
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EQUIVARIANT PIECEWISE-LINEAR TOPOLOGY

AND COMBINATORIAL APPLICATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

JAMES ROBERT DOVER
Norman, Oklahoma

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215246224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


EQUIVARIANT PIECEWISE-LINEAR TOPOLOGY
AND COMBINATORIAL APPLICATIONS

A DISSERTATION APPROVED FOR THE
DEPARTMENT OF MATHEMATICS

BY
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Abstract

For G a finite group, we develop some theory of G–equivariant piecewise-linear

topology and prove characterization theorems for G–equivariant regular neigh-

borhoods. We use these results to prove a conjecture of Csorba that the Lovász

complex Hom(C5, Kn) of graph multimorphisms from the 5–cycle C5 to the com-

plete graph Kn is equivariantly homeomorphic to the Stiefel manifold, Vn−1,2, the

space of (ordered) orthonormal 2–frames in Rn−1, with respect to an action of

the cyclic group of order 2.
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Chapter 1

Introduction

1.1 Piecewise-Linear Topology

The primary objects in piecewise-linear (PL) topology are polyhedra. These

are topological spaces that admit triangulations; that is, a polyhedron is home-

omorphic to some simplicial complex. The morphisms between polyhedra are

piecewise-linear functions, functions that, after some subdivisions, send simplices

to simplices.

The PL-manifolds comprise an important subset of polyhedra. These are

polyhedra whose triangulations satisfy the condition that the link of any vertex

is a PL-sphere of the correct dimension. PL-manifolds provide a stepping stone

between topological manifolds and smooth manifolds. Any smooth (differen-

tiable) manifold admits a unique piecewise-linear structure [W40]; that is, there

exists a triangulation of the manifold satisfying the above link condition, and

any two triangulations share a common subdivision. On the other hand, there

exist topological manifolds for which no triangulation satisfies the link condition

[KS77] (so they are polyhedra but not PL-manifolds), and there exist topological
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manifolds which admit no triangulations [Fr82].

When G is a finite group, a smooth manifold M is called a G–manifold if

the group elements act on M by differentiable maps (see [tD87], [Ka91]). We

will develop a concept of a G–manifold in the category of PL-manifolds. Just

requiring the group elements to act by PL-homeomorphisms is not sufficient to

produce the desired analogous piecewise-linear results. For example, a smooth

action of G on a differentiable manifold M restricts to a linearizable action of the

stabilizer Gx on the link of a point x ∈ M . This means, for instance, that the

Gx–fixed point set in the link cannot be a single point. However, this can happen

in the case of a piecewise-linear action [O75].

1.1.1 Regular Neighborhoods

Let M be a smooth manifold with M1 a submanifold. A neighborhood N of M1

diffeomorphic to the normal bundle of M1 in M is called a tubular neighborhood.

Tubular neighborhoods always exist and are unique up to isotopy [La02].

The analog of a tubular neighborhood in the piecewise-linear category is

a regular neighborhood. In a triangulated polyhedron (not necessarily a PL–

manifold), a regular neighborhood of a subcomplex is constructed by taking a

simplicial neighborhood in an appropriate subdivision. Like their smooth coun-

terparts, regular neighborhoods always exist and are unique up to isotopy [RS82].

In the unique PL-structure on a smooth manifold, the regular neighborhood of a

submanifold is a tubular neighborhood.

The main goal of our discussion of equivariant piecewise-linear topology is

to develop the theory of G–regular neighborhoods. As we will show, G–regular

neighborhoods always exist in a G–polyhedron, and they are unique up to G–
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homeomorphism. We prove two important characterization theorems for G–

regular neighborhoods in the interiors of G–manifolds: 3.20, the Simplicial G–

Neighborhood Theorem, which identifies them with certain simplicial neighbor-

hoods, and 3.30, the G–Collapsing Criterion, which recognizes them by equivari-

ant collapses.

1.2 Lovász Complexes

A (simple) graph Γ is a collection of edges (two element subsets) on a set of ver-

tices VΓ, a purely combinatorial object. A morphism from a graph Γ to another

graph Λ is a map from VΓ to VΛ that sends every edge of Γ to an edge of Λ.

We consider Hom(Γ,Λ), the Lovász multimorphism complex, a bifunctor (con-

travariant in the first variable and covariant in the second) assigning a regular cell

complex to the pair of graphs Γ and Λ [BK06]. A cell of this complex is a graph

multimorphism φ, an assignment to each vertex v of Γ a nonempty set φ(v) of

vertices of Λ such that choosing a single vertex from each φ(v) defines a graph

morphism. Thus, the 0–cells of Hom(Γ,Λ) are themselves graph morphisms.

Symmetries on the graphs Γ and Λ induce symmetries on the cell complex

Hom(Γ,Λ). A simple example is the complex Hom(K2, Kn) where Kn is the

complete graph on n vertices. This multimorphism complex is homeomorphic to

an (n− 2)–dimensional sphere. The edge K2 has the involution of interchanging

its two vertices, and this induces the antipodal action on the sphere Hom(K2, Kn).

1.2.1 Applications

In his proof of the Kneser conjecture [Lo78], Lovász gave a lower bound for

the chromatic number of a graph using what was essentially the edge com-
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plex functor Hom(K2,−). Because this is a covariant functor with respect to

graph morphisms, an n–coloring of a graph Λ induces a map from Hom(K2,Λ) to

Hom(K2, Kn), which is equivariant with respect to the involutions coming from

the reflection of K2. Since the involution on Hom(K2,Λ) does not fix any points,

if Hom(K2,Λ) is m–connected, there exists an equivariant map from Sm+1 (with

the antipodal action) to Hom(K2,Λ). Hence, by utilizing the Borsuk-Ulam the-

orem, Lovász showed that if the edge complex of Λ is m–connected, the graph Λ

is not (m+ 2)–colorable.

Having seen that the connectivity m of the edge complex of a graph provides

a lower bound of m + 3 for its chromatic number, Lovász conjectured that the

connectivity of the odd cycle complex Hom(C2r+1,Λ) would also give a lower

bound; specifically, if Hom(C2r+1,Λ) is m–connected, then Λ is not (m + 3)–

colorable. This conjecture was first proven by Babson and Kozlov in [BK07],

who showed that there is no equivariant map from Sk+1 to Hom(C2r+1, Kk+3)

with respect to the (fixed-point free) involution induced by any reflection on the

odd cycle C2r+1. Their proof then follows from the same logic as Lovász’s.

In [S09-1] and [S09-2], C. Schultz reduced the Lovász conjecture to a com-

putation involving the equivariant (with respect to the involution induced by a

reflection on the cycle) cohomology of Hom(C2r+1, Kn) (Another proof was then

given by Kozlov in [Ko06-1]). Viewed in this light, the bound on the chromatic

number of Λ given by the cycle complex does not end up being any better than

that given by its edge complex [S09-2]. However, this calculation only makes

use of the symmetry on the cycle complex coming from a single reflection. The

cycle C2r+1 has, of course, an action of the dihedral group D2r+1. Thus, studying

the D2r+1–equivariant cohomology of Hom(C2r+1, Kn) provides hope for better

lower bounds. The nonequivariant cohomology of the complexes Hom(Cm, Kn)
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has been computed [Ko08], but not the equivariant.

Multimorphism complexes have found use in other areas besides chromatic

numbers or even graph theory. Interestingly, well before Hom(Γ,Λ) was defined,

the underlying spaces in the family of complexes Hom(Km, Kn) figured promi-

nently in two unrelated applications of equivariant algebraic topology: in Alon’s

elegant Necklace Splitting Theorem (with m prime) [A87] and the proof of the

prime power case [Ö87] of the Bárány-Shlossman-Szücs conjecture [BSS81].

Alon’s theorem addressed the purely combinatorial question of equitably dis-

tributing the jewels from a necklace: Suppose m thieves steal an unclasped neck-

lace made up of a sequence of k different types of jewels. There are mai identical

jewels of type i for 1 ≤ i ≤ k. The thieves want to split the necklace so that

each type of jewel is distributed evenly amongst them. What is the least number

of cuts required to accomplish this for all possible arrangements of the jewels?

Simply grouping the jewels of the same type together produces a necklace that

requires k(m−1) cuts for an equitable splitting. Alon’s theorem is that k(m−1)

cuts are sufficient for any necklace.

Alon constructs a topological space, which turns out to be the complex

Hom(Km, Kn), with n = k(m−1)+1, whose points correspond to necklace split-

tings using k(m − 1) cuts where each thief receives an equal length of necklace.

The m thieves are represented by the vertices of the graph Km, and the pieces

of a split necklace are represented by the vertices in the target graph Kk(m−1)+1.

For a multimorphism φ in this complex, the set φ(t) represents the collection of

necklace-pieces given to thief t in a particular splitting. Coordinates in the cell

indexed by φ describe the sizes of all the pieces. From this space Hom(Km, Kn),

we define a map to the space Rm(k−1) giving the distribution of the first k − 1

types of jewels among the m thieves. This map is equivariant with respect to
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cyclic permutation of the thieves. Furthermore, if we assume that there is no

equitable splitting, the image of the map falls in the complement of the diagonal

Rk−1 in Rm(k−1). Alon shows that no such equivariant map exists in the case that

m is prime. Thus, when there is a prime number of thieves, there must be an

equitable splitting with the correct number of cuts. The general case reduces to

the prime case by an elementary argument.

The Bárány-Shlossman-Szücs conjecture states that, given any continuous

map f from an n = (k − 1)(d + 1)–dimensional simplex to the Euclidean space

Rd, we can find k disjoint faces of the simplex whose images intersect. Assuming

to the contrary that there is an f for which k such faces cannot be found, Özaydın

in [Ö87] constructs a map from Hom(Kk, Kn+1) to the sphere Sd(k−1)−1 which is

equivariant with respect to an action of the permutation group Σk. He then

shows that such a map cannot exist if k is a prime power. In this application,

the complex Hom(Kk, Kn+1) represents the space of k–tuples of disjoint faces of

the simplex ∆n.

1.2.2 Csorba Conjecture

For n ≥ 3, the Lovász complex Hom(C5, Kn) is the only manifold among the

family of cycle complexes Hom(Cm, Kn) [CL06]. In fact, Hom(C5, Kn) provides

a combinatorial model for the geometrically defined Stiefel manifold Vn−1,2, the

space of (ordered) orthonormal 2–frames in the Euclidean space Rn−1 [J77]. Both

spaces admit obvious involutions: Hom(C5, Kn) inherits any reflection of the

pentagon C5 (any two of which are equivalent), while any reflection of the plane

R2 (any two of which are also equivalent via rotation) induces an involution on

Vn−1,2.
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In his thesis [C05], Csorba proved that Hom(C5, Kn) and Vn−1,2 were equiv-

ariantly homeomorphic with respect to these involutions for small n and proved

that they were homotopy equivalent for every n. He conjectured that they were

equivariantly homeomorphic for all n. In [S08], Schultz proved the nonequivari-

ant version of Csorba’s conjecture as well as that Hom(C5, Kn) is equivariantly

homotopy equivalent to Vn−1,2 for all n.

Schultz’s proof made use of the fact that Vn−1,2 is the boundary of a regular

neighborhood {(x, y) ∈ Sn−2 × Sn−2 |x · y ≥ 0} of the diagonal in the manifold

Sn−2 × Sn−2. By passing to a smaller cell complex using restrictions of multi-

morphisms, he was able to realize Hom(C5, Kn) as the boundary of a regular

neighborhood of the diagonal in some triangulation of Sn−2 × Sn−2. The result

followed by the PL-homeomorphic equivalence of regular neighborhoods.

Our equivariant generalizations of regular neighborhood results in piecewise-

linear topology provide us with the tools to prove the equivariant Csorba con-

jecture. In Schultz’s model, the regular neighborhood in question is not an

equivariant regular neighborhood. To rectify this, we use a different model for

Hom(C5, Kn) as well as a different (but equivalent) involution on Vn−1,2.
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Chapter 2

Preliminaries

2.1 G–actions

Let G be a group and X a set. Let ψ be a map G × X → X. We denote

ψ(g, x) ∈ X as gx. We say that ψ is a (left) G–action on X if (i) 1x = x for

all x ∈ X and (ii) (g1g2)x = g1(g2x) for all g1, g2 ∈ G and x ∈ X. If X is a set

with a G–action, we say X is a G–set. The (G–)orbit of a point x ∈ X is the

G–subset Gx := {gx | g ∈ G}. Similarly, we may refer to the G–orbit GU of a

set U ⊆ X: GU := ψ(G× U) = {gu | g ∈ G, u ∈ U}.

For an element x in a G–set X, its stabilizer is the subgroup Gx := {g ∈

G | gx = x}. The stabilizer of a subset U ⊆ X is the subgroup of group elements

that fix U setwise: GU := {g ∈ G | gU = U}.

A G–map from a G–set X to a G–set Y is a map f : X → Y such that for

any g ∈ G and x ∈ X, f(gx) = gf(x). We say that such a map f is equivariant

with respect to G. To denote a G–map, we may write f : X →G Y .

For G a topological group, a G–space is a topological space X with a G–

action such that the map G×X → X given by (g, x) 7→ gx is continuous. In the
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case that G is a discrete group, this simply means that X is a G–set with each

map x 7→ gx continuous. In fact, they must be homeomorphisms since each g is

invertible with g−1 also continuous. A G–map between G–spaces is the same as

for G–sets with the additional condition of continuity.

2.2 Simplicial and Cellular G–Complexes

An (abstract) simplicial complex K on a vertex set V is a collection of finite

subsets of V such that if σ ⊆ τ ∈ K, then σ ∈ K. A set σ ∈ K is called a

simplex; the non-empty simplices of K are also called the faces of K. The

faces of K form a poset under inclusion, called the face poset F (K). A simplicial

subcomplex L of K (denoted L ≤ K) is a subcollection of simplices of K which

is itself a simplicial complex.

The dimension of a simplex σ in K, dimσ is defined to be one less than

the cardinality of σ. The n–skeleton Kn of the simplicial complex K is the

subcomplex made up of all simplices of K with dimension at most n. However,

we will abuse the notation and use K0 to also mean
⋃
{σ |σ ∈ K}; that is, it

will mean the set of vertices of V that are actually contained in simplices of K.

We denote by ∆n the simplicial complex consisting of a single n–simplex

and all of its faces. The subcomplex ∂∆n consists of only its lower dimensional

simplices. Further, ∆n−1 can be regarded as a subcomplex of ∂∆n.

We now define some important types of subcomplexes. For σ ∈ K, the link

of σ in K is the subcomplex lnkK(σ) := {τ ∈ K | τ ∩ σ = ∅, τ ∪ σ ∈ K}, and

the star of σ in K is stK(σ) := {τ ∈ K | τ ∪ σ ∈ K}. For a subcomplex L ≤ K,

its simplicial neighborhood in K is NK(L) := {σ ∈ K | ∃ τ ∈ K s.t. σ ≤

τ and τ ∩ L0 6= ∅}. Also, define ṄK(L) := {σ ∈ NK(L) |σ ∩ L0 = ∅}, a combi-
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natorial approximation of the boundary of NK(L).

A map f : K0 → L0 is a simplicial map if for any σ ∈ K, f(σ) ∈ L. For

such a simplicial map f , the image of f , f(K) is a subcomplex of L.

A subcomplex L of K is called full if for any σ ∈ K with σ ⊆ L0, then σ ∈ L.

A full subcomplex is completely determined by its 0–skeleton.

A frequent construction is the join of two simplicial complexes: If K and L

are simplicial complexes, we define K ∗L to be the simplicial complex consisting

of all simplices σ ∪ τ where σ ∈ K and τ ∈ L. The join of K with a single

0–simplex, ∆0, is called a cone on K (often abbreviated as K ∗ v). The join of

K with ∂∆1 (i.e., S0) is the suspension of K.

The geometric realization of K is the topological space

|K| := {
∑
v∈σ

tvδv ∈ RV |
∑
v∈σ

tv = 1, tv > 0, σ ∈ K \ {∅}}

where δv is the standard basis vector of RV corresponding to v ∈ V . In practice,

we write v for δv in these affine combinations. The underlying topological space

of a face σ of K is homeomorphic to a disk of dimension dimσ and is the subspace

of |K| given by

|σ| := {
∑
v∈σ

tvδv ∈ RV |
∑
v∈σ

tv = 1, tv ≥ 0}.

Note that we are using vertical bars to denote both the cardinality of a finite set

and the geometric realization of a simplex or a simplicial complex; which one is

meant should be clear from the context.

For an n–simplex σ = {v0, . . . , vn} ∈ K, denote its barycenter in |σ| by

σ̄ = 1
n+1

v0 + . . .+ 1
n+1

vn.

10



A regular cell structure on a (compact Hausdorff) topological space X is a

(finite) collection {c} of subspaces (called cells or faces), each homeomorphic to

a (closed) disk of dimension d for some d, such that (1) X is the disjoint union of

the relative interiors of its cells (called the open cells and denoted by int c), and

(2) the boundary of each cell is a union of (lower dimensional) cells. A topological

space X together with a regular cell structure is a regular cell complex. For

any simplicial complex K, the collection {|σ|}σ∈K\{∅} gives a regular cell structure

on |K|. If X is a regular cell complex, a simplicial complex K is a simplicial

subdivision of X if |K| is homeomorphic to X with the image of each simplex

|σ| lying entirely within a cell c of X. We may also say a simplicial complex

L subdivides another simplicial complex K if L is a simplicial subdivision of

the regular cell complex |K|, in which case there is understood to be a specific

homeomorphism between |L| and |K| in mind, so we regard |L| as equal to |K|.

For any poset P , its order complex ∆P is the simplicial complex whose

simplices are chains a0 < a1 < . . . < ad, with ai ∈ P . The faces of a regular

cell complex under inclusion form a poset whose order complex is its barycentric

subdivision ([BLSWZ99] p200, [LW69] Ch 3 §1). Thus, the space X is determined

up to homeomorphism by the face poset of its regular cell structure. For this

reason, we will often identify a regular cell complex with its face poset. In the

case of a simplicial complex K, K is itself a poset, K = F (K) ∪ {∅}, and while

∆F (K) is a simplicial complex isomorphic to the barycentric subdivision of K,

∆K is the cone on ∆F (K) with a vertex corresponding to the empty simplex.

Let G be a finite group. Suppose X is a G–space with a regular cell structure

such that the G–action permutes the cells. Recall that the stabilizer of a cell c is

the subgroup Gc consisting of group elements fixing c setwise. The G–space X is

called a regular cellular G–complex if every closed cell c is Gc–homeomorphic

11



to a cone on ∂c with the apex of the cone stabilized by Gc. As an example,

we also define a simplicial G–complex as a simplicial complex K equipped

with a permutation action of G on its vertex set V so that the induced action

on the subsets of V sends simplices to simplices. Then G acts on the geometric

realization |K| by linearly extending the action on basis elements gδv 7→ δgv,

which makes |K| into a regular cellularG–complex since the stabilizer of a simplex

|σ| always fixes its barycenter. If the stabilizer of each cell (or simplex) fixes the

cell pointwise, the G–complex is called admissible. For example, if G acts on

a poset P (preserving the partial order), then ∆P is an admissible simplicial

G–complex since the only way to fix a chain setwise while preserving the order is

to fix each element in the chain.

Just as in the nonequivariant case ([BLSWZ99] p200, [LW69] Ch 3 §1), the

face poset of a regular cellular G–complex determines its G–homeomorphism

type:

Lemma 2.1. If X is a regular cellular G-complex with face poset F, then X is

G–homeomorphic to |∆F |.

Proof. The proof is by induction on the number of cells in X. There is nothing to

prove if X consists of a single orbit of 0–cells. Now, choose a maximal cell c and

define Y := X \
⋃
g∈G int gc with the induced G–cell structure. By the induction

hypothesis, Y is G–homeomorphic to |∆(F \Gc)|. Also, ∂c is Gc–homeomorphic

to |∆F<c|. Then we take the cone of ∂c, as in the definition of a regular cellular

G–complex, with its apex being a point x ∈ int c fixed by Gc. Extending this

coning equivariantly to G∂c gives the homeomorphism from |∆F | to X.
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2.3 The Equivariant Piecewise-Linear Category

Let K and L be simplicial complexes. A continuous function f : |K| → |L| is

called piecewise-linear (PL) if there exist subdivisions K ′ and L′ of K and L

respectively such that, for any simplex σ of K ′, f maps |σ| onto a simplex |τ | of

|L′|, and f restricted to |σ| is a linear function. In other words, f is induced by

a simplicial map from K ′ to L′. Hence, if |K| ⊂ |L| is a PL-inclusion, we may

extend a subdivision K ′ of K to a subdivision L′ of L.

We refer to a regular cell complex X with face poset F as a polyhedron

when we identify X with the homeomorphic space |∆F |, thereby giving it a PL

structure. Then, a triangulation K of a polyhedron X is a simplicial complex

with |K| PL-homeomorphic to X. Note here that a single abstract simplicial

complex K might triangulate X in multiple ways through different homeomor-

phisms; when we say K is a triangulation of X, we are implicitly choosing one

such homeomorphism. In the case X is a G–complex, we identify it with the G–

homeomorphic |∆F | as in Lemma 2.1 and call it a G–polyhedron. Clearly, G

acts on X via PL-homeomorphisms. We further define a G–triangulation of a

G–polyhedron X to be a simplicial G–complex K with |K| G–PL-homeomorphic

to X. We now want to show that any triangulation of a G–polyhedron can

be subdivided into a G–triangulation. To do this, we will first show that any

collection of triangulations of a polyhedron have a common subdivision.

Let K = {K1, K2, . . . , Ks} be a collection of simplicial complexes, each one

triangulating the same polyhedron X. We may assume, by subdividing if nec-

essary as in the definition of piecewise-linearity, that for all i, any simplex in

Ki embeds linearly into X. For φ ∈ K1 × . . . × Ks, let |φ| :=
⋂

1≤i≤s |φi|. De-

fine an equivalence relation on K1 × . . . × Ks by φ ∼ ψ ⇔ |φ| = |ψ|. We
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define a poset CK := {φ ∈ K1 × . . . × Ks | |φ| 6= ∅}/ ∼ with the partial order

[φ] ≤ [ψ]⇔ |φ| ⊆ |ψ|. We will identify an equivalence class [φ] with the geometric

realization |φ| of its representatives.

Proposition 2.2. Given a collection K = {K1, . . . , Ks} of simplicial complexes

that triangulate a polyhedron X, then CK is a regular cell structure on X, so that

|∆CK| is a triangulation of X and a common subdivision of K1, . . . , Ks.

Proof. We show first that the open cells of CK are disjoint. In this discussion, let

|φ| =
⋂

1≤i≤s |σi| and |ψ| =
⋂

1≤i≤s |τi|. Note that if |φ| ∩ |ψ| 6= ∅, we have that

|φ| ∩ |ψ| =
⋂

1≤i≤s(|σi| ∩ |τi|) =
⋂

1≤i≤s |σi ∩ τi|. Thus, the intersection of any two

closed cells is a closed cell. If [φ] < [ψ], then, without changing [ψ] or [φ], we may

replace each τi with its minimal face containing |ψ| and each σi with σi∩τi. Then

|ψ| ∩ int(|τi|) is always nonempty, and for some i we have |φ| ⊆ |∂τi|. Therefore

we have that |φ| ⊆ ∂|ψ|, implying that the intersection of any two distinct closed

cells must occur on the boundary of at least one of them, so any two distinct

open cells are disjoint.

Each |ψ| is a (nonempty) compact, convex polytope, yielding that |ψ| ≈ Dm

for some m ≥ 0. Furthermore, ∂|ψ| =
⋃

[φ]<[ψ] |φ|: If x ∈ ∂|ψ| ⊆ X, there is a

unique σi ∈ Ki such that x ∈ int(|σi|), giving some φ with x ∈ |φ| and [φ] ≤ [ψ].

However [φ] < [ψ] because x is not in int(|ψ|), so there is an i with x not in

int(|τi|), i.e., σi 6= τi. Conversely, if x ∈
⋃

[φ]<[ψ] |φ|, we have x ∈ |φ| ⊆ ∂|ψ| as

above. This proves that CK is a regular cell structure on X. Therefore, we have

that |∆CK| ≈ X.

Corollary 2.3. If X is a G–polyhedron and K is a triangulation of X, then there

is an admissible G–triangulation of X which is a subdivision of K.
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Proof. Let K be a triangulation of X via the PL-homeomorphism f : |K| → X.

We again assume, by subdividing, that each simplex of K embeds linearly into a

simplex of |∆F |, where F is the face poset of a regular cellular G–structure on

X. For each g ∈ G, we have a PL-homeomorphism g : X → X given by x 7→ gx.

Thus, K also triangulates X via the PL-homeomorphism g ◦ f : |K| → X. We

call this triangulation gK for convenience, noting that G does not act on the

simplicial complex K. Also note that since G acts affinely on each simplex of

|∆F |, every simplex of gK embeds linearly in X as well.

Let K = {gK | g ∈ G}. Using the notation from the proof of 2.2, each cell

[φ] is given by a map φ : G → K. Then |φ| =
⋂
g∈G g|φ(g)| ⊆ X. For h ∈ G,

define (hφ)(g) := φ(h−1g). This induces an order-preserving G–action on CK

because, for any φ and any h in G, |hφ| =
⋂
g∈G g|φ(h−1g)| =

⋂
g∈G hg|φ(g)| =

h
⋂
g∈G g|φ(g)| = h|φ|. Lastly, CK is a regular cellular G–complex because, since

any cell [φ] of CK is contained in a simplex of the admissible G–complex ∆F ,

any group element that stabilizes [φ] must fix it pointwise. The result follows by

Lemma 2.1.

2.4 G–Collapses and Discrete Morse Theory

Let Y ⊂ X be polyhedra withX = Y ∪Dm withm ≥ 1 and Y ∩Dm = Dm−1 where

Dm−1 is an (m−1)–disk and there is a PL-homeomorphism Dm → Dm−1×I which

maps Dm−1 homeomorphically to Dm−1 × {0}. In this situation, we say there is

an (m–dimensional) elementary collapse from X to Y . If there is a sequence

X = X0, X1, X2, . . . , Xk = Y of polyhedra with an elementary collapse from

Xi−1 to Xi for 1 ≤ i ≤ k, we say X collapses to Y , or X ↘ Y . An elementary

collapse (and therefore also a collapse) yields a deformation retraction from the
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larger polyhedron to the smaller. Observe that in a collapse the dimensions of

the individual elementary collapses in the sequence may vary. A collapse is called

m–dimensional if every elementary collapse in the sequence is of dimension ≤ m.

Now let Y ⊂ X be G–polyhedra with X = Y ∪GDm where Dm (and therefore

also gDm for each g ∈ G) is an m–disk as in the above definition of an elementary

collapse. If we also have that (1) gDm 6= Dm implies that gDm∩Dm ⊂ Y and (2)

there exists a point y ∈ Dm−1 fixed by the stabilizer GDm such that Dm−1 is GDm–

homeomorphic to a cone with apex y on some GDm–complex and Dm is GDm–

homeomorphic to Dm−1 × I, then we say there is an elementary G–collapse

from X to Y . (Note then that any point x ∈ {y} × (0, 1] will have stabilizer

Gx = GDm .) A sequence of these is called a G–collapse, denoted X ↘G Y .

A particular collapse is easier to describe when it arises from an underlying

triangulation of the polyhedron X, so now we will focus on collapses within a

simplicial complex K.

Let K be a finite simplicial complex. We use the notation σ l τ if σ < τ

and dim σ = dim τ − 1. A simplex σ is called a free face of τ if τ is the

only simplex such that σ l τ . When σ is a free face of τ , we say there is an

elementary simplicial collapse of K onto K \ {σ, τ}. A sequence of such

elementary collapses is a simplicial collapse. Simplicial collapses clearly induce

collapses on geometric realizations.

Note that if K is an admissible G–complex, if σ is a free face of τ , for all g ∈ G,

gσ is a free face of gτ . Thus K collapses simplicially to K \
⋃
g∈G{gσ, gτ}. This

is an elementary simplicial G–collapse. A sequence of such is a simplicial

G–collapse and clearly induces a G–collapse on geometric realizations.

Our chosen method for describing simplicial collapses is Robin Forman’s Dis-

crete Morse Theory. More thorough discussions of the subject can be found in
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[Fo98] and [Ko07].

By a vector, we mean a pair (σl τ), where τ is thought of as the head of the

vector and σ the tail. A discrete vector field on K is defined to be a collection

of vectors V = { (σi l τi) | i ∈ I} such that each simplex ρ ∈ K belongs to at

most one element of V , either as a head or a tail of a vector.

Given a discrete vector field V on K, we have the notion of a path, which is

a sequence of simplices in K of the form:

σ0 l τ0 m σ1 l τ1 m . . .m σs−1 l τs−1 m σs

where ∀ i : 0 ≤ i < s, (σi l τi) ∈ V and σi 6= σi+1. We say a path as above has

length s. By a cycle we mean a path as above with σs = σ0.

A Morse matching (or a discrete gradient field) is a discrete vector field

V with no cycles. The simplices which are unpaired in V are called critical.

An equivalent concept to a Morse matching is a height function on K. A

height (or Morse) function is a map h : K → R satisfying ∀ σ ∈ K,

|{ρl σ |h(ρ) ≥ h(σ)} ∪ {τ m σ |h(τ) ≤ h(σ)}| ≤ 1

Given a height function h, the corresponding Morse matching is the collection of

pairs (σ l τ) for which h(σ) ≥ h(τ). Conversely, it is not difficult to construct

a height function inducing a given Morse matching ([Fo98], [Ko07]). This height

function is clearly not unique. In fact, we may adjust it to be one-to-one and to

take values in N (without changing the Morse matching).

When K is an admissible G-complex, a G–matching on K is a Morse match-

ing V such that whenever (σ l τ) ∈ V , so too is (gσ, gτ) ∈ V for any g ∈ G.
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A G–matching may always be realized by a G–invariant height function. This

height function may be adjusted to give a one-to-one function on the collection

of G–orbits.

The following is the key lemma from discrete Morse theory we will use in this

paper. A more general (though nonequivariant) version for cell complexes can be

found in [Ko07], Theorem 11.13.

Lemma 2.4. Let K be a finite admissible simplicial G–complex with a Morse

G–matching whose critical simplices form a subcomplex L. Then K simplicially

G–collapses to L.

Proof. Let h : K → N be a G–invariant height function corresponding to the

given G–matching under which each orbit takes a unique value in N. Define a

new height function h̃ : K → N as follows: For σ ∈ L, set h̃(σ) = dim (σ). For

σ /∈ L, set h̃(σ) = h(σ) + dim(L). Under this new height function, all of the

simplices in L remain critical, and the relative heights of all the simplices outside

of L are unchanged, preserving their pairings. It also preserves the G–invariance.

Therefore, h̃ corresponds to the same G–matching as h, and h̃ is one-to-one on

orbits in K \ L.

Now, for m ∈ N define

K(m) := {σ ∈ K | ∃ τ ≥ σ such that h̃(τ) ≤ m}

Note that K(dim(L)) = L. For m ≥ dim(L), either K(m + 1) = K(m) or

K(m + 1) = K(m) ∪ G{ρ, τ} where ρ l τ and h̃(τ) = m + 1 < h̃(ρ). In the

latter case, K(m + 1) G–collapses to K(m) along the free faces gρ for g ∈ G.

Since K = K(max{h̃(σ) |σ ∈ K}), K G–collapses to L via a sequence of these

collapsings.
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Lemma 2.5. Let L ≤ K be simplicial G–complexes with K = L ∗ v. Then K

G–collapses to v.

Proof. Define a G–matching by pairing each simplex σ ∈ L with σ ∪ {v}. This

pairs every simplex of K except the vertex v. That there are no cycles follows

because all vectors lead to a simplex containing v, and no simplex containing v

is the tail of a vector.

The following lemma serves to illustrate the use of discrete Morse theory to

describe simplicial G–collapses. It is essentially an equivariant version of Theorem

3.1 in [Ko06-2]. We will make further use of it later.

Lemma 2.6. Let G be any group and P be a finite poset, h : P → P an order-

preserving poset map such that for any x ∈ P , h(x) ≥ x (or h(x) ≤ x). Define

Q to be the set of fixed points of h. Then ∆P collapses simplicially to ∆Q. In

the case that h is a G–poset map, P ↘G Q.

Proof. We prove it for the case that h(x) ≥ x, the other case being almost

identical. Since P is finite, we may choose N large enough so that for all x in

P , we have hN(x) ∈ Q. Now let σ ∈ ∆P be a chain x0 < x1 < . . . < xm. If

∃ i : 0 ≤ i ≤ m such that xi /∈ Q, let k be the largest such i. Then we may

insert hN(xk) into the chain immediately following xk because xk < hN(xk) ≤

hN(xk+1) = xk+1 if k < m. Associate to σ the chain obtained by inserting hN(xk)

or by deleting it in the case hN(xk) = xk+1. Since it is an element of Q being

inserted or deleted, the selection of k is not affected, and xk uniquely determines

the other chain in the pair. Therefore, this matching is well-defined. Also, this

matching is equivariant if h is a G–map.
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Suppose there is a cycle

σ0 l τ0 m σ1 l τ1 m σ2 l . . .l τs−1 m σs = σ0

We have for 1 ≤ i ≤ s that σi = τi−1 \ {yi} for some yi ∈ P . Then there must be

some pair σj l τj = σ ∪ {yi}, so yi ∈ Q for all i. Thus every simplex in the cycle

has all the same elements of P \Q, so ∃ x ∈ P \Q that is the greatest such element

in every simplex. Hence τj = σj ∪ {hN(x)} for all j, and yi = hN(x) for all i.

This is a contradiction because the same element is being added and deleted in

consecutive steps. Therefore, we have a Morse matching whose critical simplices

are exactly the elements of ∆Q, a subcomplex of ∆P . Thus, ∆P G–collapses to

∆Q.
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Chapter 3

G–Regular Neighborhoods

Now we follow the discussion of Rourke and Sanderson [RS82] to develop the

theory of equivariant regular neighborhoods. In this chapter, all simplicial com-

plexes are finite, all polyhedra are compact, and all inclusions of polyhedra are

piecewise-linear.

Let Y ⊂ X be polyhedra triangulated by L and K respectively, with L ≤

K. The derived subdivision of K near L is the simplicial complex K ′ with

vertex set K0 ∪ {vτ | τ ∈ K \ L, τ ∩ L0 6= ∅}, and the simplices are of the form

σ ∪ {vτ1 , . . . vτm} where σ ∈ L or σ ∈ K with σ ∩ L0 = ∅ and σ < τ1 < . . . < τm.

Geometrically, K ′ subdivides K by selecting, for each τ ∈ K\L that intersects L0,

the new vertex vτ in the interior of |τ | and then, in ascending order of dimension,

replacing each |τ | with the cone (with apex vτ ) on its boundary (which has already

been subdivided in the previous steps).

Suppose that, in addition, L is full in K and |ṄK(L)| is the boundary of

|NK(L)| in X. Let K ′ be a derived subdivision of K near L. Then N = |NK′(L)|

is called a regular neighborhood of Y in X. If K and L are both admissible

G–complexes and, when defining K ′, the set of new vertices {vτ} is chosen to be
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G–invariant, we say N is a G–regular neighborhood of Y in X.

Our first goal is to show that, as in [RS82] with non-equivariant regular neigh-

borhoods, aG–regular neighborhood of Y inX is unique up toG–homeomorphism.

It is clear that, whenever two G–regular neighborhoods arise from the same G–

triangulations L andK, they areG–homeomorphic since the underlying simplicial

G–complex of the two derived subdivisions is the same. We now show that any

subdivisions of L and K can give rise to the same G–regular neighborhood.

To do this, we will make use of a specific map that will be helpful in many

later contexts. Given a simplicial complex K and a subcomplex L, we define a

map f = fL,K : |K| → [0, 1] as follows. First let f(v) = 0 if v ∈ L0 and f(v) = 1

if v ∈ K0 \ L0. Now linearly extend f on simplices. Using this map, we may

define an ε–neighborhood of |L| in |K| for any ε ∈ (0, 1) as f−1[0, ε].

Lemma 3.1. Let Y ⊂ X be G–polyhedra with G–triangulations L ≤ K with L

full in K. Let L1 ≤ K1 be G–subdivisions of L and K respectively. Then there

are derived G-subdivisions K ′ and K ′1 of K and K1 near L and L1 such that

|NK′(L)| = |NK′
1
(L1)|.

Proof. We follow the proof of the non-equivariant version, Lemma 3.7 in [RS82],

and clarify some details with the combinatorial definition of derived subdivisions.

Define f = fL,K as above. Choose ε small enough so that no vertex of K1 \ L1

is contained in f−1[0, ε]. Then choose derived G–subdivisions K ′ and K ′1 of K

and K1 near L and L1 respectively with all the new vertices vτ lying in f−1(ε).

We can choose these vertices equivariantly because f is G–invariant (L being a

G–complex) and K is admissible. Now we will show that |NK′(L)| = f−1[0, ε] =

|NK′
1
(L1)|.

The map f takes values of 0 or ε on all of the vertices of NK′(L) and NK′
1
(L1),

22



so both of these neighborhoods are contained in f−1[0, ε]. Now let x be a point in

f−1[0, ε] ⊂ |K ′| = |K ′1|; say x is in the interior of the simplex σ ∪{vτ1 , . . . , vτk} of

K ′ (respectively K ′1) as in the combinatorial definition of a derived subdivision.

Then x = s0v0 + . . . + skvk + t1vτ1 + . . . + tmvτm where σ = {v0, . . . , vk} and

s0 + . . .+ sk + t1 + . . .+ tm = 1. Suppose σ is not in L (resp. L1). Then f(vi) = 1

(resp. f(vi) > ε) for i = 0, . . . , k. Meanwhile, f(vτj) = ε for j = 1, . . . ,m. We

have then, in both cases, that f(x) > (s0 + . . .+ sk)ε+ (t1 + . . .+ tm)ε = ε. This

is a contradiction, and σ must be in L (resp. L1), yielding that x is in |NK′(L)|

(resp. |NK′
1
(L1)|).

Now we can prove that any twoG–regular neighborhoods areG–homeomorphic.

Theorem 3.2. If N1 and N2 are G–regular neighborhoods of Y in X, then there

exists a G–homeomorphism h : X →G X that maps N1 to N2 and is the identity

on Y .

Proof. The proof mirrors that of the non-equivariant version, Theorem 3.8 in

[RS82]. We are given two G–triangulations K1 and K2 of X with subcomplexes

L1 and L2 G–triangulating Y . Also, for each i, there is a derived G–subdivision

K ′i of Ki near Li giving Ni = |NK′
i
(Li)|. By 2.2, we can find K, a common

subdivision of K1 and K2 with a subcomplex L triangulating Y , and by 2.3, we

can assume K is a G–subdivision.

Applying 3.1, for each i, we can find derived G–subdivisions K̃i and Ki of

Ki and K near Li and L respectively such that |NK̃i
(Li)| = |NKi(L)|. There-

fore we have that N1 = |NK′
1
(L1)| ≈G |NK̃1

(L1)| = |NK1(L)| ≈G |NK2(L)| =

|NK̃2
(L2)| ≈G |NK′

2
(L2)| = N2. Each G–homeomorphism in this sequence comes

from a self-G–homeomorphism on X given by simply changing the placement of

each derived vertex vτ within the interior of a simplex |τ | touching Y while fixing
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the placement of every other vertex in the subdivision, including those vertices

on Y itself. Thus, each step in the chain fixes Y pointwise, so the composition is

the identity on Y .

3.1 G–Collars

Let I be the closed unit interval [0, 1]. Then for a G-space X, give X × I the

G–action g(x, t) 7→ (gx, t). If X is a regular cellular G–complex, so too is X × I.

Proposition 3.3. If X is a regular G-complex, then X × I has an admissible

G–triangulation with no new vertices in X × (0, 1).

Proof. Let F be the face poset of X. Then the order complex ∆(F × {0, 1})

of the product poset F × {0, 1} (which is the face poset of X × I) satisfies

|∆(F × {0, 1})| ≈G |∆F | × |∆{0, 1}| ≈G X × I. Hence ∆(F × {0, 1}) gives the

desired G–triangulation.

Lemma 3.4. If L ≤ K are simplicial G–complexes with K = L ∗ v, then for

any ε ∈ (0, 1), there exists a G–homeomorphism h : |L| × [0, ε] → f−1
L,K [0, ε], with

h(x, 0) = x.

Proof. For x ∈ |σ| with σ ∈ L and t ∈ [0, ε], define h(x, t) = tv + (1− t)x. This

lies in the simplex σ ∪ {v} ∈ K. The map is G–equivariant since v is a fixed

point. The inverse is given by h−1(u) = (u−f(u)v
1−f(u)

, f(u)).

Let Y ⊂ X be G–polyhedra. A G–collar on Y in X is a G–embedding C : Y ×

I →G X such that C(y, 0) = y and C(Y × [0, 1)) is an open neighborhood of Y

in X. Suppose that for every a ∈ Y there are (closed, polyhedral) neighborhoods

U and V of a in X and Y respectively, with U ∩ Y = V , such that for any
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g ∈ G, gU ∩ U 6= ∅ implies that ga = a and gU = U , and suppose further that

U ≈Ga V ×I, with v 7→ (v, 0) on V . Then we say that Y is locally G–collarable

in X, and we have that GU ≈G GV ×I. Local G–collarability is equivalent to G-

collarability using an identical argument to the non-equivariant version, Theorem

2.25 in [RS82]:

Theorem 3.5. If Y ⊂ X is locally G-collarable, then there is a G–collar on Y

in X.

Proof. Construct a new G–polyhedron Z := X ∪ Y × [−1, 0] by attaching a G–

collar to Y outside of X, identifying Y ⊂ X with Y × {0}. We will construct a

G–homeomorphism between X and Z which carries Y to Y × {−1}. Then the

preimage of Y × [−1, 0] will be a G–collar on Y in X.

For each a ∈ Y , let GVa × I be a local G–collar at a. Using compactness,

cover Y with the interiors of finitely many GVa1 , . . . , GVak . Then for each i, we

will define a G–homeomorphism hi : Z → Z which maps the interior of Vai ×{0}

into the interior of Vai × [−1, 0] and is the identity outside of GVai × [−1, 1]. To

do this, we consider a G–triangulation Kai of GVai . Taking the product of this

triangulation with an interval defines a regular G–cell structure on GVai× [−1, 1].

We now equivariantly subdivide this cell complex by its order complex: We must

choose a new vertex vc in the interior of each cell c. First, equivariantly select a

point yσ in the interior of each simplex σ ∈ Kai . For the cell |σ| × {1}, choose

vc = (yσ, 1). Likewise, for the cell |σ| × {−1}, choose vc = (yσ,−1). Finally, for

the cell |σ| × [−1, 1], choose vc = (yσ, 0).

Define a different subdivision simply by moving vc to (yσ,−1
2
) when c inter-

sects the relative interior of GVai × [0, 1] and making no change in the placement

for vc otherwise. Then the G–homeomorphism hi is given by mapping the first
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Figure 3.1: Construction of hi

subdivision to the second, since they are both realizations of the same order com-

plex. Note that hi is the identity except on the relative interior of GVai × [−1, 1]

where hi(y, t) = (y, s) with s < t. Thus, hi maps all of the relative interior of

GVai × {0} into GVai × (−1, 0).

Now define h to be the composition hk ◦ . . . ◦ h1. Since the interiors of the

local G–collars cover all of Y , h maps all of Y ×{0} into Y × (−1, 0). Let K G–

triangulate Y , and thus also h(Y ×{0}). Then we consider h(X)∩[−1, 0]. It has a

regular cellular G–structure with a face poset isomorphic to that of |K|× [−1, 0].

The cells in the former come in three types: simplices of K triangulating Y ×{0}

(which correspond to the same in the latter complex), simplices ofK triangulating

h(Y ×{0}) (which correspond to simplices of K triangulating Y ×{−1}), and the

intersection of h(X) with cells |σ| × [−1, 0] for σ ∈ K (which correspond to the

cells |σ| × [−1, 0]). Therefore, h(X) ∩ [−1, 0] is G–homeomorphic to Y × [−1, 0],

fixing Y × {0}. We extend this homeomorphism by the identity to the rest of X

to get the desired G–homeomorphism h̃ : X → Z carrying Y to Y × {−1}.

Theorem 3.6. If Y ⊂ X is locally G–collarable, then a G–regular neighborhood

of Y in X is a G–collar.
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Proof. By 3.5, we have that Y has a G–collar. Let L be an admissible G–

triangulation of Y , and K be the G–triangulation of Y × I as in 3.3. Now choose

a derived G–subdivision K ′ of K near L such that all of the new vertices lie in

Y × {1
2
}. Then |NK′(L)| = Y × [0, 1

2
] ≈G Y × I. The result now follows from

3.2.

We will also make use of the notion of bicollarability. We say Y ⊂ X is

G–bicollarable in X if there exists a G–embedding of Y × [−1, 1] →G X with

(y, 0) 7→ y for all y ∈ Y and Y × (−1, 1) maps to an open neighborhood of Y in

X.

Theorem 3.7. If N = |NK′(L)| is a G–regular neighborhood of Y in X, then

|ṄK′(L)| is G–bicollarable in X.

Proof. By 3.2, it suffices to consider the case N = f−1
L,K [0, ε] for some ε ∈ (0, 1).

That is, the derived vertices {vτ} of K ′ were chosen in f−1(ε). Let 0 < ε1 < ε <

ε2 < 1. Equivariantly, choose alternate derived vertices {v1
τ} and {v2

τ} in f−1(ε1)

and f−1(ε2) respectively, giving derived G–subdivisions K ′1 and K ′2 of K near L.

Then there are the natural homeomorphisms hi : |ṄK′(L)| →G |ṄK′
i
(L)| given by

sending each vτ to viτ . We now define a G–bicollar C : |ṄK′(L)| × [−1, 1] →G

cl(|NK′
2
(L)| \ |NK′

1
(L)|) by setting

C(x, t) =

 |t|h1(x) + (1− |t|)x, −1 ≤ t ≤ 0

th2(x) + (1− t)x, 0 ≤ t ≤ 1

Note that this G–bicollarability can alternatively be expressed as |ṄK′(L)|

being G–collarable in both N and in cl(X \N).
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Lemma 3.8. If N is a G–invariant neighborhood of Y in X with N ∩ cl(X \N)

G–collarable in cl(X \ N), then any admissible G–triangulation L of N can be

extended to an admissible G–triangulation K of X (i.e., L is a subcomplex of K).

Proof. The theorem will follow after we show that two different G–triangulations

of a polyhedron Z can be “reconciled” within a G–collar. That is, there exists a

G–triangulation of Z × I inducing the two given triangulations on Z × {0} and

Z × {1} respectively.

First, let J be an admissible G–subdivision of ∆n. Using induction, we will

show that there exists a G–triangulation of |∆n|× I with |∆n|×{0} triangulated

by ∆n and |∆n|×{1} triangulated by J . If n = 0, the result is obvious. Otherwise,

by the induction hypothesis, we know we can reconcile ∂∆n with ∂J , yielding a

triangulation of |∆n|×{0}∪|∂∆n|×I∪|∆n|×{1}. We complete the triangulation

by coning with the point (∆n, 1
2
).

Now that we can reconcile subdivisions of individual simplices, we can recon-

cile a simplicial G–complex with a G–subdivision. Let J ′ be a G–subdivision of

J . In increasing order of dimension, we may triangulate each |Jm|×I to reconcile

the skeleta of J with their subdivisions.

Finally, given two G–triangulations J1 and J2 of a polyhedron Z, let J

be a common G–subdivision. Then by the previous construction, we may G–

triangulate Z× [0, 1
2
] so that J1 triangulates Z×{0} and J triangulates Z×{1

2
}.

Likewise, we may triangulate Z × [1
2
, 1] to reconcile J with J2. Put together,

these yield the desired G–triangulation of Z × I.

Now, to prove the result, let C = Z × I be a G–collar on Z = N ∩ cl(X \

N) in cl(X \ N). Let L be an admissibile G–triangulation of N , inducing the

triangulation J on Z = Z × {0}. Let K1 be a G–triangulation of cl(X \ C ∪N)
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with J1 the induced triangulation of Z × {1}. We know we can G–triangulate C

with a simplicial complex K2 to reconcile J with J1. Now let K = L∪K1∪K2.

3.2 G–Regular Neighborhoods in Manifolds

3.2.1 Manifolds and G–Manifolds

A polyhedron X is a (PL) n–manifold (with boundary) if every point x ∈ X

has a closed (polyhedral) neighborhood PL-homeomorphic to the n–disk |∆n|. If,

under this map, x lies in |∂∆n|, then we say x ∈ ∂X. Then ∂X is an (n − 1)–

manifold: We may choose a sufficiently small neighborhood of x in |∂∆n| that

contains only points of ∂X and is homeomorphic to ∆n−1.

A simplicial complex K is a combinatorial n–manifold if for every simplex

σ ∈ K, | lnkK(σ)| is PL-homeomorphic to |∂∆n−dimσ| or to |∆n−dimσ−1|. The

latter case means σ lies on the boundary of K, ∂K.

To define equivariant manifolds, we consider G–polyhedra and G–complexes

that are manifolds and that have particularly well-behaved G–actions.

Consider an orthogonal representation ρ : G→ On(R). We denote by S(ρ) and

D(ρ) the unit sphere and disk respectively in the corresponding representation

space. Further, denote by S+(ρ) the hemisphere with final coordinate nonnegative

and similarly for D+(ρ). Each of these has a unique piecewise-linear structure

coming from its smooth structure [I00].

We now inductively define a combinatorial G–sphere. S0 with aG–action is

a combinatorial 0–dimensional G–sphere. An admissible simplicial G–complex K

with |K| G–homeomorphic to S(ρ) for some ρ : G→ On+1(R) is an n–dimensional

combinatorial G–sphere if for every v ∈ K0, lnkK(v) is an (n − 1)–dimensional

29



combinatorial Gv–sphere, itself Gv–homeomorphic to S(Rv⊥), where Rv⊥ is the

orthogonal complement in ρ|Gv of the trivial representation Rv.

Similarly, we may define a combinatorial G–hemisphere by substitut-

ing S+(ρ) and allowing links of vertices to be n–dimensional G–spheres or G–

hemispheres in the above definition. Finally, a combinatorial G–disk is simply

the cone on a G–sphere or G–hemisphere with a G–fixed point.

A simplicial G–complex K is an n–dimensional combinatorial G–manifold

if for every v ∈ K0, lnkK(v) is an (n − 1)–dimensional combinatorial Gv–sphere

or hemisphere. When its link is a hemisphere, a vertex lies on the boundary of

K.

A G–polyhedron X is an n–dimensional (PL) G–manifold (with boundary)

if every point x ∈ X has a closed neighborhood Ux which is Gx–homeomorphic

to the geometric realization of a combinatorial n–dimensional Gx–disk with x

corresponding to the point 0. If x lies on the boundary of Ux, then x ∈ ∂X

and Ux must have been the cone on a hemisphere. Taking Vx to be the cone

on the equator gives a closed neighborhood of x in ∂X Gx–homeomorphic to an

(n− 1)–G–sphere so that ∂X is an (n− 1)–dimensional G–manifold.

We make the following observation.

Lemma 3.9. Let K be an n–dimensional combinatorial G–sphere or hemisphere.

If there exists a G–fixed vertex y ∈ K0, then the cone |x ∗K| (with x a G–fixed

point) is G–homeomorphic to | stK(y)| × I.

Proof. Let ρ : G → On(R) be the representation for which |K| is a G–sphere or

hemisphere. Then we have that Ry is a trivial subrepresentation of ρ. Also,

| lnkK(y)| is G–homeomorphic to either S(Ry⊥) or S+(Ry⊥). Call this sphere or

hemisphere S. Thus, we have that |K| is G–homeomorphic to either a cone on S
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with y (which is G–homeomorphic to the union of S× I with the cone of S×{0}

with y) or a suspension of S by the points y and −y in Ry (G–homeomorphic

to the union of S × I with cones on both S × {0} and S × {1}). In either case,

coning with a G–fixed point x yields a G–disk G–homeomorphic to (S ∗ y) × I,

as required.

We will prove shortly that combinatorial G–manifolds are exactly the G–

triangulations of PL G–manifolds. To do this, we will require the following

lemma.

Lemma 3.10. Let v be a vertex of a simplicial G–complex K. If K ′ is a derived

G–subdivision of K near v, then | lnkK(v)| is Gv-homeomorphic to | lnkK′(v)|.

Proof. Assume that the derived vertices are chosen in f−1
v,K(ε) for some ε ∈ (0, 1).

Then a point in | lnkK′(v)| = f−1(ε) is of the form εu + (1 − ε)v where u ∈

| lnkK(v)|. Mapping this point to u gives the desired homeomorphism.

Lemma 3.11. In an n–dimensional combinatorial G–manifold K, lnkK(σ) is

a combinatorial Gσ–sphere or hemisphere of dimension n − dimσ − 1 for any

nonempty σ ∈ K.

Proof. We use induction on dimσ. If σ is a vertex, the result is true by definition.

If dimσ > 0, let v be a vertex of σ and τ = σ\{v}. Then lnkK(σ) = lnklnkK(τ)(v).

Let H = Gτ . By hypothesis, lnkK(τ) is an (n − dim τ − 1)–dimensional H–

sphere or hemisphere. Therefore, the link lnklnkK(τ)(v) is an (n − dim τ − 2) =

(n − dimσ − 1)–dimensional Hv–sphere or hemisphere. Since K is admissible,

Hv = Gσ.

In light of 3.11, it is now convenient to characterize ∂K: It is the collection of

simplices of K whose links are hemispheres. ∂K is a subcomplex of K: Consider
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σ ∈ ∂K. Let σ = τ ∪ {v}. Suppose lnkK(τ) is a sphere. Then lnkK(σ) =

lnklnkK(τ)(v) must be a sphere, contradicting σ ∈ ∂K. Repeating this argument

shows that the link of any face of σ must be a hemisphere, so each face of σ lies

in ∂K.

Proposition 3.12. If X is a G–polyhedron triangulated by an admissible G–

complex K, then X is an n–dimensional G–manifold if and only if K is an

n–dimensional combinatorial G–manifold. When both are manifolds, ∂K G–

triangulates ∂X.

Proof. Suppose first that K is a combinatorial G–manifold. Then any x ∈ X lies

in the interior of some simplex σ ∈ K. Then lnkK(σ) is an (n− dimσ − 1)–Gσ–

sphere by 3.11. Since K is admissible, Gσ = Gx. Define Ux = | lnkK(σ) ∗ ∂σ ∗ x|.

This is an n–Gx–disk since ∂σ is fixed pointwise by Gx. Therefore, X is an n–

G–manifold. Note that x lies in the boundary of Ux if and only if lnkK(σ) was a

G–hemisphere. Thus ∂X = |∂K|.

Now suppose that X is an n–manifold with triangulation K. Let v be a vertex

of K and Uv be a closed neighborhood of v in X which is a Gv–disk.

Assume first that v is not in ∂X. Consider a triangulation of X with Uv

triangulated as a subcomplex. We may alter this triangulation by replacing the

subcomplex triangulating Uv with the cone on its boundary by v. Call this

new triangulation K1. Let K ′ and K ′1 be derived subdivisions of K and K1

respectively near v. Then the stars of v in these two subdivisions are both Gv–

regular neighborhoods of v in X and therefore Gv–homeomorphic by 3.2, and

thus so are the links. We also have by 3.10, that the Gv–homeomorphism type

of the link of v is invariant under derived subdivision. Therefore, we have that

| lnkK(v)| ≈Gv | lnkK1(v)|, an (n− 1)–Gv–sphere.
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If v is in ∂X and thus ∂Uv, then we obtain K1 by triangulating Uv with a

cone on a subdivision of a Gv–hemisphere with v. Then following the same logic

as before, we conclude that | lnkK(v)| ≈Gv | lnkK1(v)|, an (n−1)–Gv–hemisphere.

Thus, we have that K is a combinatorial G–manifold.

Proposition 3.13. If M is a G–manifold, then ∂M is G–collarable in M .

Proof. By 3.5, it suffices to show that ∂M is locally G–collarable.

Let x be a point in ∂M . Let K be a G–triangulation of M with x as a vertex

and L the subcomplex triangulating ∂M . By subdividing, we can ensure that

stK(gx) ∩ stK(x) 6= ∅ happens only when gx = x.

We have that lnkK(x) is an (n − 1)–Gx–hemisphere S+(ρ) and lnkL(x) is

an (n − 2)–Gx–sphere S(ρ1), for a subrepresentation ρ1 of ρ. Then ρ⊥1 must

be the trivial representation since the upper hemisphere is fixed. Therefore,

| stK(x)| ≈Gx | stL(x) ∗ w| for some Gx–fixed point w. The latter cone is Gx–

homeomorphic to | stL(x)| × I. Extending this construction to the G–orbit of x

yields a local G–collar.

The next proposition provides us with a simple way to find n–dimensional

submanifolds in a G–manifold which are themselves G–manifolds. We will require

the following lemma.

Lemma 3.14. A quadrant of a G–sphere in which the two nonnegative coordi-

nates give trivial subrepresentations is a G–hemisphere.

Proof. Consider a G–sphere S1 with the trivial G–action. We will define a

piecewise-linear function S1 → S1 sending the first quadrant homeomorphically

to the upper hemisphere. Triangulate S1 in two ways: Let K be an octagon on
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the vertex set Z8 with 1–simplices {i, i + 1} for 0 ≤ i ≤ 7; within this triangu-

lation, the edges {0, 1} and {1, 2} form the first quadrant. Let L be the square

with vertex set Z4 with 1–simplices {i, i+1} for 0 ≤ i ≤ 3; the upper hemisphere

consists of the edges {0, 1} and {1, 2}. Then we map K onto L via the two-fold

covering sending i to i mod 4.

Now, if ρ is a trivial, 2–dimensional subrepresentation of some representation

of G, S(ρ⊕ ρ⊥) is G–homeomorphic to S(ρ) ∗S(ρ⊥). Mapping the first quadrant

of S(ρ) to the upper hemisphere as above maps the first quadrant of S(ρ)∗S(ρ⊥)

to its upper hemisphere.

Proposition 3.15. Let M be an n–dimensional G–manifold and M1 be an n–

dimensional G–invariant submanifold with cl(∂M1∩ int M) G–bicollarable in M .

Then M1 is a G–manifold.

Proof. Let K be a G–triangulation of M with subcomplexes (K1, L) triangulating

(M1, ∂M1). We need to show that the link of any vertex v ∈ K0
1 is a Gv–sphere

or hemisphere. We consider the case v ∈ cl(∂M1 ∩ int M). The link of any other

vertex of K1 is the same in both K and K1.

Since cl(∂M1∩int M) isG–bicollarable, we may consider a closedGv–invariant

neighborhood | stL(v)| × [−1, 1] = Uv with (x, 0) = x for all x ∈ | stL(v)| and

| stL1(v)| × [0, 1] ⊂ M1. Triangulate Uv in the following way: First triangulate

| lnkL(v)| × [−1, 1]. Add to it by coning | lnkL(v)| × {−1} and | lnkL(v)| × {1}

with (v,−1) and (v, 1) respectively. Let J be this triangulation of | lnkL(v)| ×

[−1, 1] ∪ | stL(v)| × {−1, 1}. Then J ∗ v triangulates | stL(v)| × [−1, 1].

Now subdivide K so that it contains a subdivision of J ∗ v as a subcomplex.

Choose a derived Gv–subdivision K ′ near v. From the construction in the proof

of 3.1, we may assume | st′K(v)| is an ε–neighborhood of v in |J ∗ v|. Thus, by
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3.10, | lnkL(v)| × [−1, 1] ∪ | stL(v)| × {−1, 1} is Gv–homeomorphic to | lnk′K(v)|,

which we know is an (n− 1)–Gv–sphere or hemisphere since M is a G–manifold.

Consider the point w = (v, 1). Its stabilizer in Gv is all of Gv. Hence, lnkJ(w)

is an (n − 2)–Gv–sphere or hemisphere. But | lnkJ(w)| is Gv–homeomorphic to

| lnkL(v)|, giving us that |J | is the suspension of | lnkL(v)| by w and (v,−1), and

thus a Gw–sphere or hemisphere. In conclusion, | lnkL(v)|× [0, 1]∪| stL(v)|×{1},

which is Gv–homeomorphic to | lnkK1(v)| is a Gv–hemisphere. (Note that when

lnkL(v) is a Gv–hemisphere, | lnkL(v)| × [0, 1] ∪ | stL(v)| × {1} is a quadrant of a

Gv–sphere where the two nonnegative coordinates give trivial subrepresentations.

By 3.14, this is a Gv–hemisphere.)

3.2.2 Simplicial G–Neighborhood Theorem

G–regular neighborhoods are particularly well-behaved within G–manifolds. We

begin with some simple cases.

Lemma 3.16. A G–regular neighborhood of a point x in an n–dimensional G–

manifold M is an n–Gx–disk.

Proof. In any derived subdivision K ′ near x, the NK′(x) is stK′(x) which is a

G–disk of dimension n.

We will use the following two non-equivariant facts.

Lemma 3.17. Let σ be a proper face of ∆n. Then a regular neighborhood of |σ|

in |∆n| is an n–disk.

Proof. Let f = fσ,∆n . Then let K be a derived subdivision of ∆n near σ along

f−1(ε), so that f−1[0, ε] is a regular neighborhood of |σ| as in the proof of 3.1.

It remains to show that f−1[0, ε] is convex and n–dimensional. Let x and y
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lie in f−1[0, ε]. Then since f is linear on the simplex ∆n, f(tx + (1 − t)y) =

tf(x) + (1 − t)f(y) ≤ ε, proving that the ε neighborhood is convex. It is n–

dimensional because it is a closed neighborhood in the n–manifold |∆n|, so any

point in its interior has an n–disk neighborhood.

Corollary 3.18. Let σ be a face of ∂∆n. Then a regular neighborhood of |σ| in

|∂∆n| is an (n− 1)–disk.

Proof. Let K be the derived subdivision of ∆n from 3.17. Then lnkK(v∆n) is

a derived subdivision of ∂∆n near σ, and in this subdivision lnkNK(σ)(v∆n) is

the simplicial neighborhood of σ. Since NK(σ) is an n–manifold with v∆n on its

boundary (since it lies in f−1(ε)), lnkNK(σ)(v∆n) is an (n− 1)–disk.

We will assume for the remainder of the chapter that Y ⊂ M are polyhedra

with M an n–manifold. Whenever M is a G–manifold, we will assume Y is

G–invariant.

The first important property of regular neighborhoods within a G–manifold

is that they are themselves G–manifolds of the same dimension.

Proposition 3.19. A G–regular neighborhood N of Y in an n–G–manifold M

is an n–G–manifold with boundary. If Y ⊂ int M , then ∂N = |ṄK′(L)| where L

and K ′ are as in the definition of regular neighborhood.

Proof. By 3.7 and 3.15, it suffices to show that a G–regular neighborhood in M

is an n–manifold.

Let KN = NK′(L) be the induced triangulation of N in K ′, the derived

subdivision of K near L. For v ∈ L0, lnkKN
(v) = lnkK′(v) which is an (n − 1)–

disk or sphere since K ′ is a combinatorial n–manifold.
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For v ∈ ṄK′(L), v = vτ for some τ ∈ K \L with τ ∩L0 6= ∅. Then lnkKN
(vτ )

consists of simplices of the form ρ ∪ {vτ1 , . . . , vτm} where ρ ∈ L, each τi ∈ K \ L

with τi ∩ L0 6= ∅, and τ can be inserted somewhere into the chain ρ < τ1 <

. . . < τm. Such a simplex is a join of two parts: ρ ∪ {vτ1 , . . . , vτk} with τk < τ

and {vτk+1
, . . . , vτm} with τ < τk+1. The first is a typical simplex of the simplicial

neighborhood of σ = τ∩L0 in the derived subdivision of ∂τ near σ. This simplicial

neighborhood is a (dim τ−1)–disk by 3.18. The second part {vτk+1
, . . . , vτm} is in

one-to-one correspondence to the simplex τk+1\τ < . . . < τm\τ in the barycentric

subdivision of lnkK(τ), which is an (n− dim τ − 1)–sphere by 3.11 (It cannot be

a disk because, from the definition of a regular neighborhood, τ must lie on the

boundary of |NK(L)| in M so it does not lie on ∂M). Therefore, we have that

lnkKN
(vτ ) is the join of a (dim τ − 1)–disk and an (n − dim τ − 1)–sphere and

hence an (n− 1)–disk.

Therefore, KN is a combinatorial n–manifold. We now prove the last part

of the proposition by noting that if Y lies in the interior of M , the link of any

simplex of L in KN will be a sphere. Also, the link of any simplex {vτ0 , . . . , vτm}

of ṄKN
(L) will include will be a join of complexes, one of which is the regular

neighborhood of τ0 ∩ L0 in ∂τ0, a disk. Thus, the link must also be a disk. This

proves that ∂N = |ṄK′(L)|.

We now come to the first characterization theorem for G–regular neighbor-

hoods in the interior of a manifold. With suitable conditions, any G–invariant

simplicial neighborhood turns out to be a G–regular neighborhood, not just in a

derived G–subdivision.

Theorem 3.20 (Simplicial G–Neighborhood Theorem). Suppose N is a G–

invariant neighborhood of a G–polyhedron Y in the interior of n–dimensional
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G–manifold M . Then N is a G–regular neighborhood of Y if and only if

(i) N is an n–manifold with boundary ∂N G–bicollarable in M ,

(ii) there are admissible G–triangulations (K, L) of (M, Y) with L full in K,

such that N = |NK(L)| and ∂N = |ṄK(L)

Proof. If N is a G–regular neighborhood of Y , the two conditions follow imme-

diately from the definition, 3.19 and 3.7.

For the other direction, following the proof of the nonequivariant version

(Theorem 3.11 in [RS82]), we construct a series of G–collars. Since ∂N is G–

bicollarable inM , we may find aG–collar in cl(M\N), denoting it C1 = ∂N×[0, 1]

with ∂N = ∂N × {1}.

Now choose a derived G–subdivision K ′ of K near L. Then |NK′(ṄK(L)| is a

G–regular neighborhood of ∂N in N , so by 3.6 it is a G–collar C2 = ∂N × [1, 2].

Finally, N ′ = |NK′(L)| is a G–regular neighborhood of Y in M and therefore, by

3.7, we can find a G–collar on its boundary |ṄK′(L)| = |ṄK′(ṄK(L))| = ∂N×{2}.

Call this G–collar C3 = ∂N× [2, 3]. Let C = ∂N× [0, 3] be the union of the three

G–collars.

Define a G–homeomorphism h : C → C by

h(x, t) =

 (x, t
2
), 0 ≤ t ≤ 2

(x, 2t− 3), 2 ≤ t ≤ 3

This is the identity on ∂N × {0, 3}, so it may be extended to all of M . Then we

see that h(N ′) = N . Therefore, N is a G–regular neighborhood of Y .

The following three corollaries are nonequivariant results directly from [RS82].

There is no additional need for equivariant versions.
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Corollary 3.21. If D is an n–disk in the interior of an n–manifold M , then D

is a (nonequivariant) regular neighborhood of any point in its interior.

Proof. Simply replacing the triangulation of D by coning ∂D with the interior

point realizes D as a simplicial neighborhood of that point.

Corollary 3.22. If D is an n-disk in an n-sphere S, then cl(S \D) is an n-disk.

Proof. D must intersect a maximal face |∆n−1| of the n–sphere S = |∆n|. Choose

a point x in D ∩ |∆n−1|. Both disks are regular neighborhoods of x, so there is

a homeomorphism of S taking D to |∆n−1| by 3.2. This sends cl(S \ D) to

cl(|∆n| \ |∆n−1|), which is clearly an n–disk.

Corollary 3.23. If N ⊂ int M are n–manifolds, then cl(M\N) is an n–manifold

with boundary the disjoint union of ∂M and ∂N .

Proof. Let L ≤ K triangulate N and M respectively. Let K1 be the subcomplex

of K triangulating cl(M \ N). For v ∈ K0 \ L0, lnkK1(v) = lnkK(v), so it is an

(n− 1)–disk or sphere. For v ∈ ∂L0, | lnkK1(v)| = cl(| lnkK(v)| \ | lnkL(v)|. This

is an (n− 1)–disk by 3.22. We further note that for a simplex σ in K1, lnkK1(σ)

is a disk only when σ is in ∂L or ∂K, by the same reasoning as for vertices. The

two boundaries are disjoint since N lies in the interior of M .

Corollary 3.24. If N1 ⊂ int N2 are two G–regular reighborhoods of Y in the

interior of a G–manifold M , then cl(N2 \N1) is a G–collar on ∂N2.

Proof. Following the nonequivariant proof (Corollary 3.18 in [RS82]), let K1 and

K2 be admissible G–triangulations of M yielding N1 and N2 respectively as the

simplicial neighborhoods of Y as in the Simplicial G–Neighborhood Theorem

3.20. Choose a derived G–subdivision K of K2 near Y . Let N be the resulting
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G–regular neighborhood of Y . Then, as we saw in the proof of 3.20, cl(N2 \N)

is a G–collar on ∂N2. Then both N and N1 are G–regular neighborhoods of Y in

N2, so there is a G–homeomorphism of N2 sending N1 to N , and hence cl(N2\N1)

to cl(N2 \N).

3.2.3 G–Collapsing Criterion

Let M1 ⊂M be n–G–manifolds with an elementary G–collapse from M = M1 ∪

GDn to M1 such that (1) Dn ∩M1 = Dn−1 lies in a G–collarable subpolyhedron

W ⊆ ∂M1, (2) under the GDn–triangulation K = y ∗ L of Dn−1, if gDn 6= Dn,

then gDn ∩Dn ⊂ |L| × {0}, and (3) y ∈ ∂Dn−1 implies that, in the G–collar on

W, |y ∗ ∂L| × I ⊂ ∂M . Then this collapse is called an elementary G–shelling,

and we call a sequence of elementary G–shellings a G–shelling.

While collapsing only shows homotopy equivalence in general, shellings show

homeomorphic equivalence.

Lemma 3.25. If M G–shells to M1, then there is a G–homeomorphism h : M →

M1 which is the identity outside a given neighborhood of M \M1.

Proof. As in the corresponding proof of Lemma 3.25 in [RS82], we need only

to consider the case of an elementary G–shelling. Let M = M1 ∪ GDn give the

elementary G–shelling. Denote GDn by H. Let K = y∗L be the H–triangulation

of Dn−1 from the definition of elementary G–collapse.

Choose a G–collar on GDn−1 in M1 within the given neighborhood of M \M1.

We may consider the disk Dn−1 × [−1, 1] with Dn = Dn−1 × [−1, 0], En =

Dn−1 × [0, 1] ⊂ M1, and Dn−1 = Dn−1 × {0}. Then if Dn 6= gDn, we have

that Dn−1 × [−1, 1] may only intersect gDn−1 × [−1, 1] in |L| × [0, 1]. We will

define an H–homeomorphism from Dn−1 × [−1, 1] to En which is the identity
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Figure 3.2: Shelling homeomorphism

on |L| × [0, 1] ∪ |K| × {1}; such a homeomorphism can then be extended, first

equivariantly to all of G(Dn−1 × [−1, 1]) and then by the identity to the rest

of M . This last extension is possible because either |L| × I = ∂Dn−1 × I or

cl(∂Dn−1 \ |L|)× I = |y ∗ ∂L| × I ⊂ ∂M .

Let K ′ be a derived H–subdivision of K near y. We have that |K| × {−1} ∪

|L| × [−1, 0] is H–homeomorphic to |K ′| = |NK′(y)| ∪ |NK′(L)| because they

are both H–homeomorphic to |K| with an H–collar attached outside to |L|.

Therefore, we have an H–homeomorphism from Dn−1×{−1, 1}∪ |L|× [−1, 1] to

Dn−1×{0, 1}∪ |L| × [0, 1]. Coning the two polyhedra with (y, 0) and (y, 1
2
) gives

the desired H–homeomorphism from En ∪Dn to En.

Coupled with 3.25, the next theorem will show that when X and Y differ only

by G–collapses, their G–regular neighborhoods are G– homeomorphic.

Theorem 3.26. Suppose Y ⊆ X are G–polyhedra in a G–manifold M . If X ↘G

Y , then a G–regular neighborhood of X G–shells to a G–regular neighborhood of

Y in M .
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Proof. We follow the proof of the nonequivariant version, Theorem 3.26 in [RS82],

checking that the conditions of G–shelling are satisfied. The proof uses induction

on the dimension of the collapse from X to Y .

Suppose that the theorem holds when the G–collapse is (m− 1)–dimensional.

We now consider the case where there is an m–dimensional elementary G–collapse

from X to Y . Let X = Y ∪GDm, with Y ∩Dm = Dm−1 × {0} where Dm ≈GDm

Dm−1 × I. For simplicity, we will from now on denote the subgroup GDm by H.

Let K be an admissible G–triangulation of M with full subcomplexes L2 ≤ L1

triangulating Y and X respectively. Denote by J the subcomplex triangulating

Z = Dm−1×{1} ⊂ Dm, and by GJ , the resulting G–triangulation of its G–orbit,

GZ. Finally, let y be the apex in the GDm–cone structure of Dm−1. Note then

that {y}×I is fixed pointwise by H, and any point (y, t) with t > 0 has stabilizer

exactly H. Let x = (y, 1
2
).

We may assume that there are no vertices of K0 in Dm−1 × (0, 1): To see

this, consider the projection p : Dm−1 × [0, 1] → [0, 1]. We may subdivide (H–

equivariantly) to make the map simplicial, so that I is partitioned into subinter-

vals [0 = ε0, ε1], [ε1, ε2], . . . , [εk−1, 1 = εk]. Then there is an elementary H–collapse

of p−1[0, εi] to p−1[0, εi−1] for 1 ≤ i ≤ k. Each one of these individual collapses

and their orbits satisfies our assumption.

Now we choose a derived G–subdivision K ′ of K near L2 ∪ GJ . Choose the

derived vertices for simplices in L1 \ (L2 ∪ GJ) in Gp−1(1
2
) ensuring that x is

one of them, and denote by L′ the new triangulation of X. Then NK′(L′) gives

a G–regular neighborhood of X, which is the union of NK′(L2) and NK′(GJ),

G–regular neighborhoods of Y and GZ respectively. By 2.5, there is an (m −

1)–dimensional H–collapse from |J | to (y, 1), so the induction hypothesis, 3.16,

and 3.25 together imply that |NK′(J)| is an n–dimensional H–disk. Let En =
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Figure 3.3: Regular neighborhood shelling

|NK′(J)|. By 3.9, En is H–homeomorphic to | stṄK′ (J)(x)| × I.

We will show that if NK′(gJ) 6= NK′(J), the two subcomplexes must be

disjoint. For such a g, suppose there exists a vertex v = vτ ∈ NK′(gJ) ∩NK′(J).

(Note that it must be a derived vertex since gJ and J are themselves disjoint.)

Then τ ∈ K contains vertices u and w of gJ and J respectively. Thus, ρ =

{u,w} ∈ L1 since L1 is a full subcomplex of K, but |ρ| is not contained in Y and

it is not contained in GDm since a simplex in Dm may only contain vertices from

L2 and J , not gJ . This contradicts X = Y ∪ GDm, so NK′(gJ) ∩ NK′(J) must

be empty. Since we have shown that gEn 6= En implies gEn ∩ En = ∅, it must

be true that GEn = H.

We next prove that |NK′(J)| ∩ |NK′(L2)| is an (n− 1)–disk En−1 which is H–

homeomorphic to | stṄK′ (J)(x)|, giving that En is H–homeomorphic to En−1 × I

as required. To see this, we show that En−1 is an H–regular neighborhood of

Dm−1×{1
2
} in the (n−1)–H–manifold |ṄK′(J)|, so that we may again invoke the

induction hypothesis for (m−1)–dimensional collapses and 3.25 (since Dm−1×{1
2
}

H–collapses to x and an H–regular neighborhood of x is the desired star of x).
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Let P be the subcomplex of K ′ triangulating Dm−1×{1
2
} and let Q = ṄK′(J)

for brevity. The claim then is that NQ(P ) = NK′(L2) ∩NK′(J).

Let σ ∈ NK′(L2) ∩ NK′(J), we easily see that σ cannot intersect L0
2 or J0

and must consist only of derived vertices of the form vρ. Then there must exist

u ∈ L0
2 and w ∈ J0 such that σ∪{u} and σ∪{w} are both simplices of K ′. This

implies that there exists vρ ∈ σ for some ρ ∈ K containing both u and w. But

then {u,w} ∈ L1 due to the fullness of L1. Thus, v{u,w} is in P and can be added

to σ, so σ ∈ NQ(P ). Hence, we have NK′(L2) ∩NK′(J) ⊆ NQ(P ).

For the other inclusion, if σ is in NQ(P ), it means that there is a vτ ∈ P 0 such

that σ∪{vτ} is in Q for some τ which contains vertices from both L2 and J . We

note again that σ consists only of derived vertices since it is in Q = ṄK′(J), so

let ρ be the minimal face such that vρ ∈ σ ∪ {τ}. Then ρ ≤ τ , so we have that

ρ ∈ L1. Since ρ was subdivided, it must contain some vertex u ∈ L0
2. Therefore,

u may be added to σ to get a simplex of K ′ intersecting L0
2, i.e., σ ∈ NK′(L2),

and it is already in Q ⊂ NK′(J). This proves that NK′(L2) ∩NK′(J) = NQ(P ).

This finishes the proof that En−1 is an H–regular neighborhood of Dm−1 × {1
2
}

in |Q| and therefore H–homeomorphic to the (n− 1)–disk | stQ(x)| as explained.

Observe that GEn∩|NK′(L2)| ⊂ |ṄK′(L2)|, which is G–collarable in |NK′(L2)|

by 3.7.

There is one remaining condition to check for this to be a G–shelling. Write

En−1 = | stQ(x)|. Then we must verify that x ∈ ∂En−1 implies that within the

G–collar on |ṄK′(L2)| in |NK′(L2)|, |x∗∂ lnkQ(x)|×I ⊂ ∂|NK′(L′)|. It suffices for

us to show that every simplex of x ∗ ∂ lnkQ(x) lies on ∂M because the G–collar

is given by moving derived vertices around within simplices of K. Thus, if a

simplex σ consisting only of derived vertices lies on ∂M , then σ × I lies on ∂M ,

and hence also on ∂|NK′(L′)|.
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Since En−1 is an H–regular neighborhood of x ∈ |Q|, if x ∈ ∂En−1, then

x ∈ ∂|Q| = |Q| ∩ ∂M . Thus, x ∈ ∂M , forcing it to also belong to ∂|NK′(L′)|.

Likewise, any simplex σ ∈ x ∗ ∂ lnkQ(x) containing x lies in ∂En−1 but not in

ṄQ(x), forcing σ to be in ∂M and therefore ∂|NK′(L′)|. Hence, we have proven

the final condition that this constitutes a G–shelling of a G–regular neighborhood

of X to a G–regular neighborhood of Y .

We proved the following corollary during the previous proof’s induction.

Corollary 3.27. If Y ⊆ M G–collapses to a point, any G–regular neighborhood

of Y in M is an n–G–disk.

Corollary 3.28. If an n–G–manifold M G–collapses to a point, it is an n–G–

disk.

Proof. Let x be a point in M to which it G–collapses. M is a G–regular neigh-

borhood of itself, so M G–shells to (and is therefore G–homeomorphic to) an

n–disk.

Corollary 3.29. If X is in the interior of M and X ↘G Y , then a G–regular

neighborhood of X in M is a G–regular neighborhood of Y in M .

Proof. Let N1 be a G–regular neighborhood of X in M . By 3.26, N1 G–shells to

N2, aG–regular neighborhood of Y inM , so by 3.25, there is aG–homeomorphism

of M mapping N2 to N1. The homeomorphism carries any G–triangulation of

N2 to a G–triangulation of N1. Then, since any G–triangulation of N1 can be

extended to a G–triangulation of M by 3.8, we can apply 3.20 to get that N1 is

a G–regular neighborhood of Y in M .

We can now prove our final goal for this chapter, a characterization theorem

for G–regular neighborhoods based on G–collapses.
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Theorem 3.30 (Collapsing Criterion for G–Regular Neighborhoods). Let M be

an n–dimensional G–manifold, and let N ⊂ int M be a G–invariant neighborhood

of a G–polyhedron Y . Then N is G–regular if and only if

(i) N is an n–manifold with boundary ∂N G–bicollarable in M ,

(ii) N ↘G Y

Proof. The proof follows exactly the non-equivariant version (Corollary 3.30 in

[RS82]). Let K be an admissible G–triangulation of M with N = |NK(L)| a G–

regular neighborhood of Y = |L|. We already know N is an n–manifold by 3.19.

Choose a derived G–subdivision of K near L with the new vertices in f−1
L,K(ε) for

some ε ∈ (0, 1), so that N1 = f−1[0, ε] is another G–regular neighborhood of Y .

N1 has a regular cellular G–structure whose cells are obtained by intersecting the

interior simplices of NK(L) with f−1(0), f−1[ε], and f−1[0, ε]. We may collapse,

along with its orbit, each cell |σ| ∩ f−1[0, ε], σ ∈ NK(L) \ ṄK(L), and its face

|σ| ∩ f−1(ε), in order of decreasing dimension. That this is a G–collapse follows

from the admissibility of K. By 3.2, N G–collapses to Y as well.

For the other implication, suppose we have N satisfying conditions (i) and

(ii). Let C = ∂N × [−1, 1] be a G–bicollar with ∂N = ∂N × {0}. Then let

N1 = N ∪ ∂N × [0, 1
2
], which constitutes a G–regular neighborhood of N in M

because we can triangulate it to be a simplicial neighborhood. Therefore, by

3.29, since N ↘G Y , N1 is also a G–regular neighborhood of Y . But we can

define a G–homeomorphism on C fixing ∂N ×{−1, 1} and carrying ∂N ×{1
2
} to

∂N × {0}. We can extend this by the identity to all of M , mapping N1 to N ,

showing that the latter is also a G–regular neighborhood of Y in M .
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Chapter 4

Lovász Complexes

4.1 Graphs and Graph Multimorphisms

A graph Γ is a pair (VΓ, EΓ), where VΓ is a set (called the vertex set of Γ) and

EΓ (the edge set) is a collection of cardinality 2 multisets of elements of VΓ. If

{v, w} ∈ EΓ, we say the vertices v and w in VΓ are adjacent in Γ. An edge

{v, v} ∈ EΓ is called a loop. We call a graph with no loops a simple graph.

For simplicity, we will consider only finite graphs.

Let n ≥ 1. Denote by Kn the complete graph on n vertices. That is,

VKn = {1, . . . , n} and EKn consists of all edges of the form {i, j} with i 6= j.

Denote by Cn the n–cycle. VCn = {1, . . . , n}, ECn consists of all edges of the

form {i, i+ 1} as well as {1, n}. With these definitions, C1 is a single vertex with

a loop, and C2 = K2.

If Γ and Λ are graphs, a graph morphism from Γ to Λ is a function f : VΓ →

VΛ such that {v, w} ∈ EΓ implies {f(v), f(w)} ∈ EΛ. A morphism from Γ to

Kn is called an n–coloring of Γ, and if such a morphism exists, Γ is called

n–colorable. If Γ has any loops, it is not n–colorable for any n; there are no
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morphisms from a graph with loops to any simple graph.

A morphism which is bijective on vertices and on edges is a graph isomor-

phism. A group action on a graph Γ is an action of a group G on the set VΓ

with each group element inducing a graph isomorphism of Γ onto itself. We may

define the quotient graph Γ/G to be the graph with vertex set VΓ/G the set of

G–orbits in VΓ with an edge {Gv,Gw} ∈ EΓ/G if and only if {g1v, g2w} ∈ EΓ for

some g1, g2 ∈ G. Note that if a vertex in Γ is adjacent to any other vertex in its

orbit, Γ/G will have a loop.

A graph multimorphism from Γ to Λ is a relation φ ⊆ VΓ×VΛ such that (1)

φ(v) := {w ∈ VΛ | (v, w) ∈ φ} is non-empty for all v ∈ VΓ, and (2) any function

f ⊆ φ is a graph morphism. In other words, φ is a multimorphism when there is

a function f ⊆ φ and any function f ⊆ φ is a graph morphism. In particular, a

graph morphism is also a multimorphism.

Two graph multimorphisms φ : Γ → Λ and ψ : Λ → Θ can be composed to

obtain a multimorphism from Γ to Θ defined as ψ ◦φ := {(u,w) ∈ VΓ×VΘ | ∃ v ∈

φ(u) with w ∈ ψ(v)}. We check that this is a multimorphism. For each u ∈ VΓ,

we may choose v ∈ φ(u), and we may choose w ∈ ψ(v). Thus, ψ ◦ φ contains

a function. Second, let {u1, u2} ∈ EΓ. Since φ is a multimorphism, for any

v1 ∈ φ(u1) and v2 ∈ φ(u2), {v1, v2} ∈ EΛ, and further, since ψ is a multimorphism,

for any w1 ∈ ψ(v1) and w2 ∈ ψ(v2), {w1, w2} ∈ EΘ. Therefore, ψ ◦ φ is a graph

multimorphism.

4.2 Lovász Complexes

Multimorphisms from a graph Γ to another graph Λ form a poset under inclusion,

denoted Hom(Γ,Λ). It is the face poset of a regular cell complex, the Lovász
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multimorphism complex. We will use Hom(Γ,Λ) interchangeably to mean

both the face poset and the complex.

Consider φ, a multimorphism from Γ to Λ. For each vertex v ∈ VΓ, φ(v) is a

set of vertices in VΛ. If we give the vertices of Λ any total ordering, we have that

∆φ(v) is the full simplex on the set φ(v). Geometrically, the multimorphism φ

can itself be regarded as a product of simplices:

∏
v∈VΓ

|∆φ(v)|

Since each simplex is convex, the product is homeomorphic to a disk of dimension∑
v∈VΓ

(|φ(v)| − 1). Its boundary is comprised of the cells indexed by multimor-

phisms ψ ⊂ φ.

Hom(−,−) is a bifunctor from the category of graphs and graph multimor-

phisms to the category of regular cell complexes and cellular maps. It is con-

travariant in the first variable: A multimorphism α : Γ′ → Γ induces a cel-

lular map Hom(α,Λ): Hom(Γ,Λ) → Hom(Γ′,Λ) given by sending φ to φ ◦

α. It is covariant in the second variable: β : Λ → Λ′ induces a cellular map

Hom(Γ, β) : Hom(Γ,Λ)→ Hom(Γ,Λ′) by mapping φ to β ◦ φ.

If G and H are groups acting on Γ and Λ respectively, then G × H acts on

VΓ×VΛ, which induces an action on subsets of VΓ×VΛ, restricting to an action on

Hom(Γ,Λ) since the multimorphism conditions are preserved by any isomorphism

of Γ or Λ. Explicitly, the action on Hom(Γ,Λ) is given by ((g, h)φ)(v) = hφ(g−1v).

We will only make use of the equivariance in the first variable. In particular, a

graph Γ equipped with a G–action defines a functor Hom(Γ,−) from the category

of graphs and multimorphisms to regular cellular G–complexes and cellular G–

maps.
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Theorem 4.1. Let G be a group acting on a graph Γ. Let Λ be a simple graph.

Then the induced G–action on Hom(Γ,Λ) is fixed point free if and only if there

are no morphisms from the quotient graph Γ/G to Λ. The induced action is free

if and only if, for every nontrivial H ≤ G, there are no morphisms from Γ/H to

Λ.

Proof. Suppose there is a morphism φ : Γ/G→ Λ. Then there exists a morphism

φ̃ : Γ→ Λ which is constant on G–orbits. Thus φ̃ is a fixed point in Hom(Γ,Λ).

In the other direction, if φ is a fixed point, it must be constant on each orbit in

VΓ. This induces a multimorphism φG : Γ/G→ Λ. A morphism may be obtained

from φG by choosing any of its 0–cell.

For the second part of the theorem, if the G–action is free, then the action of

any subgroup H of G is fixed point free, so there are no morphisms from Γ/H

to Λ. If the G–action is not free, then there is a non-trivial stabilizer Gφ. The

Gφ–action is not fixed point, so there is a morphism from Γ/Gφ to Λ.

Corollary 4.2. Let G be a group acting on a graph Γ. The induced action on

Hom(Γ, Kn) is fixed point free if and only if the quotient graph Γ/G is not n–

colorable. The induced action is free if and only if, for every nontrivial H ≤ G,

Γ/H is not n–colorable.

From now on, we will assume all graphs are simple unless they are quotient

graphs. Thus, the presence of loops in Γ/G will immediately tell us that G acts

on Hom(Γ,Λ) without fixed points.

We consider as an example the edge complex functor, Hom(K2,−). Here,

let G be the group {±1} of automorphisms of the edge K2. We denote the vertices

of K2 by + and −, then the nontrivial group element −1 interchanges + and −,

and so acts as an involution on Hom(K2,Λ) by switching the subsets φ(+) and

50



φ(−) (of VΛ). This action is free by 4.1 (again, assuming that Λ is simple) because

K2/G is a loop.

An important case is the edge complex Hom(K2, Kn). As a poset, it consists

of pairs (A,B) of nonempty disjoint subsets of {1, . . . , n} (Here, A = φ(+) and

B = φ(−)), ordered by component-wise inclusion. It can easily be shown that

Hom(K2, Kn) is an (n− 2)–sphere.

Lemma 4.3. Hom(K2, Kn) is {±1}–homeomorphic to Sn−2 with the antipodal

action.

Proof. We denote the vertices of Kn by v1, v2, . . . , vn. Geometrically, a point in a

cell (A,B) of Hom(K2, Kn) looks like (a1v1 + . . .+ anvn, b1v1 + . . .+ bnvn), where

ai = 0 if vi /∈ A, bi = 0 if vi /∈ B, and a1 + . . .+ an = 1 = b1 + . . .+ bn.

We define a map h : Hom(K2, Kn)→ Rn by sending (a1v1 + . . .+anvn, b1v1 +

. . . + bnvn) to (a1 − b1, . . . , an − bn). This map is injective since A and B are

disjoint. In the image of this map, the sum of the coordinates is always zero,

so the image lies in the hyperplane orthogonal to the diagonal vector (1, . . . , 1).

Also note that the sum of the absolute values of the coordinates is always two,

so the image lies in the (n− 2)–sphere of radius two with respect to the L1 norm

(inducing the taxicab metric) within this hyperplane. An inverse map can be

defined from this (n−2)–sphere by assigning the coordinates with positive values

and negative values to φ(+) and φ(−) respectively. Thus, we see both that the

map is a homeomorphism and that the antipodal action on Sn−2 corresponds

exactly to switching φ(+) and φ(−) as claimed.

A multimorphism φ ∈ Hom(Γ,Λ) is also determined by specifying φ−1(w) :=

{v ∈ VΓ | (v, w) ∈ φ} for each w ∈ VΛ. For any φ, each φ−1(w) must be an

independent subset of vertices (i.e., no two elements are adjacent in Γ). The
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independence complex ind(Γ) of the graph Γ is the simplicial complex with

vertex set VΓ and simplices the independent subsets.

In the case when Λ = Kn, the only condition on each φ−1(w) is independence,

so Hom(Γ, Kn) consists of relations φ ⊂ VΓ×VKn such that: (1) φ(v) is nonempty

for all v ∈ VΓ, and (2) φ−1(j) ∈ ind(Γ) for j = 1, . . . , n. The link of φ in

Hom(Γ, Kn) is naturally identified with the join over all 1 ≤ j ≤ n of the links of

the simplices φ−1(j) in ind(Γ). Hence, when ind(Γ) is a combinatorial (G–)sphere,

Hom(Γ, Kn) is a closed (G–)manifold. The converse is also true [C05].

As an example, consider the complexes Hom(Cm, Kn). The independence

complexes of cycles are as follows: ind(C3) consists of 3 disjoint points, ind(C4)

is a pair of disjoint edges, ind(C5) is a pentagon (a PL-sphere), and for m >

5, ind(Cm) has maximal simplices of different dimensions and thus cannot be

a sphere. Therefore, among these cycle complexes, Hom(C5, Kn) is the only

manifold.

4.3 Restricted Lovász Complexes

Let Γ and Λ be finite simple graphs. Let I be an independent set of vertices of Γ.

Consider the graph morphism Γ\I → Γ given by inclusion. This induces a cellular

map Hom(Γ,Λ) → Hom(Γ \ I,Λ) defined by restricting each multimorphism to

VΓ \ I. Define HomI(Γ,Λ) to be the image of this map. Thus, HomI(Γ,Λ) is the

subcomplex of Hom(Γ \ I,Λ) whose cells are the multimorphisms φ : Γ \ I → Λ

that can be extended to all of Γ. Another way of viewing this complex is by

taking the multimorphisms from Γ to Λ and identifying two of them if they differ

only on the set I.

If G is a group acting on Γ, HomI(Γ,Λ) inherits the G–action only when I is
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(setwise) G–invariant.

The projection from Hom(Γ,Λ) to HomI(Γ,Λ) is a homotopy equivalence since

the fibers are contractible [C05]. In fact, for Λ = Kn, it was proven by Schultz

[S08] that the two complexes are homeomorphic (but not via the aforementioned

projection) whenever ind(Γ) is a PL-sphere. We do not prove the full equivariant

version of that result, but we will need the following version of one of Schultz’s

lemmas in [S08].

Lemma 4.4. Let Γ be a graph with a G-action, n ≥ 1, and I a G–invariant,

independent subset of the vertex set VΓ. For all v ∈ VΓ, define

Av := {J ∈ ind(Γ) | v ∈ J}

Bv := {J \ I | J ∈ Av}

If there is a G–homeomorphism h : |∆ ind(Γ)| → |∆ ind(Γ \ I)| such that

h(|∆Av|) = |∆Bv| for all v ∈ VΓ, then Hom(Γ, Kn) is G–homeomorphic to

HomI(Γ, Kn).

Proof. Following exactly [S08], we consider the equivariant poset embedding

f : Hom(Γ, Kn)→
n∏
i=1

ind(Γ) = ind(Γ){1,...,n}

given by φ 7→ (φ−1(i))i. Then Hom(Γ, Kn) ≈G |∆im f |. The poset ind(Γ){1,...,n}

can naturally be identified with those relations φ ⊆ VΓ × {1, . . . , n} that are

multimorphisms from the induced subgraph on the vertices with φ(v) nonempty

to the complete graph Kn. The additional condition that no φ(v) can be empty
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yields the following description:

im f =
⋂
v∈VΓ

n⋃
j=1

n∏
i=1

 Av, i = j

ind(Γ), i 6= j

All the Av satisfy the condition that if x ∈ Av and x ≤ y, then y ∈ Av. Therefore,

taking the order complex commutes with unions, and we obtain that

Hom(Γ, Kn) ≈G
⋂
v∈VΓ

n⋃
j=1

n∏
i=1

 |∆Av|, i = j

|∆ ind(Γ)|, i 6= j

We use a similar argument for HomI(Γ, Kn). The image of its embedding in

ind(Γ \ I){1,...,n} has the additional condition that for each vertex in I, there is

some element of {1, . . . , n} that is not related to any of its neighbors in Γ. We

have that, for v /∈ I, Bv satisfies the same condition as Av above. For v ∈ I, Bv

also satisfies the condition that if x ∈ Bv and y ≤ x, then y ∈ Bv. Hence,

HomI(Γ, Kn) ≈G
⋂
v∈VΓ

n⋃
j=1

n∏
i=1

 |∆Bv|, i = j

|∆ ind(Γ \ I)|, i 6= j

Thus, using the G–homeomorphism from the hypothesis on each coordinate in

the product, we obtain that Hom(Γ, Kn) ≈G HomI(Γ, Kn).
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Chapter 5

Equivariant Csorba Conjecture

5.1 The Stiefel Manifold Vn−1,2 and Hom(C5, Kn)

The Stiefel manifold Vn,k is the space of ordered, orthonormal k–frames in the

Euclidean space Rn [J77]. Explicitly, we define Vn,k := {(x1, x2, . . . , xk) ∈ Sn−1×

Sn−1 × . . .× Sn−1 |xi · xj = 0 for all i 6= j}.

In particular, we consider Vn−1,2, the space of ordered, orthonormal 2–frames

in Rn−1. The orthogonal group O2(R) acts on Vn−1,2 with the quotient space being

the Grassmannian Grn−1,2. O2 is the semi-direct product of rotations SO2 with

any reflection. Two natural reflections to consider are (i) (x, y) 7→ (x,−y) and

(ii) (x, y) 7→ (y, x). Since any two reflections are conjugate via a rotation, these

give equivalent actions on Vn−1,2. An explicit G–homeomorphism Vn−1,2 → Vn−1,2

interchanging the actions (i) and (ii) is the map (x, y) 7→ 1√
2
(x+ y, x− y).

On the combinatorial side, we consider the multimorphism cycle complex

Hom(C5, Kn). Recall that C5 has vertices {1, 2, 3, 4, 5} and edges {i, i + 1} for

1 ≤ i < 5 and {1, n}. There is a G–action on the cycle C5: −1 acts by the

reflection i 7→ 6− i for all i ∈ VC5 . This induces an involution on Hom(C5, Kn).
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In his thesis [C05], Csorba showed that, for small n, Hom(C5, Kn) is G–

homeomorphic to the Stiefel manifold Vn−1,2 with the involution (i) and conjec-

tured that this was true for all n. That the two are nonequivariantly homeo-

morphic was proven by C. Schultz, who further proved that that Hom(C5, Kn) is

equivariantly homotopy equivalent to Vn−1,2 [S08], again using action (i). Using

the equivalent G–action (ii) on Vn−1,2, we give a proof of the equivariant version

of Csorba’s conjecture.

Theorem 5.1 (Equivariant Csorba Conjecture). Let G = {±1} act on Vn−1,2 via

the involution (x, y) 7→ (y, x). Then Hom(C5, Kn) is G–homeomorphic to Vn−1,2.

Both of the involutions on Vn−1,2 extend to all of Sn−2×Sn−2. The reflection

(i) has no fixed points in Sn−2×Sn−2, while (ii) fixes every point in the diagonal

subspace {(x, x) ∈ Sn−2 × Sn−2}.

The set N = {(x, y) ∈ Sn−2 × Sn−2 |x · y ≥ 0} is a regular neighborhood of

the diagonal with boundary exactly Vn−1,2. Thus, if G is the group {±1} with

the nontrivial element acting by the reflection (x, y) 7→ (y, x), the diagonal is

G–invariant, and we have that N is a G–regular neighborhood of the diagonal.

The strategy employed in Schultz’s proof and in our proof is to find a regular

neighborhood of the diagonal in a triangulation of Sn−2 × Sn−2 whose boundary

is Hom(C5, Kn). Since the diagonal is G–invariant under action (ii), we are able

to find a neighborhood that is G–regular. Therefore, for the rest of this chapter,

G will be {±1} acting on Sn−2 × Sn−2 (and hence also Vn−1,2) by the involution

(ii).

Vital in both proofs is selecting a G–invariant independent set I of vertices

in C5 and passing to a restricted multimorphism complex HomI(C5, Kn). Where

Schultz uses the set {2, 4}, we use {3}. We may pass to the restricted complex
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Figure 5.1: |∆ ind(C5)| and |∆ ind(C5 \ {3})|

by showing that {3} meets the conditions of 4.4.

Proposition 5.2. Hom{3}(C5, Kn) is G–homeomorphic to Hom(C5, Kn).

Proof. We show the requirements of 4.4 are satisfied. It is easily seen from Figure

5.1. Let K = ∆ ind(C5) and L = ∆ ind(C5 \{3}). We first construct the required

G–homeomorphism from |∂K| to |∂L|. Triangulate |L| by choosing a derived G–

subdivision of ind(C5 \ {3}) near {1} and {5}; cone {1, 5} with the vertex ∅. We

have now a triangulation of |∂L|. We cone it with the point x = 1
2
{2, 4}+ 1

2
∅ ∈ |L|.

This gives a new G–triangulation of |L|; call it L′. There is a simplicial map from

K to L′ given by mapping {1} and {5} to the two new derived vertices of ∂L′,

the vertices {1, 3} and {3, 5} to {1} and {5} respectively, the vertex {3} to ∅,

∅ to x and the remaining vertices to themselves. This simplicial map induces

a G–homeomorphism from |K| to |L′|, and it is easily seen that each |∆Av| is

mapped to |∆Bv|. The theorem now follows from 4.4.

Now we may turn our attention to Hom{3}(C5, Kn). Let P4 be the path of

length 4 starting at 1 and ending at 5 (i.e., the graph obtained from C5 by
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deleting the edge {1, 5}). Then Hom{3}(C5, Kn) ⊂ Hom{3}(P4, Kn) ⊂ Hom(P4 \

{3}, Kn). These inclusions are cellular and equivariant with respect to the in-

volution induced from i 7→ 6 − i for 1 ≤ i ≤ 5. Note that P4 \ {3} consists

of two disjoint copies of K2, the edges {1, 2} and {4, 5}, which are interchanged

by the G–action. We see then that Hom(P4 \ {3}, Kn) is naturally identified

with Hom(K2, Kn) × Hom(K2, Kn), which we know by 4.3 is homeomorphic to

Sn−2 × Sn−2. Finally, we have the graph morphism P4 \ {3} → K2 which sends

1 and 5 to + and 2 and 4 to − inducing the diagonal embedding of the sphere

Hom(K2, Kn) in Hom(P4 \ {3}, Kn) as the fixed point set of the involution (but

not as a subcomplex).

We will show that Hom{3}(P4, Kn) is a G–regular neighborhood of the di-

agonal in Hom(P4 \ {3}, Kn) = Hom(K2, Kn) × Hom(K2, Kn) with boundary

Hom{3}(C5, Kn). This will prove the conjecture.

We describe these face posets concretely: All are comprised of four-tuples of

nonempty subsets A,B,C,D of {1, . . . , n} satisfying further conditions. For any

cell φ, A,B,C,D are φ(1), φ(2), φ(5), and φ(4) respectively. In Hom(P4\{3}, Kn)

we have only that A ∩ B = ∅ = C ∩ D. In Hom{3}(P4, Kn) we also have that

B∪D 6= {1, . . . , n}, and Hom{3}(C5, Kn) has the further restriction that A∩C =

∅. The diagonal Hom(K2, Kn) has A = C and B = D (in addition to A∩B = ∅).

We prefer to denote these cells as arrays

φ =

 A B

C D


to remind us of their locations in terms of the vertices of the pentagon C5, and

the involution simply interchanges the rows. Such an array should not be thought
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of as a 2× 2 matrix.

Before proceeding, we will show that Sn−2 × Sn−2 is a G–manifold. This will

require the following fact.

Proposition 5.3. Let G = {±1} act on a join of two spheres Sm ∗ Sm with the

nontrivial element −1 acting by interchanging the two spheres. Then Sm ∗ Sm is

a (2m+ 1)–dimensional G–sphere.

Proof. Consider first the case m = 0. Let S0 = {−1, 1}. A point in the join

S0 ∗ S0 looks like tv + (1 − t)w where 0 ≤ t ≤ 1, v ∈ {(1, 0), (−1, 0)}, and

w ∈ {(0, 1), (0,−1)}. We map S0 ∗ S0 to S1 be sending a point tv + (1− t)w to
√
tv +

√
1− tw. The involution fixes the subspace of R2 spanned by the vector

(1, 1) and acts nontrivially on the orthogonal complement, the subspace spanned

by (1,−1). We see then that this S1 is a G–sphere S(ρ) where ρ is the direct

sum of the trivial representation and the sign representation of G.

Now any join of sphere Sm ∗ Sm can be rewritten as the join (S0 ∗ S0) ∗ (S0 ∗

S0) ∗ . . . (S0 ∗ S0) of m + 1 copies of (S0 ∗ S0), where each pair of 0–spheres is

interchanged by the involution. Each joined pair is a 1–dimensional G–sphere

S(ρ) as above, so Sm ∗ Sm is G–homeomorphic to a join of m+ 1 copies of S(ρ),

which is itself G–homeomorphic to the (2m−1)–dimensional sphere S((m+1)ρ).

To check that the links of vertices in Sm ∗ Sm are G–spheres and finish the

proof, we need an admissible G–triangulation. Let L be the triangulation S0∗. . .∗

S0 of a single Sm, and we let K be the barycentric subdivision of the triangulation

of L ∗ L = (S0 ∗ S0) ∗ (S0 ∗ S0) ∗ . . . (S0 ∗ S0). A vertex v in K0 corresponds

to a simplex of the original triangulation L ∗ L. If v corresponds to a simplex

not in the diagonal (i.e., whose coordinates in at least one of the S0 ∗ S0 pairs

differ), then v has trivial stabilizer in G, and the condition is just that lnkK(v)
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is a (2m− 2)–sphere, which we have automatically since Sm ∗ Sm is a manifold.

If v corresponds to a simplex σ = σ1 ∪ σ2 in the diagonal (where σ1 and σ2 are

the sets of vertices from the first and second Sm respectively with (−1)σ1 = σ2),

then lnkK(v) is isomorphic to the join of ∆F (K)<σ with ∆F (K)>σ.

The poset F (K)<σ is simply F (∂σ). However, ∂σ = σ1 ∗ ∂σ2 ∪ ∂σ1 ∗ σ2,

the union of two disks whose intersection is the (by induction) G–sphere ∂σ1 ∗

∂σ2. Since σ1 and σ2 are switched by the involution, we have that |∂σ| is G–

homeomorphic to |S0 ∗ ∂σ1 ∗ ∂σ2|, with the new S0 a sphere in the sign represen-

tation of G. Therefore, ∆F (K)<σ is a G–sphere.

On the other hand, the poset F (K)>σ is isomorphic to F (lnkL(σ1)∗ lnkL(σ2)).

Since σ was on the diagonal, σ1 and σ2 are the same simplex in L, and lnkL(σ1)∗

lnkL(σ2) is a join of two identical spheres which are interchanged by the G–action.

Thus, ∆F (K)>σ is also a G–sphere by induction.

Since both ∆F (K)<σ and ∆F (K)>σ are G–spheres and their triangulations

are admissible, their join, lnkK(v), is a G–sphere.

Proposition 5.4. Let G = {±1} act on Sm × Sm with −1 interchanging the

spheres. Then Sm × Sm is a 2m–dimensional G–manifold.

Proof. A regular cellular G–structure for Sm × Sm is obtained by again taking

L to be the join of m + 1 copies of S0 to triangulate Sm and then letting K be

the face poset L × L. Then ∆K is an admissible G–triangulation of Sm × Sm,

and we need only check that the link of a vertex v is a Gv–sphere. A vertex v

of ∆K corresponds to a cell (σ, τ), where σ and τ are simplices of L. If σ 6= τ ,

the stabilizer Gv is trivial, and the link is a sphere since Sm × Sm is a manifold,

so there is nothing more to check. If σ = τ , Gv = G and lnk∆K(v) is the join

∆K<(σ,σ) ∗∆K>(σ,σ).
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An element of the lower link is obtained by deleting a proper subset from

at least one of the two copies of σ. Thus, K<(σ,σ) is isomorphic to the poset

F (∂σ ∗ ∂σ)op (where P op is the dual poset to P ). Since ∆P op is isomorphic to

∆P for any poset P , we have that |∆K<(σ,σ)| is G–homeomorphic to |∂σ ∗ ∂σ|, a

G–sphere by 5.3.

The upper link of (σ, σ) in K is isomorphic to F (lnkL(σ)∗ lnkL(σ)). Since L is

a combinatorial sphere, lnkL(σ) is a sphere, so we have that ∆F (lnkL(σ)∗lnkL(σ))

is a G–sphere, again by 5.3.

Thus lnk∆K(v) is the join of two combinatorial G–spheres with admissible

triangulations, so ∆K is a combinatorial G–manifold with dimension 2m (since

we already know that, nonequivariantly, Sm × Sm is a 2m–manifold).

5.2 Proof of the Conjecture

In this section, G is the group {±1}. We show that Hom{3}(P4, Kn) is a G–

regular neighborhood of the diagonal Hom(K2, Kn) in Hom(P4 \ {3}, Kn) using

the collapsing criterion, i.e., we show that it is a manifold of the correct dimen-

sion, that it (simplicially) G–collapses to the diagonal, and that its boundary is

Hom{3}(C5, Kn). For simplicity, we represent elements of the posets in question

as arrays whose entries A,B,C,D are nonempty subsets of {1, . . . , n}.

Define

M := {φ =

 A B

C D

 | A ∩B = ∅, C ∩D = ∅}

K := {φ ∈M | B ∪D 6= {1, . . . , n}}
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L := {φ ∈ K | A ∩ C = ∅}

S := {φ ∈ K | A = C, B = D}

We reiterate that M , K, and L are the face posets of the G–regular cell

complexes Hom(P4 \{3}, Kn), Hom{3}(P4, Kn), and Hom{3}(C5, Kn) respectively,

and S that of the diagonal Hom(K2, Kn) in Hom(P4 \ {3}, Kn) = Hom(K2 ∪

K2, Kn). By passing to order complexes, we obtain that ∆S and ∆L are full

G–subcomplexes of ∆K, which is a full G–subcomplex of ∆M , and they are all

admissible. Our goal is to show that |∆K| is a G–regular neighborhood of |∆S|

whose boundary is |∆L|.

Proposition 5.5. ∆K is a (2n− 4)–manifold with boundary ∆L.

Proof. We show that the link of an element of K is a sphere or a disk of dimension

(2n − 5). For any φ =

 A B

C D

 ∈ K, lnk∆K(φ) = ∆K<φ ∗ ∆K>φ. For any

φ ∈ K, we obtain an element of its lower link by deleting proper subsets from

each of A, B, C, and D, at least one of which is nonempty. Therefore, K<φ is

isomorphic to the face poset of ∂∆A ∗ ∂∆B ∗ ∂∆C ∗ ∂∆D, yielding that ∆K<φ

is a combinatorial sphere of dimension |A|+ |B|+ |C|+ |D| − 5. (Recall that, if

A is an unordered set, ∆A is the full simplex having A as its vertex set, whereas,

if P is a poset, ∆P is its order complex.)

When φ ∈ K \ L, we show that ∆K>φ is a sphere of dimension 2n − |A| −

|B| − |C| − |D| − 1, yielding that lnk∆K(φ) is a sphere of dimension 2n− 5. For

any φ′ =

 A′ B′

C ′ D′

 ∈M such that φ′ > φ, we have that

∅ 6= A ∩ C ⊆ A′ ∩ C ′ ⊆ (B′ ∪D′)c
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so that φ′ ∈ K. Thus, to obtain an element of the upper link of φ, any element

of the complement (A ∪ B)c can be added to either A or B, but not to both,

and similarly for elements of (C ∪ D)c. As a consequence, we have that K>φ is

isomorphic to the face poset of ∗mi=1S
0 where m = |(A ∪ B)c| + |(C ∪ D)c|, and

therefore ∆K>φ is a sphere of dimension 2n−|A|− |B|− |C|− |D|−1 as claimed.

In the case where φ ∈ L, we claim that ∆K>φ is a disk of dimension 2n −

|A| − |B| − |C| − |D| − 1, meaning that lnk∆K(φ) is a disk of dimension 2n− 5.

This will finish the proof that ∆K is a manifold and ∆L is its boundary. To see

that K>φ is the face poset of a subcomplex of a join of spheres, we consider the

various types of elements that we can add to one or more of A, B, C, and D to

obtain a larger element of K.

1. An element of A ∩ D cannot be added anywhere (while remaining in M).

The same is true for elements of B ∩D and B ∩ C. Thus, these elements

contribute nothing to the upper link.

2. An element of B \ (C ∪D) can be added to C or to D; doing so will give

us something in K, since the element was already in B ∪D. Thus, each of

these elements contributes a copy of S0 to the join of spheres. Similarly,

each element of D \ (A ∪B) contributes a copy of S0 to the join.

3. An element of A \ D can be added to C or to D, contributing a copy of

S0 = {±1} to the join with +1 indicating that the element was added to

C and −1 indicating D. Similarly, an element of C \B can be added to A

(+1) or to B (−1). Adding elements of Type 3 to B or D could produce

something not in K.

4. An element of (A ∪ B ∪ C ∪ D)c can be added to A or B (but not both)
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and, at the same time, to C or D (but not both). This contributes a copy

of S1 = {±1} ∗ {±1} (treated as a single coordinate) to the join of spheres

with the +1’s corresponding to A and C and the −1’s corresponding to B

and D. As with Type 3, adding this type of element to B or D could yield

something not in K.

To ensure that we remain in K, there must be an element of (B ∪D)c which is

not added to B ∪D. In terms of coordinates, this means there must be at least

one coordinate corresponding to Type 3 or 4 above that has no −1’s.

Before proceeding, we define

Fk,l ⊆ (∗ki=1S
1) ∗ (∗lj=1{±1})

to be the subcomplex whose simplices have at least one coordinate from the join

with no −1’s. (Note that, as before, each copy of S1 = {±1} ∗ {±1} is regarded

as a single coordinate.) We will prove a lemma (5.6) stating that Fk,l is a disk of

dimension 2k + l − 1.

Assuming Lemma 5.6 for now, since K>φ is isomorphic to the face poset

of (∗mi=1S
0) ∗ Fk,l where k = |(A ∪ B ∪ C ∪ D)c|, l = |A \ D| + |C \ B|, and

m = |B \ (C ∪ D)| + |D \ (A ∪ B)|, we have that ∆K>φ is a disk of dimension

2n− |A| − |B| − |C| − |D| − 1 as we had claimed.

To see that this is the dimension, we simply verify the following calculation:
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m− 1 + 2k + l = |B \ (C ∪D)|+ |D \ (A ∪B)|

+ 2|(A ∪B ∪ C ∪D)c|+ |A \D|+ |C \B| − 1

= 2n− 2|A| − 2|B| − 2|C| − 2|D|

+ 2|A ∩D|+ 2|B ∩ C|+ 2|B ∩D|

+ |B \ (C ∪D)|+ |D \ (A ∪B)|

+ |A \D|+ |C \B| − 1

= 2n− |A| − |B| − |C| − |D| − 1

Lemma 5.6. For k, l ∈ N such that 2k + l − 1 ≥ 0, Fk,l is a disk of dimension

2k + l − 1.

Proof. We proceed by induction on the dimension, 2k+ l− 1. In the initial case,

F0,1 has a single S0 coordinate which must be +1, so it is a single point, i.e. a

disk of dimension 0. To prove Fk,l is a disk, we will show that it is a (2k+ l− 1)–

manifold, show it collapses to a vertex, and then apply Corollary 3.28. There are

four types of vertices whose links we need to consider:

1. +1 coming from one of the k S1 coordinates has as its link Fk−1,l+1, a

(2k + l − 2)–disk by induction.

2. −1 coming from one of the S1 coordinates has as its link S0 ∗ Fk−1,l, a

(2k + l − 2)–disk.

3. +1 coming from one of the l {±1} coordinates has as its link ∗2k+l−1
i=1 S0, a

(2k + l − 2)–sphere.
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4. −1 coming from one of the {±1} coordinates has as its link Fk,l−1, a (2k+

l − 2)–disk.

Now we will define a matching on Fk,l. First, we order the coordinates. In each

S1 coordinate, we also choose one of the two copies of {±1} to be distinguished.

Associate each simplex in Fk,l with the simplex obtained by inserting or removing

+1 to or from the first coordinate lacking a −1 (in the distinguished copy of {±1}

in the case the first such coordinate is S1). Doing this does not change which

coordinate is the first without a −1, so the pairing is well-defined. Every simplex

is paired (∅ is paired with the vertex with a +1 in the first coordinate and nothing

in any other coordinate), so if there are no cycles in this matching, Fk,l collapses

to a point.

Suppose there were a cycle. It would have to be of the form:

σ0 l τ0 m σ1 l τ1 m σ2 l . . .l τs−1 m σs = σ0

where each σi is paired with τi. Also, for 1 ≤ i ≤ s, σi must be τi−1 minus a vertex

vi. Therefore, since this is a cycle, there must be a j such that τj = σj ∪ {vi}.

For this to be possible, vi must be a +1. Thus, all of the simplices in the cycle

must have all the same −1 coordinates, but if that is the case, the vertex to be

added in any σi l τi pair is always the same, and vi must be the same for every

i. This is a contradiction. Therefore, there are no cycles, and we have a Morse

matching with a single critical simplex.

Proposition 5.7. ∆K simplicially G–collapses to ∆S.
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Proof. The collapsing will occur in three steps. Define

K1 := {φ =

 A B

C D

 ∈ K | A ∩ C 6= ∅}

K2 := {φ ∈ K1 | A = C}

First, we collapse ∆K to ∆K1. Let σ be a chain of the form

φ0 < φ1 < . . . < φm−1 < φm

in ∆K where φi =

 Ai Bi

Ci Di

. If A0 ∩C0 = ∅, we want to pair σ with another

chain for which that is also true. Find the last k such that Ak ∩ Ck = ∅. Then

compare Bk and Dk to Bm and Dm. If Bk = Bm and Dk = Dm, pair σ with

the chain obtained by adding to (or deleting from) the end of σ the element Am ∪ (Bm ∪Dm)c Bm

Cm ∪ (Bm ∪Dm)c Dm

. Otherwise, find the first l > k where Bl 6= Bk

or Dl 6= Dk. Now pair σ with the chain obtained by inserting (or removing if

it equals Xl−1)

 Al Bl−1

Cl Dl−1

 before φl. Nowhere are we inserting or deleting

elements with A∩C = ∅, so the selection of k is not affected. In the second case,

we are inserting or deleting an element with Bl−1 = Bk and Dl−1 = Dk, so the

selection of l is not affected. Therefore, the matching is well-defined. The critical

simplices are exactly those where A0 ∩ C0 6= ∅, forming ∆K1, a subcomplex.

Therefore, if there are no cycles, we have a collapsing from ∆K to ∆K1. Also,

the pairings are chosen equivariantly, so we will have a G–collapse.
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Suppose we have a cycle

σ0 l τ0 m σ1 l τ1 m σ2 l . . .l τs−1 m σs = σ0

Again, for 1 ≤ i ≤ s, σi is obtained from τi−1 by deleting an element ψi, so

there must be a pair σj l τj = σj ∪ {ψi} coming from our matching. Therefore,

ψi ∈ K1 for all i, which means that all the simplices in our cycle have all of the

same elements with A ∩ C = ∅. Thus, they all have the same φk, so Bk and Dk

are fixed and we know that every ψi has them as its second column. As a result,

the elements after φk that have B 6= Bk or D 6= Dk are not changing as we move

through the cycle, implying that ψi is the same for all i. This is a contradiction,

so our matching has no cycles. This proves that ∆K G–collapses to ∆K1.

The next two collapsings are proved by Lemma 2.6. For the first, we define

h1 : K1 → K1 by h1(φ) =

 A ∩ C B

A ∩ C D

. This is an order-preserving G–

poset map, and h1(φ) ≤ φ. The fixed point set of h1 is exactly K2, so 2.6

implies that ∆K1 G–collapses to ∆K2. For the second collapsing, we now define

h2 : K2 → K2 by h2(φ) =

 A B ∪D

A B ∪D

. This is an order-preserving G–poset

map, h2(φ) ≥ φ, and the fixed point set is S. Therefore, the same lemma implies

that ∆K2 G–collapses to ∆S. Hence, ∆K G–collapses to ∆S.

Theorem 5.8. |∆K| is a G–regular neighborhood of |∆S| with boundary |∆L|.

Proof. G acts freely outside of |∆S|, so ∂|∆K| is G–bicollarable in |∆M |. Now

the theorem follows immediately from 3.30 (the collapsing criterion for G–regular

neighborhoods) and Propositions 5.5 and 5.7.

Now our main result 5.1 follows easily:
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Theorem 5.9. Hom{3}(P4, Kn) is a PL manifold with boundary Hom{3}(C5, Kn),

equivariantly homeomorphic to N := {(x, y) ∈ Sn−2 × Sn−2 | x · y ≥ 0}, where

the involution on N interchanges (x, y) with (y, x). Hence, Hom{3}(C5, Kn) and

Hom(C5, Kn) are both equivariantly homeomorphic to ∂N , i.e. the Stiefel mani-

fold Vn−1,2.

Proof. It follows from 2.1 that we have Hom{3}(P4, K
n) ≈G |∆K| with the sub-

complex Hom{3}(C5, K
n) ≈G |∆L|. Because |∆K| and N are both G–regular

neighborhoods of the diagonal, they are equivariantly homeomorphic by 3.2.

5.3 Questions

The Stiefel manifold Vn−1,2 has a natural action of the orthogonal group O2

(with the Grassmannian as the quotient). The equivariant homeomorphism

above is with respect to a single reflection in O2. The multimorphism complex

Hom(C5, Kn) does not have a combinatorial O2–action; however, there is the in-

duced action of the dihedral group D5 (a subgroup of O2) which is the group of

symmetries of the cycle C5. It seems natural to ask:

Question 5.10. Is Hom(C5, Kn) equivariantly homeomorphic to Vn−1,2 with re-

spect to the action of the dihedral group D5?

Unfortunately, neither of the smaller restricted models Hom{3}(C5, Kn) or

Hom{2,4}(C5, Kn) is D5–invariant, so it seems that one needs to work with the

full multimorphism complex Hom(C5, Kn) which does not have an obvious D5–

equivariant embedding into Sn−2×Sn−2. Also, a good (equivariant) combinatorial

candidate for N is missing, which is the obstacle to applying the methodology

above to answer this question positively.
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Another interesting line of inquiry is finding similar combinatorial models for

the other Stiefel manifolds Vn,k:

Question 5.11. Do there exist multimorphism complexes or restricted multimor-

phism complexes equivariantly homeomorphic to the Stiefel manifolds Vn−1,k?

There seems to be an obvious starting point: Let Γ be the disjoint union of k

copies of K2. Then Hom(Γ, Kn) is Σk–homeomorphic to the product of k copies

of Sn−2, where the symmetric group Σk permutes the edges of Γ and the spheres

in the product. Ideally, we would seek to find a larger graph Λ containing Γ as

a subgraph such that Hom(Λ, Kn) sits inside Hom(Γ, Kn) as the Stiefel manifold

Vn−1,k.
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