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Abstract

Intense atmospheric vortices occur in dust devils, waterspouts, tornadoes, meso-

cyclones and tropical cyclones. Tangential wind models have been proposed

that approximate the observed tangential wind profile of an atmospheric vor-

tex for the purpose of data analysis and prediction. Data analysis is required to

demonstrate in an objective way that a parameterized tangential wind model

provides an acceptable description of the tangential wind profile of an atmo-

spheric vortex and determine if the model can be used to make accurate predic-

tions. Analysis of the residuals indicates that nonlinear least squares analysis

is appropriate. The Wood-White 2 vortex model provides good approxima-

tions to the benchmark Davies-Jones data set in radial, tangential and vertical

wind estimates. Using the methodology of Information Theory and Sensitivity

Analysis, information content of the parameters of the Wood-White 2 vortex

model show that both parameters are essential in estimation of the tangential

wind profile. The variances in both parameters were large, but can be reduced

by using random samples containing the statistical properties of the data. The

Local Sensitivity Analysis method can be used without much loss of informa-

tion which will be valuable in the analysis of models with a large number of

parameters. Uncertainty in radial, tangential and vertical winds were examined

and can be used effectively to predict these quantities and their uncertainties.

x



Chapter 1

Introduction

Intense atmospheric vortices occur in dust devils, waterspouts, tornadoes, meso-

cyclones and tropical cyclones. Tangential wind models have been proposed

that approximate the observed tangential wind profile of an atmospheric vor-

tex for the purpose of data analysis and prediction. Observations of tangen-

tial wind come from many sources, such as numerical simulations and mobile

Doppler radar. Data analysis is required to demonstrate in an objective way

that a parameterized tangential wind model provides an acceptable description

of the tangential wind profile of an atmospheric vortex and determine if the

model can be used to make accurate predictions. The problem of prediction is

called the forward problem.

The tangential wind profiles of atmospheric vortices are often approximated

by continuous nonlinear functions that are zero at the vortex center, increase

to a maximum at some radius and then decrease asymptotically to zero. At-

mospheric models are, in general, highly nonlinear. This is especially true for

models of atmospheric vortices. The atmosphere is modeled as a fluid using the

Navier-Stokes system of partial differential equations with practical solutions

that are often nonlinear. A number of models, such as the idealized, inviscid

Rankine (1882) [19], the viscous Burgers (1948) [4] -Rott(1958) [20] and Sullivan

(1959) [26] analytical vortex models have been used to approximate observed

profiles of tangential winds. New models have been proposed by Wood-White
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(2011) [32] that use a rational function to model an inner core of solid-body

rotation and an outer profile that decays to zero at infinity. The various models

for tangential winds have parameters that contain useful information about the

physical structure of a vortex. The parameters of any model must be assumed

or estimated and often represent physical properties of the physical system. In

the case of atmospheric vortices, parameters represent physical properties such

as viscosity, interior rotational core flow, exterior potential rotational flow, cir-

culation strength and strength of suction. The problem of using the results of

some measurements to infer the values of parameters of the model is called the

inverse problem. The state of information over the parameter space is central

to the solution of the forward problem of prediction and the inverse problem

of parameter resolution.

The forward and inverse problems are solved using probability and infor-

mation theory, hence parameter estimation includes a priori information and

information contained in data. Since there are a small finite number of param-

eters in the tangential wind models, the actual a posteriori probability density

function is calculated as a solution to the inverse problem. This a posteriori

probability density function incorporates any prior information assumed about

the parameters in the tangential wind models as well as the information con-

tained in the data. The forward problem then consists of evaluation of the flow

of information into prediction of other quantities such as such as radial and

vertical winds and the vortex pressure field. This approach makes is possible

to determine vortex structure when there is incomplete data.

In this paper, analytic vortex models are used to estimate the tangential wind

component of the vortex. This estimate is dependent on parameters which are
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obtained by optimization techniques. With the a posteriori probability density

function, statistical and information theory are used to analyze the resolution of

the parameters, followed by a sensitivity analysis. Equations from the Navier-

Stokes system of equations are used to estimate the radial and vertical wind

components of the vortex, as well as the pressure differential along with an

analysis of the flow of information into these quantities.

The thesis is organized in chapters as follows:

Chapter 2 addresses the essential elements of Fluid Mechanics that provide

the fundamental background to this work.

Chapter 3 contains a list of tangential wind models that are of interest to

meteorologists. The normalized Wood-White vortex 2 was selected for anal-

ysis because of its small number of parameters and its ability to capture the

information in the data set providing the ability to do a thorough analysis.

Chapter 4 describes the Davies-Jones [11] benchmark data set. A bench-

mark data set is defined to be information that is believed to be accurate or true

for use in comparing this information with computational results, and logical

procedures for drawing conclusions from these comparisons [30].

Chapter 5 consists of the equations and methodology used to address the

prediction problem.

Chapter 6 consists of the equations and methodology used to address the

inverse problem of parameter prediction and resolution. This chapter discusses

the parameters of the radial, tangential and vertical wind models and the z-

dependent profile which models the vertical maximum tangential wind.

Chapter 7 addresses two topics that are essential in the forward and inverse

problems. The first topic is Information Theory which defines the state of in-

formation over the parameter space and the propagation of information into

quantities dependent on the parameters. The second topic is Sensitivity Anal-

3



ysis. Local Sensitivity Analysis concentrates on the local impact of the factors

on the model and is usually carried out by computing partial derivatives of the

output functions with respect to the input variables. Variance-Based Sensitiv-

ity Analysis is a global method that apportions the output uncertainty to the

uncertainty in the input factors [22]. This is usually done by probability den-

sity functions defined on the admissible set of parameters, thus the technique

incorporates the influence of the whole range of variation and the form of the

probability density function of the input.

Chapter 8 gives the main results and contributions. Analysis of the residuals

indicates that nonlinear least squares analysis is appropriate. The Wood-White

2 vortex model provides good approximations to the benchmark Davies-Jones

data set in radial, tangential and vertical wind estimates. Using the method-

ology of Information Theory and Sensitivity Analysis, information content of

the parameters of the Wood-White 2 vortex model show that both parameters

are essential in estimation of the tangential wind profile. The variances in both

parameters were large, but can be reduced by using random samples containing

the statistical properties of the data. The Local Sensitivity Analysis method

can be used without much loss of information which will be valuable in the

analysis of models with a large number of parameters. Uncertainty in radial,

tangential and vertical winds were examined and can be used effectively in a

real-time system to predict these quantities and their uncertainties.

Chapter 9 contains the conclusions and recommends some potential topics

for further research.
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Chapter 2

Fluid Mechanics

2.1 Eulerean and Langrangian Descriptions

Atmospheric flow is a special case of fluid flow and can be described in two

different ways. In the Lagrangian system, the observer follows an individual

parcel or ”bubble”. This is the usual point of view of physics and calculus. In

contrast, atmospheric dynamics is usually concerned with a specific location in

space. In this Eulerian system, the observer is focused on a particular location.

Since physical laws are usually given in terms of the Lagrangian description, it

is important to derive the corresponding Eulerian destription.

The Lagrangian description in Cartesian coordinates will be given first. Let

r(t) = (x(t), y(t), z(t)) denote the position at time t of the ”bubble”, velocity

v(t) = (u(t), v(t), w(t)) = (dx
dt
, dy
dt
, dz
dt

) denote the velocity at time t of the ”bub-

ble” and Dv(t)
Dt

denote the acceleration. The Eulerian description is given in

terms of position r(t) and time t as v(r(t), t) with acceleration ∂v(t)
∂t

. By the

Chain Rule:
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Dv(t)

Dt
Lagrangian derivative

=
∂v(t)

∂t
local acceleration of ”bubble”

+ (v · ∇)v flow of the fluid

where ∇ is the gradient operator

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
)

2.2 Navier-Stokes Equations

Newton’s second law (conservation of momentum) states that

F = ma = m
Dv

Dt
=
Dmv

Dt

Therefore, Newton’s law states that the rate of change of momentum is

determined by the forces acting on the body. The Navier-Stokes equations

arise from applying Newton’s second law in conjunction with conservation of

mass and are used in physics to describe atmospheric motion. There are two

types of forces on an air parcel: body forces such as the gravitational force and

surface or stress forces. Surface forces are those that are exerted on an area

element by direct contact. In this case, Newton’s second law gives Cauchy’s

equation of motion:

ρ
Dv

Dt
= ρg +

∂τ

∂x

where ρ is the density of air, g is the gravitational force vector and τ is

the second order stress tensor. The relation between stress and deformation

in a continuum is called a constitutive equation. It is assumed that in the

6



atmosphere, surface stress does not depend on the orientation of the surface. In

other words, the stress tensor is isotropic or spherically symmetric. Therefore,

the assumed constitutive relation for the stress tensor is of the form

τ = −pδ + σ

where p is the thermodynamic pressure. σ is the deviatoric stress tensor

which is the stress due to motion and δ is the Kronecker delta tensor defined

by

δ =

26666664
1 0 0

0 1 0

0 0 1

37777775
Under the Newtonian hypothesis, the relationship between deviatoric stress

and rate of strain is assumed linear and therefore if K is a fourth order tensor

and e is the second order rate of strain tensor defined by

e =

26666664
∂u
∂x

1
2

�
∂u
∂y

+ ∂v
∂x

�
1
2

�
∂u
∂z

+ ∂w
∂x

�
1
2

�
∂u
∂y

+ ∂v
∂x

�
∂v
∂y

1
2

�
∂v
∂z

+ ∂w
∂y

�
1
2

�
∂u
∂z

+ ∂w
∂x

�
1
2

�
∂v
∂z

+ ∂w
∂y

�
∂w
∂z

37777775
This relationship is of the form

σij = Kijmnemn

Since air is isotropic, the components of K must be the same in all Cartesian

coordinate systems, therefore it can be shown that there are only two non zero

components of K, λ and µ. The components of τ can now be written as

7



τij = −pδij + λδijemm + 2µeij

Under the Stokes’ hypothesis,λ+ 2
3
µ = 0 and the thermodynamic pressure

is equivalent to the mechanical pressure. µ is the dynamic viscosity coefficient

which is a friction coefficient. It is a function of temperature. The kinematic

viscosity coefficient is defined to be ν = µ/ρ. The Navier-Stokes equations are

given next in Cartesian coordinates where r = (x, y, z) so that v = (u, v, w) =

(dx
dt
, dy
dt
, dz
dt

).

∂v

∂t
local derivative

+ (v · ∇) v nonlinear advection

= −1

ρ
∇p pressure gradient force

+ g gravity or other forces

+ ν∇2v friction

where

∇2v =
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

Other force terms can be added, such as buoyancy and Coriolis effects.

The Navier-Stokes system consists of these three equation and an equation for

conservation of mass. Since mass = density times volume, mass m can be

expressed as

m =
Z
V
ρ dV =

ZZZ
ρ dx dy dz

where V is a fixed volume. The rate of change of mass can be written as

8



dm

dt
=

d

dt

Z
V
ρ dV =

Z
V

∂ρ

∂t
dV

Let A be the surface area of the boundary of V . The rate of mass flow out

of the volume is

Z
A
ρv · n̂ dA

where n̂ is the unit normal vector that points out of the solid V . Using the

two expressions for the rate of change of the mass and the divergence theorem

gives

Z
V

∂ρ

∂t
dV = −

Z
A
ρv · n̂ dA = −

Z
V
∇ · (ρv) dV

Putting the left and right sides of the equation together

Z
V

�
∂ρ

∂t
+∇ · (ρv)

�
dV = 0

The volume V is fixed, but arbitrary, so the general equation for conserva-

tion of mass follows:

∂ρ

∂t
+∇ · (ρv) = 0

The general form of conservation of mass is:

∂ρ

∂t
+∇ · (ρv) = 0

If the density of air, ρ, is assumed to be constant then ∂ρ
∂t

= 0 and

∇ · (ρv) = ρ (∇ · v) = 0

9



The fourth equation of the incompressible Navier-Stokes system is the in-

compressibility condition ∇ · v = 0

Let Ω ⊆ R3 be a bounded domain. The stationary Navier-Stokes Equations

are of the form:

(v · ∇) v +
1

ρ
∇p− ν∇2v = g

∇ · v = 0

v = 0 on the boundary of Ω

The weak formulation is given by:

ν
Z

Ω
∇u∇v dx−

Z
∂Ω

(∇u · u)v ds| {z }
=0

+
Z

Ω
(u · ∇)u · v dx

−
Z

Ω
p(∇ · v) dx| {z }

=0

+
Z
∂Ω
pv ds| {z }
=0

=
Z

Ω
fv dx

where u and v are in the space [H1
0 (Ω)]3 and f is in the space L2(Ω)

The following theorem is well known:

Theorem 2.1. There exists a weak solution u of the Navier-Stokes Equations

and a constant c1 > 0 such that

‖u‖H1 ≤ c1

ν
‖f‖L2

Also, there exists a constant c2 = c2(Ω) > 0, such that the solution of the

Navier-Stokes Equations is unique, if

ν2 ≥ c2
2‖f‖L2

10



The symmetry of the system suggests using cylindrical coordinates. Con-

sider a wind field in cylindrical coordinates (u, v, w) where u is the radial veloc-

ity, v is the tangential velocity and w is the vertical velocity of a parcel of air at

location (r, θ, z). Under the assumptions of time independence, axisymmetry

(no dependence on θ), pressure dependence only on r and z, and body force

b(r, z) due to buoyancy alone, the equations in cylindrical coordinates become:

1. The radial equation:

u
∂u

∂r
− v2

r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+ ν

�
1

r

∂

∂r

�
r
∂u

∂r

�
− u

r2
+
∂2u

∂z2

�

2. The tangential equation:

u
∂v

∂r
+
uv

r
+ w

∂v

∂z
= ν

�
1

r

∂

∂r

�
r
∂v

∂r

�
− v

r2
+
∂2v

∂z2

�

3. The vertical equation:

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

�
1

r

∂

∂r

�
r
∂w

∂r

�
+
∂2w

∂z2

�

4. Conservation of mass:

∂u

∂r
+
u

r
+
∂w

∂z
= 0

2.3 Vorticity and Circulation

Vorticity is defined to be twice the average angular velocity of a fluid at a

particular point of interest about each axis of an orthonormal coordinate system

centered at the point of interest. In other words, vorticity is twice the local

11



angular velocity. Two mutually perpendicular lines are used and the average

rotation rate of the two lines is calculated to get vorticity.

The vorticity vector w. of a fluid element is related to the velocity vector

u by w = ∇×u. Velocity u is related to circulation Γ around a closed contour

C by

Γ ≡
I
C

u · ds

where ds is an element of contour C. By Stokes’ Theorem,

Γ =
Z
A

w · dA

where A is an arbitrary surface bounded by curve C. Thus, the circulation

around a closed curve is equal to the surface integral of the vorticity. Equiva-

lently, the vorticity at a point equals the circulation per unit area.

12



Chapter 3

Tangential Wind Models

The tangential component of the vortex wind is assumed known. The tangential

wind profile is expressed as a product

v(r, z) = φ(r)ψ(z)

where φ gives the radial profile of the tangential wind and ψ gives the

vertical profile of the maximum tangential wind. The model for the function

ψ is

ψ(z) = Vx tanh
�
A1z

H

�
tanh

�
A2

�
1− z

H

��
Where Vx is a parameter representing the maximum tangential velocity at

the vertical level z. A1, A2 and H are parameters.

The function φ is normalized in the Wood-White and Vatistas models so

that the maximum tangential wind is one at r = 1. The following is a list of

candidate models for φ. There are three possible parameters and these will be

denoted by a, b, and c. In order to simplify the form of the models, the symbols

η and κ will be defined as η = a+ b and κ = a+ 1.

1. The normalized Wood-White vortex 1.

φ(r) =
κr

a+ rκ

13



2. The normalized Wood-White vortex 2.

φ(r) =
ηrb

a+ brη

3. The normalized Wood-White vortex 3.

φ(r) =
rbh

1 + b
η

�
r
η
c − 1

�ic
4. The normalized Wood-White vortex 4

Φ(r) =
(rr?)

b + rr?
1 + (rr?)a

/
(r?)

b + r?
1 + (r?)a

where r? is the radius where φ(r) is maximum.

5. The normalized Wood-White vortex 5

Φ(r) =
(rr?)

b + rr?�
1 + (rr?)

a
c

�c/ (r?)
b + r?�

1 + (r?)
a
c

�c
where r? is the radius where φ(r) is maximum.

For the Wood-White models, u, w, and pressure are computed using the

Navier-Stokes equations. These computations are discussed later.

6. The Rankine combined vortex

14



u(r, θ, z) = 0

v(r, θ, z) =

8><>: Vxr
Rx

if r ≤ Rx

VxRx
r

if r > Rx

w(r, θ, z) = 0

where Vx is the maximum tangential velocity magnitude and Rx is the

radius of the vortex core. Vx
Rx

is the angular velocity of the solid body

rotation.

Since the angular momentum at infinity, Γ∞ is

lim
r→∞

2πrv = Γ∞,

then these equations can be written as

u(r, θ, z) = 0

v(r, θ, z) =

8><>: Γ∞r
2πR2

x
if r ≤ Rx

Γ∞
2πr

if r > Rx

w(r, θ, z) = 0

In this model the vertical vorticity is given by

ζ =
∂v

∂r
+
v

r
=

8><>: 2Vx
Rx

if r ≤ Rx

0 if r > Rx

15



Under the assumption of cyclostrophic balance, the perturbation pressure

p′ can be calculated by

∂p′

∂r
=
ρv2

r
(3.1)

To obtain the pressure, integrate (3.1) assuming p′ is a function of r only.

Z p′∞

p′(r)
dp =

Z ∞
r

ρv2

s
ds

where p′(r) is the pressure perturbation at radius r from the vortex center

and p′∞ is the pressure perturbation far away from the vortex. Under the

assumption of constant density p′∞ = 0. The pressure field for r > Rx is

p′(r) = −
Z ∞
r

ρ
�
VxRx

s

�2 ds

s

= −ρV 2
xR

2
x

�
− 1

2s2

�∞
r

= −1

2
ρV 2

x

R2
x

r2

The pressure field for r ≤ Rx is

p′(r) = −
Z Rx

r
ρ
�
Vxs

Rx

�2 ds

s
−
Z ∞
Rx

ρ
�
VxRx

s

�2 ds

s

= −ρV
2
x

R2
x

�
s2

2

�Rx
r

− ρV 2
xR

2
x

�
− 1

2s2

�∞
Rx

= −ρV 2
x

�
1− r2

2R2
x

�

7. The Burgers-Rott vortex
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u(r, θ, z) = −ar

v(r, θ, z) =
Γ∞
2πr

�
1− e−

ar2

2ν

�
w(r, θ, z) = 2az

where a is the strength of the suction, and Γ∞ is

lim
r→∞

2πrv = Γ∞,

Setting
∂v

∂r
= 0 gives maximum tangential winds

when
1

2π

�
− 1

r2
+

1

r2
e−

ar2

2ν +
a

ν
e−

ar2

2ν

�
= 0

p(r, z) = p0 + ρ
Z r

0

v2

s
ds− ρa

2

2

�
r2 + 4z2

�
8. The normalized Vatistas vortex

φ(r) =
2

1
q r

(1 + r2q)
1
q

9. The Sullivan vortex
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u(r) = −ar +
6ν

r

�
1− e−

ar2

2ν

�
v(r) =

Γ∞
2πH(∞)r

H

�
ar2

2ν

�
w(r) = 2az

�
1− 3e−

ar2

2ν

�
where Γ∞ = lim

R→∞
v(R) · 2πR and

H(x) =
Z x

0
exp

�
−β + 3

Z β

0
(1− e−s)1

s
ds
�
dβ

The vertical vorticity is computed as follows

∂H(r)

∂r
= exp

�
−r + 3

Z r

0

1− e−s

s
ds

�
∂

∂r

�
H

�
ar2

2ν

��
=

ar

ν
exp

�
−ar

2

2ν
+ 3

Z ar2

2ν

0

1− e−s

s
ds

�
ζ =

Γ∞
2πrH(∞)

∂

∂r

�
H

�
ar2

2ν

��
ζ =

aΓ∞
2πνH(∞)

exp

�
−ar

2

2ν
+ 3

Z ar2

2ν

0

1− e−s

s
ds

�
The azimuthal vorticity for is given by the equation

ωθ =
∂u

∂z
− ∂w

∂r
=
−6a2rz

ν
e−

ar2

2ν

18



The pressure computations are as follows:

u
∂Λ

∂r
− Λ2 − ν

�
∂2Λ

∂r2
+

1

r

∂Λ

∂r

�
= −4a2

p(r, z) = p0 + ρ
Z r

0

v2

s
ds− ρa

2

2

�
r2 + 4z2

�
− 18ρν2

r2

�
1− e−

ar2

2ν

�2

10. The double exponential vortex

φ(r) = ae−bx − ce−dx
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Chapter 4

The Data Set

Tornado wind data were generated by Davies-Jones (2007) [11], using a numer-

ical model of a mesocyclone. Davies-Jones defined a mesocyclone as a cyclonic

vortex with core radius greater then 2 km. The numerical model uses non-

dimensional equations to solve for radial u, tangential v and vertical w winds

with an initial Beltrami flow. The equations and numerical procedures are de-

scribed in [11]. The independent variables, radius from the center r and height

above the ground z were divided into an unstaggered grid with grid spacing

∆r = ∆z = 42.25 m when scaled to the mesocyclone. The portion of the data

set used in this paper is from a snapshot of the simulation at t = 6.07 when

the tornado produced by the mesocyclone is at its peak. The tornado regions

occupies ri, i = 1, · · ·Nd with Nd = 30 and height z = 1, 2, and 3 levels from

the ground. The variable ri represents the distance from the vortex center and

each height level corresponds to 42 m, 84 m and 126 m. Vertical and tangential

winds in the axial jet reach speeds of 3.49 ( 119 m/s) and 2.27 ( 77 m/s),

respectively. The tangential wind profile from the Davies-Jones data set was

normalized to fit the Wood-White 2 vortex tangential wind model so that the

maximum was one at the location r = 1 from the center of the tornado vortex.

at this point, the data is non-dimensional. The maximum velocity was retained

and used in the vertical wind profile of the horizontal maximum tangential wind

for use in the z-dependent profile.
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The Davies-Jones data set used in this paper was provided by Vincent T.

Wood of NOAA/OAR/National Severe Storms Laboratory. The data is de-

scribed fully in Davies-Jones [11].
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Chapter 5

The Forward Problem

The prediction problem is called the forward problem. Let S be the physical

system under study. In this paper, S is an atmospheric vortex. The non-linear

model in S is defined by Ymn = v(rn, zm,Q)+εmn, n = 1, 2, . . . , N , m = 1, 2, 3,

where N is the number of independent variables that represent distance r from

the vortex center and m defines the three levels that represent height z above

the ground. The variable v is the tangential velocity and Q = (p,q) is the

vector of parameters with vector p containing parameters for the model of the

tangential profile viewed radially from the vortex center and vector q containing

parameters for the maximum tangential wind profile viewed vertically from the

ground. It is assumed that

v(rn, zm,Q) = φ(rn,p)ψ(zm,q) (5.1)

The variable εmn is the random variable representing the stochastic or dis-

turbance part of the model with E(εmn) = 0 and V ar(εmn) = σ2. Here σ2 is

assumed to be constant.

The physical laws and approximations applied to S result in the Navier-

Stokes equations. The form of the tangential velocity model is assumed known

and given, both in the radial direction and the vertical direction. Hence, the

form of the functions φ(rn,p) and ψ(zm,q) are assumed known and given.

Another assumption is that the independent variables rn and zm are known
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without error.

A subset of the Navier-Stokes equations is used to estimate radial and vertical

wind profiles. The question arises as to the accuracy of these predicted values.

The uncertainty analysis for these predictions is described in the next section

which focuses on the inverse problem. For the forward problem, two cases are

considered. The first case is the Cylindrical Case where

ψ(z,q) ≡ 1

In other words, the atmospheric vortex is a cylinder with no vertical varia-

tion. The second case is the Non-Cylindrical Case where

ψ(z,q) = Vx tanh
�
A1z

H

�
tanh

�
A2

�
1− z

H

��
Vx is a parameter representing the maximum tangential velocity at the

vertical level z and A1, A2, H are parameters.

5.1 Cylindrical Case

The tangential velocity is assumed to be a function of r only. In this cylindrical

case, the vertical vorticity is given by

ζ =
∂v

∂r
+
v

r
=
∂φ

∂r
+
φ

r

Therefore, the vertical vorticity ζ is a function of r only. The tangential

momentum equation becomes
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u
∂φ

∂r
+
uφ

r
= ν

�
∂

∂r

�
1

r

∂

∂r
(rφ)

��
uζ = ν

�
∂ζ

∂r

�
, r > 0

and this gives a solution for u given by

u = ν

 ∂ζ
∂r

ζ

!
, ζ 6= 0 (5.2)

Therefore, the radial velocity u is a function of r only.

Using the conservation of mass equation, the vertical velocity w is found by

∂w

∂z
= −

�
∂u

∂r
+
u

r

�
w = −

�
∂u

∂r
+
u

r

�
z (5.3)

The radial momentum equation can be used to compute pressure.

Let Λ =
∂u

∂r
+
u

r
so that w = −zΛ, since

w = −
�
∂u

∂r
+
u

r

�
z

u
∂u

∂r
− v2

r
= −1

ρ

∂p

∂r
+ ν

�
∂

∂r

�
1

r

∂

∂r
(ru)

��
which can be seen to be

u
∂u

∂r
− v2

r
= −1

ρ

∂p

∂r
+ ν

�
∂Λ

∂r

�
so that

∂p

∂r
= ρ

�
−u∂u

∂r
+
v2

r
+ ν

�
∂Λ

∂r

��
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Solving this differential equation gives

p(r, z) = ρ

�
−u2/2 +

Z r

0

v2

s
ds+ νΛ

�
+ f(z)

where the function f is a function of z only.

The vertical equation gives

∂p

∂z
= ρz

�
u
∂Λ

∂r
− Λ2 + ν

�
1

r

∂

∂r

�
r
∂Λ

∂r

���
Solving this differential equation gives

p(r, z) = ρ
z2

2

�
u
∂Λ

∂r
− Λ2 + ν

�
1

r

∂

∂r

�
r
∂Λ

∂r

���
+ g(r)

where the function g is a function of r only. These two expressions for

p(r, z) must hold simultaneously.

5.2 NonCylindrical Case

In this noncylindrical case, the vertical vorticity is given by

ζ =
∂v

∂r
+
v

r
=

�
∂φ

∂r
+
φ

r

�
ψ

where φ is a function of r only and ψ is a function of z only. The tangential

momentum equation becomes ζu+ ηw = β

where η(r, z) = φ(r)ψz(z) = φψz and β(r, z) = ν(ζr(r, z) + φ(r)ψzz(z)) =

ν(ζr + ηz) Notice that η 6= 0 except at the z0 level of maximum tangential

velocity, in other words, where ψz(z0) = 0 because φ(r) 6= 0 only at r = 0.

Solve the tangential equation for w and substitute this into the equation for

conservation of mass:
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w =
β

η
− ζu

η
(5.4)

∂u

∂r
+
u

r
+

∂

∂z

�
β

η
− ζu

η

�
= 0

A first order partial differential equation in u follows as:

∂u

∂r
− ζ

η

∂u

∂z
+ u

�
1

r
+
ζηz
η2
− ζz
η

�
+
βz
η
− βηz

η2
= 0

u(0, z) = 0

The method of characteristics was used to solve this partial differential

equation by choosing dr
dt

= 1 and dz
dt

= −ζ
η

so that du
dt

= du
dr

(1) + du
dz

�
−ζ
η

�
to get

the ordinary differential equation:

∂u

∂t
+ u

�
1

r
+
ζηz
η2
− ζz
η

�
+
βz
η
− βηz

η2
= 0

u(0, z) = 0

Let t = r and let s be the characteristic curve s = rφψ = tφψ = tv Recall

that tφ(r)ψ(z) = tv so that at a particular level, φ(t)ψ(z0) = v(t, z0) at z = z0.

Let
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η = φψz

ηz = φψzz

ζ =

�
φ

t
+ φt

�
ψ

ζz =

�
φ

t
+ φt

�
ψz

β = ν

��
φtt +

φt
t
− φ

t2

�
ψ + φψzz

�
βz = ν

��
φtt +

φt
t
− φ

t2

�
ψz + φψzzz

�
The coefficient of u becomes:

��
1

t
+
φt
φ

�
ψψzz
ψ2
z

− φt
φ

�
The remaining term, βz

η
− βηz

η2
can be seen to be:

ν

��
φtt
φ

+
φt
tφ
− 1

t2

��
1− ψψzz

ψ2
z

�
+
ψzzz
ψz
− ψ2

zz

ψ2
z

�
Therefore, the problem becomes to solve the ordinary differential equation

given by:

u′(t) = f(t, u) =

�
φt
φ
−
�

1

t
+
φt
φ

�
ψψzz
ψ2
z

�
u (5.5)

+ ν

��
φtt
φ

+
φt
tφ
− 1

t2

��
ψψzz
ψ2
z

− 1

�
− ψzzz

ψz
+
ψ2
zz

ψ2
z

�
u(0) = 0

The derivatives of ψ are given in Appendix A. The Euler method was used
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to solve (5.5). The solution is unstable near t = 0 because the coefficients

have terms involving 1/t. It was necessary to solve (5.5) away from t = 0 by

providing an initial condition u(r0) where r0 6= 0. This is equivalent to receiving

one radial measurement to initialize (5.5). Once radial u is determined, vertical

w can be calculated from the equation for conservation of mass.

28



Chapter 6

The Inverse Problem

The problem of using the results of some measurements to infer information

on values of model parameters is called the inverse problem. In the system S

of an atmospheric vortex the tangential wind profile is assumed to be of the

form v(r, z,Q) = φ(r,p)ψ(z,q) (5.1), where Q = (p,q) is the vector of param-

eters. It is assumed that each parameter is contained in a bounded interval of

real numbers. The space of admissible parameters is defined as the Cartesian

product of the bounded intervals of the parameters and hence is a bounded

hypercube in RNp , where Np is the number of parameters. The solution of

the inverse problem may be expressed in terms of a probability distribution

over the space of admissible parameters. The probabilistic formulation of the

inverse problem results in a collection of models, forming a model space, de-

fined over the parameter space. Data is used to construct a probability density

function (p.d.f.) over the parameter space which is then used to define a p.d.f.

over the model space, Hence, the parameter estimation procedure provides a

probability for each parameter vector in the parameter space from which an op-

timal parameter vector can be selected as the one with the highest probability.

The parameter vector probability assigns to each model in the model space, a

probability that the model is consistent with the data. A description of the

parameter estimation procedure that will define this probability distribution is

given below.
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6.1 Z-Dependent Profile Parameters

The vertical profile of the maximum tangential wind, ψ is

ψ(z) = Vx tanh
�
A1z

H

�
tanh

�
A2

�
1− z

H

��
where Vx is a parameter representing the maximum tangential velocity at

the vertical level z. A1, A2 and H are parameters. These parameters are

estimated using a data set of maximum tangential wind profiles by minimizing

the cost functional over the admissible set of parameters:

J(q) =
NX
i=1

(ψ(zi,q)− ψobs(zi))2

where q is the vector of parameters with components qk, k = 1, · · · , Nq. In

this case, q1 = Vx, q2 = A1, q3 = A2 and q4 = H with Nq = 4 and 1 ≤ z ≤ 15.

The function ψobs(zi) is the maximum tangential velocity at each level of zi.

At this time, the only data set with more than one vertical level available for

this analysis is the Davies-Jones data set. Future work will include other data

sets. The z-profile model is fitted to the Davies-Jones maximum tangential

velocity data by minimizing J(q) using 0.3 ≤ Vx ≤ 3, 1 ≤ A1 ≤ 6, 1 ≤ A2 ≤ 6

and 16 ≤ H ≤ 46. The optimal parameter values of q̂1 = V̂x = 2.8, q̂2 = Â1 =

3.9, q̂3 = Â2 = 2.2, and q̂4 = Ĥ = 30 with J(q) = 0.001351 using grid spacing

of 0.1 for each of the parameters Vx, A1, and A2 and grid spacing of one for H.

Note that Vx, A1, and A2 are assumed to be real numbers and H is assumed

to be an integer. Figure 6.1 shows the z-profile fitted to the Davies-Jones

maximum tangential velocity data.

The parameters and the functional form of the z-dependent profile are de-

pendent on the type of atmospheric vortex and will not be a part of the uncer-
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Figure 6.1: z-Profile fitted to Davies-Jones

tainty analysis. Therefore, these parameters are estimated and assumed to be

accurate.

6.2 Tangential Profile Parameters

Since the estimated z-dependent parameters are assumed to be accurate, the

non-linear regression model can be simplified and written as Yn = φ(rn,p) + εn

where εn is the random variable representing the stochastic or disturbance

part of the model and is assumed normally distributed with E(εn) = 0 and

V ar(εn) = σ2, a constant. Parameters were estimated by minimizing the ob-

jective or cost function:

J(p) =
NX
i=1

(φ(ri,p)− φobs(ri))2 =
NX
i=1

(φ(ri,p)− zi)2

where p is the vector of parameters with components pk, k = 1, · · · , Np,

ri is distance from the center of the vortex and assumed known without error.

All model parameters were estimated using a grid on each parameter interval

with spacing size 0.01 and by the following steepest descent algorithm:

1. The first estimate p0 is selected by using a grid over the admissible pa-
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rameters with spacing 0.1. p0 is chosen so that J(p) is minimized over

the grid.

2. Calculate the derivative

DJ(p) =
NX
i=1

(φ(ri,p)− φobs(ri))Dpφ(ri,p)

3. Select s and calculate

p(s) = p0 − s
DJ(p)

||DJ(p)||

Now select the largest s∗ so that J(p(s)) decreases.

4. Let p0 = p(s∗) and continue the process until the sequence converges.

The sequence can converge since J(p) and DJ(p) are continuous. There

is no assumption of convergence to a unique point.

In the objective function, the quantity di = φ(ri,p)− zi for i = 1, 2, . . . , N

is called the residual. The assumptions on the residuals are as follows:

1. The residuals are independently distributed. This means that the resid-

uals are independent of one another.

2. Each residual is normally distributed. This is important because it is

an underlying assumption that non-linear least squares will lead to a

maximum likelihood estimate.

3. Each residual has zero mean. This assumption can be relaxed by adding

a bias term to the expectation function.

32



4. Residuals have equal variances. The main implication of this assump-

tion is that all residuals are equally unreliable so that the least squares

criterion can be used.

The Runs Test and the Correlated Residuals Test can be used to test the

first assumption. The remaining assumptions can be tested using the Normality

Tests. These tests are all described in this chapter.

6.3 Determination of the Parameter ν

Parameter ν was estimated by selecting 10000 random values from the interval

[0, 1] assuming a uniform distribution for ν in this interval. For each selected

ν, the Euler method was used to solve equation (5.5) for u. The objective

function

J(ν) =
NX
i=1

(u(ri, ν)− uobs(ri))2

was minimized and the optimal value for ν was obtained. A value ν = 0.102

was selected to use for all z levels under consideration.

6.4 Analysis of the Residuals

Define the residuals d(ri) = φ(ri, p̂) −φobs(ri) = φ(ri, p̂) −zi for i = 1, · · ·Nd.

Each residual is thus an estimate of the disturbance εn.The mean and standard

deviation of the residuals are computed by:

µR =
NX
i=1

d(ri)/N σR =

Ì
NX
i=1

d(ri)2/(N − 1)
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6.4.1 Runs Test

A runs test is used to test for randomness. The following information can

be found in Gibbons [12]. This test determines whether the curve deviates

systematically from the data. A run is a series of consecutive points that are

either all above or all below the regression curve. A sequence is considered non-

random if there are either too many or too few runs, and random otherwise.

Let n1 be the number of points above the regression curve, n2 be the number

of points below the regression curve and n be the total number of points so

that n = n1 + n2. Let r1 be the number of runs consisting of points above the

regression curve and let r2 be the number of runs consisting of points below

the regression curve with r the total number of runs so that r = r1 + r2. Let

R be the random variable representing the number of runs.

Theorem 6.1. The probability distribution of R, the total number of runs of

n = n1 + n2 objects, n1 of type 1 and n2 of type 2, in a random sample is

fR(r) =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

2

�
n1 − 1

r/2− 1

��
n2 − 1

r/2− 1

�
�

n1 + n2

n1

� if r is even, else

�
n1 − 1

(r − 1)/2

��
n2 − 1

(r − 3)/2

�
+

�
n1 − 1

(r − 3)/2

��
n2 − 1

(r − 1)/2

�
�

n1 + n2

n1

�

for r = 2, 3, · · · , n1 + n2

34



The probability distribution fR(r) can be used to test the hypothesis of

randomness if n1 + n2 ≤ 20. For larger sample sizes, it is more convenient to

use the mean and variance of this distribution creating a z-statistic to compare

to the normal distribution. The mean and variance of this distribution are

given by:

µR =
2N1N2

N1 +N2

+ 1

σ2
R =

2N1N2(2N1N2 −N1 −N2)

(N1 +N2)2(N1 +N2 − 1)

The hypothesis of randomness is tested with the z- statistic: z = R−µR
σR

.

This statistic is normally distributed with mean 0 and variance 1.

6.4.2 Correlated Residuals

The tangential wind profile has distance from the vortex center as the indepen-

dent variable, therefore if the condition of independence of residuals is not met,

correlation of the residuals should be investigated. Since the data are equally

spaced in distance from the vortex center, a plot of the residual autocorrela-

tion function versus the lag k can provide information about the correlation

between the residuals. This autocorrelation function is calculated by [2]:

rk =
NX

i=k+1

d(ri)d(ri−k)

Ns2

where s2 is the variance estimate and the residuals are assumed to have

zero mean. If the residual autocorrelation function is consistently within the

range ±2/
√
N after lag 2 or 3, then the model may be identified as a moving

average process of order 1 or 2. If the residual autocorrelation function tends to
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decay gradually to zero, then the process may be identified as an autoregressive

process.

6.4.3 Normality Tests

Measures of Variance, Skewness and Kurtosis

The following information can be found in Roussas [21].

Definition 6.2 (Central Moments about the Mean). Let X be a random

variable with mean µ. The rth central moment of X about µ is defined by

µr = E(X−µ)r. The mean of the random variableX is defined to be µ = E(X).

The second central moment about the mean is the population variance σ2.

Definition 6.3 (Coefficient of Skewness). Let X be a random variable with

mean µ and finite third central moment about the mean. The skewness of the

distribution of the random variable X is defined by the dimensionless quantity

Sk = E
�
X − µ
σ

�3

The skewness of the distribution of the random variable X is a measure of

the asymmetry of the distribution. If Sk > 0, the distribution is said to be

skewed to the right and if Sk < 0, the distribution is said to be skewed to the

left. If the p.d.f. of X is symmetric about µ, then Sk = 0, as is the case for the

Normal distribution.

Definition 6.4 (Coefficient of Kurtosis). Let X be a random variable with

mean µ and finite fourth central moment about the mean. The kurtosis of the

distribution of the random variable X is defined by the dimensionless quantity

K = E
�
X − µ
σ

�4

− 3
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The kurtosis of the distribution is a measure of ”peakedness” of the distri-

bution compared to the Normal distribution with mean zero and variance equal

to one as a reference. The fourth central moment of this reference normal dis-

tribution is equal to three. If K > 0, the distribution is called leptokurtic and

if K < 0, the distribution is called platykurtic. If K = 0 and the distribution

has the same ”peakedness” as the normal distribution, then the distribution is

called mesokurtic.

Definition 6.5 (Sample Central Moments about the Mean). Let X1, X2, · · ·Xn

be a random sample of identically distributed random variables with sample

mean X̄. The rth sample central moment of the sample is defined by

mr =

Pn
i=1(Xi − X̄)r

n

The second sample central moment about the mean is the sample variance

s2.

Definition 6.6 (Unbiased Sample Variance). Let X1, X2, · · ·Xn be a random

sample of identically distributed random variables with sample mean X̄. The

unbiased estimator of the variance is

ŝ2 =
n− 1

n
s2

Definition 6.7 (Sample Coefficient of Skewness). Let X1, X2, · · ·Xn be a ran-

dom sample of identically distributed random variables with sample mean X̄.

The sample skewness of the distribution of the random variable X is

sk =
m3�√
m2

�3 =

Pn
i=1(Xi − X̄)3/n�
s
È

(n− 1)/n
�3
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Definition 6.8 (Unbiased Sample Coefficient of Skewness). Let X1, X2, · · ·Xn

be a random sample of identically distributed random variables with sample

mean X̄. The unbiased estimator of the coefficient of skewness is

ŝk =

È
n(n− 1)

n− 2
sk

Definition 6.9 (Sample Coefficient of Kurtosis). Let X1, X2, · · ·Xn be a ran-

dom sample of identically distributed random variables with sample mean X̄.

The sample skewness of the distribution of the random variable X is

K =
m4

(m2)2 =

Pn
i=1(Xi − X̄)4/n

(s2(n− 1)/n)2

The excess of Kurtosis is defined to be the difference between the sample

kurtosis and the kurtosis of a normal distribution. The kurtosis of a normal

distribution is equal to 3.

Definition 6.10 (Unbiased Sample Estimator of the Excess of Kurtosis). Let

X1, X2, · · ·Xn be a random sample of identically distributed random variables

with sample mean X̄. The unbiased estimator of the excess of Kurtosis is

K̂ =
(n+ 1)(n− 1)

(n− 2)(n− 3)

�
K − 3(n− 1)

n+ 1

�
The Jarque-Bera test for normality [14] is used to test the following hypoth-

esis:
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H0 : The data comes from a normal distribution with skewness = 0

and Kurtosis = 3.

H1 : The data is not from a normal distribution.

The test statistic is given by:

JB =
N

6

 
ŝk +

(K̂)2

4

!
This has a Chi-Square distribution with 2 degrees of freedom under the

assumption that the mean of the data is zero.

Kolmogorov-Smirnov Normality Test

The following information can be found in Gibbons [12].

An important question in statistics concerns the form of the population

from which a sample is drawn. Suppose a random sample of size N is drawn

from a population with unknown c.d.f. FZ . It is of interest to test whether FZ is

equal to some completely specified c.d.f. F0(z). Let Z1, Z2, · · ·ZN be a random

sample from a distribution FZ . For example, Zi could be a normalized residual,

zi = d(ri)−µ
σ

, i = 1, 2, · · ·N where d(ri) = φ(ri, p̂) −φobs(ri) for i = 1, · · ·Nd.

The empirical (sample) distribution function of this random sample, FN(z) can

be calculated by:

FN(z) =
1

N
[the number of zi ≤ z]

Thus FN is a step function which increases by the amount 1/N at its jump

points. The jump points are the order statistics of the sample, Z(1), Z(2), · · ·
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Z(N). The empirical distribution can now be defined as:

fN(z) =

8>>>><>>>>:
0 if z < X(1)

k
N

if X(k) < z < X(k+1) for k = 1, 2, · · · , N − 1

1 if z ≥ X(N)

For a fixed value of z, FN(z) is a random variable and therefore has a

probability density function.

Theorem 6.11. For the random variable FN(z), which is the empirical dis-

tribution function of a random sample Z1, Z2, · · · , ZN from a distribution FZ,

then

P
�
FN(z) =

j

N

�
=

�
N

j

�
[FZ(z)]j[1− FZ(z)]N−j, j = 0, 1, · · · , N

with mean and variance given by:

E[FN(z)] = FZ(z)

var[FN(z)] =
FZ(z)[1− FZ(z)]

N

The above theorem shows that FN(z) is an unbiased estimator of FZ(z), and

from the law of large numbers that FN(z) is a consistent estimator of FZ(z),

in other words, FN(z) converges in probability to FZ(z). A stronger result can

be obtained and is given in the next theorem.

Theorem 6.12 (Glivenko-Cantelli Theorem). FN(z) converges uniformly to
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FZ with probability one; that is,

P [ lim
N→∞

sup
−∞<z<∞

|FZ(z)− FN(z)| = 0] = 1

As a result of the Glivenko-Cantelli Theorem, since the convergence is uni-

form, the deviations between FN(z) and FZ(z) should be small for all values of

z for large N . Thus the Kolmogorov-Smirnov one-sample statistic given by:

DN = supz|FZ(z)− FN(z)|

should be a reasonable measure of the accuracy of the estimate. The

Kolmogorov-Smirnov one-sample statistic can be used to test the hypothe-

sis: H0 : FZ(z) = F0(z) for all z against the alternative H1 : FZ(z) 6= F0(z) for

some z. The statistic can also be used to find confidence bands for FZ(z) for

all z. Using the probability density function for the statistic DN , the number

DN,α can be found so that for any probability 1− α,

P [FN(z)−DN,α < FZ(z) < FN(z) +DN,α] = 1− α

Since 0 ≤ FZ(z) ≤ 1 for all z, then the numbers LN(z) = max[FN(z) −

DN,α, 0] and UN(z) = min[FN(z)+DN,α, 1] define a confidence band for FZ(z),

with associated confidence coefficient 1− α. Both the hypothesis test and the

confidence band require knowledge of a probability distribution function for the

statistic DN . Gibbons [12] gives the p.d.f. for DN when the parameters of the

continuous distribution F0(z) are completely specified. In the case that F0(z)

is a normal distribution with mean and variance that must be estimated from

the data, Lilliefors [16] provides a table for use with the Kolmogorov-Smirnov

one-sample statistic. The table is obtained from a Monte-Carlo calculation.
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6.5 Probability Distributions

Two types of joint and marginal probability distributions are considered for

the parameters p. The first type is the uniform probability distribution under

the assumption of no prior information except for bounds on the values of

the parameters. The second type is a quasi-normal distribution defined by

f(p) = Cexp(−J(p)). The real number C results so that the volume under

the surface is one, thus creating a probability distribution function (p.d.f).

The parameters are from a closed and bounded subset of RNp , where Np is the

number of parameters. A marginal distribution function for a single parameter

can be calculated by integrating over the domain of the remaining parameters.

The mean E(X) and variance σ2
X of a random variable X were defined in

section 6.4. Covariance and correlation are defined now:

Definition 6.13 (Covariance and Correlation). Let X be a random variable

with mean E(X) and variance σ2
X . Let Y be a random variable with mean E(Y )

and variance σ2
Y . Then the covariance, cov(X, Y ), and correlation r(X, Y ) are

defined to be:

cov(X, Y ) = E{[X − E(X)][Y − E(Y )]} (6.1)

r(X, Y ) =
cov(X, Y )

σXσY
(6.2)

The mean and variance of each parameter along with the covariance and

correlation between parameters can be calculated from the probability distribu-

tion and cumulative distribution functions. Therefore, the uniform p.d.f. and

the p.d.f. determined from the benchmark data can be used to quantify the
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uncertainty in the parameters. The probability distributions will be defined in

three ways:

1. A Uniform distribution over the space of admissible parameters under

the assumption of no prior knowledge of the parameters except for lower

and upper bounds.

2. A Normal distribution over each parameter with assumptions on the value

of the mean and standard deviation given by physical properties of the

vortex.

3. A probability distribution defined by a benchmark data set. Here bench-

mark data set is defined to be a data set that is believed to be accurate

and true for use in comparing information with computational results and

for drawing conclusions from these comparisons.

Random samples from these distributions are used in uncertainty analysis

and model selection. The next section describes the types of random samples

used in this atmospheric vortex data analysis.

6.6 Random Samples

6.6.1 Sample from a Grid

Samples from a grid are not random and can be used to compare samples

gathered by another method. It is assumed that each parameter is from a

closed and bounded interval in R. The interval is divided into equally spaced

subintervals of length h. This defines a finite grid over the space of admissible

parameters. If there are many parameters, the size of the sample obtained in

this manner can be quite large. The underlying probability distribution can

be calculated as uniform by f(p) = 1/M , where M is the number of points
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in the grid. The underlying probability distribution can be calculated using

a benchmark data set over the grid points using the p,d.f. with normalizing

constant C f(p) = Cexp(−J(p)).

6.6.2 Gibbs Sample

A Gibbs sample can be collected from the sample from a grid. The procedure

will be given using two parameters a and b as follows:

1. The first point in the Gibbs sample is selected to be a[0] = â and b[0] = b̂.

Selection of this point is arbitrary.

2. The pdf f(a|b = b[i− 1]) is obtained from the joint pdf calculated above.

3. The cumulative probability distribution cdf F (a|b = b[i−1]) is generated

from f(a|b = b[i− 1]).

4. A random number r was generated from a uniform distribution U [0, 1].

This random number and the cdf F (a|b = b[i− 1]) gives a[i].

5. The pdf f(b|a = a[i]) is obtained from the joint pdf calculated above.

6. The cumulative probability distribution cdf F (b|a = a[i]) is generated

from f(b|a = a[i]).

7. A random number r was generated from a uniform distribution U [0, 1].

This random number and the cdf F (b|a = a[i]) gives b[i].

The procedure can be extended if there are more parameters.

6.6.3 Quasi-Monte Carlo Sample

A quasi-Monte Carlo sample can be obtained by using a pseudo-random number

generator to select points from the admissible parameter space which is a closed
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bounded interval in R. A uniform p.d.f. and a p.d.f. generated from using a

benchmark data set can be calculated as described above.
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Chapter 7

Uncertainty Analysis

Under the assumption that the model form of tangential velocity v is known,

radial velocity u and vertical velocity w can be predicted using equations from

the Navier-Stokes system of equations. The question arises as to uncertainty

in these predicted values resulting from uncertainty in the parameters of the

models. To determine this uncertainty, a sample is generated from the set of

admissible parameters that is associated with either a uniform distribution or

a distribution containing information from benchmark data. Tangential wind

v, radial wind u and vertical wind w are then calculated from this sample of

parameters. The probability distributions over the parameter space is then

assigned to each u, v and w. This defined probability distribution functions

for u, v and w. The resulting statistics are used to evaluate uncertainty in the

calculated wind values. The cumulative probability functions are used to find

90 % confidence regions for each wind component. The benchmark data for u,

v and w are used for prediction validation of the models. The question arises

concerning the accuracy of the predicted values of radial velocity u and vertical

velocity w.

7.1 Information Theory

The state of information over the parameter space is central to the solution

of the forward problem of prediction and the inverse problem of parameter

resolution. Let S be a physical system consisting of an atmospheric vortex
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and data measurements of the vortex. Let P be the finite Np−dimensional

parameter space that models S. In our case P is closed and bounded, therefore

compact. Using the Lebesgue measurable subsets of P , a Lebesgue integrable

function can be defined on the measurable subsets of P to define a uniform

probability density function (p.d.f), µ(x) ≡ constant. This is the p.d.f. of null

information representing the state of total ignorance on P . The content of

information of any p.d.f. f(x) is defined by Shannon [24]:

I(f, µ) =
Z
f(x) log

�
f(x)

µ(x)

�
dx,

where log denotes the natural logarithm.

x is either a random variable or a random vector. This is also referred to

as Kullback-Leibler divergence between two probability distributions, f and µ.

This definition has the following properties (Tarantola 1982 [27]):

1. I is invariant with respect to a change of variables: I(f, µ) = I(f ′, µ′).

2. I(f, µ) ≥ 0

3. The information of the state of total ignorance is null: I(µ, µ) = 0. The

reciprocal is also true: I(f, µ) = 0⇒ f = µ

I(f, g) can be used to measure the distance between two distributions f

and g, although it is not a metric because it is not symmetric and does not

satisfy the triangle inequality.

The mutual information M(x, y) between two random variables x and y

with joint density f(x, y) is defined as
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M(x, y) =
Z
f(x, y) log

�
f(x, y)

f(x)f(y)

�
dxdy,

where log denotes the natural logarithm.

Mutual information is a measure of the amount of information one random

variable contains about another. Thus, the mutual information is the reduction

in uncertainty of random variable x due to the knowledge of random variable

y. Mutual information is symmetric so x says as much about y as y says about

x. Let D denote the finite Nd−dimensional space of data. We can assume that

the data is error free, or at least the uncertainties are small compared to the

uncertainties in the parameters. Another reasonable assumption is that the

data contains errors distributed according to a known p.d.f. The a posteriori

probability distribution of the sample space S is defined in the present case to

be f(p,d) = f(d|p)µ(p), where p is the vector of parameters from a tangential

wind model and d is the vector of data. In the case of identically distributed

normal random errors with mean zero and variance σ2 given by

ε =
NdX
i=1

(di − vi(p))2 = ||d− v (p) ||2L2

the a posteriori p.d.f. becomes

f(d|p) = c1exp

�
−1

2

||d− v (p) ||2

σ2

�
If µ(p) is the p.d.f. of null information, then

f(p,d) = c2exp

�
−1

2

||d− v (p) ||2

σ2

�
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The uniform probability density function µ(x) ≡ constant exists as a p.d.f.

and

f(p,d) = c2exp

�
−1

2

||d− v (p) ||2

σ2

�
exists uniquely as a p.d.f. under the assumptions:

1. The residuals εi = di − vi(p), i = 1, · · ·Nd are normally distributed with

mean zero and constant variance σ2.

2. There are a finite number of data and a finite number of parameters.

Parameters resolution is understood and evaluated in terms of marginal

p.d.f.s, measures of central tendency, parameter correlations and joint param-

eter p.d.f.s.

7.2 Sensitivity Analysis

Sensitivity analysis, Saltelli [22], is the study of how the variation in the output

of a model can be apportioned to different sources of variation and of how the

given model depends upon the information fed into it. Sensitivity Analysis is

used to increase the confidence in the model and its predictions by providing an

understanding of how the model responds to changes in the inputs. Therefore,

Sensitivity Analysis studies the relationships between information flowing in

and out of the model. In this paper, Sensitivity Analysis is used to study the

stability of the estimated parameters of a model and insensitivity with respect

to small deviations from the assumptions about the underlying distribution

assumed for the parameters. The goal of Sensitivity Analysis in this context is

to determine if the various tangential wind models are sufficient to the task of

modeling tangential wind and predicting radial and vertical winds.
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7.2.1 Local Sensitivity Analysis

Local Sensitivity Analysis concentrates on the local impact of the factors on

the model and is usually carried out by computing partial derivatives of the

output functions with respect to the input variables.

Parameters p in the Tangential Wind Model φ

Local sensitivities relate small changes in φ to small changes in the parame-

ters and can be used to measure the non-linearity of φ as a function of the

parameters. Local Sensitivity Analysis is usually carried out by computing

partial derivatives of the output functions with respect to the input variables.

Consider an approximate Taylor series expansion at each point rj:

φ(ri,p + ∆p) = φ(ri,p) +
NpX
j=1

∂φ

∂pj
∆pj +

1

2

NpX
k=1

NpX
j=1

∂2φ

∂pk∂pj
∆pk∆pj

The partial derivatives ∂φ/∂pj = Dpjφ(ri,p) are called first-order local

sensitivity coefficients. Each ∂φ/∂pj is a linear estimate of the number of

units change in φ as a result of a unit change in the parameter pj. The local

sensitivity coefficients can be normalized so that they do not depend on any

units:

Sj(ri,p) = pj
∂φ

∂pj
(ri,p)

The following coefficients are a measure of the non-linearity of φ as a func-

tion of the parameters:

D2
pkpj

φ(ri,p) = pkpj
∂2φ

∂pk∂pj
(ri,p)
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There are some models for which it is not possible to uniquely estimate all of

the parameters. Parameters can be uniquely estimated if the local sensitivity

coefficients over the range of the observations are not linearly dependent, in

other words, if

a1S1(ri,p) + a2S2(ri,p) + · · ·+ apSp(ri,p) = 0

for all i = 1, 2, · · · , Nd only when a1 = a2 = · · · = ap = 0. Derivation of

this can be found in Beck, [3]. The graphs of Sj vs r can help to determine the

linear dependence of the local sensitivity coefficients.

The sensitivity coefficients can be used to approximate the variance of any

non-linear function φ by using the Taylor Series expansion and computing

V ar(φ) = cTV c where cT is the vector with entries ∂φ/∂pj = Dpjφ(ri,p)

and V is the covariance matrix of the parameters. In other words, if there are

three parameters a, b and c, then

V =

26666664
σ2
a r2

ab r2
ac

r2
ab σ2

b r2
bc

r2
ac r2

bc σ2
c

37777775
The parameters are estimated by minimizing the objective or cost function:

J(p) =
1

2

NX
i=1

(φ(ri,p)− φobs(ri))2

The derivatives of the objective function are:
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DpkJ(p) =
NX
i=1

(φ(ri,p)− φobs(ri))Dpkφ(ri,p)

D2
pkpj

J(p) =
NX
i=1

�
Dpkφ(ri,p)Dpjφ(ri,p) + (φ(ri,p)− φobs(ri))D2

pkpj
φ(ri,p)

�
for k = 1, · · ·Np.

Minimization of the objective function J(p) involves finding parameters p̂k

such that DpkJ(p̂) = 0 for all k = 1, · · ·Np. Let Fk(p) = DpkJ(p̂) = 0. The

determinant, D, of the matrix with entries

D2
pkpj

J(p) =
∂2J(p)

∂pk∂pj

can be used to determine the existence of a unique minimum for J(p). If D

is positive definite, there is a unique minimum, [3]. The matrix D is positive

definite if all its eigenvalues are positive.

The Parameter ν

Parameter ν does not appear in the model equation for tangential velocity and

therefore is assumed independent of the parameters in this model. This param-

eter is assumed to be uniformly distributed in a set determined from physical

principles and is found in the equations used to predict radial and vertical ve-

locities. Sensitivity to this parameter can be computed from equation. U = ∂u
∂ν

.

U satisfies the following system:
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U ′(t) =

�
φt
φ
−
�

1

t
+
φt
φ

�
ψψzz
ψ2
z

�
U (7.1)

+

��
φtt
φ

+
φt
tφ
− 1

t2

��
ψψzz
ψ2
z

− 1

�
− ψzzz

ψz
+
ψ2
zz

ψ2
z

�
U(t0) = U0

U(t0) = U0 can be approximated numerically by

U0 ≈
u(t0, ν2)− u(t0, ν1)

ν2 − ν1

The Euler method can now be used to solve (7.1) for U .

7.2.2 Variance-Based Sensitivity Analysis

Variance-Based Sensitivity Analysis is a global method that apportions the

output uncertainty to the uncertainty in the input factors [22]. This is usu-

ally done by probability density functions defined on the admissible set of

parameters, thus the technique incorporates the influence of the whole range

of variation and the form of the p.d.f. of the input.

The nonlinear regression model was given as Yn = φ(rn,p)+εn where εn is the

random variable representing the stochastic or disturbance part of the model

with E(εn) = 0 and V ar(εn) = σ2. For analysis purposes, [22], a collection

of models of the form y = E(Y |x) + ε is considered to describe the non-linear

regression model in probabilistic terms. Here x contains some subset of p. The

total variation of the model prediction Y is defined as

V ar[Y ] =
Z

ΩY
(y − E(y))2 pY (y) dy
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where ΩY is the domain of definition of Y , E(Y ) is the expected value or

mean of Y and pY (y) is the p.d.f. of Y . For example, Y can be the tangential

wind considered as a random variable at a distance from the vortex center. This

random variable Y is assumed to depend on the parameters p in the model

which are also considered as random variables over the space of admissible

parameters. Let x contain some subset of p. Let pX(x) be the marginal p.d.f.

of x and let pY |X(y) be the conditional p.d.f. of y conditioned on knowledge

of x. Let ΩX be the space of admissible parameters of subset x of p and note

that

pY (y) =
Z

ΩX
pY |XpX(x) dx

Apportion the variance V ar[Y ] as follows:

V ar[Y ] =
Z

ΩY
(y − E(y))2 pY (y) dy

=
Z

ΩY
(y − E(y))2

Z
ΩX

pY |X(y)pX(x) dx dy

=
Z

ΩY

Z
ΩX

(y − E(y))2 pY |X(y)pX(x) dx dy

=
Z

ΩY

Z
ΩX

(y − E(Y |X) + E(Y |X)− E(y))2 pY |X(y)pX(x) dx dy

This simplifies to:

=
Z

ΩY

Z
ΩX

(y − E(Y |X))2 pY |X(y)pX(x) dx dy (7.2)

+ 2
Z

ΩY

Z
ΩX

(y − E(Y |X)) (E(Y |X)− E(y)) pY |X(y)pX(x) dx dy (7.3)

+
Z

ΩY

Z
ΩX

(E(Y |X)− E(y))2 pY |X(y)pX(x) dx dy (7.4)
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Looking at each term separately starting with (7.2):

Z
ΩY

Z
ΩX

(y − E(Y |X))2 pY |X(y)pX(x) dx dy

=
Z

ΩX
V ar(Y |X)pX(x) dx = Ex(V ar[Y |x])

This term measures the variation of Y that is independent of the parameters

in x. The second term, (7.3), can be seen to be zero as follows:

Z
ΩY

Z
ΩX

(y − E(Y |X)) (E(Y |X)− E(y)) pY |X(y)pX(x) dx dy

=
Z

ΩY

Z
ΩX

(yE(Y |X)) pY |X(y)pX(x) dx dy

−
Z

ΩY

Z
ΩX

(yE(y)) pY |X(y)pX(x) dx dy

−
Z

ΩY

Z
ΩX

(E(Y |X))2 pY |X(y)pX(x) dx dy

+
Z

ΩY

Z
ΩX

(E(Y |X)E(y)) pY |X(y)pX(x) dx dy

= (E(y))2 − (E(y))2 − (E(y))2 + (E(y))2 = 0

The third term, (7.4), results in:

Z
ΩY

Z
ΩX

(E(Y |X)− E(y))2 pY |X(y)pX(x) dx dy

=
Z

ΩX
(E(Y |X)− E(y))2 pX(x) dx = V arx[E(Y |x)]

This term measures the variation in V ar(Y ) that results from knowledge
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of parameters in x. If Ex(V ar[Y |x]) = 0, then the parameters in x have no

contribution to the variance of Y and therefore no influence in the model’s

accuracy or ability to predict other quantities. Therefore, the closer this value

is to one, the more important x is as an influence on Y . In summary, the

prediction variance of Y can be written as:

V ar[Y ] = V arx[E(Y |x)] + Ex(V ar[Y |x])

In this expression, V arx[E(Y |x)] is called the variance of the conditional

expectation and is a measure of the importance of x as it relates to Y . The

second term, Ex(V ar[Y |x]), is called the residual term. This term measures

the remaining variability in y that is due to other unobserved inputs or other

unknown sources of variation when x is fixed. The correlation ratio was defined

by McKay [17] as:

η2 =
V arx[E(Y |x)]

V ar[Y ]
(7.5)

If there are outliers in the data, the following modification is recommended:

η2 =
V arxlog [E(Y |x)]

V ar[log Y ]
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Chapter 8

Estimation and Analysis of the Wood-White Vortex 2

Tangential Wind Model

The normalized Wood-White Vortex 2 tangential wind model is of the form:

φ(r) =
ηrb

a+ brη

where η = a+ b, a > 0, b > 0

and r is the distance from the vortex center.

The term rb in the numerator models one- and two-cell vortices by controlling

the behavior of the inner core. The denominator controls the decay of the

vortex as r → ∞. This tangential vortex model is normalized so that φ(r)

is equal to one when r is equal to one and is dependent on parameters a and

b. This dependence will be recognized by adding the vector pT = (a b) to

the list of independent variables of φ. In this manner, we write φ(r,p) as

the expectation function in the non-linear model. An expectation function is

non-linear if at least one of the derivatives of the expectation function with

respect to the parameters depends on at least one of the parameters. For the

Wood-White vortex 2 tangential wind model, both ∂φ
∂a

and ∂φ
∂b

depend on both

parameters a and b and therefore is a non-linear model.
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8.1 Parameters of φ

The Wood-White vortex 2 model was fitted to the Davies-Jones profile at the

z = 1, 2, and 3 vertical levels representing 42 m, 84 m, and 126 m, respectively.,

above the surface using 0.0001 ≤ a ≤ 4.0001 and 0.0001 ≤ b ≤ 4.0001. The

optimal parameter values of p̂1 = â and p̂2 = b̂ were calculated by minimizing

the objective function

J(p) =
NX
i=1

(φ(ri,p)− φobs(ri))2 =
NX
i=1

(φ(ri,p)− zi))2

using grid spacing of 0.01 for each of the parameters. The optimal parameter

values at the levels z = 1, 2, and 3 were calculated and listed in Table 8.1.

Table 8.1: Optimal Parameters
height z â b̂ J(p̂) σ̂2

1 1.7701 1.0501 0.0018 0.000065
2 1.8201 1.0301 0.0021 0.000075
3 1.8801 1.0101 0.0027 0.000096

Essentially the same values were obtained using Steepest Descent. Joint

probability density functions (p.d.f.s) were estimated for the parameters using

the function f(p) = exp(−J(p)), normalized so that the volume under the

surface was equal to one. An example joint p.d.f. over the intervals 0.1 ≤ a ≤

4.01 and 0.1 ≤ b ≤ 4.01 is illustrated in Figure 8.1.

From the joint p.d.f.s, marginal p.d.f.s for the parameters a and b were

estimated at various grid points. Using the joint p.d.f. for parameters a and b

in Wood-White vortex 2 model, marginal p.d.f.s were calculated at levels z =

1, 2, and 3. Figure 8.2 shows the marginal distributions for a and b at level

z = 1. The marginal distributions at levels z = 2 and z = 3 were virtually

identical in form.
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Figure 8.1: Example joint pdfs for a and b
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Figure 8.2: Marginal pdfs for a and b
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Using the marginal p.d.f.s for the parameters, the mean and standard devi-

ation of each parameter, a and b, were calculated at levels z =1, 2, and 3 and

are summarized in Table 8.2. The means for b are larger than the estimates

for b because the marginal p.d.f.s are highly skewed, however, the estimate is

within one standard deviation of the mean at each level.

Table 8.2: Statistics for the Parameters
height z â µa σa b̂ µb σb
1 1.7701 1.7229 0.9955 1.0501 1.7186 0.9807
2 1.8201 1.7371 0.9972 1.0301 1.7155 0.9792
3 1.8801 1.7590 0.1000 1.0100 1.7100 0.9770

Information content, I(a) and I(b), of each parameter and mutual infor-

mation, I(a, b), contained in parameters a and b were calculated and are given
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in Table 8.3. The information content is a measure of the information in the

Davies-Jones tangential wind data that is contained in the parameters a and

b. Information content is relative, so the actual number is not as important as

the ratio of the two numbers. With this in mind, parameter b contains more

information from the data than parameter a over the entire tangential wind

profile, but both are of the same magnitude of importance. This corroborates

conclusions from the marginal p.d.f.s of the parameters. Recall that parameter

b controls the shape of the inner core of the vortex. The marginal p.d.f. for

b is more defined than the marginal p.d.f. for a and has a smaller standard

deviation, however, both standard deviations are large. The parameters have

a large mutual information content compared to their individual information

contents which implies that they are not independent. This will be seen later

in their correlation coefficient. The parameters a and b are correlated as an

artifact of non-linear least squares estimation. It is also interesting to notice

that the information content does not vary significantly between levels.

Table 8.3: Information Content of Parameters
height z I(a) I(b) I(a, b)
1 0.072 0.105 0.117
2 0.069 0.106 0.116
3 0.065 0.109 0.114

Variance-based sensitivity was calculated for each parameter at every avail-

able distance r from the vortex center. Some representative values are given in

Table 8.4 at level z = 1. The pattern indicates the importance of parameter

a at the end of the profile, and the importance of parameter b near the vortex

center. This makes sense because parameter a controls the decay of the vortex

as r →∞ and parameter b controls the shape of the inner core near the vortex
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center. The R given in Table 8.4 is the correlation ratio for the parameter.

There were no outliers, therefore equation 7.5 was used to calculate the cor-

relation ratio. Correlation ratios are ratios of the variance of the estimate of

tangential wind given knowledge of the parameter to the total variance. The

importance of parameter b is evident throughout the profile. The importance

of parameter a grows and becomes more important than b at the end of the

profile.

Table 8.4: Variance-based Sensitivity for the Parameters
distance r Ra Rb 1−Ra −Rb

0.154 0.0777 0.8954 0.0269
0.385 0.0877 0.7180 0.1943
0.538 0.1135 0.5714 0.3152
0.769 0.1684 0.3634 0.4682
1.077 0.2871 0.1881 0.5249
1.3077 0.4102 0.1193 0.4704
1.5384 0.5300 0.0784 0.3917
1.8462 0.6555 0.0509 0.2936
2.0000 0.7027 0.0446 0.2527

The work in this section used a grid with spacing 0.01 over the parameters a

and b. Since this provides 400 values for a and 400 values for b, the entire rect-

angular space consists of 160,000 pairs of parameter values. Three parameters

in the tangential wind model Wood-White vortex 3 would involve thirty two

million parameters combinations. Future models with four or more parameters

could be computationally prohibitive for any real-time system, therefore, the

use ot random samples is explored in calculating data on tangential, radial

and vertical wind. For this purpose, random samples were generated and are

described next. A pseudo-random sample S1 of 10,000 pairs of parameters was

generated using a uniform distribution for each parameter. The statistics are
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given under the assumption of a uniform distribution and under the assump-

tion of a distribution defined from the Davies-Jones data. The statistics for

these samples are given below, where µa, σ
2
a, µb, σ

2
b and r2

ab are the mean and

variance of a, the mean and variance of b, and the correlation between a and b.

The first table, Table 8.5, gives the statistics from a uniform distribution over

a grid compared to a uniform distribution from the pseudo-random sample.

Table 8.5: Uniform Distribution for the Parameters
Source µa σa µb σb r2

ab

Grid 2.0001 1.1547 2.0001 1.1547 0.0000
S1 1.9913 1.1549 2.0066 1.1634 -0.0023

Table 8.6 gives the statistics for a distribution defined by the Davies-Jones

data set over the grid compared to a distribution defined by the Davies-Jones

data set from the pseudo-random sample for level z = 1.

Table 8.6: Distribution Defined by DJ Data, Level 1
Source µa σa µb σb r2

ab

Grid 1.7229 0.9955 1.7186 0.9807 -0.4420
S1 1.7154 1.9980 1.7258 0.9911 -0.4446

Table 8.7 gives the statistics for a distribution defined by the Davies-Jones

data set over the grid compared to a distribution defined by the Davies-Jones

data set from the pseudo-random sample for level z = 2.

Table 8.7: Distribution Defined by DJ Data, Level 2
Source µa σa µb σb r2

ab

Grid 1.7371 0.9972 1.7155 0.9792 -0.4404
S1 1.7297 1.9998 1.7225 0.9896 -0.4430

Table 8.8 gives the statistics for a distribution defined by the Davies-Jones

data set over the grid compared to a distribution defined by the Davies-Jones
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data set from the pseudo-random sample for level z = 3.

Table 8.8: Distribution Defined by DJ Data, Level 3
Source µa σa µb σb r2

ab

Grid 1.7590 0.9997 1.7101 0.9768 -0.4381
S1 1.7518 1.0025 1.7169 0.9971 -0.4407

For analysis purposis, the following random samples were generated:

1. Sample S2 was generated consisting of 1000 pairs of parameters using a

uniform distribution for each parameter. This sample was generated for

comparison to the above sample S1 and comparison to samples S3 and

S4 described below.

2. Sample S3 was generated consisting of 1000 pairs of parameters using the

marginal distributions for a and b under the assumption that a and b are

uncorrelated.

3. Sample S4 was generated consisting of 1000 pairs of parameters using the

Gibbs sampling algorithm from a joint p.d.f. for a and b using a grid with

spacing 0.01 with 0.001 ≤ a ≤ 4.001 and 0.001 ≤ b ≤ 4.001. A Gibbs

sample captures the correlation between a and b.

The statistics for these random samples are given in Table 8.9.

Table 8.9: Statistics for Random Samples, level z = 1
Source â µa σa b̂ µb σb r2

ab

S2 1.7701 2.0498 1.1569 1.0501 1.9798 1.1451 -0.0676
S3 1.7701 1.6979 1.0072 1.0501 1.7650 1.0147 -0.0273
S4 1.7701 1.7534 1.0188 1.0501 1.6792 0.9930 -0.4728

In all samples, the optimal estimate is within one standard deviation of the

mean and the correlations are consistent with the sampling technique.
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8.2 Tangential Wind v Through the Model φ

Figure 8.3 shows the Wood-White vortex 2 tangential wind profile fitted to

the Davies-Jones tangential wind profile using grid spacing of 0.01 and the

normalized residuals. The residuals for v are defined to be d(ri) = v(ri, p̂)− zi

for i = 1, · · ·Nd, where we will write v instead of φ in what follows. The

residuals are plotted versus r.

Figure 8.3: Tangential Profile and Residual Plots
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The mean, standard deviation, skewness and kurtosis of the residuals are
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given in Table 8.10. The mean µR was within one standard deviation of

zero. Hence, the mean of the residuals was not significantly different from zero.

The plot of the residuals show that the distribution of the residuals was not

uniform. The residuals at all three levels have coefficients of skewness that are

negative which indicates that their distributions are all skewed to th left, The

values of skewness and kurtosis will be used later in discussing normality of the

distribution of the residuals.

Table 8.10: Statistics of the Residuals
height z µR σR skew Kurtosis
1 0.0017 0.0077 -0.0078 2.401
2 0.0019 0.0083 -0.0099 3.429
3 0.0021 0.0094 -0.0081 2.427

A runs test was used to test for randomness with results given in Table

8.11. In level z = 1, the expected number of runs was 13.857. The actual

number was five which was almost four standard deviations below the mean,

Table 8.11: Runs Test Statistics
height z V N1 N2 µV σV test statistic
1 5 18 10 13.857 2.376 -3.727
2 5 18 10 13.857 2.376 -3.727
3 5 16 12 14.712 2.541 -3.823

The hypothesis of randomness is rejected. Therefore, the residuals are most

likely correlated. The autocorrelation function was calculated and plotted ver-

sus lag. The bounds are plotted as dotted lines. The autocorrelation plots were

similar at all levels, therefore only the plot for level z = 1 is given in Figure

8.4.

The plots of the residuals and the autocorrelation function both indicate

large lags are needed for uncorrelated residuals. This shows a systematic cor-
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Figure 8.4: Autocorrelation Function at Level z = 1
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relation in the residuals. Next, the assumption of normality was tested at each

of the different levels. Skewness sk and kurtosis K are used in the Jarque-Bera

test statistic JB. The Kolmogorov-Smirnov test for normality was conducted

with test statistic DN . All of these results are given in Table 8.12.

Table 8.12: Normality Test Statistics
height z JB DN

1 7.206 0.111
2 14.701 0.211
3 7.363 0.209

Although the null hypothesis of normality could be rejected by the Jarque-

Bera test, the critical value of the Kolmogorov-Smirnov test is 0.242 and there-

fore the null hypothesis of normality is not rejected under this test. The Jarque-

Bera test statistic has a Chi-Square distribution with 2 degrees of freedom,

and, for example, the critical value for the test is 5.991 for α = 0.05. The

Kolmogorov-Smirnov test is considered the better test for normality because it

is less prone to rejection of the null hypothesis of normality when the hypothe-

sis it true, therefore the null hypothesis of normality is not rejected here. Two

plots were generated and are shown in Figure 8.5. The first plot contains the
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cumulative distribution functions of the residuals and the cumulative distribu-

tion function of the normal distribution in order to observe the close agreement

between the two distributions. The second plot contains the difference between

these two distributions and was used to determine the Kolmogorov-Smirnov test

statistic.

Figure 8.5: Residual and Normal cdfs, KS Test Statistic
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The pseudo-random samples described in the last section were used to gen-

erate a p.d.f. and a c.d.f. for tangential wind v and these were used to calculate

statistics for v at levels z = 1, 2, and 3 for selected values of the distance from
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the vortex center r. Shannon’s information content of the p.d.f. for v was also

calculated. This will be used later to compare information in v to information

in predicted radial and vertical winds. The statistics for v at z = 1,2, and 3 are

given in table 8.13 and table 8.14 for selected values of r. In the tables, v(r)

is the estimated value of v using the Wood-White vortex 2 model. Table 8.13

contains data using parameter pairs from the grid with spacing 0.01. Table

8.14 contains data using parameters pairs from the pseudo-random sample.

Table 8.13: Statistics for v, Grid Sample
height z radius r v(r) µv σv I(v)
1 0.538 0.7537 0.6757 0.1684 0.2433
1 0.846 0.9756 0.9610 0.0241 0.2458
1 1.231 0.9593 0.9435 0.0352 0.2550
1 1.538 0.8351 0.8066 0.1115 0.2473
2 0.538 0.7545 0.6746 0.1685 0.2422
2 0.846 0.9755 0.9608 0.0242 0.2441
2 1.231 0.9588 0.9430 0.0354 0.2528
2 1.538 0.8324 0.8051 0.1120 0.2447
3 0.538 0.7548 0.6731 0.1688 0.2408
3 0.846 0.9753 0.9605 0.0244 0.2417
3 1.231 0.9580 0.9423 0.0357 0.2495
3 1.538 0.8288 0.8027 0.1126 0.2410

First, observe that the values in both tables are in close agreement, which

indicates that the pseudo-random sample can be used to effectively calculate

all data of interest. The means and standard deviations for v were used to

create 80% error bars. Example plots are given in Figure 8.6. The first plot

shows a comparison between the c.d.f.s for v with the uniform distribution and

the distribution from the Davies-Jones data at a distance of r = 0.538 from

the vortex center. This plot gives a visual demonstration of the value of the

data in determining the value of v. It is related to the information in v which

compares information content in distributions. In this case, the p.d.f. of v
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Table 8.14: Statistics for v, Pseudo-Random Sample
height z radius r v(r) µv σv I(v)
1 0.538 0.7537 0.6759 0.1688 0.2427
1 0.846 0.9756 0.9611 0.0242 0.2458
1 1.231 0.9593 0.9436 0.0352 0.2546
1 1.538 0.8351 0.8074 0.1113 0.2460
2 0.538 0.7545 0.6748 0.1690 0.2416
2 0.846 0.9755 0.9609 0.0243 0.2441
2 1.231 0.9588 0.9432 0.0354 0.2524
2 1.538 0.8324 0.8059 0.1118 0.2438
3 0.538 0.7548 0.6733 0.1692 0.2403
3 0.846 0.9753 0.9605 0.0245 0.2418
3 1.231 0.9580 0.9425 0.0357 0.2491
3 1.538 0.8288 0.8035 0.1124 0.2401

generated from the Davies-Jones data with the distribution generated from a

uniform distribution over the parameter space via the pseudo-random sample.

The slope of the graph at v(r) is much larger for the c.d.f. with the Davies-

Jones data than for the c.d.f. with uniformly distributed data, indicating more

information. However the standard deviations are large in both which indicates

a large amount of uncertainty in both distributions. This can be seen in the

second plot which shows error bars around v using the two distributions over

all the values of r where 0 ≤ r ≤ 2.231.

The large error bars are a result of the large uncertainty in parameters a

and b. Although incorporation of data reduces this uncertainty, the uncertainty

is still large. The uncertainty can be reduced further with uncorrelated and

Gibbs sampling. The data in table 8.15 is from level z = 1. Table 8.15 gives

the actual value of v, the estimation of v from the sample and the standard

deviation of v and shows the reduction of the standard deviation of v given

a sample with more information. Table 8.15 also reveals the close agreement

between data obtained from sample S2 and data obtained from much larger
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Figure 8.6: Tangential cdf and Error Bars
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samples discussed earlier. This verifies the ability to predict the tangential

wind v from small samples that could be obtained in real-time systems.

The Gibbs data set S3 contains more information than the pseudo-random

sample. Figure 8.7 shows the c.d.f.s generated from samples S1 and S3 at level

z = 1 and the previous graph generated from the pseudo-random sample. This

comparison illustrates the results of using a data set with more information.

Local sensitivity coefficients were calculated to examine the level of sensi-

tivity of each parameter with respect to the distance from the vortex center
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Table 8.15: Statistics for v from Small Samples
Sample radius r v(r) µv σv I(v)
S2 0.538 0.754 0.672 0.167 0.225
S2 0.846 0.976 0.960 0.024 0.230
S2 1.231 0.959 0.942 0.035 0.239
S2 1.538 0.835 0.801 0.166 0.110
S3 0.538 0.754 0.704 0.146 0.450
S3 0.846 0.976 0.965 0.019 0.366
S3 1.231 0.959 0.950 0.028 0.382
S3 1.538 0.835 0.825 0.094 0.423
S4 0.538 0.754 0.707 0.131 0.538
S4 0.846 0.976 0.966 0.016 0.504
S4 1.231 0.959 0.950 0.024 0.492
S4 1.538 0.835 0.823 0.082 0.515

Figure 8.7: Pseudo-random sample and Gibbs c.d.f.s
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and also to determine linear independence of the local sensitivity coefficients.

The graph of the local sensitivity coefficients shows linear independence and

the greater sensitivity of v to the parameter b in the profile. The graph is given

in Figure 8.8 for the level z=1 data:

The partial derivatives from the local sensitivity coefficients were used to

calculate an approximate variance for v using the formula V ar(v) = cTV c

where cT is the vector with entries ∂v/∂pi and V is the covariance matrix of

the parameters. Specifically,
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Figure 8.8: Local Sensitivity Coefficients
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Error bars were generated for v using the actual standard deviation of v,

some of which are given in Table 8.12, and the approximate standard deviation

computed as

σv =
√

cTV c

The graph indicates that the approximate error bars can be used without

much loss of information. The graph is given in Figure 8.9 for level z=1.

Lastly, the determinant, D, of the matrix with entries

D2
pkpj

J(p) =
∂2J(p)

∂pk∂pj

was calculated and the eigenvalues for the matrix were determined. For

level z = 1, the eigenvalues were λ1 = 3.574 and λ2 = 0.884 with matrix:
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Figure 8.9: v with Approximate Error Bars
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For level z = 1, the eigenvalues were λ1 = 3.718 and λ2 = 0.838 with matrix:

D2J(p) =

26640.494 1.784

1.784 0.320

3775
For level z = 1, the eigenvalues were λ1 = 3.882 and λ2 = 0.790 with matrix:

D2J(p) =

26640.466 1.870

1.870 −0.422

3775
In all cases, the eigenvalues are positive which implies that the objective

function J has a unique minimum in all three levels.

The next two sections study the feasibility of estimating radial and vertical

winds if the tangential wind profile is known. This is the forward problem of

prediction.
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8.3 Radial Wind u

In the following, the Wood-White 2 vortex model was used to estimate φ.

Recall that the tangential wind profile is expressed as a product

v(r, z) = φ(r)ψ(z)

where φ gives the radial profile of the tangential wind and ψ gives the

vertical profile of the maximum tangential wind. In the cylindrical case, ψ ≡ 1.

In the non-cylindrical case, the model for the function ψ is

ψ(z) = Vx tanh
�
A1z

H

�
tanh

�
A2

�
1− z

H

��
where Vx is a parameter representing the maximum tangential velocity at

the vertical level z. A1, A2 and H are parameters.

In the cylindrical case, the radial wind u was calculated using the tangential

Navier-Stokes equation along with the conservation of mass equation given

tangential wind v using equation (5.2). The radial velocity u is shown in figure

8.10.

Figure 8.10: Radial Wind Profile: Cylindrical Case
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A singularity occurred at r = 1.692 and the profiles diverged over the entire

region of interest. Although there are values of the parameters which result in

no singularities in the u profile, these values are the exception rather than the

rule. This is the primary reason for selecting the z-dependent profile for study.

In the z-dependent profile case, the kinematic viscosity, ν, was first estimated

from the data by least squares minimization of the error with the objective

function

J =
NX
i=1

(u(ri, ν)− uobs(ri))2

where u(ri, ν) is the estimated radial wind calculated from equation (5.5)

and uobs(ri) is observation data from the Davies-Jones radial profile. Although

different values were obtained for the different levels, a value of ν = 0.102

worked well for all levels and was used in all the cases in this paper. The

kinematic viscosity is a measure of the turbulent fluid flow divided by the

laminar fluid flow. The turbulent flow is dominated by inertial forces, whereas

the laminar flow is dominated by viscous forces. The method of characteristics

was used to solve the ordinary differential equation (5.5) with initial data at

the point of maximum tangential velocity r = 1.0. The tangential z-dependent

wind profile must be assumed to solve equation (5.5). This profile and the

parameters selected for this profile are described in section (6.1). The plots

in figure 8.11 show the estimated radial wind profile u(r) compared to the

Davies-Jones radial wind profile uobs(r). The residuals d(ri) = u(ri) − uobs(ri)

for i = 1, · · ·Nd were plotted versus r.

The mean, standard deviation, skewness and kurtosis of the residuals were

computed. The mean µR was within one standard deviation of zero. Therefore,

the mean of the residuals was not significantly different from zero. The plot of
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Figure 8.11: Radial Wind Profile and Residuals
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the residuals show that the distribution of the residuals was not uniform. The

statistics of the residuals are given in Table 8.16.

A runs test was used to test for randomness with test statistic T = −5.1.

The hypothesis of randomness is rejected. Therefore, the residuals are most

likely correlated. Next, the assumption of normality was tested at each of the

different levels. Skewness sk and kurtosis K were used in the Jarque-Bera test

statistic JB. The Kolmogorov-Smirnov test for normality was conducted with

test statistic DN . All of these results are given in Table 8.17.
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Table 8.16: Statistics of the Residuals
height z µR σR skew Kurtosis
1 -0.0897 0.2562 -0.1901 -1.1342
2 -0.0153 0.0758 -0.0440 -0.1540
3 0.01500 0.0417 -0.0078 0.90370

Table 8.17: Normality Test Statistics
height z JB DN

1 1.789 0.258
2 0.039 0.185
3 1.021 0.106

The null hypothesis of normality is rejected for the level z = 1 residuals

by the Kolmogorov-Smirnov test for normality, therefore no conclusions can be

made about these residuals in a least-squares statistical sense. It is interesting

to note that the level z = 1 residuals do pass the Jarque-Bera test for normality.

The remaining two levels pass both tests. The means and standard deviations

of the radial residuals are larger than the residuals obtained for the tangential

wind. This results in a loss of information.

Two plots were generated and are shown in figure 8.12. The first plot

contains the cumulative distribution functions of the residuals and the cu-

mulative distribution function of the normal distribution in order to observe

the close agreement between the two distributions. The second plot contains

the difference between these two distributions and was used to determine the

Kolmogorov-Smirnov test statistic.

The pseudo-random samples were used to generate a p.d.f. and a c.d.f. for

u and these were used to calculate statistics for u at levels z = 1, 2, and 3 for

selected values of the distance from the vortex center r. Shannon’s information

content of the p.d.f. for u was also calculated. The statistics for u at z = 1,2,
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Figure 8.12: Residual and Normal cdfs, KS Test Statistic
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and 3 are given in table 8.18 and table 8.19 for selected values of r. In the

tables, u(r) is the estimated value of u using the Wood-White vortex 2 model.

Table 8.18 contains data using parameter pairs from the grid with spacing

0.01. Table 8.19 contains data using parameters pairs from the pseudo-random

sample.

The means and standard deviations for u were used to create 80% error

bars. Example plots are given in figure 8.13. The first plot shows a comparison

between the c.d.f.s for u with the uniform distribution and the distribution from
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Table 8.18: Statistics for u, Grid Sample
height z radius r u(r) µu σu I(u)
1 0.538 -3.9589 -3.7849 0.5009 0.2506
1 0.846 -4.5653 -4.6423 0.0738 0.2252
1 1.231 -4.1222 -4.0816 0.3259 0.2546
1 1.538 -3.5241 -3.4553 0.6511 0.2434
2 0.538 -1.8506 -1.7903 0.2477 0.2439
2 0.846 -2.2049 -2.2702 0.0666 0.1692
2 1.231 -2.0011 -2.0009 0.1960 0.2426
2 1.538 -1.6955 -1.6923 0.3668 0.2357
3 0.538 -1.0848 -1.0616 0.1585 0.1711
3 0.846 -1.3795 -1.4445 0.0616 0.2406
3 1.231 -1.2727 -1.2840 0.1631 0.2370
3 1.538 -1.0645 -1.0872 0.2883 0.2240

the Davies-Jones data at a distance of r = 0.538 from the vortex center. This

plot demonstrates the value of the data in determining the value of u. The

second plot shows error bars around u using the two distributions over all the

values of r where 0 ≤ r ≤ 2.231.

The large error bars are a result of the large uncertainty in tangential wind v.

This uncertainty can be reduced further with uncorrelated and Gibbs sampling.

The data in table 8.20 is from level z = 1. Table 8.20 gives the actual value

of u, the estimation of u from the sample and the standard deviation of u and

shows the reduction of the standard deviation of u given a sample with more

information. Table 8.20 also reveals the close agreement between data obtained

from sample S2 and data obtained from much larger samples discussed earlier.

This verifies the ability to predict the tangential wind u from small samples

that could possibly be obtained real-time as in the case of tangential wind v.

The Gibbs data set S3 contains more information than the pseudo-random

sample. Figure 8.14 shows the c.d.f.s generated from samples S1 and S3 at level

z = 1 and the previous graph generated from the pseudo-random sample. This
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Table 8.19: Statistics for u, Pseudo-Random Sample
height z radius r u(r) µu σu I(u)
1 0.538 -3.9589 -3.7861 0.5033 0.2504
1 0.846 -4.5653 -4.6418 0.0741 0.2240
1 1.231 -4.1222 -4.0838 0.3252 0.2539
1 1.538 -3.5241 -3.4603 0.6505 0.2424
2 0.538 -1.8506 -1.7909 0.2452 0.2231
2 0.846 -2.2049 -2.2706 0.0665 0.1729
2 1.231 -2.0011 -2.0025 0.1954 0.2423
2 1.538 -1.6955 -1.6945 0.3668 0.2341
3 0.538 -1.0848 -1.0616 0.1669 0.1592
3 0.846 -1.3795 -1.4441 0.0624 0.0616
3 1.231 -1.2727 -1.2850 0.1629 0.2225
3 1.538 -1.0645 -1.0888 0.2880 0.2230

comparison illustrates the results of using a data set with more information.

The radial wind u depends on the parameters a and b through the tangential

wind v. A new parameter, the kinematic viscosity ν, is introduced in the

computation of u. The parameter ν is not used in the computation of tangential

wind v. Uncertainty in u depends on uncertainty in v as well as uncertainty in

ν, therefore sensitivity analysis is needed to determine the sensitivity of u with

respect to ν. The normalized sensitivity coefficient is ν ∂u
∂ν

which has no units.

The derivative ∂u
∂ν

can be computed from equation (5.5) and this equation is

given again:

u′(t) = f(t, u) =

�
φt
φ
−
�

1

t
+
φt
φ

�
ψψzz
ψ2
z

�
u

+ ν

��
φtt
φ

+
φt
tφ
− 1

t2

��
ψψzz
ψ2
z

− 1

�
− ψzzz

ψz
+
ψ2
zz

ψ2
z

�
Differentiating this equation with respect to ν gives the differential equation:
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Figure 8.13: Radial cdf and Error Bars
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∂u

∂ν
(r0) = du0

This was solved using the Euler with the initial condition ∂u
∂ν

(r0) estimated
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Table 8.20: Statistics for u from Small Samples
Sample radius r u(r) µu σu I(u)
S2 0.538 -3.959 -3.777 0.494 0.231
S2 0.846 -4.565 -4.644 0.073 0.209
S2 1.231 -4.122 -4.069 0.319 0.236
S2 1.538 -3.524 -3.421 0.642 0.226
S3 0.538 -3.959 -3.874 0.413 0.397
S3 0.846 -4.565 -4.631 0.059 0.335
S3 1.231 -4.122 -4.137 0.267 0.371
S3 1.538 -3.524 -3.561 0.560 0.385
S4 0.538 -3.959 -3.895 0.357 0.512
S4 0.846 -4.565 -4.624 0.050 0.411
S4 1.231 -4,122 -4.139 0.227 0.500
S4 1.538 -3.524 -3.544 0.492 0.487

Figure 8.14: Pseudo-random sample and Gibbs c.d.f.s
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by a difference quotient of the radial profile at r = 2. The results are shown

in figure 8.15 for level z = 1 and indicate that sensitivity with respect to ν

is largest near the location of maximum tangential wind. It should be noted

that the 80% error bars in the plots of figure 8.13 include the assumed error

distribution of kinematic viscosity ν. For simplicity, ν was assumed to be

uniformly distributed over the interval [0.051, 0.153].
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Figure 8.15: Local Sensitivity with repect to ν
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8.4 Vertical Wind w

In the following, the Wood-White 2 vortex model was used to estimate tangen-

tial profile v which was used to estimate radial profile u. The radial profile u

was then used to estimate the vertical profile w.

For the cylindrical case, the vertical velocity w was calculated by equation

(5.3) and the profile is shown in the figure 8.16.

Figure 8.16: Vertical Wind Profile: Cylindrical Case
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The singularity occurred at r = 1.692 in the radial and vertical profiles. The

Wood-White vortex 2 and Davies-Jones data profiles diverged over the entire

region of interest.
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The vertical wind w was calculated using the tangential Navier-Stokes equa-

tion along with the conservation of mass equation (5.4). Figure 8.17 show

Wood-White vortex 2 vertical wind profile compared to the Davies-Jones ver-

tical wind profile. The residuals d(ri) = w(ri) − wobs(ri) for i = 1, · · ·Nd were

plotted versus r. The vertical profiles did not differ in the three levels, so only

level z = 1 is given in this section.

Figure 8.17: Vertical Wind Profile and Residuals
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The mean, standard deviation, skewness and kurtosis of the residuals were

computed. The mean µR was within one standard deviation of zero. Therefore,

the mean of the residuals was not significantly different from zero. The plot of

the residuals show that the distribution of the residuals was not uniform.

Table 8.21: Statistics of the Residuals
height z µR σR skew Kurtosis
1 -0.0143 0.0425 0.0243 -0.0514

A runs test was used to test for randomness with test statistic T = −4.5802.

The hypothesis of randomness is rejected. Therefore, the residuals are most

likely correlated. Next, the assumption of normality was tested at each of the

different levels. Skewness sk and kurtosis K were used in the Jarque-Bera test

statistic JB. The Kolmogorov-Smirnov test for normality was conducted with
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test statistic DN . All of these results are given in the table below:

Table 8.22: Normality Test Statistics
height z JB DN

1 0.0063 0.2581

The null hypothesis of normality if rejected by the Kolmogorov-Smirnov

test, although accepted by the Jarque-Bera test. Two plots were generated

and are shown in figure 8.18. The first plot contains the cumulative distri-

bution functions of the residuals and the cumulative distribution function of

the normal distribution in order to observe the close agreement between the

two distributions. The second plot contains the difference between these two

distributions and was used to determine the Kolmogorov-Smirnov test statistic.

Figure 8.18: Residual and Normal cdfs, KS Test Statistic
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The pseudo-random samples were used to generate a p.d.f. and a c.d.f.

for w and these were used to calculate statistics for w at levels z = 1, 2,

and 3 for selected values of the distance from the vortex center r. Shannon’s

information content of the p.d.f. for w was also calculated. The statistics for

w at z = 1,2, and 3 are given in Table 8.23 and Table 8.24 for selected values

of r. In the tables, w(r) is the estimated value of w using the Wood-White

vortex 2 model. Table 8.23 contains data using parameter pairs from the grid
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with spacing 0.01. Table 8.24 contains data using parameters pairs from the

pseudo-random sample.

Table 8.23: Statistics for w, Grid Sample
height z radius r w(r) µw σw I(w)
1 0.538 0.8330 0.9001 0.1687 0.1708
1 0.846 0.4252 0.4332 0.0478 0.2451
1 1.231 0.1124 0.0817 0.1023 0.2436
1 1.538 0.0159 0.0084 0.0922 0.1633

Table 8.24: Statistics for w, Pseudo-Random Sample
height z radius r w(r) µw σw I(w)
1 0.538 0.8330 0.9003 0.1696 0.1691
1 0.846 0.4252 0.4330 0.0479 0.2453
1 1.231 0.1124 0.0824 0.1022 0.2423
1 1.538 0.0159 0.0090 0.0923 0.1014

The means and standard deviations for w were used to create 80% error

bars. Example plots are given in figure 8.19. The first plot shows a comparison

between the c.d.f.s for w with the uniform distribution and the distribution from

the Davies-Jones data at a distance of r = 0.538 from the vortex center. This

plot demonstrates the value of the data in determining the value of w. The

second plot shows error bars around w using the two distributions over all the

values of r where 0 ≤ r ≤ 2.231.

The large error bars are a result of the large uncertainty in tangential wind

v and radial wind u. This uncertainty can be reduced further with uncorrelated

and Gibbs sampling. The data in table 8.25 is from level z = 1. Table 8.25

gives the actual value of w, the estimation of w from the sample and the

standard deviation of w and shows the reduction of the standard deviation

of w given a sample with more information. Table 8.25 also reveals the close

agreement between data obtained from sample S2 and data obtained from much
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Figure 8.19: Vertical cdf and Error Bars
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larger samples discussed earlier. This verifies the ability to predict the vertical

wind w from small samples that could possibly be obtained in a real-time

system.

Table 8.25: Statistics for w from Small Samples
Sample radius r w(r) µw σw I(w)
S2 0.538 0.833 0.904 0.169 0.150
S2 0.846 0.425 0.434 0.047 0.231
S2 1.231 0.112 0.077 0.101 0.226
S2 1.538 0.016 0.002 0.092 0.141
S3 0.538 0.833 0.874 0.150 0.329
S3 0.846 0.425 0.425 0.038 0.360
S3 1.231 0.112 0.098 0.087 0.380
S3 1.538 0.016 0.020 0.084 0.299
S4 0.538 0.833 0.873 0.143 0.400
S4 0.846 0.425 0.423 0.031 0.486
S4 1.231 0.112 0.096 0.077 0.484
S4 1.538 0.016 0.012 0.079 0.326

The Gibbs data set S3 contains more information than the pseudo-random

sample. Figure 8.20 shows the c.d.f.s generated from samples S1 and S3 at level

z = 1 and the previous graph generated from the pseudo-random sample. This

comparison illustrates the results of using a data set with more information.

The following results are based on the Wood-White 2 vortex model, the

benchmark Davies-Jones data set and the non-cylindrical case. The maximum
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Figure 8.20: Pseudo-random sample and Gibbs c.d.f.s
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tangential wind vertical profile was assumed.

1. The residuals can be assumed to be normally distributed with zero mean

and equal variances. They are correlated, therefore any statistical tests

must adjust the degree of freedom.

2. It was shown that good estimates of the parameters in the Wood-White 2

vortex model provided good estimates of the tangential,radial and vertical

profiles using a subset of the Navier-Stokes system of equations.

3. Uncertainty in the parameter estimates results in uncertainty in the pro-

file estimates.

4. The marginal distributions for a and b were skewed, so the means are

biased. It is important to notice that the standard deviations are large,

so that the estimates are uncertain.

5. The importance of parameter b is evident throughout the profile. The

importance of parameter a grows and becomes more important than b at

the end of the profile.

6. Both parameters are essential in estimation of the tangential wind profile

because they contain critical information about the profile.
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7. The greater the information from the benchmark Davies-Jones data set

in the sample, the greater the information in u, v and w.

8. The Wood-White 2 vortex model is more sensitive to parameter b which

controls the inner profile than to parameter a which controls the end of

the profile.

9. Sensitivity with respect to ν is largest near the location of maximum

tangential wind.
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Chapter 9

Conclusions

The analysis methods discussed in this paper were applied to the Wood-White

2 tangential vortex model and are intended for use on other tangential vortex

models. The Davies-Jones data set was used as a benchmark data set for the

uncertainty analysis because it is considered a validated and verified data set.

The Wood-White 2 vortex model was selected for analysis because of its ability

to capture the information in the Davies-Jones data set and its small number

of parameters so that a thorough analysis could be done. This allowed for

exploration of the utility of small sample sizes to provide information to a real-

time system. Future work would necessarily involve analysis of other models

and incorporation of other benchmark data sets.

The Wood-White 2 tangential vortex model contains two parameters a and

b. Non-linear least squares were used to estimate the parameters of the Wood-

White 2 tangential vortex model using the Davies-Jones data set. The Wood-

White vortex 2 tangential wind model approximates the benchmark Davies-

Jones data closely with the amount of data provided by the data set. The

residuals of the errors are most likely correlated and this will probably be the

case for all models. An assumption can be made that the residuals are normally

distributed, therefore non-linear least squares analysis is appropriate. It was

determined that parameter b which controls the shape of the inner core of an

atmospheric vortex contains more information about the tangential wind profile
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than parameter a which controls the decay of the vortex beyond the point of

maximum tangential wind, however, the end of the profile is more sensitive

to parameter a. In conclusion, both parameters are essential in estimation of

the tangential wind profile because they contain critical information about the

profile. The marginal distributions of the parameters revealed large variances

for the parameters. The variances were reduced by using samples containing

more information from the data set in the analysis. Reduction in the variance

of the parameters could be accomplished after analysis with more benchmark

data sets. Discriminant analysis could categorize data to reduce the size of

the admissible parameter space. For example, data categories could consist

of hurricanes, and one- and two- cell tornadoes. Also, the techniques in this

paper could be used to eliminate unnecessary parameters in other tangential

wind models.

Radial and vertical winds were estimated using the Wood-White 2 vortex

model to estimate tangential wind with the Navier-Stokes tangential momen-

tum equation and conservation of mass. These approximations were compared

to the Davies-Jones data set. Under the z-dependent case with the appropri-

ate z-dependent profile, the approximations compared favorably to the Davies-

Jones data set. The uncertainty in prediction of the tangential profile v was

evaluated in terms of the propagation of uncertainty in the model parameters

a and b. The uncertainty in v was then propagated into the uncertainty of

u which also incorporated a new parameter ν with its own statistical proper-

ties. Finally, the uncertainty analysis of vertical w was performed which was

dependent on a, b, v, ν and u. Large uncertainties in the parameters lead

to large uncertainties in the prediction of tangential v, radial u and vertical

w. Samples containing information content, such as the uncorrelated sample
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taken from the marginal distributions and the Gibbs sample which includes the

correlation, reduced uncertainties in the estimates of u, v and w. It was shown

that small samples can be used in a real-time system.

A summary of information content is given in table 9.1. Observe that all

the selected distances from the vortex center have high information content for

u, v and w. In conclusion, data received from these regions would be valuable

in determining wind profiles. Data received from the distance of maximum

tangential velocity has high information content for u and w. This does not

show up for v because of the forced normalization of the tangential wind profile

model. This does not mean that data in this location is not important for v.

The information content for v would show up in the estimation of the actual

value of the maximum velocity and in the location of the maximum tangential

wind. It can be seen that data approximately halfway between the vortex center

and the radius of maximum tangential wind provides the most information to

radial, tangential and vertical wind profiles. In general, information content

is high throughout the profiles and the correlation at radial distances in close

proximity is evident. The large information content of v comes from the data

through the parameters and from the form of the model used to approximate

the tangential wind profile. The Gibbs sample contains more information from

the benchmark data set than the uniform sample by including the correlation

between the parameters and sampling from the actual joint distribution of the

parameters. This resulted in reduced variances and greater information content

in radial, tangential and vertical wind estimates.

Questions remain about other methods that can be used to reduce the vari-

ance in model parameters which will lead to reduced variance in model pre-
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Table 9.1: Information with Two Different Samples
Uniform Gibbs

radius r I(u) I(v) I(w) I(u) I(v) I(w)
0.077 0.134 0.118 0.159 0.349 0.371 0.448
0.231 0.175 0.173 0.178 0.432 0.441 0.449
0.385 0.215 0.202 0.219 0.486 0.510 0.459
0.538 0.231 0.225 0.150 0.512 0.538 0.400
0.692 0.152 0.242 0.240 0.285 0.548 0.545
0.846 0.209 0.230 0.231 0.411 0.504 0.486
1.000 0.206 0.000 0.243 0.404 0.000 0.499
1.154 0.236 0.223 0.234 0.470 0.450 0.495
1.308 0.236 0.240 0.212 0.485 0.506 0.452
1.462 0.229 0.234 0.168 0.484 0.510 0.389
1.615 0.222 0.226 0.119 0.492 0.511 0.294
1.769 0.214 0.218 0.109 0.479 0.500 0.204
2.000 0.202 0.208 0.086 0.442 0.484 0.157

dictions. Also, the amount and location of data that can provide accurate

predictions of tangential, radial and vertical winds are of value to pursue. In-

formation theory is often used for model selection. Models could be selected

based on their ability to capture the information in the available data. Dif-

ferent models could be selected at difference locations in the vortex to provide

maximum information to the scientist about tangential, radial and vertical

components of the vortex wind field.
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Appendix A

Derivatives of the Vertical Wind Profile

The vertical wind profile ψ and the derivatives of ψ are
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