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Abstract

Active noise and vibration control has been the subject of intense study in the last
two decades due to the increased speed m digital signal processors and the technological
development and manufacture of smart materials. This dissertation analyzes an active
contro] system using adaptive digital signal processing techniques and applies it to the
vibration reduction of hard diék drives (HDD). Specifically, this work focuses on the
implementation of the adaptive algorithm in the frequency and sub-band domains for
performance improvement.

In this dissertation, selective adaptation in the frequency domain is proposed to
alleviate the constructive interference associated with a feedback active control system. A
new sub-band adaptive filter architecture without a signal path delay is proposed, and the
associated adaptive algorithm is derived. This delayless sub-band algorithm can be
applied to the active control systems to improve the convergence rate and trade-off the
performance from the various sub-bands. The resulting side effect of the error path delay
of the analysis filter bank is analyzed, and two compensation methods are proposed to
increase the performance. The frequency domain method and the sub-band
decomposition technique are then combined to improve the overall performance. The
single-channel active control system is extended to the multiple-channel active control
system to reduce the vibration of complex mechanical structure. The optimal
performances of three variants of the feedback control system have been derived in terms
of the correlation coefficients of the primary disturbances and the impulse responses of
the secondary paths. Real time and simulation results are performed to verify the

efficiency of the proposed algorithms and techniques.
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Chapter 1

Introduction

Sound and vibration have conventionally been controlled by passive methods that
involve absorbing the disturbance or blocking its transmission. These passive methods
generally do not work well at low frequencies. This is because at these low frequencies
the wavelengths of the disturbance are large compared to the thickness of a typical
acoustic absorber or structure. Paul Lueg first described the idea of active control in
1936 [1]. The basic idea of active control is to use a number of controllable “secondary”
sources to produce an acoustic wave or vibration that is exactly out of phase with the
primary disturbance and superimpose them, ’thereby resulting i destructive
interference. Although the principle of active control dates back to the 1930’s, and
manually adaptive analogue active control systems were developed in 1950°s [2], the
modern era of active control was spurred by the availability of high speed digital signal
processors which allow adaptive digital controliers to be implemented at a relatively
low cost. Active noise and vibration control have been the subject of intense study and
considerable research activity in the last two decades [3]-[8]. These methods have
already found commercial application in active headsets and broadband sound control
in ducts. With the technological development aﬁd manufacture of smart materials such
as piezoceramic actuators and sensors, active vibration control also has some significant
potential application in other areas. Active noise control and active vibration control

share almost the same principles, algorithms, system structures and other main issues.
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One of the main differences is that they generally use different sensors and actuators.
Microphones and loud speakers are the common sensors and actuators for active noise
control while smart materials are used for active vibration control. This dissertation
aims to actively reduce the vibration of hard disk drive (HDD) and discusses the
potential problems in such a system, as well as their possible solutions. Specifically,
this dissertation proposes the “selective adaptation in the frequency domain” method to
alleviate any constructive interference and a “sub-band adaptive algorithm” for active
control systems that avoids unnecessary signal path delay. The proposed sub-band
algorithm has the flexibility to trade-off the performance from the various sub-bands. It
also achieves a better convergence compared to the full-band counterpart. The
organization of this dissertation is as follows.

Chapter 2 reviews the basic technologies of single-channel active control systems.
It introduces the principles and performance limitations of the feed-forward active
control system and the feedback active control system. Next, the on-line identification
of the secondary path transfer function and the effect of the estimate error are analyzed.
These technologies are then applied to reduce the vibration of the HDD at a single
position. - A method that combines the feed-forward and feedback system to form a
hybrid active control system is discussed last. Real-time and simulation results are
presented throughout the discussion.

Chapter 3 discusses the implementation of the adaptive algorithm in the frequency
domain to alleviate the constructive interference that might occur in the feedback active
control systems. Another purpose of implementing the algorithm in the frequency

domain is to increase the convergence rate. Theoretical analysis is performed to show
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how the eigenvalue spread of the signal correlation limits the convergence rate and why
the frequency domain algorithm can improve the convergence rate by reducing the
eigenvalue spread of the input autocorrelation matrix. Simulation and real time results
using the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform
(DWT) are provided to demonstrate the efficiency of the frequency domain methods.

Chapter 4 contains a discussion of methods that implement the least-mean-square
(LMS) algorithm in sub-band architecture. Since the ideal signal in the active control
system 1is not directly available and since the active control system generally cannot
tolerate extra delay along the signal path, the sub-band structure used in the system
identification, or in echo canéellation, cannot be directly applied to the active control
system. Instead, a new delayless sub-band filter architecture is derived in this chapter.
The error path delay resulting from the analysis filter band will decrease the
convergence performance in general. Methods that restore the convergence performance
using error path delay compensation are proposed. A new structure of combining the
frequency domain method and the sub-band decomposition technique is proposed and
demonstrated in the last part of this chapter.

Chapter 5 extends the single-channel feedback control system to the multiple-
channel feedback control system to reduce the vibration of complex mechanical
structures and/or the acoustic noise inside the enclosures caused by the vibrations. The
LMS algorithm for the multiple-channel system is developed. On-line identifications of
the multiple secondary path transfer functions are discussed in detail. This chapter also
derives the optimal performance of a multiple-channel feedback control system in terms

of the correlation coefficients of the primary disturbances and the impulse responses of
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the secondary paths. Three variants of the feedback control systems have been
considered. Performance and robustness are two important aspects of the feedback
control system. How to improve the stability of the feedback control system by
penalizing the control effort in the cost function is discussed with the examples.

Chapter 6 consists of summary and conclusions followed by appendix A and B.
Appendix A introduces the experimental environment of the active vibration control
system for the HDD. Appendix B derives the frequency sampling structure to efficiently

implement the discrete cosine transform.
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Chapter 2
Single-channel active control systems

This chapter reviews the basic technologies of a single-channel active control
system that has a single error sensor and a single secondary source. Active control
systems can be classified as feed-forward active control systems and feedback active
control systems depending on whether a reference signal that provides ‘“early”
information about the primary disturbance is available. Section 2.1 and Section 2.2 will
discuss these two systems respectively. The existence of the secondary path transfer
function in active control systems has a direct effect on the adaptive algorithm and the
overall performance. Section 2.3 focuses on the identification of the secondary path
transfer function, as well as related issues. Section 2.4 considers the combination of a
feed-forward control system with a feedback control system for performance

mmprovement. Real time and simulation results accompany the discussion.

2.1 Adaptive feed-forward active control systems

A single-channel feed-forward active noise control (ANC) system shown in Figure
2.1 is used to explain the principle of the feed-forward active control system. The basic
ANC system shown in Figure 2.1 can be described in a system identification
framework. Consider a noise source at the end of a duct. The undesired noise is
measured by a reference microphone placed upstream from the point to be controlled.

The reference signal x(n) is filtered through an adaptive filter and used to drive a

Chapter 2. Single-channel active control systems 5



source [P Primary noise

Reference | Actuator Frror sensor

yn)

W e e(n)

Figure 2.1 Single-channel feed-forward active noise control system in duct [14].

secondary source such as a loudspeaker to cancel the noise in the duct. The reference
signal x(n) provides “early” information about the primary noise before it reaches the
canceling loudspeaker. The residual noise is detected by an error sensor and is used to
update the coefficients of the adaptive filter to minimize the residual noise. This active
noise control system can be cast in an adaptive filtering problem shown in Figure 2.2.
The control signal y(n) must be produced from the electrical output signal using a
loudspeaker. Also, an electrical error signal must be obtained from the residual acoustic
noise using an error microphone. Therefore, it is necessary to include the transfer
function from the adaptive filter output to the summing junction, S¢z), and the transfer
function from the summing junction to the error signal, R(z), in the adaptive filtering
problem in Figure 2.2. For the example of noise reduction in duct shown in Figure 2.1,
S(z) generally represents the frequency responses of the D/A converter, the power
amplifier, the actuator, and the acoustic path from the actuator to the summing junction.
R(z) represents the frequency responses of the acoustic path from the summing junction

to the error sensor, the preamplifier/signal conditional, and the A/D converter.
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T | Plant P(z) RO >
« S(z)
Control | Y
P Filter W(z)

Figure 2.2 Block diagram of the feed-forward active control system.

It can be seen from Figure 2.2 that the Z-transform of the error signal is
E(z2)=X(z)[P(z)-W(z)5(z)] R(z) 2.1)
Therefore, the purpose of the control filter W(z) is to model the plant P(z) and invert the
secondary path transfer function S(z) at the same time. When P(z) and/or S(z) are time-
varying, we need W(z) to be adaptive. The overall limiting causality constraint in the
broadband feed-forward control system is that the delay of the control path W(z)S(z)
must be less than the delay of the primary path P(z). When this criterion is met, the
performance of the feed-forward control system pﬁmarily depends on the coherency of
the vreference signal x(n) and the primary disturbance at the summing point, d(n). This is
a measuré of the noise and the relative linearity of x(n) and d(n), or how well the
physical plant can be modeled by a linear filter.
Since both the primary path and the secondary path have R(z) in common, it is
convenient to absorb this term into the model P(z) as well as into the secondary path
S(z). Doing so is equivalent to redefining the summing junction to be in the electrical

domain rather than in the acoustic domain. We call this new S(z) the secondary path
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transfer function and it is this transfer function that needs to be identified in the active
control system.

The LMS algorithm is a widely used adaptive algorithm because of its
computational efficiency and simplicity. Since the secondary path transfer function S(z)
follows the control filter W{z), the conventional LMS algorithm must bé modified to
ensure convergence. Otherwise, the result is likely to be an unstable system. This
instability arises because the signal from the control filter W(z) suffers a phase shift in
passing through the secondary path S(z). The instantaneous measurement of the gradient
of the mean square error with respect to the coefficient vector, x(n)e(n), is thus no
longer an unbiased estimate of the true gradient. To solve this problem, the so-called
filter-X LMS (FXLMS) was proposed by Morgan [9] in 1980 and independently by
Widrow [10] in 1981. The FXLMS algorithm introduces a similar phase shift into the

reference signal path before the gradient is formed. This is achieved by an electrical
filter S‘(z) which models the response of the secondary path S(z) to generate a filtered
reference signal x'(n). The filtered reference signal is then multiplied by the error

signal to form the gradient estimate as shown in Figure 2.3. The control filter W(z) is

then updated as
w(n+1) = w(n) + ' (n)e(n), (2.2)
x'(n) = 5(n) * x(n) (2.3)
and
e(n) = d(n) - s(n) *[w’ (n)x(n)] 24

Chapter 2. Single-channel active control systems 8



X(n) d(n) e(n)
——] P@) —b

A y(n)
v’*—’ W(z) +—| S(z)
S(2)
X' (n)

——p LMS |«

Figure 2.3  Block diagram of the feed-forward active control system using the
FXLMS algorithm.

where §(n)is the estimated impulse response of the secondary path filter, S (z), and *

stands for the convolution operation.

2.2 Adaptive feedback active control systems

A feed-forward active control system requires a reference signal to provide advance
information about the primary disturbance. In some situations, it is not practical to sense
or internally generate a coherent reference signal, such as in the case of vibration
reduction for the HDD, where only the residual error signal is available. Consequently,
this kind of active control system falls into the framework of the conventional feedback
control scheme (refer to Figure 2.4). The transfer function from the primary disturbance
D(z) to the residual error E(z) is

E(z) 1

= . (2.5)
D(z) 1+W(2)$(z)

Chapter 2. Single-channel active control systems 9



d(n)
+
Y(n) = e(n)
‘-—V W(z) —p S(2) (4 -

Figure 2.4 Block diagram of a single-channel feedback control system.

The response of S(z) can introduce a considerable phase shift that increases with
frequency. As the phase shift in the secondary path approaches 180°, the desired
negative feedback becomes positive feedback, and the control system can become
unstable. If we define

W(e’)S(e’?) = G(e’”)e’* (2.6)

where G(e’°) = }W(ej‘“)S (e’ )I , then the design of a feedback active control system is

to find a W(e’®), such that the net gain G(e’”) is maximized when the phase shift
¢(w) 1s in the region

-180°<h(w)<180° 2.7
for a given secondary path S(e’*). When S(e’*) and D(e’) are time-varying, the
control systems need to be adaptive. The adaptive algorithms require a reference signal
and a residual error signal for updating the weights. In the conventional feedback
control systems shown in Figure 2.4, there is no reference signal and the primary
disturbance d(n) is also not available during the operation of active control since it is
intended to be canceled by the secondary source. Although d(n) is not directly available

in feedback control systems, it can be synthesized or regenerated based on the residual
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error e(n), the control signal y(n) and knowledge of S(z). This was first suggested by
Newton in [46] and Eriksson {11] applied it to the adaptive feedback active control
system, which estimates the primary disturbance d(n) and then uses it as the reference

signal for the adaptive algorithm. This is also called the Youla transform in [6]. When
S(z) is identified as S (z), the primary disturbance d(n) can be regenerated as

D(z) = E(z) + Y (2)8(2) (2.8)
Using d (n) as the reference signal, a complete adaptive feedback active control system
can be viewed as the adaptive feed-forward system that is illustrated in Figure 2.5.

If the secondary path transfer function can be identified accurately, i.e., s (z2)=5(z),

then x(n)=d(n). Consequently, the adaptive feedback control system shown in Figure
2.5 can be transformed into an equivalent adaptive feed-forward control system as
shown in Figure 2.6. The overall transfer function from d(n) to e(n) is

E(z)
D(z)

=1-W(2)S(z) (2.9)

and the purpose of the adaptive filter, #(z), is to try to invert S(z).

If the step size of the LMS algorithm is small, the adaptive filter W{z) can be
commuted with S(z) [12]. If we further assume that S(z) can be modeled as a pure delay,
then the adaptive feedback control system of Figure 2.6 is ’identical to the standard
adaptive forward prediction-error filter. Then, the performance of the adaptive feedback
control system depends on the predictability of the primary disturbance d(n). For a

stationary discrete-time stochastic process, the adaptive forward prediction-error filter is
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+
x(n) a y(m) - ~ ¢(n)
T‘P W(z) T S(z) + :

5(2) $(2)
(1)
L IMS L
" +
d(n) +
+

Figure 2.5 Broadband adaptive feedback active control system using the FXLMS
algorithm.

d(n) , e(n)
P
n ‘
oA y(n) )
W(z) S(z)

4 s

.5:(2) f
x'(n
P! LMS |4

Figure 2.6 Adaptive feedback control system takes the form of adaptive feed-forward
control system if S (2)=S8(¢z).

intimately related to the autoregressive modeling of the process [13]. For a predictor

of order N, the filter weight w, is related to the AR parameter a, as follows:
w, =—a,,k=12,.,N. (2.10)

In other words, what the adaptive feedback active control systems have reduced is that

part of the primary disturbance that can be modeled as an AR(N) process. In the general
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case where S(z) is not a pure delay and S(z) # S (z), the performance of the adaptive

feedback control system depends on the accuracy of representing S(z) by S’(z) and the
predictability of the primary disturbance filtered by the estimated secondary path

transfer function, § (z).

2.3 Identifying the secondary path transfer function

It can be seen from the previous discussion that the secondary path transfer
function must be identified. For adaptive feed-forward control systems, we need to
place S (z) into the weight updating path to compensate for S(z). Then, the FXLMS
replaces the LMS algorithm to ensure that the compensated system is stable. For
adaptive feedback control systems, S (z)is required to regenerate the primary
disturbance and to compensate for S(z) during the weight updating.

Estimation of S(z) can be performed either off-line or on-line, depending on
whether S(z) is time invariant. The off-line identification of S(z) can be performed using
a separate LMS adaptation process during an initial training stage. Because the 5(z) in
our HDD case is time-varying (probably due to changing temperatures and aging), we

need on-line identification [14]. On-line identification of S(z) means the coefficients of
the digital filter S(z) are adjusted on-line by one more adaptation processes to

continuously model the secondary path transfer function S(z) during the active control.
There are two important, but mutually exclusive, requirements associated with the
on-line secondary path modeling. The first is that S(z) should be estimated accurately

regardless of the controller transfer function W{(z). This independence property will

Chapter 2. Single-channel active control systems 13



ensure that the overall active control system is robust. In favor of the independent
identification of S(z), it would be preferable to use a separate excitation signal to drive
S(z). The second requirement is that the on-line 1dentification should not intrude on the
operation of the active control system. In favor of the intrusion requirement, it would be
preferable to identify S(z) using the control signal y(n) which already exists in the
system. If y(n) serves as the excitation signal for the modeling of S(z), a signal-
dependent solution results, and so S(z) is then biased [14]. To drive S(z) separately, we
need an additional signal. White noise is an ideal broadband excitation signal, because it
has a constant spectral density at all frequencies. Figure 2.7 shows the adaptive
feedback control system with on-line S(z) identification using the additive white noise.

With the technologies discussed, we may implement a single-channel feedback
control system for the HDD. Figure 2.8 gives the schematic diagram of the connection.
Figure 2.9 is a photograph of the experimental setup for the single-channel control
system. A TMS320C44 based DSP board is used as the controller in the experimental
system, and an A4D4 Omnibus module is used to provide the A/D and D/A channels.
Appendix A describes the details of the experimental environment.

The adaptive active control system requires the use of a sample-by-sample
processing mode. Only a 10 kHz sampling rate can be achieved under the M44/A4D4
environment for an 8" order controller and secondary path filter. Figure 2.10 shows the
power spectral densities (PSD) of the original vibration (solid line) and the vibration
after the active control is on (the dotted line) at the point where the error sensor is
located. It can be seen that more than 5 dB of reduction is achieved around the 600 Hz

and 800 Hz modes. It is mentioned in the previous section that the performance of the
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Figure 2.7 Adaptive feedback control system with on-line S(z) identification using the
additive white noise as the excitation signal.

- feedback active control system depends on the accuracy of representing S(z) by S(z)

and the predictability of the primary disturbance filtered by the estimated secondary

path transfer function, § (z). Specifically, the performance is determined by the

following factors:

The mode shape of the original vibration

The frequency response of the secondary path transfer function
The sampling rate

Order of the controller

Estimation error of representing S(z) by S (2)

The variance of the white noise used for on-line identification
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Figure 2.8 Schematic diagram of the single-channel feedback active control system
for the HDD.

Figure 2.9 Single-channel feedback active control system setup for the vibration
control of the HDD.
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Vibration reduction in real time with the FXLMS
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Figure 2.10 Performance of the active vibration control in real time using the FXLMS

algorithm with an 8"-order controller and secondary path filter.
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We cannot change the mode shape and the secondary path transfer function at will,
but fhey are closely related to the sampling rate. Since the original vibration of the HDD
has frequency components as high as 10 kHz, the aliasing resulting from the low
sampling rate makes the sampled vibration more like white noise, hence degrading the
performance of the prediction. Therefore, increasing the sampling rate will improve the
performance of the feedback active control system. To look at the impact of the
sampling rate on the performance, we sampled the same vibration at 16 kHz using the
hardware trigger mode (not sample-by-sample processing). The solid line in Figure 2.11
shows the PSD of the original vibration. It can be seen that the vibration is less white at
this high sampling rate, hence it can be better predicted. The dotted line is the simulated
result of the PSD using active control under the same secondary path transfer function
and the same controller order. This simulation demonstrates that a much better vibration
reduction could be achieved if the sampling rate were to be increased.

The additive white noise used for on-line identification has a direct impact on the
performance because it appears in the residual error. Hence, it degrades the overall
performance. Theoretically, this intrusion can be made arbitrarily small by choosing a
low-level excitation signal, but a very low-level white noise compared to the primary
disturbance will result in the divergence of S (z) due to finite-word length effects and
measurement error. In practice, a moderate level of white noise is required, which
slightly increases the residual error e(n). To see this experimentally, Figure 2.12 shows
the impacts of different white noise levels on the performance of the active control
system using the FXLMS algorithm, where the original vibration is in the range of —10

mV to 10 mV, and the white noise is in the range of -0.25 mV to 0.25 mV, -1 mV to 1
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mV, -4 mV to 4 mV, resp‘ectively. Figure 2.13 shows the crosscorrelation between the
residual error and the white noise with different levels. It can be seen that the white
noise with a level 10 dB down from the original disturbance, i.e., in the range of -1 mV

to 1 mV, does not degrade the performance very much while it is quite distinguishable

in the residual error.

Vibration reduction at 16 kHz sampling rate (simulation)
20 T T T T

i T T
: 7 4 psd of original vibration

..... psd with active control

16+

10+

Power spectral density (dB)
(4]
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0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Figure 2.11 Simulation result of the vibration reduction at a 16 kHz sampling rate.
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Figure 2.13 Crosscorrelation between the residual error and the white noises with
different variances.
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Th¢ estimation error of S(z) affects the maximum stable value of the step size of the
FXLMS algorithm. This can be shown from the FXLMS algorithm itself [14]. Taking
the expected value of Equation (2.2) results in the mean adaptive weight difference
equation

wr+) = -uRywmn)+up, (2.11)
where
R = E[x'(n)x'" (n)] (2.12)
is the filtered reference autocorrelation matrix, and
p=E[d(n)x'(n)]. (2.13)
If S$(Z)#S(Z), then the mean weight vector difference equation, Equation (2.11), is
modified to
w(n+1)=[I ~ u(R~ R)w(n) + p (2.14)
where
R =E[x'(m)X" (n)] (2.15)
is the correlation matrix between the filtered reference signal vector x'(n) defined in
Equation (2.3) and the differential filtered reference signal vector
x(n)=5(n)* x(n), (2.16)
where
s(n)=35(n)—s(n) Q.17
is the difference between the estimated and actual secondary-path filter. If §(n) = s(n),

R=0and the original FXLMS stability bounds apply. However, errors in the

estimation of s(n) will alter the eigenmodes of Equation (2.14), thus affecting the
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stability bound of the step size y . Equations (2.15)-(2.17) show that any error in the
estimation of the magnitude of the transfer function will proportionately change the
magnitude of the autocorrelation matrix, and hence will simply scale the ideal stability

bound accordingly. It has been shown [15] that stability is assured for phase errors 6 in

the range of —90° <6 <90°. However, there is no simple relationship between the
modeling error and stability within this stable region.
A final issue associated with the on-line identification using a separate white noise

1s its slow convergence rate. It is derived in [14] that it would take 100 times longer for
S (z) to converge in the on-line method as it would take to converge using the off-line
one. Therefore, some supplemental measures, such as identifying S(z) off-line first and

using the result as the initial value for on-line identification might be required for some

applications where convergence speed is important.

2.4 Hybrid active control systems

It was mentioned in Section 2.2 that the feedback active control system can only
cancel the part of the primary disturbance that can be predicted after it has been filtered
by the secondary path transfer function. On the other hand, the feed-forward active
control system can only cancel the part of the primary disturbance that is correlated with
the reference signal. In some applications only paﬁ of the disturbance is correlated with
the reference signal. Then, only this part can be reduced by the feed-forward active
control system. In these situations, we can combine the feedback control system and the

feed-forward control system to get a “hybrid algorithm™ with improved performance.
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This section describes the performance of the “hybrid” algorithm compared with the
pure feed-forward algorithm and the feedback algorithm.

Figure 2.14 illustrates the hybrid active control system that is composed of a feed-
forward system using the FXLMS algorithm and a feedback system using the FXLMS
algorithm. The secondary signal (or control signal) y(n) is generated using the output of
both the feed-forward controller F(z) and the feedback controller B(z). The combined
controller W(z) has two reference signals: the reference signal x(n) and the estimated
primary disturbance d (n). Filtered versions of the reference signals x'(n) and d '(n)
are used to adapt the coefficients of the filters F(z) and B(z).

To simulate the performance improvement of the hybrid system, it is assumed that
the original vibration d(n) consists of two parts. The first part is called the observable
part that can be observed by a reference sensor in advance. In Figure 2.14, x(n) is the
reference signal, and x(n) #p(n) is the observable part in the original disturbance d(n).
Here, p(n) is the impulse response of the transfer function from the reference sensor to
the error sensor. The second part of the original disturbance is called the unobservable
part that is not observed by (or correlated to) the reference sensor. u(n) is used to denote
the unobservable part in Figure 2.14. In the simulation, the real vibration signal of the
Seagate Technology Inc. Barracudal8LP disc drive sampled at 10 £Hz is used as the
reference signal x(n) and the real vibration signal of the Barracuda9LP disc drive
sampled at 10 AHz is used as the signal u(n) (Seagate Technology Inc. gave us these two
models of HDD for experiments). Figure 2.15 shows the power spectral densities of

x(n)*p(n), wu(n) and their summation d(n), respectively. With these assumptions, the
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Figure 2.14 Hybrid active control scheme using the FXLMS algorithm.

feedback control system, the feed-forward control system and the hybrid control system
are used to cancel the original vibration d(n) separately.

Figure 2.16 shows the power spectral densities of the residual error signals
achieved by these three control systems. To compare the performance fairly, all the
parameters in these three algorithms remain the same. It can be seen from Figure 2.16
that the feed-forward control system can only reduce the part in the original that is
observed by the reference sensor. The feedback control system can only reduce the part

that can be predicted (the predictable components come from both x(n) and u(n)
because the restored vibration d (n) serves as the reference signal in the feedback

control system). On the other hand, the hybrid control system greatly outperforms both
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Figure 2,15 Power spectral densities of the original vibration d(n) (solid line) and its
two components —~ x(n) *p(n) ( dashdot line) and u(n) (dotted line).
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PSD reduction using three different algorithms
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Figure 2.16  Power spectral densities of the residual error signals using the feed-

forward control, the feedback control and the hybrid control, respectively.
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the feed-forward system and the feedback system. It reduces both the predictabie
components and the part that is observed by the reference sensor. It should be noted that
the actual performance that can be achieved by the hybrid control system depends on
the amount of the disturbance that can be observed by the reference sensor as well as

the transfer functions Pz and S(z). A randomly  set

P(z)=0.88-.44z7"-22z7 - 11z7> +.33z* and the real identified
S(z)=1.15-.577z"" ~.161z7 ~.205z7 ~.189z" ~ 34727 +.4462™° - 249z are used
in the simulation. The order of the feed-forward controller F(z) is set to 4 and the order
of the feedback controller B(z) is set to 6, because our current hardware environment
can only support such a short controller order for a reasonable sampling rate (i.e., 10
kHz).

Another simulation is done to see the performance differences of the hybrid, feed-
forward and feedback algorithms when all of the original vibration is observed by the
reference sensor, that is, when u(n) does not exist in Figure 2.14. It is expected that the
hybrid algorithm would not outperform the feed-forward algorithm greatly since all the
original disturbance is correlated with the reference signal. Consequently, the feed-
forward controller contributes more vibration reduction in the hybrid algorithm. Figure
2.17 shows the power spectral density of the original vibration (x_p(n) only) and the
power spectral densities of the residual errors achieved by these three algorithms. It is
shown that the hybrid algorithm does not outperform the feed-forward algorithm too
much as it does in Figure 2.16, but it still outperforms the feed-forward algorithm. This
is because the residual signal generated by the feed-forward controller is not a white

noise and it can still be predicted in some degree. It can be concluded that the hybrid
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algorithm is superior to the pure feed-forward algorithm when computational

complexity is not at issue.

PSD reduction using three different algorithms
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Figure 2.17 Power spectral densities of the residual error signals using the feed-
forward control, the feedback control and the hybrid control, respectively, where all the
original vibration can be observed by the reference sensor.
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Chapter 3

Implementing the FXLLMS in the frequency domain

Even though different adaptive algorithms exist that can be used for active control
systems, the LMS algorithm is the one most widely used because of its computational
efficiency and robustness. One of the main drawbacks of the LMS algorithm is its low
convergence rate. If the convergence rate of the adaptive algorithm can be increased, the
overall performance of the active control systems can be improved accordingly.
Section 3.1 analyzes how the eigenvalue spread limits the convergence rate and shows
why implementing the FXLMS in the frequency domain can improve the convergence
rate. Section 3.2 compares the convergence properties of the algorithms implemented in
the time domain method and in the frequency domain using the discrete cosine
transform (DCT) and the discrete wavelet transform (DWT).

Another problem in the adaptive feedback control systems is the constructive
interference due to the modeling error. Section 3.3 explains why the constructive
interference occurs in the feedback control systems and proposes our selective
adaptation in the frequency domain to alleviate the constructive interference while

keeping the destructive interference at other frequencies.
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3.1 Improving the convergence rate in the frequency domain
3.1.1 Eigenvalue spread limits the convergence rate
For steepest decent algorithms such as LMS, let R be the autocorrelation matrix of
the input signal to an adaptive filter of order N, W(z). R can be decomposed as
R=040" . 3.1
The matrix @ has as its columns g, , an orthogonal set of eigenvectors associated with

the eigenvalues of the matrix R. The matrix A is a diagonal matrix and has as its
diagonal elements the eigenvalues of the autocorrelation matrix R. These eigenvalues,
denoted as A,,4,,...,4,, must all be positive and real. Let w be the tap-weight vector
and define ¢(n) = w(n)-w, as the weight error vector at time instant n, where w, is the
optimal value of the tap-weight vector, as defined by the Wiener-Hopf equation
Rw,=p. (3.2)
The vector p is the cross-correlation vector between the tap-input vector x(n) and the
desired response d(n). It can be easily shown that w is updated along the negative
gradient vector as
wn+1)=whn)+ul p-Rwmn)], n=0,12,... (3.3)
Eliminating p between Equation (3.2) and (3.3) and rewriting the result in terms of ¢(n),

we get
cn+1)=(I-uR)cln). 3.4)

Substituting Equation (3.1) into Equation (3.4), we get

ctn+1)=(I-uOAQ" Je(n). (3.5)

Defining a new set of coordinates as
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v(n)=0"¢c(n) = Q" [w(n)-w,] (3.6)

and premultiplying both Sides of Equation (3.5) by @7, we get
’v(n+1)=(l—,uA)v(n). 3.7
Assuming that the initial tap-weight vector w(0) is zero, then the initial value of ¥(0)

equals
v0) = Q" [w(0)-w,]=-0"w,. (3.8)
For the k“ natural mode of the steepest descent algorithm, we have
vi(n+)=(1-pgd v, (m)y=01-p1)v,(0), k=01,..,N-1. (3.9
To formulate the transient behavior of the original tap-weight vector w(n), we

premultiply both sides of Equation (3.6) by @ and solve for w(n)
N-1
wn)=w, +0vn)=w, +quvk(n), (3.10)
k=0

where ¢, is the eigenvector associated with the eigenvalue A, of the correlation matrix

R. Substituting Equation (3.9) into Equation (3.10), the transient behavior of the i” tap

weight is described by [13]

N-1

wi(m) =w, + Y g, v (O1—ud,)",i=01.,N-1, (3.11)
k=0

where w,, is the optimum value of the i" tap weight, and g,,is the i” element of the

k" eigenvector g, .
Equation (3.11) shows that each tap weight in the steepest descent algorithms

converges as the weighted sum of the exponential of the form (1-p4,)". Two

observations can be made from Equation (3.11). First, provided ~1<1- ul, <1 for all
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k, all the natural modes of the steepest decent algorithms approach zero as n approaches

infinity. This gives the convergence condition for the step size g, which must satisfy

O<p<—to. (3.12)

Second, define the time constant 7, as the time required for each term to reach //e of its

initial value, i.e.,

~1

v (3.13)

Ly’

The overall time constant, 7,, defined as the time required for the summation term in

Equation (3.11) to decay to 1/e of its inttial value, cannot be expressed in a simple
closed form, but is bounded as

m&.il___.grag__.__:_l_____i (3.14)
In(l- gl ) In(1—- pld, ;)

Therefore, when the eigenvalues of the autocorrelation matrix R are widely spread, the
settling time of the steepest decent algorithms is limited by the smallest eigenvalues or
the slowest modes. So, if we could reduce the eigenvalue spread of the input

autocorrelation matrix, the convergence rate could be correspondingly improved.

3.1.2. Reducing the eigenvalue spread in the frequency domain
Equation (3.14) shows that the eigenvalue spread of the input autocorrelation
matrix restricts the convergence rate. One approach to accelerate the convergence rate is

to somehow transform the input signal x(n) into another signal whose corresponding
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autocorrelation matrix has a smaller eigenvalue spread. This can be achieved by
performing the adaptive filtering in some orthogonal transform domain.

A block diagram of the transform domain adaptive filter is shown in Figure 3.1.
The input time domain vector x(n) is first transformed into a transform domain vector
X, =[X,,X,,....X_] by the orthogonal transform

X, =Tx(n) (3.15)
where T is a unitary matrix of rank N.
Now, the transform domain vector X, is multiplied by the transform domain
weight vector
W () = [Wy (), W, (1),.ocs W ()] (3.16)
to form the adaptive output y(n). The output and the residual error signal are
y(n)=XIWmn) | (3.17)
and

e(n)=d(n)-y(n) (3.18)

respectively. The weight updating equation is

W.(n+1) = W,(n)+2u.e(m)X,, i =01, N -1 (3.19)
where
go=—H =01, N-1 (3.20)
E(X})

is the adaptive step size for the i” transform component. Let /4> be an NxN diagonal
matrix whose (i,i)" element is equal to the power estimate of X,. The weight vector

equation can be written in matrix form as

Chapter 3. Tmplementing the FXILMS in the frequency domain 34



x(n)

‘ 0w —-’
x(n- 1) x(n-N+1)

NxN orthogonal transform

Power normalization
v ey
LMS of
e(n) y(n)
+
d(n)

Figure 3.1 Block diagram of adaptive filtering in the frequency domain.

Wh+1)=Wmn)+2ule(n)X, . (3.21)
Let R__ be the autocorrelation matrix of the time domain input signal x(n), i.e.,

= E[x(n)x" (n)] (3.22)

and let R,, be the autocorrelation matrix of the transform domain signal X, i.e
R, =E[X X!]. (3.23)
The speed of the convergence of the weight vector W(n) in the frequency domain now
depends on the eigenvalue spread of the matrix AR, . If it can be shown that the
condition number, i.e., the eigenvalue spread of A°R,, , is less than the condition
number of R__, then the convergence rate of the adaptive algorithm implemented in the

transform domain can be improved relative to the time domain implementation.
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Without loss of generality, assume that the input signal power is unity, i.e.,
E(x*(m)=1. (3.24)
Let tr(4) denote the trace and det(4) denote the determinant of a square matrix A. Then,
A S1r(A). (3.25)

For N >2, it can be generally shown that [16]

Ain = det(A4). (3.26)
Therefore, the ratio
tr(A)
Ay = L 3.27
74 det(A4) (3-27)

can be used as an upper bound for 4 /4 . . Now,

det(A”R ) = det( A7)det(R,, ) = det(A “ydet(R_) (3.28)
and
tr(AR)=tr(R_)=N. (3.29)
Therefore,
-2 _ r(R,,) - 2
YA R )= Gt A7) det(RL) det(A7)y(R,,)- (3.30)

Since tr(A°)=N, ie., the smallest eigenvalue of A’ is less than or equal to unity,
det(47) is always assured to be less than or equal to unity. Hence,
YA Ry)<y(R,) (3:31)

That is, for a properly chosen orthogonal transform 7, some reduction in the eigenvalue

spread might be expected.
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3.2 Simulation results of the frequency domain algorithm
A unitary transform T is required to implement the transform domain algorithm. If

T can be chosen such that R,, is completely diagonal, the eigenvalue spread of

A?R,, is equal to unity, which implies that the adaptive filter implementation in that

domain will have the best convergence properties. The corresponding T is generally
known as Karhunen-Loeve transform (KLT) [13]. The KLT is a signal-dependent
transform, the implementation of which requires the estimation of the correlation matrix
of the input vector, the diagonalization of this matrix, and the construction of the
required basis vector. These computations make the KLT impractical for real-time
applications. In practice, other transforms such as the discrete Fourier transform (DFT),
the discrete cosine transform (DCT), the Walsh-Hadamard transform (DHT), the
discrete Hartley transform (DHT) and the Powers-Of-Two (PO2) transform are used as
the approximation to the KLT [17]-[19]. Recently, the discrete Wavelet transform
(DWT) was also used as the transform algorithm [20]. In this section, we simulate the
performance of the DCT and the DWT due to their effectiveness and popularity.

The DCT matrix elements are given by [21]

_}__’m =0n=01..,N~-1

b =1 15 . “A; | (3.32)
J» cosE I m o  N-Tn=01..N-L
N N

The DWT transforms the time domain signal x(n) to the transform domain coefficients

by [20]
m—1

X! (j) =2 b (k)x(Mj —k + 1) (3.33)

k=0
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where m 1s the wavelet filter length, M is the number of sub-bands in the wavelet filter

bank, and » stands for time instant, =0,1,...,M-1 and j=-(N/M)+1, ...,-1,0. For a two-

band filter bank, i.e., M=2, if the order of the adaptive filter N=8 and we also use 8%

order wavelet filters, the transform matrix can be written as

(h,(0) (D) hy(2) h(B) hy(8) h(5) hy(6) hy(D)]
hy(6) (7Y ho(0) Ry hy(2) k() hy(4) hy(5)
ho(4) B, (5) Ry(6) hy(T) B (0) ho(D) hy(2) hy(3)
ro| @ BB h@) B h(6) (D) h(0) Ay (334)

RO) hKO KRR KB K@) KG) k(6 k()
n©) n( RO kO Q) kKB k@) )
B# BG) B6) KO KO KO KEQ) KE)
Q) KB K@) KRG k(6 k() B0 A

where £, (k)is the 8" -order low-pass wavelet filter and %, (k) is the 8" order high-pass

wavelet filter.

Figures 3.2, 3.3, and 3.4 plot the ensemble-averaged learning curves of the time
domain LMS and the frequency domain LMS using the DCT and the DWT with the
Daubechies wavelet for three different eigenvalue spreads. Three AR(2) processes are
generated such that the eigenvalue spreads are 1.22, 3, and 10, respectively [13], so that
we can compare the performance for different eigenvalue spreads. Figure 3.5 plots the
ensemble-averaged learning curves of frequency domain LMS using the DWT with
three different wavelets. Each algorithm runs for 100 times and the leaming curves in
these three figures are the average over the 100 runs. The following observations can be

made from these simulations:
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Learning curves of LMS in the time domain and frequency domain
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Figure 3.2 Learning curves of the time domain LMS and the frequency domain
LMS using the DCT and the DWT as the transform matrix (eigenvalue spread =
1.22).
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Figure 3.3 Learning curves of the time domain LMS and the frequency domain LMS

using the DCT and the DWT as the transform matrix (eigenvalue spread = 3).
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Learning curves of LMS in the time domain and frequency domain
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Figure 3.4 Learning curves of the time domain LMS and the frequency domain LMS
using the DCT and the DWT as the transform matrix (eigenvalue spread = 10).

Chapter 3. Implementing the FXLMS in the frequency domain 41



2 ‘
10 /1 4
Ly Daubechies wavelet 1

Symiet wavelet

| -.-.-  Coiflet wavelet
; Filter length: 12
Eigenvalue spread: 3

Ensemble-averaged squared error

107 L

100 150
Number . of terations

Figure 3.5 Learning curves of the frequency domain LMS using the DWT as the transform
matrix but with different wavelets (eigenvalue spread = 3).
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e The time domain LMS algorithm consistently behaves worst, in that it exhibits
the slowest rate of convergence and the greatest sensitivity to variations in the
eigenvalue spread.

e Both the DCT-LMS and the DWT-LMS consistently achieve faster convergence
rates than the time domain LMS. The DWT-LMS slightly outperforms the DCT-
LMS.

e The selection of different wavelet does not make a big difference in the DWT-
LMS.

e The convergence rate of the frequency domain LMS is relatively insensitive to
the variations in the eigenvalue spread.

When the frequency domain LMS is applied to HDD vibration control, the extra
computational requirements associated with the transform consequently reduce the
possible sampling rate. This decrease in the sampling rate depends on the
mmplementation method. For the discrete cosine transform, even with the most efficient
implementation called the frequency sampling structure [22] (refer to Appendix B for
the derivation), only an 8.4 kHz sampling rate can be achieved for an 8™-order
controller. Figure 3.6 shows the vibration reduction achieved by the frequency domain
FXLMS using the discrete cosine transform (DCT-FXLMS algorithm) with an 8.4 kHz
sampling rate in real time.

It is difficult to fairly compare the performances of the time domain algorithm
with the frequency domain algorithm using the real time setup because the vibration of
the HDD i1s time-varying and the sampling rate cannot be adjusted to precisely the same

for the system with control on and the system with control off. Instead, simulations are
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Figure3.6 Vibration reduction in real time with the frequency domain FXLMS
algorithm using the discrete cosine transform.
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performed to compare the performances of the time domain FXLMS and the DCT-
FXIMS on reducing the vibration sampled at 16 kHz. Figure 3.7 gives the average
power spectral density of the original vibration in 0.5 second (i.e., 8000 samples) and
the power spectral densities when the active control systems using both the time domain
FXLMS and the DCT-FXLMS are operating. This simulation shows that the power
spectral density of the residual error achieved by the DCT-FXLMS is slightly flatter. In
other words, the frequency domain method achieves better vibration reduction in the
destructive interference range while the constructive interference is also enhanced. The

next section will discuss the constructive interference.

3.3 Reducing the constructive interference by selective adaptation

It was mentioned in Chapter 2 that the performance of the adaptive feedback
control system depends on the accuracy of representing S(z) by a MA process S (z), and
the predictability of the primary disturbance filtered by the secondary path. The
predictability of the primary disturbance filtered by the secondary path in turn depends
on the primary disturbance itself and on the order of the predictor, i.e., on the order of
the control filter. Also, some random processes may require a very long adaptive filter
to predict the process accurately. Some random processes simply cannot be predicted
very well. The more of the primary disturbance that “leaks” through the predictor, the
poorer the performance [13]. The modeling error due to insufficient length of the
adaptive filter or the primary disturbance may result in the presence of constructive

interference in some frequency bands. It can be seen from Figure 3.6 and Figure 3.7 that
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Figure 3.7 Simulation result of vibration reduction with the time domain FXLMS
(dotted line) and the frequency domain FXLMS (solid line) using the discrete cosine

transform.
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the constructive interference occurs at high frequencies while the desired destructive
interference is achieved at the lower frequencies.

It is desirable to reduce or alleviate the constructive interference while
simultaneously keeping the destructive interference that can be achieved by the active
control systems. Since the extra vibration in the constructive interference band(s) comes
from the control signal, low-pass or band-pass filtering (depending on where the
constructive interference occurs) of the control signal before feeding it to the actuator
may help somewhat. However, the sample delay associated with the causal, real-time
low-pass or band-pass filtering increases the requirements on the adaptive forward
predictor, and hence reduces the effectiveness of the predictor. This dissertation
proposes a technique called selective adaptation in the frequency domain [23]. The
basic idea of the selective adaptation is to generate the control signal in such a way that
it does not contain energy in the frequency bands where the constructive interference
occurs. Then, the constructive interference can be avoided without adding extra delay in
the control path. The selective adaptation requires the adaptive algorithm to be
implemented in the frequency domain.

Figure 3.8 shows the idea of the selective adaptation in the frequency domain,
where DCT 1s used as the transform. We only update those M filter weights in Equation
(3.16) that correspond to the destructive interference bands. Then, the control signal
y(n), which is inversely transformed from the M frequency coefficients corresponding to
the destructive interference bands, will not include the frequency components

corresponding to the constructive interference bands. Consequently, the constructive
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Figure 3.8 Selective adaptation of the adaptive algorithm in the frequency domain.

interference in the residual error can be avoided. Note that the IDCT for y(n) can be

replaced by a pure summation because the coefficients required to calculate y(n) by
18 kx
y(n)=—= > cos—Y(k) (3.35)
V2 Z 2N |

can be absorbed by the corresponding filter weights W, . It should be noted that the

DCT transform in the frequency domain method serves as a preprocessing step in the
adaptive filtering process. It transforms an N-point time domain vector x(n) into an
equivalent frequency domain vector X(n). Therefore, the DCT transform does not result

in signal path delay in the feedback control system.
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Figure 3.9 shows the constructive interference alleviation for the real HDD
vibration signal when the last three weights of an 8™-order adaptive filter are discarded.
For comparison purposes, the active control using the same LMS adaptive parameters,
but without discarding the weights is also given. Figure 3.10 gives the same information
for an AR(2) process where the last three weights of a 10™-order adaptive filter are
discarded. It can be seen from Figure 3.9 and Figure 3.10 that the constructive
interferences are alleviated by several dB at the high frequencies at the cost of some
degradation in performance at the neighboring frequency band. The degradation at this
boundary band results from the leakage of the DCT transform. The DCT is not a perfect
decorrelator but an approximation. When the LMS algorithm is implemented in the
frequency domain using the DCT, the DCT acts like NV band-pass filters. Because of the
presence of the side lobes of these band-pass filters, there is some leakage from each
frequency bin to the others. Figure 3.11 shows the magnitude response of the 2nd
transfer function of a 10-point DCT. This kind of leakage has two undesirable effects on
the selective adaptation. First, some energy from the frequency bins corresponding to
the destructive interference leaks into the frequency bins corresponding to the
constructive interference. When the weights corresponding to the constructive
interference are discarded, so is the leaked energy from the desired frequency bins. This
degrades the performance of the active control system in reducing the desired
destructive interference. Second, the energy of the frequency bins corresponding to the
constructive interference leaks into the frequency bins corresponding to the destructive
interference. Hence, the constructive interference cannot be reduced completely by

discarding the weights corresponding to the constructive interference. The length of the

Chapter 3. Implementing the FXLMS in the frequency domain 49



DCT transform directly impacts the performance. As the length increases, the relative
sidelobe level and the width of the lobe decreases (Figure 3.12 shows the magnitude
response of the 2™ transfer function of a 16-point DCT). Consequently, it is more
flexible to shape the frequency coefficients for performance improvement. One
limitation is that we cannot increase the length of the DCT transform at will. The length
of the DCT transform 1s the order of the control filter that should be determined by the

nature of the primary disturbance and the computational resource available.

i T 1 i T T T

20 -.-.- Original .
e After control without selective adaptation
After control with selective adaptation

Power spectral density (dB)

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Figure 3.9  Effect of alleviating the constructive interference by the selective
adaptation in the frequency domain for the real HDD vibration signal.
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Figure 3.10  Effect of alleviating the constructive interference by the selective
adaptation in the frequency domain for an AR(2) process.
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Figure 3.12 Magnitude response of the 2™ transfer function of a 16-point DCT.
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Chapter 4

Implementing the adaptive algorithm in sub-bands

Chapter 3 described our methods for improving the convergence rate of the LMS
algorithm in the frequency domain. Recently, the sub-band technique has also been
developed to improve the convergence rate. It has been successfully used in adaptive
filtering for system identification and echo cancellation [24]-[28]. In these applications,
both the reference signal and the ideal signal are available and are decomposed into sub-
bands to form the sub-band error signals. The full-band residual error signal is then
synthesized from the sub-band error signals through the synthesis filter bank. In these
applications, all adaptation is performed using the sub-bands.

In the application of active control of noise and vibration, the 1deal signal in terms
of the adaptive filtering is generally not accessible. Furthermore, active control systems
generally cannot tolerate extra delay along the signal path, ie., the path from the
reference signal to the error signal, especially for the feedback active control of noise
and vibration. To avoid the signal path delay, Morgan ([29], [30]) proposed a delayless
sub-band adaptive filter architecture in which the adaptive weights are computed in the
sub-bands but collectively transformed into an equivalent set of full-band filter
coefficients before generating the control signal. Hirayama [31] employed a different
transform to obtain the full-band filter coefficients from the sub-band counterparts. This

dissertation proposes a different sub-band adaptive architecture in which the full-band
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filter coefficients are updated directly based on the sub-band reference signals and sub-
band error signals [32], [33]. Even though the signal path delay is avoided in both
architectures, the group delay associated with the analysis filter bank is still added to the
error path (the weight updatiﬁg path) and will decrease the convergence region of the
step size. The convergence region of the step size is defined as the upper stability
bounds of the convergence factor. This dissertation also proposes a delay compensation
method by modifying the sub-band adaptive algorithm to compensate for the error path
delay, hence increasing the convergence region of the step size.

Section 4.1 derives the sub-band adaptive algorithm using the gradient descent
method. Section 4.2 discusses the delay compensation methods of increasing the
convergence region of the step size. Computer simulations are performed in Section 4.3
to illustrate the efficiency of the sub-band algorithm. Section 4.4 discusses the
combination of the sub-band decomposition with the frequency domain technique for
performance improvement. Section 4.5 summaries the computational complexities of

different adaptive algorithms.

4.1 Sub-band adaptive filtering without signal path delay

The feed-forward active control system shown in Figure 4.1(a) and the feedback
active control system shown in Figure 4.1(b) can be viewed as a unified structure in
adaptive filtering theory as shown in Figure 4.1(c). It should be noted that even though
the adaptive filter structure in Figure 4.1(c) is the same for both the feed-forward and
feedback control, the philosophy of the noise cancellation is different. For the feed-

forward active control system in Figure 4.1(a), the noise reduction is achieved by
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Figure 4.1 Block diagram of the active control system: (a) feed-forward; (b)
feedback; (c) unified diagram from the viewpoint of adaptive filtering.
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modeling the unknown plant P with the control filter W. Hence, the performance
depends on how well the unknown plant P can be modeled by a linear digital filter. For
the feedback control system in Figure 4.1(b), the primary disturbance is reduced by
adaptive prediction. Consequently, the performance depends on the predictability of the

primary disturbance filtered by the estimate of the secondary path transfer
function, 5’(2). Besides, the accuracy of representing S(z) by S (z) will also affect the

overall performance.

Figure 4.2 shows the sub-band adaptive filter structure where the ideal signal d(n)
is accessible. Since the ideal signal d(») in the active noise or vibration control systems
is not available or accessible, the sub-band structure used for system identification or
echo cancellation shown in Figure 4.2 cannot be applied to the active control systems.
Furthermore, the active control system generally cannot tolerate extra delay along the
signal path, especially for the feedback control system. This is because the performance
of the feedback active control system depends on the predictability of the primary
disturbance filtered by the estimated secondary path transfer function. Any delay along
the signal path will increase the requirement of the forward prediction and hence,
dramatically degrade the performance [13].

To avoid the signal path delay, this dissertation proposes a delayless sub-band
architecture shown in Figure 4.3, which updates the full-band filter coefficients based
on the sub-band reference signals and sub-band error signals. To derive an adaptive
algorithm that updates the full-band weight vector based on the sub-band error signals
requires a new cost function that can be determined from the sub-band error signals. We

define the new cost function as the sum of the mean square of the sub-band errors as
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Figure 4.2 Sub-band adaptive filter structure used in system identification or echo
cancellation where the ideal signal is accessible.
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Figure 4.3 The sub-band adaptive filter architecture without signal path delay.

Enn(m) = 3 Edle, ([}, @1

-0
where (O is the number of sub-bands. The residual error signal in sub-band ¢ is
designated as eq(n):hqre(n). e(n) =[e(n),e(n—-1),---,e(n—L)], is the full-band
residual error. L is the order of the analysis filter
h,=h,(0)5(n)+h,DS(m-1)+--+h, (L)o(n—L). E{} is the expectation operator.

Provided that the analysis filter bank satisfies the power complementary property, i.e.,

& o] . L .
provided ZIH e )} =c¢, minimizing the new cost function is equivalent to
g=0

minimizing the mean square of the full-band error, £ {le(n){z}. This can be justified

using the property that the power spectrum of the output signal is the power spectrum of

the input signal modified by the filter spectrum. That is, let S, (@) denote the power

Chapter 4. Implementing the adaptive algorithm in sub-bands 58



spectrum of the full-band error signal e(n) and let Seq (@) denote the power spectrum of

e, (n), the error signal in sub-band ¢. Then,

0-1 3 -1 1 x
ZE{|eq(n)l b=Y—[ 8. (@)do

g=0 27? -

_ %L [ 5., @)

= 27

2
de

- L[ (w)%IH () do
Cog e por il

= c-;; j S,(@)da = cEfle(n)|’}. (42)

The weight updating equation for the sub-band adaptive filter shown in Figure 4.3 is
derived as follows.

The full-band error signal at time instant » in Figure 4.3 is

J K

e(my=d(n)- > x(n-j-kw,, (j)sk), (4.3)

=0 k=0
where J is the order of the control filer Wyz) and K is the length of the MA transfer

function S(z). The residual error signal in sub-band ¢ at time instant 7 is

YN xn—j—k=Dw,_, (Hs(h, 1),

J
=0 k=0 [=0

e (n)=h,"e(n) = id(n ~Dyh, (1) -

q=0.1,...,0-1. (4.4)

The full-band filter coefficients are updated to minimize the sum of the instantaneous
0-1
square of the sub-band errors, i.e., Z e q2 (n). Thus, the stochastic gradient algorithm for

q=0

updating w, (i) at time instant 7 is
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W (1) = w, (D)~ pr— 2 3 e, (1)

=w (i)~ 2;& e, (n)%we:"—(%, i=01,..,J, (4.5)

where p is the step size that determines the speed of adaptation. Substitution of

Equation (4.4) into Equation (4.5) yields the update recursion

SN xn— j—k = Dw,, (sthk, (D),

Wa@=w,(D+2u) e (n) _
1 g=0 ! aw,, @ =0 k=0 1=0

i=01,..J. (4.6)

If we assume w,_, (i) = w, (i) for all k and /, then Equation (4.6) can be evaluated as

w (@) =w @)+ 2#% e, (n)fix(n —i~k-Ds(k)h (1),i=01,...J. 4.7

k=0 1=0

It is assumed that S§(z) can be estimated accurately in the discussion. That

is,8(z) = .§'(z). Let us denote the reference signal filtered by S‘(z) as x'(n), i.e.,
X
x'(n) =Y x(n-k)s(k) (4.8)
k=0

and x'(n) in sub-band g as x', (n), i.e.,

X', (n) = iix(n —k=D3(h, (1), g = 0L,..,0 1. (4.9)

k=0 }=0
Then, the updating recursion can be simplified by substituting Equation (4.9) into

Equation (4.7) as

0-1
W, (@) =w, (D) +2u) e, (Mx, (n—0),i=0,1,.,J. (4.10)
g=0
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It should be noted that the assumption of w,_, ,(i) =w, (i) for all k and / used to

derive the update recursion is not strictly correct because of the time-varying nature of
the adaptive filter. Hence, the adaptation given by Equation (4.7) or (4.10) may not
always converge. This assumption can only be justified if the time-varying nature of the
adaptive filter is a slow rate or when the time delay associated with the secondary path

transfer function and the analysis filter bank 1s negligible.

4.2 Increasing the convergence region of the step size

The advantage of the sub-band adaptive filter derived in Section 4.1 is that it has
the flexibility to assign different step sizes to different sub-bands based on the
proportionate signal energy present in each sub-band. Hence, a better convergence rate
results when the algorithm is compared to the full-band counterpart. On the other hand,
the analysis filter bank used to decompose the full band signal does bring extra delay
into the error path. Long ([34], [35]) showed that the delay in the error path has only a
slight influence on the steady-state behavior of the LMS algorithm when the step size in
the coefficient updating is within a certain bound. However, the delay in the error path
reduces the convergence region of the step size. For a full-band FXLMS algorithm, the
error path delay only comes from the secondary path transfer function S(z). For the sub-
band FXLMS algorithm proposed in this work, the error path delay comes from both
S(z) and the analysis filter bank. In general, it 1s very difficult to examine the stability of
the FXLMS algorithm. Snyder [36] derived the region of x in the full-band FXLMS that
makes the controllers stable in a specific case where the secondary path is a pure k-step

sample delay and the signals are assumed to be stationary as follows:
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O<pu</2)sin[n/2(2k+1)]. 4.1

Here, A, is the maximum eigenvalue of the autocorrelation matrix of the reference

“input signal. Kim [37] proposed a constrained filtered-x algorithm to compensate for the

error path delay in the full-band LMS. We now derive the compensation methods for
our proposed sub-band FXLMS algorithm.

Notice the expression for the error signal in sub-band g in Equation (4.4). At the

time instant #n when W, is already available, e, (n) is still based on the old coefficients,

W, ..., due to the error path delay resulting from S(z) and the analysis filter bank. It is

n

these old coefficients that result in the decrease of the convergence region. If we
generate a different set of sub-band error signals £ (n) by replacing w, ,,(j) with

w,_,(j)m Equation (4.4), that is,

J

&,(m) =Y dn-Dh, (1)~ ZZZ)C(H —j=k=Dw, (N3, (D), g=01..,0-1 (4.12)

=0 k= /=0

and replace e, (n) in Equation (4.10) with £, (n) to update the weights, i.e.,

0-1
W,y @)= w, () + 26 8, ()X, (n=i) i = 0L T, (4.13)

g=0
then the delay resulting from the analysis filter bank has been compensated. Further, if

we generate another set of sub-band errors £, (n) by replacing w,_,_,(j) with w,(j) in

Equation (4.4), that is

J=0&=01=0

£ (m)= id(n ~Dh (1) —ZZZx(n - j—k=Dw,(D35(k)h, (1), g =0,,..,0 -1 (4.14)

and update the filter coefficients using £, (r) as

Chapter 4. Implementing the adaptive algorithm in sub-bands 62



0-1
W, @)= w, () + 21 &, (mx', (n—1),i=0],...,.J , (4.15)

q=0
then the error path delay resulting from S(z) and the analysis filter bank has been
compensated.

£,(n) and Eq (n) are not directly available but can be derived from e () and other

known signals. Comparing Equation (4.4) to Equation (4.12), we have

x(n—=j—k=Dw, ., (HsWER, (D)

M-
M=
Mh

e (n)=e, (n)+

[,
]
(=
By
[

0

Jj=0 k=

~
[}
(=]

x(n—j—k=Dw,  (HS(K)h, (D)

Mh

<
"~
1l

o

K L

=e,(M+] Z y(n—k D30k, (7)

k=0 I=1

M“

ZZx(n — j—k=Dw,_, (D3R, (), ¢ =0,L,..,0 1, (4.16)

I=1

lI
O

J

J
where y(n—k-10)= Zx(n - j—k-Dw, , ,(j) is the output of the controller at time

j=0
mstant n-k-1.

Similarly, comparing Equation (4.4) to Equation (4.14) enables £,(n) to be given

Zx(n = Jj—k=Dw, ., (N5, ()

0 I1=0

M=

g, (n)=e, (n)+ ZJ:

=0

S
=~
i

D xln—j—k=Dw, (N30, (1)

=0

A M“
=

.
i
[
a4
1l
~

Y]
KL

=e, (m)+ Y > y(n—k—-D3(k)h, (1)

k=0 =0
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=2 > > x(n—j—k=Dw,(N3(kA, (D), g=0L..,0-1. (4.17)

=0 k=0 1=0

We refer to our approach, shown in Equations (4.13) and (4.16), as delay
compensation method I. This method compensates the error path delay resulting from
the analysis filter bank only. We refer to our approach, shown in Equations (4;15) and
(4.17), as delay compensation method II. This method compensates the error path delay
resulting from both the analysis filter bank and the secondary path transfer function.
The efficiency of tﬁg delay compensation methods will be illustrated in the next section

by computer simulations.

4.3 Computer Simulations

Computer simulations are performed to illustrate the efficiency of the proposed
sub-band algorithm, for both the feed-forward control and the feedback control systems.
Throughout the simulations, only a 2-band case is considered using an 8™ order

Daubechies filter as the base filter of the analysis filter bank.

4.3.1 Feed-forward active control system
To simulate the feed-forward active control system shown in Figure 2.2 on page 7,
the same example used in [37] is adopted. That is, the reference input signal x(n) is a

white noise process with uniform distribution with zero mean and unit variance. The
plant P(z) is assumed to be a fourth order FIR filter as P(z) =1.0z7 - 0.3z +0.227".

S(z) was assumed to be a unit gain system and R(z) was assumed to be a pure 5-sample

delay for simplicity. Since the control filter # models the plant P in the feed-forward
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control system, coefficients of the controller need to converge to the optimal value,
Wi(z)=1.0z7-03z"+02z7".
The proposed sub-band adaptive filter can achieve a better convergence rate by

assigning different step sizes to different sub-bands. The typical one is the normalized

2u

FXLMS. For the full-band FXLMS, the step size is normalized as Ky :W’
xl +0

0<6<<1 and x'=[x'(n),x'(n-1),---,x’(n-J)]. For the sub-band FXLMS, the step

size in sub-band ¢ is normalized as g, =l—l——7—l§—l———, q=01,...,0-1, and
x| +6

x', =[x (n),x' (n—-1),---,x" (n—J)]. To compare the performance fairly, all the

parameters are set to be the same for the Full-band FXILMS and the Sub-band FXLMS.
The step size u is set to 0.06 for both cases such that the weight vector converges to its
optimal value within several hundred samples. Figure 4.4 shows the trajectories of the
FIR filter coefficients w with the initial values set to zero. The sub-band filter
outperforms the full-band counterpart, because it has the flexibility to normalize the
step size in each sub-band separately.

The performances of the sub-band FXLMS algorithms, shown in Figure 4.5, are
similar when the step size for the coefficient update is within certain bounds. The merit
of the delay compensation methods is that they restore the convergence region of the
step size decreased by the secondary path transfer function and the analysis filter bank.
Figure 4.6 through Figure 4.9 show the effects of the error path delay on the
convergence region of the step size and illustrate the efficiency of delay compensation.

The FXLMS rather than the normalized FXLMS is employed in Figure 4.6 through
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Figure 4.4 Trajectories of w using the normalized FXLMS in full-band (dotted line)
and in sub-band (solid line) with the step size 1~=0.06.

1'4 T T H T
___'Sub-band FXLMS (no compensation)
12y Sub-band FXLMS (partial compensation) -
-.-.- Sub-band FXLMS (full compensation)
1 Pt — s el
e
08} Pt i
7
/ g w(2)
0.6+ [: ’/ -
ir :
0.4+ A 4
J/
4 w(3
02} | S
/ ST A
l{\ Jf\“\f Pl

014 E

0.2¢ M w(4) 1
‘('ﬂ-\:*’i— T g ey e ——
-0.4 1 Il i 1
0 50 100 150 200 250

Number of lterations

Figure 4.5 Trajectories of w using the sub-band FXLMS without delay
compensation and with delay compensation by method I and by method I

(1=0.06).
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Figure 4.9 to exclude the effect of normalization. In particular, Figure 4.6 shows the
trajectories of the magnitude of the full-band error and the filter coefficients with the
full-band FXLMS where the step size u is selected as 0.05, so that obvious variance
occurs when the filter coefficients converge. Figure 4.7 shows the same information for
the sub-band FXIMS without delay compensation. Since the group delay of the
analysis filter bank reduces the convergence region of the step size, the trajectories
show more variance under the same step size. Figure 4.8 shows the trajectories of |e(n)]
and w of the sub-band FXI.MS with delay compensation by method 1. The variance is
similar to that in Figure 4.6, because method I only compensates the error path delay
resulting from the analysis filter bank. Figure 4.9 shows ’the same information of the
sub-band FXLMS with full delay compensation by method 1I. Method II compensates
not only the error path delay resulting from the analysis filter but also the error path
delay resulting from the secondary path transfer function. Hence, it increases the
convergence region of the step size compared to the full-band FXLMS algorithm.
Consequently, the trajectories of the filter coefficients compensated by method II show

very slight variance under the same step size.

Chapter 4. Implementing the adaptive algorithm in sub-bands 67



T T T T T T T T
Fullband FXLMS
L abs{e(n)) w2 ]
—omm w(3) - - wi4)
P N e TN e e o e e i e e e e
‘ / v_f) L A o }
1 3, H ] 1 i, 1 k] 1.
0 20 40 60 80 100 120 140 160 180 200

Number of terations

Figure 4.6 Trajectories of the magnitude of the full-band error |e(n)| and the filter
coefficients using the full-band FXLMS with £=0.05.
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Figure 4.7 Trajectories of the magnitude of the full-band error |e(n)| and the filter
coefficients using the sub-band FXLMS (no delay compensation) with £=0.05.
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Figure 4.8 Trajectories of the magnitude of the full-band error |e(n)| and the filter
coefficients using the sub-band FXLMS (partial delay compensation by method I) with
£=0.05.
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Figure 4.9 Trajectories of the magnitude of the full-band error |e(n)| and the filter
coefficients using the sub-band FXLMS (full delay compensation by method II) with
1=0.05.
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4.3.2 Feedback active control system with an AR(2) process
To simulate the performance for the feedback control system shown in Figure 2.5
on page 12, a unit variance AR(2) process in [13] is adopted as the primary disturbance

d(n), where a, =-0.975, a, =0.95 and the eigenvalue spread equals 3. Note that the

feedback control system (shown in Figure 2.5) is equivalent to a one-step forward
prediction error filter even when S(z) is a unit gain system. This is because the error
signal e(n) is obtained first at each time instant, then the primary disturbance d(n) is
restored to serve as the reference signal x(n). Figure 4.10 shows the learning curves of
the normalized FXLMS in the full-band and sub-band algorithms when £=0.02 and S(z)
is a unit gain system. Again, the algorithms implemented in the sub-band outperform
the algorithm implemented in full-band because they can normalize the step size in each
sub-band separately. All the ensemble averaging in this section is performed over 100
independent trails of the experiments.

Figures 4.11 through Figure 4.13 show the effects of error path delay on the
convergence region of the step size and illustrate the efficiency of the delay
compensation methods when S(z) is assumed to be a 5 sample delay. The step size u is
chosen as 0.013 (no normalization) so that the learning curve of the full-band FXLMS
shows large variance, as shown by the dotted line in Figure 4.11. The learning curve of
the sub-band FXLMS with the same step size shows larger variance (the solid line in
Figure 4.11) because of the extra error path delay added by the analysis filter bank. The
dotted line in Figure 4.12 shows the learning curve of the sub-band FXLMS

compensated by the delay compensation method L. The variance of the learning curve is
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Figure 4.10 Experimental leaming curves of the normalized FXLMS in full-band
(dotted line) and in sub-band (solid line) with £=0.02. The dashdot line shows the
learning curve of the sub-band FXILMS when the step size of the low-frequency sub-
band is doubled and the step size of the high-frequency sub-band is reduced to its
half value.
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Figure 4.11 Learning curves of the FXLMS in full-band (dotted line) and in sub-
band (solid line) with £=0.013. S(z) is assumed to be a pure 5 sample delay.
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Figure 4.12 Learning curves of the FXLMS in sub-band with partial delay
compensation by method I (dotted line) and full delay compensation by method I

(solid line) (1=0.013).

Chapter 4. Implementing the adaptive algorithm in sub-bands

73



1.2 : - T x
S Subband FXLMS (no compensation)

1.1+ step size: 0.014 .
¢+ . ___ Subband FXLMS (full compensation)
1L ool step size: 0.04 y

Ensemble-averaged squared error

100 150
Number of lterations

Figure 4.13 Learning curves of the FXLMS in sub-band without delay compensation
at £=0.014 (dotted line) and with delay compensation by method II at £~0.04 (solid

line)
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decreased compared to the one without delay compensation. The solid line in Figure
4.12 shows the learning curve of the sub-band FXLMS when the delay compensation
method 1 is used to compensate the error path delay resulting from the analysis filter
bank and S(z). The Variance is much smaller with the same step size £=0.013. Actually,
the critical step size of the sub-band FXLMS after delay compensation with method I1
can go as far as £=0.04 (the solid line in Figure 4.13), while £~=0.014 is unacceptable
for the sub-band FXLMS without delay compensation (the dotted line in Figure 4.13).
These simulations verify the better convergence performance the sub-band FXLMS can
achieve when compared to its full-band counterpart and the efficiency of the delay

compensation methods.

4.3.3 Feedback active control system with the real vibration signals

The sub—baﬁd FXLMS algorithm is also applied to the HDD vibration control case
to see the performance improvement. Again, the extra computational requirements
associated with the signal decomposition and weight updating reduce the sampling rate
in real time. To compare the performance fairly, simulations are performed to compare
the performances of the full-band FXLMS and the sub-band FXLMS in reducing the
vibration sampled at 16 kHz. Figure 4.14 gives the average power spectrum density of
the original vibration in 0.5 seconds (i.e., 8000 samples), and the power spectrum
densities when the active control systems using the full-band FXLMS and the sub-band
FXILMS are operating. It can be seen that the sub-band method outperforms the full-
band method slightly on the vibration reduction in the destructive interference range.

Another merit of the sub-band algorithm is that it has the flexibility to trade-off the
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Figure 4.14 Simulation result of vibration reduction using the full-band FXLMS
(dotted line) and sub-band FXLMS (solid line) with the real vibration signal sampled

at 16 kiHz.
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performance from the various sub-bands. To look at this merit experimentally, let us
assume that the secondary path S(z) is a pure one-sample delay. Then, the adaptive
feedback control system is equivalent to an adaptive forward prediction-error filter.

Consequently, the filter weight w, converges to —a, of an AR(N) process. This AR(N)

process models the original disturbance in the sense of minimizing the mean square
error. Since the vibration reduction of a feedback control system depends on the
predictability of the original vibration, the better the original disturbance can be
modeled the more the vibration can be reduced. If the vibration reduction in one
specific frequency sub-band interests the users more, more weight can be put to that

sub-band in the full-band weight vector updating step. Doing so, the filter weight w,
converges to —a, of a new AR(N) process and this new AR(N) process models the

original disturbance more accurately in the sub-band that interests the users. Figure 4.15
shows the change of the magnitude responses of the resulting AR(N) processes in a 2
sub-band case when the weight is put to the low frequency sub-band. When more
weight is put to the low frequency band, the resulting AR(N) process models the low
-frequency band more accurately at the cost of modeling the high frequency band less
accurately. The dashed line shows the exireme case where the full-band controller
vector is updated using the low frequency band reference signal and low frequency
band error signal only. Figure 4.16 shows the opposite scenario when more weight is
given to the high frequency band. It can be seen that the more weighting placed on the
high frequency band, the better the resulted AR(N) process models the original

disturbance in the high frequency band. The dashed line shows the extreme case where
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Figure 4.15 Magnitude responses of the AR(N) processes resulting from the controller
vector with and without putting more weight to the low frequency band.
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Figure 4.16 Magnitude responses of the AR(N) processes resulting from the
controller vector when more weight is put to the high frequency band.
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the full-band controller vector is updated using the high frequency band reference signal
and high frequency band error signal only. Figure 4.17 shows the vibration reduction of
these two extreme cases. It can be seen that more vibration reduction is achieved at the
lower frequencies, but more constructive intefference occurs at the higher frequencies
when the controller vector is updated using only the low frequency sub-band signals.
Similarly, more vibration reduction is achieved at the higher frequencies (or at least less
constructive interference occurs at the higher frequencies), but no vibration reduction is
achieved at the lower frequencies when the controller vector is updated using only the

higher frequency sub-band signals.

4.4 Combining the frequency domain technique with the sub-band
architecture

When we use the sub-band algorithm to concentrate on the reduction of the
vibration at the low frequencies, more constructive interference occurs at the higher
frequencies as shown by the dotted line in Figure 4.17. To reduce the constructive
interference at the higher frequencies while keeping or improving the destructive
interference performance at the lower frequencies, we can combine the frequency

domain technique with the sub-band decomposition structure as shown in Figure 4.18.
Here, xq'(n) is the filtered reference signal in sub-band ¢ and X q' is its counterpart in

the transform domain. Then, the selective adaptation technique proposed in Chapter 3
can be applied to alleviate the constructive interference. Figure 4.19 compares the
performances of the frequency domain LMS with the combined frequency domain/sub-

band algorithm when the selective adaptation technique is used to alleviate the
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Figure 4.17 Simulation result of the sub-band FXLMS algorithm when the weight
vector is updated using the low frequency band signals only (dotted line) and using the
high frequency band signals only (solid line).
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Figure 4.18 Block V diagram of the combined frequency domain and sub-band
decomposition structure.

constructive interference at the higher frequencies. In the combined frequency
domain/sub-band algorithm, the reference signal and the error signal are decomposed
into two sub-bands and the weight vector is updated using only the low frequency sub-
band signals. Doing so, the combined frequency domain/sub-band algorithm models the
primary disturbance at the low frequency band better, hence achieves better vibration
reduction at the low frequency band while the constructive interference at the high
frequency band is alleviated by the selective adaptation technique. It should be noted
that this combined structure is less effective when the number of the sub-bands Q 1s

large. The effectiveness is reduced because the eigenvalue spread of the sub-band signal
xq'(n) decreases as () increases. Consequently, the orthogonal transform of xq'(n)

cannot improve the convergence.
The sub-band decomposition and orthogonal transform on the filtered reference

signal in Figure 4.18 are essentially linear operations. Therefore, it is possible to swap
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Figure 4.19 Simulation result of the frequency domain LMS(dotted line) and the
combined frequency domain/sub-band LMS (solid line) when the selective adaptation
technique is used to alleviate the constructive interference at the high frequency band.
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the order of the sub-band decomposition and orthogonal transform to obtain a more
computationally efficient structure. We cannot simply swap the order (Appendix C
proves the direct swap does not work). Instead, some other kind of implementation
structures must be employed. We will leave this as a further research direction.

The combined frequency domain/sub-band algorithm can also achieve a better
convergence rate since it not only can reduce the eigenvalue spread in the frequency
domain, but also can normalize the step size in each sub-band as well. Figure 4.20
shows the learning curves of the frequency domain LMS, sub-band LMS, and the
combined frequency domain/sub-band LMS using the AR(2) process specified in
Section 4.3.2. The combined frequency domain/sub-band LMS achieves the fastest

convergence rate as expected.

4.5 Computational complexity

The computational complexity of the sub-band LMS depends on the order of the
adaptive filter (N), the number of sub-bands (Q) and the order of the analysis filter (L).
The number of multiplications required for each sample is Q*CZL+N+I}+N. 2L
multiplications are used to decompose the reference signal and the error signal,
respectively. Each sub-band requires N+/ multiplications for weight updating and step
size mixing. N multiplications are used to form the full-band control signal. The
combined sub-band and frequency domain algorithm requires 2N more multiplications
to transform the sub-band reference signal in each sub-band and another 2N
multiplications for the full-band reference signal transform. For comparison purposes,

Table 4.1 summarizes the computational requirements of the common adaptive
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Figure 4.20 Experimental learning curves of the sub-band LMS (dotted line),

frequency domain LMS (solid line), and the combined frequency domam/sub-band

LMS (dashdot line) with z=0.01.
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algorithms. The fast affine projection (FAP) [38]-[41] has a property that lies between
those of the LMS and the recursive least-squares (RLS) algorithm, ie, less

computational complexity than RLS but much faster convergence than LMS.

Table 4.1 Comparison of the computational complexity of different adaptive algorithms

Algorithm Number of multiplications per

sample

LMS 2N+1

RLS [42] 3(N +1)? +3(N +1)

Frequency domain LMS (freq. sampling structure) | 4N+1

Sub-band LMS Q*(2L+N+1)+N

Combined sub-band and freq. domain LMS Q*2L+3N+1)+3N

FAP (embedded fast RLS algorithm [39]) 2N+20M

FAP (efficient approximate implementations [41]) | 2N +10M +0.5log, N

N: order of the adaptive filter (O number of sub-bands in sub-band LMS

L: order of the analysis filter M: number of projections in FAP
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Chapter 5

Multiple-channel active control systems

In active noise control systems, it is desirable to reduce the acoustic noise inside the
enclosure. In active vibration control systems for complex mechanical structures such as
the hard disk drives where different areas vibrate in different modes, the vibration needs
to be reduced in several places. These applications require the single-channel active
control system to be expanded to a multiple-channel case that uses several secondary
sources (actuators) as well as error sensors. This chapter discusses the multiple-channel
adaptive feedback control systems.

Section 5.1 develops the FXLMS adaptive algorithm for the multiple-channel
systems. Multiple-channel secondary path transfer function modeling techniques are
discussed in Section 5.2. Section 5.3 derives the optimal performance that a multiple-
channel feedback control system can achieve. The regular control system, the simplified
control system, and the decentralized control system are discussed separately. Section
5.4 performs some simulations for a 2x2 control system. Section 5.5 discusses how to

improve the stability of the control system.

S.1 Multiple-channel FXIL.MS algorithm

For a general K actuators and M error sensors multiple-channel system, there are K

control signals, y,(n), which drive the corresponding actuators, and M residual signals,
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e, (n), which are the outputs of the M error sensors. Generally, each control signal will
contribute to each residual error signal. Consequently, there are MxK secondary paths,
S . (z) from the k™ actuator to the m™ error sensor. These paths are estimated by the
corresponding digital filters S”mk (z) . The reference signal synthesizer uses the K control
signals y,(n), the M residual error signals e, (n), and the MxK secondary path
estimates S‘mk (z) to generate the M reference signals x,(n). Since there are M
reference signals, x, (n), and K actuators, we require K> adaptive filters, W, (z), to
generate the control signal for each combination (¥, (z) usesx, (n)as the reference

signal and the output goes to the k" actuator). The synthesized reference signals, which
are the restored primary disturbances at the M points where the sensors are located, are

expressed as

x,(n) = em(n)+i.§mk (mxy,(n),m=12,..M, (5.1

k=1

where § _, (n) is the impulse response of the secondary path estimate S’mk (z). The k*
control signal, y,(n), which drives the k™ actuator, is the sum of the outputs from the M
adaptive filters connected to the k" actuator. It is expressed as

M

vy = w, (m)*x,(m),k=12,..K, (5.2)

=]

where w,, (n) is the impulse response of the adaptive filter W, ,(z). Each filter W,,,(z)
M

is adapted to minimize the cost function &(n) = Ze jz(n) , Le, the sum of the

=

instantaneous squares of the M residual errors based on its own reference signal, x, (n) .
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The cost function £(n)is a quadratic function of each of the KxM filter weight vectors,
w,, (n) [43], [44] and the optimum set of the filter coefficients required to minimize
&(n) may be evaluated adaptively using the gradient descent method. That is,

de; (n)

Wy, (n+1) = w,, (1) -§V§(n> = Wy (1) = 1

2 5w, (n) e;(n). (5.3)

The j* residual error e (n) is given by

ej(n) :dj(n)”zsjp(n)*yp(n)

=d, ()= s, W=D w, M*x, (M} j=12,..M, (54

where d;(n) 1s the original disturbance at the point where the j " error sensor is
located. The derivative of e,(n) with respect to w,, (n) only has non-zero values when

p=k and g=m in Equation (5.4). That is,

01 s (yrx (). (5.5)
6ka (n) ! K

Again, the weight vector w,, (n) is assumed to be time invariant as in Section 4.1 to
evaluate the derivative. This assumption can only be justified if the time variation of the
adaptive filter takes place with a very slow rate or when the time delay associated with
the secondary path transfer function is negligible.

In practical active control systems, s, (n)is not available and will be replaced with
its estimate §,(n). Replacing s, (n) with 5,(n) in Equation (5.5) and substituting

Equation (5.5) into Equation (5.3), the resulting multiple-channel FXTL.MS algorithm is
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Wi (2 41) = W, (1) + 2313 (1) 3, ()] ) (56)

Figure 5.1 shows the details of a 2x2 adaptive feedback control system without on-
line identification of S‘mk (z). We discuss the on-line identification of the secondary
paths 1n Section 5.2. Two control signals, y,(n) and y,(n) are generated as

Y2(n) = Wy (1) 3, (1) + Wiy (1) * 3, () (5.7)

Y2 (1) = wyy (1) %, (1) + Wiy (m) % 3, (n) (5.8)

where w,,(n),w,,(n),w,,(n)and w,,(n)are the impulse responses of the adaptive filters

W, (z), W,(z), W,(z), and W,,(z), respectively. The reference signals, x,(n)and

x,(n) are synthesized as

%, (1) = € (n)+ 5, (1) * 3, (1) + 5, () * 1, () (5.9)

x,(n) = e,(n) + 855, (n) * y,(n) + 5, () * y,(n), (5.10)

where §,,(n),5,,(n),3,,(n),and §,,(n) are the impulse responses of the secondary path

estimates S’u(z),S’12 (z),.§21(z), and 5’22 (z), respectively. The weights of the four
adaptive filters are updated using the multiple-channel FXLMS algorithm expressed as

wy(n+1) = w, (n) + pi[§,, (n) * x,(n)]e; (n) +[§,, (n) * x, (n)]e, (n)} (5.11)

wa (n+1) = w,, (n) + pi[$,, (n) * x, (n)]e, (1) +[5,, (n) * x, (M) Je, (n)} (5.12)

Wi (n+1) = wy, (0) + p{[3,,(n) * x, (m)]e, (n) +[5,, () * x, ()], (n)} (5.13)

Wy, (m+1) = w,, (n) + p{[$, (n) * x,(M)]e,(n) +[5,, (n) * x,(n)]e, (n)} . (5.14)
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Figure 5.1 A 2x2 adaptive feedback active control system without on-line
identification.

5.2 On-line identification of the multiple secondary paths
For a general multiple-channel system with K actuators and M error sensors, there

are KxM secondary paths, S, , (z) from the k" actuator to the m” error sensor, which

need to be identified. On-line modeling of the KxM secondary paths for a multiple-
channel active control system is more difficult than in the single-channel case, because

the error signal e, (1) from the m" error sensor is a mixture of the primary disturbance
at point m and the secondary signals from all secondary paths, §,,(z) fork=1,2,.. K. In
order to simultaneously identify the KxM secondary path transfer functions §,,(z), we

must have K excitation signals driving each of the K secondary sources. Because of the

interchannel coupling, these K excitation signals must be independent. Otherwise, the
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estimates of these secondary path transfer functions are biased [14]. To explain the
effect of the interchannel coupling, consider a 2x2 system, i.e, a system with two
actuators and two error sensors as illustrated i Figure 5.2, that only shows one of the

two error signals e, (n), and uses one additive random noise v(n) for on-line secondary
path modeling. The error signal e,(n) is the error signal measured by the first error

sensor, which is the residual error of the primary distﬁrbance d,(n) canceled by the
control signals from both secondary sources. Adaptive filters S‘“ (z)and S,,(z) are used
to model the secondary paths §,,(z) and S,,(z) on-line, respectively.
For the adaptation of Su(z) , v(n) is the input signal and f,(n) is the error signal
used for updating the weights. The desired signal for modeling S,,(z) is
w(n) = 5,, (1) <[y, (1) + W)+ 5, (1) * [y, () + ()] = d, (n) = 5, (W) *¥(m) . (5.15)

The adaptive filter S‘“ (z) converges to its Wiener solution as

Jo = Py 16
S$n(2) S (2) > (5.16)

A4

where S, (z)is the antopower spectrum of v(n) and S,,(z) is the cross-power spectrum

between the desired signal u(n) and the input signal v(n). Assuming that the excitation

signal v(n) is zero-mean and is uncorrelated with y,(n), y,(n) and d,(n), S, (z) can
be determined from Equation (5.15) as

S, (2) =18, () + 5,,(2) = §,,(2)18,,(2). (5.17)
Substituting Equation (5.17) into Equation (5.16), the optimum solution of

S 11(z) becomes
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Figure 5.2 On-line identification of the secondary paths using one random noise
generator.

§5(2) = 8, (2) +[S, (2) = S, (2)]. (5.18)

Equation (5.18) shows that when random noise components are picked up by the first

error sensor through multiple secondary paths (S;,(z) and S,,(z), in this case), the
estimate Sn(z) is biased by the cross-coupled secondary paths S,,(z) and 5’12 (z). The
desired result S,,(z) = S,,(2) occurs only if 5’12 (z)=S8,,(z). Since S’Iz(z) itself is being

simultaneously adapted with S’” (2) , there can be no unique solution for either filter.

To remove this interchannel coupling associated with the multiple-channel systems,
K random noise generators can be employed such that the K random noises used to

drive the K actuators are mutually uncorrelated. For a 2x2 system, two random noise

generators as shown in Figure 5.3 are employed to generate the random noises v, (n)
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Figure 5.3 On-line identification of the secondary paths for a 2x2 system using two
random noise generators.

and v,(n), which are mutually uncorrelated and also uncorrelated with
»(n),y,(n),d,(n)and d,(n). Then, the desired signal for modeling §,,(z) becomes

u(n) = s, () *[y,(M+v, (W] +s, (@) *[y,( @)+ v, (W)} -d,(n) -5, (n)*v,(n) (5.19)

and Equation (5.16) changes to

§\(2) O (2) (5.20)
nlZ)= Svm (Z) .
Equation (5.17) is simplified to
S, (2)=8,,(2)S,, (2) (5.21)

because v,(n) and v,(n) are uncorrelated. Then, the optimum solution of .§11(z) is

correctly obtained as
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$1(2) = 8,(2). (5.22)
The same symmetric analysis applies to the adaptation of S’,z (2).

For a KxM system, K independent random noise generators are required to remove
the interchannel coupling. When X is large, the cost may be too high for some real time
systems. An alternative is to use a single noise source with inter-channel delay to
decorrelate the excitation signals instead of the multiple random noise generators [45].
This technique allows on-line modeling of the secondary paths using a single random

noise generator, hence reduces the cost of on-line identifications.

5.3 Optimal performances of the multiple-channel control systems

This section uses a unified way to formulate the optimal performances of the three
variants of the multiple-channel feedback control system, and explicitly show the
dependence of the optimal performance on the correlation coefficients of the primary
disturbances and the impulse response of the secondary paths. It is assumed that there
are M secondary sources and M error sensors in the multiple-channel system and the
MxM secondary paths can be estimated accurately in our discussion. We also assume

that all the signals are real valued for simplicity of derivation.
3.3.1 Regular control system

The regular multiple-channel feedback control system can be illustrated as in

Figure 5.4, in which:
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Figure 5.4 Block diagram of the multiple-channel feedback control system where
the secondary paths can be estimated accurately.

W MxM matrix of responses of the control filters

S MxM matrix of responses of the secondary paths

d Mx1 vector of the primary disturbances
e Mx1 vector of the residual errors

y Mx1 vector of the control signals

X Mx1 vector of the reference signals

If the control filters are implemented as FIR filters of order J and the secondary

paths are modeled as FIR filters of order K, the output of the i” error sensor at time

instant n# can be written as

&) =, (1) =3 v () * 5 = dy (1) =3 5 (B)yu (1= )i =12, M, (5.23)

m=l1 m=] k=0

where d,(n) is the primary disturbance at the i error sensor and

s, =[s, (0),s, (D,---,s. (K)]" is the impulse response vector of the secondary path
wn im m 24 p

th

from the m™ secondary source to the i error sensor. The m™ control signal y, (n),

i.e., the input to the m™ secondary source, is the sum of the outputs of those M control

filters that aim at the m" secondary source, and can be written as
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M M T
Vo)=Y x(myxw, =2 > w (Dx(n-j),m=12,..M, (5.24)
1=1

=1 j=0
where x,(n)is the [”reference signal and w,, =[w,,(0),w,, (D,...,w, ()] is the
weight vector of the control filter W ,(z), which uses x,(r) as the input signal and the

output goes to the m” secondary source. Substituting Equation (5.24) into (5.23), we

have
M M J X
e;(m)=d;(m) =23, > W (NS (B)x, (= j = )
m=l {=] j=0 k=0
M M J
= dz(n) - ZZZ W (j)uiml (n - .])’ i=L2,.,M, (525)
m=l [=) j=0
where u,,,(n) is the filtered reference signal x,(n) by the secondary path s,, . Equation

(5.25) illustrates the linear relationship between the error signal and the filter

coefficients and can be rewritten in matrix form as [43], [47]

e(n) =d(n)—U(n)w (5.26)
in which
e(n) =[e, (n),e,(n),....e, (W]’ (5.27)
d(n) =[d,(n),d,(n),....d,, (W]’ (5.28)
w (), (n=1),....,u (n—J)
Uln) = uzT(n),uzT(n—l.), ..... u, (n—J) (5.29)
u,’ (n),u,’ (n -.1),..., u, (n-J)
where

(1) = [,y (1) 8,1 () sy (M1 () sty (] (5.30)

Chapter 5. Multiple-channel active control systems 97



and

w=[w (0),w O),..,w (N (5.31)
where

WD) = [y, (1), Wy (Deres Wy (), Wy (Deres Wiy D] (5.32)

We define the cost function £(#) as the expectation of the sum of the squared errors

E(m)=E[Y e, (n)]= E[e” (ne(n)]. (5.33)

Then, using Equation (5.26), £(n) can be expressed in the general matrix form as
E(ny=E[d" (n)—w U" (m)][d(n)-U(m)w]
=WTRW~2WTP+J’, (5.34)
where R=E[U" (n)U(n)], p=E[U" (n)d(n)], and o = E[d" (n)d(n)]. The Wiener
solution minimizing Equation (5.34) is given by
w =R'p, (5.35)
which results in the optimal value of the mean square error

S =O-P'R'p. (5.36)
When the secondary paths can be estimated accurately, the reference signal

x,(n) equals the primary disturbance d,(n). Consequently, the filtered reference signal
u,,, (n) is the filtered version of d,(n) by the secondary path s, . Therefore, R and p in

Equation (5.36) can be expressed in terms of the correlation coefficients of the primary

disturbances and the impulse responses of the secondary paths. Specifically, let 7, (k)

be the correlation between the primary disturbance d_(n)and d,(n) withlagk, i.e,
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ra(k)=Eld (md,(n-k)}, ¢, =12,...M, (537

then the crosscorrelation between d (n) and u,,(n) can be derived as
K

Eld (mu,, (n—k)]=r,(k)*s, = Zsim (Dry(k—j). Using Equation (5.28) and
j=0

(5.29), p can be expressed as

P =E[U" (md(m]=11,(0), £150)es frn O f1y Wiy 1y (Devss Frne (DI, (5.38)
where f,.(k)= i V) ®s,, = iism‘. Dk =D).
m=1 m=1 [=0
| Similarly, define the correlation between u,,(rn) and u,,, (n)as v, (k), e,

vijlmqr (k) = E[u[jl (n)umqt (n - k))}

= E{[s; *d,(m][s,, *d,(n—K)]}

-, (’”g[%“’)ﬁf (k+h=p)). (539)
Then,
20 g - gl
R = E[UT (n)U(n)] = g(z_l) g(:O) gufl), (5.40)
g(;J) g(—;/ +1) g(~0)
where the M > x M’ matrix g(k) is defined as
v Ve ® e ® < Ve (0
c=] T ® e ® e ® v ® |

viMMill(k) Ytz (k) ViMMm(k) 0 Vounivm (k)

Using Equation (5.36)-(5.41), the minimum mean square of the regular multiple-
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channel feedback control system can be calculated with the knowledge of the

correlation coefficients of the primary disturbances and the secondary paths.

5.3.2 Simplified control system

In the simplified feedback control system with M secondary sources and M error
sensors as shown in Figure 5.5, only M control filters are employed and each secondary
source 1s driven by the output from one control filter only. Each control filter is still

adjusted to minimize the sum of the squared output from all the error sensors. The input

to the m” secondary source, y, (1), is now the output of the control filter W, (z) only,
ie.,
J
yumy=x,()*w, => w,()x,(n- ), m=12,..M, (5.42)
j=0

where w, =[w,_(0),w, (1),...,w, (J)]" is the weight vector of the m" control filter and

x, (n)is the corresponding input signal. Using Equation (5.23), the output of the i”

error sensor at time instant » changes to

e(m)y=d,(n)=.> w, (N5, (K)x, (n—j—k)

m=l j=0

zdi(n)~izjlwm(j)uimm(n—j)a i=12,.,M, (543)

m=] j=0

where u,,, (n) is the filtered reference signal x,,(n) by the secondary path s, .
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Figure 5.5 Simplified multiple-channel feedback control system where each secondary
source is driven by the output of one control filter only.

The error signals of the simplified control system can still be written in matrix form

as Equation (5.26), but «,(n) in Equation (5.30) changes to

i, (n) =[1;,(n), 1,5, (1), Uy, Qe (5.44)
and w(i) in Equation (5.32) changes to

w(i) = [w, (1), W, (D)0 Wy, (D] (5.45)
The minimum mean square error of the simplified control system is still expressed as in

Equation (5.36), but p now changes to

p=EUT (md(m)]=[£,(0), £,(0)cs 1, O fiDsects (Do, [, (DI, (5.46)

where f.(k)= ir,m. (k)*s,, =

M K
m=] m=

> s, (Dr,.(k=1). The correlation matrix R of the

1=0

—

simplified control system remains the same expression as given in Equation (5.40), but

the matrix g(k) in Equation (5.41) changes to an MxM matrix
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Vi) Vi B) - Vo (K)

g(k) = i vi22il}l (k) Vizzizzz (k) Vi22iM:M (k) . (5.47)

i=1
Vanin (K Vagan (B Vigsan, (5)
Using Equation (5.36), (5.37), (5.39), (5.40), (5.46) and (5.47), the minimum mean
square of the simplified multiple-channel feedback control system can be calculated

with the knowledge of the correlation coefficients of the primary disturbances and the

secondary paths.

5.3.3 Decentralized control system

Both the regular control system and the simplified control system can be described
as being fully coupled since each secondary source is being adjusted in response to the
output of all the error sensors. The fully coupled control system may require
considerable processing power to implement and generally has a relatively complicated
model of the system under control, which accounts for all the interactions between each
of the secondary sources and each of the error sensors. One way of avoiding these
problems is to decentralize the control system. That is, each secondary source is
adjusted to minimize the sum of a smaller number of error sensors. The limit of this
approach would be when there were as many secondary sources as error sensors, and
the input to each secondary source is adjusted to minimize the output of one error
sensor only. This is equivalent to M (the number of error sensors or secondary sources)
isolated single-channel systems, and it is called fully decentralized control [48]. Figure
5.5 can still be used to illustrate the fully decentralized control system with M

secondary sources and M error sensors. Each control filter W, (z) in the fully
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decentralized control system is now updated to minimize the squared output of the m”
error sensor only. Unlike the simplified control system where all the MxM secondary
paths have to be estimated, the decentralized control system only estimates the M direct

paths s, (m=12..M). The fully decentralized control system differs from the
simplified control system in that the m" reference signal x, (n) no longer is equal to
the m” primary disturbance d,(n). The m" control filter W, (z) generates its
reference signal x_ (n) by adding its output at the summing point to the output from the

m™ error sensor, i.e.,

x, (W) =e,(m)+) s, (K, (n-k)

k=0

M J

=d, (W)= D D> w())s, (ku,(n—j—k). (5.48)

i=ligm j=0 k=0
Let 7', (k) denote the correlation between d,(n) and x,(n) withlagk, ie,
r(ky=Eld,(n)x, (n-k),i,m=12,..M . (5.49)

In the steady state, 7',

im

(k) can be completely determined by the correlation between
the primary disturbance 7, (k) defined in Equation (5.37) as well as the responses of the

control filters and the secondary paths. Equation (5.43) is still the expression for e,(n)

and Equation (5.36) is still the minimum mean square error for the fully decentralized

control system. The correlation vector p in (5.46) changes to

P =EUT (A ] =[£,'O0), /3 O foy (O fy O ;' Do fi DY (5.50)

M M K
where f,'(k) = 7, (k) *s,, = > > 5,0, (k=1).
m=] m=l 1=0

Chépter 5. Multiple-channel active control systems 103



The correlation matrix R still takes the form of Equation (5.40) but the MxM
matrix g(k) changes to

Vi &) Vi &) o Vi (K)
glb)= 54: v'm”:l (k) v,i22£2:2 (k) v'izziM:M (k) , (5.51)
i=1 .
Vi B) Ve (6) - Vingane (6)

where
Vi (k) = E[uw (myuy, (n—k))}

=E{[s; *x;(n)]ls, *x,(n—-k)]}
=M sy (W[5, ()" ke + =P}, b, jl =12, M . (5.52)

r''; (k) in Equation (5.52) is the correlation between the reference signal x,(n) and
x,(n). Like r', (k), r", (k) can be completely determined by the correlation between
the primary disturbance 7,,(k) as well as the responses of the control filters and the

secondary paths.
The formulas derived above are useful for analytic comparisons of the three
variants of the feedback control system and can be used to guide the selection of the

appropriate control scheme. These formulas will be used to compare the theoretical

values for a 2x2 system in the next section.

Chapter 5. Multiple-channel active control systems 104



5.4 Computer simulations for a 2x2 system

In this section, we will simulate the performances of the three feedback control
systems discussed in the last section for a 2x2 case and compare them with the theoretic
values. For simplicity of calculation on the theoretical values, a unit variance AR(2)
process with a; =—0.975 and a, =0.95 is employed as the primary disturbance at
point 1, i.e., d,(n) and another unit variance AR(2) process with ¢, =-1.5955 and
a, =0.95 is employed as the primary disturbance at point 2, i.e, d,(n). It is easy to
show that the autocorrelation coefficients of d,(n) are
r,(k)=[1, 0.5, -0.4625, -0.9259, ---] and the autocorrelation coefficients of
d,(n) are r,,(k)=[1, 0.8182, 0.3554, -0.2102, ---]. d,(n) and d,(n) are almost
uncorrelated and r, (k) and r, (k) are assumed to be zeros to simplify the calculation.

It should be noted that we assume the primary disturbances in the simulations are
already AR processes without considering the errors of modeling the primary
disturbances by AR processes. In real applications, this modeling error is one of the

main sources of the residual error.

In the first simulation, let the direct paths be s, =s,, =[0, 0.5, -05]" to
exhibit the high pass property and let the cross-coupled path be
szi =5, =[0, 0.2, 0.2] to exhibit the low pass property. Since both d (n) and
d,(n) have strong energy in the low frequency band (the pole of d,(n) is at 0.337 and
the pole of d, (n)is at 0.197), the regular control system (refer to Figure 5.1 on page 86)

1s expected to outperform the simplified control system as shown in Figure 5.6. This is
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Figure 5.6 Simplified 2x2 adaptive feedback control system with only two control

filters.

because d,(n) can be reduced by the output of W,,(z) and d,(n) can be reduced by the
output of W,,(z) in the regular control system. Figure 5.7 shows the squared residual
errors obtained by the regular control system and Figure 5.8 shows the same
information obtained by the simplified control system. All the curves in the simulations
are the ensemble average of 100 independent trails of the experiments. It can be seen
that the average square error achieved by the regular control system is around

0.15+0.19=0.34 and the averaged square error achieved by the simplified control

system is around 0.5+0.8=1.3.
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Figure 5.7 The averaged square errors achieved by the regular control system with

s =8, =[0, 05, -0.5]".

10°

Ensembie-averaged square error

10 : !

squared error at point 1

squared error at point 2

3

0 50 100

150 200 250
Number of iterations

Figure 5.8 The averaged square errors achieved by the simplified control system with

S, =S, =[0, 0.5, —05]".
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Using the correlation coefficients and the impulse responses of the secondary paths
in the equations given in the last section, the theoretical minimum mean square error
that the regular control system can achieve is  calculated as

& min—reguar = 2 —1.875=10.125 and the theoretical minimum mean square error that the

simplified contro! system can achieve is calculated as & =2-1.022=0.978.

roin - simplified
Both the theoretical values and the experimental values confirm that the simplified
control system is not attractive using the current frequency responses of the secondary
paths. It should be noted that the calculated theoretical minimum mean square is the
optimal value obtained by the steepest descent algorithm (the Wiener solution) and the
experimental result is the value obtained by the LMS algorithm (the stochastic gradient
descent algorithm). The difference is called the excess mean square error that results
from the noisy estimate for the gradient vector in the LMS algorithm. The excess mean
square error increases linearly with the filter length and is directly proportional to the
step size of the LMS algorithm.

In the second simulation, we consider the case when the secondary paths are

consistent with the frequency responses of the low pass property. Hence, let the direct

paths be s, =s,, =[0, 0.5, 0.5]" and let the cross-coupled paths remain the same at

s, =5, =10, 0.2, 0.2]". Since the secondary paths exhibit similar frequency

responses, we should not expect the regular control system to outperform the simplified
control system as much as in the first simulation. Using the correlation coefficients and
the new impulse responses of the secondary paths in the equations given in the last

section, the theoretical minimum mean square error that the regular control system can
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achieve changes to £ =2-1.882=0.118 and the theoretical minimum mean

—regular
square error that the simplified control system can achieve is reduced to

& rmin—simptiziea = 2~ 1.719 = 0.281. These values are much closer to that of the regular

control system. Figure 5.9 shows the experimental results obtained by the regular
control system and the simplified control system. The performance of the regular
control system is worse under the current setting for the secondary paths.

Figure 5.10 shows the squared residual errors obtained by the decentralized control
system. It can be seen that the decentralized control system achieves a performance
better than the simplified control system under the current setting for the cross-coupled
paths (s, =s, =[0, 0.2, 0.2]"). The frequency responses of the cross-coupled
secondary paths directly affect the overall performance. When the responses of the
cross-coupled paths become weaker, the performance that the decentralized control
system can achieve is expected to improve. On the other hand, when the responses of
the cross-coupled péths become stronger, the algorithm tends to diverge. Figure 5.11

shows the cases when the cross-coupled paths change to [0, 0.45, 0.45] (upper set

curves) and to [0, 0.05, 0.05](lower set curves), respectively.

Chapter 5. Multiple-channel active control systems 109



T T T
squared error at point 1
..... squared error at point 2
.
e regular system
® 0
o 10
©
>
o
o
=4
]
=]
®
£
@
2
Ee)
E
Q
W
p=4
w o N
simplified system '
-1
10 : : .

0 50 100 150 200 250
Number of iterations

Figure 5.9 The averaged square errors achieved by the regular control system and
the simplified control system with s,, =5,, =[0, 0.5, 0.5]" .
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Figure 5.10 The averaged square errors achieved by the fully decentralized control
system with s,, =s,, =[0, 0.5, 0.5]".
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Figure 5.11 The average square errors achieved by the fully decentralized control
system  with 5, =s, =[0, 045 045]"and s, =5, =[0, 0.05 0.05]",
respectively. '
5.5 Improving the stability of the feedback control systems

The LMS algorithm updates the control filters to minimize the instantaneous
squared output of the error sensors. One side effect of reducing the squared errors only
is that the system may obtain very small reductions in the errors at the expense of very
large control signals. Large control signals in turn may affect the stability of the
feedback control system. The inaccurate estimation of the secondary paths and/or the
cross coupling of the secondary paths may also result in the instability of the control
system. One way to improve the stability of the control system is to penalize the control

signals in the cost function. That is, we might include a term in the cost function that is
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proportional to the sum of the squared control signals as in [49], [50]. For a system with

K actuators and M error sensors, we define the new cost function as

Emy=>e, (mM+ay v’ (n), (5.53)

m=1

where
M
v (n)= Zwkm (n)*x,(n), k=12, #, K
m=1

and o 1s a real, positive weighting coefficient used to balance the control error (first
term) and the control effort (second term). Following the procedure of the development
for the gradient descent algorithm, the weight updating equations of the KxM adaptive

filters can be derived as

W (1 +1) = W () + 13 18, 3, (W), (1) —uay, (x (1), (5.54)

=1
where §, is the estimated impulse response of the secondary path from the
k™ secondary resource to the ;™ error semsor. Specifically, the weight updating
equations for the regular 2x2 control system are

wi(n+1) = w, (n) + pilS,, (n) * x,(W]e, (n) +[5,,(n) * x, (n)]e, (M)} — pay, (m)x, (n) (5.55)
wo (n+1) = wy, (n) + p{[$,(n) * x,(m)]e, (n) + [$,, (n) * x, (m)]e, ()} - pay, (n)x,(n) (5.56)
Wi (n+1) = wy, (n) + p{[$,(n)* x, (m)]e, (n) +[3,, () * x, (m)]e, (n)} — pay, (n)x, (n) (5.57)
Wop (1) = wy, (n) + 1[5, () * x, (We, () +[5,, (n) * x, (W)]e, (1)} — pay, (M) x,(n) .(5.58)
Equations (5.55) and (5.58) are the weight updating equations of the simplified 2x2

control system except that y,(n) is now the output of W, (z) only and y,(n) is the
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output of W,,(z) only. The weight updating equation of the decentralized 2x2 control

system are then simplified to
wi (n+1) = w, (n)+ pl$,, (n) * x, (n)le, (n) — pay, (n)x, (n) (5.59)
W12 (14 1) = Wy () + 18,5 () * x, (e, (n) — pacy, (m)x, () (5.60)
Figure 5.12 shows the stability improvement Qf the decentralized system. When
the cross-coupled paths and the direct paths are the same ([0, 0.5, 0.5]" here), the

system that only minimizes the control error diverges as shown by the upper set of
curves in Figure 5.12. On the other hand, the system that minimizes both the control
error and the control effort can still achieve some error reduction as shown by the lower
set of curves in Figure 5.12.

The cost of the stability improvement is clearly the decrease in the error reduction.
Figure 5.13 shows the difference of the error reduction at point 1 using these two cost
functions when the algorithm is stable. There is always a compromise between the
performance and the robustness for feedback control systems and the decision as to
where we compromise must be made based on the specific requirements of the real

applications.
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Chapter 6

Summary and conclusion

This dissertation discusses the active control system and applies it to the vibration
reduction of a complex mechanical structure, the hard disk drive assembly. Four
problems associated with the active control system are analyzed, which are the
convergence rate, the constructive interference, performance improvement and on-line
identification of the secondary paths. Selective adaptation in the frequency domain is
proposed to alleviate the constructive interference. A delayless sub-band algorithm is
proposed to improve the convergence rate and trade off the performance from various
sub-bands. Up to 10 dB of vibration reduction is achieved in the simulation and the real
time implementation.

In Chapter 2 the basic technologies of the single-channel active control system is
introduced. First, the principles and performance limitations of the feed-forward active
control system and the feedback active control system are described. Then, on-line
identification of the secondary path transfer and the effect of the estimate error are
analyzed. The hybrid active control system is used to improve the overall performance
when a reference signal is available.

Chapter 3 theoretically shows the improvement of the convergence rate by
implementing the algorithm in the frequency domain. Simulations also demonstrated

that the frequency domain LMS algorithm consistently achieves a faster convergence
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rate than the time domain LMS algorithm for different input eigenvalue spreads. Then,
this chapter explained why the modeling error due to the insufficient length of the
controller or the primary disturbance itself results in the presence of constructive
interference in feedback active control systems. A so-called selective adaptation in the
frequency domain is proposed to alleviate the constructive interference while keeping
the destructive interference that can be achieved by the active control systems.
Simulation showed that the constructive interference can be alleviated by several dB in
the constructive interference band with a slight degradation at the boundary band.
Chapter 4 discusses the implementation of the adaptive algorithm in the sub-band.
It analyzed why the sub-band structure used in system identification or in echo
cancellation cannot be directly applied to the active control system. This is because the
ideal signal in the active control system is not directly available and the active control
system generally cannot tolerate extra delay along the signal path. Then, a new
delayless sub-band filter architecture was derived. The FXLMS implemented in the sub-
band achieves better convergence and provides the flexibility to trade-off the
performance from the various sub-bands. One side effect of the sub-band algorithm is
the group delay associated with the analysis filter bank, which decreases the
convergence region of the step size, accordingly. Compensation methods are proposed
to increase the convergence region of the step size by generating a set of new sub-band
error signals to update the filter coefficients. Combined structure of the frequency
domain method and the sub-band decomposition technique are proposed to improve
noise reduction in some sub-bands while the constructive interference occurring in other

sub-bands can be alleviated at the same time. Computer simulations are performed for
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feed-forward active control systems and feedback active control systems to verify the
efficiency of the proposed sub-band algorithm.
Chapter 5 extends the single-channel feedback control system to the multiple-
channel feedback control system in order to reduce the vibration of complex mechanical
structures or the acoustic noise inside enclosures. Multiple-channel FXLMS is
developed using the gradient descent method. Inter-channel coupling during the on-line
identification of multiple secondary paths is analyzed in detail. Then on-line
identification of multiple secondary path transfer functions using multiple independent
white noise generators was discussed. We derived the optimal performances of the
regular, simplified and decentralized multiple-channel feedback control systems, which
are not reported in the literature. The formulas derived explicitly showed the
dependence of the performance on the impulse responses of the secondary paths and the
correlation coefficients of the primary disturbances. The theoretic values can be used to
guide the selection of the appropriate control scheme in real applications. Finally, this
chapter introduced techniques to improve the stability of the feedback control system by
penalizing the control effort in the cost function.
The research conducted for this dissertation makes the following contributions:
1. Proposed the selective adaptation method in the frequency domain to alleviate
the constructive interference.

2. Proposed a delayless sub-band algorithm to avoid signal path delay for the
active control system.

3. Proposed a combined structure of the frequency domain method and the sub-

band decomposition technique.
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4. Denved the optimal performances of the feedback control system for three
variants.

Further research can be conducted in the following directions:

1. Implement the active hybrid control system in real time. The vibration reduction
that a feedback control system can achieve is limited. To improve the
performance of the active control system, the feed-forward control scheme can
be combined with the feedback scheme if a related reference signal is made
available.

2. Develop a more computationally efficient structure for the combined structure
shown in Figure 4.18. Since both the sub-band decomposition and orthogonal
transform are essentially linear operations, it is possible to swap the order of
these twd operations to reduce the computational complexity.

3. Explore the possibility of using variable performance among the various sub-
bands to alleviate the constructive interference using the frequency domain
method only or using the sub-band decomposition technique only. There is a
close relationship between the sub-band decomposition and the frequency
domain implementation in that transforming an input vector x(n) of length N
into the frequency domain can be viewed as decomposing x(n) into N sub-bands
and down-sampling these sub-band signals by a factor of N. Therefore, it might
be possible to achieve this goal using one technique only.

4. Analyze the effect of the errors in estimating the secondary path S(z) on the

theoretic performance of the vibration reduction method. So far, only a few
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papers ([15], [51]) deal with this issue and only preliminary results have been

obtained.
5. Formulate the relationship between the AR(N) process resulting from the
converged filter vector and the AR(N) process that models the original

disturbance for a general secondary path S(z) in the feedback control system.
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Appendix A

Experimental environment

Appendix A introduces the main equipment in the experimental system and gives

the technical specifications.
A.l M44

The M44 from Innovative Integration, Inc. (hitp://www.innovative-dsp.com) is

employed as the processor in the active control system. The M44 is a PCI bus-based,
flexible I/O engine featuring a high-performance DSP and dual OMNIBUS module /O
expansion sites. It employs a TMS320C44 32-bit floating-point DSP as a data
movement/data processing engine capable of up to 60 MFLOPS/30 MIPS. On-chip
peripherals include two 32-bit counter/timers, six powerful DMA channels, 8 Kbytes of
dual-access SRAM, four bi-directional comm.-ports and a prioritized interrupt
controller. Table A.1 summaries the technical specifications.

Table A.1 Technical specifications of the M44

Digital Signal Processor | TI TMS320C44 275 MOPS 32-bit floating-point DSP
optimized instruction set for DSP.

Memory 32Mx32 total range. Expandable on-board to 512Kx32
global, 128Kx32 local.

Debug Port JTAG 1149.1 port for emulation of multiple ‘C44’s.
Supports C/Assembly source level debugging with Code
Hammer.

Host PC Interface PCI bus master/slave 32-bit SV; consumes 256 bytes of host

I/O space, 1 Mbyte host memory space, 1 interrupt.

Comm. Port Connections | Two buffered comm. ports for system expansion. Two
comm. port to OMNIBUS module I/O slots.

Digital I/O 32-bit TTL input, output or bi-directional with real back, 64
mA sink/32 mA source drive capacity.

Timers/Counters One direct digital synthesizer(DDS) 0.02 Hz resolution.
Three 16-bit timers driven by DDS.

Connectors Two DB 15 female for VO; IDC 80 for 4XBUS expansion.
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A.2 A4DA4

An A4D4 OMNIBUS module is employed to provide the A/D and the D/A

channels. The A4D4 accommodates 4 analog input channels and 4 D/A channels. The

four analog input channels on the A4D4 module are successive approximation type A/D

converters, which allows for low data latency critical in control applications and

multiple channel configurations. Each input and output channel is calibrated for gain

and offset errors allowing accurate measurements for a variety of applications. Table

A.2 summaries the key specifications.

Table A.2 Technical specifications of the A4D4

Bus Type Compatible with all OMNIBUS Innovative products, 32-
bit. Consume one interrupt to host DSP.

A/D Converters Analog devices AD976AA. Success approximation
architecture for low data latency.

Resolution 16-bit ~

Setting Time 5 us (no filtering) @ 10 V step to 0.0008%

Update Rate 200 kHz

Analog Input range +/-10V

Input Type Differential

Programmable Gain 1,2 4,8

Conversion Trigger Sources

DSP, timers or externally triggered.

Interface to DSP

Memory-mapped 32-bit result returned for each A/D
pair.

D/A converters

Analog devices AD7846. Each D/A channel has
independent filtering, gain and trims.

Resolution 16-bit

Setting Time 7 us (unfiltered) to 0.003%

QOutput Range +/-10V

Interface to DSP Memory-mapped, 16-bit interface to DSP.

A.3 PCB 353B15 accelerometer

Two PCB 353B15 piezoelectric accelerometers from PCB Piezotronics Inc.

(http://www.pcb.com) are used as the residual error sensors in the experimental system.
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These are powered by a constant-current signal conditioner and have fixed voltage

sensitivity. Table A.3 provides the primary performance characteristics of the PCB

353B15.

Table A.3 Main features of the PCB 353B15 accelerometer

Frequency Range (£5%) 1 to 10000 Hz
Voltage Sensitivity 10.27 mV/g
Resonant Frequency 75.5 kHz
Amplitude Range -500 pk/500 pk g
Resolution 001lg

Constant Current Excitation 2to 20mA
Output Impedance <100 ohms
Temperature Range -65to +250 F
Weight 0.07 oz (2 gram)

A.4 PCB 713A01 patch actuator

Two PCB 713 A01 patch actuators are used as the actuators to generate the

canceling vibration in the active control system. The technical specifications of the PCB

713A01 patch actuator is summarized in Table A .4.

Table A.4 Main features of PCB 713A01 patch actuator

Frequency Range 0~50000 Hz

Maximum Voltage +200 pk/-100pk volt

Piezoceramic Type PZT 5A

Capacitance (at constant stress) 32 nF

Clamped Force 0.047 1b/V [0.208N/V]

Free Expansion 1.335exp(-6) in/V [3.4exp(-5) mn/V]
Ceramic thickness 0.023 in [0.0584 mm)]

Weight 0.49 oz {14 gram]

Dimensions (LxWxT) 109x21.3x1.27 mm

Operating Temperature -13~185F

A.5 482A04 line power supply

A 482A04 line power supply or called signal conditioner (four channel) is used to

power the accelerometers. It contains four constant current circuits and provides
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constant current excitation to the built-in transducer amplifier that decouples the signal

from the DC bias voltage. Table A.5 gives the specifications of 482A04 line power

supply.

Table A.5 Specifications of the 482A04 line power supply
Channels 4
Supply Voltage +24 V/Channel
ICP Sensor Excitation Current 2-20 mA/Channel
Time Constant 10 sec
Low Frequency Response <0.1 Hz
High Frequency Response >1000 kHz
DC Offset (maximum) <30 mV
Noise Broadband (1 Hz-10 kHz) <7.58 uv
Voltage Gain (all outputs) 1+1%
Power Required (50-400 Hz) 115 +10% VAC/0.12 A

A.6 790A01 power amplifier

Two 790A01 power amplifiers are employed to drive the two 713A01 patch
actuators in the experimental system. The 790A01 power amplifier can generate an
output of up to £200 V peak at 100 mA peak and features adjustable gain for flexibility.
Table A.6 shows the specifications of the 790A01 power amplifier.

Table A.6 Specifications of the 790A01 power amplifier

Channels 1

Output Voltage Range 200 +2.5% V pk

Output Current +100 £5% mA pk

Calibration Internal

Calibration Voltage 1.00 £2% VDC

Voltage Gain 5 to 50 adjustable

Input Impedance 10000 +10% ohms

Maximum Capacitive Loading 100-1000 nF

Power Requirements 120/220 VAC, 60/50 Hz (selectable)
Weight 7.51b
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Appendix B

Efficient Implementation of the DCT

The discrete cosine transform of an N-point sequence x(n),n=0L..,N-1 is

defined as [21]

1N1

x(n)

(Zx() ”(2””)" k=12, N-1 (B.1)

Without considering the gain constants, the k” DCT coefficient can be viewed as the
output of an N-point digital filter, whose impulse response is

B () = cos 22 DR o1 N -1 (B.2)

The corresponding z transform is

S 7(2n+ )k
H, (z)=) z"cos————— B3
«(2) ZO TN (B.3)
Using the finite geometric sum relationship
N-1 N
R (B.4)
o 1-x
and the Euler identity
1 -~ Jx fx
cos(x) = —2—(e P re’) (B.5)

Equation (B.3) can be simplified to
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x(Zn+)k
N-1 - J et N-1 71’(2n+1)k

2N
Hk(z)——Zz "e +Zz e W
szcN] fmk rdtN]

._:__ ZNZ( N ) +e ZNZ(Z—le ',\T)n]

1 —J-1 (z'le ”) 1 /——1 (z"le N)

2 .l 2 Xl
1-ze ¥ 1-z7' ¥
L - = N
ule N Z"Ne 2N o Vrk+le'zzv ——Z_Ne 2Neﬂdf
Y 7 5 T
: 1-zt ¥ 2 1-z7'V
L b s i
R e T P P
) L o
(I-z7 ¥)Yl-z"e")
2 coszk— -2z cos(~1~ - ~L)7zk —2z7" cos(J* + Dk + 22700 cos(L Dk
1 2 2N 2N 2N
2 -2

1-2z7" cosi—zk——kz
N

~(N+1)

ko i/ S 7k 7k
COS——=2 COS———2Z = COS———COSAk +2 COS ——COS 7Tk
2N 2N 2N 2N

1-2z7" cosﬁk— +z72
N

m (1-z7) - (=D [z -z "]

= COS—
1——20037—#‘: z 4272
N

Including the gain constants in (B.1), we get

(1 . Z—l ) . (“‘1)k[Z—N _ Z——(N+l)]

-2

H (@)=, l-az"' +z
’ k

where
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N B.7)

a, :2cos—7—[—k—,ck :\[—?—cos—ﬂ—k—,kzl,Q,...,N—l
N N 2N

The a, and ¢, can be calculated in advance. Doing so, only 2N multiplications are

required for the N-point DCT. Consequently, only 4N+/ multiplications are required to

implement the LMS in the frequency domain for each sample.
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Appendix C

Proof of the non-equivalency of the direct swap

Appendix C shows that the sub-band decomposition and the orthogonal transform
in Figure 4.18 cannot be swapped without further change.

Figure C.1(a) shows the structure where the linear filtering (sub-band
decomposition) comes first and Figure C.1(b) shows the structure where the orthogonal
transform comes first.

U
x(n) h y(n) N-point orthogonal] " p

transform

(2)

x(n) Y, u(n)

| N-point orthogonal| 3
transform h .
(b)

Figure C.1 Swapped order of the sub-band decomposition and orthogonal transform.

Let us assume that the linear filter A(n) is an FIR filter with order N and the

orthogonal transform is also of order N with the coefficients as

oo " 8on-i

T = (C.1)

Ex-10 7 Byana
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For the structure shown in Figure C.1(a),
N-1
y(n)=> h(i)x(n—i). (C.2)
i=0

Then, the output vector of length N is

U,(0) oo 7 Eona y(n)
: = . : : , (C.3)
U,(N-1) 8o 7 &yawa || Y -N+1D)
where
N-1 N-1N-1
U,(k)=Y g, y(n-i)=> > g, hHx(n—i-j), k=01.,N-1. (C.4)
i=0 i=0 j=0
For the structure shown in Figure C.1(b), we have
Y.(0) oo 7 Eoxa x(n)
: ={ . : : , (C.5)
Y (N-1) Exnao 7 Ewawa || X -N+1D)
and the output vector of length N is
[u(n) u(n—-1) ---u(n-N+DT, (C.6)
where
N-1 N-1N-~1
u(n) =Y h()Y, () = Y D h()g, x(n—j). (C.7)
i=0 i=0 j=0

The output vectors of these two structures as given in Equations (C.3) and (C.6) are
different. Therefore, the order of the sub-band decomposition and the orthogonal

transform in Figure 4.18 cannot be commuted directly.

Appendix C 137



Vita

Longji Wang was born in Sichuan, China on October 8, 1964. He received the B.S.
and M.S. degrees in computer science from the Northwestern Polytechnical University,
China, in 1985 and 1988, respectively and the M.S. and Ph.D. degrees in electrical
engineering from the University of Oklahoma in 1999 and 2001, respectively.

From 1988 to 1996 he was with the Department of Automatic Control,
Northwestern Polytechnical University, as an assistant professor and lecturer. He was
with the School of Electrical and Computer Engineering at the University of Oklahoma
as a visiting scholar from 1996 to 1997. During 1997 to 2001 he was a research
assistant in the School of Electrical and Computer Engineering at the University of
Oklahoma, where he was awarded as the outstanding graduate student in 2000.

His research interests include image/video processing and reliable transmission,

adaptive filtering, active noise control, and computer networking.

138



