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Abstract: This dissertation mainly presents a novel Bayesian method for sparse func-

tional data. Specifically, two models are proposed, one of which models all individual

functions with a common smoothness and the other groups individual functions with

heterogeneous smoothness. The proposed method utilizes the mixed effects model

representation of the penalized splines for both the mean function and the individ-

ual functions. Given noninformative or weakly informative priors, Bayesian inference

on the proposed models are developed and computations are done by using Markov

Chain Monte Carlo (MCMC) methods. It has been shown that the proposed Bayesian

methods perform well on irregularly spaced sparse functional data, where a traditional

mixed effects model may often fail. This dissertation also includes a small section on

orthogonal series functional estimation for density functions.
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CHAPTER I

Introduction

1.1 Introduction

Longitudinal data arise frequently in medical, social and economic applications.

They usually involve a collection of measurements at different time points for a num-

ber of subjects. The measurements are typically considered as dependent observations

over time for the same subject. Often, the objective of a longitudinal analysis is to

describe the relationship between the response variable and the time or other covari-

ates. The time course is often too complicated to model parametrically and therefore,

nonparametric methods for longitudinal data, also called the sparse functional data

analysis, has received an increasing amount of attention recently.

In general, functional data analysis (FDA) (Ramsay & Silverman 2005) refers to

the statistical analysis for random functions. That is, random curves are sample units

in the analysis. Since data are only observed at a finite number of time points, the

traditional FDA usually starts with data smoothing to estimate individual curves for

each subject. The traditional FDA focuses on data which are repeatedly and regularly

observed across all individuals (Rice & Silverman 1991, Besse & Ramsay 1986), which

are called the dense functional data. However, for longitudinal data that arise in

medical studies, each individual could only be observed at a small number of time

points and furthermore, these time points could be irregularly spaced. The traditional
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FDA is generally not applicable in such cases. Recently, there is an increasing number

of studies aiming to develop functional data analysis methods for longitudinal data

(Berk 2012, James et al. 2005, James 2010, Yao et al. 2005, Zhang & Wang 2016,

Thompson & Rosen 2008, Wu & Zhang 2006).

There are two commonly used classes of methods for smoothing sparse functional

data. The first class of methods assume that individual curves in a given population

share the same covariance function. Then the problem of smoothing n individual

univariate functions can be equivalent to the problem of smoothing a single bivariate

function. Individual curves can then be predicted by this covariance function. Func-

tional principle component analysis is among the first-line approaches of this class

of methods (Besse & Ramsay 1986, Yao et al. 2005, Peng & Paul 2009), while other

example of this class include Fan & Gijbels (1996), Xiao et al. (2017), Cai & Yuan

(2010). The second class of methods, called the functional mixed effects models,

assume mixed effects models which allow for strength borrowing among individuals.

Brumback & Rice (1998) first proposed a penalized smoothing spline mixed effects

model. Later developments include mixed effects smoothing splines (Berk 2012),

semiparametric mixed effects models (Durban et al. 2005), and various methods em-

ploying B-splines (James et al. 2000, Thompson & Rosen 2008, Wu & Zhang 2006).

Most of the above approaches require multiple steps of estimation (e.g. func-

tional principle analysis) and an additional step for model selection which selects the

smoothness. The inference, following the parameter estimation, is conditioning on the

selected optimal model, with additional assumptions and procedures. The separated

steps and additional assumptions may lead to compromised functional estimates and

inference. Furthermore, generalizing these methods to more complicated models, such

as the additive model, may become problematic.

In this dissertation, two Bayesian functional mixed-effects models are proposed to

remedy the above shortcomings. The two proposed models in Chapter 3 and 4 model
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both the mean function and individual functions by the semiparametric mixed model

representation introduced in Ruppert et al. (2003). We consider a Bayesian framework

where noninformative or weakly informative conjugate priors are used. For the first

purposed model (Section 3.2), all individual functions are assumed to have a common

smoothness, but different from the smoothness of the mean function. The model can

be considered as the Bayesian counterpart of Durban et al. (2005). For the second

purposed model (Section 4.2), we generalize the first model by allowing grouped

smoothnesses for individual functions, that is, those individual functions may have

different smoothnesses. Both models are fitted through Markov chain Monte Carlo

(MCMC) methods described in Section 3.3 and 4.3. Section 3.4 and 4.4 present the

results of simulation studies, in which we investigate the performance of the two

proposed estimators. Section 3.5 and 4.5 illustrate our models on a publicly available

CD4 dataset.

Finally, on an independent track, we propose an orthogonal series density esti-

mator for complex surveys, where samples are neither independent nor identically

distributed. In Section 5.3, statistical properties of the proposed estimator is proved.

In Section 5.4, two data driven estimators are proposed based on the proposed ora-

cle estimator. Section 5.5 reports the setting and results of a simulation study that

compares the performance of our proposed estimators with the standard orthogonal

series density estimator. A real survey data example is provided for an illustration in

Section 5.6.
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CHAPTER II

Literature Review

2.1 Functional Data Analysis

2.1.1 Functional Data

Functional data analysis (Ramsay & Silverman 2005) refers to the statistical anal-

ysis of random functions. A random function consists of a series of univariate or

multivariate measurements over a continuum. Commonly used continuums include

the time, the spatial location and other metrics. Hereafter, it will be assumed that

the continuum is time, denoted by t. Functional data often refer to noisy realizations

(observations) at discrete time points of a underlying function.

Longitudinal data also measure individual variables repeatedly over time. Tradi-

tionally, the distinction between the longitudinal data and the functional data rests

upon the number of observed time points. Longitudinal data are typically observed

at a much sparser set of time points than functional data, with substantial amount

of missing data. Thus, longitudinal data also refer to sparse functional data.

Formally, let N be the total number of subjects and mi be the number of repeat

measurements for the ith subject curve. Also assume that the m′is are all of the same

order mi = O(Nη) for some η ≥ 0. Data with η = 0, i.e., mi = O(1), are called sparse

functional data; data satisfying η ≥ η0, where η0 is a transition point to be specified,

are called dense functional data; and data with η ∈ (0, η0) are called moderately dense
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functional data.

Sparse and dense functional data are analyzed with different methodologies. For

dense functional data, one can smooth each curve separately, and then further esti-

mation and inference can be obtained based on the pre-smoothed curves. For sparse

functional data, the pre-smoothing approach is not applicable, and often either meth-

ods based on the covariance estimation or methods utilizing mixed-effects models (Cai

& Yuan 2010, Xiao et al. 2017, Berk 2012, Yao et al. 2005) can be used to pool data

together to borrow strength from individual curves.

2.1.2 Data Smoothing

In functional data analysis, we assume that data are noisy realizations of smooth

underlying functions. The analysis of functional data usually starts with smoothing,

which can be understood as the process of estimating the true function by using

samples at discrete points.

Generally, functional data analyses are nonparametric. Some commonly used

smoothing methods include local weighting (Benhenni & Degras 2014), basis function

methods, and nonparametric Bayesian methods (Kaufman & Sain 2010). In this

dissertation, we focus on basis function methods.

Formally, consider a single observation yi taken at time point ti that is modeled

by

yi = f(ti) + εi (2.1)

where f(t) is the function of interest and εi is an error term. Under the smooth-

ness assumption, the infinitely dimensional function f(t) can be parameterized by

projecting it onto some known basis functions {Bj(t)}. Commonly used bases in-

clude polynomials, splines, wavelets, and Fourier bases. Ramsay & Silverman (2005)
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suggest using splines and wavelets for aperiodic functional data, and the similarities

between these two bases under a semiparametric regression are discussed in Wand &

Ormerod (2011). In this dissertation, we focus on penalized splines, while examples

of functional data analysis using wavelets are Zhao et al. (2012), Antoniadis et al.

(2013), and Giacofci et al. (2013).

Splines

Splines are piecewise polynomials formed by placing knots that divide the time

course into a number of disjoint regions within which a separate polynomial is fit,

while constraints on the spline ensure that there is a continuity between two adjacent

regions (de Boor 1978). The number of the knots controls the smoothness of the

underlying curve and local curve behavior is accommodated through selection of knot

location.

Two most commonly used splines are the truncated power basis and basis splines

(B-splines). For these two types of splines, a total of K knots have been placed at

time locations τ1, ..., τK . In terms of knot location, the heuristic method locates the

knots at either equally spaced or equally spaced quantiles time points. The truncated

power basis is given by

φ(ti) = [1, ti, ..., t
p
i , (ti − τ1)

p
+, ..., (ti − τK)p+]T

where [x]+ = max(0, x) and p is the degree of the polynomial used in each region.

The basis matrix Z can be formed by evaluating the set of basis functions at each

ti. The main drawback of the truncated power basis is that the basis matrix Z can

be ill-conditioned, i.e. the largest singular value divides the smallest singular value of

the basis matrix is too large. For this reason, the truncated power basis tends to only

occur in the context of penalized splines (Ruppert 2002, Ruppert et al. 2003), which
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allow a finer degree of control over the smoothness of the fit. Details for penalized

splines will be discussed in a later section.

B-Splines are originally defined in terms of divided differences of truncated power

basis. In recent literature, B-splines are constructed by using the Cox-de Boor algo-

rithm (de Boor 1972) which defines the ith basis function of degree p as

Bi,0(t) =


1, if τi ≤ t < τt+1

0, otherwise

, Bi,p(t) =
t− τi
τi+p − τi

Bi,p−1(t) +
τi+p+1 − t
τi+p+1 − τi+1

Bi+1,p−1(t).

In this way, B-splines of higher orders are recursively defined in terms of those of lower

orders. Compared with equivalent order truncated power basis, the basis matrix for

B-splines is sparser and well-conditioned. Because of these attractive computational

advantages, B-splines are more popular than other splines representations.

Smoothing Splines

With the truncated power basis or B-splines, the smoothness of the fit is controlled

by the number of knots K. Thus, fitting a spline model requires a separate model

selection for the knot sequence (Dung & Tjahjowidodo 2017).

An alternative approach is the smoothing spline (Gu 2013). The idea of smoothing

spline comes from estimating the unknown function f in (2.1) by minimizing the

penalized least square score

1

n

n∑
i=1

(yi − f(ti))
2 + λJ (f), (2.2)

where the first term discourages the lack of fit of f to the data (bias), the second term

penalizes the roughness of f (variance), and the λ is called the smoothing parameter,

which controls the trade-off between the bias and variance. In other words, the least

7



square part in (2.2) treats the data as independent samples, and any dependence

between these data, presented through the functional relationship, is captured by

the penalty J (f). One popular penalization has the form J(f) =
∫
f̈ 2(t)dt, where

f̈ = d2f/dt2 represents the second order derivative of the underlying function f . This

is also called the cubic smoothing spline, because under this smoothness constraint,

the (2.2) has an explicit, finite-dimensional, unique minimizer which is a natural cubic

spline with knots at the unique values of ti, i = 1, ...,m (Hastie et al. 2009, Green &

Silverman 1994).

Thus, since the solution is a natural cubic spline, we can write it as

f(t) =
m∑
j=1

ujZj(t),

where Zj(t) are a m-dimensional set of basis functions for representing this family of

natural cubic splines. Then (2.2) reduces to

PSS = (y −Zu)T (y −Zu) + λuTDu, (2.3)

where {Z}ij = Zj(ti) and {D}jk =
∫
Z ′′j (t)Z ′′k (t)dt. Setting (2.3) equal to 0, taking

derivative and solving, we see the solution of the above penalized least square is

û = (ZTZ + λD)−1Zy, (2.4)

and the fitted spline is given by

f̂(t) =
m∑
j=1

ûjZj(t).

The model selection is now reduced from determining both the number and loca-

tion of the knots to optimizing the smoothing parameter λ. When λ = 0, the model
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can be any function that interpolates the data; when λ tends to infinity, (2.3) tends

to a linear least square fit.

Penalized Splines

One drawback of smoothing splines is that placing a knot at each time point can

incur a significant computational cost when the number of time points is large, due

to the size of the resulting incidence matrix. For this reason, this dissertation focuses

on the penalized splines, which combines the knot selection of regression splines with

the penalty approach of smoothing splines.

Penalized splines often appear in the literatures of semiparametric regression, e.g.

Ruppert et al. (2003). The semiparametric model for a regression function f can be

written as

f(t) = β0 + β1t+
K∑
k=1

ukZk(t) for some K < m, (2.5)

where Zk(t) are spline basis functions. In this way, a moderate number of knots,

which is less than the number of observation time points, can be used to minimize

the computational cost while retaining the penalization to parameter estimation so

that a fine degree of control over the resulting smoothness is still possible. Thus,

the penalized least square score (2.3) for smoothing splines and its solution (2.4) can

be also applied onto penalized splines. Wand (2003) suggests the number of knots

K = min(m/4, 35), where m is number of possible time points.

The most commonly used penalty matrix D is defined as the (K + 2)× (K + 2)

9



matrix

D =



0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · 1


=

02×2 02×K

0K×2 IK×K ,



and the corresponding estimator (2.4) becomes a generalized ridge regression with

the parametric parameters β0 and β1 remain unpenalized (Wand 2003). Wand &

Ormerod (2009) suggest to use the B-spline basis and the above penalization setup,

called O’Sullivan penalized splines. The Algorithm 1 in Wand & Ormerod (2011)

describes the construction of default Z matrices for penalized splines, and the R

Software function “ZOSull.r” will be used to construct O’Sullivan spline basis matrices

for this dissertation, which can be found in the web-supplement of Wand & Ormerod

(2009).

2.1.3 Model Selection

Whether smoothing or penalized splines are used, it is necessary to determine

some optimal level of smoothing by adjusting the smoothing parameter, which in-

volves trading off between goodness-of-fit and model complexity. Popular model se-

lection methods for splines include cross-validation, generalized cross-validation, and

information criteria (e.g. AIC, BIC, AICc).

In this dissertation, however, we will focus on the mixed model representation

of penalized splines introduced by Ruppert et al. (2003). Consider the spline model

10



(2.5), let

β =

β0
β1

 and u =


u1
...

uK


be the coefficients of the polynomial functions and basis functions, respectively. Cor-

responding to these vectors, define

X =


1 t1
...

...

1 tm

 and Z =


Z1(t1) · · · ZK(t1)

...
. . .

...

Z1(tm) · · · ZK(tm)


Treating u as a set of random coefficient with Cov(u) = σ2

uI, and assuming the

measurement errors εijs are independent and identically distributed (i.i.d) as N(0, σ2
ε ),

Ruppert et al. (2003) shows that the estimator (2.4) is equivalent to the best linear

unbiased predictor (BLUP) of the above model, with λ = σ2
ε/σ

2
u.

2.2 Bayesian Inference

Let y = (y1, · · · , yn)T be the observed data and θ = (θ1, θ2, · · · , θD) be unknown

parameters of interest. Bayesian inference focuses on the posterior distribution

p(θ|y) =
p(θ,y)∫
p(θ,y)dθ

=
p(y|θ)p(θ)

p(y)
, (2.6)

where p(y|θ) is the likelihood function and p(θ) is the prior distribution. However, the

denominator in Equation (2.6) is intractable for most models. Instead, we need resort

to approximation algorithms like Markov Chain Monte Carlo (MCMC) or mean field

variational Bayes (MFVB). The above described representation of the penalized spline

allows smoothing by a mixed effects model, and also leads to a Bayesian estimator,
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which will be discussed in later chapters.

2.2.1 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) method is among the central compo-

nents of Bayesian computation (Geyer 1992, Robert & Casella 2004). The funda-

mental idea is to generate a collection of samples from the posterior distribution by

constructing a Markov chain and use them to estimate expectations.

A Markov chain, denoted by {θ(t)}, t = 0, 1, · · · , is a stochastic process satisfying

P (θ(t+1) ∈ A|θ(0), · · · ,θ(t)) = P (θ(t+1) ∈ A|θ(t)),

that is, the conditional distribution of θ(t+1) only depends on θ(t). If a Markov chain is

irreducible, aperiodic, and positive recurrent, then the chain is ergodic, and the draws

from the steady-state of the Markov chain can be used as simulated samples from the

posterior distribution P (θ|y). Specifically, given a set of samples {θ(1), · · · ,θ(M)} ∼

p(θ|y) drawn from a ergodic Markov chain, we can estimate the expectation of any

function f(θ) with respect to the posterior by

Ep(θ|y)[f(θ)] ≈ 1

M

M∑
m=1

f(θ(m))

The Ergodic property of Markov chain ensures the above Monte Carlo estimator

converges to the true value almost surely.

The two most popular methods of constructing a Markov chain to sample from the

posterior distribution are the Metropolis-Hastings (MH) Algorithm (Hastings 1970),

and the Gibbs Sampling (Geman & Geman 1984, Gelfand & Smith 1990). The MH

algorithm simulates sample from the posterior distribution by using of the full joint

density function and a (independent) proposal distribution. The main steps of MH
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algorithm have three steps: (1) Generate a candidate sample from the proposal distri-

bution; (2) Compute the acceptance probability based upon the proposal distribution

and the full joint distribution; (3) Accept or reject the candidate sample based on the

acceptance probability. Given a proposal distribution q(θ|θ(i)) the procedure of the

MH Algorithm states above can be summarized by the pseudo-code in Algorithm 1.

Algorithm 1 Metropolis-Hastings Algorithm

Initialize θ(0) with p(θ(0)|y) > 0
for iteration i = 1, 2, · · · ,M do
θ′ ∼ q(θ|θi)
R(θ′,θ(i)) = p(θ′|y)q(θ(i)|θ′)

p(θ(i)|y)q(θ′|θ(i))
u ∼ Uniform(0, 1)
if u < min(1, R(θ′,θ(i))) then
θ(i+1) = θ′

else
θ(i+1) = θ(i)

end if
end for

Often, if θ has many dimensions, it is sometimes more practical to implement the

Metropolis-Hastings algorithm one variable at a time (Tierney 1994).

The choice of the proposal distribution, q(·|·), is very important. It should be

chosen so that candidate values explore the relevant subsets of the support of the

stationary distribution in a reasonable number of iterations, and candidate values are

not accepted nor rejected too frequently. If the proposal distribution is too diffused

relative to the target distribution, then too many candidate values will be rejected

so that the chain will often remain the same for many consecutive iterations. On

the other hand, if the proposal distribution is too focused relative to the target dis-

tribution, then too many candidate values will be accepted so that the chain slowly

explores the space and is highly autocorrelated. The goal is to find a suitable proposal

distribution so that the parameter space is fully explored with the correct probabil-

ity measure within a reasonable number of iterations. The ideal acceptance rate is
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often set to be 0.44 when the dimension of θ is larger than one and 0.234 when the

dimension of θ is one (Gelman et al. 2013).

Gibbs sampling, on the other hand, simplifies a higher dimensional sampling to a

much lower dimensional sampling. This procedure is attractive because many com-

positional models are designed such that the conditional distributions are easy to

sample from. The Gibbs sampler is given in Algorithm 2

Algorithm 2 Gibbs Sampler

Initialize θ(0) ∼ π(θ)
for iteration i = 1, 2, · · · ,M do
θ
(i)
1 ∼ p(θ1|θ(i−1)2 , · · · , θ(i−1)D )

...
θ
(i)
k ∼ p(θk|θ(i)1 , · · · , θ

(i)
k−1, θ

(i−1)
k+1 , · · · , θ

(i−1)
D )

...
θ
(i)
D ∼ p(θD|θ(i)1 , · · · , θ

(i)
D−1)

end for

In some situations where the full conditional distribution is not easy to sample

from, a Metropolis-Hastings update can be used. Let q(θ′|θ) be a proposal density,

where θ′ is the proposal and θ = (θ1, · · · , θk−1, θk, θk+1, · · · , θD) is the current value

before the update of θk. Then the Hasting ratio can be defined as

Rk(θ
′, θk) =

p(θ′|θ1, · · · , θk−1, θk+1, · · · , θD)q(θk|θ1, · · · , θk−1, θ′, θk+1, · · · , θD)

p(θk|θ1, · · · , θk−1, θk+1, · · · , θD)q(θ′|θ1, · · · , θk−1, θk, θk+1, · · · , θD)
.

MCMC algorithms based on such a combination of Gibbs sampler and Metropolis-

Hastings sampler are called Metropolis within Gibbs or hybrid Metropolis-Hastings

algorithm (Chib & Greenberg 1995). More details can be found in Robert & Casella

(2004) and Givens & Hoeting (2005).
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CHAPTER III

Bayesian Functional Mixed-effects Model

3.1 Introduction

Longitudinal data arise frequently in medical, social and economic applications.

They usually involve a collection of measurements at different time points for a num-

ber of subjects. The measurements are typically considered as dependent observations

over time for the same subject. Often, the objective of a longitudinal analysis is to

describe the relationship between the response variable and time or other covariates.

The time course is often too complicated to model parametrically and therefore,

nonparametric methods for longitudinal data, also called the sparse functional data

analysis, has received an increasing amount of attention recently.

In general, functional data analysis (FDA) (Ramsay & Silverman 2005) refers to

the statistical analysis for random functions. That is, random curves are sample units

in the analysis. Since data are only observed at a finite number of time points, the

traditional FDA usually starts with data smoothing to estimate individual curves

for each subject. The traditional FDA focuses on data which are repeatedly and

regularly observed across all individuals (Rice & Silverman 1991, Besse & Ramsay

1986), which are called the dense functional data. However, for longitudinal data that

arise in medical studies, each individual could only be observed at a small number

of time points and furthermore, these time points could be irregularly spaced. The
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traditional FDA is generally not applicable in such cases. We primarily focus on

developing a Bayesian semiparametric method for smoothing sparse functional data.

The proposed method is still useful for smoothing functional data that are not sparse.

For dense functional data, one may start with smoothing each individual curve

separately, based on which the estimation and inference about the population are

further developed. This approach is also said to be a “direct method”. However, using

direct method on sparse functional data usually does not perform well in practice.

On the one hand, an individual that is only observed at a small number of time

points does not provide enough information to get a reliable functional estimate; on

the other hand, irregularly spaced time points may be clustered and only contain

functional information on local areas. Moreover, when making inference about the

population, assigning equal weights to individual curves with different number of

time points leads to inefficient subsequent analysis. Therefore, in sparse functional

data analysis, the superpopulation of individual curves needs to be modeled, so that

individuals can borrow information from each other for the estimation and inference.

There are two commonly used classes of methods for smoothing sparse functional

data. The first class of methods assume that individual curves in a given population

share the same covariance function. Then the problem of smoothing n individual

univariate functions can be equivalent to the problem of smoothing a single bivariate

function. Individual curves can then be predicted by this covariance function condi-

tioning on the observations. Functional principle component analysis is among the

first-line approaches of this class of methods (Besse & Ramsay 1986, Yao et al. 2005,

Peng & Paul 2009), while other example of this class include but not limit to Fan &

Gijbels (1996), Xiao et al. (2017), Cai & Yuan (2010). The second class of methods,

called the functional mixed effects models, assume mixed effects models which allow

for strength borrowing among individuals. Brumback & Rice (1998) first proposed a

penalized smoothing spline mixed effects model. Later developments include mixed
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effects smoothing splines (Berk 2012), semiparametric mixed effects models (Durban

et al. 2005), and various methods employing B-splines (James et al. 2000, Thompson

& Rosen 2008, Wu & Zhang 2006).

On the one hand, existing functional mixed effects models, usually fitted by the

maximum likelihood (ML) or restricted maximum likelihood (REML) estimator, may

fail to estimate the smoothing parameter efficiently when observations are overly

sparse. This is because we need to simultaneously determine the smoothness of mean

curve and individual curves, and the parameters that control these smoothness are

usually highly correlated or coupled. On the other hand, most of the above ap-

proaches require multiple steps of estimation (e.g. functional principle analysis) and

an additional step for model selection which selects the smoothness. The inference,

following the parameter estimation, is conditioning on the selected optimal model,

with additional assumptions and procedures. The separated steps and additional

assumptions may lead to compromised functional estimates and inference. Further-

more, generalizing these methods to more complicated models, such as the additive

model, may become problematic. We proposed a Bayesian nonparametric approach

which can remedy the above mentioned shortcomings. We model both the mean curve

and individual effects by the mixed effects model representation of penalized splines

(Ruppert et al. 2003), with the assumption that all the individual curves share the

same smoothness. This method can be considered as the Bayesian counterpart of

Durban et al. (2005). In this chapter, we show that our proposed Bayesian method

can estimate the smoothness parameter more efficiently via simulation studies.
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3.2 The Model and Prior Specification

3.2.1 The Model

Suppose we have n individual curves. The response yi(t) for the ith individual, as

a function of t, is assumed to be independent of other individual functions, and can

be written as

yi(t) = µ(t) + bi(t) + εi(t), 0 ≤ t ≤ T, i = 1, 2, . . . , n, (3.1)

where µ(·) is the mean function; bi(·) is an individual effect function for subject i;

and the error function εi(·) is assumed a zero mean white-noise process with constant

variance σ2
ε and independent with µ(t) and bi(t).

Under O’Sullivan’s setting of penalized splines (Wand & Ormerod 2009), a func-

tion can be closely approximated by a linear function (parametric part) plus a linear

combination of basis functions (nonparametric part):

f(x) = β0 + β1x+
∑

ukZk(x)

where {β0, β1, u1, · · · , uK} are coefficients, {Z1(·), · · · , ZK(·)} are givenK-dimensional

B-splines basis functions spanning over the time range [0, T ].

Thus, model (3.1) can be expressed as

yi(t) = β0 + β1t+
K∑
k=1

ukZk(t) + ai0 + ai1t+
K∑
k=1

bikZk(t) + εi(t). (3.2)

where coefficients β0, β1 and uk correspond to the penalized spline for the mean

function, and coefficients αi0, αi1 and vik correspond to the penalized splines for the

subject-specific functions.
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Suppose the ith individual is observed at time points ti = [ti1, · · · , timi ]T , which

may vary considerably from one to another, in terms of both the number and distri-

bution of obervations. Using equation (3.2), the observed outcome yij can be modeled

as

yij = β0 + β1tij +
K∑
k=1

ukZk(tij) + ai0 + ai1tij +
K∑
k=1

bikZk(tij) + εij. (3.3)

Let

Xi =


1 ti1
...

...

1 timi

 and Zi =


Z1(ti1) · · · ZK(ti1)

...
. . .

...

Z1(timi) · · · ZK(timi)

 ,

and then (3.3) can be expressed in the following matrix form

yi = Xiβ +Ziu+Xiai +Zibi + εi. (3.4)

In practice, however, the number and placement of the knots, which determine

the B-spline basis, are rarely known. One way to handle this in a semiparametric

model is to choose a large number of knots that overfit the model, and shrink the

corresponding coefficients by penalization. Ruppert (2002) suggests that the number

of knots K = min(N/4, 35) and the knots are placed at equally spaced quantiles,

where N is number of all observed time points among all individuals. Following

Ruppert et al. (2003), based on the mixed effects model representation of penalized

splines, the coefficients in (3.4) can be modeled as

u ∼ N(0, σ2
uI) and bi ∼ N(0, σ2

vI), (3.5)

where N(µ,Σ) denotes a multivariate normal distribution with the mean vector µ and
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the covariance matrix Σ. 0 is a vector of zeros and I is the identity matrix. Ruppert

et al. (2003) shows that the variance parameters σ2
u and σ2

v control the shrinkage and

hence the smoothness of functions. Here, we assume a common variance σ2
v for all

individual effects so that all individual functions share the same smoothness.

To let individual functions borrow strength from each other, we further assume

that

ai ∼ N(0, Σ), (3.6)

where ai = (ai0, ai1) is the linear parametric part for each subject specific effect, and

Σ is a 2 by 2 positive definite matrix. For convenience, under models (3.5) and (3.6),

we rewrite the mixed effects model (3.4) in a hierarchical form:

yi = Xiαi +Zivi + εi (3.7)

where

αi ∼ N(β, Σ), vi ∼ N(u, σ2
vI), i = 1, · · · , n and u ∼ N(0, σ2

uI). (3.8)

Under this specification, parameter estimation can be developed using either Bayesian

or non-Bayesian techniques. However, due to the fact that the two smoothing param-

eters σ2
u and σ2

v are highly coupled, existing frequentist estimators tend to perform

poorly when functional data are very sparse.
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3.2.2 Prior Specification

Under models (3.7) and (3.8), we need to specify prior distributions for parameters

{β,Σ, σε, σu, σv}. Let the prior distribution for β be a conjugate normal

β ∼ N(0, cI), (3.9)

where the multiplier c is a prespecified constant. In our case, we choose c = 105,

presenting a weakly informative prior for β.

It is usually non-trivial to choose noninformative priors for the variance parameters

{σε, σu, σv} in a hierarchical model. Following Gelman et al. (2006), we specify the

following priors:

σε ∼ Half-Cauchy(Aε), σu ∼ Half-Cauchy(Au), σv ∼ Half-Cauchy(Av), (3.10)

where the scale parameters {Aε, Au, Av} are prespecified as positive constants (in our

case we choose 105 for each). The following result from (Wand et al. 2011) is useful

for sampling from the Half-Cauchy distribution

σ ∼ Half-Cauchy(A) if and only if

σ2|a ∼ IG

(
1

2
,

1

a

)
and a ∼ IG

(
1

2
,

1

A2

)
, (3.11)

where IG(A,B) denotes the Inverse Gamma distribution, whose density function is

given by

p(x) = Γ(A)−1BAx−A−1 exp(−B/x)

where the shape parameter A > 0 and rate parameter B > 0.
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Similar to the above variance parameters, we specify the prior distribution for

the covariance matrix Σ by the hierarchical Inverse Wishart distribution proposed by

Huang et al. (2013):

Σ|a1, a2 ∼ IW(ν + 1, 2ν diag

(
1

a1
,

1

a2

)
)

and aj ∼ IG

(
1

2
,

1

A2
j

)
, j = 1 or 2, (3.12)

where IW(A,B) denotes the Inverse Wishart distribution with density function given

by

p(Σ) = C−1p,A|B|
A/2|Σ|−(A+p+1)/2 exp

{
1

2
tr(BΣ−1)

}

where p is the dimension of the random matrix Σ, A > 0, B is positive definite, and

C−1p,A = 2Ap/2πp(p−1)/4
∏p

i=1 Γ
(
A+1−i

2

)
. Using the Property 4 in Huang et al. (2013),

we choose the hyperparameter ν = 2, which implies a uniformly distributed prior for

the correlation parameter in Σ.

Combining models (3.5-3.8) and priors (3.9-3.12), we obtain the following hierar-

chical Bayesian semiparametric model for the sparse functional data:

yi|αi,vi, σ2
ε ∼ N(Xiαi +Zivi, σ

2
εImi), 1 ≤ i ≤ n

αi|β,Σ ∼ N(β, Σ), vi|u, σ2
v ∼ N(u, σ2

vIK), σ2
ε |aε ∼ IG

(
1

2
,

1

aε

)
β ∼ N(0, cIK), Σ|a1, a2 ∼ IW(ν + 1, 2ν diag

(
1

a1
,

1

a2

)
) (3.13)

u|σu ∼ N(0, σ2
uIK), σ2

v |av ∼ IG

(
1

2
,

1

av

)
, σ2

u|au ∼ IG

(
1

2
,

1

au

)
aε ∼ IG

(
1

2
,

1

A2
ε

)
, av ∼ IG

(
1

2
,

1

A2
v

)
au ∼ IG

(
1

2
,

1

A2
u

)
, aj ∼ IG

(
1

2
,

1

A2
j

)
, j = 1, 2
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where c = 105, Aε = Au = Av = A1 = A2 = 105, and ν = 2.

3.3 Bayesian Inference

The inference for the hierarchical Bayesian model specified by (3.13) is done by

using Gibbs sampling. We outline the sampling scheme as follows.

We are interested in fitted functionals as posterior means

µ̂ = E(Xβ +Zu|y) = XE(β|y) +ZE(u|y)

and

f̂i = E(Xαi +Zvi|y) = XE(αi|y) +ZE(vi|y).

The posterior distributions of the above needed parameters {β,u,αi,vi}, as well

as scale parameters {σε, σu, σv,Σ}, are not in closed form expressions. With the

model specified in the Section 2.2, let α = [αT1 , · · · ,αTn ]T , v = [vT1 , · · · ,vTn ]T , and

Ci =

[
Xi Zi

]
, we have the joint posterior distribution

p(β,u,α,v, σε, σu, σv,Σ, aε, au, av, a1, a2|y)

∝ σ−Nε exp

− 1

2σ2
ε

n∑
i=1

yi −Ci

αi
vi



T yi −Ci

αi
vi





|Σ|−n/2σ−nKv exp

−1

2

n∑
i=1


αi
vi

−
β
u



T 

αi
vi

−
β
u





exp

{
− 1

2c
βTβ

}
σ−Ku exp

{
− 1

2σ2
u

uTu

}
a−1/2ε σ−3ε exp

{
− 1

aεσ2
ε

}
a−1/2v σ−3v exp

{
− 1

avσ2
v

}
a−1/2u σ−3u exp

{
− 1

auσ2
u

}
|2ν diag(1/a1, 1/a2)|(ν+1)/2|Σ|(−ν+4)/2 exp

{
−1

2
tr(2ν diag(1/a1, 1/a2)Σ

−1)

}
23



Fortunately, the full conditionals under the current model specifications are shown to

have the following well-known distributions:

αi
vi

 ∣∣∣∣rest ∼ N


σ−2ε CT

i Ci +

Σ−1 0

0 σ−2v I



−1σ−2ε CT

i yi +

Σ−1 0

0 σ−2v I


β
u


 ,

σ−2ε CT
i Ci +

Σ−1 0

0 σ−2v I



−1

β|rest ∼ N

((
nΣ−1 + c−1I

)−1
Σ−1

n∑
i=1

αi,
(
nΣ−1 + c−1I

)−1)

u|rest ∼ N

((
nσ−2v + σ−2u

)−1
σ−2v

n∑
i=1

vi,
(
nσ−2v + σ−2u

)−1
I

)

σ2
ε |rest ∼ IG

(
N + 1

2
,

1

2

n∑
i=1

(yi −Xiαi −Zivi)
T (yi −Xiαi −Zivi) +

1

aε

)

σ2
v |rest ∼ IG

(
nK + 1

2
,

1

2

n∑
i=1

vTi vi +
1

av

)

σ2
u|rest ∼ IG

(
K + 1

2
,

1

2
uTu+

1

au

)

Σ|rest ∼ IW

n+ ν + 1,
n∑
i=1

CiC
T
i + 2ν

1/a1 0

0 1/a2




aε|rest ∼ IG

(
1,

1

σ2
ε

+
1

A2
ε

)
av|rest ∼ IG

(
1,

1

σ2
v

+
1

A2
v

)
au|rest ∼ IG

(
1,

1

σ2
u

+
1

A2
u

)
and aj|rest ∼ IG

(
ν + 2

2
,Σ−1jj +

1

A2
j

)
, j = 1, 2.

Here, “rest” means the set of other parameters in the model (3.13). Since all full

conditional distributions are standard distributions, the sampling is then trivial.
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3.4 Simulation Study

In this section, we evaluate and compare the proposed Bayesian mixed effects

model with Berk et al. (2012)’s smoothing spline mixed effects model via simulation

studies. Consider the following two mean functions

µ1(t) = t+ sin(t)

and

µ2(t) = 10 + 10 sin(0.7t), 0 ≤ t ≤ 10.

These two shapes are chosen to show that our proposed method can fit any shapes

from smooth (µ1(·)) to rough (µ2(·)). We also consider samples sizes n = 20, 50 and

100 for each setting. For each setting, we generate individual functions as follows

fi(tj) = µl(tj)−
c1√

5
cos
( π

10
tj

)
+

c2√
5

sin
( π

10
tj

)
,

where c1 ∼ N(0, 1), c2 ∼ N(0, 4), l = 1, 2, i = 1, · · · , n, and j = 1, · · · ,mi. The

measurement errors εij are generated i.i.d. from the normal distribution with mean

0 and variance 0.001. This model will generate functions from the Gaussian process

with mean function µl(t), and covariance function combined by two eigenfunctions

− 1√
5

cos
(
π
10
t
)

and 1√
5

sin
(
π
10
tj
)

with corresponding eigenvalues c1 and c2. To make the

observations sparse, we choose the number of observations mi for a given individual

is distributed as Poisson(5) + 2, representing a mean number of 7 observations with

a minimum of 2 for each individual. The positions of observation times, conditional

on mi, is uniformly distributed on the support of the function. For this simulation,

we repeatedly draw 100 datasets from the above models.

We compare our method, denoted by BME, with the smoothing spline mixed

effects model (Berk et al. 2012), denoted by SME, which can be implemented using
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the R package sme (Berk 2013). The MCMC is run 10, 000 iterations with a burn-

in period of 5, 000. Figures (3.1) and (3.2) illustrate the posterior distributions of

σ2
ε , σ

2
v , σ

2
u and mean effect function of BME model for both settings with sample size

n = 100.

Figures (3.3) and (3.4) illustrate the models fit for a single data set generated

from the simulation setting one with sample size n = 100. Figure (3.3) shows that

the SME model performs poorly on both individual and the mean functions. On

the other hand, our proposed model, shown in Figure (3.4), preforms much better

in terms of recovering the true function from the noisy data. Similar results can be

found from Figures (3.5) and (3.6), which illustrate the model fit for the simulation

setting two with n = 100.

The two methods are compared on a fine grid by two commonly used criteria in

functional data analysis: the mean integrate squared error (MISE) and the point-

wise mean squared error (MSE). The Monte Carlo version of these two measures are

defined as follows:

MSEMC(f̂) =
1

100

100∑
i=1

[
f̂i(t)− f(t)

]2
and

MISEMC(f̂) =
1

100

100∑
i=1

∫ [
f̂i(t)− f(t)

]2
dt,

where
∫ [

f̂i(t)− f(t)
]2
dt is defined as ISE. The boxplots of the ISE for the mean

function and the average ISE for individual functions are shown in Figures (3.7) and

(3.8). Table (3.1) shows the MISE. The results for the point-wise MSE of the mean

function are shown in Figures (3.9) and (3.10), while those averages for individual

functions are shown in Figures (3.11) and (3.12).
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From all the figures and tables listed above, we can see that our proposed method

performs much better than the smoothing spline mixed effects model. The SME

tends to work properly for regularly spaced sparse functional data, though the author

claims that it should work for other scenarios as well. The reason that the SME fails

to perform satisfactorily could be due to its model selection algorithm. The SME uses

the leave-one-observation-out generalized cross validation (or other criteria, like AIC),

which pools all the observations together to simultaneously optimize the smoothness

for both the mean function and individual functions. For irregularly spaced sparse

functional data, perhaps the leave-one-subject-out cross validation is more useful

(Xiao et al. 2017). Comparing to the leave-one-observation-out cross validation, the

leave-one-subject-out cross validation considers the dependence between observations

for a given subject, and is supposed to be more robust against overfit (Reiss et al.

2010).

3.5 Application

We now illustrate our proposed method on a publicly available CD4 dataset from

the Multicenter AIDs Cohort Study (MACS). The dataset is available in the R package

refund (Crainiceanu et al. 2012). The CD4 cell is a type of white blood cell that sends

signals to the human body to activate the immune response when viruses or bacteria

are detected. Usually, the CD4 count is used as an important biomarker for assessing

the health of HIV patients as HIV viruses attack or destroy the CD4 cells. The

data contain CD4 cell counts for 366 HIV patents between months −18 to 42 since

seroconversion (the time HIV becomes detectable) in a longitudinal study (Kaslow

et al. 1987). Each individual has a number of observations between 1 to 11, and the

total number of observations is 1, 888. Previous statistical analyses for this dataset

can be found in Yao et al. (2005), Peng & Paul (2009), Goldsmith et al. (2011), Xiao

et al. (2017).
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In our analysis, we use the logarithm of the CD4 counts since the counts are

skewed. We also remove all the individuals with only 1 count (17 individuals) since

these individuals do not provide functional information in the model. Our analysis

then includes a total of 349 subjects with 1871 data points on 61 (in months) possible

observation times. With a burn-in period of 5, 000, 15, 000 samples are drawn from the

posterior distribution using the sampling procedure described in Section 2.3. Figure

(3.13) illustrates the fitting for both the mean curve and individual curves. The

overall trend in Figure (3.13a) seems to be decreasing, which is consistent to previous

findings. Finally, we show in Figures (3.13b-3.13d) the estimated trajectory of log

(CD4 count) for three patients.
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setting 1
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(d) MCMC output for f̂ at median of tis of
simulation setting 1

Figure 3.1: MCMC output for fitting Bayesian functional mixed effects model of
simulation setting 1.
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(b) MCMC output for log(σ2u) of simulation
setting 2

0 2000 4000 6000 8000 10000

−
9.

0
−

8.
5

−
8.

0
−

7.
5

−
7.

0
−

6.
5

−
6.

0

(c) MCMC output for log(σ2v) of simulation
setting 2

0 2000 4000 6000 8000 10000

0
2

4
6

8
10

12

(d) MCMC output for f̂ at median of tis of
simulation setting 2

Figure 3.2: MCMC output for fitting Bayesian functional mixed effects model of
simulation setting 2.
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Figure 3.3: Smoothing spline mixed effects model for 100 sparse functional data
generated from simulation setting 1.
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Figure 3.4: Bayesian functional mixed effects model for 100 sparse functional data
generated from simulation setting 1.
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Figure 3.5: Smoothing spline mixed effects model for 100 sparse functional data
generated from simulation setting 2.
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Figure 3.6: Bayesian functional mixed effects model for 100 sparse functional data
generated from simulation setting 2.
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Figure 3.7: Boxplots for simulation setting 1 for n = 20, 50, 100. The left panel for
each figure represents the ISE for the mean effect function; right panel for each figure
represents the average ISE for the individual effects functions.
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Figure 3.8: Boxplots for simulation setting 2 for n = 20, 50, 100. The left panel for
each figure represents the ISE for the mean effect function; right panel for each figure
represents the average ISE for the individual effects functions.
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Figure 3.9: Pointwise empirical mean square error of the mean effect curves for sim-
ulation setting 1 for n = 20, 50, 100.
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Figure 3.10: Pointwise empirical mean square error of the mean effect curves for
simulation setting 2 for n = 20, 50, 100.
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Figure 3.11: Pointwise empirical mean square error of the average individual effect
curves for simulation setting 1 for n = 20, 50, 100.

37



0 2 4 6 8 10

0
10

0
20

0
30

0
40

0

BME
SME

(a) n = 20

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0

BME
SME

(b) n = 50

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0

BME
SME

(c) n = 100

Figure 3.12: Pointwise empirical mean square error of the average individual effect
curves for simulation setting 2 for n = 20, 50, 100.
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Figure 3.13: Observed and estimated log (CD4 count) trajectories of 349 HIV-infected
patients.
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Table 3.1: Monte Carlo approximation of MISE for two simulation settings. The
replication size is 100. Two estimators, Bayesian mixed effects model (BME) and
smoothing spline mixed effects model (SME), are compared by their mean effect
function and average individual effect functions.

Mean effect function
Simulation 1 Simulation 2

n BME SME BME SME
20 1.4997 6.0779 2.7629 355.52
50 0.3414 4.5999 1.6401 356.89
100 0.1224 4.3727 1.3343 357.91

Average individual effect functions
Simulation 1 Simulation 2

n BME SME BME SME
20 54.6357 315.360 7.8868 1538.3
50 7.8868 303.826 4.6889 1539.1
100 1.5427 280.026 4.389 1538.2
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CHAPTER IV

Bayesian Functional Mixed-effects Model with Grouped Smoothness

4.1 Introduction

The proposed Bayesian method in the previous chapter unifies the model selec-

tion and parameter estimation into a single framework, which overcomes the before

mentioned disadvantages of existing nonparametric or semiparametric approaches for

the sparse functional data. The simulation results have shown that our proposed

method significantly outperforms the smoothing spline mixed effects model by Berk

et al. (2012).

Our previously proposed model, among all other functional mixed effects models

(James et al. 2000, Thompson & Rosen 2008, Wu & Zhang 2006), assumes a common

underlying smoothness for all individual trajectories, which in general, may be a quite

limited assumption. However, when functional data are sparse, it is not applicable

to assume different smoothing parameters for individual curves separately, because

for many individuals, only a small number of observations are available. Whether

to assume a common smoothing parameter or different smoothing parameters is es-

sentially a bias-and-variance trade-off. When the sample size (number of subjects)

is small, pooling all observations together can almost always improve the estimation.

However, as the sample size continues to increase to a relatively large number, the

estimation performance will not necessarily be improved. This is because when the
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large number of functions are generated from some underlying Gaussian process, esti-

mation of the assumed common smoothness can be affected substantially by outliers.

The gain of a reduced variance due to a large sample size may be even smaller than

the loss caused by an increased bias due to conditioning on a too general population.

A potential strategy is to consider a model that can further stratify the underlying

population.

In this chapter, we propose a new Bayesian functional mixed effects model which

assumes two groups of functions with different smoothing parameters. We employ

latent indicators to determine whether a given function belongs to a more jagged

function group. We fit the proposed model through Markov Chain Monte Carlo

(MCMC) methods, specifically the Metropolis within Gibbs type algorithm (Chib &

Greenberg 1995). The general setting of our new model is similar to the semipara-

metric mixed effects model described in the previous chapter. Instead of specifying

a single variance component σ2
v across all individual functions, we let this parameter

equal to σ2
v1

+ γiσ
2
v2

for individual i, where γi is a latent indicator.

4.2 The Model and Prior Specification

4.2.1 The Model

Suppose we have n individual curves. As in the previous chapter, the response

yi(t) for the ith individual is written as

yi(t) = µ(t) + bi(t) + εi(t), 0 ≤ t ≤ T, i = 1, . . . , n, (4.1)

where µ(·) is the mean function and bi(·) is the individual effect function for sub-

ject i. Here, we assume εi(·) a white-noise process with a constant variance σ2
ε and

independent of µ(t) and bi(t).
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Under the O’Sullivan penalized splines (Wand & Ormerod 2009), model (4.1) can

be expressed as

yi(t) = β0 + β1t+
K∑
k=1

ukZk(t) + ai0 + ai1t+
K∑
k=1

bikZk(t) + εi(t), (4.2)

where {Z1(·), · · · , ZK(·)} is a given set of K-dimensional B-splines basis functions

spanning over [0, T ], β0, β1 and uk are coefficients for the mean functions, and αi0,

αi1 and vik are coefficients for individual effect functions.

With realizations on time points ti = [ti1, · · · , timi ]T , each yij is modeled as

yij = β0 + β1tij +
K∑
k=1

ukZk(tij) + ai0 + ai1tij +
K∑
k=1

bikZk(tij) + εij. (4.3)

Let

Xi =


1 ti1
...

...

1 timi

 and Zi =


Z1(ti1) · · · ZK(ti1)

...
. . .

...

Z1(timi) · · · ZK(timi)

 ,

then (4.3) can be rewritten in a matrix form as follows

yi = Xiβ +Ziu+Xiai +Zibi + εi. (4.4)

The shrinkage is controlled by assigning the following priors on the coefficients:

u ∼ N(0, σ2
uI) and bi ∼ N(0, σ2

v1
+ γiσ

2
v2
I). (4.5)

where σu, σ
2
v1

and σ2
v2

are variance components, and γi is a binary indicator. Appar-

ently, instead of assuming a common smoothing parameter σ2
v , we consider a mixture

smoothing parameter for bi conditioning on the latent indicator γi. The rationale is
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that we roughly stratify the individual curves into two groups, one of which is more

jagged than the other. When γi = 0, the smoothing parameter equals to σv1 , for

which the curve is said to have a “standard” smoothness. On the other hand, when

γi = 1, the smoothing parameter equals to σv1 + σv2 , for which the curve is said to

have a more jagged smoothness. To borrow information from each individual, we

again model the linear parametric part of the individual effects as

ai ∼ N(0, Σ), (4.6)

where Σ is a 2 by 2 positive definite matrix. We rewrite the mixed effects model (4.4)

in a hierarchical form:

yi = Xiαi +Zivi + εi (4.7)

where

αi ∼ N(β, Σ), vi ∼ N(u, (σ2
v1

+ γiσ
2
v2

)I), i = 1, · · · , n. (4.8)

For this model, we will need to estimate three variance components σ2
u, σ

2
v1

, and σ2
v2

,

along with the latent indicators γis.

4.2.2 Prior Specification

Under the model (4.7), (4.5) and (4.8), we need to specify priors for the param-

eters {β,Σ, σε, σu, σv1 , σv2}, and latent indicators {γi} for i = 1, · · · , n. Most prior

specifications are the same as in the previous chapter. The details are given as follows.

The prior distribution for β is

β ∼ N(0, cI), (4.9)
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where the multiplier c is a prespecified constant. In our setting, we choose c = 105.

For the variance components {σε, σu, σv1 , σv2}, we specify Half-Cauchy priors:

σε ∼ Half-Cauchy(Aε),

σu ∼ Half-Cauchy(Au), (4.10)

σvj ∼ Half-Cauchy(Av), j = 1, 2,

where the scale parameters {Aε, Au, Av} are specified as positive constants (105 in

our setting).

We specify the hierarchical Inverse Wishart distribution (Huang et al. 2013) as a

prior for the covariance matrix Σ:

Σ|a1, a2 ∼ IW(ν + 1, 2ν diag

(
1

a1
,

1

a2

)
)

and aj ∼ IG

(
1

2
,

1

A2
j

)
, j = 1 or 2. (4.11)

We choose the hyperparameter ν = 2, which implies a uniformly distributed prior for

the correlation.

Finally, for the latent indicators {γi}, i = 1, · · · , n, assume independent Bernoulli

distributions with parameter π, that is

γi|π ∼ Bin(1, π), (4.12)

and assume the hyperprior for π a beta distribution

π ∼ Be(Aπ, Bπ). (4.13)

We choose hyperparameters Aπ and Bπ both equal to 1.
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Combining models (4.5-4.8) and priors (4.9-4.13), we obtain the following hierar-

chical Bayesian semiparametric model:

yi|αi,vi, σ2
ε ∼ N(Xiαi +Zivi, σ

2
εImi), 1 ≤ i ≤ n

αi|β,Σ ∼ N(β, Σ), vi|u, σ2
v1
, σ2

v2
, γi ∼ N(u, (σ2

v1
+ γiσ

2
v2

)IK), σ2
ε |aε ∼ IG

(
1

2
,

1

aε

)
β ∼ N(0, cIK), Σ|a1, a2 ∼ IW(ν + 1, 2ν diag

(
1

a1
,

1

a2

)
)

u|σu ∼ N(0, σ2
uIK), γi|π ∼ Bin(1, π), 1 ≤ i ≤ n (4.14)

σ2
v1
|av1 ∼ IG

(
1

2
,

1

av1

)
, σ2

v2
|av2 ∼ IG

(
1

2
,

1

av2

)
, σ2

u|au ∼ IG

(
1

2
,

1

au

)
π ∼ Be(Aπ, Bπ), aε ∼ IG

(
1

2
,

1

A2
ε

)
, au ∼ IG

(
1

2
,

1

A2
v

)
av1 ∼ IG

(
1

2
,

1

A2
v1

)
, av2 ∼ IG

(
1

2
,

1

A2
v2

)
, aj ∼ IG

(
1

2
,

1

A2
j

)
, j = 1, 2

where c = 105, Aε = Au = Av1 = Av2 = A1 = A2 = 105, Aπ = Bπ = 1, and ν = 2.

4.3 Bayesian Inference

The hierarchical Bayesian model specified by (4.14) can be fitted using MCMC

methods to sample from the posterior distribution. However, unlike the Gibbs sampler

we specified in the previous chapter, the full conditional distribution of {σ2
v1
, σ2

v2
}

is not standard one. Here, we will sample the block {σ2
v1
, σ2

v2
} with Metropolis-

Hastings algorithm, leading to a Metropolis within Gibbs type algorithm. Details of

the sampling scheme are given below.

We are interested in fitted functionals as posterior means

µ̂ = E(Xβ +Zu|y) = XE(β|y) +ZE(u|y)

46



and

f̂i = E(Xαi +Zvi|y) = XE(αi|y) +ZE(vi|y).

The posterior distributions of coefficients {β,u,αi,vi}, scale parameters {σε, σu, σv1 , σv2 ,Σ}

and latent indicators {γi}, are not in closed form. Denote Ci =

[
Xi Zi

]
, σ2

vi
=

σ2
v1

+ γiσ
2
v2

, and γ· =
∑n

i=1 γi, the full conditionals of {β,u,αi,vi, σε, σu,Σ, γi},

i = 1, · · · , n, are shown to have the following distributions

αi
vi

 ∣∣∣∣rest ∼ N


σ−2ε CT

i Ci +

Σ−1 0

0 σ−2vi I



−1σ−2ε CT

i yi +

Σ−1 0

0 σ−2vi I


β
u


 ,

σ−2ε CT
i Ci +

Σ−1 0

0 σ−2vi I



−1

β|rest ∼ N

((
nΣ−1 + c−1I

)−1
Σ−1

n∑
i=1

αi,
(
nΣ−1 + c−1I

)−1)

u|rest ∼ N

((
γ·σ
−2
v1

+ (n− γ·)(σ2
v1

+ σ2
v2

)−1 + σ−2u
)−1 n∑

i=1

σ−2vi vi ,(
γ·σ
−2
v1

+ (n− γ·)(σ2
v1

+ σ2
v2

)−1 + σ−2u
)−1

I
)

σ2
ε |rest ∼ IG

(
N + 1

2
,

1

2

n∑
i=1

(yi −Xiαi −Zivi)
T (yi −Xiαi −Zivi) +

1

aε

)

σ2
u|rest ∼ IG

(
K + 1

2
,

1

2
uTu+

1

au

)

Σ|rest ∼ IW

n+ ν + 1,
n∑
i=1

CiC
T
i + 2ν

1/a1 0

0 1/a2




aε|rest ∼ IG

(
1,

1

σ2
ε

+
1

A2
ε

)
av1|rest ∼ IG

(
1,

1

σ2
v1

+
1

A2
v1

)
av2|rest ∼ IG

(
1,

1

σ2
v2

+
1

A2
v2

)
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au|rest ∼ IG

(
1,

1

σ2
u

+
1

A2
u

)
aj|rest ∼ IG

(
ν + 2

2
,Σ−1jj +

1

A2
j

)
, j = 1, 2

γi|rest ∼ Bin

(
1,

exp(ηi)

1 + exp(ηi)

)
and π|rest ∼ Be(γ· + Aπ, n+Bπ − γ·),

where ηi = −k
2
(log(σ2

v1
+ σ2

v2
)− log(σ2

v1
)) + 1

2
( 1
σ2
v1

− 1
σ2
v1

+σ2
v2

)vTi vi + logit(π).

However, direct sampling from the full conditional distribution of {σ2
v1
, σ2

v2
} is

not applicable. We employ here the random direction Adaptive Rejection Metropolis

Sampling algorithm introduced by Petris & Tardella (2003) to draw samples from

their full conditional distributions separately.

4.4 Simulation Study

In this section, we evaluate the proposed Bayesian mixed effects model with group-

ing by a simulation study. Consider the mean function specified as

µ(t) = t+ sin(t)

with sample sizes n = 50, 100. For each individual i, the function is randomly gener-

ated from either of the two types of random functions with probability 0.5. The first

type of random functions are

fi(tj) = µl(tj)−
c1√

5
cos
( π

10
tj

)
+

c2√
5

sin
( π

10
tj

)
,

The second type of random functions are generated from

fi(tj) = µl(tj)−
c1√

5
cos (10πtj) +

c2√
5

sin (10πtj) ,
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which are more jagged than the first type. The coefficients are distributed as c1 ∼

N(0, 1), c2 ∼ N(0, 4), l = 1, 2, i = 1, · · · , n, and j = 1, · · · ,mi. The measurement er-

rors εij are generated i.i.d. from a normal distribution with mean 0 and variance 0.001.

The number of observations mi for a given individual is distributed as Poisson(5)+2.

The locations of observation times, conditional on mi, is uniformly distributed on the

support of the function. The replication size is 20.

Our newly proposed Bayesian functional mixed effects model (denoted by BME2)

is then compared with the model we proposed in the previous chapter (BME). We

evaluate the methods using the following two criteria: the mean integrate squared

error (MISE) and the point-wise mean squared error (MSE). The Monte Carlo version

of these two measures are defined as follows:

MSEMC(f̂) =
1

100

100∑
i=1

[
f̂i(t)− f(t)

]2
and

MISEMC(f̂) =
1

100

100∑
i=1

∫ [
f̂i(t)− f(t)

]2
dx,

where
∫ [

f̂i(t)− f(t)
]2
dx is defined as ISE. For BME, the sampling procedure in

Section 2.3 is used on each dataset to produce 10, 000 iterations with a burn-in period

of 5, 000, while for BME2, the sampling procedure in Section 3.3 is used to produce

15, 000 iterations with a burn-in period of 5, 000. The boxplots of both the ISE for

the mean curve and the average ISE for individual curves are shown in Figure (4.1).

The MISE results are given in Table (4.1). The results for the point-wise MSE for the

mean curves are shown in Figure (4.2), while the average MSE for individual curves

are shown in Figure (4.3).

The results show that our newly proposed method in general preforms better
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on individual curve estimations, which is as expected since the individual curves are

further stratified. However, it does not seem to improve the performance on the mean

curve estimation. This potential trade-off is worth further investigations.

4.5 Application

We use the same CD4 dataset as in the previous chapter for a real data analysis.

Recall, the dataset includes a total number of 349 subjects with 1871 data points

on 61 (in months) possible observation times. We run MCMC for 25, 000 iterations

with a burn-in size of 5, 000 using the sampling procedure described in Section 3.3.

Figure (4.4) illustrates the fitted mean curve and individual curves. Finally, we show

in Figures (4.4b-4.4d) the estimated trajectory of log (CD4 count) for three patients.

The fitted curves seem to be identical to those in the previous chapter.
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Figure 4.1: Boxplots for ISE for n = 20, 50, 100. The left panel for each figure
represents the ISE for the mean effect function; right panel for each figure represents
the average ISE for the individual effects functions.

Table 4.1: Monte Carlo approximation of MISE. The replication size is m = 20. Two
estimators, Bayesian functional mixed effects model (BME) and Bayesian functional
mixed effects model with grouped smoothness (BME2), are compared by their mean
effect function and average individual effect functions.

Mean effect function Average individual functions
n BME BME2 BME BME2
50 0.8054 0.8090 8.3110 5.9551
100 0.2867 0.4012 3.5775 2.8325
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Figure 4.2: Pointwise empirical mean square error of the mean effect curves for n =
20, 50, 100.
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Figure 4.3: Pointwise empirical mean square error of the average individual effect
curves for n = 20, 50, 100.
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Figure 4.4: Observed and estimated log (CD4 count) trajectories of 349 HIV-infected
patients.
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CHAPTER V

Orthogonal Series Density Estimation for Complex Surveys

5.1 Introduction

In this chapter, on a somewhat independent track, we consider orthogonal series

density estimator for complex surveys, where sample design informations are con-

sidered in the model, which can cause samples neither independent nor identically

distributed.

Nonparametric methods are popular for density estimations. Most work in the

area of nonparametric density estimation was for independent and identically dis-

tributed samples. However, both assumptions are violated if the samples are from a

finite population using a complex sampling design. Bellhouse & Stafford (1999) and

Buskirk (1999) proposed kernel density estimators (KDE) by incorporating sampling

weights, and their asymptotic properties were studied by Buskirk & Lohr (2005).

Kernel methods for clustered samples and stratified samples were studied in Breunig

(2001) and Breunig (2008), respectively.

One disadvantage of the KDE is that all samples are needed to evaluate the

estimator. However, in some circumstances, there is a practical need to evaluate

the estimator without using all samples for confidentiality or storage reasons. For

example, many surveys are routinely conducted and sampling data are constantly

collected. Data managers want to publish exact estimators without releasing all
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original data. In Section 6, we provide a real data example from Oklahoma M-

SISNet, which is a routinely conducted survey on climate policies and public views.

The orthogonal series estimators are useful alternatives to KDEs, without needing to

release or store all samples.

The basic idea of the orthogonal series method is that any square integrable func-

tion f , in our case a density function, can be projected onto an orthogonal basis {ϕj}:

f(x) =
∑∞

j=0 θjϕj(x), where

θj =

∫
ϕj(x)f(x)dx = E(ϕj(X)) (5.1)

is called the jth Fourier coefficient. Some of the work in orthogonal series density

estimation (OSDE) was covered in monographs by Efromovich (1999) and Tarter

& Lock (1993), among others. Efromovich (2010) gave a brief introduction of this

method. Walter (1994) discussed properties of different bases. Donoho et al. (1996)

and Efromovich (1996) studied data driven estimators. Asymptotic properties were

studied by Pinsker (1980) and Efromovich & Pinsker (1982).

In this paper, we study the OSDE for samples from complex surveys. To the

best of our knowledge, no previous work has been done on developing OSDE for

finite populations. We propose a Horvitz-Thompson type of OSDE, incorporating

sampling weights from the complex survey. We show that the proposed OSDE is

design-unbiased and asymptotically design-consistent. We further prove the asymp-

totic normality of the proposed estimator. We compare the lower bound of minimax

mean integrated squared error (MISE) with the I.I.D. case in Efromovich & Pinsker

(1982). We propose two data driven estimators and show their efficiency in a sim-

ulation study. Finally, we analyze the M-SISNet survey data using the proposed

estimation. All proofs to theorems and corollaries are given in the appendix.
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5.2 Notations

Consider a finite population labeled as U = {1, 2, ..., N}. A survey variable x is

associated with each unit in the finite population. A subset s of size n is selected

from U according to some fixed-size sampling design P(·). The first and second

order inclusion probabilities from the sampling design P(·) are πi = Pr(i ∈ s) and

πij = Pr(i, j ∈ s), respectively. The inverse of the first order inclusion probability

defines the sampling weight di = π−1i , ∀i ∈ s.

The inference approach used in this paper for complex surveys is the combined

design-model-based approach originated in Hartley & Sielken (1975). This approach

accounts for two sources of variability. The first one is from the fact that the finite pop-

ulation is a realization from a superpopulation, that is, the units xU = {x1, x2, ..., xN}

are considered independent random variables with a common distribution function

F , whose density function is f . The second one is from the complex sampling pro-

cedure which leads to a sample x = {x1, x2, . . . , xn}. Denote w = {w1, w2, . . . , wn}

design variables that determine the sampling weights. The sampling design P(·) is

embedded within a probability space (S,J , PP ). The expectation and variance op-

erator with respect to the sampling design are denoted by EP (·) = EP (· | xU) and

VarP (·) = VarP (· | xU), respectively. The superpopulation ξ, from which the finite

population is realized, is embedded within a probability space (Ω,F , Pξ). The sample

x and the design variables w are ξ-measurable. The expectation and variance opera-

tor with respect to the model are denoted by Eξ(·) and Varξ(·), respectively. Assume

that, given the design variables w, the product space, which couples the model and

the design spaces, is (Ω× S,F × J , Pξ × PP ). The combined expectation and vari-

ance operators are denoted by EC(·) and VarC(·), where EC(·) = Eξ[EP (· | xU)] and

VarC(·) = Eξ[VarP (· | xU)] + Varξ[EP (· | xU)].
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5.3 Main Results

Consider a sample s = {x1, x2, ..., xn} drawn from a finite population xU using

some fixed-size sampling design P(·). Our goal is to estimate the hypothetical density

function f of the superpopulation. Equation (5.1) implies that θj can be estimated

using the Horvitz-Thompson (HT) estimator for the finite population mean

θ̂j = N−1
n∑
i=1

diϕj(xi), (5.2)

where N is the finite population size and di = π−1i is the sampling weight for unit i.

The HT estimator is a well known design unbiased estimator (Fuller 2009). The basis

{ϕj} can be Fourier, polynomial, spline, wavelet, or others. Properties of different

bases are discussed in Efromovich (2010). We consider the cosine basis throughout

the paper, which is defined as {ϕ0 = 1, ϕj =
√

2 cos(πjx)}, j = 1, 2, · · · , x ∈ [0, 1].

Regarding the compact support [0, 1] for the density, we adopt the argument in Wahba

(1981):“it might be preferable to assume the true density has compact support and

to scale the data to interior of [0, 1].” Analogous to Efromovich (1999), we propose

an orthogonal series estimator in the form

f̂(x) = f̂(x, {wj}) = 1 +
∞∑
j=1

wj θ̂jϕj(x), (5.3)

where θ̂j is the HT estimator for the Fourier coefficient as in (5.2) and wj ∈ [0, 1] is

a shrinking coefficient. Note that θ0 =
∫ 1

0
f(x)dx = 1. If xU is known for all units in

the finite population, we can write the population estimator for f(x) as

fU(x) = fU(x, {wj}) = 1 +
∞∑
j=1

wjθU,jϕj(x), (5.4)

where θU,j = N−1
∑N

i=1 ϕj(xi).
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The following theorems and a corollary show properties of our proposed estimator

under both design and combined spaces. Theorem 5.3.1 considers unbiasedness and

consistency under the design space.

Theorem 5.3.1 Suppose f ∈ L2(R), δ = N−1
∑∑

i 6=k
πik
πiπk
−N <∞ and

∑∞
i=1w

2
i <

∞. Then, the estimator f̂(x, {wj}) is design-unbiased and asymptotically design-

consistent for fU(x, {wj}), i.e.,

EP
[
f̂(x, {wj})

]
= fU(x, {wj}) and ΓP = VarP

[
f̂(x, {wj})

]
→ 0 as N →∞.

Theorem 5.3.2 shows the asymptotic normality of the proposed estimator f̂(x, {wj})

under the design space.

Theorem 5.3.2 Suppose that all assumptions in Theorem 5.3.1 hold. As N →∞,

f̂(x, {wj})− fU(x, {wj})
Γ̂P

LP−−→ N(0, 1), (5.5)

where

Γ̂P = N−1
J∑
j=1

w2
j (1 + 2−1/2θ̂2j + δθ̂2j )(1 + 2−1/2ϕ2j(x)).

We then show the asymptotic normality of the proposed estimator f̂(x, {wj})

under the combined inference. Define a Sobolev Class of k-fold differentiable densities

as F(k,Q) = {f : f(x) = 1 +
∑∞

j=1 θjϕj(x),
∑∞

j=1(πj)
2kθ2j ≤ Q < ∞}, k ≥ 1.

Note that for any f ∈ F(k,Q), f is 1-periodic, f (k−1) is absolute differentiable and

f (k) ∈ L2(R).

Theorem 5.3.3 Suppose that f ∈ F(k,Q) and all assumptions in Theorem 2 hold.
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Then,

f̂(x, {wj})− f(x)

VarC

[
f̂(x, {wj})

] LC−→ N(0, 1) as N →∞, (5.6)

where VarC

[
f̂(x, {wj})

]
= N−1

∑J
j=1w

2
j bj(1 + 2−1/2ϕ2j(x)) and bj = 2 + 21/2θ2j +

(δ − 1)θ2j + oN(1).

The following corollary is a direct result of using Theorem 5.3.3 and Efromovich

& Pinsker (1982). It shows the lower bound of the minimax MISE for the proposed

estimator f̂(x, {wj}) under the Sobolev class.

Corollary 5.3.1 Let f ∈ F(k,Q) and f̂(x, {wj}) be the estimator in Theorem 5.3.3.

The lower bound of the minimax MISE, under the combined inference approach, is

given by:

R(F) = inf
{wj}

sup
f∈F (k,Q)

MISEC

[
f̂(x, {wj})

]
≥ N−2k/(2k+1)P (k,Q, b)(1 + oN(1)), (5.7)

where P (k,Q, b) = Q1/(2k+1)
{

k
π(k+1)b

}2k/(2k+1)

and b = 2.

Remark that this lower bound is of the same form as the I.I.D. case in Efromovich

& Pinsker (1982), but with b = 2 instead of b = 1.

5.4 Data Driven Estimators

The choice of shrinking coefficients ŵj is not unique. To get a proper data driven

estimator, we start with the oracle estimator (5.3), and then obtain ŵj by minimizing

the MISE for the oracle estimator. Here, we propose two estimators: a truncated

estimator and a smoothed truncated estimator, mimicking those in the I.I.D. case.
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The truncated estimator, denoted by f̂T , is an estimator with ŵj = 1 for j ≤ J ,

and ŵj = 0 for j > J . Alternatively we can write ŵj = Ij≤J . Then, only the

truncation parameter J needs to be estimated. Notice that the MISE of this estimator

is

MISEC

[
f̂(x, {wj})

]
=

J∑
j=1

[
VarC(θ̂j)− θ2j

]
−
∫
f 2(x)dx.

Since
∫
f 2(x)dx is fixed and an unbiased estimator for θ2j is θ̂2j −N−1bj, a data-driven

estimate for J can be obtained from

Ĵ = arg min
J∑
j=1

(2N−1b̂j − θ̂2j ),

where b̂j is the plug-in estimator of bj. In practice, the solution is obtained through

a numerical search. Efromovich (1999) suggests to set the upper bound for Ĵ to

be b4 + 0.5 lnnc for the search. Theoretically, the minimum of the MISE can be

approximated in the following corollary.

Corollary 5.4.1 Let f ∈ F(k,Q), k > 1/2. The MISE of f̂T is minimized when

J ≈ N1/(2k+1)H1(k, b, c), (5.8)

and the minimum is approximately

R(f̂T ) = MISEC(f̂T (x, {ŵj})) ≈ N−2k/(2k+1)H2(k, b, c), (5.9)

where H1(k, b, c) = b−1/(2k+1)
(

2k+1
(2k+2)c

)−1/(2k+1)

, H2(k, b, c) = b2k/(2k+1)
(

2k+1
(2k+2)c

)−1/(2k+1)

,

and c is a constant.

One possible modification for f̂T is to shrink each Fourier coefficient toward zero.

60



We call this estimator the smoothed truncated estimator, denoted by f̂S. It is con-

structed similarly as the truncated estimator, with the first J Fourier coefficients

shrunk by multiplying the optimal smoothing coefficients w∗j , obtained from the proof

of Corollary 5.3.1. Mathematically, ŵj = ŵ∗j Ij≤J , where ŵ∗j = (θ̂2j − N−1b̂j)/θ̂2j is a

direct plug-in estimator for w∗j .

A potential problem of the nonparametric density estimation is that the estimator

may not be a valid density function. A simple modification is to define the L2-

projection of f̂T (or f̂S) onto a class of non-negative densities, f̃T (x) = max{0, f̂T (x)−

const.}, where the normalizing constant is to make f̃T integrate to 1. It has been

proved that the constant always exists and is unique (Glad et al. 2003).

5.5 Simulation

We compared our proposed estimators with the series estimator that ignores the

finite population and sampling designs, through a Monte Carlo simulation study. We

considered estimating density functions for three sampling designs: (1) the simple

random sample without replacement (SRSWOR), (2) the stratified sampling and (3)

the Poisson sampling. Note that the Poisson sampling has a random size with units

independently sampled and hence violates our assumption of fixed size sampling.

1. For the SRSWOR, we considered two superpopulations: the standard nor-

mal distribution N(0, 1) and a mixture normal distribution 0.4N(−1, 0.5) +

0.6N(1, 1).

2. For the stratified sampling, we considered two superpopulations: a two-component

mixture normal 0.4N(−1, 0.5) + 0.6N(1, 1) and a three-component mixture nor-

mal 0.3N(−1, 0.15) + 0.4N(0, 0.15) + 0.3N(1, 0.15). We designed two strata for

the two-component mixture and three strata for the three-component mixture.

A proportional stratified sampling is used.

61



3. For the Poisson sampling, we considered the same two superpopulations as in

(1). We specified the expected sample size for the Poisson sampling to be n,

and generated the first order inclusion probabilities for the Poisson sampling

using the function “inclusionprobabilities” in the R package “sampling” (Till &

Matei 2016).

For all cases, we considered a finite population of size N = 1, 000 drawn from each of

the superpopulations. We repeated drawing the finite population for m1 = 100 times.

For each of the finite population, we drew samples according to the sampling design,

with increasing sample sizes: n = 20, 40, 60 and 80. The replication number for each

finite population is m2 = 10, 000. The performance of estimators is measured by a

Monte Carlo approximation of the MISE:

MISEMC(f̃) =

∫
1

m1m2

m1∑
i=1

m2∑
j=1

[
f̃ij(x)− f(x)

]2
dx.

The results of the simulation study are shown in Table 1. In general, the I.I.D.

series estimator, which ignores the sampling design, performs the worst in all cases.

However, it is not surprising to see that the improvement for the proposed estimators

is much more in stratified sampling than in SRSWOR or Poisson sampling. It confirms

the necessity of incorporating stratification sampling weights into the series estimator

for a complex survey. Lastly, the smoothed truncated estimator performs better than

the truncated estimator in most scenarios.

5.6 Oklahoma M-SISNet Survey

The Oklahoma Weather, Society and Government Survey conducted by Meso-

Scale Integrated Sociogeographic Network (M-SISNet) measures Oklahomans’ per-

ceptions of weather in the state, their views on government policies and societal issues

and their use of water and energy. The survey is routinely conduced at the end of each
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season. Until the end of 2016, 12 waves of survey data have been collected. It is de-

sired that estimates can be obtained without constantly pulling out the original data.

The sampling design has two separated phases. In Phase I, a simple random sample

of size n = 1, 500 is selected from statewide households. In Phase II, a stratified

oversample is selected from five special study areas: Payne County, Oklahoma City

County, Kiamichi County, Washita County and Canadian County. In each stratum,

the sample size is fixed to be 200. The second phase can be viewed as a stratified

sampling over the entire state with six strata: n1 = · · · = n5 = 200 and n6 = 0,

where the sixth stratum contains households not in the five special study areas. This

design with oversampling is not a typical fixed-size complex survey. The first-order

inclusion probabilities are approximately πhi = nh/Nh + n/N , for i = 1, . . . , Nh and

h = 1, . . . , 6. Note that for units not in the five areas, this inclusion probability is

simply n/N . We presents OSDEs for two continuous variables for illustration: the

monthly electricity bill and the monthly water bill. Figure 5.1 shows OSDEs of the

two variables for all seasons in 2015.

Appendix

Proof of Theorem 3.3.1

Proof. We first show that f̂(x, {wj}) is design-unbiased:

EP
[
f̂(x, {wj})

]
= EP

1 +
∞∑
j=1

wj θ̂jϕj(x)


= 1 +

∞∑
j=1

wjEP (θ̂j)ϕj(x)

= 1 +

∞∑
j=1

wjθU,jϕj(x)

= fU (x, {wj}).
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It remains to show that f̂(x, {wj}) is asymptotically design-consistent, that is, the design-

variance of f̂(x, {wj}) approaches zero in the limit. We need the simple fact that

ϕ2
j (x) = [

√
2 cos(πjx)]2 = 1 + cos(π2jx) = 1 + 2−1/2ϕ2j(x).

Then, we have

ΓP = VarP

1 +

∞∑
j=1

wj θ̂jϕj(x)


=

∞∑
j=1

w2
jϕ

2
j (x)VarP (θ̂j)

=
∞∑
j=1

w2
j

[
1 + 2−1/2ϕ2j(x)

]
N−2VarP

[
n∑
i=1

diϕj(xi)

]
,

and

VarP

[
n∑
i=1

diϕj(xi)

]
= VarP

[
N∑
i=1

Iidiϕj(xi)

]

= EP

[
N∑
i=1

Iidiϕj(xi)

]2
−

{
EP

[
N∑
i=1

Iidiϕj(xi)

]}2

=

N∑
i=1

EP (I2i )d2iEP
[
ϕ2
j (xi)

]
+
∑∑
i 6=k

πikdidkEP [ϕj(xi)] EP [ϕk(xk)]

−

{
N∑
i=1

EP (Ii)diEP [ϕj(xi)]

}2

=

N∑
i=1

EP
[
1 + 2−1/2ϕ2j(xi)

]
+
∑∑
i 6=k

πik
πiπk

θ2U,j −N2θ2U,j

= N(1 + 2−1/2θU,2j + δθ2U,j)

≤ NM,

where 1 + 2−1/2θU,2j + δθ2U,j ≤M <∞ for every j.

Hence, ΓP ≤ N
−1M

∑∞
j=1w

2
j → 0 as N →∞.
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Proof of Theorem 3.3.1

Proof. By the definition of θ̂j and θU,j , we have

f̂(x, {wj}) = 1 +

∞∑
j=1

wj θ̂jϕj(x)

= 1 +
N∑
i=1

Iidi

∞∑
j=1

wjϕj(x)ϕj(xi),

and

E

Iidi ∞∑
j=1

wjϕj(x)ϕj(xi)

 =
∞∑
j=1

wjϕj(x)E [ϕj(xi)]

=

∞∑
j=1

wjθU,jϕj(x).

Also, from the proof of Theorem 1, we have

Var

Iidi ∞∑
j=1

wjϕj(x)ϕj(xi)

 =
∞∑
j=1

w2
j (1 + 2−1/2θU,2j + δθ2U,j)

≤ B
∞∑
j=1

w2
j <∞ by assumption.

Therefore, by the Lindeberg-Lévy central limit theorem, we have

f̂(x, {wj})− fU (x, {wj})
ΓP

LP−−→ N(0, 1). (5.10)

It remains to show that Γ̂P is consistent for ΓP under design, or equivalently,

|Γ̂P − ΓP|
PP−−→ 0, as n→ N. (5.11)

Condition (5.11) can be proved by using the facts that θ̂j is design unbiased and E(θ̂2j ) =

θ2j + Var(θ̂j)→ θ2j as n→ N .

Then, Theorem 2 is proved by using the equations (5.10) and (5.11) in conjunction with
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Slutsky’s theorem.

Proof of Theorem 3.3.3

Proof. Since fU (x, {wj}) is the standard OSDE from an I.I.D. sample which is the finite

population, then

fU (x, {wj})− f(x)

Varξ [fU (x, {wj})]
Lξ−→ N(0, 1). (5.12)

The asymptotic distribution of the I.I.D. OSDE under Sobolev class is obtained from Efro-

movich (1999), Chapter 7. Also,

VarC

[
f̂(x, {wj})

]
=

J∑
j=1

VarC

[
wj θ̂jϕj(x)

]

=
J∑
j=1

w2
j (1 + 2−1/2ϕ2j(x))VarC(θ̂j) (5.13)

Next, we calculate the variance of θ̂j by using Theorem 1:

VarC(θ̂j) = Eξ

[
VarP (θ̂j)

]
+ Varξ

[
EP (θ̂j)

]
= Eξ

[
N−1(1 + 2−1/2θU,2j + δθ2U,j)

]
+ Varξ(θU,j)

= N−1
[
1 + 2−1/2θ2j + δEξ(θ

2
U,j)
]

+ Varξ(θU,j) (5.14)

Then, we evaluate Eξ(θ
2
U,j) and Varξ(θU,j) separately. Based on a standard result in the

I.I.D. case, we have

Varξ(θU,j) = N−1(1 + 2−1/2θ2j − θ2j ) (5.15)

and

Eξ(θ
2
U,j) = E2

ξ(θU,j) + Varξ(θU,j)
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= N−1(1 + 2−1/2θ2j − θ2j ) + θ2j . (5.16)

Then, plug equations (5.15) and (5.16) into (5.14), we have

VarC(θ̂j) = N−1
[
2 + 21/2θ2j + (δ − 1)θ2j + oN (1)

]
= N−1bj . (5.17)

Hence, plug (5.17) into (5.13) we can get the variance of f̂ under the combined inference

approach.

Finally, apply Theorem 5.1 in Bleuer & Kratina (1999), Theorem 3 is proved.

Proof of Corollary 3.3.1

Proof. The proof is similar to Efromovich & Pinsker (1982). We sketch the steps as

follows. We first evaluate the linear minimax MISE for the functions in the Sobolev class

defined above. That is, we optimize w∗j ’s that minimize MISEC(f̂). Notice that EC(θ̂j) =

Eξ[EP (θ̂j)] = Eξ(θU,j) = θj implying that θ̂j is an unbiased estimator of θj . Therefore,

MISEC

[
f̂(x, {wj})

]
= EC

[∫
(f − f̂)2

]
=

∞∑
j=1

{
w2
j

[
VarC(θ̂j) + θ2j

]
− 2wjθ

2
j + θ2j

}
. (5.18)

A straightforward calculation yields that

w∗j =
θ2j

θ2j + VarC(θ̂j)
. (5.19)

Plug equation (5.19) into (5.18),

RL(F) = inf
{wj}

sup
f∈F (k,Q)

MISEC

[
f̂(x, {wj})

]
≥ sup

f∈F (k,Q)

∞∑
j=1

θ2jVarC(θ̂j)

θ2j + VarC(θ̂j)
, (5.20)
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where VarC(θ̂j) is of the form (5.17). Plug (5.17) into (5.20), and use the Lagrange multiplier

to show that the maximum of (6) is attained at

θ2j = N−1(µ/(πj)k − bj)+, (5.21)

where µ is determined by the constraint
∑∞

j=1(πj)
2kθ2j ≤ Q. Plug equation (5.21) back to

(5.20), we obtain

RL(F) ≥ N−2k/(2k+1)P (k,Q, b).

Pinsker (1980) shows that for Sobolev ball F , the linear minimax risk is asymptotically

equal to the minimax risk, that is, R(F) = RL(F)(1 + oN (1)). Therefore Corollary 1 is

proved.

Proof of Corollary 3.4.1

Proof. Let ŵj = Ij≤J . Plug equation (5.17) into (5.18), we have

R(f̂T ) = N−1
J∑
j=1

bj +

∞∑
j=J+1

θ2j ≈ N−1bJ +

∞∑
j=J+1

θ2j . (5.22)

Notice that for f ∈ F(k,Q). By a straightforward calculation, we have θ2j = cj−2(k+1)

(Efromovich 1999). Therefore,

∞∑
j=J+1

θ2j ≈ c
∫ ∞
J

j−2(k+1)dj =
c

2k + 1
J−2k−1. (5.23)

Plug (5.23) into (5.22) and optimize J , Corollary 2 is proved.
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Table 5.1: Monte Carlo approximation of MISE for three sampling designs and two
superpopulations. The finite population size is N = 1, 000. The replication size of the
finite population is m1 = 100, and the replication size of the sample is m2 = 10, 000.
Three estimators are compared: the truncated estimator, the smoothed estimator
and the series estimator ignoring finite population and sampling design (I.I.D.).

SRSWOR
Standard Normal Mixture Normal

n Truncated Smoothed I.I.D. Truncated Smoothed I.I.D.
20 0.0232 0.0220 0.0290 0.0498 0.0480 0.0535
40 0.0150 0.0140 0.0157 0.0311 0.0318 0.0388
60 0.0116 0.0109 0.0121 0.0226 0.0234 0.0335
80 0.0094 0.0089 0.0100 0.0173 0.0180 0.0219

Poisson Sampling
Standard Normal Mixture Normal

n Truncated Smoothed I.I.D. Truncated Smoothed I.I.D.
20 0.0497 0.0481 0.0527 0.0580 0.0442 0.0705
40 0.0281 0.0270 0.0392 0.0344 0.0294 0.0399
60 0.0241 0.0229 0.0237 0.0283 0.0280 0.0322
80 0.0201 0.0190 0.0211 0.0235 0.0234 0.0285

Stratified Sampling
Two Strata Three Strata

n Truncated Smoothed I.I.D. Truncated Smoothed I.I.D.
20 0.0415 0.0409 0.0739 0.2847 0.2826 0.3106
40 0.0231 0.0230 0.0688 0.2731 0.2718 0.3309
60 0.0181 0.0180 0.0672 0.0426 0.0419 0.1132
80 0.0142 0.0142 0.0675 0.0412 0.0406 0.1175
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Figure 5.1: OSDEs of the electricity bill and the water bill for seasonal waves in 2015.
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