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Abstract: Form inspection of non-linear surfaces is a difficult task as suitable analytical
models are often unavailable. This paper presents a mathematical model for surface inspection
of face-milled plates and determination of the minimum zone based on a modification of the
support vector machine (SVM) technique. The SVM approach is reformulated to regression
problems using a different methodology than the ‘largest margin’ paradigm. In addition, this
work derives extremely simple quadratic programming (QP) problems that allow for general
symbolic solutions to non-linear regression problems. The results obtained from preliminary
testing allow identification of processing tendencies so that a selective sampling procedure may
be applied for inspecting future plates from that lot.
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1 INTRODUCTION

The inspection of deformations on the surface of
parts is facilitated by characteristic patterns left by
manufacturing processes. Sampling parts [1] in a
random fashion may miss process characteristics and
errors and, in many cases, be inefficient. Never-
theless, if a processing model is available then man-
ufacturing errors and their effects on the product can
be evaluated [2–6]. However, models can be very
difficult to derive, especially when multiple processes
are applied on the part. This paper introduces a form
of support vector regression (SVR) that evaluates
process errors on parts and can therefore be used for
form inspection and adaptive sampling. The subject
of the paper is the adaptation of a machine learning
approach based on support vector machines (SVMs)
into simple algorithms in order to obtain more
computationally efficient and accurate form inspec-
tion methods. The focus is on the flatness determi-
nation of face-milled plates. The objectives of this
task are:

(a) to check if probed plates have their actual surface
profiles located within a certain distance from a
nominal plane (tolerance zone) [7];

(b) to optimize the probing procedure (sampling
size, sampling pattern [8], measurement path,
etc.) in order to accelerate the process and to
diminish time-induced errors;

(c) to improve overall accuracy.

The first part of this study relies on a regression
approach that is introduced to estimate the size of
the ‘tolerance zone’. After collecting measurements
on the plate surface with a coordinate measuring
machine (CMM), the formulation is used to fit an
improvised test model of that surface. The size of the
tolerance zone can then be estimated by study of the
amplitude variation of the regression model. These
surface models are analysed in order to uncover a
pattern in the deformation generated by the manu-
facturing process. This pattern is a precious clue in
the optimization of the sampling schemes used by
the CMM for probing the plates.

The paper is structured as follows. Section 2
introduces the methodology employed for the form
inspection of face-milled plates. Section 3 discusses
quadratic formulations for non-linear regression
problems and some computational issues concerning
these formulations. Experiments on several face-
milled plates are provided in section 4. Finally, sec-
tion 5 concludes the paper.
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2 METHODOLOGY OF FORM INSPECTION

2.1 Theoretical background

Measurements of the surface of a face-milled plate
are given as ‘ pairs (xi, yi)

‘
i¼ 1, where xi2E, with E (the

probed surface) being a compact subset of R2, and
yi2R is the elevation of the surface at a given point xi.
The target value yi is assumed to be the summations
of a nominal term, a deviation term, and an error
term such that yi¼ f(xi)þ diþ «i, for all i2 [1, ‘] where
f is the representative function of the nominal plane
of the plate, di is the deviation from this nominal
profile, and «i is a random error. It is assumed that
the «i’s are normally, independently, and identically
distributed with a mean equal to zero, and that they
are all uncorrelated. The di’s are considered to be
generated by an unknown but continuous deforma-
tion pattern during the manufacturing process. The
continuity assumption will reasonably hold if the
surfaces of the plates are not obviously damaged
before their inspection by a CMM. The function f
representing a plane is interpolated by linear regres-
sion. If the regression approach of section 3 is used,
then it is equivalent to choosing a linear kernel
k(x, y)¼hx, yi (a kernel is a continuous, symmetric,
and positive semi-definite function) and plugging it
in our quadratic programming (QP) formulation.
This approach defines a family of coefficients

ða0
i Þi2½1;‘� and a scalar b0 so that the function

f0 : x 7!
P‘

j¼1 a0
j xj; x
� �þ b0 interpolates the function f.

Once the function f0 is determined, the same non-
linear regression interpolates the quantities yi� f0(xi).
The resulting interpolating function f1, defined by

f1 : x 7!
P‘

j¼1 a1
j kðxj; xÞ þ b1, estimates the deviations

di. As discussed in the next section, adequate choice
of a non-linear kernel k for f1 is critical. In this
study, a multi-quadric kernel defined by k(x, y)¼
(kx�yk2þs2)1=2, is chosen where s> 0 is a parameter
large enough in order to reduce the influence of the
small local coordinate perturbations between points
close to each other. This kernel leads to a smooth and
continuous representation of the deviation surfaces
of the studied plates. Furthermore, it generalizes the
shape of the deviation surface such that the accuracy
of the representation is not seriously affected by
missing portions of the measurements. Other ade-
quate choices for the kernel are possible, notably the
so-called translation-invariant kernels such as the
Gaussian radial basis function, which is defined by
k(x, y)¼ exp[kx� yk2/(2s2)].

2.2 Flatness determination

If the residuals ri¼ yi� [f0(xi)þ f1(xi)] are indepen-
dent and normally distributed with a 100(1� a)%

confidence interval for the mean that is centered on
zero with a half-width (denoted by ca) of the order of
the accuracy of the measurements, then the function
f1 is deemed to estimate the deviation surface with
good accuracy. This paper will try to confirm this
trend by running a cross-validation and confirm that
the normalized root mean square deviation is as low
as possible and the linear correlation coefficient is as
close to one as possible. A face-milled plate will be
considered flat if the form of the representation of f1
on E is within the pre-established minimum zone.
Thus, once f1 is determined by our approach, a global
non-linear optimization of f1 on its domain E gives
the quantity d ¼ jmaxx2Ef1ðxÞ �minx2E f1ðxÞj: If the
confidence level for the interval of the mean of the
residuals is high (a¼ 0.01, for example) and if ca is
small relative to the accuracy of the probe, then the
plates will be considered flat if the quantity dþ 2ca is
less than or equal to the desired variation spread. In
order to confirm this result, the location of the esti-
mated optimal points is probed again to see if the
experimental results match the estimations.

2.3 Further comments on the methodology

In the model, the function f represents the nominal
(and perfect) plane where the experimental points
should lie if the plate was perfectly manufactured.
The desired shape of f is known beforehand (it is a
plane), thus this regression technique is not the only
one that can determine the interpolated plane f0
since a least-squares regression could do this task
too. Nevertheless, the traditional non-linear least-
squares technique will fail to interpolate to the
deviation surface (represented by f1 here) since no
analytical model exists for this surface. In this study
on face-milled plates, a smooth translation-invariant
kernel function is chosen that is not influenced by
brutal local variations, and that defines locally how
distances and angles are measured on the inter-
polated deviation surface. In other words, the model-
driven approach of the non-linear least-squares
technique has been replaced, which requires a pro-
found study about how the plate was manufactured
by a local deformation approach that only takes into
account the gradient at which the deformation sur-
face can vary. This technique effectively removes the
need for a deformation model but provides only an
approximated interpolation surface that ignores infi-
nitesimal cracks and deformations (that cannot be
measured by a probe-type CMM anyway). In cases
where the function f does not represent a plane, linear
regression is no longer appropriate in order to deter-
mine f0 and this step then has to rely on a non-linear
least-squares technique since the desired shape of f is
known beforehand. Furthermore, there is a supple-
mentary difficulty to this task: the measurements xi
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will be slightly translated and rotated in space when
compared with the ideal profile of the part. This error
is due to imperfections in the alignment and the set-
up of the measuring tools. To counter this phenom-
enon, it is possible to implement a least-squares
approach that corrects the misalignment and inter-
polates the quantities yi� f0(xi) correctly (see Dowling
et al. [9] for a discussion of surface alignment tech-
niques). Then, once these quantities are obtained,
the treatment is resumed as usual by using the QP
formulation to determine the function f1.

3 QUADRATIC PROGRAMMING
FORMULATIONS FOR NON-LINEAR
REGRESSION

3.1 Introduction to support vector machines

Support vector machines are learning algorithms
(introduced by Vapnik [10]) that are used in tasks such
as statistical classification and regression. After their
introduction in 1982, the machine learning commu-
nity only started to actively investigate SVMs after 1995
as alternatives to artificial neural networks and
Bayesian networks [11–13]. SVMs have since been
applied to meteorology, computer vision, speech
recognition, and cryptography. Despite the introduc-
tion of several improvements for building SVMs on
large datasets [14, 15], developments stalled and it still
remains a computational challenge to efficiently con-
struct SVMs from large batches of data. The main
reason for such difficulties is that the mathematical
programming problems that need to be solved when
SVMs are learning are large QP problems that use
interior points methods (IPMs). IPMs are typically
computationally demanding for large-scale problems,
but some heuristics can drastically reduce computa-
tional times and memory requirements. Platt [14]
introduced sequential minimal optimization (SMO),
which breaks down the SVM problem into smaller
auxiliary problems. Each auxiliary problem can be
solved analytically, thus reducing the overall compu-
tational complexity in most cases. In another
approach to circumvent the scalability problems of
SVMs, it was chosen to simplify the mathematical
programming problems involved in SVR. This leads to
simple mathematical programming problems that
can be solved using standard and computationally
efficient numerical techniques. This is an extension of
previous work by Trafalis and Gilbert [16] for robust
classification and regression for noisy data.

3.2 Mathematical developments

Consider a set of ‘ 2 N� pairs of observations (xi, yi)
with xi 2 E � Rn (n 2 N�) and yi 2 R for every i2 [1, ‘]
where E is a compact subset of Rn. The independent

observations are distributed according to an
unknown probability distribution. Each target value
yi is paired with a feature vector xi and represents
the output of an unknown function f : E ! R. The
regression problem here is to find the function f such
that for every i2 [1, ‘], f(xi)¼ yi, and such that f(x)� y
for any new observation (x, y). In order to match a
realistic setting, a set of ‘ slack variables ji, i2 [1, ‘] is
introduced such that f(xi)� yi¼ ji. The slack variables
are quantities to be minimized in order to solve the
regression problem. The sum of the absolute values
of the slack variables represents the empirical error
for the function f.

In the mathematical developments detailed in the
appendix, the regression function shown has the

form f ðxÞ ¼ P‘
i¼1 aikðxi; xÞ þ b, where a1, . . . , a‘ and

b are solutions of a linear system of equations. The
function k, called the kernel, has special properties
and is constructed based on the characteristics of the
regression problem. The kernel used for the applica-
tions of this paper was introduced in section 2. The

linear system to be solved is ðK2 þ I‘=C þ 1‘1
T
‘ Þx ¼ y

where C> 0, y 2 R‘ is a vector made of all yi for

i2 [1, ‘], and 1 2 R‘ is a vector made of ones. The
(i, j)th element of the ‘ · ‘ Gram matrix K is made of
all the dot products h k(·, xi), k(·, xj) i¼ k(xi, xj) for
every i and j in [1, ‘] . The optimal a and b are given

by a¼K x and b ¼ 1T
‘ x.

4 EXPERIMENTS ON FACE-MILLED PLATES

4.1 Experimental set-up

The QP formulation was tested on a Dell Precision
Workstation 530 equipped with two 2.4GHz Intel
Xeon processors and 2GiB of RAM; the codes were
developed under MATLAB 7.4. Two batches of four
and five face-milled plates were produced for the
experiment. The cutting parameters for the plates
were as follows.

1. Workpiece aluminium 6061-T6, 10.16 cm · 10.16 cm
· 1.27 cm.

2. Tool ø7.62 cm cutter, seven inserts with carbide
coating.

3. Machining conditions coolant, cutter speed¼
750m/min, step depth¼ 0.254mm, cutting
feed¼ 1.524m/min (first batch), and 1.778m/min
(second batch).

The plates were inspected with a Brown & Sharpe
Microval PFX probe-type CMM equipped with a M3
straight stylus reference A-5000-3552 (ø2mm ruby
ball, ø1.4mm stainless steel stem, 21mm overall
length, 1 g mass). The plates were labelled from 1–1
to 1–4 for the first batch, and from 2–1 to 2–5 for the
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second batch. The plates were visually inspected
before being measured and plates 1–1 and 1–2 were
discarded owing to faulty machining. The probe-type
CMM used in this work does not produce significant
quantities of measurements in a short period of time;
thus the datasets rarely exceeded 300 points and
computational times were extremely small. However,
some optical CMMs are capable of producing sig-
nificant quantities of measurements in a single pass,
which leads to longer computational times during the
interpolation. The points of contact were chosen
such that they formed a uniform mesh on the surface
of the plates. The CMM thus traced a zig-zag pattern
at a fast pace when taking measurements. Different
densities of mesh were used for the same plates in
order to compare the accuracy of the results on dif-
ferent meshes. In this study, uniform meshes were
chosen in order to maximize the surface information
on the whole plate. However, other good choices of
contact-point sampling exist. Some of these involve
the use of low-discrepancy sequences used in quasi-
Monte Carlo methods. In brief, the idea behind using
these low-discrepancy sequences is to obtain a dis-
crete sampling such that evaluation of the volume
delimited by the surface of interest can be controlled
and obtained with a limited number of measure-
ments. The main interest is to be able to extract the
maximum amount of information about the shape of
the surface with the minimum coordinate evalua-
tions possible. Thus, if the surface of interest is suf-
ficiently smooth, low-discrepancy sequences provide
excellent sampling schemes.

4.2 Results and discussion

A test run was made on plate 2–2 with a total of 293
measurements. The parameter s of the multi-quadric
kernel and the trade-off parameter of the optimiza-

tion problems were tuned until the residuals «i were
small enough and deemed to be random and uncor-
related. Results of the non-linear regressions can be
seen in Fig. 1 where the deviation surface has the
shape of a saddle.

Note that all the plates that were inspected have
similar deviation surfaces. These surfaces are some-
how saddle-shaped with the ‘valley’ part oriented
along the direction of the cutter pass. More tests on
differently manufactured plates will confirm if this is
a general behaviour or if this is an artifact produced
by the particular machining conditions. If the shape
is found to be general, then it will be a precious hint
for inspecting plates with optimized meshes since, on
a saddle, the extrema are located on the sides. On
seven plates, a set of four plates was inspected with
different meshes. Using the formulations of section 2,
the estimates dþ 2ca, with a¼ 0.01, of the variations
of the tested plates are shown in Table 1.

The variation spreads for plates 1–4 and 2–3 are
consistent with the visual aspect of the plates. Their
surfaces appeared to be better finished and hence
their flatness values reflected the same. Their varia-
tion spreads are about 2.4 times bigger than the
accuracy of the probe. At this scale the errors are not
negligible with regard to the variations of the devia-
tion surface, and they can be easily witnessed on the
representative graphs (see Fig. 2).

Nevertheless, the errors at such scales represent
more random perturbations than real deformations
on the surface of the plates and the choice of kernel
shows some robustness to these perturbations. Thus,
realistic and reliable deviation surfaces can be
obtained even at scales a few times more than the
probe accuracy. Different meshes were also tested on
the same plates in order to assess the accuracy of the
regression model. The tests performed on plate 1–3
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Fig. 1 Interpolated nominal plane of plate 2–2 (left) and interpolated deviation surface of plate 2–2
(right).
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are summarized in Table 2, which indicates the esti-
mated variation spread according to the number of
points in the mesh.

No significant effects were found between the
density of the mesh and the estimated variation
spreads for the four tested plates. All the meshes had
similar estimated variation spreads whatever the
number of points (tests were carried out with 36
points or more). Thus, if this behaviour is found to be
general, relatively small uniform meshes could be
used for flatness inspection since they reduce time-
induced errors during the measurements. Finally, in
order to test the robustness to perturbations of this
choice of kernel, some measurements were taken
on a 7.62 cm · 7.62 cm portion of an optical flat
(ø12.7 cm Lapmaster) on which the accuracy is cer-
tified to one tenth light band. This accuracy is much
higher than the probe accuracy of the CMM used in
this study (9mm on the position of a particular point
along each axis) and therefore deviations from the
nominal plane numerically obtained by this method
are only artifacts and not real deviations. If this
choice is robust, then the deviation surface should be
a plane passing by the coordinate origin and parallel
to the canonical xOy plane. This deviation surface
(reproduced in Fig. 3) is at first sight completely flat
and inside a cloud of noisy measurements. This test
confirms the relative immunity of this choice to
errors caused by chance variations.

5 CONCLUSIONS

This work successfully derived simplified QP for-
mulations using kernel methods for non-linear
regression problems. These extremely simple QP
problems give general symbolic solutions that can be
solved efficiently with very classic numerical techni-
ques. Furthermore, it has been shown that this
regression technique can be used to estimate effi-
ciently the flatness of face-milled plates. Preliminary
results show that, despite the fact that the plates had
different manufacturing specifications, the deviation
surfaces are usually saddle-shaped. This observation
advocates the use of samplings that judiciously
choose the points of measurements as close as pos-
sible to the sides of the plates for maxima determi-
nation instead of the interior; the minima are more
likely to be found in the central region. Uniform
sampling with a limited number of initial points of
measurements are reasonable. More points may be
chosen with a refined search within each of these
regions. The plates tested also showed the same
amplitude of errors (3.81mm) for both small uniform
samplings (36 points) and large uniform samplings

Table 1 Variation spreads of the plates

Plate ref. Number of points Variation spread (mm)

1–3 348 57.9 –3.8
1–4 81 18.3 –3.8
2–2 293 166.9– 3.8
2–3 64 19.3 –3.8
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Fig. 2 Interpolated deviation surface of plate 2–3

Table 2 Variation spread versus number of
points in the mesh

Number of points Variation spread (mm)

36 58.7– 3.8
64 61.2– 3.8
81 56.4– 3.8

138 61.0– 3.8
174 60.2– 3.8
202 61.7– 3.8
219 58.4– 3.8
283 58.4– 3.8
348 57.9– 3.8
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Fig. 3 Interpolated deviation surface of an optical flat
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(up to 348 points). Ultimately, adaptive sampling is
the overall objective of this research project and it
can be concluded that preliminary results on these
sampling schemes give much encouragement. The
successful test on an optical flat has shown that the
chosen approach can be deemed relatively noise-
tolerant.
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APPENDIX

Quadratic programming formulation

Let k be a kernel and suppose that f belongs to a
reproducing kernel hilbert space (RKHS) F with k as
the reproducing kernel. From the reproducing prop-
erty of a RKHS, for every i2 [1, ‘], f(xi)¼hk(·, xi),f i.
Let K be the ‘ · ‘ Gram matrix K made of all the dot
products hk(·, xi), k(·, xj)i¼ k(xi, xj) for every i and j
in [1, ‘]. The set of constraints for the regression
function f is f(xi)þ b� yi¼ ji for all i2 [1, ‘], with

f ðxiÞ ¼ kð�; xiÞ; fh i ¼ P‘
j¼1 ajKij and b 2 R. In the

resulting mathematical programming problem, b,
ajs, and jis are variables and yi and Kij are given.
The actual interpolating function then becomes
~f ¼ f þ b ¼ P‘

i¼1 aikð�; xiÞ þ b.

For a probability p2 [0,1] , it is shown [12] that the

generalization error of ~f is bounded with probability

p by 2aTKa½trðKÞ�1=2=‘þ 2jbj= ffiffi
‘

p
. Therefore, mini-

mizing the empirical error and the generalization
error while keeping the regression constraints in
check is accomplished by the QP problem

min
ða;j;bÞ2R2‘þ1

aTaþ b2 þ CjTj : Kaþ b1� y ¼ j
� �

;

ð1Þ
where y 2 R‘ is a vector made of all yi for i2 [1, ‘] and
1 2 R‘ is a vector made of ones. This is a form of
Tikhonov regularization whose solution is given by
solving the linear system ðK2 þ I‘=C þ 1‘1

T
‘ Þd ¼ y

[17]. Optimal a and b are derived from the solution d
by a¼Kd and b ¼ 1T

‘ d.
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