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ABSTRACT  
Thermal Response Testing is now a well-known and widely-used method allowing the determination of the local thermal or geometrical properties of a 
Borehole Heat Exchanger (BHE), those properties being critical in the design of GSHP systems. The analysis of TRTs is an inverse problem that has 
commonly been solved using an approximation of the ILS solution. To do this, however, the heat rate during a TRT must be kept constant, or least be non 
time-correlated, during the test, which is a challenging constraint. Applying temporal superposition to the ILS model is a way to account for varying power, 
although it requires the use of an optimization algorithm to minimize the error between a parametrized model and experimental values. 

In this paper, the Newton-Raphson method is applied to the time-superposed ILS for parameter estimation in TRTs. The parameter estimation is limited 
to the effective thermal conductivity and the effective borehole resistance. Analytical expressions of the first and second derivatives of the objective function, 
chosen as the sum of quadratic differences, are proposed, allowing to readily inverse of the Hessian matrix and speed the convergence process. 

The method is tried for 9 different TRTs, 2 of which are reference datasets used for validation of the method (Beier et al., 2010). Differences between 
estimated and reference thermal conductivities are of 3.4% and 0.4% for the first and second reference TRTs, respectively.  The method is shown to be stable 
and consistent: for each of the 9 TRTs, 11 realizations are performed with different initial values. Convergence is reached in all cases and all realizations 
lead to the same final values for a given TRT. 

The proposed convergence method is about 70% to 90% faster than the Nelder-Mead simplex and require about 8 times less iterations in average. The 
convergence speed varies between 0.3 to 13.6 s with an average of 3.7 s for all TRTs. 

INTRODUCTION 

Thermal Response Testing is a well-known in-situ method used to determine the local effective thermal 
conductivity, ߣ∗, and effective borehole thermal resistance, ܴ௕∗ , both parameters being critical for the design of Ground-
Source Heat Pump (GSHP) systems and/or Borehole Thermal Energy Storage (BTES). The Thermal Response Test 
(TRT) method for Borehole Heat Exchangers (BHEs) was introduced by Mogensen (1983) who discussed the 
experimental setup as well as the analysis procedure. The first TRT units were not specifically built to be transported 
and mobile units only appeared later (Eklöf & Gehlin, 1996). Today, most TRT rigs are built as mobile units (IEA 
ECES Annex 21, 2013). A more detailed description of the historical development of TRT units can be found in Spitler 
and Gehlin (2015). TRTs are now performed worldwide for both commercial and research purposes (IEA ECES Annex 
21, 2013; Spitler & Gehlin, 2015; Witte, 2016; Zhang et al., 2014). Several developments of the TRT method have been 
undertaken since Mogensen’s initial proposal, including: 
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 Distributed Thermal Response Tests (DTRTs) through the use of fiber optic cables (Acuña, 2013; Fujii et al., 
2009; Radioti et al., 2018; Sakata et al., 2018), wireless sensors (Martos et al., 2010) or wired sensors (Acuña, 
2008; Aranzabal et al., 2016; Yu et al., 2013) 

 accounting for groundwater flow on the thermal response (Molina-Giraldo et al., 2011; Raymond et al., 2011; 
Rivera et al., 2015; Witte, 2007) 

 using different methods to calculate the average fluid temperature (Beier, 2011; Beier et al., 2012; Beier & Spitler, 
2016; Lamarche et al., 2017; Marcotte & Pasquier, 2008)  

 modified control strategies or methodologies (Choi & Ooka, 2017; Raymond et al., 2015; Rolando, 2015; 
Rolando et al., 2017; Witte et al., 2002) 

 estimation of uncertainties (Witte, 2013)  
 definition of a criterion for the test duration (Poulsen & Alberdi-Pagola, 2015). 

New approaches for the determination of ground thermal properties have also been initiated, see for instance 
Raymond et al. (2016) and Raymond et al. (2017). 

The analysis method initially proposed by Mogensen (1983) entailed the use of the Infinite Line Source (ILS) 
solution (Carslaw & Jaeger, 1959; Ingersoll & Plass, 1948) to evaluate the change in average fluid temperature, such that 
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The exponential integral term in eq.1 may be expressed as the series expansion ܧଵሺݔሻ ൌ െߛ െ lnሺݔሻ െ ∑ ሺି௫ሻ೔
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(Abramowitz & Stegun, 1964). For relatively large values of time (small values of ݔ), the higher order terms in the 
previous equation may be neglected, leading to 
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which allows the estimation of ߣ∗ and ܴ௕∗  through linear regression. This method is referred to as ILS regression 
in the rest of this article. Note that the determination of ܴ ௕

∗  requires knowledge of ݎ௕, ߙ and the undisturbed temperature. 
Hellström (1991) reported a maximum error of 2% for approximation (2) for ݐ ൒ ௕ݎ5

ଶ/ߙ, which can be verified by 
computing the exponential integral  and its approximation (2) at the given value.  

The ILS model is used in more than 90% of TRTs, being by far the most common analysis method for such tests 
(IEA ECES Annex 21, 2013). This is likely inherent to the simplicity of the approximation shown in eq.2. However, 
this approximation requires having a heat rate that is, if not perfectly constant, non time-correlated. This may be hard 
to accomplish as noted in the literature (IEA ECES Annex 21, 2013; Spitler & Gehlin, 2015; Zhang et al., 2014). Beier 
and Smith (2003) propose a way to bypass this issue by using deconvolution in the Laplace domain. The method requires 
knowledge of the temperature change from time zero to infinity, thus extrapolation for large times must be performed 
since TRTs are finite in duration. Other authors have proposed experimental methods to keep the power as constant 
as possible, see for instance Witte et al. (2002), Rolando (2015) and Rolando et al. (2017). The ASHRAE guidelines for 
TRTs recommend power variations with a standard deviation lower than 1.5% of the average value (ASHRAE, 2011). 
Standard deviation is however not the best metrics for power variation in TRTs as information about a potential time 
correlation is lost. Time-correlated variations may lead to errors in the estimation of the thermal conductivity, even with 
variations respecting the ASHRAE criterion. 

Another way to account for varying power is to apply temporal superposition, assuming the power under a TRT 
can be approximated as a piecewise constant function (see eq.4). This however precludes the use the ILS regression for 



the determination of ߣ∗ and ܴ௕∗ , and parameter estimation has to be employed; the exponential integral approximation 
(2) will moreover be less accurate as the higher order terms may become significant. The full series expansion is therefore 
preferred when applying superposition with the ILS model. As there is no straightforward way to determine any 
unknown parameter, those must be estimated through the minimization of an objective function, hence an optimization 
problem. Choi and Ooka (2015) propose a parameter estimation method using temporal superposition with the ILS 
coupled to a quasi-Newton optimization algorithm. Li and Lai (2012) estimate up to 8 parameters in TRTs using the 
infinite cylindrical source model coupled to a Levenberg–Marquardt and a trust region method. 

Parameter estimation may also be performed with numerical models (Austin, 1998; Austin, Yavuzturk, & Spitler, 
2000; Pasquier, 2015; Shonder & Beck, 1999; Wagner & Clauser, 2005). Jain (1999) compares up to 8 parameter 
estimation techniques coupled to a numerical model. The author finds that non-gradient based deterministic methods 
such as the Nelder-Mead simplex are faster for the considered numerical model. Numerical models are of interest as 
they can accurately reproduce the conditions of a TRT, hence allowing the estimation of many parameters in the model. 
The use of numerical models may however be computationally demanding and require case-specific adjustments. It may 
also be challenging to apply all of the obtained parameters during the design of the system for which the TRT is 
performed.  

This work presents the application of the Newton-Raphson method to the time-superposed ILS for parameter 
estimation in TRTs. In contrast to previous studies with analytical models, the Hessian matrix is analytically determined 
here, meaning that an expression of the second order derivatives is analytically determined and used in the algorithm. 
As the estimated parameters are limited to ܴ௕∗  and ߣ∗, the inverse of the Hessian matrix can be readily determined, 
thereby increasing the convergence speed. The convergence method is compared to the Nelder-Mead algorithm (1965) 
and its reliability is tested. The proposed method is validated against two reference datasets (Beier et al., 2011) and 
applied to 7 different commercial TRTs. 

METHODOLOGY 

This section is organized as such: first, the general form of the Newton-Raphson method for estimation of 
multiple parameters is reminded; then, the analytical expressions of the Hessian matrix elements are derived; finally, 
some other features of the convergence method are presented as well as the TRT datasets used in this study. 

Newton-Raphson method 

The Newton-Raphson method is a well-known root-finding iterative method used in engineering problems. The 
method is gradient-based and may be use for optimization problems. The unscaled, univariate Newton-Raphson method 

may be expressed as ݔ௡ାଵ ൌ ௡ݔ െ
௙ሺ௫೙ሻ

௙ᇲሺ௫೙ሻ
 where ݂ is the function which root is sought (Christensen & Bastien, 2016; 

Venkateshan & Swaminathan, 2014). For multiple variables, the Newton-Raphson method may be reformulated as 
ሺ௡ାଵሻ࢞ ൌ ሺ௡ሻ࢞ െ  & Alart, 1997; Christensen) ࢌ is the Jacobian matrix of the vector function ࡶ ሺ௡ሻ൯ where࢞൫ࢌሺ௡ሻ൯࢞ଵ൫ିࡶ
Bastien, 2016). This may also be formulated as an unconstrained optimization problem by introducing an objective 
function, ݄, so that સ݄ ൌ  leading to ,ࢌ
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where ࡴ is the Hessian matrix of the function ݄, that is the matrix of the second order derivatives of the function 
݄ (Keller, 2018; Pollock, 1999; Sieniutycz & Szwast, 2018). When the expression of the second order derivatives can be 
determined and the inverse of the Hessian matrix made readily available, the Newton-Raphson method can be more 
efficient as it requires less steps to converge. In this study, the inverse of the Hessian matrix is analytically determined. 
The Newton-Raphson method is referred to as N-R method below. 



 
 

N-R applied to the time-superposed ILS: derivation of the inverse Hessian matrix 

Temporal superposition may be expressed for any given step response function, called here ݃, to calculate the 
modelled temperature change. If the power is approximated as a piecewise constant function, this change in inlet-outlet 
average temperature (temperature response) may be written as 

 ∆ ௠ܶ௢ௗሺݐ௜, ሻ࢞ ൌ ሺݍ ∗ ݃ሻሺݐே, ሻ࢞ ൌ෍∆ݍ௝

௜ିଵ

௝ୀ଴
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The specific heat rate, ݍ, is either calculated from the measured flow rate and temperature difference, as well as 
the secondary fluid thermal properties and the borehole active depth or from the electric power input. One wants to 
minimize the error between experimental and modelled values by varying the parameters sought for, represented here 
by the vector ࢞. The minimization of the error requires the definition of an objective function, chosen here as the sum 
of quadratic differences 
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where ଵܰ and ଶܰ determine the optimization period. In this work, the ILS coupled to an effective resistance model 

is chosen as response function, leading to ݃ ൌ ܴ௕
∗ ൅ ଵ
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ܴ௕
∗	 is done in accordance with the state-of-the-art (IEA ECES Annex 21, 2013). It shall be noted that the ILS cannot 

accurately reproduce the heat transfer behavior of a borehole at short time steps. Improvements in both the model and 
the amount of estimated parameters are left to later investigations. To determine the Hessian matrix, 1st and 2nd order 
derivatives of the function ݄ must be determined. The 1st order derivatives of ݄ with respect to ࢞ can be expressed as 
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The partial derivatives of the modelled temperature response with respect to ߣ∗ and ܴ௕∗ 	 are డ∆்೘೚೏,೔
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(and, thus, ࢞). After successive derivations, it can be shown that 
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The two first terms in eq.7 are the diagonal elements of the Hessian matrix in eq.3, while the last term represents 

both non-diagonal elements, the matrix being symmetric. It should be noted that 
డమ௛

డோ್
∗మ is a constant and does therefore 

not need to be reevaluated at every iteration step. One may notice redundancies in the 3 equations in 7; this observation 
can be used to speed the computation of the derivatives. Given the previous developments, and since the Hessian matrix 
is a 2x2 matrix in this case, eq.3 may be expressed in matrix form as 
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This matricial form can be decomposed into two equations, one for each variable in ࢞, namely ߣ∗ and ܴ௕∗ . 
Note that the positive-definiteness of the Hessian matrix is not investigated here, which entails an accurate first 

guess for the iterative process (Pollock, 1999). Therefore, the commonly used ILS regression, based on eq.2, is applied 
to find initial values of ߣ∗ and ܴ௕∗ . 

Implementation of the algorithm 

The algorithm has been implemented in both an Excel spreadsheet, through VBA (Microsoft Excel, 2016; Microsoft 
Visual Basic for Applications, 2012), and in MATLAB® (MATLAB, 2017). The Matlab code is planned to be openly 
distributed. All the results used in this work are generated using the Matlab code. 

Relative convergence criteria for ߣ∗ and ܴ௕∗  are set as 0.1% for both parameters. Moreover, if the number of 
iterations is a multiple of 20 or if ߣ∗ ∉ ሾ1; 10ሿ W∙m-1∙K-1 or ܴ௕∗ ∉ ሾ0.005; 0.3ሿ m·K·W-1, the next set of values for ߣ∗ and 
ܴ௕
∗  is taken around 2 W∙m-1∙K-1 and 0.05 m·K·W-1, respectively, with random variations of 50 to 150%. 

Used TRT data 

Data from 7 different commercial TRTs and two reference TRT datasets (Beier et al., 2011) are used in this work. 
For the commercial TRTs, the used units are as described in Kamarad (2012) for TRT-1 and as described in 

Olausson (2018) for the remaining TRTs. For the first TRT, data is recorded about every 30 seconds whereas data is 
averaged over a span of 10 minutes for the remaining TRTs. The power is calculated using the measured temperature 
difference, the measured flow rate and thermal properties derived from Melinder (2007). All boreholes are filled with 
groundwater. 

The two reference TRT datasets are directly taken from Beier et al. (2011) and referred to as TRT-B1 and TRT-
B2. The two TRTs are performed under controlled conditions in the same grouted borehole. The first is a “constant 
heat input rate test” with “variations well within the guidelines suggested by ASHRAE”. The second TRT is an 
interrupted test having a power outage between 9 and 11 hours after start. For more details about the reference datasets, 
the readers are referred to Beier et al. (2011). These datasets are used to validate the ILS model coupled to the N-R 
algorithm. 

The flow and heat rate (power) for all TRTs are reported in Figure 1 while fixed parameters are reported in Table 
1. It should be noted that for TRT-B2, the undisturbed temperature is approximated as the return temperature after 3 
min, which is the closest lower time bound to the residence time. This is done because data shows some heat injection 
already at the very start of the test; moreover, the initial fluid temperature is about 1.5 K lower than the temperature in 
the sand. Figure 1 highlights the difficulties in keeping of constant heat rates during TRTs. 

 



 
 

RESULTS 

Optimization process, consistency and stability 

The optimization procedure converges for all TRTs with a number of iterations varying between 2 to 8. The 
optimization process for TRT-1 is displayed in Figure 2, which shows an enlarged (a) and a zoomed view (b) of the 
optimization domain. 

To try the consistency and stability of the algorithm, different initial values are tried for all the TRTs. What is 
meant here with consistency and stability is the consistency in the obtained final values and the stability in the algorithm 
convergence. For each TRT, 10 randomly chosen initial vector values ൫ߣ∗ሺ଴ሻ, ܴ௕∗

ሺ଴ሻ൯ in the range ሾ1; 10ሿ W∙m-1∙K-1 ൈ
ሾ0.005; 0.3ሿ m·K·W-1 are tried together the N-R convergence algorithm. In total, 99 optimization procedures are run, 
including those with initial vectors obtained through the ILS regression. All optimization procedures converge and, for 
a given TRT, the results are the same independently of the initial values (maximum difference of 0.5%).This result is 
important as the existence of a valley of low values for the objective function has been pointed out in the literature (Jain, 
1999; Marcotte & Pasquier, 2008; Spitler & Gehlin, 2015; Witte et al., 2002). 

The validation of the time-superposed ILS model coupled with N-R algorithm is performed using the reference 
thermal conductivity and borehole thermal resistance provided in Beier et al. (2011). The results and reference values 
are presented in Table 2. 

Table 1. TRT fixed parameters 
Parameters TRT-1 TRT-2 TRT-3 TRT-4 TRT-5 TRT-6 TRT-7 TRT-B 1 TRT-B2 

Borehole diameter [m] 0.12 0.115 0.115 0.115 0.115 0.115 0.115 0.126 0.126 
Active borehole length [m] 331.7 324.8 298.2 296.2 122 297.3 230.3 18.3 18.3 

Optimization start [hrs] 65 21 25 17 17 45 27 10 40 
Optimization stop [hrs] 119 66 70 117 75 80 62 51.5 50 

 ૙ [°C] 8.60 9.97 9.30 9.59 10.53 9.77 8.50 22.00 21.53ࢀ

 

 

Figure 1. Power and flow rates during the 9 different TRTs used for this study 



Comparison between the N-R and the Nelder-Mead algorithms 

In order to evaluate the convergence speed of the N-R algorithm, the latter is compared with the Nelder-Mead 
algorithm (1965) as implemented in Matlab through the function fminsearch. The presented N-R method is always faster 
than the Nelder-Mead method with convergence durations between 70 to 92 % lower. In average, the Nelder-Mead 
method leads to about 8 times more iterations than the N-R method. This comforts the statement from Choi and Ooka 
(2015) that the Nelder-Mead simplex is not the most suitable method for ILS parameter estimation in TRTs. 

The average convergence speed for all TRTs is of 3.7 s with the Newton-Raphson method (CPU: 2.60 GHz, 
RAM: 16 GB). The N-R and Nelder-Mead convergence speeds for each TRT are reported in Table 2, as well as the 
index of the last point ( ଶܰ) and number of points in the optimization period. 

 

 

Figure 2. Optimization procedure for TRT-1: in an enlarged (a) and zoomed view (b) of the optimization domain. 



 
 

Temperature response: models vs measurement 

The obtained temperature responses are presented in Figure 3 against measured data for the 9 different TRTs. It 
can be observed that the time-superposed ILS generally overestimates the temperature response at the beginning of the 
heat injection. This is likely due to the quasi-steady-state assumption of the model that is not valid at early times. The 
overestimation seems to be more pronounced for grouted (TRT-B1-2) than water-filled boreholes (TRT-1-7). The 
agreement between the optimized and experimental responses is nonetheless good over the optimization periods with 
RMSEs no higher than 0.0765 K as can be seen in Table 2. This table also includes the initial (ILS regression) and final 
values obtained for each TRT using the N-R algorithm, as well as reference values of ߣ∗ and ܴ௕∗  for TRT-B1 and TRT-
B2 (Beier et al., 2011). For TRT-B1, the ILS regression and the time-superposed ILS show similar ߣ∗ and ܴ௕∗  values that 
are slightly different from the reference values, although the difference between ߣ∗ values is comprised within the 5% 
uncertainty of the independent measurement. For TRT-B2 however, the time-superposed ILS leads to a ߣ∗ similar to 
the reference value whereas the ILS regression leads to a ߣ∗that is 7.8% higher than the reference value. The ILS 
regression nevertheless seems to give a slightly better estimation of ܴ௕∗  in TRT-B2 with a resulting value 1.1% higher 
than the reference against 1.7% lower for the time-superposed ILS. 

For TRT 1 to 7, differences between the results obtained with the ILS regression and the time-superposed ILS 
may be observed although it is not possible to determine which value is closer to the true value. 

 

Figure 3. Measured and optimized thermal responses during the 9 TRTs used for this study 

Table 2. TRT optimization results 
Parameters TRT-1 TRT-2 TRT-3 TRT-4 TRT-5 TRT-6 TRT-7 TRT-B1 TRT-B2 

Newton-
Raphson 

 4.30 3.18 3.05 3.08 5.12 4.26 2.92 2.92 2.83 [W·m-1·K-1] ∗ࣅ
࢈ࡾ
∗  [m·K·W-1] 0.129 0.080 0.079 0.074 0.061 0.091 0.090 0.164 0.175 

Reference 
values 

 2.82 2.82 - - - - - - - [W·m-1·K-1] ∗ࣅ
࢈ࡾ
∗  [W·m-1·K-1] - - - - - - - 0.173 0.178 

ILS reg. 
 3.75 2.77 3.18 3.14 4.66 4.10 3.05 2.91 3.04 [W·m-1·K-1] ∗ࣅ
࢈ࡾ
∗  [W·m-1·K-1] 0.118 0.066 0.083 0.076 0.054 0.087 0.095 0.164 0.180 

Time N-R [s] 4.8 0.3 0.3 0.5 0.7 0.4 0.3 13.6 12.7 
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Time Nelder-Mead [s] 24.7 1.6 1.5 5.4 2.4 1.6 1.2 158.3 78.7 
Index of the last point (ࡺ૛ሻ 1476 397 421 703 451 481 373 2816 3001 

Number of points 620 271 271 601 349 211 211 2246 601 
RMSE [K] 0.0516 0.0618 0.0707 0.0430 0.0765 0.0509 0.0591 0.0486 0.0306 

CONCLUSION AND FUTURE WORK 

This work presents the application of the Newton-Raphson optimization method to the time-superposed ILS for 
parameter estimation in TRTs. The time-superposed ILS is chosen so that non randomly-varying heat rates during TRTs 
can be considered, as opposed to the ILS regression. The ILS regression is nevertheless used to obtain the initial values 
for the Newton-Raphson procedure. The vector of estimated parameters is limited to ߣ∗ and ܴ௕∗  and the inverse Hessian 
matrix is analytically determined, meaning that expressions of the second order derivatives of the sum of quadratic 
differences are proposed. The method is tested in 9 different TRTs, 2 of which are reference datasets used for validation 
of the method (Beier et al., 2010). For the first reference dataset, a constant heat rate TRT, the estimated ߣ∗ and ܴ௕∗  are 
respectively 3.4% and 5.2% off the reference values. For the second, interrupted TRT, the differences drop to 0.4% 
and 1.7%, respectively.  

The applied Newton-Raphson method is shown to be stable and consistent. For each of the 9 TRTs, 11 
realizations are performed, 10 of which have randomly-picked initial values. Convergence is reached in all cases and all 
realizations lead to the same final values for a given TRT. 

The proposed convergence method is about 70% to 90% faster than the Nelder-Mead simplex (1965) and require 
about 8 times less iterations in average. The convergence speed varies between 0.3 to 13.6 s with an average of 3.7 s for 
all TRTs. 

The agreement between optimized and experimental responses is good with RMSEs no higher than 0.0765 K 
over the optimization periods. The time-superposed ILS overestimates the temperature response at the beginning of 
the TRTs, likely because of the quasi-steady-state assumption of the model, which is not valid at early times. The 
overestimation seems to be more pronounced for grouted than water-filled boreholes. 

The developed optimization method could be further improved by including more parameters to be estimated, 
improving the convergence criterion, and adding constraints to the objective function. 
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NOMENCLATURE 

 (-) ଵ =  Exponential integralܧ

݃ =  Step response function (m·K·W-1) 

 Hessian matrix  = ࡴ

݄ =  Objective function (K2) 

 Jacobian matrix  = ࡶ

ܰ =  Number of points (-) 

 Specific heat load (W·m-1)  = ݍ

 Step in specific heat load (W·m-1)  = ݍ∆

ܴ =  Borehole thermal resistance (m·K·W-1) 

 Borehole radius (m)  = ݎ

∆ܶ =  Temperature response (K) 

 Time (s)  = ݐ

 Parameter vector (bold) or symbolic variable  = ࢞

 Thermal diffusivity (m2·s-1)  = ߙ

 (-) Euler–Mascheroni constant  = ߛ

 Thermal conductivity (W·m-1·K-1)  = ߣ

Superscripts /subscripts 

	∗ =  Effective 

	ሺ௞ሻ =  kth iteration 

mod =  Model 

exp =  Experimental
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