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Abstract

Active noise and vibration control has been the subject of intense study in the last 

two decades due to the increased speed in digital signal processors and the technological 

development and manufacture of smart materials. This dissertation analyzes an active 

control system using adaptive digital signal processing techniques and applies it to the 

vibration reduction of hard disk drives (HDD). Specifically, this work fÎDCuses on the 

implementation of the adaptive algorithm in the frequency and sub-band domains for 

performance improvement.

In this dissertation, selective adaptation in the frequency domain is proposed to 

alleviate the constructive interference associated with a feedback active control system. A 

new sub-band adaptive hlter architecture without a signal path delay is proposed, and the 

associated adaptive algorithm is derived. This delayless sub-band algorithm can be 

applied to the active control systems to improve the convergence rate and trade-off the 

performance from the various sub-bands. The resulting side effect of the error path delay 

of the analysis filter bank is analyzed, and two compensation methods are proposed to 

increase the performance. The frequency domain method and the sub-band 

decomposition technique are then combined to improve the overall performance. The 

single-channel active control system is extended to the multiple-channel active control 

system to reduce the vibration of complex mechanical structure. The optimal 

performances of three variants of the feedback control system have been derived in terms 

of the correlation coefficients of the primary disturbances and the impulse responses of 

the secondary paths. Real time and simulation results are performed to verify the 

efficiency of the proposed algorithms and techniques.
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Chapter 1 

Introduction

Sound and vibration have conventionally been controlled by passive methods that

involve absorbing the disturbance or blocking its transmission. These passive methods 

generally do not work well at low frequencies. This is because at these low frequencies 

the wavelengths of the disturbance are large compared to the thickness of a typical 

acoustic absorber or structure. Paul Lueg first described the idea of active control in 

1936 [1]. The basic idea of active control is to use a number of controllable “secondary” 

sources to produce an acoustic wave or vibration that is exactly out of phase with the 

primary disturbance and superimpose them, thereby resulting in destructive 

interference. Although the principle of active control dates back to the 1930's, and 

manually adaptive analogue active control systems were developed in 1950’s [2], the 

modem era of active control was spurred by the availability of high speed digital signal 

processors which allow adaptive digital controllers to be implemented at a relatively 

low cost. Active noise and vibration control have been the subject of intense study and 

considerable research activity in the last two decades These methods have

already found commercial application in active headsets and broadband sound control 

in ducts. With the technological development and manufacture o f smart materials such 

as piezoceramic actuators and sensors, active vibration control also has some significant 

potential application in other areas. Active noise control and active vibration control 

share almost the same principles, algorithms, system stmctures and other main issues.
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One of the main differences is that they generally use different sensors and actuators. 

Microphones and loud speakers are the common sensors and actuators for active noise 

control while smart materials are used for active vibration control. This dissertation 

aims to actively reduce the vibration of hard disk drive (HDD) and discusses the 

potential problems in such a system, as well as their possible solutions. Specihcally, 

this dissertation proposes the "selective adaptation in the hequency domain" method to 

alleviate any constructive interference and a “sub-band adaptive algorithm” for active 

control systems that avoids unnecessary signal path delay. The proposed sub-band 

algorithm has the flexibility to trade-off the performance from the various sub-bands. It 

also achieves a better convergence compared to the full-band counterpart. The 

organization of this dissertation is as follows.

Chapter 2 reviews the basic technologies of single-channel active control systems. 

It introduces the principles and performance limitations of the feed-forward active 

control system and the feedback active control system. Next, the on-line identification 

of the secondary path transfer function and the effect of the estimate error are analyzed. 

These technologies are then applied to reduce the vibration of the HDD at a single 

position. A method that combines the feed-forward and feedback system to form a 

hybrid active control system is discussed last. Real-time and simulation results are 

presented throughout the discussion.

Chapter 3 discusses the implementation of the ad^tive algorithm in the frequency 

domain to alleviate the constructive interference that might occur in the feedback active 

control systems. Another purpose of implementing the algorithm in the &equency 

domain is to increase the convergence rate. Theoretical analysis is performed to show

Chapter 1. Introduction 2



how the eigenvalue spread of the signal correlation limits the convergence rate and why 

the &equency domain algorithm can improve the convergence rate by reducing the 

eigenvalue spread of the input autocorrelation matrix. Simulation and real time results 

using the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform 

(DWT) are provided to demonstrate the efficiency of the 6equency domain methods.

Chapter 4 contains a discussion of methods that implement the least-mean-square 

(LMS) algorithm in sub-band architecture. Since the ideal signal in the active control 

system is not directly available and since the active control system generally cannot 

tolerate extra delay along the signal path, the sub-band structure used in the system 

identification, or in echo cancellation, cannot be directly applied to the active control 

system. Instead, a new delayless sub-band filter architecture is derived in this chapter. 

The error path delay resulting from the analysis filter band will decrease the 

convergence performance in general. Methods that restore the convergence performance 

using error path delay compensation are proposed. A new structure of combining the 

frequency domain method and the sub-band decomposition technique is proposed and 

demonstrated in the last part of this chapter.

Chapter 5 extends the single-channel feedback control system to the multiple- 

channel feedback control system to reduce the vibration of complex mechanical 

structures and/or the acoustic noise inside the enclosures caused by the vibrations. The 

LMS algorithm for the multiple-channel system is developed. On-line identifications of 

the multiple secondary path transfer functions are discussed in detail. This chapter also 

derives the optimal performance of a multiple-channel feedback control system in terms 

of the correlation coefficients of the primary disturbances and the impulse responses of
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the secondary paths. Three variants of the feedback control systems have been 

considered. Performance and robustness are two important aspects of the feedback 

control system. How to improve the stability of the feedback control system by 

penalizing the control effort in the cost function is discussed with the examples.

Chapter 6 consists o f summary and conclusions followed by appendix A and B. 

Appendix A introduces the experimental environment of the active vibration control 

system for the HDD. Appendix B derives the frequency sampling structure to efficiently 

implement the discrete cosine transform.

Chapter 1. Introduction



Chapter 2 

Single-channel active control systems

This chapter reviews the basic technologies of a single-channel active control

system that has a single error sensor and a single secondary source. Active control 

systems can be classified as feed-forward active control systems and feedback active 

control systems depending on whether a reference signal that provides “early” 

information about the primary disturbance is available. Section 2.1 and Section 2.2 will 

discuss these two systems respectively. The existence of the secondary path transfer 

function in active control systems has a direct effect on the adaptive algorithm and the 

overall performance. Section 2.3 focuses on the identification of the secondary path 

transfer function, as well as related issues. Section 2.4 considers the combination of a 

feed-forward control system with a feedback control system for performance 

improvement. Real time and simulation results accompany the discussion.

2.1 Adaptive feed-forward active control systems

A single-channel feed-forward active noise control (ANC) system shown in Figure

2.1 is used to explain the principle of the feed-forward active control system. The basic 

ANC system shown in Figure 2.1 can be described in a system identification 

framework. Consider a noise source at the end of a duct. The undesired noise is 

measured by a reference microphone placed upstream fi"om the point to be controlled. 

The reference signal is filtered through an adaptive filter and used to drive a
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^  Primary noise

x(n) e(n)
ANC

source
Noise

Figure 2.1 Single-channel feed-forward active noise control system in duct [14].

secondary source such as a loudspeaker to cancel the noise in the duct. The reference 

signal x(n) provides “early” information about the primary noise before it reaches the 

canceling loudspeaker. The residual noise is detected by an error sensor and is used to 

update the coefficients of the adaptive filter to minimize the residual noise. This active 

noise control system can be cast in an adaptive filtering problem shown in Figure 2,2. 

The control signal y(n) must be produced from the electrical output signal using a 

loudspeaker. Also, an electrical error signal must be obtained from the residual acoustic 

noise using an error microphone. Therefore, it is necessary to include the transfer 

function fi-om the adaptive filter output to the summing junction, S(z), and the transfer 

function fiom the summing junction to the error signal, in the adaptive filtering 

problem in Figure 2.2. For the example of noise reduction in duct shown in Figure 2.1, 

generally represents the firequency responses of the D/A converter, the power 

amplifier, the actuator, and the acoustic path fi"om the actuator to the summing junction.

represents the fiequency responses of the acoustic path fi-om the summing junction 

to the error sensor, the preamplifier/signal conditional, and the A/D converter.
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e(n)d(n)x(n)
R(z)

S(z)

IMmown 
Plant P(z)

Figure 2.2 Block diagram of the feed-forward active control system.

It can be seen from Figure 2.2 that the Z-transform of the error signal is

(2 .1)

Therefore, the purpose of the control filter ITfzl is to model the plant and invert the 

secondary path transfer function at the same time. When and/or ,9/z) are time- 

varying, we need W(z) to be adaptive. The overall limiting causality constraint in the 

broadband feed-forward control system is that the delay of the control path W(z)S(z) 

must be less than the delay of the primary path When this criterion is met, the 

performance of the feed-forward control system primarily depends on the coherency of 

the reference signal %(») and the primary disturbance at the summing point, This is 

a measure of the noise and the relative linearity of and or how well the

physical plant can be modeled by a linear filter.

Since both the primary path and the secondary path have in common, it is

convenient to absorb this term into the model f  (z) as well as into the secondary path 

Doing so is equivalent to redefining the summmg junction to be in the electrical 

domain rather than in the acoustic domain. We call this new the secondary path

Chapter 2. Single-channel active control systems 7



transfer function and it is this transfer function that needs to be identified in the active 

control system.

The LMS algorithm is a widely used a(%)tive algorithm because of its 

computational efbciency and simplicity. Since the secondary path transfer function 

follows the control Glter the conventional LMS algorithm must be modihed to 

ensure convergence. Othawise, the result is likely to be an unstable system. This

instability arises because the signal from the control filter W(z) suffers a phase shift in 

passing through the secondary path S(z). The instantaneous measurement of the gradient

of the mean square error with respect to the coefficient vector, x(n)e(n), is thus no

longer an unbiased estimate of the true gradient. To solve this problem, the so-called 

filter-X LMS (FXLMS) was proposed by Morgan [9] in 1980 and independently by 

Widrow [10] in 1981. The FXLMS algorithm introduces a similar phase shift into the 

reference signal path before the gradient is formed. This is achieved by an electrical

filter S{z) which models the response of the secondary path S(z) to generate a filtered 

reference signal %'(«). The filtered reference signal is then multiplied by the error 

signal to form the gradient estimate as shown in Figure 2.3. The control filter lT(z) is 

then updated as

+ 1) = yy(M) 4- , (2.2)

(n) = s(«) * %(«) (2.3)

and

e(n) = (f (») -  f  (») * [w ̂  (»)%(/!)] (2.4)

Chapter 2. Single-chaimel active control systems



d(n) e(n)x(n)
P(z)

W(z) S(z)

LMS

Figure 2.3 Block diagram of the feed-forward active control system using the 
FXLMS algorithm.

where s{n) is the estimated impulse response of the secondary path filter, S{z),  and * 

stands for the convolution operation.

2.2 Adaptive feedback active control systems

A feed-forward active control system requires a reference signal to provide advance 

information about the primary disturbance. In some situations, it is not practical to sense 

or internally generate a coherent reference signal, such as in the case of vibration 

reduction for the HDD, where only the residual error signal is available. Consequently, 

this kind of active control system falls into the hamework of the conventional feedback 

control scheme (refer to Figure 2.4). The transfer function &om the primary disturbance 

to the residual error E(z) is

^ (z) 1
D(z) l-tIF(z)^(z)

(2.5)

Chapter 2. Single-channei active control systems



W(z)
y(n)

S(z)

, d(n)

Figure 2.4 Block diagram of a smgle-channel feedback control system.

The response of S(z) can introduce a considerable phase shift that increases with 

frequency. As the phase shift in the secondary path approaches 180°, the desired 

negative feedback becomes positive feedback, and the control system can become 

unstable. If we define

(2.6)

where , then the design of a feedback active control system is

to find a such that the net gain is maximized when the phase shift

is in the region

-180°<Km)<180' (2.7)

for a given secondary path ^(e^""). When 5'(e^'") and Z)(e^'') are time-varying, the 

control systems need to be ad^tive. The adaptive algorithms require a reference signal 

and a residual error signal for updating the weights. In the conventional feedback 

control systems shown in Figure 2.4, there is no reference signal and the primary 

disturbance is also not available during the operation of active control since it is 

intended to be canceled by the secondary source. Although is not directly available 

in feedback control systems, it can be synthesized or regenerated based on the residual

Chapter 2. Single-channei active control systems 10



error the control signal and knowledge of This was first suggested by 

Newton in [46] and Eriksson [11] applied it to the adaptive feedback active control 

system, which estimates the primary disturbance (ffn) and then uses it as the reference 

signal for the adaptive algorithm. This is also called the Youla transform in [6]. When

is identified as ,y(z), the primary disturbance can be regenerated as

D(z) = E(z) + T(z)^(z) (2.8)

Using d{n) as the reference signal, a complete adaptive feedback active control system 

can be viewed as the adaptive feed-forward system that is illustrated in Figure 2.5.

If the secondary path transfer function can be identified accurately, i.e., ̂ (z)=6^(z),

then Consequently, the adaptive feedback control system shown in Figure

2.5 can be transformed into an equivalent adaptive feed-forward control system as 

shown in Figure 2.6. The overall transfer function from d(n) to e(n) is

: ^  = l-IT (z )j '(z )  (2.9)
D(z)

and the purpose of the adaptive filter, is to try to invert

If the step size of the LMS algorithm is small, the adaptive filter lT(z) can be 

commuted with 6"(z) [12]. If we further assume that 5"(z) can be modeled as a pure delay, 

then the ad^tive feedback control system of Figure 2.6 is identical to the standard 

adaptive forward prediction-error filter. Then, the performance of the adaptive feedback 

control system depends on the predictabihty of the primary disturbance (/(h). For a 

stationary discrete-time stochastic process, the adaptive forward prediction-error filter is

Chapter 2. Single-channel active control systems 11



d(n)

e(n)x(n)

LMS

W(z)

Figure 2.5 Broadband adaptive feedback active control system using the FXLMS 
algorithm.

e(n)d(n)

W(z)

LMS

Figure 2.6 Adaptive feedback control system takes the form o f adaptive feed-forward 
control system if,ÿ(z)

intimately related to the autoregressive modeling of the process [13]. For a predictor 

of order TV, the hlter weight is related to the AR parameter as follows:

^ = 1,2,..., TV. (2.10)

In other words, what the adaptive feedback active control systems have reduced is that 

part of the primary disturbance that can be modeled as an process. In the general

Chapter 2. Single-channel active control systems 12



case where is not a pure delay and 6'(z) .^(z), the performance of the adaptive

feedback control system depends on the accuracy of representing .S'fz) by .^(z) and the 

predictability of the primary disturbance filtered by the estimated secondary path 

transfer function, .y(z).

2.3 Identifying the secondary path transfer function

It can be seen from the previous discussion that the secondary path transfer 

function must be identified. For adaptive feed-forward control systems, we need to

place j S ( z )  into the weight updating path to compensate for SfzJ. Then, the FXLMS 

replaces the LMS algorithm to ensure that the compensated system is stable. For 

adaptive feedback control systems, 5(z)is required to regenerate the primary 

disturbance and to compensate for S{zJ during the weight updating.

Estimation of SfzJ can be performed either off-line or on-line, depending on 

whether SfzJ is time invariant. The off-line identification of SfzJ can be performed using 

a separate LMS adaptation process during an initial training stage. Because the 6"fzl in 

our HDD case is time-varying (probably due to changing temperatures and aging), we 

need on-line identihcation [14]. On-line identihcation of means the coefBcients of

the digital Glter ^(z) are acljusted on-line by one more adaptation processes to 

continuously model the secondary path transfer function during the active control.

There are two important, but mutually exclusive, requirements associated with the 

on-line secondary path modeling. The Grst is that should be estimated accurately 

regardless of the controller transfer function This independence property will

Chapter 2 . Single-channel active control systems 13



ensure that the overall active control system is robust. In favor of the independent 

identification of it would be preferable to use a separate excitation signal to drive 

The second requirement is that the on-hne identification should not intmde on the 

operation of the active control system. In favor of the intrusion requirement, it would be 

preferable to identify using the control signal which already exists in the 

system. If serves as the excitation signal for the modeling of a signal- 

dependent solution results, and so S(z) is then biased [14]. To drive S(z) separately, we 

need an additional signal. White noise is an ideal broadband excitation signal, because it 

has a constant spectral density at all 6equencies. Figure 2.7 shows the adaptive 

feedback control system with on-line S(z) identification using the additive white noise.

With the technologies discussed, we may implement a single-channel feedback 

control system for the HDD. Figure 2.8 gives the schematic diagram of the connection. 

Figure 2.9 is a photograph of the experimental setup for the single-channel control 

system. A TMS320C44 based DSP board is used as the controller in the experimental 

system, and an A4D4 Omnibus module is used to provide the A/D and D/A channels. 

Appendix A describes the details of the experimental environment.

The adaptive active control system requires the use of a sample-by-sample 

processing mode. Only a 10 ATTz sampling rate can be achieved under the M44/A4D4 

environment for an order controller and secondary path hlter. Figure 2.10 shows the 

power spectral densities (PSD) of the original vibration (solid line) and the vibration 

after the active control is on (the dotted line) at the point where the error sensor is 

located. It can be seen that more than 5 cfP of reduction is achieved around the 600 

and 800 Ffz modes. It is mentioned in the previous section that the performance of the
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Figure 2.7 Adaptive feedback control system with on-line S(z) identification using the 
additive white noise as the excitation signal.

feedback active control system depends on the accuracy of representing S(z) by S(z) 

and the predictability of the primary disturbance filtered by the estimated secondary 

path transfer function, S{z).  Specifically, the performance is determined by the 

following factors:

# The mode shape of the original vibration

* The frequency response of the secondary path transfer function

* The sampling rate

# Order of the controller

# Estimation error of representing by ,^(z)

* The variance of the white noise used for on-line identification
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Figure 2.8 Schematic diagram of the single-channel feedback active control system 
for the HDD.

Figure 2.9 Single-channel feedback active control system setup for the vibration 
control of the HDD.
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Vibration reduction in real time with the FXLMS
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Figure 2.10 Performance of the active vibration control in real time using the FXLMS 
algorithm with an 8*-order controller and secondary path filter.
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We cannot change the mode shape and the secondary path transfer function at will, 

but they are closely related to the sampling rate. Since the original vibration of the HDD 

has frequency components as high as 10 the aliasing resulting 6om the low 

sampling rate makes the sampled vibration more hke white noise, hence degrading the 

performance of the prediction. Therefore, increasing the sampling rate will improve the 

performance of the feedback active control system. To look at the impact of the 

sampling rate on the performance, we sampled the same vibration at 16 kHz using the 

hardware trigger mode (not sample-by-sample processing). The solid line in Figure 2.11 

shows the PSD of the original vibration. It can be seen that the vibration is less white at 

this high sampling rate, hence it can be better predicted. The dotted line is the simulated 

result of the PSD using active control under the same secondary path transfer function 

and the same controller order. This simulation demonstrates that a much better vibration 

reduction could be achieved if  the sampling rate were to be increased.

The additive white noise used for on-line identification has a direct impact on the 

performance because it appears in the residual error. Hence, it degrades the overall 

performance. Theoretically, this intrusion can be made arbitrarily small by choosing a 

low-level excitation signal, but a very low-level white noise compared to the primary

disturbance will result in the divergence of .S(z) due to hnite-word length effects and 

measurement error. In practice, a moderate level of white noise is required, which 

slightly increases the residual error To see this experimentally. Figure 2.12 shows 

the impacts of different white noise levels on the performance of the active control 

system using the FXLMS algorithm, where the original vibration is in the range o f -10 

m Fto 10 mP, and the white noise is in the range o f -0.25 m Fto 0.25 mF, -1 m Fto 1

Chapter 2. Single-channel active control systems 18



mF, -4 mF to 4 /MF, respectively. Figure 2.13 shows the crosscorrelation between the 

residual error and the white noise with different levels. It can be seen that the white 

noise with a level 10 down &om the original disturbance, i.e., in the range of-1  /MF 

to 1 /MF, does not degrade the performance very much while it is quite distinguishable

in the residual error.

20

15

m 
2 . 10

(/)
C<D~o

0<D Q. c/}
1 0
o 
a.

-10

Vibration reduction at 16 kHz sampling rate (simulation)

. psd of original vibration 

psd with active control

\ !

0 1000 2000  3000  4000  5000  6000  7000  8000
Frequency (Hz)

Figure 2.11 Simulation result of the vibration reduction at a 1 6 sampling rate.
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Figure 2.12 Influences of the white noise levels on the performance of the active 
control.
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Figure 2.13 Crosscorrelation between the residual error and the white noises with 
different variances.
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The estimation error of affects the maximum stable value of the step size of the 

FXLMS algorithm. This can be shown &om the FXLMS algorithm itself [14]. Taking 

the expected value of Equation (2.2) results in the mean adaptive weight difference 

equation

iF(n + l) = (7-/tR)iF(n) + /^ , (2.11)

where

= E[x'(M)x'^(n)] (2.12)

is the filtered reference autocorrelation matrix, and

/;sE[(f(/i)% '(/i)]. (2.13)

If ^(Z) # 1^(2), then the mean weight vector difference equation, Equation (2.11), is 

modified to

iF(n+ 1) = [ / - / / (  j(-j()]iF(M) + / y  (2.14)

where

jR = Fïy(n)x^(M)] (2.15)

is the correlation matrix between the filtered reference signal vector %'(») dehned in 

Equation (2.3) and the differential filtered reference signal vector

x(n) = ?(»)*% (»), (2.16)

where

T(n) = f(M)-XM) (2.17)

is the difference between the estimated and actual secondary-path filter. If f(/i) = j'(n),

= 0 and the original FXLMS stability bounds apply. However, errors in the 

estimation of will alter the eigenmodes of Equation (2.14), thus affecting the
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stability bound of the step size / / .  Equations (2.15)-(2.17) show that any error in the 

estimation of the magnitude of the transfer function will proportionately change the 

magnitude of the autocorrelation matrix, and hence will simply scale the ideal stability 

bound accordingly. It has been shown [15] that stability is assured for phase errors 8 in

the range of -90° < ^ < 9 0 ° . However, there is no simple relationship between the

modeling error and stability within this stable region.

A final issue associated with the on-line identification using a separate white noise 

is its slow convergence rate. It is derived in [14] that it would take 100 times longer for 

S{z) to converge in the on-line method as it would take to converge using the off-line 

one. Therefore, some supplemental measures, such as identifying S(z) off-line first and 

using the result as the initial value for on-hne identihcation might be required for some 

applications where convergence speed is important.

2.4 Hybrid active control systems

It was mentioned in Section 2.2 that the feedback active control system can only 

cancel the part of the primary disturbance that can be predicted after it has been filtered 

by the secondary path transfer function. On the other hand, the feed-forward active 

control system can only cancel the part of the primary disturbance that is correlated with 

the reference signal. In some apphcations only part of the disturbance is correlated with 

the reference signal. Then, only this part can be reduced by the feed-forward active 

control system. In these situations, we can combine the feedback control system and the 

feed-forward control system to get a "hybrid algorithm" with improved performance.
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This section describes the performance of the "hybrid" algorithm compared with the 

pure feed-forward algorithm and the feedback algorithm.

Figure 2.14 illustrates the hybrid active control system that is composed of a feed­

forward system using the FXLMS algorithm and a feedback system using the FXLMS 

algorithm. The secondary signal (or control signal) is generated using the output of 

both the feed-forward controller F(z) and the feedback controller The combined 

controller W(z) has two reference signals: the reference signal x(n) and the estimated

primary disturbance d { n ) . Filtered versions of the reference signals jc'(n) and d'{n) 

are used to adapt the coefficients of the filters F(z) and B(z).

To simulate the performance improvement of the hybrid system, it is assumed that 

the original vibration consists of two parts. The first part is called the observable 

part that can be observed by a reference sensor in advance. In Figure 2.14, x(n) is the 

reference signal, and x(n)*p(n) is the observable part in the original disturbance d(n). 

Here, p(n) is the impulse response of the transfer function from the reference sensor to 

the error sensor. The second part of the original disturbance is called the unobservable 

part that is not observed by (or correlated to) the reference sensor. is used to denote 

the unobservable part in Figure 2.14. In the simulation, the real vibration signal of the 

Seagate Technology Inc. Barracudal 8LP disc drive sampled at 10 kHz is used as the 

reference signal and the real vibration signal of the Barracuda9LP disc drive 

sampled at 10 kHz is used as the signal (Seagate Technology Inc. gave us these two 

models of HDD for experiments). Figure 2.15 shows the power spectral densities of 

«W  and their summation respectively. With these assumptions, the
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Figure 2.14 Hybrid active control scheme using the FXLMS algorithm.

feedback control system, the feed-forward control system and the hybrid control system 

are used to cancel the original vibration separately.

Figure 2.16 shows the power spectral densities of the residual error signals 

achieved by these three control systems. To compare the performance fairly, all the 

parameters in these three algorithms remain the same. It can be seen hom Figure 2.16 

that the feed-forward control system can only reduce the part in the original that is 

observed by the reference sensor. The feedback control system can only reduce the part 

that can be predicted (the predictable components come from both and

because the restored vibration <:?(») serves as the reference signal in the feedback 

control system). On the other hand, the hybrid control system greatly outperforms both
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Figure 2.16 Power spectral densities o f the residual error signals using the feed­
forward control, the feedback control and the hybrid control, respectively.
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the feed-forward system and the feedback system. It reduces both the predictable 

components and the part that is observed by the reference sensor. It should be noted that 

the actual per&rmance that can be achieved by the hybrid control system depends on 

the amount of the disturbance that can be observed by the reference sensor as well as 

the transfer functions and A randomly set

f (z )  = 0.88 -  .44z"' -  .22z"^ - .  1 Iz"^ + .33z^ and the real identihed 

^(z) = 1.15-.577z"' -.16Iz " -.205z"^ -.189z^  -.347z"" +.446z"" -.249z " are used 

in the simulation. The order of the feed-forward controller F(z) is set to 4 and the order 

of the feedback controller B(z) is set to 6, because our current hardware environment 

can only support such a short controller order for a reasonable sampling rate (i.e., 10 

kHz).

Another simulation is done to see the performance differences of the hybrid, feed­

forward and feedback algorithms when all of the original vibration is observed by the 

reference sensor, that is, when does not exist in Figure 2.14. It is expected that the 

hybrid algorithm would not outperform the feed-forward algorithm greatly since all the 

original disturbance is correlated with the reference signal. Consequently, the feed­

forward controller contributes more vibration reduction in the hybrid algorithm. Figure 

2.17 shows the power spectral density o f the original vibration (x_p(h) only) and the 

power spectral densities of the residual errors achieved by these three algorithms. It is 

shown that the hybrid algorithm does not outperform the feed-forward algorithm too 

much as it does in Figure 2.16, but it still outperforms the feed-forward algorithm. This 

is because the residual signal generated by the feed-forward controller is not a white 

noise and it can still be predicted in some degree. It can be concluded that the hybrid
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algorithm is superior to the pure feed-forward algorithm when computational 

complexity is not at issue.
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Figure 2.17 Power spectral densities of the residual error signals using the feed­
forward control, the feedback control and the hybrid control, respectively, where all the 
original vibration can be observed by the reference sensor.
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Chapter 3

Implementing the FXLMS in the frequency domain

Even though different ad^tive algorithms exist that can be used for active control 

systems, the LMS algorithm is the one most widely used because of its computational

efficiency and robustness. One of the main drawbacks of the LMS algorithm is its low 

convergence rate. If the convergence rate of the adaptive algorithm can be increased, the 

overall performance of the active control systems can be improved accordingly. 

Section 3.1 analyzes how the eigenvalue spread limits the convergence rate and shows 

why implementing the FXLMS in the frequency domain can improve the convergence 

rate. Section 3.2 compares the convergence properties of the algorithms implemented in 

the time domain method and in the frequency domain using the discrete cosine 

transform (DCT) and the discrete wavelet transform (DWT).

Another problem in the adaptive feedback control systems is the constructive 

interference due to the modeling error. Section 3.3 explains why the constructive 

interference occurs in the feedback control systems and proposes our selective 

adaptation in the frequency domain to alleviate the constructive interference while 

keeping the destructive interference at other frequencies.
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3.1 Improving the convergence rate in the frequency domain

3.1.1 Eigenvalue spread limits the convergence rate

For steepest decent algorithms such as LMS, let jR be the autocorrelation matrix of 

the input signal to an adaptive Glter of order Â, K can be decomposed as

^ = 6 / 1 6 ' '  . (3.1)

The matrix g  has as its columns g , , an orthogonal set of eigenvectors associated with

the eigenvalues of the matrix R. The matrix yi is a diagonal matrix and has as its 

diagonal elements the eigenvalues of the autocorrelation matrix R. These eigenvalues, 

denoted as A , , m u s t  all be positive and real. Let w be the tap-weight vector

and dehne - Wg as the weight error vector at time instant n, where w, is the

optimal value of the tap-weight vector, as defined by the Wiener-Hopf equation

(3.2)

The vector p  is the cross-correlation vector between the tap-input vector x(n) and the 

desired response d(n). It can be easily shown that w is updated along the negative 

gradient vector as

+ = + M = (3.3)

Eliminatingp between Equation (3.2) and (3.3) and rewriting the result in terms of 

we get

+ = (3.4)

Substituting Equation (3.1) into Equation (3.4), we get

(3.5)

Defining a new set of coordinates as
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= (3.6)

and premultiplying both sides of Equation (3.5) by , we get

+ = (3.7)

Assuming that the initial t^-w eight vector x^O) is zero, then the initial value of v(0)

equals

(3.s)

For the k'^ natural mode of the steepest descent algorithm, we have

V, (M +1) = (1 -  /(A, )v, (n) = ( 1 - / ^ ,  )"v, (0), A: = 0,1,..., A  -1 . (3.9)

To formulate the transient behavior o f the original t^-w eight vector we

premultiply both sides of Equation (3.6) by g  and solve for

k~Q

where g, is the eigenvector associated with the eigenvalue A,, of the correlation matrix

Substituting Equation (3.9) into Equation (3.10), the transient behavior of the t ^  

weight is described by [13]

V - l

^: (/() = (0)(1 -  yuA J  ", ! = 0,1,..., A  - 1 ,  (3.11)
i=0

where is the optimum value of the i'* tap weight, and is the element of the 

A:'* eigenvector .

Equation (3.11) shows that each t ^  weight in the steepest descent algorithms 

converges as the weighted sum of the exponential of the form (l-/rA ^)". Two 

observations can be made 6om Equation (3.11). First, provided —1 < 1 - < 1  for all
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A, all the natural modes of the steepest decent algorithms approach zero as m approaches

inhnity. This gives the convergence condition for the step size which must satis^

0 < /r ^ . (3.12)
înax

Second, define the time constant as the time required for each term to reach 7/e of its 

initial value, i.e..

The overall time constant, , defined as the time required for the summation term in

Equation (3.11) to decay to 1/e of its initial value, cannot be expressed in a simple 

closed form, but is bounded as

- . (3.14)
ln ( l- / /2 ^ )  ° ln (l-/iA ^ )

Therefore, when the eigenvalues of the autocorrelation matrix R  are widely spread, the 

settling time of the steepest decent algorithms is limited by the smallest eigenvalues or 

the slowest modes. So, if we could reduce the eigenvalue spread of the input 

autocorrelation matrix, the convergence rate could be correspondingly improved.

3.1.2. Reducing the eigenvalue spread in the frequency domain

Equation (3.14) shows that the eigenvalue spread of the input autocorrelation 

matrix restricts the convergence rate. One approach to accelerate the convergence rate is 

to somehow transform the input signal x(h) into another signal whose corresponding
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autocorrelation matrix has a smaller eigenvalue spread. This can be achieved by 

performing the ad^tive filtering in some orthogonal transform domain.

A block diagram of the transform domain adaptive Glter is shown in Figure 3.1. 

The input time domain vector is first trans&rmed into a transform domain vector

by the orthogonal transform

(3.15)

where T is a unitary matrix of rank N.

Now, the transform domain vector is multiplied by the transform domain 

weight vector

(«)]'' (3.16)

to form the adaptive output y The output and the residual error signal are

y(n) = %;fKfh; (3.17)

and

(3.18)

respectively. The weight updating equation is

fFj. (M +1) = IFj. (») + 2/y.g(M)%,, i = 0,1,..., A  -1  (3.19)

where

Mi — p r  y 2 \ ’ ^ ~  0,1,..., A  —1 (3.20)

is the ad^tive step size for the transform component. Let be an NxN diagonal 

matrix whose (i,:)'* element is equal to the power estimate of .AT,. The weight vector 

equation can be written in matrix form as
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Figure 3.1 Block diagram of adaptive filtering in the frequency domain.

fFfM + . (3.2 1 )

Let be the autocorrelation matrix of the time domain input signal x(n), i.e.,

(3.22)

and let be the autocorrelation matrix of the transform domain signal , i.e.,

(3.23)

The speed of the convergence of the weight vector in the h-equency domain now

depends on the eigenvalue spread of the matrix yi . If it can be shown that the

condition number, i.e., the eigenvalue spread of less than the condition

number of , then the convergence rate o f the adaptive algorithm implemented in the 

transform domain can be improved relative to the time domain implementation.
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Without loss of generality, assume that the input signal power is unity, i.e.,

f(x"(«)) = l .  (3.24)

Let denote the trace and (fei(/4) denote the determinant of a square matrix vf. Then,

A_<i^-(yf). (3.25)

For N  >2, it can be generally shown that [16]

^  det(^). (3.26)

Therefore, the ratio

can be used as an iq)per bound for . Now,

det(/( '^ ; ^ )  = -)det(j;;c,) = det(/f " )de t(^^) (3.28)

and

ir(/f^j(;^) = ir(2(^) = Ar. (3.29)

Therefore,

de t(/i'')de t(j;_ )
y (y j- 'j;^ )  = ,  _  . = det(yf')y(2;_). (3.30)

Since ir(/f^) = W, i.e., the smallest eigenvalue of yj  ̂ is less than or equal to unity, 

det(yj^) is always assured to be less than or equal to unity. Hence,

y (y L 'Æ ^ )< y (i(_ ) (3.31)

That is, for a properly chosen orthogonal transform f , some reduction in the eigenvalue 

spread might be expected.
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3.2 Simulation results of the frequency domain algorithm

A unitary transform T is required to implement the transform domain algorithm. If 

T can be chosen such that is completely diagonal, the eigenvalue spread of

yf  ̂ is equal to unity, which implies that the adaptive Glter implementation in that 

domain will have the best convergence properties. The corresponding T is generally 

known as Kaihunen-Loeve transform (KLT) [13]. The KLT is a signal-dependent

transform, the implementation of which requires the estimation of the correlation matrix 

of the input vector, the diagonalization of this matrix, and the construction of the 

required basis vector. These computations make the KLT impractical for real-time 

applications. In practice, other transforms such as the discrete Fourier transform (DPT), 

the discrete cosine transform (DCT), the Walsh-Hadamard transform (DHT), the 

discrete Hartley transform (DHT) and the Powers-Of-Two (P02) transform are used as 

the approximation to the KLT [17]-[19]. Recently, the discrete Wavelet transform 

(DWT) was also used as the transform algorithm [20]. In this section, we simulate the 

performance of the DCT and the DWT due to their effectiveness and popularity.

The DCT matrix elements are given by [21]

V—  , / M  = Ojn = 0,1,..., W — 1,
(3.32)

^  _  2 2  j y - l ; M  =  0 ,1 ,. .. ,W -1 .

The DWT transforms the time domain signal to the trans&rm domain coefBcients 

by [20]

m-\
= + (3.33)
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where m is the wavelet hlter length, M is the number of sub-bands in the wavelet Glter 

bank, and n stands for time instant, ;=0,7, andy— ...,-7,0. For a two-

band Glter bank, i.e., M=2, if  the order of the adaptive filter 7V=8 and we also use S'* - 

order wavelet Glters, the transform matrix can be written as

r  =

A/O) Ao(l) Ao(2) Ao(3) Ao(4) Ao(5) Ao(6) Ao(7)

Ao(7) Ao(0) Ao(l) Ao(2) Ao(3) Ao(4) Ao(5)
Ao(4) Ao(5) Ao(6) Ao(7) Ao(0) Ao(l) Ao(2) Ao(3)
Ao(2) Ao(3) Ao(4) Ao(5) Ao(6) Ao(7) Ao(0) A«(l)
A,(0) A,(l) A, (2) A, (3) A, (4) A, (5) A, (6) A, (7)
A, (6) A, (7) A,(0) A,(l) A, (2) A, (3) A, (4) A, (5)
/»,(4) A, (5) A, (6) A, (7) A,(0) A,(l) A, (2) A, (3)

A  (2) A, (3) A, (4) A, (5) A, (6) A, (7) A,(0) A,(l)

(3.34)

where is the 8'* -order low-pass wavelet Glter and A, (A) is the S'* order high-pass 

wavelet filter.

Figures 3.2, 3.3, and 3.4 plot the ensemble-averaged learning curves of the time 

domain LMS and the frequency domain LMS using the DCT and the DWT with the 

Daubechies wavelet for three different eigenvalue spreads. Three AR(2) processes are 

generated such that the eigenvalue spreads are 1.22, 3, and 10, respectively [13], so that 

we can compare the performance for different eigenvalue spreads. Figure 3.5 plots the 

ensemble-averaged learning curves of &equency domain LMS using the DWT with 

three different wavelets. Each algorithm runs for 100 times and the learning curves in 

these three figures are the average over the 100 runs. The following observations can be 

made h"om these simulations:

Chapter 3. Implementing the FXLMS in the frequency domain 38



Learning curves of LMS in the time domain and frequency domain
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Figure 3.2 Learning curves of the time domain LMS and the hrequency domain 
LMS using the DCT and the DWT as the transform matrix (eigenvalue spread = 
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* The time domain LMS algorithm consistently behaves worst, in that it exhibits 

the slowest rate of convergence and the greatest sensitivity to variations in the 

eigenvalue spread.

# Both the DCT-LMS and the DWT-LMS consistently achieve faster convergence 

rates than the time domain LMS. The DWT-LMS slightly outperforms the DCT- 

LMS.

• The selection of different wavelet does not make a big difference in the DWT- 

LMS.

• The convergence rate of the frequency domain LMS is relatively insensitive to 

the variations in the eigenvalue spread.

When the frequency domain LMS is applied to HDD vibration control, the extra 

computational requirements associated with the transform consequently reduce the 

possible sampling rate. This decrease in the sampling rate depends on the 

implementation method. For the discrete cosine transform, even with the most efficient 

implementation called the frequency sampling structure [22] (refer to Appendix B for 

the derivation), only an 8.4 sampling rate can be achieved for an 8^-order 

controller. Figure 3.6 shows the vibration reduction achieved by the fi-equency domain 

FXLMS using the discrete cosine transform (DCT-FXLMS algorithm) with an 8.4 AF/z 

sampling rate in real time.

It is difficult to Mrly compare the performances of the time domain algorithm 

with the frequency domain algorithm using the real time setup because the vibration of 

the HDD is time-varying and the sampling rate cannot be adjusted to precisely the same 

for the system with control on and the system with control off. Instead, simulations are
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Figures.6 Vibration reduction in real time with the &equency domain FXLMS 
algorithm using the discrete cosine transform.
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performed to compare the performances of the time domain FXLMS and the DCT- 

FXLMS on reducing the vibration sampled at 16 Figure 3.7 gives the average 

power spectral density of the original vibration in 0.5 second 8000 samples) and 

the power spectral densities when the active control systems using both the time domain 

FXLMS and the DCT-FXLMS are operating. This simulation shows that the power 

spectral density o f the residual error achieved by the DCT-FXLMS is slightly flatter. In 

other words, the frequency domain method achieves better vibration reduction in the 

destructive interference range while the constructive interference is also enhanced. The 

next section will discuss the constructive interference.

3.3 Reducing the constructive interference by selective adaptation

It was mentioned in Chapter 2 that the performance of the adaptive feedback 

control system depends on the accuracy of representing by a MA process , and

the predictability of the primary disturbance filtered by the secondary path. The 

predictability of the primary disturbance filtered by the secondary path in turn depends 

on the primary disturbance itself and on the order of the predictor, i.e., on the order of 

the control filter. Also, some random processes may require a very long adaptive filter 

to predict the process accurately. Some random processes simply cannot be predicted 

very well. The more of the primary disturbance that "leaks" through the predictor, the 

poorer the performance [13]. The modeling error due to insufficient length of the 

adaptive filter or the primary disturbance may result in the presence of constructive 

interference in some frequency bands. It can be seen fiom Figure 3.6 and Figure 3.7 that
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the constructive interference occurs at high hequencies while the desired destructive 

interference is achieved at the lower frequencies.

It is desirable to reduce or alleviate the constructive interference while 

simultaneously keeping the destructive interference that can be achieved by the active

control systems. Since the extra vibration in the constructive interference band(s) comes 

from the control signal, low-pass or band-pass filtering (depending on where the 

constructive interference occurs) of the control signal before feeding it to the actuator 

may help somewhat. However, the sample delay associated with the causal, real-time 

low-pass or band-pass filtering increases the requirements on the adaptive forward 

predictor, and hence reduces the effectiveness of the predictor. This dissertation 

proposes a technique called selective adaptation in the frequency domain [23]. The 

basic idea of the selective adaptation is to generate the control signal in such a way that 

it does not contain energy in the frequency bands where the constructive interference 

occurs. Then, the constructive interference can be avoided without adding extra delay in 

the control path. The selective adaptation requires the adaptive algorithm to be 

implemented in the fi^equency domain.

Figure 3.8 shows the idea of the selective adaptation in the fi-equency domain, 

where DCT is used as the transform. We only update those M filter weights in Equation

(3.16) that correspond to the destructive interference bands. Then, the control signal

which is inversely transformed firom the M  fi-equency coefficients corresponding to 

the destructive interference bands, will not include the firequency components 

corresponding to the constructive interference bands. Consequently, the constructive
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Figure 3.8 Selective adaptation of the a(%)tive algorithm in the h-eqüency domain.

interference in the residual error can be avoided. Note that the IDCT for y(n) can be 

replaced by a pure summation because the coefBcients required to calculate by

(3.35)

can be absorbed by the corresponding filter weights . It should be noted that the

DCT transform in the 6equency domain method serves as a preprocessing step in the 

adaptive filtering process. It transforms an N-point time domain vector into an 

equivalent Aequency domain vector Therefore, the DCT transform does not result 

in signal path delay in the feedback control system.
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Figure 3.9 shows the constructive interference alleviation for the real HDD 

vibration signal when the last three weights of an 8'^-order adaptive filter are discarded. 

For comparison purposes, the active control using the same LMS adaptive parameters, 

but without discarding the weights is also given. Figure 3.10 gives the same information 

for an process where the last three weights o f a lO'^-order adaptive filter are

discarded. It can be seen 6om Figure 3.9 and Figure 3.10 that the constructive 

interferences are alleviated by several dB at the high frequencies at the cost of some 

degradation in performance at the neighboring frequency band. The degradation at this 

boundary band results from the leakage of the DCT transform. The DCT is not a perfect 

decorrelator but an approximation. When the LMS algorithm is implemented in the 

hequency domain using the DCT, the DCT acts hke W band-pass filters. Because o f the 

presence of the side lobes of these band-pass filters, there is some leakage from each 

frequency bin to the others. Figure 3.11 shows the magnitude response of the 2"  ̂

transfer function of a 10-point DCT. This kind of leakage has two undesirable effects on 

the selective adaptation. First, some energy from the frequency bins corresponding to 

the destructive interference leaks into the frequency bins corresponding to the 

constructive interference. When the weights corresponding to the constructive 

interference are discarded, so is the leaked energy from the desired frequency bins. This 

degrades the performance of the active control system in reducing the desired 

destructive interference. Second, the energy of the firequency bins corresponding to the 

constructive interference leaks into the frequency bins corresponding to the destructive 

intaderence. Hence, the constructive interference cannot be reduced completely by 

discarding the weights corresponding to the constructive interference. The length of the
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DCT transform directly impacts the performance. As the length increases, the relative 

sidelobe level and the width of the lobe decreases (Figure 3.12 shows the magnitude 

response of the 2™̂ transfer function of a 16-point DCT). Consequently, it is more 

flexible to shape the Êequency coefBcients for performance improvement. One 

limitation is that we cannot increase the length of the DCT transform at will. The length 

o f the DCT transform is the order of the control Biter that should be determined by the 

nature of the primary disturbance and the computational resource available.
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Figure 3.9 Effect of alleviating the constructive interference by the selective 
adaptation in the Bequency domain for the real HDD vibration signal.
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Chapter 4

Implementing the adaptive algorithm in sub-bands

Chapter 3 described our methods for improving the convergence rate of the LMS

algorithm in the frequency domain. Recently, the sub-band technique has also been 

developed to improve the convergence rate. It has been successfully used in adaptive 

filtering for system identification and echo cancellation [24]-[28]. In these applications, 

both the reference signal and the ideal signal are available and are decomposed into sub­

bands to form the sub-band error signals. The full-band residual error signal is then 

synthesized from the sub-band error signals through the synthesis filter bank. In these 

applications, all ad^tafion is performed using the sub-bands.

In the application of active control of noise and vibration, the ideal signal in terms 

of the adaptive filtering is generally not accessible. Furthermore, active control systems 

generally cannot tolerate extra delay along the signal path, i.e., the path from the 

reference signal to the error signal, especially for the feedback active control of noise 

and vibration. To avoid the signal path delay, Morgan ([29], [30]) proposed a delayless 

sub-band adaptive filter architecture in which the adaptive weights are computed in the 

sub-bands but collectively transformed into an equivalent set of full-band filter 

coefficients before generating the control signal. Hirayama [31] employed a different 

transform to obtam the full-band filter coefBcients frrom the sub-band counterparts. This 

dissertation proposes a different sub-band adaptive architecture in which the full-band
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filter coefBcients are updated directly based on the sub-band reference signals and sub­

band error signals [32], [33]. Even though the signal path delay is avoided in both 

architectures, the group delay associated with the analysis filter bank is still added to the 

error path (the weight updating path) and will decrease the convergence region of the 

step size. The convergence region of the step size is defined as the upper stability 

bounds of the convergence factor. This dissertation also proposes a delay compensation 

method by modifying the sub-band adaptive algorithm to compensate for the error path 

delay, hence increasing the convergence region of the step size.

Section 4.1 derives the sub-band adaptive algorithm using the gradient descent 

method. Section 4.2 discusses the delay compensation methods of increasing the 

convergence region of the step size. Computer simulations are performed in Section 4.3 

to illustrate the efficiency of the sub-band algorithm. Section 4.4 discusses the 

combination of the sub-band decomposition with the frequency domain technique for 

performance improvement. Section 4.5 summaries the computational complexities of 

different adaptive algorithms.

4.1 Sub-band adaptive filtering without signal path delay

The feed-forward active control system shown in Figure 4.1(a) and the feedback 

active control system shown in Figure 4.1(b) can be viewed as a unified structure in 

adaptive frltering theory as shown in Figure 4.1(c). It should be noted that even though 

the adaptive filter structure in Figure 4.1(c) is the same for both the feed-forward and

feedback control, the philosophy of the noise cancellation is different. For the feed- 

fbrward active control system in Figure 4.1(a), the noise reduction is achieved by
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Figure 4.1 Block diagram of the active control system: (a) feed-forward; (b) 
feedback; (c) unified diagram horn the viewpoint of adaptive Altering.
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modeling the unknown plant f  with the control filter Ifi Hence, the performance 

depends on how well the unknown plant f  can be modeled by a linear digital filter. For

the feedback control system in Figure 4.1(b), the primary disturbance is reduced by 

adaptive prediction. Consequently, the performance depends on the predictability of the

primary disturbance filtered by the estimate of the secondary path transfer

function, S{z).  Besides, the accuracy of representing S(z) by S(z)  will also affect the 

overall performance.

Figure 4.2 shows the sub-band adaptive filter structure where the ideal signal d(n) 

is accessible. Since the ideal signal d(n) in the active noise or vibration control systems 

is not available or accessible, the sub-band structure used for system identification or 

echo cancellation shown in Figure 4.2 cannot be applied to the active control systems. 

Furthermore, the active control system generally cannot tolerate extra delay along the 

signal path, especially for the feedback control system. This is because the performance 

of the feedback active control system depends on the predictability of the primary 

disturbance filtered by the estimated secondary path transfer function. Any delay along 

the signal path will increase the requirement of the forward prediction and hence, 

dramatically degrade the performance [13].

To avoid the signal path delay, this dissertation proposes a delayless sub-band 

architecture shown in Figure 4.3, which updates the fiill-band filter coefBcients based 

on the sub-band reference signals and sub-band error signals. To derive an adaptive 

algorithm that updates the fiill-band weight vector based on the sub-band error signals 

requires a new cost function that can be determined Bom the sub-band error signals. We 

define the new cost function as the sum of the mean square of the sub-band errors as
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Figure 4.3 The sub-band adaptive filter architecture without signal path delay.

0 - 1

(4.1)
?=Q

where Q is the number of sub-bands. The residual error signal in sub-band q is 

designated as = e(M) = [e(n),e(n-l), is the full-band

residual error. L is the order of the analysis filter 

(0)^(») + (1)^(n -1) 4—  + Ag (m -  Z ) . is the expectation operator.

Provided that the analysis filter bank satisfies the power complementary property,

0-1

provided V lf f  (e^"") = c , minimizing the new cost function is equivalent to

minimizing the mean square of the full-band error, . This can be justified

using the property that the power spectrum of the output signal is the power spectrum of 

the input signal modified by the filter spectrum. That is, let 5', (w) denote the power
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spectrum of the full-band error signal e(n) and let 5", (<w) denote the power spectrum of 

(»), the error signal in sub-band Then,

q~0 q~0

~ f  S,(ca)X\H,(e‘’’i d a ,
2;r

= j  = cÆ{]e(m)|^}. (4.2)

The weight updating equation for the sub-band adaptive filter shown in Figure 4.3 is 

derived as follows.

The full-band error signal at time instant » in Figure 4.3 is

e(M) = ^  ̂  - y - (y)^(A:), (4.3)
J - 0  k ~ 0

where J  is the order of the control filler and Æ is the length of the MA transfer 

function 5"(z). The residual error signal in sub-band g at time instant /i is

(/!) = ^^(») = /) ( ;) f  (A:)A, ( /) ,
/ = 0  / = 0  k ~ 0  l~ 0

q—0,1, (4.4)

The full-band filter coefficients are updated to minimize the sum of the instantaneous

2-1
square of the sub-band errors, i.e., ^e^^(m ). Thus, the stochastic gradient algorithm for

ç = 0

updating (i) at time instant n is
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= w. (i) -  l^ tY , e, ( n ) - ^ ,  i = 0,1,..., J , (4.5)

where // is the step size that determines the speed of a(%)tation. Substitution of 

Equation (4.4) into Equation (4.5) yields the update recursion

( 0 = ( 0 + 2 / / ^  g, («) Z  Z  Z  ^ -  0^.-*-, C/):y(^)A, (/),
5=0 I v  > 0  i=0 /=0

i = 0,1,..., J. (4.6)

If we assume w,_^_y(0 = w, (i) for all A: and /, then Equation (4.6) can be evaluated as

-1 K  L

.̂+1 (0 = W, (f ) 4- 2 / / ^  e, (n)]  ̂̂  %(M -  f -  A -  / ) f  ( A) ( f ) ,  z = 0,1,...,J . (4.7)
ç=0 k ~ ù  1=0

It is assumed that , (̂z) can be estimated accurately in the discussion. That

is, iS'(z) = S ( z ) .  Let us denote the reference signal filtered by S ( z )  as x'{n) , i.e.,

x'(n) = Z ^ ( "  -  A)g(A) (4.8)

and %'(») in sub-band g as (/z), z.e.,

(M) = g ^ x ( «  -  A -  /)^(A)A, (0, O' = 0 ,1 ,...,6-1 . (4.9)

Then, the updating recursion can be simphfied by substituting Equation (4.9) into 

Equation (4.7) as

(z) = w,(z) + 2 /j^ e ,(n )x ',  (zz-z), z = 0,1,..., J .  (4.10)
g=0
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It should be noted that the assumption of (i) = (;) for all A: and / used to

derive the update recursion is not strictly correct because of the time-varying nature of 

the adaptive Glter. Hence, the adaptation given by Equation (4.7) or (4.10) may not 

always converge. This assumption can only be justihed if  the time-varying nature of the 

adaptive hlter is a slow rate or when the time delay associated with the secondary path

transfer function and the analysis filter bank is negligible.

4.2 Increasing the convergence region of the step size

The advantage of the sub-band adaptive filter derived in Section 4.1 is that it has 

the flexibility to assign different step sizes to different sub-bands based on the 

proportionate signal energy present in each sub-band. Hence, a better convergence rate 

results when the algorithm is compared to the full-band counterpart. On the other hand, 

the analysis filter bank used to decompose the full band signal does bring extra delay 

into the error path. Long ([34], [35]) showed that the delay in the error path has only a 

slight influence on the steady-state behavior of the LMS algorithm when the step size in 

the coefficient updating is within a certain bound. However, the delay in the error path 

reduces the convergence region of the step size. For a full-band FXLMS algorithm, the 

error path delay only comes from the secondary path transfer function For the sub­

band FXLMS algorithm proposed in this work, the error path delay comes jfiom both 

and the analysis filter bank. In general, it is very difficult to examine the stability of 

the FXLMS algorithm. Snyder [36] derived the region of in the full-band FXLMS that 

makes the controllers stable in a specific case where the secondary path is a pure k-step

sample delay and the signals are assumed to be stationary as follows:
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0 < ;/ < (1 / J  sin[;r / 2(2A: + 1)]. (4.11)

Here, is the maximum eigenvalue of the autocorrelation matrix of the reference

input signal. Kim [37] proposed a constrained hltered-x algorithm to compensate for the 

error path delay in the full-band LMS. We now derive the compensation methods for 

our proposed sub-band FXLMS algorithm.

Notice the expression for the error signal in sub-band q in Equation (4.4). At the 

time instant n when W„ is already available, e (n) is still based on the old coefficients,

, due to the error path delay resulting from and the analysis filter bank. It is

these old coefficients that result in the decrease of the convergence region. If we 

generate a different set of sub-band error signals (/;) by replacing (y) with

(y) in Equation (4.4), that is.

j= 0  j~0 &=0 /= 0

and replace gy(») in Equation (4.10) with (m) to update the weights, i.e.,

= T4/.0)-H2//%g,(n)x', (»-%), z = 0,1,...,V, (4.13)
g~0

then the delay resulting fiom the analysis filter bank has been compensated. Further, if 

we generate another set of sub-band errors g^(M)by replacing w„_;̂ _;(y) with w,(y ) in 

Equation (4.4), that is

y X /.
(n)= £  y(« -   ̂2  £  E  '  y -  * -  0». «=o,i„. „ e  - 1 (4. i4>

7 = 0  7 = 0  k~Q i=0

and update the filter coefficients using (n) as
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(0  = (0+2//% ] 6  ̂(» ) / ,  (M -  0 , 1 = 0,1,..., y ,  (4.15)
9=0

then the error path delay resulting 6om and the analysis filter bank has been 

compensated.

(n) and ^  (n) are not directly available but can be derived &om (n) and other 

known signals. Comparing Equation (4.4) to Equation (4.12), we have

(") = (m) + %) ̂  ] ^  %(« -  7 -  A: -  /)w,_*_, C/)s(t)A, (0
j —0 A=0 /=0 

J  K  L

/ = 0  k=0  / = 0

K L

=̂0 /=!

J  K  L

"  Z  Z  Z ^  * (0, 9 = 0,1,..., 6  - 1 ,  (4.16)
/=0 Æ=0 /=!

J

where y ( » - A - / )  = ^ ;c(n-y-A ;-/)w ,_^_^(y) is the output of the controller at time
>=0

instant n-̂ -Z.

Similarly, comparing Equation (4.4) to Equation (4.14) enables g (n) to be given

as

(«) = gg («) + 2  Z  Z  ^ ^ C/)-^(^)\ (0
7 = 0  i = 0  1=0

J  K  L

/ = 0  k=Q 1=

K  L

*=0 /=0
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J  f  i

"  Z  Z  Z  ^ ^ (0 ,9  = 0,1,..., g - I .  (4.17)
j= 0  k= 0 1=0

We refer to our ^proach, shown in Equations (4.13) and (4.16), as delay 

compensation method I. This method compensates the error path delay resulting &om

the analysis filter bank only. We refer to our approach, shown in Equations (4.15) and

(4.17), as delay compensation method II. This method compensates the error path delay 

resulting from both the analysis filter bank and the secondary path transfer function. 

The efficiency of the delay compensation methods will be illustrated in the next section 

by computer simulations.

4.3 Computer Simulations

Computer simulations are performed to illustrate the efficiency of the proposed 

sub-band algorithm, for both the feed-forward control and the feedback control systems. 

Throughout the simulations, only a 2-band case is considered using an 8*’’-order 

Daubechies filter as the base filter of the analysis filter bank.

4.3.1 Feed-forward active control system

To simulate the feed-forward active control system shown in Figure 2.2 on page 7, 

the same example used in [37] is adopted. That is, the reference input signal x(h) is a 

white noise process with uniform distribution with zero mean and unit variance. The 

plant ffz) is assumed to be a fourth order FIR filter as f  (z) = 1 — 0.3z"^ 4- 0.2z"^.

6'fz) was assumed to be a unit gain system and R(z) was assumed to be a pure 5-sample 

delay for simplicity. Since the control filter W models the plant P in the feed-forward
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control system, coefBcients of the controller need to converge to the optimal value, 

(z) = 1 .Oz-" -  0.3z-" + O.Zz"'.

The proposed sub-band adaptive filter can achieve a better convergence rate by 

assigning different step sizes to different sub-bands. The typical one is the normalized

FXLMS. For the full-band FXLMS, the step size is normalized as =

0 < ( 9 « 1  and For the sub-band FXLMS, the step

size in sub-band q is normalized as ft = — and
Ik’. I + ')

= (n),A:' ( n - 1 ) , - J ) ] .  To compare the performance fairly, all the

parameters are set to be the same for the Full-band FXLMS and the Sub-band FXLMS. 

The step size ji is set to 0.06 for both cases such that the weight vector converges to its 

optimal value within several hundred samples. Figure 4.4 shows the trajectories of the 

FIR filter coefficients w with the initial values set to zero. The sub-band filter 

outperforms the full-band counterpart, because it has the flexibility to normalize the 

step size in each sub-band separately.

The performances of the sub-band FXLMS algorithms, shown in Figure 4.5, are 

similar when the step size for the coefficient update is within certain bounds. The merit 

of the delay compensation methods is that they restore the convergence region of the 

step size decreased by the secondary path transfer function and the analysis filter bank. 

Figure 4.6 through Figure 4.9 show the effects of the error path delay on the 

convergence region of the step size and illustrate the efficiency of delay compensation. 

The FXLMS rather than the normalized FXLMS is employed in Figure 4.6 through
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Figure 4.9 to exclude the eflect of normalization. In particular, Figure 4.6 shows the 

tr^ectories of the magnitude of the full-band error and the filter coefficients with the 

full-band FXLMS where the step size // is selected as 0.05, so that obvious variance 

occurs when the hlter coefGcients converge. Figure 4.7 shows the same information for 

the sub-band FXLMS without delay compensation. Since the group delay of the 

analysis Glter bank reduces the convergence region of the step size, the tr^ectories 

show more variance under the same step size. Figure 4.8 shows the trajectories of |e(n)| 

and w of the sub-band FXLMS with delay compensation by method I. The variance is 

similar to that in Figure 4.6, because method I only compensates the error path delay 

resulting from the analysis filter bank. Figure 4.9 shows the same information of the 

sub-band FXLMS with full delay compensation by method H. Method H compensates 

not only the error path delay resulting from the analysis filter but also the error path 

delay resulting from the secondary path transfer function. Hence, it increases the 

convergence region of the step size compared to the full-band FXLMS algorithm. 

Consequently, the trajectories of the filter coefficients compensated by method II show 

very slight variance under the same step size.
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4.3.2 Feedback active control system with an AR(2) process

To simulate the performance for the feedback control system shown in Figure 2.5 

on page 12, a unit variance process in [13] is adopted as the primary disturbance 

where a, = -0.975, = 0.95 and the eigenvalue spread equals 3. Note that the

feedback control system (shown in Figure 2.5) is equivalent to a one-step forward 

prediction error 61t@- even when is a unit gain system. This is because the error 

signal e(n) is obtained first at each time instant, then the primary disturbance d(n) is 

restored to serve as the reference signal x(n). Figure 4.10 shows the learning curves of 

the normalized FXLMS in the full-band and sub-band algorithms when //=0.02 and S(z) 

is a unit gain system. Again, the algorithms implemented in the sub-band outperform 

the algorithm implemented in full-band because they can normalize the step size in each 

sub-band separately. All the ensemble averaging in this section is performed over 100 

independent trails of the experiments.

Figures 4.11 through Figure 4.13 show the effects of error path delay on the 

convergence region of the step size and illustrate the efficiency of the delay 

compensation methods when is assumed to be a 5 sample delay. The step size // is 

chosen as 0.013 (no normalization) so that the learning curve of the full-band FXLMS 

shows large variance, as shown by the dotted fine in Figure 4.11. The learning curve of 

the sub-band FXLMS with the same step size shows larger variance (the solid line in 

Figure 4.11) because of the extra error path delay added by the analysis filter bank. The 

dotted line in Figure 4.12 shows the learning curve of the sub-band FXLMS 

compensated by the delay compensation method I. The variance of the learning curve is
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decreased compared to the one without delay compensation. The solid line in Figure 

4.12 shows the learning curve of the sub-band FXLMS when the delay compensation 

method II is used to compensate the error path delay resulting &om the analysis filter 

bank and The variance is much smaller with the same step size /v=0.013. Actually, 

the critical step size of the sub-band FX3LMS after delay compensation with method n  

can go as far as /f=0.04 (the solid line in Figure 4.13), while /f=0.014 is unacceptable 

for the sub-band FXLMS without delay compensation (the dotted line in Figure 4.13). 

These simulations verify the better convergence performance the sub-band FXLMS can 

achieve when compared to its full-band counterpart and the efficiency of the delay 

compensation methods.

4J.3 Feedback active control system with the real vibration signals

The sub-band FXLMS algorithm is also applied to the HDD vibration control case 

to see the performance improvement. Again, the extra computational requirements 

associated with the signal decomposition and weight updating reduce the sampling rate 

in real time. To compare the performance fairly, simulations are performed to compare 

the performances of the hill-band FXLMS and the sub-band FXLMS in reducing the 

vibration sampled at 16 Figure 4.14 gives the average power spectrum density of 

the original vibration in 0.5 seconds (i.e., 8000 samples), and the power qiectrum 

densities when the active control systems using the fiill-band FXLMS and the sub-band 

FXLMS are operating. It can be seen that the sub-band method outperforms the full- 

band method slightly on the vibration reduction in the destructive interference range. 

Another merit of the sub-band algorithm is that it has the flexibility to trade-off the
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performance 6om the various sub-bands. To look at this merit experimentally, let us 

assume that the secondary path S(z) is a pure one-sample delay. Then, the adaptive 

feedback control system is equivalent to an adaptive harward prediction-error filter. 

Consequently, the filter weight converges to of an process. This ARfTV)

process models the original disturbance in the sense of minimizing the mean square 

error. Since the vibration reduction of a feedback control system depends on the

predictability of the original vibration, the better the original disturbance can be 

modeled the more the vibration can be reduced. If the vibration reduction in one 

specific frequency sub-band interests the users more, more weight can be put to that 

sub-band in the full-band weight vector updating step. Doing so, the filter weight

converges to -  of a new AR(N) process and this new AR(N) process models the 

original disturbance more accurately in the sub-band that interests the users. Figure 4.15 

shows the change of the magnitude responses of the resulting processes in a 2

sub-band case when the weight is put to the low frequency sub-band. When more 

weight is put to the low frequency band, the resulting AR(N) process models the low 

firequency band more accurately at the cost of modeling the high 6equency band less 

accurately. The dashed hne shows the extreme case where the full-band controller 

vector is updated using the low frequency band reference signal and low fi-equency 

band error signal only. Figure 4.16 shows the opposite scenario when more weight is 

given to the high &equency band. It can be seen that the more weighting placed on the 

high fi-equency band, the better the resulted process models the original

disturbance in the high fi-equency band. The dashed line shows the extreme case where
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the full-band controller vector is updated using the high &equency band reference signal 

and high 6equency band error signal only. Figure 4.17 shows the vibration reduction of 

these two extreme cases. It can be seen that more vibration reduction is achieved at the 

lower &equencies, but more constructive interference occurs at the higher frequencies 

when the controller vector is updated using only the low hoquency sub-band signals. 

Similarly, more vibration reduction is achieved at the higher hequencies (or at least less 

constructive interference occurs at the higher frequencies), but no vibration reduction is 

achieved at the lower frequencies when the controller vector is updated using only the 

higher frequency sub-band signals.

4.4 Combining the frequency domain technique with the sub-band 
architecture

When we use the sub-band algorithm to concentrate on the reduction of the 

vibration at the low frequencies, more constructive interference occurs at the higher 

frequencies as shown by the dotted line in Figure 4.17. To reduce the constructive 

interference at the higher frequencies while keeping or improving the destructive 

interference performance at the lower frequencies, we can combine the frequency 

domain technique with the sub-band decomposition structure as shown in Figure 4.18.

Here, (») is the filtered reference signal in sub-band g and is its counterpart in

the transform domain. Then, the selective adaptation technique proposed in Chapter 3 

can be applied to alleviate the constructive interference. Figure 4.19 compares the 

performances of the frequency domain LMS with the combined frequency domain/sub­

band algorithm when the selective adaptation technique is used to alleviate the
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Figure 4.18 Block diagram of the combined frequency domain and sub-band 
decomposition structure.

constructive interference at the higher frequencies. In the combined frequency 

domain/sub-band algorithm, the reference signal and the error signal are decomposed 

into two sub-bands and the weight vector is updated using only the low frequency sub- 

band signals. Doing so, the combined frequency domain/sub-band algorithm models the 

primary disturbance at the low frequency band better, hence achieves better vibration 

reduction at the low frequency band while the constructive interference at the high 

frequency band is allc\iated by the selective ad^tation technique. It should be noted 

that this combined structure is less effective when the number o f the sub-bands g  is 

large. The effectiveness is reduced because the eigenvalue spread of the sub-band signal

% (») decreases as g  increases. Consequently, the orthogonal transform of (»)

cannot improve the convergence.

The sub-band decomposition and orthogonal transform on the frltered reference 

signal in Figure 4.18 are essentially linear operations. Therefore, it is possible to swap
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the order of the sub-band decomposition and orthogonal transform to obtain a more 

computationally efficient structure. We cannot simply swap the order (Appendix C 

proves the direct swap does not work). Instead, some other kind of implementation 

structures must be employed. We will leave this as a further research direction.

The combined Aequency domain/sub-band algorithm can also achieve a better 

convergence rate since it not only can reduce the eigenvalue spread in the hrequency 

domain, but also can normalize the step size in each sub-band as well. Figure 4.20 

shows the learning curves of the frequency domain LMS, sub-band LMS, and the 

combined frequency domain/sub-band LMS using the AR(2) process specified in 

Section 4.3.2. The combined frequency domain/sub-band LMS achieves the fastest 

convergence rate as expected.

4.5 Computational complexity

The computational complexity of the sub-band LMS depends on the order of the 

adaptive filter (A), the number of sub-bands (g) and the order of the analysis frlter (L). 

The number of multiplications required for each sample is Q*(2L +N+1) +N. 2L 

multiphcations are used to decompose the reference signal and the error signal, 

respectively. Each sub-band requires W+7 multiplications for weight updating and step 

size mixing. W multiplications are used to form the full-band control signal. The 

combined sub-band and frequency domain algorithm requires more multiplications 

to transform the sub-band reference signal in each sub-band and another 2W 

multiplications for the full-band reference signal transform. For comparison purposes. 

Table 4.1 summarizes the computational requirements o f the common adaptive
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algorithms. The fast afSne projection (FAP) [38]-[41] has a property that lies between 

those of the LMS and the recursive least-squares (RLS) algorithm, i.e., less 

computational complexity than RLS but much faster convergence than LMS.

Table 4.1 Comparison of the computational complexity o f different adaptive algorithms
lYwrnAgr /ter

LMS
RLS [42] 3(Â  + 1)' +3(A  + 1)
Frequency domain LMS (freq. sampling structure)
Sub-band LMS
Combined sub-band and freq. domain LMS
FAP (embedded fast RLS algorithm [39]) 2AT+20M
FAP (efficient approximate implementations [41]) 2iV + 10M4-0.51og2 7̂
N: order of the adaptive filter 
L : order of the analysis filter

Q: number of sub-bands in sub-band LMS 
M: number of projections in FAP
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Chapter 5 

Multiple-channel active control systems

In active noise control systems, it is desirable to reduce the acoustic noise inside the 

enclosure. In active vibration control systems for complex mechanical structures such as

the hard disk drives where different areas vibrate in different modes, the vibration needs 

to be reduced in several places. These applications require the single-channel active 

control system to be expanded to a multiple-channel case that uses several secondary 

sources (actuators) as well as error sensors. This chapter discusses the multiple-channel 

adaptive feedback control systems.

Section 5.1 develops the FXLMS adaptive algorithm for the multiple-channel 

systems. Multiple-channel secondary path transfer function modeling techniques are 

discussed in Section 5.2. Section 5.3 derives the optimal performance that a multiple- 

channel feedback control system can achieve. The regular control system, the simpliGed 

control system, and the decentralized control system are discussed separately. Section 

5.4 performs some simulations for a 2x2 control system. Section 5.5 discusses how to 

improve the stability of the control system.

5.1 Multiple-channel FXLMS algorithm

For a general Æ actuators and M  error sensors multiple-channel system, there are AT 

control signals, (» ), which drive the corresponding actuators, and M  residual signals.
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g , (»), which are the outputs o f the M  error sensors. Generally, each control signal will 

contribute to each residual error signal. Consequently, there are MxKT secondary paths, 

6"^ (z) 6om the actuator to the error sensor. These paths are estimated by the

corresponding digital filters (z ) . The reference signal synthesizer uses the ^  control 

signals (n ), the M residual error signals e , (n ), and the MxRT secondary path

estimates .y^(z) to generate the Af reference signals %,(»). Since there are M 

reference signals, (n ), and AT actuators, we require ATxAf adaptive Alters, ^  (z ), to

generate the control signal for each combination (W^^(z) usesx^(n) as the reference

signal and the output goes to the k '’’ actuator). The synthesized reference signals, which 

are the restored primary disturbances at the M  points where the sensors are located, are 

expressed as

= + = V ,...,M  , (5.1)
=̂1

where s„^(») is the impulse response of the secondary path estimate ^ ,* (z ) . The A* 

control signal, (« ), which drives the t*  actuator, is the sum of the outputs from the M 

adaptive filters connected to the A'* actuator. It is expressed as

(») = ( " ) * (M), A: = 1,2,...,A:, (5.2)

where (n) is the impulse response of the adaptive ûlter (z). Each filter (z)

M
is adapted to minimize the cost function ^(n) = y^g,^(«), i.e., the sum of the

i=i

instantaneous squares of the M  residual errors based on its own reference signal, x„ (n) .
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The cost function is a quadratic function of each of the ATxM filter weight vectors, 

(») [43], [44] and the optimum set of the Glter coefGcients required to minimize

^(») may be evaluated adaptively using the gradient descent method. That is,

Wb, (M +1) = ^  = W - (5.3)

The y* residual error gy (n) is given by

g, (") -  (") * (")
p= l

= (") -  (") *E (") * ( " ) ] '  V = 1,2,...,M , (5.4)
p ~ l q~ \

where (fy (») is the original disturbance at the point where the y'* error sensor is 

located. The derivative of gy (») with respect to (n) only has non-zero values when

p ^ k  and q=m in Equation (5.4). That is,

9gy(M)
- — -  =  -g X » ) *:(«(»). (5.5)
^ k ,( » )

Again, the weight vector a'*^(M) is assumed to be time invariant as in Section 4.1 to 

evaluate the derivative. This assumption can only be justified if  the time variation of the 

adaptive Slter takes place with a very slow rate or when the time delay associated with 

the secondary path transfer function is negligible.

In practical active control systems, Sŷ  (n)is not available and will be replaced with

its estimate Sy^(n). Replacing Sŷ  (n) with Sy^(n) in Equation (5.5) and substituting 

Equation (5.5) into Equation (5.3), the resulting multiple-channel FXLMS algorithm is
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M

(« + !) = M'A» (") + (»)ky (m) (5.6)
y=l

Figure 5.1 shows the details o f a 2x2 adaptive feedback control system without on­

line identihcation of (z ) . We discuss the on-line identification of the secondary 

paths in Section 5.2. Two control signals, y ,(") y;(n) are generated as

(M) = 1 (») *:(](«) + It;,2 (n) * (n) (5.7)

^2 (") = 1̂ 2, (^) * 4  (M) + ^22 (") * :̂ 2 ("), (5.8)

where w„ («), (n), («) and («) are the impulse responses o f the adaptive filters

lFj,(z), M̂2 (^X ^ ] ( z ) ,  and (z ) , respectively. The reference signals, r,(n) and

JC; (») are synthesized as

4  (») = (n) + 1 («) * y 1 (n) + 1̂2 (») * 72 (») (5 -9)

^2 (») = 2̂ (n) + 4 i  (n) * (n) + ^ 2 2  («) * )̂ 2 (»), (5.10)

where i,, (m),.y,2 (n)»^2i (")» .$22 (^) ^  the impulse responses of the secondary path

estimates ,9,;(z),;iy;2(^),'^2i(^)'^d ,^22 (z), respectively. The weights of the four 

adaptive filters are updated using the multiple-channel FXLMS algorithm expressed as

Wi,(n + l) = K'n (n) + , (n) * %, (/z)]e] («) + [.^21 (") * (»)]^2 (»)} (5 H )

M'21 (n + 1) =  W2 , (n) +  /^{[J|2 (n) * a;, (n)]e, (« )  4- (» ) * (»)]g2 (^ )} (5.12)

M' ,2  (n +1) = w,2  (n) + //{[f,, (») * % 2 (n)ki (") + [4i (") * ^^2 (» )k 2 (")} (513)

H'22 (n +1) = ^ 2 2  (") + /U{[^2 (n) * J:2 (")K  (») + [-^22 (n) * ̂ 2  (»)k2 (»)}. (5.14)
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Figure 5.1 A 2x2 adaptive fin b ack  active control system without on-line
identification.

5.2 On-line identification of the multiple secondary paths

For a general multiple-channel system with K actuators and M error sensors, there 

are KxM secondary paths, 5"^ (z) 6om the A:'* actuator to the m* error sensor, which

need to be identiGed. On-line modeling of the KxM secondary paths for a multiple- 

channel active control system is more difficult than in the single-channel case, because 

the error signal (n) Gom the error sensor is a mixture of the primary disturbance 

at point m and the secondary signals from all secondary paths, ,9,^ (z) for ̂ 7 ,2 , . ...K. In 

order to simultaneously identify the KxM secondary path transfer functions (z ) , we

must have K excitation signals driving each of the AT secondary sources. Because of the 

interchannel coupling, these AT excitation signals must be independent. Otherwise, the
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estimates o f these secondary path transfer functions are biased [14]. To explain the 

effect of the interchannel coupling, consider a 2x2 system, i.e., a system with two 

actuators and two error sensors as illustrated in Figure 5.2, that only shows one of the 

two error signals e, (n ), and uses one additive random noise for on-line secondary 

path modeling. The error signal e, (u) is the error signal measured by the Srst error 

sensor, which is the residual error of the primary disturbance d, (u) canceled by the 

control signals from both secondary sources. Adaptive filters 5,, (z) and 5,2 (z) are used 

to model the secondary paths 5,,(z) and 5,2 (z) on-line, respectively.

For the adaptation of 5 „ (z ) , v(n) is the input signal and /,(« )  is the error signal 

used for updating the weights. The desired signal for modeling 5,, (z) is

« ( » )  =  ,  ( n )  *  [ y i  ( " )  +  v ( M ) ]  +  ^ 1 2  ( « )  *  [ y ?  ( M )  +  V ( m ) ]  - ( / , ( » ) -  w  *  v(n). (5.15)

The adaptive filter 5,,(z) converges to its Wiener solution as

= (5-16)

where 5,^ (z) is the autopower spectrum of and 5,^(z) is the cross-power spectrum 

between the desired signal and the input signal v(^. Assuming that the excitation 

signal is zero-mean and is uncorrelated with y, (»), y; (u) and (f, (n), 5^(z) can 

be determined from Equation (5.15) as

S„(z) = K , (Z) + S„(z) -  S„(z ) ]S„(z ) . (5.17)

Substituting Equation (5.17) into Equation (5.16), the optimum solution of 

5,,(z) becomes
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Figure 5.2 On-line identification of the secondary paths using one random noise 
generator.

= + (5.18)

Equation (5.18) shows that when random noise components are picked up by the first 

error sensor through multiple secondary paths (iS],(z) and 5',;(z ), in this case), the

estimate 5„(z) is biased by the cross-coupled secondary paths 5,2 (z) and 5,2 (z ) . The

desired result 5„ (z) = 5„ (z) occurs only if 5,% (z) = 5,  ̂(z ) . Since 5,2 (z) itself is being

simultaneously adapted with 5„ (z ) , there can be no unique solution for either filter.

To remove this interchannel coupling associated with the multiple-channel systems, 

random noise generators can be employed such that the AT random noises used to 

drive the AT actuators are mutually uncorrelated. For a 2x2 system, two random noise 

generators as shown in Figure 5.3 are employed to generate the random noises v,(/i)
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Figure 5.3 On-line identification of the secondary paths for a 2x2 system using two 
random noise generators.

and Vj {n), which are mutually uncorrelated and also uncorrelated with 

y, (M),y; (»), (f, («) and (») - Then, the desired signal for modeling 5",, (z) becomes

" (» )  = -̂ 11 (" )* [} ',  +  (n )] + (n)  * (» ) 4- (" ) ]  "  ( " )  "  ^12 ( " )  * ^ 2  (» ) (5 19)

and Equation (5.16) changes to

^n(z) = (5.20)

Equation (5.17) is simplified to

^ ^ (z )  = ^ „ (z )^ _ (z ) (5.21)

because v,(") ^z(M) are uncorrelated. Then, the optimum solution of ^,,(z) is

correctly obtained as
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= (5.22)

The same symmetric analysis applies to the adaptation of .$ ,2  (^) -

For a K.xM system, independent random noise generators are required to remove 

the interchannel coupling. When Æ is large, the cost may be too high for some real time 

systems. An alternative is to use a single noise source with inter-channel delay to 

decorrelate the excitation signals instead of the multiple random noise generators [45]. 

This technique allows on-line modeling of the secondary paths using a single random 

noise generator, hence reduces the cost of on-line identifications.

5.3 Optimal performances of the multiple-channel control systems

This section uses a unified way to formulate the optimal performances of the three 

variants of the multiple-channel feedback control system, and explicitly show the 

dependence of the optimal performance on the correlation coefficients of the primary 

disturbances and the impulse response of the secondary paths. It is assumed that there 

are M  secondary sources and M error sensors in the multiple-channel system and the 

MxM secondary paths can be estimated accurately in our discussion. We also assume 

that all the signals are real valued for simplicity of derivation.

5.3.1 Regular control system

The regular multiple-channel feedback control system can be illustrated as in 

Figure 5.4, in which:

Chapter 5. Multiple-channel active control systems 95



x=d V ^ \

Figure 5.4 Block diagram of the multiple-channel feedback control system where 
the secondary paths can be estimated accurately.

W MxM matrix of responses of the control filters

S MxM matrix of responses of the secondary paths

d Mx 1 vector of the primary disturbances

e Mx 1 vector of the residual errors

y Mx 1 vector of the control signals

X Mx 1 vector of the reference signals

If the control filters are implemented as FIR filters of order J and the secondary 

paths are modeled as FIR filters of order K, the output of the z "* error sensor at time 

instant n can be written as

e, (n) = < (») -  * &Ù, = < (" )  -   ̂= 1,2,...,M , (5.23)
M X

w = l  m = l  A : = 0

where zf, (») is the primary disturbance at the z* error sensor and

(1)' "  ' (^)]^ is the impulse response vector o f the secondary path

fi-om the secondary source to the z"* error sensor. The control signal (zz),

z.e., the input to the yn* secondary source, is the sum of the outputs of those M control 

filters that aim at the secondary source, and can be written as
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where %, (») is the /'* reference signal and is the

weight vector o f the control Glter (z ) , which uses ;Cy (») as the input signal and the

output goes to the m'* secondary source. Substituting Equation (5.24) into (5.23), we

have

M  M  J  K

e, (») = d,. (n) -  2  2  Ê  ( » - ; - * )
m=l /=! 7-0 k=0

M  M  J

= -  Z Z Z  0)«W  (" -  A  : = 1,2,...,M  ,
m=i ;=1 /=0

(5.25)

where («) is the Sltered reference signal ;c; (n) by the secondary path . Equation

(5.25) illustrates the linear relationship between the error signal and the filter 

coefficients and can be rewritten in matrix form as [43], [47] 

g(n) = </(n) -  f /(«)%;

in which

g(n) = [e, (A^zW , - (»)]

<f(M) = (M ),4 (A  - W ]

[/(») =

«, ̂  («), (n -1 ),....., (n -  J )
(»), « /  (n -1 ),......* f/ (m -  7)

«Af ̂  (»), (» -1), -, (M -  A

(5.26)

(5.27)

(5.28)

(5.29)

where

«, («) = [»„] (A "n2 ( A  - (»),«,2, (A - .«ÜL/M (»)]^ (5.30)
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and

w=[w ^(0),w^(l),...,w^(y)]^ (5.31)

where

= [^1, (0, ̂ ,2 (0, ", (0, ^210),.", (0]^ - (5.32)

We dehne the cost function ^(/i) as the expectation of the sum of the squared errors

M

^(") = - (5.33)
m=l

Then, using Equation (5.26), ^{n) can be expressed in the general matrix form as

^(n) = '"(») -  M7^[/^(M)][^(/Z) -  [/(M)M']

= jZw -  2w^p + cr, (5.34)

where = («)[/(«)], p  = (/:)</(»)], and cr = .E[</^(n)</(n)]. The Wiener

solution minimizing Equation (5.34) is given by

M;,,, = , (5.35)

which results in the optimal value of the mean square error

= ( r -p " Æ - 'p .  (5.36)

When the secondary paths can be estimated accurately, the reference signal 

X; (n) equals the primary disturbance (f, (/i). Consequently, the Gltered reference signal

"w  (») is the Sltered version of (f, (/;) by the secondary path . Therefore, Æ and p  in

Equation (5.36) can be expressed in terms of the correlation coefBcients o f the primary

disturbances and the impulse responses of the secondary paths. SpeciGcaUy, let /\,(^)

be the correlation between the primary disturbance («) and (f; (/z) with lag ^  i.e..
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(5.37)

then the crosscorrelation between (f (n) and (») can be derived as

= Using Equation (5.28) and
J=Q

(5.29), j? can be expressed as

j '  = .E[U^(n)<f(n)] = [/;, (O),/!; (0 ) , . . . , /^  (0),/;, (1),...,/;, (J),...,/^;^^ (J)]'^, (5.38)

M  M  K

where ( t)  = 2  (^) * = E  Ë  '
m=\ m-1 1=0

Similarly, define the correlation between n^;(n) and m qt  ' ijlmqt

(^) = (»)»;.,, (M -  ̂ ))]

= E:{[Sjy *(/;(«)][&_

= Ë  (^ )E  W  (^ + A -  .P)]} .
h=0 p= 0

(5.39)

Then,

j( = E[U^(M)U(M)] =

^ ( 0 )

g (-l)
f( l)
f(0)

g (J)

^ 0 )

(5.40)

where the x matrix is debned as

g(A) = E
1=1

«̂11,11 (A) /̂11j12( )̂
^ i l 2 n  1 ( A )  '12112 ( A )

^«lli2l(A)
/̂12(21 (A)

îMMi'21 (A)

(A)
îXUMM (A)

(A)

(5.41)

Using Equation (5.36)-(5.41), the niinimum mean square of the regular multiple-
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channel feedback control system can be calculated with the knowledge of the 

correlation coefficients of the primary disturbances and the secondary paths.

53.2 SimpUQed control system

In the simpbbed feedback control system with M secondary sources and M error

sensors as shown in Figure 5.5, only M control filters are employed and each secondary 

source is driven by the output from one control filter only. Each control filter is still 

adjusted to minimize the sum of the squared output from all the error sensors. The input 

to the 7m'* secondary source, is now the output of the control biter only,

i.e.,

= (»)***'« = Z  = 1 , 2 , . . ,  (5.42)

where w,, = (0), (1),..., is the weight vector o f the m'* control biter and

(n) is the corresponding input signal. Using Equabon (5.23), the output of the i'*

error sensor at time instant n changes to

e,. (») = (f, (/z) -  Z  Z  ( ./)Z  (» -  y -

= (̂ 1 («) - Z Z ( y (" -  y). ' = 1,2,...,M , (5.43)
m - 1  y = o

where (n) is the bltered reference signal (n) by the secondary path .
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Figure 5.5 Simplified multiple-channel feedback control system where each secondary 
source is driven by the output of one control filter only.

The error signals of the simplified control system can still be written in matrix form 

as Equation (5.26), but «, (») in Equation (530) changes to

(»)]^ (5.44)

and iv(!) in Equation (5.32) changes to

w'CV = [w, (f), W; (i),..., (;)]^. (5.45)

The minimum mean square error of the simphfied control system is still expressed as in 

Equation (5.36), but p  now changes to

f = ^ [ /" (« )^ (» ) ]= [/; (0 ),/, (0),...,/^  (0),y; (1),...,/; ( j) , . . . , /^  (J ) ]" , (5.46)

if M X
where (A:) = %] (A) * ^  ̂ ( O ^ f  (^ -  0  - The correlation matrix ^  of the

m ~l l~ 0

simpliGed control system remains the same expression as given in Equation (5.40), but 

the matrix in Equation (5.41) changes to an MxM matrix
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M
g (^ )= Z

1=1

^ i 2 2 i l  1 ( ^ )  ^ /2 2 i2 2  ( ^ )  ■ ■ ■ ^i22iMM  ( ^ ) (5.47)

^iMMill ( ^ )  ^ iM M ill ( ^ )  ■■■ ^iMM'MM  ( ^ ) _

Using Equation (5.36), (5.37), (5.39), (5.40), (5.46) and (5.47), the minimum mean

square of the simplified multiple-channel feedback control system can be calculated 

with the knowledge of the correlation coefficients of the primary disturbances and the

secondary paths.

5.3.3 Decentralized control system

Both the regular control system and the simplified control system can be described 

as being fully coupled since each secondary source is being adjusted in response to the 

output of all the error sensors. The fully coupled control system may require 

considerable processing power to implement and generally has a relatively complicated 

model of the system under control, which accounts for all the interactions between each 

of the secondary sources and each of the error sensors. One way of avoiding these 

problems is to decentralize the control system. That is, each secondary source is 

adjusted to minimize the sum of a smaller number of error sensors. The limit o f this 

^proach would be when there were as many secondary sources as error sensors, and 

the input to each secondary source is adjusted to minimize the output of one error 

sensor only. This is equivalent to M (the number of error sensors or secondary sources) 

isolated single-channel systems, and it is called fully decentralized control [48]. Figure

5.5 can still be used to illustrate the fully decentralized control system with M 

secondary sources and M error sensors. Each control filter If^(z) in the fully
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decentralized control system is now updated to minimize the squared output of the m'* 

error sensor only. Unlike the simplihed control system where all the MxM secondary 

paths have to be estimated, the decentralized control system only estimates the M direct 

paths The fully decentralized control system differs 6om the

simpliGed control system in that the reference signal no longer is equal to

the m‘'' primary disturbance (« ). The w'* control filter W„^(z) generates its 

reference signal (n) by adding its output at the summing point to the output from the

m ‘̂  error sensor, i.e..

( «) = ( " ) ( "  -

M  J  K

= < ( « ) -  Z  (5.48)
y=0 =̂0

Let ( t)  denote the corrélation between ^nd (n) with lag i.e.,

r'm (^) = (");(«(» - ^)], !,/» = 1,2,...,M  . (5.49)

In the steady state, ( t)  can be completely determined by the correlation between

the primary disturbance (^) dehned in Equation (5.37) as well as the responses of the

control filters and the secondary paths. Equation (5.43) is still the expression for e, (^)

and Equation (5.36) is still the niinimum mean square error for the fully decentralized 

control system. The correlation v e c to r in  (5.46) changes to

p  = E [u"(»)if(n)]=[y;'(0),y;'(0),...,y^ '(0),y;'(i),. . . , / ; '( / ) , ...,A /'(V )f, (5.50)

where /.'(k ) =
m = l  m ~ \ 1=0

Chapter 5. Multiple-channel active control systems 103



The correlation matrix still takes the form of Equation (5.40) but the MxM 
matrix changes to

where

f=%

^ ii i/i 1 (^) n an (^) ^ a \iM M  (^)
^ ilin 1 (^) ^ (2 2 122 (^) ^ i22iM M  (^) (5.51)

^ iM M il  1 (^) ^ iM M i22  (^) ^ iM M iM M  (^).

= Æ[Mg,.(M)Wg;(M- )̂)]

-A)]}

= Z W Z W  + A - ;;)]}, f , = 1,2,...,M . (5.52)
h-<i jD=0

r " ( k )  in Equation (5.52) is the correlation between the reference signal (n) and 

Xi(n) . Like r\^ (k) , (k) can be completely determined by the correlation between

the primary disturbance r , (k) as well as the responses of the control Glters and the 

secondary paths.

The formulas derived above are useful for analytic comparisons of the three 

variants of the feedback control system and can be used to guide the selection of the 

appropriate control scheme. These formulas will be used to compare the theoretical 

values for a 2x2 system in the next section.

Chapter 5. Multiple-channel active control systems 104



5.4 Computer simulations for a 2x2 system

In this section, we will simulate the performances of the three feedback control 

systems discussed in the last section for a 2x2 case and compare them with the theoretic 

values. For sin^licity o f calculation on the theoretical values, a unit variance AR(2) 

process with a, = -0.975 and = 0.95 is employed as the primary disturbance at 

point 1, i.e., («) and another unit variance AR(2) process with a, = -1.5955 and

« 2  = 0.95 is employed as the primary disturbance at point 2, i.e., (« ). It is easy to

show that the autocorrelation coefficients of <7, («) are 

= 0.5, -  0.4625, -0.9259, ••■] and the autocorrelation coefficients of

are = 0.8182, 0.3554, -0.2102, - and are almost

uncorrelated and r,2 ( t)  and (^) are assumed to be zeros to simplify the calculation.

It should be noted that we assume the primary disturbances in the simulations are 

already AR processes without considering the errors of modeling the primary 

disturbances by AR processes. In real applications, this modeling error is one of the 

main sources of the residual error.

In the first simulation, let the direct paths be g,, = = [0, 0.5, -0.5]^ to

exhibit the h i ^  pass property and let the cross-coupled path be

= s ,2  = [0, 0.2, 0.2]^ to exhibit the low pass property. Since both d, (») and 

d; (m) have strong energy in the low fi-equency band (the pole of d, (n) is at 0.33^ and 

the pole of d 2 (n) is at 0.79;^, the regular control system (refer to Figure 5.1 on page 86) 

is expected to outperform the simplified control system as shown in Figure 5.6. This is
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Figure 5.6 Simplified 2x2 adaptive feedback control system with only two control 
filters.

because (n) can be reduced by the output of (z) and J ,  («) can be reduced by the 

output of (z) in the regular control system. Figure 5.7 shows the squared residual 

errors obtained by the regular control system and Figure 5.8 shows the same 

information obtained by the simplified control system. All the curves in the simulations 

are the ensemble average of 100 independent trails of the experiments. It can be seen 

that the average square error achieved by the regular control system is around 

and the averaged square error achieved by the simplified control 

system is around 0. 3.
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Figure 5.7 The averaged square errors achieved by the regular control system with 
1̂1 =[0, 0 5, -  0.5]^ .
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Figure 5.8 The averaged square errors achieved by the simplified control system with 
'̂ 11 -^22 =[0, 0.5, —0.5]^ .
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Using the correlation coefBcients and the impulse responses of the secondary paths 

in the equations given in the last section, the theoretical minimum mean square error 

that the regular control system can achieve is calculated as 

= 2 -1.875 = 0.125 and the theoretical minimum mean square error that the

simphfied control system can achieve is calculated as = 2 -1 .022  = 0.978.

Both the theoretical values and the experimental values confirm that the simplified 

control system is not attractive using the current frequency responses of the secondary 

paths. It should be noted that the calculated theoretical minimum mean square is the 

optimal value obtained by the steepest descent algorithm (the Wiener solution) and the 

experimental result is the value obtained by the LMS algorithm (the stochastic gradient 

descent algorithm). The difference is called the excess mean square error that results 

from the noisy estimate for the gradient vector in the LMS algorithm. The excess mean 

square error increases linearly with the filter length and is directly proportional to the 

step size of the LMS algorithm.

In the second simulation, we consider the case when the secondary paths are 

consistent with the frequency responses of the low pass property. Hence, let the direct 

paths be s,, = = [0, 0.5, 0.5]^ and let the cross-coupled paths remain the same at

S;, = = [0, 0.2, 0.2]^ . Since the secondary paths exhibit similar frequency

responses, we should not expect the regular control system to outperform the simplified 

control system as much as in the frrst simulation. Using the correlation coefficients and 

the new impulse responses of the secondary paths in the equations given in the last 

section, the theoretical minimum mean square error that the regular control system can
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achieve changes to = 2 -1 .8 8 2  = 0.118 and the theoretical minimum mean

square error that the simpliGed control system can achieve is reduced to 

= 2 -1 .719  = 0.281. These values are much closer to that of the regular

control system. Figure 5.9 shows the experimental results obtained by the regular 

control system and the simpliGed control system. The performance of the regular

control system is worse under the current setting for the secondary paths.

Figure 5.10 shows the squared residual errors obtained by the decentralized control 

system. It can be seen that the decentralized control system achieves a performance 

better than the simplified control system under the current setting for the cross-coupled 

paths ( = Sj, = [0, 0.2, 0.2]^ ). The frequency responses of the cross-coupled

secondary paths directly affect the overall performance. When the responses of the 

cross-coupled paths become weaker, the performance that the decentralized control 

system can achieve is expected to improve. On the other hand, when the responses of 

the cross-coupled paths become stronger, the algorithm tends to diverge. Figure 5.11 

shows the cases when the cross-coupled paths change to [0, 0.45, 0.45] (upper set 

curves) and to [0, 0.05, 0.05] (lower set curves), respectively.
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Figure 5.9 The averaged square errors achieved by the regular control system and 
the simplified control system with s,, = * ^ 2  = [0, 0,5, 0.5]^ .
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Figure 5.10 The averaged square errors achieved by the fully decentralized control 
system with s,, = s , 2  =[0, 0.5, 0.5]^ .
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Figure 5.11 The average square errors achieved by the fully decentralized control
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respectively.
^12 = ^21 = [0, 0.45, 0.45] and Sj2 = *21 — [0, 0.05, 0.05] ,

5.5 Improving the stability of the feedback control systems

The LMS algorithm updates the control filters to minimize the instantaneous 

squared output of the error sensors. One side effect of reducing the squared errors only 

is that the system may obtain very small reductions in the errors at the expense of very 

large control signals. Large control signals in turn may affect the stability of the 

feedback control system. The inaccurate estimation of the secondary paths and/or the 

cross coupling of the secondary paths may also result in the instability of the control 

system. One way to improve the stability of the control system is to penalize the control 

signals in the cost function. That is, we might include a teirn in the cost function that is
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proportional to the sum of the squared control signals as in [49], [50]. For a system with 

K actuators and M error sensors, we define the new cost function as

= + (5.53)

where

(M) = Z  (") * (» ), # .  ^

/«=! k=\

M

and a  is a real, positive weighting coefficient used to balance the control error (first 

term) and the control effort (second term). Following the procedure of the development 

for the gradient descent algorithm, the weight updating equations of the KxM adaptive 

filters can be derived as

(» + !) = M;*. (n) + / ^ ^ [ s ^  * % ,(» )]e /M )-w o y t ("):%:«,(»), (5-54)
i=i

where Sĵ . is the estimated impulse response of the secondary path from the 

k'^ secondary resource to the y'* error sensor. Specifically, the weight updating 

equations for the regular 2x2 control system are

W|I (" +1) = w»,, (m) + (m) * z, (n)]e,(m) + [â,, (w) * x, (/z)]^;(»)} -  //ay, (n)x,(n) (5.55)

^2, (M +1) = ^21 («) + //{[-̂ i2 (n) * (»)]e, («) + [.f̂ z (") * :K, (n)]gz (»)] -  //(^^ («)%, (») (5.56)

(" + !) = Wi2 (") + //{['^i,(») * .%2 (»)]^i («) + [J21 (») * :K2 («)]^2 («)} -  //ay, (n)%2(«) (5-57) 

^ 2 2  (" + 1) = ^;^ (») + //{[f,z (n) * %z (»)]e, (n) + [^ 2 2  (") * ̂ 2  (")k 2 (")) -  /^0'2 (M):%:2 (") -(5.58) 

Equations (5.55) and (5.58) are the weight updating equations of the simplified 2x2 

control system except that y, (n) is now the output of lF^,(z) only and (n) is the
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output of (z) only. The weight updating equation of the decentralized 2x2 control 

system are then simphfied to

w,! (" + !) = ff,, (n) + (») * X, (n)]e, (n) -  //ay, (n)x, (a) (5.59)

w'z; (n +1) = M'z; (n) + (n) * (M)k2 («) -  (n ). (5.60)

Figure 5.12 shows the stability improvement of the decentralized system. When 

the cross-coupled paths and the direct paths are the same ([0, 0.5, 0.5]^ here), the 

system that only minimizes the control error diverges as shown by the upper set of 

curves in Figure 5.12. On the other hand, the system that minimizes both the control 

error and the control effort can still achieve some error reduction as shown by the lower 

set o f curves in Figure 5.12.

The cost of the stability improvement is clearly the decrease in the error reduction. 

Figure 5.13 shows the difference of the error reduction at point 1 using these two cost 

functions when the algorithm is stable. There is always a compromise between the 

performance and the robustness for feedback control systems and the decision as to 

where we compromise must be made based on the speciûc requirements of the real 

applications.
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Chapter 6 

Summary and conclusion

This dissertation discusses the active control system and applies it to the vibration 

reduction of a complex mechanical structure, the hard disk drive assembly. Four 

problems associated with the active control system are analyzed, which are the 

convergence rate, the constructive interference, performance improvement and on-line 

identification of the secondary paths. Selective adaptation in the frequency domain is 

proposed to alleviate the constructive interference. A delayless sub-band algorithm is 

proposed to improve the convergence rate and trade off the performance from various 

sub-bands. Up to 10 of vibration reduction is achieved in the simulation and the real 

time implementation.

In Chapter 2 the basic technologies of the single-channel active control system is 

introduced. First, the principles and performance limitations of the feed-forward active 

control system and the feedback active control system are described. Then, on-line 

identification of the secondary path transfer and the effect o f the estimate error are 

analyzed. The hybrid active control system is used to improve the overall performance 

when a reference signal is available.

C huter 3 theoretically shows the improvement of the convergence rate by 

implementing the algorithm in the frequency domain. Simulations also demonstrated 

that the frequency domain LMS algorithm consistently achieves a faster convergence
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rate than the time domain LMS algorithm for different input eigenvalue spreads. Then, 

this chapter explained why the modeling error due to the insufScient length of the 

controller or the primary disturbance itself results in the presence of constructive 

interference in feedback active control systems. A so-called selective adaptation in the 

frequency domain is proposed to alleviate the constructive interference while keeping 

the destructive interference that can be achieved by the active control systems. 

Simulation showed that the constructive interference can be alleviated by several dB in 

the constructive interference band with a slight degradation at the boundary band.

Chapter 4 discusses the implementation of the adaptive algorithm in the sub-band. 

It analyzed why the sub-band structure used in system identification or in echo 

cancellation cannot be directly applied to the active control system. This is because the 

ideal signal in the active control system is not directly available and the active control 

system generally cannot tolerate extra delay along the signal path. Then, a new 

delayless sub-band filter architecture was derived. The FXLMS implemented in the sub­

band achieves better convergence and provides the flexibility to trade-off the 

performance from the various sub-bands. One side effect of the sub-band algorithm is 

the group delay associated with the analysis flter bank, which decreases the 

convergence region of the step size, accordingly. Compensation methods are proposed 

to increase the convergence region of the step size by generating a set of new sub-band 

error signals to update the filter coefRcients. Combined structure of the fequency 

domain method and the sub-band decomposition technique are proposed to improve 

noise reduction in some suh-bands while the constructive interference occurring in other 

sub-bands can be alleviated at the same time. Computer simulations are performed for
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feed-forward active control systems and feedback active control systems to verify the 

efficiency of the proposed sub-band algorithm.

Chapter 5 extends the single-channel feedback control system to the multiple- 

channel feedback control system in order to reduce the vibration of complex mechanical 

structures or the acoustic noise inside enclosures. Multiple-channel FXLMS is 

developed using the gradient descent method. Inter-channel coupling during the on-line 

identification of multiple secondary paths is analyzed in detail. Then on-line 

identification of multiple secondary path transfer functions using multiple independent 

white noise generators was discussed. We derived the optimal performances of the 

regular, simplified and decentralized multiple-channel feedback control systems, which 

are not reported in the literature. The formulas derived explicitly showed the 

dependence of the performance on the impulse responses of the secondary paths and the 

correlation coefhcients of the primary disturbances. The theoretic values can be used to 

guide the selection of the appropriate control scheme in real applications. Finally, this 

chapter introduced techniques to improve the stability of the feedback control system by 

penalizing the control effort in the cost function.

The research conducted for this dissertation makes the following contributions:

1. Proposed the selective ad^tation method in the 6equency domain to alleviate 

the constructive interference.

2. Proposed a delayless sub-band algorithm to avoid signal path delay for the 

active control system.

3. Proposed a combined structure of the 6equency domain method and the sub­

band decomposition technique.
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4. Derived the optimal performances of the feedback control system for three 

variants.

Further research can be conducted in the following directions:

1. Implement the active hybrid control system in real time. The vibration reduction 

that a feedback control system can achieve is limited. To improve the 

performance of the active control system, the feed-forward control scheme can

be combined with the feedback scheme if a related reference signal is made 

available.

2. Develop a more computationally efficient structure for the combined structure 

shown in Figure 4.18. Since both the sub-band decomposition and orthogonal 

transform are essentially linear operations, it is possible to swap the order of 

these two operations to reduce the computational complexity.

3. Explore the possibility of using variable performance among the various sub­

bands to alleviate the constructive interference using the frequency domain 

method only or using the sub-band decomposition technique only. There is a 

close relationship between the sub-band decomposition and the 6equency 

domain implementation in that transforming an input vector zfh) of length 7/ 

into the Aequency domain can be viewed as decomposing into ^  sub-bands 

and down-sampling these sub-band signals by a factor of M Therefore, it might 

be possible to achieve this goal using one technique only.

4. Analyze the effect o f the errors in estimating the secondary path S(z) on the 

theoretic performance of the vibration reduction method. So far, only a few
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p ^ ers  ([15], [51]) deal with this issue and only preliminary results have been 

obtained.

5. Formulate the relationship between the process resulting from the

converged filter vector and the process that models the original

disturbance for a general secondary path S(z) in the feedback control system.
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Appendix A 

Experimental environment

Appendix A introduces the main equipment in the experimental system and gives 

the technical specifications.

A.1 M44

The M44 6om Innovative Integration, Inc. nittnV/wvyw.innovative-dsp.coml is

employed as the processor in the active control system. The M44 is a PCI bus-based, 

flexible I/O engine featuring a high-performance DSP and dual OMNIBUS module VO 

expansion sites. It employs a TMS320C44 32-bit floating-point DSP as a data 

movement/data processing engine capable of up to 60 MFLOPS/30 MIPS. On-chip 

peripherals include two 32-bit counter/timers, six powerful DMA channels, 8 Kbytes of 

dual-access SRAM, four bi-directional comm.-ports and a prioritized interrupt 

controller. Table A.l summaries the technical specifications.

Table A.l Technical sped: Ications of the M44
Digital Signal Processor TI TMS320C44 275 MOPS 32-bit floating-point DSP

optimized instruction set for DSP.
Memory 32Mx32 total range. Expandable on-board to 512Kx32 

global, 128Kx32 local.
Debug Port JTAG 1149.1 port for emulation of multiple 'C44's. 

Supports C/Assembly source level debugging with Code 
Hammer.

Host PC Interface PCI bus master/slave 32-bit 5V; consumes 256 bytes of host 
I/O space, 1 Mbyte host memory space, 1 interrupt.

Comm. Port Connections Two buffered comm, ports for system expansion. Two 
comm, port to OMNIBUS module I/O slots.

Digital I/O 32-bit TTL input, output or bi-directional with real back, 64 
mA sink/32 mA source drive capacity.

T hners/ Counters One direct digital synthesizer(DDS) 0.02 Hz resolution. 
Three 16-bit timers driven by DDS.

Connectors Two DB 15 female for I/O; IDC 80 for 4XBUS expansion.
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A.2 A4D4

An A4D4 OMNIBUS module is employed to provide the A/D and the D/A 

channels. The A4D4 accommodates 4 analog input channels and 4 D/A channels. The 

four analog input channels on the A4D4 module are successive approximation type A/D 

converters, which allows for low data latency critical in control applications and

multiple channel configurations. Each input and output channel is calibrated for gain 

and offset errors allowing accurate measurements for a variety of applications. Table 

A.2 summaries the key specifications.

Bus Type Compatible with all OMNIBUS Innovative products, 32- 
bit. Consume one interrupt to host DSP.

A/D Converters Analog devices AD976AA. Success approximation 
architecture for low data latency.

Resolution l()-bit
Setting Time 5 us (no Altering) @ 10 V step to 0.0008%
Update Rate 200 kHz
Analog Input range +/- lOV
Input Type Differential
Programmable Gain 1,2 ,4,8
Conversion Trigger Sources DSP, timers or externally triggered.
Interface to DSP Memory-mapped 32-bit result returned for each A/D 

pair.
D/A converters Analog devices AD7846. Each D/A channel has 

independent Altering, gain and trims.
Resolution 16-bit
Setting Time 7 us (unGltered) to 0.003%
Output Range + /-10V
Interface to DSP Memory-mapped, 16-bit interface to DSP.

A.3 PCB 353B15 accelerometer

Two PCB 353B15 piezoelectric accelerometers 6om PCB Piezotronics Inc. 

(http://www.pcb.com) are used as the residual error sensors in the experimental system.
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These are powered by a constant-current signal conditioner and have fixed voltage 

sensitivity. Table A.3 provides the primary performance characteristics of the PCB 

353B15.

Table A.3 Main features of the PCB 353B15 accelerometer
Frequency Range (±5%) 1 to 10000 Hz
Voltage Sensitivity 10.27 mV/g
Resonant Frequency 75.5 kHz
Amplitude Range -500 pk/500 pk g
Resolution O.OIg
Constant Current Excitation 2 to 20 mA
Output Impedance <100 ohms
Temperature Range -65 to +250 F
Weight 0.07 oz (2 gram)

A.4 PCB 713A01 patch actuator

Two PCB 713 AOl patch actuators are used as the actuators to generate the

canceling vibration in the active control system. The technical specifications of the PCB 

713AOl patch actuator is summarized in Table A.4.

Table A.4 Main features of PCB 713A01 patch actuator
Frequency Range 0-50000 Hz
Maximum Voltage +200 pk/-100pk volt
Piezoceramic Type PZT5A
Capacitance (at constant stress) 32 nF
Clamped Force 0.047 Ib/V [0.208N/VI
Free Expansion 1.335exp(-6) in/V [3.4exp(-5) mm/V]
Ceramic thickness 0.023 in [0.0584 mm]
Weight 0.49 oz [14 gram]
Dimensions (LxWxT) 109 X 21.3 X 1.27 mm
Operating Temperature -13-185 F

A.5 482A04 line power supply

A 482A04 line power supply or called signal conditioner (four channel) is used to 

power the accelerometers. It contains four constant current circuits and provides
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constant current excitation to the built-in transducer ampliher that decouples the signal 

horn the DC bias voltage. Table A.5 gives the specifications of 482A04 line power 

supply.

Table A.5 Specifications of the 482A0^ line power supply
Channels 4
Supply Voltage +24 V/Channel
ICP Sensor Excitation Current 2-20 mA/Channel
Time Constant 10 sec
Low Frequency Response <0.1 Hz
High Frequency Response >1000 kHz
DC Offset (maximum) <30 mV
Noise Broadband (1 Hz-10 kHz) <7.58 pV
Voltage Gain (all outputs) 1+1%
Power Required (50-400 Hz) 115±10% VAC/0.12 A

A.6 790A01 power amplifier

Two 790AOl power amplifiers are employed to drive the two 713A01 patch 

actuators in the experimental system. The 790AOl power amplifier can generate an 

output of up to ±200 V peak at 100 mA peak and features ac^ustable gain for flexibility.

Table A.6 shows the specifications of the 790A01 power amplifier.

Table A.6 Specifications of the 790A0 power amplifier
Channels 1
Output Voltage Range 200 ±2.5% V pk
Output Current ±100 ±5% m Apk
Calibration Internal
Cahbration Voltage 1.00 ±2% VDC
Voltage Gain 5 to 50 ac^ustable
Input Impedance 10000 ±10% ohms
Maximum Capacitive Loading 100-1000 nF
Power Requirements 120/220 VAC, 60/50 Hz (selectable)
Weight 7.5 lb
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Appendix B 

Efficient Implementation of the DCT

The discrete cosine transform of an N-point sequence ;((«), n = 0,1,..., is

defined as [21]

= J | | ; 4 " ) c o s 5 S 2 ^ , t  = l,2,...,ZV-.l (B.l)
V iV I N

Without considering the gain constants, the k"" DCT coefficient can be viewed as the 

output of an N-point digital filter, whose impulse response is

AX") = cos- ^ ^ - — M = 0,1,..., TV-1  (B.2)
* 2W

The corresponding z transform is

(B.3)

Using the finite geometric sum relationship

W-l 1 _ yV
(B.4)

n = 0  1

and the Euler identity

cos(%) = (B.5)

Equation (B.3) can be simpliEed to
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,æ(2(!+1)4
1 Ar-I ,Æ (2 n + l)t

2 / . ( z ) = i [ X z - V  -  ]
^  n=0 n~0

1 _  • ^  A'-i _ -!E!L ■ ^  A -̂i .w%*

=  - [ g   ̂ )" )"]
2  n = 0  n = 0

_ -jÿ.
i . g - 4  i - ( z V n ' '

■— 0

_  ■ ^  _  - _ ^  - _ ^  . ^  

  +  -

, g .?*
l - z - 'e " ^  1 - z - ' / ^

2 . g f c  ,ak

( l - z 'g " '^ X l - z - ' / ^ )

. 2 c o s - ^  -  2z"' cos(—------ —);*  -  2z^^ c o s ( -^  +1);* + cos(——  1);*
_ 1_____2;v_________w  2A '̂  ^ 7 /

l - 2 z - ' c . s ^  +  z "
N

7lk _i 7tk _/y Tlk -(W+1) ,
COS z  CCS z  CCS C 0S7tk +  Z CCS COS;ZK

2JY________ 2A[________ 2̂ V:________________ 2 AT

1 -  2z"' COS—  + z'^
N

= (B.6)
1 - 2 C O S — z - ' + z ' "

Including 6 e  gain constants m (B.l), we get

(l-z-')-(-l)* [z-""-z-("^+ ')]

where
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(Xĵ  — 2, yjc — 0

. f T  (B.7)
- 2 c o s — ,c^ -  J — cos— ,A:-1,2,...,AT-1

The <3̂ and can be calculated in advance. Doing so, only 2JV multiplications are

required for the N-point DCT. Consequently, only 4N+1 multiplications are required to 

implement the LMS in the hrequency domain for each sample.
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Appendix C 

Proof of the non-equivalency of the direct swap

Appendix C shows that the sub-band decomposition and the orthogonal transform 

in Figure 4.18 cannot be swapped without further change.

Figure C.l(a) shows the structure where the linear filtering (sub-band 

decomposition) comes first and Figure C.l(b) shows the structure where the orthogonal 

transform comes 6rst.

N-point orthogonal
transform

(a)

x(n)
N-point orthogonal

transform

fî

h
u(n)

(b)

Figure C. 1 Swapped order of the sub-band decomposition and orthogonal transform.

Let us assume that the linear filter is an FIR Glter with order A  and the 

orthogonal transform is also of order A  with the coefficients as

T =
So,0 S'o.A'-l

Âf-1,0 ■■■

(C.l)

Appendix C 136



For the structure shown in Figure C. 1(a),

f=0

Then, the output vector of length #  is

^ .(0 ) ^0,0 go Â-1

Sn-\,0 § N - \ , N - - l

X ")

-  ̂  + 1)

where

Af-l W-l N-l
-  0  = gt.,A(y)XM -  i -  )) , t  = 0,1,..., #  -1

i=0 i=0  y — 0

For the structure shown in Figure C.l(b), we have

%(0)

% ( # - l )

go AT-l

g  A'-1,0 g jV -l .A '- I

x(n) 

x(n -  At +1)

and the output vector of length N  is

[»(») w(/z -1 ) - »(« -  +1)]^,

where

w-i V - i  N - l

«(«) = Z  (0 = Z  Z  ̂ (OgfjX" -  ; ) .
,=0 (=:0 y=0

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

The output vectors of these two structures as given in Equations (C.3) and (C.6) are 

different. Therefore, the order of the sub-band decomposition and the orthogonal 

transkrm in Figure 4.18 cannot be commuted directly.
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