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Chapter 1

Introduction

This chapter is devoted to presenting the thesis format, describing the model used in sim-
ulation and experimentation, and describing the motivation for this research project. This
paper presents a few techniques that are commonly used on flexible structures today. It also

introduces a new technique that is based on the work by N.C Singer.

1.1 Motivation for Research

Exciting the natural resonances of a flexible system can cause excessive wear, noise, failure,
or poor performance. Therefore, many rescarchers have devoted their resources Lo (inding
methods to reduce or completely eliminate unwanted vibration. Adding sliffness to flexible
structures 1S one obvious solution Lo excess vibration, but many structures major design

criteria is weight reduction. The Space Shuttle remote manipulator is a good example of a

e

RANEDON TNPUT INPUT SHAFER
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Figure 1.1: Input Shaping



structure that must be light weight and perform precise movement. It is actually the model
used in Singer’s Ph.D. thesis [12], who was the first person to derive robustness constraints
for input shaping. Ideally researchers would like 10 be able to completely eliminate residual

vibration with control strategy instead of adding stiffness.

1.2 Thesis Structure Description

Chapter 2 briefly reviews some techniques used to reduce residual vibration and detailed
descriptions of a few input shaping techniques. Chapter 3 derives the mathematical model
of the mechanical systern used in simulations and experiments. [t also provides a brief
description of the hardware and software used in the experiments. Chapter 4 describes
detailed derivation of input shapers developed by Singer and an extension of his work.
Chapter 5 details the derivation of input shapers developed using Tuttle’s technique in the
discrete Z-Domain. Chapter 6 describes the method to derive more robust input shapers and
"Time-Optimal™ input shapers. techniques developed by Singhose. Chapters 4, 5, and 6 all
provide simulation and experimental results obtained using the model outlined in chapter 3.
Chapter 7 describes how these techniques were implemented on the hardware and presents
any problems with applying the technigues. Comparisons on the performance of the inpul
shapers are made in chapter 8. Final comments. conclusions, contributions. and topics lor
future work are described in chapter 9. The MATLAB files used in simulation to test lhe
inpw shapers and create trajectory files for experiments are shown in appendix B, C. D,

and L=.



Chapter 2

Literature Review

Input Shaping can be defined as convolving an arbitrary command signal with an input
shaper, and using the result as the new system input. The shaper is a sequence of positive
or positive and negative impulses with finite time. The shaped command signal should ex-
ecute commands without exciting a system'’s resonant frequency or frequencies. Figure 2.1
tllustrates the input shaping technique for an open loop system, but input shaping is not
timited to open loop systems. It can also be implemented on closed loop systems.

The original pioneer of input shaping was Otto Smith [34] in the Jate 1950’s. Smilb
devetoped a techmque called Posicast control that split a unit step input into two steps that
sumn 10 one. The second step in Posicast control cancels the vibration that the first slep
excites. Therefore, a system could be moved without vibration. The drawback 10 Posicast
control is that it is not robust to modeling errors and it only works if the system parameters

are exact. Singer [12] developed constraint equations to improve the robustness of inpul

Figure 2.1: Input Shaping Structure



shaping and accommodate systems with multiple modes. The level of necessary robustness
is determined by the user. The time Jag that the input shaper introduces increases with ro-
bustness. Smith’s and Singer’s input shaping technigue arc both derived and implemented
in the continuous time, but several researchers have devoted their efforts to frequency do-
main input shaping approaches (1, 19, 35].

Singh and Vadali [19] used time delays in the Laplace domain to cancel the system
poles and found that time delays are similar to Singer's input shaping technique. Bhat and
Miu [1] found a set of constraint equations hased on point-to-point control in the continuous
time and simplified them by finding the Laplace transform of the constraints. Tuttle and
Seerning [35] used a discrete domain zero placement technique to cancel the system poles
for multiple mode systerns. The primary drawback of some of these lechniques is that they
introduce a time lag into the rise time of a response equal to the overall length of input
shaper. Singhose et. al. [30, 32, 33] has developed several “time-optimal™ input shapers
that minimize the duration of input shapers but require negative impulses. Singhose {21, 22,
26. 28] also used Singer’s vector diagram representation to widen the region ol insensilivity
of an input shaper. Though there are many input shaping and command shaping techniques
avallable today, this research project focuses on lechniques developed by Singer, Singhose,

and Tutte.

2.1 Singer’s Preshaping Command Technique

Neil Singer's preshaping command technique is based on generating a vibration free 1n-
put [12. 15]. Singer accomplished this first by defining an expression for a system responsc
to an impulse input. The basis for choosing an expression was that any linear flexible sys-
tem could be specified as a set of cascaded second-order potes with a decaying sinusoidal

response to an impulse input, described as
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A 1s the impulse amphitude. o is the natural frequency ol a mode. ¢ 1s the dumping

ratto of a mode, £, is the time of the 1mpulse, and £ 1s time. Singer assumes that numeratoy

dynamics are not present in the plant. The justification fos this assumption can be found

in[12].

Now assume that only one mode 1s present in a system. The design objective is ta give a

system a scrics of impulses in a manner such that the system does not vibrate after the time

of the last impulse is applied. A two impulse sequence 1s the shortest input shaper and will

be used in the denvation of the constraint equations. Figurc 2.2 is gencraled by equation 2.1

for a single mode system over an arbitrary time after the time of cach individual impulsc.
Figure 2.2 illustrates a system response to a single impulse and the system response (0 both

impulses combined. It shows that after the second impulse the system response docs not

vibrate.



2.1.1 Derivation of Time Domain Input Shaper

In order to find an expression for the amplitude of vibration, A,,,,, a trigonometric identity

was tmpiemented to add the response of the two decaying sinusoidal responses:

Bysin(at + o) + Basin(at + @) = Aapp sit(ed + ) (2.2)

where,

Auny = \/(Bl cos @y + By cos¢y)? + (Bysin gy + By siu ¢y)? (2.3)

4 = tan ! (g-l--%ob $1 - 52 €08 Jg) (2.4)

By sin ¢y + By sin s
Using the result from equation 2.2 an expression for the Amplitude of Vibration for a

Multi-Impulse Input was derived:

N 2 N 2

Ay = (Z B; cos (pj) + (Z 13, sin (;;J) (2.5)
)1 J=!

S = it =451 and ¢, = lLwy) - ?

where, 3; = —4]

B; is the coefficient of the sine term in equation 2.1 for the j** impulse at time. /,, where

¢ 1s the time of the last impulse. Note that 5; is specified for a single mode system, where
¢ and w are the damping ratio and undamped natwral frequency of the mode, respectively.
To eliminate residual vibration in a flexible system it is required that the amplitude of
vibration, A,,,,, be zero after the time of the last impulse. This is accomplished by forcing

the individual squared sums in equation 2.5 be independently zero. That 1s,

Bicosdy, + Bycosgyg + ...~ Bacosgy =0 (2.6)



4 Amplitude of the j** Impulse

o Time of the j! Impulse

F

¢ | Damping Ratio of the /" Mode

| w, | Natural Frequency of the 1" Mode

[ Ly ‘, Sequence End Time

Table 2.1: Variables Definitions

B]_ Hi“ (fl)l -+ [3‘! .\'i“ (,'I):) + ...+ ]}\, Si“ [;"I)A\' = () (27)

From equations 2.6 and 2.7 a more general form of the zero vibration(ZV) constraint

was found to be:

AY - -
Z Attt sin(f.}u.),\/l - =4 (2.8)
J:l
N . e
Z Aot rus(ljw,\,:/l -¢H) =0 (2.9)
41
For the given constraint equations, consider the case when N — 2. This yiclds the

following 1mpulse amplitudes and impulse imes: A, 5, £, and ¢,. 115 common practice
1N 1nput shaping to assume that the first impulse, A,. is equal 1o one und 1its impulse time
1s 1y = 0. Now 1t 1s casy to see Lhat there are two unknowns, A, & /5, and two constraint
equations, 2.8 and 2.9.

There are an infAnity number of solutions to the constraint equutions because of their
transcendental nature. Therefore, Singer upplied additional constramts to determine a $0-
lution for A, and f,. He required that all the impulsc amphtudes be positive and that the
ume-duration of the shaper be the shortest possible that satisfics the aforementioned con-

strainl. In [12]) Singer found the amplitude of the second impulsc to be:



at,

tzzAT

where A and AT will be defined later.

In order to insure that the un-shaped command signal and the shaped command signal

provide the same steady state response, Singer required that aJl the impulse amplitudes sum

to one. That is equivalent to the following constraint:

N
Y Ay=1
J

(2.12)

Therefore, for the case when N = 2 the solution for the impulse amplitudes, A, and

A4, becomes:

A= s

K

Ay =
2 1+ K
where,

______ o

K =¢ Vi

AT g nase o

(2.14)

(2.15)

(2.16)



Figure 2.3: Mass Spnng Damper

Note that AT is the time of the first overshoot(one half of the period of damped oscil-
lation) and K is the step response overshoot of a 2-pole linear systerm with no numerator
dynamics. For example, the mass spring damper shown in figure 2.3 is a 2-pole lineas

system. The transfer function for the system is defined as,

1/m
h

-8 _L_
(23] i

Define the system parameters as 222 = L, & . 1, and b . 0.5. The transter function 2.17

can be redefined to find the system's natural frequency(w,,) and damping ratio(¢).

CT(s) = l “n (2.18)

25055+ 1 824 2w, + w?

Using equation 2.18, the system’s modal properties were calculated to be w, -~ |
rad/sec and ¢ - 0.25. The overshoot level and time was calculated with cquation 2.15
and 2.16. The calculated results were verified by plotting the unit step response of the
systemn shown in figure 2.4.

Figure 2.5 illustrates the shaper found on cquations 2.13 and 2.14. The shaper found is
referred 1o as a first-order with respect to robustness (o modeling errors in frequency and in
damping. This means that the shaper can completely eliminate vibration from an arbitrary

input only if the system properties(C & w) are known exactly.
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Figure 2.6: First Order Shaper Sensitivity

To illustrate the sensitivity of a first order input shaper a ratio of the amplitude of vibra-
tion, A,mp, With input shaping to the aumplitude of vibration without input shaping can be

formed using equation 2.5 where N = 2.

‘ 2 N 2
vV —Q-U!\ |

Z At sii(twy/1 - ¢2) | + Z Ajenh uos(tjwﬁ_—'ff)
-1 =1

(2.19)
By varying the frequency, @, from the system’s nominal natural frequency. wy. fig-
ure 2.6 illustrates how sensitive a first order input shaper is 1o changes in natural frequency.
The horizontal axis ts & non-dimensional frequency scale (w/mwy). A line at 5% resid-
ual vibration is shown to iltustrate the bound for an acceptable response. Note (hat when
ur/wy =- 1 a first order input shaper can completely eliminale all unwanicd vibration, but
the slope of the curve is very sharp around the nominal natural frequency making small
crrors in natural frequency significant. A measure of the level of robustiness of a first order
shaper is to consider the width of figure 2.6, at the 5% level of acceptahle vibration. There-
fore. the level of robustness [or 4 first order shaper is less than = :- 5% vartation in natural
frequency. Singer (12, 5] shows that variations in the damping ratio does not effect the
level of resjidual vibration significantly.

To increase the level of robustness, Singer dernived two additional constraint cquations

1l



by taking the derivative of original constraint equations 2.8 and 2.9 with respect to the nat-
ural frequency, w. This reduces the amount of residual vibration induced by small changes

in frequency. The result of taking the derivatives of equations 2.8 and 2.9 is,

N

S Apte e sinwin/T - &) 0 (2.20)
j=1

.'\A
Y Ajtem e ) oG /1~ () = 0 (2.21)
j=1

One more tmpulse is 1ncluded with the addition of two constraint equations. Therefore.
N = 3 and the impulse amplitudes and impulse times are: 4;, A,, Aj, £y, ta, and 13. This
sequence of three impulses is called a second order input shaper and again the firs¢ impulse,
Ay, is assumed to equal to one at ¢ = 0. The solution for the three impulse sequence is as

follows.

)
Ay o= My = () 2.22
: I +2K + K* : ( )

2K

1;.2]\"+l\"-’1 2= o (223)

Ay

N

Ag=———
T 142K + K7

i {y = 2AT (2.24)

[t can be seen from the denominator of Ay, A,, and Aj that the impulse amplitudes
have been normalized according 1o equation 2.12. Also, the time of the last impulse, 5., 1§
two times lhe damped period of oscillation. Therefore, the time duration of a4 second order
input shaper 1s two times the duration of a first order input shaper. Despite the longer time

duration of a second order input shaper, figure 2.7 shows the level of robustness gained

12
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Figure 2.7: Second Order Shaper Sensitivity

by adding another impulse. The tevel of robustness for a second order input shaper is less
than =~ +£20% variation in natural frequency. Also, Singer [12] showed that the derivative
constraints also provide the same Jevel of robustness for vanations in damping. .

[f a controls engineer has the need for an even more robust input shaper, then he may
use the general form for the derivative of the initial constraint cquations 2.8 and 2.9. The

th

expressions for the ¢** denvative of the initial constraints are:

N
N A eI T i (/T = () = 0 (2.25)
=
N
STA) e T s (L /T = () = 0 (2.26)
=1

For every two constraint equations added, one impulse 1s added to the sequence of im-
pulses. This makes the impulse sequence more robust to modeling errors. but increases
the time-duration of the shaper. Consider the case when ¢ - 2, this means that the scc-
ond derivatives of the onginal constrainis are derived. Therefore, the impulse sequence

becomes: A;, Ao, .5, Ay, t1. 22, 3, and ¢5. The impulse amplitudes and times are:

] _ _
Al = e iy fy = () (2.27
Tl 3K S 3K R : )

13
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Figure 2.8: Third Order Shaper Sensitivily

3K
A @ f, = AT 528
2T 3R Rt ke L (2.28)

Ay = 3K @ ;= IAT (2.29)
1+ 3K +3K2 + K3

N3
A= TR TR s W = 3AT 2.30
! 1 + 3K + 3K2+ I3 Bl ( )

The time duration of a third order input shaper is 1.5 times the period of damped os-
cillation. By now it is eusy 1o see that lhe times for each successive impulse is an equally
spaced interval based on integer multiples of half a period of damped oscillation. Again,
the drawback of a third order input shaper is that it is Jonger than a first or second order
input shaper, but figure 2.8 shows that the third order shaper is more robust [han the two
previous examples.

A 1hird order shaper is approximatcly -30 % to +40 % robust to modeling errors. Ta-
ble 2.2 compares the level of robusiness Lo modeling errors and tlime durations for the three

input shapers derived.
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I i m e — —

- ! 'i — ,
Shaper | Level of Robustness to Model Variations | Time Duration(OrdersAT)

First Order r ~ — 5% | i i
Second Order | ~ £20% I > |
| ! | o

Third Order | % -30 % to +40% | 3

Table 2.2: Companison of Sensitivity for First. Sccond, and Third Order Shapers
2.1.2 Command Shaping for Systems with Multiple Modes

An input shaper designed for a single mode can excite un-modeled dynamics resulting in
some level of residual vibration. With Singer's command shaping technique there are a
couple of ways 1o minimize residual vibration in multiple mode systems. Shapers can be
designed for each mode in the system with different or the same level of robustness(order).
Then, to find the input shaper that compensates for all the modes the individual shapers
are convolved. The ume duration of the multiple mode input shaper is the sum of the
lime durations for each individual shaper. This method ts sometimes called the convolved
solution for a multiple modc input shaper. Another method to finding a multiple mode
shaper is to solve for shaper directly by using the constraint equations. To design a first
order shaper for a system with two modes, the shaper would huave three impulses. This
method is appropriately defined as the direct solution. A nonlinear optimization package s
required to find the direct solution. The direct solution always contains fewer impulses than
the convolved solution. Therefore, the direct solution 1s always fuster than the convolved

solution.

2.2  Tuttle’s Zero-Placement Technique

This technique was researched by T.D. Tuttle[35] and it has be found to be useful because
of its case of application to arbitrary inputs. This technique 1s also based on the work of

O.J. Smith [34). Smith showed that Posicast communds. when convened to the Laplace S-



domain or discrete Z-domain. cancelled the system poles. The drawback of Posicast control
is that it is sensitive to vanations in model parameters. N.C. Singer [12] presented a tech-
nique to improve the robustness of input shapers. Section 2.1.1 shows the denvation and
properties of Singer's time domain input shaping technique. It has been shown that adding
additional shaper zeros at the system poles provides an equivalent level of robustness to

Singer’s technique.

2.2.1 Derivation of Zero-Placement Multiple Mode Input Shaper

Since traditional input shapers are only defined at discrete time intervals, a discrete fre-
quency domain representation is suitable because it too is defined at discrete intervals.
Tuttle’s technique consist of deriving a shaper in the discrete domain. mapping it to the
continuous Laplace domain. and then using the inverse Luplace transform to find the input
shaping sequence in the time domain. Five conditions are defined (o derive the general
form of a zero-placement input shaper. These conditions are translated into mathematical
discrete domain constraints.

The conditions are: 1. The shaper must eliminate vibration at all unwanled modes.
2. The shaper must provide adequate robustness to uncertainty in model paramelers(¢, &
w,). 3. The shaper must be causal. 4. The shaper must mmimize distortion of the input
command. 5. The shaped command must not violate actuator limits. These conditions arce
based on achieving maximum performance while minimizing unwanted residual vibration.

The discrete frequency domain equivalents of the five requirements of zero-placement

technique are outlined below:

1. The Shaper Must Eliminate Vibration at All Unwanted Modes
This places an input shaper zero al each system pole. For flexible sysiems, the sys-
tem poles are complex conjugate pairs and therefore the input shaper zeros are also

complex conjugate pairs. The zeros are defined for the 2'" mode as p, and p;, where
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p; 1s the complex conjugate of p;.

P, == e"‘:l\-‘}f\lTeju‘-;"T (231)

p' — (._(l‘-‘,tn'7.()__)-""‘u'i7‘ (
H

|19
’:;J
i~
N’

where wy, is defined as the damped natural frequency of the i*" mode,

Wy, = Wy 1- (,2 (233)
The initia) input shaper that satisfies this constraint is defined as,

H(z) = =p)lz—pidz = p2) (- p3) .z =pa)(z - p)) (2.34)

where a system with 7n unwanted modes of vibration, the shaper must contain 2m

zeros to cancel the system poles.

. The Shaper Must have Adequate Robustness to Parameter Uncertainty

The dernvative constraint used by Singer to improve robustness 10 model uncertainty
can be implemented in the discrete frequency domain by adding additional shaper
zeros at the system poles.

The shaper designed to increase robustness is defined as.
H(z) - (z=p)" (2 —p))" (= pu)" (2 — )™ (2.35)

iIf ny = 2 then the input shaper has second-order robustness 10 errors in system
parameters for the first mode in a multiple mode sysiem. This is equivalent to adding

two additional constraint equations for the first mode.

. The Shaper Must be Causa)

To ensure that the shaper remains causal or non-anticipative. the number of shaper
poles must be greater than the number of shaper zeros. Therefore, the denominator

of H(:) must be higher order than the numerator.
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4. The Shaper Must Minimize Distortion of the Input Command
Since input shaping introduces a time lag into the system input equal to the length of
the shaper. the number of poles and zeros should be minimized while still satisfying
robustress constraints. To meet this constraint and still satisfy the causality constraint
the input shaper should have an equal number of poles and zeros. Also to eliminate
denominator dynamics from the input shaper. all of the shaper poles should be at the

<-plane origin.
The equation that satisfies the constraints is:

_— C(Z _])l)nl (Z - p;)“. f et (.: - PF”)nm(s - p»‘u)”._ll

o5

(2.36)

where, 7 = 2(ny + - + n,,) and C is constant that will be defined by the next

constraint.

5. The Shaped Command Must Not Violate Actuator Limits
Singer satisfied this constraint by requiring a shaper with posilive impulse amplitudes
that sum to one. The resulting shaper will not violale actuator constraints given that
the un-shaped command input does not exceed actuator constraints. Tultle uscs lwo

additional steps to find an impulse sequence in the conlinuous ttme. The steps are:

¢ Map the Discrete Transfer Function to the S-Plane by Using = = o7

o Tuke the Inverse Laplace Transform to Find the Impulse Sequence

Now the impulse sequence can he represented in continuous {ime as,

Wy = C'8(t) + 0y8(E = T') = aad(t =Ty + .o+ ub(0— 7T (2.37

where, C' is Defined as a Scaling Constant

C:=(14+oytazg+...+ <l-r)"'l (2.38)



The scaling constant, C, ensures two necessary impulse sequence properties. First, it
cnsures that the output of the shaper does not violate actuator constraints. Each of the
impulses in any shaping sequence are always less than one. Second. it ensures that the
shaped steady state response wil} equal the steady state response of the un-shaped system,

since the sum of all the impulses is equal to one.

2.3 Singhose Input Shaping Techniques

Singer [12] presented 4 vector diagram representation of input shaping and a method of
finding the residual vibration of an input shaper from a vector diagram. Singhose [21, 22,
26) has extended the work of Singer et. al. on input shaping using the vector diagram
representation. Singhose used vector diagrams to design input shapers that increase the
level of insensitivity 1o modeling errors in frequency and damping, called Extra-Insensitive
imput shaping.

First Singer's method for representing input shapers using vector diagrams will be
briefly discussed. The vectors are expressed using polar coordinates (» and #). Where
1 represents the magnitude of an impulse and f/ represents the damped or undamped natural
frequency and impulse time. For the undamped case. a vector diagram can be defined by
setting r; equal to the impulse amplitude of the 3, impulse and the phase, #,  «wAT,.
Where AT, is the time delay from zero and w is the undamped natural frequency of a
system.

Figure 2.9 shows that the origin of each vector is a1 zero and thal the first impulse, Ay,
at ime equal zero lies along the x-axis. Delays, #;'s, are defined as a counter clockwise
rotations from the positive x-axis. Residual vibration is defined by finding the resultant, /2,
from the sum of the two vectors (A, () and (A4;, #) as shown in figure 2.10.

Figure 2.10 tllustraies the concept of graphically determining residual vibration. A,

represents the amplitude of the vibration and 6, represents the phase of the vibration.



Figure 2.9: Vector Diagram Equivalent to a Two Impulse Input Shaper

Figure 2.10: Formulation of Resultant Vector
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Figure 2.11; Decaying Amplitude of an Impulse Due to Damping

Damping effects the vector diagram representation in two ways. The undamped natural
frequency can no Jonger be used to represent the phase, instead a system’s dampcd natural

frequency, wq = w+/1 — (*, and impulse time(delay) represent the phase.

g =w\/1- CAT (2.39)

Also the damping causes impulses to decay exponentially with time. Consider the
two impulse case shown in figurc 2.5. The two impulses are 180" out of phase and the
impulse 1y has decayed with time with respect to Ay. This decay can be represented by

equation 2.40 and by the spiral shown in figure 2.11.

AQ = Al(f_(u” (2.40)

For either the undamped case or the damped case. vector diagrams can be used (o
graphically find the level of residual vibration. [f no resultant exist afler summing the
vectors then no vibration occurs after the Jast impulse.

Modeling errors, primarily in frequency, cause the summing of the vectors to resull in
some leve! of residual vibration. Errors in damping are neglected here because Singer {12]

showed that errors in frequency are more significant. Errors in frequency can be represented

21
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as a phase shift using vector diagrams. If w, is the nominal system frequency and w is the

design freguency then the phase shifl. ¢, is defined as:

i (w = wy ) AT (2.41)

Some error in system parameters are most likely to occur in any real system. Therefore,

shapers that are more insensitive to modeling errors must be denved.

2.3.1 An Extension of the Vector Diagram Approach

Using a vector diagram, Singhose {21, 22) showed that impulses thal are not integer mul-
tiples of haif a perod of oscillation (8 = i) can widen the insensitivity curve at the 5%
allowable residual vibration level. The drawback of this change is that the residual vibra-
tion curve is not symmetric aboul w/w, = 1, when the design frequency perfectly matches
the system frequency.

To widen the insensitivity symmetrically about w/w, - 1, Singhose {21. 22, 26] defined
a set of constraints that relaxed the zero residual vibration constraint defined by Singer | 1 2].
insensitivity is defined by the width of the sensitivity curve al 5% ressdual vibration(V' —
(.05). Therefore. the constraint on residual vibration will be reluxed 10 allow 5% residual
vibration at w/w,, - 1.

The steps for finding a One Hump EI input shaper are as follows: 1.) Set the number of
impulses to three (A;. 43, A3). 2.) Define the phase shifts for Ay, A.. and Az tobe 8, = 0,
7. and 27, respectively(f; must be twice #, to satisfy thc symmelry constraint). 3.) Solve
for the impulse amplitudes such that there exist 5% residual vibration at w/w, — 1 and (hat
the residual vibration is zero above and below w,, wy; and wy, respectively, Figure 2.12
1llustrates the structure for a One Hump El input shaper.

Using these steps for the undamped case Singhose found the impulse sequence:

k)
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Figure 2.12: Diagram of Setup for One Hump EI Input Shaper

1+V
| Ay |= @ 4 =0 (2.42)
|-V
| Ay |= i )y = 7 (2.43)
14+ V .
Ay |= ——— @ by =2r (2.44)
where V' is the level of desired residual vibration at w/w,, == |. Notice that this definition

sets the resultant equal to the level of residual vibraton.

[ AL =0 A2+ 1A =V (2.43)

Recall that #, = wAT,, then the vectors in equations 2.42, 2.43, and 2.44 can be

converted into an impulse sequence,

[S9]
(WA ]



Gty =0 (2.46)

1-V G

Agzo ——— Q0 gy — (247
2 o
: ')ﬂ'

A = 1J:_V @1y (2.48)

Closed form solutions for 4 single hump EI shaper cannot be determined for the case
when damping is not neglected [22]. A numerical solution can be found for a range of
damping ratios and levels of residual vibraion. Singhose calculated a solution for ) < ¢ <
0.3 and 0 < V < 0.15. The solution he found is a function of ¢, V, and w. The impulse

ampiitudes and times are shown in the following equations:

Ay = 0.2497 + 0.2496% 4 0.8001¢ -+ 1.233V¢ + 0.496¢7 - 3.173V°¢? (2.49)

AQ I (A) =+ /13] (2%0)

Az = 0.2515 +0.2047V — 0.8320¢ + 1415V C + 0.8518¢% - 4.9011¢* (2.51)

T, . 0 (2.52)

T, = (0.3 +0.4616V¢ = 1.262V % 4+ 1.756V ¢ — 8.078V2(C — 108.6V 3¢ + 337V2CHT,
(2.53)
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Figure 2.13: Sensittvity Comparison of Singer’s First, Second, and Third Order Shupers 10

Singhose’s One Hump EI]

Ty =T, (2.54)

Notice that the solution to a single hump EI shaper is the sume length. 7). as the ZVD

or second order shaper. Where, T, 15 the damped period of oscillation.

27

Ty = — (2.55)

= w\/m

The primary advantage of a one hump El input shaper is that it has the same duration as
a second order(ZVD) input shaper but is more robust to modeling errors. Figure 2.13 shows
a comparison of sensitjvity curves for Singer’s Firsi(ZV), Second(ZVD), and Third(ZVDD)

order shupers (o Singhose’s One Hump EI shaper.
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Figure 2.14: Diagram of Setup for Two Hump EI Input Shaper

Singhose also developed multiple hump shapers to widen the region of insensitivity
more than the single hump. He developed two and three hump input shapers that uliow
a specified level of residual vibration at number of frequencies. the residual vibration is
required to be zero at the system’s natural frequency for a two hump shaper. It allows a
certain level of residual vibration above, wy,, . and below, wy,, . the system natural frequency.
Above wy;, and below wy,, the residua) vibration is required 10 be zero at wy,;, and wy,,. as
show 1n figure 2.14.

The three hump shaper can be described 1n a similar fashion, except 1t allows some
vibration at the system frequency. Figure 2.15 illustrates the constraints of a Three Hump
El input shaper.

Figures 2.12. 2.]4 and 2.15 show that the sensitivity curves are always symmetric
about the system frequency. Therefore, an odd number of humps the shaper must allow
some residual vibration at the system natural frequency and for an even number of humps
the residual vibration must be zero at the system frequency. Singhose et. al. [26] provides a
detalled derivation of these two techniques. Singhose [26] also derived a curve fit solution

1o the two and three hump El input shapers tor 0 < ¢ <7 0.3 and 0 € V £ 0.2. The curve
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Figure 2.15: Diagram of Setup for Three Hump El Input Shaper

fit is shown in table 2.3.

Figure 2.16 shows how a One and Two Hump EI input shaper compare to a Third order
shaper designed using Singer’s Techmque. The One Hump shaper results in less robustness
than a Third order shaper. but the Two Hump shuper has greater robustness than the Third
order shaper. The Two Hump shaper and the Third order shaper have approximately the
same time duration. Therefore, the Two Hump shaper allows system parameters to vary
more with an equal amount of system nse time delay.

To compare the sensitivity of the One. Two, and Thyec Hump El input shapers a plol
of the three types designed for the same natural frequency and damping ratio is shown in
figure 2.17.

As the number of humps increase the time duration and number of impulses also in-
crease. El input shaping is designed to maximize the level of robustness with each increase

In time.
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t = (M

+ M+ Mo = MOT

T = 27!";";0

f A, = My + M+ MG+ M
;Shuper I ,'\{._, I ..‘\_ll M, 11\13 .
2 Hump | ¢, 0 0 0 0
El t, | 0.49890 | 0.16270 | -0.54262 | 6.16180
f, | 0.99748 | 0.18382 | -1.58270 | 8.17120
t, | 1.49920 { -0.09297  -0.28338 | 1.85710
Ay 016054 | 076609  2.26560 | 122750 |
As || 033911 | 0.45081  -2.58080 | 1.73650
A 0.34089 | 061533 | -0.68765 | 0.42261
| Ay | 015997 | 060246 | 1.00280 | -0.93145
3Hump ¢ /, | 0 l 0 0 0
El 1, 10.49974 | 023834 | 0.44559 | 12.4720
15 | 0.99849 | 0.29808 | -2.36460 | 23.3990
| 1 | 149870 | 0.10306 | -2.01390 | 17.0320
| f2 | 1.99960 | -0.28231 | 0.61536 | S5.40450
| A 041275 ] 076632 | 329160 | -1.44380
| 4, 023698 | 061164 | 257850 | 4.85220
| Ay , 0.30008 | -0.19062 | -2.14560 | 0.13744
| | A, 023775 | 073297 | 0.46885 | 2.08650
‘ A 01 1_244j 0.45439 | 0.96382 | 146000

Tablc 2.3: Curve Solutions (o Two and Threc Hump Extra [nsensitive Input Shupers
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2.3.2 Singhose’s Time-Optimal Negative Input Shaper

All the techniques up to this point require that all the impulse amplitudes have pasitive
values, but if negative values are allowed the duration of an input shaper can be short-
ened. The material in this section was developed by W.E. Singhose, W.P. Seering, and N.C.
Singer [30]. Tt is based on Singer's original constraint equations on the amplitude of resid-
ual vibration [12]. The constraints used in this technique can be categorized as constraints
on the maximum allowable residual vibration, robustness to parameter uncertainty, lime
optimal solution constraints, and impulse amphitude constraints. Only zero-vibration(ZV)
and zero-vibration-denvative(ZVD) shapers are developed for the negative input shapers
developed in this section. Therefore, only the following (wo constraint equations on resid-

va} vibration are used:

\/(Z;—-x Ajes cos (wt, /T = (7))2 = (T, Ajests sinfwt; /T - ()2

egw‘l"

Viw,¢) =

(2.56)
where V' is ratio of vibration with input shaping to withoul input shaping. When V' is
required to be zero then the input shaper that meets that constraint s a zero-vibration inpul

shaper or ZV shaper.

d \/(23‘:1 Az cos (why /1= N2+ (37 Ayt sin (wh, /1 = ()2

(/C“—'{r\

(2.57)

When an input shaper satisfies both equations 2.56 and 2.57 then 1t ts satd to be a zero-

vibration-derivative input shaper or a ZVD input shaper. The variables in equations 2.56
and 2.57 are defined in section 2.].1.

In order to minimize the duration of the input shaper a constraint on the time of the last

yimpulse is implemented. It is defined as follows:

30



Shaper Duration = man(t,) (2.58)

where the n#"

impulse is the last impulse of any sequence. Minimizing the duration of
the input shaper minimizes the tme lag that the input shaper induces into an input.
Time lag is not the only effect that convolving an arbitrary input with un input shaper.

If the impulse amplitudes do not sum to one then the un-shaped input and the shaped input

will not have the same set-point. Therefore, the following constraint is implemented:

> o4, =1 (2.59)
J=1

where this constraint applies to both input shapers with al) positive impulses and 1input
shapers with negative impulses. Satisfying the constraints in equations 2.56. 2.57. 2.58.
and 2.59 can force the impulse amplitudes to positive and negative infinity. This was previ-
ously eliminated by requiring that all the impulse amplitudes are positive. For input shapers
that allow negative and positive impulse sequences. two additional constraimt are required
and they are defined in scction 2.3.3 and 2.3.4.

Another robustness constraint used to widen the runge of inscnsitivity to crrors i [re-
quency is the Extra Insensitive (EI) constraint. Instead of requiring zero residual vibration
at the system natural frequency some low level (V' = 5%.) is allowed for the ZV constraint
equation 2.56. To widen the sensitivity curve frequencies (wy, and wy,;) on cach side of
the natural frequency are required to have zero residua) vibration. The frequency wy, i$ an
unknown frequency below the modeling frequency, w,, und wy,; is an unknown frequency
above w,,. Therefore, a set of two of the ZV constraints 2.56 are required. When the con
straint equations are solved for w,, the impulse times, amplitudes, and the unknown fre-
quencies (wy,, and wy,) are solved. This 1s the same shaper prescnted in section 2.3.1 except

that the impulse amplitudes are defined vsing the constraints in sections 2.3.3 and 2.3.4.
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2.3.3 Unity Magnitude Constraint (UM)

The first constraint is that the impulse amplitudes must be equal 1o one or minus one.
also called unity magnitude. The sequence always starts with an impulse of one and the
impulses switch between minus one and one after the first impulse. This constraint can be

represented as:

Az (170 j=1..n (2.60)

This constraint guarantees that the shaped input will never exceed actuator limits, given
that the un-shaped input does not exceed actuator limits. The last impulse of a unjty mag-

nitude input shaper is always one. Therefore, n must be an odd integer multiple of one.

2.3.4 Partial-Sum Constraint (PS)

To improve the rise times of the Unity Magnitude input shapers, a new constraint was

developed that limits the sum of the impulses to a magnitude /.

‘:

=0 hk=1...n (2.61)

J=1
For a zero-vibration (three impulse) input shaper, the solution with the constraint cqua-

tion 2.61 is:

A P Ay =20 Az o P -1 (2.62)

Partial Sum shapers can cause momentary periods of actuator saturation, but the ma-
jority of the partial sumn shaped command signals remain below £ + MAX. MAX is
defined as the maximurm allowable un-shaped command Jevel. For example, if /7 - I and
MAX = 1then P« M AX := 1. The shaped signal for the step input shown in figurc 2.18
does not exceed + /7 + M AX. When the same PS input shaper is applied to the bang-bang

input shown in figure 2.19 there are penods of actuator saturation.
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The duration of the actuator saturation a Partial Sum shaper causes depends on the
required move distance, velocity limit. acceleration limit. natural frequency of the system,
and the input shaper. Values of P larger than one are more Jikely to cause actuator saturation
then when P> = 1.

Singhose [30] developed a curve fit for the UM, PS, EI input shapers that is valid for
0 < ¢ <€ 0.3 and is accurate to within 0.5% for the calculation of the impulse times.
Table 2.4 and 2.5 list the curve fit solutions of the coefficients to several types of Partial
Sum, Unity Magnitude, and Extra-Insensitive input shapers. The curve fits are for the

impulse times only, unlike table 2.3,
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0.16724

0

027242

033323 j| 0.00533

0

(.20345

0

' 0.20970

0.29013

UM-ZVD

PS-ZVD |

0
0.08945
0.36613

0.64277

0.73228

0
0.15234
0.27731

0.63114

0.67878

0

| 0.22441

0.09557

0
0.08028

0.10346

0.17914 | 0.20125

0
0.23124 |

0.24624

0
0.28411
-0.08833
0.29103
0.00992

0o
0.23397
0.11147

0.34930

0.19411

0

0.23013

i 0.24048
% 0.23262
| 0.49385
j 0

0.046)4
0.11840

L 0.15168 |

(0.27432 | 0.48505

L R

0
0.16401
0.17001
0.43784
0.38633

0
0.21310
00.28786

0.52558

Table 2.4: Curve Solutions to ZV and ZVD Negative Input Shapers
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Table 2.5: Curve Solutions to Extra Insensitive Negative Input Shapers
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Chapter 3

Model Description

The dynamic model used in this research projecl is a torsional dynamic plant manufactured
by Educational Control Products. The plant consists of three rotating disks connected by
two flexible rods. These rods act as torsional springs and the drive disk is connected to the
motor by a rigid belt drive system. Each disk is equipped with an optical encoder, but in

simulations and experiments only the encoder on disk 3 is used.

3.1 Assumptions

The rods connecting the three disks are assumed to be lincar springs. Though there are no
dampers present in the system, light damping 1s assumed Lo be acting on ecach disk and the
damping is also linear. All system properties such as inertia of the disks(static payload).
spring rates, and damping coefficients are assumed to time invariant.

The effect of motor cogging is considered to make the system model more practical.
Motor cogging is simplified 10 act as a pseudo linear spring. Equation 3.1 shows how motor
cogging is approximated and simplified [10]. Figure 3.2 shows motor cogging acting s a

spring and 1t 1s assumed to be time invariant.

T = ——};lsv“n(nﬁ, +¢) = —I:ln(il k0, (3.1)
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Figure 3.1: Torsional Apparatus
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Figure 3.2: Model Diagram

3.2 Mathematical Model Derivation

The goal of this section 18 to find a linear lime-invartant state space model of the system. A
series of steps will be outlined to adequately describe the derivation of the model shown in
figure 3.2.

The first step is to identify what elements are present in the system. The ECP torsional
plant consists of three torsional springs, dampers, and inertias. Second, the energy storage
elements are identified as the three springs(ky, A3. &3) and three inertias(./;, .J». J3). Third,
frec body diagrams are drawn for the energy storage clements 1o find the torques acting
on those elements. The springs are drawn first because the goal s to find the cquations of

motion for the disks. The resulting torques acting on the springs are:

Ty, = — k0, (3.2)
T o kol - 62) (3.3)
TL-7 — A,'g(HQ - 93) (34)
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where ;. 3, and 8; are the angular positions of each disk. Before finding the torques

acting on the disk the energy dissipative elements(dampers) are found 1o be:

T,, = a6 (3.5)
T., = c2bs (3.6)
’IL-J = (,‘36.3 (37)

where 91, 92, and 03 are the angular velocity of each disk. From the free body diagrams
for each disk. the torques can be summed (o find the equations of motion. The torque sums

on each disk are determined to be:

W =T +Te, =Ty, — T, (3.8)

where 7" is the input lorgue,

Joby - Tiy - 1, = T, (3.9)

J3by =Ty, — T, (3.10)

where #, 0. and fy are the angutar velocities of each disk. Substituting the lorque
equations found for the springs and dampers 1nto the torque sums for the disks results in

the following equutions:
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Jleul = —(k] + k2}91 = 6191 -+ k292 +T

Jably = kpby = (ks + k3)bs — 028y + Aty

]363 = l\ngg - }C303 : C303

G

(3.12)

(3.13)

Fourth, a state vector i1s defined in order to find the equations of motion in state space

form shown in equation 3.14. The state vector is defined in equation 3.15 as,

T = Ar + Bu

T T
l: Ty Ta T3 Ty T U } = ‘> 0] 0, 92 H‘_) ()’; 03 ]
Take the denvative of the state vector,
7 7
[ .'L:l .‘IfQ .'ng .'2,:4 .'1.:5 ’L‘G ] = l 91 6] 62 0-_) 93 93 ]

The equations of motion using the state vector and its derivative become,

fl )
- — (& + k) ) ko |
Ta = ry — ) + —T + _7
" A A

21‘:3 = 2y

4]

(3.14)

(3.15)

(3.10)

(3.17)

(3.18)

(3.19)



}-'2 l;.g -+ 1\13 :| ) A'3

Xy = J—QJ] - 7]2 €Iy — —]—2 Iyt 7£1. (3.20)
b= g (3.21)

) k & G
Iy = i.’l@ e ﬁﬂ’;‘. ':]":;-"-G (322)

Equations 3.17, 3.18, 3.19, 3.20, 3.21, and 3.22 can represented in state space form as,

0 1 0 0 0 0 ()

(k1 A2 - [ )]
7 =z 7 0 0 0 7
0 0 0 1 0 0 0

= r — T (3 7’;)
k2 —{k24k3) —c2 13
72 0 72 )_CQ J2 0 0
() (0 0 {) 0 ] 0
i3 -3 -3
i 0] 0 73 (0 T3 ] () ]

The system parametcers were approximated experimentally by ECP and the results of

those experiments are shown in table 3.1. Using these approximations in simulation to find

the open loop mode shapes conjirms that they are good estimates because the experimental

frequency response closely matches the simulation frequency responsc.

Using the parameters found by ECP, MATLAB codes were written (o build the moclel

and find the open loop modes. The code (o build the model can be found in appendix Al

and the code used (o find the open loop mode shapes is in appendix A.2. The modes found

from the model are flexible modes since the model is not a4 rigid body. After running

model.m and mode.m the three modal frequencies and damping ratios are determined:

o ( = 00070 & wy = TIT3Rad/sce



o C0.01063 kg — m?

s ‘ 0.01063 kg — m?

s 001063 ke — m?

l
cor 0027 N —anf(rad ) s)

e 10002 N —m/{rad/x)

¢5 || 0.002 N — m/{rad/s)

A‘) 1.38 N — m/'r{ul

Ay L.38 N — nefrad

Ry 1.38 N —mn/rad

Table 3.1: System Parameters

o (, =0.0254 & wy = 20.1079Rad/sec
o (3 =0.0173 & wy = 28.996920d/s¢0:

The modal frequencies were venfied approximately by running a sine sweep over the
range tndicated from the simulation results. Sine sweeps can he performed on (he ECP

hardware using the Dynamics Exccutive desceribed in seetion 3.4

3.3 Hardware Description

The plant described in section 3.2 15 manufactured by Educational Control Products (ECP).
ECP provides the electromechanical plant, system interface softwarc. DSP bused con-
troller/data acquisition board, and the input/output electronics (drive electronics). The soft-
ware will be deseribed in section 3.4 and the remainder of this section will be devoled to
the hardware.

The base disk or disk one 15 the driven disk and it is dnven by 4 brushless servo motor
connected with a belt and pulley systern with 3:1 gear reduction. The positton of the first

disk is measured by an axially mounied optical encoder. Positions of disk two and disk
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three are measured by radially mounted encoders. The encoders on disk two and three arc
mounted radially with a belt and pulley systemn with 1:1 gear reduction. All three encoders
have a resolution of 16,000 encoder counts per revolution. The plant has the flexibility
of allowing the user to select many different configurations {10]. Mathematical models
are provided for many of the different configurations in the ECP manual [L0]. The three
degrees of freedom configuration will be used for all simulations and experiments.

The input/output electronics or drve electronics box contains the power supply, aux-
iliary digital-to-analog converter readouts, and the servo amplifier. The servo amplifier
converts the voltage signal from the controller board into a current signal and sends the
motor the current signal. The motor then transforms the current signal into a torque. A
more detailed description of the power electronics is provided in the ECP manual [10].

The DSP board contains the encoder pulse decoders, D/A converters, and the realtime
control algorithm downloaded from the software. The controller is defined in the software
and then downloaded into the DSP board. The board automatically executes the control
algorithm at a specified sampling rate and the board also executes any command signals
that a user specifies. The minimum sampling period of the controller is 0.884 ms or a
maximum servo loop closure computation rate of 1.131 kHz. For further information on
the DSP board refer to the ECP manual [10]. Some of the hardware gains and ratias arc
listed in table 3.2. They may be used if a user wishes to model the mechanical model with

the power electronics.

3.4 Software Packages

ECP provides three software packages 10 allow a user to interface with the DSP board:
Executive, Dynamics Executive, and User Control Executive Program. The Executive pro-
gram is designed to allow users 10 change the coefficients of the real time control algorithm

in order to implement a desired control strategy. It also allows the use of many different
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[k | DAC Gain I L

L | - . - 32768DAC counts
Lk, Servo Amp Gain =~ 2amp/v
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kp |' Drive Pulley Ratio 3:1(Disk : Motor)
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. |
k, 1 Encoder Gain Loty |
_ 2r rudm;w
L I e
. || : I2controller counts
ksl Controller Gain Sirader of referelis mE AR
K | Hardware Gain i khu = Kekahe /mp/x A

L

Table 3.2: Hardware Gains

iputs including a user defined input trajectory. The Dynamics Executive program is de-
signed to study the dynamic characteristics of the system and to identify system parameters
or mode shapes. The ECP manual [10] describes a number of different experiments for pa-
rameter identification for the numerous system configurations. The User Control program
is designed for implementing a custom control algorithm in a ”C-Like" code. ECP provides
an example of how to code a state feedback controller in the User Control executive pro-
gram. All softwure packages can plot real time data or data oli-line after an input command
has been executed. There are 24 acquired and derived variables available for plotting. and
any real time data can be exported in a format that can be plotted in MATLAB.

The general format for implementing a control algorithm and executing a trajectory are
simple. First, the system configuration must be selected by adding or adjusting the position
of the masses. Also, a disk may be clamped to reduce the order of the system. Second, the
system should be modeled mathematically to design « control algonithm. Third, after the
control algorithm is designed it should be tested in simulation before implementing it on
the hardware. Poor controller design can cause damage to the hardware and possible mnjury
to the uscr. Finally, after the simulation tests the contraller can be tested expernmentally
to compare results. The user must adjust the cocfficients shown in figure 3.3 10 a desired

controller and them implement the algorithm. Then the software downloads the controller



into the DSP board and the system is ready to receive a command input.

3.5 Derivation of Discrete Time Model

The linear time invaniant/continuous time model has been derived in state space form. Since
the goal ts 10 reduce the leve] of residual vibration in a computer controlled system, the
continuous time model should be discretized with the controller and with a sampling period
that is representative of the computer hardware speed. For simulations and experiments a
PD controller will be used to control the position of the third disk. PD control i1s used
because of its effectiveness and functional simplicity. The gains for the PD controller are
found by iteration on a trial-and-error basis. With the PD gains and the sampling rate
specified, the discrete time model is found. A series of steps will be described to find the
discrete time model.

First, the continuous time mode! is discretized with respect to the sampling period, 7.
using the command c2d(sysc.T,,) command in MATLAB, where sysc 1s the continuous
nme system matrix found using ss(A,B,.C.DD). Second, the forwurd path of the closed loop
system is formed in SIMULINK with the discrete PD controller and the discrete time slale
space system found in the previous step. The SIMULINK diagram is shown in hguse 3.4,

To find the overall system representation of figure 3.4 the dlinmod(OLSSPDModel,T,)
command finds the discrete system matrix for a specified SIMULINK model(OLSSPDModel.mdl)
and sampling penod(7% ). Third, the closed loop system matrix is found using feedback(sysdt, 1),
where sysdt 1s the system matrix found in the previous step. Since feedback assumes neg-
ative feedback, | is the second command input. Finally, the closed loop damping and
undarnped natural frequencies of the system poles are found using damp(sysdicl), where
svsdrel s the closed loop discrete time system matrix.

These steps are executed at the beginning of cach input shaper design script by Dis-

crete.m shown in appendix A.3. The controller gains and sampling period are specified in
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each input shaper design script before Discrete.nm 1s execuled.
The shaped commands generated by each input shaping technique are tested, in sim-
ulation, using the closed loop system before being evaluated experimentally on the ECP

hardware. The system representation for simulation is shown in figure 3.5.



Chapter 4

Time Domain Constraint Equation

Technique

This chapter covers the derivation of several input shapers using Dr. Singer’s technique
outlined in section 2.1, and an extension of his work modified to improve its ease of im-
plementation tn simulation and experiments. To illustrate the effect of cach mode on the
system response, imputse sequences are designed for each mode separately. Also, direct
solubons for multiple mode systems arc not considercd because they have been found to
be less robust thun convolved sotutions [29, 31). The simulation results for the modificd
technique will be compared to the experimental results. Experimental results are obtained
by executing the input command signal from simulation on the ECP hardware(Torsional

Plant).

4.1 Derivation of a First Order(ZV) Input Shaper

The input used in all simulations is a unit step. This simplifies the convolution process
required to shape the input. The first shapers derived are first ordes(two-impulse) shapers

for each mode separately. This was done by using the equations defined in section 2.1.



First Order(ZV) Input Shaper

ATy

.' o i i
Mode i |I /1;1 I A AY,]
L L _| — S

0.4756 | O'sec | 0.4323 scc

[
First { | 0.5244

' Second | 2 | 0.5284 | 0.4716 | 0 sec ' 0.1568 sec

2
Third t 0.5137 | 0.4863 | 0 sec | 0.1083 sec

Table 4.1: Impulse Amplitudes and Times For First Order Shaper

1
Ay = - 4.
1S A (4.1

i<
/‘1,‘)“" : 42
] + A, (4.2)

where,

K=o Vi (4.3)
AT (4.4)

-
o w,-_\il - (,2
Now the impulses arc defined for the i'" mode, so that later they may be convolved
without confusion. Tor this three mode case 2 varies from 1 to 3, where the closed toop
damping ratios and natural frequencies are: (G = 0.0310, wy = 7.2707Rad/see o =
0.0362, wy = 20.0457 Rad/5c e, (3 = 0.0175, and w3 = 29.01602ad /s for PD control
with ¥, = 0.06 and /<, = 0.75.

The impulse amplitudes and times are found by plugging the system parameters(¢, &
«,) for each mode into equations 4.3 and 4.4. The results for the torsional plant are found

in table 4.1 for each mode separately. Figure 4.1 shows a step inpul convolved with the

threc shapers given 1n table 4.1. [t shows that input shapcers for high frequency modes are
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Figure 4.1: First Order Shaper inputs

shorter in duratson than input shapers for fow frequency modes. This is a result of the time
duration being halt the period of oscillation of a particular mode. It also shows a step input
convolved with an input shaper designed for all three modcs, the all mode shaper wall be
derived later in this section.

Figure 4.2 shows the Lorsional system response to un-shaped and shaped inputs. 1t
15 cusy to sce that the low frequency mode dominates the responsc, but the input shaper
designed for the low frequency mode alone results in substantial residual vibration.

To find a first order shaper for all three modes a senies of steps will be outlined (o
show a method for convolving the shapers. First the equations for the inputs arc found in

1A

continuous ime. They arc defined for the /™ mode as:

IL,'(!J = A,)(g(f) -4 _"-1,'-)(5“ - AI[,J (45)

Second. the Laplace transform of cquation 4.5 is found (o avoid having to convolve
three continuous time cquations since multiplication in the frequency domain s equivalent

o convolution n continuous ume. The Laplace domain representation of cquation 4.5 s
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Figure 4.2: First Order Shaper Step Response

defined as:

U (s) = A,y + Anpe™2T (4.6)

Therefore, the equation for the multiple mode shaper is found by polynomial expansion
of equation 4.6 for Uy (s){/y{s)U(~). Third, the result Irom multiplying the shapers in
the Laplace domain is transformed back to continuous time by taking the inverse Laplace

transform of L) (~)Uy(5)Us(s). Finully the shaper can be defined in contistuous time as:

Ay Ay Az16(t) = Ay An Andl — ANY)
+ A A An ot — ATy) = A An Awbll — ATY)
A Anp A d(l — AT ~ ATy)
Wylaly = (47)
+ARAnAnd(t - ATy — ATy)

-"A“Agg,“g-)(&“ - A?wz — A’T:;)

+A12A'_)2/{32<5(f — AT) - A?z — AT3)




Equation 4.7 shows that there are eight impulses resulting from the polynomial expan-
sion of three first order polynomials or 2" impulses where 7 is the number of modes present
in the system. It also shows that the impulse times are not equally spaced for the convolved
solution, which is inconvenient if it is to be implemented as a digital filter. A solution to
this problem is presented 1n sections 4.3 and 4.4. Figure 4.1 shows the impulse amplitudes
and times for equation 4.7 and figure 4.2 shows the response to the shaper designed for
all three modes. Since the system parameters for simulation are known exactly, the shaper
designed for all three modes completely eliminates all residual vibration. "T'he parameters
have been verified expenmentally, but it is unlikely that they do not vary from the simula-
tion model. Therefore, a second order shaper will be designed for all three modes to ensure

a more robust output.

4.2 Derivation of a Second Order(ZVD) Input Shaper

Before finding a shaper that compensates for all three modes, the individual shapers are
derived. The impulse amplitudes for a second order input shaper arc defined for the /'
mode as shown for the first order case in section 4.1. For the three impulse case the impulse

amplitudes and times are defined as:

1

A‘- = - 0y AT, = () .

: l+21\;+/\f : (4.8)
2K, . T

P — — (e A']I) = — <
L4 2K, + K2 T w1 -2 (4.9)
Az = -——h— W AT = 207 (4.10)

142K, + K? : b ‘



Second Order(ZVD) Input Shaper .

Mode | @ Ay A | A ATy AT ATg !

First | 1| 0.2749 | 0.4988 | 0.2262 0sec | 0.4323 sec | 0.8646 sec |

Second | 2 | 0.2792 | 0.4984 0.2224}03-@ 0.1568 sec | 0.3136 sec |

4

| Third |3 02639 | 04996 0.2364 | Osec | 0.1083 see | 0.2166 sec |

Table 4.2: Impulse Amplitudes and Times For Second Order Shaper

where K is sull defined by equation 4.3. Again, the system parameters are used 1o
calculate the impulse amplitudes and times. The result for the closed loop plant ts shown
in table 4.2. With the individual input shapers derved the convolved solution can be deter-
mined. The procedure to find the convolved solution will be briefly covered again.

The continuous time representation for a second order input shaper contains three im-

pulses and can be expressed as:
wi(t) = And(L) + And(f — AT) + A;30(t - 2A7T,,) (+.11)
The Laplace transform of equation 4.1] is:
Vi) = Ay 4 e s o Ay B0 (4.12)

The polynomial expansion of three sccond order input shapers results in a nmpulse se-
quence with 27 ympulses and a duration equal to the sum of the three individual shapers(2A 7/, 4
28Ty, + 2ATy,). The result is defined by cquation 4.13. For the three impulse case the

number of impulses for the convolved solution is 3", where 1. is the number of modcs.
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U Uply ==

A Aay And(t)
+ A1 A0 A518(8 — ATy2) + Ayyday Aq 5(t — 2AT,)
+ AL A And(t — ATs) + Ay Az An 3¢ — 28Ta)
+ A1 Ao Agad(t — ATw) + Ay Ay Agad(t — 2AT3,)
A A Agdil — ATay = 2ATy,)
+ AN A Azad(t — ATy — ATy)
A Agb(l = 28T s — 2AT)
+ A3 A Az 0t — 2AT s — ATy}
s Ara Aoy Agad(F - 24T, — 2ATy,)
+A13 A0 Aza0(t = 2AT\y — ATys)
+ A9 423450t — ATa — 20Th)
A A Az dt — ATy, — ATys)
+ A1 A Agsd(1 — AT — 2A7T75,)
+ AN A And(t — 20Ty ATy,)
+ A An And (L — ATy, - ATy)
Ay A Aggdlt — 20T — 2A7T5y)
+ A Auz A5a8(t — AT1s - 2ATss ~ AT5)
4 A Agy Agzo(t — ATyy — ATy — 207T3,)
+ 41242 Az0(f — ATy — ATy - AT}y)
+ A3 A2 Aad (L — 24T 0 AThy — 3ATy,)
< Az AgaAsd(t — 24T\ — ATy - AT3)
+ ArsAng Aasd(t — ATyy — 20Ty, — 2ATw)
+A13 A2 ARd(t - 20Ty, - 20T — ATyy)

+A13A23A330(8 — 20T\ 5 — 24T, — 2ATy)
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4.3 Digital Two Mode First Order Shaper

A modified discrete time method of first order(ZV) input shaping is derived in this section.
The first order(ZV) and second order(ZVD) input shaperys could not be verified experimen-
tally. and can not be implemented as a digital filter for the multiple mode case. Those
limitations motivate the need for a discrete time method. Two cases are considered, second
mode modified and third mode modified. The input shaper for the first mode remains un-
changed for both cases since it hus been shown to be the dominant mode. The procedure
for both cascs is identical and will be presented simultaneous]y.

The idea of this modified technique is to change the parameters((y; & wyg) of the
second or third mode such that the impuise time of the first mode is an integer multiple of
the impulse time of the second or third mode. For the torsional system, only two modes
will be inciuded in the design of this technique either the first and second(1/2) or first and
third(1/3). Using the impulse times shown in table 4.1, the integer mufuples for 1/2 case
and 1/3 case are found to be 3 and 4, respectfully. The integer multiples are chosen such
that the change in the impulse times(A7;, and ATy,) are minimized. The modified trmes

for each case are shown below:

mATar = ATya/3 = 0.1441 (4.14)

HlATgQ = AT[Q/’-; = 0]“8075 (415)

The procedure for the case when the second mode is modified is presented. Using
the modified time for the second impulse, mAT,,, the natural frequency and dumping
ratio of the second mode ure modified with equation 4.16. The frequency is changed such

)
that (—:’HT) is less than one. Then the modified damping ratio is calculated using

equation 4.16.
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r————————
méy = (/1 — T (4.16)
v mwy X mATy '

The integer multiple i determined by hund but the modified frequency and damping

ratio is found using the following portion of a MATLAB script. This works for the case
when the modified time is less than the original time. requiring the frequency to be in-
creased. Also, the script minimizes the vanation in the natural frequency but ignores the
variation in damping ratio. since emrors in frequency have been found to be more significant

than errors in damping.

mT_22=T_12/3;
mw2=Wn(3,1);
counter=0.0001;
templ=(pi/ (mw2*mT_22)}"2;

while templ > 1

templ=(pi/( (mw2+counter) *mT_22)) 2;

counter=counter+0.0001;

end
mw2=mw2+counter;

mzeta2=sqgrt(l-(pi/ (mw2*mT_22))"2);

With the modified paramelters known the impulse amplitudes can be calculated for the
second mode and the equations for both input shapers can be found. Let the sampling
period of the digital filter be,

T = mATy (4.17)
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Now the input shaper equations for modes | and 2 can be found using the same sam-
pling pertod. The input shaper for each mode is first expressed in the time domain. Then the
sampling period is substituted for the time delays. The laplace transform of the time domain

representation is found and then mapped the discretc frequency domain using = e’*,

H-)(t) = Aud(t) + 41_)0“ - A?}_)) : .“1116([} + 44126(f - -.))’]‘) (4[9)

l.’yl(.)') = /‘in + /4126—37-" (420)

Anz® + Ay
Uy(z) = Ay + A]Ql_s = 32 3§ 212 (4.21)

~
.

The mod:fied first order input shaper tor the second mode:

mata(t) = mAs (L) mARSt ~ mATy) - Ay (1) + mAys(t — T) (4.22)

mUa(s) — 1inAgy - nAgpe 7" (4.23)

mUy() = mAgy Ayt = ST (4.24)

Equation 4.21 and 4.24 are used in SIMULINK as cascaded digital filters with the

same sampling period. Multiplying the result of the equations is not neccssary because
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passing the un-shaped command signal through each filter is equivalent. Simulation and
experimental results are shown in figure 4.6 and figure 4.7, respectfully.
The derivation of the input shaper for modes 1 and 3 is similar to the previous case. The

sumpling period for this case 1s the impulse time for the modified third mode.

T = ATy (4.25)

AT = ATy (4.20)

Now the input shaper equations for modes | and 3 can be found using the same sam-

pling penod.

Nl({) - /‘1“5(t} -+ ,‘1[26(’, - AT]Q] B 4115“) + /‘1|'_7(S(f - 47‘J (427)

Uy(s) = Ay = Aye 77 (4.28)
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Ul(f}) = An + .4122 4 = -——i—— ———— (429)

mwg(t) = mAz () FimAzpd(t — mATse) = mAyd(4) + mAqgd(i = T) (4.30)

mlls(s) = mAg +mApe (4.3])

mAz 2+ mAsz,

mls(z) = mAz + mApz™" = - (4.32)

~
<

Figure 4.6 also shows the simulation results for the first and third modified mode input

shaper. Figure 4.8 shows the experimental results for this case. Figures 4.7 and 4.8 show

that desigming for the first two modes results in less residual vibration. This result is ex-

pected since the first two modes dominate the response of the system with respect 1o the

third mode.
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4.4 Digital Two Mode Second Order Shaper

The derivation of the modified second order input shaper is identical to the first order case
with a couple of exceptions. An additional impulse is added to each impulse sequence and
the time duration of cach sequence is doubled.

The second order input shapers for the first mode and the modified second mode are

defined as:
. Anzt A4
U](Z) = A“ -+ Algz“s + /1]32_0 = n A(lsl = (433)
MmAs 22+ mAsyz -t mA
mUy(z) = mAqy + mAp:z ' + mAyz = 2t = B 2 (4.34)

~

The second order input shapers for the first mode and the modified third mode are

defined as:

/\“Ibl 1- Au:.] i /1[_‘;
-8

(=)= Au + Azt + Az 8 = (4.35)

) B . mAg 22+ mAps + mAg
mUs(z) = mAg +mAgz ™ +mAzyz 20 et — (4.30)

The input for both cases is shown in figure 4.9 along with the un-shaped input and (he
input designed from Singer’s continuous time technique. Figure 4.10 shows the system
response for the inputs shown in figure 4.9. Experimental results for the 1/2 case and 1/3

case are shown in figure 4.11 and 4.12. respectfully.
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Chapter 5

Discrete Time Zero Placement

Technique

Using Tuttle’s technique allows for the design of single or multiple mode input shapers with

relative ease. Since the torsional plant is multiple mode system all input shapers designed

in this chapter will be multiple mode input shapers. The shapers will vary in order of

robustness selected for a particular mode. Before any shapers cun be derived the input

shaper ceros must be determined using the system’s natural frequencics and damping ritjos

(W1. CLe Wia. Can wp3.Cy). To avoid confusion, the variable for un-dumped natural frequency

changes because this technique uses both the un-damped and damped natural [requency.

"= e T ggean ™ (5.1)
= p@aT =T (5.2)
o =0 —-ui,».a-‘..:'['(,,)w'u.*;r (53)
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pi — e_'\"-’“-'nJTP")Wd)T (54)

PR A NURY &
pa=e el (5.5)

1)5 e (:‘w'u(Tf,‘)u'd.«T (56)

The sampling period(impulse spacing), 7', of the input shaper will be determined de-
pending on the order of the input shaper, the desired impulse amplitudes, and the maxi-
mum time duration of the input shaper(if specified). The total time duration is a function
of the sampling period and the number of impulses. The user must determine how much
time delay in the system response s acceptable. Each subsequent section will present the

derivation of a particular order shaper. simulation results, and experimental resuits.

5.1 Derivation of First Order Input Shaper

A first order discrete time shaper is derived by placing one pair of complex conjugate shaper
zeros al the system poles. The shaper zeros are found using equations 5.1.5.2. 5.3, 5.4.5.5,
and 5.6. The discrete representation of a first order input shaper for all threc modes 1s
defined by equation 5.7. The shaper is not completely defined because the sumpling pesiod

has not been selected.

(o —p)lz = pz = p)ls = pi)z = pa)(z — p3
H(?) = Clz lll)(— P! l’:‘)s( ]’J( /)JJ( D3) (5.7)

The sampling period cannot be determined in the form that the shaper is represented in

equation 5.7. Several steps will be outlined to find the sampling time, which determines
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the impulse amplitudes and times. First, the individual polynomials must be expanded tv
find the coefficients of the input shaper. Expanding the first order polynomials in equa-
tion 5.7 results in a sixth order polynomial that compensates for all three modes shown in

equation 5.8.

C(® + a2 4 ays* + 0323 + agz® + asz + ag)

H(z) == ~

(5.8)

The discrete transfer function in equation 5.8 can be represented as a polynomial by

dividing the numerator with the denominator. The result is shown in equation 5.9.

H(z) = Clz4+ayz " 40027 magz ¥ v age a2 + agz") (3.9)

The polynomial expression in equation 5.9 is mapped 1o the Laplace domain using

z = e and the result is shown in equation 5. 10.

4T -5Ts

s TSy T e + nge 1 (5.40)

3

h(t) = M1+ are™ + aye” Fage”

To find the continuous time representation of the input shaper the inverse Laplace trans-
form of equation 5.10 is found. The result is shown by equation 5.11. The input shaper
impulses are equally spaced over integer mulliples of the input shaper sampling period, 7',

and the first impulse at time equal zero.

O(t) - ayd(t = T) - ard(t = 27) + wsd(f — 37"
h(f) =C (51])
+ayb(t - AT} -+ wgd(t — 5T) + agd(t - 67)
The coefficient, ', is determined when the sampling period and the impulse amplitudes

arc defined. For this case (" 1s defined by equation 5.12:

C=(1+ay+0s+az+uy+ag +ag)? (5.12)
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Figure 5.1: First Order Zero Placement Shaper Amplitudes

The sampling time, impulse amplitudes, time duration, and normalization coef{ficient
are determined by plotting the impulse amplitudes versus the samphng period. The sam-
pling period can be selected as the shortest sampling period that yields all positive impulses
or 1t can be any sampling penod that yields all positive impulses. Figure 5.1 shows the im-
pulse amplitudes for the closed loop discrete time plant for an arbitrary riange of 7.

Using figure 5.1. 715 selected to be 0.125 for simulations and experiments. A samphng
period smaller than 0.125 would yield all positive impulse amplitudes, bul experiments
have shown that less aggressive(lurger impulse spacing) input shapers have hetter perfor-
mance. The simulation response and experimental response for 7 = 0.125 are shown in
figures 5.2 and 5.3, respectfully.

A first order discrete ime input shaper can completely eliminate residual vibration in
simulation but stili causes vibration experimentally. Shapers will be derved to reduce the

level of residual vibration.
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5.2 Derivation of Dominant Mode Robust Input Shaper

The slowest system mode contribules the largest amplitude of residual vibration in the
systemn response. If all three modes are approximations and the first mode is the dominant
mode, then the order of robustness of the portion of the shaper designed 10 eliminate the
dynamics due to the first mode can be increased. This is done by adding another sct of

complex conjugate zeros on the system poles of the first mode(¢; & wy).

- Clz —p1)2(z = p1)2 (2 = pa)(z = p3)z — p (= — p3)

-8

-

H(z (5.13)

Eqguation 5.3 shows that adding shaper zeros only requires the power of a complex
conjugate pair to be raised to the desired order. In this case the order for mode one is 1wo
or my = 2, and the order for modes 2 and 3 is one or n, = n3 = 1. The same procedure,
as previously described. is used to find the input shaper sampling period and the impulsc
amplitudes. Using figure 5.4, the sampling period was selected as T = (.140 seconds.
Figure 5.5 shows the simulation response and figure 5.6 shows the experimental response
of the “robust dominant mode” input shaper.

The “"dominant mode™ shuper reduce the level of residual vibration compared 1o the firsi
order input shaper. A second order input shaper will be derived to investigate the cause of

the residual vibration remaining in the response of the "dominant mode” input shiper.

5.3 Derivation of Second Order Input Shaper

A second order shaper for all three modes is designed to compensate for parameter variation
of the dominant mode and the relative high frequency modes. Two input shaper zcros are
placed at each system pole or ny .= n; = nsz = 2. This results in the shaper shown in

equation 5. [+
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_Cle=p) (s = p)' 2 = p2)*(z = p3)* (2 — pa)*(2 — p3)°

.12

H(z) (5.14)

Equation 5.14 shows that the causality constraint is still met. This is donc by setting the
power of the denominator equal to the overall order of the numeralor or » = 2(a, + 122 4 ny).
The closed form solution of equation 5. 14 is not (found, instead 1t is multiplicd in MATLAB
using conv for a range of sampling periods and plotted for that range. Figure 5.7 shows the
impulse amplitudes for equation 5.14. The sampling period for this shaper is set to 7" =
0.125 seconds so a direct comparison can be made between the first order shaper and this
second order shaper. The simulation results are shown in figure 5.8 and the experimental
results by figure 5.9. Figure 5.9 shows that there is no reduction of residual vibration when
compared to the "dominant mode™ input shaper. This verifies that the first mode dominates
the response and that if more reduction (n residual vibration is required a more robust input

shaper for the first mode must be implemented.
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Chapter 6

Extra-Insensitive and Negative

Time-Optimal Input Shaping

This chapter outlines the derivation of several input shapers designed and implemented in
continuous time. The shapers will again be convolved with 4 unit step input function to
illustrate point-to-point control. Only simulation results will be shown for the techniques

presented in this chapter.

6.1 Extra-Insensitive Input Shaping

The results of the previous input shaping techniques show that there is some parameter
vartation evident when first order(ZV) input shaping was implemented. Extra-Insensitive
mput shaping will be used to reduce residual vibration over a larger region of frequencies.
Since One Hump EI input shapers have been shown to have the same time duration as a
second order(ZVD) input shaper the results from the two input shapers will be compared.
A One Hump EI input shaper has three impulses and can be defined by equation 6.1.

The level of residual vibration will be set to the maximum allowable level of V = 5%.
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’U(_t) = .4.1(5(15 - T;.) + ,42(5(1 - Tg) + A35U - T3) (6.1)

The impulse amplitudes and times arc defined by the curve fit equations 2.49, 2.50,
251, 2,52, 2.53, and 2.54. The first impulse, 4,, is st)l implemented at 7 0. The
impulse sequence is determined by plugging the desired level ol residual vibralion and the
system paramelters into the equations for Ay, Aa. Az, 71, T, und Ty, The response for
the closed loop system with PD control is shown in figure 6.1. The input shapers werc
found for each mode separately and then convolved for the multiple mode case using the
same procedure presented in chapter 4. This techntque cannot be implemented as a digital
filter for either the single mode case or the multiple mode casc because the impulse limes
are not cqually spaced. Therefore. the robustness of this technique could not be verified

experimentally.
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6.2 Input Shapers with Positive and Negative Impulses

Several negative time optimal input shapers are derived in this section using Singhose's
look up table method. The technique develaped by Singhose. Scering. and Singer is lim-
ited to single moede design and has been shown to excitec un-modeled high frequency dy-
namics. Therefore, an attempt is made to convolve negative time optimal input shapers in
stmulation.

First the single mode case is considercd to study the effect of the un-modeled high
frequency resonances on the system response to a unit step input. Both the Unity Magnitude
and Partial Sum input shapers will be shown in this section. There are three impulses in a
sequence for ZV negative “time-optimal” input shapers and the impulse sequence is defined

by equation 6.2.

Ll(f) = A]J(f - Tl) “IQO(t. - T-_)) + 43(5(! - Tg) (62)

Table 2.4 shows the curve fit solution for the unity magnitude and partial sum tech-
niques. Both the zero-vibration(ZV) and zero-vibration-derivative(ZVD) are shown in ta-
ble 2.4, The ZVD solution adds two more impulses to the input shaping sequence and il 15

represented by equation 6.3.

a(1) = Ay6(t = Ty) + Aab(t - To) + As6ll — T3) + Asd{l — Ty) + Asé(t Ty} (6.3)

The unity magnitude or partial sum input shapers are determincd by plugging the sys-
tem parameters into table 2.4 and for the input shaper with either egquation 6.2 or 6.3. Only
the ZV shapers are considered in this section. Again the shapers are derived for each mode
and convolved 1o find the multiple mode solution. Figure 6.2 shows the system response for
the UM-ZV shaper and figure 6.3 shows the response for the PS-ZV shaper. Both figures

show that the single mode shaper for any mode results in a Jarge level of residual vibration.
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Figure 6.2: UM-ZV Shaper Simulation Response

When the input shapers are convolved residual vibration can be eliminated but the inputs
for multiple mode UM-ZV and PS-ZV shapers will excecd actuator limits in a real sys-
tem. Violation of actuator constraint is caused by a shaped input that exceeds the desired
output for the UM-ZV shaper and impulse amplitudcs that are greater than 1 and less than
—1 for the PS-ZV shaper. The UM-ZV and PS-ZV input shapers could not be evaluated

experimentally for these reasons.
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Chapter 7

Implementation Method

The ECP Executive software package was used to implement the shaped inputs on the
hardware. It allows easy changes in the input shape and duration, and ulso control algo-
rmthms that can be easily tuned. The ECP Executive offers both a continuous ttme control
algorithm and a discrete time control algorithm. Since computer controlled machines are
not continuous. the digital control algorithm was the most realistic choice lor designing a

controller. The PD controller used in simulation and experiments is shown in equation 7.1.

Golz) = (I, + Ky) = Ky (7.1)

[n simulation, setting the gains is straightforward but in the ECP Exccutive there are
a couple of ways to implement the control. The first way is to set the gains in the PID
dialog box provided by the ECP Executive. The second way is lo use the general form of
the control algorithm and set the gains of a discrete polynomial, where /%, - K, + Ay and

E, = — K, for cquation 7.2.

E\(fl) =K+ EQZ—] (7.2)

For either method the desired feedback(encoder |, 2, or 3} should be selected and the

sampling period, T%.. should be selected for the contro) algorithm. Every discrete poly-
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nonual (n the general form of the control algonthm is executed at the selected sampling
period. This became a problem when nput shapers were implemented on the Torsional
Plant as a discrete filter because the sampling rate has to be set to the impulse spacing for
the mnput shaper. If the sampling period is not set to the input shaping filter then the de-
lays for the impulse sequence will be incorrect making the input shaper ineffective. When
the sampling period was sel to the filter delay time. the system went unstable when the
control algorithm was implemented. All the delays for each shuper were greater than the
minimum sampling rate, 7, = 0.884ms. Therefore, none of the techniques presented were
implemented experimentally us a digital filter. The cause of this issue is not known at this
time.

The solution to the digital timing issue was to use the user defined trajectory option
in the ECP Executive program. Trajectory files are in text format but saved with a ".trj”
extension. The first number in a trajectory file defines the number of points in the trajectory.
The following numbers define the trajectory in either counts, radians, or degrees. The
software allows the user to select the vnits for either user defined inputs or ECP Executive

inputs. An example trajectory file is shown below:

The number of points in the sample trajectory file is five and the trajectory moves from
zero 10 five. The time interval of these move limes is the segment time selected in the
user defined trajectory dialog box. The scgment times can be selccted to within Ims of

user's desired time interval. Inputs become less accurate as the segment time approaches
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the minimum sampling period. 7 = 0.8%4ns. Also, trajectory files can have no mare than
275 points. This prevented any of the input shaping techniques designed in continuous
time from being tested experimentally. Input shapers designed in simulation as digital
hlters could be implemented on the ECP hardware because the segment time was equal
to the filter delay 1ime. The filter delay time was always much larger than the minimumn
sampling period.

The output of the input shapers in simulations are used to create the trajectory file and
the segment lime is set to the impulse time spacing for input shapers that have equal time
steps. The trajectory files were created in MATLAB using the “File input/output” functions.

Below is an example of how to create a trajectory filc in MATLAB:

MAG=input {’'Enter the Magnitude of the Input’)
fid=fopen(’Sample.trj’, ‘'w’);

length=size (u);

fprintf (£id, "%f\r ', [length(l,1);MAG*u(l:1:1ength(l,2))]);

fclose (fid) ;

The inpur command prompts the user to enler Lthe desired magnitude of the input at
the MATLAB command window. To create a file the fopen command writes a file called
Swnple.trj, with write permissions('w’), in the present working directory and creates the
file identificr. fid. The number of points js determined by the length of the input crecated in
SIMULINK and length=size(u) finds the length of the input. «. It isthe user’s responsibility
to verify that the number of points does nol exceed 275. The data is written to the file
by fprint, where fid identifics the file. The data is written as floating point numbers, %/,
separated by retumn charactess, r. The fclose command closes the fle 1dentifier assigned to
the trajectory file. All experimental data shown was generated using trajectory filse created

with "File input/ourput” functions in MATLAB.
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Chapter 8

Comparison of Techniques

This chapter will cover the factors that determine the performance of the input shapers de-
signed in chapters 4, 5, and 6. Tt will also provide comparison tables so thuat equivalent
shapers can be evaluated and discuss some of possible causes for differences in perfor-
mance. [t should be noted that the solutions that Singhose(chapter 6) derived for Extra
Insensttive and Negative "Time-Optimal™ input shapers are curve fit approximations. Ta-
blc 8.1 outlines the criteria used to compare and rate the input shapers.

For comparison purposcs, it is necessary to formulate a list of the input shapers designed

for the Torsional Plant.

1. First Order(ZV) Singer Input Shaper

o

Sccand Order(ZVD) Singer Input Shaper

3. Discrete Time Modified Input Shaper Using Singer First Order Constraints

4. Discrete Time Modified Input Shaper Using Singer Second Order Constraints
5. First Order Discrete Time Shaper Using Zero Placement for All Three Modes

6. First(All Modes)/Second(Mode 1) Order Discrete Time Shaper Using Zero Place-

ment
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Criteria

{
" Towal Time(Duration)

i

Number of Impulses

[
Order or Level of Robustness

| Calculation Difficulty f
|
f

Digital or Continuous Time Derivation |

" Single or Multiple Mode Capability |

| Relative Performaunce on ECP Hardware ‘

Table 8.1: Critena for Comparison of Input Shapers

7. Second Order Discrete Time Shaper Using Zero Placement for All Three Modes

8. Unity Magnitude Input Shaper for Each Mode Individually and All Three Modes
Combined

9. Partial Sum Jnput Shaper for Each Mode [ndividually and All Three Modes Com-

hined

]0. Extra-Insensitive Input Shuper for Each Mode Individually and All Three Maodes

Combined

With the exception of Tutile’s technigue outlined in chapter 3, ull the input shapers
were designed m continuous time. For a single mode, 1t is easy (o wnplement an input
shaper designed in continuous hime as a digital filter using Singer’s method. This works
because a single mode input shaper of any order designed with that method has equally
spaced time intervals. The ime intervals determine the sampling period of the digtal filer.
Section 4.4 showed that 1t the purameters of non-dominant modes are ahered shightly such
that individually designed shapers have a tme interval that is an integer multiple of the

fastest input(shortest duration) ume delay. then the muluple mode input shaper can be
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implemented as a digital filter. Also, there is no need to convolve the input shapers because
they can be organized as a series of cascaded filters with the same sampling period.

Singhose’s curve fits for Extra-Insensitive. Unity Magnitude. and Partial Sum input
shapers are not designed to yield equally spaced time intervals. Therefore, they cannot be
implemented as a digital filter even for a single mode. Also, Singhose’s methods for Nega-
tive “Time-Optimal” input shapers are not designed 10 compensate for multiple modes in a
system. Simulations did show that multiple mode input shapers with negative impulses can
eliminate residual vibration but the piot of the mmput shows thal there are numerous points
where the impulse ampliwudes exceed 1 and —1. This will violate actuator constraints if the
un-shaped input saturates the input. Only impulse sequences with all positive impulses can
guarantee not to violate actuator constraints given that the un-shaped input does not exceed
actuator limits. The Extra-Insensitive input shapers can be used to compensate for multiple
modes, but the continuous time input shaper must be transformed into the Laplace domain
1o elimunate the difficulty of convolution.

Tuttle’s input shaping technique 1s derived in the discrete time domain for multiple
modes, which makes it easy to implement sincc it is already a digital filter. Afso. robustness
is added by increasing the number of zeros used to cancel the system poles. Another
significant trait is that it allows the user to select the desired sampling time for the filler.
Therefore, the filter can be tuned to minimize the level of residual vibration. There is no
need to convolve this shaper with another shaper since it is already designed for multiple
modes and it also does not have to be convolved with the un-shaped input. The un-shaped
inpul can be passed through the filter and the output of the filter is the shaped command
signal.

Table 8.2 shows the simulation and experimental results ol the listed techniques. Ex-
perimental data could not be acquired for the lechniques implemented in continuous time
in simulation. Both of Singer's methods used completely eliminate residual vibration in

simulation but a second order shaper for all three modes results in an input shaper with
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27 impulses. A second order ynput shaper using Tuttle’s discrete time technigue only has
[3 impulses, and is shown to eliminate residual vibration in simulation and reduce it ex-
perimentally. In general. input shapers with fewer impulses are easier to implement. A
first order input shaper using Tuttle's method shows that parameter uncertainty exist be-
cause a shaped input using this method resulted in a settling time 2 seconds slower than
the sirmulation results. Results from Tuttle’s second order input shaper and 1*/2"¢ order
imput shaper show that adding robustness to the first mode results in a faster rise time. They
also show that adding robustness to the second and third mode did not improve the settling
time. The modified method for multiple modes shows that if Singer’s method is altered
then it can be implemented as a digital filter and it results in fewer impulses. The modified
shapers for the first and second mode improve the settling time, but don’t perform as well
as Tuttle’s method. Designing a shaper for the first and third mode showed that ignoring
the second mode will result in a larger level of residual vibration than when the third mode
is ignored. Sinhose’s One Hump El shaper allows for some restdual vibration at the system
parameters and it results in a slower settling time. Singhose’s negative time optimal inpul
shapers were implemented for all three modes in simulation and showed thal they can sig-
nificantly reduce residual vibration. They would however cause the fimits of the actuators
to be exceeded.

Tuttle's method and the modified method were the only ones that could be experimen-
tally tested. Both improved the system response but Tuttle's method resulted in betler

performance than the modified method.
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Com

parison Table 5
| Input l Shaper éNumber ‘ Sim. Sin: i Exp. | Exp.
Shaping Time Of ; Rise | Settling | Rise = Settling
Method __”]_Jﬂi_l_ti_f_m__ImP_UIS_C__i_Time Tm_w Time Timcm_j
| Singer First Order 0.6974 : 8 ‘ O_:57S 0.528 | N;_A‘ | N/_A' E
Singer Second Order 1.3948 i 22 j l.2l()w_ l_lv26 N_/A'___I\I/_A' _
Singhose Onec Hump EI 1.3948 27 ‘ 1.306 | 3.368 | N/A! N/;\' ‘
Singhose UM-ZV '| _0.4650 27 O._7_18 0.358 | N/A* ' N/A?
Singhose PS-ZV 0.4086 27 0.64_6_1 3_5(; I:/A_ __N_/Tf\z_
Tuattle First Order 0.75 7 0.624 0.S7i : 0794; ! 2591 |
Tuttle Second Order | ~.l 50 13 1—290 CL192 | 1137 | 1.875
_Tuttle 1;2”_()._0;der ‘ 1.12 9 0.984 | 0.935 : _6:929 1.695
Mod.(1/2) Fi-r‘;t’;)rder ) 0.5764 S 0.440 | 2.031 | 0772 | 3401 |
Mod.(1/3) First Order 0.5404 6 0.387 | 2.006 ) (0.458 | N/A'
—Mod.(l/'l) Sccond Order | 1.1528 9 [.042 .().985 1 0.925 2.5‘)-
i Mod.(1/3) S;_-cco_nd Order 1085)_7 | _‘l-l“ ]0_920_ 8?78__()88—()—] 4.1606 |

Table 8.2: Table of Simulation and Experimental Results

"nput Trajectory Files Exceeded 275 Points because of Time Step Limitations

‘Input Trajectory Files Excecded 275 Points because of Time Step Limitauons and Actoator Limit Lx-

ceeded by Shaped Input Trajectory File

'Expersmental Settling Time Greater than S Seconds
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Chapter 9

Conclusions

Several previously developed input shaping techniques have been outlined and imple-
mented on the Torsional Plant. Simulations verify that input shaping in any form can
completely eliminate all residual vibration from a system response ta a step input. if an ac-
curate model is developed then low order or robust shapers can be effective. Experiments
showed that the mathematical model derived in chapter 3 is not exact and that there must
be some vanations in the system’s parameters probably due to un-modeled nonlincur dy-
namics. Shapers designed for more robust performance showed that the significiince of the
vanations can be accounted for in the design of the impulse sequences. Experiments also
showed that input shapers implemented as discrete fillers are more easily implemented in
thc ECP Executive software because the impulse times are the sampling period of the filter.
Some of the limytations of the software effected the accuracy 10 which the input shapers

could be implemented.

9.1 Contributions

A new technigue based on Singer's method was developed to implement input shapers de-
signed in conlinuous time as digital filters for multiple mode systems. The motivation of

this technigue was that implementing input shapers as blters is simpler than the implemen-
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tation of continuous time inputf shapers. As previously stated, the un-shaped command
signal is passed through(multiplied) the digital filter and the output of the filter became the
new command signal. This method eliminated the requirement of convolving input shapers
to form a multiple mode input shaper. The digital filters were cascaded to perform the same

task.

9.2 Future Work

The trajectory files were not implemented with 100% accuracy because the inputs have
decimal remainders that the ECP Executive truncates to integer multiples of one count.
since the encoders are not capable of reading in between two counts. Also, several input
shapers required a small segment time relative to the minimum sampling period, 7,. This
causes the impulse times to be inaccurately located. These two effects are detrimental to
input shapers because the shaper times and amplitudes of a sequence are what reduces
residua) vibration.

All computer controlled machines will have similar limitations since it is nol possible
for them to be continuous. Therefore, the cffects of quantization and digital timing on irput

shaping techniques are imporiant lopics for future research on input shaping.
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Appendix A

MATLAB Codes(Model Builder and

Mode Finder)

A.1 model.m

55553 %%%%%%%% MODEL BUILDER ¥%%¥3¥3%¥%35383%%%

%%%%%%% 3 DOF System %%%%%%%%

% Transfer Function

J1=0.01063;J2=0.01063,33=J2;
c1=0.027;c2=0.002;c3=c2;

k1=2.76;k2=2.76;k3=2.76;

Nl=gf* [J2*J3 (J2*c3+J3*c2)J2*k3+J3*(k2+k3)+c2*c3)
(c2*k3+c3* (k2+k3) ), k2*k3]);

N2=sf*k2*(J3 c3 k3];

N3=sf*k2*k3;

N=(N1;(0 0 N2};(0 O O O N3],;

D=(J1*J2+*J33, (J1*J2*c3+J1*J3*Cc2+J2*J3*cl), ...
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(JL* (J2*k3+J3* (k2+k3)+c2*c3) ...

+J2*(J3* (k1+k2)+cl*c3)+J3*ci*c2),

(TJL*(c2*k3+c3* (k2+k3))+J2* (c1*k3+c3* (kl+k2))
+J3* (cl* (k2+k3)+c2* (kl+k2) )+cl~c2*c3),
J1*k2*k3+J2* (k3* (k1+k2))+I3* (kl1*(k2+k3)+k2*k3)
+cl* (c2*k3+c3* (k2+k3))+c27c3* (kl+k2),
cl*k2*k3+c2*k3* (kl+k2) +c3* (k1* (k2+k3)+k2*k3), ...

k1*k2*k3);

% State Space Model

Al=(0 1 0 0 0 O];

A2=[-(k1l+k2)/J1 -cl/J1 k2/31 0 0 O0];
A3={(0 0 0 1C 0]:

Ad4=(%2/32 0 -(k2+k3)/J2 -c2/J2 k3/J32 0}
a5={0 0 0 00 1};

A6=(0 0 k3/J3 0 -%k3/J3 -c3/33]);
A=[Al;AZ2;A3;A4;A5;A6);

B=(0 1/J1 0 0 0 O 1}~

C=[0 0001 0};

DD=0;

A.2 mode.m

% The following finds the natural frequencies and mode

of

shapes (eigenvalues and eigenvectors) of the system.
% You must first run "HModel Builder"' to obtain “"A".

¢ Fregquencies are in Hz.
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% Mode shapes follow the same order as the Frequencies &

% are approximate because of non-proportional damping.

[U,wn)=eig(a);U=real (U};

%Calculate the Open Damping Ratios, d

(Wn,Z}) = damp(ss(A,B,C,DD));

%Calculates the Fregquencies in Hz

wn=abs {wn) /2/pi;

% Use the following for 3 DOF systems
Freqg Hz=(wn(l,1);wn(3,3);wn(5,5))

Freg _RadPerS=Freq Hz*2*pi
Modes=[(U{1,1);U(3,1);U(5,1)]/0(1,1},
(U(1,3);0(3,3);0(5,3))/0(1,3), [U(1,5);

U(3,5);0(5,5)]1/0(1,5))

A.3 Discrete.m

%Find Discrete Time Model and Mode Shape
ZDiscrete.m

%$Script That Creates the Model

model

%Simulink Model that is used in dlinmod

$Open Loop State Space PD Control Model

open OLSSPDModel
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Ts=0.000884*int;%0.884ms is the minimum Ts
$Continuous Time Open Loop System Matrix
sysc=ss({A,B,C,DD);

$Discrete Time Open Loop System Matrix
sysd=c2d(sysc,Ts) ;

$Discrete Time State Space Matrix

(Ad, Bd,Cd,Dd, Ts] =ssdata{sysd);

%0Open Loop State Space Model with PD Contxrol
[Adt, Bdt,Cdt,Ddt]=dlinmod( 'OLSSPDModel’, Ts) ;
%$0pen Loop System Matrix with PD Control
sysdt=ss (Adt,B4t, Cdt,Ddt, Ts) ;

%Closed Loop System Matrix with PD Contxol

sysdtcl=feedback(sysdt, 1) ;

$Determine the damping ratio and natural

$frequencies of the modes

(Wn, 2] =damp{sysdtcl);
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Appendix B

MATILAB Codes(Singer’s Method)

B.1 DisPlantFirstOrderCLPD.m

%lst Order Input Shaper for Closed Loop System
¥With PD Control

$DisPlantFirstOrderCLPD.m

$Change to the Correct Directory
cd c:\Research\SingerShaper
%Clears All 0l1d Variables

clear all, close all

$Clears Command Prompt

clc

$PD Control Gains

Kp=0.06;

Kd=0.75;

2Sampling Time of the ECP System
int=1; %Used To Specify Sampling

%in Integer Multiples of
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%the minimum Ts
%Build Discrete Model
Discrete
%lst Order Input Shaper for CL System for First Mode
$Damping Coefficient and System Natural Frequency
zetalc = 2(1,1);
wlc=Wni({l,61):
Klc = exp(-zetalc*pi/sqrt(l-zetalc™2));
deltaTlc = pi/{wlc*sqgrt(l-zetalc™2));
%First Impulse at Time=0
A_llc = 1/ (1+Klc);
$Second Impulse at Time=deltaT
A_1l2c¢ = Klc/(1+Klc);
%$1st Order Input Shaper for CL System for Second Mode
$Damping Coefficient and System Natural Frequency
zeta2c = Z(3,1);
w2c=Wn(3,1);
K2c = exp(-zeta2c*pil/sqrt{l-zeta2c’2));
deltaT2c = pi/(w2c*sqrt(l-zeta2c™2));
$First Impulse at Time=0
A_21lc = 1/{(1+K2c);
$Second Impulse at Time=deltaT
A_22c = K2c/(l+KZc);
%1st Order Input Shaper for CL System for Second Mode
$Damping Coefficient and System Natural Freguency
zetalc = Z2(5,1);

w3c=Wn{5,1);
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K3c = exp{-zeta3c*pi/sgrt(l-zeta3c™2));
deltaT3c = pi/(w3c*sqgart(l-zeta3c™2));

$First Impulse at Time=0

A_31lc = 1/(1+K3c);

%¥Second Impuise at Time=deltaT

A_32c = X3¢/ (1+K3c);

%Run DisPlantFirstOrderCLPDModel in Simulink
%This block diagram simulates a step input with
%input shaping for each individual mode
sim(’DisPlantFirstOrderCLPDModel’)

%Stead State value found for closed loop system
[ss,time]=step(sysdtcl) ; temp=size(ss);
ys=ones{size(t)});

ssl=1.02*ones(size(t)}):

ss2=0.98*ones (s1ze(t)};

figure(l)
plot(t,yc/ss(temp(1,1)),* .’ ,t,ylc/ss{temp(l,1)}, """,
t,y2c/ss(temp{l,1)), ' -.’,t,y3c/ss(temp(l,1)}, " --", . ..
t,ycAllMode/ss({temp(l,1)),'-',t,ys,'k-.",t,881, k",
t,ss2,’'k’)

axis({0 1 -0.5 2.5])

title{’Simulation Reponse to First Order (ZV) Input Shaper’)
xlabel (‘Time (seconds) ')

vlabel{‘Normalized Angular Position of Theta 3')

%grid

legend(’No Input Shaping’,’First Mode’', ...

‘Second Mode’, ‘Third Mode’, 'All Three Modes')



figure(2)

plot{t,uc,’.’,t,ulc, ', t,xic,’'-.",,u3c, '--", ...
t,ucAllMode, '-")

axis([0 1 0 1.1))

title(’'System Input with First Order (ZV) Input Shaper’)

xlabel (' Time (seconds) ’)

vlabel (' Input’)

$grid

legend (’No Input Shaping’, ‘First Mode’, ...

‘Second Mode’, 'Third Mode’, 'All Three Modes’, 0)
%2Create the Trajectory file for ECP Hardware Experiments
INOTE : SET THE SEGMENT TIME EQUAL TO Ts ms ftilttrirtgd
MAG=input (’Desired Number Counts: \n’);
cd /, cd Research/ECPInputs
fid=fopen(’'DisPlantFirstOrderCLPD.trj’, ‘w');
length=size (ucAllMode) ;
fprintf(fid, ' %f\r’, [length(1l,1); ...

MAG*ucAllMode(1l:1:1length{1,1))});
fclose (fid) ;

cd c¢:\Research\SingerShaper

B.2 DisPlantSecondOrderCLPD.m

%2nd Order Input Shaper for Closed Loop System
%$With PD Control

$DisPlantSecondOrdexCLPD.m
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%Change to the Correct Directory
cd c:\Research\SingerShaper
¥Clears All 014 Variables
clear all, close all
%¥Clears Command Prompt
clc
%PD Control Gains
Kp=0.06;
RKd=0.75;
%¥Sampling Time of the ECP Systemn
int=1; %$Used To Specify Sampl:ing
$in Integer Multiples of
%the minimum Ts
%Build Discrete Model
Discrete
%1lst Order Input Shaper for CL System for First Mode
$Damping Coefficient and System Natural Freguency
zetal = 2(1.,1);
wl=wn{l,1);
Kl = exp(-zetal*pi/sqrt(l-zetal " 2));
T_ 12 = pi/{wl*sgrt(l-zetal 2));

T_13 2*T_12;

%$First Impulse at Time=0

A 11 = 1/(1+42*KLl+K1"2);
%$Second Impulse at Time=T_1i2
A_12 = 2*K1/(1+2*K1+K172);

%$Third Impulse at Time=2*T_12
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A_13 = (K172)/(1+2*K1+K1"2);

%lst Order Input Shaper for CL System for Second Mode
¥Damping Coefficient and System Natural Frequency
zetal2 = Z2(3,1);

w2=Wn(3,1};

K2 = exp(-zetal2*pi/sqgrt(l-zeta22));

T_22

pi/(w2*sgrt(l-zeta2"2));

T 23

2*T_22;

$First Impulse at Time=0

A 21 = 1/(1+42*K2+K272);

%$Second Impulse at Time=T_22

A_22 = 2*K2/(1+42*XK2+K272);

$Third Impulse at Time=2*T_22

A_23 = (K272)/(1+2*K2+K272);

%¥1lst Order Input Shaper for CL System for Third Mode
$Damping Coefficient and System Natural Freguency
zetald = 2(5,1);

w3=Wn(5,1);

K3 = exp(-zetald*pi/sqrt(l-zetal3"2));

T_32 = pi/(w3*sgrt(l-zetal3d 2));

T_33

1l

2*T_32;

2First Impulse at Time=0

A 31 = 1/(1+2*K3+K372);
%Second Impulse at Time=T_32
A_32 = 2*K3/(1+2*K3+K3"2);
%$Third Impulse at Time=2*T_32

A_33 = (K372)/(L+2*K3+K372);
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%Run DisPlantSecondOrderCLPDModel in Simulink
$This block diagrar simulates a step input with
%$input shaping for each individual mode
sim(’DisPlantSecondOrderCLPDModel ")

¥Stead State value found from closed loop system
[ss,time]l=step(sysdtcl) ;temp=size{ss);
ys=ones(size(t));

ssl=1.02*%ones(size(t));

s52=0.98*ones(size(t));

Ligure(l)

plot(t,yc/ss{temp(l,1)),’ .’ . t.ylc/ss(temp{1l,1))," ", ...
t,y2c/ss(temp(l,1)),'-.’,t,y3c/ss{temp(l.1))., ' --",
t,ycAllMode/ss (temp(1,1)),’-',t,ys, "k-.", ...

t,ssl, 'k’,t,ss2,'k")

axis([0 2 -0.5 2.5))

title(. ..

‘gimulacion Reponse to Second Order (ZVD) :nput Shaper')
xlabel ('Time {seconds) ')

vlabel (‘Normalized Angular Position of Thetsz 37)

%grid

legend ('No Input Shaping’, 'First Mode’. ...

‘Second Mode’, 'Third Mode’, 'All Three Modes')

figure(2)
plot(t,uc,'.‘,t,ulc,’:',t,ch,’—.’,..
t,ul3c,’'--',t,ucAllMode, '~ ")

axis([0 2 0 1.1])

rictle(’Syscem Input with Second Order (ZVD) Input Shaper’)
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xlabel ('Time (seconds) ‘)

ylabel (‘' Inpuct”)

%grid

legend(’'No Input Shaping’, ‘First Mode’, ...

'Second Mode’, ‘Third Mode’, ‘All Three Modes’,0)
%$Create the Trajectory file for ECP Hardware Experiments
$NOTE: SET THE SEGMENT TIME EQUAL TO Ts ms !'!!
MAG=input ( ‘Desired Number Counts: \n’');
cd /, cd Research/ECPInputs
fid=fopen{'DisPlantSeconddrdexCLPD.trj’, 'w’};
length=size(ucAllMode) ;
fprincf(fid, '%f\r’, {length(i,1) ;...

MAG*ucAilMode(l:1l:length(1l,1)))):
fclose (fid);

cd c:\Research\SingerShaper
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Appendix C

MATLAB Codes(Modified Singer’s
Method)

C.1 DisPlantFirstOrdModCLPD.m

%$2nd Order Input Shaper for Closed Loop System
$With PD Control
$Singer’s Method

%$DisPlantFirstOrdModCLPD.m

$Change to the Correct Directory
cd c:\Research\SingerShaper
2Clears All 0ld Variables

clear all, close all

%$Clears Command Prompt

clc

%PD Control Gains

Kp=0.06;

Kd=0.75%;
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%¥Sampling Time of the ECP System
int=1; %Used To Specify Sampling
$in Integer Mu.tiples of
¥the minimum Ts
¥Build Discrete Model
Discrete
%1lst Order Input Shaper for CL System for First Mode
%Damping Coefficient and System Natural Frequency
zetal = Z(1,1);
wl=Wn(l,1);
K1l = exp(-zetal*pi/sqrt(l-zetal”2)});
T_12 = pi/{(wil*sqrt(l-zeta:"2));deltaTlc=T_12;
$First Impulse at Time=9
A_1Z = 1/(1+K1);A_1llc=A_11;
$Second Impulse at Time=T_12
A_12 = K1/{1+X1);A_12c=A_12;
$1st Order Input Shaper for CL System for Second Mode
$Damping Coefficient and System Natural Frequency
zeta2 = Z(3,1);
w2=Wn(3,1);
K2 = exp(-zetaz*pi/sgrt(l-zera2 2));
T 22 = pr/{w2*sgrr{l-zeta2 2)) ;deltaT2c=T_22;
$First Impulse at T:ime=0
A_21 = 1/( +¥%2);A_2lc=A_21%;
“Second Impulse at Time=T_22
A_22 = K2/(1-K2);A_22c=E_22;

$1st Order Input Shaper fcr CL System Zor Third Mode
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$Damping Coefficient and System Natural Frequency
zetald = Z(5,1);

w3=Wn(5,1);

K3 = exp(-zetald*pi/sgrt{li-zetal"2)):

T_32 - pi/(w3*sqgrt(l-zeta3"2));deltaT3c=T_32;
%First Impulse at Time=0

A_31 = 1/(1+K3};A_21c=A_31;

%Second Impulse at Time=T_32

A_32 = K3/(1+K3);A_32c=A_32;

¥Implmenting Singers Method in Discrete Time
¥For First and Second Mode

$First Mode Freq and Damp Are Same

$Modify Second Mode Parameters

%So that T_12 is An Integer

gMultiplie of mT_22(T for Shaper)

%Modified Parameters

mT_22=T_12/3;

mw2=Wn(3,1);

counter=0.C001;

templ={(pi/ (mw2*mT_22))" 2;

while temp? > 1

templ=(pi/ ( (mw2+counter) *mT_22)) " 2;

counter=countexr+(.0001;

end
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mw2=mwl+counter:

mzetal2=sqrt (1-(pi/ (mw2*mT_22))"2):

mMKZ = exp(-mzeta2*pi/sqrt(l-mzetal 2));
mT_22 = pi/{(mw2*sqgrt(l-mzeta2"2));
$First Impulse at Time=0

mA_21 = 1/(1+mK2);

$Second Impulse at Time=T 22

ma_22 = mK2/(1l+mK2) ;

$Implmenting Singers Method in Discrete Time
$For First and Second Mode

$First Mode Freg and Damp Are Same
$Modify Second Mode Parameters

%S0 that T_ 12 is An Integex

sMultiple of mT_23(T for Shaper)
¥Modified Parameters

mT_32=T_12/4;

mw3=Wni{5,1);

counter=0.0001;

templ= (pi/ {(mw3*mT_32))"2;

while templ > 1

templ=(pi/ ((mw3+counter)*mT_32)) " 2;

counter=counter+0.0001;

end
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mwl=mw3+counter;

mzeta3=sqrt(l-(pi/(mw3*mT_32))“2):

mK3 = exp(-mzetal3*pi/sqrc(l-mzeta3"2));

nT_32 = pi/(mw3~sqgrt(l-mzeta3™2)):

%$First Impulse at Time=0

mA_31 = 1/(1+mK3);

¥Second Impulse at Time=T_ 22

mA_32 = mK3/{1l+mK3);

%Run DisPlantFirstOrdModCLPDModel in Simulink
%This block diagram simulates a step input
$with input shaping for each individual mode
sim(’'DisPlantFirstOrdModCLPDModel’)

$Simulate Unmodified to Compare Results
sim(’DisPlantFirstOrderCLPDModel )

$Stead State value found for closed loop system
[ss,time]=step(sysdtcl); cemp=size(ss);
ys=ones (size(t)):

ssl=1.02*ones(size(t));

ss2=0.98*ones(size(t));

figure(l)
plot(t,yc/ss(temp{l,1)), ' -",t.,ylc/ss(temp(l,1)), ", ...
t,y2c/ss(temp(l,1)), -.’,t,y3c/ss(cemp(l, 1)), --", ...
t,ycAlMode/ss(temp(l,1)), "k’,c,ys. "k-."~

t,s8s81,'k’,c,s82,'k")
title(’Closed Loop System Reponse to Step Input’)

xlabel({’'Time (seconds) ')




vylabel ('Normalized Angular Position of Theta 3/)

grid

legend(‘'No Input Shaping’, 'First Mode'’, ...
"Second Mode’, 'Third Mode’, 'All Three Modes ‘)

figure(2)

plot(t,uc,’-’,t,ulc,’:‘,t,u2c,’—.’,t,u3c,’—-’,..

t,ucA.iMode, 'k’ )

axis([-1 2 0 1.1])

title(’'System Input’)

xlabel (' Time (seconds) ’)

ylabel (' Inpuc’)

grid

legend(’No Input Shaping’, 'First Mode’, ...

‘'Second Mode’, ‘Third Mode’, 'All Three Modes'’)

Figure (3)
plot(t,yc/ss{temp(1,1)),’.',ts,yl2/ss(temp(1..}), ', ...
ts,yl3/ss{temp(1,1)),’'-.",t,ycAllMode/ss(temp(1,1)), ...
‘-',t,ys,’'k-.",t,ssl,'k’,t,882,’k")

axis ([0 1 -0.5 2.5])

tictle(...

‘Reponse to First Order (2V) and Modified ZV Inpu* Shaper’)
xlabel ('Time(seconds) ')

ylabel (‘Normalized Angular Position of Theta 3°')

%grid

legend(‘No Input Shaping’. ...

*First/Second Modified Discrete’, ...

‘virst/Third Modified Discrete’, ...

113




"All Three Modes Continuous’)

figure(4)
plot(t,uc,’.',t22,u12,‘:’,t32,u13.’-.',t,ucAl)Mode,’-’)
axis([(0 1 0 1.1])

title(...

‘System Input with Modified First Order (2V) Input Shaper’)
xlabel (' Time (seconds) ‘)

ylabel (' Input’)

%grid

legend(’'No Input Shaping’, ...

"First/Second Modified Discrete’, ..

"First/Third Modified Discrete’, ...

‘All Three Modes Continuous’, 0)

%Create the Trajectory ftile for ECP Hardware Experiments
§NOTE: SET THE SEGMENT TIME EQUAL TO mT_22 or mT_23 mS !!
MAG=input {’'Desired Number Counts: ‘n’);

cd /, cd Research/ECPInputs
fid=fopen(’DisPlantFirstOrdModCLPD12.trj’,'w’);
length=size(ul2):

forintf(£fid, ‘$f\r’', [length(1,1) ;MAG*ul2(1:1:1length(1,1))]});
fclose(fid) ;

cd c:\Research\SingerShaper

cd /, cd Research/ECPInpucls
fid=fopen(’'DisPlantFirstOrdModCLPD13.trj’, 'w');
length=size(ul3l);

fprintf(fid,'%f\r‘,[length(l.l);MAG*UlB(l:l:length(l,l))]);

fclose(fid) ;

14



cd c:\Research\SingerShaper

C.2 DisPlantSecOrdModCLPD.m

%2nd Order Input Shaper for Closed Loop System
$With PD Control

$DisPlantSecOrdModCLPD. m

%Change to the Correct Directory
cd c:\Research\SingerShaper
$Clears All 0ld Variables
clear all, close all
$Clears Command Prompt
clc
$PD Control Gains
Kp=0.0¢;
Kd=0.75;
$Sampling Time of the ECP System
int=1; %Used To Specify Sampling
%in Integer Multiples of
¥the minimum Ts
%Build Discrete Model
Discrete
$1st Order Input Shaper for CL System for First Mode
$Damping Coefficient and System Natural Freguency
zetal = Z{(1,1);

wl=wn(l,1);
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Kl = exp(-zetal*pi/sgrt({l-zetal”2));

T_12 pi/(wl*sqgrt(l-zetal™2));

I

T_13

2*T_12;

$First Impulse at Time=0

A_11 = 1/(1+2*K1+K1"2);

$Second Impulse at Time=T_12

A 12 = 2*K1/(1+2*K1+K1"2);

$Third Impulse at Time=2%T_12

A_13 = (K172} /(1+2*K1+K172);

%lst Order Input Shaper for CL System for Second Mode
$Damping Coefficient and System Natural Frequency
zeta2 = 2Z(3,1);

w2=Wn(3,1);

K2 = exp{-zetal*pi/sgrt(l-zeta2™2));

T 22 ri/ (w2*sqgrit(l-zeta2 2));

I

)

T 23 2%T_27%;

%First Impulse at Time=0

A_21 = 1/(1+2*K2+K272};

$Second Impulse at Time=T_22

A 22 = 2%K2/(1+42*K2+K272);

¥Third Impulse at Time=2*T_22

A_23 = (E272)/(142*K2+K272);

$1lst Order Input Shaper for CL System for Third Mode
$Damping Coefficient and System Natural Freguency
zetald = Z(5,1);:

w3=Wn(5,1);

K3 = exp(-zeral3*pi/sqgrt(l-zetal " 2)):
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T_32

pi/ (w3*sgrt(l-zeta3"2));

T_33

2*T_32;

$First Impulse at Time=0

A 31 = 1/(1+2*K3+K3"2);

%¥Second Impulse at Time=T_32

A_32 = 2%K3/(1+2*K3+K372);

%$Third Impulse at Time=2*T_32

A_33 = (K372)/(1+2*K3+K372);
$Implmenting Singers Method in Discrete Time
$For First and Second Mode

$First Mode Freqg and Damp Are Same
$Modify Second Mode Parameters

%$So that T_12 is An Integer
$Multiple of mT_22(T for Shaper)
$Modified Parameters

mT_22=T7_12/3;

mw2=Wn(3,1);

counter=0.0001;

templ=(pi/ (mw2*mT 22))"2;

while templ > 1

templ={pi/ ( (mw2+counter) *mT_22))"2;

counter=counter+0.0001;

end

mw2=mw2+counter;
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mzetaZ=sqgrt (1l-(pi/{mw2*mT_22))"2);

MK2 = exp(-mzeta2*pi/sqrt(l-mzeta2”2));

mT_22

1

pPi/ (mw2*sqgrt(l-mzeta2™2));

mT_23 2*mT_22;

%$First Impulse at Time=0

mA_21 = 1/(1+2*mK2+mK2"2) ;

$Second Impulse at Time=T 22

MA_22 = 2*mK2/ (1+2*mK2+mK2"2) ;
$Third Impulse at Time=2*T 22
mA_23 = (mK272)/(1l+2*mK2+mK2"2) ;
$Implmenting Singers Method in Discrete Time
%For First and Second Mode

%First Mode Freqg and Damp Are Same
$Modify Second Mode Parameters

%$So that T_12 is an Integer
$Multiple of mT_23 (1 for Shaper)
%¥Modified Parameters

mT_32=T_12/4;

nw3=Wn(5, 1) ;

counter=0.0001;

templ=(pi/ (mw3*mT_32))"2;

while templ > 1

templ={(pi/( (mw3+counter)~mT_32))"2;

counter=counter+0.000%;
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=

end
mw3=mw3+counter;

mzetald=sqgrt (1l-(pi/ {(mw3*mT_32)) 2);

K3 = exp(-mzetal*pi/sgrt{l-mzetal"2));

mT_32 pi/ (mw3*sgrt(l-mzeta3"2));

mT_33 = 2*mT_32;

$First Impulse at Time=0

mA_31 = 1/(1+2*mK3+mK3"2);

¥Second Impulse at Time=T_22

mMA_32 = 2*mK3/ (1+2*mK3+mK3"2);

%Third Impulse at Time=2*T_22

mMA_33 = (MK372)/(1+2*mK3+mK3"2) ;

%Run DisPlantSecOrdModCLPDModel in Simulink
$This block diagram simulates a step input
$with input shaping for each individual mode
sim('DisPlantSecOrdModCLPDModel *)

%2Simulate Unmodified to Compare Results
sim{’DisPlantSecondOrderCLPDModel )

%Stead State value found for closed loop system
[ss, time)=step(sysdtcl) ;temp=size(ss};
ys=ones(sizel(t));

ssl=1.02*ones(size(t)) ;

ss2=0.98*ocnes (size(t));

figure(l)

plot(t,yc/ss(temp(l,1)),'-'.t.vlc/ss(temp(l,1)), "7, ...
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t,ylc/ss(cemp(1,1)),‘-.",¢c,y3¢c/ss(temp(l,1)), ' -~", ...
t,ycBAllMode/ss{temp(1,1)), ‘k’,t,ys, 'k-.",¢t,ss1, ‘'k’'....
t,ss2,'k’)
title(‘Closed Loop System Reponse tc Step Input’)
xlabel ('Time(seconds) ')
ylabel ('Normalized Angular Position of Theta 3')
grid
legend (‘No Input Shaping’,’'First Mode’., ...
’Second Mode’, ‘Third Mode’, 'All Three Modes’)
figure(2)
plot{(t,uc,’-",t,ulc,’:’,t,u2c, ‘-.",L,ul3c,'--", ...
t,ucAllMode, "k')
axis([-1 2 0 1.1}))
title(’System Inpuft’)
xlabel (' Time (seconds) ')
yvlabel (‘ Input’)
grid
legend(’'No Input Shaping’, ‘First Mode’, ...

‘Second Mode’, 'Third Mode’, ‘A1l Three Modes’)

figure(3)
plot(t,yc/ss{temp(l,1)),'.",ts,yl2/ss(temp(1,1))," ', ...
ts,yl3/ss({temp(l,1)),’'~-.’,t, ycAllMode/ss(temp(l,1)), ...
"-',t,ys,'k-.",t,ss1,'k’,t,s82, k")

axis([0 2 -0.5 2.5])
ticle(. ..

‘Reponse to Second Order (ZVD) and Modified 2VD Shaper’)

xlabel (' Time (seconds) )



ylabel {‘Normalized Angular Position of Theta 3’)

%$grid

legend(’'No Input Shaping’, ...

‘First/Second Modified Discrete’, ...

‘First/Third Modified Discrete’, ...

"All Three Modes Continuous’)

figure (4)

plot(t,uc,”’ . ,t22,ul2,’:*,t32,ull3,’-.’,t,ucAllMode, '-')
axis([(0 2 0 1.1})

title(...

'System Input with Modified Second Order (Z2VD) Input Shaper’)
xlabel ("Time (seconds) )

vlabel { ' Input’)

%grid

legend('No Input Shaping’, ...

"First/Second Modified Discrete’, ...

‘First/Third Modified Discrete’, ...

’All Three Modes Continuous’,0)

%Create the Trajectory file for ECP Hardware Experiments
%NOTE: SET THE SEGMENT TIME EQUAL TO TsmS !!!
MAG=input ( ‘Desired Number Counts: \n');

cd /, cd Research/ECPInputs
fid=fopen(’'DisPlantSecOrdModCLPD12.trj’ ., 'w');
length=size(ul2);

fprintf (£id, *%f r’, [length(l,1) ;MAG*ul2(l:1:1length(1l.1})]);
fclose(fid);

cd c:\Research\SingerShaper
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cd /, cd Research/ECPInputs
fid=fopen(’'DisPlantSecOrdModCLPD13.trj’, ‘w');

length=size (ul3);

fprintf(fid, '%$f\r’, flength(l,1) ;MAG*ul3(1l:1:1length(l,1))));
fclose(fid);

cd c:\Research\SingerShaper
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Appendix D

MATLAB Codes(Tuttle’s Method)

D.1 DisPlantFirstOrderDisCLPD.m

%$1nd Order Input Shaper for Closed Loop System
$With PD Control

%DisPlantFirstOrderDisCLPD.m

%Change to the Correct Directory
cd c:\Research\TuttleShaper
%Clears All Old Variables

clear all, close all

%2Clears Command Prompt

clc

$PD Control Gains

Kp=0.06;

Kd=0.75;

¢Sampling Time of the ECP System
int=1l; %Used To Specify Sampling

%in Integer Multiples of
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%the minimum Ts
%¥Build Discrete Model
Discrete
sAmplitude of the Step Input
AMP=1;
%Closed Loop Natural Frequencies of each mode
Wil=Wn(1l,1);
W2=Wn(3,1);
W3=Wn(5,1);
3Closed Loop Modal Damping Ratios of each mode
D1=Z(1,1});
D2=2(3,1);
D3=2(5,1):
%Closed Loop Damped Natural Fregquency
WA1=Wl*sqgrt(1-D172};
Wd2=w2*sqgrt (1-D272);
Wd3=W3*sqgrt (1-D3"2);
hold on
$Discrete Sampling Period
for T=0:0.0005:0.2;
%Input Shaper Zeros
pl=exp(-D1.*Wl.*T) . *exp(W3l.*T.>*3);
pls=exp(-D1.*W1.*T) . *exp(-Wd1l.*T.*3);
p2=exp(-D2.*W2.*T) . *exp (W32 .*T.*3) ;
p2s=exp(-D2.*W2.*T) . *exp (-Wd2.*T.*j);
p3=exp(-D3.*W3.*T) . *exp(Wd3.*T.*Jj);

p3s=exp(-D3.*W3.*T) . *exp (-Wd3.*T.*7J);
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$Impulse amplitudes
Aa=conv ([l -pl),conv{({l -pls]l,conv([1l -p2],...
conv([l =-p2s),conv([l =-p3],[1 -p3s))))));

Ra=real (Aa) :

figure(l),

plot(T,RAa(l),’ ., T,Aa(2), ., T,8a(3), .’ , T, Ra(4)," . ", ...
T,Aa(>), ' .’,T,Ra(6),’.’,T,aa(7),"'.")

end

title(...

‘Impulse Amplitudes for First Order Zero Placement’)
xlabel (' Impulse Spacing, T{seconds)’)
vlabel (‘' Impulse Amplitudes’)

grid

hold off,pause(l)

%$Find the Impulse Amplitudes for a T that yields
%2all Positive Impulse Amplitudes

T=0.125;

$Input Shaper Zeros

pl=exp (-D1*W1*T) *exp (WALl*T*7);

pls=exp (-D1*W1*T) *exp (-WA1*T*7J) ;

p2=exp (-D2*W2*T) *exp (WA2*T*j) ;
p2s=exp{-D2*W2*T) *exp (-WA2*T*j} ;

p3=exp (-D3*W3*T) *exp(Wd3*T*j) ;

pl3s=exp (-D3*W3*T) *exp (-WA3*T*3j);

%Impulse amplitudes

Aa=conv ([l -pl]l,conv([i -pls],conv((l -p2],...

conv({[l -p2s],conv((l -p3),(1 -p3sl)))));



Aa=real (Aa) ;

$Scaling Constant CC

CC=(Ra({l)+Aa(2)+Aa(3)+ha(4)+ra(5)+Ra(6)+Ral7)) " (-1);

CC=real (CC);

$Run DisPlantFirstOrderDisCLPDModel in Simulink

%¥This block diagram simulates a step input with

%$input shaping for each individual mode

sim{’DisPlantFirstOrderDisCLPDModel’)

%¥Stead State value found for closed loop system

[ss,time] =step(sysdtcl) ; temp=size(ss):

ys=ones (size(dTs) ) ;

ssl=ys*1.02;

ss82=ys*0.88;

figure(2)

plot (dTs, ystep/ss{temp(1,1)),dTs.ys, ‘k-.", ...
dTs,ssl, 'k’ ,dTs,ss2, 'k’)}

axis([0 1 0 1.2)])

title(. ..

*Simulation Reponse to First Order Zero Placement Shaper’)

xlabel (' Time(seconds) ‘)

yvlabel (‘Normalized Angular Position of Theta 3’)

%grid

figure(3)

plot(dT,u, '-")

axis{(0 1 0 1.17])

ticlef(...

'System Input with First Order Zero Placement Shaper’)
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xlabel (' Time (seconds) ')

ylabel (' Input”)

$grid

%Create the Trajectory file for ECP Hardware Experiments
$NOTE: SET THE SEGMENT TIME EQUAL TO T mS !
MAG=input { ‘Desired Number Counts: \n’);

cd /, c¢d Research/ECPInputs
fid=fopen(‘DisPlantFirstOrderDisCLPD.txrj‘,'w’);
length=size(u) ;

fprintf(fid, '%f\r’', [length(l,1) ;MAG*u(l:1l:1length(l,1))]);
fclose(£fid) ;

cd c¢:\Research\TuttleShaper

D.2 DisPlantSecondOrderDisCLPD.mm

%1nd Order Input Shaper for Closed Loop System
$With PD Control

¥DisPlantSecondOrderDisCLPD.m

%Change to the Correct Directory
cd c:\Research\TuttleShaper
%Clears All 0l1lgd Variables

clear all, close all

%$Clears Command Prompt

clc

%PD Control Gains

Kp=0.06;
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Kd=0.75;
¥Sampling Time of the ECP System
int=1; %$Used To Specify Sampling
%$in Integer Multiples of
$the minimum Ts
%Build Discrete Model
Discrete
$Amplitude of the Step Input
AMP=1];
$Closed Loop Natural Frequencies of each mode
Wl="Wni(1l,1);
W2=Wn(3,1);
W3=Wn(5,1);
$Closed Loop Modal Damping Ratios of each mode
D1l=Z(1,1);
D2=2(3,1);
D3=2(5,1);
$Closed Loop Damped Natural Freguency
Wdl=Wl*sqrt (1-D1°2);
Wd2=W2*sqgrt (1-D272);
Wd3=W3*sqrt(1-D372);
hold on
$Discrete Sampling Period
for T=0:0.0005:0.2;
3Input Shaper Zeros
pl=exp (-D1.*W1.*T).*exp(Wdl.*T.*3);

pls=exp (-D1.*W1l.*T) . *exp(-Wdl.*T.*3);



p2=exp (-D2.*W2.*T) . *exp(WA2.*T.*j);
p2s=exp(-D2.*W2.*T) . *exp(-Wa2.*T.*3);

pP3=exp (-D3.*W3.*T) . *exp(WA3.*T.*J);
p3s=exp(-D3.*W3.*T) . *exp (-Wd3.*T.*3);

$Impulse amplitudes

Aa=conv ([l -pl]).,conv{([l -pl),conv{((l -plsl], ...
conv([l -pls),conv([l -p2),conv([l -p21,...
conv ([l -p2s),conv({l -v2s],conv((l -p3].,...
conv ([l -p3).,conv([l -p3s]),(1 -p3s])I))I¥N))¥)));
Aa=real (Aa) ;

figure(1l),

plot(T,Ra(l), ., T,aa(2),.',T,8a(3),’ ., T,aa(4d), " .",...

T,Aa(5),'.’,T,na(6),’ ., T,8a(7),’.",T,Ra(8),".",...
T,Aa(9),’.’",T,Aa(10),’ .’ ,T,8a(11),’ ., T, Ra(l2), .’ , ...
T,RAa(13),".")

end

title(...

'Impulse Amplitudes for Second Order Zero Placement’)
xlabel (‘Impulse Spacing, T(seconds)’)

vliabel (' Impulse Amplitudes‘)

grid

hold off,pause(1l)

%¥Find the Impulse Amplitudes for a T that yields
%$all Positive Impulse Amplitudes

T=0.125;

$Input Shaper Zeros

pl=exp(-D1*W1*T) *exp(WdLl*T*7) ;
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pls=exp (-D1*W1*T) *exp (-Wd1*T*3) ;

p2=exp (~D2*W2*T) *exp (W32*T*7) ;

p2s=exp (-D2*W2*T) *exp (-WA2*T*3) ;

p3=exp (-D3*W3*T) *exp (WA3I*T*7) ;

p3s=exp (-D3I*W3*T) *exp (~-WA3*T*7) ;

$Impulse amplitudes

Aa=conv ({1l -pl),conv([l -pl]l,conv((l -pls],..
conv({l -pls],conv((l -p2j,conv([l -p2},...
conv((l -p2s)},conv(!l -p2s],conv({l -p3),...
conv((l -p3]l,conv([l -p3s],...
(1 -p3s])))))))))):

Aa=real (Aa) ;

%Scaling Constant CC

CC=(Ra(l)+Ra(2)+Aa(3)+Ra(4)+Aa(5)+Ra{6)+Aa(7)+Aa(8) ...
+Aa(9)+Ra(10)+Aa(1l)+Aa(12)+Aa(13)) " (-1);

CC=real (CC);

%Run DisPlantSecondOrderDisCLPDModel in Simulink

%$This block diagram simulates a step input with input

%$shaping for each individual mode

sim({’DisPlantSecondCrderDisCLPDModel )

$Stead State value found for closed lcop system

[ss,time])=step(sysdtcl) ;temp=size(ss);

ys=ones (size (dTs)};

ssl=ys*1.02;

ss2=ys*0.98;

figure(2)

plot (dTs,ystep/ss{temp(l,1)),dTs,ys, 'k-.", ...
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dTs,ssl, 'k’ ,dTs,ss2, 'k")
axis([0 2 0 1.2])
title(. ..
‘Simulation Reponse to Second Order Zero Placement’)
xlabel (’Time(seconds) ‘)
ylabel (‘Normalized Angular Position of Theta 3°)
$grid
figure(3)
plot (dT,u, '-"’)
axis([0 2 0 1.1])
title(...
’System Input with Second Order Zero Placement’)
xlabel (' Time (seconds) ')
ylabel ( Input’)
$Create the Trajectory file ECP Hardware Experiments
$NOTE: SET THE SEGMENT TIME EQUAL TO T mS !!!!
MAG=input (‘'Desired Number Counts: \n’);
cd /, cd Research/ECPInputs
fid=fopen('DisPlantSecondOrderDisCLPD.trj', 'w’'});
length=size(u);
fporintf(fi1d, "% \r’, [length(l,1) ;MAG*u{l:1:1length{(1,1))1});
fclose(fid);

cd c:\Research\TuttleShaper

D.3 DisPlantSecOrderModel DisCLPD.m

%$1nd Order Input Shaper for Closed Loop System
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¥With PD Control

$DisPlantSecOrderModelDisCLPD.m

%Change to the Correct Directory

cd c:\Research\TuttleShaper

3Clears All 01d vVariables

clear all, clocse all

%Clears Command Prompt

clc

%PD Control Gains

Kp=0.06;

Kd=0.75;

%$Sampling Time of the ECP System

int=1; %Used To Specify Sampling
%in Integer Multiples of
%the minimum Ts

%Build Discrete Model

Discrete

samplitude of the Step Input

AMP=1;

3Closed Loop Natural Frequencies of each mode

Wl=Wn(l,1) ;

W2=Wn(3,1);

W3=Wn(5,1);

%$Closed Loop Modal Damping Ratios of each mode

D1=2(1,1);

D2=2(3,1});
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D3=%Z(5,1);

$Closed Loop Damped Natural Freguency

Wdl=W1l*sqrt (1-D172);

WA2=W2*sqrt (1-D272);

WAa3=W3*sgrt(1-D3"2);

hold on

3Discrete Sampling Period

for T=0:0.0005:0.2;

$Input Shaper Zeros

pl=exp(-D1.*W1l.*T).*exp{wdl.~T.*j);

pls=exp (-D1.*W1l.*T).*exp(-Wdl.*T.*]);

p2=exp (-D2.*W2.*T) . *exp (WdA2.*T.*3j) ;

p2s=exp (-D2.*W2.*T) . *exp(-Wd2.*T.*j);

p3=exp(-D3.*W3.*T) . *exp(Wd3.~T.*3);

p3s=exp(-D3.*W3.*T) . *exp(-WA3.>*T.*3j);

$Inpulse amplitudes

Aa=conv([l -pl),conv{({l -pl},conv((l -pls],...
conv{[l -pls],conv([l -p2},conv(([l -p2s],...
conv ([l -p3],[1 -p3si)))))));

Aa=real (Aa);

figure(l),

plot (T,Aa(1), .’ . T,Aal(2),'.", T, ka(3), ., T,pa(d)," " .",...

T,Aa(5),’.’,T.Aa(6),'." ", T, Aa(7),".” T, Aal(8),".",. ...
T,Aa(%),’.")

end

ticle(...

"Impulse Amplitudes for 1lst/2nd Order Zexro Placement’)
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xlabel (' Impulse Spacing, T(seconds)’)
yvlabel (' Impulse Amplitudes’)

grid

hold off, pause(1l)

$Find the Impulse Amplitudes for a T that yields
%all Positive Impulse Amplitudes
T=0.140;

$Input Shaper Zeros

pPl=exp (-D1*W1*T) *exp(Wd1l*T~j) ;
pls=exp (-D1*W1*T) *exp (-WA1*T*3);
pP2=exp (-D2*W2*T) *exp (WAd2*T*j) ;
p2s=exp (-D2*W2*T) *exp (-WA2*T*j} ;
p3=exp(-D3*W3*T) *exp (WA3*T*3j) ;
p3s=exp (-D3*W3*T) *exp (-WA3*T*73});
$Impulse amplitudes

Aa=conv((1l -pll,conv({l -pl},conv([l -pls],...

conv([l -pls),conv{{l -p2}.,conv{(1l ‘p2s], ...

conv{{l -p3),[1 -p3si))))))):
Aa=real (2a) ;
$Scaling Constant CC
CC=(Aa(l)+Aa(2)+ha(3)+Aa(4)+Aa(5)+Aa (6)+Aa(7) ...
+Aa(8)+ha(9)) " (-1);
CC=real(CC):
$Run DisPlantSecOrdModelDisCLPDModel in Simulink
$This block diagram simulates a step input with
$input shaping for each individual mode

sim(’DisPlantSecOrdModelDisCLPDModel )
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%Stead State value found for closed loop system

[ss, time)=step(sysdtcl) ; temp=size(ss);

vys=ones (size(dTs)) ;

ssl=ys*1.02;

ss2=ys*(0.98;

figure(2)

plot(dTs,ystep/ss{temp(l,1)),dTs,ys, "k-.", ...
dTs,ssl, 'k’,dTs,ss2, "'k’)

axis({0 2 9 1.2])

title(...

'Simulation Reponse to 1lst/2nd Order Zero Placement’)

xlabel (’Time (seconds) ')

ylabel ('Normalized Angular Position of Theta 3')

%grid

figure(3)

plot (dT,u, ' -")

axis ({0 2 0 1.11)

title(...

'System Input with lst/2nd Order Zero Placement’)

xlabel {’Time (seconds) )

ylabel (' Input’)

%Create the Trajectory file ECP Hardware Experiments

ENOTE: SET THE SEGMENT TIME EQUAL TO T mS !‘1i!

MAG=input {'Desired Number Counkts: \n’);

cd /, cd Research/ECPInputs

fid=fopen(’'DisPlantSecOrderModelDisCLPD.trj’, "w’');

length=size(u) ;
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frrintf (fid, "%f\r‘, [length(1l,1) ;MAG*u(l:1l:1length(1,1))1);
fclose (£14d) ;

cd c:\Research\TuttleShaper
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Appendix E

MATLAB Codes(Singhose’s Method)

E.1 DisPlantEIOneHumpShaper.m

$EI Input Shaper for Closed Loop System
¥With PD Control

$DisPlantEIOneHumpShaper .m

%Change to the Correct Directory
cd c:\Research\SinghoseShaper
$Clears All 01ld Variables

clear all,close all

%Clears Command Prompt

clc

%$PD Control Gains

Kp=0.06;

Kd=0.75;

$Sampling Time of the ECP System
int=1; %Used To Specify Sampling

%in Integer Multiples of
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%the minimum Ts
%Build Discrete Model
Discrete
%¥Set the Maximum Level of Vibration
V=0.05;
¥Natural Frequency and Damping Ratioc of the Ilst Mode
z1=2(1,1);
wl = Wn{l,1);
%Damped Period of Vibration
Tdi=2*pi/(wl*sqgrt(l-z1"2}));
%First Impulse
A_11=0.2497+0.2496*V+0.8001*z1+. ..
1.233*V*z1+0.496*(2172)+3.173*V*(z172);
T_11=0;
%Third Impulse
A_13=0.2515+0.2147*V-0.8325*21+. ..
1.415*V=21+40.8518*(2172)-4.901*v*(z1"2);
T_13=Tdl;
%$Second Impulse
A_12=1~(A_11+A_13);
T_12={0.5+0.4616*V*21+4.262*V*(2172)+1.756*V*(z173)+
8.578*(V7°2)*z1-108.6*(V 2)*(z1 2)+337*(V"2)*(2173))*Tdl;
$Natural Frequency and Damping Ratio of the 2nd Mode
22=2(3.1);
w2 = Wn(3,1);
%$Damped Period of Vibration

T3d2=2*pi/(w2*sqrt(l-2z2"2));
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$First Impulse

A_21=0.2497+0.2496*V+0.8001*z2+. ..
1.233*¥V>22+0.496*(z272)+3.173*V*(z272);

T 21=0;

$Third Impulse

A_23=0.2515+0.2147*V-0.8325*22+ ..
1.415*%V*22+0.8518* (227 2)-4.901*VU*(2272);

T_23=T742;

$Second Impulse

A_22=1-(A_21+A_23);

T 22=(0.5+0.4616*V*22+4.262*V*(2272)+1.756*V*(2273)+

8.578*(V"2)*22-108.6*(V"2)* (227 2)+337*(V 2)*(2273))*Td2Z;

%Natural Frequency and Damping Ratio of the 3rd Mode

z3=%2(5,1);

w3 = wWni{5,1);

$Damped Period of Vibration

Td3=2*pi/(w37sgrt(1-z372));

$First Impulse

A_31=0.2497+0.2496*V+0.8001*z3+. ..
1.233*V*23+0.496%(2372)+3.173*v*(2372);

T_31=0;

%$Third Impulse

A_33=0.2515+0.2147*v-02.83257z3+..
1.415*V*23+0.8518*(2372)-4.901*V*(z372);

T_33=Ta3;

%3Second Impulise

A_32=1-(A_31+A_33);




T_32=(0.5+0.4616*V*23+4 .262*V*(2372)+1.756*V* (2373} +
8.578*(V"2)*23-108.6*(V 2)*(2372)+337*(V"2)*(z373))*7d3;
%Simulate the System Response to a Unit Step Input

%with and without Input Shaping
sim(‘DisPlantEIOneHumpShaperModel’ )

%Stead State value found from closed loop system

[ss, time])=step(sysdtcl) ;temp=size(ss);

ys=ones(size(t)) ;

ssl=1.02*ones(size(t));

s52=0.98*ones (size(t));

figure(l)

plot(t,y/ss(temp(1,1)), .’.,t,yl/ss{temp(l,1)}," ", ...
t,y2/ss(temp(1,1)),’'-.’,t,y3/ss({tenmp(l, 1)), "~-=',...
t,yAllMode/ss{temp(1l,1)),’' =", L. y5,"k-.", ...

t,ssl,’k’,t,ss2,'k’)
axis ({0 2z -0.5 2.5])
title{. ..
‘Simulation Response with a One Hump EI Input Shaper’)
xlabel ('Time(seconds)’),
ylabel ('Normalized Angular Position of Theta 3')
legend(‘No Input Shaper’,’'lst Mode’ ...
,’2nd Mode’,’3rd Mode', ‘All Modes’)
figure(2)
plot{t,u, " .”,t,ul,’:’,t,u2,’-.",£,u3,’--",t,udliMoge,’'-")
axis([0 2 0 1.11)
ticle(. ..

‘System Input with and without a One Hump EI Input Shaper’)
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xlabel {‘Time (seconds) '),
vlabel (' Input’)
legend(‘No Input Shaper’, 'lst Mode’...

,'2nd Mode’, ’'3rd Mode’, ‘All Modes'. ()
%Create the Trajectory file for ECP Hardware Experiments
SNOTE: SET THE SEGMENT TIME EQUAL TO Ts mS !
MAG=input ('Desired Number Counts: \n’);
cd /, cd Research/ECPInputs
fid=fopen(’'DisPlantEIOneHumpShaper.crj’, 'w’);
length=size{uAllMode) ;
fprincf (£id, '%£f\r’, [length{l,1),; ...

MAG*uAllMode(1l:1:1length{1,1))]);

fclose(fid);

cd c:\Research\SinghoseShaper

E.2 DisPlantUMZVShaper.m

$UM~2ZV Input Shaper for Closed Loop System
sWith PD Control

%¥DisPlantUMZVShaper.m

%Change to the Correct Directory
cd c:\Research\SinghoseShaper
%Clears All 01ld Variables

clear all,close ali

3Clears Command Prompt

clc
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$PD Control Gains
Kp=0.06;
Kd=0.75;
$Sampling Time of the ECP Systemn
int=1; %Used To Specify Sampling

%in Integer Multipies of

Fthe minimum Ts

%Build Discrete Model
Discrete
$Natural Frequency and Damping Ratio of the 1st Mode
z1=2(1,1);
wl = wWwn(l,1);
%Period of Vibration
Tl=2*pi/wl;
$First Impulse
A_11=1;
T_11=0;
3Second Impulse
A 12=-1;
T_12=(0.16724+C.27242*21+0.20345*%21"2)*T1;
$Third Impulse
A_13=1;
T_13=(0.33323+0.00533*z1+0.17914*21"2+0.20125*21"3) *T1;
$Natural Frequency and Damping Ratio of the 2nd Mode
z2=2(3,1);
w2 = Wn(3,1);

%$Period of Vibration



T2=2*pi/w2;

$First Impulse

A_21=1;

T 21=0;

%Second Impulse

A_22=-1;

T_22=(O.16724+0.27242*22+O.20345*z2‘2)*T2;

$Third Impulse

A _23=1;
T_23=(0.33323+O.00533*22+0,l7914*z2’2+0.20125*z2A3)*TE;
$Nacural Frequency and Damping Ratio of the 3rd Mode
z3=2(5,1) ;

w3 = Wn(5,1);

%Period of Vibration

T3I=2*pi/w3;

%First Impulse

A _31=1;

T_31=0;

$Second Impulse

A_32=-1;

T_32=(0.16724+0.27242*23+0.20345*2372)*T3;

$Third Impulse

A_33=1;
T_33=(0.33323+0.00533*23+0.17914>2372+0.20125*2373) *T3;
$Simulate the System Response to a Unit Step Input
gwith and without Input Shaping

sim(‘DisPlantUMzZVShaperModel )
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%Stead State value found from closed loop system
[ss, time)=step(sysdtcl) ; temp=size(ss) ;

ys=ones (size(t)):

ssl=1.02%ones (size(t));

882=0.98*ones (size{t));

figure(l)
plot(t,y/ss(temp(1,1)}, . ,t,yl/ss{temp(1,1)),’ ", ...
t,y2/ss{temp(1l,1)), '-.",t,y3/ss(temp(l,1)), --',...
t,vyAllMode/ss(temp(l,1)),’'~’.t,ys, "k-.", ...

t,ssl,'k’,t,s8s2,’'k’)
axis ([0 1 -0.5 2.5])
title(’Step Response with a Unity Magnitude Input Shaper’)
xlabel ('Time (seconds) '},
ylabel (‘Normalized Angular Position of Theta 3’)
legend ({‘No Input Shaper’,’'lst Mode’ ...
,'2nd Mode’,’3rd Mode’,'All Modes’)
figure (2)
plot(t,u, .’ , t,ul,’:",c,u2,’-.",t,u3, ' --’',t,uAllMode, "-*)
axis ([0 0.6 -1 21)
title(. ..
‘System Input with and without Unity Magnitude Shaper’)
xlabel (' Time(seconds!’),ylabel {'Input’)
legend ('No Input Shaper’, ‘lst Mode’, ...
'2nd Mode’, '3rd Mode’,'All Modes’,0)
%Create the Trajectory file the ECP Hardware Experiments
$NOTE: SET THE SEGMENT TIME EQUAL TO 1mS !

MAG=1input {‘'Desired Number Counts: \n’);
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cd /, cd Research/ECPInputs
fid=fopen(’'DisPlantUM2VShaper.trj’', ‘'w’};

length=size(ul);

fprintf(fid, "%f\r’, [length(1l,1) ;MAG*ul(i:1:1length(1l,1))}));

fclose(£fid) ;

E.3 DisPlantPSZVShaper.m

%$PS-2V Input Shaper for Closed Loop System
§Wich PD Control

$DisPlantPSZVShaper.m

%Change to the Correct Directory

cd c:\Research\SinghoseShapexr

%Clears All 014 Variables

clear all,close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=0.06;

Kd=0.75;

$Sampling Time of the ECP System

int=1; %Used To¢ Specify Sampling
%in Integer Mul:tiples of
%¥the minimum Ts

$Build Discrete Model

Discrete
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%$3Natural Frequency and Damping Ratic of the lst Mode
z1=2{1,1);

wl = Wn(l,1);

%Period of Vibration

Ti=2*pi/wl;

%$First Impulse

A 11=1;

T 11=0;

$Second Impulse

A_12=-2;
T_12=(0.2097+0.22441%21+0.08028*2z172+0.23124*2z1"3)*T1;
$Third Impulse

A_13=2;
T_13=(0.29013+0.09557*2z1+0.10346*2172+0.24624*2z1°3) *T1;
%$%Natural Frequency and Damping Ratio of the 2nd Mcde
z2=2(3,1);

w2 = Wn(3,1);

%Period of Vibration

T2=2*pli/w2;

$First Impulse

A 21=1;

T _21=0;

$Second Impulse

T_22=(0.2097+0.22441*22+0.08028*2272+0.23124*2273)*T2;
%$Third Impulse

A_23=2;
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T_23=(0.29013+0.09557*22+0.10346%22°2+0.24624*2273)*T2;
%$%Natural Freguency and Damping Ratio of the 3rd Mode
z3=2(5,1);

w3 = Wn(5,1);

$Period of Vibration

T3=2*pi/w3;

$First Impulse

A_31=1;

T_31=0;

$Second Impulse

A_32=-2;
T_32=(0.2097+0.22441*23+0.08028*2372+0.23124*23"3) *T3;
%$Third Impulse

A_33=2;
T_33=(0.29013+0.09557*23+0.10346%2372+0.24624*2373)*T3;
$Simulate the System Response to a Unit Step Input
$with and without Input Shaping
sim(’DisPlantPSZVShaperModel ')

$Stead State value found from closed loop system

. Ss,timel=step{sysdtcl) ;temp=size(ss);

ys=ones (size(t));

ssl=1.02*cones(size(t));

ss2=0.98%cnes (size(t));

figure(l)
plot(t,y/ss({temp(l,1)), .’ ,t,yl/ss{temp(l,1))," ' :’,...
t,y2/ss(temp(l,1)), -.",t,y3/ss{temp(l,1)),'--", ...

t,yAllMode/ss(temp(l,1})), ' -’ ,t,ys, "k-.", ...



t,ssl,’k’,t,ss82,'k’)
axis((0 1 -0.5 2.51)
title(’Step Response with a Partial Sum Input Shaper’)
xlabel {'Time (seconds)’),
vlabel (‘Normalized Angular Position of Theta 37)
legend('No Input Shapexr’,  'lst Mode’...

, ‘2nd Mode’, ‘3rd Mode’, ‘All Modes'’)
figure(2)
plot(t,u,'.’,t,ul,:",t,u2,’'-.",t,u3,'--",t,uAllMode, '-")
axis([0 0.5 -2 2])
title(. ..
‘System Input with and without a Partial Sum Shaper ‘)
xlabel (' Time (seconds) ‘) ,ylabel (‘ Input’)
legend('No Input Shaper’',’lst Mode’...

. ‘2nd Mode’, '3rd Mode’,’All Modes’, ()
%Create the Trajectory file for ECP Hardware Experiments
$NOTE: SET THE SEGMENT TIME EQUAL TO Ts mS !
MAG=1nput ('Desired Number Counts: \n’);
cd /, cd Research/ECPInputs
fid=fopen(’DisPlantPSZVShaper.trj’, ‘w’);
length=size (vAllMode) ;
fprintf(fid, ‘%f\r’, [length(1,1); ...

MAG*uAllMode(l:1:1length(l,1))]);:

fclose(fid);

cd c¢:\Research\SinghoseShaper
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