, the range of imaging SONAR will restrict the use of 

this method to the first 15 m. These approaches can be implemented during hydroacoustic 

surveys to measure fish orientation for use in my orientation-based equation. 
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When orientation information is unavailable, a TSMean, TSLateral, or TSHead/Tail equation should be 

used, depending on whether orientation can be assumed. For example, when fish orientation can 

be assumed to be lateral (i.e. migratory movements within a river with transducer oriented 

perpendicular to river flow) or in the head-tail aspect (boat avoidance or other situation with fish 

moving toward or away from the transducer), the TSLateral or TSHead/Tail equations, respectively, 

may produce appropriate fish sizes (Burwen and Fleischman 1998; Draštík and Kubečka 2005; 

Pedersen et al. 2009). This approach has been commonly used in riverine environments in the 

past (Burwen and Fleischman 1998; Thorne 1998). My orientation-based equation may also be 

suitable in these situations, but may not be as reliable because the curve fit compensated for all 

orientations whereas TSLateral and TSHead/Tail equations were derived solely from lateral and head-

on data. However, when orientation information is unavailable and orientation is assumed to be 

random, TSMean equations can be used to estimate biomass and density. Therefore, my Gizzard 

Shad TS-TL equations could be applied in various sampling situations. 

Based on the recommendations of Foote (1987b), I derived two forms of each TS-TL equation 

(TSMean, TSLateral and TSHead/Tail), a basic model with fitted slope, and a Foote (1987b) variant with 

a slope fixed at 20 (to facilitate comparison among equations for different species).  In most cases 

(i.e., TSLateral or TSMean equations), both forms of these equations performed similarly and either 

equation is applicable. Only the TSMean equation produced significantly different results between 

the base and Foot (1987b) variants.  In this case, the basic (a is allowed to vary) equation should 

be used to better describe the relationship between Gizzard Shad size and TS.  

Many equations have been proposed to predict average TS for individual species or groups of 

species, but only limited comparisons have been made between equations (Frouzova et al. 2005; 

Boswell et al. 2008; Godlewska et al. 2012). I found that TS-TL equation can have a significant 

effect on density estimates of individual schools illustrating the need for species-specific 

equations to ensure estimates are accurate from hydroacoustic surveys. Using an inappropriate 
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TS-TL equation during acoustic surveys could result in inaccurate conclusions resulting in poor 

management decisions. Therefore, it is beneficial to derive species-specific TS-TL equations to 

ensure proper TS-TL conversions are applied to hydroacoustic data, especially when data is used 

in making management decisions. 

There are many other factors that can influence measured TS besides orientation in the x-z plane 

and TL (i.e., changes in swim bladder sound reflectance)that must be acknowledged (Foote 1980; 

Ona 1990; Kubečka 1994). Fish behavior such as vertical migrations (Harden-Jones et al. 1981; 

Vabø et al. 2002; Knudsen and Gjelland 2004) and boat avoidance behaviors (Vabø et al. 2002; 

Draštík and Kubečka 2005) can have an effect on measured TS by changing fish tilt and roll 

(Love 1977; Nakken and Olsen 1977; McQuinn and Winger 2003). These factors can influence 

the TS of individual fish, but when averaged over an entire survey, these differences are likely 

minimized (Fedotova and Shatoba 1983; MacLennan et al. 1989). Fish physiology such as fat 

content, gonadal maturity, method of airbladder inflation (i.e. physostome vs physoclist), 

ontogeny, and stomach content can effect measured TS (Foote 1987b; Ona 1990; Ona et al. 2001; 

Horne 2003). Therefore, fish of similar size and orientation can have different measured TS’s and 

these potential sources of variability must be acknowledged when applying TS-TL relationships.  

Derivation of orientation-based side-aspect TS-TL equations can provide increased accuracy of 

biomass estimates from horizontally-oriented hydroacoustic surveys when orientation information 

is available. My non-orientation based equations can also be used as a more accurate equation for 

Gizzard Shad in various situations when orientation information is not available. Species-specific 

TS-TL equations should be used when available to ensure estimates are reliable. When species-

specific equations are not available, caution should be taken when selecting TS-TL equations 

because equation choice can have a significant effect on estimates. I recommend the use of 

species-specific, orientation-based equations when possible, but non-orientation equations can 

also be useful in some circumstances. 
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Tables 

Table 3. Echosounder, transducer and analysis thresholds used in target strength experiments for 
Gizzard Shad. 

System parameters Value 
SIMRAD EK60 split-beam 

echosounder 
 Operating Frequency 120 kHz 

Pulse Duration 0.256 ms 
Pulse rate 4 Hz 

transducer parameters 
 Two way beam angle -20.7 

Collection Threshold -70 dB 
Beam width 7⁰ 
Nearfield range 0.86 m 

Echoview Analysis Threshold 
 TS -70 dB 

Single target detector 
 Pulse length determination level 6 dB 

Minimum normalized pulse length 0.5 
maximum normalized pulse length 1.8 
Maximum beam compensation 11 dB 

Maximum standard deviation of 
 Minor axis angle 3⁰ 

major-axis angles 3⁰ 
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Table 4. Names and equations that were compared for estimating target strength using orientation 
and total length information where TS is estimated target strength, TL is total length in mm, sin is 
sine, cos is cosine, cosh is hyperbolic cosine, and θ is orientation of the ensonified fish in radians. 
Other symbols are constants fit by maximum likelihood. 

 

 

  

Model Name Equation 
Trigsin TS = a* sin θ + b* log10 TL + c*(log10 TL * sin θ) + d 

 
Trigboth TS = (a*cos θ) + (b*sinθ) + c* log10 TL

+ d*(sinθ)* log10 TL + e  
 

Poly2 TS = a*((ϴ-900)2 ) + b*�(ϴ-900)� + c* log10 TL
+ d *((ϴ-900)2 * log10 TL) + e 
 

Catenary TS = �a*1.57567* cosh � ϴ-900

1.57567
�� + b* log10 TL +

c* �a*1.57567* cosh � ϴ-900

1.57567
� * log10 TL� +d 

 
ABV TS = a*|(ϴ-900)| + b* log10 TL + c*(log10 TL *|(ϴ-900)|) + d 

 
Kub TS = a* cos 2θ + b* log10 TL + c*(cos2θ)* log10 TL) + d 

 
Kub3 TS = a*cos32θ + b* log10 TL + c*((cos32θ)* log10 TL) + d 

 
Kub5 TS = a*cos52θ + b* log10 TL + c*((cos52θ)* log10 TL) + d 

 
Non-orient TS =  a* log10 TL + b 

 
Foote TS =  20* log10 TL + bR20 
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Table 5. Data collection and analysis thresholds for schools observed during drift surveys in Lake 
Carl Blackwell, Stillwater, Oklahoma. 

System parameters Value 
SIMRAD EK60 split-beam echosounder 

 Operating Frequency 120 kHz 
Pulse Duration 0.256 ms 
Pulse rate 10 Hz 

transducer parameters 
 Two-way beam angle -20.7 

Collection Threshold -70 dB 
Beam width 7⁰ 
Nearfield range 0.86 m 

Echoview Analysis Threshold 
 TS -65 dB 

 

 

Table 6. Names and sources for target strength versus total length equations compared by echo 
integrating individual schools. 

Name Source Equation 
Lateral all aspect equations   

JohnAll Current study 23.02*Log(TLmm)-93.53 
Froupooled Frouzova et al. (2005) 24.26*Log(TLmm)-100.68 
Bospooled Boswell and Wilson (2008) 14.5*Log(TLcm)-60.8 
KubALL Kubecka (1994) 34.1*Log(TLmm)-114.3 
Foote 1987 Variants 

  Bosfoote Boswell and Wilson (2008) 20*Log(TLcm)-65 
JohnFoote Current study 20*Log(TLmm)-86.42 
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Table 7. Regression Coefficients for target strength equations (TS = a * log10(TL) + b for length, 
TS = a* log10(WT) + b for weight) derived from ex situ tank experiments for Gizzard Shad 
(Dorosoma cepedianum (n=47, 64-321 mm, 3-223.8 g) at different orientations (Head-on fit data 
where fish were facing the transducer [90o], Lateral fit data where fish were perpendicular to the 
transducer [0o and 180o], and Mean fit data from all fish orientations (0 – 180o in 5o increments).  
b20-values are from models using a slope fixed at a=20 (Foote 1987). P-value indicates whether 
slope was significantly different than 1. An asterisk denotes the parameter was statistically 
different between the two forms of the TS-TL equation. 

 
Length Weight 

Orientation a P-
value b b20 r2/r2

b20 a b r2 

Mean 23.02* <0.01 -93.53 -86.31 0.86/0.86 8.05 -54.74 0.85 
Head-on 18.66 <0.01 -98.42 -101.34 0.63/0.63 6.47 -67.37 0.63 
Lateral 23.77 <0.01 84.83 -76.59 0.71/0.71 8.16 -45.17 0.69  
 

 

Table 8. Comparisons of model fits for 8 orientation-based and 1 non-orientation based models 
for Gizzard Shad data collected in tank experiments. 

Model Name AIC ΔAIC d.f. Weight 
Catenary 9823.77 0 6 0.99 
Poly2 9836.42 12.6 7 <0.01 
Trigsin 9873.99 50 6 <0.01 
Trigboth 9875.44 51.4 7 <0.01 
ABV 10025.19 200.2 6 <0.01 
Kub3 10034.47 208.7 6 <0.01 
Kub5 10077.68 250.3 6 <0.01 
Kub 10129.7 304.1 6 <0.01 
Non-Orient 11203.47 1372.8 4 <0.01 
Foote 11297.56 1473.8 3  <0.01 
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Figures 

 

 

 

Figure 4. Diagram depicting setup of transducer and tethered fish within pool for ex situ 
hydroacoustic target strength measurements of Gizzard Shad. 
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Figure 5. Example of target strength values at orientations ranging from 0-180 degrees (0 and 180 
being lateral and 90 being head-on perspective) in 5 degree increments for a 267 mm Gizzard 
Shad from ex situ experiments. 
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Figure 6. Figure 6. Diagram of fish orientations within acoustic beam. Depicted fish is at an 
orientation of approximately 35 degrees (oblique category) 
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Figure 7. Target strength frequency for Gizzard Shad (n=47,64-321 mm, 3-223.8 g) at 
orientations from 0-180 degrees (0 and 180 being lateral and 90 being head-on perspective) 
measured ex situ tank trials. 
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Figure 8. Distributions of TS measurements for Gizzard Shad in the 76-100 mm (n=5 fish, 185 
measurements) and 251-275 mm (n=5 fish, 185 measurements) length bins at orientations from 0-
180 degrees measured in ex situ tank trials illustrating overlap of measured target strength of 
large and small Gizzard Shad. 

  



55 
 

  

 

Figure 9. Total length to target strength regressions for lateral aspect, head/tail aspect and average 
of all orientations allowing the a-coefficient to vary (Basic) and fixing it at 20 (Foote 1987b) for 
Gizzard Shad (n=47, 64-321 mm, 3-223.8 g). 
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Figure 10. Raw data and modelled catenary equation for a 142 mm (a) and 267 mm (b) Gizzard 
Shad from data collected in tank trials. 
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Figure 11. Depiction of the change in expected target strength with changes in total length and 
orientation modelled using a catenary function derived from data collected from Gizzard Shad in 
tank trials 
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Figure 12. Difference between measured target strength from a Simrad EK60 120 kHz transducer 
and estimated target strength derived from length and orientation data collected with an ARIS 
imaging SONAR using my catenary equation. 
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Figure 13. Comparison Comparison of mean school density from 23 schools estimated using six 
different horizontal-aspect TS-TL equations. In addition to a non-orientation based mean TS-TL 
equations with random intercept (JohnALL) and a variant with slope fixed at 20 (JohnsFoote) 
from the current study, I tested Boswell and Wilson (2008) equations from pooled data for Gulf 
Menhaden (Brevoortia patronus) and Bay Anchovy (Anchoa mitchilli; BosPooled; BosFoote), 
Frouzova’s (2005) European pooled freshwater fish equation (FrouPooled), and Kubecka’s 
(1994) brown trout (Salmo trutta) model (KubALL). 
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