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AIDS versus the Rotterdam Demand
System: A Cox Test with
Parametric Bootstrap

Alix Dameus, Francisca G.-C. Richter, B. Wade Brorsen,
and Kullapapruk Piewthongngam Sukhdial

A Cox test with parametric bootstrap is developed to select between the linearized
version of the First-Difference Almost Ideal Demand System (FDAIDS) and the
Rotterdam model. A Cox test with parametric bootstrap has been shown to be more
powerful than encompassing tests like those used in past research. The bootstrap
approach is used with U.S. meat demand (beef, pork, chicken, fish) and compared to
results obtained with an encompassing test. The Cox test with parametric bootstrap
consistently indicates the Rotterdam model is preferred to the FDAIDS, while the
encompassing test sometimes fails to reject FDAIDS.
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Introduction

Functional form is an important issue in empirical production and consumption studies.
Different functional forms often result in very different elasticity estimates. The two
most commonly used models in demand analysis are the Almost Ideal Demand System
(AIDS) and the Rotterdam model. Most researchers arbitrarily pick one model or the
other, but recent interest has focused on developing proper nonnested tests of the two
demand systems.

Two prominent studies have presented techniques to select between the AIDS and the
Rotterdam demand systems (Alston and Chalfant; and LaFrance). Alston and Chalfant
(AC) used a compound-model approach to select between the First-Difference Almost
Ideal Demand System (FDAIDS) and the Rotterdam models, using U.S. meat demand
data (beef, pork, chicken, and fish). They found support for the Rotterdam model.
However, LaFrance pointed out that Alston and Chalfant's approach was biased and
inconsistent because they had not considered endogeneity of budget shares, and their
prices in the Stone index were not mean scaled. Using the same data, LaFrance conducted
both a Lagrange multiplier and a likelihood-ratio test, and failed to reject either demand
system. Compound-model approaches typically have correct asymptotic size, but low
power (Pesaran). Thus, the failure to reject either null hypothesis may simply be the
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result of using a test with low power.l Most of the previous nonnested tests have been
developed for models having the same dependent variables (e.g., Pesaran). Coulibaly and
Brorsen show that a Cox test based on the parametric bootstrap has high power, is rela-
tively easy to use, and is applicable to any model which can be simulated. The approach
appears promising as a method for selecting among nonnested functional forms in
demand systems.

In this study, a Cox nonnested test with parametric bootstrap is developed to test
FDAIDS versus Rotterdam demand systems. The test is then used to determine whether
the Rotterdam or the FDAIDS is preferred for U.S. meat demand. A difficulty in using
the parametric bootstrap is in simulating quantities from the Rotterdam model. The
approach adopted is based on a Taylor's series expansion similar to the approach of
Kastens and Brester.

Tomek's recommendations on how to make research more cumulative are followed
here. Tomek suggests using both the data and methods from past research. In this way,
it is possible to determine whether differences in results are due to different data or
different methods. LaFrance uses Moschini and Meilke's (MM's) 1967-1988 data2 on
U.S. meat demand that includes four commodities: beef, pork, chicken, and fish. The
updated data have a 1970-1997 time span, come from a different source, and do not in-
clude fish.3 Our tests are performed using MM's data set with and without fish, as well
as with the updated data set.

Nonnested Hypothesis Tests

Nonnested hypothesis tests select between two regression models where one model
cannot be written as a special case of the other. In such a case, the models are said to
be nonnested. Suppose we have two nonnested models, A and B, with the same set of
explanatory variables to choose from using the same set of data. To test that model A
is the true model, the nonnested hypotheses for the two models can be written in the
following general form:

(1) Ho: fi(Yi) = XtPoi + u0it, i = 1, ..., n (model A),

(2) Hi: gi(Yit) = XtPi + uli, i = 1, ..., n (model B),

where there are n goods, and thus n equations. Observations are indexed with t = 1, .. .,T.
The variable is quantity of the ith good for period t, Xis era vector of explanatory
variables, Poi and Pli are parameter vectors under the null and alternative hypotheses,
and u0 it and ulit are the error terms under the null and alternative hypotheses. The two
approaches considered to select between nonnested models are the encompassing test
and the Cox test, discussed below.

1 Note that the titles of the papers by Alston and Chalfant and by LaFrance are misleading-i.e., the lambdas in Alston
and Chalfant are not "silent" since they "speak" in favor of the Rotterdam model, and the lambdas in LaFrance do not "bleat"
since the low power of the LaFrance approach leads to no significant difference between the two approaches and thus it is
silent about which approach is preferred.

2 In fact, the data used by LaFrance are the same data used by Alston and Chalfant.
3 The fish data are an aggregate of a wide variety of high-value and low-value products, and thus the fish data are widely

considered unreliable.
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Encompassing Test

The encompassing test is based on a composite model obtained by forming a linear com-
bination of the two models in the null and alternative hypotheses. For models A and B
in equations (1) and (2), the composite model can be specified in the following way:

(3) (1 - )fi(i) + gi(Yit) = Xi + it,

pi = (1 - V)Poi + 4Pi,

Uit = (1 - +)UOit + Ulit,

where i = 1,..., n, and t = 1,..., T. The parameter X linearly combines the two models.
Note that in the empirical section, additional restrictions are imposed upon the coeffi-
cients.

Testing that model A is the true model is equivalent to testing that the parameter A
is equal to zero. Similarly, testing that model B is the true model corresponds to a test
of X equal to 1. Because the model is nonlinear in the parameters, a likelihood-ratio test
is used to test the null hypotheses. Greene (p. 301) argues that the encompassing test
does not really distinguish between the null and the alternative hypotheses, but rather
distinguishes between the alternative and a hybrid model.

Cox Test and Parametric Bootstrap

The Cox test in its generic version proposed by D. R. Cox is based on the log-likelihood
ratio of two models under consideration. In our example of the two models A and B, the
log-likelihood ratio statistic under the null hypothesis can be computed as the difference
between the log-likelihood values of models A and B. In general, the Cox test statistic
has the following representation in testing the null hypothesis Ho against H1:

(4) To = Lo, - Eo (L o1)

where L 01 = Lo(0o) - L 1(01) is the difference in estimated maximum log likelihoods (i.e.,
the log of the likelihood ratio) under Ho and H1; Eo(Loi) is the expected value of Lo1 under
Ho; and 00 and 01 are the maximum-likelihood parameter estimates of the null and the
alternative models, respectively. To is asymptotically distributed with mean zero and
variance v2 under Ho (Cox). Similarly, the test statistic for testing H1 against Ho would
be T1 = L10 - E1 (Llo).

The difficulty in implementing the Cox test resides in obtaining analytical formulas
for Eo(L01 ) and vo. Pesaran derived analytical results for the linear regression models
with the same dependent variable. Both Pesaran and Deaton, and Pesaran and Pesaran
developed a version of the Cox test with transformed dependent variables such as needed
for testing linear versus log-linear models. However, their test statistics exhibit incorrect
sizes in small samples.

More recently, Coulibaly and Brorsen showed that a Cox test associated with a
parametric bootstrap approach gives a test statistic with correct size and high power,
even in small samples. The test statistic is the likelihood ratio of the two models, and
the parametric bootstrap is used to estimate the distribution of this test statistic under

Dameus et al.



Journal ofAgricultural and Resource Economics

the null.4 With the parametric bootstrap, Monte Carlo samples are generated using the
parameters estimated under the null hypothesis. Samples are generated with the same
number of observations as the original data.

The hypothesis test is performed by computing a p-value as the percentage of simu-
lated likelihood-ratio statistics that are less than the likelihood ratio computed from the
actual data. This p-value is calculated using the actual and the generated data in the
following way (Coulibaly and Brorsen):

(5) p-value = (numb[LO( 0 j' yj) - LL(0 1 j, Yj) < Lol Vj = 1, ... ,N] + 1)
N +1

where numb [ ] stands for the number of realizations for which the specified relationship
is true; N is the number of samples of size T generated under each model; Lol is the
actual value of the log-likelihood ratio; and L o(-) and L1() are the values of the log-like-
lihood function with the generated data under the null and the alternative hypotheses,
respectively. The value of one is added to the numerator and denominator as a small-
sample correction. Thisp-value estimates the area to the left of the Cox test statistic Lo.
A small area indicates that the statistic is far from the mean according to Ho, so we can
reject the null hypothesis. In other words, a smallp-value indicates rejection of the null
hypothesis.

Selecting Between the AIDS and the Rotterdam
Models for U.S. Meat Demand

The Selected Models

Previous studies by Alston and Chalfant (AC) and LaFrance used encompassing tests
to select between the AIDS and the Rotterdam models for U.S. meat demand. For the
Rotterdam, AC present two alternative models with seasonal dummy variables. One uses
the Divisia volume index as real income, and the other uses deflated expenditures with
the Stone index. Based on their findings, these two specifications give nearly the same
parameter estimates. For the AIDS model, AC use four alternative specifications of the
first-difference model with seasonal dummy variables. For the purpose of this study, only
the standard specifications which AC denote Rotterdam II and AIDS VI are considered. 5

The first-difference linearized version of the AIDS model with quarterly seasonal
dummies and real expenditure variables (using the Stone index), presented as AC's
model VI with the time subscripts suppressed, is designated by:

4 4

(6) Asi = i + OikDk + E Y1iAln(pi) + Pi [Aln(x) - Aln(P)], i = 1,..., 4.
k=l j=1

In this model, s denotes budget share; Dk's are quarterly seasonal dummy variables; pj
is price of goodj; x is the total expenditure on the n goods; T, 0, y, and P are parameters;
A is a first-difference operator; and P is the Stone index.

4 The likelihood ratio is not an asymptotically pivotal statistic, yet Coulibaly and Brorsen find it provides tests at least as
good as a parametric bootstrap based on Pesaran and Pesaran's asymptotically pivotal statistic. As argued by Maasoumi,
"asymptotically pivotal statistics are, in general, neither necessary nor sufficient for good bootstrap performance" (p. 86).

5 AC were unable to test these exact specifications. Thus, their approach is to test the Rotterdam versus "almost AIDS,"
and to test the AIDS versus "almost Rotterdam."
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The Rotterdam model II has the following specification in AC's paper:

4 4 4

(7) Si Aln(yi) = t i + E OkDk + E Yi Alni(p) + Pi Aln() - jAln(pi)
k=l j=l j=l

where Sj is the average budget share of good j (four goods are considered), yi denotes
quantity of good i, and all the other variables are as defined above. The term in brackets
is real expenditure.

Encompassing Tests and Selection Between the
AIDS and Rotterdam Models

The studies by AC and LaFrance are based on encompassing tests, with a difference in
estimation methods and in the representation of the compound model equation. AC do
not account for endogeneity of budget shares. To correct for endogeneity, LaFrance
restates the models and shares as explicit functions of quantity, and estimates the
parameters with full-information maximum likelihood. Also, LaFrance recognizes the
lack of invariance of Stone's price index to units of measurement, and thus scales the
prices in that index by the means. Note rescaling is used only in the calculation of Stone's
index.

AC present two compound models: one to test the Rotterdam model in equation (7)
against an approximate FDAIDS, while the other is used to test the linearized version
of the FDAIDS in equation (6) against an approximate Rotterdam. AC's compound
models are:

4 4

(8) (1 - X)SiAln(yi) + X^si = z i + E OkD + D YjAln(pj)
k=l j=l

+ Pi Aln(x) - j>iAln(pi) ,
j=1

4 4

(9) (1 - I')As i + X'SiAln(yi) = i + E OikDk + y¥iAln(pj )
k=l j=l

+ P [Aln(x) - Aln(P)],

where X' linearly combines the two models under H1. Equation (8) compounds AC's
Rotterdam II with their FDAIDS IV, which is an approximation to the FDAIDS. This
approximation leads to both models having a common right-hand side, and thus the
linear combination is only applied with the left-hand-side variables. In this compound
model, testing X = 0 is equivalent to testing that the Rotterdam model is the true model.
Equation (9) compounds AC's FDAIDS VI with their approximate Rotterdam; again, this
allows combining only the left-hand side of both models. Testing X' = 0 corresponds to
testing that FDAIDS is the true model.

LaFrance conducted an encompassing test based on a likelihood-ratio statistic using
a compound model like the one presented in (3) which combines all aspects of the two
models. LaFrance's compound model is as follows:
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4 4

(10) (1 - X)si(yi)Aln(yi) + XAsi(yi) = : i + 6ijDj + E yijAln(pj)
j=l j=1

+ (1 - A)BiO Aln(x) - Esj(yi)Aln(pj))

+ Xp1(Aln(x) - Aln(P)),

where all the elements are as previously defined.
As LaFrance points out, AC do not account for the endogeneity of budget shares. For

instance, in equation (8), share si, which is a function of quantityyi, appears on the right-
hand side of the equation. Also, LaFrance's compound model takes into account both the
AIDS and the Rotterdam model's expenditure terms, whereas AC's models approximate
these variables. The estimable version of equation (10) for meat demand is specified as:

(11D ) - -it = (1 - t io [Yit- f it - Sit-1

3 3 [Pjt-P4t)l
- o(D - )- - E yjog

j=1 j=1 jp x t- lP4t=1

-( - l Xt Pjt + (PjtP4t"-1 -log (P 4t
-Pi, 2 j= lo [ Pjt-lP4t ) [ Pt-1

4t 1 1igit 4t -1 P4t
\ xt-1l j= \P4t j=l \P4t-1 \ P4t-1

for i = 1, 2, 3 meat commodities, and t = 1,..., T observations. Here, ut = [u1t, u2t, u3 t] is
assumed to be i.i.d. N(O, S), and symmetry requires yi = yj Vi oj. Homogeneity and
adding-up restrictions are embedded in the system of equations. Equation (11) is equiva-
lent to LaFrance's (p. 229) equation (23), except for a typo in the latter, which shows the
term -log(p4t/p4t_1 ) multiplied by (1 + s4t 1)/2 when X = 0.

LaFrance's reported estimation results, however, are correct and consistent with (11).
Note how the budget shares are now explicit functions of quantity. The parameters in
this equation can be determined by maximum-likelihood estimation. From AC's perspec-
tive, a test of one model against the other could be conducted based on the estimated
value of the parameter A. In LaFrance's view, "a likelihood ratio test should be used
to discriminate between the two competing models, rather than simply examining the
t-ratio for the estimated lambda" (p. 229). Because the model is nonlinear in the param-
eters, a t-test, which is a Wald test, would be sensitive to the units of measurement.
Therefore, we agree with LaFrance that a t-test would be a poor choice.

LaFrance's suggested approach, however, has possible weaknesses in both power and
size. When X is restricted to zero, the AIDS expenditure coefficients (Pil's) are undefined.
The Pil's are called nuisance parameters because they appear under the alternative, but
are undefined under the null of X = 0. In the presence of nuisance parameters, likeli-
hood-ratio statistics may no longer have the usual x2 distributions (Andrews; Davies).
The only restriction imposed is on X, because the Pil's can be any value. Yet, LaFrance

2assumes a X[4] distribution for the likelihood-ratio statistic. Thus, LaFrance considers
the Bi's as also being restricted.

340 December 2002



AIDS versus the Rotterdam Demand System 341

With linear models and in the presence of more than one nonoverlapping parameter
(a parameter is nonoverlapping if it is included under one hypothesis, but not the other),
encompassing tests are known to have low power (Pesaran). Pesaran's results do not
apply directly here because the compound model is nonlinear and the nonoverlapping
parameters are associated with nuisance parameters, but LaFrance's findings that
neither model can be rejected are hardly surprising. Alternatively, a Cox test based on
a parametric bootstrap can be expected to have good size and power properties (Coulibaly
and Brorsen; Hall and Titterington).

A Monte Carlo study was conducted to determine if there were serious problems with
the size of the test from LaFrance's compound model. Ten thousand data sets were gen-
erated from the estimated AIDS model. The AIDS and compound models were then esti-
mated with each data set. To avoid convergence problems, a grid search over values of
X was used to select starting values. The results of the Monte Carlo study are presented
in figure 1. As figure 1 shows, the distribution of the likelihood-ratio statistic closely
approximates a X251. Thus, the size of the test with the compound model seems fine. In
a recent study, Andrews found that statistics sometimes have standard distributions
even in the presence of nuisance parameters. The presence of a nuisance parameter,
however, does cause the Rotterdam expenditure coefficients to be inestimable whenever
the estimated X is close to one.

Cox Test and Parametric Bootstrap with the FDAIDS
and Rotterdam Models

Using the Cox test with the parametric bootstrap for selecting between the AIDS and
the Rotterdam models requires the following steps: (a) estimate the two models under
consideration using the actual data set; (b) based on the likelihood values of the two
estimated models, compute the actual likelihood ratio of the two models; (c) assuming
the null hypothesis model, estimate a distribution function for the original data and,
based on this estimate, generate a large number of data sets of the same size; (d) re-
estimate the two models for each of the generated samples; (e) compute the simulated
log-likelihood ratio for each simulated data set; and (f) compare the true and simulated
log-likelihood ratios to compute thep-value presented in equation (5). Steps (c)-(f) must
be performed twice-once by letting one of the two models (say, FDAIDS) be the null
hypothesis, and the second time, under the assumption the other model (say, the Rotter-
dam) is the null hypothesis.

Parametric Bootstrap and Difficulties in Data Generation

The data that must be generated in the context of the FDAIDS and Rotterdam models
are the quantities. However, quantity is not explicit in the left-hand side of either the
AIDS or the Rotterdam.

The approach used requires predicted quantities. First, estimates for the dependent
or left-hand-side terms are generated under a normal process. Normality of residuals
cannot be rejected for any of the models using the Henze-Zirkler test provided as an
option in SAS's PROC MODEL (SAS Institute, Inc.). Also, the Mardia tests from the
same SAS procedure fail to detect skewness or kurtosis in the system. If normality had
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Figure 1. Cumulative distributions for a likelihood-ratio statistic
of AIDS vs. compound model when data are from an AIDS model
and the cumulative distribution of a chi-squared statistic with four
degrees of freedom

been rejected, a nonparametric bootstrap could have been used. While the asymptotic
properties of parametric and nonparametric bootstraps are the same if the parametric
distribution is correctly specified, Monte Carlo experiments have shown that the numer-
ical accuracy of the parametric bootstrap is much higher (Horowitz, p. 34).

Once left-hand-side terms are generated, quantities need to be approximated. How-
ever, it is difficult to simulate data from the Rotterdam model. "Since the Rotterdam
involves a nonlinear transformation of quantity on the left-hand side, predicted or
expected quantities are not immediately derived by taking the inverse functional trans-
formation of the model-predicted left-hand side" (Kastens and Brester, p. 303). Kastens
and Brester proposed a method for obtaining the expected quantities from the Rotter-
dam model using the predicted left-hand side (predLHS) and a second-order Taylor-
series expansion of the dependent variable. While the derivation and final equation used
here differs from that of Kastens and Brester, the principle remains the same.

We start with the predicted equation of the Rotterdam model:

(12) E [(s + st_)(ln(y) - ln(yt_))] = Xtpi = predLHS,

where the variables s and y without a subscript are current budget shares and current
quantities, respectively. The dependent variable or term within the expectation operator
can be approximated by a second-order Taylor series expansion around y, the expected
value of y. Then, the expected value of this approximation can be used to approximate
(12) as follows:
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(13) f(y) = 2(py/x + st,)(ln(y) - ln(ytl))

f(Y) f(y) + f '(Y)(Y -y o)+ (1)f"(Yo)(Y -yo) 2

predLHS = E(f(y)) z f(yo) + f"(o)E(Y -Yo) 2,

where the sample variance of y, denoted by v, is used to estimate E(y - yO)2. Thus, we
can solve for y in:

(14) (py + St-lX)(ln(y) - ln(ytl)) + (v12y2 )(py - st_lx) - 2xpredLHS = O.

Solving for y in equation (14) gives an approximation for the predicted quantity of the
Rotterdam model. Predicted quantities for the AIDS model are obtained without the
need of a Taylor-series approximation because the left-hand side is already a linear
function of quantity. Following Kastens and Brester, predicted quantities are specified
as:

(15) = [predLHS + t-1.

P

The simulation procedures using both (14) and (15) produced quantities with moments
similar to those of the actual data (table 1). The moments are not an exact match because
the moments of the actual data depend on the order of the random realizations. Ten
thousand random samples of meat quantities were generated for each model to construct
thep-value of each test. The estimation methods incorporate the homogeneity, sym-
metry, and adding-up restrictions.

AIDS and Rotterdam Likelihood Functions

To use the Cox statistics, the likelihood functions of both the AIDS and the Rotterdam
models must be converted to the same units. The dependent variables in the FDAIDS
model are budget share differences. In the Rotterdam model, the dependent variables
are the differences in the natural logarithms of quantities multiplied by average expend-
iture shares. The log-likelihood functions for the dependent variables in both models are
transformed to log likelihoods of quantity by adding a Jacobian term (see LaFrance).
Then the transformed values are compared.

Meat Demand Data

AC and LaFrance used Moschini and Meilke's (MM's) data on U.S. quantities and prices
of beef, pork, chicken, and fish to select between the AIDS and the Rotterdam. The data
used in their studies are quarterly per capita disappearance and retail prices of beef,
chicken, pork, and fish in the United States, for the years 1967-1988.

We use the same data used by AC and LaFrance, plus an additional set of updated
quarterly data on beef, pork, and chicken. The latter data set does not include fish
because of the poor quality of the U.S. fish data. For comparison purposes, we also run
both the encompassing and the Cox tests with parametric bootstrap on MM's data set
without fish. Such an approach allows identification of the effect on the model choice of
difference in method, difference in data, and differences in both data and method, as
recommended by Tomek.
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Table 1. Statistics on the Quantities Generated for the Bootstrap Procedure
with Updated Data, 1970-1997

Simulated Quantities

Statistic Actual Data Rotterdam FDAIDS

Means:
Beef 19.646 18.964 18.715
Pork 12.853 13.712 13.690
Chicken 16.746 17.776 17.665

Standard Deviations:
Beef 2.373 2.218 2.244
Pork 1.095 1.755 1.726
Chicken 3.998 4.069 4.125

Sample Size 112 112 112
No. of Samples Generated 10,000 10,000

Note: Values for approximations are averages over all 10,000 samples.

Estimation Methods

The Model Procedure (PROC MODEL) in SAS with the full-information maximum like-
lihood (FIML) option was used to conduct the encompassing test on the data. The Inter-
active Matrix Language Procedure (PROC IML) in SAS and PROC MODEL were used
to implement the Cox test with parametric bootstrap, and SAS Macros6 were used to
provide the necessary loops.

Results

With the 1967-1988 data including fish, we are able to replicate AC's results using iter-
ative seemingly unrelated regression. For instance, using AC's compound model to test
AIDS VI versus the (almost) Rotterdam II, we obtain 0.3579 as an estimate for X, as
compared to LaFrance's 0.36 and AC's 0.35997. LaFrance's results are also replicated
in full.

The likelihood-ratio test results using LaFrance's method with three data sets are
presented in table 2. Results for the MM data with fish confirm LaFrance's findings that
neither the Rotterdam nor FDAIDS can be rejected. Results for the other two data sets
favor the Rotterdam model, but each model has some problems in the estimation. For
the MM data without fish, the estimates of X and one of the expenditure parameters
(one of the nuisance parameters) are perfectly correlated (table 2). Because the estimate
of X is close to zero, the expenditure parameter is not estimable. For the updated data
set, the estimation process fails to converge for some starting values, and when it does
converge, it produces a "maximized" log-likelihood value for the compound model that
is lower than the corresponding value for the Rotterdam. This difficulty in obtaining
convergence is another drawback of the compound model. Like AC, with the new data,
we are only able to report results when the expenditure terms are equal, although we
realize this is not a true test of FDAIDS versus Rotterdam. The Cox test with parametric

6 The program is available online at http://go.okstate.edu/~brorsen/WP/coxl.SAS.
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Table 2. Results of Likelihood-Ratio Test to Select Between FDAIDS and
Rotterdam Models for U.S. Meat Demand, as Proposed by LaFrance

X Log
Data Set Model Estimate Likelihood p-Value a Test Result

1. Moschini & Meilke's · Compound Model 0.056 68.603
(with fish) Rotterdam (set to 0) 68.544 0.998 Fail to reject
1967-1988 · FDAIDS (set to 1) 64.377 0.076 Fail to reject

2. Moschini & Meilke's · Compound Model 1.8 E-05 67.580
(w/o fish) Rotterdam (set to 0) 66.919 0.724 Fail to reject
1967-1988 · FDAIDS (set to 1) 63.226 0.033 Reject

3. Updated Data · Compound Model 0.159 25.027
(w/o fish) Rotterdam (set to 0) 24.559 0.817 Fail to reject
1970-1997 * FDAIDS (set to 1) 18.146 0.003 Reject

Notes: Estimators for A and a nuisance parameter (expenditure term parameter) in the compound model were biased
for the Moschini and Meilke data set without fish, showing that, as A approaches zero, estimation problems arise
due to the nuisance parameters. Similarly, estimators for X and nuisance parameters in the compound model failed
to converge for the updated data. Thus, we restricted the compound model by imposing equality of the coefficients
on the expenditure term.
a The p-values are based on a X2 distribution.

Table 3. Statistics from the Cox Test with Parametric Bootstrap for U.S. Meat
Demand

Moschini & Meilke's Updated Data
1967-1988 Data (w/ Fish)

Statistic Data Set Estimated Model with Fish w/o Fish 1970-1997

Log Likelihood Actual FDAIDS 64.377 63.222 19.015
Log Likelihood Actual Rotterdam 68.544 66.919 25.370

Difference -4.167 -3.697 -6.355

Average LLVC H,: FDAIDS b FDAIDS 67.441 66.700 22.576
Average LLV Ho: FDAIDS Rotterdam 61.557 62.831 14.598
Difference 5.884 3.869 7.978

Average LLV Ho: Rotterdamb FDAIDS 68.462 62.469 18.294
Average LLV Ho: Rotterdam Rotterdam 73.829 66.820 22.762
Difference -5.367 -4.351 - 4.468

p-Value H,: FDAIDS 0.003 0.009 0.002
p-Value H,: Rotterdam 0.406 0.438 0.694

Test Result: Reject Reject Reject
FDAIDS FDAIDS FDAIDS

a LLV is log-likelihood value.
b The data sets are simulated using the model estimated with the actual data.
CA smallp-value indicates a rejection of the null hypothesis and a largep-value indicates a failure to reject the null
hypothesis.

bootstrap avoids these estimation problems because there is no need to estimate the
compound model, and thus, there are no nuisance parameters present.

As reported in table 3, the Cox test rejects the FDAIDS and fails to reject the Rotter-
dam model for all data sets. Thus, this study gives additional evidence of the high power
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of the Cox test, as compared to an encompassing test. The Rotterdam model is clearly
favored for use in U.S. meat demand. Tomek's approach was also advantageous because
it separates effects due to differences in method from those that are due to differences
in data.

Conclusions

A Cox test based on a parametric bootstrap is developed for use in testing the first-
difference AIDS model versus the Rotterdam model. Parametric bootstrap tests are
known to have good size and power properties, whereas encompassing tests like those
used by Alston and Chalfant or LaFrance have low power.

The new approach and an approach like that suggested by LaFrance were used to
select between the FDAIDS and Rotterdam models for U.S. meat demand. With the para-
metric bootstrap, the FDAIDS was consistently rejected in favor of the Rotterdam model.
Thus, the results support using the Rotterdam model for U.S. meat demand. In addition
to low power, another disadvantage of the encompassing test is that the compound model
in one instance converged to a local rather than a global optimum.

The Cox test with parametric bootstrap can be used to test nonnested hypotheses
involving most functional forms-for instance, a double-log demand model, the AIDS in
levels, the Rotterdam, and the AIDS with different expenditure deflators. The Cox test
requires more computational work than encompassing tests, but the additional effort
is rewarded with a test of higher power. We recommend using the Cox test with para-
metric bootstrap to conduct nonnested tests among alternative demand systems.

[Received July 2001; final received June 2002.]
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