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ABSTRACT

Most probabilistic facility location problems investi

gated to date were variations of the generalized Weber 

formulation. In this research, several single facility 

minimax location models are analyzed, where both the weights 
and the locations of the existing facilities are random 

variables. The demand points are uniformly distributed over 
rectangular areas, the rectilinear metric is used and the 

weights are assumed to be independently distributed random 

variables. Two unconstrained probabilistic models are a n a 

lyzed and compared to the centroid formulation,it is seen that 
the probabilistic models are sensitive to deviations from optimal 
solutions. An expected value criterion formulation is also 
presented along with lower and upper bound approximating

functions.

A minimax objective function constrained by a bound on 

the total average cost of servicing all existing facilities 

(minisum function) is then discussed. Using duality p r o p e r 
ties, this problem is shown to be equivalent to another model 

which minimizes the minisum function subject to a bound on 

the same minimax function. This last problem proves to be 

easier to solve, and a specialized solution technique is 

developed. The resulting solutions are nondominated solu

tions in relation to the two criteria involved. Another way
iv



to generate nondominated solutions is by combining the two 

functions into a weighted sum. The constrained criterion 
method is shown to be superior both analytically and p r a c 

tically .

The unconstrained model, and its solution technique 
can be easily modified to solve the limiting case where all 

facilities are fixed points, arid also the case when metric 

constraints are added.
Examples are solved to show the impact of assuming area 

d e m a n d s , the conflicting nature of the minimax and minisum 
criteria and to illustrate the solutions techniques developed.
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CHAPTER I 

INTRODUCTION

1.1 Introduction

Facility location problems arise in every industrial 

and public organization. Some typical problems include lo

cating a hospital, a fire station, a power plant, schools, 

television relays, police stations, military bases, obnoxious 

facilities (dump sites, nuclear power plants, water recycling 
facilities, etc.), manufacturing plants, warehouses, radar 

stations for civilian or military air traffic control, e t c .

The variety of locational problems has resulted in a 

significant amount of attention in the literature. Researchers 

from many different disciplines have contributed to the analy

sis of facility location problems. Among these disciplines 

are industrial engineering, operations research, management 

science, geography, regional planning, architecture, transpor

tation science, economics, mathematics, urban development, 
computer science, e t c .

1.2 General Characteristics of the Problems to be Considered

Francis and White (1974) classified facility layout and 
location problems according to six major elements:

• new facility characteristics

• existing facility location

1



2
• new and existing facility interaction

• solution space characteristics
• distance measure

• objective function

A location problem is formulated when each one of the six 

elements cited is determined. In this research, the major 

characteristics of the locational models to be investigated 

will be a number of combinations of the following situations:

• There will be a single new facility to locate, 

represented by a single point.

• The existing facilities are rectangular regions of 
known dimensions, more restrictions will be added 

lat e r .

• The interactions between new and existing facilities 

are quantitative, deterministic or probabilistic, not 

location dependent, and to be considered as parameters 

in the mathematical formulation (as opposed to being 

v a r i a b l e s ) .

• The solution space is continuous in the two-dimen

sional real space, with or without constraints.

• The metric used is the rectilinear norm.

• The objective is quantitative. It is either to

minimize the total average cost of servicing all

existing facilities, or to minimize the maximum cost 

of servicing any one facility, or some combination 

of these two single objectives.



j,

The single facility generalized Weber problem can be for m u 
lated deterministically as follows:

n

,2 i = l '""PX g S.C R'
where

: some given compact, nonempty convex
7subset of R 

n : the number of existing facilities

?i =(a^,b^) : coordinate location of existing facility
i

X = (x^ fX^) : coordinate location of the new facility

||X-P^||p : p > 1, is the distance between new

facility X and existing facility

w^ : cost per unit time per unit distance

between the new facility and existing 

facility i
When p = 1, the distance metric is rectilinear or metropolitan 

distance. This metric usually offers a better approximation 

to real distances when traveling along warehouse or factory 

aisles, or in a densely populated metropolitan area.

Problem P I.2.1 is also called the minisum problem or 

location problem under the minisum criterion.

The minisum criterion is more appropriate when locating 

a new facility that provides routine services (warehouses, 

schools, shopping centers, office buildings, etc.). When 

locating emergency facilities, such as police or fire stations.



4
and ambulance services, the focus is on individual service. 

The new facility is to be located such that the weighted 

distance to the furthermost existing facility is minimized. 

Mathematically, such a model in a continuous space can be 
formulated as follows:

Minimize (max {w.||X-Pj| }) (PI.2.2)

where is some given compact, convex and nonempty set in 
2R . Among the several models to be investigated, and d e 

riving from P I.2.1 or PI.2.2, more emphasis will be given to 

cases where is defined by the points in R that satisfy 

a given upper bound on the minimax function, and to formu- 
lations where is defined as the set in R satisfying a

given upper bound on the minisum function.

1.3 Application of the Research

1.3.1 Rectangular Regions

When large populations are on hand, modeling the demand 

set as a finite number of points can be computationally im
practical because of the number of points which would be 

involved. A common practice in such a case has been to 

partition the total populated area under consideration into 

rectangularly shaped subareas, with uniformly distributed 
population in each one. This modeling practice can also be 

useful when representing the probabilistic nature of certain 

demand facilities such as the occurrence of a fire, accident
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or crime in a densely populated urban area. Insurance c om
panies for example, subdivide an area of interest into s ev

eral rectangular regions with respective weights representing 

some historically justified risk levels. When locating a 

new fire station in an urban area, it is generally assumed 

that a fire can erupt anywhere within the total area. The 

probability of occurrence could of course vary from one 

neighborhood to another, depending on socio-economic and 

other factors. A subdivision into rectangular areas with 

associated uniform distribution function can be a very useful 

and realistic approximation of the real situation. Also, 

formulation with rectangular regions can be interpreted as 

a generalization of the centroid approach.

1.3.2 Combination of the Two Criteria
Solving a location problem under the minisum criterion 

might produce a solution situated too far from some existing 

facilities. On the other hand, if a new emergency facility 

is located under the minimax criterion, too many existing 
facilities could be the maximum distance away, or close to 

it, from the new facility. Many location problems can be 

best modeled as a combination of the two criteria, such that 

the possible extreme effects of evaluating one single c ri

terion can be controlled. For example, when locating a new 

school, the location should be close to the most densely 

populated areas, without any single student having to travel 

over a number of miles. For the location of an ambulance
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station, one wants to minimize the maximum distance (or m a x i 

mum response time) to any emergency call, with a constraint 

on the minisum function, that is, the location of the a m b u 

lance station should be close enough to the most heavily 
populated areas.
1.3.3 Probabilistic Weights

The weights associated with the existing facilities have 

an important influence on the location of the new facility.
For deterministic location problems, the points with higher 

weights will attract the location of the new facility. For 
large p o p u l a t i o n s , increasing the number of points in the 

deterministic model is approximate to using a region with a 

high population density. If a weight for a region is i n 

creased greatly relatively to the other regions, then the 

center of gravity of that region will attract the optimal 

location. To circumvent these extreme cases, it is assumed 

that the weights are random variables with small variances,

and expected value criterion are considered.
1.4 Scope and Limitations

The analysis in this research will concentrate on 

models where the only sources of random variations are the 

locations of the existing facilities, and then, only uniform 

distributions are assumed. For the cases with random weights, 

the normal distribution is assumed, several optimization 

criteria will be proposed and analyzed, but no computational 

experience will be performed since the main research effort 

is geared towards models with deterministic weights. For



models which involve both the minisum and minimax criteria, 

the computational aspect is very important since it supports 
and illustrates relationships that will be generated in 

later chapters.

1.5 Order of Presentation
Because of the variety of models to be considered, the 

related research literature is surveyed in each subsequent 

chapter as the need for it arises. Possible practical appli

cations of the various formulations are offered, and example 

problems are solved when appropriate.

Chapter II will treat location problems under the 

minimax criterion, several formulations will be evaluated and 

compared. Deterministic and probabilistic weight cases are 

studied. In Chapter III, problems with deterministic weights 

are investigated. The minisum function is minimized under a 

constraint on the minimax function. A duality relationship 

with a related problem, described in Chapter II, is developed, 

and an efficient solution procedure is presented. Chapter 

IV analyzes another location model obtained by forming a 

weighted sum of the minisum and minimax functions. This 

model is shown to be closely related to the two "dual" 

models. Analytical properties that bind all these problems 

are developed. In the fifth and last chapter, the research 

effort is summarized, conclusions are drawn and recommen

dations for further research are made.



CHAPTER II

ANALYSIS OF PROBABILISTIC MINIMAX FACILITY LOCATION PROBLEMS

2.1 Introduction and Principles of Choice

Wlien modeling a real life problem, three main avenues 

are possible, either to assume decision under certainty (de

terministic parameters), decision under risk or decision 
under uncertainty. Most location problems have been modeled 

as decision under certainty, the common parameters, inter

action between facilities, and the locations of the existing 

facilities are usually assumed known deterministically. In 

Chapter II, the weights w^'s are assumed to be random v a r i 

ables with known probability density functions. For example, 

when locating an emergency service facility, an existing 

facility may require service randomly in space, and with a 

frequency that is often random. When the weights represent 

cost per unit distance traveled, they can be affected by 

fluctuating gas prices, cost of equipment used, etc. The 

weights may also represent volumes of goods transported, 
which are often random. When response times are measured, 

they very often are modeled as random variables (Larson 

(1972) and Volz (1971)). Since it is assumed that all 

probability density functions are known, the resulting models 

require decision under risk. Wiien modeling a deterministic

8
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location problem, several possible optimization criteria are 

available (minisum, minimax, maximin, etc), but when c on

sidering probabilistic parameters, another choice has to be 
made on how to incorporate the probabilistic nature of these 

elements into the formulation and optimization steps. The 

following five optimization criteria under risk are the most 

frequently used,

• expected value criterion

• portfolio criterion
• aspiration criterion

• fractile criterion
• chance constrained programming.

Suppose some new facility X is to be located such that it 

minimizes some appropriately defined cost function Z(X) (or 
Z) , then when risk conditions exist, Z is itself a random 

variable. The expected value criterion requires finding the 

location that will minimize the expected value of the random 

variable Z.

The portfolio criterion seeks the location that m i n i 

mizes the variance of costs, subject to a constraint on the 

expected cost generated by that location. Since the location 

problems to be investigated are minimax problems , the worst 

cases possible are of interest. Only those realizations near 

one tail of the probability density function are relevant, 

and therefore, the portfolio criterion will not be utilized. 

The aspiration criterion maximizes the probability of cost 
being less than some given value y (aspiration level) :
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max F ( y )
?X G

where Z is the cost function, with distribution function

F , ( 0 .
The fractile criterion minimizes the a-fractile of the

distribution of cost as follows:

minimize 6 
6 ,X

subject to

P ^ ( Z  < 6) > cx

where a is a predetermined probability level, 6 is a decision 

variable and Z = Z(X) is the cost function for location X.

The fractile criterion is specially appropriate for emergency 

facility location problems.

2.2 Overview of Previous Research

Until recently, the bulk of the probabilistic location 
research had been directed to the solution of generalized 

Weber problems. With tlie renewed interest in locating emer

gency service type facilities, the deterministic minimax 

criterion has received increasing attention,

Hakimi (1964) has studied the problem of finding a 

minimax solution on a graph, and suggested possible appli

cations to the location of police and fire stations,

Smallwood (1965) investigated related problems regarding the 

placement of detection stations, Groenewoud and Eusanio 
(1965) studied a problem derived from an investigation of
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multiple airborne target tracking with a ground based radar. 

Given a fixed set of points, a smallest covering cone or 
sphere is found using an iterative algorithmic appro a c h . 

Francis (1967) derived some properties of a single facility 

location problem with a 2^ norm, A good lower bound on the 
value of the minimax solution is given, and some geometrical 
characteristics are discussed.

Francis (1972) geometrically solved a minimax recti

linear distance problem where the solution is constrained 

within a given nonempty compact set. The procedure basically 
consists of enclosing the solution set by the smallest 
diamond possible.

Elzinga and Hearn (1972) proposed geometrical solution 

procedures to several minimax location problems with 

Euclidean and rectilinear distances, which translated into 

finding a minimum covering sphere and diamond. Wesolowsky 

(1972) proposed a parametric linear programming method for 

the multifacility case with rectilinear distances. Love, et 

al. (1973) presented a nonlinear programming technique to 

find a solution to the multifacility case with Euclidean 

distances. Bearing and Francis (1974) proposed a network 

flow solution to a rectilinear multifacility problem. The 
method is based on a network flow solution for the single 

facility case by Cabot et al. (1970).
Elzinga et al. (1976) considered a multifacility f or

mulation with Euclidean distances, and applied nonlinear 

programming duality theory in the development of the solution
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procedure. Drezner and Wesolowsky (1978) used numerical 

integration of ordinary differential equations to solve the 

multifacility problem with norm. Jacobsen (1981) p r e 
sented an algorithm for solving a single facility Euclidean 

model. He used an iterative procedure based on the method 

of feasible directions.

Charalambous (1981) presented an iterative method for 

the multifacility Euclidean distance problem. Chandrasekaran 

and Pacca (1980) generalized some solution method developed 

by Elzinga and Hearn (1972). Hearn and Vijay (1982) class

ified available techniques for solving the single facility 

problem with Euclidean metric and proposed some extensions 

and new versions of solution methods.

Shamos (1975) and Shamos and Hoey (1975) proposed 

several fast algorithms for a number of problems in compu

tational geometry. For the smallest circle enclosing a 

given set of points in two dimensions , they proposed a method 

based on generating the Voronoi polygons associated with the 

given points.
Chatelon, Hearn, and Lowe (1979) used a subgradient 

algorithm for optimizing certain types of minimax problems, 

and applied it to the Euclidean minimax location problem.

The technique was based on methods of successive approxima
tions for solving minimax functions by D e m 'yanov and 

Malozemov (1974) , and on convexity results by Rockafellar 

(1970) which will be often used in this research effort.

Even though literature on facility location problems is
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plentiful, models with probabilistic weights have received 

only limited attention. Seppala (1975) studied a m u l t i 
facility Weber problem where the weights are assumed to be 

normal random variables, and the fractile approach is chosen. 

Seppala's (1972) CHAPS algorithm is used to solve the deter

ministic equivalent problem. Aly and White (1978) considered 

a multifacility location problem when both the weights b e 

tween the facilities and the location of existing facilities 

are random variables. Distances are Euclidean and the e x 

pected value criterion is used. Unconstrained and chance 

constrained cases are investigated. Equivalent deterministic 

problems are derived and solution procedures are proposed.

They also noted that the fractile criterion for probabilistic 

location problems is an analogue of the minimax criterion for 

the deterministic case.

Another approacn when evaluationg probabilistic lo
cation problems with random weights is to compute the expected 

value of perfect information E V P I . The objective is not to 
find the location that optimizes some given criterion, the 
main goal is to find the expected cost difference between 

the actual best location (without knowing the outcome of the 

w ^ 's in advance) and the best location resulting from exact 
knowledge of the outcome of the w ^ ’s (using expected weights). 

EVPI is thus defined as the upper limit one should pay for 
information about weights when an expected value criterion 

is adopted.
Wesolowsky (1977) investigated a one dimensional single
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facility location problem with normally distributed weights, 

and he derived an analytical expression for the E V P I .
Drezner and Wesolowsky (1980) extended the previous study 

for the two-dimensional space problem. Both the rectilinear 

distance and the gravity models are considered. Normal d i s 

tribution for the weights are also assumed.
In this chapter, models will be investigated that d e 

pend on the principle of choice, on the interpretation of 

the rectangular regions and of the weights w^'s. Consider 

the following general model,

minimize max {wJ|X-P.||} (P2.2.1)
.2 1 <i < n  ^ ^

where

X E S_ CR'

2
$ 2  : is a given compact, nonempty convex subset of R .

n : number of existing facilities

(â  ̂,bĵ ) coordinate location of existing facility 
i ; P^ is a bivariate uniformly distributed random

V ariable over rectangular region R ^ , and with

joint density function ^
^i

: area of region i.
X E (x^,X 2 ) : coordinate location of the new facility,

w^ : probabilistic weight associated with existing

facility P ^ , and with known distribution function. 

Aly and White (1978) argued that the occurrence of the 

w ^ ’s and the P̂  ̂' s can be interpreted in two different w a y s .

In one case, it is assumed that once the location of P^
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is known, all following trips between new facility X and 
will share the same distance ||X-P^||,and the cost of s e r 

vicing location i is expressed as the product of the random 

variables w^ and the distance to the new facility.
In the second c a s e , each trip from X to P^ included in 

w^ (when w^ represents the number of trips) can have di f f e r 

ent length, that is, in each subsequent trip to region 

included in w ^ , P^ can have a different realization (a^,b^). 

The total distance traveled to facility i can be represented 
as a random sum of random variables.

For the minisum Weber problem with expected value cri

terion, the two cases yield identical models. In this 

analysis, it is assumed that w^ is a random cost associated 

with servicing facility i, per unit distance traveled, and 

the cost incurred by facility i is a random variable inde

pendent of the location of the existing facility i, and is 

represented as the product of random variables. Also, in all 
models to follow, rectangular regions are used to represent 

existing facilities, and the rectilinear metric is used.

The total region under study is partitioned into n rectan

gular subareas, and the following assumptions are generally 

accepted :
i) no overlap of the rectangular regions is allowed 

ii) the location of a facility requiring service is 

uniformly distributed over the subarea to which 

it belongs

iii) no barriers exist within the total area under
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consideration that would affect interaction between 
any two points.

If two or more rectangles overlap, then the area they occupy 

is divided into nonoverlapping rectangles, and the new 

weights are computed by accumulating weights from the old 
rectangles as necessary.

2.3 Unconstrained Probabilistic Minimax Location Problems

2.3.1 A Conservative Interpretation of the Rectangular 
Regions

Depending on the type of problems being modeled, there 

are several possible interpretations for a demand point u n i 

formly distributed over a rectangle, and the special nature 

of the minimax criterion allows a particularly interesting 

and useful formulation.

Problem P2.2.1 reflects the preference of a very con
servative decision maker ; it is appropriate when modeling for 

the location of an emergency type facility. When locating a 

new fire station, it is reasonable to assume that in any r ec

tangular region, the occurrence of a fire is a uniformly 

distributed event. Since each point in a region is as likely 

to require service, the extreme value is represented by the 

distance from the location X of the new facility to the most 

distant point in the region under consideration.

Let R. = [a- ,a. ] x [b. ,b- ] Cartesian representation1 I 2 I 2

of region i and P^ = (a^,b^) location of existing facility i ; 

(ai ,bi) is a bivariate uniformly distributed random variable
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over region R^.

The following lemmas will help to obtain a determinis

tic formulation of problem P2.2.1 when (a^,bj,) is a random 
varia b l e .

Lemma 2 . 3 . 1 : The point(s) furthest away from X in

rectangular region i is at an extreme point of the region.

Proof : The function ||X - P̂  ̂|| is convex, in the convex

polytope , it is optimal for some extreme point of R^ (one 
of four corner points of the reg i o n ) .

Lemma 2.5 . 2 : The rectilinear distance from X to the

most distant point in rectangular region is ||X-C^|| + r^ where 

is the centroid of region i, and is one-fourth the p e r i 

meter of R ^ .

In lemma 2.3.2, there is no need to find the most 

distant points in each region, since the distance to the new 

facility depends only on the centroid and dimensions of the 

r e g i o n .

2.3.2 Minimax Model with Expected Value of the Weighted
Distances: A Conservative Formulation.

If one wants to adopt a conservative attitude, then 

the rectilinear distance from the new facility to the uniformly 

distributed location of facility i in region i is replaced by 
the distance to the most distant point in the region. The 

expected value criterion model obtained is

minimize max {E(w. ) (|| X - C. || + r . ) } (P2 .3.1)
^ ^ ^ 2  l < i < n
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where C- = (c- ,c- ) is the centroid of region i.

a- + a- b . + b .

"iz" "il "i;- "il 
ri = E(»i)ri. ri = S  " ■— '2”  '

P2.3.1 is mathematically similar to a minimax location problem 
formulated by Bearing (1972). In that formulation, the term 

equivalent to r^ was motivated as follows; an ambulance lo

cated at X responds to an emergency at any point , and then 

travels to the nearest hospital which is rĵ  miles away. For 

simplicity of notation, let E(w^) = w ^ .

Francis and White (1974) reviewed several techniques to 

solve problem P2.3.1. A popular method is to obtain an equi

valent linear program by using the following transformation:

minimize Z (P2.3.2)
X E

subject to

W i ( | X i - C i ^ | +  |:̂ 2 "  ̂ < Z , for i = l,...,n

and then linearizing the absolute values. Network flow tech

niques have also been used, but a procedure developed by 

Bearing (1972) is adopted in this research. This method finds 

all minimax locations and can be used to generate contour 

lines. A contour line of f(X) for a chosen constant k is the 

set of all points Y for which f(Y) = k , and it is a rectangle 
with two parallel sides making a 45° angle with the x^-axis, 

and the other two parallel sides making a -45° angle with the
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Xj^-axis. This method was adopted because it doesn't require 

any special optimization code, it is fairly easy to program, 

and the simple construction of contour lines of the minimax 

function is fully used when solving a related problem in which 

the minimax function acts as a constraint. Other possible 

solution procedures could be subgradient based iterative 

methods, since the functions are not differentiable.

Description of the .Bearing procedure for problem P2.3.1 

The following linear transformations T and T  ̂ of 
points in the plane are needed:

T(x,y) = (x+y,-x+y)

T ^(r,s) = y  (r-s,r+s)

Also, let

T(c. ,c- ) = (c. +c- , -c. +c. ) = (c! , c [  )
il I 2 I 2 ^1 ^2 ^1 ^2

Step 1: Compute the numbers a j  and where

" i “ -i I ‘=1 - c !  I ♦  w , r  ! + w . r !1 1 1 2 ^ 2  ^ J I I.

Step 2: Let p^ and p^ be indices for which

and if

let
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r* =

^2 -

s* =
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“ P / P l l * “ Pz^Pzl ■ ’■Pl ' "'P2

" P l ' p p ' “Pz^Pzl^^'Pl'^Pz

"Pl ^ "P2

; q^ and q 2 be indices for which

max 
1 <i < j

2 , let

' " ^ 2 < 2 ^  - ■"^2
“ qi * ^ 2

otherwise, if c' 2  ̂ 2 ’ let

_ *  "ii^'qiZ^ ^ """ll" """I:S — "!'■'■“■ w_ + w_

Step 4: then Zq = max , Z 2 ) is the minimum value of P2.3.1
and T ^(r*,s*) is a minimax location. In order to 

find all locations, the following three cases are 

considered:

Case 1 : Z^ = Z^ = Z 2 : T"^(r*,s*) is the unique

solution.

Case 2 : Zq = Ẑ  ̂> Z 2 , tlien compute

, (ZQ-r!)
s, = max c
^ 1 < i < n  ^2 '̂ i
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2 1 <i <n "iz
Any point on the line segment with endpoints

T ^(r*,Sj^) and T ^(r*,S 2 ) is a minimax location.

Case 5 : Zg = % 2  > » ̂ ^^n compute

(Zo'^i^
'  1 n  ' h  - '

r ,  .  m i n  c :  .

Any point on the line segment joining the points 

T ^(r^jS*) and T  ̂(r2 ,s *) is a minimax location.

2.3.3 Minimax Location Model with Expected Value of the 
Weighted Distances.

In problem P2.3.1, the distances to the furthest point 

in each region from the facility are computed in order to 

evaluate the minimax function. In this case, the average 
distances from the new facility to each region are computed. 

The resulting mathematical model is as follows :

minimize max {E (w .|| X - P .|| ) } (P2.3.3)

or
max {y. ^  [ (1x , -a | + | x ^ - b J )d a •d b -}

1 <i < n  ^ ^i J JR, ^ ^ ^

(P2.3.4)

minimize 
X e R^ " "i

where y^ is the expected value of the random variable w ^ , and 

^  is the joint probability density function of Pĵ  s
^1
defined on R ^ .
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Lemma 2.5.5: Problem P2.5.4 is a convex programming

pr o b l e m .

Possible Solution Techniques for P 2 . 5 . 4 :

P2.3.4 can be written as minimize max {£^(X)} where each
X e 1 < i <n

function f^(X) is continuously differentiable, but not

max {f.(X)}, gradient based techniques are therefore 
1 < i <n ^

not applicable. Since P2.3.4 is convex and unconstrained 

direct methods can be very efficient. The pattern search 

by Hooke and Jeeves (1961) is used to solve P2.3.4.

Also, as can be seen in Figure 2.1, which shows several iso

curves of such a function, f^ (X) , the complex shapes of these 

curves do not invite an efficient geometrical solution (such 

as the smallest covering sphere problem, for example).

Problem P2.3.4 can be rewritten as
min Z (P2.3.5)
X E

subject to
f^(X) < Z , i = 1,.. . ,n

and the following Lagrangian dual problem is derived:

n
m ax min J u^f^(X) = max e(u) (P2.3.6)
u > 0 X £. r2 i = l u > 0

n
subject to 1 u . = 1 

i=l ^

An alternative for solving P2.3.4 is to solve P2.3.6.
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Figure 2.1 Isocurves for the expected weighted distance 
to a region.
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Differentiability of 6 (u):

_  n _
Let X(u) = {Y/Y minimizes I  u^f^(X) over R }, if X(u)

i = 1

is a singleton X, then e is differentiable at ü  with gradient 

ve (Ü) = (f^ (X) ,. . . ,fj^(X) ) (Bazaraa and Shetty (1978)). This is 

not necessarily true for all u's, and a subgradient based 
method is recommended for solving P2.3.6.

It is necessary at this point to investigate the nature 
of the surface of the function 

w-
f^CX) = I + Ix^-bj^ I )da^^ db^ for any g iven 1

Rectangular region R partitions the plane into nine subareas 

in the manner illustrated in Table 2.1,

Table 2.1 Partitioning of the plane by region R.

I II III

IV V VI

VII VIII IX

Subarea I, for example, is defined as {X e R  /x^ < a ^ , 

b^ <^2^' Once the location of the point X is known, then the 
rectilinear distance || X - P || for a point P e R  can be evaluated 

without the absolute values, and the resulting function values



25
w .

( R

can be exactly evaluated as a quadratic function:

I ( - a I + [x^ -b|) da db

for subarea I: f (X) =  ̂[(a^-x^)^- (a^-x^)^]

" 2Tb^-b^) " tCbi-X2)2- (bg-x^)^] 

for subarea II: f (X) = ^-fa' -a^) " x^)^]

•*•2 1 ^ 7 ^ ^  (bg-Xg)^]

for subarea III: f(X] = x I(a^-x^)^- (a^- x^)^]

for subarea IV: f (X) = x [ (a^-x^)^- (a^-x^)^]

^ [Cb^-X2)^+ (b^-xg]^]

for subarea V: f(X] = 2X i~ -a^) x I(a^-x^)^+ (a^-x^)^]

'2TF^b^) ^ I(b^-X2)^+ Cb2-X2)^] 

for subarea VI: f(X] = x [(a^-x^)^- (a^-x^)^]

" 2 ( F ^ b ^ )  ^ [(b^-X2)^+ (b2-X2)2]
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for subarea VII: f(X) =

. w 
ZCb^-b^)

for subarea VIII: f (X) - w

1 " 2 -

X [(a^-x^)^+ (a,-x^)^]2 1 -

2 (b'^b'YT ^ ^

for subarea IV: f CX] - w X [(aj^-x^)^- (a^-x^)^]

w X [ (b^-x^) (b-|-x,)^]2 Cb^-b^)

It is clear that the function f is continuous everywhere 

and in fact, it also is continuously differentiable. Table

2.2 shows the partial derivatives of f(X) in every subarea: 

Table 2.2 Partial Derivatives of in each subarea.

4 ^  -

= V h

2Xj^- (a^ + a^) 

^ 2 " ^ 1

® 2 ' ® 1

^ 2 ' ^ 1

2x^- (a^ + a^) ^ 2 - ^ 1

2X g  - (b^+b^) 2X2" ( b ^^+62) 2x2" Cb]^+b2)

^ r ^ 2 2x^- (a^ + a2) ^ 2 - ^ 1

^ r ^ 2 '^l’^2 b j - b ^
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When X is in a definite subarea, the function f(X) can 

be developed into a simple polynomial of first or second 

degree. For example, if

X E {(x^ < x  ̂ < ag , b^ < x^ < b^}

then

a? + a?

b {  *  b j
[Xz - X2(b2 + bi) + 2 3

2 2
1  ̂ 2 ^1^2 ^1 ^2

{[x^ V ^ ]  + f  + - f  } +(az-a^J ^  ^

(bz-bf) ^^"2 2 J 2 4 4

21 (bz+b.) z (bz'b,)
{[X, - — + — 4 rCbz'b^) ^^"2

(a.+a.) 2 (bo+ba) z
f(X) _[^1 ' 2  ̂ [^2" 2  ̂ ^ ^^2~^1^ ^*^2'^1^
w Caz-a^i ) (bz-bj^3 4 4

which is the analytical expression for an ellipse. This s u g 

gests that in region V of Table 2.1 (i.e., inside the rectangular

region) the isocurves of f(X) will be ellipses centered at 
a2+a, b2+b.
(— ^ — -, z ) which is the center of gravity of the rectangular

r e g i o n .
Marucheck and.Aly (1982) noted that if X is such,that x^^(a^,az)
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and (i.e. , X lies in region I, III, VII, or IX of
Table 2.1), then f(X) is equal to the rectilinear distance 

from X to the center of gravity 

a,+a, b,+b_

of the rectangle. Thus, in those regions the isocurves will 

be linear, making a 45“ or -45“ angle with the x^-axis.

In the remaining subareas II, VI, VIII and IV, it can 

easily be shown that the analytical equations are those of 

parabolas. For example, in subarea II

ffXi = + x(a^-a^) '^1 a^-a^ ^2 TTâp^âp" “ 2

for a chosen constant K q the isocurve defined by f(X) = K q in 
subarea II, is a parabola with a vertical axis and turned 

upside down.
In subarea VIII, it will be a straight-up parabola with 

a vertical axis, and so on.

These properties of the function f(X) can be visually 

observed for isocurves f(X) = K as shown in Figure 2.1. The 

function f(X) is minimized at the centroid (45,45) of the 

rectangle, and its value is 59.

Breaking down f(X) into nine possible quadratic expres

sions allows the exact evaluation of the function without 

computing the integrations.

2.3.4 Deterministic vs. Probabilistic Minimax Formulations
Two interpretations of the rectangular regions for m i n i 

max locations have been presented. One model considered the
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average distance a customer must travel in each region.

Knowing that any point in a given region is equally likely

to require service, the second probabilistic model covers the 

worst case p o s s i b l e , that is, when the most distant point in 

any region requires service. This last interpretation seems 

to be the most appropriate for locating emergency type facil

ities since it evaluates the effects of the worst situation, 

when service is required at the furthest point away from the

new facility in any region.

The three minimax models on hand are:

f 1 (X) = max {w.|| X - C. II }
^ 1 < i < n  ^ ^

deterministic formulation 

f 2 f [ II X - P-|| dP . }
^ 1 <i < n  ^i J Jr . ^ ^

-  1
probabilistic model I (expected distances)

f, (X) = max {w-ll X - C Jj + r ! }
1 <i < n

probabilistic model II (most distant point in 

region)

f 2 (X) is the cost function for the centroid approach, 

it incorporates the least amount of information on the r e c 

tangular regions. f 2 (X) is the expected value formulation, 
f 2 (X) is the most conservative interpretation of the p r o b a 

bilistic approaches, and since an emergency type facility is 
to be located, f^(X) appears to be the most meaningful model.

In Table 2.3 the deterministic model and the two



Table 2.3 A Comparison Between the Three Minimax Models.

Obj ective

Problem
Optimization

Model
Optimal (t) 

Location

Optimal 
Obj ective 
Function 
Value

Function 
value of 

Deterministic 
Solution

% Deviation in objective 
function values between 
deterministic and proba- 
balistic solutions (tt)

Determ. (13.47,2.25)
(11.098,4.62) 21.09 21.09 —

A1 Prob. I 
(Exp. dist) (11.956 ,3.77) 21.128 24.22

22.036 9.4%

Prob. II 
(most distant 

point)
(12.813,2.25)
(10.68,4.38) 32. 81 36.094 10%

Determ. (4.55,4.85)
(4.69,5) 21.54 21.54 —

A2 Prob.1 (3.96,4.74) 23.86 26.71
29.53 17.8%

Prob. II (3.67,4:67)
(4.15.) 40. 45.54 14%

Determ. (77.86,20.)
(47.86,50.) 317.14 317.14 —

A3 Prob. I (67.82,30.04) 317.14 332.14
397.14 14.5%

Prob. II (84.28,20.)
(54.28,50.) 445.71 497.14 12%

LtlO

(t) When two points are shown, the segment joining them is optimal, 

(tt) Average deviation for end points.
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probabilistic models are compared for problems and A-

given in Appendix A. Problem A^ is from Steffen (1978), A 2 

comes from Aly (1975). Problem A2 is solved for the above 

three problems. Figure 2.2 shows the corresponding optimal 

solutions. (M is the solution of probabilistic model I, M j , 
m' and MV , are the extreme points for the deterministic

and probabilistic model II, respectively).

The deterministic formulation and the probabilistic 

model II were solved with the Bearing procedure described in 

section 2.3.2. Probabilistic model I was solved with Hooke 

and Jeeves' pattern search.

From Table 2.3 it appears that the objective functions 

of the probabilistic models are rather sensitive to shifts 

from the optimal. This observation seems to justify the 

analysis of the two probabilistic models. The centroid 

approach results in deviations in costs that cannot be i g n o r e d .

Another important observation is that for the same 
example problem, the optimal function values f *, f* and f *  are 

such that f^ < f 2 < f ^ . The following theorem confirms the 
inequalities.

Theorem 2 . 3 . 1 : w X - C ^  | || X - P dP^ < ŵ || X -

^ill ï'î» where all symbols are as defined before and dP^ = 
da^i^db^.
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Figure 2.2 Solutions for the three minimax formulations 
sample problem A 2 .



Proof : 1) it is first shown that

'̂ i f I l|X-P.||dP. < w .||x-Cj| + r ! .  CD
^i

To simplify the notation, the subscript i is deleted for the 
remainder of the proof.

IIX - C|| + r ' is the rectilinear distance from X to the 

furthest point in the rectangular region R under consider

ation, then IIX - P||<||X - C||+ r for any point P e R . Inte

grating both sides over the region R, the inequality is kept 

since both sides are positive numbers,

[ w||X -P||dP < f f (w||X - C|| + r')dP 
•' JR J JR

i l
< CHlX -C|| + r') X j j dP

w||X - P||dP < (w||X -C||+ r') X A 
R

where A = (a^-a^) ^ (^2 ^1^ is the area of the region, d i 
viding both sides by A

I I %  P||dP <w||X- C|| +r'.
R

which proves inequality (1)•

2) Inequality

w ||X - C II < ^  j l^ll X -P|l dP (2)

is more difficult to prove, referring to Table 2.1, one way 

to show inequality (2) is to verify it for each of the nine 

subareas defined by the rectangular region. It has been 

shown that when X is in subareas I, III, VII or IX then
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I l  K  II ̂  ' P II dP is equal to the rectilinear distance from X

to the centroid C of region R: ||X-C||, thus, when X is in any 

one subarea I, III, VII or IX then inequality (2) holds.

The isocurves in areas II, VI, VIII and IV have been 

shown to be parabolic in shape, if it can be proven that in
equality (2) holds for one of these subareas, a similar proof 

will hold true for the other three subareas.

Assume X is a point in subarea VI, then let

A = A  ll^-Pil|dPi -||X-C.||

= T â ^  |]^|xi-*|da + |[' l^2-b|db

_|Xl - _ Ix; _ I

1 *1 - *2
" — 2—  ]

1 2 tu + b^ (ai+a?)
T F p ^ q j  [ X 2 - C b ^ + b 2 ) x 2 +  2  ̂ ”^1 ^ 2

(bi+b2)
X 2 2

(ai+a?) 1 2 b% + b^
^ ■ ^1 2 ( b q ^ q r  [x^-(b^+b2)x2 + 2 ^

- =1 + - 1=2 -

bu+b2 ku+b2
Two cases are possible, either % 2  > — ^ ^ 2  - — 2—

(i) Assume % 2  < — ^ , then
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2 (b + b,)

(b2-b^) X A = X 2 - (bj + b2)x2 + --- -̂----(%2' —  2 "

= X 2 - 2b2X2 + b2 = (X2~b2)^ >0 

==> 6 > 0

b +bz (Xz'b,)^
(ii) If x^< — 2—  then A = 5 0. The proof

for subareas II, IV and VIII is similar.

It remains to be shown that inequality (2) holds in

subarea V; in this case, four possibilities can occur:

a,+a, b.+b_
i) > — 2 ~ ^  and Xz > — —̂

a,+a- b.+b?
ii) x^ > — "2 ■- and ^2

iii) X ,  < — =—  and x, > -1 -  2 ^2  -  2

a-|+a^ bu+b,
iv) x^ < — -—  and Xz < — —̂

only case i) will be investigated since the proof is similar 

for all cases.

au+az b^+bz
Assume x^ > — g—  and Xz > — 2—  » then

A =  ̂ i p  - Pjl dP - 1]X - C|1 = C + D

where
1 -  _ a.+a^

C = 7 <-0 Ka. -X-, ) + (a„-x,) ] - X, +2(az-a^) """I ^“2 "1 2
and

^ 2Cbz^-b^) (bg-Xz)^] - %z
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It is sufficient to show that C > 0 .

2 2 22(a2-a^) x C = a ^ - 2 a ^ x ^ + x ^  + a2 - 2a2%2
2 2 2 + x^ - 232%^ + 2 a^x^ + 8 2  -a^

= 2Xj - 4a2X^ + 2a2 = 2(x-a2)^ > 0 

wnich completes the proof.

Note: In subarea V equality holds at the four corners

for the deterministic and expected value cases. For the p r e 

ceding situation, corner (^ 2 ,^2 ) is where the equality holds.
The results in this section have confirmed the need for 

a probabilistic formulation of the minimax location problem 

with regions. In the rest of this research effort, every 

minimax formulation investigated will be one of the two p r o 

babilistic models given earlier.

Furthermore, computational experience is developed for 

only the minimax models with distances to the most distant 

points in the regions, since it covers the worst realizations 

of an event in any region which is a main goal in emergency 

facility location problems. Also, problem P2.3.1 can be 

solved completely with all optimal solutions generated, and 

the isocurves can be easily constructed.

2.3.5 Minimax Location Models with Expected Value of the
Maximum of the Weighted Distances

In P2.3.1 and P2.3.4, some aspects of the random nature 

of the elements involved were incorporated into the determin

istic formulations. This was achieved by using one important 

statistical parameter of the random variables, the mean. If
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more probabilistic insight is to be introduced into the 
modeling of the problem, then the behavior of the maximum 

operand of the optimization criterion can be evaluated by 
minimizing the average value of the maximum of the weighted 
d i stances,

This objective can be formulated as follows

minimize El max {w.|| X - P ■ 11 } ]. (P2.3.7)
X c R :  1 s i  < n

The random variable ^ ■?i^< n has a distribution
function which is very complex to derive analytically.

Instead of investigating P2.3.7 two approximating problems 

will be studied.

The general formulation for both problems is

minimize E[max{w^f^Xj}] (P2.3.8)
X e

where f\(X) will be defined accordingly in each following case
(i) In this case a conservative attitude is adopted, 

f\(X) will be the distance from the new facility to the 

most distant point in rectangular region i. (Since P^ 

is uniformly distributed over region i, P^ can occur 

with equal probability anywhere in the region and the 

extreme values of the random variable || X - Pĵ|| will h a p 

pen for the most distant point in and the corres -

ponding mathematical model will be

minimize E( max {w. (^X-C- || + r.)}] (P2.3.9)
X :  R% 1 S i  S n

(ii) Each region is assumed densely populated, and
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when region i requires service, all facilities situated 

within the region travel to the new facility. The 

total distance traveled by the customers in region i 

can be approximated by the following function:

f^(X) = I I (|xj^-a^| + Ix^-b^l )da^db.
^i

where is the population density over region i and 

the resulting mathematical model is

minimize E [  max {w-m- f  f  ||X-PjldP.}] (P2.3.10)
X :  R 2 1  <i < n  JRi

where w^ is the cost per unit distance to travel from 

region i to the new facility, and is probabilistic in 
na t u r e .

Problems P2.3.9 and P2.3.10 can be written as in P2.3.8 

with the function f\[X) appropriately defined for each case. 

Therefore, the analysis will concentrate on problem 2.3.8 and 

the result will apply for both P2.3.9 and P2.3.10.

Recall that it was assumed that the random variables 

w^'s are independently distributed, the following theorem 

(Mood, et al. (1974)) is useful for the rest of this analysis,

Theorem 2.3.2: If X^ ,. . . ,Xĵ  are independent random 

variables and g (.),... ,gĵ  (. ) are k functions such that =

gj(Xj),Cj=l,''',k) are random variables, then are

independent.
Note : Let W ^ = w ^ g ^ ( X ) ,  if w^ is a normal random vari-

2able with mean and variance of , then is a normal



59

random variable with mean . f\(X) and variance
2 2°i and the random variables are independent.

,2

Theorem 2.3.3: If the w^'s are positively valued r a n 
dom variables, then 

function of X.

Proof : Let

Elmax {w.f. (X)}] is a convex 
1 < i < n  ̂ 1

F;(w . ..w )— ,...,w ) = max {w-f. (X) } 
^  ̂ " 1 < i < n  1  1

the n-dimensional random variable (w^,...,w^) has a joint 

probability density function g,, (since the

w^ are independently distributed, then ,w_ C* >*)
n

%i=l S w . ( .)) and

E[ max {w.f.(X)}]
1  < i < n

= f ...f max {w.f.(X)}g 
J-oo J-m l < i  <n 1 ’

f. (X) =||X - Cjl T- or f. (X) =

,w_ 1n

Ri
( 1% 1 -ail + |x2 -b^|)da^db^

are convex functions, thus for the cases considered, f^(X) is 

convex.

The weights w^ represent parameters that are positive 

in nature such as volume of goods transported, or time per 

unit distance, or frequencies, etc. Thus, it is perfectly 

legitimate to assume that the random variables w^ are r e s 

tricted to only positive outcomes (possible such random 

variables are exponentially distributed or with truncated 

density functions).
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Then for >0, w^f^(X) is also convex for all i and
which implies that

max {w.f.(X)} is convex,
1 < i < n  ̂ ^

2for X^ and X 2 points in R and some real number 1 < a  < 0 , then
2otX^ + (l-a)X 2 E R , and the following inequality holds:

01 max {w. f.(X.]} + (1-a) max {w.f. (X^)}
1 <i < n  1 < i < n

max {w.f. (aX, + Cl-ct)X-)}
1 <i < n  ^  ̂ ^ ^

> 0
multiplying both sides by g and integrating

"I'-'-'^n

[ ... la max {w.f.(X,)} + (l-a)max {w.f . (X,)}J -CO J -oo i i 1 1 6

-max {w^f^ + (1 -0 3 X 2 }]

" ( « 1  ,« 2 ......

> 0

The previous inequality can be rewritten as:

“ I_„ ■ " ISw^ . . .w^f^l ’ • • • '"n) dw^ dw^... dw^

+ (l-a)| ••• j max{w^fi(X 2 )}gw^ • ,Wĵ ) dw^ d w 2 . . . dw^
. . . j  m a x { w . f i ( a X i + ( l - a ) X 2 3 } g w ^ _  (Wi,...,w^)dw^...dw^

> 0
2which means that E[max^{w^f^(X)}] is a convex function in R .
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2.3.6 Evaluation of the Expected Value of the Maximum of 
the Weighted Distances.

In the previous theorem the expected value is computed

by evaluating a multiple integral. When optimizing E[max

{Wifi(X)}], the multiple integration may be repeated for a

possibly great number of times, which could severely handicap

the efficiency of any methodology to solve problem P2.3.8.

There exists another way to obtain E[max {w^f^(X)}];

set W = ^ <"i^< n^'^i^i  ̂ then

EIWJ = j wg^(w)dw

which involves a single integration, but on the other hand, 

it requires the probability density function of W, which 

needs to be obtained before integrating.

Let W^ = Wj^f^CX) for all i ; by a previous theorem, the 

random variables W^ 1 < i < n  are independently distributed 

with distribution function (.) such that

Pr(W\ <t) = Pr(w^f^(X) <t) = G^^Ct)

'̂̂ i - T T & T  ̂ " ^W^( f\[X) ) 

Sw^tt) = 8 W . C - T - & T )

E(W) = E [ max {W. }] = f wg^^(w)dw 
1 < i < n

t h e n ,

and

.nde ■Lemma 2.3.4 If W = }, where W^ are i< 1 < n 1 1

pendent random variables with density function ĝ  ̂ ( 0 > then
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n
8 w(w] = I 8 w (w) X ( n G (w))
" k=l j j i k  "'i

Proof :

G^^(w) = Pr(W <w) = Pr( max {W. } < w)
1 < i < n

= Pr(W^ < w, .. . ,W^ 5 w)

from the independence of the , 1 <i <n:

n n
Gw(w) = n Pr(W. <w) = n G.. (w)
" i=l  ̂ 1=1 ‘1

now :

" A  (w))1 = 1 1
and

BwC*) " J - ,  Gw G% (w)) = % Bw Cw)( n Gw (w))k=l k jfk 1 k=l k jfk i
and

r”E(W) = J Wg^(w)dw

(■“ n
= w I g% (w)( n G_ (w))dw 

J-co k=l *̂ k jÿfk

n #00

Wgw (w)C n G_ Cw))dw. 
“ ‘''k jz^k

If the density function of W ^ (.) (for all j) can be easily or 
directly evaluated, then it is preferable to compute the 

single integral representation of £ {w^f ̂ (X)} ] . But

if an efficient numerical method for computing the multiple 

integrations is used, then either method is acceptable.
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2.3.7 Computing Lower and Upper Bound Approximations for 

the Expected Value of the Weighted Distances

(i) Lower B o u n d : w = (w^,...,w^). Let

F: w-*-F(w) = max fw.f.(X)}
1 < i < n  ̂ 1

where F is a convex function and using Jensen's inequality,

the following lower bound is generated:

F(E(w)) <E(F(w)) or

max {E(w. )f. (X)} < E[ max {w. f-(X)}]
1 <i < n   ̂  ̂ 1 < i  < n  1  1

thus if P2.3.8 is too difficult to solve explicitly, a lower

bound approximation can be generated by solving

minimize max {E(w.)f. (X)} (P2.3.11)
X E 1 < n

which is equivalent to problem P2.3.4 if f.(X) = [ I ||X-P. |1
 ̂ J •’R. 1

dP^, or to problem P2.3.1 if f\(X) = |lx-C^|l+ r^. ^
(ii) Upper B o u n d : An upper bound has been generated by

Madansky (1959) for the case of independent multivariate r a n 

dom variables, it generalized an upper bound developed by 

Edmundson (1957) which was for a univariate random variable. 

This type of upper bound is generally known as Edmundson- 

Madansky inequality.

It is first assumed that each random variable w^ is 

defined over a finite interval v^^ <w^ - ^ 1 2  ^^ere v^^ < v ^ 2  

for all i, then I is the bounded n-dimensional rectangle such

that W E  I and for all i : v .. < w. < v . . I is the bounded n-1 1  - 1 — iz
dimensional rectangle defined by the 2 ^ vertices of the form

(Vi, , Vt, ,...,v„, ) where *. takes on the values 1 and 2  '• 1 *^ 2 * 2
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(for all i ) . Then the Edmundson-Madansky inequality is 
defined by

E(F(w)) = E ( F ( w ^ , . .. ,w^))

' Î ^

F(Vl+ '''-'Vnôn)' = 5 - <j>.

or more explicitly for the function F(.) investigated in this 
ch a p t e r .

EImax{w.f (X)}] < I n (-1) ^
i ^ * j = l '•^j2 VjiJ

X max {V--7- f - (X) }
1 <i <n ^^i ^

One important result is that
^ n ,  (Vj, - ECw.))

I j : / " '  ' '

therefore the upper bound is defined as a convex combination 

of the functions

max {V. f . (X) }
1 <i< n ^*i ^

for all combinations of * and each one of these functions is 

a convex function of X (since are assumed positive then 

0 < v^ < v ^ 2  foi" all i. And the v^^, E(w^) for all i's

are known values and the upper bound is a relatively simple

convex function of X which can be minimized by a number of
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available nonlinear programming codes.

2.4 Constrained Probabilistic Minimax Location Problems

2.4.1 Introduction

In the previous formulations in this chapter no con

straints were imposed. In this section, restrictions are 

imposed on the location of the new facility. Very little 

work has been done in probabilistic location theory with 

constraints. Contributions have been made by Hurter and 

Prawda [1972), who solved the Euclidean, single facility loca

tion problem with random weights independently distributed.

The problem was formulated as a chance constrained programming 

problem. Seppala (1975) used the fractile criterion for a 

probabilistic multifacility Weber problem, and converted the 

resulting chance constraint into deterministic constraints.

Aly (1974) did an extensive study of probabilistic facility 

location problems when both the weights and the locations of 

the existing facilities are assumed probabilistic.
Aly and White (1978) investigated emergency service location p r o b 

lems with existing facilities randomly distributed over rect
angular regions. The models formulated are set cover problems. 

Chance constraints on the response times are also added.

2.4.2 A  Conservative Minimax Location Problem with a 
Constraint on the Total Average Cost.

When a service call in any region is a random and dis

crete event (fire, crime, accident), then an important model
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is :

minimize max {E (w^ )1| X - 11 + r| } (P2.4.1)
X e R^ l i i < n

subject to
n E(w.) ; f

This model covers the worst cases possible [travel to the 

furthest points in any region) , but it also sets a limit y on 

the total average cost of servicing all facilities. For now,

it is assumed that y is some upper limit on total cost, chosen 
by the decision maker (in later chapters, a thorough analysis 

of these bounds will be performed).

Model P2.4.1 can also be applicable for the following 

situation: in this case, the number of existing facilities
is too large to be represented as a discrete model, and an 

accurate approximation of the system is obtained by a con

tinuous model. Love (1972) described a continuous location 

model for rectangular areas with Euclidean distances. In that 

model, the population is distributed uniformly over each of 

several rectangular areas. The population density over region 

i is m^ units per unit area, each member of the population of 

region i has an expected trip frequency f^ to the new facility 

over a time period t. Let c^ be cost per unit distance 

traveled from region i to the new facility, the resulting 

mathematical model is as follows:

minimize max {c-f.^X- C-|| + r V } (P2.4.2)
X : R 2 1 <i <n
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subject to

J j  1  la llx -PiWdPi ^

where rV = c^f^r^.

P2.4.1 and P2.4.2 are very similar, but they reflect the 

two types of populations being modeled as rectangular regions. 

They will have the same analytical properties and will share 

the same solution procedures. To simplify the analysis, only 

one formulation will be investigated and it will be P2.4.1.

2.4.3 General Properties of P2.4.1

Lemma 2 . 4 . 1 : Problem P2.4.1 is a convex programming

p r o b l e m .

Proof : The function g^(X) = w^||X-C^|| + r| is convex

for all i, therefore max {g-(X)} is also convex. The con-
i

straint can be written:

? fi(X) < M 
i = l

where

fi(X) = ^  f L  NX -PiWdPi
^i

ra.w^ ^ 2 | X i - a^lda^
a .

1 

fb.

rB': - b n
4  '’il

to show that the feasible set is a convex set, it is
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sufficient to prove that

f(x) =
^ ^ 2

IX - a I da
a-

is convex for x eR, which is simple.

But the objective function is not differentiable and 

the feasible set doesn't have favorable geometrical properties 

that could help in developing an efficient solution procedure. 

In a following chapter, a related problem will be presented 

which is equivalent to P2.4.1 in many ways, and which on the 
contrary, offers advantageous geometrical properties.

It can also be observed that the constraint in problem 

P2.4.1 is active for only a range of values for y.

y ^ is the absolute minimum value of the minisum function, it 

is obvious that if y < y ^ the feasible set is empty, n^ is 
the smallest value of y that will allow P2.4.1 to be optimal 

at an absolute minimax solution. If y >  ^ 2 » a minimax solution 
will always solve P2.4.1.

2.4.4 Constrained Minimax with Expected Distances Traveled

In problem P2.4.1, the most distant point in each region 

from the new facility is the concern of the decision maker.

The worst possible situation is under consideration, this is 

usually the case when human lives are endangered or when 

valuable properties are threatened by a fire. A  less radical 

attitude is to evaluate the average weighted distances to each 

rectangular region and to locate the new facility such that 

the largest of the resulting weighted average distances is 

m i n i m i z e d .
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The resulting constrained minimax problem is

E(Wi) , ,
minimize max {— r  11 X - P.II dP. } (P2.4.3)

^ ^ ^ 2  1 <i <n ^i JJR,  ̂ 1

subject to
n ECw.)

II
! X - P  ||dP. < p 

%ii=l

where all parameters and variables are as defined before.

2.4.5 General Properties of P2.4.3

P2.4.3 is a convex programming problem since each 

function

^  j L p - P i i i ^ i1

is convex. Also, each f\(X) is continuously differentiable,

but the objective function max {f.(X)} is not, thus it pre-
1 < i < n 1

eludes the use of a gradient based method.

Other equivalent formulations of P2.4.3 can be derived

that will reveal new properties. Consider the following
equivalent formulation

minimize z = z. CP2.4.4)
Z E R u

subject to
X e R “

f - CX) < z, V i

I fiCX) < y
i=l 1

P2.4.2 can be transformed into an unconstrained problem 

by developing its Lagrangian dual.
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max e(u,v) (P2.4.5)
u > 0

V > 0

where u = and

n n
0 (u,v) = minlz(l - I u .) + I (u.+v)£.(X) - vp]

Z,X i=l ^ i=l 1 1

where v and are the Kuhn-Tucker multipliers. If p is such 

that p < p, then Slater's constraint qualification holds, 

and by the "Strong Duality Theorem" there exist optimal m u l t i 

pliers Uĵ  and V such that
n _  n _  _  _

min[z(l- I u.) + I (u-+v)(f.(X)-vp)] = z.
Z,X i=l 1 i=l 1 1 "

furthermore, for 0 (u ,v) to exist, the coefficient of z must be 

zero, otherwise the minimum would not exist if z-»-±“ , there
fore

n _  _  _
z„ = min I I (u-+v)f.(X3 - vp] (P2.4.6)

X e R ^

with ÜÜ - 1 = 0 .

This means that P2.4.1 is equivalent to solving an 

unconstrained minisum location problem, where the weights w^ 

are adjusted by a factor iJ^+ v (optimal multipliers) .

2.4.6 Chance Constrained Minimax Location Problems
In the previous formulations with random weights, no 

constraints were imposed. In this section new restrictions 

will be added on the location of the new facility. The r e s 

trictions will be chance constraints. Chance constraints 

programming has been a very popular modeling tool for
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probabilistic problems in many areas of application; 

farming problems (1971), capital budgeting (1975), etc.

This popularity has led to many abuses, and recently,

detractors have criticized the use of chance constraints p r o 

gramming. Blau (1975), Hogan et al. (1981) noted "important 

problems" concerning the modeling of decision problems under 

risk as chance constraints programs. They backed their a r g u 

ments by comparing chance constraints programming to stoc h a s 

tic programming with recourse. They concluded that chance 

constraints programs is generally not used with the extra care 

it requires.

In this paper chance constraint formulations were chosen 

over stochastic programming with recourse because for the 

problems investigated, recourse strategies would have to be 

modeled and computed for all possible outcomes of the random 

variables. This process will result in a very large problem 
(even for simpler linear problems). Also, recourse actions 

for the type of facility location problems under consideration, 

are not obvious and since the location of the new facility is 

over a continuous space, a possible recourse model could not 

be numerically solved. The cost of such modeling would ou t 

weigh its benefits.
It is reasonable to assume that when chance constraints 

are violated, a cost will result. In most situations this 

cost is very subjectively evaluated and depends partly on the 

decision maker's values and needs. Through chance constraint 

programming modeling, these needs are represented by two
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factors, the cost incurred as measured by the objective func

tion, and the aspiration level (for constraint i ) . These

two types of objectives are usually conflicting in nature, 

higher (which means higher reliability) would cause higher 
c o s t .

The aspiration levels indicate some tolerance
measure for admitting constraints violations. To ensure 

equal service over the n regions, all the a^'s could be set 

e q u a l .

The following two models (depending on the definition 

of f^(X)), P2.3.1 and P2.3.4 were studied in sections 2.3.2 

through 2.3.4:

minimize max {E(w-)f. (X)}
X c p Z  1 <i <n

fi(X) = I j ||X-P.|ldP. for P2.3.4,
where

or
f^(X) = ||X - C^ll + r^ for P2.3.1

These models used a little probabilistic aspect of the w^'s 

since only the expected values of the random variables are 

included in the formulations. This shortcoming can be compen

sated by the use of chance constraints as follows:

minimize max (E(w. )f. (X)} (P2.4.7)
X c p Z  1 s n

subject to

Pr(w^f^(X) < g^) > «i, i = l,...,n 

where f\(X) are as defined in P2.3.1 or P2.3.4. The parameters
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B^'s are some preassigned upper bounds on the cost of se r 

vicing region i from the new facility, is the aspiration

level (or confidence level). It is usually assumed that

0.5 <a- <1 since it is reasonable to want to increase the 
—  1 —

probability of some objective to be satisfied (and for other 

reasons that will be given later). The chance constraint i 

in P2.4.7 expresses a constraint on the probability of satis

fying the goal:

w.f^(X) <3^.

It is assumed that the random variable w^ is normally distri-
2buted with mean and variance , then using the theory 

from Charnes and Cooper (1963) , the following deterministic 
constraints are obtained:

Bi
f.(X) < -------  , 1 = l,...,n

$ (a^) +

The assumption that 0.5 <a^ < 1.0 leads to $ ^(ct^) > 0 and 

with y^ > 0 the above constraint is well defined and since 

f\(X) is a convex function then the set

{X e R I f . (X) < ----2 1-----------  Vi is a convex s e t .
C“ i) + Pi

Problem P2.4.7 is equivalent to problem

minimize max (y-f.(X)} (P2.4.8)
X :R2 1

subject to
Bi

f.(X) <  r?------------’ 1 = l,...,n
$ (a^) + y^
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2.4.7 General Properties of Problem P2.4.8

P2.4.8 is a convex programming problem but the objec
tive function is not differentiable which precludes the use 

of some gradient based solution method, but gradient free 

search methods exist that work very well for convex problems. 

The method of successive approximation for constrained m i n i 

max problems as described in Dem'yanov and Malozemov (1974) 

can be adopted.

Note that as increases, the right-hand side of c on
straint i decreases, which means that the feasible set defined 

by the constraints shrinks, and therefore, the optimal value 

of the objective function deteriorates (increases) as the 

feasible set shrinks. On the other hand, for fixed, if 

one wants to increase the upper bounds 3 ^, then the feasible 

set of P2.4.8 becomes larger and possibly the optimal objec

tive function will decrease. The analysis of P2.4.8 as or 

3  ̂ are varied can be simplified by considering a new parameter

Yi = -------  for all i,
$ (a^) + y ^

and analyzing the following problem

minimize max {v-f-(X)} (P2.4.9)
X E

subject to

fi(%) <Yi i = 1 ,. . . ,n 

for various values of y^(Vi).

Similarly to the analysis done for problem P2.4.3,
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P2.4.9 can be rewritten as:

minimize Z (P2.4.10)
X cpZ

subject to

^i ■ ÏTT - ° ' i = l,...,n

fi (X) - Yi < 0 , i = 1 ......n

and taking the Lagrangian dual:

n n
maxi>(u,v) = min ( I (u. +v.)f. (X) - I  v . y . )
u > 0 Y r p Z  i = l i = l 1 1
v >  0 (P2.4.11)

subject to 
n u .

^ = 7  “ “

Uĵ  and for all i are the Lagrange multipliers. For optimal
u^ and P2.4.11 is equivalent to solving a positively

weighted sum of the f\(Xj's, where the weights are related to 

the parameters of P2.4.9.

Therefore P2.4.9 can be seen as a multiple objectives 

problem (see Appendices B and C) where one objective is to 

minimize a cost function such that the other objectives (de

fined by the f\(Xj's) satisfy given upper bounds. As the 

upper bounds are changed different solutions are obtained 

which are efficient solutions to the following vector o p timi
zation problem:

min ( max {y-f . (X)}, f , (X) , . . . , f  (X)).
X CRZ 1 Si

In turn, the variation in the value of the can easily be
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interpreted in terms of the parameter a a n d  6  ̂ defined 

ea r l i e r .

2.4.8 Fractile Formulations of Minimax Location Problems

Still another criterion of optimization under risk is 

the fractile criterion where the a-fractile of the distribu

tion of cost is minimized as follows:

minimize y (P2.4.12)

subject to 

P j - ( Z  < Y )  j  a

where a is a predetermined probability, y is a decision v a r i 

able and Z = max^ is the cost function adopted

for the location problem under investigation.

Geoffrion (1967) considered the fractile and aspiration 

criteria for a stochastic linear program, he proved a close 

relationship between the two criteria and solved both p r o b 

lems by considering a bicriteria optimization problem where 

one objective is expressed as the expected value of a derived 

random variable, and the other objective comes from its 

v a r i a n c e .

Sengupta and Portillo-Campbell (1970) investigated the 

fractile approach to stochastic linear programs. They assumed 

normality and used a numerical method developed by Kataoka 

(1963) to solve an equivalent deterministic profit function. 

They applied the theory to farming problems.

P2.4.12 can be written as

minimize ô (P2.4.13)



57
subject to

Pr|; max {w. f . (X) } < 6 ] > a
1 < i < n   ̂ 1

where 6 is the cost below which the cost function occurs with

at least a probability of a. Since the w^'s are independent

then
n

Pr( max {w. f . (X) } < 6 ) = n Pr (w. f . (X) < 6 )
1 <i < n  1 1 “ i=l ^ ^

and P2.4.12 is equivalent to

minimize 6 (P2.4.14)
6 ,X

subject to

n
n Pr(w.f.(X) < 6 j > a 

i = l ^ ^

It is clear that if the left-hand side of the c o n 

straint is a concave function,then P2.4.14 would be a convex 

program, and global optimal solution can be found by any one 

of many algorithms. But
n n
n P (w.f.CX) < 6 ) = n G . (6 ) 

i=l ^ ^ ^ i=l 1

where G^(.) is the distribution function of w^f^(X), is gen e r 

ally not concave for most commonly adopted distributions. 

P2.4.14 is most likely not a convex program, and only local 
optimal solutions can be guaranteed.

Miller and Wagner (1965) investigated some situations 

where additional restrictions could result in convex programs. 

In particular, they studied the equivalent relation obtained 

by taking the natural log of each side of the constraint in



58

P2.4.14.

minimize 6 (P2.4.15)
6 ,X

subject to

n
I In G . (Ô) > In a 

i = l 1

Some special distribution functions have been d e v e 
loped that could achieve convexity for P2.4.15.

2.4,9 A Pseudo-fractile Criterion of Minimax Location Problems

Consider the following problem

minimize max {w-f- (X)} (P2.4.16)
X e

or equivalently

minimize 6 

subject to

Wj^f^ CX) < & i = 1 ,.. . ,n

where w^ is a random variable for all i.

P2.4.16 is an ill-defined stochastic problem, since if 

it is optimized for some realization of the w^'s, the corres

ponding solution X may not stay optimal for another realiza

tion of the w ^ . To circumvent this problem the following

chance constrained problem is defined:
minimize 6 (P2.4.17)

6 ,X
subject to

PrC^i^iC^) < 6 ) > i = l,...,n

which means that the i^^ constraint may be violated, but at
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most 6  ̂ = (1-a^) percent of the time. The are predetermined 

probabilities. For a uniform quality of service over all r e c 
tangular regions, the can be set equal to a.

2Assuming that for all i and that 0.5 < a

< 1.0 then P2.4.17 is equivalent to

minimize 6 (P2.4.18)
6 ,X

subject to

z^fi (X) < (S i = 1,. . . ,n

and P2.4.17 is a convex programming problem which is equi

valent to

minimize max {z•f -(X) } (P2.4.19)
X : R2 1

which is a deterministic minimax criterion single facility 

location problem with weights = a^4> ^(a) + Also

P2.4.19 is similar to P2.3.1 or P2.3.4 depending on which of 

f^ (X) is adopted. In problems P2.3.1 and P2.3.4 only the 

expected value of the random variable w^ is used. But in 

P2.4.19 more information about the mean and the variance are 
used, as well as a factor a which permits to set different 

safety level of servicing the existing facilities.

2.5 Summary

In this chapter, probabilistic formulations of the 

single facility minimax location problem have been analyzed.
In section 2.4 unconstrained formulations were considered.

Two minimax models were investigated and numerically compared 

to the deterministic centroid approach. The first one covered
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cases when the furthest point in each region to the new 

facility is the location requiring service, and the expected 
value of each function inside the resulting maximand was 

computed. The second model involved evaluating the expected 

values of each function inside the maximand. It was shown 

that the objective functions of the three minimax models on 

hand satisfied specific inequalities.

Another unconstrained model involved minimizing the 

expected value of the random variable defined by the m a x i 

mand. Two cases were considered, depending on two interpre

tations of the rectangular regions. The resulting m a t h e 

matical programs were found to be convex, but the complexity 

of the objective function proved to be appreciable. Lower 

and upper bounds approximating functions were derived. The 

lower bound from Jensen's inequality, and the upper bound is 

derived using Edmundson-Madansky's inequality. Both bounding 

functions were shown to be convex, which would ensure that 

any local optimal solutions found is also a global optimum. 

Constrained models with the minisum function were also formu

lated and found to be convex mathematical programs. They set 

the stage for the analysis in the following chapters, when 

both minisum and minimax criteria are simultaneously active 

in a model. Some chance constrained and fractile formulations 

are also studied.



CHAPTER III

CONSTRAINED MINISUM AND MINIMAX PROBLEMS

3.1 Introduction and Overview of Related Research

Traditionally, location problems involve locating one 

or several new facilities among a set of existing facilities 

such that some cost function is minimized. The most com

monly used optimization criteria are the minisum and minimax. 

In many situations, neither criterion can best model the 
problem on hand by itself, and a combination of both criteria 

is preferable. The minisum criterion is appropriate when 

the interest of many is considered, whereas the minimax cri

terion serves the interest of individuals. These two goals 

are more than often conflicting. To illustrate this point, 
consider problem A3 in Appendix A; Figure 3,1 is a graphical 

representation of the rectangular regions. The following 

notation will be used in the rest of this research effort: 

let F ^ C O  represent the minisum function, and F^C.) be the 
minimax function.

n w.
||X -PjldPj

'‘i
and

= max {w.|| X - C J| + r ! } 
1 < i< n ^ ^

then F| and F| are the respective unconstrained optimal

61
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Figure 3.1 A  graph of sample problem A,, with the 
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functions values. The optimal minimax solution is M, if it 

is a singleton, or it will be represented by the endpoints 

and M g . Similarly, let S, or and Sg represent the 
unconstrained minisum solution set.

In Figure 3.2, some isocurves of the minisum function 

are plotted. The dotted curve represents the set of points 
such that the minisum function evaluated at these points is 

5% from the optimal (this illustrates the "flatness" of the 

minisum function around the optimal) .

If the optimal minisum location is not available as a 

location site, then any point inside the dotted isocurve will 

be within 5% of optimum, and is therefore acceptable as an 

alternate choice for locating the new facility. Consider the 

points and Pg as shown in Figure 3.2. They are inside the 

dotted line and are "equivalent" in terms of the minisum 

problem. However, their respective minimax function values 

show a variation greater than 20%. Similarly, even though 

and Mg are alternate minimax solutions, their performance 
under the minisum function is very disparate (respectively 

19% and 6% variation from optimal minisum). In fact, there 

is an alternate minimax solution M^ which is only 0.8% from 

the optimal minisum function value.

This example illustrated and confirmed the need for a 

better modeling approach, where both the minisum and minimax 

criteria are evaluated concurrently. It showed that, even 

when the minimax and minisum solutions are relatively "near"
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each other, there is a possibility of high variations from a 

point to another, and there is a need to be able to control 

the conflicts and find compromise points.

Consider example problem A4. It has been constructed 

to illustrate a situation where the minisum and minimax solu
tions are not approximate. Problem A4 is graphically shown 

in Figure 3.3. The minimax function evaluated at S is 66% 

from the optimal minimax value, while the minisum function 

evaluated at and M 2 , respectively, show 30% and 17% v a r i a 

tions. In the next chapter, the constrained minisum (or m i n i 

max) location problem with rectangular regions will be compared 

to equivalent formulation for the centroid approach in order 
to show the relevance of using region when modeling the 

existing facilities.

In recent years, many papers have dealt with minimax 

location problems, but only a few allowed constraints in the 

models. Brady and Rosenthal (1980) introduced interactive 

computer graphical methods to solve a constrained single 
facility case. Brady et al. (1983) extended the interactive 

graphical methods to the multifacility case. Drezner (1983) 

investigated cases where the solution is limited to be i n 

side some circles and outside some other circles. Other 

related problems which have received attention, are the 

deterministic Weber problems with locational constraints. 
Schaefer and Hurter (1974), and Hurter et al. (1975) inves

tigated a case where the solution is constrained to be within 

given distances from each existing facility. A Lagrangean
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interpretation is given, and a dual solution procedure is 

proposed. Examples with Euclidean distances are solved.

Katz and Cooper (1981) solved a Weber problem with a given 

restricted area, in which no location nor transportation is 
allowed. Hansen et al. (1982) solved a problem when the 

feasible set is a union of a finite number of convex polygons. 

The polygons are ranked following a dominance rule, and the 

objective function is minimized successively over each p o l y 
gon, and not all the polygons need to be considered.

3.2 Terminology

Let S represent a nonempty compact and convex subset of 

r P(P >2) and let f^ — > R  be real valued functions (for

i = 1, . . . , n) .

set f(x) = (fj(x),f 2 (x) f^Cx))
then

f ; r P — > R^

and the vector minimization problem is:
minimize f(x) (P3.2.1)

X e S

where S is the feasible set for the decision variable x. An 

optimal solution that simultaneously minimizes all criteria 

almost never exists. Usually, the criteria are conflicting, 

a solution that improves one criterion could very well worsen 

another. Solving problem P3.2.1 reduces to finding the set 

of all efficient solutions. The following definition is from 

Geoffrion (1968)

Definition 5.1 A point x*̂  e S is called efficient if
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there exists no other feasible point x such that f(x) <f(x^) 

and f(x) / f(x^). x^ is also called pareto-optimal, admis
sible, nondominated, noninferior.

Recall that f(x) = (f^ (x) ,f 2 (x),...,f^(x)) then for 

x^ and X 2 :

< f (X2 ) (Xĵ ) < f \ ( x 2 ) for all i)

The set E = { x e S | x  is efficient points} is called the 

efficient set. Kuhn and Tucker (1950) observed that some 
efficient solutions can have an undesirable property; they 

called these solutions improper solutions. Geoffrion (1968) 

generalized the definition of proper efficiency as follows.

Definition 3.2 x^ is called a properly efficient so

lution of P3.2.1 if it is efficient and if there exists a 

strictly positive scalar M such that for each i the f o l 

lowing holds:

- f^Cx)
—  S r -f . ( X )  - f .(x")

for some j such that fj(x) > f j (x^) whenever x e S  and f^(x)< 

f.(x°).

Let E^ = {x G SIX is properly efficient point}, then 

e P £  E.

If n = 2, P3.2.1 is called a bicriteria minimization 

problem. More results on bicriteria optimization can be 

found in Appendix B.

3.3 Constrained Minisum Location Problem
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3.3.1 Analysis and Development of a Solution Technique 
In Chapter II the following problem was introduced

Minimize (maxiw^Hx - C^|| + r^}) (P3.3.1)
X E 1

subject to
n w.

ill 1 -

It was shown to be a convex programming problem, and justi

fications were given regarding the practical and beneficial 

aspects of such models. According to results summarized in 

Appendix B, problem P3.3.1 is equivalent to the following 
problem :

Minimize f  ^  [ f ||x - PJ|dP- (P3.3.2)
X : R2 i J *i

subject to

max {w.|| X - C- II + r • } < A
1 <i <n

Formulation P3.3.2 could apply when locating a new school, 

then the total average distance is minimized, without any 
student having to travel over some maximum distance A.

When A is large enough to make the constraint redundant, 

the resulting problem is similar to one formulated by 

Wesolowski and Love (1972) , a gradient reduction solution 
procedure is used to solve the problem. Marucheck and Aly 

(1982) used a direct search technique to solve the m u l t i 
facility case. The method by Wesolowsky and Love (1972) can 

be summarized for the x^-subproblem as follows: (the
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technique applies similarly to the Xg-problem).

I . Initialization Step

' w.
Compute w. =  ----—  , for each i. Sort the intervals

^2 ^1

[a. ,a. ] by increasing a- , then decompose the intervals
^1 ^2 ^1

[a- ,a- ] into nonoverlapping intervals [r.,s.] with corres-
il i2 J ^

ponding weights Wj accumulated as needed.

I I . Gradient Reduction Step

n
1) Compute M = y (s. -r.)w!.

J J 1

2) Let k = 1.

3) Compute t^ = and d(s^) = -M + 2 t^ .

4) If d(s^) <0 let k = k + 1, go to step 3.

5) If d(s^) = 0 then s^ <x* <r^+^; stop.
Csv-Tv)

6) If d ( s ^ ) > 0  then x =rj^-dCSj^-l) — 2 t^—

For example, consider example problem A2 in Appendix A, the

optimal unconstrained minisum solution is X* = (4.65,4.42).

If tighter restrictions need to be set on the value of the 

minimax function, then smaller values of X are chosen. Below 

a specific value X ^ , problem P3.3.2 will not be optimal at a 
minisum solution, and the value of the objective value d e 

teriorates (increases). x 2 is the smallest value of X for 

which a minisum solution still solves P3.3.2. If tighter
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restrictions on the maximum weighted traveling distance are 
needed, X can be reduced as low as x ^ , which is the optimal 

minimax objective function value. It is clear that if x < X^. 

then the feasible set of P3.3.2 is empty. Then for problem 

P3.3.2 only values X e [Xĵ  ,X2 l should be considered. Similarly, 
for the constrained minimax problem P3.3.1 only values 

wc[Pj^,iJ2 ] of interest. In Appendix B, a relationship 

between the intervals [x̂  ̂,X2 ] and [a^,u 2 ] is described, it is 
also shown that P3.3.2 and P3.3.1 with X and p in the given 
intervals, will generate the same solutions.

The following procedures explain how x^ and X 2 are

found,

i) Finding x ^ : X^ is determined by solving the 
following problem:

minimize max {w J| X - C - 11 + r! }
X c r 2  1 <i < n  ^

X^ is the resulting optimal objective function value. (This 

problem is solved in Chapter II)

ii) Finding X 2 : Step 1: Find the solution set B of

the unconstrained minisum problem:

9 n w. ,
B = {XeR^IX minimizes I I 1|X - P^HdP^}J i  4  1/

let F* be the resulting optimal minisum function value then

B = {X G B^lF^CX) = F*}

The set B is found using the gradient reduction tech

nique described earlier. For sample problem , B is the
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singleton {(4.65,4.42)). Other possible geometrical shapes 

are: line segment parallel to either coordinate axis, rect
angle with sides parallel to the axis.

Step 2: i) If B is a singleton (X), then

= F (Y) = max {w-|| X - C + r Î }
l<i<n

ii) If B is not a singleton, then the following 

problem is solved:

minimize max {"'ill 1| + r ! } (P3.3.3)
X e R ^  l < i < n

Subject to X e B 

or similarly

minimize max {w.^X-C- || + r - } (P3.3.4)
X , R 2  l < i < n

subject to

i L  " i l l
and X 2 is the optimal objective function of P3.3.4.

Note : The constraint in P3.3.4 is a less or equal type, 

since there exists no point X such that F^(X) <F*, then 
P3.3.4 is exactly P3.3.3. Also, let A be the solution set of 

the unconstrained minimax problem, then if A O  B f  0, the 
solution sets of the unconstrained minimax and minisum p r o b 

lems intersect, and the resulting constrained problems P3.3.1 

and P3.3.2 are trivial, since points in the intersection A n  B 
will minimize either unconstrained problem. Thus, in any 

solution procedure to solve P3.3.2 (or P3.3.1) it is necessary
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to include a test routine that checks whether A A B  is empty 

or not. An efficient solution procedure has been developed 

in this research effort that generates the sets A and B , e v a l u 

ates A n B , if it is empty, then it proceeds to find and 

and then generates efficient points as A is varied over the 

range [A^^A 2 ]. The algorithm is summarized as follows.

3.3.2 Description of the Solution Procedure 

The mathematical model is

n
minimize

,2 i = l
I w. l l X - P j I d P .  (P3.3.2)

R.X E R" i

subject to

max {IIX - C. II + r ! } < A 
1 < i < n

Find A.

Step 1: Solve the unconstrained minimax problem. Let

A^ equal the optimal function value, and A be

the solution set.
Find

Step 2: Solve the unconstrained minisum problem. Let

B be the resulting solution set.

Step 3: Verify that the solution sets of the minisum

and minimax problems do not intersect. If the 

intersection is not empty, the case is trivial; 

identify intersection points and stop.

Otherwise go to step 4.
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Step 4: Minimize the minimax objective function over

the minisum solution set. (Geometrical p r o 

perties of the solutions sets are utilized to 

speed up the optimization process.) Let i 2 

equal the resulting optimal minimax function 
v a l u e .

Generate Efficient Solutions

Step 5: For X e [X^.X^] find the extreme points of the

diamond defined by the constraint 

max {wJl X - C. 11+ r!) < X
1 <i < n  1 ^ 1

Step 6: Using the Golden section line search, optimize

the minisum function over the four arcs con

necting the extreme points of the feasible

set. Increase X and go to step 5.

The solution technique has been coded in Fortran, and v e r i 

fied by testing it with examples from Appendix A, among 

others .

3.3.3 Computational Results

Consider example problem A2 from Appendix A, X^ is 

the optimal unconstrained minimax function and X^ = 40. The 

set B of optimal minisum solutions is the singleton {(4.65, 

4.42)} and

X^ = F % (4.65,4.42)
max {w. ( I 4 .65 - c. , I + 1 4 . 42 - c - I  )+r ! } 

1 < i < n  ^
= 49.87
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In Appendix B it is shown thpt if Xe[i^,X 2 ] then the c on
straint in problem P3.3.2 is tight at the optimal. Also, if 

P3.3.2 solved for some [X^^.X^], then the resulting solu
tion X q is an efficient solution.

Let

F z CXq ) = max {wJ|Xg - C-|| + t [} = X^ 

n
“ i  JJ 11)̂ 0 - “ "0

then X q is also a solution of problem P3.3.1 for y =

F 2 (Xq) , that is
F-(X„) = minimize max {wj| X - C-|| + r'} 

X c R Z  I 5 i < n  "
subject to

n w-
I I X  -  P i l l d P j  <  =  F j ( X „ )

"i

Figure 3.4 illustrates the regions defined by sample 

problem A 2 , as well as the efficient set E generated by 

solving P3.3.2 for Xe[x^,X 2 ]. is the only unconstrained
minimax solution which is efficient. is the unconstrained

minisum function, all other points on the dotted line are 

efficient points.
Figure 3.4 illustrates the set of efficient solutions

2of P3.3.2, in the decision space R . The objective space 

refers to the set T = {CF 2 (X) ,F^ (X) ) ,X e R^} , then T c R ^ .
Let (Xg,yQ) be the pair corresponding to an efficient 

point X q , if all such pairs are plotted in the objective
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space, then Figure 3.5 is a representation of that set (for 

sample problem A 2 ) . The curve in Figure 3.5 is also called 
efficient frontier (of the set T ) , it shows the conflicting 

nature of the two location criteria under investigation.
An improvement in the minimax function (represented by 

A) is achieved at the expense of tlie minisum function (p) 

and vice versa. The curve is continuous, which can be e x 

plained by the stability of the two constrained problems 

under study and which result in strong dual optimality (no 

duality gap). It is clear in Figure 3.5 that if Ag > A 2 , the 

corresponding mini sum function value pg will be but the

resulting points are not efficient (the pair (A2 ,Wi) d o m i 

nate all pairs (Agp^) where Ag > X 2 ^'
When A = 40, the curve is a vertical line segment that 

represents all possible minisum function values over the set

A. (A is the set of all optimal unconstrained minimax points.)
2The image of R under the (F^fF^) map is unbounded. A 

Lagrangian duality interpretation of Figure 3.5 will be 

given later.
With the help of Figures 3.4 and 3.5, a decision maker 

can choose a location for the new facility somewhere along 

the efficient set (or near to it) , and check the tradeoff 

resulting in the two cost functions. If the minimax cost 

desired is greater than A 2 , then the unconstrained minisum 

solution with the lowest minimax function value is the best 

location for the new facility. For a chosen value Ag such
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that <Aq < \ 2 ' there exists a point in the feasible set 
defined by the constraint <Ag, that cannot be d o m i 
nated by any other point. This efficient point is the 

intersection of the efficient set with the diamond defined 

by the constraint. For example, in Figure 3.4, if Ag =43.95 
then the resulting diamond defined by F^CX) <43.95, inter

sects with the efficient set at Z q => (4.17,4.68). The

mapping (F^jF^^) only defines a partial ordering of the plane 
2R (see Appendix B ) . The set of all nondominated points in 
2R (for the partial ordering given) have been generated. If 

one wishes to compare any two points in the plane, it can 

be achieved by using and combining the geometrical p r o p e r 

ties of the two dual constrained problems P3.3.1 and P 3 .3.2. 

When comparing two points, any of three possible situations 

can occur:

(1) The two points are on the same minimax isocu r v e .
(2) The two points are on the same minisum isocurve.

(3) None of the above.

If either case (1) or (2) occurs, then one point dominates 

the other one. For case (3), either one point is on minimax 
and minisum isocurves that are both inside the isocurves of 

the other point, which it then dominates. Or, the points 

cannot be ordered as one performs better in one criterion 

and worse in the other. To illustrate these comparison rules, 

consider sample problem A3, in Figure 3.6 are superimposed 

several isocurves for the minisum function and the minimax 
function. Instead of looking at the total area [0,100] X
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[0,100], a focus is made on the area [ 45.,80] X [ 20 ,55] 

which covers the most sensitive and relevant location area. 

The dotted minisum and minimax isocurves represent the crit

ical values ^ 2  w 2 this case X 2 “ 511.14 and u 2 ~

1115.52. It is clear that dominates P g , P^ and P ^ , 

since P̂  ̂ has the lowest minisum function value (optimal) and 

all four points are on the same minimax isocurve. However, 

Pg and P- are equivalent since they lay on the same minisum

isocurve. P_ and P, dominate P.. Also Pr > P^ > P^ because 1 5  4 5 / 0
they lay on the same minimax isocurve and on different m i n i 

sum isocurves. P^ is an efficient point, no other point 

dominates it. Pg and Pg are two minimax solutions, but Pg 
has a lower minisum function value. But Py and Pg cannot be 

compared, Pg is superior in the minimax function but worse 

in the minisum function. This simple graphical and visual 

technique can also be used to generate efficient points; 

just set the minimax function at a value x < A q  < x 2 set
the minisum function at a value fg < ^2  ̂ and travel along
the resulting isocurve Fg(X) = X q (or F^(X) = Pg) until the 
lowest possible minisum (or minimax) isocurve is reached.

3.4 Conclusion

In this chapter, the importance of considering the 

minisum and minimax criteria together was shown. Minimizing 

the minisum function subject to a bound X on the minimax 

function is equivalent to minimizing the minimax function 
subject to a bound p on the minisum function. A solution
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for one problem can be obtained by solving the other problem 
for specific parameters Xq and M q . Based on this equivalence 

only one problem needs to be solved, and because of the simple 

feasible set defined by the minimax function, the constrained 

minisum problem was solved. A powerful solution procedure was 
developed that generates efficient solutions. Two initial 

steps required solving the unconstrained minisum and minimax 
problems, the techniques by Bearing (1972) and Wesolowsky and 

Love (1971) are used because they are exact and fast.

The set of all nondominated (or efficient) points was 

generated and plotted in the decision space and in the objec

tive space. The efficient set as plotted in the decision 

space gives a spatial representation in relation to the 

existing facilities, allowing the decision maker to visually 

evaluate the alternatives. On the other hand, the efficient 

set as plotted in the objective space gives a quantitative 

representation. Using both representations, a final deci

sion can be made, based on cost tradeoff between the two 

criteria, and locational preferences. A graphical approach 

for comparing points has also been discussed, it can be used 

to find efficient points.



CHAPTER IV

A BICRITERIA LOCATION MODEL AND RELATIONSHIP 

TO THE CONSTRAINED MODELS

4.1 Literature Review

Multicriteria facility location problems have received 

increasing attention, which follows recent developments in 

multicriteria mathematical programming.

Important results were introduced by Kuhn and Tucker 

(1950) as they discussed the vector minimization problem, 

and derived necessary and sufficient conditions to obtain 

solutions with a special property, and which are called p r o 

perly efficient solutions. Their theory was based on differ

entiability arguments. Geoffrion (1967) addressed an 

interactive bicriteria maximization problem, and showed how 

it can be solved as parametric subproblems. Klinger (1967) 

extended previous work by Kuhn and Tucker (1950) regarding 

some solutions which were found to possess an undesirable 

property. These solutions were called improper, and it was 

shown that only properly efficient solutions are relevant 

when solving a vector optimization problem.

Geoffrion (1968) generalized the concept and d e fini
tion of proper solutions in order to exclude efficient solu

tions that allow for a first order gain in one criteria at

83
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the expense of but a second order loss in another. Proper 

solutions are characterized by necessary and sufficient con
ditions .

Iserman (1974) showed that for the linear vector opti

mization problem, all efficient solutions are properly 

efficient. Benson and Morris (1977) gave necessary and 

sufficient conditions for an efficient solution to be p r o 
perly efficient. These conditions relate the proper 

efficiency of a solution to the stability of a single 

objective optimization problem.

Wendell and Lee (1977) generalized several results on 

efficiency for linear problems to nonlinear cases. Their 

results are based on duality theory. Bacopoulos and Singer 

(1977) proved that the bicriteria convex minimization 
problem can be solved by considering either one of two 

constrained single objective convex programs. Benson (1979) 

extended these results and developed a parametric procedure 

for generating the set of efficient points for the convex 

bicriteria maximization problem. Gearhart (1979) gen e r 

alized the characterization of efficient points for some 

nonconvex functions. Sadagopan and Ravindran (1982) gave 
more results on efficient solutions for concave maximization 

and developed some interactive methods for solving b i c r i 

teria problems.
The earliest multicriteria location problems investi

gated in the literature involved trees and graphs. Halpern
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(1976) considered a weighted sum of the minimax and minisum 
criteria cost functions on a tree. The solution was found 

to lie either on the center of the tree or on the path 
connecting the center and the median points of the tree.

The exact location depending on the weights attributed to 

two objectives. Lowe (1976) and Handler (1976) indepen

dently studied the same problem and obtained comparable 
res u l t s .

Halpern (1977), (1978) and (1980) extended the b i c r i 

teria location problem on tree to graphs. He concentrated on 

three problems, the weighted sum of the mi.nisum and minimax 

objective functions, and the single objective minimization 
of one of the criteria with the other objective acting as a 

constraint. The three problems are shown to be related, and 

that a special duality exists between the two constrained 
p r o b l e m s .

Tansel et al. (1983) considered a bicriteria m u l t i 

facility minimax location problem on a tree network. The two 

objectives involved are the maximum weighted distance between 
pairs of new and existing facilities, and the maximum 

weighted distance between pairs of new facilities. Ne c e s 

sary and sufficient conditions are developed for a solution 

to be efficient. Another class of multicriteria optimization 

with application to location problems involves problems with 

binary variables; Ross and Soland (1980), Burkard et al. 

(1982).
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Continuous multicriteria location problems have also 

been investigated. Kuhn (1967) investigated a problem with 
Euclidean distances and where the objectives are the d is

tances between facilities. Wendell and Hurter (1973) proved 

for a general norm that the points in the convex hull of 

the existing facilities are dominant, and only those points 

need to be considered for the minisum criterion. Wendell, 
et al. (1977) generated the efficient set for a single f a 

cility rectilinear case where the objectives are the weighted 

distances. Using an approach depending more on geometrical 

considerations, Chalmet et al. (1981) improved the algorithms 

developed by Wendell et al. McGinnis and White (1976) 

studied a single facility rectilinear problem with a weighted 

sum combination of the minisum and minimax criteria. A 

linear programming formulation is proposed but a direct 

search procedure is developed. Rahali and Aly (1980) studied 

a weighted sum approach for the minisum approach for the 

minisum and minimax multifacility Euclidean criteria. A 

subgradient iterative procedure is proposed, but a direct 

search approach is used to solve an example and obtain 

properly efficient solutions.

4.2 Characterization of Proper Efficient Solutions

In Chapter III, two location models were shown to be 

equivalent, and generated the same set of nomdominated 
solutions. They were
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Pj^(X): minimize and minimize F^fX)
X E X e r ’

subject to subject to

FgCX) < A F^(X) < p

Fl(x) = w. j  j  R.||X - P.||dP.

IF-(x) = max {w.||X - C J| + r - }
 ̂ 1 <i < n  ^ ^

for AeLA^.A^] and pe[p^,P 2 ]'

Geoffrion (1968) proved for convex function F^(x) and 

F^Cx) that a point X is a properly efficient point if and 

only if X q is a solution of the following problem.

minimize (yF^(x) + ( 1 - y )F2(x )) (P4.2.1)
X e R^

for some 0 < y < 1 
(see Theorem B.l in Appendix B ) .

Benson and Morris (1977) have characterized properly 

efficient solutions by verifying the "stability" of the 

associated constrained single objective optimization p r o b 

lems for maximization problems with concave functions.

Definitions and results on characterization of p r o 

perly efficient solutions have been summarized in Appendix 

C. Based on these results, the following theorem can be 

s t ated.
Theorem 4 . 1 : All efficient solutions X q such that

(or F ĵ (Xq ) are properly efficient
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solutions.
Proof: Recall that

If

and

then

= i n f  {F2(X) | X e R^} 

= i n f  {Fj^(X) |X G R^}

A = {X G R^jF^CX) = A

B = {X G R^IF^CX) =

P2 = inf {F^(X)1 X G A}
A2 = inf{F2CX)|X G B}

First, it is shown that only the cases F2 (Xq ) {A , A 2} 
are to be considered since they imply F^ (Xq ) ̂  {y ,y 2 ) :

if F^CXg) > A^ then X^  ̂A and F^CX^) < y2

(otherwise if F^(Xq) > y2 then and X^ g  A

which contradicts the hypothesis F^fX^) >A^). Also, since

Fz CXq) < ^2 then X q ^B and F^(Xq ) > y^ .

Therefore, let Xq be an efficient solution such that
Ai < F^CXg) < ̂ 2

and consider the following two problems.

P^(Aq ) and where A^ = F^CXg) and y^ = F^(Xq ).

Xq is an efficient point such that X q  ̂A , then there exists
a feasible point X^ for problem P^CA^) such that X^ eA and
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<Ag = F^CX q ) which shows that the convex feasible 
region defined by problem satisfies Slater's constraint
qualification (see Appendix B) , which also implies that p r o b 

lem P ^ ( X q )  is stable (Geoffrion (1971)).
Similarly, since X^ ^ B then there exists a feasible 

point X* for problem such that X* e B  and

F l ( X p  < ^0

which implies that stable. Applying Theorem C.l

(from Appendix C) this shows that efficient solution X^ is 
also properly efficient.

Theorem 4.1 states that all efficient solutions o b 

tained by solving P^(X) for X s (A^ ,A 2 ) (respectively P 2 CU) 

for y e (^^,^ 2 ^^ are properly efficient solutions of the 
vector minimization problem. Combining this result with the 
implications from Theorem B.l (Geoffrion characterization of 

proper solutions) shows that there also exists a scalar 

Y q  e (0,1) such that X q  solves problem P4.2.1.

In the next section, for a given properly efficient 

solution X q the corresponding scalars A q ,  y Q and Y q  will be 

computed, such that X q  solves P^(AQ), P2^^0^ and P4.2;l.

Note : If Aq = F 2 (Xq) e {A^,A 2 ) then either P^(Aq) or
P 2 (yQ) will not satisfy Slater's conditions and no conclusion 

can be made whether X q  is proper or not, unless the corres

ponding scalar A q  e (0,1).
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4.3 Relationship Between the Bicriteria and Constrained 
Location Problems

In the previous section, it was shown that properly 

efficient solutions can be generated by solving problem 

P3.2.3 for X e (X^,X 2 ) or problem P4.2.1 where y e (0,1.
Problem P4.2.1 can be rewritten as

? "i
L A.

X e  ̂ 1 "i

n w. r r
minimize Y ( I â—  || X - P.||dP.) (P4.3.1)
V n2 i-1 ^i J JR. ^ ^

+ (1 - y ) ( max {w.|| X - C. II + r- })
1 < i < n

for some y e (0,1)

Suppose X q is a properly efficient solution obtained

by solving the weighted sum problem P4.3.1 for 0 < Y q <1,

then there exist parameters X q and V q such that X q solves

the constrained minisum and minimax problem. Since X q is

efficient, there exists a parameter Xq e [X^,X 2 ] such that

X q is a solution of

n w. ff
minimize ( I ^  || X - P.||dP.) (P4.3.2)
X s R f  ^

subject to

max {w.||X - C^||+ r! } <Xq 
1 < 1 < n

In Appendix B it is proven that the constraint is tight at

optimal, then set

X q = max {w J|X q - C J  | + r!}
1 < 1 <n

and similarly, for the constrained minimax problem, set
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n w.

. u n
Conversely, if solves problem P4.3.2 for < Aq < A 2 > 

then P4.3.2 satisfies the K.T. saddlepoint necessary optim

ality theorem as formulated by Mangasarian (1969), and there
fore, there exists a multiplier Uq strictly positive (see 

proof of Theorem B.2 in Appendix B) such that Xq is the 

minimizer of the function

6 ( U q )  = min (F^(X) + Uq(F 2 (X) - F 2 (Xq))}
XcR^

since U qF 2 (Xq) is a constant,then Xq is a minimizer of F^(X) + 

U qF 2 (X) with Uq > 0. After normalizing, Xq is a minimizer of

In summary, in order to find the weight Yq for which 

problem P4.3.1 has the same optimal solution Xq obtained from 

solving P4.3.2 (for Aq = F 2 (Xq), the following problem is 

solved ;

max { min (F.(X) + u(F,(X) - Ar.)]}. (P4.3.3)

This problem is the Lagrangian dual of P4.3.2.

4.4 Description of the Solution Technique for Solving P4.3.3

P4.3.3 can be rewritten as maxe(u) where
u > 0

e(u) = min IF^(X) + u ( F 2 (X) - A q ) ] ,

X e

each function evaluation of 6(.) requires the minimization of
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a convex function in X, and since 9(u) is concave in u , a line 

search over [o, u] will find the optimal u®(u is chosen large 

enough for u^ to be in [o, u] ). The most efficient linear 

search for unimodal functions is the golden section method, 

which is used on 9(u). Each function evaluation of 9 (u) is 
an optimization of a convex unconstrained and not differen

tiable function in X. Direct search methods are very e f f i 

cient for this type of problem, and Hooke and Jeeves (1961) 

pattern search is used because it converges quickly to the 

opt i m a l .

4.5 An Example Problem

Consider problem A2 in Appendix A, Figure 4.1 shows 

the relationship between the bicriteria problem P4.3.1 and 

the constrained minisum problem P^(X). For any pair (X ,y) on 
the graph, corresponds an efficient solution X such that X 

solves P^(X) and X solves P4.3.1. For example, (AQ,^^) 
shown in Figure 4.1 corresponds to the efficient point 

Xq = (4.17,4.68). Similarly, Figure 4.2 illustrates the 
relationship between problem P4.3.1 and the constrained 

minimax problem P 2 (p). The same efficient point X q = (4.17, 

4.68) corresponds in this case to the pair (Uq,Yq) where Pq 
is the value of the minisum function value evaluated at Xq 

(and Xq solves problem P^CWq)), and Yq is such that Xq 

solves P4.3.1 for y = Yq>
It can be shown that all efficient solutions are gene

rated for 0.6 < Y <1. If 0 < Y <0.6, then problem P4.3.1
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Xe (40. ,49. 87) (Aq ,Yq ) =(43.95 ,0.72)
y e

0 . 9 3

0 . 9 6

0 . 9 3

0 . 9 0

0.67

Y
O.Bl-

0 . 7 8

0 . 7 5

0 . 7 2

0 . 6 9

0.66

0 . 6 3 -

0 . 6 0 -

IJO «5 so

Figure 4.1 Relationship between constrained minisum and 
weighted sum problems (sample problem A 2 ) .
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WE(83.88,87.14) 
yc(0.6,1.0)

(85.05,0.72)

0 . 9 3 -

0 . 9 6 -

0 . 9 3 -

0 . 8 7

Y

0 . 7 8

0 . 7 2 -

0 . 6 9 -

0 .66-

0 . 6 0 -

83.S 8%.S 8 5 . 0 p  8 5 . 5 8 7 . 086.0 86.S

Figure 4.2 Relationship between constrained minimax 
problem and weighted sum problem (sample 
problem A2)
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is optimized at = (3.86,4.86) which is a minimax solution 
that can be obtained by solving either P^(40) or P2(87.14).

At Y = 0.6, the weight is such that the solution of P4.3.1 
starts to move away from the minimax point, when y = 0.99, 

the solution is at the optimal minisum location. This process 

is well illustrated in Figures 4.1 and 4.2. Recall that X 

represents a value of the minimax function and p the minisum 

function. As x increases (respectively, p decreases), the 

corresponding efficient solution moves towards the minisum 

solution (respectively, minisum solution) and the weight y  

increases, which creates a shift of the bicriteria problem 

P4.3.1 closer to the unconstrained minisum problem.

4.6 The Constrained Approach vs. the Weighted Sum Approach

In the previous chapter, efficient solutions were gene
rated by minimizing the minisum function such that the m i n i 

max function satisfied an upper bound X . When x was varied 

between two specific values x^ and x ^ , the solutions obtained 

are efficient and the constraint is tight, that is,

max {ŵ ll X - C^ll + r]^} = X .
1 < i < n

This property allows the decision maker to choose a minimax 

or (minisum) cost and then find the optimal efficient solu

tion that corresponds to these "desirable" costs. Whereas, 

for the weighted sum problem P4.3.1 it is hard to give a 
practical meaning to the weight y .  The objective function 

of problem 4.3.1 behaves as a new function compared to the 

minisum or minimax function. When a weight is chosen, the
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decision maker has a general feeling about which criteria is 

being favored over the other, but he will not know until a 

solution is obtained, what kind of solution he will obtain.

Another advantage of adopting the constrained minisum 

problem is the relatively simple optimization technique 

needed to completely solve the problem. In order to find 

and A 2 , the unconstrained minisum and minimax problems have 

to be solved first. The techniques chosen are exact, easy to 

implement and only require simple arithmetic and data struc

turing techniques (sorting of v e c t o r s ) . Solving the con

strained minisum problem was reduced to line searches over 

the four sides of a diamond defined by the minimax constraint. 

On the other hand, the weighted sum function of problem 

P4.3.1 is nonlinear, doesn't offer any favorable geometrical 

properties and is not differentiable. To solve P4.3.1, 
requires finding a saddlepoint which is more difficult. Iter

ative subgradient-free or subgradient methods could be used 

(other possible methods are simulation, approximation tech

niques, etc). These methods are more difficult to develop and 

to implement.

Another benefit from adopting the constrained approach 

over the weighted sum approach is derived from the use of the 

isocurves of the associated functions. It was seen earlier 

how the two constrained problems can usually be interpreted 

by overimposing the isocurves of the minimax function over 

those of the minisum function for the ranges (A^,A 2 ) and
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respectively. But for problem P4.3.1, a set of iso
curves corresponds to only one weight y and a specific effi

cient solution. This limitation does not allow a single 

graphical analysis of cost tradeoffs resulting from alternate 

locations.

4.7 Lagrangian Duality Interpretation of the Efficient Set

Let a point in the objection space [see Figure 3.5) be
2(X,p), then there exists X e R  such that

X = max {w.||X - C,II + r ! } = F? (X), 
l < i < n

and

F = .? ^  f I IIX - PjldP. = F^(X).
i = l 1 ^i

For a specific U q > 0,

0 (Uq) = min {F^[X) + u^CFzCX) - Xq) }
X 0 •

or, it is the minimization of p + PqX - Fq^q over points of 

the objective space, which can be interpreted as finding the 
supporting hyperplane at the point (XQ,pQ) where Xq, Pq 

relate to U q  in the way described earlier. - U q  is the slope 

of this supporting hyperplane at ( X q , P q ) .

For example, if (Xq ,Pq ) = (45.,84.7) then from Figure

4.1 or 4.2 Y q = 0.75 and since

Y q  = " 1' "o = 1-33 “ ^ " 0.33

and the slope of the supporting hyperplane at (45., 84.7) is 

-0.33, which means that a gain in the minisum function
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results in a loss in the minimax function at a rate of 33%, 
Figure 4.3 illustrates this example.

4.8 Constrained Deterministic Problem

This method developed to solve the following problem 
n w .

minimize 
2X e R 

subject to

max {V .|1 X - C. II + r ! } < A 
1 <i < n

can be used to solve the deterministic constrained version 

obtained by considering the centroids of the rectangular 
regions

n
minimize 7 w^||X - C^|| (4.8.2)
X e

subject to

max {v-11 X - C • II } < A 
1 < i < n

It is clear that problem P4.8.2 is the limiting case of 

problem P4.8.1 as the areas of the rectangular regions are 

reduced to zero. From Figure 2.3, if the area of the rectan

gular region is monotonically reduced to zero, the isocurves 

of the function
Wi

IIX - P-l|dP.
Ri

converge toward the isocurves of the weighted rectilinear 

distance to the centroid , i.e., wj| X - C^||.

Also, as the area R^ is continuously reduced to zero.
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87.2SH (45. ,84 .7)
67.00- 0.33

BS.7S-

8S.50- slope= - U
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Figure 4.3 A geometrical interpretation of the dual 
v a r i a b l e .
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- a. ) * (b, - b. )

ri = «i . z- ■ 1

will converge to zero (because (a- - a. ) and (b. - b. )
1, M  ^2 ^1

converge to zero). By using rectangular region (with c e n 

troids C^) of a very small area, and making minor adjust

ments to the solution technique (described in section 5.2.2), 

then P4.8.2 can be readily solved.

Consider the following example problem presented in 

McGinnis and White (1978)

there are five existing facilities

Table 4.1 Example Problem

1 c
^1

Wi V2

1 1 14 1 1
2 2 10 1 2
3 3 15 1 1
4 7 9 1 1
5 7 12 1 2

where the weights w^ are used to compute the minisum cost

function and the weight ^i is used to compute the minimax

cost function.

Let E = (0.0001)2 be the area of each rectangular re-

gion, then the unconstrained minisum solution is the point S= 

(3.,12.). The optimal minimax solution is the line segment 

defined by the endpoints M^= (3.5,12.) and M^ = (4.75,10.75) 

(see Figure 4,4).
The following critical interval is computed 

[7,8]. And as A varies from 7 to 8, the solution of problem
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4 Existing FacîIîty

2

3-

0 2 R bI 9 7f

Figure 4,4 Minimax and minisum solutions for sample 
problem in Table 4.1.



102

P4.8.2 generates the following efficient set

E = {(x^,X2) e R^|3. < x  ̂ <3.5, Xg = 12}.

The point (3.5,12.), which is a minimax solution, is gener
ated for X = 7 .  The point (3.,12.), which is the minisum 

solution, is for A = 8. These results confirm the ones by 

McGinnis and White (197 8), which they obtained by solving 
the following location problem 

n
minimize ( « ( J  w X - C J| ) + (1 - a) ( max {v .|| X - CJ| }) ]
X  ̂r2 1 = 1 1 < 1 < n

(P4.8.3)
But, contrary to their statement, the other minimax solutions
are not efficient points.

Another relevant point is that the point (3.5,12.) is

optimal for P4.8.3 when 0 < a  and the point (3.,12) is
2optimal for - j  < a  <1. (The author was able to verify these 

results by solving the probabilistic version of P4.8.3 with 
areas = (0.0001)^).

McGinnis and White (1978) state that the points on the 

segment connecting these two points are also efficient, but 

they do not give the corresponding weights a for which these 

other efficient points solve P4.8.3. A closer study of prob

lem P4.8.3 showed that all the efficient points are actually
2alternate solutions of P4.8.3 for cxq = j  (optimal function 

value 16.6667). These findings give more weight to the argu

ments given earlier favoring the constrained criterion 
approach over the bicriteria (or weighted sum) approach for
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generating efficient solutions. According to problem P4.8.3, 
all efficient solutions for the given example [of Table 4.1) 

are equivalent since they result from one single weight a = -j. 
But for these points, the minimax function varies from 7. to 

8. (over 14% variation). The variation for the mimisum func

tion (21. to 21.5) is small (results from flatness of the 
minisum function around the optimal point) .

With this example, it was established that the solution 

method developed for the constrained minisum function with 

rectangular regions can be readily used for solving the deter

ministic version (with centroids). It was also shown that 
the constrained criterion approach is superior to the bicri

teria formulation for generating efficient solutions.

4.9 Applications to Location Problems with Metric Constraints 

Schaefer and Hurter (1974) studied the following problem 

n
minimize I w.|| X - C- || (P4.9.1)
X E 1 = 1

subject to

- Ci I 1  i = 1,. . . ,n

They proposed a dual based algorithm to find the solution to 

P4.9.1. They also investigated the following special case 

n
minimize % w^||X - C^|| (P4.9.2)
X e 1"!

subject to

IIX - C^|| < X for all i
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In this problem the point X is constrained to be within the 
same distance X, of the existing facilities . P4.9.2 is

equivalent to
n

minimize F, (X) = I w.|| X - C. || (P4.9.3)

subject to
max { II X - C -11 } < A 

1 < i < n

Note that P4.9.3 is similar to P4.8.2 where all v^'s are 

equal to o n e .
Therefore, the algorithm used in section 4.8 to solve 

P4.8.2 can also solve P4.9.3.

It will now be shown how problem 4.9.1 (with general 

constraint bounds) can be solved by a subtle modification of 
the general algorithm developed in this research effort.

In Chapter III the algorithm was described in its 

general form. In section 4.7, the algorithm was slightly 

modified to solve the centroid formulation. In step 5 in 

the algorithm, the extreme points of the feasible set are 

found. The problem solved is: 
n

minimize ^ w.||X - C-|| (P4.9.4)
X : R 2

subject to

max {v.||X - C- II } c A 
1 < i  < n

where Ae [A^yAg].
The convex polyhedron defined by the constraint can

be found as follows

Vĵ llX - C^ll < A for all i
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then the feasible set S(x) can be defined as 

S(A) = {X e |v.||X - CJI < X}

where

and

e, = min ( ^ + c . + c- )
1 <i <n ^i ^2

G; = max + c. + c. )
 ̂ 1 <i < n  ^i ^1 ^2

‘ 1 : p , „  ' ^  - ' i r

'4 V

When solving the special case P4.9.1, set v% = 1 for 
all i's, replace x by x^ for each constraint i, and compute the 

modified e|, e^, , e^. Therefore, if the calculations of

step 5 are modified as explained above, the algorithm will be 

capable of solving any rectilinear minisum problem with metric 

constraints.

4.10 Regions vs. Centroids

The bicriteria location problem with regions was d e 

fined as follows:
n w, . .

minimize J ^  NX - PdldP. (P4.10.1)
X , r 2

subject to ,
max {w.NX - C- II + r - } < x

1 < i < n  ^ ^  ̂ "

for X e [X2 ,X2 ]. The deterministic centroid formulation is
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n
linimize I  w || X - C- || (P4.10.2)
V _ n 2  i=l 1 1

subject

nu 
X c R'

max {w.|| X - C. Il } < A 
1 < i <n

for A ' E lA^,A^] .

With two sample problems, this section will illustrate 

that the centroid formulation is not a good approximation to 

the probabilistic formulation, by showing the disparity between 
the efficient sets generated by both models.

Consider sample problems A2 and A3 from Appendix A. 

Figures 4.5 and 4.6 show the efficient sets for both models.

For sample problem A3, the efficient set for the deterministic 

model is a singleton because the unconstrained minimax and 

minisum solution intersect at that single point. The respec
tive possible deviations in the minimax function are 14% and 

11.5%. These two examples show that the centroid approach 

does not approximate the probabilistic model well. On the 

other hand, the probabilistic model can very well approximate 

the deterministic model by monotonically shrinking the regions.

4.11 Summary

In this chapter, the bicriteria model formed by the 
weighted sum of the minisum and minimax function was investi

gated. It is shown that all efficient solutions generated by 

either constrained models are also properly efficient (if A e 

(A^,A 2 ) or y e The bicriteria model and the con

strained models are theoretically equivalent, but it is shown
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Figure 4.5 Efficient sets for sample problem k l .
(2 ^, 2 2 ): area demand formulation.
(2 ^, 2 2 ): point demand formulation.
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Figure 4-6 Efficient sets for sample problem A3.
(2 ^, 2 2 ): area demand formulation

2 : point demand formulation
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that it is more efficient and simpler to generate nondominated 

solutions using the constrained criterion approach. When 

solving the bicriteria model, a critical range (yj,Y 2 ) ^ (0,1) 
is found for which all properly efficient solutions are g e n e 

rated, and usually (Yj^,Y2 ) i" (0,1). This result does not c on
tradict developments by Geoffrion (1968) but only gives more 

insight into the bicriteria model, and its relationship with 

the two constrained criterion models.

The constrained model with regions can give an excellent 

approximation of the deterministic version (with centroids). 

The approximation was verified by solving, among others, an 

example by McGinnis and White (1978). For a large population, 

the deterministic model would give a very good solution if a 
large number of points is taken, but the increased accuracy 

will be achieved at a greater computational cost.

A deterministic minisum location model with metric c o n 

straints proposed by Schaefer and Hurter (1974) can also be 

efficiently and quickly solved after a few minor changes in 

the algorithm, as explained above. Schaefer and Hurter's 
dual algorithm can handle any norm, but it requires solving a 

series of unconstrained Weber problems for which only approx

imate algorithms are used, as compared to the method devel

oped in Chapter IV which is simple, straightforward and fast.



CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Several single facility location problems with rectan

gular regions have been investigated in this research effort. 

The central model involves both the minisum and the minimax 

cost functions, where one is the optimization criterion, and 

the other is bounded and acts as a constraint on the location 
of the new facility.

In Chapter 11, two minimax formulations with probabilis

tically distributed demand points are investigated. One model 

computes average weighted distances in each rectangular region, 

and the other one computes maximum weighted distances to any 

point in each region. Both probabilistic models could be made 

to solve the deterministic approach [by considering very small 

rectangular regions centered at each centroid), but the deter

ministic model did not approximate the probabilistic models 

well. A relationship between all three minimax cost functions 

is given, in which the deterministic cost function is a lower 

bound to the probabilistic cost function with expected d i s 

tances, which in turn is a lower bound to the other probabi

listic minimax cost function.

When weights are also assumed probabilistic in nature,

110
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several minimax formulations are analyzed. An expected value 
criterion model was proven to be a convex problem, but the 

resulting formulations are too complex to optimize. Lower 

and upper bound approximation functions are developed as an 

alternate way to approach the problem. A chance constraints 

model is also studied, its deterministic equivalent is sim

ilar to a deterministic minimax problem with metric con

straints. All models were shown to be convex problems (except 

a fractile formulation), and optimization techniques could be 

easily developed for most of them. In all the other chapters, 

the weights are assumed known deterministically.

The central formulation with both the minisum and m i n i 

max functions was analyzed, for the two types of probabilistic 

minimax functions. When the minimax function with expected 
distances is used, the resulting constrained problem is found 

to be equivalent to a minisum location problem with regions, 

with new weights which are functions of the optimal Lagrange 

multipliers of the dual problem. The other formulation, with 
maximum distances, is chosen for a thorough analysis because 

the resulting minimax function better reflects the very con

servative approach one has to adopt when considering emergency 

type location problems (account for the worst possible o ut
come). In Chapter III, it is first shown that the minimax and 

minisum criterion investigated independently are antagonistic, 

and it is therefore realistic and superior as a modeling 
approach to combine both criteria into one single model.
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Minimizing the minimax function subject to a bound on the 

minisum function is shown to be equivalent to a model where 
the roles of the two functions are reversed. Using m u l t i 

criteria optimization and duality theories, it is also shown 

that all nondominated solutions can be generated when solving 

for a specific interval of values for the bound on the c on
straint. The constrained minisum model is solved, because 

the feasible set has a simple, geometrical shape (diamond), 

and can be easily represented analytically. A specialized 

solution technique was developed, which uses geometrical and 
analytical properties of both the minisum and minimax cost 

functions. The solution technique, in addition to solving the 

constrained criterion model for the appropriate range of bound 

also solves both unconstrained single criteria. 

Graphical representations of the efficient set in both the 

decision and objective spaces are given. Also, it is shown 

how the isocurves of the minisum and minimax functions can be 

used to find the unconstrained optimal, and simultaneously to 

rank points, and to even generate the efficient points g r a p h 

ically .

In Chapter IV, with the aid of duality theory, the con

strained criterion approach is proven to be equivalent to a 

bicriteria model where a weighted sum of the minimax and 
minisum functions is minimized. But, it is both practically 

and computationally more advantageous to solve the constrained 
minisum model.
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The algorithm developed to solve the constrained minisum 

model can easily be altered to solve the deterministic for
mulation of the problem, as well as to handle the determin

istic minisum problem with metric constraints, thus demon

strating its versatility and power in handling several types 
of location problems. Example problems are solved to illus

trate all situations encountered.

5.2 Conclusions

In Chapter II, the three unconstrained minimax models 
are analyzed, and the most relevant conclusion is that the 

deterministic model can be used at best as a heuristic for 

solving either probabilistic formulations. The deterministic 

model is closer to the model with expected value distances. 

Solution methods developed for the probabilistic models are 

not more complicated than the techniques for the deterministic 

model, and they can both solve the deterministic problem.

When using probabilistic weights , the resulting formulations 

are often more complex, but chance constraints are equivalent 

to metric constraints and solution techniques similar to those 

used for deterministic problems can be implemented.

In Chapters III and IV, the bicriteria location problem 

with regions is investigated. The minimax and minisum c ri
teria are natural choices in such p r o b l e m s , since they measure 

the interest of a few against the interest of the masses,which 

often leads to unfair contradictions.

A unified approach is developed where several location
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problems are linked into one model. When this central model 

is solved, all the other problems are also solved; it can 

also be made to handle the deterministic bicriteria problem. 

The main reason for such versatility is that all bicriteria

location problems, or location problems with metric con

straints, can be transformed into Weber problems among r e c 

tangular regions and discrete points. Another important c on
clusion is the remarkable ease with which many location 

problems can be solved using interactive graphics.

5.3 Recommendations for Further Research

Several direct extensions of this research effort are 
possible, and are listed below:

1) Development of solution procedures for the Euclidean

metric cases.

2) Generalize to the multifacility problems with 

rectilinear or Euclidean metrics.

3) Computational experience for the models with p r o b a 

bilistic weights, especially for the upper and lower 

bound functions derived for the expected value cri

terion, and for the chance constraints models.

4) Develop systematic graphical solution procedures for 

both the single and multifacility cases.

5) Investigate the effects of different probability 
distributions for the existing population.

6) Use differently shaped regions (discs, hexagons, 

e t c .).
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7) Study the bicriteria location problem with minisum 

and maximin criteria.

8) Development of a solution technique for the location- 

allocation minimax problem with rectangular regions.
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APPENDIX A 

Problem A1 Steffen (1978)

Facility Rectangular Region Weight
1 15.0,7.5] X  [7.5,10.] 1
2 [10.,14] X [5. ,7.5] 2

3 [16. ,18.5] X  [3.5,7.5] 5
4 [12.5,15.] X  [0.5,3.5] 4
5 [7.5,11.] X [1.0,3.5] 5

Problem A2 Aly (1975)

Facility Rectangular Region Weight
1 [1. ,3.] X [3. ,7.] 8
2 [3.,5.] X  [4. , 6 . ] 4
3 [ 6 .  , 8 . ]  X  [4. ,7.] 6

4 [3. ,5.] X  [2. ,4.] 4
5 [5. , 8 . ]  X  [1. ,4.] 5

Problem A3

Facility Rectangular Region Weight
1 [15. ,35.] X  [15. ,25.] 6

2 [30. ,45.] X  [30. ,70.] 4
3 [45. ,65.] X  [45. ,65.] 2

4 [ 75. ,85.] X  [15. ,60.] 5
5 [85. ,90.] X  [30 . ,70.] 8
6 [40. ,60.] X  [0. ,20.] 3

124



125

Problem A4

Facility Rectangular Region Weight
1 [15. ,35.] X  [15.,25.] 1 2

2 [30. ,45 .] X  [30.,70.] 5

3 [45. ,65 .] X  [45 .,65 .] 4
4 [80. ,95.] X  [80.,95.] 15

5 [35. ,55 .] X [0. ,20.] 13



APPIiNDIX B 

NONLINEAR BICRITHRIA OPTIMIZATION

n nLet A = { A e R |a  ̂ > 0, i = and I A^ = 1}
i=l

+ n ^and A = {A c R |A^ > 0 ,  i = l,,..,n and I A- = 1}
i=l

Geoffrion (1968) studied the following scalar minimization 
problem

n
P : minimize T a  ̂ f •(x)

 ̂ X E S i = l 1 1

for some parameter a = (A ,. . . , Â )̂ e A"^, and he proved the 
following theorem:
Theorem B.l

Let S be a convex set, and let the f\'s be convex on S, 

then x*̂  £ S is properly efficient if and only if is optimal 

in P^ for some A e A * .

This important result gives a parametric procedure for 

generating the set of all properly efficient solutions.

If one is interested in generating all efficient points, the 

following auxiliary problem, formulated by Wendell and Lee 

(1977), is to be solved:
n

ij;(A): minimize  ̂ f. (x)
X E S i = l 1

subject to 
f(x) < A
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for A = (X . ,A and such that 3 x e S  and X = f (x) =
(fj(x) , ,fj^(x)) .

It is assumed now that n = 2, and the following problem 
is the focus point of this appendix:

PB.l minimize(f,(x) ,f,(x))
X E  S  ̂ ^

wiiere f^(x) and f^Cx) are assumed convex on S. Solving PB.l 

is equivalent to generating the set E (or .
2Recall tne partial ordering of the plane R : for real

numbers a ^ , a 2 , b^, then

(a^,a 2 ) < ( b ^ , b 2 ) iff a^ < b^ and a 2 < b 2 also,

(a^,a 2 ) < (b^,b^) iff < b 2 and &2 < i >2 and

If (a^,a 2 ) < ( b ^ , b 2 ) then (a^,a 2 ) dominates (b^,b 2 )
2Let f = (f^,f 2 ) define a mapping from S into R then 

x*̂  e S is an efficient point if there exists no other point 

X E S such that f (x) dominates f(x^), i . e . , # x ,  X e S  sucii 

that f(x) < f(x ^ J .
The most recent developments in multicriteria 

optimization have focused mainly on two steps: the first

step involves finding the set of efficient solutions E.

If E is not a singleton, then the second step consists 
of defining the preference structure . of the decision 
maker (it is a process involving value judgments) , and 

assuming that this preference structure is characterized by
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a multiattribute utility function u (f (x) ,f 2 (x) ) , then an 

efficient solution is chosen such that it maximizes u(.). 
This is equivalent to solving:

maximize u ( f , (x)»f 9 Cx)
X e E ^ ^

Some other procedures (for example, Sadagopan and Ravindran

(1982)) solve both step one and two iteratively and inter

actively. These methods use progressively revealed prefer

ences from the decision maker. Hershley et al. (1982) 
discussed possible sources of bias when assessing procedures 

for utility functions. They raised several methological and 

empirical questions regarding the uniqueness of the utility 

function for a given person. For this research effort, it 
was decided that the bicriteria location problem is solved 

when the efficient set is sufficiently generated. A graphi

cal representation of this set among the rectangular region 

(decision space), and in the objective space, would offer 

the decision maker more flexibility when making a final 

choice. Many different preference structures could be con

structed by the decision maker, and they could be different 

for other persons.

beverauTTirerlrüQS îrax 

efficient solutions. Two methods are adopted in this r e 

search: the parametric approach of Geoffrion, which involves

solving , and a constrained criteria approach which solves 

one of the two equivalent subproblems:
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P,(X): minimize f -, (x)
^ X e S  ^

subject to 

f2(x) < A 

and

P_Cvi): minimize f,(x]
^ X e S ^

subject to

f^(x) < y .

For the constrained criterion approach, efficient solutions 

are generated for definite ranges [A^,A 2 ] and [y-j^,U2 ]» as no 
other values for A or y need to be considered. These inter

vals are determined as follows: 

let = inf{f 2 (xj|x ES} 

and define A  = { x e S l f ^ C x )  = A^} 

if A = 0 then set y ̂  = +«
if A 7̂ 0 then y ̂  = inf {f (x) | x e A} .

Similarly, let y ^ = inf{f^(x)|x eS}

and define B = {x ES|f^(x) = y^}.

if B = 0 then set A 2 = +“

if B ^ 0 then A 2 = inf{f 2 (x)|x e B } .

It is easy to verify that P^(Aj or P^Cy) are feasible or 

nontrivial only for those ranges. For example, consider 

P^(A), if A < A 2 , then the problem is not feasible since 

there exist no points in S that will give a value of f^C.) 

smaller than A ^ . If A > A 2 then an unconstrained optimal



130

solution X*  of the criterion in S will satisfy the co n 

straint f 2 (x*) < A .

The following theorem proved by Bacopoulos and Singer 

(1977) and also by Sadagapan and Ravindran (1982) , charac

terizes an efficient solution for problem PB.l.

Theorem B.2

A solution X E S  is efficient for problem PB.l iff x 

solves P^(A) (resp. P 2 (w) for some T  c [ A ^ ^ A 2 ] (resp. j7 e

Let x^(A) be a solution of P^(A) and x^Ow) be a solu

tion of P 2 (w). If A = +“ (resp. y = +“ ) then P^(™) (resp.

P 2 (” )) is the unconstrained minimization of fĵ  (resp. f 2 ) 

over the set S.

let X *  = x * ( o o )  and efficient

and X 2 = x^^«) and efficient

(i.e., when problems P^(«), i = 1,2, have alternate optimal 

solutions, then take x* such that fj^(x*) is minimum (k f  i).)

For[x^,A 2 ) as defined earlier, fj^(x^(A^)) is the m a x i 
mum achievable value of f^ without sacrificing f 2 , and 

f^(x*(A 2 )) is the lowest value achieved by f^(x(A)) for 

A E [A2>A2]"

then f^(x*(A)) e [^2 ,^2 ] A e [A^,A 2 ]

and similarly: f 2 (x*(y)) e IAj,A 2 ] for y e [Aj,A 2 ]-
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Definition: Slater's Constraint Qualification

(Mangasarian (1968))
2Let S be a convex nonempty set in R , the convex func

tion g on S which defined the convex feasible region

= {x|x e S, g(x) <X) is said to satisfy Slater's constraint
qualification on S if there exists an x e S such that g (x) - A 

< 0 .
Also, the Lagrangian dual of problem P^(X) (with r e s 

pect to the constraint f 2 (x) - A < 0) is

D-, (A) ; maximize {inf (f•, (x) + u(f?(x) - A))}
 ̂ u > 0 y E S ^

u is the dual variable.

For a pair (x,u) such that x is a feasible point in

P^(A), and u is feasible in D^(A)(i.e,, u >0) then by the

"Weak Duality" theorem

(x) > 0(u)
where 0 (u) = inf (f\(y) + u(f\(y) - A)) 

y e S ^

Theorem B.5
Let x^ be an efficient solution of problem PB.l, then 

there exist scalars A^ e [A^A 2 ] a^xd w^ e [^^,^ 2 ] such that x*̂  

solves P^(A^) and P 2 (w^), and A^ = f 2 (x^) and = f^(x^).

Proof : From theorem B.2, x^ efficient implies that x^ solves

P(A^) for some A^^[A^,A 2 ], and x^ solves P 2 (w^) for some 
E 5 three cases will be considered.

Case 1 : x^ = x * , this solution can be obtained by either

solving P^ (A ĵ ) o r P 2 (y2 )- Also, A^ = A^ = f 2 ( x p  = f 2 (x®) and
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Case 2 : = x*, can be obtained by solving Pj^(x2 ) or

and = & 2  = = f^(x*) =

Case 5 : x® e {x^^x*}, since x® is efficient, then gx^,

X® i. (X^,X 2 ) such that x® solves P^(x^).
Also, x^ i  x^ implies f^fx) - X^ for x e S  satisfies 

Slater's constraint qualification (take x = x * ,  then f^fx*)

- X 2 < X ̂  ) •
The necessary conditions for satisfying the "Strong 

Duality" theorem are verified and therefore, there exists 

u^ > 0 such that (x^,u^) solve D^(X^) and f^(x^) = f^(x^) + 

u ^ ( f 2 (x®) - X^) with the complementary slackness conditions

holding
u ° ( f , ( x O )  -  X ° )  = 0

x^ is the minimizer of f^ (x) + u ^ ( f 2 (x) - X^) over S. If 

u® = 0, then x*̂  would be the minimizer of f^(x) over S and 

x^ =  X *  would be a solution. But x^ f  x*, and therefore u > 0  

and the complementary slackness condition implies that X^ = 

f^Cx^). This proves that at the optimum, the constraints of 

problem P^(x) and of problem P 2 (p) ate tight if X e [X^,X 2 l 

and p E [p^ ,P2 ] •
In summary, for any efficient solution x^ of PB.l 

there exist a pair (X^,p®) = (f^Cx^), f^(x^)) such that x^ 

solves P^(X^) and P^Cp^).



APPENDIX C

CHARACTERIZATION OF PROPERLY EFFICIENT SOLUTION

The following definitions and propositions are adapted 

from the analysis of multicriteria maximization of concave 

functions of Benson and Morris (1977), to bicriteria m i n i m i 

zation of convex functions.

let VMP: minimize (f^(X),f 2 (X))
X e R^

where f^(X) and f^CX) are convex functions.

Definition C.l

X q e R^ is said to be entry efficient solution of

VMP where k e { l , 2 } ,  if f^(X) for some X e R^ implies

that f j (X) > f j (Xq ) for j e {1,2} and j k .

Definition C.2
X q is said to be properly k^^ entry efficient of VMP,

where k e  {1,2}, when it is k^^ entry efficient for VMP and
2there exists a scalar M^ > 0 such that for each X e R satis

fying f%(X} then f^ (X) > f^ (Xq ) and

fk(Xg) - fk(X) . . ^  ^

f j (X) - f j (Xq) - ^k  ̂̂  {1,2} and j f

Proposition C.l
A point X q is an efficient solution of VMP if and only 

if it is a k^^ entry sufficient solution of VMP for each

133
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k = {1,2}.

Proposition C.2

A point X q is a properly efficient solution of VMP if 
and only if it is a properly entry efficient solution of
VMP for each k c {1,2}.

Benson and Morris derived necessary and sufficient 

conditions for an efficient solution to be properly efficient 
by studying the following problems:

P^(bj): minimize f^^X)
X epZ

subject to

fjC%) - bj <0 for j ̂  k and j ,k e {1,2}

The following definitions are by Geoffrion (1961)
Definition C.5

The perturbation function v(.) associated with P, (b.)^ J
is defined in R as

v(y) = inf {f.(X)|f.(X) - b. <y; j ^ k e  {1,2}} .? ^ J JX E RT
Definition C.4

Problem P^^bj) is said to be stable if v(0) is finite 
and there exists a scalar M < 0 such that

^ < M  for all y ^ 0
|y|

If the stability fails to hold, then the ratio of improvement 
in the optimal value of Pj^(bj) can be made as large as desired, 

Geoffrion (1968) states that stability is implied by all known
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constraint qualifications, thus if Slater's constraint qual
ification holds for Pi, (b. ) then it is also stable.^ J

The following theorem is adopted from Benson and Morris 

(1977) to the bicriteria minimization problem.
Theorem C.l

Assume f^(X) and f^CX) are convex functions on the 

nonempty convex set S. Suppose X q is an efficient solution 
for VMP, then X q is a properly efficient solution for VMP if 

and only if Pj^(bj) is stable for k e {1,2} and b9 = f^ (X^) 

and j ^ k .



APPENDIX D 

PROGRAMS DESCRIPTION AND SAMPLE OUTPUT

D .1 Program SUMCMAX

This program generates the efficient set for the minimax 

and minisum criteria as described by the algorithm in section 

3.3.2. Two main tasks are accomplished; and X^ are first 
computed. This is done by subroutines MINMAX, MINSUM and 

LMBDA. MINMAX solves the unconstrained minimax function 

(thus, finds X^], MINSUM solves the minisum problem and LMBDA 

computes X 2 as described in the algorithm. The second task 

is performed by the subroutine DIAMND, efficient solutions are 

generated for values of XeCx^jX^).
The input data consists of the number of regions, the 

coordinate dimensions of these rectangular regions and the 
weights associated with them. SUMCMAX allows for different 

weights when computing the minisum and minimax functions.
For the sample problem given (problem A2) , the associ

ated printout is given: SUMCMAX prints the problem's data,

the solutions for the unconstrained minimax and minisum 

criteria, followed by the critical values X^ and X 2 . For 

X E (X^,X 2 ), efficient solutions are successively generated 

with their respective functions values.
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D . 2 Program DETEllM

Program SUMCMAX is modified in order to solve the 

limiting case when all existing facilities are points. This 

is achieved by replacing subroutines MSRTFL, which executes 

the gradient reduction step for solving the minisum problem 

(described in section 3.3.1). MSRTFL in SUMCMAX is replaced 

by a modified version which finds all alternate solutions 

for the centroid formulation (when applicable). Also, the 

existing points are approximated by very small rectangular 
regions about them.

D.3 Program EXPDUAL

EXPDUAL is used to find the weight for which the corres
ponding weighted sum function (of the two criteria) yields 

the same efficient solution as the one generated by the c on

strained criterion method (for a given RHS value Ae(A^,A 2 ))- 
A brief description of the solution technique is given 

in section 4.4. The input data consists of the number of 

regions, the values and A 2 , the coordinates of each region, 

and its weight.

As illustrated in the sample output, the input data is 

first printed, then for each value A e ( A ^ ,A 2 ) (bound on the 

constraint for the constrained criterion formulation) the 

corresponding Lagrangian dual problem is solved, and all 

informations about both problems are given. For Ae(A^,A 2 ) 
the resulting weight for the weighted sum criterion is 

Yq = , where Uq is the optimal dual solution.
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D . 4 Program NORMCT
This program is also generated from program SUMCMAX. 

NORMCT solves the single facility rectilinear location Weber 
problem with point demands and constraints on the distances 

from the new facility to each existing ones. The subroutine 

MINSUM (similar to the version in program DETERM) finds the 
unconstrained minisum solution. With a few moderate changes, 

DIAMND performs as before for the feasible set defined by 
the constraints. The input data includes the coordination of 

the small rectangular regions approximating the point demands 

(first-fourth columns), the weights used to compute the m i n i 

sum function are in column five. The numbers in column six 

are set equal to one for all facilities since the bounds are 

on the distances (if weighted distances are to be bounded, 

the appropriate weights can be entered in column s i x ) .

Column seven included the bounds on the distances. The 

output reproduces the input data, then gives the unconstrained 

and constrained optimal solutions and functions values.
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SAMPLE OUTPUT FOR PROGRAM SUMCMAX

1 . 0 0 0 0 0 3 . 0 0 0 3 0 3 . 0 0 0 0 0 7 . 0 0 0 0 0 8 . 0 0 0 0 0 8 . 0 0 0 0 0

3 . 0 0 0 0 0 6 . 0 0 0 0 0 4 . 0 0 0 0 0 6 . 0 0 0 0 0 4 . 0 0 0 0 0 4 . 0 0 0 0 0

6 . 0 0 0 0 0 8 . 0 0 0 0 0 4 . 0 0 0 0 0 7 . 0 0 0 0 0 6 . 0 0 0 0 0 6 . 0 0 0 0 0

3 . 0 0 0 0 0 5 . 0 0 0 0 0 2 . 0 0 0 0 0 4 . 0 0 0 0 0 4 . 0 0 0 0 0 4 . 0 0 0 0 0

5 . 0 0 0 0 0 8 . 0 0 0 3 0 1 - 0 0 0 0 0 4 . 0 0 0 0 0 5 . 0 0 0 0 0 5 . 0 0 0 0 0

MINIMAX PROBLEM

ALTERNATE OPTI MAL SOLUTI ONS
MINIMUM MINIMAX FUNCTION :  F = 4 0 . 0 0

ANY P O I N T  ON THE L I N E  SEGMENT J O I N I N G  THE POLL.  TWO P O I N T S  I S  OPTIMAL 

X1= 3 . 6 7  ,  1 1 =  4 . 6 7  1 2 =  4 . 0 0  ,  Y2=  5 . 0 0

MINISUM PROBLEM

S I N G L E  SOLUTI ON FOR THE X- COORD.  PROBLEM : X*

S I N G L E  SOLUTI ON FOR THE Y- COORD.  PROBLEM : Y*

4 . 6 5

4 . 4 2

LAMBDA1 = 4 0 . 0 0 LAMBDA2 = 4 9 . 8 7
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E F F I C I E N T  S O L I T I O N  :  3 . 6 6 1 5  4 . 6 3 0 7
O B J E C T I V E  FUNCTION VALUE:  8 6 . 9 8 1 9
BOUND ON THE CONSTRAI NT:  4 0 . 2 4 6 7

E F F I C I E N T  SOLUTION : 3 . 6 5 6 4  4 . 5 9 4 7
O B J E C T I V E  FUNCTION VALUE:  8 6 . 8 2 5 1
BOUND ON THE CONSTRAI NT:  4 0 . 4 9 3 3

E F F I C I E N T  SOLUTION :  3 . 6 5 1 2  4 . 5 5 8 8
O B J E C T I V E  FUNCTI ON VALUE:  8 6 . 6 7 2 3
BOUND ON THE CONSTRAI NT:  4 0 . 7 4 0 0

E F F I C I E N T  SOLUTION :  3 . 6 4 6 1  4 . 5 2 2 8
O B J E C T I V E  FUNCTION VALUE:  8 6 . 5 2 3 5
BOUND ON THE CONSTRAI NT:  4 0 . 9 8 6 7

E F F I C I E N T  SOLUTI ON : 3 . 6 4 1 0  4 . 4 8 6 8
O B J E C T I V E  FUNCTION VALUE:  8 6 . 3 7 8 9
BOUND ON THE CONSTRAI NT:  4 1 . 2 3 3 3

E F F I C I E N T  SOLUTION : 3 . 6 3 5 8  4 . 4 5 0 8
O B J E C T I V E  FUNCTION VALUE:  8 6 . 2 3 8 3
BOUND ON THE CONSTRAI NT:  4 1 . 4 8 0 0  .

E F F I C I E N T  SOLUTION :  3 . 6 3 0 7  4 . 4 1 4 9
O B J E C T I V E  FUNCTION VALUE:  8 6 . 1 0 1 8
BOUND ON THE CONSTRAI NT:  4 1 , 7 2 6 7
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SAMPLE OUTPUT t-'OR PROGRAM EXPDUAL

NUMBER OF R E GI ONS  = 5

DLB = 4 0 . 0 0  DOB = 4 9 . 8 7

1 . 0 0  3 . 0 0  3 . 0 0  7 . 0 0  8 . 0 0

3 . 0 0  6 . 0 0  4 . 0 0  6 . 0 0  . 4 . 0 0

6 . 3 0  8 . 0 0  4 - 0 0  7 . 0 0  6 . 0 0

3 . 0 0  5 . 0 0  2 . 0 0  4 . 0 0  4 . 0 0

5 . 0 0  8 . 0 0  1 . 0 0  4 . 0 0  5 . 0 0
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PHS VALUE = 4 3 . 9 % 7
OPTI MAL DUAL SOLUTI ON = 0 . 3 9 6
OPTI MAL P BI MAL SOLUTI ON = ( 4 . 1 7 , 4 . 6 8 )  
OPTI MAL DUAL FUNCTI ON = 8 5 . 0 5 7
MINISUM FUNCTI ON = 8 5 . 0 5 7
MINIMAX FUNCTI ON =  4 3 . 9 4 7

BHS VALUE = 4 4 . 1 9 3
OPTI MAL DUAL S OLUTI ON = 0 . 3 8 0
OPTI MAL PRI MAL SOLUTI ON = ( 4 . 1 9 , 4 . 6 7 )  
OPTI MAL DUAL FUNCTI ON = 8 4 . 9 6 1
MINISUM FUNCTI ON =  8 4 . 9 6  1
MINIMAX FUNCTI ON = 4 4 .  1 9 3

RHS VALUE = 4 4 . 4 4 0
OPTI MAL DUAL SOLUTI ON = 0 . 3 6 3
OPTI MAL P R I MAL  SOLUTI ON = ( 4 . 2 1 , 4 . 6 6 )  
OPTI MAL DUAL FUNCTI ON = 8 4 . 8 6 9
MI NI SUM FUNCTI ON =  8 4 . 8 6 9
MINIMAX FUNCTI ON =  4 4 . 4 4 0

RHS VALUE = 4 4 . 6 8 7
OPTI MAL DUAL SOLUTI ON = 0 . 3 4 7
OPTI MAL PRI MAL SOLUTI ON =  ( 4 . 2 3 , 4 . 6 5 )  
OP TI MAL DUAL FUNCTI ON = 8 4 . 7 8 2
MINISUM FUNCTI ON = 8 4 - 7 8 2
MINIMAX F UNCTI ON =  4 4 - 6 8 7

RHS VALUE = 4 4 . 9 3 3
OPTI MAL DUAL SOLUTI ON = 0 . 3  30
OPTI MAL PRI MAL SOLUTI ON = ( 4 .  2 5 , 4 . 6 4 )  
OPTI MAL DUAL FUNCTION = 8 4 . 6 9 8
MINISUM FUNCTI ON =  8 4 . 6 9 8
MINIMAX FUNCTI ON =  4 4 - 9 3 3
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SAPFLE OUTPUT FOR PROGRAM NORMCT

0 . 9 9 9 9 5 1 . 0 0 0 0 5 - 0 . 0 0 0 0 5 0 . 0 0 0 0 5 1 . 0 0 0 0 0 1 . 0 0 0 0 0 2 . 7 5 0 0 0
0 . 9 9 9 9 5 1 . 0 0 0 0 5 2 . 9 9 9 9 5 3 . 0 0 0 0 5 1 . 0 0 0 0 0 1 . 0 0 0 0 0 4 . 5 0 0 0 0
1 . 9 9 D 9 5 2 . 0 0 0 0 5 - 0 . 0 0 0 0 5 0 . 0 0 0 0 5 1 . 0 0 3 0 0 1 . 0 0 0 0 0 5 . 0 0 0 0 0
1 . 9 9 9 9 5 2 . 0 0 0 0 5 - 1 . 0 0 0 0 5 - 0 . 9 9 9 9 5 1 . 0 0 0 0 0 1 . 0 0 0 0 0 6 . 0 0 0 0 0
0 . 9 9 9 9 5 1 . 0 0 0 0 5 - 2 . 0 0 0 0 5 - 1 . 9 9 9 9 5 3 . 0 0 0 0 0 1 . 0 0 0 0 0 6 . 0 0 0 0 0

- 1 . 0 0 0 0 5 - 0 . 9 9 9 9 5 - 0 .  0 0 0 0 5 0 . 0 0 0 0 5 5 . 0 0 0  00 1 . 0 0 0 0 0 4 . 0 0 0 0 0
- 1 . 0 0 0 0 5 - 0 . 9 9 9 9 5 0 . 9 9 9 9 5 1 . 0 0 0 0 5 6 . 0 0 0 0 0 1 . 0 0 0 0 0 3 . 0 0 0 0 0
- 1 . 0 0 0 0 5 - 0 . 9 9 9 9 5 2 . 9 9 9 9 5 3 . 0 0 0 0 5 2 . 0 0 0 0 0 1 . 0 0 0 0 0 5 . 0 0 0 0 0
- 2 . 0 0 0 0 5 - 1 . 9 9 9 9 5 - 2 . 0 0 0 0 5 - 1 . 9 9 9 9 5 4 . 0 0 0 0 0 1 . 0 0 0 0 0 7 . 0 0 0 0 0
- 3 . 0 0 0 0 5 - 2 . 9 9 9 9 5 - 1 . 0 0 0 0 5 - 0 . 9 9 9 9 5 1 . 0 0 0 0 0 1 . 0 0 0 0 0 7 . 0 0 0 0 0
- 3 . 0 0 0 0 5 - 2 . 9 9 9 9 5 0 . 9 9 9 9 5 1 . 0 0 0 0 5 2 . 0 0 0 0 0 1 . 0 0 0 0 0 3 . 7 5 0 0 0

UNCONSTRAINED SOLUTI ON:

S I N G L E  SOLUTI ON FOR THE X- COORD.  PROBLEM : X *  = - 1 . 0 0

S I N G L E  SOLUTI ON FOR THE Y- COORD.  PROBLEM : Y * = 0.00

UNCONSTRAINED FUNCTI ON VALUE:  5 9 . 0 0 0

CONSTRAI NED SOLUTI ON : - 1 . 0 0 0 0
CONSTRAI NED FUNCTI ON VALUE:  6 1 . 5 0 0

0 . 5 0 0 0


