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ABSTRACT

A semi-analytical method is developed for analysis of slope stability
involving cohesive and non-cohesive soils. For sandy slopes, a planar slip surface is
employed. For clayey slopes, circular slip surfaces are employed including Toe
Failure, Face Failure and Base Failure resulting from different locations of a hard
stratum. Earthquake effects are considered in an approximate manner in terms of
seismic coefficient-dependent forces. The proposed method can be viewed as an
extension of the method of slices, but it provides a more accurate treatment of the
forces because they are represented in an integral form. Also, the minimum factor of
safety is obtained by using the Powell’s optimization technique rather than by a trial
and crror approach used commonly. The results (factor of safety) from the proposed
semi-analytical method developed in this study are compared with the solutions by
the Bishop method (1952) and the finite element method. and satisfactory
agreements are obtained. The proposed method is simpler and more straightforward
than the Bishop method and the finite element method. Also, it is found to be as
good as or better than traditional slope stability analysis methods.

An artificial ncural network is also introduced in this study. as an alternate
approach, for modeling slope stability. The proposed neural network model is a two-
layer recurrent neural network (RNN) with a sigmoid hidden laver and a lincar
output layer. The model is developed by using data trom 124 slopes collected for

this study. The input variables include the parameters that contribute to the tailure off

X1l



a slope and include the height of a slope, the inclination of slope, the height of water
level, the height of tension cracks at crest of slope, the depth of firm base, horizontal
and vertical seismic coefficients, the unit weight of soil, the cohesion of soil, the
friction angle of soil, the thickness of each layer, and the pore water pressure ratio
which is defined as the ratio of the pore water pressure to the overburden pressure
for a given layer. The output layer is a single linear neuron — the factor of safety of a
slope. Training is performed on the 104 slope data randomly selected from the 124
slopes and prediction or evaluation is based on the remaining 20 slopes. Statistical
analyses performed show that the results from the proposed RNN model are closer
to the finite element method than to the Bishop method and the proposed semi-
analytical method. A separate RNN model is developed to determine circular slip
surfaces by retraining the proposed neural network model with three neurons in the
output laycr, namely the coordinates of the center and the radius of the circular slip
surface. In comparison with the proposed setﬁi-analytical method, the proposed
RNN model is found to be more effective in representing relatively complex slopes

with layered soils and/or pore water pressures.
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CHAPTER 1
INTRODUCTION
1.1 Introduction
Slope stability has been a subject of continued concern because of tremendous loss
of properties and infrastructure caused annually by slope failures in North America
and other places in the world (Bishop and Morgenstern, 1960; Haug et al., 1976;
Schuster, 1978; Hansbo et al., 1985; Leshchinsky and Huang, 1992; Gottardi et al.,
1998; Shioi and Sutoh, 1999; Zhang, 2001). In the United States of America alone.
it is estimated that the direct and indirect costs of slope failures exceed S1 billion per
year (Bjerrum, 1967; Brunsden and Prior, 1984: National Research Council, 1985;
Fredlund and Scoular, 1999). It is therefore important to develop more effective
methods for the assessment of slope failures through evaluation of factor of safety.
Slope failures. also referred to as slides or landslides, whether sudden or

gradual, are due to overstress of the slope or foundation materials with respect to
their available strength (Morgenstern 1963; Davis, 1968; Ching and Fredlund, 1983;
Abramson, 1996; Dai et al., 2000). Overstresses may occur due to the following:

1) factors causing an increase in shear stress (e.g., external loads, steepening of

slope, undercutting of a slope at the toe. sudden drawdown, earthquakes);
2) factors causing a decrease in shear strength (e.g., liquefaction triggered by

shock or dynamic forces, saturation of a slope particularly in desiccated

soils. other factors that increase excess pore water pressure);



3) hydrodynamic forces (such as earthquake-induced waves, seepage forces);
4) hydrostatic forces (such as tension cracks filled with water in fissured clays
or desiccated clays, artesian pressures in filled aquifers).

Due to numerous factors affecting slope failures, slope stability analyses have
always been a difficult and complex task in geotechnical engineering and
geomechanics (Cousins, 1978; Leshchinsky et al., 1985; Wakai and Ugai, 1999).
Common practice in slope stability analysis involves either neglecting or over-
simplifying more complex soil behaviors and properties as well as seismic forces (in
case of carthquake-induced slope failures) (Ishthara, 1985; Seed and De Alba, 19806;
Liu, 1990; Fredlund and Scoular, 1999).

Traditional methods currently available for analyzing slope stability
problems include the Fellenius Method (also called Ordinary Method of Slices or
Swedish Method of Slices) (Fellenius, 1927), Bishop Method (Bishop. 1955).
Janbu’s Method (Janbu, 1968, 1973), Morgcnstém and Price Method (Morgensterm
and Price, 1965), and Spencer’'s Method (Spencer, 1967, 1968, 1973). These
methods share some common features and limitations. All limit equilibrium
methods employ assumptions to render a slope stability problem determinate. The
methods that consider side forces between slices (e.g., Janbu’s method) are generally
subjected to numerical instability problems under certain conditions (Duncan. 1996).
When numerical instability problems arise, the solution may fail to converge. or the

calculated values may be unreasonable (Ching and Fredlund, 1983). The procedure
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using the sums of the terms (forces) for all slices makes the hand-calculation of
factor of safety a repetitive and laborious process (Brunsden and Prior, 1984).
Fortunately, a handful of computer codes based on the limit equilibrium methods are
now available. These computer codes (such as GeoSlope, Stabl for Windows, and
XSLOPE) simplify the process of finding the factor of safety and the most critical
slip surface with a direct graphical view (Cheng, 2002).

In recent years, numerical methods have been widely used in slope stability
analyses with the unprecedented development of computer hardware and software
(Kohgo and Yamashita, 1988; Huang and Yamasaki, 1993; Fredlund and Scoular,
1999; Cheng et al., 2000). Both finite difference methods and finitc element
methods may be used for the solution of non-linear problems. As pointed out by
Cundall (1976) and Leshchinsky et al. (1985), the equations which result from using
a particular finite difference scheme can be same as those from a finite element
scheme, if a particular integration method is émployed. Although these numerical
methods are more complex to use than the conventional limit equilibrium methods,
they nevertheless can provide an insight into the way a slope will deform and fail
(Snitbahn and Chen, 1976, 1978; Booker and Small. 1981; Leshchinsky and Huang,
1992; Cheng et al., 2000). Such information is quite valuable in addition to the
information (factor of safety, slip surface) obtained from traditional methods.
Although finite element analyses are capable of modeling field conditions (complex

geometry, soil properties) realistically. they usually require significant effort and
g 3 prop y y y req g
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cost that may not be justified in some cases (Chen and Chameau, 1982; Duncan,
1996).

In this study, semi-analytical and artificial neural network (ANN) models are
developed for slope stability analysis. The semi-analytical solutions simplify the
process of calculating and finding the minimum factors of safety. The proposed
semi-analytical method can be viewed as an extension of the method of slices, but it
provides a more accurate treatment of the associated forces because they are
represented in an integral form. Also, the factor of safety is obtained by using a
minimization technique rather than by a trial and error approach used commonly.
The semi-analytical solutions presented here may be useful for analyzing simple
slopes. They could also be used for validating results obtained from other
approaches and providing initial estimates for complex slopes before more rigorous
and costly analyses such as finite element method are adopted.

Since many factors are involved in modeling slope stability, physics-based
models can have difficulties in representing real-life situations and in considering
such important factors as slope geometry and soil properties affecting the stability of
slopes (Bishop. 1971, Pentz, 1982: Bernander and Gustass, 1984; Jiao et al.. 2000).
Additionally, physics-based models usually require data pertaining to geometric and
soil properties that may not be available and:or justified in some cases (Booker and
Davis, 1972; Hunt. 1986; Liu et al., 1988). The neural network approach can be a

uscful modeling tool in such situations. Among important attributes. neural network



models are based on laboratory and/or field data and thus it is easier to include the
factors affecting slope stability in such models. Because artificial neural network
models have learning capability that physics-based models do not have, they can
model slopes with a reasonable accuracy even when some data pertaining to
geometric and/or soil properties are unavailable. The neural network method as
adopted in this study is based on the field and laboratory data including geometry,
soil properties (e.g., shear-strength), and actual failure or slip surface data collected
from field. Field case history data available at geotechnical engineering firms as well
as case studies that have been reported in the literature were collected in this study
to develop a database for the neural network modeling (architecture, training) effort.
Slope stability analyses using finite clement methods that are available in the
litcrature contributed to the database. Also, they provided a basis for comparison of
the neural network modei performance.

1.2 Objectives

In this study, semi-analytical method and artificial neural network modeling
approach are used for analyses of slopes. Two different modeling approaches are
pursued because for certain class of problems (e.g., slopes with some data
unavailable) one method may be more preferable than the other. The specific goals
of this study include the following:

(1) Develop semi-analytical solutions for slope stability analysis:

w)



(i1) Develop an artificial neural network (recurrent network)-based model for
analysis of slope stability;

(iii) Explore the strengths and weaknesses of each method (Semi-analytical
method, ANN-based method) with respect to physics-based methods,
namely the finite element method and the traditional limit equilibrium
methods (e.g., the Bishop method).

1.3 Format of the Dissertation

Following the introduction to slope stability problems in Chapter |, a detailed
literature review of the methods of slope stability analysis is provided in Chapter 2.
Chapter 3 presents the proposed semi-analytical method for calculating the factor of
safety in which an integral approach is used to accurately represent the forces in
various slices and an optimization technique is used to obtain the critical slip
surface. Chapter 4 presents the proposed neural network method for modeling slope
stability. Finally, in Chapter 5 summary and conclusions of this study are presented

and, recommendations for further studies are discussed.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Different analytical techniques have been developed in the past that may be used by
engineers when assessing whether a particular natural or man-made slope is stable
under a given state of conditions (e.g., short-term, long-term). One of the earliest
analyses, which is still used today in many applications involving earth pressure,
was proposed by Coulomb in 1773. Coulomb’s approach for earth pressures against
retaining walls used plane sliding surfaces, that was extended to analysis of slopes
in 1820 by Francis. By about 1840, experience with cuttings and embankments for
railways and canals in England and France began to show that many failure surfaces
in clay were not plane, but significantly curved (Brunsden and Prior, 1984). In 19160,
curved failure surfaces were again reported from the failure of quay structures in
Sweden (Petterson. 1956). In analyzing these- failures. cylindrical surfaces were
used and the sliding soil mass was divided into a number of vertical slices. The
procedure is still sometimes referred to as the “Swedish Method of Slices’ (Walker
and Fell, 1987). The practice of dividing a sliding mass into a number of slices is
still in use, and it forms the basis of many modern analyses (Duncan, 1996). By
mid-1950s further attention was given to the methods of analysis using circular and
non-circular sliding surfaces (Bishop, 1955; Petterson, 1956). [n carrying out such
analyses, an appropriate means needs to be selected. Table 2-1 presents a summary

of typical traditional methods of slope stability anaiysis.



Table 2-1 Features of Traditional Methods

(Fellenius, 1927)

Method Features
Can be used for typical planar failure surfaces. Well-suited to many
Sliding Block rock slopes and some soil slopes. Graphical solutions possible in
simple cases.
Inter-slice forces ignored. Normal force on base of slice obtained by
resolving total forces normal to base. Underestimates factor of safety.
Fellenius Errors (on the safe side) large for deep failure masses with high pore
Method pressures. Effective normal stresses on the bases of some slices can

become negative. F; is defined as the ratio of resisting to disturbing
moments or forces. Calculation simple, no iteration required.
Applicable to circular failure surfaces.

Bishop Method
(Bishop, 1955)

Inter-slice forces ignored. Normal force on slice base obtained by
resolving forces on slice vertically. Gives fairly accurate results but is
restricted to slip surfaces of circular shape. iterative procedure
required for solution but rapid convergence usually obtained. Useful
for hand calculations. Errors possible where portion of slip surface
has steep negative slope near toe. Calculation of normal forces on
slip surface possible.

Janbu Method
(Janbu, 1968)

Requires assumption of inter-slice forces. Iterations made with
successive sets of inter-slice forces tili convergence reached.
Suitable for slip surfaces of arbitrary shape. Convergence generally
rapid but sometimes slow due to large changes in inter-slice forces
between iterations. Necessary to check acceptability of solution in
terms of position of line of thrust. Any implied tension or violation of
failure criterion of solution to be regarded as rigorous.

Morgenstern-
Price Method
(Morgenstern
and Price, 1965)

Versatile method which satisfies both force equilibrium and moment
equilibrium and accounts for inter-slice forces which must be
assumed. Side force inclinations assumed to vary linearly across
each slice. Applicable to failure surfaces of arbitrary shape and
arbitrary boundary conditions but computer is essential. F;
determined by numerical methods. Acceptability of solution must be
checked. Considerable experience and judgment required.

Spencer
Method
(Spencer, 1967)

Originally devised for circular failure surfaces, but adapted for non-
circular failure surfaces. Assumes inter-slice forces to be parallel.
Accuracy acceptable. Satisfies both force and moment equilibria. Use
of computer desirable. Specially devised in relation to embankment

stability problems, but may used for other problems. J

Note: In all methods except the Fellenius Method above, factor of safety, £, is detined as
the ratio of unit shear strength available at a point to unit shear strength mobilized or
required at the same point. F; is assumed constant along a slip surface.



In selecting a particular method of analysis, the reliability and quantity of
soil data, the knowledge of the slope geology and the consequences of failure should
all be considered (Anderson and Richards, 1987). The results of an analysis are
usually presented as a “‘factor of safety” (i.e. the ratio of available strength to
mobilized strength). One must decide whether to use “total stress parameters” or
“effective stress parameters’” based on field conditions with respect to pore water,
drainage, and duration of loading.

The limiting equilibrium methods are still very popular methods of slope
stability analysis in use today:; this popularity is partly due to the simplicity and ease
of use of such methods (Duncan. 1996). Computer codes based on the limiting
cquilibrium methods further simplify the process of finding the solution for a given
slope. Also, the geotechnical engineering profession has gained significant
experience in their use (Brunsden and Prior, 1984). Of these methods, the method of
slices used with a circular failure surface is probably the most popular one. as
circles are convenient for analysis and often approximate the observed failure
surface (Abramson, 1996).

In the past three decades, there has been a growing awareness of the
applications of numerical methods (finite difference method. tinite element method)
to enginecring slope designs (Tavenas et al, 1980; Ching and Fredlund 1983:
Donald and Giam 1988: Huang et al, 1989). Cundall (1976) applied finite
difference method to slope stability analyses. In his study, Cundall (1976) found that

the equations that resulted from using a particular finite difference scheme were



same as those that resulted from finite element schemes, if particular integration
methods were employed. Duncan and Dunlop (1969) employed the finite element
method and the simulation of sequential slope excavation to study the effect of
cocfficient of lateral earth pressure on stability. Subsequently, Dunlop and Duncan
(1970) expanded their method using a bilinear stress-strain relationship to study the
development of failure around excavated slopes. More recently, Donald and Giam
(1988) used nodal displacements obtained from the finite element analysis to
determine the stability of slopes. Giam and Donald (1988) presented an approach
that used an automatic search scheme to locate the critical slip surface on the basis
of stress-strain calculations. Huang et al. (1989, 1992) described a theoretical
approach that defined the failure surface in a slope by employing the concept of
minimum factors of safety against local failures.

These numerical methods are able to model the stress-strain behavior of a
soil and therefore should be capable of reproducing the actual slope behavior much
more closely than the limit equilibrium methods (Huang et al., 1992). However,
they are limited by the fact that they are generally difficult to use. and require
significant data preparation time on the part of the user. Also, these methods require
significant computing time. As a result, in practice, the quick and simple limit
equilibrium methods have enjoyed widespread use, with numerical methods being
employed for cases where it is necessary to know how a slope may behave due to
excavation or loading or where advanced stress-strain models for the soil are necded

(Duncan, 1996; Shioi and Sutoh, 1999).
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2.2 Planar Failure Surface
A slope that is uniform and very long relative to the depth of the potentially unstable

layer may often be analyzed as a planar-failure slope. The general model is shown

in Figure 2-1.
|—— b / Ground Surface
a ~
T dy,
114
— I
Potential

Failure Surface

Figure 2-1 Forces Acting on a Vertical Slice (Mostyn and Small. 1987)

As can be seen. the failure plane is taken to be parallel to and at a depth. d. below
the ground surface having an inclination « with the horizontal. The assumption that
the slope is very long and uniform implies that any vertical slice is similar to all
others. Thus. the side forces must be equal in magnitude. opposite in direction and
co-linear. Groundwater tlow is usually taken to be parallel to the ground surface

with the phreatic surtace at a distance. . above the tailure plane. For a material

11



with a Mohr-Coulomb failure criterion the factor of safety, F;, of the slope is given

by the following expression (Das, 1994):

Foe ' +(md-y.,d,)cos* atang’
) s sina cosa

(2-1)

where c¢'is the effective cohesion of soil, yis the unit weight of soil, y_is the unit
weight of water and ¢’ is the effective angle of friction.

The derivation of the factor of safety for a slope with planar failure surface is
presented in most textbooks on soil mechanics (e.g. Lambe & Whitman, 1979; Das,

1994) or slope stability (e.g. Bromhead, 1986). The effective cohesion is often

ignored. or assumed to be zero, in which case Equation 2-1 simplifies to:

F :(l_'y_“i‘_J tan¢ (‘)_7)

’ 7l ) tana

If the water table is at or below the failure plane (i.e. a dry slope) then the
slope is at limiting ecquilibrium (i.e. F, =1) when the slope angle equals the
effective angle of friction. If the water table is at the surface (i.e. a saturated slope)
then the slope angle at limiting equilibrium is near half the effective angle of friction
(for typical friction angles and unit weights).

2.3 Circular Failure Surface

For many slope failures, the surfaces along which sliding took place were found to
be non-planar or curved leading to the idea of using curved failure surfaces for the
analysis of slope stability (Spencer. 1973; Chen and Shao. 1988). Although the

actual failure surfaces in most cases are bow! shaped (if we consider three-



dimensional geometry), the representation of a failure surface as a single curve (in
two dimension) greatly simplifies the analysis.

Early solutions for circular surfaces were obtained by Fellenius (1927) who
used the method of slices, and by Taylor (1937, 1948) who used a friction circle
method to produce charts of *“*Stability Numbers” to determine factors of safety
against slope failure. Most modern circular slip circle methods make use of the
method of slices, and the major differences between these methods involve the way
in which the unknown quantities that arise in the analyses are dealt with. Some of
the methods for analysis of circular failure surfaces using the method of slices are
presented in the following section for completeness.

2.3.1 Fellenius Method

The simplest ot all the methods which make use of vertically-sided slices is the
Fellenius (1927) method. Figure 2-2 shows the region above the assumed circular
failure surface divided into slices and a free body diagram of a single slice with all
of the forces acting on it, and the unknown points of application of the forces. As
there are too many unknowns to obtain a solution, some assumptions must be made

about the forces and their locations. The interslice forces (.X, ,.X, ; £,.E,. ) are

assumed to be equal and opposite to each slice and theretore they cancel each other.

Taking moments about the center of the circle and assuming that everywhere along

the failure surface the amount of shear stress mobilizedr,, is the same fraction of

the total shear stress available (i.e. 7, =(¢"+ o' tang’)/ F ), we obtain:
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where c'is the effective cohesion, b is the slice width, «a is the angle of the base of
the slice to the horizontal, W is the total weight of the slice, u is the water pressure
acting on the base of the slice, ¢'is the effective angle of friction, and the
summation implies an addition over all slices.

2.3.2 Bishop Method

Bishop (1955) presented a method in which the interslice forces .X and £ were taken
into account in the analysis. For a mathematically correct static solution,
equilibrium of forces and moments must exist for each slice as well as for all of the
slices. Bishop’s rigorous formulation contains too many unknowns to enable a direct
solution (Felio et al., 1984). Some assumptions must be made regarding the
distribution of some of the unknown quantities. and for this method assumptions are

made concerning the distribution of .X force. The position of the line of thrust y, (see

Figure 2-3) of these .\ forces must be such that the moment equilibrium of each
slice is maintained. As pointed out by Sarma (1979), Bishop did not consider the
point of action of the normal force on the base of the slice, thereby eliminating
another group of unknowns for the problem.

Using Bishop's original and now somewhat familiar notation, the expression

tor the factor of safety against a slip failure is expressed as:

L z[c’h +( —ub+ A tang’)/m, | (2
= ZWsinC( o




where

el (2—4b)

(2—4c¢)

tan o tan ¢’
m, =cosa| |l + ————

b is the slice width. I¥ is the total weight of the slice, ¢’ is the effective cohesion, ¢’

is the etfective angle of friction, u is the water pressure acting on the base of the

slice. a is the angle of the base of the slice to the horizontal.

Line of Thrust

Figure 2-3 Position of Line of Thrust
[t may be noted that assumptions about the X' forces make the solution
process more complex. Therefore. a simplified or modified-version of the Bishop’s
equation is used by many engineers. [t is assumed that the ditference in the .\ forces
(Le. AY) for any slice is zero. This type of analysis is adequate enough tor most
practical purposes (O Conner and Mitchell. 1977: Hungr. 1987).
Lquation 2—a involves a factor of safety on both sides and so an iterative

technique must be used in order to obtain a solution. In practice. this is often done
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by computing the factor of safety using the Fellenius method which is then used as

an initial value to estimate the quantity m_, which appears in the left hand side of

Equation 2-4a. In most cases, if the Fellenius method is used for estimating the
factor of safety initially, only 2 or 3 iterations are usually necessary to obtain a
converged solution for the simplified Bishop method.

[t is also of interest to know the magnitude of error introduced in the analysis
by the method of calculating the area of each slice or in calculating the angle of the
base inclination and to know the effect of the number of slices used in idealizing the
slope to determine the factor of safety. All of these effects have been examined by
Ting (1983) using the simplified Bishop method. According to Ting (1983),
maximum error occurs when calculating the factor of safety for deep circles in
cohesive slopes. With 45 slices, the error is about 10% depending on the method
used in computing the area of slice. It is normal to specify between 50 and 100
slices within the region above the potential failure surface to limit errors introduced
from such sources. Errors may also be introduced when a slice lies across the
boundary between two different materials. Some computer codes adjust slice
thicknesses to account for this, while others rely on the usage of a large number of
slices of equal thickness so that the effect becomes small.

2.3.3 Spencer’s Method
An alternative way of taking into account the interslice forces was proposed by

Spencer (1967). It was noted that if resultants Z of the interslice forces were parallel
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and all inclined at a constant angle, &, then the resultant of the two interslice forces
Q (see Figure 2-2) will also be inclined at an angle &. To satisfy overall

equilibrium, the following equations must be satisfied:

D (Qcos)=0 (2-5a)
> (Osing)=0 (2-5b)
Z(Qcos(a -0))=0 (2-5¢)

[f the angle & is chosen to be constant for all slices, then Equations 2-5a to

2-5¢ will reduce to:

> 0=0 (2-5d)
The effect of assuming a constant angle for the interslice force resultants,
when in reality it will vary from slice to slice, is claimed to be small by Spencer
(1967). It may be shown that the force Q (for a particular slice) is given by the

expression:

c'b tan ¢’

seca+ — (Wcosa —useca)-Wsina
o=15 F,

cos(a - 0{[ + la:fb' tan(a - 0))

3
For any particular value of the angle #, a factor of safety can be found

which satisfies force equilibrium F, (equation 2-5b) and another factor of safety
can be found which satisties the moment equilibrium F, (equation 2-5c¢). A plot of

F, and F against ¢ was presented by Spencer (1967) and is shown in Figure 2—4.
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The required (critical) factor of safety is obtained for the case F, =F_ =F,.
This factor of safety F, =1.07 and the corresponding value of the interslice force

angle @ =22.5° can be used to subsequently determine all the interslice forces and
their line of thrust. The difference in the factor of safety obtained using the
Spencer’s method as compared to Bishop’s simplified method is not large. It was
noted by Spencer (1968) that the difference between the two methods exceeded 1%
in only 7 of the 92 cases attempted.

Spencer (1968) also examined the effect of carrying out his analysis using
cffective interslice stresses instead of total stresses. It was found that the line of
thrust as calculated from the effective stress analysis was often unacceptable. To
remedy this, it was necessary to include tension cracks at the top of the slope and to
allow for the water pressure in the cracks. The effect of this analysis was to slightly
lower the factor of safety and Spencer concluded that the reduction in F was,
however, very small and the effect of water bressure in a tension crack on the
portion of the critical circle was also found to be relatively small.

2.3.4 Obtaining the Most Critical Circle

Whichever of the methods of obtaining the factor of safety is used, a number of trial
circles must be taken and analyzed in order to obtain the one that gives the least
factor of safety (Baker. 1980). As most analyses are done by computers. the process
ot analyzing a few hundred trial circles may be relatively quick and inexpensive in

today’s computing environment (Oboni and Bourdeau, 1983; Abramson. 1996).



Computer programs need some type of algorithm upon which the search for
the slip surface with the minimum factor of safety is based. One of the most
commonly used methods is to specify a grid on which the centers of trial slip circles
lie (see Figure 2-5). Contours of the minimum factor of safety at each center on the

grid can be plotted in order to determine where the critical center may lie.

Contours of Minimum )
Factor of Safety at < Centers of Circles
Each Center May Be . .~ Lie on Grid Points
Plotted 4

yJ
N

Different Radii Used
at Each Grid Point

Circles Tangent to Firm
Strata Should Be Tested

Figure 2-35 Grid Search Pattern (Mostyn and Small. 1987)

The amount of computation required to find the critical circle may be greatly
reduced by using a technique by which one can automatically locate the center
coordinates and radius of the circle yielding the minimum factor of safety. Such a
technique has been described by Boutrup and Lovell (1980). who used the simplex

retlection method. To explain how the method works. consider the problem of



finding the minimum factor of safety for a two-dimensional circular slip surface.
The problem basically involves finding the coordinates a, b of the center and radius
r of the circle which minimize the factor of safety F. This is done by evaluating F;
at the four comers of a tetrahedron defined in x, y, » space (i.e. the coordinates of the
corners are defined by the values of x, y, r). The value of the factor of safety found
at each corner may then be used to decide in which direction to move to obtain a
lower factor of safety. Obviously this will be away from the vertex of the
tetrahedron with the highest factor of safety. Depending on the coordinates and radii
given to start the search, the minimum factor of safety can be found quite quickly.
2.4 Non-Circular Failure Surface

[f the shear strength is non-uniform within a slope then the failure surface with the
minimum factor of safety will not necessarily be a circle but the shape will depend
on the distribution of shear strength (Baker and Garber, 1978; Charles, 1982).
Sometimes the general shape of the critical failure surface will be highly constrained
by the distribution of weak zones within the slope; other times it may require a lot of
insight or work to find the critical surface or at least some surface with similar
stability (Baker and Frydman, 1983).

Analysis of circular failure surfaces is easier than that of non-circular or
generalized failure surfaces. This is because moments taken about the center of a
circular failure surface result in a zero moment arm for the normal forces acting on
the failure surface and a constant moment arm for the cohesive forces on the failure

surface. Nevertheless the moments for the entire mass or cach slice can be taken



about any point or points that are convenient, and failure surface of any shape can
be adopted (Zhang and Chen, 1987). This approach is used in analyzing generalized
failure surfaces.

As discussed in Section 2.3, the problem is indeterminate and some
assumptions need to be made for evaluation of factor of safety. In the simplified
method, Bishop (1955) assumed that the interslice shear forces on each side of any
slice were equal. The shear forces on most downslope slices are almost always zero
(unless there is an applied external shear) and thus Bishop's simplifying assumption
is equivalent to setting all the shear forces to zero. The resultant interslice force is
horizontal. This assumption renders the problem determinate.

The assumptions made to render the problem determinate are the main
differences between the various methods of analysis for generalized failure surfaces
(Graham, 1984). The methods generally make some assumpiion regarding either the
location of the interslice resultant force (i.e. the line of thrust. as shown in Figure 2-

3), or the magnitude of the interslice shear force (i.e. X, and X, in Figure 2-2).
Some methods only satisfy the requirements of force equilibrium, while others
satisfy both force and moment equilibria. These latter methods are generally
referred to as rigorous methods (Madej, 1984).

[t should be noted that the simplified Bishop and Fellenius methods of slices
satisfy force equilibrium in one direction and the overall moment equilibrium. Also.

the methods that satisfy moment equilibrium give a factor of safety that is relatively

independent of the assumption regarding the interslice forces, while those that
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satisfy only force equilibrium result in a factor of safety that is quite sensitive to the
assumption regarding the interslice force (Fredlund et al.,, 1981). Some of the
methods that are commonly used or have been recently developed to analyze
generalized failure surfaces are briefly discussed below.

2.4.1 Janbu’s Method

From the mid-50s to the early 70s, Janbu developed generalized and simplified
methods which are best described in Janbu (1973). In the generalized method, a line
of thrust is assumed and the equations of equilibrium solved. Sarma (1979) pointed
out that this is not a rigorous solution because moment equilibrium of the last slice
is not satisfied; this affects the line of thrust but does not greatly affect the factor of
safety. Janbu (1973) noted that the factor of safety is relatively insensitive to the
assumption regarding the location of the line of thrust as long as it is reasonable.
According to Janbu (1973), the line of thrust should be near one third the height of
the slice for cohesionless soils. It should be below this level in the active zone and
above it in the passive zone for cohesive soils. This method sometimes gives
answers that differ quite markedly from those obtained by other methods such as
Bishop method (Maksimovic, 1979; Li and White, 1986).

Janbu's simplified method is based on satisfying only force equilibrium. [t
involves completing one iteration of the "rigorous” method to obtain first estimates
ot the normal stresses on the base of the slices and of the interslice forces (Mostyn
and Small. 1987). The result derived from this first iteration is then multiplied by a

correction factor that depends on the curvature of the tailure surface and the



material parameters. These correction factors are based on limited comparisons of
analyses of homogenous slopes with his “rigorous” method. Lumsdaine and Tang
(1982) reported that, for more complex problems, there is very little correlation
between the correction factors given by Janbu and “true” correction factors derived
by using Janbu’s rigorous method to solve the same problem. Janbu (1973)
recommended that his simplified method should only be used when computers were
not available and an estimate of the factor of safety was to be obtained by hand
calculations. Thus, although there are many computer implementations of this
method, it is hard to envisage an occasion where it would now be appropriate to use
this method in lieu of other readily avatiable computer-based methods.

2.4.2 Morgenstern-Price Method

This is perhaps the best known and most widely used method developed for
analyzing generalized failure surfaces. The method was initially described by
Morgenstern and Price (1965). It satisfies all static equilibrium requirements and is,
therefore, a rigorous method, but the solution obtained must be checked for
acceptability. The overall problem is made dcterminate by assuming a functional
relationship between the interslice shear force and the interslice normal force. The
function is referred to as ffx) and most programs implementing the method provide a
choice of such functions. Choosing such a function actually overdetermines the
problem and thus part of the solution process is to determine a scaling factor, 4.

The function ffx) defines the relative inclination of the interslice forces, while A
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defines their absolute magnitude. Thus, the interslice forces on the left hand side of
slice n in Figure 2-2 are related by the following equation:
X,=Axf(x)*E, (2-6)

The solution procedure proposed by Morgenstern and Price (1965) differs
from that adopted by most investigators in that the problem was formulated using
differential equations that were integrated over each slice. The derivation of the
governing equations, the equations themselves and the method of solving the
equations are all quite complex (Fan et al., 1986).

The Morgenstern-Price method is generally implemented on computers;
output should include adequate data to determine the admissibility of each solution.
After reviewing numerous methods of analysis, Li and White (1987) recommended
this method for general use. It should be noted that in certain occasions this method
may have difficuity in analyzing problems where there are near vertical sections of
either the failure or ground surface.

The Morgenstern and Price (1965) method does not make the assumption
that the normal force on the base of each slice acts at the center of the slice. Thus,
the accuracy of the other methods increases as the slices become thinner. A
reasonable number of slices should be adopted in any analyses.

Fredlund and Krahn (1977) conducted a comparison of various methods by
obtaining an equivalent /£ for each. For the Morgenstern-Price method, the side

force function, f(x)=1. was adopted and A determined. The simplified Bishop



method is equivalent to 4 equal to zero, Spencer’s method (1967) is equivalent to
A equal to tané, and an equivalent 4 was determined for Janbu’s method. From
the comparison of results it was concluded that the factor of safety to satisfy

moment equilibrium, F, was relatively insensitive to the side force assumption.

Thus, those methods that satisfy moment equilibrium give similar results provided
that admissible side force functions are adopted.

Comparisons by Ching and Fredlund (1984) and Fredlund (1984) resulted in
similar conclusions. The various methods considered by these researchers gave
essentially the same answers for cohesionless soils; methads that satisfied moment
equilibrium gave similar answers for frictionless soils. Methods that satisfied only
force equilibrium resulted in factors of safety that were quite dependent on the side
force assumption and the factor of safety varied by up to 20% for cohesive (c. ¢)
soils (Charles and Soares. 1984).

The Morgenstern-Price method as well as some more recent methods such as
Bromhead (1986). Li and White (1987) and Fredlund and Krahn (1977) is fairly
widely used and accepted for general analysis of non-circular failure surfaces and its
results have been verified in several comparative studies; but acceptability of
solutions should always be checked (Costa and Thomas. 1984; Abramson, 1996).
2.4.3 Location of Critical Failure Surface
[nitially, methods of analysis were based on circular surfaces. However,

development of methods for non-circular surfaces followed soon. For the most part,



non-circular methods may also be used for the analysis of circular failure surfaces,
since a circle is merely a special type of curved failure surface. Many computer
programs have been developed with procedures that determine the center and radius
of the circular failure surface that give a minimum factor of safety. These programs
do not always find the absolute minimum; instead sometimes they only locate a
local minimum factor of safety. The equivalent problem of determining the
generalized failure surface having minimum factor of safety is considerably more
complex and routine procedures are uncommon (Chen and Morgenstern, 1983).
Often automatic search procedures are not required as the distribution of
weak material within a particular slope is such that the critical failure surface can be
determined by analyzing only a few cases. In addition, most non-circular analyses
arc computer-based and often the programs do not include any algorithm to assist in
the location of the critical failure surface. Thus, it is often necessary to locate the
critical failure surface by an intelligent sclection of potential failure surfaces and
manual iteration until the critical surface has been established. This may often be the
most cfficient means of locating the critical surface.
2.5 Computer Codes Based on Traditional Methods
Numerous commercial computer programs based on the traditional limit equilibrium
mecthods have been developed for analysis of slope stability problems. Some of the
available programs are DOS-based while the others arc Windows-based that can
make the solution process analogous to a graphical procedure. Table 2-2 presents a

list of typical computer codes currently available.



Table 2-2 Features of Computer Codes Based on Traditional Methods

Code

Features

Galena
Windows
(Clover,
Australia)

Based on Bishop, Spencer and Sarma methods. Single or multiple
analyses for all methods. Back analysis features ‘what strength is
required’ for past failures, User-defined restraints, external forces,
distributed loads, and earthquake effects. Pore pressure defined by r,
or phreatic surface, piezometric surface. Automatic generation of
tension cracks for multiple analysis.

GEOSLOPE
DOS
{(Geocomp,
USA)

Based on Bishop's simplified and Janbu’s simplified methods.
Automatic search slip surface with minimum F;. Allows different soil
types; several ways to describe strength and its variation, pore
pressures, and surface loading. Single or multiple surface analysis.

GSlope
Windows
(Mitre, Canada)

Based on Bishop's simplified and Janbu's simplified methods. Pore
pressure taken into account by r, or piezometric surface. Pseudo-
static analysis. Soil layers, piezometric surfaces, external forces, and
search grids drawn by mouse. F, updated automatically with slip
surface change. Allow materials excavated or filled.

MStab
Windows
(GeoDelft,
Netherlands)

Based on Fellenius, Bishop and Spencer methods. Automatic critical
slip circle search; user-defined circle zones; output F, contours and
stress components along slip surface. Non-circular slip surface by
user-defined coordinates. Interactive input of geometry with arbitrary
shaped layers. Pore pressures defined by piezometric level or degree
of consolidation. Point or distributed loads. Pseudo-static analysis;
Drawdown and excess r,,.

SB-SLOPE
DOS
(Geosystem,
- USA)

Based on simplified Bishop and Spencer methods. Simultaneous
analysis of upstream and downstream dam slopes. Interactive
graphics to select circular/non-circular failure surface. Pore pressure
taken into account by phreatic surface or r,. Psuedo-static analysis.
Distributed loads and tension crack. Rapid drawdown.

Slide
Windows
(Rocscience,
Canada)

Based on Fellenius, simplified Bishop, Janbu, Spencer, Morgenstern-
Price methods with integrated FEM groundwater analysis

| (unsaturated steady-state). Anisotropic strength. Pore pressure by
phreatic/piezometric surface, r, or grid. Automatic mesh generation.
Line, uniform/triangular distributed loads, horizontal/vertical seismic
loads. Circular grid/slope/auto-refinement search, non-circular
block/path search; User-defined slip surface, slope limits, search
focus, tension cracks, and water levels.

5. Slope
- DOS
(Geoslove, UK)

Based on Fellenius, Bishop, Spencer and Janbu methods. Automatic
search critical slip surface. Up to 9 soil strata. Muitiple water tables or
piezometric surfaces. Pore pressures from water table or flow line.
Perched water and artesian pressures by piezometric surfaces.
External forces, quasi-static forces. Menu driven data entry.

' Slope
. DOS, Windows
| (Oasys UK)

Based on Fellenius, Bishop, and Janbu methods. Pore pressure by
phreatic surface, piezometric or r, values; drained or undrained shear
strength; A range of circle centers with variabie radius or with all

| circles passing through a fixed point, or tangent to a surface; option

‘ i 10 extend the grid to find minimum F; surface loads with horizontal

| ground acceleration.




Table 2-2 Continued

Code Features

Siope2000 3-D analysis based on Bishop, Janbu, and Spencer methods. 2-D
DOS, Windows, | analysis based on Bishop, Janbu, Spencer, and Morgenstern-Price
UNIX methods. Locates critical slip surface under general conditions. User-
(HK Poly Univ., defined convergence criterion, soil layers, surcharge, perched water
HK) and earthquake.
Slope-W Based on Felleqius. simplified Bishop. simpliﬁed Japbu, Spencer, _
Windows Morgenstern-Price, and FEM analysis; variable or discontinuous soil

strata, impenetrable layers, dry and water filled tension cracks. Pore
(Geo-Slope, pressure by r, or grid, piezometric line. Total or effective stress, user
Canada) defined failure envelope, surcharge and seismic loads.
Stabl for Based on simplified Bishop, simplified Janbu, and Spencer methods.

. Random generation of slip surface with minimum F. Specific trial
Windows . failure surface and analysis allowed. Heterogeneous soils,
(Purdue Univ., anisotropic soil strengths, excess pore pressure, hydrostatic and
USA) surface water, pseudo-static loading and surcharge.
STABLE Based on Bishop, Morgenstern-Price and Sarma methods. Links to
DOS, Windows | CAD for input and editing of geometric data. In-built graphics window.
(M Z Assoc., i All geometry displayed as input for data validation. Pore pressures by
UK) i piezometric surface, r, values. Point loads, tension cracks. !
| Based on Spencer and Morgenstern-Price methods. Graphical
TSLOPE \ interface to create surfaces, line loads or boundary pressures. |
Web/Java | Intelligent search for critical slip surface. Pseudo-static analyses. t
(TAGAsOoft, | Automatically computes pressures on submerged slope, in tension
USA) | cracks, and from phreatic surface or r,. Variation of undrained shear
| strengths. Two-stage rapid drawdown analysis.

XSLOPE for | Based on Bishop simplified and Morgenstern-Price methods. Layered
Windows - soils. Automatic search critical circle. Pore pressures by piezometric
(Univ. of - surface, r, or grid. External normal/shear tractions on siope surface.
Sydney, ¢ Horizontal/vertical earthquake forces. Slip surfaces modified by |
Australia) i mouse. F, automatically updated with slip surface change. |

Note: The computer codes presented can be found in the Geotechnical & Geoenvironmental
Software Directory via the Internet (htzp: / /o

gsd. com)

These computer codes inherit the strengths and weaknesses of the traditional
limit equilibrium methods that they are based on. Most of the programs can handle
both circular and non-circular failure surfaces. Some codes (Slide, Slope-W) even
have the option to integrate finite clement analysis, as discussed in the following

section.



2.6 Numerical Methods for Slope Stability Analysis
With the rapid development of computational technologies, alternative numerical
approaches have been sought for developing new modeling techniques. Among
them, finite difference method and finite element method are being widely used by
consulting firms as computing facilities become cheaper and more readily available.
Although they are more complex to use than the conventional limit equilibrium
methods, they nevertheless can provide a detailed insight into the way how a slope
will deform and fail, and therefore provide a valuabie addition to methods of
analyzing slope behavior.
2.6.1 Finite Difference Method
Finite difference method widely used to obtain approximate solutions of many
boundary value problems whose exact solutions are mathematically complex and in
some cases impossible (Zaman, 1995). Response of a structural system is often
represented by the governing differential equations. These equations involve
derivatives of functions. Using finite difference approach these derivatives can be
easily evaluated at discrete points. The partial differential equations (PDEs) can then
be solved in the domain with respect to some given boundary conditions. Cundall
(1970) gave an example of how finite difference methods might be applied to the
problems of slope stability.

Finite difference method is an approximate method for determining
derivatives of a function. Depending upon circumstances, the finite difference

method may give exact results. However, frequently it yields only approximate



results. The magnitude or extent of error in using finite difference method in finding
derivatives of a function depends on various including order of derivative (2nd order,
3" order, etc.), type of function (polynomial, trigonometric, etc.), type of finite
difference mesh (fine, coarse, etc.), and other factors (calculation accuracy, etc)
(Zaman et al., 2000).

Nonetheless, some commercially available computer programs
(FLAC/Slope, CHASM etc.) have been developed based on the finite difference
method to solve slope stability problems. FLAC/Slope features a graphical interface,
automatic factor-of-safety calculation, arbitrary slope geometries, multiple layers,
pore pressure conditions, heterogeneous soil properties, and surface loading, etc.
This method has the following advantages over the traditional methods: 1) failure
mode develops naturally, no need to specify trial surfaces; 2) no parameters (e.g.
functions for inter-slice angles) need to be given as input; 3) multiple failure
surfaces (or complex internal yielding) evolve naturally.

2.6.2 Finite Element Method

The finite element method (FEM) represents a powerful alternative approach for
slope stability analysis. This method is accurate, versatile, and requires fewer a
priori assumptions, especially regarding the failure mechanism. The FEM is very
powerful in solving problems with irregular boundaries and complex variation of
potential and flow lines (Zaman et al., 2000). The region to be analyzed is divided

into elements which are joined at nodes. The unknown displacements at each node



may be computed and from these the strain and stress fields within the body may be
found.

Using such a numerical technique it is possible to model each soil type
according to some constitutive law that describes the stress-strain behavior. Such a
law may be a simple one such as the Mohr-Coulomb failure criterion in which the
soil is assumed to be elastic until the stress state reaches a failure condition after
which it is treated as being perfectly plastic. Huang and Yamasaki (1993) and others
used the Drucker-Prager yield function in their local minimum factor-of-safety
approach. The Drucker-Prager yield function describes the elasto-plastic stress-
strain behavior of the soil (Desai and Siriwardare, 1984).

Application of finite element analysis to slope stability problems has been
demonstrated by several authors. Wright et al. (1973) carried out analyses of slopes
using both linear elastic and nonlinear behavior of soil. It was found that the normal
stress distributions around a circular arc, as determined by the Bishop method, are

very close to those found from a finite element analysis provided that the slope was

not steep and the value of A (i.e. 7 tan(g/ ¢), where H is the slope height, v is the
unit weight of the soil, and ¢ and ¢ are the shear strength parameters) is large. They

also obtained local factors of safety around the circumference of the assumed slip
surface by computing the ratio of the shear stresses (as found from the finite element
analysis) to the shear strength of the soil. Although the local factor of safety varied

widely around the circular slip surface, they noted that the average value of the



factor of safety as determined by the Bishop method was much the same as that
found from the finite element analysis.

Zienkiewicz et al. (1975) applied elasto-plastic finite element analysis to
problems involving embankments and cuttings. For stability analysis of
embankments, they applied an initial state of stress that would result from gravity
acting on the completed section, and then gradually reduced the cohesion of the
material (keeping ¢ constant) until failure occurred. For the excavation problem,
they set up an initial stress state that would result after removal of the soil, and once
again reduced the cohesion until failure occurred. Zienkiewicz et al. (1975) also
indicated that a conventional factor of safety could be obtained by simultaneously

reducing ¢ and tan¢g until collapse occurred, and then the ratio of the actual strength

parameters to the parameters at plastic collapse would yield the factor of safety.

2.7 Slope Stability Analysis Conditions

Consideration of the conditions that will control drainage in the field are important
to include in analysis of slopes. Drained conditions are analyzed in terms of
effective stresses, using values determined from drained tests. or from undrained
tests with pore water pressure (PWP) measurement. Undrained conditions are
analyzed in terms of total stress in order to avoid having to rely on estimated values
of PWP, which are difficult to predict accurately. Undrained shear strengths for total
stress analyses can be evaluated using in-situ tests, unconsolidated undrained (UU)

or consolidated undrained (CU) tests.
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For total stress analysis, the PWP used as input for that soil should be
specified as zero. This results in correct evaluation of the total stress when total unit
weights and external water pressures are used. For effective stress analyses, internal
PWPs are determined by seepage analyses for long-term steady-state conditions, or
by hydrostatic pressure distributions if there is no flow.

External water pressures are included in both total stress and effective stress
analyses, because forces due to external water pressures are components that must
be included in the overall force and moment equilibrium of the slope. External water
pressures can be included in analyses by representing the water outside the slope as
a soil” with ¢=0, ¢=0, and unit weight = 9.81 kN/m".

For embankments and multi-stage loading conditions where the loading
results in increased stresses in the soil, the short-term condition is critical. This is
because these types of loads result in positive changes in PWPs, and, as these
positive excess PWP dissipate over time. the etfective stresses and the strength of
the soil increase.

The reverse is true of excavations. An excavation results in negative changes
in PWPs. When these PWP dissipate, the effective stresses and the strength of the
soil decrease, and the slope becomes less stable. In cases where it is not clear
whether the short-term or the long-term condition will be more critical, both should
be analyzed.

For natural slopes. the most severe conditions are often associated with high

PWPs and water pressures in cracks. during wet periods. These are drained
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conditions, and are analyzed using effective stresses, with water pressures

determined from seepage analyses (Duncan, 1996).

When carrying out an effective stress analysis, the pore water pressures need

to be calculated at the base of each slice as the water force is involved in computing

the factor of safety. One of the common ways to compute pore pressure is to use r, ,
where r, is defined as the ratio of the water pressure u to the overburden pressure

/A, at a given point (i.e. r, =u/ ). This implies that the pore water pressure is
related to the overburden pressure or that the water force U at the base of each slice
is proportional to the total weight W of the slice (i.e. U =r W) (Mostyn and Small,
1987).

Another common way is to use a piezometric surface. A surface may be used
in conjunction with a slip circle program such that the water pressure, u, at the base
of each slice is computed as 7 4, , where 7, is the vertical distance between the
piezometric surface and the base of the slice. The use of a piezometric surface for a
slope in which seepage is taking place will lead to errors in estimating pore

pressures, since pore pressures should be determined from a flow net and cannot be
tied to a single piezometric surface (Zaman et al.. 2000).

The use of a pore pressure grid can overcome the above problem. Pore
pressure values may be specified at points on a regular grid and the values at the
base of each slice found from interpolation of values at the nearest grid points. This

is particularly useful with seepage problems where finite difference or finite element
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solutions may be obtained and used to set up a grid of pore pressures (Mostyn and
Small, 1987).

Most of the methods mentioned in the previous sections employ the
definition of the factor of safety, F; = shear strength of soil over shear stress
required for equilibrium. As Lowe (1967) pointed out, defining the factor of safety
as a factor on shear strength is logical because shear strength is usually the quantity
that involves the greatest degree of uncertainty. The limitation results from the fact
that these methods provide no information regarding the magnitudes of the strains
within the slope, or any indication about how they may vary along the slip surface
(Feld, 1965; Cavounidis, 1987; Chen and Liu, 1990). It is worth noting that the
average value of F; is the same for all practical purposes, even if the factor of safety
is assumed to vary from place to place along the slip surface (Duncan and Wright,

1980: Chugh, 1986; Chen, 1999).
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CHAPTER 3
PROPOSED SEMI-ANALYTICAL METHOD
FOR SLOPE STABILITY ANALYSIS

3.1 Introduction

This chapter presents a semi-analytical method, developed in this study, for analysis
of slope stability involving cohesive and non-cohesive soils. Two types of failure
surfaces are considered: a planar failure surface and a circular failure surface. The
circular slip surface is employed for analysis of clayey slopes, whereas the planar
slip surface is employed for analysis of sandy slopes. Semi-analytical solutions for
the factors of safety of these two types of slopes are developed. Sandy slope is a
simple case for semi-analytical method, which is done for completeness. The
method presented below is a simple process to locate both the smallest factor of
safety and the slip surface of a slope.

Unless there are geological controls that constrain the slip surface to a
noncircular shape, it can be assumed with a reasonable certainty that the slip surface
would be circular (Duncan, 1996). Celestino and Duncan (1981) and Spencer (1973)
found that, in analyses where the slip surface was allowed to take any shape, the
critical slip surface was essentially circular.

Locating the slip surface having the lowest factor of safety is an important
part of analyzing a slope stability problem. A number of computer techniques have

been developed to automate as much of this process as possible (Chen and Shao,
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1988). Most computer programs use systematic changes in the position of the center
of the circle and the length of the radius to find the critical circle, which is rather
time-consuming (Duncan, 1996).

The proposed semi-analytical method can be viewed as an extension of the
method of slices, but it provides a more accurate treatment of the forces because
they are represented in an integral form. The proposed solutions developed for
circular failure surfaces allow the applications of an optimization technique to locate
the centers of the circular slip surface. Therefore, the factor of safety can be obtained
by using a minimization method rather than by a trial and error approach used
commonly. A computer program is developed based on the proposed analvtical
solutions which makes it easy and less time-consuming to determine the most
critical slip surface and the minimum factor of safety for a given slope.

3.2 Pseudo-Static Analysis

Stability of a slope can be significantly affected by the shaking caused by seismic
forces such as earthquakes. The effect of an earthquake may be twofold; firstly,
accelerations caused by the ground movement will induce an inertial force into the
slope that will provide an extra overturning moment, and secondly, the vibration
may cause pore pressure build up in the slope thus causing loss of frictional strength
or even liquefaction of the soil. Both effects would reduce the factor of safety of
slope and may lead to failure if the slope is subject to ground movement of sufficient

magnitude and duration (Seed, 1968; A-Griva and Asaoka, 1982).
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Analytical or closed-form solutions concerned with the stability of slopes
subjected to earthquake loading has primarily been carried out for earth and rockfill
dams as these have the greatest potential for damage and loss of life, if failure occurs
(Clough and Chopra, 1966; Seed and De Alba, 1986). Much of the work that has
been done for dams is applicable to natural slopes.

The type of material the slope is composed of is most important in assessing
the potential of a slope to withstand earthquake accelerations (Newmark, 1965).
Slopes that are composed of or underlain by loose sandy soils are most susceptible
to failure due to liquefaction of sand when subjected to cyclic loading. Seed (1979)
quotes the examples of the lower and upper San Fernando Dams which appeared to
be safe when a seismic coefficient of 0.15 was used in a pseudo-static analysis.
However, both these dams failed in the 1971 San Femando earthquake due to the
sand fill contained that liquefied when subjected to vibration.

On the other hand, Seed and De Alba (1986) quotes the San Francisco
earthquake of 1906 that subjected some 48 dams in the region to accelerations of
between 0.25g and 0.6g without any damage. All of these dams were built of clayey
soils on rock or clayey foundations. Two of the dams consisted of sands but the sand
was not saturated.

Some engineers believe that the pseudo-static method should not be used
under any circumstances as it cannot take into account the cyclic nature of forces

applied to the slope. In conjunction with the stability of the embankment of the dam,
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however, Seed (1980) stated that in cases where the crest acceleration does not
exceed about 0.75g, deformations of such embankments will usually be acceptably
small, if the embankment can be shown to have a factor of safety of about 1.15 in a
pseudo-static analysis performed using a seismic coefficient of 0.15.

Although the experience gained with embankment dams cannot by applied
directly to natural slopes (because of geometrical differences), the seismic
coefficient method may be suitable for stability analysis of slopes in the types of
soils mentioned above, i.e. clayey soils, dry or moist cohesionless soils or extremely
dense cohesionless soils (Chugh, 1982; Daddazio et al., 1987).

One of the simple ways of taking seismic effects into account is to carry out
a limit equilibrium analysis where the forces induced by the earthquake
accelerations are treated as a horizontal force (Cao and Zaman, 1999). In reality
vertical forces may also be caused by an earthquake, however, these were not
considered in above-mentioned limit equilibrium analyses (Ishihara, 1985).

The earliest mention of pseudo static analysis, as reported by Seed (1979),
appears to be made by Terzaghi (1950) who applied a horizontal force to the soil
above the slip circle. The magnitude of the horizontal force is taken as being equal
to the weight of the soil ¥ multiplied by a seismic coefficient & (i.e. kW = kmg). As
can be seen, the acceleration acting on the mass m of the soil is kg. So, the seismic
coefficient & is really a measure of the acceleration of the earthquake in terms of the

acceleration due to gravity g.
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The method of slices may be used to assess the stability of a slope subjected
to earthquake loading. Sarma (1973, 1979) presented a method where earthquake-
induced forces were accounted for by applying a horizontal force ki to the slice
where W; is the weight of a typical slice i. The critical horizontal acceleration (or
value of k) required to bring the soil above the slip surface into a state of limiting
equilibrium is computed and this critical acceleration may then be used as an index
of stability.

Analysis of slopes that are composed of purely cohesive soils (i.e. $=0)
whose cohesion varies linearly with depth was carried out by Koppula (1984a,
1984b) using the seismic coefficient approach. Hadj-Hamou and Kavazanjian
(1985) obtained an expression for the factor of safety of a gentle infinite slope where
the failure plane and the acceleration due to the earthquake were assumed parallel to
the slope surface.

The seismic coefficient is an empirical value that depends upon the
accelerations caused by the earthquake. Terzaghi (1950) suggested that the values of
k should vary from 0.1 for severe earthquakes to 0.5 for catastrophic earthquakes.
The usual range of values for & that are employed in the United States is from 0.05
to 0.15, and in Japan characteristically less than 0.2 (Brunsden and Prior, 1984;
Huang and Yamasaki, 1993). However, as Seed (1966) pointed out, these values
seemed to be chosen empirically and still in use as many dams designed in this way

have withstood earthquakes.



3.3 Planar Failure Surface

Failure surfaces in homogeneous or layered non-homogeneous sandy slopes are
essentially planar (Skempton, 1964). Planar slides may happen in slopes with
permeable soils such as sandy soil and gravel or some permeable soils, with limited
cohesion, whose shear strength is principally provided by friction. For cohesionless
sandy soils. the planar failure surface may happen in slopes where strong planar
discontinuities develop. for example in the soil beneath the ground surface in natural
hillsides or in man-made cuttings (Liu. 1990).

3.3.1 Proposed Semi-Analytical Solution for Sandy Slope

A planar-failure slope is shown in Figure 3-1. As can be seen. the failure plane is

taken below the ground surface that is inclined at an angle & to the horizontal.

v &

- 1 .

Figure 3-1 Typical Section for Planar Failure Surface (Cao and Zaman, 1999)
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Earthquake effects are approximated by including a horizontal acceleration
krg which produces a horizontal force £,/ and a vertical acceleration k,g which
produces a vertical force k, /¥ acting through the centroid of the slide body. From an
equilibrium consideration of the slide body 4ABC by a vertical resolution of forces,
the vertical force across the base of the slide body must equal the weight W. For a
slice of unit thickness, the resolved forces of normal and tangential components N
and T can be written as:

N =W[(1+k,)cosa -k, sina] (3-1)
T =w[(l+k,)sina -k, cosa] (3-2)

where « is the inclination of the failure surface and W is given by:

W= ﬂ?.-(cota ~cot ) (3-3)

where 7 is the unit weight of soil. A the height of the slope, L= FHcotf.
! = Hcota ,and f the inclination of the slope.

Since the length of the slip surface AB is H/sina, the resisting force
produced by cohesion is c¢H/sina. The friction force produced by N is
W[(1+kv )Jcosa —k, sina]tan¢. The total resisting or anti-sliding force is thus
given by:

cH
sina

R= W[(l +k,)cosa -k, sin a]tan o+ (3-4)
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For stability, the downslope slide force 7 must not exceed the resisting force

R of the body. The factor of safety, F,, of the slope can be defined in terms of

effective force by ratio R/T, that is:

F o R l-k,tana
Tk, +(+k)tana (3-5)
2c

* (1 +k,)sine + k, cosasin(f - a)

It can be observed from Equation (3-5) that £, is a function of « . To find

1

the minimum value of F,, we need to satisfy:

dF, -0 (3-6)
da
which leads to:
~2a)-sin(g -2 ;
k, cos(g : -f‘) sin( - 2a) tan® a + —/f—l(l +k,)tang =0 (3-7)
sin*(8 -a) 2c

3.3.2 Minimization of F,

By trial and error, we can get from Equation (3-7) the value of @ by which the
minimum £ can then be determined. However, the minimum value obtained by trial
and error needs some a priori knowledge. Also, it is not as accurate as the value

obtained by the optimization technique. The minimum value of F, can be found

directly from Equation (3-5) using Powell’s minimization technique (Liu et al,,

1988). Das (1994) reported a similar expression for F,, developed by assuming that
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F,=t,/r,, where 7, is the average shear strength of the soil, and 7, the average

shear stress developed along the potential failure surface.
For cohesionless soils, the effective cohesion is often ignored, or assumed to
be zero (¢ = 0), in which case Equation (3-5) simplifies to:

_ -k, tana
"k, +(1+k )tana

(3-8)

As can be observed from Equation (3-8), the minimum value of F, occurs

when a = f#, and the failure becomes independent of slope height. For such cases
(i.e., ¢ =0), the factors of safety obtained from the proposed method and from Das

(1994) are identical without seismic effects (£, =0,k, =0).

3.4 Circular Failure Surface
For many slope failures. the observation that the surfaces along which sliding took
place were not planar but curved (Skempton and Golder, 1948; Brunsden and Prior,
1984; Liu. 1990), led to the idea of using curved failure surfaces for the analysis of
slope stability. Although the actual surface of rupture is in most cases bowl shaped
(if we consider three dimensions), the representation of the failure surface as a single
curve (in two dimensions) greatly simplifies the analysis.

Slides in medium-stiff clays are often deep-seated, and failure takes place
along curved surfaces that can be closely approximated in two dimensions by
circular surfaces (Skempton and Golder, 1948; Brunsden and Prior, 1984; Liu,

1990). Early solutions for circular surfaces were obtained by Fellenius (1927) who
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used a method of slices. and Taylor (1937, 1948) who used a friction circle method
to produce charts of “Stability Numbers” to determine factors of safety against slope
failure.

Most modern circular slip circle methods make use of the method of slices,
and the major differences between these methods involve the way in which the
unknown quantities in the analysis are dealt with. In the Fellenius method
(Fellenius, 1927), it is assumed that the interslice forces are equal and opposite for
each slice and so they cancel out. Bishop (1955) presented a method in which the
interslice forces were taken into account in the analysis. For a mathematically
consistent static solution. equilibrium of forces and moments must exist for each
slice as well as for all of the slices together.

Bishop’s rigorous formulation contains too many unknowns. Hence it is
difficult to find a direct solution. Having to make assumptions about the interslice
forces, makes the solution process more complex. Therefore, the Bishop’s equation,
which is used by many engineers, is the simplified version for which it is assumed
that the difference in the interslice forces for any slice is zero. This type of analysis
is accurate for most practical purposes and widely used for slope stability analysis.

It should be noted that the simplified Bishop and Fellenius methods of slices
satisfy force equilibrium in one direction and overall moment equilibrium. Also,
note that the methods that satisfy moment equilibrium give a factor of safety that is

relatively independent of the assumption regarding the interslice forces.
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3.4.1 Proposed Semi-analytical Solutions for Clayey Slope

Figure 3-2 shows a potential circular slip surface AB with center O and radius r.
When the soil above AB is just on the point of sliding, the average shearing
resistance which is required along AB for limiting equilibrium is given by

r, =c'+o'tang’. The sliding mass is divided into vertical slices, and a typical

slice DEFG is shown. The self-weight of the slice is dW = yhdx.

Figure 3-2 Typical Section for Toe Failure Slope (Cao and Zaman, 1999)

The first step in the analysis is to evaluate the sliding or disturbing moment

M; about the center of the circle O. It is assumed that the resultant forces X; and X;
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on DE and FG, respectively, are equal and opposite, and parallel to the base of the
slice EF. Earthquake effects are approximated by including a horizontal acceleration
kig that produces a horizontal force ;¥ and a vertical acceleration k.g that produces
a vertical force &/ acting through the centroid of the body. It is realized that these
assumptions are necessary to keep the analytical solution of the slope stability
problem addressed in this study achievable. However, analytical solutions have a
special usefulness in engineering practice, particularly in terms of obtaining
approximate solutions. More rigorous methods. ¢.g., finite element technique, can
then be used to pursue a detail solution.

Since X; and X; are internal forces, 37.X| - X;) must be zero for the whole

section. Resolving forces perpendicular and parallel to £F., we get:

T = yhdx(1 + k, )sina + k, hdx cosa (3-9)
N = shdx(l + k,)cosa — k, yhdxsina (3-10)

where,

(x~a)

r
r=va +b’ (3-12)

The force N produces a maximuin shearing resistance when failure occurs

a = arcsin (3-11)

according to Mohr-Coulomb failure criterion, which can be expressed in the

following form:

R =cdxseca + yhdr[(l +k, )cosa —k, sin a]tan¢ (3-13)
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The slip body, ABC, is defined by lines AC, CB, and AB. The equations of
lines AC, CB, and AB are given by y1, y3, and y3, respectively, that is:
¥y, =xtanf (3-14)

v,=h (3-15)

Vs =b—\/r2 —(.wc—a)Z (3-16)

The sums of the disturbing and resisting moments for all slices about the

center of the circle Ora, b) can be written in an integral form as follows:

{
M, = Ir;'h[(l +k, Jsina ~k, cosa]dt

0]

L
= ';"r;/(_vl - v M + &, )sina ~ &, cosaix (3-17)

!
+ Iry(v: - }'31(1 +k,)sina — k, cosa jx
L
= r}’[(l + kv)[x - kh[r]
Likewise, the sums of the resisting moments for all slices about the center of the slip

circle can be written as in the form below:

!
M, = J.r{cseca + }41[(1 +k, )cosa —k, sina]tan¢}dx
0
{

L
=r Ic secadx + [ry(yv, =3, J(1 + &, )cosa — k, sina Jtan gdx
; 0 (3-18)

!
+ [ry(vy = 3, M1+ &, )cosa — k, sina Jtan ¢
L

=rlcy +[1+& ), —k,1, ytang

where,



L=Hcotp (3-19)
I=a+\rr—(b-HY (3-20)

(-a) +arcsin 2 (3-21)
r r

w = arcsin

L !
[, = f(}, ~ v, )cos adx + j‘(_v: -y, Jcos adx
[\] L

=—tanﬂ[2r2+(L—a)l rl—(L—a)l+btan’B[£+ﬁ.—j
6r r 2 3

(3-22)

+ ;;((z tan S — H)arcsin( L —a]+%(a tan S —b)arcsin(f‘—J
2 r 2 r

——r—(h—H)arcsin(l—_(i}+-}—[-'h':l—abl +(l~alH —a)z]
2 r 6r

L !
I = J.(-Vl -V )sin adx + j(_v: -y )sin cudx
, ‘ (3-23)
= H—[(GCOI B +b)- Ly ,B:l
7'- 3

To satisfy the moment equilibrium and the slope stability, the available
resisting moment must be larger than or equal to the disturbing moment. Thus, the
factor of safety for the case of Toe Failure is expressed as the ratio of the maximum

available resisting moment to the disturbing moment, that is:

FoM, cyr +ytang[(l+ k), —k, 1]
M, A+ k), +k,1.]

3

(3-24)

From Equations (3-9) through (3-23), it can be observed that the factor of

safety F, is a function of two unknown variables, a and b, which is also the center of



the circular slip surface. The minimum value of F, can be found by solving the

following equations:

a -
{(3-23)
o, _g
ob

which is part of the minimization techniques to be discussed in the following section

(3.4.2).

yd  O(a,b)

@
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Figure 3-3 Typical Section for Face Failure Slope (Cao and Zaman, 1999)
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When the slope inclination exceeds 54°, all failures emerge at the toe of the
slope (Brunsden and Prior, 1984; Liu, 1990), and therefore it is called Toe Failure
(Figure 3-2). However, when the slope height H is relatively large compared with
the undrained shear strength or when a hard stratum is under the top of a clayey
slope with ¢ <30°. the slide often emerges from the face of the slope (Brunsden
and Prior. 1984). and hence it is called Face Failure. as shown in Figure 3-3. For
Face Failure. the factor of safety F. is the same as that of Toe Failure using (H-h)

instead of H.
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Figure 34 Typical Section for Base Failure Slope (Cao and Zaman, 1999)



For flatter slopes, failure is deep-seated and extends to the hard stratum
forming the base of the clay layer, which is called Base Failure, as shown in Figure
3-4. By following the same procedure as that for Toe Failure, the factor of safety for

Base Failure can be obtained from the following equation:

_ cyr +yrang[(l+ k). —k,I']

F 3-26
’ AC+&)E + k1] G720
where  is given by Equation (3-21),and /, and /. are given by:
1y L i
I = "'(y(, ~ v, )sin adx + j‘(_v‘ — v, )sin adx + I(_v: -y, )sinaudx
! b h (3-27)
3
A o B+ f{-(/ -1, N =1)- -bi(l —2a)+ 5(351 ~3bH + H*)
12r 2r 2r 3
ly i !
Il = J'(y‘, - v, )cosadx + I(y, — ¥, )cos addx + I(y: - ¥, )cos adx
0 1y A
LYY RN B+=(b- H)arcsin(l———aj
2r 4 2 ro (3-28)
+ r(a tan J — ﬁ)arcsin( Hcot ) - ﬁt—)arcsin(ﬁ)
2 2r 2 r
+ L[‘l»r:l —ab* +(-aXH -a)z]
6r
where,
v, =0 (3-29)
Y, =xtanf (3-30)
y, =H (3-31)

y; =b—\r’ —(x-af (3-32)



l,=a —%Hcotﬁ (3-33)

l,=a +%Hcot Vi) (3-34)

I=a+\r-(b-H) (3-35)
It can be observed from Equations (3-26) through (3-35) that the factor of

safety F, for a given slope is a function of the unknown variables a and b. Thus, the
minimum value of F, can be found using the Powell’s minimization technique (Liu

ct al., 1988; Press et al.. 1995), as discussed below.

3.4.2 Minimization of F|

For a given single function f/ which depends on two independent variables, such as
the problem under consideration here, minimization techniques are needed to find
the value of these variables where ftakes on a minimum value, and then to calculate
the corresponding value of /. If one starts at a point P in an n-dimensional space, and
proceed from there in some vector direction n, then any function of N variables f(P)
can be minimized along the line n by one-dimensional methods. Different methods
will differ only by how, at each stage, they choose the next direction n. Powell first
defined a direction set method that produces N mutually conjugate directions (Press
et al., 1995). Unfortunately, a problem of linear dependence was observed in
Powell's algorithm. The modified Powell’s method avoids a buildup of linear

dependence (Press et al., 1995).

55



The closed-form slope stability Equation (3-26) allows the application of an
optimization technique to locate the center of the sliding circle (a, ). The minimum

factor of safety F, is then obtained by substituting the values of these parameters

into Equations (3-27) through (3-35) and the results into Equation (3-26), for a Base
Failure problem (Figure 3-4). While using the modified Powell’s method, the key is
to specify some initial values of @ and . Well-assumed initial values of a and b can
result in a rapid convergence. If the values of @ and b are given inappropriately, it
may result in a delayed convergence or may not produce a convergent solution.
Generally, ¢ should be assumed within + L, while b should be equal to or greater
than A (Figure 3-4). Similarly, Equation (3-24) could be used to compute the
minimum £, for Toe Failure (Figure 3-2) and Face Failure (Figure 3-3), except (H-
hy) is used instead of H in the case of Face Failure.

In addition to the modified Powell’s method, other available minimization
methods were also tried in this study such as downhill simplex method, conjugate
gradient methods, and variable metric methods (Liu et al., 1988; Press et al., 1995).

These methods need more rigorous or closer initial values of ¢ and b to the target

values than the modified Powell’s method.
A computer program has been developed using the modified Powell’s

method to locate the center of the sliding circle (a, b) and to find the minimum value

of F, based on the proposed solution for each case (Toe Failure, Face Failure, Base

Failure). There are no clear boundaries among the three types of failures, which
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represent three possibilities. For a particular case, all the three failure types might be
checked to see which type of failure yields the lowest F;. The program helps make
the semi-analytical approach straightforward and simple for slope stability analysis.
The reason the proposed approach is called as semi-analytical method is due to the
minimization technique involved in the process of finding the minimum value of

F, , although a closed-form solution of the factor of safety has been developed.

3.5 Results and Comments
The validity of the proposed semi-analytical method was evaluated using two well-
established methods of slope stability analysis: the finite element method (FEM)
(Huang and Yamasaki, 1993) and the Bishop (1952) method. The cases were chosen
from homogeneous dry soil slopes, without seismic effects initially and then with
seismic effects. The slopes are about 8 m high with unit weight of soils about /8.5
kN/m’. The slope configurations range from 26.7" to 45°. Cohesions of soils range
from 3 kPa to 30 kPa and friction angles range from /0° to 20°. The results obtained
by the proposed semi-analytical method are found to be in good agreement, as
shown in Table 3-1, with those determined by the FEM model (Huang and
Yamasaki, 1993) as well as by the Bishop method.

For the 23 slopes analyzed (Table 3-1), statistical analyses show that the
factors of safety obtained from the proposed semi-analytical method are closer to the
values obtained from the FEM models (Huang and Yamasaki, 1993) than those by

the Bishop method. The average differences between the FEM and the proposed



semi-analytical method are small (5% with a standard deviation of 4%). The average

difference between the proposed method and the Bishop method is 6% with a

standard deviation of 3%. The proposed semi-analytical method yields 2 larger and 6

smaller factors of safety than both the FEM models and the Bishop method, while

15 out of 23 (about 65%) results from the proposed method are between the results

obtained from the FEM model and the Bishop method. Basically, the Bishop method

yields the lower bound (i.e., smaller stability values) among the three methods.

Table 3—1 Comparison of F; by Different Methods (without Seismic Effects)

No. B c b FEM Bishop Semi-analy.

(deg.) (kPa) (deg.) (1993) (1952) (proposed)
1(119) 45 25.00 20.00 1.87 1.74 1.81
2(37) 45 20.00 20.00 1.68 1.50 1.60
3(23) 45 15.00 20.00 1.46 1.29 1.39
4 45 10.00 20.00 1.00 1.05 1.17
5 (109) 45 30.00 15.00 1.85 1.75 1.81
6 (86) 45 25.00 15.00 1.65 1.53 1.60
7 (36) 45 20.00 15.00 1.45 1.32 1.40
8 45 15.00 15.00 1.24 1.11 1.19
9 45 10.00 15.00 1.00 0.89 0.98
10 (44) 45 25.00 10.00 1.42 1.35 1.40
11 (46) 45 20.00 10.00 1.23 1.15 1.20
12 45 15.00 10.00 1.00 0.97 1.00
13 (18) 26.7 20.00 20.00 2.05 2.09 2.01
14 (55) 26.7 15.00 20.00 1.85 1.82 1.76
15 (120) 26.7 10.00 20.00 1.60 1.54 1.51
16 (54) 26.7 5.00 20.00 1.23 1.21 1.24
17 (110) 26.7 25.00 15.00 1.87 2.05 1.98
18 (63) 26.7 20.00 15.00 1.72 1.78 1.74
19 (87) 26.7 15.00 15.00 1.54 1.53 1.49
20 (94) 26.7 10.00 15.00 1.29 1.29 1.25
21 26.7 5.00 15.00 1.00 0.99 0.99
22 26.7 15.00 10.00 1.19 1.27 1.23
23 26.7 10.00 10.00 1.00 1.03 0.99

Note: The numbers in parentheses indicate the slopes that are also included in ANN
modeling.



The proposed semi-analytical method was evaluated further by considering
seismic effects and the results compared with the FEM-based software GFA2D (He,
1996) and the traditional methods-based software Slope2000 (Cheng, 2002),
including data preparation time, computing time, and interpretation of results. The
GFA2D is a FEM-based global failure analysis program for 2-D slope stability
problems using the Mohr-Coulomb failure criterion and four-noded quadrilateral
elements. The Slope2000, as mentioned in Table 2-2, is used here for 2-D analysis
by the Bishop method. The slopes are chosen from case studies with the heights
ranging from /0 m to 20 m. The unit weights of soils range from /7.3 to 20 kN/m’.
The inclinations vary from 22° to 45°, while cohesions range from 0 to 20 kPa and
friction angles range from 7° to 30°. The results are summarized in Table 3-2.

Table 3-2 Comparison of F; by Different Methods (with Seismic Effects)

No. H p v c ) kn Kk GFA2D Siope2000 Semi-Analy.

(m) __ (deg) (kNm’) (kPa) (deg.) (FEM)  (Bishop) _(Proposed)
1(124) 100 4500 1960 1180 3000 020 000 122 1.00 1.32
2(21) 115 2760 1771 909 2035 020 000 109  1.10 1.05
3(2) 115 2760 1771 909 2035 010 000 115 1.20 1.14
4(121) 115 2760 1771 909 2035 005 000 1.21 1.25 1.23
5(122) 115 2760 1771 909 2035 000 010 116  1.00 1.10
6(123) 115 2760 1771 909 2035 000 020 090 087 0.96
7 135 2657 1730 5750 7.00 010 000 149 137 1.55
8 135 2657 1730 5750 700 015 000 133 120 1.37
9 135 2657 1730 5750 700 020 005 119  1.10 1.21
10(68) 137 2657 1871 000 1400 005 000 130 128 1.23
11(64) 200 2657 1871 000 2350 05! 010 095 103 1.00
12(117) 200 2200 2000 2000 2000 004 025 102 112 1.06
13(118) 200 2200 2000 2000 2000 010 005 094 096 1.00
14(19) 200 2200 2000 000 2000 004 000 105  1.00 0.98

Note: The numbers in parentheses indicate the slopes that are included in ANN modeling.
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The factors of safety obtained by the proposed semi-analytical method are
found to be in general agreement, as shown in Table 3-2, with the values
determined by the FEM model (GFA2D) and the Bishop method (Slope2000). It can
be observed from Table 3-2 that the results obtained from the proposed semi-
analytical method are closer to that by the FEM (with a difference of 5% on an
average and a standard deviation of 2%) than the results obtained from the Bishop
method (with an average difference of 9% and a standard deviation of 8%). The
proposed scmi-analytical method generally vields reasonable results (in comparison
with the FEM models). while the Bishop method yields relatively conservative low
values.

For Slopes 7. 8 and 9 in Table 3-2, the minimum factor of safety F, q, is
obtained as 2.08 for k&, = 0 and &, = O using the proposed semi-analytical method.
When 4 =0 and &, = 0.1 or 0.15. F, qn becomes 1.55 and 1.37: these values are
25% and 34% lower. respectively. than F, o = 2.08. When 4, = 0.05 and &, = 0.2,
we get F mn = 1.21, which i1s 42% lower than F, ,, = 2.08. These results show the
earthquake effect on the slope stability to be significant.

The GFA2D, as a general-purpose finite element method, can model
complex conditions with a high degree of realism, including in the analyses such
things as nonlinear stress-stain behavior and non-homogeneous conditions. This
generality and flexibility, however, does not come without its price. Each analysis

takes a considerable amount of time to obtain material property values, to perform
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the computer analyses, and to evaluate and interpret the results. Although
availability of powerful new microcomputers greatly reduce the computing time, the
time spent on data preparation and interpretation of results is still very significant.
In the above 14 cases (Table 3-2), the GFA2D needed about 20 times the effort, on
an average, as compared with the proposed semi-analytical method.

The Slope2000 software greatly simplifies the analysis process of a slope by
the Bishop method, especially in locating the critical slip surface. The graphical user
interfaces for construction of slope geometry and for display of results also make it
easy to evaluate the results. However, the Slope2000 software still needed about 5
times the effort. on an average. than the proposed semi-analvtical method to reach
the solution for each case analyzed. as presented in Table 3-2. due to the trial and
error approach used in selecting different number of slices and different locations of
slip surfaces.

3.6 Concluding Remarks

In this chapter, a semi-analytical method is presented for analysis of slope stability
involving cohesive and non-cohesive soils. Two types of failure surfaces are
considered: a planar failure surface, and a circular failure surface. Earthquake effects
are considered in an approximate manner in terms of seismic coefficient-dependent
forces. For circular failure surfaces, three failure conditions are considered, namely
Toe Failure. Face Failure and Base Failure for clayey slopes resting on a hard

stratum. The proposed method can be viewed as an extension of the method of
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slices, but it provides a more accuratc treatment of the forces because they are
represented in an integral form. Also, the factor of safety is obtained by using the
Powell’s minimization technique rather than by a trial and error approach used
commonly.

The factors of safety obtained from the proposed method are in good
agreement with those determined by the finite element method-based approach and
the Bishop method. The solution processes show that the proposed semi-analytical
method is as effective as the Bishop method but more straightforward and simpler.
Also, the semi-analytical method yields results that are very similar to the results
obtained from the FEM technique. but needs much less effort to obtain the solution
for a given slope. The limitation of the proposed method is that it works only for
circular failure surfaces and cannot be used to analyze problems involving layered

soils and pore water pressures. These aspects are further discussed in Chapter 4.



CHAPTER 4
PROPOSED NEURAL NETWORK MODEL FOR
SLOPE STABILITY ANALYSIS

4.1 Introduction
In this chapter, an artificial neural network approach is outlined to predict the
factors of safety of slopes. The solution is attempted by employing a recurrent
neural network and predicting the results using the data collected from literature as
well as some limited data from field case studies.

An artificial neural network can acquire, store, and utilize experiential
knowledge like a physical cellular system, to some extent. Neural networks are
composed of many simple elements usually operating in parallel (McCullock and
Pitts, 1943). The network computation is performed by a dense mesh of computing
nodes and connections. They operate collectively and simultaneously on most or all
data and inputs (Minsky, 1954, Minsky and Papert, 1969). The network function is
determined largely by the connections between elements. We can train a neural
network to perform a particular function by adjusting the values of the connections
between elements.

The basic processing elements of neural networks are called artificial
neurons, or simply neurons (McCullock and Pitts, 1943; Rosenblatt, 1958). Often
we simply call them nodes. Neurons can be perceived as summing and non-linear
mapping functions. In some cases they can be considered as threshold units that get

activated when their total input exceeds certain bias levels (Rosenblatt, 1958;
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Widrow and Hoff, 1960). Neurons operate in parallel and are configured in regular
architectures. They are often organized in layers, and feedforward and/or feedback
connections both within the layer and toward adjacent layers are allowed (Kohonen,
1977, 1982; Hopfield, 1984). The strength of each connection is expressed by a
numerical value called weight, which can be modified.

The most basic characteristic of a neural network is its architecture. Design
of network architecture includes selecting the number of layers and the number of
nodes in each layer and the interconnection schemes between layers. A variety of
functions can be used as the interconnection function between inputs and hidden
layer or between hidden layer and output layer (Kohonen, 1977, 1984; McClelland
and Rumelhart, 1986). Neural networks differ from each other in their learning
modes (Widrow and Hoff, 1960). There are a variety of learning rules that establish
when and how the connecting weights change. Networks exhibit different speeds
and efficiency of learning, thus they also differ in their ability to accurately respond
to the values presented at the input (Amari, 1977, 1990; Anderson et al., 1977,
Kohonen, 1982, 1988).

A neural network’s ability to perform computations is based on the premise
that we can reproduce some of the flexibility and power of a human brain by
artificial means (Von Neumann, 1958; Arbib, 1987). Advances have been made in
applying such systems for problems found intractable or difficult for traditional
computation approaches (Kohonen, 1984; Hopfield, 1984; Zurada, 1992). Neural

network users do not specify an algorithm to be executed by each computing node
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(neuron). Instead, they select what in their view is the best architecture, specify the
characteristics of the neurons and initial weights, and choose a training mode for the
network (Rumelhart et al., 1986; Hertz et al., 1991; Demuth and Beale, 1995, 2000).
Appropriate inputs are then applied to the network so that it can acquire knowledge
from the environment. As a result of such exposure, the network assimilates
information that can be later recalled by the user (Kohonen, 1988).

The field of neural networks has a history of some six decades but has found
meaningful applications only in the past twenty years. The field is still developing
rapidly. Today neural networks can be trained to solve problems that are difficult for
conventional computational, physics-based methods (Demuth and Beale, 1995.
2000). Neural networks are becoming a useful tool for industry, education and
research, a tool that helps users find what works and what does not, and a tool that
helps develop and extend the field of neural networks (Zurada, 1992). However, the
neural network modeling is limited to the fact that it is based on the data available
and extrapolation might not be reliable.

Application of artificial neural network to slope stability analysis is a
relatively new topic. It has been well known that neural network can be used to
solve both linear and especially non-linear problems. For the case of slope stability,
the problem is known to be highly non-linear and a non-linear model may be
warranted. The non-linear model attempted in this study is a recurrent neural

network (RNN) model. A brief introduction to concepts of artificial neural systems
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such as artificial neuron model and network architectures would be helpful before
discussing the recurrent network model developed in this study.

4.2 Artificial Neuron Model and Network Architecture

The neuron model and the architecture of a neural network describe how a network
transforms its input into an output. This transformation can be viewed as a
computation. The model and the architecture each place limitations on what a
particular neural network can compute (Hertz et al.. 1991). The way a network
computes its output must be understood before training methods for the network can
be explained.

4.2.1 Artificial Neuron Model

A single artificial neuron with R inputs is shown in Figure 4-1. Here the input

vector p is represented by the solid dark vertical bar at the left. The dimensions of
p are shown below the symbol p in the figure as Rx/. Thus. p is a column vector

of R input values. These inputs go to the row vector w. which is of size R.

Input Artificial Neuron
( \ ™
p a
Rx1 1x1 »
1xR n
1x1 F
b
R 1x1
L NG _

R=# of Inputs a=F(w"p+b)

Figure 4-1 Artificial Neuron Model (McCullock and Pitts, 1943)
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As shown in Figure 41, the net input to the transfer function F is n, the
sum of the bias 5 and the product wxp. This sum is passed to the transfer function
F to get the neuron’s output a. which in this case is a scalar. If we have more than
one neuron. the network output will be a vector. The row vector w and the column

vector p are shown below.
w = [w(1,1)w(1.2)..w(1. R)] (4-1)

p =[p(1)pQ)...p(R)f (+2)

A layer of a network is defined in the figure shown above. A layer includes
the combination of the weights. the multiplication and summing operation. the bias
b. and the transfer function F. The input vector, p, will not be called a layer.

The transter function F can take different shapes depending on different
problems. Two of the most commonly used tunctions are shown below. The linear
transfer function. as shown in Figure 4-2. can be used as a linear approximator

(Widrow and Hoff, 1960: Hertz et al.. 1991).

Figure 4-2 Linear Transfer Function (Widrow and Hoff, 1960)
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The sigmoid transfer function, as shown in Figure 4-3. takes the input and
transforms the output into the range -1 to +1. This transfer function is commonly
used in multiple-layer networks, in part because it is differentiable (McClelland and

Rumelhart. 1986; Demuth and Beale, 1995).

AU Y T S S Ui

Figure 4-3 Sigmoid Transfer Function (McClelland and Rumelhart, 1986)

4.2.2 Neural Network Architecture

Two or more of the neurons shown in Figure 4—1 may be combined into a layer. and
a particular network might contain one or more such layers.

Single-layer Network

A single-layer network with R inputs and S neurons is shown below. Here p is an
input vector of length R. w is a matrix (SxR) as shown below. and @ and b are
vectors of length S. As defined previously, the neuron layer includes the weight

matrix. the multiplication operations, the bias vector b, the sum, and the transfer

function boxes.
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R=# of Inputs =F(w*p+b)
S=# of Neurons

Figure 4— Single-layer Neural Network (Rosenblatt, 1958)

Cw(Lw(1.2).w(1.R) ]
w(2.)m(2.2)..w(2. R)
w.\i\'R =" (4__3)

L w(S.)w(S.2)..w(S.R),

[n this network. as shown in Figure 4—4. each element of the input vector p
is connected to each neuron input through the weight matrix w (Equation 4-3). The
ith neuron has a summing that gathers its weighted inputs and bias to form its own
scalar output n(i). The various n(i) taken together form an S-element vector n. The
neuron layer outputs form a column vector a. A single-layer network is generally

used for simple problems, while a multiple-layer network can be used to solve

complex problems.
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Multiple-layer Feedforward Network

A network can have several layers. Each layer has a weight matrix w, a bias vector
b. and an output vector a. The network shown below (Figure 4-5) has R inputs. S1
neurons in the first layer, S2 neurons in the second layer. etc. It is common for

different layers to have different number of neurons.

Input Neuron Layer 1 Neuron Layer 2
( N ~ Y
a1l a2
Sixi P |W2 Bl
S2xS n2
S2x1 F2
b2
Sl S1 S2x1 S2
\ J NG _/
R=# of Inputs a1=F1(w1*p+b1) A2=F2(w2"a1+b2)
S1=# Layer1 neurons S2=# Layer2 neurons

Figure 4-35 Multiple-Layer Feedforward Network (Rosenbaltt. 1958)

Note that the outputs of the intermediate layer are the inputs to the following
layer. Thus. layer 2 can be analyzed as a single layer network with R = S1 inputs.
S =52 neurons, and a SIxS2 weight matrix w=w2. The input to layer 2 is
p =al. the output is a =a2. Now that all the vectors and matrices of layer 2 are
identified, it can then be treated as a single layer network on its own. This approach
can be taken with any layer of the network.

The layers of a multiple-layer network play different roles. A layer that

produces the network output is called an output layer. All other layers are called

hidden layers. The two layer networks shown above has one output layer and one
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hidden layer. Multiple-layer networks are much more powerful than single layer
networks since multiple-layer networks are able to use the combination of sigmoid
and/or linear transfer functions. If the last layer of a multiple-layer network has
sigmoid neurons then the outputs of the network are limited to a small range. If
linear output neurons are used, the network outputs can take on any values
(Rumelhart, 1990).

Multiple-layer feedforward networks use the back-propagation algorithm to
evaluate the contribution of each particular weight to the output error. It might
appear that the back-propagation algorithm has made a breakthrough in the learning
of layered networks. In practice, however, implementation of the algorithm may
encounter different difficulties (Zurada, 1992; Demuth and Beale, 1995). One of the
problems is that the error minimization procedure may produce only a local
minimum of the error function. The learning procedure would stop prematurely if it
starts at wrong point; thus the trained network would be unable to produce the
desired performance in terms of its acceptable terminal error. Also, the initialization
of the network strongly affects the ultimate solution. If all weights start out with
equal weight values, and if the solution requires that unequal weights be developed,
the network may not train properly. Unless the network is disturbed by random
factors or the random character of input patterns during training, the internal
representation may continuously result in symmetric weights (Zurada, 1992). These
problems can be overcome by the dynamic learning of the recurrent network to be

introduced later in this section.
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Feedback Network

A feedback network is different from the networks described above in that its
outputs are connected to its inputs. A S neuron feedback network is shown below
in Figure 4-6. The feedback network is the most general available in that it has all
possible connections between neurons. Some of the weights can be constrained to
zero to create layers within the feedback network, if desired. By doing so. a

multiple-layer network of the kind described previously can be created.

Neuron Layer

g S

=F(w*a+b), S=# of Neurons

Figure 4-6 Feedback Network (Hopfield. 1984)

Feedback networks are quite powerful because they are sequential rather
than combinational like the networks discussed previously. The feedback
connection from output to input makes a multiple-layer network able to learn
dynamically. The feedback network is commonly supplied with an initial input
vector. After that start, the network outputs are used as inputs for each succeeding

cycle (Hopfield, 1984).
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In multiple-layer feedback networks, it is important to be able to calculate
the derivatives of any transfer functions used. Each of the transfer functions
mentioned above, namely sigmoid and linear, has a corresponding derivative
function. These transfer functions are also monotonically increasing functions. That
is, the output of each function increases as its input increases. Thus, the transfer
functions have no minima, which would tend to cause error minima that could trap
the network as it learned. These three transfer functions are the most commonly
used transfer functions for multiple-layer networks, but other differentiable transfer
functions can be created and used with multiple-layer networks, if desired
(Carpenter, 1989; Dreyfus, 1990).

Recurrent Netweork

Recurrent networks are based on multiple-layer feedback networks. A recurrent
network can be created by generalizing the Widrow-Hoff learning rule (Widrow and
Hoff, 1960) to multiple-layer networks and non-linear differentiable transfer
functions, with the addition of a feedback connection from the output of the hidden
layer to its input (Parlos et al., 1994).

Figure 4-7 shows a two-layer recurrent network. The feedback connection in
the first layer of the recurrent network makes it different from multiple-layer
feedforward networks. The delay in this connection stores values from the previous
time step, which can be used in the current time step. Thus, even if two recurrent
networks, with the same weights and biases, are given identical inputs at a given

time step, their outputs can be different due to different feedback states.
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Layer 2 (Output)

™~ f
a1l a2 I
Stx1 W2 {saxi
S2xS n2
rrima L
b2
R STx1 S S2x S2
—J - ) — _/
at=F1(w1*[p;a1],b1) a2=F2(w2*a1, b2)
R=# Inputs S1=# Layer 1 neurons S2=# Layer 2 neurons

Figure 4-7 Two-Layer Recurrent Network (Demuth and Beale. 1993)

Multiple layers of neurons with non-linear transfer functions allow the
network to learn non-linear and linear relationships between input and output
vectors (Bernasconi. 1988: Faustt. 1994). If it is desirable to constrain the outputs of
a network. such as between -1 and +1. then the output layer should use a sigmoid
transfer function (Demuth and Beale, 1995). The linear output layer lets the network
produce values outside the range -1 to +1. Therefore. the combination of sigmoid
hidden layer(s) and a linear output layer can approximate any function with a finite
number of discontinuities with arbitrary accuracy (Mitchison, 1989: Poggio and
Girosi, 1990: Connor et al.. 1994). The only requirement is that the hidden layer
must have enough neurons (Hopfield, 1982; Dayhoff. 1990). More hidden neurons
are needed. as the function being fit increases in complexity (Zurada. 1992; Demuth

and Beale, 1995).
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4.3 Modeling Slope Stability with Neural Network

A two-layer feedforward network model was initially developed in this study for
slope stability analysis. Unfortunately, the predicted results by this model were
rather irrational perhaps because a feedforward-type training could be easily trapped
in local minimum in this situation (Rumelhart. 1990; Demuth and Beale, 1995). The
recurrent neural network (RNN) was then adopted since its dynamic training can
overcome the local minimum difficulties and reach global minimum. The proposed
slope stability analysis model is based on the two-layer recurrent network. as
discussed in the following.

4.3.1 Proposed RNN Model

The proposed RNN model is a black box model rather than the semi-analytical
model. as developed in Chapter 3. The architecture of the proposed RNN model is

shown diagrammatically in Figure 4-8.

Output Layer
™~ ~ N
a1 aza_’
W2
S n2 L
b2
S2
_/ NG —
. a1=Tansig(w1*[p;a1]b1) a2=Linear(w2"a1, b2)
R=#InPUts  g1=4 of hidden neurons S2=# of outputs

Figure 4-8 Proposed RNN Model for Slope Stability Analysis
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The number of input is specific for the proposed model and can be identified
based on the data collected from slope stability analyses, whereas the number of
neurons in the hidden layer can be determined in the process of initializing the
network. The number of neurons in the output layer depends on whether the factor
of safety or the slip surface is chosen as the target.

In the proposed two-layer recurrent network model (Figure 4-8). the tan-
sigmoid transfer function is used in the hidden layer. A single neuron is used in the
output layer to predict the factor of safety. F;. since it is usually the only target for
most of the slope stability analyses available. And three neurons are used in the
output layer to predict the slip surface including the coordinates of slip center (a. b)
and the radius (r). Because the factors of safety of slopes are usually in the range of
say less than one to 2 or 3 (they are not negative for sure), the linear transfer

function is used in the output layer.

khr kV

' ]
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Water level H
— I / Y2, C2, @2, N3, Iz

H, A Y3, Ca @3 ha, ry3
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H,
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Figure 4-9 A Typical Slope for the Proposed RNN Model
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Determination of the input parameters (32) for the proposed recurrent
network model is a difficult task, and is also limited to the data that are collected in
this study primarily from the slope stability literature. Only a limited number of
field case studies could be identified in the literature, having relevance to the
proposed RNN model. The rule of thumb is to choose all the parameters that could
possibly contribute to the failure of a slope. The parameters selected. as shown in
Figure 4-10, include the height of slope (H), the inclination of slope (f), the height
of water level (H,.), the height of tension cracks at crest of slope (#;). the depth of
firm base (#{,), horizontal and vertical seismic coefficients (ks &.), the unit weight of
soil (7, i=1 to 3), the cohesion of soil (c, i=1 t0 3), the friction angle of soil (¢, =/
to 5). the thickness of each layer (h, i=/ to 5), and the pore pressure ratio (#,, =/ to
J) where r, is defined as the ratio of the pore pressure u to the overburden pressure
7. for a given layer (i.e.. r, =u/ 7). For simplicity, five soil layers (i=/ ro 5) are
assumed, as shown in Figure 4-9. for a typical layered slope. Thus, for a
homogeneous slope, the soil properties (3, ¢, &) would be the same for each layer.
Totally, 32 input parameters are used for the proposed RNN model. With the wide
range of factors, the training data are well represented for the proposed model.

After determining the architecture of the proposed model, we can then train
it using the data collected. Since the proposed recurrent network slope model is

solely based on the slope data, a brief review of the slope data is given before

initializing the network.
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4.3.2 Slope Data for Constructing the Model
As noted previously, the data used for constructing the model are from the slope
stability literature, with some data from field case studies where failure records of
slopes and/or laboratory test results are available. Data for a total of 124 slopes were
collected, as shown in Table 41, with the principal parameters of each slope listed.
While some slopes are homogeneous (Slopes 1, 2, etc.), others are layered (Slopes
8. 24, 25, 43, 62, 83. 84, 93, 107, 113). The soil properties (# c. @) listed in Table 4—
1 are the weighted average values for layered slopes. The properties of each layer
are presented in Appendix. The layers of the slopes range from | to 3.

The slopes typically composed of sandy and clayey soils, including clayey
sand. sandy clay. silty clay and clayey silt. The slope heights range tfrom 4 to 67.8
m. The inclinations range trom 11° to 71.6°. The unit weights of soils range trom 9
to 22.8 kN/m’, cohesions from 0 to 67 kPa and friction angles from 0° to 37.5°.
Approximately, the pore pressure ratio (», listed in Table 4-1) representing steady-
state scenario is calculated at the center of each laver where it is applicable. The
values of r, range from 0 to |. The factors of safety available from FEM analyses
are listed in Table 4-1. It is known that FEM models can adequately represent field
conditions in most cases. Also, the factors of safety available from the Bishop
method are listed since the Bishop method can give fairly accurate results for most
cases where this method is applicable. These analysis results are needed to train and

evaluate the proposed RNN model.
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Table 4-1 Slopes for Developing the Proposed RNN Model

Slope Height Layers Inclination Unit Wt Cohesion Friction Ty kp k, FEM Bishop
(#) (m) #) (deg)  (kN/m®)  (kPa) (deg) _(ratio) (1952)
1 10.00 1 33.69 20.00 10.00 20.00 0 0 o} 1.14 132
2 156.20 1 71.60 18.00 20.00 20.00 0 0 0 1.00 094
3 50.00 1 21.80 11.00 15.00 21.00 0 0 0} 1.13 0.97
4 10.00 1 26.57 19.61 31.70 13.00 0.9 0 o} 1.44 161
5 10.50 1 26.57 20.27 31.70 13.00 0 0 o} 1.82 164
6 5.00 1 20.00 20.00 40.00 30.00 0 0 0 1.56 1.35
7* 8.05 1 26.57 18.50 15.00 10.00 0 0 0 1.19 127
8 23.75 2 29.20 17.15 0.00 35.00 0 0 0 092 1.06
9 10.00 1 30.00 18.00 25.00 10.00 0 0 0 1.54 155
10 6.00 1 33.69 19.80 4.00 32.00 0 0 0 1.40
11 44.20 1 19.98 22.76 16.76 37.50 0 0 0 1.18
12 20.00 1 33.69 19.65 4.31 32.00 0 0 0 1.00 1.31
13 6.20 1 16.72 18.80 0.00 20.00 03 0 0 0.75
14 7.20 1 19.98 18.80 1.00 2000 0.2 0 0 0.80
15 7.00 1 18.43 18.80 1.00 20.00 0.28 0 0 0.77
16* 7.80 1 44.50 18.60 10.20 20.00 0 0 0 1.00 1.05
17 12.20 1 17.10 18.80 1.50 2000 0.32 0 0 0.98
18 8.00 1 26.57 18.50 20.00 20.00 0 0 0 205 2.09
19 20.00 1 22.00 20.00 0.00 20.00 0 0.035 0 1.00
20 20.00 1 22.00 20.00 0.00 20.00 0.5 0.035 0 0.90
21 11.50 1 27.60 17.71 9.09 20.35 0 0.2 0 1.09 1.10
22 11.50 1 27.60 17.71 9.09 20.35 0 0.1 0 1.15 1.20
23 8.00 1 45.00 18.50 15.00 20.00 0 0 o} 146 1.29
24* 8.00 2 45.00 18.45 15.06 1010 0.14 0 0 1.00 097
25* 7.62 5 26.57 17.61 7.66 26.00 0.2 0 0 1.16 1.13
26 32.80 1 18.16 17.00 12.00 16.30 1 0 0 0.94 0.86
27 20.40 1 22.00 20.00 20.00 20.00 1 0.035 0} 1.12
28 20.40 1 22.00 20.00 20.00 20.00 1 0.1 0 0.96
29 44.20 1 19.98 22.80 16.80 37.50 0.6 0 0 1.00
30 4420 1 19.98 22.80 16.80 3750 055 0 0 1.12
31 4.90 1 18.43 18.80 1.20 2000 027 0 0 1.10
32 20.00 1 33.69 18.80 41.70 15.00 0 0 o} 1.68
33 15.20 1 63.40 18.00 20.00 20.00 0 0 0 1.00
34 46.00 1 41.01 9.00 25.00 20.00 0 0 0 1.03 099
35 45.50 1 41.01 12.00 23.00 25.00 0 0 0 1.08 1.03
36 8.00 1 45.00 18.50 20.00 15.00 0 0 0 145 132
37 8.00 1 45.00 18.50 20.00 20.00 0 0 0 168 1.50
38 30.00 1 20.56 19.61 14.71 20.00 0 0 0 1.75 152
39 3280 1 18.16 17.00 12.00 16.30 0 0 0 1.08 1.1
40 17.00 1 33.69 18.80 1.00 20.00 043 0 0} 0.97
41 6.10 1 33.69 19.62 4.31 32.00 0 0 0 1.54 147
42 10.00 1 26.57 16.00 10.00 15.00 0 0 0 0.93
43 9.10 3 26.60 18.31 5.16 15.12 0.1 0 0 1.00 099
44 8.00 1 45.00 18.50 25.00 10.00 0 0 o} 142 135
45 17.68 1 26.57 19.65 10.06 27.00 0 0 0 0.86 0.79
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Table 4-1 Continued

Slope Height Layers Inclination Unit Wt Cohesion Friction fe kn k, FEM Bishop
#) (m) @  (deg) (KN/m))  (kPa)  (deg)  (ratio) (1952)
46° 856 1 44.50 18.50 20.00 10.00 0 0 0 123 1.15
47 44.00 1 19.98 22.80 16.80 37.50 0.4 0 0 1.50
48 13.50 1 26.57 17.30 57.50 7.00 0 0 0 211 2.08
49 6.10 1 33.69 19.65 4.31 32.00 0 0 0 111 1.19
50 6.00 1 23.96 18.80 1.00 20.00 0 0 0 0.93
51 7.00 1 26.57 18.80 1.00 20.00 0.1 0 0 0.81
52 10.00 1 26.57 18.93 11.97 32.00 0 0 0 122 1.05
53* 10.00 1 33.69 17.66 7.85 2500 0.25 0 0 1.05 1.07
54 8.00 1 26.57 18.50 5.00 20.00 0 0 0 1.23 1.21
55 8.00 1 26.57 18.50 15.00 20.00 0 0 0 185 1.82
56 10.40 1 15.24 18.80 0.00 20.00 0.33 0 0 0.97
57 5.10 1 25.25 18.05 575 18.00 0.64 0 0 0.62
58 4.00 1 20.00 17.95 5.00 15.00 0 0 0 0.89 0.78
59  20.00 1 20.00 19.72 30.00 30.00 0.5 0 0 125 1.54
60 4.50 1 20.00 15.92 2.16 17.33 0 0 0 0.88 0.93
61 12.19 1 33.69 19.24 22.80 35.00 0 0 0 1.78 162
62° 9.50 2 25.50 18.61 10.42 10.14 0.31 0 0 1.00 1.03
63 8.00 1 26.57 18.50 20.00 15.00 0 0 0 172 1.78
64  20.00 1 26.57 18.71 0.00 23.50 0 0.51 041 1.03
65 21.50 1 24.13 17.40 5.00 10.00 0 0 0 1.23
66 44.20 1 20.00 22.00 16.80 37.50 0.5 0 0 1.25
67 44.20 1 20.00 22.00 16.80 37.50 0.45 0 0 1.37
68 13.70 1 26.57 18.71 0.00 14.00 0 0.05 0 1.28
69* 8.20 1 45.00 18.50 15.00 15.00 0 0 0 124 111
70 44.10 1 19.98 22.80 16.50 37.50 0.3 0 0 0.68
71 44.10 1 19.98 22.80 16.50 37.50 0.2 0 0 0.70
72 12.19 1 27.15 18.87 0.00 33.00 0 0 0 1.20
73 12.19 1 27.15 18.87 67.00 0.00 0 0 0 213 2.15
74 12.19 1 27.15 18.87 28.70 20.00 0 0 0 176 1.35
75 845 1 45.00 18.50 10.00 15.00 0 0 0 1.00 0.89
76 21.50 1 24.13 17.40 0.00 14.00 0 0 0 0.92
77 21.50 1 24,13 17.40 0.00 17.20 0 0 0 1.06 0.64
78" 46.00 1 38.66 14.00 20.00 26.30 0 0 0 119 1.14
79 22.70 1 16.27 18.20 0.00 14.10 0 0 0 1.19
80 22.70 1 16.27 18.20 0.00 17.20 0 0 0 1.00 0.87
81 15.50 1 15.01 18.00 5.00 10.00 0 0 0 1.05
82 15.50 1 15.01 18.00 0.00 14.00 0 0 0 111 117
83 15.00 3 12.99 20.00 45.00 0.00 0 0 0 1.39 1.31
84 15.00 3 12.99 20.00 21.00 17.00 1 0 0 1.05
85 25.00 1 22.00 18.80 30.00 20.00 0.25 0 0 1.36
86 8.00 1 45.00 18.50 25.00 15.00 0 0 0 165 1.53
87* 8.00 1 26.50 18.50 15.00 15.00 0 0 0 154 1.53
88 10.06 1 21.80 18.44 0.96 24.50 0 0 0 1.06 1.00
89 10.06 1 21.80 18.44 0.72 25.60 0 0 0 1.00 0.83
90 6.00 1 33.69 19.65 1.50 30.00 0 0 0 0.79
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Table 4-1 Continued

Slope Height Layers Inclination Unit Wt Cohesion Friction fo Kn k, FEM Bishop
(#) (m) (#) (deg) _ (kN/m’)  (kPa) (deg) _ (ratio) (1952)
91 12.80 1 27.76 21.85 8.62 32.00 0 0 0 1.03
92° 2743 1 26.40 17.29 44.54 12.00 0 0 0 1.52 1.45
93 14.33 3 36.53 20.47 51.39 0.00 0 0 0 165 1.64
94 8.00 1 26.57 18.50 10.00 156.00 0 0 0 129 1.29
95 10.00 1 39.81 20.36 0.98 32.50 0.7 0 0 111 1.01
96 18.00 1 26.57 19.50 9.81 27.00 0 0 0 1.02 1.07
97 12.80 1 28.50 21.55 8.62 30.00 0 0 0 092 1.05
98 10.06 1 21.80 18.01 16.33 20.00 0 0 0 0.73
99  10.06 1 21.80 18.84 0.00 20.00 0 0 0 1.43
100 7.01 1 18.43 21.29 0.00 20.00 0 0 0 1.05
101 7.01 1 18.43 19.79 0.96 13.00 0 0 0 1.03 1.00
102 18.29 1 11.00 22.32 15.33 21.00 0 0 0 100 1.28
103  12.10 1 24.38 16.10 25.00 20.00 0 0 0 1.18 1.00
104 30.00 1 30.00 21.00 22.11 18.29 0 0 0 122 0.86
106 5.00 1 33.69 19.60 2.56 27.60 0 0 0 1.06 0.98
106 67.80 1 29.05 19.00 33.00 29.50 0 0 0 1.01 121
107 67.80 2 29.05 19.00 25.00 24.00 0 0 0 1.31

108 14.30 1 27.00 19.60 9.60 25.00 0.32 0 0 1.00 0.97
109 8.00 1 45.00 18.50 30.00 15.00 0 0 0 185 1.75
110 8.00 1 26.57 18.50 25.00 15.00 0 0 0 187 205
111 11.50 1 27.60 17.71 9.09 20.35 0 0 0 099 0.82
112 §5.00 1 26.57 17.64 490 10.00 Q 0 0 1.00
113  12.80 4 28.00 21.80 8.60 32.00 0 0 0 1.19 0.98
114 10.00 1 14.04 20.00 10.00 25.00 0 0 0 0.67
115  6.00 1 45.00 18.00 10.00 37.00 0 0 0 115 1.76
116 6.00 1 33.69 18.00 10.00 37.00 0 0 0 119 1.20
117 20.15 1 22.00 20.00 20.00 20.00 0.5 0.035 0.25 1.12
118 20.15 1 22.00 20.00 20.00 20.00 0.4 0.1 0.05 0.96
119 8.00 1 45.00 18.50 25.00 20.00 0 0 0 187 1.74

120* 8.30 1 26.57 18.50 10.00 20.00 0 0 0 160 1.54
121 11.50 1 27.60 17.71 9.09 20.35 0 0.05 0 121 125

122 1150 1 27.60 17.71 9.09 20.35 0 0 1 1.16 1.00
123 11.50 1 27.60 17.71 9.09 20.35 0 0 2 090 0.87

124* 10.20 1 45.00 19.60 11.80 30.00 0 0.2 0 123 1.00

Note: * indicates that the slope is used for validation.

Among the 124 slopes, 20 slopes are chosen for prediction and evaluation of

the strengths/weaknesses of the developed RNN model including 10 representative

slopes selected and 10 randomly chosen from the 114 slopes. The remaining 104

slopes are used for training the proposed model.

81




The slopes analyzed by finite element methods are typically clayey slopes.
Most (85) of the finite element analyses collected from the literature used two-
dimensional (2-D) analyses (Slopes #7, #16, etc.), while some (17) used three-
dimensional (3-D) analyses (Slopes #53, #124, etc.) (Appendix). The soil
constitutive models used in the finite element analyses include the Mohr-Coulomb
failure criterion and the Drucker-Prager failure criterion (Drucker and Prager, 1952).
The finite element meshes used in the finite element analyses usually consisted of
three-noded triangular or four-noded quadrilateral elements for 2-D analyses and
eight-noded brick-type clements for 3-D analyses. Table 4-2 presents the FEM
results for the 20 slopes to be used for prediction/evaluation.

While all the methods employ the same definition of factor of safety as the
ratio of shear strength available to shear stress required for equilibrium, some finite
element analyses used the summed values of shear strength/stress called the overall
factor of safety (Zienkiewicz et al.. 1975: Zhou, 1993: Yang et al.. 1994; Fredlund
and Scoular, 1999; Cai and Ugai. 1999; Cheng et al., 2000) and some used the local
values of shear strength/stress called the local factor of safety (Hunt. 1986; Huang
and Yamasaki, 1993; Press et al., 1995, Wakai and Ugai, 1999).

By considering pore pressure as a nodal variable, it is realized that the pore
pressures could be better treated by finite element solutions. This is one of the
iimitations of the proposed neural network model in that it does not
comprehensively treat the effect of pore pressure. The Young’s modulus and

Poisson’s ratio were included in the finite element analyses. Initially they were also



included as inputs in the proposed RNN model. These two parameters are related to
the movement of a slope. Therefore, it was considered inappropriate to include them
in the proposed RNN model that is developed to predict the failure of a slope.
Consequently, Young's modulus and Poisson’s ratio were not included in the final

RNN model.

Table 4-2 Slopes with Finite Element Analysis

Slope FEM Element Soil Constitutive Young's Poisson's F.S.
# Dim. Node Model Mod. (MPa) Ratio
7 2-D 4 Drucker-Prager 5.0 0.30 1.19
16 2-D 4 Drucker-Prager 5.0 0.30 1.00
24 2-D 4 Drucker-Prager 5.0 0.30 1.00
25 2-D 4 Mohr-Coulomb 40.0 0.40 1.16
35 2-D 4 Mohr-Coulomb 20.0 0.33 1.08
38 2-D 4 Mohr-Coulomb 20.0 0.33 1.75
39 2-D 3 Mohr-Coulomb 50.0 0.35 1.08
43 2-D 4 Drucker-Prager 5.0 0.33 1.00
46 2-D 4 Drucker-Prager 5.0 0.30 1.23
53 3-D 8 Mohr-Coulomb 98.1 0.30 1.05
62 2-D 4 Drucker-Prager 10.0 0.30 1.00
69 2-D 4 Drucker-Prager 5.0 0.30 1.24
75 2-D 4 Drucker-Prager 5.0 0.30 1.00
78 2-D 4 Mohr-Coulomb 20.0 0.33 1.19
87 2-D 4 Drucker-Prager 5.0 0.30 1.45
92 2-D 4 Mohr-Coulomb 20.0 0.33 1.52
108 2-D 4 Drucker-Prager 20.0 0.33 1.00
120 2-D 4 Drucker-Prager 5.0 3.30 1.60
122 2-D 4 Mohr-Coulomb 20.0 0.33 1.16
124 3-D 8 Mohr-Coulomb 98.1 0.30 1.23

4.3.3 Initializing the Proposed Model
A computer code has been developed for use with Matlab based on the proposed
RNN model utilizing the Neural Network Toolbox - a commercially available

software. In developing this program, the Widrow-Hoff learning rule (Widrow and
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Hoff, 1960), also called backpropagation, is used to adjust the weights and biases of
the network in order to minimize the sum-squared error of the network. This is done
by continually changing the values of the network weights and biases in the
direction of the steepest descent with respect to error. Derivatives of error called
delta vectors are calculated for the network’s output layer, and then backpropagated
through the network. Calculating a layer’s delta vector from the following layer’s
delta vector is referred to as the backpropagation of deltas (Widrow. 1962; Vogl et
al. 1988).

[nitialization creates initial weights and biases for the proposed recurrent
network model. It takcs as arguments a matrix of input vectors, the number of
recurrent neurons, the number of output neurons, and the transfer functions of each
layer. With the input matrix and the output target vector set up from the 104
randomly selected slopes, it is found that 45 recurrent neurons is a proper number
for the hidden layer after other numbers has been tried according to the Widrow-
Hoff learning rule.

4.3.4 Training the Proposed Model
Training the proposed model generates new weights and biases of network when it
is presented with the given sequence of input and target vectors and the initial

weights and biases. The training parameters (¢p) specified during the training

process include the number of epochs between displaying progresses, the maximum
number of epochs to train, the sum-squared error goal, and the learning rate. The

learning rate specifies the size of changes that are made in the weights and biases at
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each epoch. Small learning rates result in long training time but can prevent the
network’s values from jumping over valleys in the error surface that lead to lower
errors (Demuth and Beale, 1995). Training continues until either the error goal is
met, or the maximum number of epochs has occurred.

The recurrent training may lead to a local rather than a global error
minimum. The local error minimum obtained may be satisfactory, but if it is not, a
network with more neurons may do a better job. However, the number of neurons or
layers to add may not be obvious. Alternatively, several different sets of initial
conditions may be used to run the problem to see if they led to the same or different
solutions (Parlos et al., 1994).

During training, the network error and the current training status can be
displayed at intervals defined by the training parameter. These displays show how
the network is doing. Training process returns, in addition to the new weights and
bias, the number of epochs of training that actually occurred, and a row vector that
records errors throughout training.

The interpretation of training often depends on the point of view that one
takes on the recurrent network (Luk, 1999). The view we take here is simply that the

network is a function approximator of the model. The input data point is taken as the

training set to determine the set of weights of the network {w,, } by solving the non-

linear least-squares problem of minimizing (y — 7)° where yp= f (wq) is the

function of weights of the network.



Figure 4-10 shows an example of training curve from the proposed RNN
model - the normalized sum of squared error (SSE) versus the number of iterations.
As specified. the training is stopped when the normalized SSE is less than 0.001 or

when the number of iterations reaches 1000 whichever occurs first.

Learning Curve
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Figure 4-10 Normalized SSE vs. Number of Iterations

After finalizing the weights and bias for the proposed RNN model, we then
can use the RNN model to predict the factors of safety for the slopes selected.
4.3.5 Prediction with the Proposed Modei
Prediction was processed with a new matrix of input vectors from the 20 slopes
selected as well as the weights and bias obtained from the training process.
Prediction returns a matrix of output vectors — the factors of safety of the slopes.

The results of the predicted factors of safety are presented in Table 4-3.
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Table 4-3 RNN Maodel Prediction Results

Slope Height Inciinatior Unit Wt. Cohesion Friction fy FEM Bishop Semi-analy. RNN

# {m) (deg) (kN/m3) (kPa) {(deg) (ratio) (1952) (proposed) (proposed)

7 8.05 26.57 18.50 15.00 10.00 0.00 1.19  1.27 1.23 1.34
16 7.80 4450 18.60 10.20 20.00 0.00 1.00 1.05 1.06 1.10
24 800 45.00 18.45 15.06 10.10 0.14 1.00 0.97 1.15 0.95
25 762 26.57 17.61 7.66 26.00 0.20 1.16 113 1.21 1.02
35 4550 41.01 12.00 23.00 2500 0.00 1.08 1.03 1.01 1.09
38 30.00 2056 19.61 1471 20.00 0.00 1.75 1.52 1.50 1.63
39 3280 18.16 17.00 12.00 1630 0.00 1.08 1.1 1.16 1.18
43 9.10 26.60 18.31 5.16 15.12 0.10 1.00 0.99 1.06 0.87
46 8.56 44.50 18.50 20.00 10.00 0.00 1.23 1.15 1.20 1.19
53 10.00 33.69 17.66 7.85 25.00 0.25 1.05 1.07 1.10 1.1
62 9.50 25.50 18.61 10.42 10.14 0.31 1.00 1.03 1.14 0.93
69 820 45.00 18.50 15.00 15.00 0.00 1.24 1.1 1.19 1.27
75 845 45.00 18.50 10.00 15.00 0.00 1.00 0.89 0.98 1.16
78 46.00 38.66 14.00 20.00 26.00 0.00 1.19 1.14 1.13 1.20
87 8.18 26.50 18.50 15.00 1500 0.00 1.45 1.35 1.49 1.69
92 2743 26.40 17.29 4454 12.00 0.00 1.52 1.45 1.38 143
108 14.30 27.00 19.60 9.60 25.00 0.32 1.00 0.97 1.08 0.98
120 8.30 26.57 18.50 10.00 20.00 0.00 1.60 1.54 1.51 1.59
122 11.50 27.60 17.71 9.09 20.35 0.00 1.16 1.00 0.99 1.16
124 10.20 45.00 19.60 11.80 30.00 0.00 1.23  1.00 1.32 1.20

For the 20 slopes selected for prediction, cohesions of soils range from 5 kPa
to 44.54 kPa and friction angles range from 10° to 30°. The heights of the slopes
range from 7.62 meters to 46 meters. Slope angles range from 18.16° to 45°. The
pore pressure ratios, r,, are within the range of 0 to 0.32. The unit weights of soils
are within the range of 12 to 19.61 kN/m’. Also, listed in the table are the results
from the finite element analyses, the Bishop method and the semi-analytical method
developed in the previous chapter for the purpose of comparison. The multiple
layers are used in the finite element analyses, the Bishop method and the proposed

RNN model, while single layer is used in the semi-analytical method.
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It can be observed from Table 4-3 that the factors of safety obtained by the
proposed RNN model are in general agreement with the results from the finite
element analyses, the Bishop method, and the semi-analytical method. Statistical
analyses show that the results from the proposed RNN model are closer to the finite
element method than to the Bishop method and the semi-analytical method. The
difference between the proposed RNN model and the FEM averages 8% with a
standard deviation of 6%. The difference between the proposed RNN model and the
Bishop method is about 10% with a standard deviation of 8.5%. In two cases
(Slopes #75, #87), the factors of safety are over-predicted with the differences
between the proposed RNN model and the FEM being 16%, and 17%, respectively.
And in one case (Slope #25), it is under-predicted with the difference between the
proposed RNN model and the FEM being 14%. The over or under-predictions might
be caused by one or more parameters that are over or under-valued.

The difference between the semi-analytical method and the finite element
method averages 9% with a standard deviation of 6% for the 20 slopes. The
proposed semi-analytical method is closer to the Bishop method with a difference of
8% on an average and a standard deviation of 7%. The difference between the
proposed RNN model and the proposed semi-analytical method averages 11% with
a standard deviation of 6%. There are six cases (Slopes #24, #25, #43, #53, #62,
#108) in which the pore pressures are involved in the prediction of the proposed

RNN model. Since the semi-analytical method does not include pore pressure in its
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formulation, it generally sets the upper bounds of the factors of safety for the six

slopes as shown in Table 4-3.

4.3.6 Predicting Slip Surface by the RNN Model

The slip surfaces are determined, based on the results (slip center and radius)

obtained from the semi-analytical method, by retraining the RNN model discussed

above. However, for this case, the output layer has three neurons or target values, a,

b, and r that represent the coordinates of the center and the radius of a circular slip

surface. The input parameters are same as those used for predicting F;

used for the prediction of slip surfaces, as listed in Table 4-4.

Table 44 RNN-Based Results of Circular Slip Surface

. 20 slopes are

Slope Height inclination Unit Wt. Cohesion Friction Semi-Analytical RNN

# (m) (deg) (KN/m’) (kPa)  (deg)  x(m) _y(m) r(m) x(m) y(m) _ r(m

7 8.05 2657 1850 1500 10.00 636 1165 1327 6.15 1156 13.09
16 780 4450 1860 1020 20.00 190 896 916 236 947 976
24 800 4500 1845 1506 10.10 235 967 995 251 9.83 10.15
25 762 2657 1761 766 26.00 478 932 1047 489 920 1042
35 4550 41.01 1200 23.00 2500 324 5845 5854 367 5249 5262
38 3000 2056 1961 1471 20.00 650 38.04 3859 6.16 3464 3518
39 3280 1816 17.00 1200 16.30 7.17 4126 4188 685 38.08 38.69
43 910 2660 1831 5.16 15.12 523 1152 1265 512 1103 1216
46 856 4450 1850 20.00 10.00 2.51 9.96 1027 2.65 10.62 1095
53 1000 3369 1766 785 2500 382 1305 1360 3.37 1254 1298
62 950 2550 18.61 1042 10.14 6.14 1133 1297 579 1188 13.22
69 820 4500 1850 1500 15.00 227 928 955 208 974 996
75 845 4500 1850 1000 1500 210 989 1011 234 987 1014
78 46.00 3866 1400 2000 26.00 329 5685 5695 3.79 5320 53.33
87 818 2650 1850 1500 1500 6.18 11.07 1268 571 1209 13.37
92 2743 2640 1729 4454 1200 486 3384 34.19 475 3255 32.89
108 1430 27.00 1960 9.60 25.00 133 2635 26.38 3.37 2197 2223
120 830 26,57 1850 1000 20.00 557 1120 1251 548 11.52 1276
122 1150 2760 1771 9.09 20.35 460 1439 1511 45 1346 14.21
124 1020 4500 1960 1180 30.00 285 1267 1299 2.84 1279 13.10
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4.4 Results and Discussions

To evaluate the proposed RNN model, the five slopes (#16, #24, #43, #62, #108)
from Table 44 with circular slip surfaces predicted by the proposed RNN model
were further analyzed to compare the factors of safety with respect to the slip
surfaces determined by the Bishop method, the finite element method and the semi-
analytical method. as shown in the following figures (411 through 4-15).

Slope #16 is a homogenous dry soil slope. as shown in Figure 4--11. The unit
weight of soil is 18.6 KN/m®. The height of slope is 7.8 m and the depth to an
underlying rigid layer boundary is 3.2 m from the bottom of the slope excavation.
The slope angle is 44.5°. The cohesion and friction angle are 10.2 kPa and 20°.
respectively. The factors of safety and slip surfaces for this slope determined by the

above-mentioned four different methods are also presented in Figure 4-11.

FEM F:=1.0

7.8m RNN F;=1.1
Bishop F=1.05

Semi-analy. Fs=1.06

c=10.2kPa
= 20° _
32m v= 18.6 KN/m’

Figure 4-11 Slip Surfaces for Slope #16
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The factors of safety for Slope #16, as shown in Figure 4—11, are in good
agreement for this simple slope with 1.0 by the FEM model (Zhou, 1993) to 1.1
predicted by the proposed RNN model to 1.05 by the Bishop method and 1.06 by
the semi-analytical method, which is between the two methods.

The location of the slip surface for Slope #16 (Figure 4—11) obtained from
the RNN model is slightly lower than that defined by the semi-analytical method
developed in this study but much lower than that defined by the Bishop method and
the FEM model (Zhou, 1993) in the lower portion of the slope. The RNN model
yielded a slip surface extending from a point of the upper slope that is further away
from the slope face than that predicted by the semi-analytical method but closer than
that predicted by the FEM model and not far away from the Bishop method. The
lower portions of the failure surfaces determined by the four approaches, however.
are in good agreement with each other, and they all pass through the toe of the
slope. The RNN model predicted the mixed solution - higher in the upper portion
and lower in lower portion than that by the FEM model.

Slope #24, as shown in Figure 4-12, is a layered slope with the unit weight
of soil 18.45 KN/m® and the cohesion and friction angle of 15.06 kPa and 10.1°,
respectively, in an weighted average sense. The height of slope is 8 m and the depth
to an underlying rigid layer boundary is 5.6 m. The slope angle is 45°. The water
level is 5.6 m above the firm base. The factors of safety and slip surfaces for this
slope determined by the above-mentioned four different methods are also presented

in Figure 4-12.
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8m ¢, = 17.5kPa

7 Bishop F,=0.97 ¢, =7.5°

,. ( h;=9.0 m
vi=19.5 KN/'m’

" i Semi-analy. F;=1.15

56m c» = 10.3 kPa, ¢, =15.2°
h,=4.6 m, y,=16.4 KN/m’

Figure 4-12 Slip Surfaces for Slope #24

The factors of safety of Slope #24. as shown in Figure 4-12. varied slightly
from one method to another. The RNN model yields the lowest value of 0.95 which
is very close to the value 0.97 predicted by the Bishop method. The FEM model
(Zhou. 1993). however. predicts a value of 1.0. The semi-analytical method gives
the highest value of 1.15. which might be due to its inability to include layered soils
and the effect of pore pressure in its formulation.

[t can be observed that the relative locations of the slip surfaces among
different methods in Slope #24 show a similar pattern to that of Slope #16, with the
slip surfaces by the RNN model and the semi-analytical method becoming closer to
that by the Bishop method and the FEM model (Zhou. 1993). Also. as expected. the
lower portions of the slip surfaces determined by these four approaches all pass

through the toe of the slope.
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Slope #43. as shown in Figure 4-13, is a three-layered slope. The unit
weights of soils range from 16.5 to 19.2 KN/m’ with the weighted-average of 18.31
KN/m’. The height of the slope is 9.1 m and the second layer has the maximum
height of 7.2 m. The depth to an underlying rigid layer boundary is 5 m from the

bottom of the slope excavation. The slope angle is 26.6°. The cohesion and friction

angle are 5.16 kPa and 15.12°. respectively, in a weighted average sense. The water
level is 4 m above the firm base. The factors of safety and slip surfaces for this slope

defined by the four different methods are presented in Figure 4-13.

Semi-Analy. F,=1.06
Bishop Fs=0.99
RNN F=0.87
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Figure 4—13 Slip Surfaces for Slope #43

As shown in Figure 4—13, the factors of safety of Slope #43 are quite close
between the FEM model (Song and Chang, 1995) and the Bishop method with

values of 1.0 and 0.99, respectively. The semi-analytical method gives a higher
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value of 1.06. However, the RNN model predicts a much lower value of 0.87 than
other methods.

The slip surface of Slope #43, defined by the RNN model, lie (Figure 4-13)
slightly above that defined by the semi-analytical method and somewhat lower than
that by the Bishop method but much lower than that defined by the FEM model
(Song and Chang, 1995). The RNN model exhibited a slip surface extending from a
point of the upper slope that is further away from the slope face than that predicted
by the Bishop method but closer than that predicted by the FEM model and the
semi-analytical method. The lower portions of the slip surfaces determined by these
four approaches, however, all pass through the toe of the slope, as expected.
However, in the middle portions of the slip surfaces, the semi-analytical method and
the RNN model deviate from the FEM model. The reason might be that the semi-
analytical method fails to treat the slope as a layered soil while the RNN model used
the semi-analytical solutions in its training.

Slope #62 is a two-layered slope with the weighted-average unit weight of
soil 18.61 kN/m’ and cohesion and friction angle 10.42 kPa and 10.14°,
respectively, as shown in Figure 4—14. The height of slope is 9.5 m and the depth to
an underlying rigid layer boundary is 6 m. The slope angle is 25.5°. The water level
is 4 m below the top of slope. The phreatic surface is shown in the figure. As
reported by Yang et al. (1994), the pore pressure played a key role in the failure of
this slope and the location of the actual failure surface is close to the finite element

model they developed.
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The factors of safety for Slope #62 from the FEM model (Yang et al., 1994)
and the Bishop method are quite close to each other with values of 1.0 and 1.03.
respectively. The RNN model gives the lowest value of 0.93, while the semi-
analytical method yields the highest value of 1.14. The high value from the semi-
analytical method might be due to no pore pressure involved in its formulation. The
low value by the RNN model might be caused by the approximation of pore

pressure and by the limited cases with pore pressures involved in its training.

Semi-analy. Fs=1.14
Bishop Fs=1.03
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Figure 4-14 Slip Surfaces for Slope #62

The slip surfaces of Slope #62 defined from the four methods deviate from
each other (Figure 4-14) in the middle portions of the slope. The slip surface by the
Bishop method exhibits a small amount of shift from the FEM model, while the
semi-analytical method shift further and the RNN model sets the lower bound in

general. [t is worth noticing that the lower portions of the slip surfaces determined



by these four approaches somewhat go beyond the toe of the slope but still not far
away from each other, which might be caused by the pore water pressure.

Slope #108 is the failure of the Springfield Dam in Kentucky (Huang, 1983).
as shown in Figures 4-15. The slope is about 14.3 m high in front and 10 m high in
the back of the dam. The slope angle is about 27°. The water level is about 9 m from
the bottom of the dam or 1 m from the top. The circular failure surface determined
by Huang (1983) using the Bishop method had a factor of safety of 0.97 with the
assumed soil properties of ¢ =9.6 kPa, ¢ = 25°. and y = 19.6 kN/m’. Huang (1983)
indicated that the actual location of the failure surface is very close to the theoretical

circle determined by the Bishop method shown in Figure 4-15.

1 m from top ’

FEM F,=1.0 10m

143 m

/¢

77 RNN F,=0.98
7.
/ ,.;"‘\ Bishop F4=0.97

)
e
Sy

fge
— L ee® °® 08 "'| 'I““:.\:\I".'!'.'.'\ul
st SR
vy e [ . .
B 7 W DAL Semi-analytical F,=1.08
b '

Figure 4-15 Stability Analysis of Springfield Dam
Since the dam had been built long before the failure occurred. it is therefore

assumed that no excess pore-water pressure existed in the soils at the time of failure.
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Thus, the buoyant weight of the soils below the phreatic surface is used in the
analysis. Analysis of the dam failure using the FEM model with soil properties of ¢
=9.6 kPa, ¢ =25°, and y = 19.6 kN/m’ does not indicate a stability problem (Huang
and Yamasaki, 1993). One of the strength parameters of the soils below the phreatic
surface is then reduced. The cohesion of the soils in a saturated state was taken as
one-third of the cohesion of the same soils above the phreatic surface, and the angle
of friction was kept the same, since it does not vary much with the degree of
saturation. With these changes, the FEM model (Huang and Yamasaki, 1993) gives
a factor of safety of 1.0.

Using the same soil properties as used in the Bishop method, the RNN
model predicts a factor of safety of 0.98, which is fairly consistent with that from
the Bishop method. However, the slip surface determined by the RNN model is
much shallower than the circular failure surfaces obtained from the Bishop method
and the semi-analytical method but deeper than that from the FEM model (Huang
and Yamasaki. 1993), as presented in Figure 4-15. The emerging points of the slip
surfaces near the toe of the dam agree well. The projected locations of the three slip
surfaces are different at the crown of the dam with the Bishop method predicting a
failure surface further away from the slope face, the FEM model (Huang and
Yamasaki, 1993) predicting a failure surface closest to the slope face and the RNN
model predicting a failure surface between them.

These examples illustrate the use of the proposed RNN model as an

alternative approach to slope stability analyses. The predicted results shows that the
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104 cases are sufficient for training the proposed RNN model for the factor of safety
and the failure surfaces. For the five slopes examined, the factors of safety from the
semi-analytical method generally set the upper bound in the cases where pore water
pressures are involved, which is one of its limitations. The locations of the slip
surfaces defined by the four methods also deviate somewhat from each other. One
possible explanation is the concept of constancy of the factor of safety along the
failure surface that the limit equilibrium analysis (the Bishop method and the semi-
analytical method) is based on. Soil properties (Young’s modulus and Poisson’s
ratio) and the constitutive laws (Mohr-Coulomb failure criterion, Drucker-Prager
failure criterion) used in the finite element analyses might contribute to this
difference. Additionally, minor errors also could be introduced to the results from
the mesh design on which the finite element analysis is based. The results from the
proposed RNN model might be affected by the limited number of slopes available
for training the model. The lower bounds set by the RNN model in some cases
might be caused by its failure to comprehensively treat the effect of pore pressure
and also by the limited cases with pore water pressures involved in its training. It
might be possible that the proposed RNN model does not have enough training.

4.5 Concluding remarks

In this chapter, an artificial neural network model is presented for slope stability
analysis. The proposed model is a two-layer recurrent network with a sigmoid
hidden layer and a linear output layer — a powerful combination to perform non-

linear modeling. Five layers are assumed for a typical layered slope. The model is

98



developed based on the data from 124 slopes collected in this study, including 32
input parameters that could possibly contribute to the failure of each slope. The
training data are well represented for the proposed model with wide range of factors.
45 recurrent neurons are used in the hidden layer. Training is performed on the 104
slope data selected from the 124 slopes, and prediction or evaluation is based on the
remaining 20 slopes. The predicted results by the proposed RNN model are in
general agreement with that obtained by the finite element method and the Bishop
method as well as the proposed semi-analytical method. The circular slip surfaces
are determined by retraining the proposed RNN model with the output targets (slip
center and radius) obtained from the semi-analytical method. The output layer has
three neurons. namely the coordinates of the center and the radius of the circular slip
surface.

In comparison with the proposed semi-analytical method, the proposed RNN
model can do better in representing the layered soils or relatively complex cases
with pore pressures involved. while the semi-analytical method would be as good as
any other methods for simple slopes. The study also shows that the solutions from

the Bishop method are quite accurate for most cases.
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CHAPTERSS
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In this study, the slope stability problems (Chapter 1) were introduced and followed
by a detailed literature review of the slope stability analysis methods (Chapter 2). A
semi-analytical method (Chapter 3) was presented for calculating the factor of
safety in which an integral approach is used to accurately represent the forces in
various slices and an optimization technique is used to obtain the critical slip
surface. As an alternative to numerical approach, an artificial neural network model
was developed for estimating slope stability (Chapter 4).

The semi-analytical method presented in Chapter 3 is developed for analysis
of slope stability involving cohesive and non-cohesive soils. For sandy slopes, a
planar slip surface is employed, while for clayey slopes, circular slip surfaces are
employed including Toe Failure, Face Failure and Base Failure resulting from
different locations of a hard stratum. Earthquake effects are considered in an
approximate manner in terms of seismic coefficient-dependent forces.

The proposed method can be viewed as an extension of the method of slices,
but it provides a more accurate treatment of the forces because they are represented
in an integral form. Also, the minimum factor of safety is obtained by using the
Powell’s optimization technique rather than by a trial and error approach used
commonly. The results (factor of safety) from the proposed semi-analytical method

are compared with the solutions by the Bishop method (1952) and the finite element
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method, and satisfactory agreements are obtained. The proposed method appears to
be simpler and more straightforward than the Bishop method and the finite element
method.

In Chapter 4, an artificial neural network model is introduced, as an alternate
approach, for modeling slope stability. The proposed neural network model is a two-
layer recurrent neural network (RNN) with a sigmoid hidden layer and a linear
output layer. The model is developed by using data from 124 slopes collected for
this study, including a limited number of slopes for which field data are available.
The input variables include the parameters that contribute to the failure of a slope
and include the height of slope, the inclination of slope, the height of water level,
the height of tension cracks at crest of slope, the depth of firm base, horizontal and
vertical seismic coefficients, the unit weight of soil, the cohesion of soil, the friction
angle of soil, the thickness of each layer, and the pore pressure ratio which is
defined as the ratio of the pore pressure to the overburden pressure for a given layer.
The output layer is a single neuron — the factor of safety of slope. Training is
performed using data from 104 slopes selected from the 124 slopes. Prediction or
evaluation of the proposed model is based on the remaining 20 slopes.

Statistical analyses performed show that the results from the proposed RNN
model are closer to the finite element method than to the Bishop method and the
proposed semi-analytical method. A separate RNN model is developed to determine
circular slip surfaces by retraining the proposed neural network model with three

neurons in the output layer, namely the coordinates of the center and the radius of
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the circular slip surface. In comparison with the proposed semi-analytical method,

the proposed RNN model is found to be more effective in representing relatively

complex slopes with layered soils and/or pore water pressures. The proposed semi-

analytical method is found to be as good as or better than traditional slope stability

analysis methods.

5.2 Conclusions

Base on the results presented in the preceding chapters, the following conclusions

can be made:

1.

(3%

The proposed semi-analytical method provides an accurate treatment of the
inter-slice forces in an integral form. The closed-form analytical solutions
presented allow the application of Powell’s optimization technique to
determine the most critical slip surface and the minimum factor of safety for
a given slope. In comparison with the Bishop method and the finite element
method, the proposed semi-analytical approach is accurate. more
straightforward, simpler and less time-consuming.

For the 23 slopes analyzed without seismic effects, the factors of safety
obtained from the proposed semi-analytical method are closer to the values
obtained from the FEM models (with a difference of 5% on an average and a
standard deviation of 4%) than those by the Bishop method (with an average
difference of 6% and a standard deviation of 3%). About 65% results from

the proposed method are between those obtained from the FEM model and



[#8)

W

the Bishop method. The Bishop method vields the lower bound (i.e., smaller
stability values) among the three methods.

Among the 14 cases analyzed with seismic effects, the factors of safety
obtained by the proposed semi-analytical method are found to be closer to
that by the FEM (with a difference of 5% on an average and a standard
deviation of 2%) than the results obtained from the Bishop method (with an
average difference of 9% and a standard deviation of 8%).

The GFA2D, a general-purpose FEM, needed about 20 times the effort. on
an average. as compared with the proposed semi-analytical method. The
Slope2000, a computer code to simplify the analysis process of a slope by
the Bishop method, still needed about 5 times the effort, on an average, than
the proposed semi-analytical method.

The study shows that the solutions from the Bishop method are accurate for
most cases.

The proposed two-layer RNN model with a sigmoid hidden layer (45
neurons) and a linear output layer is demonstrated to be a powerful tool for
analysis of layered slopes including pore pressure effects.

The database developed in this study, having data for 124 slopes including
some field data, i1s found to be adequate for training the proposed RNN
model. Additional field data would enrich the database further.

The factors of safety obtained by the proposed RNN model are in general

agreement with the results from the FEM analyses, the Bishop method, and
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the semi-analytical method. The difference between the proposed RNN
model and the FEM averages 8%. The difference between the proposed
RNN model and the Bishop method is about 10%.

9. This study illustrates that the proposed semi-analytical method and RNN
model are useful alternatives for slope stability analyses. Other techniques
such as finite element method can be used for a more detailed analysis when
needed.

10. Artificial neural network is still very much a developing field. It is,
theretfore. necessary for the potential users of this new tool (i.e. neural
network technique) to be well aware of the assumptions underlying the
technique as well as of its limitations. One must, therefore, be wary of
attaching overwhelming importance to the absolute values of calculated
factors of safety. It is the comparison of calculated factors of safety using
different alternatives that is really important. These thoughts should be kept
well in mind when adopting any analyses of slope stability.

5.3 Recommendations
Based on the observations from this study, the following recommendations are made
. for future studies:

1) In view of the limitations of the proposed semi-analytical approach, future

work should include layered soils and effect of pore water pressure in the

formulation.
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2)

3)

4)

As to the neural network-based approach, further study should involve
collecting more field data that can be used to enhance training and
evaluation of the model. Also, future studies should account for the effect of
pore water pressure in a more comprehensive manner inciuding the time-
dependent nature of pore pressure and slope failure.

The principal component analysis and ranking of input factors used in
developing the neural network model are also considered important topics
for future research.

Laboratory and field studies can be pursued to generate data that can be used
for further development and validation of semi-analytical and neural

network models.
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APPENDIX Slope Data for Developing the Proposed RNN Model

Sgel H H H H p e h 7 c ¢ b K FBV Bishop) Reference

# | m (deg) (H (m) (NM)  (Pa)  (deg) (F) (dm) (node) (modd) (1962)

1 10.00 1000 33.69 1 1000 2000 1000 2000 0 0 114 2D 4 MC 1R (Ca&Ugm, 1993

2 15.20 71.60 1 18.00 2000 2.00 0 0 100 2D 4 MC 09 Hrta & Schuster, 1968
3 50.00 21.80 1 11.00 15.00 2100 0 0 113 2D 4 MC 097 [Law&lLnb, 1978

4 1000 900 000 2.57 1 1000 1961 31.70 13.00 0 0 14 3D 8 MC 161 |Mxiietd., 1999

5 1050 2.5/ 1 2027 31.70 13.00 0 0 12 2D 4 DP 164 |Losl, 1984

6 500 3000 20.00 1 2.00 40.00 30.00 0 0 1% 2D 4 DP 1.35 |Atkinson, 1993

7 805 6.00 26.57 1 18.50 1500 10.00 0 0 119 2D 4 DP 127 {Heang & Yamesad, 1993
8 | 2375 630 22 1 17656 0.00 37.00 0 0 o0® 2D 4 DP 1.06 {Hansho, 1994

2 17.16 000 3500

9 1000 900 200 30.00 1 1000 1800 2500 10.00 0 0 154 2D 4 MC 1.5 (Sageaetd., 1985
10 { 600 600 000 369 1 1980 400 00 0 0 140 |Lee 1968

1 | 42 1200 000 19.98 1 276 16.76 37.50 0 0 1.18 |Lee, 1968

12 | 2000 K<L ¢) 1 1965 431 .00 0 0 100 2D 4 MC 1.31 |Taesnick & Baker, 1984
13 | 620 16.72 1 18.80 000 200 0 0 0.75 |Skavpton, 1977

14 720 19.98 1 18.80 1.00 200 0 0 0.80 {Skavpton, 1977

15 [ 700 1843 1 18.80 1.00 2.00 0 0 0.77 {Skempton, 1977

16 | 780 32 4.9 1 78 1860 1020 2000 0 0 100 2D 4 DP  1.05 |Zhoy, 1993

17 | 1220 17.10 1 18.80 1.9 200 0 0 098 |Skavpton, 1977

18 | 800 .57 1 1850 200 2.00 0 0 206 2D 4 DP 209 [Heng& Yarasald, 1993
19 | 2000 000 000 2200 1 200 000 20 0w 0 1.00 |Juraketd., 1998

2 | 2000 1000 000 2.00 1 2000 0.00 20 00W@ 0 090 |Juaketd., 1998

21 11.50 10.80 27.60 1 7.7 909 2.35 02 0 109 3D 8 MC 1.10 {Shid & Sutah, 1999

2 | 11.90 10.80 2760 1 17.71 9098 235 0.1 0 115 3D 8 MC 120 [Shiai & Sutah, 1999

23| 800 6.00 4500 1 1850 1500 200 0 0 146 2D 4 DP 129 |Hag& Yarasdd, 1993
24 | 800 560 560 4500 1 900 195 17.590 750 0 0 100 2D 4 DP 097 |2hou, 1993

2 460 1640 1030 1520
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APPENDIX Continued

Sopel H H H H f lay h ¥ c s kh kK FEM Bishop Reference
# | (m) (dg) (# (m) (NM) (Pa) (deg) (Fs) (dm) (node) (modd) (1962)
2% | 762 673 231 0B 2657 1 093 185 000 0O 0 O 116 2D 4 MC 113 |Skempton, 1984
2 32 185 67 300
3 27 1791 670 300
4 140 1759 67 2100
5 231 1571 1101 20
2% | 280 2690 164.00 1816 1 28 1700 1200 16D 0 0 09 3D 8 MC 086 |Taabed., 199
27 | 2040 2000 000 20 1 2000 2000 2000 0035 0 112 [Juaket d., 1998
28 | 2040 2000 000 20 1 200 200 200 01 0 096 |Jraketd., 1998
2 | 42 0.00 1998 1 280 1680 375% 0 0 1.00 {Lambe & Silva, 1922
0 | 420 0.00 1998 1 280 1680 375 0 O 1.12 |Lavbe& Siva, 1992
31 | 490 1843 1 880 120 220 0 0 1.10 |Skampton, 1977
R | 2000 100,00 BO® 1 1880 4170 150 0 0 1.40 |Arai & Tagyo, 1985
3 | 150 6340 1 1800 2000 200 0 0 10 2D 4 MC Hovand, 1977
34 | 4600 000 4101 1 4600 900 2500 2000 0 0 108 2D 4 DP 09 |Koda 199
35 | 455 000 4101 1 455 1200 2300 2500 0 0 108 2D 4 MC 103 |Koda 1999
¥ | 800 4500 1 1850 200 150 0 0 14 2D 4 DP 13 |Hang&Yamasd, 1933
37 | 800 4500 1 1850 200 20 0 0 168 2D 4 DP 15 |Huangd Yamasa, 1993
38 | 30.00 0% 1 1961 1471 20 0 0 175 2D 4 MC 15 |Hadn&Hadn, 1984
P | RO 2690 16400 1816 1 328 1700 1200 1630 0 0 108 2D 3 MC 111 |Taabead., 199
40 | 17.00 BEO 1 1880 10 20 0 O 097 [Skampton, 1977
41 | 610 050 BVEHO 1 610 1R 431 RO 0 0 154 3D 8 DP 147 |Mchakead., 199
42 | 1000 5,00 %65 1 1000 160 100 150 0 O 093 |Wakai & Ugai, 1999
43 | 910 400 500 %60 1 330 15 8% 1060 0 O 100 2D 4 DP 09 Yaged., 194
2 720 187 280 1700
3 360 1920 680 155
4 | 800 4500 1 1850 2500 1000 0 0 142 2D 4 DP 135 |Hangd& Yamasad, 1993
45 | 1768 1768 8840 %57 1 10608 1965 1006 2700 O O 08 2D 4 DP 07 |Lasonead., 1998
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Sopel H H H H f  lae h y c ¢ L ¥ v Bishop! Reference
| (m) (deg) (# (m) (NM) (kPa)  (deg) (Fs) (dm) (node) (moddl) (1962)
46 | 85 45.00 1 18.50 2000 10.00 0 0 123 2D 4 DP 1.15 |Hang & Yamasak, 1993
47 | 400 0.00 19.98 1 2.80 16.80 37.50 0 0 1.50 {Lambe & Silva, 1992
48 | 1350 2657 1 17.30 57.50 7.00 0 0 21 2D 4 MC 208 |Liu 1990
49 | 610 0.00 3380 1 19.65 4.31 3200 0 0 1M1 2D 4 MC 119 [Chengetd., 2000
5 | 600 239% 1 18.80 1.00 20.00 0 0 0.93 |Skermpton, 1977
5 700 2657 1 1880 1.00 20.00 0] 0 081 |Skempton, 1977
5 | 1000 0.00 26.57 1 1893 1.97 300 0 0 12 2D 4 MC 105 Chegetd., 2000
53 | 1000 500 369 1 1000 1766 785 2500 0 0 105 3D 8 MC 107 |Ca&Uga, 1999
54 800 257 1 18.50 500 2000 0 0 123 2D 4 DP 121 |Hang& Yamasak, 1993
5 | 800 26.57 1 18.50 15.00 2000 0 0 18 2D 4 DP 1.8 {Hang& Yarasald, 1993
5 | 1040 1524 1 18.80 0.00 20.00 0 0 0.97 |Skampton, 1977
57 510 327 55 2525 1 156 1884 0.00 34.00 0 0] 062 |Leceat d., 1983
2 19 1834 0.00 200
3 24 1805 10.00 18.00
58 | 400 000 600 2000 1 17.95 500 15.00 0 0 08 3D 8 MC 078 Leeetd., 1983
8 { 2000 2.00 1 19.72 30.00 30.00 0 0 125 3D 8 MC 154 |Leeed., 19683
60 | 450 1.3 200 1 15.92 216 17.3 0 0 08 3D 8 MC 098 |Leeetd., 1963
61 | 1219 3369 1 1924 280 35.00 0 0 178 2D 4 MC 162 (Chenge d., 2000
a2 950 2550 1 95 2000 11.50 960 0 0 100 2D 4 DP 130 |Yagetd. 194
2 600 1640 8.70 11.00
a3 8.00 257 1 800 1850 20.00 15.00 0 0 172 2D 4 DP 178 |Huang& Yamasald, 1993
64 | 2000 257 1 18.71 0.00 2350 051 01 1.03 |Chen, 1999
6 | 215 2413 1 17.40 500 10.00 0 0 1.23 |Chircaet d., 1998
66 | 4.20 0.00 2000 1 2.00 16.80 37.50 0 0 1.25 |Larbe & Silva, 1992
67 | 420 0.00 2000 1 200 16.80 37.50 0 0 1.37 |Lambe & Silva, 1992
68 | 1370 2657 1 18.71 0.00 1400 006 O 1.28 |Liu, 1990
a9 820 4500 1 18.50 15.00 15.00 0 0 124 2D 4 DP 111 |Hang& Yamesak, 1953
70 | 4410 0.00 19.98 1 280 16.50 37.50 0 0 068 20 4 DP Larbe & Siiva, 1992
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Sopel H H H H B lae h Y c ¢ kK FEM Aishap Refarence
@ | (m dg) (H (M (NmM) (Pa) (deg) (F) (dm) (node) (modd) (1962)
71 | 4410 000 19.98 1 280 16.50 3750 0 0 07 2D 4 DP Larbe & Siva, 1992
2 | 1219 762 2715 1 1887 000 33.00 0 0 1.20 |Sharma & Moudud, 1982
73 | 1219 762 2715 1 18.87 67.00 000 0 0 213 2D 4 DP 215 |Sama&Mudd, 1992
74 | 1219 762 27.15 1 18.87 2870 2000 0 0 176 2D 4 DP 1.35 |Shamma & Moudud, 1992
7 | 845 45.00 1 1850 10.00 15.00 0 0 100 2D 4 DP 089 |Heng& Yaresad, 1998
7% | 21.590 24.13 1 1740 0.00 14.00 0 0 0.R |Chiricaet d., 1998
7 | 215 2413 1 1740 0.00 17.20 0 0 106 2D 4 DP 064 |Chircaed d., 1998
78 | 4600 000 3866 1 4600 1400 2000 26.30 0 0 119 2D 4 MC 1.14 [Koda 1999
P |27 16.27 1 1820 0.00 14.10 0 0 1.19 |Chiricaet d., 1998
8 | 270 16.27 1 18.20 0.00 17.20 0 0 10 3D 8 MC 087 |(hiicaetd., 1998
81 | 1550 15.01 1 18.00 500 10.00 0 0 106 3D 8 MC Chincaet d., 1998
& [ 159 1501 1 18.00 0.00 14.00 0 0 111 3D 8 MC 117 |(Chincad d., 1998
& | 1500 12.99 1 50 200 0.00 2600 0 0 139 3D 8 DP 131 |Seab & Maoh, 1998
2 1000 2000 4500 0.00
3 0 200 150.00 0.00
8 | 1500 1299 1 50 200 0.00 26.00 0 0 1.05 {Skahl & Maah, 1998
2 1000 200 21.00 17.00
3 3000 2200 150.00 0.00
86 | 250 62 150 200 1 15000 1880 3000 2.00 0 0 1.35 [Chowdhury, 1985
86 | 800 4500 1 1850 2500 1500 0 0 165 2D 4 DP 153 |Heng & Yavesad, 1993
8 | 800 26.90 1 1850 15.00 1500 0 0 145 2D 4 DP 1.35 |Heng & Yavesa, 1993
88 | 1006 3038 22 2180 1 1006 1844 0.9 2450 0 0 106 2D 4 DP 100 |Duncan & Sak, 1992
8 | 1006 3038 262 21.80 1 1006 184 072 2560 0 0 100 2D 4 DP 083 |Ducan&Sak, 1992
9 | 600 600 @D 3.8 1 B0 1965 1.9 3000 0 0 0.79 {Lassonet d., 1998
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Sope| H H H H g layer h Y c ¢ kK M Bishop, Reference
# ] m (dg) () (m (NM) (P2  (deg) (F) (dm) (node) (modd) (1962)
N | 1280 21.76 1 2185 aa WO O 0 103 (Jagetd., 1999
X | 27743 2640 1 1728 45 1200 0 0 1®2 2D 4 MC 145 |Byreda, 192
B | 43 1514 305 »3 1 600 247 6300 0.00 0 0 166 2D 4 MC 164 |Sarpion 1984
2 610 2047 3B 0.00
3 3 47 N0 0.00
% | 800 X%.57 1 185 100 150 0 0 129 2D 4 DP 129 |Heng&Yaresad, 1998
g% | 1000 7.00 081 1 203 098 % 0 0 111 2D 4 MC 101 Sarpton 1984
9% | 1800 257 1 1950 981 270 0 0 1@ 2D 4 MC 107 |Savpton 1984
g7 | 1280 6.10 289 1 21.56 862 00 0 0 0 2D 4 MC 105 |Sepon 1984
B | 1006 21.80 1 18.01 %33 200 O 0 073 [Jangetd., 1999
0 | 1006 2.8 1 1884 0.00 0 O 0 1483 2D 4 WMC Sarpton, 1984
100 | 701 1843 1 AW 0.00 0 O 0 106 2D 4 MC Sarpton, 1964
10| 700 1843 1 1979 0% 1300 O 0 18 2D 4 MC 100 |Serpon 1984
1| 1829 11.00 1 2 1HB3 2100 0 0 10 2D 4 MC 128 (Sarpon 194
18 | 1210 1000 24.38 1 1210 1610 2600 2000 O 0 118 3D 8 DP 100 |Adev&Vamia, 198
104 | 000 20 000 1 00 2100 21 B89 0 0 12 3D 8 DP 08 |Yang&Purjan 199
106 | 500 30.00 @ 1 600 1960 25% /4 VI 0 106 3D 8 DP 098 |Yamgamdad, 199
106 | 67.80 206 1 1900 3B H0% 0 0 100 2D 4 MC 121 |Daetd, 2000
107 | 6780 4500 000 20 1 & 16O 20 200 O 0 1.31 |Tayietd., 199
2 300 1900 2500 2400
108 | 430 1330 000 000 27.00 1 1430 1960 960 50 O 0 10 2D 4 DP 097 [Heng& Yaraesad, 1993
108 | 800 4500 1 185 00 160 O 0 186 2D 4 DP 1.7 |Heags Yaraesad, 1953
110 | 800 %57 1 1850 200 1680 0 0 18 2D 4 DP 205 |Hag&Yaresa, 1993
M| 190 1080 2760 1 17.71 98 23% 0 0 09 2D 4 MC 08 |Shd&Sitdh 199
12| 500 100 300 2657 1 500 1764 49 100 O 0 1.00 |Jage d., 1998
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Soel H H H H g lag h 1 c ¢ ko k FBM Bshop Reference
# | (m () @ (m (NM) (Pa) (dg) (F) (dm) (node) (modd) (1962)
113 1280 8 8M 1% 2B 1 274 2167 780 00 0 0 119 2D 4 MC 098 Senpton&Bown, 151
2 48 2167 6.70 3.0
3 518 2160 6.46 31.90
4 80 200 910 200
114 | 1000 1404 1 1000 2000 1000 2500 0 0 067 |Baear & Tanda, 1999
115 600 30.00 4500 1 600 1800 1000 37.00 0 0 115 2D 4 MC 1.76 |Babu&Hijoy, 199
116 | 600 3000 K<TG ¢ 1 600 1800 1000 37.00 0 0 119 2D 4 MC 120 |Badué&Bijoy, 199
117 | 2015 1000 000 200 1 2000 2000 2000 00B 05 1.12 |rake d., 1998
118 | 2015 1000 0Q0 200 1 200 200 20 01 006 0% (Juaketd., 1998
19 | 800 6.00 4500 1 1850 2500 2000 0 0 18 2D 4 DP 174 |Heng & Yamasad, 1993
1220 | 8% 6.00 557 1 1850 1000 200 0 0 1680 2D 4 DP 1.5 |Hag& Yaresdd, 1993
121 | 1.9 1080 2160 1 177 909 23 006 0 121 2D 4 MC 125 [Shd&Sioh 199
12 | 1.9 1080 2160 1 171N 900 23% 0 01 116 2D 4 MC 100 |Shia &Sudh 1999
123 | 1.9 1080 2180 1 17.7 909 235 0 02 090 2D 4 MC 087 |Sha&Suoh, 199
124 | 1020 500 4500 1 1960 11.80 00 02 0 123 3D 8 MC 100 |Smadadd., 199

Note: D-P indicates Drucker-Prager failure critinon and M-C indicates Mohr-Coulomb failure critirion.




