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PREFACE

The purpose of this study was to identify the purpose
and role of the language and operations of "sets"™ in the
elementary arithmetic program. It was the sincere opinion
of the author that there existed a felt need by both the
student and the teacher in the current transition period of
elementary mathematics, |
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CHAPTER T
THE PROBLEM

The sheer bulk of ﬁathemati@s available today is over-
whelmingo The individual who chooses to make its study a
career 1s finally faced with specialization in a particu-
lar area, or proficiency in some and only a passing acquaint-
ance with others. However, the mathematician who chooses %o
look at simiiarities_and contrasts within amd among various
topi@s often succeeds in identifying common structures and
properties., In this way he succeeds in adding to his own
unaerstanding of other areas with a minimum of effort merely
by drawing analogies to previcusly mastered concepts. A%
times one of the greatest difficulties has been the creation
of a language that satisfactorily exhibits the similarities
and relationshipso Even at the grade school level, fre-
quently the child, and sometimés the teacher views arithme-
tic as a collection of more or less disconnected topics
each having its own little domain in the world of arith-
metic. Occasionally there may be an intuitive awareness
of connections, but the available language méy be inadeguate
to convey these relations,

To alleviate this difficulty, an increasing number of
contemporary mathematics programs for the elementary student

are utilizing some of the language and operations taken

1



from elementary set theory.

: Therefore,'this investigation is to identify the nec-
essaryilanguage, operations, and applications of sets that
may be utilized in teaching the concepts and manipulative
skills of elementéry school mathematics. It must serve both
as. an iqtrodﬁction and a resource for the teacher of arith-

metic.
Need for the Study

Many recently written texts allot an ample portioﬁ of
material to the introduction of set terminology and opera-
tions and then fail to utilize this foundation in subse-
querit.matei'ial° It is difficult to defend this expenditure
of time and effort on a topic which does not seem to be an
integral part of the course.
| - What is and ultimately will be taught depends upon
available texts, ﬁublic pressures, recommendations of groups
influential in education, and most important, the prepara-
tion and convictions of the teacher.

Of the many texts and books available, the author is
unaware of any written primarily for the elementary teacher
which exhibits the extensive utility of sets and presents
their relative position in elementary arithmetic. A care-
ful reading of abstracts of theses from 1955 to 1962 has
failed to reveal any study of a comparable nature.

Although many elementary teachers have participated in
mathematicé‘workshops designed to help them understand and

appreciate the shift in emphasis and language changes,



there are many who have not. Also, an initial introduction
needs reinforcement and a ready reference source for reas-
surance.

The author has had the opportunity to direct many
teacher study grbups interested in the coantemporary mathe-
matics programs gt the elementary and Jjumior high school
levels, There are always frequent requests by the involved
individuals for materials that they can study at their
leisure that are particularly pertinent to their situations.
Additionally, many parents have expressed a desire for
material that wbuld enable them to see the utility of the

ideas of sets in the arithmetic program.
Scope of the Study

Since the study is directed to the elementary teacher,
its reading and understanding should presuppose mathemati-
cal knowledge no greater than that expected of the element-
ary teacher with a traditional background. Although the
author feels that the development will increase the reader's
understanding and appreciation of the structure, patterns,
and interrelations of arithmetic, this is not the primary
purpose. Also, fhe reader is expected to draw upon his or
her own knowledge to contrast the examples given with the
methods of a traditionally orientated course. Hence, the
scope of the study is limited to the preparation of an ample
resource and guide on‘the language, operations, and applica-
tions of sets in elementary arithmetic. An annotated list

of related books appropriate to the personal library of the
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teacher or that of the elementary school will-be included.
Procedure

The author proposes to study currently available mate-
rial, consult with‘interested professors, indiViduals9 and
elementary teachers, and apply the results of these activi-
ties to creating an informative guide on "sets" in the ele-
mentary arithmetic program. The study will not be a mere
"collection" of rephrased opinions of others, but rather a
cqherent presentation expressly designed for the elementary
teacher.

Personal knowledge and experience in working with the
elementary teacher will be relied upon heavily, but when
especially pertinent; material from other available sources
will be included.

The author's committee is particularly well qualified
for such a study sihce it consists of mathematicians and
‘experts in the field of curriculum and instruction.

The completed material will be submitted to:a Jury for
evaluation and criticism. Wherever there is sufficient in-
dication that revision and corrections are necessary, then
these changes will appear in the final presentation. The
jury will be composéd of individuals who are authorities in
the appropriate mathematical area and persons who are ac-
tively involved in the contemporary arithmetic program.
Authors of current books on "sets" or arithmetic texts9

professors responsible for teacher preparation and super-



visors of elementary teachers of arithmetic will be considered
as authorities. A chapter on the evaluation and its implica-

tions will be included as an integral part of the study.

Summary and Preview

The author's proposal to identify, organize, and summa-
rize for the elementary teacher a reference booklet on sets
is the result of a number of experiences in directing work-
shops on elementary mathematics. Most workshops are too
brief to give the time and preparation necessary to this
topic, and the lack of publications with proper orientation
has presented problems.

While many of the ideas have only minor effect on actual
mathematical processes at this level, they influence greatly
the methods of presentation and contribute extensively to
the continuity of content. A cursory look at some texts may
leave the uninitiated with the false impression that "sets"
are something thrown in to "modernize" or add novelty to an
otherwise traditional course. This is unfortunate. If the
content is to be introduced at all, it should be to clarify
concepts, unify and relate segmented topics, and simplify
complex situations.

The amount of language and operations involved should
not appreciably increase nor decrease the bulk of material
presented in a course since the limited number of terms in-
troduced, for the most part, have meanings in mathematics -
not too far divorced from the meanings attached in everyday

usage.



CHAPTER II
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LANGUAGE AND OPERATIONS CF SETS

Communication is not always easy. An exposition must
first of all be understandable; and, equally important, the
material must be meaningful., There must be an agreement be-

tween author and reader upon the definitions of basic terms.
Definitions

The reader should be aware that for reasons peculiar
to a particular study, one author may choose to modify a
definition. In general, however, modifications will be
easily acceptable, and the reasons for the changes will be
obvious. It should be pointed out that since every word
cannot be defined without a circularity of definitions,
some authors choose to leave the word "set" as an undefined
term. For instance, suppose the di@tionary is used to de-
fine "qugntityon One definition refers to "portion," then
the definition of "portion" leads to "extent," continuing,
"amount" is found, and finally, “quantity.” This completes
a circuit‘of wordsok.Iffone had no previous understanding
of at least one of these, he would be no better off than
before. This is the basis for beginning with "undefined”
terms. "Set" in this writing will be a primitive term. It

is easy, however, to gain an intuitive concept of its mean-
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| 7
ing:by.thinking}of familiar synonymsQ_;SOﬁe»appropriate ones
aré; ‘aggregate,','}as"sembly‘a and eolleetioﬁ;'collection of
what&llsurprisingly enough, the colleetioﬁ'can be of any-
thing at all which can somehow be identifiedot It might be
avcoveyg or set, of quail. It could be a class, or set, of
students. One might consider a gang§ or. set~ of boys. The
interest could be 1n a set of p01nts$'a set of numbers, or
a set of letters° | | | |

Mathematlclans are symbolamlnded people° Cne of the
great strengths of mathematics lles-ln the;preeiseness9
clarity; and_ooneiseness of its symbolieflanguageo One
needsvonly to translate a single'matheniati-cal’sentence9
such as 5 + 9 = 14 into words to appre01ate these values.,

The symbol { }2 called braces or "eurlymbrackets9"
isvﬁsed to mean "the set of." Upper-case letters are fre-
quently employed to name a set as a wholeos Thus9 A= {1,2,3}

is read, "A is the set whose members are one, two, and three.®

Items in a set will be referred to as~elements or members.
The number two is an element oi‘.the‘:?rset'vA‘.‘a butlthe number
four is not an element. The Greek letterlﬁeﬁ (Epsilon) is
used to abbreviate this statement (ioes; 2¢e A, read "Two
is an element of the set A% g denlal can be wrltten 4 @,A
read "Four is not an element of the set Ao". A slash mark
:through a symbol2 in general9 1mp11es the negatlve of the
meaning.) .:'

Many tlmes propertles 1nherent to a problem or discus-
s1on force restrlctlons on the elements ellglble for con-
s:.deratlon° For example9 suppose the reader is going to

purchase a palr of shoes from the set of all shoeso First,



those not of the appropriate size must be disregarded.
Secozidly9 the individual will be iﬁteréétéd in those having
certain styles, colors, and price rangeso,_Aiso9 a further
limitation is preéent because it would.nbtbbe possible to
visit every distributor of shoes. If is this type of sit-=
uation to whiech the word "universe” applieso'
The universe is the fixed set of élements

eligible for consideration in a given discussion.

The universe may vary with the éituétiéno In the ex-
ample of the shoes, the universe of the consumer would be
décidedly different from that of a reﬁtailero“Also9 the
‘individual's universe would change from season to season
and as his feet éhanged in size. .

The universe of numbers used in the fifst grade would
not ordinarily include a solution to]a'prdblem such as
"2 = 10 = n." This problem, however, certainly has a solu-
tion in a universe which includes the negative integers.
The reader may, at this point, wonder how set notation can
be used to indicate the members of an infiniﬁe set, such
as the negative integers. One convenient way, in some cases,
is to list enough members so the pattern is obvious, and
then use the ellipsis (three dots meaning "and so on").

A = {0;192959000] méans "A is the set of numbers 0,1,2,3,
and so on, indefinitely."

There is another set which is Jjust as unique as the
universal set. | »

The empty or null set is the set which

contains no elements. The Greek letter ngn



(Phi) will be used to refer to the empty set.

For example, the set of all states in the United States
which are larger than Alaska is the null set.

Previously, individual elements of»a set were identi-
fied as members, but a term is also needed to denote a set
totally contained in another set. For example, if the set
M= {ra,g,m,0,p} and N = {e,a,r}, then, N is totally con~-
tained in M. The term "subset" is used to describe this
relation, and the symbol "<" means "is a subset of" or "is
contained in." Thus, N < M.

A is a sgbset of set B if every element of

A is also an element of B, This may be written

AcBor A © B, (A¢# Bor A ¢ B means "A is not

a subset of B.")

The definition permits B to be a subset of itself,

- because certainly every element of B is an element of B.
In this case, B is an improper subset of B. This is the
reason for introducing the line below the symbol for sub-
set, The symbol "<" is sometimes read "is contained in
or equal to." ©Since, the empty set satisfies the defini-
tion, then the empty set is a subset of every set.

Every subset of B, such that B contains

at least one element not in the given subset,

is called a proper subset of B.

Compare the following sets: ‘ 7

G = {2,4,8,6}, H= {4,8}, J = {3,1,2}, 8 = { },

and let U = {1,2,3,4,5,6,7,8} where U is the uni-

verse., Then: H<e G, J#¥ G, =G, GS G, H< U;
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JelU GEH, HEJ, ol and o He G,

There are other statements that could be made about
this example. Every other set, for instance, is a subset
of the universal set, U; and @, the empty set, is a proper
subset of every other set. Notice that the members of sets
G and J are not listed in the order one might expect. When
elements are listed in the braces, order is not necessarily
implied. Hence, A = {2,4,6} = {6,2,4} = {4,2,6}). An ex-
cepticn can be agreed upon. For example, it is convenient
to agree to list the set C = {1,2,3,000) in the customary
order of the counting numbers.

This seems an appropriate place to introduce the ideas

of equal sets, equivalent sets, and one-to-one correspondence,

Two sets are said to be in one-to-ome corre-
spondence, if each element of oﬁe set can be paired
with a single &lement of the other set and every
element in both sets used.

Let D = {s,5,0,p}, F = {p,0,t,8}, 8 = {1,2,5,4}. Then

sets D and 8 may be paired in any one of the following ways:

{?9139@91)‘} {Ss)__ap} {Sata)@jp}
e X e R
{1929594} {1,2,3,4} {1,2,3,4

It is not important which two elements are paired, but
rather that every element be used once and only once.
When two sebts can be placed into one-to=one

correspendence, they are said to be equivalent.

The symbol for "is equivalent to® is "o,

In the example above, D~8, read "D is equivalent to S."
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4ls0, F~S and D~F.
Iwo sets are said to be equal if they have
identically the same elements.

Hence, D = F, as well as being equifalento~ D is not
equal to S, even though they are equivalent. Symbolically
this can be writtem: D # 8, but D~S. It should be appar-
ent that ahy_sets which are egual are also'equivalentof Two
sets may be:eqﬁivdleﬁt, however, without;being equal.

Lest the reader becomes concerned that this discussion
of sets be too self-centéréd, a brief deviation will be
made. (The bulk of appllcatlons to arithmetic are reserved
for the next chapter.) ﬁw

One of.the basic problems of whélé’ﬁumber arithmetic
is to find out how many members are‘in a giVeﬁ-seto: “2his
problem can always be solved, at least in principle, by
cqunting."l (Whole number arithmetiq_méans a;ithmetic whose
universe is the set W = {0,1,2,3,...}.) What is counting?
One might choosé to answer by séyiné that for each item in
the set to be counted, a number is recited in order. The
last number recifed, then, identifies\a numbér with the_set9
say three. But what is three, or two,;. or' one hundred? The
concept of number is an abstraction. No one has ever really
seen a two or a three. What is wrltten 1s a symbol or

"numeral" for the property of “twoness° "Twoness" is an
abstract property enjoyed by sets. For example, {a,b}, {*,@},
{5,4)}, and {John, Mary) are each sets which enjoy the prop-

1ﬁcward Levi, "Why Arithmetic Uorks," The Mathematics

Teacher, January, 1963, pPs 2.
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erty of "twoness.” The sets are not equal because they are
not identical., They are, however, all equivalent since they
can be placed into one-to-one correspondence., In the same
manner the sets {a}, {(*}, and {9} enjoy the property of

Yonenessg. "

When a child counts on his fingers, he is recog-
nizing the one-to-one correspondence of equivalent sets.

In order to communicate, it is necessary for man to
agree uvpon language and symbols to represent these number
abstractions. BSuppose the symbol "0" is chosen to identify
the number of elements in the empty set, { }. The symbol
will be named "zero.® Now, since this symbol is known, it
can be enclosed in braces: {0}, This is a set which is
not empty {(because it contains the symbol "O") and a new
name is needed, "One” will suffice and the numeral *1"
will satisfy the symbolic¢ need. Next, enclose both symbols
{0,1} and adopt the name "two" and numeral "2." The ques-
tion "What is two?" can now be answered by saying it is a
property enjoyed by any set which is equivalent (can be
placed into one-~to-one correspondence) to the set (0,1},
One can continue in this manner with {(0,1,2}, {0,1,2,3},
{0,1,2,3,4},000 - This is the cardinal use of numbers.
Thus, for comparison purposes, a "standard” set is associa-

ted with each cardinal number (or equivalence class).

Cardinal Number

(or equivalence class) Standard Set
@ %
1 8]
3 0,1,2}
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The cardinal number of A = {r,a,g,m,0,p} is six be-
cause the set A is equivalent to the standard set {0,1,2,
3.4,5}, Place value, of course, will be utilized to assign
cardinal names to sets having more than nine elements.

To be concise, when specifically concerned with the
cardinal number of z set, the braces or identifying letter
will be preceded by a lower case letter., n(B) and m{x,y,z}
mean “"the cardinal number of set BY and "the cardinal num-

ber of the set whose elements are x, y, and z,"

respec—
tively. m{x,y,z} = 3 and if B = {a,b,¢c,4}, then, n(B) = 4
or n{a,b,c,d} = 4,

What is counting? Cecunting is establishing a one-to-
one corresporndence between some ordered subset {1,2,3,...n}
of the set {1,2,3,0..) of nonzero whole numbers and the set
to be counted. The last element "n" necessary for the corre-
spondence is said to be the count of the set. Notice that
only the set C = {1,2,3,...n} is required to be ordered. No
order is necessary for the set to be counted. For example,
if the students in a c¢lass are counted, it is unimportant
which child is @ounted first.

The ordinal concept has always developed along with the
@ardinalog The cardinal has been used to answer “How many?"
and the ordinal will be used to answer "In what order?"

"Tots often learn to count in rote fashion--one, two, three,

ooo== before they are able to relate these number words to

gﬁast@r E, Grossnickle et, al., Instruction in Arith-
metic, Twenby-Fifth Yearbook, The National Council of Teachers
of Mathematics, (Washington, D. C., 1960), p. 285,
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sets. Do some children first connect three with a position
in a sequence, and others first connect three with a group
of 0bj@cts?”§ Whatever the sequence of learning, it is ne-
cegsary for children to learn both, and tb mix them freely.
If the set S = {2,4,6,8} is considered, then its cardinal
is four. Each of its members have an ordinal., From left
to right, two is the first, four is the second, and eight
the fourth, First, second, and fourth are ordinal uses

of numbers. An agreement can be made to label the set {1,

2,3,.00) a8 the set of counting numbers and represent it

with the letter "C"., The set C, by definition will always
be ordered in this indicated pattern.
If a one-to-one correspondence is estab-
lished between C = {1,2,35,...}, or some subset
of C, and a given set, then, the ordinal of any
member of the given set is the corresponding
element of Co.
Thus, for set Sg’
(2.4 u 6 8} {(8,2,4.,6) {6,8,2,4}
T = 1117 = 1111
(1,2

2 =y
{1989594}‘ {(1,2,3,4} {1.2,3,4}

{4,6,8,2
- []1]
{(1,2,3,4)

In the original correspondence, two is said to be the

9

I\){-—%O\

"first,” while in the last four is the "first." In count-
ing, the ordinal idea of number is used and the last, or
higheat, ordinal reached is always the cardinal number of
the set. The cardinal number of a set is independent of

the order in which the elements are counted; but the

Tvid.
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ordinal number of an element is dependent upon the chosen
order. So even though the two processes are distinct, they
are subtly related; it is almost impossible to think of one

without the other,
Operations with Sets

I% was‘shown that elements of sets need not be numbers
or, in fact, even mathematical symbols. Hence, ways of -
constructing new sets from given sets must be more general
than the operations used for numbers,

One way to construcﬁ new sets from given sets is to
join or unite seté; e.go, if A = {1,0,n,g}, and B = {(h,a,
n,d,1,e}, A joined to B would be the set D = {1909,@91195;11%@9
e}, This op'eration will be called "union" and the symbol
"g" will be its symbol. Thus, A 0B = D. Note that the
eleméhts n and 1 ﬁ@re listed only once invthe union, since
these elements were common to both sets. 1In fact, new sets
can be derived by listing such common elements. This oper-
ation is named "intersection,"” and symbolized by "aA".
AAB= {1,n}. If E= {l,n}), then, A A B = Eo

If A and B are sets, then, A union B (written

A U‘B)'is the set of all elements belonging to A

"or B-(or both);

If A and B are sets, then, A intersection B

{(written A A B) is the set of all elements belong-
ing to both A and to B,
An aid to understanding of the properties of sets are

Venn disgrams such as shown in Fig. 2-1.
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Fig. 2-1

Here the rectangle represents the universe U; the ele-
ments of U are the points in the rectangle. A and B are
subsets of U. The members of A are the points in the verti-
cally lined circle; the elements of B are the points in the
horizontally lined circle. A U B is the set of points which
are inside either or both of the lined circles. A N B is
the set indicated by the overlapping parts of the circles
having both vertical and horizontal lines. Fig. 2-1 shows

only one possibility. ©Some others are indicated below:

o] [
"N :
| e

U

ANB=@, AUDBis the set Bec A. ANB=B.
of all points in A or B. AUB= A,
Figo 2"2 Figo 2_3

In Fig. 2-2, A and B have no elements in common. In other
words, the set which is their intersection is the empty
set,
If the intersection of sets is the empty set,
then, the sets are disjoint. (A and B are disjoint
if AnB-=dg.)
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Just és sets are formed from given sets by taking the
union, a set may be separated into subsets. If these sub-
sets are disjoint this operation is given a name.

If a given set is separated into subsets

so that the subsets have no elements in common,

and every element of the giveﬁ set is included

in some subset, then, this is said to be a

partition of the set,

Let V = {o,h,u,m}, then, one partition of V is W =
{osh}, X = {uym}. It is necessary for W N X = @, and
WUuX= YV, because the definition requires the subsets to
be disjoint and yet every element be'usgdo There are other
partitions just as acceptable; e.g., {0}, {m}, {u,h}. 4
common partition of a class of students could be the set
of boys and the set of girls. Another partition for the
same class might be made according to grades earned in a
particular subject. The class could be partitioned by
classifying hair colors. There are many other ways, but
each must satisfy the two stipulations for partitioning.

A fourth operation is "complementation." The com=
plement of a set can be considered only relative to an-
other éeto For example, the complement of the set of boys
in the seventh grade, relative to the whole grade, is the
set of girls in that grade. The complement of the set of
seventh grade boys, relative to the whole school, is the
set of seventh gfade girls unioned with all other grades
in the school. The symbol that will be used for the com-

plement of the set A is A' (read "A complement™ or "not A).
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The complement, A’, of set A relative to
set B, is the set of all elements in B and not
in A,
In Fig. 2-4, A', relative to B, is the subset of the
interior of B which has the diagonal lines. A', relative

to U, is the dotted subset of the interior of the rectangle.

Figo 2“5

The previous illustration for seventh grade boys could
be pictured by Fig. 2=-5. The rectangular universe is the
whole school and the interior of the smallest circle is the
set of seventh érade boys. The set of seventh grade girls
is represented byvthe shaded portion of the interior of the
larger circle, and the whole interior of the larger circle
designates the seventh grade.

Another Way of symbolizing the complement of a set A,
relative to a set B, is B = A, This second notation haé
some advantage in analogies involving number operations.

Finally, consider the "Cartesian product" set. It is
first convenient to agree upon the meaning of "ordered
pair.®

An ordered pair of elements, say, a and b,

means that the paired elements have a fixed se-

guence, Parentheses will be used to distinguish

IS
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the ordered pair (a,b) from the set {a,b}.

The set symbol {a,b} does not imply an order. Hence,
(a,b) # (bya), (# means "is not equal to"), but {a,b} = {b,al.
In indicating money, for example, one might consider dollars
and cents as an ordered pair, with the elements separated

by the decimal. Thus, $12.34 # §34.12, or (12,34) # (34,12).

The Cartesisn product of twe sets A and B is
the set of all possible ordered pairs {(a,b), such

that a is an element of A and b an element of B.

Using notation, A X B is the set of all pairs (a,b),

such that a € A and b € B, ©Similarly, B X A is the

set of all ordered pairs (b,a), such that b € B and

a € A, ("a" represents any of the elements of A

and "b" any of the elements of B.)

If 4 = {1,2,3) and B = {4,2,6}, then 4 X B = {(1,4),
(1,2), (1,8), (2,84), (2,2), (2,6), (3,4), (3,2), (3,6)}.
If B and G are the sets of boys and girls at a dance, then,
B X G is the set of all possible dancing partners, such
that the firstvmemb@r of a palr is a boy and the second a
girl, Pairing is a simple process if a rectangular array

is used to organize the work:

AXB

6 -» (196> (296> (596)
B 2= (1,2) (2,2) (3,2)
& (1#&-} (294‘) (594)

A 4 XN

1 2 5

A
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The introduction of union, intersection, partition,
complementation, and Cartesian product completes the list
of operations with sets which will be used. From time to
time, it will be necessary to discuss properties of these
operations. It is the feeling of the author, however, that
such discussion will be more meaningful when associated

with a more familiar situation.
Summary

Much of the confusion in the learning of mathematies
arises not from the depth of content, but rather the casual
attitude toward basic definitions. Regardless of the lang-
uage or symbolism used, agreement upon definitions is of
prime importance.

The language and operations of sets have been tried
and found to be especially lucid. Although set theory is
interesting in itself, its permeation of the many areas of
mathematics is unparalleied by any other topic., It has
fundamentals applicable to elementary arithmetic which are
models of simﬁlicity and directness. Most of these same
ideas are equally acceptable at the more compliex levels of
mathematicso Hence, this is a desirable way to present
fundamentals in a fashion that will be a consistent and
integrating factor throughout a student's education.

For convenience, and to further stress the importance
of language agreément9 the terms and symbols are collected
here with page locations of definitions indicated. This

is not intended to be a complete list, rather it is intended
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to be a convenience for those who desire to devote only
casual attention to Chapter II. The terminology and symbol-
ism will be used extensively in the development of Chapter
III, and it may be necessarj for the reader to refer to the

definitions from time to time.

Symbol Meaning Page
{ } Notaftion for sets 7
€ Is an element of 7
& Is not an element of 7
U Universal set 8
@ Empty set 8
< Is a proper subset of 9
& Is not a subset of 9
= Is a subset of or equal to S
= Equal 10
# Is not equal to 10
~ Equivalent 10
1=1 Onemtowone 10
n(A) Cardinal of set A 12
no symbol Ordinal 14
¢ Set of counting numbers, {1,2,3,000) 14
U Union 15
f Intersection 15
no symbol Venn Diagram 15
no symbol Partition 16
no symbol Diﬁjoint 16
AT Complement of set A 17

B~ A Complement of A, relative to B 18



{a,b)
AXBE

Ordered pair

Cartesian product of A and B
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18



CHAPTER III
APPLICATION TO ELEMENTARY ARITHMETIC

One might suppose that the formal idea of sets did not
appear in the previous elementary afithmeéiq program Be-
cause it is too difficult. On the contrary, the funda-
mental ideas about sets are easily understood and the basic
operations which put these to work are only slightly more
difficult. Set theory is not, howéver, a mathematical pan-
acea. It lends itself well to many analogies, but care
should be taken that it not be used jﬁst for the sake of
being "modern." Each application should be purposeful
and in keeping with the appropriate level of the material
concerned.

Just as the concept of a set is more primitive than
number, the idea of union precedes that of addiﬁion5 If
2 and 3 are defined in terms of standﬁrd gets, then, 2 + 3
can be interpreted in terms of the union of disjoint sets
which have these numbers as their cardinals. Let 4 = {r,s}
and B = {0,z,a}, then, A U B = {z,0,s,a,r}. n(4) = 2,

n(B) = 3, and ﬁ(L U B) = 5. It is not difficult to see
that this is a relative of the operation addition. In fact,
n(A) + n(B) = n(A U B) or 2 + 3 = 5, which is what was ex-
pected. It is very important, however, that one notices

that the sets chosen are disjoint sets (sets which have no

23
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elements in commom). If the sets used had been D = {m,r}
snd B = {m,p,8}, then D U E = {m,r,p,s8} and n(D) + n(E) #
n(D U E). This happened because, if the sets overlap (are

| not disjoint), then the elements common to both sets must

e counted only once. Frequently sets are comnstructed, such
- as the ones below, in which the elements may look alike but

are nevertheless distinet.

Fig. 3=1

Here A UB = B U A and n{B U A) = 10, Since ocrder is
nét implied in these sets, it makes no difference whether
the elements of B ére listed first or those of A in the set
AU B, Thus, a + b =D + a follows easily from the analogy
of sets. This is called the “"commutative property" for
addition.

Let a and b be any two counting numbers.

Then, the commutative property states a + b =

b+ &

The reader may wonder if a cardinal is always available
for the union of two disjoint sets. In Chapter II, page 12,
it was shown that the definition of each cardinal number al-
ways leads te a definition of the next one, ¢r a successor.

This is an assurance that no matter what counting number is
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is always a next larger one. If the sets

finite, then let "1" correspond to a "first" element, 2

sond, 3 (the successor of 2) correspond to the

go on, until aw elemeunt of the set of counting

and only one element of the set

The operation of addition is inter-
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solution would be found for 3 = 9. The counting numbers are

3

not ¢

@

losed under subtraction, and to find a solution would
regquire a different universe,

Frevious discussion has avoided the union of more than
two sets or the addition of more than two numbers. Addition

is a "binary" operation (i.s., combines two numbers). To

congider a sum of three or more numbers, they must be com-
bined in pairs until finally a one-number solution is found,

In adding 5 + 2 + 9, the five and two may be associated or
the two and nine, and then the result combined with the re-

maining third number.

(5 +2) + 9 =7 + G 5+ (2 +9) =5 + 11
or
216 316

This illustrates the associative property for addition.

Note that 5 + 9 was not considered in this example. This

would be permissable by the commubtative property, but is not

a congeqguence of the associative property. Thus,

»

it

(2 + 5) + 9 by the commubative property.

= 2+ (5 + 9) by the associative property.

= 2 + 14
= 16

the cardinsl numbser of the union of several

disjoint, sgulvalent sets is to be found., Tet the sets be

&= {a,b,e), B= {d,8,f}, ¢ = {g,h,i}, and D = {j,k,1}. Then,
AUBDCUD = {a,bye,dye,fogob,i,d,k,1}e The cardinal of
the union is 12. If the sddition facts are known, one pro=-

cedure could be

n(h YWBUGCUD = nl(h) + n(B) + n(C) + n(D)
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i

5+ 3+ 3+53
(3 + 3) + (3 + 3)
=6 + 6

12

it

L

Finding the cardinal of the union of a number of equivalent,
disjoint sets @@éurs sufficiently often to distinguish the
process with a maﬁeo This process is called multiplication
and a suffiicient ﬂu@ber of the facts are memorized to expe-
dite computation.

e

- )
SO

The rectangular array of Fig. 3=2 illustrates the union
of four equivalent; disjoint sets each having three elements,
Thus, threse mmlﬁiplied by four is twelve, a multiplication
fact which the student is asked to memorize. "Maltiplication®
“of b by a2 is Symbblized by writing a x b, a ° b, a(b), or ab
(where ne confusion arises). Hence, the problem may be
writben 7 x 4, %°4, and 3(4). (34 would mot be acceptable
im this case.)

N

Obviously, multiplication is Jjust an effiecient procedure

o]

for adding equivalent, disjoint sets. It follows also that

12N
maltiplication must be founded in the process of counting and

be a spseial case of an operation with sets.

Toe Osrtesian product of sets is sometimes a more appeal-
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ing analogy to multiplication. For example, consider the
set D = {a,r,f} and K = {m,e,o,w}. The Cartesian product

D X X can be illustrated by Fig. 3-3 or Fig. 3-4.

n - (a,m)(r,m)(f,m) m m m
K e = (a,e)(r,e)(f,e) 49 ée ée
- a r £
0 -+ (a,0)(r,0)(f,0) \\o \\o \\o
w _, (a,w)(z,w)(f,w) W W w
i : g Fig. 3-4
D
Figo 5-3

D XK = {(a,m), (a,e), (a,0), (a,w),
(rym), (r,e), (r,0), (r,w),
(fym), (£,e), (£,0), (f,w)}

- Now, n(D) = 3, n(K) = 4, and n(D X K) = 12. The binary
operation defined in this way then is multiplication. Since
a solution can always be found for finite sets, the counting
numbers are closed under multiplication.

A slightly different arrangement'of Fig. 3-2 and Fig.

3=3 reassures one that the commutative property alsouholds,

- S S,

Cu—-—m—-‘..&_—_j
“‘-—w.htw e e

3 x 4

(3 sets, 4 elements) (4 sets, 3 elements)
Fig. 3-5
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No new arrangement is necessary in Fig. 3-5 to see the com-
mutative property.

Multiplication is also a binary operation, and from
its relation to addition, it is easy to see that multipli-

cation of the counting numbers is associative.

To illustrate:
(5x7)x2=3%35x2 and 5x (7 x2) =5zx 14
| = 70 = 70
The association of sets of points and sets of numbers
has much to contribute. It offers an excellent visual aid
for exhibiting certain relations among the sets of numbers,
and it helps to integrate geometric concepts with number

ideas,

One such association is that of a number line. It is
assumed that the.reader has an intuitive concépt of what a
straight line is. Every straight line (or curved line)
will be considered to be a set of points. Also, line does
not mean line segment. Below‘is a model of a straight‘line
with points a, b, and ¢ indicated. The arrows indicate

that the line continues indefinitely in both directions.

b a c
@ o - - >

Suppose a similar model is used, but some points labeled
with a specific purpose in mind. An arbitrary point is se-
lected and paired, or labeled, with the symbol 0. An

< (“) i - >
arbitrary unit segment is chosen, extending from zero to the

right, the right end point labeled with the numeral 1, The
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word "arbitrary" is underlined because the purposes Can be}

served equally well by choices such as those below.

&

PR i : — . . o . . PN
0 1 0 1

The zero point (or origin) and unit segment are utilized to
establish a relation between the set of whole numbers (W =

{0,1,2,3,...)) and points on the number line. By ‘letting 1

<« P > > - - - .
0 1 2 3 4 5 6 7

corréspond to the left end point of the unit segment; a
point is located to the right of 1 which is labeled 2. ‘Con—
tinuing this process sets up a 1-1 correspondénce between
- the set of whola numbers and a set of points on the number
line, (Notice, however, only a relatively small subset of
the points available to the right of zero have been utilized,
and those to the left have not been mentioned.

Previous use has been made of the word “"order" and/the
reader's experieace was relied upon to interpret this term.
. It seems beneficial here to discuss this briefly. Order, as
it will be tsed, is concerned with the intuitive intenpreta-
tions of greater than or less than. The symbols "D " (greater
than) and "< " (leéé than) will be the respective symbois for
these jideas. Thus, the mathematical statement 9 > 5 means
‘"nine is greater than five" and 5 { 9 means "five is less‘
than nine." (Observe the similarity between the symbols
"M and "e,v)

The ggggg property will mean that if a and

b are different numbers, then, either a > b (a is
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greater than b) or b ) a (b is greater than a).

On the number line it is seen that if a » b then the
point corresponding te a lies to the right of b, Also,
if A amd B are sete, then, n(d) > n(B) if the standard set
{page 12) which corresponds to n(B) is a proper subset of
th@ standard set which @@rr@sponds to n(A).

The number line also provides a convenient model for
sddition and multiplicetion of the whole mumber%; Consider

A .2 = Bo

. 3 , 2 "
& 8 2 “ . . o .
0 1 2 3 4 >
Fi@o 3“6

The gets corresponding to the cerdinals, three and two,
are the set of three units and the set of twe units, re-
spectively. Since the operabtion is addition, the cardinal
of the union is five units. The word "join® might serve
better than "union,"” although this added burden will not
be imposed onm the vocasbulary. (In fact, English mathema-

ticians frequently use join instead of union.)

S b S e o o 2 B o e i i w2y
i
e O Fa ¥ "oy Ll ool P,
gf‘rumcamm@mw% mmmmmmmmm ‘3\%} mmmm.-wgmmmmu‘ §
o
Fl g o 5“"7

This can serve eqgually well for 2 + 3 = n, and, in fact,
doing both on the same line serves as a reinforcement. of the
commutative property.

The model for 3 x 2 = n and 2 x 3 = n might be inter-
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preted as three sets of two units each, and two sets of three

units each, respectively.

3 sets
po-c upits 2 upnits 2 units .
* ] ‘ 20
ﬂe@.mw@m.mmmm"s.mmm“mmmﬁgg s o 2 o G i e o e o g € s e :\;
> th1 & " S
5 units > sets 5 units
Fig., 3-8

The associative properties are similarly shown,

2 units, 3 units | 4 units e
- AN i et
9.1 2 3 4 5 6 7 8 9 10 11 .
2 7 ®-2 + (3 + 4)
Figo 5""’9

Sets have offered a foundation for the understanding of
the operations of addition and multiplivation of the counting
numbers. However, can they also clarify subtraction and
division in a similar way?

Thréughouﬁ mathematics the notion ¢f inverse elements
and inverse operations prevails. Two disjoint sets are
unioned to get a single set conbaining the elements of both,
and this operation iz "undone® by considering one of the
unioned sets and its complement relative to the union. For
example, if A and B are disjoint (i.e., A A B = @) and A U B
= ¢, then ¢ - B = A (the complement of & relative to C is B).
Another notation for ¢ - B is B', (page 18). B' (or the conm-
plement of B) is exactly the set A. This merely means remove
the sset B from the union and what is left is the set Ao

Thus, using cardinal numbers, if n{A) + n(B) = n(C), then,
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n{C¢) = n(B) = n(A).

Let A = {*,@,x} and B = {s,y,m,b,0,1}, then,
¢ = {*,e,x,8,y,m,b,0,1} and C - B = {*,@,x}.
s N
B! B A (or B')-
(or C - B)

This procedure is acceptable for prqblems such as 9 = 4
= n, where 9 7 4, but not for a problem like 4 = 9 = m.
(There is no whole number m such that m + 9 = 4, The whole
numbers are not closed ﬁnder subtraction.) A closer exam-
ination of the process of complementation reveals that
really all that is done is to partition the union, to find
what set must be unioned to a given set (or cardinal number
added to a given number) to yield the union (or sum). Thus,
5 < 2 = n means to find the number n such that n + 2 = 5.
Then, the problem 2 = 5 = m must mean find the number m
such that m + 5 = 2. A satisfactory introduction to this

problem can be developed on the number line,

I g
u i L}

! ‘ e S {

a o A a o a

o) é 5

Fig ° 3"’10

Here m is directed to the left rather than the right (in the
sense of "undoing"). Another method is to introduce "inverse"
elements for addition., That is, introduce a set of elements
which can "undo" an added set. An analogy might be "putting
your coat on" as opposed to "taking your coat*offo“h Thus,
for every element a ¢ W, creéte some element, "pppésite aﬁ9

so that a + (opposite a) = 0. On the number line:
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e a

opposite a

Fig. 3=11

"Opposite a" is symbolized as “a and read as "negative a"
or "opposite a.” If a is the cardinal number of a set
having a elements, then a is an equal cardinal but of a
set of elements which are inverse elements.

The primary concern in the introduction of the numbers
which are less than‘zerog has been to motivate the extension
of the number system (in this special case, to "undo" addi-
tion). Since operations with these elements are rarely
treated in the elementary school, undue emphasis should be
avoided here. It should be pointed out, however,; that once
these elements are introduced a much larger universe is
aveilable, This set will be named the integers and identi-
fied as I = {ocoey 35 2, 1,0,1,2y35000}. The problem 2 - 5
= m has a solution in this universe, namely m = 3. In
fact, the set enjoys the property of closure under subtrac-
tion. Comparison of the subtraction problem 2 = 5 = m with
the addition problem 2 + (a5) = m on the number line shows
}that the results are equal. That is, it is not absolutely
necessary to introduce subtraction if one prefers to elab-
orate on the use of inverse elements. The author does not

insist that this is a better method for elementary school



35

POy

Subtract%on(f'ﬁ) or inverse
element(™5) ;

3.

—

—3-
TN
2

O—',‘-a

Fig a 3“"12

arithmetic; but the teacher should be aware of such an in-
terpretation,

Very little has been said previously about the element
zero., 4Zero occupies a very unique place in the set of in-
tegers., It is the cardinal number of the empty set. If it
is added to any other integer, (i.e., union the empty set
with any other set) the sum is identically the original
integer (or the same set). For this reason, it is called
the additive identity. If any integer is added to its in-
verse, the result is zero. (8 + (78) = O or (73) + 3 = 0.)
Also, zero is its own additive inverse! Because the sum of
an integer and its opposite is zero we have a precise method
fof identifying the additive inverse.

An accepted name for the set of integers which are less
than zero is the negative integers. One partition of the set
of integers is the set of negative integers, zero, and the
counting numbers. Suppose the set of negative integers is
identified by I = {c00s 3,72, 1} and the set containing zero
by Z = {0} Then, {coo, %, 2, 1} ¥ {0} U’(lgzgzwoo} =

I,VZ20UC =1

One interpretation of mulitiplication was in terms of

the union of equivalent, disjoint sets. The "undoing," or

inverse of such a union, is the partitioning of the union
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hack into equivalent, disjocint subsets, which include every
element. For instance, if A = {a;b}, C = {c,d}, E = (e,f},
and G = {g,h}, then, AUBYCUD= {a,b,c,d,e,f,g,h}. The
cardinal of the union (8) is found to be the product of the
number of sets (4) and the number of elements in each set
(2). Suppose, instead, the cardinal of the union is known
to be eight and the number of elements in each disjoint,
equivalent subset to be two., How many subsets are involved?

If the union is partitioned into two element subsets, then

the number of subsets is four. {a,b,c,d,e,f,g,h} = {a,b} ¥
{c,a} U {e,£} U {g,h}. Thus, "division" of cardinals can be
interpreted in this manner. 8 £ 2 = 4 is a special case,
then, of the example, Consider the following instance where
the subsets do not work out so nicely.
A set of seven apples are to be distributed
among three boys. How many apples will each re-

ceive?

P ,,M_.U_,“_..,;

e s R,

TN
Partition A = {Q(Z;)s)@?ﬁoﬂ? 5"1\3)[{ ©9*39C5}0 The results are

¢
ot 9
S

]

three subsets each containing two apples and a subset con-
taining one apple. Since the universe for the moment is

restricted to the set of integers, then, one can hope for
a worm in one and only one apple, If all apples are good,
however, to find a solution would require a different uni-

verse., (Obviously, the set of integers are not closed

under division, since 7 & 2 = n does not have an integer
solution.) Consider the subset of one apple. If this
subset can be partitioned into three disjoint, equivalent

subsets, then the dilemma is solved., These partitions of
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the apple must, however, have a notation different from
those of set A, One might agree that a division of one
element into n parts be symbolized by 1/n. In this case,
one apple divided into thrée parts is written 1/3. A
partitioning of set A into three equlvalent disjoint sub-

nmmmm_‘u\ ~ : st »'“w mru.,_, S
‘xﬁ

sets would be {Ci9(ﬁ @ﬂd?ﬂ k4%kd9 @ wﬁ@ The solution

R il

can be written as 2 + 1/3 (or by agreement as 2 1/3%),

How about three boys and eight apples? This time the
remaining subset contains two apples., Will the previous
interpretation still hold? 7Yes. All one need do is con-
sider the two sets (appleé) partitioned into three, dis-
joint, nquivalent subsets and symbolize each by 2/3. Hence,
{G? @ug‘ﬁ}o

This introduced a new symbol not in the previous uni-
verse, Il. Since the elements were "fractured" in the pro-
cess, a connotative term would be "fractions."

A greater insight can be obtained if a different view-
point is taken. A set of twenty-four ping pong balls are

boxed in a number of different ways.

/2 2/4 ‘ 3/6 4/8
)‘} " N 3 : "
O@OEQOO [o] O 16 © © e © o O (o O © 0 O 0 © 0O
0002’000 O_ o1 © 0O 0O O]i0 O ¢ O O © O 10 © o
© 0o 010 © © "5 o ole o o To ol o o o o 5 % 6o o o
° o ogo o © © 0o oo o o © ollo o lo o © o o jo o oi}_
ﬂ _
1 set 2 sets % sets 4 sets
2 subsets 4 subsets & subsets 8 subsets
Fig. 3=13%

It appears that if a multiple of the cardinal of the set

or 8ets to be partitioned is taken, and the same multiple of
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the number of partitions, then the resulting fractions are
equivalent., This is indeed the case,
If the numerator and denominator of a fraction

are each multiplied by the same nonzero number, then

the value of the fraction is unchanged.

The "ratio" of two numbers is a comparison by division.
In the preceding paragraphs, the fractions satisfy this pro-
perty. ILet this, then, serve as motivation for renaming
these fractions "rational numbers.”

A rational number is defined as any number

which can be represented as a ratio of the form

a/b, where a and b are integers and b # O,

The set of whole numbers satisfies this definition (e.g.,
four can be represented by 4/1, 12/3, 16/4, etc.,). The set
of all integers, of course, are members of the set of ration~-
ai89 but integers such as 6/ 3 involve explanation to which
the language of sets does not particularly contribute.

The set of rationals does not lend itself to a listing,
or an indicated listing, as was done with the preceding sets
of numberso To even attempt to list the set of rationals
between zero and one involves an unwieldy array. A more
efficient approach is to introduce the "set builder" nobtation.
For A = {Alaska, Hawaii}, one writes A = (s ﬁs became a state
of the United States since 1950.}., The vertical mark is read
"such that,"” and the statement is read "A is equal to the set
of all states s, such that s beczme a state of the United
States since 19%0." The symbol "s" can represent either of

the elements, Alaska or Hawaii. The set builder notation
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consists of two parts, the variable (s, in this example), and
a descriptive statement following\the symbol for "such that."
Hence, the set of rationals can be described as R = {n | n can
be written in the form a/b, where a and b belong to the set

I and b # 0.} Using more symbols, one could write R = {ﬁ ﬂn
is of the form a/b, a and b & I, and b # 0}, Also, the set
of egquivalent symbols for s particular rational number is

usually thought of as an equivalence class or family. For

example, {1/%, 2/6, 3/9, 4/12,...} is an equivalence class
in which any symbol is a valid representative.

It is assumed that the reader is familiar with the usual
operations of rationals. The language of sets is particu-

larly applicable to finding the least common denmominateor and

greatest common factor, Since the idea of "prime" factors

is needed, a prime number is defined as follows:
A counting number is said to be prime if it

has no factors other than itself and ome.and is > 1.

To add or subbtract fractions, it is necessary to find
commnon denominators. It is ordinarily desirable to find the
"least" common denominater. The least commor denominator
can be found bj taking the BEQQEQE of the glements in the

union of the sets of prime factors of each denominator. An

agreement on interpretation must be reached, however. If a

prime factor 1s prepeated in the set for any particular de-

nominator, then, these are to be regarded as distinct factors.

A factor which is merely repeated from set to set will be

listed only once in the union. Consider the following pro-
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blems
/6 + 1/4 + 7/15 + 1/27 = n
6=2x3, 4=2x2,15=3x5,27 =3x3x 3%

The two and three appear as repeated factors in a set of
factors and, hence, the second two in four and the second
and third three in the factors of twenty=seven must be con-
sidered as distinct elements in the union. For purposes of
clarity, the sets might be listed (21931}9 (21922}9 {5195}9
and {51952955} where the subscripts are used only to rein=-
force the previous statements. Thus, the union would ap-
pear as (2192295195295595} and the product 2 x 2 x 3 x 3 x
3x 5 = 540, the least common denominator. It can now be
seen that each denominator is a factor of 540 by examining

it in factored form.

fj‘ﬁ-—"\ f“%éz-m”“""\
2xXx2x3x3%3x3x5 = 540
AN fuw,ﬂ W
6 15

The appropriate factors to multiply each fraction by are
easily determined if the l.c.d. (least common denominator)
set is left in factored form. For instance, twenty-seven
has the set of factors'{§1952955}o Hence, to express it
with a denominator of 540, multiply the product of its set
of factors by the product of the factors in its complement,

relative to the union.

1 1 (1) x (2 x2 x5) 20

2 *T X3 x3 (3% 3x3)x (2 x2x5) 540

N s Yw\_”,}

complement
Similarly,
L1 - (1) x(3x3%x3%x5)_135
L " 2x 27 (2x2) x {(53x 53 5 x 5) ~ 540
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It is obviously a waste of effort to write the factors of
540 each time. A more desirable procedure is to write them

once to permit easy identification of the various complements.

Y 1 90 _ 90
6 2x53%5 (2x35)x(2x3%5x3x5)" 4Q
1 1 4 4
R - =%
7 __ 7 _7x36 _ 252
15 "3 x5 540 - Egﬁ
O = 20
27 2 x3x 3 540

With a little practice much of the writing will be unneces-=
sary.

To find the greatest common factor of two or more num-

bers, a simple procedure is to take the product of the inter-

section of the sets of prime factors,

420 = 2 x 2 x %3 x5x 79

126-=3x3x7x2

330 = 3x5x2x11 o ‘ o
The intersection {2,2,3,5,7} n {3,3,7,2} 0 {3,5,2,11}

= {2,3]}
Therefore, the g.c.f. (greatest common factor) = 6.
This procedure is especially pertinent to ratio expres-
sions., For example, 420:126:330 as 70:21:55. Also, the

reduction of fractions, 126 _ 6 x 21 6 x7x3% = 3 |
420 "6 x 70 6 x7x 10 10

Return briefly to the relations of the various sets of
numbers. One can now write C« W< I ©€ R, Also, note that
the rationals may be partitioned in a manner similar to the

integers into a set of positive rationals, negative rationals,
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and zero. One might think that he has a number available
which corresponds to each point on the number line., This
is not the case.

Consider one more set of numbers called the irrationals.

The term "irrational”™ represents a set, the elements of which
cannot be represented as a ratio of two.int@gerso ‘These nun-
bers arise in many ways and a few examples are:a/2,4/7, and
ff (whish iz only approximately 3.141%9)., Notice thata/G is
not an irrational since it is Just another symbol for the
number two. If the reader will recall the Pythagorean Theo-
rem, (The sum of the squares on the legs of a right triangle
is equal to the square on the hypotenuseo) then, this will
mnotivate an intreduction teo a relation between some of the

irrationals and points on the number line.

; e
Y
{y
,,
e
e

Figo 3-1&

If the legs of a right triangle are each one unit in
length, then, by the Pybhagorean Theorem, the area of the
square on the hypotenuse is two (12 + 12 =1+ 1 = 2),
Therefore, the hypotenuse must have lengtha/2 . Now, if a
segment of equal measure is marked on the number line, the
right-end point corresponds t@a/ﬁmo Sinces/2 is irratienal,
and cannot be represented by a ratio of two integers, then,

none of the set of rationals can correspond to this same
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point. Mathematicians can prove that between every two
rationals, there ex1stb an irrational and, therefore, there
are many infinitely many such correspondenceso1
With the introduction of this new set of numbers, there
is nmow a unique rational or irratiornal which corresponds to
gach point on the number line. Suppose the set of irra-
tionals is designated by Iro Then the union of the sets of
rationals and irratiomnsals gives a new universe, which math-

ematicians call the real numbers. Symbolize the set of

reals by Reg to distinguish it from the set of rationals.
One may, then, write R w’IP = Reo The set of rationals has
ordinarily been considered adequate for elementary arith-
metic, but current trends may soon modify this. In any
event the set of real numbers are certainly a necessary
part of the background of an elementary teacher. The "num-
ber line" is frequently called the "real number line,”
because of the one-to-one correspondence between the set
of real numbers and the set of points on the line. If the
Cartesian product of the set of real numbers is taken with
the set of real numbers QR X R, ), the result is a unique,
ordered pair of real numbers corresponding to eachvpoint in
the plans! _

Real Nggyer Line

14 4{ > (VE,1)

CLYD. | o

. |
- Fig. =15 - i

Real Number Line

lN@rmmn T, Hamilton and Joseph Landin, Set Theory, The
Structurs of Arithmetic (Boston, 1961), PpP. 229=231.
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Fig. 3=15 is a model of this concept with a few such corres-
pondences indicated; The similarity to the x and y axes of
ordinary algebra is no accident, because they are identical
ideas, This is a powerful tool in mathematics. Not only is
it an excellent wisual aid in the study of numbers, but it
is the very foundation of relations between geometry and
algebra. In short, this is basic to the study of analytic
geometry and, yet, so direct that it is being introduced in
grade school texts.

Geometry is now being introduced at all grade levels
by some of the contemporary programs. The language of-sets’
is especially pertinent to much of this material. In the
introduction to the number line, the reader was asked to
think of a line as a set of points. One can think of the
intersection of such sets as points or sets of points which
are commopn to lines, A plane is a set of points and, in
fact, space itself is considered the set of all points.
Line segments are sets of points and triangles, rectangles,
and other p@lygons are defined as unioms of line segments.
Circles are defined as the locus of all points in a plane
equidistant from a given point. Hence, the language of sets
clarifies and simplifies both number and spatial concepts,
and, as was Jjust indicated, it unifies the two. It unifies
them not only by the common core of language, but also by
the correspondences avalilable between sets of points and
sets of numbers. ILittle difficulty is involved in the shift
of the concepts from sets of numbers to sets of poinﬁso

Therefore, the topics of geometry will not be treated here,
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There are a number of excellent texts and references on
geometry available at grade levels, ranging from primary
through the sixth grade. (A number of these are included
in the bibliography.)

The solution of problems is somebtimes a single answer,
other times, several answers and, at times, no solution is
available! To speak of solution sets, serves to underline
these wvarious possibilities. For example, the solubion set
tox + % =5 418 {2}, The solution set for the set of all
whole numbers greater than 5 and less than 10 is {6,7,8,9}.
The solution set for the set of all counting numbers less
than zero is the empty set, @,

The discussion of applications in Chapter III is in-
tended primarily as a guide. As the teachers and students
become proficient in the language and operations, then,
ingenuity and experience will suggest many more. However,
content should not be warped to fit the ideas of sets.
When a better approach is available, it should be used.

Chapter IV will indicate a few, further épplications9
but it is primarily intended to show the great utility of
sets in clarifying some of the patterns and structures of

the. real number system.



CHAPTER IV
PATTERN AND STRUCTURE

Fuech of the fascination of mathematics lies in its
crderliness, symmetry, and the simple and complex patterns
cf its varied systems. The reader may have been intrigued
bty the underlying patterns in the definitions of cardinsal
numbers (Page 12). Prior knowledge of place walue was as-
sumed , and consequently one of the most useful and funda-
mental patterns of a numeration system was not discussed.

Consider the meaning of the five-digit, counting num-
ber 11,111, Each of the digits is the numeral one, and yet
because of the concepts of place and base, each one has a
distinet significance. Order the digits from right to left.
The first digit signifies one set of one element; the sec~
ond digit indicates one set of ten elements; and the third
digit denotes @né set of ten subsets, each of which contains
ten elements (1 x 10 x 10 elements). The fourth digit indi-
cates one set of ten subsets, each of which is made up of
ten subsets, and each of these ten subsets coﬁtains ten ele-

ments (i.e., 1 x 10 x 10 x 10 elements),
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A less cumbersome explanation can be made by using ex-
ponential notation,

Define the symbol ’bn9 for n € C, to mean b

is to be used as a factor n times. For example,

10% = 10 x 10 x 10 x 10.

This makes the place value pattern obvious. Consider
the number 31,724, written in an expanded form, using ex-
ponents. 31,724 = (3 x 104) + (1 x 105) + (7 x 102) + |
(2 x 101) # (& x 1), If more digits are annexed to the left,
then, the set of exponents of ten continues in the familiar
pattern of the counting numbers. The first digit at the
right, however, fails to conform. To be consistent, the

09 but the previous definition

0

one needs to be repiaeed by 10
of exponential notation is not meaningful here. Since 10
has no other meaning assigned to it, then, it is Jjust a
symbel and can be defined in any way one chooses! Hence,
define lOO to be another symbol for one. Now the pattern

of exponents from the units position to the left follows

the pattern of the set of whole numbers in reverse order.

Does the pattern hold for a decimal such as 3,421.45327
3,421 gives no difficulty but how about .45327 One way of
writing this in an expanded form is as follows: .4532 = 4 +
.05 + o003 + ,0002 = 4(1/10%) + 5(1/10°) + 3(1/10°) + 2(1/10%).
A pattern is apparent, but, if possible, an extension of the
previous set is more desirable. Since the exponents decrease
from left to right, this would require 1/101 = 10_“1$ 1/102 =

=
107, ete.
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Hence, define b ™, where b and n € C, to

mean 1/b%.

Thus, 3,421.4532 can be written 3(10%) + 4(10°) + 2(10%)
+ 1(10%) + 4(1071) + 5(1072) + 3(1072) + 2(20™*). This pat-
tern of exponents turns out to be the set of all integers
with the ordering reversed]

Next, lets explore a choice of a base set (or radix) for
a numeration system. The decimal system utilizes base ten,
but other bases have utility. Also, the study of bases other
then ten serves to add interest and to reinforce the under-
standing of the decimal system. The binary system (basevtwo)
has the advantage of requiring a set of only two symbols,
{091}9 while the duodecimal system (base twelve) requires
twelve, {0,1,2,3,4,5,6,7,8,9,X,E}. Twelve, however, has more
factors than ten or two, and a large number can be written
with fewer digits. Set S below has been partitioned to con-
form to three different bases, ten, two, and twelve. If b

represents the base chosen, then, bO = 1 in every case.

ey B8P 2 sets of 10 elements

5 sets of 1 element

25ten

Fig. 4-1
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& ‘
b &
2 gﬁts of 12 1 get of % 1 Set of 1 Set 1 Sét
ements 1 Element E 24 Elements of 23 of 1
gltwelve ' 11001two
Fig, 4=2

Any pumber which can be represented in the decimal
system can be represented in other bases by appropriate
partioning of the set of elements. One needs only under-

stand the pattern of exponents indicated in the diagram.

If the base is three, then, the number 1210123 has the wvalue
1x3)+@x3)+ 1x3+ @x3s+ (2x39)
9 + 6 + 1 + 1/3 + 2/9

16 5/9 in base ten,

i

i

It should be stressed that the previous discussion was

devoted to a pumeration system (or naming of numbers) and not

a number system. The study of a number system involves the

consideration of operations and properties of operations with
the elements of the system. (For example, the set of whole
numbers enjoys the commutative property under the operation
addition.) Also, one studies the relative roles of the ele-
ments and various subsets within the system, In this way

the structure is revealed and the weaknesses and advantages

are discovered., An attempt was made in Chapter III to moti-
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vate an extension from the counting numbers to the real num-
bers. - Each extension was made to find solutions which the
preceding set did not include. The mathematician speaks of
this property of including a solution as "closure under an
operation.”

The study of the structure is so fundamental that some
of its terms should be a part ¢of everyone's vocabulary.

First of all, it is necessary to consider a set of elements

and one or more operations,

The set of counting numbers, C, enjoys the following

properties under the operations of addition and multipli='

cation:
+ X

closure closure (The sum or product of
any two counting numbers
is a counting number.)

associative - associative a+(b+c¢c)=(a+Db)+c
ax(bxc)=(axb)xe

commutative commutative a+b=>+ a and
axbs=">bxa

NO IDENTITY identity element a x 1 =a =1Xx a

(i.2., mo zero) (one)

Multiplication is distributive over addition. a x (b + ¢)
= (ax®) + (axe)

The distributive property deserves special emphasis here
because it has not been mentioned previously. When taking
a multiple of a sum, it is sometimes an advantage to distri-
bute the factor over the addends before taking the sum, For
example, 4 x (25 + 16) can be handled mentally with greater

ease if the four is distributed first.
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4 x (25 + 16)

it

(4 x 25) + (4 x 16)
100 + 64 ’

i

= 164

In contrast, the problem 4 x (78 + 22) is best handled
by first finding the sum and then multiplying by four. The
distributive property is a formal statement of this choice
of procedure. It should be noted that addition is not dis-
tributive over multiplication.

If the set of whole numbers is considered, then, the
number zero 1s an identity for the operation addition. All
other properties for multiplication and addition are the
same as those for the counting numbers.

The set of integers yields additive inverse elements.
Thus, for every number a, there is an ~a, such that a +
(Ta) = 0. The set of integers has the following properties

under the binary operations of addition and multiplication:

+ x

closure closure (If a and D& I, then, (a + b),
and (a x D)€ I),

associabive associative a+ (b+e)=1(a+Db) +c and
ax(bxec)=(axbh) xec

commutative commutative a+ b=>»+aaand axb=5>bxa

identity identity a+0=a and axl-=a

inverses NO INVERSES a+ (Ca) =0

Distributive for
multiplication over addition ax (b + ¢) = (axb) + (a x ¢e)

The set of ratiomals has the advantage of having a mul-

tiplicative inverse available for every element except zerc.

Since the integers are embedded within the rationals, then,
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the rationals are considered an extension of the set of inte-
gers.

The set of rationals is said to form a field under the
binary operations of addition and multiplication because it

enjoys the following properties:

+ X
closure closure

associative associative
commutative commutative

identivy identity

inverses inverses (except zero)

Distributive for multiplication
over addition

The desire to make possible the operation of finding
a root (square root, cube root, etc.) forces further ex-
tension of the number system. The irrationals makes this
possible for the positive numbers, but an extension to the
complex system would be neceésary for closure under this
process., The complex system is rarely introduced until the
student 1s ready for a formal course in algebra; therefore,
it is not a pertinent topic in this discussion.

The real mumbers (rationals and irrationals) enjoy all
of the field properties. Also, they have the property of
completeness. It is sufficient here to say this means that
there is a one-to-one correspondence between the points on
the number line and the sebt of real numbers. Each of the
sets considered has the property of order and the raticnals

and reals have the property of "denseness.”
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A set is said to be dense if for every two
distinct elements, there is another element be-

tween them.

The integers are not dense since there is no integer
vbetwe@n any two consecubtive integers.

If some of the language in this chapter, or preceding
ones, geem overly demanding to the reader, it is primarily
because 1t is a first introduction. With only a few excep-
tions, the terms are those used in contemporary, elementary
arithmetic texts. The terms "partition” and "complementa-~
tion" have mot appeared in the texts with which the author
is acquainted, However, these terms have been used profit-
ably by the author in presentation of similar material to
elemsntary teachers. Mathematical rigor has been sacrificed
to permit communication. At the same time, the author at-
tempted to avoid statements not consistent with more advanced
mathematics.

The reader will recall that this writing is intended to
give the concerned individual a2 broad view of the role of
the language and operations of sets in the elementary arith-
metic program.

Only the competent, well-informed teacher can determine
the appropriate time to introduce these concepts., This time
will depend uvpon the child's mathematical maturity, rather
than grade ﬁla@ement and chronological age. Chapter V, how-
ever, includes suggestions based upon the content of current

texta,



CHAPTER V
EVALUATION

The purposes'of a formal evaluation of this study are
twofold. Constructive criticism from qualified, impartial
individuals is essential to assure accuracy and readability.
Secondly, if the material is to serve its intended purpose,
there muét be evidence that it is appropriate and desirable.
A great deal of skepticism is expected, and frequently de-
sirable, when a large scale revision of an educational area
is proposed. Hence, the opinions of experts in the field
were solicited to assure credence in the study.

The author's committee suggested that the opinions come
from teachers and supervisors of elementary arithmetic,
college teachers involved with teacher preparation, mathe-
maticians, and writers of mathematics texts related to the
study. An initial list of thirty such individuals was com-
piled. This list was formulated with information from
college catalogues, title pages of books, individuvals sug-
gested by the author's committee, and persons known by the
author to be actively engaged in arithmetic education.

Each individual was contacted by letter réquesting
permission to send the material for evaluation. A postal

card was included which required only a check to indicate

54
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consent, Twenty-four people responded in the affirmativé‘
and were sent the material. Eighteen of the twenty-four
actually read and completed the evaluation.

Agtual evaluation was by means of the questionnaire in
the appendix of this study. The questionnaire required re-
sponses according to a scale identifying the degree of agrée=
ment with given statements, BSuggestions were added by some
respondents for corrections and improvémentso These were
primarily grammatical in nature and whenever possible were
included in the final presentation. Two obvious errors were
detected. One of these was in the original definition of a
prime number (on page 39) and the other was ‘a typing error
in the expanded form of a number (on page 47)., Both of these
were corrected. Two individuals (both elementary supervisors
in the public schools) asked if they could obtain the material
in quantity in a published form.

Approximately two months elapsed between the mailing of
the material and the Eesponse of a éufficiént number of per-
sons to assure some validity to the evaluation. This was
not unexpected, especially since these people were all prom-
inent in the field of education and hard-pressed for time in
their own busy schedules. Some of the original thirty wrote
letters indicating their present obligations did not allow
time to participate in the evaluation. |

The eighteen who finally responded feil~into three -gen-
eral categories: supervisors of elementary teachers, college
teachers of mathematics, and authéfs of recent books related

either to "sets" or the contemporary arithmetic program.
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There was some overlap in the categories of “authors of texts®
and "college teachers”. However, where the college teacher
had written a text, especially appropriate to the concerned
area, he was categorized as an "author®.

The writer realizes that the assumption of a "two val=-
ued" logic cannot be completely assumed in a question which
permits different degrees of opinion. The very design of a
"scaled answer" is based upon this consideration. However,
if the reader will arbitrarily agree to scale "disagreement"
as opposed to "agreement", some evaluation of statements
"unfavorable” to the thesis can be made simultaneously with
the "favorable" statements. For example, agreeing to a state=
ment such as "The concepts are accurately presented" seems
favorable, while "Greater elaboration is needed” seems un-
favorable. A scaled agreement of "2® to an "unfavorable”
statement can, then, be interpreted as indicative of a
response of "3" favoring the thesis. Hence, agreement to
statements 4, 5, 14, 15, 19, and 20 of the questionnaire,
will be interpreted as "unfavorable" while agreement to other
statements are considered "favorable",

Using the approach suggested in the preceding paragraph
each scaled value of responses to "unfavorable" statements
can be converted by subtracting the tabulated walue from
five. All other scale values are left unchanged. The con-
verted response averages for these questions appear in the

following table:
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Question Average Respomnse Responses by Category

\Elemo Coll, Auth,

4, 4,1 4.8 3.7 4,0

5. 3.5 4.4 3.0 3.3
14, 4.8 4.8 4.7 4.8
15, 2.6 L 2,0 3.1 2.3
19, 5.0 : 5.0 5.0 4.8
20, . 4.3 3.6 4.4 4.8

Incorporating these changes permits computation of an
average scale value of "agreement® over the complete ques=-
tionnaire. The arithmetic mean of the “Averagevﬁesponse”
column is 3.7, of the "Elementary Teachers” column is 4.1,
the "College Teachers" column is 3.7, and the "Authors" is
3.3, Of the three categories, the "Authors" response
seemed least favorable, but 3.3 still appears to be an
enéouragingly high evaluation.

Responses of 0,2 aﬁd 3.0 to the opposing statements 14
and 15 indicate that the "Elementary Sﬁpervisoré" felt more
elaboration would be desirabieo Responses of 0.2 and 2.7 to
the same questions in the "Authors” category agrees with this
reaction. The "College Teacher" caﬁegory9 however? responded
with 0.3 and 1.9, implying that they felt the presentation
was ample. All other questions had favorable scale responses
in the two cabtegories of ”Elementafy Supegvisors“ and "College
Teachers®., The "Authors" responded to Queétions 1;’557 11, 12,
13, and 16 with scale values ranging from 2.3 to 2.8 (i.e.,

the responses varied between "some agreement" and "considerable
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agreement"). While none of these scale values seem partic-
ularly unfavorable the author wishes to point out that the
sample size permitted one or two gquestionnaires to skéw the
mean below "3" in this particular column of these statements.
Also, most of these questions are peculiarly pertinent to
the appropriateness and adequacy of presentation. It seems
reasonable to assume that a college teécher should be well
informed in this area and the mean response of the "College
Teacher” categorybto éhese same questions ranges from 209“to
3.7. The ”Elementéry Supervisors” catggory responded with
3.0 to 4,2, Initially, more elaboratibﬁ was intended butb
careful consideration of suggestions of teachers modified
this. ©Some potential readers would be disgouraged by the
very bulk of an elaborate presentation. Also, one of the
primary purposes is to present an overview or perspectivé
to. the role of sets. A profusion of examples and detail in
any one area would hamper the achievement of this aim.

The respondents who were supervisory elementary teachers
offered surprisingly high support of the study with a mean
response of 4.1, If this is indicative of the reaction of
the elementary teacher in general, the author has realized
a primary goal. Much of the material has been tried by the
writer in various workshops with a similar reception.

There were of course varied reactions to every statemen?t,
but the overall mean response of 3.7 lends a high degree of
support to the presentation.

Although the author did not embark upon this procedure
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with,bvﬁt some apprehension, it seemed appropriate. The mater-
ial waé‘desiéned to permit the unassisted reader to éain én
introduction to sgts and should not require additional explan~
atidn; ﬂ |

ihe taﬁulated results of the replies are summarized in
the table on page 60, and a graphical summary of scaled re-
sponses to each question has been added te the questionnaire

on page 74.
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QUESTIONNAIRE RESPONSES

Responses by

Category

Answers Per = — o

Scale Number Average A a =

Question O 1 2 % 4 5 Response ™ & <
1. 01 % 3 7 &4 3.5 4.4 3.6 2.8
2. O 01 5 9 3 3.8 4,0 3.7 3.7
3. 11 2 8 5 1 2.0 4,0 2.9 2.3
4, 11 4 0 1 1 1 0.9 0.2 1.3 1.0
5a 5 5 4 2 2 0 1.5 0.6 2.0 1.7
6. 0O 0 2 210 4 2.9 4,2 4,0 3,5
7R 0O 0 1 &4 6 4,0 4.6 3.7 3,7
8o 1 0 1 9 6 1 3.2 3.4 3.6 2.7
9. O 1L 0 6 9 2 3.6 3.8 3.7 3.3
10, 1 0 0 311 3 3.8 3.8 4,1 3.3
11. 11 3 5 8 1 3.3 4.0 3.6 2.3
12, 0O 2 1 210 3 3.6 4,2 4,0 2.7
13, 1 01 5 6 4 3.4 4,0 3o4 2.8
14, 14 40 0 0 0 0.2 0,2 0.3 0.2
15, 3 3 4 2 3 2.4 3.0 1.9 2.7
16, 01 3 6 6 2 3.3 4,2 3.0 2.8
17, 01 3 7 5 2 3.2 3.4 3.1 3.1
18, 0 0 2 6 7 3 3.6 4,0 3.7 3,1
19, 17 1 0 0 0 © 0.0 . 0.0 0.0 0.2
20, 11 4 2 0 1 O 0.7 1.4 0.6 0.2
21, 1 02 2 9 4 3.7 4,0 4,0 3.0
22, 1 02 1 8 6 3.8 44 4,1 3,0
23, 1 01 3 6 7 3.9 4,2 2.9 3.1




CHAPTER VI
CONCLUSIONS

The impr©vemeht in mathematics, as in every other area,
should be a continuing process that never terminates. To
designate and delineate a fixed program at any level would
be a wmistake. There must always be room to try new approaches
and content. The teacher must have sufficient knowledge and
freedom to foster the students® curiosity, and to encourage
the students' fascination and understanding of the role of
mathematics. A broad perspective is degirable to properly
dir@ét the individual as he experiences and discovers the
realm of mathematies,

ooo 1t is hoped that everyone recognizes good mathemat-
ies education to be a sequential experience., Thus, the teach-
er abt any particular level should have an understanding of
the maﬁh@mati@g which will confront the student in subsequent
conrses; and as a consequence, it 1s desirable that a teacher
at a given level be prepared to teach at least some succeed-
ing courses.

matices converge toward set theory. In a systematic, deductive

l“ﬁ@@@mm@nﬂ&tion of the Mathematical Association of Amer-
ica for the Training of Teachers of Mathematies,” American
Mathematical Momthly, Vol. 67, No. 10 (December 1980), p. 72,
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development of mathematics, all constructions rédiate out
from set theory like the spokes of a wheel from a hub., Set
theoretic concepts are as necessary to mathematical discourse
today as common nouns are to ordinary discourse., The analogy
invoked by this remark, by the way, is not a superficial omne
in wiew of the fact that every common noun defines a seto"'2

The introductory remarks are intended to stress two points.
First, no fixed boundaries can or should be drawn on the role
@fhsets in the study of elementary arithmetic. Rather, limi-
tations should depend on the mathematical maturity of the in-
dividual ané whether the language and operations of sets con-
tribute to the concepts being introduced., Although the study
of set theory, divorced from other areas, is an interesting
and important endeavor, it is not appropriate to the elemen-
tary arithmetic program. Second, the ideas of sets are un-
avoidable in elementary arithmetic. Whether the specific
term "set" is used or not when atbtention is called to a col-
leetion, then, the idea is present. It seems only logical
that if terminclogy is available appropriate to the elemen-
tary program and useful throughout the sequential develcp-
ment of advanced mathematics, then, it should be used.

For the primary grades, both the term "set" and the braces
used to symbolize set appear in some of the current texts.
Sets sare used to ald the student with "greater than" and "less

than' and to strengthen the understanding of number. A% least

gIrving Adler, "The Changes Taking Place in.ﬂathematicsg“
(Address delivered June 19, 1961, at Conference on Mathemat-
ies), U, 8, 0ffice of Education, Washingbon, D.C.
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one text93 uses the idea of union to define addition and
subtraction., Texts which introduce the term "set" in the
primary seem to avoid "subset."” It is perhaps considered
too difficult for the sﬁuden’co The students work with sub-
sets throughout the primary program, however, -and the author
quéstions its omission from the content. At least one text
bresents the word and idea of inters'ectio;:t4 at the primary
level., The students may well have sufficient experience
with the concept to grasp this term readily (eogo%‘consider
the "intersection" of two roads or the intersection bfﬂthe
set of boys who like football with the set of those who like
basketball). The symbol for union is introduced and used
extensively in another text5 written for gradeé one and two.
If one surveys contemporary texts”at various levels, however,
it will be found that initial introductions to thege terms
can be found 1n 1ntermed1ate$ secondary, undevgraduate9 and
graduate text books. This should not be interpreted to mean
that the terminology is inappropriate to the primary level,
but rather that the authors are aware that tréditional texts
have not previously included such am’introductipno

Hence, it appears that the language and oﬁerations of

sets have appropriate uses at every level of mathematics.

5Patrlck L. Suppes, Sets and Numbers9 Grades 1 and 2
(New York, 1963).

&Newton Hawley and Patrick Buppes, Geometry for Prlmarz

Grades, Book 1 (San Francisco, 1961), p. 14,

2Ipid.
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Teachers must make decisions concerning the amount and
usefulness of sets in a given situation.

Sets have a highly useful role in the introduction of
the abstract idea of "number." ;Thequffer a method for
explaining the operations of counting, addition, and mui-
tiplication. Operations with sets have analogles to the
relations of "ereater than," "less than," "equal to," and
"equivalent to." The relations of the set of real numbers
to its various subsets can be expressed by this 1aﬁguageo
-The language and Qperations of sets serve to unify number
and geometric concepts. Finding commen factors and mul-
tiples are conveniently interpreted by the use of oper-
ations of sets. Place valﬁe in numeration can be explained
by the use of sets. Pattern and structure in mathematics
are more conveniently and precisely discussed by the lan=-
guage of sets. The terminoleogy of sets serve t@ add con-
tinuity and unification throughout the domain of mathematics.
The teacher should not attempt to bend the mathematics to
fit the languagé9 but every effort should be made to use
such tools when they can be of service, The power of con-
sidering a set of abstract objects and the properties under
a given operation must be stressed again and again. In
this lies the process of generalization, and the methods of
interpreting other mathematical systems on the basis of
familiar systems. (For example, if an individual under@.
stands that the set of counting numbers are commutative
under addition, it should be far less difficult to define

for him the same property for the rationals.) The lan-
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guage and operations of sets offer a convenient and
efficient avenue for probing the level of mathematical
maturity of the student without simultaneouslymisolating
him from familiar ground .

A careful survey of contemporary texts reveals that
some fail to consistently make use of the language.and
operations of sets in situations where they have obvious
applications. This weakens the unifying advantages of sets.
Familiarity should increase the powers of simplifiecation
and clarification,

This study and the authoritative opinions of the
evaluating jury offers support to the author's premise
that the language and operatioms of-sets have value in
the presentation of arithmetic at the elementary level.
The writer recommends, however, that actual classroom
studies be made to evaluate the immediate and longfrange
rgsults. Comparisons need to be made between traditional
approaches and ceontemporary approcaches to specific topics.
Longitudinal studies are needed toc determine the influence

such presentations have on success in subsequent studies.
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REQUEST FOR JURY PARTICIPATION

August 7, 1963

(Inside Address)

Dear

I am currently doing a study on the role of the
language and operations of "sets" in the elementary
arithmetic program. This is a part of my thesis to-
ward a degree at Oklahoma State University.

Because of your prominence in the field, my
committee has suggested that I ask you to comment on
what I have written. The comments will be in the form
of a check-type questionnaire, with space for any
suggestions you might care to make. It will not be
necessary for you to return any material other than the
brief questionnaire. The reading consists of approxn
imately fifty-eight, double-spaced pages.

Would you please indicate on the enclosed postal
card whether or not I may have the privilege of sending
you the material.

Yours very truly,

Raymond McKellips
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QUESTIONNAIRE

(Graph below scale added after summary of responses was made)

The following statements pertain to the material on'the’

role of sets in the elementary arithmetic program. Please
indicate by encircling the appropriate number after each
statement the extent to which you agree with the statement
according to the following scale:

Disagree

Only slight agreement
Some agreement
Considerable agreement
Highly agree

Very highly agree

MiHEFWNOHO

Example: Too great an emphasis is sometimes placed on
rule memorization.
0123®5

This would mean that you highly agree with the statement.

-

The presentation would encourage the use of the language
and operations of sets in teaching arithmetic.

2 12 2 4 g

The scope is adequate for an initial introduction.

012 i 4 g

The material is appropriately written for the elementary

teacher,
Q12 2 4 g

More material of greater depth should be included.

o 1 2_ g 4 g

The author has overestimated the mathematical under-
standing of the elementary teacher.
012 g 4 g

The ideas are organized in a sufficiently logical

sequence.
012 2 4 g

The concepts are accurately presented..
| 01234

Assuming no prior introduction, the material has enough

interest to encourage further reading.
01l2 2 4 g
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11,

12,

13,

14,

15,

16.

170

18.
19,
20,
2l.

22,

23,

75

There is sufficient stress on the use of sets in ad-
vanced study.

O L2 2.4 O

The thesis gives a sufficiently broad view of the role
of sets in arithmetic.

Enough examples are included to clarify concepts°
012 4

The author has shown how sets add unification to ar1th=
metic,

‘The thesis indicates how sets clarify and simplify

arithmetic.

The development is too "wordy."

01234
e 2.4 5

Greater elaboration is needed.

An adequate skeletal outline for an introduction to the
real number system is included.

Oml 2w’w¢;

The interrelations of the various number systems are
sufficiently indicated for the proposed audience.

012 g 4 ?
012 2 4 %

The author has applied sets to topics where they are
not applicable,
Ql2 345
L

The development has adequate continuity.

The presentation should incorporate greater use of

symbolism.
012 % 4 %

The use of symbols is adequately defended.
012 4

The conclusions seem valid.
012 3%4

The "format" is appropriate.
012 4
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