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Abstract 

Molecular dynamics (MD) simulations are widely used for global conformational 

searches in protein folding. However, conventional canonical ensemble simulations 

(constant NVT) usually cannot explore biologically active natural structures of proteins 

because such simulations have extreme difficulty sampling conformational space 

sufficiently for global energy minimum searches. The work described here delineates the 

crucial limitations restricting conventional NVT simulations from covering a wide variety 

of conformations and develops several new MD simulation protocols for efficiently 

sampling diverse regions of conformational space to search for the global minimum 

energy structure of polypeptides and mini-proteins.  

First, a new MD search strategy called DIvergent Path (DIP) search simulation is 

developed in which the simulations start with several independent polypeptides having 

the same initial coordinates and temperatures but different velocity directions, which 

evolve into different trajectories. The DIP simulations reveal three primary limitations of 

conventional MD simulations: potential energy traps, free energy traps, and kinetic traps. 

Among them, kinetic traps are the most limiting factor for MD simulations intended to 

sample varied conformational space at room temperature. This trap is caused by 

mechanical equilibrium (when both kinetic and potential energies have reached 

equilibrium) and can be easily overcome by intervening to reassign atomic velocities and 

thus randomize simulation trajectories. By combining this trajectory randomization 

strategy at one temperature with cycles of heating and cooling, the DIsrupted VElocity 

(DIVE) search simulation is further developed. The DIVE simulations can explore wide 

ranges of the rugged potential energy surfaces of peptides, sample myriad potential 
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energy minima, and explore diverse conformations even in a very limited simulation 

time. Finally, a combined procedure is also built in which the global potential energy 

minimum and myriad local potential energy minima are explored by using DIVE 

simulations followed by DIP simulations to search for the global free energy minimum 

near in vivo temperatures.  

We performed the new MD simulations for mapping energy landscapes and 

conformations of a model 13 residues polyalanine peptide Ala13, an amphiphilic 

octadecapeptide, peptide F, and a 20-residue mini-protein, Trp-cage, using the AMBER 

force field either in vacuo or in a generalized Born/solvent-accessible surface area 

(GB/SA) implicit solvent for water. The simulation results are also compared with those 

from several other simulation algorithms including conventional NVT simulations, the 

replica exchange method (REM), and locally enhanced sampling (LES) molecular 

dynamics. Our newly developed MD simulation protocols sample the most diverse region 

of conformational space and complement existing global geometry optimization 

techniques for predicting 3D protein structures from only primary sequence data. 
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Chapter 1 

 

Introduction 

 

During the past several decades, molecular dynamics (MD) 1,2 has evolved into an 

important and widely used computational tool in chemistry, physics, and biology to 

model the detailed dynamical behavior of many systems, from atomic clusters to large 

biological molecules. As a computational simulation method, MD simulations give the 

time evolution, or the trajectory, of an atomic system and further determine the 

thermodynamics, energetic, structural and dynamical properties of that atomic system 3. 

The movement of the atoms, due to the force of their own kinetic energy and the forces 

exerted upon them by all other atoms in the system, is calculated by integrating the 

classical equations of motion from Newton using an assumed potential energy function 

4,5. Molecular dynamics can provide ways to simulate costly, dangerous, or 

experimentally inaccessible systems. Furthermore, simulations can track the time 

evolution of structural changes at high temporal resolutions 6, which is currently better 

than experimental methods. 

The method of molecular dynamics today is a standard tool to simulate protein 

folding 7. In its natural environment, proteins can fold from an extended linear structure 

to a condensed, compact three-dimensional structure. This automatic folding of proteins 

generally takes milliseconds to seconds either in vivo, or in vitro 8-13. How proteins fold 

from a primary amino acid sequence into a compact three-dimensional structure in nature 

remains one of the great mysteries of science. It is generally assumed that the protein 
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sequence contains the information that determines the final three-dimensional structure 8-

13. Therefore, scientists hope that computer simulation methods such as molecular 

dynamics are able to predict tertiary structure from the amino acid sequence. With this 

calculation method, one must have a starting extended or random unfolded structure. The 

potential energy function whose parameters (force field) are derived to reproduce 

structures and energy trends in various small model systems should be transferable to 

large proteins 5.  

However, some fundamental problems exist when using molecular dynamics to 

simulate the folding process of proteins. The first problem arises from an astronomical 

number of possible conformations of a simulated protein. The number of possible 

conformations for the flexible protein increases exponentially as the number of rotatable 

bonds increases and rapidly exceeds the number that can be realistically evaluated on 

even the most powerful supercomputers. In 1969, Levinthal 14 calculated that even if each 

residue in a 100 amino acid protein is only restricted to three conformations, the total 

number of structures possible for this 100 residue protein would be approximately 3100 

(or ~5 x 1047). Furthermore, if this 100-residue protein took 0.1 ps (10-13 s) to convert 

from one form to another, it would take ~1.6 x 1027 years to sample all the structures. 

Exploring all possible conformations in search of the native structure requires an 

exorbitant amount of time, which contradicts the actual folding times of proteins. This is 

referred to as Levinthal’s Paradox 15-18. With these calculations, Levinthal assumed that 

there were well-defined pathways to the native state for protein folding 19. Therefore, in 

order to find the native structure of proteins within a realistic simulation time, molecular 

dynamics must circumvent Levinthal’s Paradox to explore these well-defined pathways.  

 2



According to Anfinsen’s thermodynamic hypothesis 20, the native conformation of 

a protein is the one in which the free energy of the protein is lowest (global free energy 

minimum). A protein folds along a path towards this global free energy minimum for 

conformational stability. This folding helps to limit the number of conformational 

possibilities that need to be searched in order to find the global free energy minimum 18. 

The decrease in the sampling of conformational possibilities in the search for the global 

minimum is strongly dependent on the free energy surface, which we can build using a 

force field in computer simulations. Large decreases in free energy only happen if the 

global free energy well is much deeper and broader than any other local free energy 

wells. 

The search for the global free energy minimum in protein folding constitutes the 

second difficultly for molecular dynamics while simulating protein folding 12,21-23. 

Suppose that we performed an ideal simulation. The potential energy function and force 

field were perfected to build a very deep and broad global free energy well corresponding 

to the native structure of a 100-residue protein. The MD simulation was able to search for 

the native structure on the millisecond to second timescale, in direct comparison with 

folding experiments. However, the computational time needed to perform this simulation 

would still be astronomical 21. Using current technology, if the MD simulation provided a 

trajectory of 1 nanosecond/day (large overestimate for a solvated 100-residue protein), it 

would take approximately 2740 years to achieve a millisecond trajectory for protein 

folding.  

The third problem that MD simulations encounter is entrapment in local energy 

minima. On the folding path toward the global energy minimum, the simulated protein 
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may fall into a deep local energy well. If the local energy well has high barriers to other 

energy wells (transition state energies) and the protein does not have enough kinetic 

energy to overcome the barrier, the protein is then caught in a local energy minimum. 

When local energy minimum entrapment occurs, MD simulations are unable to search 

additional areas of conformational space. In other words, MD simulations are limited to a 

local search for a family of similar conformations. Conventional MD simulations fail to 

find the global energy minimum because simulations at low temperatures tend to get 

trapped in one of myriad local minimum-energy states 24-33. 

The above-described problems imply that molecular dynamics currently suffer 

limited phase space sampling when used to simulate protein motion. As an aside, limited 

phase space sampling is universal and exists with any other computer simulations such as 

Monte Carlo simulations 34 This limited phase space sampling causes molecular 

dynamics or other computer simulations to have difficultly in predicting the natural three-

dimensional (3D) structures of a small protein (or polypeptide) from a random unfolded 

structure 12,22,23,35. Currently, the majority of MD simulations are still limited to 

refinement or confirmation of experimental structures. Attempts to overcome the phase 

space sampling problem in structure prediction typically involves increasing the system’s 

kinetic energy or decreasing its energy barriers 26-30. We make an effort to consider these 

phase space sampling problems at the atomic level and additionally develop new 

techniques for efficiently sampling conformations of polypeptides and mini-proteins.  

In a realistic limited simulation time (such as one microsecond (µs)), any MD 

simulation can only sample an extremely small fraction of the total conformational space. 

With the same simulation time and time step, the simulations from different molecular 
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dynamics techniques should always sample the same number of structures (a very small 

fraction of all the possible conformations). However, the simulation trajectories from 

different MD techniques may evolve into different regions of conformational space. 

Figure 1 gives examples of two different simulations. The outside rectangle represents 

the total conformational space. The enlarged gray regions are sampled by realistic 

molecular dynamic simulations. A conventional MD simulation at ambient temperature is 

usually limited to a local search for a family of similar conformations represented by the 

gray rectangle in Fig. 1.1a. It does not search other regions. If a simulation can sample 

several regions represented by the smallest gray squares in Fig. 1.1b, the simulation 

achieves a better sampling of conformational space, and it can explore a wide variety of 

structures. We aim to develop MD simulation protocols corresponding to Fig. 1.1b.  

 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
               (a)  conventional MD simulations                               (b) advanced simulations 

Poor sampling
Better sampling 

 
Figure 1.1. Outside rectangle represents complete conformational space. Enlarged gray 
regions are sampled by MD simulations in a realistic time such as 1µs. All smallest gray 
squares together with line in (b) form a combined region having the same area as the 
larger gray rectangle in (a).  
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The new MD simulation techniques illustrated in Fig. 1.1b should give a good 

balance between the sampling of varied conformations and conformational stability at 

low temperatures. An MD simulation at very high temperatures may search different 

conformations quickly, but those sampled conformations are likely to be various unfolded 

conformations. These conformations represent denatured proteins. It will be difficult to 

find those well-defined native structures of proteins corresponding to low free energies 

states near physiological temperatures. Therefore, the new MD simulation techniques 

should focus on sampling varied conformations at low temperatures. We observed some 

crucial limitations that restrict conventional MD simulations to a local search for a family 

of similar conformations. We have developed strategies to overcome these limitations. 

Here we demonstrate that our newly developed MD simulation protocols are able to 

sample varied conformations and explore well-defined folding pathways in search of 

native structures of polypeptides and mini-proteins, even on a limited nanosecond 

simulation time scale.  

Molecular dynamics is a tool for sampling a statistical mechanical ensemble and 

for determining ensemble averages of thermodynamic quantities or equilibrium 

properties 36. However, the limited classical states sampled during realistic MD 

simulations usually cannot accurately represent the real probability distribution. A 

simulation of 1 ms is only a very short simulation for sampling all possible 

conformations; it can only reach an extremely small fraction of the entire conformational 

space. Therefore, we consider it more important to explore the energy surface and 

minimum conformations than to calculate thermodynamic properties when MD 

simulations are limited to partial phase space sampling.  
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The global free energy minimum and the free energy surface are difficult to 

determine from computer simulations. However, the potential energy surface is relatively 

easy to define as a function of the atomic coordinates of the system 37 and, in addition, is 

temperature independent 38. Even though the global minimum free energy structure at in 

vivo temperatures may not correspond to the global potential energy minimum, the global 

free energy minimum is usually either the global minimum or a very low local minimum 

on the potential energy surface 37. Therefore, maps of these low potential energy minima 

and their conformations can be quite valuable. In order to determine the global folded 

structure, it is necessary to find the minimum potential energy conformations. In addition, 

the quality of the energy landscapes of proteins (or polypeptides) built from these 

potential energy minima can test the quality of the potential energy function used, which 

is usually transferred from small standard molecules. 

Therefore, the work described here delineates the crucial limitations restricting 

conventional constant-temperature simulations from covering a wide variety of 

conformations and develops several new MD simulation protocols for efficiently 

sampling many regions of conformational space in search of the global minimum energy 

structures of polypeptides and mini-proteins. 

Chapter 2 of this dissertation gives background for various MD techniques. 

Relying on the body of conventional MD simulations described first, our own written 

MD program suite is described, and later several advanced MD methods for enhancing 

phase space sampling are introduced, including simulated annealing (SA), the replica 

exchange method (REM), and locally enhanced sampling (LES). 
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Chapter 3 – 7 focus on our development of new MD techniques, tested by a model 

polyalanine peptide, Ala13 (13 residues). Chapter 3 describes the DIvergent Path (DIP) 

search simulations for global free energy minimum searches near in vivo temperatures. 

Simulation results for gas phase Ala13 show three primary limitations of conventional 

MD simulations, which give rise to limited phase space sampling. Chapter 4 presents the 

DIsrupted VElocity (DIVE) search simulations for global potential energy minimum 

searching and demonstrates the advantages of DIVE for sampling conformational space 

more efficiently than several other simulation algorithms for conformational searches of 

gas phase Ala13. Chapter 5 presents MD simulations of gas phase Ala13 using these new 

protocols with different force fields. Comparisons of the sampled secondary structures 

and their energy minima for this polypeptide highlight likely differences in potential 

energy landscapes from different force fields. New molecular dynamics simulations of 

Ala13 in a generalized Born/solvent-accessible surface area (GB/SA) implicit solvent 

environment for water are further presented in Chapter 6. Chapter 7 addresses the 

discrepancy of the free-energy minima for solvated Ala13 systems at room temperature 

simulated by locally enhanced sampling MD vs. conventional MD. Furthermore, it 

demonstrates that the indirect coupling between copies of the subsystem through the 

common bath, not a reduction in energy barriers, promotes conformational transitions of 

the equilibrated system in approximate mean field simulations. 

The final Chapters demonstrate the efficiency of DIVE simulations to search for 

the experimentally determined native structures of two de novo designed polypeptides. 

Chapter 8 addresses DIVE simulations for mapping potential energy landscapes and 

conformations of an amphiphilic octadecapeptide, peptide F, in implicit water. In 

 8



addition, a combined procedure is described in which the global potential energy 

minimum and myriad local potential energy minima are explored by using DIVE 

simulations followed by DIP simulations to search for the global free energy minimum 

near in vivo temperatures.  In chapter 9, the DIVE simulations have been carried out to 

study the folding conformations and kinetics of a 20-residue mini-protein, Trp-cage, in 

implicit solvent. In addition to searching diverse conformations and their minimum 

energy states and thus mapping the potential energy landscape, several folding pathways 

of this mini-protein are also characterized. This DIVE simulation protocol is a new global 

optimization technique for predicting 3D protein structures from only sequence data.  
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Chapter 2 

 

Molecular Dynamics (MD) Simulation and Current MD Simulation Methods 

 

2.1. Overview 

The material described herein is background for molecular dynamics (MD) 

simulations. The first part describes different components of conventional MD from 

which our new MD simulation techniques are derived. The body of the program 

performing conventional MD simulations mainly includes seven features. MD 

simulations follow classical mechanics according to Newton’s laws of motion 1,2. Solving 

the classical equations of motion for a biological system of N atoms requires a numerical 

integration scheme. We use the velocity Verlet algorithm 1,3,4 to accomplish this. The 

SHAKE algorithm 5,6 is used to constrain bond stretching with hydrogen in order to use a 

1 fs time step in the iterative numerical procedure. In addition, MD simulations require a 

potential energy function and its corresponding force field definitions to describe the 

atomic interactions in the system and to evaluate each step’s forces acting at each particle 

position. We use the AMBER potential energy function and force fields 7,8. The 

computational algorithms we mentioned so far can constitute an MD simulation in the 

microcanonical ensemble (NVE). Canonical ensemble (NVT) simulations need to use a 

temperature coupling scheme to maintain a constant temperature. We use the Nośe-

Hoover Chain method 9-11 to maintain constant temperature. Furthermore, MD 

simulations are usually performed in water or some type of aqueous solution. To save 

computational cost, we use the generalized Born/surface area (GB/SA) implicit solvent 
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model 12-17 to replace explicit solvent, which would require a large number of water 

molecules. Finally, we want to remove the translational modes of the entire system. 

Fig. 2.1.1 is a schematic diagram showing how we calculate positions and 

velocities in molecular dynamics. By choosing a set of initial positions and velocities, the 

new positions and velocities at any time can be calculated in the iterative numerical 

procedure by calculating the force-derived accelerations from the potential energy 

function and force field. This constitutes the simplest microcanonical ensemble 

simulation of gas phase polypeptides. With the addition of the extra forces from the 

SHAKE algorithm, Nosé-Hoover Chain, and GB/SA implicit solvent, the widely used 

conventional canonical ensemble simulations of solvated polypeptides or proteins can 

then be performed. 
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Conventional MD simulations are limited in the amount of phase space they 

sampled. Advanced MD algorithms have been developed to overcome the sampling 

problem while searching for the global energy minimum in protein folding. The second 

part gives the introduction of several advanced MD algorithms including simulated 

annealing (SA) 18, the replica exchange method (REM) 19,20, and locally enhanced 

sampling (LES) or ensemble mean-field MD 21. These advanced algorithms enhance 

phase space sampling during MD simulations. 

 

2.2. Molecular dynamics simulations 

 

2.2.1. Classical mechanics by Newton’s law  

Molecular dynamics (MD) is a technique used to solve the classical equations of 

motion governing the microscopic time evolution of a many-body system. Consider a 

system of N molecules interacting via an assumed potential, the classical motion of the 

system can be written as the Lagrangian equation 1:    
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Where the Lagrangian function ℜ (q, q ), defined as the subtraction of kinetic energy (K) 

and potential energy (V),  = K - V, is a function of the generalized coordinates and 

their time derivatives . If an atomic system with Cartesian coordinates r
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where mi is the mass and fi is the force acting on the atom i.  
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The classical equations of motion (eq. 2.2.1.2) for an atomic system in Newtonian 

dynamics can also be derived from Hamiltonian mechanics 2. The Hamiltonian for an N-

particle system subject only to an interparticle potential  is  ),,( 1 NU rr L
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in which  are the momenta of the particles given by . According to 

Hamilton’s definition,  
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Then, the classical equations of motion (eq. 2.2.1.2) can be easily obtained.    

A unique solution to eq. (2.2.1.2) is achieved by choosing a set of initial spatial 

positions ri and their velocities  (or vir& i). Although Newton’s equations completely 

determine the full set of 3N positions and velocities for the system as functions of time, 

an analytical solution to these equations is usually impossible 2. A standard approximate 

method for solving eq. (2.2.1.2) is an iterative numerical procedure called a numerical 

integrator 3. With the initial positions and velocities of all atoms known at t0, the new 

positions and velocities at a later time t0 + δt can be obtained through calculating the 

force-derived accelerations  (or air&& i) from the initial positions using eq. (2.2.1.2). The 

new positions are then used to calculate the next step’s accelerations (i.e. forces) and the 

equations of motion are numerically solved on a step-by-step basis 1. The time 

discretization δt, referred to as the time step, determines the accuracy of the numerical 

solution 2. It must be set significantly smaller than the typical time taken for the shortest 
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time for a molecular vibration, in order to achieve a highly accurate microscopic motion 

picture of the system 1. After a large number of steps are calculated, the system’s 

equilibrium properties including thermodynamic quantities (pressure, temperature, 

volume) etc. can be obtained by the statistical average over all time steps.  

The classical equations of motion (eq. 2.2.1.2) for an atomic system specify the 

classical state (ri and vi) of the system at any time in the Newtonian dynamics. The union 

of all possible classical states of a system defines the phase space, which can also be 

considered as the complete collection of the full set of particle positions and momenta in 

the Hamiltonian dynamics 2. If the limited classical states sampled during the simulations 

can approximately represent the real distribution of the unlimited points in phase space, 

the MD calculations are capable of recovering the experimental observables of average 

thermodynamic quantities.  

 

2.2.2. Velocity Verlet algorithm for the numerical integration schemes 

Perhaps one of the most attractive proposed methods of integrating eq. (2.2.1.2) is 

called the “velocity Verlet” algorithm 1,3,4. This “velocity Verlet” algorithm takes the 

form:  
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While the new positions r(t+ δt) are calculated from the current positions r(t), velocities 

v(t), and accelerations a(t), new velocities v(t+ δt) are calculated from the current 

velocities v(t), accelerations a(t), and the new force-derived accelerations a(t+ δt). This is 

illustrated in Fig. 2.2.2.1 This algorithm only requires essentially 3N words of storage, 
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and its numerical stability, convenience, and simplicity make it perhaps the most widely 

used numerical integrator to date 1.  

  0 1 δt  t t+δt  t t+δt  t t+δt  t t+δt

R  r0              

V  v0  …            

A                

 
 
Fig. 2.2.2.1. Flow chart of position and velocity calculations in the velocity Vertlet 
algorithm 1. The stored variables are in grey boxes.   
 

2.2.3. Shake algorithm for bond length constraints  

In order to obtain a clear microscopic dynamical picture, the time step δt must be 

set small enough to allow high accuracy in the calculation of atomic positions and 

velocities from eq. (2.2.2.1). Theoretically, δt should be set on a time scale as small as 10-

16 second (s), so that the vibration of any bond stretching and angle bending etc. in the 

system can be simulated appropriately. However, it would take an extremely long 

computational time for a simulation on the nanosecond (ns, 10-9 s) time scale with such a 

small step to run even on the most powerful supercomputers. Instead, people often use 

femtosecond (fs, 10-15 s) or even longer (2.5 fs, 2 fs) as a typical step size to run MD 

simulations.  At this time level, only the bond stretching involving hydrogen vibrates too 

fast to be traced accurately. On the other hand, the bond stretching vibrations make little 

contribution to the conformational change of the whole system. As a result, a constraint 

procedure is often used to eliminate the bond stretching with hydrogen in normal MD 

simulations with the time step as large as 1fs.   
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The SHAKE algorithm 5,6 provides the ability to constrain degrees of freedom 

including bond stretching in the velocity Verlet numerical integration scheme. For a 

system that contains only bond length constraints, the SHAKE algorithm makes use of 

the constraint equations:   

                                                                  (2.2.3.1) 022 =− ijijd r

Where dij, and rij are the equilibrium bond length and actual bond length at any instant, 

respectively.  In a basic MD calculation generated by integrating eq. (2.2.1.2), the bond 

distance calculated from the updated positions at a dynamical step usually cannot satisfy 

the constraints of eq. (2.2.3.1).  Therefore, in addition to the original interatomic forces 

(which are the negative first derivatives of the potential V with respect to the atomic 

positions), extra forces need to be added into the total forces, so the updated bond 

distance in the following step meet the criterion. These constraint forces, like the atomic 

positions and velocities, can only be solved in an iterative numerical procedure.  

Suppose the positions ri(t), velocities vi(t), and total forces fi(t), acting on the ith 

particle at time t are known. The total forces fi(t) include both the interatomic forces, 

, and the correct constraint forces, g)(tif ′ i(t), as follows 6:  

)()()( ttt iii gff +′=                                                              (2.2.3.2) 

According to this assumption, ri(t+δt) at the next step have already satisfied the 

constraints of eq. (2.2.3.1), and can be directly calculated from the eq. (2.2.2.1). The 

calculation of vi(t+δt), however, requires knowing ai(t+δt) (i.e. fi(t+δt)) first. In fi(t+δt), 

while the )( tti δ+′f can be easily obtained from the ri(t+δt), the gi(t+δt), involving to 

satisfy the constraint equations require ri(t+2δt) and difficult to compute, since the 

calculation of ri(t+2δt) in turn requires fi(t+δt) and vi(t+δt).  
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The constraint force acting on the ith atom of a system involving only bond length 

constraints of eq. (2.2.3.1) can be written as 6 

∑ +=+
k

ikiki tttt )2()( δλδ rg                                             (2.2.3.3) 

The summation over k extends over all atoms that are bonded to atom i and  is their 

separation vector. The parameters λ

ikr

ik are symmetric and the equations are not analytically 

solvable. A set of approximation solutions labeled  and an estimate of the difference 

between  and the true λ

A
ijλ

A
ijλ ij labeled δλij, are introduced in the iterative numerical 

procedure. The quantity δλij is used to update the approximate values  and 

. The relationship between the updated  and the approximation 

for the coordinates, can be derived from eq. (2.2.2.1) and is as written as 

)( ttA
i δ+g

)2( ttA
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Using these expressions in the constraint equations eq. (2.2.3.1) and rewriting the form 

by a Taylor expansion about rij(t+2δt), we get 6 

0))(()2()2()11()(2|)2(| 4222 =++•++=+− ttttt
mm

tttd ij
A

ijij
ji

A
ijij δϑδδδλδδ rrr     

(2.2.3.5) 

If we retain terms only to order , the quantity δλ2)( tδ ij can be solved and the data can be 

used to improve , , , and  from eq. (2.2.3.3) 

and eq. (2.2.3.4).  

)2( ttA
i δ+r )2( ttA

j δ+r )( ttA
i δ+g )( ttA

j δ+g
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The iterative numerical procedure to get the initial δλij and update δλij for 

calculating gi(t+δt) and ri(t+2δt) follows. The equation for calculating ri(t+2δt) can be 

obtained from eq. (2.2.2.1) by substituting eq. (2.2.3.2) 6:  
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With the initial approximations λij=0, the constraints do not exist (gi(t+δt)=0) and 

ri(t+2δt) can be computed as in a basic MD calculation since all other variables are 

already known. These calculated new positions at the time step t+2δt serve as 

 to compute the initial δλ)2( ttA
i δ+r ij from eq. (2.2.3.5). From  and 

,  and  can be calculated from eq. (2.2.3.4) and eq. 

(2.2.3.3). The data of , , δλ

)2( ttA
i δ+r

)2( ttA
i δ+r )( ttA

i δ+g )( ttA
i δ+g

)2( ttA
i δ+r )2( ttA

j δ+r ij, , and , can be 

updated by using the above equations eq. (2.2.3.6), eq. (2.2.3.5), eq. (2.2.3.4) and eq. 

(2.2.3.3) until the tolerance in eq. (2.2.3.7) is reached for all SHAKE bonds or after a 

certain number of cycles:  

)( ttA
i δ+g )( ttA

j δ+g

|)2(| ttd A
ijij δε +−> r                                                             (2.2.3.7) 

SHAKE and other constraint algorithms 7 also have the ability to constrain 

degrees of freedom related to the motion of the bond angle or torsional angle. For 

example, in the rigid TIP3P water models used in MD simulations 8, two O-H bonds are 

constrained, in addition, a third bond between two hydrogen is created and constrained. 

The third constrained fictitious H-H bond artificially defines the constrained angle H-O-

H, in which the bending motion of water is removed. The ability to constrain some 

 20



degrees of freedom is important in MD simulations. Since their introduction in 1977 5, 

constraint algorithms have been used for various applications, such as studying flexible 

molecules with internal constraints 9, searching for minimum energy conformations of the 

constrained geometry of the molecule 10, building constant pressure-constant temperature 

MD 11, performing free energy calculations 12 and so on.  

 

2.2.4. Potential energy function and force field  

From Newton’s laws of classical mechanics, MD requires an assumed potential as 

input to describe the interparticle interactions in the atomic system. This interparticle 

potential, or potential energy function, is used to evaluate accelerations (i.e. forces) in eq. 

(2.2.2.1) at each step in the iterative numerical procedure from particle positions. One 

common approach involves the generation of a model using a set of simple equations to 

describe the complete categories of interactions present between atoms: each equation 

provides the description of each specific category of interaction. A widely used set of 

equations for evaluating the interatomic potentials in polypeptide or protein systems used 

by the AMBER package 13,14 is:     
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        (2.2.4.1) 

which consists of terms representing the bond stretching and angle bending terms by a 

simple harmonic expression, the dihedral angle twisting term by a truncated Fourier 

series, the van der Waals interaction by a Lennard-Jones potential, and electrostatic 

interactions by a Coulombic interaction of atom-centered partial charges. In eq. (2.2.4.1), 
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req is the equilibrium bond length and θeq is the equilibrium bond angle, r and θ 

correspond to the distance and angle for the actual bond and angle at an instantaneous 

step. Kr and Kθ are the respective harmonic force constants for the bond stretching and 

angle bending. Vn, n, φ , and γ represent the magnitude, periodicity, dihedral angle, and 

phase of the torsion respectively.  For non-bonded potentials, rij is the distance between 

two atoms; Aij and Bij are constants related to van der Waals well depths and radiuses of 

atom i and atom j. qi and qj are atomic charges, and ε represents the dielectric constant of 

the environment. A full set of the constants (Kr, Kθ , req, θeq, Vn, n, γ, Aij, Bij, qi, qj) for all 

types of atom is commonly referred to as the “force field” and is a major component of 

MD programs. AMBER force fields are provided in the AMBER package 13,14 or in the 

literature 15-19,20,21.  

The empirical force field is commonly derived from quantum calculations and 

then is fitted from experimental data. Fundamentally, a good force field is able to model 

accurately the interaction energy between atoms and to be employed for a large number 

of biomolecules. Several different force fields are available for protein folding 

simulations. The familiar ones include the following (not an exhaustive list): AMBER 15-

19, CHARMM 22-24, OPLS-AA/L 25,26, and GROMOS 27,28 etc. Developed by different 

research groups from different level quantum calculations and different experimental data 

sets, these different force fields may give different MD simulation results for the same 

polypeptide or protein. Even for the AMBER force fields, seven major generations exist 

including the AMBER84 15, 86 16, 94 17, 96 20, 98 21, 99 18 and 2003 19 force fields. These 

different generations use the same mathematical form (eq. 2.2.4.1) but are characterized 

 22



by different sets of parameters and may give different simulation results. The quality of 

the results of an MD simulation strongly depends on the accuracy of the force field.  

 

2.2.5. Canonical ensemble MD and the Nosé-Hoover Chain method  

An MD simulation generates detailed information such as atomic positions and 

velocities etc.  Collected from a large number of steps, this detailed information can be 

converted into macroscopic thermodynamic or kinetic quantities (pressure, temperature 

etc.) 1. Therefore, MD is also a tool for sampling from a statistical mechanical ensemble 

and determining ensemble averages of those thermodynamic quantities or equilibrium 

properties.  In statistical mechanics, statistical ensembles are usually characterized by 

three fixed values of six thermodynamic variables including energy, E; temperature, T; 

pressure, P; volume, V; particle number, N; or chemical potential, µ. The macroscopic 

observables obtained from averaging over a large number of identical systems with each 

in different microscopic configuration are formulated as ensemble averages 2. MD 

simulations in this dissertation involve only two fundamental ensembles: microcanonical 

or canonical ensembles. The microcanonical ensemble is characterized by constant 

particle number N, constant volume V, and constant total energy E, and is denoted as the 

NVE ensemble. The canonical ensemble is the NVT ensemble, which is characterized by 

constant particle number N, constant volume V, and constant temperature T. In MD, the 

thermodynamic variables to determine an ensemble can be set as control parameters that 

specify the conditions under which a simulation is performed 2. 

The original MD simulation we describe up to now according to e.q. (2.2.2.1) 

deals with a microcanonical ensemble. During the simulation, the number of atoms in a 
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polypeptide or protein is fixed to N and no addition or subtraction of atoms happens in 

the system. The volume is fixed and for an isolated system in standard Newtonian 

dynamics, the total energy is always conserved.  Therefore, a dynamical trajectory of this 

simulated system is a series of microscopic states having constant N, V, and E, 

corresponding to a microcanonical ensemble. However, many experimental 

measurements are taken under the conditions of constant temperature and volume or 

constant temperature and pressure. Therefore, in order to obtain the equilibrium 

properties of a system under these conditions, it is necessary to build the corresponding 

ensemble for MD. 

Several schemes have been proposed to design canonical ensemble MD 

simulations by coupling the simulation to a thermal bath. The oldest method is a 

momentum scaling procedure, in which the velocities of the particles are rescaled at each 

time step to exactly maintain a reference temperature 29. Though its use is straightforward, 

this method has not been demonstrated to give the correct statistical mechanical values of 

the canonical ensemble’s properties 30. Berendsen 31 proposed a weak-coupling algorithm 

for constant temperature MD. In Berendsen coupling, a single velocity scaling factor is 

only used for all atoms. This algorithm ensures an appropriate total kinetic energy for the 

desired temperature but does not guarantee an appropriate local temperature distribution. 

Andersen temperature coupling provides imaginary collisions to randomize the velocities 

of the particles in a Maxwellian distribution that is able to reproduce the canonical 

ensemble 32,33. Because of these sudden stochastic collisions, however, the MD trajectory 

is discontinuous in phase space.  
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Perhaps the most widely used thermostating algorithm to generate the canonical 

ensemble is the Nosé-Hoover chain (NHC) method 30,34,35. In this method, a set of M 

thermostats, which successively thermostat each other, act as a heat bath coupled to the 

system. If the M thermostats have coordinates, 1η , …, Mη , momenta, , …, , and 

masses, , …, Q , the equations of motion can be expressed as 
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and the thermostat forces Fk (k=1, …, M) take the form 
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where d is the dimension of particle’s variables. In a Nosé-Hoover chain of M 

thermostats, only the first thermostat interacts with N particles while others are additional 

thermostats to form a simple one-dimensional chain with the first. However, all 

thermostats together control the kinetic energy fluctuation of all degrees of freedom from 

both particle and thermostat. The demonstration of this Nosé-Hoover chain thermostating 

algorithm for MD simulations to generate the exact canonical ensemble and the 

determination of the thermostat masses etc. can be found in the references 2,30,34,35.  
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Statistical ensembles can impose an extra restriction on the classical microscopic 

states accessible with the simulated system such as energy conservation in 

microcanonical ensembles and constant temperature in canonical ensembles. A 

hypersurface is then defined if the ordinary phase space is extended to include this 

restricted ensemble 2. The hypersurface in the NVE ensemble is called the constant 

energy surface and in the NVT ensemble is the constant temperature surface. The ergodic 

hypothesis gives the assumption that the simulated trajectory will cover the entire 

hypersurface of the system in an infinite amount of time 2. It is worthwhile to point out 

that most algorithms, such as the Nosé-Hoover chain method, are demonstrated to 

generate the correct corresponding ensemble based on the assumption of ergodicity for 

the simulated system. 

 

2.2.6. Solvent environment and generalized Born / surface area (GB/SA) implicit 

solvent model  

 

2.2.6.1. Solvent environment 

Molecular dynamic simulations are generally used to provide atomistic 

information about biomolecules in solvent on a time scale that is not feasible with current 

experimental techniques. Since the natural environment for biomolecules such as proteins 

and DNA is in an aqueous solution, one must consider running most molecular dynamic 

simulations in water or some type of aqueous solution. In order for a molecular model to 

be as accurate as possible, many simulations are therefore carried out in the presence of 

explicit solvent molecules.  In these simulations, the biomolecule solute is immersed in a 
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large box of water molecules with periodic boundary conditions. The water molecules are 

modeled by several types such as the 3-site TIP3P, 4-site TIP4P or 5-site TIP5P, which 

are parameterized to be used in MD and reproduce many experimental water properties 

with reasonable computational cost 8,36.  As an example, in the TIP3P water model, two 

O-H bonds are constrained and a third bond is created between the two hydrogen to form 

a rigid molecule 8.  The periodic boundary conditions 1,37 eliminate the boundary problem 

in which water molecules on the surface of an isolated box can experience quite different 

forces from waters in the bulk. By creating the periodic image of the real box in each 

direction, the boundary conditions allow the water molecules to move freely between the 

original box and its neighboring images and preserve the forces acting on all the atoms.  

Furthermore, cutoff methods are used for truncation of the long-range interactions 

between remote water molecules and the solute or among water molecules themselves 1. 

A radius from an atom imposes an upper distance limit on the calculation of its non-

bonded interactions from other atoms and defines a cutoff distance. Usually, this cutoff 

distance must be long enough (at least 10 Å) in order to obtain an accurate calculation of 

long-range electrostatic interactions. In a pair-wise potential, the number of these 

nonbonded interactions increases with the square of the number of atoms. The 

implementation of the nonbonded cutoff after certain distance can save significant 

computational costs in an explicit solvent MD simulation.   

Although the calculations employing explicit solvent models are accurate enough 

to reproduce a variety of experimental data, these calculations usually involve thousands 

of discrete water models and are very computationally demanding. In fact, several orders 

of magnitude more computer time is generally required in these explicit solvent 
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calculations compared to corresponding gas phase calculations on the same biomolecule 

38. On the other hand, if the same CPU time is considered, these explicit solvent 

calculations can only be employed to investigate the dynamics of a very small portion of 

a large biomolecule (e.g. protein). As an example, we simulate a small terminal-blocked 

polyalanine of 13 residues (Ala13). This polypeptide has 142 atoms and is 48 Å at the 

fully extended length. A cubic box of water molecules as large as 70 Å ×70 Å ×70 Å 

must be built in order for a 10 Å cutoff between the surface and any atom of the 

polypeptide. This results in a system of around 3300 water molecules and 10000 atoms 

for this small polypeptide Ala13. The computational cost for this system will be equal to 

that from a gas phase simulation for a very large protein of around 600 residues. 

Therefore, the explicit solvent simulations are usually lengthy and costly, even with 

today’s powerful supercomputers. 

 

2.2.6.2. Generalized Born / surface area (GB/SA) implicit solvent model  

The solution to overcome this limitation of large computational cost is to replace 

the explicitly represented solvent by continuum models of implicit solvation effects 39-45. 

In continuum solvation models, the solvent is usually treated as a continuous medium to 

surround the solute at its van der Waals surface. A modified or new set of interactions 

between the solute atoms is constructed to simulate the relevant features (such as 

electrostatic effects) from the surrounding solvent, and mimic the entire medium having 

the average properties of the real solvent. Because the implicit solvation models do not 

include any atom from the bulk solvent, these models can provide approximate solvation 

effects and dramatically reduce computational time. 
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A variety of implicit solvation models have been described over the last two 

decades. The earliest empirical model is proposed by Daggett and coworkers 46,47, who 

use a distance dependent dielectric function to modify the electrostatic interactions 

between solute atoms for mimicking the presence of the high dielectric water. This 

function is included in the potential energy function for AMBER force fields shown as 

the eq. (2.2.4.1) in which ε can be assign with rij or 4rij. This simple distance dependent 

dielectric model lacks accuracy to reproduce the real solvation effects but shows no extra 

computational cost compared to the gas phase simulations and has been widely used 

before 48-51. On the other hand, the statistical continuum electrostatic theory successfully 

provides accurate representations of solvation and solvent-mediated interactions through 

a finite-difference Poisson-Boltzmann (PB) electrostatic equation in a multiple dielectric 

model 44,45,52-55. However, the calculations of the numerical solution of PB equation are 

also too costly to be directly incorporated into MD at each integration step in a routine 

study 56,57. Nevertheless, the classical continuum theory serves as the cornerstone for the 

development of several fast analytic implicit solvent models recently. Among these 

approximate analytic versions, the generalized Born (GB)/ surface area (SA) solvation 

model is the most attractive proposed model to date 49-51,58-60. This model is often able to 

reproduce the solvation energies and individual charge-charge interactions given by the 

computationally intensive Poisson-Boltzmann approach for a variety of biomolecules 

38,54,61-68. A little more detailed description from the literature of this GB/SA model as 

follows. 

In the GB/SA model 69, the total energy function Etotal (eq 2.2.6.2.1) in implicit 

solvent environment generally includes the energy terms of the solute, Epotential, and the 
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solvation energy, Gsol, for the interaction of the protein with the surrounding solvent.  The 

Gsol term is traditionally considered as a sum of a solvent-solvent cavity term (Gcav), a 

solute-solvent van der Waals term (GvdW), and a solute-solvent electrostatic polarization 

term (Gpol) 69.  

polvdwcavsol

solpotentialtotal

GGGG

GEE

++=

+=
                                                            (2.2.6.2.1) 

A combination of the first two terms for the solvation energy is linearly related to 

solvent-accessible surface area of the atomic types of the solute (eq 2.2.6.2.2). In eq. 

(2.2.6.2.2), the surface area is determined from the locus of points swept out by the center 

of the solvent sphere when rolling over the van der Waals surface of a protein 70. SAk is 

the total solvent-accessible surface area of atoms of type k, σk is an empirical atomic 

solvation energy parameter, and the summation extends over all atomic types k.  

k
k

kvdwcav SAGG ∑=+ σ                                                                  (2.2.6.2.2) 

We use the linear combination of pair-wise overlaps (LCPO) approach 71 to 

calculate the accessible surface area SAk while a preliminary value of +7.2 69,72 or +5.0 

54,73 cal/(mol - Å2) of the surface tension σk (dependent upon the GB formula selected) 

was used for all atom types. 

The main equation in the LCPO method used to compute the accessible surface 

area of atoms i (Ai) can be expressed as 71 
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Where N(i), N (j) stands for the neighbor list of atoms that overlap with atom i, and atom 

j, respectively. Si is the surface area of the isolated sphere i. Aij represents the area of 

sphere i buried inside sphere j.  P1, P2, P3, and P4 are overlap parameters obtained by 

multiple linear regressions against numerical surface areas of a set of test compounds.  

The isolated individual area Si and the overlap area Aij take the following forms 71,74: 
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in which ri and rj are atomic radii (the sum of van der Waals radii and solvent-probe 

radius of 1.4Ǻ), and dij is the internuclear distance. Aij is only computed over pairs of 

overlapping atoms and is set to zero for all pairs of nonoverlapping atoms.  On the right 

of eq. (2.2.6.2.3), the second term, involving summing over Aij, counts the negative effect 

of pair-wise overlaps of sphere i with its all neighbors. The third and fourth terms 

summing over Ajk, compensate for the over-subtraction of overlaps between i’s neighbors 

(j and k). 

The LCPO method utilizes united atoms to compute the solvent-accessible surface 

areas. The atom types are determined based on atomic number, hybridization, and 

number of bonded neighbors. The overlap parameters and atomic van der Waals radii of 

each atom type, as well as the first and second derivatives of the energy with respect to 

atomic positions can be found in the literature 71.   

The Gpol term is calculated from the generalized Born (GB) equation. The original 

from was introduced by Still and coworkers 69:  
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Where εp represents the low dielectric value inside of the protein, εw is the water (or other 

solvent) dielectric constant, rij is the separation distance of particles i and j,  qi, qj are their 

charges, and αi, αj are the corresponding effective Born radius 37, respectively. The 

effective Born radius describes the average distance form a charge to the continuum 

dielectric boundary. In eq. (2.2.6.2.5), fgb is the complex function of the distance rij and 

the effective Born radii αi and αj. It interpolates between the αi (or αj) of small rij and rij 

itself at large distances.  

Several different research groups 38,62,63,65,72,73,75-80 have done a series of works to 

extend this general formalism and establish a parameterization consistent with widely 

used force fields such as AMBER 17,18,20, CHARMM 23,24,  Jorgensen’s OPLS 25, and 

AM/SM 79,80 etc. During their parameterization, the generalized Born equation and fgb 

function are all modified a little from the eq. (2.2.6.2.5). Meanwhile, the parameterization 

is usually capable of reproducing accurate electrostatic salvation free energies based on 

the target force field compared to the finite difference solution to the PB equation 52.  

Here I will briefly describe 4 GB models parameterized for use with the AMBER force 

field.    

Tsui and coworkers proposed a modification that incorporates a Debye-Hückel 

term in the generalized Born equation to account for salt effects at low salt 

concentrations 

gbfe κ−

73,75:  
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in which κ is the Debye-Hückel screening parameter. In eq. (2.2.6.2.6), the low dielectric 

value inside of the protein is considered one and the fgb function remains unchanged. On 

the other hand, Jayaram and coworkers suggest the modification in fgb function while 

keeping the original generalized Born equation, taking the forms 72,77:   
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For a biomolecular solute containing multiply charged particles and an arbitrarily 

shaped molecular surface, the effective Born radii of any charged atom is dependent upon 

the positions and volumes of all other atoms in the solute. It is estimated from a 

numerical integration procedure in the original GB/SA model 69. Hawkins and coworkers 

proposed an analytical approximation — a pair-wise descreening procedure—to estimate 

the effective Born radii from a sum over atom pairs 79,80:  
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Here ρi is an intrinsic radius for atom i and takes the form: 

)( offsetiii bRS +=ρ                                                                      (2.2.6.2.9) 

where Ri is the van der Waals radius and Si is the screening parameter. The boffset is not 

used in the original formulation introduced by Hawkins and coworkers 79,80, nor is it used 

in the modified GB version by Jayaram and coworkers 72,77. Tsui and coworkers, 

however, use this modification. We use GB1 to represent the standard pair-wise 

generalized Born model described by eq. (2.2.6.2.6) 73,75. GB2 uses the same eq. 

(2.2.6.2.6) but introduces an extra packing correction factor λ for the function 

),,,( jiji rrg ρρ  in eq. (2.2.6.2.8) 76. We use GB4 to represent the modified generalized 

Born model shown in eq. (2.2.6.2.7) using fm2gb function and GB3 using the fm1gb function 

72,77. The input parameters follow the standard values for each GB/SA implicit model 

developed. 
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MD procedures require first derivatives of the Gpol energy with respect to the 

Cartesian coordinates of the atoms. The derivatives did not appear in the original 

literature. It is not a tremendous task to make those derivations, but one still needs to 

work with effort and caution.  The implementation of these GB implicit models in the 

MD program package is difficult, but vectorized pseudocode for the algorithms to 

compute Gpol and the derivative forces is available 73,81.  The GB/SA implicit models 

involve two N2 pair-wise calculations, one to calculate the effective Born radius by eq. 

(2.2.6.2.8) and another to compute the Gpol derivative forces and Gpol energy. Under the 

same conditions, the simulation in the GB/SA implicit solvent model is usually 5 – 6 

times slower than the gas phase simulation. 

 

2.2.7. Removal of translational modes and seamless restart format  

 

2.2.7.1. Removal of translational modes 

Now, we have written molecular dynamics computer programs and can run 

conventional MD simulations (NVE and NVT), even for a large, complex biomolecular 

system. However, we still need to consider several issues. First, the three translation 

modes of molecular motion should be removed. 

The algorithm to remove translation modes of the simulated system is relatively 

simple. At each step, the translation motions only affect the center of mass position but 

not the relative positions between atoms of the system. The coordinates of the center of 

mass at any instant in time can be expressed as 82: 
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Therefore, the updated positions of atoms after removal of translational motion are 

related to the original positions by  

centeri
remove

i rrr −=                                                               (2.2.7.1.2) 

The translation motions can be removed at each step or after a certain number of steps. 

 

2.2.7.2. Seamless restart format  

The second issue is restarting the simulation.  

From the numerical integration scheme in MD (Fig. 2.2.2.1), we know that the 

simulation can be started from a full set of a system’s initial positions and velocities. The 

restarted simulation can also begin from a full set of positions and velocities at any 

instant in time. This data can be recorded in an output file at the stop step from the former 

simulation run. Restarted simulations in AMBER use this method. However, this method 

causes a minor problem. The restarted trajectories are different from the original 

simulation.  

The default initial parameters cause the discrepancy when restarting a simulation 

from a trajectory. According to the velocity-Verlet integrator (eq. 2.2.2.1), the old forces 

are needed to update the velocities at the current step allowing for the positions at the 

next step to be calculated. The old forces are defaulted to zero for the initial step, but they 

should not be zero at the stop step in the former simulation. If the forces related to the 

status of the stop step are stored in a binary file and are restored upon restart, the 
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trajectory can be recovered exactly. This restart method has been incorporated within our 

program. 

This restart method is not universally seamless. If a simulation is restarted on 

another supercomputer with a different operating system, the binary data file cannot be 

read and the text data file must be used. The text file will cause some round off error 

problems on the supercomputer, and the restarted trajectory will not be identical. 

 

2.3. Current molecular dynamics simulation methods 

 

2.3.1. Simulated annealing (SA) 

Simulated annealing is one of the most powerful algorithms used in various 

applications for global minimum searches 9,59,83-88. In the original simulated annealing 

algorithm proposed by Kirkpatrick etc. 83, a high initial temperature is introduced and 

gradually reduced when the system moves. The move is accepted if it is downhill in the 

energy surface. If it is uphill, the move is only accepted when it has a larger acceptance 

probability than a randomly generated number in the interval (0,.1) 83. The Metropolis 

criterion (eq. 2.3.1.1) is used to calculate the acceptance probability  )( Ep ∆ 89: 
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                               (2.3.1.1) 

Where  is the Boltzmann constant, T is the temperature, and Bk E∆  is the energy change 

of the move set. The move set can help the system to surmount large energy barriers at 

high temperatures and force the system to freeze into an energy minimum at low 

temperatures 84. The more slowly the temperature decreases, the more likely is the chance 
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of locating the global minimum. Unfortunately, without extremely long simulations with 

extremely slow cooling procedures, the system often settles into a local minimum rather 

than the global minimum 84. As a result, iterations of heating and cooling is necessary for 

simulated annealing to find the global potential energy minimum of complex system such 

as proteins.  

Generally, simulated annealing can be considered as a technique to use alternate 

heating and cooling to manipulate the kinetic energy of the system. Increasing the kinetic 

energy lets high energy barriers be crossed, while decreasing the kinetic energy allows 

the energy minima to be located. The global energy minimum has the highest probability 

of trapping the system during repeated heating and cooling.  

 
2.3.2. Generalized-ensemble algorithms and replica exchange method (REM) 

 

2.3.2.1 Generalized-ensemble algorithms 

From Hamiltonian mechanics (eq. 2.2.1.3), each state (r, p) of potential energy E 

with the Hamiltonian  in a canonical ensemble at temperature T is weighted by 

the Boltzmann factor: 

),( prH

)),(exp();( prHTEWB β−=                                                          (2.3.2.1.1) 

where β is the inverse temperature defined by β=1/kBT (kB  is the Boltzmann constant). 

Then, the canonical probability distribution of potential energy, PB (E; T), is given by 90,91 

);()();( TEWEnTEP BB ∝                                                          (2.3.2.1.2) 

Here n(E) is the density of states. Since the Boltzmann factor decreases exponentially as 

E increases but n(E) increases, the canonical ensemble should generate a Gaussian 
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probability distribution that has a maximum at the average potential energy at 

temperature T 90,92. On the other hand, each state can be weighted by a non-Boltzmann 

weight factor )(EWB in such a way that a uniform probability distribution of potential 

energy )(EPB  is obtained 90,91: 

constEWEnEP BB =∝ )()()(                                                      (2.3.2.1.3) 

 This flat probability distribution implies that a random walk in the potential energy space 

can be realized from this weighting technique.  

Generalized-ensemble algorithms utilize this non-Boltzmann probability 

weighting factor in Monte Carlo or MD simulations to perform random walks in energy 

space 90,91. The random walks allow the simulation to cross any energy barrier and then to 

sample more conformational space than by conventional NVT methods 90,91. Dependent 

upon the ensemble characterizing the one-dimensional space in which the random walk is 

performed, three generalized-ensemble methods exist, including the multicanonical 

algorithm 93-99, simulated tempering 98-104, and 1/K-sampling 99,105,106. A simulation using 

the multicanonical algorithm, which is perhaps the most well known generalized-

ensemble method, directly performs a random walk in potential energy space. Simulated 

tempering and 1/K-sampling perform random walks in temperature and entropy space, 

respectively; these random walks, however, also induces a random walk in potential 

energy space and allows the simulation to escape from any local minimum-energy states 

90,91.   

Unfortunately, the non-Boltzmann weight factor in generalized-ensemble methods 

is not usually known a priori and has to be determined by iterations of short trial 

simulation runs 90,91. These preliminary simulations are iterated at a sufficiently high 
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temperature, following a practical procedure to secure a nearly flat potential energy 

distribution at the reference temperature. The description of this iterative process can be 

found elsewhere 107,108; however, this process can be time-consuming and very tedious 

for systems as complex as proteins with myriad local minimum energy states 90,91.   

 

2.3.2.2. Replica exchange method (REM) 

Developed as an extension of simulated tempering, the replica-exchange method 

(REM) greatly alleviates the difficulty of weight factor determination 90,92,109-113. In this 

method, a number of non-interacting copies (or replicas) of the original system are 

simulated independently and simultaneously at constant temperatures. After a certain 

number of steps, pairs of replicas exchange temperatures with a Metropolis transition 

probability. The non-Boltzmann weight factor is just the product of Boltzmann factors for 

each replica and so it is known 90,91.   

A simplified description is given here to show how the replica-exchange method 

works in MD simulations. Suppose that only two non-interacting replicas (i, j) of the 

original system in the canonical ensemble at two different temperatures (Tm, Tn) exist in 

the generalized ensemble of a REM simulation. Initially, the replica i corresponds to Tm, 

and the replica j corresponds to Tn. If we use x to label a state in phase space, it is 

specified by a complete set of coordinates (r) and momenta (p) of the system’s N atoms. 

Then, the , can be used to represent a state for replica i at Ti
Tm

x j
Tn

x m and replica j at Tn. 

respectively: 
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Let X = ( , ) stand for a combined “state” in this generalized ensemble. 

Because the replicas i and j are non-interacting, the weight factor for the state X can be 

simply given by the product of Boltzmann factors for each replica 

i
Tm

x j
Tn

x

90,92: 

 { }),(),(exp)( jj
T

ii
TREM HHXW

nm
prpr ββ=                                         (2.3.2.2.2) 

The exchange of the replica pairs for temperatures in REM indicates a transition 
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xxXxxX =→=                                                      (2.3.2.2.3) 

This transition only deals with the momenta exchange of replicas i and j. 

Meanwhile, the coordinates of the replicas always remain the same.  During this 

transition, the momenta for the replicas are updated by the expressions 90,92: 
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                                                                         (2.3.2.2.4) 

That is, the velocities of all the atoms in the replicas are rescaled uniformly by the square 

root of the ratio of the two temperatures. In this way, the temperatures are conserved.  

In order for this exchange process to converge towards a canonical thermal 

equilibrium distribution, a two-side balance condition on the transition probability 

 is required )( 'XXw → 91:  

)()()()( '
'

' XXw
Z

XWXXw
Z

XW REMREM →=→                           (2.3.2.2.5) 

where Z is the partition function of the entire system in this generalized ensemble. From 

the eq. (2.3.2.2.2), (2.3.2.2.4), (2.3.2.2.5) and the Hamiltonian definition eq. (2.2.1.3), we 

can easily obtain 90,92: 
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The transition balance can be satisfied by using the usual Metropolis criterion 90,92: 
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Where is used to indicate explicitly the pair of replicas to be 

exchanged in the transition process 

)|( j
n

i
T xxw

m

90,92. Note that the transition probability  

decreases exponentially with the decrease of the βs, or the increase of the temperatures. 

)( 'XXw →

In conventional REM simulations, a large number of M non-interacting replicas 

are usually required (M > 2), at M different temperatures. The replicas are arranged so 

that there is always exactly one replica at each temperature 90,92. However, due to the 

more complicated multiple exchanges possibly among M different temperatures, a 

permutation function of the temperatures towards the replicas has to be introduced to 

keep track of the one-to-one correspondence between replicas and temperatures at any 

step. The general details of REM are described in the literature 90,92.  

If M different temperatures follow the order MTTT <<< L21 , an REM 

simulation with M non-interacting replicas is then realized by alternately performing the 

following two steps 90,92: 

1) Each replica in a canonical ensemble is simulated simultaneously and 

independently at its corresponding temperature for a number of MD steps. 

2) Pairs of replicas at neighboring temperatures are exchanged with the transition 

probability in eq. (2.3.2.2.7). 
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Note that in step 2 only pairs of replicas corresponding to neighboring 

temperatures are exchanged. This approach is very reasonable because the acceptance 

ratio of the exchange decrease exponentially with the increase of the temperature updates 

90,92. Further, an appropriate temperature distribution has to be set for M different 

temperatures in order to secure the optimal performance of REM for achieving good 

thermodynamic equilibrium properties. An iterative procedure to obtain these optimal 

temperatures can be found elsewhere 109.   

While the canonical expectation value of a physical quantity such as average 

potential energy and specific heat etc., at temperature Tm (m=1, …, M), can be easily 

calculated by the usual arithmetic means 90,92, the expectation value at any intermediate 

temperature is usually achieved by multiple-histogram reweighing techniques 114,115. One 

can find those related mathematical equations to calculate the canonical expectation 

values from REM simulations in the literature 90,92.  

 

2.3.3. Locally enhanced sampling (LES) and mean field approximations   

Since its origin several decades ago, molecular dynamics has been used as a 

computation technique for solving problems in a wide variety of areas: protein folding 

116-121 (the main issue here), DNA combination 122,123, ligand-substrate binding 124-128, 

ligand diffusion 129-133 and chemical reactions 134-138 etc. Among these different purposes, 

a common situation likely appears that the primary interest is only a small part of the 

whole system; the other major part is neither important for solving the problem nor shows 

major variations of its thermodynamic properties. For example, to find ligand diffusion 

pathways, the ligand molecule is usually very small, while the bio-molecule substrate 
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(protein) is very large. Further, during the ligand diffusion process, the substrate usually 

does not change its overall structure although minor alterations are likely to exist in its 

local structure. For this situation, a decision about how much computational effort is 

required to solve the problem exists in molecular dynamics simulations. While simulation 

of the whole system always takes a large amount of computer time and then one cannot 

efficiently sample the conformational space of the small part of direct interest, the 

simulation of only this small subsystem with the restraint of the larger subsystem (fixed) 

may fail to give an accurate solution. Minor variations in the local structure of the larger 

subsystem usually do have an effect on the behavior of the smaller subsystem.  

The locally enhanced sampling (LES) method 139 has been developed to deal with 

this situation. In LES, the small part of the system of primary interest is copied several 

times while the rest of the system remains uncopied. The simulation then calculates a 

bundle of trajectories for the smaller subsystem while generating only a single trajectory 

for the larger subsystem 139. In this way, considerable savings in computer time are 

achieved. The sampling of the interesting part is enhanced multiple times, but the total 

simulation time increases only a little compare to simulations of one single copy.  This 

approach creates an unphysical system in which the large uncopied subsystem acts as the 

bath and simultaneously interacts with several copies of the small, interesting subsystem. 

As a result, it feels the average of the forces (the mean field) contributed by the copied 

atoms. The copied atoms, on the other hand, feel the same force that the corresponding 

real atom would feel from the single bath 139. 

The LES equations of motion can be generated by using the time-dependent 

Hartree (TDH) approximation and the Liouville formulation of classical mechanics. In 
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the phase space TDH approximation related to the classical dynamics, it was assumed 

that the classical phase-space density function ρ(P, Q, t) can be approximated as a 

product of the copied subsystem’s density and the bath’s density 139: 

),,(),,(),,( ttt bbbsss QPQPQP ρρρ =                                                       (2.3.3.1) 

Where P and Q are, respectively, canonical momenta and coordinates representing the 

state of all degrees of freedom in the system and s, b denotes the subsystem of interest 

and the bath, respectively. In order to derive the individual equations of motion for the 

subsets s and b, their density functions ),,( tsss QPρ and ),,( tbbb QPρ are expanded as δ-

functions 139: 
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Here each delta function represents the sub-state for the various copies or the single bath. 

The C is the number of copies and skω  is a weighting function, which is generally taken 

to be 1/C in LES. With these phase-space distributions of eq. (2.3.3.1) and (2.3.3.2), the 

LES equations of motion can then be obtained by using the Liouville equation 140:  
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Here H is the classical Hamiltonian of the system. The details can be found elsewhere 139. 

The resulting equations are 139: 
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The index i and j label the particle in the copied subsystem and bath respectively. The 

index k labels the copy. The lower case variables refer to the copied subsystem s and the 

uppercase variables refer to the bath b.  A bundle of trajectories corresponds to the s 

subsystem, each one of which moves in the potential determined by the coordinates of the 

bath. The single trajectory of the bath is solved by the effective potential obtained by 

averaging over those simultaneous trajectories of subsystem s ( kω =1/C) 139.   

Because of its desirable computational advantage and great practical utility, the 

LES approach quickly captured the interest of computational scientists. In the years after 

it was originally proposed, a family of mean field methods have been developed, 

including conformational matrix (CM), mean-field algorithm (MFA), mean-field theory 

(MFT), and self-consistent mean field (SCMF) 141. Over the last decade, researchers have 

employed these LES or related mean field methods in a wide variety of optimization 

areas including cofactor-enzyme binding 142-144, non-equilibrium studies 145,146, free 

energy calculations 147,148, and global minimum  searching 48,87,149. The simulation results 

from this variety of applications indicate that the methods based on mean field theory are 

advantageous in classical or quantum dynamics. As an example, when the LES method is 

applied to model side chains in peptides and proteins for energy minima searches, it is 
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found that LES simulations enhance the sampling of the interesting side chains, and they 

also facilitate the conformational transition of the whole peptide or protein system 87. An 

analysis of the potential energy landscape showed that the energy barriers between 

potential energy wells are reduced during the LES trajectories 87. Later, a reduction in 

energy barrier to make a conformational transition easier became the standard in LES and 

other mean field approximations 48,88,141,149.  

Although LES and related optimization methods based on mean field 

approximations show several significant advantages compared to conventional molecular 

dynamics methods, they suffer limitations in their ability to model a Newtonian 

dynamical process 150-152. The trajectories generated with such methods do not correspond 

to physically possible trajectories. Also, when an LES simulation’s trajectories are used 

to calculate thermodynamic properties, the result is found to violate the equipartition of 

energy theorem due to force averaging from the subsystem copies to the bath 150. This 

violation can cause the “temperature disparity problem”, which is a failure of the 

subsystem and bath temperatures to reach the same equilibrium value 151,152. Furthermore, 

due to the same force averaging approximation, local minima in LES simulations are not 

the same as those on the original energy surface, although the global potential energy 

minimum remains the same 153. These limitations indicate that the LES mean field 

approximation should be used carefully in molecular dynamics simulations despite its 

great practical utility. 
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Chapter 3 

 

Divergent Path Search Strategy and Limitations of Conventional Molecular 

Dynamics Simulations for Protein Folding 

 

3.1. Introduction 

During the past several decades, molecular dynamics (MD) 1,2 and Monte Carlo 

(MC) 3 simulation methods have evolved into important and widely used theoretical tools 

in chemistry, physics, and biology to model the detailed dynamical behavior of many 

systems, from atomic clusters to large biological molecules. However, a complete and 

accurate simulation of these systems is difficult due to the problem of quasiergodicity, in 

which the system is easily trapped in local minima of the energy landscape 4. A biased 

non-ergodic trajectory almost always appears on the time scale of the simulation. In order 

to overcome the quasiergodicity problem by enhanced energy barrier crossings, many 

techniques including Simulated Annealing (SA) 5-8, Local Enhanced Sampling (LES) 8-11, 

Multiple-copy methods 12-14; and Generalized Ensembles (GE) 4,15-30 have been proposed 

and applied to a variety of sampling and optimization problems, including the protein 

folding problem. 

Because a generalized ensemble simulation performs a random walk in potential 

energy space over a wide temperature range, generalized ensembles have been shown to 

be very effective techniques to overcome the quasiergodicity problem in simulations. 

Many different techniques for using generalized-ensemble algorithms have been 

developed in the past several years, however, most of these techniques, including 
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multicanonical algorithms 18,19,30, simulated tempering 20,29,30, and the jump-walking 

algorithm 21-24 have been introduced for MC rather than MD simulations. So far the 

replica exchange method (REM) is the only generalized ensemble technique widely used 

within MD 16,17,25-27. This interesting observation inspired us to re-consider the intrinsic 

character of MD, especially the quasiergodicity problem in MD simulations, compared to 

MC simulations. This re-consideration helped us to realize three limitations in 

conventional MD due to the time scale of the simulation and to develop some strategies 

to enhance energy barrier crossing and phase space sampling in microcanonical (NVE) or 

canonical (NVT) ensemble simulations.  

In this chapter, we present a new MD protocol, called divergent path (DIP) search 

simulations. The simulations using this new technique use multiple simultaneous 

simulations of a polypeptide.  Each simulation starts the polypeptide from the same 

configuration, but directs each polypeptide along a different, independent trajectory.  The 

polypeptides following different trajectories differ only in the directions of their initial 

atomic velocities, but have the same initial temperature and thus have the same average 

atomic speed. Comparing results from conventional MD simulations with tests of this 

divergent path search strategy clearly indicates that potential energy traps, free energy 

traps, and kinetic traps constitute important limitations of conventional MD simulations 

used to search for the global potential energy minimum. 

Potential energy traps appear when constant energy (constant NVE) simulations 

become trapped in a local potential energy well, where the kinetic energy is not large 

enough to overcome high potential energy barriers between local minima. Free energy 

traps occur when constant temperature (constant NVT) simulations reach thermal 
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equilibrium and become trapped in free energy wells, so that simulations sample portions 

of phase space having only a certain range of potential energies.  The limited sampling of 

the potential energy surface may arise because of a potential energy trap, but it may also 

arise because of rapid exchange between kinetic and potential energies. Because of this 

rapid energy exchange, the thermostat that restricts the range of possible kinetic energies 

also restricts the system’s potential energies to limited regions of phase space. We call 

the (limited) sampled regions of phase space “thermodynamically accessible regions”. 

Kinetic traps, on the other hand, occur in a constant NVE or NVT simulation that evolves 

into a large number of equivalent substates within a broad potential energy well or a 

small number of thermodynamically accessible regions at a given simulation temperature. 

This causes kinetic problems because it would take an unrealistic amount of time for such 

a simulation to reach other thermodynamically accessible regions after it finished 

sampling the large number of thermodynamically accessible substates.  Kinetic traps are 

reached once mechanical equilibrium is reached, once vector velocities of the atoms have 

reached equilibrium.  Thermal equilibrium, when the temperature and average atomic 

speeds, as well as their fluctuations, are approximately constant, is typically achieved 

much earlier in a constant NVT simulation than mechanical equilibrium, when vector 

velocities of the atoms have reached equilibrium. 

Polyalanine is the simplest peptide to adopt the α-helical conformation 31, which 

is the most abundant and important secondary structural element of proteins. Experiments 

32-37 show that short alanine-based peptides appear to form an α-helical conformation in 

aqueous solution and simulations 16,28,31,38-40 of uncharged polyalanines with a sequence 

length between 10 and 30 indicate that the α-helical conformation is the lowest energy 
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folded conformation for the peptides both in vacuo and in aqueous environments. We 

selected a 13-residue polypeptide of alanine (Ala13) to test the divergent path search 

strategy in this study.   

 

3.2. Simulation methodology 

 

3.2.1. Simulation protocol and potential energy function 

All calculations reported in this work were performed by using our own 

implementations of conventional constant energy or constant temperature MD, and 

divergent path (DIP) search simulations. In the DIP simulations, we allow several 

independent polypeptides of the system to evolve simultaneously such that each 

polypeptide does not interact with the others and each one follows its own trajectory as in 

a conventional NVT simulation. Usually, these independent polypeptides share the same 

initial structure and temperature, differing only in the directions of atomic velocities. The 

initial velocities of atoms within the first polypeptide were generated from a Gaussian 

velocity distribution 41 at the canonical temperature, and the velocities of all other 

polypeptides are re-set by randomly changing the original direction but not the magnitude 

of the velocity vector for each atom in each polypeptide. The Nosé-Hoover Chain method 

42 is used to control the temperature in NVT simulations.  

The potential energy function (eq. 3.2.1.1) of the gas-phase polypeptide uses the 

generic force field with AMBER force field parameters 43. 
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The force field consists of bond length stretching and angle bending represented by a 

simple harmonic expression. The dihedral angle term is represented by a truncated 

Fourier series, the van der Waals interaction is modeled by a Lennard-Jones potential, 

and electrostatic interactions are represented by a Coulombic interaction of atom-centered 

partial charges.  

 

3.2.2. Computational details 

The AMBER package 44 was used to generate the initial coordinates of a 13-

residue peptide of alanine with the extended structure. The termini of this Ala13 peptide 

were blocked (acetylated at the N terminus and methyl-amidated at the C terminus) (ACE 

Acetyl-(Ala)13-NME N-methyl). The initial coordinates of the α-helical form of Ala13 

were obtained from the Midas program 45 by setting each combination of φ, ϕ torsion 

angles of the polypeptide backbone to the ideal values: φ = -57° and ϕ = -47° 46. The final 

steps necessary to produce suitable input files for our program were accomplished using 

the Molecular Modeling Toolkit 47. We used the velocity-Verlet algorithm 2,41,48 to 

integrate the equations of motion, using forces derived from the AMBER 96 43all-atom 

force field, while the temperature was controlled in canonical ensemble simulations using 

the Nosé-Hoover Chain (NHC) 42 algorithm. The SHAKE algorithm 49 was used to 

constrain covalent bond distances involving hydrogen and translation of the entire system 

was removed at each step. We used a time step of 1 fs, but collected trajectory data 

(energies and coordinates) at 1 ps intervals in all MD simulations. The total simulation 

time for each run was at least 10 ns for conventional MD and DIP simulations. 

 

 59



3.3. Simulation facts and derived results  

 

3.3.1. Thermal and mechanical equilibrium in conventional MD simulations  

Figure 3.3.1.1 shows the time series of the potential energy, and root-mean-

square-deviations (RMSDs) between all atoms of the calculated structures and the ideal 

α-helical reference structure from four conventional NVT simulations of Ala13 in vacuo 

at temperatures of 300 K, 250 K, 200 K, and 100 K, starting from an ideal α-helix. The 

plots indicate that while all four simulations locate the same global potential energy well 

corresponding to an α-helical structure, the simulations at different temperatures sample 

very different energies.  The virial theorem 50 indicates that the potential energy of a 

canonical ensemble is a statistic average ensemble property of the temperature: at higher 

temperatures, a simulation samples higher potential energies; at lower temperatures, the 

simulation samples lower potential energies. These temperature-dependent potential 

energy histories clearly reflect the applicability of the virial theorem to the sampled 

potential energy surface because simulations at the canonical temperature usually do not 

sample the valleys but instead visit configurations of higher energy on the potential 

energy surface. Therefore, in molecular dynamics, simulations can reach equilibrium 

within a certain range of potential energies but not visit in the basins of the potential 

energy wells. In fact, these basins are usually very difficult to sample in NVT simulations 

at non-zero temperatures.  
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Figure 3.3.1.1. Time series of the potential energy and RMSDs from conventional NVT 
simulations of Ala13 in vacuo at different temperatures: 300 K, 250 K, 200 K, and 100 K, 
starting from an ideal α-helix. (a) Potential energy. (b) RMSDs between all atoms of the 
calculated structures and the initial ideal α-helical reference structure. The figure clearly 
demonstrates the virial theorem: at higher temperature, a simulation samples higher 
potential energies more; at lower temperature, the simulation samples lower potential 
energies more. 

Figure 3.3.1.1. Time series of the potential energy and RMSDs from conventional NVT 
simulations of Ala13 in vacuo at different temperatures: 300 K, 250 K, 200 K, and 100 K, 
starting from an ideal α-helix. (a) Potential energy. (b) RMSDs between all atoms of the 
calculated structures and the initial ideal α-helical reference structure. The figure clearly 
demonstrates the virial theorem: at higher temperature, a simulation samples higher 
potential energies more; at lower temperature, the simulation samples lower potential 
energies more. 
  

Thermal equilibrium is a well-established scientific principle. Thermalization 

before data collection is also a standard procedure in MD simulations, especially when 

trajectory data is to be used to calculate a phase-space average. We did not run any pre-

simulation for thermalization in our conventional NVT simulation, but the temperature 

history (Figure 3.3.1.2a - b) shows that thermal equilibrium is reached very quickly. The 

temperature is almost equilibrated within the first 1 ps (1000 steps) and then oscillates at 

300 ± 50 K under the control of the Nosé-Hoover thermal chain. Figure 3.3.1.2c – d 

display the corresponding total energy and potential energy histories for conventional 

NVT simulation of Ala13 at 300 K in vacuo. The total energy history is very similar to 

the potential energy history, differing only in the rapid equilibration of the kinetic energy. 

While the temperature (kinetic energy) quickly reaches equilibrium, the total energy and 

potential energy are still far away from equilibrium. These non-equilibrated energies are 
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display the corresponding total energy and potential energy histories for conventional 

NVT simulation of Ala13 at 300 K in vacuo. The total energy history is very similar to 

the potential energy history, differing only in the rapid equilibration of the kinetic energy. 

While the temperature (kinetic energy) quickly reaches equilibrium, the total energy and 

potential energy are still far away from equilibrium. These non-equilibrated energies are 
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caused by the lack of equilibration among the magnitudes and especially directions of the 

3N velocities. We call this a mechanical non-equilibrium state. On the other hand, 

mechanical equilibrium indicates that the 3N velocities are universally equilibrated along 

the whole polypeptide. We can therefore use the potential energy history to evaluate 

whether mechanical equilibrium has been reached or not. Thus, from the potential energy 

history (Fig. 3.3.1.2d), this simulation reaches mechanical equilibrium after a time of 

more than 2 ns.  
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Figure 3.3.1.2. Time series of various properties of the conventional NVT simulation of 
Ala13 at 300 K in vacuo, starting from an ideal α-helix. (a) Temperature (ps scale). (b) 
Temperature for the first 1 ps (fs scale). The inset shows temperature between 1 ps and 
5ps. (c) Total energy. (d) Potential energy. The figure indicates that the temperature gets 
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equilibrated very quickly (ps scale) while the energy (total energy and potential energy) 
reaches equilibrium relatively slower (ns scale). 
 

We need to consider the initial conditions of the conventional NVT simulations to 

understand the origin of the mechanical non-equilibrium state. The random initial 

Gaussian velocity distribution can only fix the initial average canonical-ensemble 

temperature and velocities but not the equilibrated velocity magnitude and direction for 

subsets of atoms. Fig. 3.3.1.3a displays the atomic kinetic energy distribution for an 

ensemble temperature of 298.5 K at the initial step, which is generated from a Gaussian 

distribution 41 at a mean temperature of 300 K, with a standard deviation of 20 K. The 

atomic kinetic energy distribution with an ensemble temperature of 297.9 K at the final 

step is shown in Fig. 3.3.1.3b. Though the direction distribution of the equilibrated 

velocities is difficult to represent, the equilibrated distribution is far away from this initial 

Gaussian distribution and highlights the difference between the equilibrated and non-

equilibrated velocities. The non-equilibrated individual velocities at the beginning step 

can cause unbalanced displacement in different parts of the polypeptide in subsequent 

molecular dynamics steps. Some atoms move very close to each other and others move 

far away.  This biased displacement causes the potential energy to resist equilibration. 

The unbalanced forces, in turn, cause the simulation to remain thermally non-

equilibrated, with a small decrease in energy. Under the perturbation of the external 

thermostat, thermal equilibrium (involving only the magnitude of atomic velocities) 

should be reached sooner than mechanical equilibrium, which involves both the 

magnitude and direction of the atomic velocities. The failure of the direction of the 

atomic velocities to equilibrate, on the other hand, indicates a mechanical non-
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equilibration state. This discrepancy between thermal equilibration time and mechanical 

equilibration time has been demonstrated in the temperature and potential energy 

histories. Fig. 3.3.1.3c – d display the bond displacement scale (defined as the ratio of 

bond displacement to bond length) distribution after 1 ns and 10 ns respectively. It is very 

clear that the latter shows much more evenly distributed displacements than the former. 

Therefore, the non-equilibrium potential energy history after thermal equilibrium is 

reached indicates the existence of a mechanical equilibration process caused as the non-

equilibrium velocities along the whole polypeptide become more uniform. The 

mechanical equilibrium state, on the other hand, indicates an equilibrated velocity 

distribution that will bring a much more uniform coordinate displacement and atomic 

interactions in the following steps. An observed result for a system that has reached 

mechanical equilibrium is that the simulation has become equilibrated in a huge number 

of equivalent energy states with similar conformations. Thus, thermal equilibrium is 

reached when the temperature or scalar velocities are in equilibrium, while mechanical 

equilibrium is reached when the more restricted velocity vectors are in equilibrium. 

Therefore, mechanical equilibrium takes more time to reach. 
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Figure 3.3.1.3. Atomic kinetic energy and bond displacement scale distribution at several 
steps from the conventional NVT simulation of Ala13 at 300 K in vacuo, starting from an 
ideal α-helix. (a) Atomic kinetic energy distribution of a 298.5 K ensemble temperature 
at the initial step. (b) Atomic kinetic energy distribution of a 297.9 K ensemble 
temperature after 10 ns. (c) Bond displacement scale distribution after 1ns. (d) Bond 
displacement scale distribution after 10 ns.  

Figure 3.3.1.3. Atomic kinetic energy and bond displacement scale distribution at several 
steps from the conventional NVT simulation of Ala13 at 300 K in vacuo, starting from an 
ideal α-helix. (a) Atomic kinetic energy distribution of a 298.5 K ensemble temperature 
at the initial step. (b) Atomic kinetic energy distribution of a 297.9 K ensemble 
temperature after 10 ns. (c) Bond displacement scale distribution after 1ns. (d) Bond 
displacement scale distribution after 10 ns.  
  

The phenomena of mechanical equilibrium explains the observation that the re-

initialization of the velocity-direction distribution in an MD simulation causes further 

simulations to leave the original states and evolve into different equilibrium states along a 

new trajectory. To show this, we ran two conventional NVT simulations of Ala13 

restarted from the final structure obtained after a 20 ns conventional NVT simulation. 

The first simulation (dark plot in Fig. 3.3.1.4b) is assigned the equilibrated velocities but 

the second simulation (gray plot in Fig. 3.3.1.4b) has velocities re-initialized by changing 

velocity directions but not their magnitudes (so the temperature remains the same for 

these two simulations). The first simulation maintains thermal and mechanical 

equilibrium very well, but the second is out of mechanical equilibrium. Another 2 ns is 

required before the simulation reaches mechanical equilibrium again.  

The phenomena of mechanical equilibrium explains the observation that the re-

initialization of the velocity-direction distribution in an MD simulation causes further 

simulations to leave the original states and evolve into different equilibrium states along a 

new trajectory. To show this, we ran two conventional NVT simulations of Ala13 

restarted from the final structure obtained after a 20 ns conventional NVT simulation. 

The first simulation (dark plot in Fig. 3.3.1.4b) is assigned the equilibrated velocities but 

the second simulation (gray plot in Fig. 3.3.1.4b) has velocities re-initialized by changing 

velocity directions but not their magnitudes (so the temperature remains the same for 

these two simulations). The first simulation maintains thermal and mechanical 

equilibrium very well, but the second is out of mechanical equilibrium. Another 2 ns is 

required before the simulation reaches mechanical equilibrium again.  
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Figure 3.3.1.4. Time series of the potential energy in the conventional NVT simulation at 
300 K in vacuo, starting from the ideal α-helix. (a) Potential energy for the first 20 ns. 
(b) Potential energy for the following 10 ns with velocities redirection (gray) or without 
(dark). The figure indicates that the redirection of the system’s velocities of NVT 
simulations will break the original mechanical equilibrium. 

Figure 3.3.1.4. Time series of the potential energy in the conventional NVT simulation at 
300 K in vacuo, starting from the ideal α-helix. (a) Potential energy for the first 20 ns. 
(b) Potential energy for the following 10 ns with velocities redirection (gray) or without 
(dark). The figure indicates that the redirection of the system’s velocities of NVT 
simulations will break the original mechanical equilibrium. 
  

Fig. 3.3.1.5 shows the potential energy and temperature histories of conventional 

NVE simulations of Ala13 at kinetic energies corresponding to 300 K in vacuo, initiated 

from the α-helical conformation. These plots clearly indicate that mechanical equilibrium 

is reached rapidly in NVE simulations. Thermal equilibrium (evaluated from temperature 

histories) and mechanical equilibrium (evaluated from potential energy histories) are 

reached almost simultaneously after 1 ps. We believe that the mechanical equilibrium in 

NVE simulations is reached more quickly than in NVT simulations because energy flow 

between the system and the heat bath under control of the Nosé-Hoover thermal chain 

makes the mechanical equilibration proceed relatively slowly in NVT simulations.  

Fig. 3.3.1.5 shows the potential energy and temperature histories of conventional 

NVE simulations of Ala13 at kinetic energies corresponding to 300 K in vacuo, initiated 

from the α-helical conformation. These plots clearly indicate that mechanical equilibrium 

is reached rapidly in NVE simulations. Thermal equilibrium (evaluated from temperature 

histories) and mechanical equilibrium (evaluated from potential energy histories) are 

reached almost simultaneously after 1 ps. We believe that the mechanical equilibrium in 

NVE simulations is reached more quickly than in NVT simulations because energy flow 

between the system and the heat bath under control of the Nosé-Hoover thermal chain 

makes the mechanical equilibration proceed relatively slowly in NVT simulations.  
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Figure 3.3.1.5. Time series of the potential energy and temperature of the conventional 
NVE simulation of Ala13 at a 300 K initial temperature in vacuo, starting from an ideal 
α-helix. (a) Potential energy (ps scale). (b) Potential energy for the first 1 ps (fs scale). 
(c) Temperature (ps scale). (d) Temperature for the first 1 ps (fs scale). The figure 
indicates that both temperature and energy reach equilibrium very quickly (ps scale) in 
NVE simulations.  

Figure 3.3.1.5. Time series of the potential energy and temperature of the conventional 
NVE simulation of Ala13 at a 300 K initial temperature in vacuo, starting from an ideal 
α-helix. (a) Potential energy (ps scale). (b) Potential energy for the first 1 ps (fs scale). 
(c) Temperature (ps scale). (d) Temperature for the first 1 ps (fs scale). The figure 
indicates that both temperature and energy reach equilibrium very quickly (ps scale) in 
NVE simulations.  
  

3.3.2. Divergent path (DIP) search simulations and three limitations of conventional 

MD simulations  

3.3.2. Divergent path (DIP) search simulations and three limitations of conventional 

MD simulations  
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Figure 3.3.2.1. Time series of various properties from a six-path (a-c) or twenty-path (d), 
DIP simulation of Ala13 at 300 K in vacuo, starting from an ideal α-helix. (a) 
Temperature. (b) Potential energy. (c) RMSD between all atoms of calculated structure 
and an ideal α-helix. (d) Potential energy for a twenty-path simulation. The figure 
indicates that DIP simulation evolving into different trajectories can sample different 
potential energy states with large conformational differences. Note: Blue: 1st, Magenta: 
2nd, Yellow: 3rd, Light blue: 4th, Purple: 5th, Brown: 6th trajectory.  
 

DIP simulations were developed to alleviate the limitations of conventional MD 

simulations for folding polypeptides. Fig. 3.3.2.1a – c displays time series of the 

temperature, potential energy and RMSD (from an ideal α-helix) in a six-path DIP 

simulation of Ala13 at 300 K in vacuo, starting from an ideal α-helical conformation. 

While the temperature histories are almost identical for the each polypeptide’s simulation 

 68



(Fig. 3.3.2.1a), the corresponding potential energies of six polypeptides (Fig. 3.3.2.1b) 

evolve differently and their minimum energy structures (Fig. 3.3.2.1c) may be located in 

different potential energy wells, corresponding to different conformations. In fact, five 

polypeptides maintain the α-helical conformation (Fig. 3.3.2.1c), while one polypeptide 

displays an unusual increasing potential energy history indicating an unfolding process: 

near 1.1 ns, the α-helical Ala13 transforms into a 310 helix (RMSD ≈ 3 Å), and then at 

2.3ns it entirely unfolds to extended structures (RMSD ≈ 8.5 Å). This unusual trajectory 

persists in simulations performed at 250 K but disappears at 200 K or below (data not 

shown here). 

The third trajectory from the initial α-helical conformation in the above 

simulations of blocked Ala13 show the very interesting feature that the global potential 

energy minimum helical conformation (Chapter 4) can be unfolded into highly energetic 

extended conformations (RMSD between 8.5 and 9.0). These conformations are stable 

even after 100 ns (data are not shown). The unfolding of these structures is not due to 

high temperature conditions; the temperature history for this trajectory oscillates near 300 

K ± 50 K (Fig. 3.3.2.1a). Escaping the local potential energy trap, where simulations 

become trapped in a local potential energy well because the kinetic energy is not large 

enough to overcome a potential energy barrier between energy wells, argue that the 

polypeptide should not unfold. The energy barrier from the global minimum α-helical 

energy well to high energy local minima corresponding to unfolded structures should be 

higher than that for the folding processes from local wells to the global well. Therefore, if 

the simulation has enough energy to escape the α-helical well, it should also escape the 

well corresponding to the extended structure. At room temperature, the kinetic energy of 
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the polypeptide seems large enough to overcome the highest potential energy barriers 

from the global energy well.  

In thermal equilibrium, the range of potential energies sampled in the simulations 

of Ala13 at 300 ± 50 K in vacuo is between approximately – 20 kcal/mol and + 80 

kcal/mol. Fig. 3.3.2.1d displays the potential energy histories of the DIP simulations with 

twenty trajectories of Ala13 at 300 K in vacuo from the initial α-helical conformation. It 

shows that more potential energy states in this region are sampled than in the six-

trajectory DIP simulation with Ala13 (Fig. 3.3.2.1b). If we consider other simulations 

from different initial configurations such as the extended structure, this range of potential 

energies is fully sampled and extensively overlapped (data not shown). 

The observed mechanical equilibration process and equilibrium states in 

conventional NVT simulations can explain this unusual unfolding simulation easily. 

While the mechanical equilibration process can make the polypeptide undergo a large 

conformational change to escape the deeper global energy well of the α-helix due to 

unbalanced coordinate displacements and interactions, the mechanical equilibrium limits 

the simulation to a local search for energy states with similar extended conformations. 

This causes kinetic problems because it would take a long computational time for the 

simulations to leave this mechanical equilibrium. This system was thus trapped in the 

high energy extended conformations. In divergent path search simulations, different 

polypeptides take different times and sample different potential energies to reach 

mechanical equilibrium (evaluated from the potential energy histories Fig.3.3.2.1b and 

d). This can also be easily explained: many different energy wells exist on the three 

dimensional PES. MD simulations beginning from an initial point can evolve into 
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different trajectories if different velocity directions are assigned to each polypeptide in 

the given trajectory. Different polypeptides evolve into different potential energy wells 

along different trajectories. The different trajectories need different equilibration times to 

reach thermal and mechanical equilibrium. 

Potential energy traps seem to be a universally cited cause for the inefficient 

phase space sampling in conventional MD simulations. In other words, the failure to find 

the global minimum energy state in conventional NVT simulations is always considered 

to result from simulations getting trapped in one of many local minimum-energy states 

5,6,8,17,25,26,51-54. For canonical ensemble simulations, these traps may be more accurately 

described as local free energy traps because the energy barriers between local wells 

should be on the free energy surface (FES) rather than the potential energy surface (PES). 

However, escaping local free energy traps also cannot account for the observed 

unfolding, because once again if the system has sufficient energy to escape the free 

energy minimum corresponding to the α-helices, it should also escape the well 

corresponding to the extended structures. Local free energy traps are very closely related 

to thermal equilibrium. The relationship among PES/FES, free energy traps, and thermal 

equilibrium is described next.  

The FES is very difficult to determine, while the PES is relatively easily defined 

as a function of the atomic coordinates of the system 55 and is independent of 

temperature, pressure, or any other simulation parameters 56. Within one minimum on the 

PES, many more valleys and peaks can appear in the FES (the higher the temperature, the 

more valleys and peaks appear). The location of these valleys and peaks also shifts along 

the PES as the temperature changes. Considering the degeneracy of the potential energy 
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states (density of states) in one conformational well, the extra valleys on the FES usually 

correspond to configurations of higher potential energy than the minimum, while the 

extra peaks correspond to potential energy minima with low sampling probability. 

Thermal equilibrium makes simulations become trapped in these free energy minima. In 

fact, a canonical distribution exists for the potential energies of these free energy minima. 

The potential energy states of these free energy minima should be the most 

thermodynamically accessible phase space regions in 3N coordinate dimensions and span 

a certain range of the PES.  

Once mechanical equilibrium is reached, simulations will evolve into a large 

number of equivalent states at potential energy levels with the same secondary structure.  

It would take an unrealistic amount of simulation time (at the µs scale or even longer, no 

one knows a priori) to make conformation transitions from one potential well to another 

potential well in the thermodynamically accessible region of potential energies. This 

corresponds to kinetic traps. Any small part of a potential well has enormous possible 

configurations exceeding the number that can be sampled on even the most powerful 

computers. Even this tremendous number of possible configurations is only a small 

subgroup of possible conformations. At a low temperature (such as room temperature), 

once mechanical equilibrium in reached, it is very difficult for further MD simulation to 

cause a conformational transition to a different secondary structure of the polypeptide. At 

a high temperature, however, the conformational transition is more likely to happen at 

mechanical equilibrium due to the stronger interactions (forces) and larger coordinate 

displacement, which is caused by the higher kinetic energy of each atom.  
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3.3.3. Global free energy minimum conformation  

The above three limitations restricting conformation transitions give a very biased 

phase sampling in conventional NVT simulations, because sampling is strongly 

dependent on the initial structures. It is very dangerous to determine the global free 

energy minimum conformation by assuming it corresponds to the lowest potential energy 

observed during conventional NVT simulations. Furthermore, the global free energy 

minimum conformation for a canonical ensemble may not be a single conformation but a 

distribution of several related conformations, or metastable states 56,57, which can be 

defined as several nearly isoenergetic conformations 56.  Transitions between such 

structures can easily happen through protein motions due to small environmental 

perturbations. This is supported in recent results from the replica exchange method 58 that 

shows several conformational clusters exist at low temperatures. The dominant 

conformational clusters are the global free energy minimum conformations.  

The results from our DIP simulations indicate that any conformational family’s 

potential energy spans a large range, but different conformations equilibrate at different 

potential energy levels at the same temperature. This is further supported in our extended 

DIP simulations starting from a different initial configuration. Fig 3.3.3.1 displays 

histories of the potential energy and RMSD from an ideal α-helix in a six-path DIP 

simulation of Ala13 at 300 K in vacuo, starting from an extended structure. Five 

polypeptides show ordinary decreasing potential energy histories (Fig. 3.3.3.1a) but they 

adopt different conformations (Fig. 3.3.3.1b). However, the fourth polypeptide, displays 

an unusual potential energy history. In fact, this trajectory indicates a combined folding 

and unfolding process. Here we will not describe the molecular dynamical picture of 
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helix folding and unfolding in detail, but the analysis of the H-bond formation indicates 

that the α-helix is initiated by the 1-3 H-bond type β-turn structures 59. Two β-turns were 

most likely to cooperate and nucleate a one turn local α-helical conformation which then 

extends to the whole polypeptide. Table 3.3.3.1 lists the equilibrated average potential 

energy, average RMSD from an ideal α-helix for the period of 9 ns-10 ns and the final 

structure after 10 ns for each of six trajectories. Obviously, different conformations 

equilibrate at different potential energies and the α-helical conformation has the lowest 

average equilibrated potential energy (approximately 0.5 kcal/mol).  
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Figure 3.3.3.1. Time series of the potential energy and RMSD from an ideal α-helix in a 
six-path DIP simulation of Ala13 at 300 K in vacuo, starting from an extended structure. 
(a) Potential energy. (b) RMSD between all atoms of calculated structure and an ideal α-
helix.  
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Table 3.3.3.1. Equilibrated average potential energy (kcal/mol), average RMSD (Å) from 
an ideal α-helix for the period of 9 ns – 10 ns and final equilibrated structure after 10 ns 
for each polypeptide in a six-path DIP simulation in vacuo at 300 K, using an extended 
conformation or an α-helix as initial structure.  
 

MD simulations initiated from the extended 
structure 

MD simulations initiated 
from the α-helical form 

Trajectory 

Average 
potential 

Ave.  
RMSD

Equilibrated structure
 

Average 
potential  

Ave.  
RMSD 

Equil. 
structure 

1st  38.4 6.71 β-sheets + extended -1.74 0.54 α helix 
2nd  20.7 5.98 3-part β-sheets -1.74 0.54 α helix 
3rd  33.7 6.63 β-sheets + extended  63.2 8.73 extended 
4th  49.8 7.00 Almost extend -0.84 0.55 α helix 
5th  19.3 6.67 2-part β-sheets -2.84 0.57 α helix 
6th  48.7 7.23 Almost extended  5.00  0.57 α helix 
 

We can analyze the trajectory of the polypeptide with lowest potential energy at 

each data-collection step to determine the global free energy conformation. If we assume 

that the number of times an energy minimum is sampled by the copy with lowest 

potential energy is analogous to a concentration, an equilibrium constant for any 

conformational change may be defined as the ratio of the number of times the two 

conformations are sampled. This implies that the global free energy minimum is the 

minimum most frequently sampled by the polypeptide with lowest potential energy. Fig. 

3.3.3.2 displays time series of the potential energy and all-atom RMSD from an ideal α-

helix of the polypeptide with lowest potential energy from the twelve trajectories. These 

twelve trajectories were obtained from the six-path DIP simulations, initiated from a fully 

extended structure and an ideal α-helix, respectively. The plots indicate that the α-helix is 

the most frequently sampled structure at the lowest potential energies near 0 kcal/mol. 

Therefore, the α-helix is the global free energy minimum conformation for blocked 

Ala13 in vacuo at 300 K using the AMBER96 force field. Thus, we can use the trajectory 
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of the polypeptide with lowest potential energies to determine the global free energy 

minimum conformation.  
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Figure 3.3.3.2. Time series of the potential energy and RMSD from an ideal α-helix of 
the polypeptide with the lowest potential energy at each step from the DIP simulations of 
twelve trajectories of Ala13 in vacuo at 300 K. Six trajectories are initiated from a fully 
extended structure and six trajectories are initiated from an ideal α-helix. (a) Potential 
energy. (b) RMSD between all atoms of the calculated structures and an ideal α-helix. 
Note: the RMSD plots here are dot charts. 
 

3.4. Further discussion of three limitations in conventional MD  

It is generally accepted that conventional NVT simulations fail to find a global 

minimum potential energy because simulations at low temperatures tend to get trapped in 

one of many local minimum-energy states 5,6,8,17,25,26,51-54. This view must be re-

considered because of the difference in global/local minimum states on the FES vs. the 

PES in canonical ensemble simulations. The quasiergodicity problem is caused by local 

free energy traps 1 rather than local potential energy traps, but workers in the field 

primarily consider high energy barriers between different energy wells on the PES 4,60 to 

describe local traps. Several techniques such as LES have been developed based on the 

view that potential energy barriers are the primary obstacles to conformational change 
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8,10. However, the potential energy trap is not the only reason for the quasiergodicity 

problem in time-limited MD simulations; free energy traps and kinetic traps also exist. 

On limited time scales, simulations fall into free energy traps at thermal equilibrium and 

sample a relatively narrow range of potential energies, defined as thermodynamically 

accessible regions corresponding to the system’s kinetic energies (and thus temperatures). 

Furthermore, simulations are limited to a local search for energy states with similar 

conformations and fall into kinetic traps once mechanical equilibrium is reached. 

Potential energy traps may not exist but the simulations will still fail to pass across higher 

potential energy barriers or sample lower potential energy minima.  

Currently, two common ways are used to enhance phase space sampling in 

conventional NVT simulations. One way is to start the system in different initial 

conformations 61 (Until recently, most published simulations use only two initial 

conformations, the extended form and the NMR structure 54,62-64). The second common 

method is simulated annealing 5-8 to jump energy barriers on the PES. We presented a 

third way, starting the system with different initial velocity directions, but the same 

magnitudes (and hence the same temperatures) so that simulations evolve along different 

trajectories from a single initial configuration. The simulation results for our tests of this 

divergent path strategy indicate that mechanical equilibrium in conventional MD is the 

most severe obstacle restricting the simulations from covering a wide variety of 

conformations.  In all, potential energy traps, free energy traps, and kinetic traps 

constitute three primary limitations of conventional MD simulations and limit the 

usefulness of conventional NVT/NVE simulations for the predictive protein-folding 

problem.  
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3.4.1. Potential energy traps 

Potential energy traps occur when the kinetic energy of a system is not large 

enough to overcome high potential energy barriers between local potential energy 

minima. When this occurs, simulations become trapped in a local potential energy well. 

Potential energy traps are actually the least common obstacle to efficient conformational 

searches in our conventional MD simulations. At room temperature, the kinetic energy 

available to the system may be large enough to overcome potential energy barriers during 

a given trajectory. DIP simulations can help to cross potential energy barriers along 

several different directions and therefore some simulations can reach the global potential 

energy wells along a folding pathway with lower potential energy-barriers.  

 

3.4.2. Free energy traps, thermal equilibrium and temperature-controlled phase 

space sampling 

Because of the rapid exchange of kinetic and potential energies, limited time 

simulations at thermal equilibrium can only sample portions of phase space distributed in 

a relatively narrow range of potential energies corresponding to the system’s kinetic 

energy.  We call these portions of the potential energy surface “thermodynamically 

accessible regions”.  These thermodynamically accessible regions consist of various 

substates in different potential energy wells. If the temperature is increased, simulations 

reach a new state of thermal equilibrium and sample conformations corresponding to 

higher energy substates in each of the same potential energy wells.  This implies that at 

higher temperatures, only substates of relatively high potential energy are sampled in 
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each well.  This is temperature-controlled phase space sampling and can result in a 

simulation’s becoming trapped in local free energy minima at thermal equilibrium, rather 

than sampling the global potential energy minimum. 

Because the most easily accessible states in thermally equilibrated simulations are 

minimum free energy states, simulations often become trapped in these local free energy 

minima. Because the free energy is a balance between the enthalpy (including 

contributions from the potential energy) and the entropy, the local minima in the free 

energy usually correspond neither to minima nor transition states on the PES.  In fact, 

because the density of states and therefore the entropy is low at potential energy minima, 

minima on the PES are often peaks on the FES.  For an ergodic simulation, these higher 

free energy states would be accessible if the simulation time were unlimited, but in 

practice it is very difficult to pass across free energy barriers, so simulations are 

frequently trapped in local free energy minima and never sample potential energy 

minima. 

In summary, once thermal equilibrium is established, simulations find free energy 

traps corresponding to neither minima nor transition states on the PES.  Such simulations 

are rarely observed to leave these traps unless the temperature is increased significantly.  

Then, the structure is no longer equilibrated at the new temperature and the thermal 

equilibration process begins anew. After thermal equilibrium is achieved, the kinetic 

energy, but not the potential energy, becomes equilibrated. 

 

3.4.3. Kinetic traps, mechanical equilibrium, and trajectory-controlled phase space 

sampling 
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We have observed that after a polypeptide simulation has reached thermal 

equilibrium, the potential energy continues to decrease, indicating that mechanical 

equilibrium has not been achieved.  During the mechanical equilibration process, the 

system’s potential energy cannot be conserved and local hot spots of high kinetic energy 

are created.  So even though average atomic speeds are uniform after thermal equilibrium 

is reached, unless mechanical equilibrium has also been achieved, individual atomic 

velocity vectors are not equilibrated.  This may induce large atomic displacements, such 

as large conformational changes, as well as strong atom-atom interactions within the 

polypeptide.  The common observation that the initial equilibration process in MD 

simulations are most likely to involve large conformational changes meshes with this 

interpretation, as does our observation that once mechanical equilibrium is reached, 

large-scale conformational changes are very rare.  When mechanical equilibrium is 

reached, the individual atomic velocities are equilibrated, making simulations evolve into 

a large number of equivalent substates in a thermodynamically accessible region.  

Usually it would take a prohibitively long time before the simulation is able to enter 

different potential energy wells defining a different thermodynamically accessible region.  

In conventional NVT molecular dynamics, it is therefore mechanical equilibrium that 

finally restricts a simulation from sampling a wide variety of different conformations and 

the simulation occupies a kinetic trap.  

While thermal equilibrium limits the thermodynamically accessible regions of 

potential energy wells that a finite-time NVT simulation may sample at a given 

temperature, the mechanical equilibration process also determines which substates within 

the thermodynamically accessible regions are sampled, depending on the starting atomic 
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coordinates and velocities. A single NVT simulation may be trapped in one accessible 

region even after a very long simulation time.  A series of simulations starting from 

different coordinates and/or velocities can reach many different thermodynamically 

accessible regions representing diverse conformations.  Thus, we can consider the 

mechanical equilibration process as trajectory-controlled phase space sampling. Because 

NVT simulations typically reach thermal equilibrium faster than mechanical equilibrium, 

it is mechanical equilibrium that ultimately determines whether a simulation ends in the 

global potential energy minimum, a potential energy trap, a free energy trap, or a kinetic 

trap. 

 

3.5. Summary and discussion 

The divergent path search simulations of blocked Ala13 using the AMBER 96 

force field support the conclusion that at room temperature the global minimum free 

energy conformation for this polypeptide in vacuo is the α-helical conformation. The DIP 

simulations from different initial configurations, α-helical and extended forms, give 

different trajectories but both sets of simulations show that the α-helical conformation 

occupies the lowest basins on the potential energy surface accessible at 300 K. 

Independent folding and unfolding processes can be observed from trajectories of some 

individual polypeptides. An analysis of these folding and unfolding processes supports 

the idea that the α-helical formations were usually initiated by the β-turn structures with 

1 – 3 H-bonds 40,59. The energy decrease in forming the helical conformation was caused 

by the Coulombic and van der Waals non-bonded energies 40,65,66. Torsional energy 

disfavors the α-helix, contrary to the other simulations based on other force fields 40.  
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The unfolding trajectory from a stable global potential energy well to a local 

potential energy well challenges traditional opinions about conventional molecular 

dynamics. Our simulations indicate the existence of three limitations that prevent 

conventional MD from making transitions between potential energy well on the time 

scale of the simulations: (1) potential minimum traps, (2) free energy traps, and (3) 

kinetic traps. Potential energy traps occur when the kinetic energy is not large enough to 

overcome high potential energy barriers between local potential energy minima, so the 

simulations get trapped in the local potential energy well. Free energy traps happen at 

thermal equilibrium, when the simulations evolve into states in a certain range of 

potential energies corresponding to the ensemble temperature. These states are 

thermodynamically accessible during the simulations on a limited time scale, but the 

extent of their sampling is strongly dependent on the starting structure. Kinetic traps 

occurs when mechanical equilibrium is reached, indicating that simulations will evolve 

into a very large number of equivalent substates in some potential energy wells 

representing a small part of thermodynamically accessible phase space at the simulation 

temperature. It will take an unreasonable simulation time to sample these myriad 

substates before making transitions to other potential energy wells. These three 

limitations constitute serious limitations of conventional NVT molecular dynamics 

simulations for locating the global potential energy minimum and obtaining accurate 

phase-space distributions in molecular dynamics.  

DIP simulations can alleviate the biased phase space sampling problem in 

conventional MD simulations and help in achieving both folding or unfolding for some 

individual polypeptides. While a longer simulation time might not help overcome the 
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three limitations of MD simulations, different initial coordinates should be used with this 

new strategy to maximize diverse phase space sampling. Recent literature reports 

accumulated conventional NVT simulations to reproduce the NMR structure of a 

functional small polypeptide, Trp-cage, in GB/SA implicit solvent starting from many 

initial conformations 67. DIP simulations from several different configurations can be 

useful because a more complete phase space sampling is obtained by simulations 

beginning from several different conformations combined with several different 

directions for atomic velocity vectors.  
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Chapter 4 

 

Disrupted Velocity Search Protocols for Mapping Potential Energy Landscapes and 

Conformations of Polyalanine 

 

4.1. Introduction 

Molecular dynamics (MD) simulation methods 1,2 are widely used for global 

conformational searches in protein folding. Conventional canonical ensemble simulations 

usually have difficulty in exploring the biologically active natural structures of proteins 

because these simulations have severe phase space sampling problems whose results 

depend strongly on the initial structure. To overcome this limited phase space sampling 

problem, published research focuses on enhancing energy barrier crossings by using 

specialized MD techniques such as Simulated Annealing (SA) 3-6, Locally Enhanced 

Sampling (LES) 6-9, and the Replica Exchange Method (REM) 10-14.  

The recently developed REM method is a good MD simulation method for 

addressing the protein-folding problem. This technique facilitates barrier crossings by 

temperature exchange between different copies of the protein. However, the REM 

method searches for the global minimum on the free energy surface and is not good at 

locating the minimum on the temperature-independent potential energy surface (PES) 15. 

Furthermore, velocity rescaling by temperature exchange in REM usually only focuses on 

moving vertically on the energy surface to go over barriers. This may not be enough for a 

simulation to search for a global minimum in a multidimensional energy surface starting 

from a random structure. These considerations have spurred our recent research.  
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A common way to prepare MD simulations is to initialize the system in several 

different conformations. We consider another alternative — starting multiple simulation 

trajectories from a single conformation but different randomized velocity directions so 

the simulations evolve along different paths (Chapter 3). With this divergent path search 

simulation, we found that peptide folding from high energy local minimum structures and 

unfolding from the global minimum energy conformation are possible at room 

temperature during molecular dynamics simulations. These observations made us realize 

that three primary limitations account for the general failure of global minimum searches 

in molecular dynamics. Besides local minima traps (potential energy and free energy), a 

third limitation is kinetic traps, whose chief symptom is all 3N velocities universally 

equilibrated along the whole polypeptide. The equilibrated velocities, called mechanical 

equilibrium, usually cause balanced displacements and forces that make conformational 

transitions of polypeptides difficult. Simulations then oscillate between a large number of 

substates with similar secondary structures. This mechanical equilibrium constitutes the 

most restrictive condition preventing diverse phase space sampling in the search for 

global minimum-energy folded conformations when simulations start from a random, 

unfolded structure. On the other hand, if mechanical equilibrium can be disrupted, the 

unbalanced displacements and locally high potential energies caused by strong 

interactions between atoms can cause the system to explore generally thermodynamically 

inaccessible states from which conformational transitions can happen much more easily.  

In this study, we utilize the equilibration process usually discarded in molecular 

dynamics and develop the DIsrupted VElocity (DIVE) search simulations by intervening 

to reassign atomic velocities. Periodic intervention to reassign atomic velocities may 
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partially destroy the Boltzmann distribution and make direct thermodynamics calculation 

impossible, but we focus on exploring the potential energy surface rather than the 

temperature-dependent free energy surface. We consider it more important to explore the 

potential energy surface than to calculate thermodynamic properties when simulations 

may be limited to partial phase space sampling. Therefore, our technique complements 

the majority of current MD based simulation protocols designed to enhance phase-space 

sampling.  

In this technique, several polypeptides with different kinetic energies (and 

therefore different total energies) are simulated independently and simultaneously, and 

their atomic velocities are reassigned after a fixed time period of NVE (constant number 

of particles, N, volume, V, and energy, E) molecular dynamics simulations. In this 

technique, NVE simulations are used rather than NVT because mechanical equilibration 

is quicker for NVE simulations. We emphasize that velocity(v) reassignment is used here 

very differently from Andersen dynamics 16 whose purpose in reassigning atomic 

velocities is to maintain a constant temperature. When we desire to use constant 

temperature conditions, we use the Nosé-Hoover chain method 17 to maintain a constant 

temperature.  

The v-reassignment algorithm includes two distinct steps: 1) each atom’s velocity 

vector is re-directed but its magnitude does not change, and 2) the magnitude of each 

atom’s velocity is rescaled but its direction does not change. The v-redirection step can 

disrupt the established mechanical equilibrium of the polypeptide in each trajectory, 

ensure energy conservation and enhance a polypeptide’s chances of going around energy 

barriers rather than over them. Thus, the v-reassignment algorithm can facilitate 
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conformational transitions, even in low temperature MD simulations. Moreover, the v-

rescaling can break the established thermal equilibrium by changing the energy of the 

polypeptide by multiplying the magnitude of each atom’s velocity by a scaling factor, and 

thus enhancing the atom’s ability to surmount energy barriers.  

These features make the DIVE simulations free from the primary limitations of 

conventional MD simulations and enable them to sample diverse regions of 

conformational space very effectively. Consequently, DIVE simulation identifies 

potential energy minima quickly and accurately. In our experience, NVE simulations 

locate potential energy minima faster than NVT simulations because energy regulation by 

a heat bath makes the mechanical equilibration process much slower in NVT simulations 

(Chapter 3). Furthermore, the potential energy minima in DIVE are mapped at very low 

energies corresponding to temperatures near 0 K. At such low kinetic energies, the 

potential energy minima can be mapped within approximately 1 - 2 kcal/mol. 

Though variations of the replica exchange method exist 10-14, the DIVE simulation 

is different from them in at least two respects. First, the DIVE simulation uses 

microcanonical ensemble simulations instead of the canonical ensemble simulations used 

in REM. Second, the v-redirection algorithm is a very important component in the DIVE 

simulation (Chapter 3). Currently, we focus on locating diverse potential energy minima 

rather than calculating statistical average ensemble properties. Our experience show that 

existing methods such as REM sample very small portions of conformational space 

during limited simulation times and experience repeated structural transitions among 

several closely related conformations. DIVE also samples small portions of 

conformational space, but it samples widely-separated portions rather than experiencing 
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repeated structural transitions among related conformations. The DIVE simulations 

involve segments of microcanonical ensemble simulations but the total energy of the 

system does not always remain conserved from the beginning to the end. The total energy 

is conserved only for a fixed time during which the exchange of kinetic energy and 

potential energy happens quickly, until equilibrium is reached (The classic virial theorem 

indicates that the kinetic energy controls sampling of potential energy states 18).  

Here, we selected a 13-residue polypeptide of alanine (Ala13) to test the DIVE 

simulation technique. Polyalanine is the simplest peptide to adopt the α-helical 

conformation 19, which is the most abundant and important secondary structural element 

of proteins. Experiments 20-25 show that short ala-based peptides appear to form an α-

helical conformation in aqueous solution and simulations of uncharged polyalanines with 

a sequence length between 10 and 30 indicate that the α-helical conformation is the 

lowest energy folded conformation for the peptides both in vacuo and in aqueous 

environments 11,19,26-29. We selected polyalanine for the test because its conformations 

with low potential energies are limited and include well-defined secondary structural 

elements of proteins such as α-helices and β-sheets. 

 

4.2. Simulation methodology 

 

4.2.1. Simulation algorithms 

All calculations reported in this work, except REM simulations, were performed 

by using our own implementations of conventional canonical MD, disrupted velocity 

(DIVE) search simulations and an extreme version (EXREM) of REM simulations in 
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which the acceptance ratios of replica exchange are always 100%. In the DIVE 

simulations described here, we simulate six independent trajectories of Ala13 

simultaneously. No polypeptide interacts with the others, so each one follows its own 

trajectory in a conventional NVE simulation. All of these independent polypeptides are 

assigned the same initial structure but different initial atomic velocities and therefore 

different energies and temperatures. Each polypeptide NVE simulation is propagated at 

constant energy for a fixed time interval (e.g. 50 ps).  At the end of each time interval, the 

polypeptide in each given trajectory has atomic velocities (momenta) rescaled according 

to the algorithm presented in equation (4.2.1.1):  

pp 2/1σ≡′                                                                   (4.2.1.1) 

where p and p’ are the momenta of the particles before and after velocity rescaling, 

respectively. The scaling parameters σ in equation (4.2.1.1) determine the magnitude of 

the simulation temperature after velocities are rescaled and may be selected before 

starting a simulation. σ > 1 is for heating and 0 < σ < 1 is for cooling. Alternatively, σ 

can be calculated from the scaling temperature defined as the temperature difference 

before and after velocity rescaling (∆T), according to equation (4.2.1.2), or a target 

temperature defined as the temperature after velocity rescaling (Ttarget), according to 

equation (4.2.1.3).  

T
TT || ∆−

≡σ                                                               (4.2.1.2) 

T
T ett arg≡σ                                                                  (4.2.1.3) 

While ∆T and Ttarget are input at the start of a simulation, T is the temperature 

immediately before rescaling. A very low threshold temperature (e.g. 10 K, 5 K, or 1 K) 
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is defined as the temperature below which the system needs to gain energy and above 

which the system needs to give some energy away. At low threshold temperatures near 0 

K, potential energy minima were mapped within approximately 1 - 2 kcal/mol. 

Practically, cooling occurs several times but heating only occurs once within a heating-

cooling cycle and each heating-cooling cycle spans several 50 ps simulation intervals. 

After every velocity rescaling, velocities are also redirected while their new magnitudes 

are maintained. The EXREM simulations are different from DIVE by virtue of lacking 

the v-redirection algorithm and by using the Nosé-Hoover Chain method 17 to maintain a 

constant temperature after each v-scaling (heating or cooling) for the NVT simulations. 

We used Amber 8 30 for our REM simulations and they are described in detail in the next 

section.  

 

4.2.2. Computational details 

The generic force field for the polypeptide in gas phase is shown in equation 

(4.2.2.1) and consists of terms representing bond stretching and angle bending terms by a 

simple harmonic expression, dihedral angle twisting by a truncated Fourier series, the van 

der Waals interaction by a Lennard-Jones potential, and electrostatic interactions by a 

Coulombic interaction of atom-centered partial charges. The AMBER96 force field 31 

was adopted for all parameters in equation (4.2.2.1). 
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The AMBER package 32 was used to generate the initial coordinates of a 13-

residue peptide of alanine with the extended structure (all φ = 180°, all φ = 180°). The 

termini of this Ala13 peptide were blocked (acetylated at the N terminus and methyl-

amidated at the C terminus). The initial coordinates of the 310- and α-helical form Ala13 

were obtained from the Midas program 33 by setting each combination of φ, ϕ torsional 

angels of the polypeptide backbone to the ideal values: φ = -49°, ϕ = -26°, and φ = -57°, 

ϕ = -47°, respectively 34. The Molecular Modeling Toolkit 35 was used to convert input 

files from the AMBER format to that required by our programs. We used the velocity-

Verlet algorithm 2,36,37 to integrate the equations of motion, and the SHAKE algorithm 38 

was used to constrain the covalent bond distances involving hydrogen. Translation of the 

center of mass of the entire system was removed at each step.  

To run DIVE simulations we simulated six independent trajectories of blocked 

Ala13 simultaneously with different initial temperatures of 10 K, 50 K, 100 K, 300 K, 

600 K, 1000 K.  The scaling parameter for cooling was 0.25 and for heating was 

calculated from the target temperature Ttarget and the temperature (T) at the v-

reassignment step by σ = Ttarget/T. Ttarget was selected to be 1000 K or 1400 K in the gas-

phase simulations. The threshold temperature for heating and cooling was 10 K. Thus, 

during the simulations, the polypeptide in each trajectory was cooled down to ¼ of its 

temperature T whenever T rose above the threshold temperature. Once the temperature 

was below 10 K at the v-reassignment time, the polypeptide was heated back to Ttarget. 

During the simulations, velocity reassignment occurred after every 50 ps. A time step of 

1 fs was used and the trajectory data (energies and coordinates) were collected at each ps 
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interval (1000 steps). We used the Carnal program from the AMBER package 32 and our 

own programs to analyze coordinate data.  

The same initial temperatures were used for six trajectories of conventional NVT 

simulations while the Nosé-Hoover chain method 17 was used to maintain these 

temperatures. In REM simulations, we used six exponentially distributed temperatures 

from the original schedule of REM simulations: 239, 286, 342, 409, and 585 K 12,14. The 

weak-coupling algorithm 39 was applied to ensure constant temperature. Additional REM 

simulations with the exchange temperatures 10 K, 50 K, 100 K, 300 K, 600 K, 1000 K 

were also performed. The acceptance ratios of replica exchange in these simulations were 

always zero or near zero, depending upon other parameters such as initial temperatures 

and frequency of replica exchange attempts. When the acceptance ratios were zero, the 

REM simulations became conventional NVT simulations of six trajectories at different 

temperatures. The results were not given here because of their inefficient acceptance 

ratio. The time step was also set to 1 fs and the replica exchange was attempted every 2 

ps, with 5000 exchange attempts. Thus, the total simulation time was also 10 ns for each 

replica. The acceptance ratios of replica exchange are nearly uniform (14% to 18%) and 

within a conventionally acceptable range (>10%).  

The EXREM simulations can be viewed an extension of REM simulations in 

which the acceptance ratios of replica exchange are always 100%. In fact, the EXREM 

simulations can achieve the same result as REM 10-14 if several finite temperatures are 

fixed for cooling and heating and the Metropolis criteria 40 is used for the heating step. 

For both EXREM and REM simulations, the velocity-rescaling algorithm is the core 

strategy to enhance phase space sampling, and the NVT ensemble is involved. The 
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EXREM simulations were further compared with DIVE simulations, in order to delineate 

clearly the importance of the v-redirection algorithm for diverse conformational space 

sampling on a very limited time scale. The six replicas of EXREM simulations all had the 

same simulation parameters as those in the DIVE simulations. 

 

4.3. Simulation results and discussion  

 

4.3.1. Conventional NVT, REM, and EXREM simulations 

In order to search for the global α-helical conformation of Ala13, a test case for 

our DIVE technique, we first performed several different MD simulations, including 

conventional NVT, simulated annealing (SA) 3-6, locally enhanced sampling (LES) 6-9,41, 

REM and EXREM. We were unable to achieve an α-helix when performing several 

simulations starting from a fully extended structure with the above listed MD methods. 

Here, we will not show the simulation data from SA and LES techniques. 

Conventional NVT simulations were performed with six trajectories at different 

temperatures. Conventional NVT simulations give three different results (Fig. 4.3.1.1). 

First, the simulations at 10 K, 50 K, and 100 K get trapped immediately in extended 

conformations. Second, the simulations at 300 K and 600 K show some conformational 

transitions in the equilibration process during the first 2 ns, followed by the simulations 

either oscillating among the extended conformational clusters (RMSDs between 8.5 Å – 

9 Å) or nearly extended conformational clusters (RMSDs between 7.0 Å – 7.5 Å). Third, 

the simulation at 1000 K shows a very different trajectory. The RMSDs of the sampled 

conformations oscillate over a larger range of conformations (RMSDs between 3.0 Å – 
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9.0 Å) indicating a more diverse conformational space sampling process. Two reasons 

account for this result. First, the temperature fluctuates over a larger range (more than 

±100 K) at 1000 K. The high kinetic energy at this temperature easily causes coordinate 

displacements large enough to cause conformational transitions. Second, the simulation 

equilibrates within the potential energy range between 150 and 250 kcal/mol after 2 ns 

(data not shown here). At these high energies, most of the energy barriers between the 

wells on the potential energy surface become nearly insignificant compared to the kinetic 

energy. The sampled conformations are mainly loops, coiled structures or β-sheet-like 

conformations. Partial α-helical forms can be also sampled, but at this high temperature, 

they are unstable and disappear very quickly. In a word, at high temperatures, the 

conformations from the conventional NVT simulations are likely to be flexible but the 

nearly ideal α-helix and double stranded β-sheets are not located.  

 Figure 4.3.1.1. Time series of RMSD 
between all atoms of the calculated structure 
and an ideal α-helix of the trajectories from 
conventional NVT simulations. Note: Blue: 
1st (10 K), Magenta: 2nd (50 K), Yellow: 3rd 

(100 K), Light blue: 4th (300 K), Purple: 5th 

(600 K), Brown: 6th (1000 K) trajectory. 
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In the REM simulations, each copy of Ala13 in vacuo samples a large range of 

potential energies from nearly 0 to 230 kcal/mol and temperatures ranging from 100 K to 

550 K. Fig. 4.3.1.2a – b show the histories of the potential energy and temperature of the 

first copy as an example. Due to the temperature exchange, the REM simulations can 
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sample a large range of temperatures and potential energies, which allows each replica to 

move away from any local minimum traps and undergo conformational changes 10,14. Fig. 

4.3.1.2c displays the histories of RMSDs between all atoms of six copies in the REM 

simulations and an ideal α-helix. Each copy of the REM simulations explores mainly 

conformations in a range of RMSDs between 4.0 Å – 9.0 Å. The lowest RMSD structure 

sampled starting from an ideal α-helix is 3.5 Å. By visualizing its conformations along 

the trajectories, we found that REM simulations only searched several conformational 

clusters, including partial α-helical structures, loop structures, and loosely extended 

structures.  
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Figure 4.3.1.2. Time series of various properties from a REM or EXREM simulation for 
six copies of Ala13 in vacuo, starting from an extended structure. (a) Temperature of the 
1st copy in REM simulations. (b) Potential energy of the 1st copy in REM simulations. (c) 
RMSD between all atoms of the calculated structure and an ideal α-helix of the six copies 
in REM simulations. (d) RMSD between all atoms of the calculated structure and an 
ideal α-helix of the six copies in EXREM simulations. Note: Blue: 1st, Magenta: 2nd, 
Yellow: 3rd, Light blue: 4th, Purple: 5th, Brown: 6th replica. 
 

In the EXREM simulations, each copy of blocked Ala13 in vacuo samples a large 

range of potential energies from nearly -55 to 480 kcal/mol and temperatures ranging 

from several K to 1100 K (data not shown here). Fig. 4.3.1.2d shows the RMSD histories 

of six copies from the EXREM simulations. The plots indicate that each replica samples 

mainly conformations with RMSDs between 3.5 Å and 9.0 Å. The lowest RMSD 

structure sampled is 2.3 Å from an ideal α-helix. By visualizing the conformations, we 

know that these simulations mainly sample varied coiled and loop structures with only a 

few samplings of β-sheets and partial helices. A nearly ideal α-helix is also not sampled 

in these EXREM simulations. 

 

4.3.2. Disrupted velocity (DIVE) search simulations 

 

4.3.2.1. Methodology 

Figure 4.3.2.1.1 displays a partial history of total energy from the DIVE 

simulations of six trajectories of Ala13 in vacuo by using the AMBER96 force field, 

starting from an extended structure. It illustrates three main points. First, each NVE 

simulation is propagated at constant energy for 50 ps time intervals. After that, the 

trajectory is interrupted by velocity-rescaling and velocity-redirection algorithms. The 

velocity-rescaling regulates the polypeptide’s energy because high energy is needed to 
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cross energy barriers and low energy is needed to map potential energy minima. The 

velocity-redirection directs the trajectory into different paths on the multidimensional 

potential energy surface. Therefore, we can consider the DIVE simulation protocol as a 

technique for the dynamical perturbation of trajectory and energy in constant energy MD 

simulations.  
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Figure 4.3.2.1.1. Partial history of total energy from a DIVE simulation of six trajectories 
of Ala13 in vacuo, starting from an extended structure.  

 

Second, cooling occurs several times but heating only occurs once within a 

heating-cooling cycle. We heat once in a heating-cooling cycle because we intended the 

polypeptide to gain enough kinetic energy to cross high energy barriers. We use the 

cooling algorithm to locate potential energy minima. However, cooling cannot be 

accomplished in one step, even if the velocity scaling parameter is very small. A very 

small scaling parameter can reduce the system’s temperature directly below 10 K, but 

because the system is probably not at a potential energy minimum and the kinetic energy 

and potential energy are then exchanged quickly according to the virial theorem 18. The 
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system’s temperature increases above 10 K and further cooling is needed. An appropriate 

cooling schedule is therefore needed, resulting in a long simulation time for a slow 

cooling speed. The simulation usually cannot locate the global potential energy minimum 

if very fast cooling is used.  

Third, different independent polypeptides have their velocities reassigned at 

different energies and by different amounts. This enhances the conformational search 

during the simulations. On a multi-dimensional potential energy surface, simulation 

trajectories are always closely related to the initial conditions. The different initial energy 

states for different polypeptides may make the simulations sample very different ranges 

of conformational space. 

Figure 4.3.2.1.2 shows time series of the α-helicity and the strandness evaluated 

from dihedral angles (α-helicity and the strandness are defined in the figure caption). The 

results clearly demonstrate diverse conformational space sampling of the different 

trajectories arising from to their different initial energies. Therefore, simultaneous 

simulations of multiple trajectories can sample much more diverse conformational space 

than one single trajectory, even if the single trajectory simulation runs much longer. 

Simulations using different initial momenta and therefore different energies for the 

polypeptide are similar to starting from several different initial configurations, but we 

want to emphasize the significance of different trajectories in sampling diverse 

conformational space even starting from the same coordinates. In the following section, 

the conformations resulting from different simulations demonstrate the diverse 

conformational space sampling and effective global minimum search features of the 

technique.  
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Figure 4.3.2.1.2. Time series of the α-helicity (black) and the strandness (gray) of the 
polypeptide evaluated from dihedral angles from a DIVE simulation of six trajectories of 
Ala13 in vacuo, starting from an extended structure. (a) α-helicity and the strandness of a 
single polypetide’s trajectory (b) α-helicity and the strandness of a second polypeptide’s 
trajectory. The α-helicity and standness of each amino-acid is defined as follows: a 
residue is in the α-helical state when the backbone dihedral angles (φ, ϕ) fall in the range 
(-57°±30°, -47°±30°), and in the β-strand state if (φ, ϕ) dwell in the range (-119°±30°, -
113°±30°) or (-139°±30°, -135°±30°) 27,42. The α-helicity and standness of the 
polypeptide is defined as the percent of the residues whose torsional angles fall in the 
corresponding range.  

 

4.3.2.2. Simulation results 

The DIVE simulations for blocked Ala13 in vacuo sample a large range of 

potential energies from nearly –60 to 160 kcal/mol and temperatures ranging from several 

K to almost 500 K (Fig. 4.3.2.2.1) (The simulations involve heating to 1000 K, but after 

approximately 1 ps (1000 steps), half of the kinetic energy converts to potential energy. 

Consequently, the high temperature states where data are collected sample temperatures 

no higher than ∼500 K). Fig. 4.3.2.2.2a displays the temperature and potential energy 

histories of the polypeptide with lowest potential energy at each data-collection step (1 ps 

intervals). Many local potential energy minima appear along the trajectory at kinetic 

energies corresponding to a temperature below 10 K. Fig. 4.3.2.2.2b shows the all-atom 
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root-mean-square-deviation RMSD between the polypeptide with the lowest potential 

energy and an ideal α-helical reference structure. Figures 4.3.2.2.2c – d show the total 

number of hydrogen bonds (H-bond) and 1-4 H-bonds, respectively. The RMSD and H-

bonding plots show that the polypeptide forms a nearly ideal α-helix after approximately 

3.8 ns (eleven 1-4 H-bonds and ~ 0.4 Å all-atom RMSD).  
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Figure 4.3.2.2.1. Time series of (a) potential energy and (b) temperature from a DIVE 
simulation of six trajectories of Ala13 in vacuo, starting from an extended structure. 
Note: Blue: 1st, Magenta: 2nd, Yellow: 3rd, Light blue: 4th, Purple: 5th, Brown: 6th 
trajectory. 
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Figure 4.3.2.2.2. Time series of various properties of the polypeptide with lowest 
potential energy from a DIVE simulation of six trajectories of Ala13 in vacuo, starting 
from an extended structure. (a) Temperature (upper, gray curve) and potential energy 
(lower, black curve). (b) RMSD between all atoms of the calculated structure and an 
ideal α-helix. (c) All hydrogen bonds (A hydrogen bond is identified when the distance 
between two heavy atoms X is below 3.3 Å and the X-H⋅⋅⋅X angle differs from 180.0° 
less than 20.0°). (d) 1-4 hydrogen bonds (1-4 H-bonds indicate H-bonds between the 
carboxyl oxygen of residue i and the amide hydrogen of residue i+4, which are 
characteristic of an α–helix. An ideal α-helix for Ala13 has eleven 1-4 hydrogen).  
 

We calculated the average temperature in each 50 ps interval and then collected 

those simulation regions whose average temperature is below 10 K. Forty-nine regions 

are obtained from the trajectory of the lowest potential energy polypeptide. Within those 

regions, we selected the lowest potential energy to determine representative minimum 

potential energy conformations. Some representative structures are shown in Fig. 

4.3.2.2.3a - f. The ground state conformation of blocked Ala13 in vacuo is a nearly ideal 

α-helix (Fig. 4.3.2.2.3a) with a global potential energy minimum of approximately –60 

kcal/mol. Many local potential energy minima exist between –60 and -40 kcal/mol. Their 

conformations are diverse but are all well-ordered, with more than 7 H-bonds. Though 

the energy gap between potential energy minima is relatively small (< 4 kcal/mol 

between any neighboring minima), the RMSDs between different conformations and an 

 104



ideal α-helix differ by as much as 9 Å, so the different potential energy minima represent 

distinctly different structural types.  

     

           (a) E = -61.2 kcal/mol                      (b) E = -57.1 kcal/mol                      (c) E= -56.2 kcal/mol 

     

          (d) E = -48.4 kcal/mol                      (e) E = -46.1 kcal/mol                        (f) E = -44.8 kcal/mol   

Figure 4.3.2.2.3. Conformations and potential energies (kcal/mol) of the minimum 
potential energy structures sampled by the polypeptide of the lowest potential energy 
from a DIVE simulation of six trajectories of Ala13 in vacuo, starting from an extended 
structure. Approximate descriptions of the conformations, RMSD from the ideal α-helix, 
and number of H-bonds are: (a) A nearly ideal α-helix is the global potential energy 
minimum (RMSD 0.44 Å; eleven hydrogen bonds). (b) Compact conformation I, W-
shape, having 1-2, 1-3, 1-4, 1-5 and etc. H-bonds (RMSD is 6.3 Å, six hydrogen bonds, 
plus one heavy atom engaged in two H-bonds). (c) Half α-helix and half 310-helix, linked 
by a turn (RMSD is 6.0 Å; nine hydrogen bonds). (d) A nearly ideal double-stranded β-
sheet (RMSD is 8.9 Å; six hydrogen bonds). (e) Compact conformation II, S-shape, 
having 1-2, 1-3, 1-4, 1-5 and etc. H-bonds (RMSD is 5.6 Å, six hydrogen bonds). (f) A 
V-shaped α-helix (RMSD is 4.5 Å; six hydrogen bonds, plus one heavy atom engaged in 
two H-bonds). A hydrogen bond is identified when the distance between two heavy 
atoms X is below 3.3 Å and the X-H⋅⋅⋅X angle differs from 180.0° less than 20.0°. These 
images were generated by using PyMOL (http://pymol.sourceforge.net/). 

 

A similar analysis of the potential energies of the individual trajectories 

throughout the course of the simulation gives a total of 131 regions of minimum potential 
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energy (131 – 49 = 82 regions have not been displayed in the lowest potential energy 

polypeptide trajectory of Fig. 4.3.2.2.2a). Fig. 4.3.2.2.4a shows the temperature and 

potential energy history of a representative trajectory for which local minima at relatively 

higher potential energies are sampled, and Fig. 4.3.2.2.4b - c show the corresponding 

RMSD and H-bonds histories, respectively. Because the figures track a real trajectory for 

one polypeptide, these plots show very smooth folding processes. The large RMSDs and 

small number of 1 - 4 H-bonds indicate that this polypeptide samples a region of 

conformational space far away from helical energy wells. Fig. 4.3.2.2.4d displays the 

potential energy minima for the 131 regions, except for the extended conformation. Some 

representative structures with high-energy local minima, sampled from the trajectories of 

the individual polypeptides (but not sampled by the lowest potential energy polypeptide) 

are displayed in Fig. 4.3.2.2.5. All sampled potential energy minima and their 

conformations in the simulations can be summarized as follows. First, the global potential 

energy minimum is a nearly ideal α-helix with potential energy below –60 kcal/mol. 

Second, the conformations of the local potential energy minima between –60 kcal/mol to 

–40 kcal/mol include three large classes. They include 1) compact forms having 1-2, 1-3, 

1-4, 1-5, and other H-bonds, 2) a nearly ideal or twisted β-sheet of two or three stands, 

and 3) a partial α-helix plus (a) extended chains, (b) 310-helices, (c) π-helices, or (d) 

another partial α-helix. Third, many different β-sheet-rich conformations as well as 

looped and coiled structures have local potential energy minima between –40 kcal/mol 

and –30 kcal/mol. Fourth, the extended conformation, with a potential energy of –7 

kcal/mol, represents the highest potential energy minimum sampled in the trajectories. 

We note that the extended form has its potential energy minimum even lower in energy 
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than the equilibrated average potential energy of an α-helix from constant temperature 

simulations at 300 K (~ 0 kcal/mol) (Chapter 3). This illustrates one difficulty in using 

NVT simulations to map potential energy minima or to locate the global potential energy 

minimum. 
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Figure 4.3.2.2.4. History of various properties from a DIVE simulation of six trajectories 
of Ala13 in vacuo, starting from an extended structure. (a) Temperature (upper, gray 
curve) and potential energy (lower, black curve) of a single polypeptide, which samples 
the potential energy minima at relatively higher potential energies. (b) RMSD between 
all atoms of the calculated structure and an ideal α-helix of the single polypeptide. (c) All 
hydrogen bonds of the single polypeptide, mostly including 1-2 hydrogen bond type and 
other types (no more than one of 1-3 or 1-4 hydrogen bonds and zero 1-5 hydrogen 
bonds). (d) History of potential energy minima sampled from all 6 trajectories, excluding 
the highest potential energy minimum (E = –7.19 kcal/mol) for the extended 
conformation. 
 

 107



     
             (a) E = -49.8 kcal/mol                       (b) E = -48.9 kcal/mol                      (c) E= -39.6 kcal/mol 

     
           (d) E = -34.7 kcal/mol                      (e) E = -33.2 kcal/mol                      (f) E = -32.5 kcal/mol 

Figure 4.3.2.2.5. Conformations and potential energies (kcal/mol) of the minimum 
potential energy structures sampled by individual polypeptides from a DIVE simulation 
of six trajectories of Ala13 in vacuo, starting from an extended structure. Approximate 
descriptions of the conformations, RMSD from the ideal α-helix, and number of H-bonds 
are: (a) Mixed helix with 1-3, 1-4, 1-5 H-bonds (RMSD is 3.4 Å; five hydrogen bonds, 
plus two heavy atoms engaged in two H-bonds). (b) Three β-strands (RMSD is 6.9 Å; 
Five hydrogen bonds). (c) An antiparallel β-sheet of three strands (RMSD is 6.4 Å, six 
hydrogen bonds, plus one heavy atom engaged in two H-bonds). (d) Twisted double-
stranded β-sheet conformation (RMSD is 8.0 Å; four hydrogen bonds). (e) Double-
stranded β-sheet with ribbon structure at the C-terminus (RMSD is 6.3 Å, four hydrogen 
bonds). (f) Loop to form a cavity (RMSD is 6.8 Å, six hydrogen bonds). A hydrogen 
bond is identified when the distance between two heavy atoms X is below 3.3 Å and the 
X-H⋅⋅⋅X angle differs from 180.0° less than 20.0°. These images were generated by using 
PyMOL (http://pymol.sourceforge.net/). 

 

To verify that the global potential energy minimum and the local minima sampled 

when starting from the extended structure are not artifacts of the initial conditions, we 

repeated the simulations starting from an ideal 310-helix and an α-helix. A higher target 

temperature 1400 K, rather than 1000 K, was used because extra kinetic energy is needed 

to move away from the starting helical structures. The analysis of the potential energy 

minima and the conformations below 10 K shows very similar results to those obtained 
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starting from the extended conformation (data not shown). The same α-helical 

conformation is obtained as the global potential energy minimum and many local 

potential energy minima having almost identical conformations are found in the three 

simulations. However, not all local potential energy minima appear when starting from 

the different conformations. For example, the extended conformation is not sampled 

when starting from a 310- or an α-helix, yet the 310-helix, while located at a relatively 

higher potential energy than that of a double-stranded β-sheet (-38.4 kcal/mol) (Chapter 

5), is not sampled from the extended or the α-helical starting structure. This is reasonable 

because the DIVE simulation can by no means sample all the myriad local potential 

energy minima during a very limited simulation time (10 ns for each trajectory, 60 ns 

total).  

 

4.3.3. DIVE simulations compared to REM, and EXREM simulations 

 

4.3.3.1. Comparisons  

It is interesting to compare the results of the DIVE simulations with those of REM 

simulations (from the standard REM procedure). A range of lower temperatures (several 

Ks — 100 K) and lower potential energies (~ -60 — 0 kcal/mol) are explored in the 

DIVE simulations compared to the REM simulations. This clearly indicates that the REM 

simulations, performed at exchange temperatures much higher than zero K, usually fail to 

reach the deep minima of the potential energy wells. In contrast, our DIVE simulations 

easily locate these potential energy minima at temperatures near zero K. On the other 

hand, slightly higher temperatures (>500 K) and potential energies (> 160 kcal/mol) are 
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explored in the REM simulations compared to those in the DIVE simulations. These 

higher temperatures and potential energies benefit REM simulations by helping them 

move away from local minima and enhance phase space sampling. However, the DIVE 

simulations show a much more efficient sampling ability than REM simulations, since 

DIVE simulations find a larger range of different conformations: a global α-helix, partial 

α-helices, double stranded β-sheets, β-sheet-rich conformations, compact conformations, 

looped and coiled structures. In contrast, many conformations of low potential energies 

such as a nearly ideal α-helix, a nearly ideal double-stranded β-sheets, and well-ordered 

compact structures are not sampled in the REM simulations.  

Two reasons account for the much more extensive conformational sampling of the 

DIVE simulations compared with REM simulations. First, the velocity-redirection 

integrated into DIVE makes simulations undergo conformational transitions easily and 

thus makes them sample very diverse regions on the multi-dimensional potential energy 

surface, even in limited simulation times. Second, the DIVE simulations are not as likely 

as REM simulations to reach equilibrium. In the REM simulations, each replica may 

equilibrate at one conformation, and then the polypeptide can experience repeated 

structural transitions among a small number of different conformations. In order to vary 

conformational space sampling and thus search for the global α-helix, more than six 

replicas are probably needed in the REM simulations for the temperature range between 

200 K and 600 K.  

The EXREM simulations sample a much larger range of energies (~-55 — 480 

kcal/mol) than the DIVE simulations (~-60 — 160 kcal/mol) because of their larger 

temperature range (several Ks – 1100 K in EXREM contrasted to several Ks — 500 K in 
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DIVE). While the NVT simulations easily retain the polypeptide’s temperatures because 

of the heat bath, the NVE simulations reach thermal equilibrium at temperatures very 

different from the initial or heating temperatures. However, EXREM simulations sample 

fewer conformations than DIVE simulations, indicating that EXREM simulations are 

more likely to be restricted to a local region of conformational space. For example, 

EXREM does not sample the nearly ideal α-helix and many compact conformations of 

low potential energies. Thus, the trajectory perturbation from the velocity-redirection 

algorithm incorporated in the DIVE protocol helps ensure more extensive sampling of a 

multi-dimensional energy surface.  

 

4.3.3.2. Discussion 

Disrupted velocity (DIVE) search simulations for blocked Ala13 illustrate that the 

ground state conformation is a nearly ideal α-helix in vacuo. This result is in good 

agreement with earlier simulations of uncharged polyalanines 11,19,26-29 starting from an α-

helix, but the result has rarely been obtained from an extended structure. To our 

knowledge, no one has previously found an α-helical global potential energy minimum 

for polyalanine using the AMBER96 force field and starting from an extended structure. 

Furthermore, we want to emphasize that the energy states for the α-helical conformation 

sampled in earlier simulations 11,19,26-29 were likely to be far above the minimum potential 

energies when simulations were performed at the temperatures above 200 K. Though a 

direct comparison of the potential energies between our simulations and those from 

earlier simulations with different force fields is impossible, our simulation results clearly 
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indicate that potential energy minima cannot be located in simulations performed at high 

temperatures.  

Our simulation results demonstrate that from among several different simulation 

techniques the DIVE simulation samples diverse regions of conformational space most 

effectively. At normal temperatures, conventional NVT simulations easily equilibrate in 

one conformational cluster. At very high temperatures, these NVT simulations may 

undergo frequent conformation transitions among several types of unfolded structures, 

but the global minimum potential energy conformation and other well-ordered structures 

of low potential energies are nearly impossible to locate. REM simulations and EXREM 

simulations both utilize a velocity-rescaling algorithm for alternate heating and cooling of 

the polypeptide. During these simulations, high-temperatures facilitate the 

conformational transitions of the polypeptide, and low-temperatures trap the polypeptide 

in structures of lower potential energies. However, velocity rescaling focuses primarily 

on moving vertically on the energy surface to go over barriers. Therefore, the simulations 

are likely to experience repeated structural transitions among several similar 

conformations and the results depend strongly on the initial conditions. In the DIVE 

simulations, on the other hand, the velocity-redirection step randomizes horizontal 

motions along the potential energy surface and enhances a polypeptide’s chances of 

going around energy barriers rather than over them. In this way, the DIVE simulations 

can sample diverse conformational space even in a very short simulation time.  

 

4.4. Conclusion 
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Our newly developed disrupted velocity (DIVE) search simulations show that the 

ground state conformation of blocked Ala13 in vacuo for the AMBER96 force field is a 

nearly ideal α-helix. In contrast, the global minimum potential energy conformation is 

very difficult to locate by using several popular molecular dynamics methods including 

simulated annealing 3-6, locally-enhanced sampling 6-9,41 and REM 10-14. Moreover, the 

DIVE simulations are able to search a diverse conformational space in a short simulation 

time (10 ns for each trajectory and 60 ns total), including other partial helices, different 

kinds of β-sheets, compact, coiled, looped, and extended structures. Compact structures 

with large numbers of intrapeptide H-bonds are close in energy to the global potential 

energy minimum. In contrast, β-sheet-rich conformations dominate at relatively higher 

potential energies. At higher energies than β-sheets are the coiled, looped and extended 

structures, and they mainly appear during high temperature simulations. For simulations 

reported here, only results from the DIVE technique are relatively independent of initial 

structures. In our simulations, the global and local potential energy minima sampled from 

an initially extended structure are almost identical with those sampled from an initial 

ideal 310- or α-helix.  
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Chapter 5 

 

Molecular Dynamics Simulations of Polyalanine in vacuo Using Different Force 

Fields  

 

5.1. Introduction 

In Chapter 3, we described a new MD technique called divergent path (DIP) 

search simulations. In this technique, multiple independent trajectories are simulated.  

The atomic velocities of each polypeptide have the same magnitude but different 

directions. The different directions cause the different polypeptides to evolve along 

different trajectories from a single initial point in configuration space. The results from 

this DIP strategy indicate that conventional NVT simulations have three primary 

limitations responsible for their limited sampling in protein folding dynamics: potential 

energy traps, free energy traps, and kinetic traps. In conventional MD, it is kinetic traps, 

not potential energy traps, that mostly restrict the simulations from covering a wide 

variety of conformations. However, the mechanical equilibrium state associate with 

kinetic traps, can be easily disrupted by the randomization of atomic velocities.  

By combining this divergent path strategy at one temperature with cycles of 

heating and cooling, the disrupted velocity (DIVE) search protocol was developed in 

Chapter 4. In this technique, several polypeptides with different kinetic energies (and 

therefore different total energies) are simulated independently and simultaneously. Also, 

their atomic velocities are reassigned after a fixed time period in NVE molecular 

dynamics simulations. Because of this frequent perturbation in both trajectory and 
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energy, the DIVE simulations alleviate the three primary limitations of conventional MD 

and are able to sample diverse regions of conformational space effectively. In addition, 

this technique accurately identifies potential energy minima at temperatures near 0 K.  

Ignoring phase space sampling problems for the moment, the results from 

molecular dynamics simulations of protein folding are only determined by the amino-acid 

sequence of the proteins and force fields. The effect of the force fields on MD 

simulations can be easily understood because different force fields result in different 

potential energy surfaces for proteins. Recently some studies address the issue of the MD 

differences due to using different force fields 1,2. Here we give some comparisons of 

these new MD simulations protocols, DIP and DIVE for the gas phase polypeptide Ala13 

using different AMBER force fields. The comparison that is the most interesting involves 

using the DIVE protocol to search myriad potential energy minima and conformations.  

The contents of the remainder of this chapter are as follows. First, DIP 

simulations of the polypeptide Ala13 in vacuo for AMBER99 3 force field are presented. 

Next, we describe results of using the DIVE protocol to investigate the potential energy 

landscape of Ala13 in vacuo for the AMBER99 force field. Finally, the polypeptide’s 

conformations and energetics of the global minimum and local potential energy minima 

from two different force fields (AMBER96 4 and AMBER99) are compared. The 

simulation methodology, including algorithms and computational details, is the same as 

those described in Chapter 3 for DIP and Chapter 4 for the DIVE techniques.  

 

5.2. DIP simulations of polyalanine using the AMBER99 force field 
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5.2.1. Simulation results  
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Figure 5.2.1.1. Time series of various properties from a DIP simulation of six trajectories 
of Ala13 at 300 K in vacuo, starting from an extended structure. (a) Temperature, (b) 
Potential energy. (c) RMSD between all atoms of the calculated structures and an ideal α-
helix. (d) RMSD in the first 500 ps. Note: Blue: 1st, Magenta: 2nd, Yellow: 3rd, Light 
blue: 4th, Purple: 5th, Brown: 6th trajectory.  
 

We ran the DIP simulations of Ala13 at 300 K in vacuo for the AMBER99 force 

field. Fig. 5.2.1.1a – b displays the histories of the temperature and potential energy for 

six trajectories in a DIP simulation, starting from an extended structure. While the 

temperature histories are nearly identical for each trajectory, the potential energy histories 

show some variation. In addition, the potential energy histories indicate that the 
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polypeptide in all these trajectories reach mechanical equilibrium after 2ns. Fig. 5.2.1.1c 

shows that five of six polypeptides equilibrate at the 310-helical conformation with an 

average all-atom RMSD of 3.3 Å and one polypeptide equilibrates at the parallel U-

shaped 310-helix with an average 5.9 Å all-atom RMSD. Furthermore, Fig. 5.2.1.1d 

demonstrates that the conformational transition from the initial extended structure to the 

equilibrated 310-helix or U-shaped 310-helix happens during the first 500 ps in the 

mechanical equilibration process. A DIP simulation of six trajectories starting from an 

ideal α-helix gives very similar results as the DIP simulation starting from the extended 

structure.  

Unlike the AMBER96 force field simulations (Chapter 3), helices were formed 

very easily with the AMBER99 force field simulations from the initial extended 

structure. However, the global minimum free energy conformation at ambient 

temperature is not the α-helix, unlike the AMBER96 force field simulation. The single 

polypeptide conventional NVT simulations on the time scale as long as 60 ns from both 

initial extended and α-helical conformations converge to the same result, which indicates 

the global free energy conformation of Ala13 in vacuo at 300 K seems to be a 310-helix 

(data not shown). However, the DIP simulations give a slightly different result in that the 

global free energy conformation appears in clusters of U-shaped 310-helices and 310-

helices.  

Fig. 5.2.1.2 shows the potential energy and RMSD from an ideal α-helix of the 

polypeptide with the lowest potential energy. These plots show that starting from 

different conformations the DIP simulations search very similar lowest potential energy 

conformations at 300 K. In fact, the polypeptide at the lowest potential energies oscillates 

 119



between a parallel U-shaped 310-helical (Fig. 5.2.1.3a) and a 310-helical conformation 

(Fig. 5.2.1.3b). The dominant conformation is a 310-helix. In the further supplemental 

DIP simulation of six trajectories of Ala13 at 300 K in vacuo starting from the U-shape 

310-helix (Fig. 5.2.1.3a), three polypeptides maintain the U-shaped 310-helical 

conformation and three polypeptides convert into a 310-helix (data not shown here). The 

conformational transition from the U-shaped 310-helix to 310-helix happens during the 

mechanical equilibration process, which occurs near the beginning of the simulation. 

After that, the transition between a U-shaped 310-helix and a 310-helix cannot be observed 

during these simulations. The transition cannot be observed because mechanical 

equilibrium kinetically traps each polypeptide in a single conformational potential energy 

well. In spite of this, our simulation results indicate that the global free energy minimum 

for Ala13 at 300 K in vacuo is clusters of U-shaped 310-helices and 310-helices. 
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Figure 5.2.1.2. Time series of the potential energy and RMSD from an ideal α-helix of 
the polypeptide with the lowest potential energy at each step from a DIP simulation of six 
trajectories of Ala13 in vacuo at 300 K, initiated from the extended (black curve or dot) 
and α-helical (gray curve or dot) conformation. (a) Potential energy. (b) RMSD between 
all atoms of the calculated structures and an ideal α-helix. Note: the RMSD plots here are 
dot charts. 
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                   (a): a parallel U-shaped 310-helix                                    (b): A 310-helix 

Figure 5.2.1.3. The parallel U-shaped 310-helix and 310-helix sampled at the final two 
data-collection steps of the polypeptide with the lowest potential energy from a DIP 
simulation of six trajectories of Ala13 in vacuo at 300 K, starting from an extended 
structure. (a) The parallel U-shaped 310-helical structure after 9999ps, from the 2nd 
trajectory. (b) The 310-helical structure after 10 ns, from the 5th trajectory. These images 
were generated by using PyMOL (http://pymol.sourceforge.net/). 
 

In vacuo, the parallel U-shape 310-helix is the global potential energy minimum 

and the 310-helix is a potential energy minimum above the energy of the α-helical 

conformation (section 5.3.1). Therefore, the DIP simulation results indicate four points. 

First, the conformation at global free energy minimum near in vivo temperatures is not 

necessarily the global potential energy minimum conformation at 0 K (section 5.3.1), but 

can also be a low potential energy local minimum (e.g. 310-helix in vacuo). Second, the 

global free energy minimum near in vivo temperatures may have clusters of several 

metastable states [5,6] very close in energy (e.g. U-shaped 310-helix and 310-helix). So the 

global free energy minimum is represented by a family of conformations. Third, due to 

the three primary limitations of MD, single conventional NVT simulation on limited time 

scales can easily get trapped in a local potential energy well. As a result, the simulation 

has extreme difficulty in sampling those metastable states in a single trajectory. Fourth, 

the simulations of several divergent paths can alleviate the very biased phase space 

sampling in conventional MD. The polypeptide with the lowest potential energy in these 
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DIP simulations is likely to sample various metastable minimum energy conformations 

and explore some folding or unfolding processes from the individual trajectories. 

 

5.2.2. Conclusion for DIP simulations 

The DIP simulations of this polypeptide using the AMBER99 force field show 

that the global free energy minimum in vacuo at 300 K is not a single helical type but 

combined 310-helices. The combined 310-helices include the U-shaped 310-helix and 

nearly ideal 310-helix, while the 310-helix is probably the dominant conformation. The 

310-helix is not the global potential energy minimum but a local minimum with its 

potential energy above the U-shaped 310-helix and α-helix. This observation supports the 

idea that the global free energy minimum conformation near in vivo temperatures is not 

necessarily the global potential energy minimum conformation at 0 K but can be a local 

minimum conformation. A direct oscillation between two lowest free energy minima of a 

310-helix and a U-shaped 310-helix cannot be observed in a single trajectory throughout 

the simulations. However, our DIP simulations provide the trajectory of the lowest 

potential energy polypeptide at each step that clearly displays an oscillation between 

these two metastable states.  

 

5.3. DIVE simulations of polyalanine using the AMBER99 force field 

 

5.3.1. Simulation results 

When the AMBER99 force field was used, the DIVE simulations in vacuo sample 

potential energies ranging from nearly –30 to 240 kcal/mol (data not shown). Figure 
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5.3.1.1a displays the temperatures and potential energies of the polypeptide with the 

lowest potential energy at each step and Figure 5.3.1.1b enlarges the plot in the range of 

lowest potential energies to show clearly the different potential energy minima sampled 

during the simulations. Figure 5.3.1.1c shows the all-atom RMSD between the 

polypeptide with the lowest potential energy and an ideal α-helical reference structure. 

Figures 5.3.1.1d – 5.3.1.1f show all hydrogen bonds (H-bond), 1-4 H-bonds and 1-3 H-

bonds. The RMSD and H-bonding plots indicate that the polypeptide first forms a nearly 

perfect 310-helix after approximately 500ps (1-3 H-bonds: 11, RMSD: approximately 3 

Å) and first converts to an α-helix at 1000ps (1-4 H-bonds: 9, RMSD: approximately 0.5 

Å). At energies corresponding to a temperature below 10 K, many potential energy 

minima appear in the trajectory.  
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Figure 5.3.1.1. Time series of various properties of the polypeptide with lowest potential 
energy at each step in a DIVE simulation of six trajectories of Ala13 in vacuo, starting 
from an extended structure. (a) Temperature (upper, gray curve) and potential energy 
(lower, black curve). (b) Potential energy displayed on an expanded scale. (c) RMSD 
between all atoms of the calculated structure and an ideal α-helix. The RMSD between a 
310-helix and an ideal α-helix is approximately 3 Å. (d) All hydrogen bonds. (e) 1-4 
hydrogen bonds. (f) 1-3 hydrogen bonds. A hydrogen bond is identified when the 
distance between two heavy atoms X is below 3.3 and the X-H ⋅⋅⋅ X angle differs from 
180° by less than 20.0°. An ideal α-helix has eleven 1-4 hydrogen bonds and a 310-helix 
has twelve 1-3 hydrogen bonds. 
 

We calculated the average temperature for each 50ps interval and then collected 

data from those simulation regions whose average energies correspond to temperatures 

below 10 K. 63 regions are obtained from the polypeptide with lowest potential energy 

along this trajectory. Furthermore, we selected the lowest potential energy over each 50ps 
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interval, and determined the conformations of Ala13 in the potential energy minimum for 

these regions. Representative results are shown in Figure 5.3.1.2. The global potential 

energy minimum of Ala13 in vacuo is a parallel U-shaped 310-helix (Figure 5.3.1.2a) with 

a global minimum potential energy of –25.7 kcal/mol. With an RMSD value of 

approximately 6 Å from the α-helical structure, this conformation was first formed near 

2.2ns. There are many local potential energy minima between –23 and -17 kcal/mol. 

Their conformations are diverse but are all well ordered, with more than 9 H-bonds. 

Though the difference between potential energy minima of different structural types is 

relatively small (less than 3 kcal/mol between any two minima closest in energy), the 

RMSDs between different conformations and an ideal α-helix differ by as much as 6.5 Å.  

     
             (a) E = -25.7 kcal/mol                        (b) E = -22.2 kcal/mol                       (c) E = -22.0 kcal/mol  

     
            (d) E = -21.9 kcal/mol                       (e) E = -21.6 kcal/mol                      (f) E = -21.2 kcal/mol 

Figure 5.3.1.2. Conformations and potential energies (kcal/mol) of potential energy 
minima sampled by the polypeptide with lowest potential energy from the DIVE 
simulation of Ala13 in vacuo, starting from an extended structure. Approximate 
descriptions of the conformations, all-atom RMSD from the ideal α-helix, and number of 
H-bonds are: (a) A parallel U-shaped 310-helix is the global potential energy minimum 
(RMSD is 6.2 Å, seven hydrogen bonds, plus one heavy atom engaged in two H-bonds). 
(b) 310-helix, with N- and C-termini forming hydrogen bonds analogous to a second 310-
helix (RMSD is 5.7 Å; ten hydrogen bonds). (c) A U-shaped α-helix (RMSD is 5.9 Å; 
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seven hydrogen bonds, plus one heavy atom engaged in two H-bonds). (d) α-helix, bent 
at the C-terminus (RMSD is 3.6 Å; eight hydrogen bonds). (e) A U-shaped, 1/3 α-helix, 
2/3 310-helix (RMSD is 6.2 Å; eleven hydrogen bonds). (f) A nearly ideal α-helix 
(RMSD is 0.6 Å; eleven hydrogen bonds). A hydrogen bond is identified when the 
distance between two heavy atoms X is below 3.3 and the X-H ⋅⋅⋅ X angle differs from 
180° by less than 20.0°. These images were generated by using PyMOL 
(http://pymol.sourceforge.net/). 
 

A similar analysis of the potential energy of the individual trajectories throughout 

the course of the simulation gives a total of 132 regions of minimum energy (132-63=69 

regions have not been displayed in the trajectory for the lowest potential energy 

polypeptide of Figure 5.3.1.1a). Figure 5.3.1.3a shows an example of the temperature and 

potential energy histories of the 2nd polypeotide, for which relatively higher, local 

potential energy minima are sampled. Figures 5.3.1.3b – d display the time histories of 

the corresponding RMSD, 1-4 H-bonds, and 1-3 H-bonds respectively. For this 

trajectory, folding to an α-helix occurs more than ten times and folding to a 310-helix is 

observed three times. Representative structures sampled from the individual polypeptide 

trajectories are shown in Figure 5.3.1.4. The highest potential energy minimum sampled 

in the simulations below 10 K is the extended conformation with a potential energy of 

approximately 50 kcal/mol.  
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Figure 5.3.1.3. Time series of various properties of one polypeptide from a DIVE 
simulation of six trajectories of Ala13 in vacuo, starting from an extended structure. (a) 
Temperature (gray curve) and potential energy (black curve). (b) RMSD between all 
atoms of the calculated structure and an ideal α-helix (The RMSD between a 310-helix 
and an ideal α-helix is approximately 3 Å). (c) 1-4 hydrogen bonds. (d) 1-3 hydrogen 
bonds.  
 

     
            (a) E = -19.4 kcal/mol                        (b) E = -18.5 kcal/mol                     (c) E = -18.0 kcal/mol  

     
            (d) E = -12.5 kcal/mol                       (e) E = -6.0 kcal/mol                       (f) E = 3.3 kcal/mol   

Figure 5.3.1.4. Conformations and potential energies (kcal/mol) sampled by individual 
polypeptides from a DIVE simulation of six trajectories of Ala13 in vacuo, starting from 
an extended structure. Approximate descriptions of the conformations, RMSD of all 
atoms from the ideal α-helix, and number of H-bonds are: (a) U-shaped, 2/3 α-helix, 1/3 
310-helix (RMSD is 6.3 Å; eight hydrogen bonds). (b) α-helix with frayed C-terminus 
and ½ turn 310-helical N-terminus (RMSD is 5.3 Å; seven hydrogen bonds). (c) A nearly 
ideal 310-helix (RMSD is 3.1 Å; twelve hydrogen bonds). (d) 310-helix, with a large and a 
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small β-turn at termini (RMSD is 5.3 Å; seven hydrogen bonds, plus one heavy atom 
engaged in two H-bonds) (e) 2/3 the peptide forms an α-helix and 1/3 forms a β-turn 
(RMSD is 3.8 Å; seven hydrogen bonds). (f) Three anti-parallel β-strands (RMSD is 5.7 
Å; four hydrogen bonds, plus two heavy atoms engaged in two H-bonds). These images 
were generated by using PyMOL (http://pymol.sourceforge.net/). 
 

We repeated the simulations starting from an ideal α-helix. Again, the analysis of 

the potential energy minima and the conformations below 10 K shows very similar 

results to those obtained starting from an extended chain. The same global potential 

energy minimum with a parallel U-shaped 310-helix is obtained and similar local potential 

energy minima and their conformations are sampled, regardless of the starting structure. 

The potential energy minima and their conformations in the simulations from these two 

different initial configurations can be approximately summarized as follows. First, the 

global potential energy minimum is below –23 kcal/mol and corresponds to a U-shaped 

310-helix. Second, the conformations of local potential energy minima between –23 

kcal/mol and –5 kcal/mol include (a) α-helical, (b) 310-helical, and (c) partially α-helical 

or partially 310-helical structures with (i) termini–frayed, (ii) extended, (iii) β-turns with a 

single 1-3 H-bond, and (iv) another small α-helix/310-helix. Third, the extended 

conformation represents the highest potential energy minimum sampled in the 

trajectories, 48 kcal/mol.  

 

5.3.2. Conclusion for DIVE simulations 

From DIVE simulations, the global potential energy minimum of Ala13 in vacuo 

for the AMBER99 force field is a U-shaped 310-helix. Moreover, the DIVE simulations 

are able to search a diverse conformational space in a short simulation time including the 

nearly ideal 310-helix, α-helix, and other partial helices. The compact structures and β-

 128



sheet conformations seem unfavorable in the AMBER99 force field simulations of Ala13. 

In contrast, their minimum energies are sampled when using the AMBER96 force field 

(Chapter 4). Results for DIVE simulations of Ala13 are largely independent of initial 

structures. In our simulations, the global and local potential energy minima sampled from 

an initially extended structure are almost identical with those sampled from an initial 

ideal α-helix.  

 

5.4. Comparisons of potential energy landscapes and conformations of polyalanine 

for different force fields 

Different force fields play an important role in phase space sampling. The 

sampled minimum energy states from different force fields can be significantly different 

while using the same simulation protocols. For example, the observation of clusters of U-

shaped 310-helices and 310-helices as the global free energy minimum conformations 

using the AMBER99 force field contradicts the simulations using the AMBER96 force 

field where the α-helix is the global minimum conformation for Ala13 in vacuo at 300 K. 

These two different force fields also give different potential energy minima for Ala13 in 

vacuo at 0 K. Moreover, the DIVE simulations from the AMBER96 force field sampled 

more varied conformations than those from the AMBER99 force field. In the AMBER99 

force field simulations of Ala13, the minima for β-sheets and a large number of well-

ordered compact conformations could not be searched, while the 310-helices are easily 

located. 

The different minimum energy states sampled from AMBER96 and AMBER99 

force fields reflect the different potential energy landscapes built on these two different 
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force fields. Due to the efficient diverse conformational space sampling for this DIVE 

technique, we believe that the global potential energy minimum and its conformation is 

most likely as we reported above, even on limited simulation times (10 ns). On the other 

hand, we consider that the failure to locate the β-sheet conformational minima from 

AMBER99 and for the 310-helical minima from AMBER96 is due to their high potential 

energies. The observation of some β-sheet-rich conformations in the trajectory from 

AMBER99 force field simulations at high temperatures provides some evidence. To 

sample the minimum potential energies for these conformations, we further supplemented 

our DIVE simulations, starting from double-stranded β-sheets and 310-helical 

conformations, by using the same simulation protocols.  

 

5.4.1. Further supplemental DIVE simulations  

First, we repeated the AMBER 99 force field simulations starting from a nearly 

ideal double-stranded β-sheet (Fig. 4.3.2.2.3d, Chapter 4) taken from the AMBER 96 

force field simulations. Fig. 5.4.1.1a gives an example showing the temperatures and 

potential energies of a single polypeptide, for which the global potential energy minimum 

(-25.7 kcal/mol, the U-shaped 310-helix) is sampled. Fig. 5.4.1.1b – d display the histories 

of the corresponding RMSD, 1-4 H-bonds, and 1-3 H-bonds respectively. The RMSD 

and H-bonding plots indicate that the polypeptide almost keeps the β-sheet conformations 

in the first 2.5ns (RMSD: approximately 9.0 Å) and then converts to helical 

conformations. The minimum potential energies for β-sheets are approximately 10 

kcal/mol. Fig. 5.4.1.2 displays the representative conformations (not shown as the 

minimum energy states in the simulation starting from the extended structure) sampled 
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from all individual trajectories. Very interestingly, these conformations constitute a 

reasonable path for the conformational transition from the high potential energy states of 

β-sheets to the low energy states of helical conformations.  
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Figure 5.4.1.1. Time series of various properties of a single polypeptide from a DIVE 
simulation of six trajectories of Ala13 in vacuo, starting from a double-stranded β-sheet 
(taken from AMBER96 force field simulation). (a) Temperature (upper, gray curve) and 
potential energy (lower, black curve), global potential energy minimum (-25.7 kcal/mol) 
was sampled. (b) RMSD between all atoms of the calculated structure and an ideal α-
helix. The RMSD between the global potential energy minimum U-shaped 310 helical 
conformation and an ideal α-helix is approximately 6 Å. (c) 1-4 hydrogen bonds. (d) 1-3 
hydrogen bonds.  
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             (a): E = 8.7 kcal/mol                            (b): E = 7.0 kcal/mol                        (c) E = 4.8 kcal/mol 

     

           (d) E = 3.7 kcal/mol                            (e) E = 2.5 kcal/mol                          (f) E = -7.4 kcal/mol  

Figure 5.4.1.2. Conformations and potential energies (kcal/mol) sampled from the DIVE 
simulations of six trajectories of Ala13 in vacuo by using AMBER99 force field, starting 
from a double-stranded β-sheet structure. Approximate descriptions of the conformations, 
RMSD of all atoms from the ideal α-helix, and number of H-bonds are: (a) A nearly ideal 
double-stranded β-sheet (RMSD is 8.9 Å; five hydrogen bonds, plus one heavy atom 
engaged in two H-bonds). (b) Double-stranded β-sheet (RMSD is 8.2 Å; six hydrogen 
bonds). (c) Two β-strands (RMSD is 8.1 Å; four hydrogen bonds, plus one heavy atom 
engaged in two H-bonds). (d) Two β-strands, linked by ½ turn 310-helix (RMSD is 7.6 Å; 
five hydrogen bonds). (e) One turn α-helix, termini forming β-strands (RMSD is 7.7 Å; 
four hydrogen bonds, plus one heavy atoms engaged in two H-bonds). (f) 310-helix, 
termini forming β-stands (RMSD is 7.1 Å; ten hydrogen bonds). These images were 
generated by using PyMOL (http://pymol.sourceforge.net/). 
 

We observed the similarities and differences of the potential energy minima 

sampled in the DIVE simulations of Ala13 in vacuo by using AMBER99 force field, 

starting from the extended structure, ideal α-helix, and double-stranded β-sheets, 

respectively (data not shown here). While the sampled minima at low potential energies 

show a high degree of similarity, those at high potential energies show some differences. 

This observation indicates that the DIVE simulations might be weakly initial-structure-
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dependent, if we consider the sampling of high potential energy minima. Two reasons 

account for the weak dependence on initial structures. First, as we mentioned above, the 

DIVE simulations of an initial configuration on a limited time scale by no means can 

sample all the local potential energy minima. Second, high potential energy minima 

should have much less probability of being sampled at such low temperatures (below 10 

K). They only can be searched easily at low temperatures from the direct quenching of 

their corresponding initial or closely related conformations. In spite of these differences, 

in all these cases, the same global potential energy minimum U-shaped 310 helical 

conformation is sampled during the simulations.  

The DIVE simulations of Ala13 by using AMBER96 force field starting from a 

parallel U-shaped 310-helix and nearly ideal 310-helix (Fig. 5.3.1.2a and Fig. 5.3.1.4c, 

taking from the AMBER 99 force field simulations) demonstrate that the nearly ideal α-

helix is the global potential energy minimum in vacuo for the AMBER96 force field (data 

not shown). As we expected, the minimum of the 310-helix is located at high potential 

energies, above that of the double-stranded β-sheets. Fig. 5.4.1.3 displays the 

representative conformations (not shown in the simulation starting from the extended 

structure) sampled from all individual trajectories. Since the energy gaps between the 310-

helices and the β-sheet-rich conformations are small, the history plot of the sampled 

minimum potential energy states is very similar to those starting from the extended 

structure and ideal α-helix. However, some conformational minima are still sampled 

differently from different initial configuration simulations. On the other hand, a target 

heating temperature of 1000 K does not seem high enough for simulations starting from 

the α-helix or 310-helix (which easily converts to an α-helix) to search for β-sheet local 
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minima, but 1200 K is high enough. The observations indicate that the thermalization 

temperature for complete unfolding of an α-helix in vacuo using the AMBER96 force 

field is between 500 K (=1000 K / 2, since half of the kinetic energy quickly converts into 

the α-helical potential energy) and 600 K (=1200 K / 2). 

     

             (a): E = -38.4 kcal/mol                     (b) E = - 51.5 kcal/mol                       (c) E = -52.0 kcal/mol  

     

              (d) E = -52.1 kcal/mol                      (e) E = -54.1 kcal/mol                      (f) E = -56.7 kcal/mol 

Figure 5.4.1.3. Conformations and potential energies (kcal/mol) sampled from a DIVE 
simulation of six trajectories of Ala13 in vacuo by using AMBER96 force field, starting 
from a nearly ideal 310-helix (a, b, f) or a parallel U-shaped 310-helix (c, d, e). 
Approximate descriptions of the conformations, RMSD of all atoms from the ideal α-
helix, and number of H-bonds are: (a) A nearly ideal 310-helix (RMSD is 2.7 Å; twelve 
hydrogen bonds). (b) Two β-strands (RMSD is 5.3 Å; five hydrogen bonds). (c) A U-
shaped 310-helix (RMSD is 6.2 Å; ten hydrogen bonds, plus one heavy atom engaged in 
two H-bonds). (d) α-helix, termini frayed (RMSD is 3.2 Å; eight hydrogen bonds). (e) α-
helix, a β-turn at the C-terminus (RMSD is 3.9 Å; nine hydrogen bonds). (f) U-shaped, 
2/3 α-helix, 1/3 extend, linked by a turn (RMSD is 5.6 Å; nine hydrogen bonds). These 
images were generated by using PyMOL (http://pymol.sourceforge.net/). 
 

5.4.2. Discussion 
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A direct comparison of the potential energy minima and their different 

conformations is necessary for us to clarify the distinct potential energy landscapes from 

different force fields. Table 5.4.2.1 shows the sampled minimum potential energies of 

several representative conformations from AMBER96 and AMBER99 force field 

simulations. Fig. 5.4.2.1a – b display the comparison of the potential energy gap of these 

conformations between these two force fields. The larger energy gap (73.8 kcal/mol) of 

the extended structure from the global minimum in AMBER99 compared to that in 

AMBER96 (54 kcal/mol), indicates a much flatter potential energy surface of Ala13 built 

from the AMBER96 force field (shown in Fig. 5.4.2.1a). Furthermore, the energy gap 

among these conformations, excluding the extended structure, is more closely and evenly 

distributed in AMBER96, while it clearly splits two regions of β-sheets and 310/α-helical 

conformations in AMBER99 (Fig. 5.4.2.1b). The large energy gap between sheets and 

helices accounts for the preference of helical conformations for the AMBER99 force 

field. Yoda, Takao, et al. demonstrate that G-peptide, known to form β-hairpin structures 

in aqueous solutions, was even shown to adopt some helical conformations in the 

AMBER99 explicit solvent simulations using generalized-ensemble algorithms 7.  
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Table 5.4.2.1. Comparison of the sampled minimum potential energies, potential energy 
gap from the global minimum, and potential energy gap from the minimum immediately 
below of several representative conformations for two different force fields. 
 

Min. potential energy 
(kcal/mol) 

Energy gap from global 
minimum (kcal/mol) 

Energy gap from min. 
immediately below 

(kcal/mol) 
AMBER AMBER AMBER 

Structure 

96 99 96 99 96 99 
1: Extended -7.2 48.1 54.0 73.8 31.2 39.4 

2: Double-stranded 
β-sheets 

-48.4 8.7 12.8 34.4 3.6 26.7 

3: 310-helix -38.4 -18.0 22.8 7.7 10.0 3.2 

4: Parallel U-
shaped 310-helix 

-52.0 -25.7 9.2 0 9.2 0 

5: α-helix -61.2 -21.2 0 4.5 0 4.5 

Global potential 
energy minimum 

-61.2 -25.7     
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Figure 5.4.2.1. The comparison of (a) potential energy gap between the global minimum 
and the structure types in Table 5.4.2, and (b) potential energy gap between minima listed 
in Table 5.4.2 and the potential energy minimum immediately below each minimum. The 
Figure compares results for the AMBER96 and AMBER99 force fields.  
 

The distinct features of the potential energy landscapes show two side effects of 

molecular dynamics simulations. First, when starting from an extended structure, an 
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efficient simulation technique like the DIVE protocol can sample much more diverse 

regions of conformational space in AMBER96 than AMBER99. Second, the less efficient 

conventional NVT simulations of the polypeptide can be easily trapped in local β-sheet 

conformations in AMBER96 (Chapter 3) but is able to sample the global minimum 

helical conformation in AMBER99. It is difficult to evaluate accurately which force field 

is better for use in molecular dynamics, since here we test them only by using a model 

polypeptide of Ala13 in the gas phase. However, the simulation results may indicate 

some undesirable features of potential energy landscapes for this polyalanine built from 

both force fields. In the AMBER96 force field, the potential energy minima of many 

compact structures are close to those of α-helices and β sheets. As a result, the sampling 

of these diverse structures is likely to reduce the efficient sampling of those important 

secondary structural elements of proteins in a realistic MD simulation. On the other hand, 

in the AMBER99 force field, the minimum potential energies of β-sheets are too high 

compared to those of helices. As a result, these large energy differences can bias the 

sampling of the natural folded structure from β-sheets to helices.  

The global potential energy minimum, and low potential energy local minima 

sampled starting from several very different conformations give almost identical results. 

These indicate that the disrupted velocity (DIVE) search simulation is an effective 

optimization technique for predicting 3D protein structures from only sequence data. In 

the DIVE simulations, we currently focus on locating potential energy minima rather than 

calculating statistical average ensemble properties. We think that it is meaningless to 

consider statistical averages if only a very small part of phase space can be sampled. 

Unfortunately, this condition known as a limited phase space sampling is usually true in 
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most computational simulations in the last decade. Therefore, our strategy to develop this 

technique is to enhance phase space sampling as much as possible on the limited 

simulation time. We also believe that the DIVE technique can illuminate some effects of 

different force fields on MD simulations and the protein folding problem. This is because 

different force fields may reverse the energy levels of different minima, but are unlikely 

to exclude particular conformations. As an example, in the AMBER99 force field, the α-

helix, known as the conformation of polyalanine 1,12-16, is not favored for Ala13 in vacuo 

at room temperature from the conventional NVT simulations (or DIP simulations), but it 

can be easily sampled in DIVE simulations.  

The large differences in simulation results from different force fields may indicate 

that the current force fields are not yet capable of predicting the naturally polypeptide 

conformations. The free energy difference from the unfolded extended structure to the 

naturally folded conformation built from these force fields cannot drive the protein into 

folding automatically. However, our technique has the ability to sample diverse regions 

of conformational space efficiently to locate the naturally folded structure, though it may 

be neither the global potential energy minimum nor the free energy minimum. 

Polypeptides spanning tens of residues, rather than dipeptides and tetrapetides, are 

necessary to test molecules for further development of mechanical force fields. The 

DIVE simulation technique provides an effective way to help build large portions of the 

potential energy landscape of polypeptides for testing the next generation of force fields.  
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Chapter 6 

 

Molecular Dynamics Simulations of Polyalanine in GB/SA Implicit Solvent 

 

6.1. Introduction 

The three limitations of potential energy traps, free energy traps, and kinetic traps 

cause a very biased phase space trajectory in conventional MD simulations, strongly 

dependent upon the initial coordinates. Divergent path (DIP) search simulations can 

alleviate this biased phase space sampling problem in MD simulations and help in 

attaining both folding and unfolding processes for some individual trajectories. A more 

complete phase space sampling can be further obtained with a number of DIP 

simulations, starting from several different conformations. In this way, the global free 

energy minimum near in vivo temperatures are more likely to be sampled. On the other 

hand, Disrupted velocity (DIVE) search simulations are performed by combining 

divergent path at one temperature by using cycles of heating and cooling. As a result, 

DIVE simulations can effectively sample diverse conformational space in a short 

simulation time. In addition, the technique can accurately map the global potential energy 

minimum and myriad local potential energy minima at temperatures near 0 K.  

The previous three chapters described these new molecular dynamics simulation 

techniques to study Ala13 in vacuo. The results are strongly dependent on the force fields 

used in the simulations. For the AMBER 96 1 force field, the conformation for both the 

global potential energy minimum and the global free energy minimum at room 

temperature is identified as an α-helix. For the AMBER 99 2 force field, the global 
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potential energy minimum is a U-shaped 310-helix while the family of global free energy 

minimum conformations at room temperature are clusters of U-shaped 310-helices and 

310-helices. In our simulations, dependence on the initial conformation is minimal 

because the same simulation results are obtained from several very different starting 

structures. The occurrence of different global minimum energy conformations are 

artifacts of the different force fields. The fact that the global free energy and potential 

energy minimum conformation of the gas phase Ala13 is not the α-helix in the AMBER 

99 force field aroused our interest in testing new simulations of this polypeptide in water 

using the same force field.  

Polyalanine is known to form the α-helical conformation. Experiments 3-11 show 

that short alanine-based peptides may appear to form the 310-helix, rather than only α-

helical conformations in aqueous solution, especially near their termini 4,9. Simulations 12-

18 of uncharged polyalanines with a sequence length between 10 and 30 indicate that the 

α-helical conformation is the global minimum energy conformation for the peptides both 

in vacuo and in solvent environments. It should be noted, however, that these simulations 

were based on earlier force fields (e.g. Amber 91 15,17, ECEPP/2 14,18) and/or less accurate 

implicit solvent models (e.g.. distance dependent dielectric models 16,19). On the other 

hand, most of the simulations were initiated from the α-helical conformation 13-15,17. A 

direct observation of the folding process to global helical conformations from the initial 

extended conformation or the unfolding process from the initial α-helical conformation at 

ambient temperatures is much more valuable. Therefore, in this chapter, we present these 

two new molecular dynamics simulations (DIP and DIVE) in order to investigate the 
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global free energy and potential energy minimum conformations of Ala13 in the GB/SA 

implicit solvent model for water using the AMBER 99 force field. 

 

6.2. Simulation methodology 

 

6.2.1. Potential energy function and GB/SA implicit solvent models 

The potential energy function (eq 6.2.1.1) of the solute polypeptide uses the 

AMBER force field model 20,21 consisting of bond length stretching and angle bending 

represented by a simple harmonic expression. The dihedral angle twisting term is 

represented by a truncated Fourier series, the van der Waals interaction is modeled by a 

Lennard-Jones potential, and electrostatic interactions are represented by a Coulombic 

interaction of atom-centered partial charges. The Amber 99 force field 2 was adopted for 

all parameters in equation (6.2.1.1). 
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In the GB/SA model 22, the total energy function Etotal (eq 6.2.1.2) in implicit 

solvent environment includes the energy terms of the solute, Epotential, and the solvation 

energy, Gsol, for the interaction of the protein with the surrounding solvent.  The Gsol term 

is traditionally considered as a sum of a solvent-solvent cavity term (Gcav), a solute-

solvent van der Waals term (GvdW), and a solute-solvent electrostatic polarization term 

(Gpol) 22.  
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A combination of the first two terms for the solvation energy is linearly related to 

solvent-accessible surface area (SA) of the atom types of the solute (eq 6.2.1.3), where 

SAk is the total solvent-accessible surface area of atoms of type k, σk is an empirical 

atomic solvation energy parameter, and the summation extends over all atom types k. We 

follow Ref. 23 to calculate the accessible surface area SAk while a preliminary value of 

+7.2 22,24 or +5.0 25,26 cal/(mol - Å2) for the surface tension σk is used for all atom types. 

k
k

kvdwcav SAGG ∑=+ σ                                                                  (6.2.1.3) 

The Gpol term is calculated from the generalized Born (GB) equation. The original 

from was introduced by Still and co-workers 22 for the OPLS force field 27:  
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Where εp represents the low dielectric value inside of the protein, εw is the water (or other 

solvent) dielectric constant, rij is the separation distance of particles i and j, qi, qj are their 

charges, and αi, αj are the corresponding effective Born radii, respectively. The fgb 

function interpolates between the αi (or αj) of small rij and rij itself at large distances.  

Here we used two modified versions for which the parameterization is consistent 

with the AMBER force field. The first version incorporates a Debye-Hückel term 

in the generalized Born equation to account for salt effects at low salt 

concentrations 

gbfe κ−

26,28:  
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where κ is the Debye-Hückel screening parameter. This is the standard pairwise 

generalized Born model described by Tsui and Case 26,28. We use GB1 to represent it. 

The second version modifies the fgb function while keeping the original generalized Born 

equation, and takes the form 24,29: 
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This is called the modified generalized Born model derived by Jayaram, Sprous and 

Beveridge 24,29. We use GB4 to represent it. In both versions, the low dielectric value 

inside of the protein is considered one. We will not describe in detail the procedure to 

calculate the effective Born radius α values in these two different models, because it can 

be found elsewhere 24,26,28,29. In the following simulations, the input parameters follow the 

standard values for each GB/SA implicit model. In GB1/SA, we set the water dielectric 

constant εw 78.5 and the surface tension parameter σ is +0.005 kcal/mol.  In GB4/SA, we 

set the water dielectric constant εw = 80 and the surface tension parameter σ is +0.072 

kcal/mol. 
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6.2.2. Computational details 

To run DIP simulations, we simulated six trajectories of Ala13 simultaneously 

and each polypeptide in a given trajectory was simulated independently for every step. 

These independent polypeptides were assigned the same initial structure (extended 

structure or α-helix) and temperature (300 K), but the same atom in each polypeptide had 

a different direction for its velocity. This was done in two steps: first, the same initial 

coordinates and velocities were assigned to the different polypeptides; then the velocities 

of the other five polypeptides were randomly re-set by changing the original direction but 

not the magnitude of the velocity vector for each atom in each polypeptide. The initial 

velocities of the first polypeptide were generated from a Gaussian velocity distribution 30 

at 300 K. We used a time step of 1 fs but collected the trajectory data (energies and 

coordinates) at every 1000 time steps (1 ps intervals) in all MD simulations. The 

simulation time for each run was 10 ns for DIP simulations and 60 ns for conventional 

NVT simulations.  

To run DIVE simulations, we simulated six trajectories of Ala13 simultaneously 

with different initial energies corresponding to temperatures of 10 K, 50 K, 100 K, 300 

K, 600 K, and 1000 K.  The scaling parameter for cooling was 0.25 and the scaling 

parameter for heating was calculated from the target temperature Ttarget (corresponding to 

the target energy) and the temperature (energy) T at the velocity reassignment step by σ = 

Ttarget/T. Ttarget was selected to be 1000 K. The threshold temperature for heating and 

cooling was 10 K. Thus, during the velocity reassignment, each polypeptide was cooled 

to 0.25 of its temperature T whenever its temperature rose above the threshold 
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temperature. Once the temperature was below 10 K at the reassignment time, the 

polypeptide was heated back to Ttarget. Velocity reassignment occurred after every 20 ps. 

We used a time step of 1 fs but collected the trajectory data (energies and coordinates) at 

every 500 time steps (0.5 ps intervals) for 2 ns of implicit solvent simulations.  

 

6.3. DIP Simulations for folding and unfolding studies of solvated polyalanine 

 

6.3.1. Simulation results in GB1/SA implicit solvent model 

Fig. 6.3.1.1 displays the time series of the potential energy and all-atom RMSD 

from an ideal α-helix from the DIP simulations of six trajectories of Ala13 at 300 K in 

GB1/SA implicit solvent. The simulations were started from the extended and α-helical 

conformations. While the temperature histories (not shown) are very similar for the 

simulations begun in either extended or α-helical conformations (oscillating between 300 

K ± 50 K for any polypeptide), the corresponding potential energies (Fig. 6.3.1.1a - b) 

evolve differently, and the structures equilibrate in different potential energy wells. These 

different potential energy wells may include very different conformational states. The 

RMSD plots (Fig. 6.3.1.1c - d) clearly show that two polypeptides of the six (the 2nd and 

5th polypeptide) undergo a folding process from the initial extended conformation (From 

the plots, RMSDs stabilize at values below 3.5 Å. so an RMSD less then 3.5 Å of the 

conformations is considered a folded structure). One polypeptide (the 3rd polypeptide) 

experiences an unfolding process from the initial α-helical conformation. A dynamic 

view of the seven folded trajectories in the Moil-view molecular graphics display 
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programs 31 shows that the folded structures are either α-helical, 310-helical 

conformations, or clusters of mixed α/310-helices.  
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Figure 6.3.1.1. Time series of the potential energy and all-atom RMSD from an ideal α-
helix in a six-trajectory, DIP simulation of Ala13 at 300 K in GB1/SA implicit solvent. 
(a) Potential energy, starting from an extended structure. (b) Potential energy, starting 
from an ideal α-helix. (c) RMSD between all atoms of the calculated structure and an 
ideal α-helix, starting from an extended structure. (d) RMSD between all atoms of the 
calculated structure and an ideal α-helix, starting from an ideal α-helix. The RMSD for 
an ideal 310-helix compared to the ideal α-helical reference structure is approximately 3 
Ǻ. Note: Blue: 1st, Magenta: 2nd, Yellow: 3rd, Light blue: 4th, Purple: 5th, Brown: 6th 
trajectory.  
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In conventional NVT simulations, however, different simulation results are 

usually obtained from the different initial conformations. The NVT simulation from the 

initial α-helix always gets trapped in the α-helical potential energy well, while that of the 

initial extended structure gets trapped in some local energy well 32,33. Our conventional 

NVT simulations of the 1st polypeptide in both simulations on the time scale as long as 60 

ns also support this phenomenon (data not shown here). Of course, the folding and 

unfolding processes of the helical conformations are not observed during the 

conventional NVT simulations. 
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Figure 6.3.1.2. Time series of various properties of the polypeptide with lowest potential 
energy from a six-trajectory, DIP simulation of Ala13 at 300 K in GB1/SA implicit 
solvent, starting from an extended structure (black curve) or an ideal α-helix (gray 
curve), respectively. (a) Potential energy. (b) RMSD between all atoms of the calculated 
structure and an ideal α-helix.  
 

Fig. 6.3.1.2a - b compare the histories of the potential energy and all-atom RMSD 

from an ideal α-helix of the polypeptide with the lowest potential energy at each data-

collection step (ps interval) in DIP simulations starting from the initial extended or α-

helical structures. Interestingly, the histories of the same type plot (potential energy or 

all-RMSD) from the different initial conformations are very similar to each other. The 
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RMSD histories of the polypeptide with the lowest potential energy from DIP simulations 

indicate that at 300 K in GB1/SA implicit solvent the Ala13 oscillates between the α-

helix and 310-helix while the latter is the dominant helical form.  

This conclusion is also supported in the plots of the hydrogen bonds (data not 

shown here). The number of hydrogen bonds (H-bond) for simulations starting from 

extended or α-helical structures is nearly identical after the first 500 ps of the 

simulations. Moreover, in both trajectories of the polypeptide with the lowest potential 

energy, 1-3 H-bonds dominate over 1-4 H-bonds, while other H-bonds are very rarely 

formed. The data indicate that in a solvent environment this polyalanine peptide oscillates 

between α-helical and 310-helical conformations. Thus, the global free energy 

conformations are not only limited to the α-helix at room temperature. In other words, 

the free energy minimum conformations for Ala13 at 300 K in solvent are clusters of 

similar helical conformations in which α-helices and 310-helices are metastable states. 

Metastable states can be defined as several nearly isoenergetic conformations 34,35. 

Transitions between them can easily happen through protein motions due to small 

environmental perturbations. The results are different from the earlier simulation reports 

of uncharged polyalanines with a sequence length between 10 and 30 12-17 which imply 

that the α-helical conformation predominates. Nevertheless, they are in good accord with 

experiments for short alanine-based peptides in aqueous solution 3,5,6,10,33,36. 

It was reported from earlier simulations 17,37 and experiments 11,38 that the helical 

structure near the C-terminus is more fragile than that near the N terminus. Our 

simulations support this point. We first analyzed the histories of the first torsional angle ϕ 

(psi) (H-CT-C-N) in the ACE terminus (N-terminus of Ala13) and the last torsional angle 
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φ (phi) (C-N-CT-H) in the NME terminus (C-terminus of Ala13) of the lowest potential 

energy trajectory. From both initial extended and α-helical structures, the last torsional 

angle φ at the C-terminus samples more angular space than the first torsional angle ϕ at 

the N-terminus of the Ala13 (data not shown here). This indicates that the frayed C-

terminus of the α-helix should be more stable than the frayed N-terminus.  
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Figure 6.3.1.3. Ramachandran plots of the polypeptide with lowest potential energy from 
a six-trajectory, DIP simulation of Ala13 at 300 K in GB1/SA implicit solvent, starting 
from an extended structure (black dots) and ideal α-helix (gray dots).  (a) φ, ϕ plot for the 
N-terminal alanine residue. (b) φ, ϕ plot for the C-terminal alanine residue. In both plots, 
large numbers of black dots are obscured by gray dots.  
 

We also analyzed the histories of the φ, ϕ angle in the first alanine residue near 

the N-terminus and the last alanine residue near the C-terminus.  Fig. 6.3.1.3 shows the 

Ramachandran plots of these φ, ϕ angles for polypeptide with the lowest potential energy 

from two different initial conformations. The φ, ϕ angles near the C-terminus (Fig. 

6.3.1.3b) samples more conformations than those near the N-terminus do (Fig. 6.3.1.3a). 

Again, this is in good accord with the more fragile helical structure near the C-terminus 

than at the N-terminus. On the other hand, the φ, ϕ angles from the initially extended 

structure (black dots) samples a little more phase space than those from the initial α-
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helical form (gray dots). It is reasonable because the trajectory of the lowest potential 

energy polypeptide from the initial extended structure must undergo an extra folding 

process to reach the helical conformation. The observation that the N-terminal local 

helical conformation is more stable than the C-terminal local helical conformation is also 

consistent with the conformational potential energy minima. For Ala13 the minimum 

energy of the C-terminal frayed (or bent) helix is 2-3 kcal/mol less than that of the N-

terminal frayed (or bent) helix (section 6.4.1). 

Although it is controversial to make conclusions based on breaking the total 

energy into components17,39-41, it is nonetheless interesting to consider what components 

of the energy contribute most to the total energy decrease upon forming the folded helical 

conformation. By analyzing each energy term, we found that the dominant energies that 

favor the helical conformation were the Coulombic and the van der Waals non-bonded 

energies. Throughout the simulations from two different initial configurations, the 

equilibrated unfolded extended conformations and folded helical conformations are both 

obtained from individual trajectories. From the initial extended conformation, the 2nd 

polypeptide folds and equilibrates by oscillating between α-helical and 310-helical 

conformations. The 4th polypeptide partially folds and unfolds, then equilibrates in a 

mostly extended conformation. From the initial α-helical conformation, the 3rd 

polypeptide unfolds and also equilibrates at a mostly extended conformation. The 5th 

polypeptide partially unfolds and refolds, then equilibrates by oscillating between the α-

helical and 310-helical conformations. We calculated the equilibrated energies and the 

differences between energies from the unfolded extended conformations and the folded 

helical conformations in the simulation using the last 1 ns (9 ns - 10 ns) from both initial 

 151



extended and α-helical conformations (See Table 6.3.1.1). The gas-phase Coulombic 

interaction (∆E ≈ -44 kcal/mol), which includes H-bonds (11 1-4 H-bonds for α-helix and 

12 1-3 H-bonds for 310-helix) appears to be a dominant factor in stabilizing the folded 

helical conformations in solvent. This opinion was also expressed by others 17,42,43. The 

electrostatic solvation energy Gpol (∆E ≈ 29 kcal/mol) disfavors the global helical 

conformations. The net sum of the Coulombic energy and Gpol energy is still decreased 

by 15 kcal/mol after folding. The net decrease indicates that formation of the intrapeptide 

H-bonds overcomes the increase of the solute-solvent polarization interaction. The van 

der Waals energy change (∆E ≈ -18 kcal/mol) is another helix-stabilizing factor in our 

simulations. This is also consistent with the result  from the published simulations of a 

15-residue polyalanine (Ala15) in explicit solvent 17. It should be noted, however, that a 

contradictory observation exists between our simulations and those reported by Takano, 

et al. in their explicit solvent simulations of Ala15 17. Our simulations clearly indicate 

that the geometric energy change, especially the torsional energy change, is not a helix-

stabilizing factor — it disfavors the α-helix but favors the 310-helix a little compared to 

the extended conformation (data not shown here). This may be explained by the different 

force fields used in two different simulations: we use AMBER 99 and they use the 

AMBER 91 force field.  
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Table 6.3.1.1. The difference of average energies for each term and average potential 
energies (kcal/mol) between the equilibrated extended and folded helical conformations 
during the simulation for the last 1 ns (9 ns - 10 ns).  
 

MD simulations from the initial 
extended conformation  

MD simulations from the initial α-
helical conformation  

 Energy 
Term 
(kcal/mol) Mostly 

Extended   
(4th, 7.47a) 

Combined 
Helices   
(2nd, 2.37a) 

Energy 
Difference 
(∆E) 

Mostly 
Extended 
(3rd, 7.69a) 

Combined 
Helices   
(5th, 1.88a) 

Energy 
Difference 
(∆E) 

VdW   6.26 -9.77 -16.0  6.50 -13.2 -19.7 
Coulombic -37.0 -81.1 -44.1 -37.1 -80.8 -43.7 
Geometric  140.2 142.6   2.4  139.7  146.3   6.6 
Gpol -87.5 -57.9   29.6 -87.4 -58.1   29.3 
SA  7.13  6.02 -1.12  7.18   5.93 -1.25 
Potential  29.2 -0.12 -29.3  28.8 -0.14 -28.9 
a: The average value of RMSD (Å) from the ideal α-helix between 9ns and 10 ns.  
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Figure 6.3.1.4. Time series of the Geometric, Coulomb, van der Waals, and Gpol energy 
terms of (a) of the 2nd polypeptide involved in α/310-helix folding process, starting from 
an extended structure, and (b) the 3rd polypeptide involved in helix unfolding process, 
starting from an ideal α-helix in a six-trajectory, DIP simulation at 300 K in GB1/SA 
implicit solvent. Note: Blue: Geometric, Magenta: Coulomb, Yellow: van der Waals, 
Light blue: Gpol. 
 

The helix-stabilizing factors can also be obtained from an analysis of the folding 

and unfolding dynamics process. Fig. 6.3.1.4a - b show the time series of the Geometric, 

Coulombic, van der Waals, and Gpol energy terms of the 2nd polypeptide, starting from 
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the initial extended conformation, and of the 3rd polypeptide, starting from the initial α-

helical conformation. If during the first 3 ns of the simulations involving the helical 

folding or unfolding process, the histories of the Coulomb, van der Waals, and Gpol 

energies favor the process, they will disfavor the reverse process, and vice versa. The 

history of the geometric energy, however, indicates that this energy always decreases no 

matter whether the simulation is involved in a folding or an unfolding process. We 

explain this unusual decrease of the geometric energy involving both helical folding and 

unfolding processes next.  

The initial random Gaussian velocity distribution can only guarantee the 

appropriate canonical-ensemble average temperature; it cannot guarantee the appropriate 

velocity magnitude and direction for each individual atom. Inappropriately distributed 

individual velocities can induce very unbalanced coordinate displacements and 

interactions in different parts of the polypeptide. Some atoms move too close so that their 

potential energies become very large. These biased coordinate displacements cause 

unequilibrated potential energy (and total energy), indicating that mechanical equilibrium 

has not been reached. The mechanical non-equilibrium states are indicated by a large 

SHAKE energy from the beginning of the simulations. The states sampled during this 

equilibration process are normally located in the thermodynamically accessible regions at 

high temperatures when mechanical equilibrium is reached. The large decrease in total 

energy during the mechanical equilibration process, therefore, indicates the transition 

from high-energy states of folded or unfolded conformations to low-energy states of 

unfolded or folded conformations. The geometric energy, not the long-distant non-

bonded interactions, is the main contribution to the non-equilibrium energies for the 
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conformation sampled. Its normal decrease reflects the transition between these energy 

states. The mechanical equilibration process also account for the unusual observation that 

simulations can exit the global minimum energy helical conformation but get trapped in 

the local energy wells of the extended structure (e.g. the 3rd polypeptide trajectory from 

the initial α-helix simulations). The geometric energy obtained from the mechanical 

equilibration process may not be accurate enough to analyze the energy difference 

between folded and unfolded structures. The detailed explanation of mechanical 

equilibration process and equilibrium states is in Chapter 3.  

The all-atom RMSD histories of the two polypeptides folding from the initially 

extended conformation (Fig. 6.3.1.1c) show that the helix folding process happens within 

the first several hundred picoseconds. Fig. 6.3.1.5 shows snapshots of the conformational 

change in the 2nd trajectory. The formation of helical structures can be described as 

follows. First, an extended Ala13 forms quickly into a random-coil conformation. This 

random coil has two or three turns with no more than one H-bond (Fig 6.3.1.5a). After 20 

ps, several H-bonds characteristic of helices were formed in these turns in which the 1-3 

type (β-turn 44) predominated. Then, the polypeptide oscillated among these random-coil 

states with the migration of some turns by breaking and forming H-bonds.  At 228 ps, a 

conformation with three β-turns in appropriate positions was formed (Fig. 6.3.1.5b). 

These β-turns were most likely to cooperate and to convert into three local half-turn α-

helical structures (Fig. 6.3.1.5c). Next, a partial α-helical conformation spanning the 

middle and N-terminus was formed (Fig. 6.3.1.5d). Finally, the partial helix was folded to 

an entire α-helix at 311 ps (Fig. 6.3.1.5e). In the last 9.7 ns, Ala13 oscillates between α-

helical and 310-helical conformations. Fig. 6.3.1.5f shows a nearly ideal 310-helix at 8632 
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ps. The unfolding trajectory of the 3rd polypeptide from the initial α-helix indicates that 

the 1-3 H-bond conformations also appear and may be transition states. In addition, the 

unfolding process happened in a more obviously cooperative way (figure not shown). A 

one turn 310-helix unfolds easily but refolds quickly. The substantial unfolding process 

happened when the two-turn 310-helix near the N-terminus unfolds into an extended 

structure. The partially extended form was then propagated. Finally, a nearly fully 

extended structure was obtained. The folding and unfolding studies of this polypeptide 

supports the ideal that α-helical conformations are initiated by 1-3 H-bonding within β-

turns 17,44. It should be noted, however, that the folding and unfolding processes show 

some differences in conformational transitions near the fully unfolded structures. 

     

(a) 13ps                                           (b) 228ps                                         (c) 262ps 

     

(d) 268ps                                                 (e) 311ps                                       (f) 8632ps 

Figure 6.3.1.5. Snapshots of the structural change in the 2nd trajectory upon folding, after 
starting from an extended structure. All hydrogen atoms are removed. (a) Three turns, no 
H-bonds. (b) Three 1-3 β-turns formed. (c) 1-4 H-bonds formed in turns. (d) Partial α-
helix formed. (e) An α-helix. (f) An 310-helix. The images were generated by using 
PyMOL (http://pymol.sourceforge.net/). 
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6.3.2. Simulation results in GB4/SA implicit solvent model 

We also ran a six-trajectory, DIP simulation of Ala13 at 300 K in GB4/SA 

implicit solvent. Most of the simulation results for the GB4/SA model are very similar to 

those of the GB1/SA model. For example, the simulations in GB4/SA also display 

folding trajectories from the initial extended structure and unfolding trajectories from the 

initial α-helix. The helical structure on the C-terminus is more fragile than that on the N-

terminus. The global folded conformations are also helical clusters including both α-

helices and 310-helices. The dominant conformation in the global folded conformations, 

however, is different for the simulations from these two different GB/SA implicit solvent 

models. 

Figs. 6.3.2.1a - b show the time series of the potential energy and all-atom RMSD 

from an ideal α-helix of the polypeptide with the lowest potential energy from the initial 

extended and α-helix simulations, respectively. Again, the histories of the same type plot 

(potential energy or all-RMSD) from the different initial conformations are very similar 

to each other. The plots further show that the polypeptide with the lowest potential 

energy oscillates between an α-helix and a 310-helix (all-atom RMSDs < 3.5 Å). 

Notwithstanding, compared to the simulations in the GB1/SA model, α-helices rather 

than 310-helices are the dominant conformations during the trajectories using the GB4/SA 

model. From all the data, it is difficult to determine whether the α-helical or 310-helical 

conformation is the global minimum free energy conformation for Ala13 in solvent at 

room temperature. Instead, all simulation results indicate that the global minimum free 

energy conformation of Ala13 at 300 K should not be a single conformation but clusters 

of α-helices and 310-helices.  
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Figure 6.3.2.1. Time series of the potential energy and all-atom RMSD from an ideal α-
helix of the polypeptide with the lowest potential energy from a six-trajectory, DIP 
simulation of Ala13 at 300 K in GB4/SA implicit solvent, starting from the extended 
(black curve) and α-helical (gray curve) conformations. (a) Potential energy. (b) RMSD 
between all atoms of the calculated structures and an ideal α-helix. 

Figure 6.3.2.1. Time series of the potential energy and all-atom RMSD from an ideal α-
helix of the polypeptide with the lowest potential energy from a six-trajectory, DIP 
simulation of Ala13 at 300 K in GB4/SA implicit solvent, starting from the extended 
(black curve) and α-helical (gray curve) conformations. (a) Potential energy. (b) RMSD 
between all atoms of the calculated structures and an ideal α-helix. 
  

The different dominant conformations for the lowest potential energy trajectory in 

GB4/SA and GB1/SA reflect the difference between the Gpol and SA energies in these 

two different GB/SA models. The difference in Gpol energies between these two 

different GB models is large.  Table 6.3.2.1 lists the energy difference between GB1/SA 

and GB4/SA implicit solvent models for the initial extended and α-helical conformations. 

While the Gpol for the extended structure from GB4 is as much as 17 kcal/mol higher 

than that from GB1, Gpol for the ideal α-helix is only 7.8 kcal/mol higher than that from 

GB1. An analysis of the Gpol energies from these two GB models throughout the 

simulations gives very similar results. The SA energy shows little difference between 

these two GB models, which is caused by the different values of the surface tension 

parameter σ. A high σ in GB4 also helps to increase the energy difference between the 

folded and unfolded conformations. All the effects combine to give a larger energy gap 

between the minima of different conformational potential wells in GB4 compared to 

The different dominant conformations for the lowest potential energy trajectory in 

GB4/SA and GB1/SA reflect the difference between the Gpol and SA energies in these 

two different GB/SA models. The difference in Gpol energies between these two 

different GB models is large.  Table 6.3.2.1 lists the energy difference between GB1/SA 

and GB4/SA implicit solvent models for the initial extended and α-helical conformations. 

While the Gpol for the extended structure from GB4 is as much as 17 kcal/mol higher 

than that from GB1, Gpol for the ideal α-helix is only 7.8 kcal/mol higher than that from 

GB1. An analysis of the Gpol energies from these two GB models throughout the 

simulations gives very similar results. The SA energy shows little difference between 

these two GB models, which is caused by the different values of the surface tension 

parameter σ. A high σ in GB4 also helps to increase the energy difference between the 

folded and unfolded conformations. All the effects combine to give a larger energy gap 

between the minima of different conformational potential wells in GB4 compared to 
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GB1. This is also supported by our DIVE simulations for mapping potential energy 

landscapes and minimum energy conformations of Ala13 (section 6.4.2).  

Table 6.3.2.1. Energy differences for the initial extended and α-helical conformations 
between GB1/SA and GB4/SA implicit solvent models. 
 

Initial extended conformation 
(Energy Unit: kcal/mol) 

Initial α-helical conformation 
(Energy Unit: kcal/mol) 

Energy terms 
 

 GB1/SA  GB4/SA ∆E GB1/SA GB4/SA ∆E 
Gpol -68.8 -51.8 -17.0 -54.7 -46.9 -7.8 
SA  7.13  10.3 -3.17  5.61    8.07 -2.46 
Potential  58.8  78.9 -20.2 -35.6 -25.2 -10.3 
 

The similarities and differences between these two different GB/SA implicit 

solvent models can be further illustrated by simulation results for the individual 

polypeptides. Tables 6.3.2.2 and 6.3.2.3 show the equilibrated average potential energy, 

all-atom RMSD from an ideal α-helix, and conformations of the last 1 ns trajectory (9 ns 

- 10 ns) for six polypeptides of Ala13 at 300 K in GB1/SA and GB4/SA implicit solvent, 

starting from extended and α-helix conformations, respectively. The majority of the 

simulation results in these two different GB/SA models are similar and comparable with 

each other for the same polypeptide. In general, the GB1 model prefers unfolded states in 

contrast to the GB4 model. The corresponding all-atom RMSD in GB1 is higher than that 

in GB4 (with one exception). An interesting observation involves the structural 

differences between the equilibrated helical conformations in the corresponding 

polypeptides between these two different GB models. These structural differences 

include (1) 310/α-helix (GB1) vs α-helix (GB4) for the 2nd polypeptide and the lowest 

potential energy polypeptide in Table 6.3.2.2 as well as the 5th polypeptide in Table 

6.3.2.3; (2) 310-helix (GB1) vs 310/α-helix (GB4) for the 5th polypeptide in Table 6.3.2.2, 

the 2nd polypeptide and the 6th polypeptide in Table 6.3.2.3. These results support the 
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point that the GB4 model modified the Gpol energies and thus enlarges the energy gap 

between the ground state α-helix and other conformations. Thus, the GB4 model makes 

the α-helix more stable than the GB1 model throughout the simulations.  

Table 6.3.2.2. Equilibrated potential energy (kcal/mol), all-atom RMSD (Å) from an 
ideal α-helix, and conformations of the last 1 ns trajectory (9 ns - 10 ns) for six 
polypeptides of Ala13 in GB1/SA and GB4/SA implicit solvent starting from the initial 
extended structure. 
 

MD simulations from the initial 
extended structure in GB1/SA 

MD simulations from the initial 
extended structure in GB4/SA 

Polypeptide 
Order 
Num. Potential 

Energy 
RMSD  Conform. Potential 

energy 
RMSD  Conform. 

1st   35.3 8.53   52.6 7.61  
2nd  -0.12 2.37 310/α-helix  4.50 0.63 α-helix 
3rd   39.5 8.86   53.1 8.20  
4th   29.2 7.47   42.0 6.50  
5th   1.54 2.74 310-helix  8.35 0.92 310/α-helix 
6th   38.4 8.10   48.0 7.47  
Lowest -1.90 2.45 310/α-helix  3.38 0.62 α-helix 
 

Table 6.3.2.3. Equilibrated potential energy (kcal/mol), all-atom RMSD (Å) from an 
ideal α-helix, and conformations of the last 1 ns trajectory (9 ns - 10 ns) for six 
polypeptides of Ala13 in GB1/SA and GB4/SA implicit solvent starting from the initial 
α-helix. 
 

MD simulations from the initial α-
helix in GB1/SA 

MD simulations from the initial α-
helix in GB4/SA 

Polypeptide 
Order 
Num. Potential 

Energy 
RMSD  Conform. Potential 

energy 
RMSD  Conform. 

1st   2.95 3.16 310-helix  18.6 3.06 310-helix 
2nd   1.94 2.95 310-helix  17.9 2.27 310/α-helix 
3rd   28.8 7.69   54.6 8.91 Extended 
4th  -0.91 3.11 310-helix  18.5 3.06 310-helix 
5th   0.14 1.88 310/α-helix  3.67 0.59 α-helix 
6th  -1.64 2.91 310-helix  12.8 1.46 310/α-helix 
Lowest -4.99 2.64 310/α-helix  3.15 0.60 310/α-helix 
 

6.4. DIVE simulations for mapping potential energy landscapes and conformations 

of solvated polyalanine 
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6.4.1. Simulation results in GB1/SA implicit solvent  

Fig. 6.4.1.1a displays the temperature and potential energy histories of the 

polypeptide with the lowest potential energy for six trajectories of Ala13 from DIVE 

simulations in the GB1/SA implicit solvent model, starting from the extended structure. 

Figure 6.4.1.1b enlarges the potential energy history in the low potential energy region to 

show more clearly the different potential energy minima sampled during the simulations. 

Fig. 6.4.1.1c - f show the corresponding RMSD from the ideal α-helix, and all H-bonds, 

1-4 H-bonds, 1-3 H-bonds, respectively. 27 regions of local potential energy minima are 

obtained from the lowest potential energy history and 65 regions in all are obtained from 

the individual potential energy histories of six trajectories of Ala13.  
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Figure 6.4.1.1. Time series of various properties of the polypeptide with lowest potential 
energy from a DIVE simulation of six trajectories of Ala13 using the GB1/SA implicit 
solvent model for water, starting from an extended structure. (a) Temperature (upper, 
gray curve) and potential energy (lower, black curve). (b) Potential energy displayed on 
an expanded scale. (c) RMSD between all atoms of the calculated structure and an ideal 
α-helix (The RMSD between a 310-helix and an ideal α-helix is approximately 3 Å). (d) 
All hydrogen bonds. (e) 1-4 hydrogen bonds. (f) 1-3 hydrogen bonds. A hydrogen bond is 
identified when the distance between two heavy atoms X is below 3.3 Å and the X-H ⋅⋅⋅ 
X angle differs from 180° by less than 20.0°. 
 

Figure 6.4.1.2 shows representative conformations corresponding to the potential 

energy minima, taken from the lowest potential energy trajectory. The ground state 

conformation is nearly a perfect α-helix with a potential energy of approximately –65 

kcal/mol. Many local potential energy minima were found to be only 1-5 kcal/mol higher 
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than the global potential energy minimum. The conformations of these local potential 

energy minima seem to be closely related to the ground state α-helical conformation. For 

example, the C-terminal frayed α-helix of Figure 6.4.1.2b is 2-3 kcal/mol more stable 

than the N-terminal frayed helix of Figure 6.4.1.2d. This indicates that the helical 

structure near the C-terminus should be more frayed than that near the N terminus, which 

is consistent with experiments 11,38 and other simulations 17,37. In addition, even though 

the conformation in Figure 6.4.1.2e appears very different from an α-helix, a transition 

from the α-helix to this loop structure through the intermediate structures of Figs. 6.4.1.2f 

and 6.4.1.2c is observed in the individual trajectories.  

     
         (a) E = -66.2 kcal/mol                         (b) E = -65.92 kcal/mol                  (c) E = -63.4 kcal/mol 

   
        (d) E = -62.1 kcal/mol                        (e) E = -61.4 kcal/mol                     (f) E = -61.3 kcal/mol 

Figure 6.4.1.2. Representative conformations and potential energies (kcal/mol) of 
potential energy minima sampled by the polypeptide with lowest potential energy in a 
six-trajectory, DIVE simulation of Ala13 using the GB1/SA implicit solvent model for 
water, starting from an extended structure. Approximate descriptions of the 
conformations, all-atom RMSD from the ideal α-helix, and number of H-bonds are: (a) 
Nearly ideal α-helix is the global potential energy minimum (RMSD is 0.5 Å; eleven 
hydrogen bonds). (b) α-helix with frayed C-terminus (RMSD is 1.0 Å; eight hydrogen 
bonds, plus one heavy atom engaged in two H-bonds). (c) Combined 310-helix and α-
helix, frayed at the C-terminus (RMSD is 4.1 Å; two hydrogen bonds, plus three heavy 
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atoms engaged in two H-bonds). (d) α-helix with frayed N-terminus (RMSD is 1.3 Å; ten 
hydrogen bonds). (e) Three β-turns form a cavity (RMSD is 5.0 Å; three hydrogen atoms 
engaged in two H-bonds). (f) Mixed helix with 1-3, 1-4, and 1-5 H-bonds, an 
intermediate between several minima shown in this figure (RMSD is 2.7 Å; four 
hydrogen bonds, plus one heavy atoms engaged in two H-bonds and one heavy atom 
engaged in three H-bonds). A hydrogen bond is identified when the distance between two 
heavy atoms X is below 3.3 Å and the X-H ⋅⋅⋅ X angle differs from 180° by less than 
20.0°. These images were generated by using PyMOL (http://pymol.sourceforge.net/). 
 

Almost as interesting as the most stable structures observed during the DIVE 

simulations are several higher-energy structures that were less frequently detected.  

Although a U-shaped 310-helical and ideal 310-helical conformation found to be global or 

local minima in vacuo (Chapter 5) did not appear in simulations with the GB1/SA solvent 

model, partial 310 helices (at the N or C terminus) are frequently sampled and occupy 

very low potential energy minima (less than 2 kcal/mol higher than the global potential 

energy minimum, e.g. Figure 6.4.1.2c). This is in good accord with experiments that 

imply a significant fraction of 310-helix exists near the termini for short alanine-based 

peptides in aqueous solution4,9. In addition, β-sheet structures are rare conformations with 

the GB1/SA implicit solvent model. We found only a few partial β-sheet-like 

conformations (occupying relatively high potential energy minima) in all local potential 

energy minimum regions from six individual trajectories. They are shown in Figure 

6.4.1.3. A very interesting observation is that the potential energy of the extended form, 

the highest potential energy minimum sampled in the simulations below 10 K, is 20 

kcal/mol lower than the equilibrated average potential energy of the helical conformation 

for Ala13 at 300 K (around 0 kcal/mol) (section 6.3.1). The six trajectories of Ala13 in 

DIVE simulations using the GB1/SA implicit solvent model starting from the initial α-

helical structure give very similar results, so they are not shown here.  
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           (a) E = -58.4 kcal/mol                         (b) E = -57.9 kcal/mol                     (c) E = -53.6 kcal/mol 

     
         (d) E = -44.2 kcal/mol                           (e) E = -38.9 kcal/mol                      (f) E = -19.6 kcal/mol 

Figure 6.4.1.3. Representative conformations and potential energies (kcal/mol) sampled 
by individual polypeptides in a six-trajectory, DIVE simulation of Ala13 using the 
GB1/SA implicit solvent model for water, starting from an extended structure. 
Approximate descriptions of the conformations, all-atom RMSD from the idea α-helix, 
and number of H-bonds are: (a) Three β turns forming a double U-shaped loop (RMSD is 
5.0 Å; five hydrogen bonds, plus one heavy atom engaged in two H-bonds). (b) Helix 
with 1-3 and 1-4 H-bonds, frayed at the C-terminus (RMSD is 3.8 Å; six hydrogen bonds, 
plus one heavy atom engaged in two H-bonds). (c) Two partial 310-helices with a turn, 
frayed N- and C-termini (RMSD is 5.1 Å; three hydrogen bonds, plus one heavy atom 
engaged in two H-bonds). (d) Two perpendicular extended chains with a small β-turn at 
the N-terminus and a larger β-turn at the C-terminus (RMSD is 6.1 Å; four hydrogen 
bonds). (e) Half extended with a small β-turn at the C-terminus and a larger β-turn at the 
N-terminus (RMSD is 6.3 Å; four hydrogen bonds). (f) Extended structure (RMSD is 8.0 
Å; zero hydrogen bonds). These images were generated by using PyMOL 
(http://pymol.sourceforge.net/). 
 

Two observations indicate solvation reduces the high barriers between different 

potential energy wells in vacuo and enhances energy barrier crossings in searching for the 

ground state conformation in solvent. First, only 2 polypeptides of 6 trajectories in vacuo 

formed a U-shaped 310-helix, the global energy minimum in vacuo (Chapter 5), while 4 

polypeptides out of 6 trajectories evolved into the α-helical ground state conformation in 

solvent environment. Second, the energy difference between the lowest potential energy 
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minimum of the α-helix and the highest local potential energy minimum of the extended-

conformation in GB1/SA (approximately –45 = -65 – (-20) kcal/mol) is 25 kcal/mol less 

than that in vacuo (around –70 = -20 – (50) kcal/mol). Thus, a flatter potential energy 

surface exists in solvent compared to that in vacuo. Solvation should thus make folding 

and unfolding processes easier for Ala13. The flatter PES and the smaller energy gap 

between potential energy minima indicate that NVT simulations in solvent environment 

are much more likely to oscillate between several metastable conformations than they are 

in vacuo. In vacuo, Ala13 is more easily equilibrated in one conformational potential 

energy well (Chapter 5).  

 

6.4.2. Simulation results in GB4/SA implicit solvent 

We also performed DIVE simulations using six trajectories of the extended Ala13 

and the GB4/SA implicit solvent model. The simulation results are very similar to those 

obtained from the GB1/SA model (data not shown here). Figures 6.4.2.1 and 6.4.2.2 

show conformations of minimum potential energy sampled by the lowest potential energy 

trajectory and by the individual trajectories, respectively. The ground state is α-helical 

(Fig. 6.4.2.1a).  The C-terminal frayed α-helices (Figure 6.4.2.1b or Figure 6.4.2.1e) are 

2-5 kcal/mol more stable than the N-terminal frayed α-helices (Figure 6.4.2.2c or Figure 

6.4.2.2f). The 310-helix is also observed near the ends of Ala13 for some low potential 

energy conformations, and local potential energy minima with β-sheet conformations are 

very rare.  
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          (a) E = -53.4 kcal/mol                         (b) E = -51.7 kcal/mol                    (c) E = -48.8 kcal/mol 

     
         (d) E = -48.0 kcal/mol                       (e) E = -47.7 kcal/mol                       (f) E = -43.4 kcal/mol 

Figure 6.4.2.1. Representative conformations and potential energies (in kcal/mol) of 
potential energy minima sampled by the polypeptide with lowest potential energy in a 
six-trajectory, DIVE simulation of Ala13 using the GB4/SA implicit solvent model for 
water, starting from an extended structure. Approximate descriptions of the 
conformations, all-atom RMSD from the ideal α-helix, and number of H-bonds are: (a) 
Nearly ideal α-helix is the global potential energy minimum (RMSD is 0.4 Å; eleven 
hydrogen bonds). (b) α-helix with frayed C-terminus (RMSD is 1.0 Å; ten hydrogen 
bonds). (c) α-helix with frayed N-terminus (RMSD is 1.3 Å; ten hydrogen bonds). (d) α-
helix plus 310-helix, linked by a turn (RMSD is 5.5 Å; nine hydrogen bonds). (e) α-helix 
plus C-terminal β-turn (RMSD is 3.5 Å; ten hydrogen bonds). (f) α-helix plus N-terminal 
β-turn (RMSD is 3.6 Å; six hydrogen bonds, plus one heavy atom engaged in three H-
bonds). These images were generated by using PyMOL (http://pymol.sourceforge.net/). 
 

     
         (a) E = -45.2 kcal/mol                          (b) E = -42.4 kcal/mol                 (c) E = -40.1 kcal/mol 
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          (d) E = -35.5 kcal/mol                       (e) E = -26.1 kcal/mol                     (f) E = -3.0 kcal/mol 

Figure 6.4.2.2. Representative conformations and potential energies (in kcal/mol) 
sampled by individual polypeptides in a six-trajectory, DIVE simulation of Ala13 using 
the GB4/SA implicit solvent model for water, starting from an extended structure. 
Approximate descriptions of the conformations, all-atom RMSD from the ideal α-helix, 
and number of H-bonds are: (a) V-shaped, twisted α-helix (RMSD is 4.4 Å; six hydrogen 
bonds, plus two heavy atoms engaged in two H-bonds). (b) Four β-turns looped to form a 
cavity (RMSD is 5.1 Å; five hydrogen bonds, plus one heavy atoms engaged in two H-
bonds). (c) Mixed helix with 1-3, 1-4, and 1-5 H-bonds, an intermediate between several 
minima shown in this figure (RMSD is 2.1 Å; two hydrogen bonds, plus four heavy 
atoms engaged in two H-bonds). (d) 310-helix at C-terminus, extended chain at N-
terminus, linked by a turn (RMSD is 7.3 Å; six hydrogen bonds). (e) Three β-turns 
forming a U-shaped loop (RMSD is 5.0 Å; one hydrogen bond, two heavy atoms engaged 
in two H-bonds). (f) V-shaped, extended structure (RMSD is 7.1 Å; zero hydrogen 
bonds). These images were generated by using PyMOL (http://pymol.sourceforge.net/). 
 

The energetic analysis for global α-helix formation gives similar results as that 

for the GB1/SA model. However, the potential energy gap between the global and local 

minima or between different local minima is slightly larger in GB4/SA than in GB1/SA. 

This is supported by contrasting the history of all sampled potential energy minima 

between these two GB/SA models (data not shown here). The potential energy excluding 

the SA energy shows the same result and indicates that the different GB algorithms are 

primarily responsible for this difference. At the global minimum, the SA energy for GB4 

(σ = 0.0072 kcal/ mol-Å2) is 2-3 kcal/mol higher than that for GB1 (σ = 0.005 kcal/ mol-

Å2), but the total potential energy in GB4/SA is approximately +13-14 kcal/mol higher 

than that in GB1/SA at the global minimum. Therefore, Gpol of GB4 is around 11 

kcal/mol higher than that of the GB1 algorithm at low potential energies. A similar 
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analysis for the extended structure indicates that the Gpol of GB4 is approximately 16 

kcal/mol higher than that of the GB1 algorithm for unfolded Ala13.  A relatively large 

energy gap and a large energy difference between folded and unfolded structures are in 

accord with known features of GB4: it was developed for modeling the electrostatic 

states in the interior of folded conformations more accurately than the GB1 algorithm 

24,29.    

 

6.5. Discussion and summary 

Divergent path search simulations of Ala13 in GB/SA implicit solvent using the 

AMBER 99 force field clearly illustrate that near 300 K the global minimum free energy 

conformation for this polypeptide in aqueous solution is not a single helix but clusters of 

mixed α/310-helical conformations. This result is obtained from two different GB/SA 

implicit solvent models. However, the GB4 model gives a larger Gpol energy difference 

between different types of folded helices, making the ground state α-helix more stable 

near in vivo temperatures. The combined α/310-helical conformations near the global free 

energy minimum are different from earlier simulation reports of uncharged polyalanines 

with a sequence length between 10 and 30 which reported an α-helix folded 

conformation 12-17. However, our simulation results are in good accord with experiments 

for short alanine-based peptides in aqueous solution 3,5,6,10,33,36. The DIP simulations 

starting from extended and α-helical forms give very similar lowest potential energy 

trajectories and similar folded conformations of the polypeptide. In addition, independent 

folding and unfolding processes can be observed from trajectories of some individual 

polypeptides. A conventional NVT simulation for a single polypeptide starting from the 
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extended structure evolves into unfolded structures while the simulation starting from the 

α-helix maintains helical conformations, even for a longer simulation time. This clearly 

indicates that conventional MD simulations sample very biased phase space trajectories, 

and the simulation results are strongly dependent on the initial conformations. 

An analysis of the folding and unfolding of Ala13 in GB/SA implicit solvent from 

the DIP simulations supports the point that the α-helix formation is usually preceded by 

formation of a short β-turn (1-3 H-bond) structure 17,44. The energy decrease upon 

forming the helical conformation is mainly caused by the Coulombic and van der Waals 

non-bonded energies. Torsional energy disfavors the α-helix, contrary to other 

simulations based on earlier force fields 17. It should be noted, however, that the 

determination of these contributions from different energy components in the global helix 

folding is made from indirect comparisons between the unfolded and folded equilibrated 

energies from the polypeptides in different trajectories. For a single trajectory, the 

polypeptide folding or unfolding process happens during mechanical equilibration. Thus, 

decomposing the energy to search for energy terms that favor the folded structures may 

not be accurate enough to make definitive conclusions.  

Disrupted velocity (DIVE) search simulations of Ala13 clearly illustrate that its 

ground state conformation is a nearly perfect α-helix in water, different from the U-

shaped 310-helix in vacuo (chapter 5). This result is obtained from two different GB/SA 

implicit solvent models. In vacuo, the U-shaped 310-helix, ideal 310-helix, α-helix and 

their combined conformations dominate at low potential energies, whereas in a solvent 

environment, the U-shaped 310-helix and the ideal 310-helix are not sampled. Thus, 

solvation raises the potential energies for the 310-helical conformations far above the α-
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helical portion(s) of the surface. Implicit solvent models also make the potential energy 

surface flatter and enhance barrier crossings and phase space sampling. Furthermore, 

solvation decreases the energy gap between the global minimum and some local minima 

from 3-5 kcal/mol in vacuo to 1-3 kcal/mol in implicit solvent. These local minima in 

vacuo can also become metastable states34,35 in solvent. These simulation results imply a 

very important biological role for solvation: it smoothes potential energy surfaces so 

proteins may fold or unfold more easily or oscillate among several metastable 

conformational states. 

DIVE simulations show several important aspects of the potential energy 

landscape of the Ala13 polypeptide. First, the relatively large energy gap between 

potential minima for structures with similar conformations can cause the initial structure 

to have a large impact on simulation results. This is a fact well-documented in the 

literature 32,33, and supported by our own conventional NVT simulations of single Ala13 

in vacuo or in GB/SA implicit solvent models at 300 K.  Second, the potential energy 

differences between minima representing members of a family with similar secondary 

structures may be very large (up to 100 kcal/mol), but the energy difference between 

minima representing different structural families is very small (a few kcal/mol). This 

observation implies serious challenges for MD or MC simulations designed to locate 

potential energy minima. The small energy gap between different potential energy 

minima can cause real difficulties in determining the global potential energy minimum. 

On the other hand, because NVT simulations sample free energy minima, they may 

sample only conformations with relatively high potential energies 45, but not locate true 

potential energy minima.  In contrast to NVT simulations, the DIVE simulations can 

 171



accurately sample the range of potential energy minima within 1-2 kcal/mol of the global 

minimum, at energies corresponding to temperatures near 0 K. Thus, the DIVE technique 

is an effective way to determine the global potential energy minimum and its 

conformation. It is a new global optimization protocol for predicting 3D protein 

structures from only sequence data. 
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Chapter 7 

 

Relaxation Simulation of a Multiple-Copy Region in Locally Enhanced Sampling 

Indicates Large Change of a Free Energy Surface through Mean-Field 

Approximations 

 

7.1. Introduction 

In 1991, Elber and Karplus 1 developed a multiple-copy molecular dynamics 

(MD) method, called locally enhanced sampling (LES), to hasten the diffusion of carbon 

monoxide in a simulation of a large myoglobin protein. This method creates a bundle of 

non-interacting copies of a small subsystem of primary interest and allows a larger 

subsystem, the bath, to interact with each copy of the subsystem. Each copied atom feels 

the same force that the corresponding real atom would feel, while an atom in the 

uncopied bath experiences the average of the forces contributed by the copied atoms (the 

mean field). 

Due to this mean field approximation, LES and other related methods were 

considered to be able to reduce energy barriers on the potential energy surface (PES) 2. In 

these simulations, varied conformations of the copied section of interest are usually 

obtained, and thus the energy barriers between the copied sub-system and bath is seen to 

be overcome compared to a conventional MD simulation, which can easily be trapped in 

a local energy minimum. Because the number of degrees of freedom in the LES system is 

greatly reduced compared to the situation where the bath atoms are also copied, using 

LES allows considerable savings in computer resources. In the last decade, the LES 
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method has been widely used in a variety of optimization problems including cofactor-

enzyme binding 3-5, non-equilibrium studies 6-8, free energy calculations 9,10, and global 

minimum searching 2,10,11. 

Although LES and other optimization methods based on mean field theory show 

desirable computational advantage and great practical utility, they suffer limitations in the 

ability to model a realistic Newtonian dynamical process 12-16. The trajectories generated 

with such methods do not always correspond to physically possible trajectories. In the 

simulations, several uncertainties are caused by approximating the average forces from 

the copies of the sub-system on the bath 17-20. For example, the data obtained from LES 

violates the equipartition of energy theorem 17. This violation causes the “temperature 

disparity problem” 17-19, which is a failure of the sub-system and bath temperatures to 

achieve the same equilibrium value if they are initiated differently. Our current view goes 

further. Since the free energy is a temperature-dependent property for a canonical 

ensemble, the “temperature disparity problem” can be restated as a severe “free energy 

problem”, in which the free energy minima for the same conformations may be sampled 

very differently on the LES free energy surface (FES) and on the free energy surface of 

the real system.  

A crucial point in the application of LES mean-field molecular dynamics for 

global optimization is the conservation of potential energy minima for the real system. 

The global or local energy minima on the potential energy surface (PES) of the real 

system correspond to global or local energy minima on the LES potential energy surface 

20. However, the native folded conformation of a protein at in vivo temperatures is the 

global free energy minimum rather than the global potential energy minimum 21. The 
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molecular dynamics of a real system at the temperature of interest samples the free 

energy surface but not the temperature-independent potential energy surface. Our 

previous simulations illustrate that the potential energy minima are usually not the free 

energy minima but are likely to be states of higher free energies (Chapter 3). In this work, 

we investigate the properties of the LES free energy surface and demonstrate that the 

global and local free energy minima usually do not correspond to the global and local 

free energy minima respectively of the real system.  

In this chapter we present a different LES computer algorithm than AMBER LES 

22 to provide the correct LES behavior for the interactions between pairs of atoms from 

the sub-system and the bath. In this algorithm, the whole protein is copied but bath copies 

of the same particles always have the same velocities and positions. Therefore, the copied 

bath particles can be considered to constitute a bath of “pseudo-single particles”. This 

algorithm realizes the mean-field method in two steps. First, each replica executes an 

independent canonical ensemble simulation (NVT) so pairs of atoms from the same 

region (sub-system or bath) experience the correct interactions. Second, the assignment 

of the same averaged forces for each identical particle from sub-bath copies provides the 

mean field interactions of bath particles from the copied sub-system. Because of this 

property, we can run relaxation simulations after LES, defined by removing the 

restriction that identical bath particles experience average forces due to atoms of the 

copied subsystem. Thus, after relaxation, each replica subsystem plus bath, executes an 

NVT simulation independent of all other replicas. At the initial step, if the copied 

subsystem is extended to the whole system (zero bath particles), the LES mean field 

method becomes a divergent path (DIP) search technique, in which the simulations start 
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with several independent trajectories of proteins at the same initial temperature but 

different velocities (Chapter 3). This causes the independent simulated proteins to evolve 

along different trajectories from a single initial configuration. 

We selected the 13-residue peptide of alanine (Ala13) as a simple test polypeptide 

for LES mean field and relaxation simulations to investigate the change of the free energy 

surface for LES mean field MD compared to NVT molecular dynamics. The GB1/SA 23 

implicit solvent model with the AMBER 99 force field 24 is used here. We have already 

investigated Ala13 by using our new MD techniques and found that the global minimum 

potential energy conformation at 0 K is an α-helix. The global minimum free energy 

conformation with implicit solvent at 300 K is identified as clusters of 310/α-helices 

(Chapter 6). The relaxation simulations of copied regions for Ala13 indicate a large 

change in the free energy minima of the same conformations because of the mean-field 

approximation. 

 

7.2. Simulation methodology 

 

7.2.1. LES Program 

In the locally enhanced sampling (LES) mean field MD program, we use a 

different format than that in AMBER 22. In the AMBER LES format, if the copied part 

has M atoms and C copies, and the bath has N atoms, its input topology file includes 

(CM+N) atoms. The algorithm to obtain the LES forces follows. All of the force field 

parameters in the copied region have been scaled by 1/C for C copies (in the topology 

input file). This provides the correct LES behavior for the interactions between pairs of 
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atoms in the bath, because of no force field scaling in the bath region, and for the 

interactions between pairs of atoms from the copied part and the bath part, respectively 22. 

However, it is wrong for the interactions between pairs of atoms in the same copy. 

Therefore, the SanderLES program dynamically scales up these interactions in the same 

copy by a factor of C as the program runs. In this way, AMBER corrects the LES 

behavior for all interactions. 

In our LES format, if the copied part has M atoms, the bath part has N atoms and 

C copies are made, our input topology file includes the original (M+N) atoms. But the 

program makes C copies of these (M+N) atoms in memory. We do not scale the force 

field parameters in the copied region. It is very simple to provide the correct LES 

behavior by averaging the forces in the C copies of the bath atoms. In fact, the time-

consuming non-bonded force calculation in the bath part is performed only one time for 

the first copy and then distributed to other copies, because bath particles are always at 

same location; geometric forces(bond, angle and torsional) are calculated individually 

and the average force is distributed. Although this format uses more memory and a little 

more CPU time during the simulations than the AMBER LES format, it has two 

advantages. It makes possible dynamic migration — automatic variation of the copied 

region and bath during the simulations. This “migration technique” was our original 

impetus to develop the new format. In addition, it makes relaxation possible. The 

relaxation technique is defined as removing the restraint of using average forces for 

identical bath atoms after a certain simulation time. This makes the LES mean-field 

simulations convert to independent canonical ensemble simulations of several 

trajectories. In contrast to the binary collision modified LES (cLES) 7,18 and ensembles 
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extracted from atomic coordinate transformations (the EXACT approximation) 25-27, this 

relaxation process provides a simple way to completely erase incorrect virials and energy 

partitioning introduced by the LES approximation. 

 

7.2.2. Computational Details 

In the LES simulations, three copied regions were located at the N-terminus, the 

middle part, and the C-terminus, as shown in Figure 7.2.2.1. At the N-terminus, 34 atoms 

were included in the copied region while the other 108 atoms were in the bath. At the C-

terminus, 28 atoms were contained in the copied region, and the other 114 atoms were in 

the bath. In the middle part, three alanine residues constitute the copied region, and the 

remaining 112 atoms form the bath. Carbon-carbon bonds in the backbone were selected 

as the separations between the copied and bath regions because carbon-carbon bonds 

should have the largest flexibility. In the following relaxation simulations, the restriction 

of using average forces on the bath atoms from atoms in the copied region was removed. 

Then, the pseudo-single bath was changed into several copies. These bath copies 

combined with the original copied regions of the interesting subsystem to generate 

several independent NVT simulations of different trajectories. 
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CH3-CO-[NH-CH(CH3)-CO]2-NH-CH(CH3)—CO-[NH-CH(CH3)-CO]10-NH-CH3  
    N-terminal LES region 
 
                                                                                             Middle LES region 
CH3-CO-[NH-CH(CH3)-CO]4-NH-CH(CH3)—CO-[NH-CH(CH3)-CO]2-NH-CH(CH3) 
                                                                                        —CO-[NH-CH(CH3)-CO]5-NH-CH3 
 
 
CH3-CO-[NH-CH(CH3)-CO]10-NH-CH(CH3)—CO-[NH-CH(CH3)-CO]2-NH-CH3  
                                                                                             C-terminal LES region 
 
Figure 7.2.2.1. The copied region at the N-terminus (34 bolded atoms), middle part (30 
bolded atoms), and C-terminus respectively (28 bolded atoms).  
 

We used a time step of 1 fs but the trajectory data (energies and coordinates) were 

collected at every 1000 steps (1 ps intervals) in all simulations. The total simulation time 

for each run was 10 ns for each independent DIP simulation. 20 ns were split evenly 

between LES and subsequent relaxation simulations (10 ns for each). 

 

7.3. Simulation results 

First, we briefly describe the results from the six-trajectory DIP simulations of 

Ala13 at 300 K in GB/SA implicit solvent using the AMBER99 force field. The 

simulations indicate that helical clusters of 310/α-helices (mainly 310 helices with ~ 3 Å 

RMSD from an ideal α-helix) are the most populated conformations at the lowest 

equilibrated average potential energies near 0 kcal/mol. These conformations we consider 

as the global free energy minimum for Ala13 at room temperature with implicit solvation. 

A detailed analysis can be found in the Chapter 6 (section 6.3.1). 

In LES and the following relaxation simulations, the temperature histories are 

independent of the replica number, copied region, and simulation protocol, but the 
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histories of other ensemble properties display large differences. Fig. 7.3.1a - b show the 

time series of the potential energy and all-atom RMSD from an ideal α-helix from the C-

terminus LES and relaxation simulations. During the LES simulations, the polypeptide 

forms helical conformations (RMSDs < 3.5 Å, Chapter 6) located on the potential energy 

surface above 30 kcal/mol and corresponding to the global free energy minimum. During 

the relaxation process, three polypeptides maintain folded helical conformations while 

one polypeptide unfolds into extended conformations (RMSDs ~ 8 Å). However, the 

potential energies for these polypeptides all decrease. Three polypeptides forming 

equilibrated helical conformations have the lowest average potential energies near 0 

kcal/mol, which are consistent with the DIP simulations. Fig. 7.3.1c - d show the histories 

of 1–3 H-bonds and 1–4 H-bonds of the replica in yellow, confirming that the 

polypeptide oscillates between 310-helical and α-helical conformations. A further 10 ns 

simulation of the copied part in the LES simulations did not decrease the potential 

energies of the helical conformations sampled (data not shown). The large change of the 

sampled potential energy between two different molecular dynamics processes implies 

that the temperature-dependent free energy surface changes substantially in the LES 

simulations compared to conventional NVT simulations (each polypeptide in a given 

trajectory executes conventional NVT simulations in DIP simulations). On the other 

hand, the transitions between folded and partially unfolded structures are more frequently 

observed during the LES simulations than during the conventional NVT simulations. It 

should be noted, however, that we believe that the indirect coupling between the copies 

through the common bath, not a reduction in energy barriers, promotes conformational 
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transitions of the equilibrated whole system in LES simulations. In section IV, we will 

analyze LES molecular dynamics in detail. 
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Figure 7.3.1. Time series of various properties in four-copy LES and relaxation 
simulations of a fully extended Ala13 in GB/SA implicit solvent at 300 K. 0 - 10000 ps is 
the history of LES simulations, where only the “C-terminal LES region” was replicated. 
10000 – 20000 ps is the history of NVT relaxation simulations. (a) Potential energy. (b) 
RMSD between all atoms of the calculated structure and an ideal α-helix (The RMSD 
between a 310-helix and an ideal α-helix is ~ 3 Å). (c) 1-3 hydrogen bonds. (d) 1-4 
hydrogen bonds. A hydrogen bond is identified when the distance between two heavy 
atoms X is below 3.3 Å and the X-H ⋅⋅⋅ X angle differs from 180° by less than 20.0°. An 
ideal α-helix has eleven 1-4 hydrogen bonds and a 310-helix has twelve 1-3 hydrogen 
bonds. 
 

Figures 7.3.2 – 7.3.3 display the time series of potential energy and all-atom 

RMSD from an ideal α-helix for the LES and relaxation simulations where the “N-
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terminal LES region” or “middle LES region” was replicated, respectively. While the N-

terminus LES simulations (Fig. 7.3.2) cannot make the polypeptide form completely 

helical conformations, the relaxation process helps some polypeptides search for the 

global free energy minimum (all-atom RMSD < 3.5 Å) while others unfold into extended 

conformations (all-atom RMSD > 7 Å). What is more interesting, in the middle region 

LES simulations (Fig. 7.3.3), a conformation with ~7.0 Å RMSD has the lowest 

ensemble average potential energies sampled — approximately –15 kcal/mol. At first 

sight, the results seem very strange but they are reasonable. Usually, at nonzero 

temperatures, the free energy minima are not the potential energy minima and they are 

usually located on higher energy parts of the potential energy surface. The ground state 

conformation at 0 K is the α-helix with the global potential energy minimum below –65.0 

kcal/mol (Chapter 6, section 6.4.1). At 300 K, the global free energy minimum 

corresponds to a potential energy near 0 kcal/mol (Chapter 6, section 6.3.1), far above the 

global potential energy minimum. Therefore, the LES simulations change the potential 

energies of the free energy minima and can make the local potential energy minima into 

the global free energy minimum conformation.  
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Figure 7.3.2. Time series of the potential energy and all-atom RMSD from an ideal α-
helix in four-copy LES and relaxation simulations of a fully extended Ala13 in a GB/SA 
implicit solvent at 300 K. 0 - 10000 ps is the history of LES simulations, where only the 
“N-terminal LES region” of Fig. 7.2.2.1 was replicated. 10000 – 20000 ps is the history 
of NVT relaxation simulations. (a) Potential energy. (b) RMSD between all atoms of the 
calculated structure and an ideal α-helix.  
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Figure 7.3.3. Time series of the potential energy and all-atom RMSD from an ideal α-
helix in four-copy LES and relaxation simulations of a fully extended Ala13 in a GB/SA 
implicit solvent at 300 K. 0 - 10000 ps is the history of LES simulations, where only the 
“middle LES region” of Fig. 7.2.2.1 was replicated. 10000 – 20000 ps is the history of 
NVT relaxation simulations. (a) Potential energy. (b) RMSD between all atoms of the 
calculated structure and an ideal α-helix. 
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LES can sample diverse regions of phase space starting from the fully extended 

structure depending upon the set of regions that are copied. In addition, diverse phase 

space sampling is also observed in LES simulations starting from an ideal α-helix. Here 

we will not show data from LES and relaxation simulations for three segments of an ideal 

α-helical Ala13 in a GB/SA implicit solvent at 300 K. The same results are achieved in 

LES simulations starting from the α-helix as those in the extended LES simulations. For 

example, in the LES simulations, where the “C-terminal LES region” or “N-terminal LES 

region” of Fig. 7.2.2.1 was replicated, global free energy minimum conformations 

(helical conformations) in NVT simulations become highly energetic local minima in the 

LES simulations. It was also observed that the transition between folded and partially 

unfolded structures happens frequently during LES simulations. In the LES simulations, 

where only the “middle LES region” of Fig. 7.2.2.1 was replicated, high energy structures 

in NVT simulations have the lowest equilibrated energies in the LES simulations. 

Therefore, it is commonly observed that the free energy minimum states in the LES 

simulations do not correspond to those in conventional NVT simulations. For the 

canonical ensemble simulations near in vivo temperatures, the match of the potential 

energy minima in NVT and LES is not sufficient for LES simulations to replicate the 

results of conventional MD.  

At 0 K, the free energy surface is identical to the potential energy surface. An 

ideal MD simulation with zero kinetic energy should always find in the (potential) free 

energy minima. Therefore, we think that near 0 K the potential energies sampled in LES 

and conventional NVT simulations should not show much difference since they should 

converge to the same single potential energy and free energy minimum states. Our 
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extended LES and relaxation simulations near 0 K support this assumption (data not 

shown here). The trajectories from the LES and subsequent relaxation NVT simulations 

are almost identical. Both are trapped in the potential energy minima of their respective 

initial conformational energy wells. Those simulations indicate that the potential energy 

minimum for the fully extended structure is approximately – 23 kcal/mol and for the ideal 

α-helix is approximately – 68 kcal/mol. These results are in good agreement with those 

from disrupted velocity search (DIVE) simulations designed to search for diverse 

potential energy minima in a realistic simulation time (Chapter 6, section 6.4.1). 

 

7.4. Molecular dynamics using the LES method.  

It is generally thought that the more frequently observed transitions between the 

folded and unfolded structures in LES compared to conventional NVT MD simulations is 

caused by the reduction of energy barriers between the copied region and bath 2,7,18,28. We 

think that this reduction of energy barriers between two different regions is questionable 

due to the function of the averaging operation in the LES algorithm. While the 

interactions inside the same regions in LES simulations are not affected compared to 

those in NVT simulations, the cross interactions between the copied regions and bath are 

averaged at each step. This force averaging cannot increase the overall cross interactions 

to help overcome the energy barriers between these two regions. For individual replicas, 

the situation is different. For some replicas which have a small cross interaction, crossing 

energy barriers is really enhanced due to the increased averaged forces. Other replicas 

which have a large cross interaction have a reduced crossing capability. However, the 

energy barriers for any individual replica remain unchanged, because we consider the 
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“real” potential energy surface for individual replicas. This view is also in good 

agreement with the fact that the collision modified LES seems to show no ability to lower 

energy barriers 7,18 compared to conventional MD simulations. 

It is commonly believed that LES reduces energy barriers, an idea that arises from 

a plausible, logical deduction 2 rather than from a strict mathematical derivation. For 

example, Roitberg, et al. 2 built a model state as a premise to consider the transitions 

happening in the LES simulations. This model state described two unrealistic situations 

during the LES trajectory: only two minima existed, or all other minima always had 

lower energies than the transition states connecting these two minima of interest. Each 

individual copy can alternately undergo transitions from the unfolded conformation to the 

folded conformation. Therefore at any transition state, Roitberg, et al. argue that the 

calculated barrier height will always be reduced on the “effective” averaged potential 

energy surface, which is built from a sum of “real” potential energies calculated from 

different copies and multiplied by a constant normalization factor (usually 1/C, C is the 

copied number) 2. 

In reality, many different minima exist on the potential energy surface and most 

of them are located at higher energies than that those of the transition states leading to the 

global minimum. Different copies may be distributed into many different energy states 

with different conformations. As a result, the barrier height on the “effective” potential 

energy surface is averaged from the barriers of the transition states sampled by individual 

copies. We therefore think that LES is likely to reduce the energy barriers in the 

trajectories of some replicas but increase the energy barriers for others, rather than to 

reduce the overall energy barriers between the copied and bath regions. 
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The fundamental mechanism by which LES enhances phase space sampling in 

contrast to conventional NVT is caused by the different initial velocities or temperatures 

for the atoms in the copied region. Our DIP simulations imply that the independent 

system can evolve into different trajectories due to different initial velocity directions. 

Similarly, in the LES method, phase space sampling is enhanced because the copies of 

the partial polypeptide follow different trajectories. These different trajectories undergo 

different equilibration processes, initiated from different velocity or temperature 

conditions. This explanation is more reasonable than the energy barrier reduction if we 

consider an extreme situation in LES simulations. If the atoms from the copied region are 

starting with the same initial velocities and coordinates, the LES simulation is identical to 

a single-copy, conventional NVT simulation and phase space sampling cannot be 

enhanced. 

DIP simulations made us realize three limitations of conventional NVT 

simulations: potential energy traps, free energy traps, and kinetic traps (Chapter 3). 

Potential energy traps occur when a system becomes trapped in a local potential energy 

well where its kinetic energy is not large enough to overcome the high potential energy 

barriers between energy wells. Free energy traps occurs at thermal equilibrium when 

simulations sample portions of phase space corresponding only a certain range of 

potential energies (which also correspond to the system’s kinetic energies). We call these 

regions of phase space thermodynamically accessible regions. Kinetic traps happen when 

the simulation evolves into a large number of nearly equivalent substates on a small part 

of the thermodynamically accessible regions at the simulation temperature. It would take 

an unrealistic amount of time for such a simulation to reach other parts of the 
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thermodynamically accessible regions after it finishes sampling a large number of 

substates. In other words, kinetic traps make the transition from one free energy 

minimum to another minimum very time-consuming in conventional MD simulations. In 

contrast, those parts of the thermodynamically accessible regions corresponding to other 

free energy minima can be easily reached from a different trajectory, or starting from a 

different initial structure.  

We can further clarify the change of a free energy surface and enhanced 

transitions in LES simulations by analyzing the sampling of states on the PES. If we 

consider the potential energies for each single copy rather than the average effective 

potential energies for the combined LES configuration, the potential energy surface for 

each copy in LES simulations is the same as that in NVT simulations. In conventional 

NVT simulations, once kinetic trapping occurs, simulations will evolve into a large 

number of equivalent substates at potential energy levels corresponding to the ensemble 

temperature. In an LES simulation, the simulation involves a larger system. This larger 

system, including copies of subsystem of interested and one bath, show a further 

difference from the original system because of indirect coupling between the copies 

through the common bath 18. These differences make the trajectories of an LES 

simulation in kinetic traps able to sample a larger number of nearly equivalent substates. 

As a result, the transitions between two different potential wells are much more likely to 

happen during LES molecular dynamics. On the other hand, because the probability 

distribution from a conventional NVT simulation is also altered from the indirect 

coupling between the copies, the locations of the potential energy wells are different in 

LES and NVT molecular dynamics.  
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7.5. Discussion and Summary 

A new computer algorithm was used to implement LES molecular dynamics. 

Instead of scaling the force field in the input files, we used copies of the whole system. 

Only the “locally enhanced region” is differentiated by using individual coordinates for 

atom copies. “Copies” of bath atoms always have identical velocities and coordinates 

during the simulations. By using this format, we also used a relaxation algorithm that 

removes the restraint of identical velocities and coordinates of identical bath atoms in 

each copy and thus converted the LES mean-field simulations into independent canonical 

ensemble simulations of several polypeptides. 

The LES and subsequent relaxation simulations of Ala13 in GB/SA implicit 

solvent at 300 K display very different potential energy histories, even though these 

different simulations may evolve into similar trajectories. This observation indicates a 

large change of the free energy surface in LES simulations compared to the more 

physical NVT simulations. At nonzero temperatures, the canonical ensemble simulations 

do not sample the valleys but sample higher energy conformations on the potential 

energy surface. These configurations usually correspond to free energy minima. The LES 

simulations change the location of these conformations on the potential energy surface, 

indicating the migration of the free energy minima on the PES and a change of the free 

energy surface at room temperature. However, near 0 K, the LES simulations do not 

show much difference from NVT simulations and they both show physically reasonable 

descent into potential energy minima. 
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In contrast to conventional NVT simulation, LES molecular dynamics can 

enhance phase space sampling in two respects: (1) an improved statistical sampling of 

alternative conformations for the copied region(s). (2) an increased frequency of 

conformational transitions 28. It should be noted, however, that the enhanced phase space 

sampling is not due to energy barrier reduction between the copied and bath regions but 

is caused by the different initial velocities or temperatures of the copied region. While the 

gain in sampling of diverse conformations for the copied region can be attributed to their 

different trajectories, the more frequent conformational change of the entire system arises 

from larger fluctuation in potential energies of individual copies, even after they are in 

kinetic traps. Considering the simulation of the single copy (several copies have the same 

bath atoms) in LES, the averaging interaction energies acting on the bath due to the 

copies can help some replicas to cross energy barriers but impede other replicas. In a 

phase space with a large number of minima, both LES and conventional NVT molecular 

dynamics are usually limited to a narrow region of phase space due to kinetic traps. 

However, LES can span a larger range of potential energies and more easily oscillates 

between two energy wells, compared to NVT simulations.  

The violation of the equipartition of energy theorem not only causes the 

“temperature disparity problem” in LES but also a “free energy problem”. It indicates 

that LES simulations should be used very carefully in protein optimization near in vivo 

temperatures. In general, copying an interior segment of a polypeptide is not 

recommended for global minimum searching. Hierarchical LES 28 may be useful to 

generate many diverse equilibrated conformations. However, LES relaxation simulations 

should be further applied to investigation minimum energy conformations near in vivo 
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temperatures from individual potential energy histories. The relaxation simulations can 

not only solve the free energy problem of reversing the energies of structures obtained 

from LES simulations but also generate a reliable probability distribution of different 

conformations. Energy minimization can be used to find the true potential energy 

minimum, but cannot help to generate a reliable probability distribution. For a complex 

system including a large protein and a small molecule, such as substrate-ligand 1,7,18 or 

cofactor-enzyme 3-5 complexes, LES may be a good approximation for building a 

reference distribution or diffusion pathway of small molecules 18,8.  

 193



7.6. Bibliography 

 (1) Elber, R.; Karplus, M. Journal of the American Chemical Society 1990, 
112, 9161. 
 (2) Roitberg, A.; Elber, R. Journal of Chemical Physics 1991, 95, 9277. 
 (3) Miranker, A.; Karplus, M. Proteins 1991, 11, 29. 
 (4) Carlson, H. A.; Masukawa, K. M.; McCammon, J. A. Journal of Physical 
Chemistry A 1999, 103, 10213. 
 (5) Caflisch, A.; Miranker, A.; Karplus, M. Journal of medicinal chemistry 
1993, 36, 2142. 
 (6) Quillin, M. L.; Li, T.; Olson, J. S.; Phillips, G. N., Jr.; Dou, Y.; Ikeda-
Saito, M.; Regan, R.; Carlson, M.; Gibson, Q. H.; Li, H. Journal of molecular biology 
1995, 245, 416. 
 (7) Ulitsky, A.; Elber, R. Journal of Physical Chemistry 1994, 98, 1034. 
 (8) Czerminski, R.; Elber, R. Proteins: Structure, Function, and Genetics 
1991, 10, 70. 
 (9) Verkhivker, G.; Elber, R.; Nowak, W. Journal of Chemical Physics 1992, 
97, 7838. 
 (10) Simmerling, C.; Fox, T.; Kollman, P. A. Journal of the American 
Chemical Society 1998, 120, 5771. 
 (11) Simmerling, C.; Lee, M. R.; Ortiz, A. R.; Kolinski, A.; Skolnick, J.; 
Kollman, P. A. Journal of the American Chemical Society 2000, 122, 8392. 
 (12) Huber, G. A.; McCammon, J. A. Physical Review E: Statistical Physics, 
Plasmas, Fluids, and Related Interdisciplinary Topics 1997, 55, 4822. 
 (13) Huber, T.; van Gunsteren, W. F. Journal of Physical Chemistry A 1998, 
102, 5937. 
 (14) Huber, T.; Torda, A. E.; van Gunsteren, W. F. Biopolymers 1996, 39, 103. 
 (15) Huber, T.; Torda, A. E.; van Gunsteren, W. F. Journal of Physical 
Chemistry A 1997, 101, 5926. 
 (16) Maranas, C. D.; Floudas, C. A. Journal of Chemical Physics 1994, 100, 
1247. 
 (17) Straub, J. E.; Karplus, M. Journal of Chemical Physics 1991, 94, 6737. 
 (18) Ulitsky, A.; Elber, R. Journal of Chemical Physics 1993, 98, 3380. 
 (19) Zheng, W.-M.; Zheng, Q. Journal of Chemical Physics 1997, 106, 1191. 
 (20) Stultz, C. M.; Karplus, M. Journal of Chemical Physics 1998, 109, 8809. 
 (21) Anfinsen, C. B. Science 1973, 181, 223. 
 (22) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, T. E., III; Ross, 
W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; 
Vincent, J. J.; Crowley, M.; Ferguson, D. M.; Radmer, R. J.; Seibel, G. L.; Singh, U. C.; 
Weiner, P. K.; Kollman, P. A. AMBER 5; University of California: San Franciso, 1997. 
 (23) Tsui, V.; Case, D. A. Biopolymers 2001, 56, 275. 
 (24) Wang, J.; Cieplak, P.; Kollman, P. A. Journal of Computational 
Chemistry 2000, 21, 1049. 
 (25) Hixson, C. A.; Wheeler, R. A. Chem.Phys. Lett. 2004, 386, 330. 
 (26) Hixson, C. A.; Wheeler, R. A. Physical Review E: Statistical, Nonlinear, 
and Soft Matter Physics 2001, 64, 026701/1. 

 194



 (27) Hixson, C. A.; Chen, J.; Huang, Z.; Wheeler, R. A. Journal of Molecular 
Graphics & Modelling 2004, 22, 349. 
 (28) Hornak, V.; Simmerling, C. Proteins: Structure, Function, and Genetics 
2003, 51, 577. 
 
 

 195



Chapter 8 

 

Molecular Dynamics Simulations of an Amphiphilic Octadecapeptide in GB/SA 

Implicit Solvent 

 

8.1. Introduction 

Many conventional NVT simulations fail to find a global potential energy 

minimum, and it is generally accepted that this due to simulations at low temperatures 

becoming trapped in one of myriad local minimum-energy states 1-10. However, this 

explanation must be re-examined in light of the difference between global and local 

minima on the free energy surface (FES) and on the potential energy surface (PES) in 

canonical ensemble simulations. The quasiergodicity problem 11 is caused by local free 

energy minimum traps 12 , not local potential energy minimum traps, but the PES 11,13 is 

most often used to describe the local minimum traps. Several techniques such as Locally 

Enhanced Sampling (LES) 5,14-16 have recently been developed, taking into account that 

potential energy barriers, not free energy barriers, are the limiting factor. Because the 

temperature-independent PES, not the temperature-dependent FES, represents the 

conformational energy landscape, we consider local minimum traps as potential energy 

traps. Potential energy traps describe the situation where a simulation becomes trapped in 

a local potential energy well, and its kinetic energy is not large enough to overcome the 

high potential energy barrier to move the system to another minimum on the potential 

energy surface. This shows that the potential energy trap is not the only reason for the 

quasiergodicity problem in time-limited MD simulations.  

 196



Other factors, such as free energy traps and kinetic traps, also affect simulations. 

Free energy traps occur at thermal equilibrium, reflected in small fluctuations in kinetic 

energy at constant temperature, so that MD simulations will only sample certain ranges of 

potential energies on a realistic simulation time. Regions of phase space sampled at 

thermal equilibrium are termed thermodynamically accessible regions. Similarly, kinetic 

traps happen at mechanical equilibrium, reflected by small fluctuations in potential 

energy when the velocity (vector) is in equilibrium. In this case, simulations are further 

limited to a local search for energy states with similar conformations. These two factors 

combined mean that realistic simulations usually sample only a very narrow range of 

phase space. Potential energy traps may not exist, but the simulations will still often fail 

to pass over higher potential energy barriers or fail to sample lower potential energy 

minima. Practically, this produces a biased phase space trajectory, which strongly 

depends on the initial coordinates. To reduce simulation dependence on initial 

coordinates, many workers start simulations from different conformations. The 

corresponding technique of using different initial energies, and therefore different 

momenta, for each simulation is similar in spirit to starting from different initial 

conformations. The work described here disrupts the long-scale equilibria associated with 

these traps in MD simulations, alleviates the biased phase space sampling problem and 

helps in modeling both folding and unfolding processes during short simulations. 

According to Anfinsen’s thermodynamic hypothesis 17, the native folded 

conformation of a protein is the global free energy minimum structure at in vivo 

temperatures. Unfortunately, the global free energy minimum is difficult to determine, as 

is the free energy surface, in both MD and MC simulations. In contrast, the potential 
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energy surface (PES) is relatively easy to define as a function of the atomic coordinates 

of the system 18 and in addition is temperature independent 19.  In most cases, it is 

assumed that the global free energy minimum conformation corresponds to the 

conformation of lowest potential energy sampled during the trajectory. This assumption 

does not necessarily hold true for MD, in light of the high-energy barriers and long-scale 

equilibrium that restrict conformational transitions, bias phase space sampling, and trap 

the simulation in local energy minima. Even though the global minimum free energy 

structure at in vivo temperatures may not correspond to the global potential energy 

minimum, the global free energy minimum is usually either the global minimum or a 

very low local minimum on the potential energy surface 18. Therefore, maps of these low 

potential energy minima and their conformations can be quite valuable. Many 

minimization algorithms based on Monte Carlo (MC) simulations have been developed 

recently to create these maps 18,20-23. The disrupted velocity (DIVE) search simulation 

technique can provide an alternative, simpler way to identify global minima. Further, by 

starting with global or locally optimized conformations, divergent path (DIP) search 

simulations can be used to carry out global relaxation dynamics, and identify the lowest 

energy conformation near physiological temperatures. 

This chapter describes our molecular dynamics simulations of a synthetic, 

amphiphilic octadecapeptide peptide F (EQLLKALEFLLKELLEKL)24 in a GB/SA 

implicit solvent model for water. This de novo designed polypeptide has a high apolar-

polar amino acid ratio and can self-associate into hexamers in aqueous solution (the 

helical ribbon in Fig. 8.1.1). First, the results of using the DIVE technique to investigate 

potential energy landscapes and myriad conformations of the polypeptide are presented. 
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During the DIVE simulations, both the global potential energy minimum conformation 

and the experimentally determined X-ray structure are located quickly (in several 

nanoseconds). Next, we give a series of DIP simulations of peptide F, conducted at 300 K 

from several different starting conformations. The global free energy minimum 

conformation at room temperature is identified in an aggregate simulation time of 360 ns. 

The simulation results indicate that both global minimum potential energy and free 

energy structures, sampled by molecular dynamics for an isolated polypeptide with 

implicit water solvation, may deviate from the experimental X-ray structures. However, 

the family of structures resembling the helical X-ray structure has potential energies very 

close to those of the global potential and free energy minima. The X-ray structure in fact 

displays three salt bridges between polypeptides, which serve to stabilize the helix in the 

crystal. 

Figure 8.1.1. Native X-ray 
structure of peptide F (PDB 
1PEF). The image was generated 
using PyMOL 
(http://pymol.sourceforge.net/). 
 

 

8.2. Simulation methodology 

 

8.2.1. Algorithms and force field 
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The simulation algorithm used was that described in Chapter 3 for the DIP 

strategy and in Chapter 4 for the DIVE protocol. The AMBER99 force field 25 was used, 

and the GB1/SA26 implicit model was used for the solvent environment. In GB1, the 

water dielectric constant of εw = 78.5 was used, and the dielectric constant inside the 

protein was set to εp = 1. These parameters follow the standard values for GB1/SA 

implicit solvent. 

 

8.2.2. Computational details 

The AMBER 8 software package 27 was used to generate the initial coordinates 

for the extended structure of the 18-residue peptide F. The Molecular Modeling Toolkit 28 

was used to convert input files from the AMBER format to that required by our 

programs. We used the velocity-Verlet algorithm 29-31 to integrate the equations of motion 

and the SHAKE algorithm 32 to constrain the covalent bond distances involving 

hydrogen. At each step, the translational motion of the center of mass of the entire system 

was removed. The Nosé-Hoover Chain method 33 was used to control the temperature in 

conventional NVT simulations. A preliminary, conventional NVT simulation was 

performed for the initially extended peptide F in vacuo at 10 K in 5 ps with a time step of 

0.01 fs, because the original extended structure disintegrated when using a time step of 1 

fs. After this pre-simulation, the extended conformation remained intact. 

For the DIVE simulations, we simulated six independent trajectories of peptide F 

simultaneously with initial temperatures of 10 K, 50 K, 100 K, 300 K, 600 K, and 1000 

K.  The scaling parameter for cooling was 0.25 and the scaling factor for heating was 

calculated from σ = Ttarget/T, where Ttarget is the target temperature and T is the 
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temperature at that perturbation step. The threshold temperature for heating and cooling 

was 10 K. Thus, during the simulations, each polypeptide was cooled down to ¼ of its 

temperature whenever it rose above the threshold temperature. Once the temperature was 

below 10 K, the polypeptide was heated back to Ttarget. Ttarget was selected to be 1000 K. 

During these simulations, velocity reassignment occurred every 20 ps. A time step of 1 fs 

was used and the trajectory data (energies and coordinates) were collected at 0.5 ps 

intervals (500 steps). The simulation time for each trajectory was 6 ns and the aggregate 

time for the DIVE simulations of six trajectories was 36 ns.  

To run DIP simulations, six trajectories of peptide F were simulated 

simultaneously, and each polypeptide was simulated independently at a constant 

temperature for every step. Six diverse conformations were selected as initial structures 

for DIP simulations. These different conformations were the global potential energy 

minimum conformation, α-helix, V-shaped α-helix, a mixed helical intermediate, a coiled 

structure, and an extended structure. Except for the extended structure, these were the 

potential energy minimum conformations as sampled from the DIVE simulations. Each 

independent polypeptide was assigned the same initial structure and a temperature of 300 

K, but corresponding atoms in each polypeptide had different directions for their 

velocities. Because each initial structure was modeled by six different trajectories, thirty-

six trajectories in total were obtained in all DIP simulations. We also used a time step of 

1fs and collected the trajectory data every 500 time steps. The simulation time for each 

DIP simulation was 10 ns and the aggregate time for 36 trajectories was therefore 360 ns. 

We used the PTRAJ program from the AMBER 8 package 27, MMTSB tool set 34,  and 

custom programs to analyze the coordinate data.  
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Conformational clustering was conducted on the snapshots sampled from the 

simulations. A step-wise optimizing fixed radius clustering algorithm 34-37 was used to 

sort the simulation conformations into different clusters. This algorithm optimizes cluster 

assignment using a restraint on cluster radius, such that any member of a cluster is closer 

than a specified distance from the cluster center. The distance between the cluster center 

and its members was measured by the Cartesian coordinate RMSD of the heavy atoms. 

An iterative minimization procedure is used to minimize the distance between the cluster 

center and its members. The algorithm iterates to a solution from the initial cluster 

assignment until the cluster centers differ by less than a specific error tolerance. In this 

optimal clustering algorithm, the cluster radius and the error tolerance are crucial, as they 

determine both the size and the number of the formed clusters. In this case, a 3 Å cluster 

radius and a 0.5 Å error tolerance were used. We also performed cluster analysis by using 

other radius and error tolerance values, but the selection of a 3 Å cluster radius and 0.5 Å 

error tolerance gave a good balance between the number of clusters and structural 

diversity. 

 

8.3. DIVE simulations for mapping potential energy landscapes and conformations 

of peptide F 

Figure 8.3.1 displays the time series of various properties for the polypeptide at an 

initial temperature of 300 K from the six-trajectory DIVE simulation of peptide F in a 

GB/SA implicit solvent, starting from an extended structure. The partial history of total 

energy (Fig. 8.3.1a) indicates that the conventional NVE simulation remains at constant 

energy for a fixed time interval (20 ps), then the simulation is perturbed by trajectory and 
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energy, and subsequently falls to a new total energy level (The trajectory and energy 

perturbation are accomplished by velocity redirection and rescaling, respectively). The 

DIVE simulation for peptide F in implicit solvent samples an enormous range of potential 

energies from nearly -300 to -820 kcal/mol (Fig. 8.3.1b) and temperatures ranging from 

near 0 K to almost 450 K (Fig. 8.3.1c) during the course of the simulation. Although the 

simulation involves heating to 1000 K, after approximately 1 ps (1000 steps), nearly half 

of the kinetic energy converts to potential energy. Consequently, the high temperature 

states where data are collected sample temperatures below ∼500 K. Fig. 8.3.1d displays 

both the all-heavy atom and backbone atom RMSD between the calculated structures and 

the X-ray reference structure. The RMSD plots show that the simulation continues to 

search diverse conformations of the backbone with the RMSD, ranging from 0.39 Å to 

8.10 Å, while the polypeptide forms the structure closest to the native α-helix after 

approximately 1.5 ns (heavy RMSD = 1.45 Å and backbone RMSD = 0.39 Å).  
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Figure 8.3.1. Time series of various properties for one polypeptide (T0 = 300 K) from a 
six-trajectory DIVE simulation of peptide F in a GB/SA implicit solvent, starting from an 
extended structure. (a) Total energy for the first 300 ps. (b) Potential energy. (c) 
Temperature. (d) RMSD between all heavy atoms (dark) or backbone atoms (gray) of the 
calculated structure and the X-ray structure.  
 

Many local potential energy minima appear along the trajectory at kinetic 

energies corresponding to temperatures below 10 K. To investigate these structures, the 

average temperature in each 20 ps interval was calculated, and then the simulation 

regions whose average temperature was below 10 K were collected. Thirty-three regions 

were obtained. For each region, 40 potential energies were collected in 20 ps intervals. In 

each region, the energies usually oscillated within approximately ±1.5 kcal/mol and 

RMSDs oscillated within approximately ± 0.05 Å. Within these 40 regions, the lowest 

potential energy was selected as a representative minimum potential energy 

conformation. Representative results are shown in Fig. 8.3.2a – f. The lowest energy 

conformation of peptide F sampled is the native α-helical structure (Fig. 8.3.2a) with a 

potential energy minimum of approximately –810 kcal/mol. There are also many local 

potential energy minima between –810 and -765 kcal/mol. While the conformations are 

diverse, they are all well-ordered, with 10 or more hydrogen bonds (data not shown). 
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Though the energy gap between potential energy minima is relatively small (less than 4 

kcal/mol between any two neighboring minima), the backbone RMSDs between these 

conformations and the α-helical X-ray structure differ by as much as 8 Å, so the different 

potential energy minima represent distinctly different structural types. Remarkably, the 

diverse conformations of low energies (e.g. Fig. 8.3.2a - e) always have an apolar 

hydrophobic interface (side chain of Leu residue) at one side and a polar hydrophilic 

interface (side chain of Glu and Lys residues) on the other side. This result illustrates the 

significance of hydrophobic and hydrophilic interactions in constructing stable 

conformations for this amphiphilic polypeptide in a solvent environment.  

     
      (a) E = -810.1 kcal/mol                      (b) E = -807.6 kcal/mol                    (c) E = -797.3 kcal/mol  

     
      (d) E = -797.3 kcal/mol                      (e) E = -795.7 kcal/mol                    (f) E = -766.2 kcal/mol 

Figure 8.3.2. Representative conformations and potential energies (kcal/mol) of minima 
sampled for the polypeptide at initial temperature of 300 K, from a six-trajectory DIVE 
simulation of peptide F in GB/SA implicit solvent, starting from an extended structure. 
Approximate descriptions of the conformations, all-heavy and backbone atom RMSD 
from the X-ray structure: (a) the lowest potential energy minimum conformation sampled 
is an α-helix (backbone RMSD = 0.61 Å and heavy RMSD = 1.54 Å). (b) A V-shaped α-
helix (backbone RMSD = 3.04 Å and heavy RMSD = 4.14 Å). (c) A narrower V-shaped 
α-helix (backbone RMSD = 4.70 Å and heavy RMSD = 5.56 Å). (d) A U-shaped, 1/3 310 
helix, and 2/3 α-helix with frayed termini (backbone RMSD = 6.63 Å and heavy RMSD 
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= 7.58 Å). (e) A mixed helical intermediate having 1-2, 1-3, 1-4, 1-5 and etc. hydrogen 
bonds (backbone RMSD = 1.73 Å and heavy RMSD = 3.36 Å). (f) A coiled structure 
(backbone RMSD = 7.73 Å and heavy RMSD = 8.91 Å). These images were generated 
by using PyMOL (http://pymol.sourceforge.net/). 
 

Though the native structure has the lowest potential energy in the trajectory of the 

polypeptide at an initial temperature of 300 K, it is not the global potential energy 

minimum conformation from the all simulations. Compared to the conformational search 

of the single trajectory, the six-trajectory DIVE simulation of the polypeptides at initial 

temperatures of 10 K, 50 K, 100 K, 300 K, 600 K, and 1000 K extend the diverse 

conformational space sampling in a very limited simulation time (6 ns). The 

corresponding technique of using different initial energies, and therefore different 

momenta, for the polypeptide in each trajectory is similar to starting from different initial 

conformations, but these studies show the significance of using different perturbed 

trajectories in sampling diverse conformational space, even when starting from the same 

coordinates. Table 8.3.1 shows the lowest potential energies (in kcal/mol) and lowest 

backbone RMSDs of all sampled structures, when compared to the X-ray structure of 

peptide F in the six-trajectory DIVE simulation during the simulation times of 0 – 3 ns, 3 

ns – 6 ns, and 0 – 6 ns respectively. The data indicates that different initial conditions can 

cause different sampling trajectories even when using short simulation times. However, 

the results usually converge as the simulation time extends when using this perturbed 

technique. Perturbation conditions can always disturb simulation trajectories into 

sampling different regions of conformational space, thus avoiding the limitations of 

conventional MD simulations that sample local regions. In these DIVE simulations, 
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diverse conformational space regions were sampled and 198 different minimum regions 

in total were obtained from six trajectories.  

Table 8.3.1. The lowest potential energies sampled (in kcal/mol) and lowest backbone 
RMSDs of the calculated structures compared to the X-ray structure of peptide F in a six-
trajectory DIVE simulation during the simulation times of 0 – 3 ns, 3 ns – 6 ns, and 0 – 6 
ns, respectively. Note: Generally, the lowest sampled potential energies and lowest 
RMSDs do not correspond precisely. 
 

0 - 3ns 3ns - 6ns 0 - 6ns 
min. 

RMSD 
Min. E min. 

RMSD 
min. E Min. 

RMSD 
min. E 

Time 
 
 

Trajectory Å kcal/mol Å kcal/mol Å kcal/mol 
1 1.60 -803.3 0.37 -808.6 0.37 -808.6 
2 0.82 -809.2 0.55 -815.9 0.55 -815.9 
3 0.71 -802.0 0.64 -811.2 0.64 -811.2 
4 0.46 -810.1 1.08 -807.6 0.46 -810.1 
5 0.87 -810.5 0.67 -804.1 0.67 -810.5 
6 0.44 -809.2 0.39 -812.3 0.39 -812.3 

 

Table 8.3.2 displays minimum potential energies (in kcal/mol) of the lowest ten 

energy minima and their RMSDs from the X-ray structure of peptide F in the six-

trajectory DIVE simulation. The first line shows the data for the original structure. The 

second line shows the relaxed structure, equilibrated for 100 ps in a conventional NVT 

simulation at 2 K, starting from the experimental X-ray structure. This relaxed X-ray 

structure (2 K) has a slightly higher backbone atom RMSD from the reference structure 

than the sampled native structure (5) in our DIVE simulations, while the latter has the 

same secondary structure as the reference structure. Many similar folded structures 

(RMSD between 0.4 Å and 2.0 Å) were sampled during the simulations. These structures 

were distributed into different energy levels on a very rugged multi-dimensional potential 

energy surface, which exhibits no single deep well.  
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Table 8.3.2. Minimum potential energies (in kcal/mol) of the ten lowest energy minima, 
and their RMSDs (heavy and backbone) between the calculated structures and the X-ray 
structure of peptide F in a six-trajectory DIVE simulation. Also shown is the secondary 
structure assignment from the (φ, ψ) torsion angles of each residue (A = α-helix, 3 = 310-
helix, S = sheet, P = polyglycine II or poly-L-proline II helix, C = Collagen, H = π-helix, 
R = 2.27 ribbon, O = others except for the above types, (±20°, ±20°) window from their 
respective standard point 38). The first two lines give the data for the original and relaxed 
X-ray structure at 2 K, respectively.  
 

RMSD (Å) Secondary structure Order Energy  
(kcal/mol) Heavy Backbone  

X-ray -699.9 — — OAAAAAAAAAAAAAA3OO 
2 K -811.3 1.05 0.72 O3AAAAAAAAAAAA3OOA 
     

1 -815.9 4.74 3.35 OOOCA3OAAAAAAOOAOC 
2 -812.3 5.82 4.83 OA3OA3O33OAAAAOO3O 
3 -811.2 3.83 3.05 OAAA3OO33OAAAOOOOA 
4 -810.5 2.46 1.52 O3AAAAAAAAAAA3OOOA 
5 -810.1 1.54 0.61 OAAAAAAAAAAAAAA3OO 
6 -809.2 2.60 1.81 OA3333OAAAAAAA3OOA 
7 -809.2 1.86 0.78 O3AAAAAAAAAAAAAAOA 
8 -809.1 3.40 2.63 O3AAOOOA3OAAAAAAOA 
9 -808.6 2.01 0.99 O3AAOAAAAAAAAA3OOC 
10 -808.4 5.49 4.61 OOO333OA3OOA3OOOOS 

 

The lowest potential energy state sampled in the DIVE simulation was not the 

native α-helical structure, but instead was a structure with a partial α-helix in the middle 

of the polypeptide (Fig 8.3.3a). This structure is most likely the global potential energy 

minimum conformation, verified by unpublished supplementary simulations starting from 

different initial configurations (data not shown). The potential energy for the relaxed X-

ray structure at 2 K (Fig. 8.3.3b) also supports this hypothesis. With approximately 4 - 5 

kcal/mol lower potential energies than the experimentally derived helical structures, this 

global minimum conformation has more intrapolypeptide salt bridges on the hydrophilic 

side, which accounts for the energy decrease from the helical X-ray structures. Three 

intrapolypeptide salt bridges are observed in the original X-ray structure Lys5 – Glu8, 
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Lys12 – Glu13, and Lys12 – Glu16 24. While the relaxed structure (Fig. 8.3.3b) has one 

extra salt bridge of Glu13 – Lys17, the sampled native structure (Fig. 8.3.2a) has this salt 

bridge instead of Lys12 – Glu13. (The additional or changed salt bridge seen in the MD 

simulations correctly reflects a more stable pattern of intromolecular ion pairing in single, 

noninteracting helices 39). However, the global potential energy minimum conformation 

has six salt bridges: Glu1 – Lys5, Lys5 – Glu8, Lys12 – Glu13, Lys12 – Glu16, Glu13 – 

Lys17, Glu16 – Lys17, which largely stabilize the conformation. In addition, comparing 

the relaxed X-ray structure at 2 K with the global minimum conformation, the decreased 

Coulombic energy overcomes the increased Gpol and SA energies (Fig. 8.3.4). Therefore, 

this conformation may reflect the real global potential energy minimum structure for an 

isolated polypeptide with implicit solvation, but may deviate from the experimental 

structures observed in a more complex biological environment. 

         
(a) E = -815.9 kcal/mol                                                       (b) E = -811.3 kcal/mol                                     

Figure 8.3.3. Conformations and potential energies (kcal/mol) of the global potential 
energy minimum and the relaxed X-ray structure at 2 K in GB/SA implicit solvent. Also 
shown are the intrapolypeptide polar contacts. (a) The global potential energy minimum 
conformation is a structure with partial α-helix in the middle (backbone RMSD = 3.35 Å 
and heavy atom RMSD = 4.74 Å). (b) The relaxed X-ray α-helical structure at 2 K 
(backbone RMSD = 0.72 Å and heavy atom RMSD = 1.05 Å). These images were 
generated by using PyMOL (http://pymol.sourceforge.net/). 
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Figure 8.3.4. Energy components of the potential energy minima in the global and 
relaxed X-ray structures at 2 K. While the Gpol and Van der Waals energies favor the X-
ray α-helical conformation, the Coulombic energy favors the global minimum energy 
conformation. 
 

Finally, cluster analysis was conducted to evaluate diverse conformations sampled 

by our simulations. A total of 605 clusters were identified for 72,000 structures. 

Interestingly, the most-populated cluster included 3,464 structures, corresponding to the 

experimentally demonstrated native α-helices. Every other cluster contained less than 

1,000 structures. Most of them (408 out of 604) were sparsely populated, and contained 

less than 100 structures. Among the more populated clusters (196), 18 clusters contained 

more than 500 structures. As is the case for many DIVE simulations, the size of each 

cluster is small but the number of clusters is large. This occurs because these simulations 

sample discrete diverse regions of conformational space instead of being restrained to a 

local search of many similar conformations.  

 

8.4. DIP simulations for sampling the global minimum free energy conformation of 

peptide F at 300 K 
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In addition, DIP simulations of peptide F in GB/SA implicit solvent at 300 K 

were conducted to locate the global free energy minimum at 300 K. Thirty-six trajectories 

were studied, obtained from the six-path DIP simulations. Figures 8.4.1a and b show the 

time series of the potential energy and all-backbone RMSD between the X-ray structure 

and the polypeptide with the lowest potential energy at each data-collection step (in 0.5 

ps intervals) from the thirty-six trajectories. The potential energy history indicates that 

mechanical equilibrium was reached after 4 ns. In the following 6 ns trajectory, a total of 

12,000 structures were collected. Cluster analysis revealed six distinct groups. Figure 

8.4.2 shows the representative conformations and potential energies of the two largest 

clusters. The most-populated cluster contains 80% of the total structures, and displays a 

structure (Fig. 8.4.2a) that is closely related to the global minimum potential energy 

conformation (Fig. 8.3.3a). In fact, we observed one trajectory start from the initial global 

potential energy minimum conformation and convert directly to this conformational 

cluster, The conversion thus occurred from the global potential energy minimum to 

potential energy states approximately 120 kcal/mol higher than the global minimum. At 

room temperature, the oscillating kinetic energies control sampling of these potential 

energy states while the polypeptide equilibrates in the many conformations within this 

cluster. The second most-populated cluster shows the experimentally demonstrated native 

α-helical conformation (Fig. 8.4.2b), and includes 12% of the total structures. The other 

clusters are sparsely populated and include 310-helices, V-shaped α-helices, terminal 

frayed α-helices and partial α-helices. Subsequently, we subjected the entire 10 ns 

trajectory to further cluster analysis. The number of the identified clusters increased to 37 

clusters from 20,000 structures. The number of clusters sampled from molecular 
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dynamics increased significantly, mainly because the conformational change happens 

frequently during the mechanical equilibration process. However, the two most populated 

clusters were identical to those from the initial analysis. 
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Figure 8.4.1. Time series of the (a) potential energy and (b) backbone RMSD from the 
X-ray α-helix of the lowest potential energy polypeptide from 36 trajectories in the DIP 
simulations of peptide F in GB/SA implicit solvent at 300 K.  
 

         
(a) E = -700.8 kcal/mol, Ē = -691.4 kcal/mol                     (b) E = -699.9 kcal/mol, Ē = -690.6 kcal/mol  

Figure 8.4.2. Representative conformations and potential energies (kcal/mol) of the two 
largest clusters sampled from the lowest potential energy polypeptide of 36 trajectories. 
Also shown are the intrapolypeptide polar contacts. The representative structure for each 
cluster is the one nearest the cluster center. E is the potential energy of the representative 
conformations, and Ē is the averaged potential energy of the corresponding clusters. (a) 
The sampled global free energy minimum conformation is a structure closely related to 
the global potential energy minimum conformation. (2.50 Å backbone RMSD from the 
global potential energy minimum conformation, and 4.60 Å backbone RMSD from the 
X-ray structure). (b) α-helix (3.64 Å backbone RMSD from the global potential energy 
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minimum conformation, and 0.94 Å backbone RMSD from the X-ray structure). These 
images were generated by using PyMOL (http://pymol.sourceforge.net/).  
 

After thorough exploration of the energy surface by using different initial 

coordinates and trajectories, the global minimum free energy state is the conformation of 

the lowest equilibrated potential energy with the largest population. Therefore, the 

structure shown in Fig. 8.4.2a is likely to be the global minimum free energy 

conformation for peptide F at 300 K in GB/SA with implicit solvent. This global 

conformation has an approximately 0.8 – 0.9 kcal/mol lower energy than the 

experimentally derived α-helical structure when both are sampled at room temperature. 

The global minimum free energy conformation has seven salt bridges: Glu1 – Lys5, Glu1 

– Lys12, Lys5 – Glu8, Lys5 – Glu13, Lys12 – Glu16, Glu13 – Lys17, Glu1 – Lys17, 

which largely stabilize its conformation. In contrast, the α-helix shown in Fig. 8.4.2b has 

five salt bridges: Lys5 – Glu8, Lys12 – Glu17, Lys12 – Glu16, Glu13 – Lys17, Glu16 – 

Lys17. The extra intrapolypeptide salt bridges on the hydrophilic side of the global 

minimum free energy conformation accounts for its energy decrease from the helical X-

ray structures at room temperature. In fact, the decreased Coulombic energy barely 

overcomes the increased Gpol and SA energies when comparing energies of the native α-

helical structure with those of the global minimum free energy conformation near in vivo 

temperature (data not shown). Therefore, the global free energy minimum conformation, 

similar to the global potential energy minimum conformation, was sampled using 

molecular dynamics, and deviated from the experimental structure exhibited in a much 

more complex biological environment. Two possible reasons exist for the difference 

between the global minimum and X-ray structure. First, implicit solvent artificially favors 
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salt bridges because no water molecules are available to solvate charged amino acid 

sidechains. Second, in the X-ray structure, three addition inter-polypeptide salt bridges 

appear between helices and thus further decrease its potential and free energies. In vivo, 

inter-polypeptide salt bridges may also appear in the global helical-structure by forming 

helical bundles and thus further decrease its potential and free energies.  

After we determined the global minimum free energy conformation from the 

polypeptide with the lowest potential energy of thirty-six trajectories, we examined the 

entire DIP simulations. After mechanical equilibrium was reached, all trajectories were 

limited mainly to sampling potential energies in the range between -570 kcal/mol and -

700 kcal/mol. These potential energies are the thermodynamically accessible regions 

corresponding to temperatures of 300 K ± 50 K. Different equilibrated potential energy 

levels always symbolize different conformations, and correspond to different free energy 

minima at 300 K. The transition from one free energy minimum to another free energy 

minimum is always time-consuming after mechanical equilibrium is reached in molecular 

dynamics. Therefore, the global free energy minimum is difficult to find in a 

conventional NVT simulation, especially if the simulation starts from a random initial 

structure. In addition, insufficient simulations due to limited simulation time or limited 

trajectories can easily bias the simulation results. For example, Fig. 8.4.3a displays the 

time series of potential energies from the six-path DIP simulation of peptide F at 300 K in 

GB/SA implicit solvent for 10 ns, starting from the extended structure. From these six 

trajectories, the equilibrated potential energies cannot decrease to -670 kcal/mol, even in 

10 ns or longer simulations (Fig. 8.4.3b). The simulations sample high potential energy 

states. Both the global free energy minimum conformation and X-ray α-helix cannot be 
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reached. Instead, only partial α-helices are explored during the mechanical equilibration 

process (data not shown).  
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Figure 8.4.3. Time series of the potential energy in a six-path DIP simulation of peptide 
F in GB/SA implicit solvent at 300 K, starting from the initial extended structure. (a) 
Potential energy in the first 10ns. (b) Potential energy displayed on an expanded scale in 
the following 10 ns. Different colors refer to different trajectories.  
 

8.5. Conclusion 

This chapter has discussed molecular dynamics simulations of an amphiphilic 

octadecapeptide peptide (1PEF) in the GB/SA implicit solvent model for water. This de 

novo designed polypeptide has a high apolar-polar amino acid ratio and can self-associate 

into hexamers in aqueous solution. Due to its complex energy surface as compared to 

polyalanine, a combined procedure is described in which the global potential energy 

minimum and myriad local potential energy minima are explored by using DIVE 

simulations followed by DIP simulations to search for the global free energy minimum 

near in vivo temperatures.  

The disrupted velocity (DIVE) search simulations were started from an extended 

structure. With this technique, we find that the X-ray structure (at 1.5 Å resolution) of the 

 215



folded polypeptide was quickly reproduced after a very short simulation time (backbone 

RMSD 0.39 Å, heavy atom RMSD 1.45 Å after 1.5 ns). However, even though many 

similar folded structures are sampled during the simulations (backbone RMSD between 

0.4 Å and 2.0 Å), these structures do not correspond to the lowest energy states sampled 

on the very rugged multi-dimensional potential energy surface. Indeed, the potential 

energy surface exhibits no single deep well.  On the other hand, the lowest energy state 

sampled (backbone RMSD = 3.35 Å) corresponds to a structure with a partial α-helix in 

the middle of the polypeptide. This conformation has approximately 4 kcal/mol lower 

potential energy than the experimentally derived helical structures. Like those X-ray 

structures, it has an apolar hydrophobic interface on one side and a polar hydrophilic 

interface on the other side.  

In addition, divergent path (DIP) search simulations of peptide F at 300 K were 

performed to identify the global free energy minimum conformation. Thirty-six 

trajectories in total were obtained using the six-path DIP simulations of six different 

starting conformations. The initial conformations were the global potential energy 

minimum structure, an α-helix, a V-shaped α-helix, a mixed helical intermediate, a coiled 

structure, and an extended structure, respectively. We identified the global free energy 

minimum conformation from these thirty-six trajectories during a 360 ns aggregate 

simulation time. The global free energy minimum conformation exhibited the lowest 

equilibrated potential energy with the largest population. The X-ray α-helix appears to 

occupy the second lowest free energy minimum. Therefore, the simulation results 

indicate that both the global potential energy and the global free energy minimum 

structures, sampled by using molecular dynamics for an isolated polypeptide in water, 

 216



may deviate from the experimental structures in a more complex biological environment. 

In vivo, several more inter-polypeptide salt bridges can appear for the global helical-

structure by forming helical bundles and thus further decrease the potential and free 

energies as in the X-ray structure. 
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Chapter 9 

 

Exploring Trp-cage Mini-protein Conformations and Folding Pathways by 

Disrupted Velocity Search Simulations 

 

9.1. Introduction 

In recent years, impressive advances in the artificial design of small, fast-folding 

proteins have been made by experimental scientists. These small proteins, on the order of 

20 to 35 residues, can exhibit tertiary structural properties similar to natural single-

domain proteins. Their globular folded structures are well defined, and can contain 

multiple secondary structural elements, a compact hydrophobic core, and tertiary contacts 

1,2. Examples include the 35-residue villin headpiece subdomain studied by McKnight 

and coworkers 3,4, the 28-residue ββα motif studied by Dahiyat and Mayo 5,6, and the 20-

residue Trp-cage motif studied by Neidigh et al. 7,8. These mini-proteins provide 

excellent model systems for folding simulations.  

The 20-residue mini-protein Trp-cage (NL2YIQWLK8DGG11PSS14GRP17PP19S) 

was derived from the C-terminal fragments of a 39-residue exendin-4 peptide 9, and 

encapsulates the Trp-6 side chain in a “cage”. It folds spontaneously and cooperatively 

from an extended structure to a highly defined 3D structure of a Trp-cage motif in 

approximately 4 microseconds 10. The Trp-cage folds with two-state kinetics 7,10. The 

unfolded structure under native conditions displays some elements of the tertiary 

structure, especially in the early association of Trp-6 and Pro-12 7. Experimental data 

suggest that the folding of the Trp-cage motif is highly cooperative 7,10. In addition, 
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Neidigh et al. 7 reported the partial mechanism for the Trp cage folding in the case of a 

39-residue exendin-4 peptide EX4. In that case, the Trp cage formation corresponded to 

the docking of the three consecutive prolines in the C-terminus onto an exposed Trp 

indole ring of a preformed helix 7. The Trp-cage mini-protein represents the smallest 

known cooperatively folding protein-like molecule identified to date 7. The small size, 

high stability, and fast folding time make Trp-cage an ideal model system to provide 

direct comparison between simulation and experiments 11.  

Figure 9.1.1. Native NMR 
structure of Trp-cage (the first 
one of the 38 NMR structures in 
1L2Y pdb file). The image was 
generated using PyMOL 
(http://pymol.sourceforge.net/). 
 

 
The NMR structure of this Trp-cage motif in aqueous solution (1L2Y, Fig. 9.1.1) 

reveals a well-defined tertiary structure with multiple secondary structures held together 

by a tightly packed hydrophobic core. Starting from the amino terminus, the secondary 

structure elements of this mini-protein include an α-helix extending from residues Leu-2 

through Lys-8 (the helical ribbon in Fig. 9.1), followed by a 310-helix spanning four 

residues (Gly-11 to Ser-14), and finally a rigid polyproline II helix (Pro-17 to Pro-19) at 

the C-terminus. The compact hydrophobic core surrounding the aromatic ring of Trp-6 is 

formed by the side chains of three proline residues (Pro-12, Pro-18, and Pro-19), a 

glycine (Gly-11), and a tyrosine (Tyr-3). Stabilizing interactions for this globular folded 

structure also include a salt bridge between the side chains of Asp-9 and Arg-16, a 
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hydrogen bond between the NH of Gly-11 and the backbone carbonyl oxygen of Trp-6, 

and a hydrogen bond between the NHε1 of the Trp-6 indole ring and the backbone 

carbonyl oxygen of Arg-16 1,2.  

Several molecular dynamics simulations have been published on this Trp-cage 

mini-protein. Simmerling et al 12 performed the first simulations, in which a series of 20 

ns – 100 ns molecular dynamics simulations were conducted with a modified AMBER99 

force field. The blind structure prediction simulations produced a structure within 0.97 Å 

Cα atom RMSD and 1.4 Å heavy atom RMSD (excluding the terminal residues: Asn–1 

and Ser–20, and the long side chains of Leu-2, Lys-7, and Arg-16 of the experimental 

NMR structure). Unfortunately, this paper did not include detailed information about 

attempted simulations, including any failed simulations at 300 K and successful 

simulations at 325 K etc. 12 Instead, they identified potential native structures from many 

low potential energy structures 11. Snow et al.13 ran thousands of stochastic dynamics 

simulations on the multi-nanosecond time scale (1 ns – 80 ns) with the united atom OPLS 

force field. Over 1000 simulations extended to 30 ns, and of these, eight trajectories 

contained structures less than 2 Å Cα RMSD from the NMR structure. The lowest Cα 

RMSD conformation searched shows a 1.4 Å RMSD. Pitera and Swope 14 made use of 

the parallel replica-exchange method to run MD simulations using the AMBER94 force 

field. Twenty-three replicas over a range of temperatures from 250 K to 630 K were 

simulated for 4 ns and the aggregate simulation time was 92 ns. They found a 1.0 Å Cα 

RMSD structure from the NMR structure. Finally, Chowdhury et al 1,2 reported 77 

simulations of 100 ns each, using the newly developed AMBER 2003 force field. Five of 

the simulation trajectories yielded structures with main-chain RMSDs of 1.0 - 2.0 Å from 
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the native NMR structure (not including the four terminal residues of Asn-1, Leu-2, Pro-

19, and Ser-20). The lowest heavy-atom RMSD was approximately 2 Å from the native 

NMR structure.  

Other computational methods have been applied to the Trp-cage system. Schug et 

al. 15 reported Trp-cage folding with the stochastic tunneling method by using their free-

energy protein force field (PFF01) to reproduce a native-like conformation of 1.8 Å 

backbone atom RMSD, compared to the NMR structures. Nikiforovich and colleagues 

16,17 used stepwise elongations of the peptide chain and the ECEPP force field to model 

possible locally driven folding pathways, and were able to generate fragments similar to 

residues 3 – 18 at about 1.5 Å Cα RMSD. Carnevali and co-workers 18 employed Monte 

Carlo simulations to reproduce the fast folding of the Trp-cage with the Amber94 force 

field. RMSD data for the calculated native-like structure were not reported, but they 

indicate that the structure was slightly lower quality than that reported by Simmerling et 

al 12. All the studies described above used either the fully extended structure or rapidly 

relaxed structure. The generalized Born continuum solvent model 19-21 or the more 

general constant dielectric continuum solvent models were used to reduce computational 

complexity. Of these simulations, only Chowdhury et al. 1,2 and Nikiforovich et al. 16,17 

were able to explore folding kinetics, the area of most interest to experimentalists.  

In this chapter, we discuss simulations of the Trp-cage conformations and folding 

pathways, using disrupted velocity (DIVE) search simulations. Surprisingly, the Trp-cage 

motif can be folded in only 2 ns simulations with the best RMSDs identified to date (0.9 

Å, 1.0 Å, and 1.6 Å considering all backbone, Cα, and heavy atoms, respectively), when 

compared to the experimentally determined native structure. Additionally, many different 

 223



folding and unfolding trajectories were observed in a total aggregate of 36 ns simulation 

time, providing significant data on possible protein folding mechanisms. The simulations 

described not only reproduced the conformations and folding pathways explored by other 

laboratories, but also suggest additional features not previously identified in 

computational studies that are consistent with experiments. 

 

9.2. Simulation methodology 

 

9.2.1. Simulation algorithms and force field 

In the DIVE simulation described below, six independent trajectories of mini-

protein Trp-cage were simulated simultaneously. The polypeptide in each given 

trajectory did not interact with any others, so each followed its own perturbed trajectory 

in a conventional NVE simulation. Each independent polypeptide was assigned the same 

initial structure, but different initial atomic velocities and therefore different energies and 

temperatures. For each DIVE trajectory, an NVE simulation was propagated for a fixed 

time interval (e.g. 10 ps). At the end of the time interval, each polypeptide had its atomic 

velocities reassigned in one of two ways. In the first method, the reassignment was 

accomplished in two steps: first, the velocities of each atom in the polypeptide were 

rescaled, then the atomic velocities in each polypeptide were randomly redirected but 

their magnitudes were unchanged. This is the standard method used in all DIVE 

simulations discussed in earlier chapters.  Alternatively, a second method of reassignment 

was used wherein the velocities of each atom in the polypeptide were reinitialized from a 

Gaussian distribution 22. The rescaled temperature of the distribution was the mean 
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temperature and the standard deviation was 0 K, so each atom was reassigned the same 

speed.  

The AMBER99 force field 23 was used, along with the GB4/SA 24,25 implicit 

model for the solvent environment. For the modified generalized Born model employed 

here, the only parameters modified from literature 25 values were used as screening 

parameters.  These were taken from gb_solvate (provided by Prof. B. Jayaram), and used 

to correct systematic errors arising from the pair-wise screening approximation used to 

calculate the effective Born radius. In GB4, the water dielectric constant was εw = 80.0 

and that inside of the protein was εp = 1, following the standard values for the model 

developed. 

Table 9.2.1.1. The screening parameters used were from gb_solvate 
(provided by Prof. B. Jayaram).  

 
 MGB in 

gb_solvate 
MGB from 
literature 25 

H 0.8847 0.8846 
C 0.9182 0.9186 
O 0.8833 0.8836 
N 0.8728 0.8733 
S 0.9292 0.9323 

 

9.2.2. Computational details 

The AMBER 8 software package 26 was used to generate initial coordinates for an 

extended structure 20-residue peptide of Trp-cage (1L2Y). The Molecular Modeling 

Toolkit 27 was used to convert input files from AMBER format to that required by our 

programs. The velocity-Verlet algorithm 22,28,29 was used to integrate the equations of 

motion and the SHAKE algorithm 30 was used to constrain the covalent bond distances 

between hydrogen and heavy atoms. Translation of the center of mass of the entire 
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system was removed at each step. The Nosé-Hoover Chain method 31 was used to control 

the temperature in the conventional NVT simulations. A preliminary conventional NVT 

simulation was performed for the initially extended gas phase Trp-cage with a time step 

of 0.01 fs, because the original extended structure disintegrated when using a time step of 

1fs either in vacuo or in a GB/SA implicit solvent simulations. The simulation was 

performed at 300 K for 20 ps, resulting in a random-coil structure with 7.57 Å heavy 

atom RMSD and 6.39 Å backbone atom RMSD, compared to the averaged NMR 

structure (The averaged NMR structure was derived from 38 NMR structures reported in 

the PDB). This coiled structure was used as the initial structure for DIVE simulations. 

For DIVE simulations, six independent trajectories of Trp-cage were 

simultaneously simulated, with initial temperatures of 10 K, 50 K, 100 K, 300 K, 600 K, 

and 1000 K.  The scaling parameter for cooling was 0.25, and the scaling factor for 

heating was σ = Ttarget/T, where Ttarget is the target temperature, and T is the temperature 

at the perturbation step. The threshold temperature for heating and cooling was 10 K. 

Thus, during the simulations, each polypeptide was cooled down to ¼ of its temperature 

T, whenever T rose above the threshold temperature. Once the temperature was below 10 

K at the perturbation time, the polypeptide was heated back to Ttarget. Ttarget was always 

1000 K. During the simulations, velocity reassignment occurred each 10 ps. A time step 

of 1 fs was used, and the trajectory data (energies and coordinates) were collected at 0.5 

ps intervals (500 steps). The PTRAJ program from AMBER 8 26, MMTSB tool set 32, and 

custom programs were used to analyze coordinate data. 

Molecular mechanics (MM) energy minimization was performed using AMBER 

7 33. The screening parameters in the topology file of Trp-cage generated by the TLEAP 
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program were changed as shown in Table 9.2.1.1. NMR structures were energy 

minimized using 2000 cycles of steepest descent (SD) followed by conjugate gradient 

(CG) using the GB/SA implicit solvent model. A minimum potential energy was reached 

after a few hundred cycles of CG. The energy minimization for the average NMR 

structure was calculated in two stages to maintain structural integrity.  First, the structure 

was minimized in vacuo with 2000 cycles of SD and 3000 cycles of CG; then the 

minimized gas phase structure was minimized in GB/SA implicit solvent as described 

previously. Full conjugate gradient minimization was used on structures sampled from 

our DIVE simulations. A slightly better minimum potential energy was quickly located 

after hundreds of cycles of CG minimization.  

The six-trajectory DIVE simulations of Trp-cage for 6 ns produced 72,000 sets of 

coordinates. Conformational clustering was conducted on these snapshots. The 

simulation conformations were sorted into clusters using a step-wise optimizing fixed 

radius clustering algorithm 32,34-36 (see also Chapter 8). A cluster radius of 3 Å and a 0.5 

Å error tolerance were used. We also performed the cluster analysis by using other radius 

and error tolerance values, but the selection of a 3 Å cluster radius and 0.5 Å error 

tolerance gave a good balance between the number of clusters and structural diversity. 

The distance between a cluster center and its members was measured by Cartesian 

coordinate RMSD of heavy atoms. 

 

9.3. Simulation results  

 

9.3.1. Potential energy landscapes and minimum energy conformations 
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(a)                                                                                      (b) 

Figure 9.3.1.1. (a) Time series of RMSDs between all heavy atoms of the calculated 
structure and the averaged NMR structure from a six-trajectory DIVE simulation of Trp-
cage in GB/SA implicit solvent, starting from a randomly coiled structure. (b) The 
overlays of calculated (mauve) and averaged NMR structures (cyan). Backbone is shown 
in ribbon diagram. The Trp, Tyr and 5 Pro residues are shown in Licorice (stick) model. 
This calculated structure was sampled at 161.2 K. The image was generated using VMD 
37. 
 

The DIVE simulations for Trp-cage in GB/SA implicit solvent sampled an 

enormous range of potential energies from nearly -700 to -220 kcal/mol, with 

temperatures ranging from slightly above 0 to 480 K. Fig. 9.3.1.1a displays the history of 

RMSD between the heavy atoms of the calculated structure and the averaged NMR 

structure from all six trajectories. The RMSD plots show that the simulations continue to 

search diverse conformations with heavy atom RMSDs between 1.6 Å and 10.3 Å, while 

the mini-protein forms the structure closest to the native structure only after 2 ns (heavy-

atom RMSD = 1.6 Å ,backbone RMSD = 0.9 Å). Fig 9.3.1.1b shows the overlay of the 

calculated conformation (mauve) and the averaged NMR structure (cyan). These two 

structures are almost fully overlapped, except for a slightly different orientation of the 

stretched PPII helix from three consecutive prolines. The calculated structure has 

virtually the same backbone conformation and tertiary topology as the experimentally 
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observed native conformation. For the calculated cage structure, the indole ring of Trp-6 

is securely sandwiched between the proline rings, and the phenyl ring of Tyr-3 tightly 

closes up the cage. In addition, two characteristic hydrogen bonds and the salt bridge 

from the Trp-cage motif were observed.  

Further analysis of the calculated structure with the lowest RMSD from each of 

the six polypeptides in the 6 ns trajectory was conducted and the results are shown in 

Table 9.3.1.1. Three of six trajectories form folded structures with RMSDs less than 2.5 

Å for all heavy atoms, and backbone atoms RMSDs less than 1.5 Å. These limits are 

reasonable, because the pair-wise all heavy atoms RMSDs of the 38 models in the NMR 

ensembles range from 0.8 Å to 2.3 Å, and all backbone atoms RMSDs range from 0.2 Å 

to 1.4 Å. 

Table 9.3.1.1. The lowest heavy atom RMSD, backbone atom RMSD and Cα atom 
RMSD of the calculated structures sampled for each trajectory in 6 ns from a six-
trajectory DIVE simulation of Trp-cage, compared to the averaged NMR structure. Three 
of the six trajectories searched native structure with all heavy atom RMSDs less than 2.5 
Å and backbone atom RMSDs less than 1.5 Å from the native structure.  

 
 
 

Trajectory 

All heavy atoms 
RMSD  

All backbone atoms 
RMSD (C, CA, N) 

All Cα RMSD (CA) 

1 2.25 1.16 1.22 
2 4.39 2.85 3.10 
3 2.32 1.26 1.29 
4 3.58 2.63 2.84 
5 1.62 0.89 0.98 
6 3.33 2.18 2.35 

 

From the temperature and potential energy histories, it can be seen that many 

local potential energy minima appear along the trajectories at kinetic energies 

corresponding to a temperature below 10 K. The average temperature was calculated for 
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each 10 ps interval, and simulation regions with an average temperature below 10 K were 

identified. Sixty-six regions were obtained from one 6 ns trajectory, and 396 regions were 

obtained from all six trajectories. For each region, 20 potential energies were collected at 

10 ps intervals. These energies usually varied within ± 0.5 kcal/mol , while the RMSDs 

of their conformations varied within ± 0.02 Å. Within these regions, the lowest potential 

energy structure was used as a representative potential energy minimum conformation.  

Table 9.3.1.2 shows the minimum potential energies (in kcal/mol) of the ten 

lowest energy structures and the RMSDs between the calculated structures and the 

averaged NMR structure of Trp-cage in the six-trajectory DIVE simulations. Also shown 

are the secondary structure assignment (from the (φ, ψ) torsion angles) of each residue in 

the minimum energy conformations. The energy gap between potential energy minima is 

small (less than 2 kcal/mol between any two neighboring minima). Many similar folded 

structures (backbone RMSDs between 1 Å and 1.5 Å) were sampled during the 

simulations. They are distributed into different energy levels, along with other diverse 

conformations on the very rugged, multi-dimensional potential energy surface. The 

potential energy surface exhibits no single deep well. 

In fact, the minimized potential energies of the 38 models in the NMR ensembles 

range from -600 kcal/mol to -629 kcal/mol. Their RMSDs from the average NMR 

structure range from 0.8 Å to 1.4 Å for all heavy atoms, and from 0.3 Å to 0.8 Å for all 

backbone atoms. However, if the NMR structures are minimized first in vacuo, then in 

the GB/SA implicit solvent, their minimized potential energies range from -624 kcal/mol 

to -663 kcal/mol and RMSDs range from 1.2 Å to 2.1 Å for all heavy atoms and from 0.8 

Å to 1.3 Å for all backbone atoms. By comparison, the minimum potential energies of the 
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sampled structures closest to the average NMR structure range from -675 kcal/mol to -

693 kcal/mol and RMSDs range from 1.6 Å to 2.5 Å for all heavy atoms and from 1 Å to 

1.5 Å for all backbone atoms. 

Table 9.3.1.2. Minimum potential energies (in kcal/mol) of the ten lowest energy 
structures, and their RMSDs between the calculated structures and the averaged NMR 
structure in a six-trajectory DIVE simulation of Trp-cage. Also shown is the secondary 
structure assignment from the (φ, ψ) torsion angle of each residue for the minimum 
energy conformations (A = α-helix, 3 = 310-helix, S = sheet, P = polyglycine II or poly-L-
proline II helix, C = Collagen, H = π-helix, R = 2.27 ribbon, O = others except for the 
above types, (±20°, ±20°) window from their respective standard point 38). The first two 
lines refer to the averaged NMR structure and the first NMR structure from the database 
of 38 NMR structures, respectively.  
 

RMSD (Å)  Minimum 
potential  
energy  
(kcal/mol) 

Heavy 
atoms 

Backbone 
atoms 
only 

Secondary Structure 

Averaged 
NMR 
structure 

-660.00     —   — O3AAAAAAOOO3OOOOPPOS 

1st NMR -616.35 1.38 0.69 OAAAAAA3OOOAOO3SPPOO 
     
1 -693.98 4.03 3.25 OOAAOA3OSOO3AOAOCCOO 
2 -693.65 4.04 3.26 OOAAOA3OSOO33OAOCCOO 
3 -692.49 3.97 3.28 OOAAOA3OOOO3AOAOCCOO 
4 -692.07 2.09 1.40 OAAAAAAAAOOA3OOOPCOO 
5 -691.51 4.49 3.69 OOAAOA3OSOO3AOAOCCOO 
6 -691.41 3.91 3.14 OOAAAAAAAOA3OOOPCOOO 
7 -690.65 4.05 3.38 OOAAAAOASOOOOOAOCPOA
8 -690.46 2.28 1.36 OOAAOAAAAOOA3OOOPCOO 
9 -689.81 3.89 3.09 O3AAAAAAAOOOOAOPOOOS 
10 -689.38 4.13 3.44 OPA3OA3OSOOA3OAOPPOO 

 

Six representative results are shown in Fig. 9.3.1.2. The lowest energy 

conformation of Trp-cage sampled was a structure similar to the αββ motif (Fig. 

9.3.1.2a), with a potential energy of -694 kcal/mol. The αββ motif represents the 

conformation of an α-helix at N-terminus, followed by two β-strands. This structure has 

an apolar hydrophobic interface (side chains of Pro-18, Pro-17, Pro-12, Leu-7, Trp-6, and 
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Tyr-3) on one side and a polar hydrophilic interface (side chains of Gln-5, Lys-8, Asp-9, 

Ser-13, Ser-14, and Arg-16) on the other side. There were myriad local potential energy 

minima between -694 and -636 kcal/mol. Their conformations are diverse but are all well 

ordered, with each having more than 10 H-bonds (data not shown). The heavy atom and 

backbone atom RMSDs from the averaged NMR structure of different conformations 

differ by as much as 9.06 Å and 8.07 Å, respectively, so the different potential energy 

minima represent distinctly different structural types.  

     
       (a) E = - 694.0 kcal/mol                       (b) E = -692.1 kcal/mol                    (c) E = -678.5 kcal/mol 

     
       (d) E = -675.0 kcal/mol                       (e) E = -669.2 kcal/mol                     (f): E = -666.4 kcal/mol 

Figure 9.3.1.2. Representative conformations and potential energies (kcal/mol) of 
potential energy minima sampled in a six-trajectory DIVE simulation of Trp-cage in 
GB/SA implicit solvent, starting from a randomly coiled structure. The conformations are 
shown in ribbon diagram for backbone and stick model for heavy atoms. All hydrogen 
atoms are removed. (a) The sampled lowest potential energy minimum conformation has 
a structure similar to the αββ conformation (backbone RMSD = 3.25 Å, heavy RMSD = 
4.04 Å). (b) A native-like conformation does not have the 310 helical segment (backbone 
RMSD = 1.40 Å, heavy RMSD = 2.09 Å). (c) A conformation has a long 310 helical 
segment at the α-helical position of these NMR structures (backbone RMSD = 4.14 Å, 
heavy RMSD = 5.17 Å). (d) A conformation similar to NMR structures, noticeably 
containing a second α-helix instead of the original 310 –helical section (backbone RMSD 
= 2.80 Å, heavy RMSD = 3.70 Å). (e) A conformation has two correct helices but the 
wrong Trp-cage packing structure (backbone RMSD = 4.97 Å, heavy RMSD = 5.91 Å). 
(f) A conformation has two correct helices but shows extended-like structure (backbone 
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RMSD = 5.78 Å, heavy RMSD = 6.41 Å). These images were generated using PyMOL 
(http://pymol.sourceforge.net/). 
 

Clustering analysis was conducted to evaluate the diverse conformations sampled. 

A total of 325 clusters were identified for the 72,000 structures. The most-populated 

cluster included 2459 structures, corresponding to the experimentally determined native 

structure. The second largest cluster population was a native-like structure, which 

included 2189 structures. Eleven clusters contained 1000 to 2000 structures. An 

additional 187 clusters contained more than 100 structures. The last 125 clusters were 

sparsely populated, with less than 100 structures each. The largest of the pair-wise all 

heavy atom RMSDs between the members of a cluster was approximately 2.5 Å. Each 

minimum energy conformation shown in Fig. 9.3.1.2 belongs to a different cluster. 

Increasing the cluster radius to 4 Å caused the structures shown in Fig. 9.3.1.2b and Fig. 

9.3.1.2d to be sorted into the same cluster. The number of clusters observed was close to 

the number of minimum regions obtained in the simulations. The small size and the large 

number of clusters observed are due to the efficient diverse conformational space 

sampling of the DIVE simulations.  

In the DIVE simulation protocol, a threshold temperature of 2 K corresponds to a 

potential energy minima mapped within approximately 1 - 2 kcal/mol. However, at 

threshold temperatures near 0 K, many cooling steps will be required below 10 K. 

Furthermore, at these low kinetic energies, the conformations will vary little and may 

remain trapped in the same energy wells. Therefore, longer simulation times are required 

to achieve the same number of cooling and heating cycles. In order to maximize the 

efficiency of conformational space sampling in a limited simulation time, a threshold 
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temperature of 10 K is generally used. At this temperature, a good balance is achieved 

between the conformational searches and potential energy minimization. To illustrate 

how accurately the minimum energies are located in our molecular dynamics simulations, 

we extended the minimization processes of these sampled potential energy minima. Table 

9.3.1.3 displays the sampled and minimized potential energies of the six energy minima 

and the closest native structure in the six-trajectory DIVE simulation. Also shown are the 

various energy differences in the Table. 

Table 9.3.1.3. Sampled potential energies and minimized potential energies (in kcal/mol) 
of six energy minima and the closet native structure of Trp-cage in a six-trajectory DIVE 
simulation. Also shown are the energy differences of the sampled potential energies, 
energy differences of the minimized potential energies, and energy offsets of the sampled 
energy differences from the minimized energy differences between the neighboring 
conformations. The first six conformations were sampled between 9 K and 10 K. The 
seventh conformation was sampled at the temperature of 161.2 K. The bold numbers 
indicate the large difference of the potential energies (or energy differences) between the 
molecular dynamics simulation and molecular mechanics minimization.  
 

      Energy 
 
 
Structure 

Potential 
energy 
(kcal/mol) 

Energy 
difference 
(kcal/mol) 

Minimized 
potential 
energy 
(kcal/mol) 

Minimized 
energy 
difference 
(kcal/mol) 

Energy 
difference 
offset 

   Fig. 9.3.1.2a -694.0  -697.8 
    1.9    1.8   0.1 

Fig. 9.3.1.2b -692.1 -696.0 
  13.6 14.3 -0.7 

Fig. 9.3.1.2c -678.5  -681.7 
    3.5    3.4  0.1 

Fig. 9.3.1.2d -675.0  -678.3 
    5.9    6.0 -0.1 

Fig. 9.3.1.2e -669.1  -672.3 
    2.6   1.9  0.7 

Fig. 9.3.1.2f -666.5  -670.4 
135.3  27.3 108 

Fig. 9.3.1.1b -531.2 

 
-643.1 
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Three important conclusions can be drawn from these data. First, the potential 

energies of the energy minima sampled in the simulations are not absolute minima, but 

are energy states at kinetic energies corresponding to 9 K – 10 K. In fact, a difference of 

3 – 4 kcal/mol from the true minima is typically observed for the Trp-cage. In some 

cases, differences as large as 6 – 8 kcal/mol may exist. Second, though the potential 

energies of the minima sampled during molecular dynamics simulations differ by several 

kcal/mol from the true minima, the relative energies between different conformations are 

still accurate to ±1 kcal/mol, which are accurate enough to calculate energy differences. 

Third, the seventh conformation was sampled at the temperature of 161.2 K and its 

potential energy is far above the minimum energy, so the difference is very large (111.9 

kcal/mol). At such high temperatures, the ensemble temperatures can vary by more than 

10 K. As a result, the errors for the relative energies can reach at least several kcal/mol. 

These errors are large enough to mis-identify the global energy minimum or miscalculate 

energy differences. 

 

9.3.2. Folding pathways  

Despite decades of intensive research, the identification of the rate-limiting step, 

transition states and intermediate states in protein folding still remains a major challenge. 

Molecular dynamics simulations are currently better than experimental methods in 

tracking the time evolution of structural changes at high temporal resolutions 1. This 

advantage is also present in DIVE simulations of fast folding proteins. In the following 

analysis, VMD 37 and Moil-view 39 were used to visualize folding and unfolding 
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trajectories. The distances of hydrogen bonds and salt-bridges, etc. were calculated and 

tracked during the simulations. 

Before exploring the folding pathways for Trp-cage, the folded and unfolded 

structures must be identified from the many possible conformations. For these studies, 

folded structures were defined as those with all heavy atoms RMSDs less than 2.5 Å from 

the averaged NMR structure. Since 2.5 Å is near the upper bound of the pair-wise 

RMSDs of the 38 models in the NMR ensemble, this was a reasonable choice. In fact, 

many simulated conformations with all heavy atoms RMSDs between 2.5 Å and 3.0 Å 

exhibit very similar tertiary structures to the NMR structures. Conformations with all 

heavy atom RMSDs between 3.0 Å and 4.0 Å that conserve secondary structure will have 

locally distorted tertiary structure and those that conserve tertiary structure will have 

locally distorted secondary structure. Either of these situations we define as a “locally” 

misfolded structure. For example, a conformational cluster was identified with well 

conserved multiple secondary structures, but the two ends of the main chain (PPII helical 

and α-helical segments) were orientated incorrectly. In this study, unfolded structures are 

defined as those with heavy atoms RMSD greater than 4 Å. Using these criteria, folding 

and unfolding of the native structures were observed more than ten times in our 

simulations. 

A series of stabilizing factors account for the many diverse conformations 

(including the native structures) with low potential energies that are observed for this 

mini-protein. These stabilizing factors include (1) hydrophobic packing among five or six 

member rings of Tyr-3,Trp-6, Pro-12, Pro-17, Pro-18 and Pro-19; (2) π-stacking of the 

aromatic rings of Tyr-3 and Trp-6; (3) steric packing of the Trp-6, Tyr-3, Pro-12, and 
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even the backbone inside the groove of the PPII helix of three consecutive prolines; (4) 

interactions between the side chains of hydrophobic amino acids; (5) hydrogen bonds 

between backbones and side chains of the hydrophilic amino acids; and (6) salt bridges 

between Asn-1, Lys-8, Asp-9, Arg-16, and Ser-20.  

Several major stabilizing factors, such as hydrophobic packing, π-stacking and the 

steric packing among the residues of Tyr-3, Trp-6, Pro-12 and the 3 consecutive prolines, 

play an important role in the initial transitions. Driven by these stabilizing interactions, 

the fully extended structure is quickly collapsed into several coiled or looped structures 

1,12,13. These initial transitions were considered by Chowdhury et al. 1to be the first stage 

of folding, because the structures show some native-like backbone or tertiary topology 

after hydrophobic collapse. However, we consider these quickly relaxed structures to be 

unfolded structures in the natural environments, not a first stage of folding. This 

consideration is consistent with the point that the unfolded states are likely to have some 

residual elements of the native structure 40. Furthermore, the unfolded states in the 

experiments do display some residual hydrophobic cluster formation 7. The possibility of 

these initial transitions involving the early formation of some nonlocal contacts in the 

unfolded structures is not addressed here. 

In DIVE simulations the mini-protein folds and unfolds quickly, because the 

simulations focus on structural transitions between diverse conformations rather than 

equilibrating or trapping in a local region of conformational space. Therefore, a large 

number of diverse folding pathways is observed in a very short simulation time (6 ns for 

each trajectory, 36 ns altogether). The pathways start from various high energy 

conformations (coiled, looped etc.), cross different energy barriers and transition states, 
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and finally reach the native structures. The same stabilizing factors take on different 

significance in the different folding processes. 

No completely non-reversible pathway from the extended structure to the NMR 

structures was observed in the simulations. Therefore, qualitative aspects of the 

molecular mechanism for protein folding, such as the sequence of major events, transition 

states, and the rate-limiting step, were analyzed. The transition states were identified as 

those transient states that appear commonly between the unfolded and folded structures 

and their energies are higher than those of the unfolded, misfolded and folded 

conformations. The rate-limiting step was primarily decided by the simulation time 

required to make a transition. Minor events are more likely to involve reversible folding 

and unfolding of local structures, and thus are either omitted or described imprecisely 

during the exploration of a major folding pathway. Tens of folding and unfolding 

trajectories were enough to sketch clearly the common process, major stabilizing factors 

and pathways for the folding of the Trp-cage motif. 

Two different major folding pathways were observed.  In each pathway, multiple 

secondary structures of the main chain were folded first, followed by the formation of the 

tertiary structure. While the folding of the longer α-helix (rather than the shorter 310-

helix) plays a significant role in the first pathway, the correct packing of the Trp-6 indole 

ring is crucial in the second pathway. Each is the rate-limiting step for its pathway.  
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(a)                                                 (b)                                                      (c)  

     

(d)                                                 (e)                                                   (f) 

Figure 9.3.2.1. Snapshots of the folding structural change for the Trp-cage motif in the 
first mechanism. The conformations are shown in ribbon diagram for backbone and stick 
model for heavy atoms. All hydrogen atoms are removed. (a) An unfolded structure in 
which a large loop exists between Pro-12 and Trp-6. (b) 310-helix and the hydrophobic 
packing between the side chains of Trp-6 and Pro-17 appear. (c) α-helix extends. (d) The 
hydrogen bond between the Nε1Hε1 of Trp-6 and the O of Pro-17 forms. (e) Packing 
among the side chains of Trp-6, Pro-12, and Pro-19 occurs. (f) A native-like folded 
structure. The images were generated by using PyMOL (http://pymol.sourceforge.net/). 
 

In the first pathway, folding starts from an unfolded structure in which a large 

loop exists between Pro-12 and Trp-6. The distance between the side chains of Pro-12 

and Trp-6 is short, and hydrophobic interactions exist (Fig. 9.3.2.1a). A hydrogen bond 

between the NH of Gly-11 and the backbone O of Trp-6 may appear. Hydrophobic 

packing between Pro-12 and Trp-6, along with the hydrogen bond between the NH of 

Gly-11 and the O of Trp-6, plays an important role in the early stages of the relaxed 

transition. The early association of Trp-6 and Pro-12 is well supported by the NMR data 

7. Two helices are initiated from Lys-8 and Ser-13, respectively. The folding appears 
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highly cooperative, involving several stabilizing factors. Nε1Hε1 of Trp-6 and the 

backbone carbonyl oxygen of Tyr-3 can form a hydrogen bond, as can the NH of Gly-11 

and the O of Arg-16. These two extra hydrogen bonds may help to break the large loop 

temporarily and build the helical structures on both sides of the loop. After the breaking 

of the hydrogen bond between the NH of Gly-11 and the O of Arg-16, a 310-helix can be 

formed from Gly-11 to Ser-13 (Fig. 9.3.2.1b). The hydrophobic packing between Trp-6 

and Pro-17 appears as well. The short 310-helix is folded much earlier than the longer α-

helix. However, it is not maintained and experiences conformational changes (folding 

and refolding) with concurrent changes in nearby secondary or tertiary structure. In fact, 

these changes are necessary for the proper folding of the Trp-cage tertiary structure later. 

With the break of the hydrogen bond between NHε1 of Trp-6 and the backbone carbonyl 

oxygen of Tyr-3, the α-helix extends through the established backbone hydrogen bond 

between Lys-8 and Gln-5 (Fig. 9.3.2.1c). The α-helix from Asp-9 to Leu-2 is further 

formed when two ends of the backbone are well separated. In addition, the hydrogen 

bond between the NH of Gly-11 and the O of Trp-6 is reformed. Next, the ends of the 

PPII and α-helices move closer, and a hydrogen bond is formed between the Nε1Hε1 of 

Trp-6 and the O of Pro-17 (Fig. 9.3.2.1d). The indole ring of Trp-6 can temporarily pack 

into the groove of the PPII helix, which is flattened out a little. With the partial unfolding 

and refolding of the 310-helical segment, the packing of side chains between Pro-12 and 

Trp-6 occurs, followed by the packing of the Pro-19 ring (Fig. 9.3.2.1e). The salt bridge 

between Asp-9 and Arg-16 appears stable at this stage. Finally, the cage is closed by the 

packing of the Tyr-3 phenyl ring (Fig. 9.3.2.1f). In this mechanism, the Nε1Hε1 in the 

indole ring of Trp-6 from the calculated structure faces inside, opposite to the orientation 
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of that from the native structure. Thus, the hydrogen bond between the Nε1Hε1 of Trp-6 

and the O of Arg-16 was not found.  

     

(a)                                                        (b)                                                     (c)  

     

(d)                                                        (e)                                                      (f) 

Figure 9.3.2.2. Snapshots of the folding structural change for the Trp cage motif in the 
second mechanism. The conformations are shown in ribbon diagram for backbone and 
stick model for heavy atoms. All hydrogen atoms are removed. (a) A globular coiled 
structure with an empty and ill-defined cage. (b) Two-turn α-helix initiated from the N-
terminus. (c) Well-defined secondary structure forms. (d) Packing between the side 
chains of Pro-12 and Pro-17, and of Trp-6 and Pro-18 occur. (e) Packing between Trp-6, 
Pro-12, and Pro-19 appears. (f) Tertiary structure of Trp-cage. The images were 
generated by using PyMOL (http://pymol.sourceforge.net/). 
 

In the second pathway, folding starts from a loosely globular compact structure 

(Fig. 9.3.2.2a). Other than the stretched PPII-helix, the unfolded structure has no well 

ordered secondary structures. The phenyl ring of Tyr-3 can be buried in the groove of 

three prolines (steric packing) to close a poorly defined cage and a hydrogen bond 

between the O of Pro-17 and the Oε1Hε1 of Tyr-3 can be formed. Alternatively, the phenyl 

ring can be moved outside to open the cage and make hydrophobic interactions with the 
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side chains of the three consecutive prolines. The opening and closing of the cage is 

determined by the movement of the two termini. The indole ring of Trp-6 was outside 

and removed from the five-member ring of Pro-12, which may have hydrophobic 

interactions with the side chain of Leu-7 or with the three prolines. Folding was initiated 

from the N-terminus (Fig. 9.3.2.2b). Beginning with Leu-2, the first contact was made in 

our simulations between Leu-2 and Gln-5, followed by the contact between Gln-5 and 

Lys-8, and completed by Asp-9. The hydrophobic packing between Tyr-3 and the three 

prolines (mostly Pro-18) may aid in the early formation of the α-helix at the N-terminus, 

but the extension of this important secondary structure requires the separation of the two 

termini of the backbone chain. If the separation of the two end of the backbone chain is 

not achieved, the polypeptide maintains the loose, overall compact structure of the empty 

cage. The formation of the C-terminal end of the α-helix is highly cooperative with the 

folding of the second helical structure (the short 310-helix) and the backbone structure 

between Gly-10 and Arg-16 (Fig. 9.3.2.2c). That is, the hydrogen bond of the 310-helical 

backbone and the hydrogen bond between the NH of Gly-11 and the O of Trp-6 are 

formed during this period and the correct backbone topology is almost folded. The 310-

helix and the backbone structure between Gly-10 and Arg-16 are, however, not 

maintained and can be partly unfolded, with the different hydrophobic packing being 

observed among the side chains of Trp-6, Pro-12, and three consecutive prolines. 

Structural rearrangements at other places such as the hydrogen bond between Oε1Hε1 of 

Tyr-3 and O of Pro-17 can also affect the backbone structure between Gly-10 and Arg-

16. In contrast, the α-helix maintains its structure throughout most of the simulations. 

Hydrophobic packing between the side chains of Pro-12 and Trp-6 occurs early in the 
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following simulation. Tyr-3 interacts with the side chain of Trp-6. The packing between 

the aromatic rings of Trp-6 and Tyr-3 can co-exist also. In this situation, the indole ring 

of Trp-6 sits between the side chains of Pro-12 and Tyr-3. Furthermore, the two sides of 

the backbone chain move together. Parallel packing between the side chains of Pro-12 

and Trp-6 temporarily disappears and packing between the side chains of Pro-12 and Pro-

17, as well as the side chains of Pro-18 and Trp-6, occurs following the formation of the 

hydrogen bond between the NH of Gly-11 and the O of Trp-6 (Fig. 9.3.2.2d). The steric 

packing of the Trp-6 indole ring inside of the PPII helix is not significant because the 

groove of the PPII helix faces slightly outside of the cage. When the end of the PPII helix 

turns to the inside, parallel packing of Pro-19 and Trp-6 occurs, and the hydrogen bond 

between the O of Pro-17 and the Nε1Hε1 of Trp-6 forms. The 310-helix further re-forms, 

along with the salt bridge between Asp-9 and Arg-16 (Fig. 9.3.2.2e).  The aromatic ring 

of Tyr-3 can be in the correct position, or can re-pack again to close up the cage if the 

packing between the side chains of Tyr-3 and Trp-6 is lost during the folding trajectory. 

In this mechanism, the indole ring of Trp-6 from the calculated structure has the same 

orientation as that from the native structure (Fig. 9.3.2.2f). The hydrogen bond between 

the Nε1Hε1 of Trp-6 and the O of Arg-16 could appear temporarily, but the O of Pro-17 

dominates over the O of Arg-16 to form the hydrogen bond with the Nε1Hε1 of Trp-6 in 

the folded structures.  

From the very beginning, five locations were observed to nucleate helical 

secondary structures: Leu-2, Lys-8, Ser-13, Gly-15, and Arg-16 (according to their ψ, φ 

torsion angles). From the different trajectories, the helical structure may form at any of 

these nucleation sites first, and any nucleation site can become any helix type, including a 
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310-helix or an α-helix. However, consistent with the native structure, the residues from 

Leu-2 to Asp-9 prefer an α-helix, and the residues from Gly-12 to Ser-14 prefer a 310-

helix. Sometimes the α-helix formation is preceded by formation of a β-turn or a 310-

helix. Throughout the simulations, transitions between 310- and α-helices occur 

frequently. Given the on-going debate on the relative significance of 310- versus α-helices 

1,41,42, this observation is noteworthy, indicating the possibility of their coexistent. A 310-

helix may or may not precede formation of an α-helix depending upon the particular 

nearby environment and folding pathways. During the simulations, a half- or even a one-

turn helix folds rather easily, but can unfold quickly. A two-turn helical structure, 

however, is very stable, once folded. In particular, the folding of the two-turn helix from 

Leu-2 to Asp-9 is highly cooperative. This helix segment may be the most stable local 

structure for the mini-protein observed in our simulations. The transition between 

different helical types still occurs, but complete unfolding occurs less often than that of 

any other local structure except for the rigid PPII-helix.  

The formation of the correct protein tertiary topology begins with the well-

defined backbone topology, including at a minimum the stretched PPII helical and long 

α-helical secondary structures. The secondary structure from Gly-10 to Arg-16 is slightly 

flexible, and can be folded earlier or later than the globular packing of the Trp-6 indole 

ring, as described above. In the tertiary structure folding, the hydrophobic packing of the 

side chains of Tyr-3, Trp-6, Pro-12 and the three consecutive prolines plays a very 

important role in stabilizing diverse, low energy conformations. This is similar to the 

relaxation of the fully extended chain, but slightly different from the formation of the 

well-defined backbone topology from the unfolded, collapsed structures. Interestingly, 
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the different packing or contacts between these hydrophobic residues build several 

conformational clusters of low potential energies, with all heavy atom RMSDs between ~ 

2.5 Å and ~ 4 Å when compared to the native structure. On the other hand, for the folding 

process of the current Trp-cage motif, particular side chain packing or contacts between 

the Trp-6 and other hydrophobic residues, in a specific sequence, are required. The 

hydrogen bond between the O of Pro-17 and the Nε1Hε1 of Trp-6, not the hydrogen bond 

between the O of Arg-16 and the Nε1Hε1 of Trp-6 play the crucial role in the formation of 

the experimentally demonstrated native structures. 

The different folding pathways proceed in different directions along the 

polypeptide chain show different timing of hydrophobic side chain packing and have 

different overall rate limiting steps. In the first pathway, the local secondary structure and 

even the tertiary structure of the residues between Gly-10 and Arg-16 forms first, 

followed by the folding of the globular Trp-cage. The hydrophobic packing initiates from 

the bottom of the cage (the backbone topology between the Gly-10 and Arg-16 in Fig. 

9.3.2.1.d). Because the steric packing of the Trp-6 indole ring into the groove of the PPII-

helix is highly cooperative with the folding of the flexible segment between Gly-10 and 

Arg-16 and occurs rapidly, the folding of globular Trp-cage is fast and the formation of a 

long helix may be the rate-limiting step. The side chain conformations of the N-terminal 

residues, in this situation, show a little more flexibility. Many folded structures within 1.5 

Å backbone RMSD have all heavy atom RMSDs between 2 Å and 2.5 Å. A misfolded 

conformational cluster with heavy atom RMSDs between 3 Å and 4 Å has a nearly 

complete native-like backbone topology, but the ends of the long α-helix and the PPII 

helix are nearly vertical in Fig. 9.3.2.3a. This stable conformation is held together by a 
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hydrogen bond between the O of Pro-17 and the Nε1Hε1 of Trp-6, tight steric packing of 

Trp-6 indole ring into the groove of the PPII-helix and hydrophobic packing of the side 

chains of Tyr-3 and Pro-12.  

     

(a) E = - 686.4 kcal/mol                             (b) E= - 687.2 kcal/mol                   (c) E = - 681.8 kcal/mol 

Figure 9.3.2.3. Three locally misfolded conformations and their minimum potential 
energies (kcal/mol). The conformations are shown in ribbon diagram for backbone and 
stick model for heavy atoms. All hydrogen atoms are removed. (a) A misfolded 
conformaiton with a nearly complete native-like backbone topology but the α-helix and 
the PPII helix are nearly vertical. (b) A misfolded conformation with a well-defined cage, 
but leaving the indole ring of Trp-6 outside. (c) A misfolded conformation with similar 
multiple secondary structures to the native structure but has two opposite hydrophilic and 
hydrophobic surfaces, respectively. The images were generated by using PyMOL 
(http://pymol.sourceforge.net/). 
 

In the second pathway, the globular Trp cage forms first, followed by formation 

of the local secondary and tertiary structures between Gly-10 and Arg-16. In this case, the 

hydrophobic packing initiates from the door of the cage (two ends of the backbone in Fig. 

9.3.2.2d). Therefore, the correct hydrophobic core packing of the indole ring of Trp-6 

sandwiched between Pro-12 and other three proline residues appears difficult. In fact, 

several interesting misfolded conformational clusters were identified with incorrect 

packing of these side chains. For example, the aromatic ring of Tyr-3 can pack into the 

groove of PPII helix before Trp-6, with the formation of the hydrogen bond between the 

O of Pro-17 and the OH of Tyr-3. A well-defined cage is thus folded, but empty. The 

indole ring of Trp-6 remains outside (Fig. 9.3.2.3b). This conformational cluster has a 
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very low backbone RMSD from the native structure (RMSD = ~1.2 Å) but the all heavy 

atom RMSD is about 2.8 Å. Another interesting conformational cluster, including the 

lowest global potential energy structure, is the hydrophobic-coiled structure (Fig. 

9.3.2.3c). The cluster has similar multiple secondary structures to the native structure but 

has two opposite hydrophilic and hydrophobic surfaces, respectively. The hydrophobic 

surface arises from the hydrophobic interactions of the side chains of Pro-18, Pro-17, 

Pro-12, Leu-7, Trp-6, and Tyr-3. The hydrophilic surface includes the side chains of Gln-

5, Lys-8, Asp-9, Ser-13, Ser-14, and Arg-16. The unfolding of these stable conformations 

involves moving the termini (the PPII-helix and α-helix) apart. During the overall folding 

pathway from the unfolded, collapsed structures to the Trp-cage motif, the correct 

packing of the Trp-6 indole ring is the rate-limited step. In fact, the correct packing of the 

Trp-6 indole ring to form the native tertiary structure was slower than the formation of 

the two-turn α-helix. Both mechanisms show residues between Gly-10 and Arg-16 to be 

flexible, a well-known observation in the literature 1,2,11,16,17.  

Experiments imply that the Trp-cage folds with two-state kinetics 7,10. That is, 

there is no stable intermediate between the unfolded and folded conformations. From 

these simulations, it is very difficult to evaluate this two-state folding kinetic model. On 

one hand, some stable misfolded conformations remain throughout the majority of 

folding and unfolding trajectories, which could be considered intermediate states. On the 

other hand, none of these stable structures are observed during all the diverse 

conformational transitions. Further, these misfolded conformations are usually sampled 

during the cooling cycle, and their low potential energies mean they are stable at low 

temperatures. However, these stable misfolded structures cannot directly convert into the 
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native structure or vice versa. A common structural cluster at high temperatures always 

appears (similar to Fig. 9.3.2.1c and Fig. 9.3.2.2c). This structure has the well-defined α-

helical secondary structure in which the end is moving away from the end of the PPII 

helix, and no hydrophobic packing is observed from the side chains between two terminal 

residues (especially between the side chains of Tyr-3 and three consecutive prolines). 

That is, tertiary contacts always exist between the two ends in the misfolded structures 

with the wrong packing or packing of the Trp-6 indole ring outside the cage. In order for 

these structures to transition to the Trp-cage motif, the ends of the chain need to break 

these tertiary contacts and separate, open the cage, and re-encapsulate the Trp-6 side 

chain into the sheath of Pro rings, until the correct packing of the Trp-cage side chain is 

obtained. Both folding pathways share this structural characterization.  Therefore, 

members of this structural cluster are likely to be transition states for both folding 

pathways for the Trp-cage motif proposed here. However, the transition states of these 

two different folding pathways show some differences in the packing of Trp-6 and the 

three consecutive prolines. In the first mechanism, the indole ring of Trp-6 can pack into 

the groove of PPII-helix (Fig. 9.3.2.1d), while in the second mechanism the indole ring of 

Trp-6 directly packs with the five-member ring of Pro-18 (Fig. 9.3.2.2d).  

Neidigh et al. 7 reported the partial mechanism for the Trp cage folding in the case 

of a 39-residue exendin-4 peptide EX4. In that case, the Trp cage formation corresponded 

to the docking of the three consecutive prolines near the C-terminus onto an exposed Trp 

indole ring of a preformed helix 7. This agrees with the first folding mechanism described 

above. We believe that the folding of the truncated 20-residue mini-protein into a Trp 

cage in their experiments also adopts this mechanism. Though direct experimental data 

 248



were not observed, two pieces of evidence point in this direction. First, the early 

association of Trp-6 and Pro-12 is well supported by the NMR data. Second, the correct 

hydrophobic core packing is obtained much more easily in this mechanism than the 

second mechanism. In fact, in the first mechanism, the formation of the longer helix 

seems highly cooperative with the correct packing of the Trp-6 aromatic ring into the 

domain of the three prolines. This cooperative and super fast folding of tertiary structure 

along with secondary structure may block the experimental observation of the preformed 

helix in the 20-residue Trp-cage, which we consider as the benchmark transition state in 

the first folding mechanism for formation of the Trp-cage motif.  

Finally, a comparison of folding mechanisms in our simulations to those in 

simulations reported by Nikiforovich et al. 16,17 is warranted.  They suggested a possible 

locally driven folding pathway in which the formation of the backbone starts from an α-

helical fragment 4-9, extends to fragment 4-12, and ends with the nearly complete 

segment 4 – 18. The folding of the globular tertiary structure is driven by key stabilizing, 

sequential interactions of Trp-6 and Pro-12, then Trp-6 and Pro-18, and finally Trp-6 and 

Tyr-3. This folding pathway is very similar to the first folding mechanism. However, the 

folding in our simulations started from the large loop between Trp-6 and Pro-12 rather 

than the α-helical fragment. Moreover, the folding of the secondary and tertiary topology 

in the first mechanism is highly cooperative, which cannot be observed in their 

simulations using stepwise elongation of the peptide chain. In the replica exchange 

simulations of Trp-cage with explicit water starting from a NMR structure,  Zhou 11 

suggests a folding mechanism which includes an intermediate state, as opposed to the 

two-state folding properties of this mini-protein. However, the intermediate states with 
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two partially prepacked hydrophobic cores are likely to be the unfolding states in our first 

mechanism. As stated previously, we consider them unfolded states, not intermediate 

states, because they are part of the hydrophobic collapsed structures at room temperature. 

Furthermore, the highest temperature in Zhou’s simulation was approximately 600 K, 

100 K higher than our simulations. At such high temperatures, the unfolded structures are 

more extended. Zhou did not give any folding kinetics to describe exactly how the 

unfolded structures of two partially prepacked hydrophobic cores fold into the final 

native structure. Recently, Chowdhury and coworkers 1 proposed a possible folding 

pathway in which the folding was initialized from the N-terminal residues to form the α-

helix and the correct packing of the Trp-6 indole ring, rather than the secondary structure 

formation, was considered as the rate-limiting step 1,2. This folding mechanism is very 

similar to the second mechanism in our simulations, but the rate-limiting step is 

determined differently. In their simulations, it was determined by the different 

equilibrium times of the conformations before and after the transition in a single 

conventional NVT trajectory 1. The rate-limiting step was determined in our simulations 

by the simulation time required for the transition. In fact, the long transition time of the 

rate-limiting step indicated the possibility of diverse misfolded conformations with the 

incorrect packing of the Trp-6 side chain when the transition states folded into the native 

structures. The possibility of the misfolded vs. folded conformations apparently indicate 

the important role of the conformational entropy loss during correct folding (because of 

restrictions placed on both the backbone and side chains in the native structure 8).  

Though different force fields and computational protocols were used, the 

molecular mechanisms of protein folding from different research groups essentially 
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agree, especially in the key mechanism. Due to the complexity of the energy landscape 

however, different folding processes are likely to be observed. The wide sampling of 

conformational space in our DIVE simulations ensures a diversity of potential folding 

pathways being sampled, even in short aggregate simulation times. In our simulations, 

many different folding and unfolding trajectories between diverse unfolded 

conformations and the experimentally demonstrated native structures provide a good 

basis for analyzing protein folding mechanisms. In fact, the simulations not only 

reproduce the conformations and folding pathways explored by the experiments and other 

computational simulations in more detail, but also suggest additional features, consistent 

with experiments, that are not evident in the published simulations. These new features 

include the possible transition state and some misfolded structures. 

 

9.4. Conclusions 

The newly developed disrupted velocity (DIVE) search simulations in implicit 

solvent have been conducted to study the folded conformations and folding mechanisms 

of a 20-reside mini-protein Trp-cage. The simulations in this study used the AMBER99 

force field along with the generalized Born/solvent-accessible surface area implicit 

solvent model. Starting from a fully extended conformation, the simulations produced 

many structures within 2.5 Å all heavy atom RMSD of the NMR structure in a very short 

simulation time (6 ns). Among these, the structure closest to the native NMR structure 

has a 1.6 Å all heavy atom RMSD and 0.9 Å all backbone atom RMSD. Besides these 

native-like structures, our simulations also explored many other well-ordered potential 

energy minima, including the lowest minimum energy conformation, which has an all 
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heavy atom RMSD of 4.0 Å compared to the native structure. This conformation has a 

well-conserved α-helical segment similar to the native structure. However, the side 

chains of hydrophobic residues coil together to form an apolar hydrophobic interface on 

one side, whereas the side chains of the hydrophilic residues gathered to form a polar 

hydrophilic interface on the other side. The lowest potential energy sampled for this 

conformation may be an artifact of the force field, and this conformation possibly 

corresponds to a misfolded structure, arising from incorrect packing of the Trp-6 indole 

ring. The potential energies of myriad local minima range from -694 kcal/mol and -600 

kcal/mol and the energy gap between any two neighboring minima is small (less than 2 

kcal/mol, with a few exceptions for the minima of highest potential energies), indicating 

a very rugged multi-dimensional potential energy surface. Indeed, the potential energy 

surface exhibits no single deep well.  

In addition to the search of diverse conformations, two major folding pathways 

for this mini-protein were also characterized. The first folding pathway begins with a 

large loop between Pro-12 and Trp-6. The hydrophobic contact between the side chains 

of these two residues is formed early. Two helical segments nucleate at either side of this 

large loop and the formation of 310-helix precedes the formation of the entire α-helical 

segment. The folding of the globular Trp-cage motif starts with the local tertiary structure 

of the residues from Gly-10 to Arg-16. The key Trp-cage-stabilizing contacts emerge 

from early association between Trp-6 and Pro-12, then Trp-6 and three prolines, and then 

Trp-6 and Tyr-3. The formation of the stable long α-helix is the rate-limiting step based 

on the simulation time required for the transition. The second folding pathway starts at 

the N-terminus with the formation of the α-helical segment when two ends of the 
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backbone chain move apart. The entire α-helical segment is folded first, then the 310-

helix, and then the overall Trp cage forms, followed by fine tuning of the tertiary fold of 

the residues between Gly-10 and Arg-16. The key Trp-cage stabilizing contacts emerge 

from the early association between Pro-12 and three prolines, then Trp-6 and Pro-12, 

Trp-6 and Try-3, and Trp-6 and three prolines. The correct Trp-cage packing is the rate-

limiting step for this second pathway, based on the simulation time required for the 

transition. The salt bridge between Asp-9 and Arg-16 is formed at a later stage. Both 

folding pathways may have similar transition states in which the entire α-helical segment 

is folded, but the two ends of the backbone chain involving the PPII-helix and the α-helix 

are separated, allowing the cage to open. Nevertheless, the transition states in different 

folding pathways show some differences, in that in the first folding pathway, the indole 

ring of Trp-6 can packs into the groove of PPII-helix, while in the second folding 

pathway, the indole ring of Trp-6 directly packs with the five-member ring of three 

consecutive prolines, especially Pro-18. 
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