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CHAPTER 1

INTRODUCTION

Collaborative applications are software applications that allow a group of users to 

cooperate with each other when geographically dispersed. Collaborative applications are 

becoming efficient means for group communication. The increase in number of 

broadband networks elevates the demand for this kind of applications. Collaborative 

applications could play vital role for communication, which could range from a computer 

user to corporations, military, and government. The very useful applications of 

collaborative applications would be video-conferencing, collaborative real-time editing, 

computer controlled priority right auctioning, collaborative simulation, and multi-player 

online games.

In collaborative applications it is critical that at any specific time of a 

collaborative session only a single user should gain the access to the communication 

network. In order to provide a user with exclusive access to the communication channel, 

floor control protocols are used [1]. The user who ever wins the floor can have the right 

to access the communication channel, otherwise have to wait until it gets free again. The 

user who has won the floor can multicast the messages to others in the group [2]. The 

floor control protocols and multicasting protocols when implemented at the network layer 

bring in major drawbacks such as scalability, network layer modification, changes in 



2

router functions, and network management [2]. So to remove all these complications at 

the network layer, researchers are implementing them at the application layer. 

As the floor control protocols and multicast protocols reside in the application 

layer, an end host has the responsibility of transferring messages to other end hosts in the 

collaborative session. So networking responsibilities are deployed to end hosts, they use 

the concept of virtual networks known as overlay networks. In the peer to peer based 

overlay networks, multicasting has to be handled by the end hosts. The peer to peer based 

architectures introduces limitation on scalability as the end-host finds it difficult to handle 

large group sizes. Because of this increasing burden on end hosts [6] has proposed to 

introduce Network Service Nodes (also known as multicast service nodes), which will 

communicate with end hosts and with each other using unicast paths. This kind of 

architecture is known as proxy based overlay networks. This approach will reduce the 

overall burden on the end-hosts.

The floor control protocols can be categorized into two groups, centralized and 

distributed floor control protocols. In the centralized floor control protocols the decision 

of allocating floor is taken by a centralized controller. End host which needs to send 

message to other end hosts has to request the centralized controller. Centralized controller 

processes the requests, gives the permission to the end host to access the channel 

according to the scheduling algorithm. In centralized floor control protocols, it becomes 

easier to construct algorithms to implement priorities, to maintain causal ordering of 

messages and to dynamically add additional end-hosts. But main drawback of centralized 

approach is when large number of requests that come to centralized controller it becomes 

tough task to process all those requests and also if centralized controller fails it will bring 



3

down whole collaborative session. In distributed floor control protocols, the decision of 

allocating floor is not taken by any single node. Management of floor becomes difficult 

in distributed floor control protocols as every end host have to be aware of the current 

situation of the network and it has to know when end host has the permission to access 

the channel. Implementing priorities in allocating floor to an end user in distributed floor 

control protocols is complicated.

Priority in distributed floor control protocols makes user with higher priority to 

gain floor more number of times than lower priority users. Inclusion of priority in 

distributed floor control protocols is useful in many applications such as computer 

controlled priority bidding and multiplayer online games. For example, a group of people 

in a company using computer supported collaborative application. Obviously the users 

contain few high priority users and low priority users. In order to give high priority users 

more access to the application it will be useful to use priority based distributed floor 

control protocols.

The goal of this paper was firstly to evaluate the efficiency of distributed floor 

control protocols such as ALOHA and DQDB under different environments. Secondly to 

implement priorities in the ALOHA and DQDB based distributed floor control protocols. 

Thirdly, to implement CSMA MAC protocol for floor control and test the performance of 

this protocol with the other two protocols. Fourthly, to implement priority in the CSMA 

distributed floor control protocol, and finally to preserve causal ordering of the messages 

even after implementing the priority, as it should be taken care that a node sending 

message first has to be received first. 
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CHAPTER 2

BACKGROUND

2.1 Floor Control

  Floor control is playing an important role in collaborating applications; it acts as 

a synchronizing primitive among the group of users in the collaborative session. Floor 

control works on similar principle to that of semaphore. Semaphore gives permission for 

only a single process to access critical section at any time and eliminates simultaneous 

access of critical section by two or more processes. In the same way floor control gives 

permission to only a single user at a time to access the communication channel in a 

collaborative session.

Figure 1. State Diagram of Floor Control Protocol

Figure 1 shows the finite state diagram of floor control protocol. Every user in the 

collaborative session will be in one of the three states. In Idle state user just receives the 

multicast messages sent by other users. In Contending state user has message to send to 

Request

CONTENDING
IDLE

Gain Floor

FLOOR

Release
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other users, so user is contending to gain floor in order to access the network. In Floor 

state, user has gained access to the network, it can now multicast messages over the 

network to other users in the collaborative session.

2.2 Causal Ordering

 Causal ordering of messages means to receive messages in the order they were 

sent by the stations. Causal ordering of messages is one of the important criteria that need 

to be protected in a multicast network. In most occasions the meaning of the whole 

situation changes if causal ordering of the messages is not preserved.

Figure 2: Causal Ordering

For example, in figure 2 stations 1, 2, 3, 4 and 5 are participating in a 

collaborative session. If station 1 and station 2 multicast messages to other stations in that 

order, then there will be a chance that message from station 1 is received after message 

54
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from station 2, which would change the whole scenario of collaboration. In order to 

preserve causal ordering of messages end-to-end delays in the communication should be 

considered. 

2.3 Overlay Networks

In overlay networks the participating hosts share the responsibility of forwarding 

packets to all other hosts in the session. There are two kinds of overlay networks 

identified till now they are peer to peer based overlay networks and proxy based overlay 

networks. In peer-to-peer based overlay networks end hosts share the responsibility of 

network functionality. Because end-hosts are handling all the tasks, this kind of 

architecture does not scale well for large scale networks. In proxy-based overlay 

networks all the functionality is moved to Network Service Nodes (NSN). For Efficient 

group communication it is required to construct a Multicast tree such as a Steiner tree. In 

proxy-based overlay networks, the NSN’s communicate with all the NSN’s and end-hosts 

attached to it. As it forms a complete graph consisting of NSN’s, it will become easier to 

construct a spanning tree from network of NSN’s. Also this kind of overlay networks 

reduces the burden on the end hosts.

2.4 DQDB

DQDB is a MAC Layer protocol works on distributed queuing algorithm. DQDB 

consists of two unidirectional buses which can transfer packets in opposite directions. 

Each NSN is connected to both the unidirectional buses. One bus is used to transmit data 

to the nodes on the left and other bus is used to transmit data to the nodes on the right. 
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Every node can transmit data to the nodes in the downstream. For both the buses, one end 

consists of slot cell generator and the other end consists of sink. These end nodes act as 

master stations which have responsibility of generating slot cells and absorbing them 

finally when they reach to the end. Every NSN contains a queue and maintains two 

variables request counter (RQ) and countdown counter (DQ).

Figure 3: shows a fragment of DQDB network from DQDB.ppt

The distributed queue maintained in the every NSN allows them to access the bus in an 

orderly manner. RQ indicates the number of NSN’s ahead of the current NSN when it is 

inactive i.e. not wanting to transmit data. Every inactive NSN counts the requests passing 

on BUS 1 and decrements the RQ value when it sees an empty slot on BUS 2 and vice 

versa. When a NSN wants to transmit data it waits for an available request bit slot, it then 

sets the request bit indicating that it needs to transmit data. The NSN copies the RQ value 

into the DQ and resets the RQ value to zero. DQ indicates the number of NSN’s ahead of 

the current NSN when it is waiting to transmit data. Every active NSN decrements the 

NN-1 N+1

Upstream of N 
on BUS 1

Upstream of N 
on BUS 2

Downstream of 
N on BUS 1

Downstream of 
N on BUS 2
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DQ value it finds an available slot passing on the Bus. When the DQ value becomes zero, 

indicates that NSN has reached the top of the queue and it can transmit the data. When 

transmitting data NSN acquires slot, sets the header, copies the data into the slot, the cells 

propagate to the end of the bus.  

2.5 ALOHA

ALOHA protocol is considered to be a random access, contention type and

distributed protocol. The idea is that whenever a station has packets to transmit then it 

transmits them on the common transmission channel with out checking the condition of 

the transmission channel. The station after transmitting packet waits for Round Trip Time 

(RTT) to receive an acknowledgment. If it does not receive an acknowledgment within 

that time then it retransmits the packet after waiting a random amount of time. It repeats 

this process few number of times and if it still failed to send the packet then it gives up. If 

the packet is received by the receiver then it checks the FCS field and then returns the 

acknowledgment packet back to the sender. The ALOHA protocol depends on the ability 

of a station to detect the collisions. The ALOHA protocol gives better utilization if the 

traffic within the network is very low, as the number of collisions in the network will be 

less thereby infrequent number of retransmissions. The concept of the ALOHA protocol 

is simple and can be applied to other situations with little modification. 

2.6 CSMA

Collision Sense Multiple Access protocol works on the concept of sensing the 

channel before attempting to transmit data. By sensing the channel if a station finds it idle 
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then the station can send the frames otherwise it waits for certain amount of time and 

again senses the channel. It does this until it realizes that channel is idle, and then it 

transmits frames. But even after sensing the channel to be idle, collisions may still occur, 

since two or more stations can sense the channel idle at same time. When collision 

occurs, stations have to wait for whole frame transmission time in order to send frames 

again. The CSMA protocol has better utilization when compared with other Random

MAC protocols.

2.7 Participating Chain

In overlay networks, the efficiency of communication channels is directly 

proportional to the maximum end-to-end delay between all pairs of end hosts. In proxy-

based overlay networks, as all the end-hosts are connected to the NSN’s, it is required to 

construct an efficient spanning sub-network for coordinating floor. Constructing 

participating chain is useful in quickly resolving the contention for floor in contention 

phase and useful for maintaining causal ordering of the data packets in the data delivery 

phase. The NSN’s connected to end host participating in the collaborative session are 

called as participating NSN’s. A participating chain is defined as a path that connects all 

the participating NSN’s. An optimal participating chain is a participating chain where the 

maximum end-to-end delay is least.
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CHAPTER 3

LITERATURE REVIEW

Many researchers have developed several centralized protocols for floor control. 

In these protocols, centralized controllers are used to resolve control of the floor among 

the contending stations. Few centralized approaches are discussed below.

Reference [4] proposed a conference control protocol for a highly interactive 

video conferencing. The protocol uses three-channel rotation scheme for floor control to 

avoid race conditions and to resolve the contention for shared media channels among the 

participants. Each conference participant can acquire any of the three roles: current 

speaker, previous speaker and listener. In order to get the role of speaker, a participant 

needs to send a request signal to the centralized controller. The controller and the 

participants send the control information on the control channel. The participant can turn 

into a speaker if the centralized controller acknowledges the request. The centralized 

controller elects a speaker depending on the access policy. The main drawback of this 

protocol is the use of centralized controller.

Reference [1] presents a tree-based floor control protocol referred as the

Hierarchical Group Coordination protocol (HGCP). It uses a logical control tree derived 

from acknowledgment tree used in the reliable multicast tree. In order to reduce traffic at 

the source, the control tree uses cascaded acknowledgments and negative 

acknowledgments which prevent the receivers to directly communicate with the source. 



11

The control tree can shrink and expand dynamically during session lifetime. In HGCP the 

roles of floor handler (FH) and floor controller (FC) are unified to a single node in order 

to remove triangle communication between the nodes if separated to three different 

nodes. The root of the control tree is FH and tree rotates when the FH changes, with root 

shifting to the new FH. A node can act as FH if it acquires the shared resource. There are 

three kinds of nodes in the control tree: control node, relay nodes and leaf nodes. Every 

node in the control tree communicates only with the neighboring nodes. Every node 

maintains local picture of its neighborhood, to know the direction towards the root of the 

tree (FH). There are three phases in the HGCP: setup phase, active phase and termination 

phase. In the setup phase, protocol allows new nodes to join the session. Each station 

maintains a floor state table and updates them regularly from its neighbors to be 

consistent. In the active phase of the protocol, station sends request control directive 

(CD) to its neighbor close to the FH. The direction towards the FH is computed by taking 

the prefix of the location of the floor in the floor state table. Floor can be assigned to a 

node based on priority, queuing, timestamp, reception order, frequency and holding time 

of floor. FH passes the GRANT message to its successor based on source label 

information. Upon confirmation, FH relinquishes the floor by multicasting the position of 

new FH to the session. From then all the nodes send their requests to the new FH. In the 

termination phase, floor state information is deleted from records of the station. Any node 

in the session can withdraw from the session and appropriate action is taken. The main 

drawbacks of HGCP protocol firstly, its partiality to nodes nearer to the root. Secondly, it 

has drawbacks of centralized approaches as it is based on dynamically centralized 
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approach (i.e. controller for floor handler is dynamically selected). Thirdly, requires lot of 

communication to coordinate floor.

Centralized protocols are simple to implement but they will have several 

problems like:

Controller Failure: Controller failure brings down entire collaborative session.

Traffic: As every request needs to be handled by the controller, it gets congested.

Scalability: The centralized protocols do not scale well for large group sizes as the 

controller gets congested. 

Due to deficiencies in the centralized protocols, researchers have diverted towards 

distributed protocols. However the concept of distributed approach is relatively new in 

this field. Some of the existing distributed floor control techniques are summarized 

below.

The work done in this paper is inspired from the Reference [2], this paper 

presented distributed floor control protocols using MAC layer protocols such as ALOHA

and Distributed Queue Dual Bus (DQDB) on overlay networks. The complete graph of 

NSN’s is used to construct an efficient communication channel. The communication 

channel will ensure quick floor acquisition by end-host in contention phase and causal 

ordering of data packet in data delivery phase. The communication channel also known 

as participating chain is constructed using a polynomial time algorithm. The end-to-end 

delay will be small in the optimal participating chain. The properties of optimal 

participating chain are
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• An optimal participating chain of tree network will start at node of degree 

1 and end at a node of degree 1.

• An optimal participating chain of tree network will not traverse the links 

in the longest path of tree more than once.

• The length of participating chain does not change if sub-trees not having 

longest path are visited in different order.

The algorithm for constructing participating chain is as follows:

Notations:

T(r): Tree with root r.

ST(c): Subtree of T rooted at c.

Ordering Symbol: {<=, >=}

Order(T(r), [ordering symbol]): Arrange k children of r in T such that l(ci) 

[ordering symbol ] l(ci+1) and ci is a child of r for 1<= i<= k.

Algorithm find chain PC ()

Input: T(r)

Output: chain PC

Begin

Compute l(x) for each non-leaf node x in T.

Sort the children of r in non-decreasing order of their l values.

Let v and u be the first and second child of r in the sorted order.

Rearrange T such that u and v are the first and last child of r

For each non-leaf node i in ST(u)

Order(ST(i),>=).

End For

For each non-leaf node l in the ST (v)

Order(ST(l),<=).

End For
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PC = In-order traversal on T

End

Protocol End-host_floor_acquisition()

Begin

If end-host wants to acquire floor

Generate floor_request message

Send floor_request message to NSN

End If

If end-host receives floor_grant message from NSN

End-host goes to Data Delivery Phase

Else If end-host receives floor_reject message from NSN

End-host waits for random amount of time

End-host_floor_acquisition()

End If

End

ALOHA: If a end-host needs to send a message to other end-hosts then sends 

floor request message to the NSN with which it is attached. NSN then forwards this 

message to all other NSN’s. The requested NSN waits for 2C time (where C is the length 

of participating chain). If an NSN receives a floor request message from other NSN’s 

within this time period then it understands that a collision has occurred, the requesting 

end host then will wait for random amount of time. If NSN does not receive any floor 

request message from other NSN’s then it means that no other end host has requested for 

floor. Now this end-host can sends data to its NSN. This NSN forwards the data to last 

NSN in the participating, which then forwards it to root of the multicasting tree. The root 

then sends the message to all the participating end-hosts. This algorithm maintains the 

causal ordering of the messages.
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DQDB: Using the NSN’s participating in the collaboration a participating chain is 

constructed. Participating chain consists of two unidirectional logical paths request flow 

path and signal flow path. The first NSN in the request flow path is known as tail NSN 

and the first NSN in the signal flow path is known as head NSN. When an end-host needs 

to send message to other end-hosts then it sends floor request signal to its NSN. The 

requesting NSN copies the RQ value into DQ and resets the RQ value to zero. The NSN 

then forwards the request to the left neighbor NSN. The left neighboring NSN increments 

its RQ value and similarly forwards it to its left neighbor until it reaches leftmost NSN. 

The head NSN generates wake up signal which is forwarded using the signal flow path. 

Until the first encountered NSN which has DQ value of zero, it traverses on the signal 

flow path and decrements the DQ value of the NSN’s encountered. The NSN which has 

DQ value of zero checks whether any of the end-hosts attached to it requested for floor. 

Then it sends a request grant signal to the requesting end host. The end-host sends 

messages to its NSN with its ID. The NSN forwards it to the tail NSN. The tail NSN 

forwards it to root of the multicasting tree. The root checks whether the sequence number 

is the smallest among the received, if it is the smallest then it multicasts the messages to 

all the participating end-hosts. Otherwise buffers them until smallest is received. This 

algorithm also maintains the causal ordering of the messages.

Reference [3] presents a distributed floor control protocol known as Activity 

Sensing Floor Control protocol that works on the concept of sensing activity on every 

shared resource. The monitoring mechanism in the ASFC is similar to that of 802.3 

Ethernet protocol CSMA/CD. The shared resource is said to be unoccupied if any user 

monitoring the resource do not observe any data packet for a certain threshold time 
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known as maximum inter-departure time. If the time between the two data packets 

exceeds this maximum inter-departure time then also resource is assumed to be 

unoccupied. When a user senses that a resource is occupied then it contends for resource. 

If the floor attempt is unsuccessful then it backs off for certain amount of time depending 

on the number of unsuccessful attempts. The main drawback of this protocol is that it 

assumes that one way transit delay experienced by any packet is fixed. The protocol also 

does not make sure that data packets are received in the order they were sent to the end 

users. 

Reference [5] proposed a protocol for distributed internet conferencing using the 

technique known as full mesh conferencing. In this technique, each member is directly 

connected to other members in the conference. Without any central point of control 

protocol allows any number of users to participate in the conference. All the members in 

the conference are given equal preference without any topological partiality. The protocol 

also allows a member to join and leave the conference at any time, and intimates all 

members in the conference about the new members. The protocol uses various messages 

in order to establish communication between users, to maintain the conference network 

and to join and leave a member from the conference. As this protocol uses direct 

communication between members, it is well suited for small scale conferences. The 

message complexity increases exponentially, so this protocol is not suitable for medium 

and large scale conferences.
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CHAPTER 4

PROPOSED APPROACH

Implementing priority based distributed floor control protocols was the main aim 

of this paper. The paper presents an approach in implementing distributed floor control 

protocol using CSMA protocol. The implementation of priority in distributed floor 

control protocols using ALOHA, DQDB and CSMA are explained. 

4.1 ALOHA

The ALOHA protocol works on the idea of transmitting data when it has data to 

send. Every station if it needs to send data then it does so. If there is collision then it 

retransmits for waiting certain period of time. Reference [2] implemented the ALOHA

based distributed floor control protocol. However the ALOHA MAC protocol 

implemented in the Reference [2] do not consider the case of priority. The issue in 

implementing priority based ALOHA protocol for floor control on overlay networks is 

same as that of the ALOHA protocol i.e. detecting the collisions. But upon collisions the 

waiting time of the NSN differs from the ALOHA protocol however it is proportional to 

the length of the participating chain. The waiting time in ALOHA is random and not 

proportional to the priority of the end nodes.
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Contending Phase:

A participating NSN maintains the information about its neighboring NSN’s in 

the collaborative session. From this information the participating NSN identifies the NSN 

that is to the left side of it and NSN that is to the right side of it. If an end-host attached to 

the NSN needs to send data to other NSN’s then it sends a request message to its NSN. 

The NSN forwards the request message to its left and right neighboring NSN’s with first 

available slot. The slot time increases from high priority to low priority. The NSN after 

sending request waits for ‘2C’ amount of time period. A NSN when it receives a floor 

request message from its left neighbor NSN it forwards the request message to the right 

neighbor NSN and vice versa. Within this time period if the current NSN receives any 

request message from its neighboring NSN’s then it means that a collision has occurred 

otherwise no collision occurred. If there was no collision, it means that no other NSN is 

contending for the floor at that moment. The NSN sends floor_grant signal to the 

requesting end-host. The end-host enters into the data delivery phase. If a collision has 

occurred, it means other NSN’s are also contending in order to gain the floor. The NSN 

sends floor_reject signal to end-host when a collision occurs. The end host after receiving 

floor_reject signal waits for random amount of time depending on the length of the 

participating chain. The end_host with high priority will have small slot-time. This 

differentiation between high priority and low priority end-hosts will give more 

opportunity for high priority end-hosts to gain the floor. The waiting time period for NSN 

is fixed at ‘2C’ because the worst case when the first NSN in the participating chain is 

competing for the floor against last NSN in the participating chain, as it will take ‘C’ 

amount of time to transfer a message from one end to the other end. Waiting for ‘2C’ 
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time period will determine the worst-case possible collision between first and last NSN in 

the participating chain. The priority based Aloha protocol for distributed floor control is 

as follows:

NSN_PRIORITY_ALOHA_on_PC 

Begin

If NSN receives floor_request from its end-host

floor_control(floor_request)

End If

If NSN receives floor_request from left neigh bor

NSN forwards floor_request to right neighbor

End If

If NSN receives floor_request from right neighbor

NSN forwards the floor_request to left n eighbor

End If

End

floor_control(floor request)

Begin

Wait for Slot_Time

Send floor_request to left neighbor and right neighbor

Set timer = 2C

While timer != 0

If floor_request is received from left neigh bor OR right neighbor

Send floor_reject to end-host

break

End If

timer- -

End While

Send floor_grant to end-host
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End

ENDHOST_PRIORITY_ALOHA

Begin

If end-host receives floor_grant from its NSN

Start sending data to NSN

End If

If end-host receives floor_reject from its NSN

wait(priority)

End If

End

Data Delivery Phase:

The end-host after gaining the floor in contention phase is now ready to transmit 

data to all other participating end-hosts. The data delivery phase uses participating chain 

and optimal multicasting tree to transfer data. Participating chain is used to ensure causal 

ordering of messages and multicasting tree is used to reduce end-to-end delay. The end-

host transfers the data packets to its NSN, NSN then it forwards it last NSN in the chain. 

The last NSN forwards the packets to the root of the multicasting tree. The root forwards 

the packets to all the end-hosts in the session. The NSN’s while forwarding data packets 

do not transfer the packets to its attached participating end-hosts. The working of 

ALOHA protocol in maintaining the causal ordering of messages can be proved by 

considering the worst case scenario. Let us consider the case where the first NSN(F) and 

last NSN(L) would like to transfer packets in sequence. The NSN F first sends floor 

request message to all other NSN’s. It then waits for ‘2C’ amount of time period to 

receive floor requests from other NSN’s. Assuming that no collisions occur in the floor 

requests. After waiting for ‘2C’ amount of time the NSN F sends grant message to the 
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requesting end-host. The end-host will send data to NSN F and NSN F forwards the data 

to the NSN L and NSN L forwards it to the root of multicasting tree. The total time taken 

for NSN F to send data can be estimated as ‘2C+C+d’ where 2C is waiting time to gain 

floor, ‘C’ is time taken transfer data from F to L and ‘d’ is time taken for L to transfer to 

the root of the multicasting tree. If NSN L would like transfer floor request then it has to 

send request message after C amount of time other wise collision will occur. The NSN L 

will wait for 2C amount of time period in order to gain floor. Assuming no collisions the 

NSN L sends grant message to its requesting end-host. The end-host will send data to 

NSN L and NSN L forwards the data to the root of the multicasting tree. The total time 

taken for NSN L to transfer data can be estimated as ‘x+2C+d’ where x > C it is 

necessary condition to avoid collision, 2C is waiting time to gain floor, and ‘d’ is the time 

taken for L to transfer data to the root of the multicasting tree. So it is clear that in the 

worst case situation also the protocol is maintaining the causal ordering of messages.

4.2 DQDB

In the Distributed Queue Dual Bus (DQDB) protocol, every station maintains the 

global information of the order of preference by regularly updating the distributed queue. 

Each station is connected to two parallel buses and is aware of the relative position of all 

other stations. Although it is possible to implement priority in DQDB, but only a 

maximum of four priority levels can be implemented.  Also, in order to implement 

priority in DQDB protocol, every station has to handle few additional overheads. Every 

station has to maintain separate queues for each priority class. To differentiate each 

priority level, different request bits are set in the access control field. Separate request 
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counter (RQ) and countdown counter (DQ) are maintained for each queue. The high 

priority queues only count the high priority requests. The low priority queues count all 

the requests of equal or higher priority. However in the DQDB protocol for floor control, 

every station needs to send data only to the last station (also called as tail_NSN) and 

needs to send request signal towards first station (also called as head_NSN) so 

unidirectional paths are used.

Contending Phase:

In DQDB, the participating chain consists of two unidirectional logical paths 

maintained among the NSN’s: request_flow and signal_flow. As shown in the figure 

below the request_flow path is E-D-C-B-A and signal flow path is A-B-C-D-E. The first 

NSN in request_flow path is known as tail_NSN and last NSN in request_flow path is 

known as head_NSN. The request_flow path carries requests in the direction of tail_NSN 

to head_NSN. The signal_flow path carries signals in the opposite direction. 

Figure 4 representing participating chain with request_flow path and signal_flow path 

from [2]

A

Signal Flow Path

Request Flow Path

B C D E
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As in Aloha, each NSN in participating chain maintains information about its left 

neighbor and right neighbor in each path. Every NSN maintains separate queues for every 

priority level. The priority of messages can be known from the bits in the Access Control 

Field.  Each NSN maintains request counter (RQ) and countdown counter (DQ) variables 

for each distributed queue i.e. if there are 3 priority levels then each NSN needs to 

maintain request counter (RQ) and countdown counter (DQ) variables in each of the 3 

queues, each value indicating different priority level. Request counter (RQ) indicates 

number of requests forwarded by the upstream NSN’s in the request_flow path ahead of 

the NSN. In each NSN the different request counter (RQ) values represent the number of 

requests of that priority forwarded by the upstream NSN’s. Countdown counter (DQ) 

represents the position of NSN’s request in the distributed queue. If an end-host wants to 

transmit data to other participants in the collaborative session then it has to obtain the 

floor. In order to gain the floor, the end-host sends floor_request signal to its NSN. The 

NSN forwards the floor_request signal to its left neighboring NSN in the request_flow 

path and copies its current request counters (RQ) values into the countdown counters 

(DQ) respectively.  The countdown counters (DQ) now contain the number of NSN’s 

ahead of this NSN in the queues. The request counters (RQ) are reset to zero. Each NSN 

after receiving floor_request signal in the request_flow path increments their RQ values 

and forwards the floor_request signal to its left neighbor in the request_flow path.  If the 

receiving NSN sees a request of higher priority, it increments the request counters (RQ) 

of equal and lower priority queues and if it sees lower priority request then it only 

increment the request counter (RQ) of lower priority queue. Furthermore, the countdown 

counters (DQ) of the receiving NSN has to be increased if it sees a request message of 
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higher priority. Through this approach all the downstream NSN’s in the request_flow 

path will come to know that the requesting NSN wants to acquire floor. The head_NSN 

generates wake-up signal at regular intervals. The wake-up signal flows through all the 

NSN’s in the downstream along the signal_flow path and reaches tail_NSN. Each wake-

up signal generated contains unique sequence number and it is incremented for every 

signal. The head_NSN after generating wake-up signal checks its countdown counters 

(DQ) in the order of priority. If its DQ value is 0, the head_NSN checks whether it has 

any requesting end-host with that priority. The head_NSN accepts the wake-up signal in 

case it has requesting end-host, it sends floor_grant signal to the requesting end-host. The 

head_NSN sets the end-host ID in the wake-up signal and forwards it to the right 

neighboring NSN in the signal_flow path. If the DQ value is greater than 0, it decrements 

its value by 1. Every NSN receiving the wake-up signal checks whether wake-up signal 

already contains any ID. If it contains ID, it just forwards the wake-up signal to the right 

neighbor in the signal flow path indicating that it is already occupied. If the wake-up 

signal is free, the NSN checks its DQ value in the order of priority and sets its requesting 

end-host ID in the wake-up signal if DQ value is 0, otherwise it just decrements its DQ 

values and forwards the wake-up signal. The end-host after receiving floor_grant signal 

enters into data delivery phase. The priority based DQDB protocol for distributed floor 

control is as follows:

NSN_PRIORITY_DQDB_on_PC()

Begin

Set flag � FALSE

If NSN receives floor_requestp from its end-host

Forward floor_requestp to left neighbor in request_flow path
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While i <= Number of Queues in the NSN

DQi � RQi

RQi � 0

End While

End If

If floor_requestp is received in request_flow path

While i <= priorityp

RQi � RQi + 1

DQi � DQi + 1

End While 

Forward floor_requestp to left neighbor in request_flow path

End If

If wake_up is received in signal_flow path

If wake_up does not contain end-host ID

While i <= Number of Queues in the NSN

If DQi � 0

If requesting end-host with priority exists

Send floor_grant to requesting end-host

Put end-host ID in the wake_up signal

Forward the wake_up signal to right

neighbor in signal_flow path

flag �FALSE

End If

End If

End While

If flag � TRUE

While i <= Number of Queues in the NSN

If DQi  != 0

DQi � DQi - 1

Forward wake_up to right neighbor in 

signal_flow path
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End If

End While

End If

Else

Forward wake_up to right neighbor in signal_flow path

End If

End If

End

Data delivery Phase:

The tail_NSN after receiving the wake-up signal forwards it to root of the 

multicasting tree. The root checks if the wake-up signal is consumed (contains end-host 

ID in wake-up signal). If the wake-up signal is utilized then root stores both the sequence 

number and end-host ID in the database. In the data delivery phase, the end-host sends 

data along with ID to its NSN. The NSN forwards the data to its right neighbor along the 

signal_flow path. The receiving NSN forwards data until it reaches the tail_NSN. The 

tail_NSN forwards the data to root of the multicasting tree. The root checks the ID of the 

end-host with the ID in the data base for correctness and checks if the sequence number 

received is smallest. Otherwise it temporarily buffers the data until it receives data with 

smallest sequence number. This will ensure that data is transferred in the order of floor 

acquisition which in turn guarantees causal ordering of data.

4.3 CSMA

The Carrier Sense Multiple Access (CSMA) protocol has mentioned in the 

previous section works on the idea of “listen before talk”. Every station before 

transmitting the data, need to make sure whether the channel is idle. If the channel is idle 
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then the station can transmit the packets other wise has to wait for certain amount of time 

before scheduling for retransmission. Implementing CSMA protocol for floor control on 

overlay networks need to handle certain issues. In LANs it is easier to verify whether 

channel is idle, but in floor control protocols the NSN’s might be spread across larger 

area. The NSN’s also need to detect the collisions of the request signals. If a NSN 

receives a request signal then the channel is said to be occupied for ‘2C’ where C is 

maximum end-to-end delay which is proportional to the length of participating chain. If a 

NSN receives request message when it is in waiting period then it certifies that a collision 

has occurred. The efficiency of the solution entirely depends on the waiting time which is 

proportional to the length of the participation chain. An optimal participation chain will 

generate excellent results.    

Contending Phase:

A participating NSN maintains the information about its neighboring 

NSN’s in the collaborative session. From this information the participating NSN 

identifies the NSN that is to the left side of it and NSN that is to the right side of it. Every 

NSN keeps track of the requests sent by other NSN’s in the session. Every NSN gets a 

chance to send request depending on the priority of the end_host. If an end-host attached 

to the NSN wants to acquire floor in order to send data to other NSN’s then it sends a 

request message to its NSN. The NSN checks whether it has received any request from 

other NSN’s, if it has received a request, it checks if it has received within 2C amount of 

time period. If it has received a request within time period then the NSN will wait for 2C 

amount of time indicating that the bus is busy. Otherwise it forwards the request message 
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to its left and right neighboring NSN’s. The NSN waits for ‘2C’ amount of time period. A 

NSN when it receives a floor request message from its left neighbor NSN it updates its 

latest request time and forwards the request message to the right neighbor NSN and vice 

versa. Within this time period if the requesting NSN receives any request message from 

its neighboring NSN’s then it means that a collision has occurred otherwise no collision 

occurred. If there was no collision, it means that no other NSN is contending for the floor 

at that moment. The NSN sends floor_grant signal to the requesting end-host. The end-

host enters into the data delivery phase. If a collision has occurred, it means other NSN’s 

are also contending in order to gain the floor. The NSN sends floor_reject signal to end-

host when a collision occurs. The end-host enters into back-off mode. The priority of an 

end-host comes into action when an end-host receives the floor_reject signal i.e. when 

there is contention to gain floor. The end-host with higher priority back-offs for less time 

compared to the end-host with lower priority. This differentiation between high priority 

and low priority end-hosts will give more opportunity for high priority end-hosts to gain 

the floor. The waiting time period for NSN is fixed at ‘2C’ because the worst case when 

the first NSN in the participating chain is competing for the floor against last NSN in the 

participating chain, as it will take ‘C’ amount of time to transfer a message from one end 

to the other end. Waiting for ‘2C’ time period will determine the worst-case possible 

collision between first and last NSN in the participating chain. The priority based CSMA 

protocol for distributed floor control is as follows:

NSN_PRIORITY_CSMA_on_PC 

Begin

If NSN receives floor_request from its end-host
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If NSN has received as floor_request from other NSN within 2C 

time period

While current_time-latest_request_time < 2C

Wait()

End While

floor_control(floor_request)

End If

If NSN receives floor_request from left neigh bor

Update latest_request_time

NSN forwards floor_request to right neighbor

End If

If NSN receives floor_request from right neighbor

Update latest_request_time

NSN forwards the floor_request to left n eighbor

End If

End

floor_control(floor request)

Begin

Send floor_request to left neighbor and right neighbor

Set timer = 2C

While timer != 0

If floor_request is received from left neigh bor OR right neighbor

Send floor_reject to end-host

Break

End If

timer- -

End While

Send floor_grant to end-host

End
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ENDHOST_PRIORITY_CSMA

Begin

If end-host receives floor_grant from its NSN

Start sending data to NSN

End If

If end-host receives floor_reject from its NSN

wait(priority)

End If

End

Data Delivery Phase:

The data delivery phase in CSMA protocol is similar to that of Aloha protocol. 

The end-host after gaining the floor in contention phase is now ready to transmit data to 

other participating end-hosts. The data delivery phase uses participating chain and 

optimal multicasting tree to transfer data. Participating chain is used ensure causal 

ordering of messages and multicasting tree is used to reduce end-to-end delay. The end-

host transfers the data packets to its NSN, NSN then it forwards it to last NSN in the 

chain. The last NSN forwards the packets to the root of the multicasting tree. The root 

forwards the packets to all the end-hosts in the session. The NSN’s while forwarding data 

packets do not transfer the packets to its attached participating end-hosts. The working of 

CSMA protocol in maintaining the causal ordering of messages can be proved by 

considering the worst case scenario. Let us consider the case where the first NSN (F) and 

last NSN (L) would like to transfer packets in sequence. The NSN F first sends floor 

request message to all other NSN’s. It then waits for ‘2C’ amount of time period to 

receive floor requests from other NSN’s. Assuming that no collisions occur in the floor 

requests. After waiting for ‘2C’ amount of time the NSN F sends grant message to the 
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requesting end-host. The end-host will send data to NSN F and NSN F forwards the data 

to the NSN L and NSN L forwards it to the root of multicasting tree. The total time taken 

for NSN F to send data can be estimated as ‘2C+C+d’ where 2C is waiting time to gain 

floor, ‘C’ is time taken transfer data from F to L and ‘d’ is time taken for L to transfer to 

the root of the multicasting tree. If NSN L would like transfer floor request then it has to 

send request message after C amount of time other wise collision will occur. The NSN L 

will wait for 2C amount of time period in order to gain floor. Assuming no collisions the 

NSN L sends grant message to its requesting end-host. The end-host will send data to 

NSN L and NSN L forwards the data to the root of the multicasting tree. The total time 

taken for NSN L to transfer data can be estimated as ‘x+2C+d’ where x > C it is 

necessary condition to avoid collision, 2C is waiting time to gain floor, and ‘d’ is the time 

taken for L to transfer data to the root of the multicasting tree. So it is clear that in the 

worst case situation also the CSMA protocol is maintaining the causal ordering of 

messages.
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CHAPTER 5

SIMULATION

The protocols were developed to evaluate the behavior of priorities in distributed 

floor control. The protocols were simulated using ns-2.27. The simulations of the 

protocols were done extensively for different conditions. The various input parameters 

that are used in the simulations are:

Simulation Time: Every simulation was made to run for 2000 seconds.

End Nodes: Every NSN is connected to 2 end nodes.

Link Delay:  The delay between one NSN to other NSN is fixed at 50 milliseconds and 

the delay between the NSN and its end node is 30milliseconds.

Bandwidth: The bandwidth of the links is 1 Mbps.

Request Packet Size: The request packets are 25 bytes.

Contention Window: The contention window in ALOHA is 20.

Back off Time: The back off time in CSMA is varied according to the priority of end 

node. The back off time in ALOHA is random.

Seed:  All the three distributed floor control protocols use the random functions to 

generate the requests. A different set of results are obtained for a particular request rate 

and length of participating by varying the seed value.
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Cell Generation Rate: The slot and request cells which are required in DQDB are varied 

proportional to the size of the participating chain. The cell generation rate is kept constant 

for a fixed participating chain.

Cell Size: The cells are 44 bytes.

Participating Chain: The simulations were done by varying the length of the participating 

chain for every protocol. The length of the participating chain is varied from 5 NSN’s to 

20 NSN’s.  By varying the length of the participating chain, the behavior of ALOHA, 

CSMA and DQDB protocols under large and small group collaborations can be 

evaluated.

Request Rate:  The request packet generation rate at end nodes is varied on whole 

network as well as varied depending on the priority.  For every length of participating 

chain, simulations were done by varying the request rates. The request rates are varied 

from 0.0125req/sec to 0.05req/sec. By varying the request rate, the performance of all the 

three protocols under heavy loads can be tested.

Figure 5: Shows the alignment of NSNs and End Nodes. The length of participating chain 
is 15 NSNs
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In priority based simulations, the number of end nodes were taken proportional to 

the priority. The number of end nodes taken in simulations are presented in the following 

table:

Length of Participating Chain Priority 0 Priority 1 Priority 2 Priority 3

40 6 6 11 17

30 4 4 9 13

20 3 3 6 8

10 1 2 3 4

The simulations were done for various request rates, seeds and lengths of

participating chain. The average delay occurred for a request to succeed is calculated for 

all the protocols. 
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CHAPTER 6

RESULTS

The simulations were performed both on priority based and non-priority based 

distributed floor control protocols. The average delay taken by the requests are calculated 

and the results of the simulations are presented in the graphs.

The graph in figure 6 shows the performance of CSMA and ALOHA protocols 

without priorities, when requests are generated at 0.05req/sec at every end node. 
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Figure 6: shows the average delay for CSMA and ALOHA protocols

From the results, it can be observed that CSMA protocol performs better than 

ALOHA protocol. This is because ALOHA protocol transmits the requests immediately 

whereas the CSMA protocol transmits the packets only when channel is predicted as idle. 
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As a result the number of collisions in ALOHA increases more rapidly than CSMA.  But 

when the network is small, then both the protocols consume same amount of time for a 

request to succeed. Since the increase in the average delay in CSMA is less, the CSMA 

protocol can be used for large group communications.

The graph in figure 7 shows the average delay for request to succeed verses

number of end nodes for ALOHA protocol, when requests are generated at 0.025req/sec 

at every end node.
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Figure 7: shows average delay for ALOHA protocol

In this simulation all the priorities have the same request rate. We can observe 

that the delay for priority ‘0’ requests is less compared to the delay taken by other priority 

requests. This is because the priority ‘0’ packets wait for smaller slot time than all other 

priorities. When the number of end nodes are less, then the difference in time consumed 

for each priority request is not clear. But as the number of end nodes increase, the 

difference in time taken by request is clearly visible.
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The graph in figure 8 shows the average delay for request to succeed verses

number of end nodes for ALOHA protocol, when requests are generated according to the 

priority of end nodes. 

ALOHA Variable Rate

0
100
200
300
400
500
600
700
800
900

10 20 30 40

Number of End Nodes

A
vg

. 
D

el
ay

 f
o

r 
R

eq
u

es
t 

to
 

S
u

cc
ee

d
 (

S
ec

o
n

d
s)

Priority 0

Priority 1

Priority 2

Priority 3

Figure 8: shows average delay for ALOHA protocol

We observe from the graph that the time taken by the priority ‘0’ requests is less 

compared to other priorities. As the size of the network increase the average time taken 

for request to succeed increases. We can also observe that there is sharp increase in 

delays for lower priority requests when the number of nodes increases. Both simulations 

of ALOHA protocol behave similarly even though the request rates are changed.
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The graph in figure 9 shows the average delay for request to succeed verses

number of end nodes for CSMA protocol, when requests are generated at 0.025req/sec.
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Figure 9 shows the average delay CSMA protocol. 

The graph in figure 10 shows the performance of CSMA protocol when the 

requests are generated according to the priority of end nodes. 
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Figure 10 shows the average delay CSMA protocol.
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Both CSMA simulations behave similar to that of ALOHA. The average time 

taken by the higher priority requests is less compared to that of other priorities.

The graph in figure 11 shows the average delay for request to succeed verses 

number of end nodes for DQDB protocol, when the requests are generated at 

0.025req/sec at every end node.
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Figure 11 shows the average delay for DQDB protocol.

We observe from figures 11 and 12 that the time taken by higher order priority is 

less compared to lower order priorities. 

In all the three protocols, average delay for higher priority request to succeed is 

less compared to lower priority requests. However, the average time taken by the DQDB 

request is very less compared to that of CSMA and ALOHA. This is because in DQDB 

there are no retransmissions and no collisions. The DQDB protocol performs better than 

other two protocols in terms of average delay for request but the only problem in DQDB 

is that head NSN has to constantly generate slot cells even when end nodes has no data to 

transmit.
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The graph in figure 12 shows the average delay for request to succeed verses 

number of end nodes for DQDB protocol when the requests are generated based on the 

priority of the end node.
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Figure 12. Average delay for DQDB protocol
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The proposed CSMA protocol for distributed floor control was implemented and 

the results showed that the protocol performs more efficiently than ALOHA protocol. 

Also we proposed to implement priorities in CSMA, ALOHA and DQDB protocols. The 

graphs in previous chapter showed that the protocols serve higher priority requests more 

often than lower priority requests. Among the three distributed floor control protocols 

DQDB performs efficiently than other two protocols. We have also shown that all the 

three distributed floor control protocols preserve the causal ordering of messages even 

with priorities. The results thus justify the use of priority based distributed floor control 

protocols in order to serve priority end nodes efficiently.

The distributed floor control protocols implemented so far are still in the 

elementary stage. The protocols need to be developed in order to handle the dynamism of 

the networks. The protocols proposed in this paper introduce priority in the collaborative 

session. Following extensions can be implemented to handle the dynamism of the 

collaborative session.

The protocols currently handle a fixed number of priorities, it can be further 

expanded to handle a number of priorities.  Variable number of priorities can be easily 

implemented in CSMA and ALOHA but it is complicated to implement it in DQDB.

Furthermore priority for an end node can be allowed to change dynamically 
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during the simulation. Protocols can be expanded to allow end nodes to join and leave a 

collaborative session dynamically. By allowing this feature, users get flexibility to join 

and leave a collaborative session at any moment. Adding the above mentioned 

functionalities to distributed floor control protocols will make collaborative applications 

more user friendly.
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