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Abstract 

Presently, the Signal-to-Noise-Ratio (SNR) measurement is used to determine the 

presence of a weather signal for Weather Surveillance Radar – 1988 Doppler (WSR-

88D). Growing popularity of polarimetric radars prompts the need for improved signal 

detection scheme. Namely, the ongoing upgrade of the WSR-88D network to dual 

polarization results in a 3 dB reduction of the SNR per channel because the existing 

transmitter power is split between horizontal (H) and vertical (V) channels. Therefore, the 

radar sensitivity is degraded and many valid weather signals may be discarded if the 

current censoring scheme is retained. In this work, statistical techniques of mitigating the 

impact of the 3 dB SNR loss with the goal of improving data censoring for the dual-

polarization system are examined. First, the performance and implementation of a 

classical likelihood-ratio method is investigated. It is concluded that such a method is not 

practical for operational systems due to insufficient processing capability of the signal 

processor. With the system constraint in mind, several efficient methods based on the 

signal coherency in sample-time and across channels, such as power and autocorrelation 

measurements in H and V channels, as well as the cross-correlation of signals from the H 

and V channels, are proposed. Statistical analyses of various combinations of these 

variables are performed using Monte Carlo simulations. The performance is further 

demonstrated and verified using time series data collected by the research polarimetric 

radar (KOUN), operated by the National Severe Storms Laboratory. Both the statistical 

analysis and the performance comparisons on time series imply that the novel approach 

has the potential to significantly improve the signal detection on dual-polarization 

weather radars; thus mitigating the impact of the 3 dB SNR loss in the WSR-88D radars.
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1. Introduction 

 Pulsed-Doppler radars provide the capability to remotely scan weather phenomena 

which has paramount importance in advancing our understanding of thunderstorms. 

Networks of such radars are used to provide accurate weather forecast and early warnings 

of impending severe weather, as well as to improve aviation safety. A recent 

advancement in weather radar technology is the addition of polarimetric capability. 

Unlike single polarization radar, a polarimetric radar typically transmits radio waves with 

both horizontal (H) and vertical (V) polarizations and is also termed as dual-polarization 

radar. Such arrangement provides additional information which yields an increase in the 

accuracy of rainfall estimation, precipitation classification, and weather hazard 

detection, as shown by the JPOLE experiment (Schuur et al. 2003). An overview of 

polarimetric Doppler weather radar as well as the estimation of spectral moments and 

polarimetric variables is given in the following section. 

1.1 Polarimetric Doppler Weather Radar 

A Doppler radar generates a sequence of high-energy pulses, creating a propagating 

electromagnetic field, while receiving echoes from scatterers (e.g., hydrometeors such as 

raindrops, snow, hail etc.) in between pulse transmissions. The electric field at scatterers’ 

location is expressed as 

E r,θ,φ, t( )= A(θ,φ)
r

exp j2π f t −
r
c

⎛
⎝⎜

⎞
⎠⎟
+ jψ T

⎡

⎣
⎢

⎤

⎦
⎥ ,     (1.1) 

where A depends on angles θ and φ which specify azimuth and elevation angles, with 

respect to the radiation source. Distance from the radar is given by r, and ψT is an 
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unknown but constant transmitter phase. Constant c is the speed of light (i.e., 3×108  

m s-1) and f is the radar frequency. 

Electromagnetic pulses of duration τ are transmitted into space at a predetermined 

time interval, termed pulse repetition time (PRT) and denoted by T. Microwaves have 

wavelengths between 10-3 and 10-1 m and they have the unique ability to penetrate clouds 

and rain (which is not possible at higher frequencies). Therefore, the weather radar carrier 

frequency (i.e., f) used to modulate the transmitted pulses is in the microwave frequency 

band. A simplified block diagram showing the components of the NEXRAD dual-pol 

testbed (KOUN WSR-88D) located in Norman, OK is given in Figure 1.1. The stabilized 

local oscillator (STALO) generates a continuous sinusoidal signal of high spectral purity. 

This signal is then combined with the IF (intermediate frequency) signal from the 

“COHO” (coherent oscillator) to produce the carrier frequency. The pulse modulator 

shapes this signal into pulses (turns it on and off).  The klystron then amplifies the shaped 

signal to produce a high-power electromagnetic pulse. This pulse is then split into two 

halves by the power splitter for transmission in each of the two polarizations. Echoes 

backscattered by weather targets are received by the antenna in both polarization planes 

and converted into electrical signals. After passing through the mixer, H and V signals 

are downconverted to intermediate frequency (IF). Each component is then amplified and 

passed through a bandpass filter. At this point, analog signals are digitized by A/D 

converters and turned into video signals by a digital synchronous detector. This removes 

the IF component, resulting in in-phase (I) and quadrature (Q) components, in each of the 

H and V channels, that preserve the amplitude and the phase of the signal. These digital 
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video signals are subsequently passed on to a signal processing subsystem for estimating 

Doppler spectral moments and polarimetric variables. 

 
Figure 1.1 Polarimetric Doppler weather radar block diagram. 

1.2 Weather Signal Characteristics 

Weather radars survey vast areas of space. The central position of a resolution volume 

in space is determined by range r, azimuth φ0, and elevation θ0, with respect to the 

radiation source. The size and shape of a radar resolution volume is determined in range 

by a range-weighting function (given by the convolution of the transmitted pulse 
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envelope and the receiver impulse response), and by the beamwidth θ1 in azimuth and 

elevation (Figure 1.2), where the beamwidth is defined as the angle within which the 

microwave radiation is at least one-half its peak intensity. Note that the pulse depth in 

range is cτ/2 (where τ is the pulse width and division by two is applied because of the 

round trip the pulsed wave traveled). The distance between the antenna and the resolution 

volume is determined by the time delay between the transmitted pulse and the echo 

scattered from the weather targets (r = cτs/2, where τs, also called the range time, is the 

time measured from the beginning of the transmitted pulse to the moment the reflected 

signal is received; division by two is applied because of the round trip the pulsed wave 

travels). 

λ 

θ1 θ0 

φ0 

"RESOLUTION VOLUME"

r
2
τc

x

y

z

 
Figure 1.2 Resolution volume description. 

The weather signal, at any given time, is a composite of individual echoes from a 

large number of scatterers within the radar resolution volume. Echoes from different 

scatterers interfere with each other to produce a complex voltage sample V(τs) = I(τs) + 
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jQ(τs). Because the location and size of scatterers vary randomly in time, the amplitude 

and phase of the resulting signal V(τs) are random variables. Because the number of 

scatterers in each resolution volume is large and all are independent (while none being 

dominant), it is assumed the central limit theorem can be applied to the samples of a 

weather signal. As a result, both the in-phase component I(τs) and the quadrature phase 

component Q(τs) have Gaussian probability density functions (pdf) with variance σ2 and 

zero mean (Zrnić 1975). 

A set of signals, originating from the consecutive pulse transmissions, spaced in time 

by T, and having the same relative time delay measured from the pulse rising edge (i.e., 

having the same location in range) are referred to as being in the same sample-time 

domain. These samples exhibit correlation along sample-time provided that the pulse 

transmission rate is sufficiently high (as is the case for Doppler measurements). The 

sample-time correlation is described by (Doviak and Zrnić 1993): 

( )
2

48 vmT vmTj
R mT Se e

πσ π
λ λ

⎛ ⎞− −⎜ ⎟
⎝ ⎠= ,         (1.2) 

where m is the autocorrelation lag, and λ is the wavelength of the transmitted 

electromagnetic wave. S is the average signal power, v is the mean radial velocity, and σv 

is the spectrum width, which are the three fundamental radar measurements directly 

related to meteorological phenomena. 

1.3 Overview of Spectral Moments and Polarimetric Variables  

A polarimetric weather radar, which simultaneously transmits in the H and V 

channels, can measure the three spectral moments from each channel and three 

polarimetric variables. The spectral moments are power, mean radial velocity, and 
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spectrum width. The polarimetric variables are differential reflectivity, cross-correlation 

coefficient, and specific differential phase. A description of these variables is presented 

below. 

Doppler spectral moments are: 

1. Signal power (S) or the zero moment. It is a measure of liquid water content or 

precipitation rate in the resolution volume. 

2. Mean Doppler velocity ( v ) or the first moment. It is related to components of air-

motion toward or away from the radar, within the resolution volume. Radial 

velocity of the phenomena in each resolution volume is measured using the 

Doppler effect. This is a phenomenon that occurs if a wave of frequency f is 

reflected by a moving object having a velocity component vr in the direction 

toward the radar. The corresponding frequency shift (of the returned wave) is fd = 

-2vr/λ. 

3. Spectrum width (σv), which is the square root of the second moment. This is a 

measure of velocity dispersion within the resolution volume. 

Polarimetric variables are: 

1. Differential reflectivity (ZDR) or the ratio of the reflected horizontal and vertical 

power returns. It is a good indicator of drop shape, which in turn is a good 

estimate of average drop size. 

2. Magnitude of the cross-correlation coefficient (ρhv), which gives a statistical 

correlation between the reflected horizontal and vertical power returns. It is a 

good indicator of regions where there is a mixture of precipitation types, such as 

rain and snow. 
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3. Specific Differential Phase (φdp), which is a measure of the phase difference 

between the returned horizontal and vertical pulses. This phase difference is 

caused by the difference in the number of wave cycles (or wavelengths) along the 

propagation path for horizontal and vertically polarized waves. It should not be 

confused with the Doppler frequency shift, which is caused by the motion of the 

cloud and precipitation particles. Unlike the differential reflectivity and cross-

correlation coefficient, which are all dependent on reflected power, the specific 

differential phase is a "propagation effect." It is a very good estimator of rainfall 

rate. 

A sample from the m-th radial of data, taken at time instance τs, is denoted by V(m,τs). 

Henceforth, a radial is defined as a set of samples spaced in range-time by τs and each 

originating from the same pulse transmission. Note that two samples having the same 

range-time τs, but different subscripts m1 and m2, are from the same range location (i.e., 

belong to the same resolution volume located at a distance rs = cτs/2), but are spaced in 

time by (m2-m1)T. 

Estimation of the spectral moments is described next. 

1. Total power in each channel is estimated using the following formula (Doviak and 

Zrnić 1993) 

( ) ( ) ( ) ( )
1 12 2

0 0

1 1ˆ ˆ,     and     ,
M M

h s h s v s v s
m m

P V m P V m
M M

τ τ τ τ
− −

= =

= =∑ ∑ ,  (1.3) 

where M is the number of samples. Subscripts h and v denote the horizontal and 

vertical channels, respectively. Note that as the number of samples becomes large 

the estimated power asymptotically approaches S+N, where S is the signal power 
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and N is the receiver noise power. The signal power in each channel is estimated 

as: 

( ) ( ) ( ) ( )ˆ ˆˆ ˆ        and            h s h s h v s v s vS P N S P Nτ τ τ τ= − = − ,   (1.4) 

where Nh and Nv are the noise powers in the horizontal and the vertical channels, 

respectively. 

2. Because the radio waves in both H and V polarizations are transmitted 

simultaneously, the velocity can be found from the argument of the 

autocorrelation at lag 1 along sample-time either in the horizontal or the vertical 

channel 

( ) ( ) ( )

( ) ( ) ( )

2

0
2

0

1ˆ , , 1,
1

1ˆ , , 1,
1

M

h s h s h s
m
M

v s v s v s
m

R T V m V m
M

R T V m V m
M

τ τ τ

τ τ τ

−
∗

=

−
∗

=

= +
−

= +
−

∑

∑
,     (1.5) 

where V(m,τs) and V(m+1,τs) are two successive samples taken at the same range 

but separated in time by T. Note that the unbiased estimate of the autocorrelation 

is used. Then, the mean velocity is given by (Doviak and Zrnić 1993) 

( ) ( ) ( ) ( )ˆ ˆˆ ˆarg ,     and   arg ,
4 4h s h s v s v sv R T v R T

T T
λ λτ τ τ τ
π π

⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦ ,  (1.6) 

where λ is the wavelength of the transmitted signal. Additionally, 

because ( ){ } ( ){ }ˆ ˆh s v sE v E vτ τ= , the velocity estimate can be improved by 

combining the two autocorrelation estimates as (Melnikov 2004): 

( ) ( ) ( )ˆ ˆˆ arg , ,
4s h s v sv R T R T

T
λτ τ τ
π

⎡ ⎤= − +⎣ ⎦ .      (1.7) 
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3. Spectrum width is obtained from measurements in H or V channels (Doviak and 

Zrnić 1993): 

( ) ( )
( )

( )
( )

ˆ ˆ
ˆ ln sgn lnˆ ˆ2 2 , ,

p s p s
v s

p s p s

S S
T R T R T

τ τλσ τ
π τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟=
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

,   (1.8) 

where subscript p is either h for the horizontal or v for the vertical channel. 

Usually, σv measurement from H channel is better due to the oblateness of 

hydrometeors, which results in more power returned in the horizontal 

polarization. 

Polarimetric variable estimates are obtained as 

a) Differential reflectivity 

( ) ( )
( )10

ˆ
ˆ 10log ˆ

h s
DR s

v s

S
Z

S
τ

τ
τ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
.        (1.9) 

b) Cross-correlation coefficient is derived from the cross-correlation estimate 

between signals in H and V channels 

( ) ( ) ( )
1

0

1ˆ 0, , ,
M

hv s h s v s
m

R V m V m
M

τ τ τ
−

∗

=

= ∑       (1.10) 

as 

( )
( ) ( )

ˆ (0, )
ˆ

ˆ ˆ
hv s

hv s

h s v s

R

S S

τ
ρ τ

τ τ
= .        (1.11) 

c) Specific differential phase is 

( ) ( )ˆ ˆarg 0,dp s hv sRφ τ τ⎡ ⎤= ⎣ ⎦ .       (1.12) 

This dissertation is organized as follows. First, the problem is defined in Chapter 2. 

The classical approach is analyzed in Chapter 3. Further, various approaches that take 

advantage of the signal coherency are compared using simulations and the method 
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producing the best result is identified in Chapter 4. Subsequently, the tools that allow for 

extended analysis and practical use of this method are developed in Chapter 5. 

Performance on real data is assessed in Chapter 6. Finally, the procedure for the 

operational implementation of the proposed method is developed in Chapter 7. 
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2. Problem Statement 

 It is customary practice to display weather radar data after applying thresholds on 

signal-to-noise ratio (SNR) and/or the magnitude of autocorrelation coefficient at lag one 

(Keeler 1990, SIGMET 2006). Such thresholds have also been used for censoring 

questionable (i.e., low SNR) spectral moments. Proper data censoring is essential to 

operational weather radars such as the Weather Surveillance Radar – 1988 Doppler 

(WSR-88D) (Crum et al. 1993) to help forecasters’ interpretation of spectral moments 

(reflectivity, mean radial velocity, and spectrum width) and to minimize detrimental 

effects on automated feature recognition and hazard detection algorithms (e.g., Stumpf et 

al. 1998). Presently, spectral moments at each range location are censored (i.e., labeled 

not useful) if the SNR is insufficient or the echoes from the subsequent trips are overlaid. 

For example, on the WSR-88D network the default SNR threshold is 2 dB for reflectivity 

and 3.5 dB for velocity estimates. 

Prior to the development of Doppler radar, the censoring rule was a simple threshold 

test of the estimated SNR. Thus, basic concepts of the detection theory, well developed 

for non-Doppler radars, can be directly applied to the weather radar signals if only SNR 

is used for censoring. The probability of false alarms and detection for a square-law 

detector and point targets with fluctuating power (i.e., sinusoid signals embedded in 

noise) was derived by Swerling (1954) for fully coherent and fully incoherent signal 

within the dwell time. In weather radars one deals with innumerable targets (i.e., 

distributed scatterers) whose radar cross section fluctuates about a mean value as the 

scatterers trace air motion. When scatterers are illuminated by an electromagnetic wave, 

each produces a sinusoid signal. The superposition of these signals is received and 
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sampled by weather radar producing samples that fluctuate both in amplitude and phase. 

These samples of weather echoes are partially-coherent within the dwell time, and by 

processing these one obtains estimates of power. 

Introduction of Doppler measurements to weather radar brought an additional 

variable, signal coherency, which is also suitable for censoring. The coherency, expressed 

either as the Doppler spectrum width or the autocorrelation coefficient at lag one, was 

and is still used to censor data prior to display of spectral moment fields and/or dual 

Doppler analysis (Keeler 1990, SIGMET 2006). Nonetheless, no systematic attempt to 

produce an optimum detection scheme based on both the coherency and SNR has been 

made. Classical detection theory provides the formalism for such endeavor which, in its 

essence, consists of maximizing the probability of detection while maintaining the 

probability of false detections (i.e., false alarms) at or below an acceptable level (Neyman 

and Pearson 1933). Furthermore, dual-polarization has added new measurements that can 

be used for the censoring of spectral moments and polarimetric variables (the number of 

signal parameters pertinent for detection more than doubles). There are two SNRs, two 

autocorrelation values, and the cross-correlation of the polarization signals (i.e., cross-

coherency). In this work, signal detection for such dual-polarization radars is explored. 

Prime motivation for this work is the forthcoming upgrade of the network of WSR-

88Ds (i.e., NEXRAD systems) to include polarimetric capability starting in about 2009. 

Simultaneous transmission and reception of horizontally and vertically polarized waves 

was accepted for implementation (Doviak et al. 2000). Given the same transmitted 

power, the average received power per channel will be halved (i.e., 3 dB lower) 

compared to the current single-polarization system. Even though additional SNR may be 



 

 13

gained by upgrading to better low-noise amplifiers and/or improving the system losses, it 

is unlikely that the 3 dB loss will be fully recovered. The aforementioned SNR loss has 

two effects on the non-censored spectral moments. First, more data will fall below the 

processing thresholds and some valid weather signals will be lost. Second, the errors of 

estimates will inevitably increase. The impact of these effects on operational WSR-88D 

products and algorithms (using the legacy detector based on a simple threshold test of the 

estimated SNR) were evaluated by Scharfenberg et al. (2005) who have shown that the 3 

dB SNR loss leads to an average drop of 5.5% in detection of weather features. 

Moreover, in case of “clear-air” events the loss increases to 8.4%. Most of the loss occurs 

in the areas of low reflectivity such as near the tops of convection and along the edges of 

a weather system (Scharfenberg et al. 2005). This behooves us to develop a new and 

practical censoring algorithm which yields an improved detection, thus mitigating the 

adverse effects caused by the SNR decrease. 

To put the 3 dB SNR loss in a more illustrative context, let us consider a well-known 

fact that the power of electromagnetic wave decreases as the wave propagates through 

media (known as propagation attenuation). Consequently, if there were two identical 

phenomena located at different distances from radar, the closer one would have stronger 

radar return than the one farther away. Consider a radar volume, filled up with scatterers, 

at a radial distance r0 from the radar. Let us assume that for a single-pol radar, like the 

current WSR-88D, the returned power is somewhere between 0 and 3 dB higher than the 

threshold (THR) used for signal censoring. Evidently, after the dual-pol upgrade, the 

returned power from the same phenomena will be decreased by 3 dB (i.e., between -3 and 

0 dB relative to the THR). If the same censoring scheme is used, the weather signal will 
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be discarded due to insufficient SNR. In view of the propagation attenuation, it is of 

interest to determine at which maximum range such phenomenon needs to be located so it 

is detected after the dual-pol upgrade. To answer this, we examine the weather radar 

equation (eq. 4.14 in Doviak and Zrnić 1993). This equation shows that the returned 

power is inversely proportional to the distance square between the phenomenon and the 

radar as: 

( ) 2

CP r
r

= ,           (2.1) 

where C stands for all other terms in the weather radar equation. Let A denote the power 

received in a single-pol system relative to the power threshold THR, and A ∈ [0, 3] dB 

(since the returned power of such signal falls below THR after the transmitted power is 

halved). After the dual-pol upgrade, the received power reduces to A-3 dB. In other 

words, additional 3-A dB (i.e., A-3+x = 0 ⇒ x = 3-A) of signal power, on the average, is 

needed for the power estimate to be above the censoring threshold (assuming no 

atmospheric attenuation). Hence we write: 

3 3
10 20

dual single2 2
dual single

10 10
A AC C r r

r r

− −

= ⇒ = ,        (2.2) 

where rdual is the farthest distance, from the radar, the phenomenon can to be at in order to 

be detected after the dual-pol upgrade. This is graphically depicted in Figure 2.1. 

Assuming the power A is uniformly distributed in the interval 0 to 3 dB above THR, the 

expected value of the ratio rdual/rsingle is calculated as: 

33 33 3
dual 20 20

single 0 0 0

1 1 3 2010 exp ln10 10 0.84558
3 3 20 3ln10

A Ar AE dA dA
r

− −⎧ ⎫ −⎪ ⎪ ⎛ ⎞= = = =⎨ ⎬ ⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∫ ∫ . (2.3) 
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Let us assume a resolution volume, located at 100 km from the radar, filled with 

scaterrers producing the returned power that falls into the bracket [THR, THR+3] dB, 

when illuminated by a single-pol WSR-88D. Formula (2.3) implies that the same group 

of scaterrers needs to be located at a resolution volume 84.5 km away form the dual-pol 

WSR-88D in order to be detected (if the current censoring scheme is used). After these 

considerations it becomes clear that the 3 dB SNR loss has potentially significant impact 

on the data and it becomes imperative to develop an alternative censoring algorithm that 

mitigates these adverse effects. 
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Figure 2.1 Ratio of distances in dual and single-pol modes versus the relative echo 

power, where r0 is the distance of the phenomena in a single-pole, and r1 is the distance at 
which the same phenomena would have to appear in a dual-pol setting in order to be 

detected given the power-based censoring scheme. 
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3. Classical Methods for Hypotheses Testing 

 One of common approaches applicable to the problem of detection is the likelihood-

ratio test. A likelihood-ratio test is a statistical test in which the ratio is computed 

between the likelihood functions for the null hypothesis and the alternative hypotheses 

(Neyman and Pearson 1933). This ratio is subsequently compared against a threshold to 

decide which of the two hypotheses should be accepted. The threshold value is typically 

selected to satisfy some type of constraint, such as the probability of rejecting the 

null/alternative hypothesis when the null/alternative hypothesis is true. The general setup 

is as follows: 

(1) Given n random variables yi (i∈[1,…,n]), let pθ(y1,…,yn) be their joint probability 

density function (pdf) where θ = [θ1,…,θk]T ∈ Θ is a vector of unknown 

parameters in the distribution. Let us write one realization chosen from the 

population distributed as pθ(y1,…,yn) as the vector y = [ŷ1,…,ŷn]T which is defined 

as the vector of observations. 

(2) Let Ω be a subset of Θ. Then we wish to define a test to determine whether y 

came from a distribution with parameters belonging to Ω or to Θ\Ω (i.e., ΩC, the 

complement of Ω). The hypothesis that y has a distribution function pθ(y1,…,yn) 

with parameters belonging to Ω is denoted by H0, while the alternative hypothesis 

that y has the distribution function pθ(y1,…,yn) with parameters belonging to Θ\Ω 

is denoted by H1. 

(3) The goal is to find the test which will maximize the probability of accepting H0, 

given that θ∈Ω (i.e., P(accept H0|θ∈Ω)), subject to the condition that the 
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probability of rejecting H1, given that θ∈Θ\Ω, equals ε (i.e., P(reject H1|θ∈Θ\Ω) 

= ε). 

The likelihood-ratio test criterion for hypotheses testing which satisfies the above is given 

by Neyman and Pearson (1933). They suggest to find two sets of parameters θ0
’ and θ1

’ 

belonging to Ω and Θ\Ω, respectively. These parameters should satisfy: 

( ) ( )
( ) ( )

1 2 1 2

1 2 1 1 2

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , \
n n

n n

p y y y p y y y

p y y y p y y y
θ θ

θ θ

′= ≥ ∈Ω

′= ≥ ∈Θ Ω

0θ θ θ

θ θ θ

… …

… …
     (3.1) 

The decision rule is then: 

( )
( ) ( )1 2

1 2

ˆ ˆ ˆ, , ,
,

ˆ ˆ ˆ, , ,
n

n

p y y y
THR

p y y y
θ

θ

′=
′ ′≥

′=
0

0 1
1

θ θ
θ θ

θ θ
…
…

,        (3.2) 

where the threshold THR(θ0
’, θ1

’) is chosen so it satisfies the condition P(reject 

H1|θ∈Θ\Ω) = ε. In short we can write: 

( )
( ) ( )0

1

1 2

\ 1 2

ˆ ˆ ˆsup , , ,
,

ˆ ˆ ˆsup , , , \
n

n

p y y y
THR

p y y y
θ

θ

∈Ω

∈Θ Ω

∈Ω
≥

∈Θ Ω
0

1

θ 0
0 1

θ 1

θ
θ θ

θ
…

…
.      (3.3) 

Notice that the expressions in the numerator and the denominator are the maximum 

likelihood estimators (MLE) of θ over Ω and Θ\Ω, respectively. 

For the detection of weather radar signals, it is defined that the hypothesis H0 is true if 

samples from observations consist of signal plus noise and H1 is true if only noise is 

present. Because the noise is assumed to be additive white Gaussian with zero mean, the 

maximum likelihood-ratio becomes: 

( )
( ) ( )1 2

1 2

sup , , ,
, , ,

S N S N

N

n

n

p x x x
THR

p x x x
θ

θ

+ +∈Θ ≥S+Nθ
S+Nθ

…
…

,       (3.4) 
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where ΘS+N is the set of all possible distribution parameters values when signal and noise 

are present. To apply the likelihood-ratio principle we must know the joint pdf of the 

elements in the vector of complex Gaussian random variables V = [Vh(0,τs), …, Vh(M-

1,τs), Vv(0,τs),…, Vv(M-1,τs)]T, where each Vh(m,τs), and Vv(m,τs) are obtained by 

sampling voltage echoes at a range location τs
(1) and sample-time mT (T is the Pulse 

Repetition Time or PRT), in horizontal  (subscript h) and vertical polarization (subscript 

v) channels.  

The joint pdf is (Miller 1969): 

( ) ( )2 1 1det expM Hpdf π − − −= −V C V C V ,       (3.5) 

where C is the covariance matrix of size 2M×2M defined as (superscript H denotes 

conjugate transpose): 

{ }
{ } { }
{ } { }

E E
E E

E E

⎡ ⎤⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎢ ⎥⎡ ⎤= = = =⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎣ ⎦

H H
h h h vh h vhH H H

h v H H
v hv vv h v v

V V V VV C C
C VV V V

V C CV V V V
. (3.6) 

where Vh = [Vh(0), …,Vh(M-1)]T and Vv = [Vv(0),…,Vv(M-1)]T. In case of pure noise C is: 

    

C =

Nh 0 0 0 0
0 0
0 Nh 0 0
0 0 Nv 0
0 0 0
0 0 0 Nv

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.        (3.7) 

where Nh and Nv are the noise powers in horizontal and vertical channels, respectively. 

The pdf becomes: 

                                                 
1 For brevity the designation τs is dropped in further text. 
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( ) ( ) ( ) ( )
1 12 22

0 0

1 1exp
M MM

h v h v
m mh v

pdf N N V m V m
N N

π
− −−

= =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑NV    (3.8) 

In the case of signal plus noise we have: 

( ) ( )
( ) ( )

( ) ( )

1 1
1 2

1 2

h h h h

h h h h

h h h h

S N R R M
R S N R M

R M R M S N

∗ ∗

∗

⎡ ⎤+ −
⎢ ⎥+ −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− − +⎢ ⎥⎣ ⎦

hC ,      (3.9) 

where ( ) ( )h hR m S mρ=  and ( ) ( ) ( )2exp 2 expv a am m v j vm vρ πσ π⎡ ⎤= − −⎣ ⎦ . Here, Sh is 

the signal power in horizontal channel, v is the mean radial velocity, va is the maximum 

unambiguous velocity and σv is the spectrum width. Obviously, Cv is obtained from Ch 

by replacing the subscript h with v. Further, 

( ) ( )
( ) ( )

( ) ( )

1 1 1
1 1 2

1 2 1

dpj
h v hv

M
M

S S e

M M

φ

ρ ρ
ρ ρ

ρ

ρ ρ

∗ ∗

∗

⎡ ⎤−
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

hvC ,     (3.10) 

where ρhv is the cross-correlation coefficient (Sachidananda and Zrnić 1985) and φdp the 

differential phase (Sachidananda and Zrnić 1986). Similarly: 

( ) ( )
( ) ( )

( ) ( )

1 1 1
1 1 2

1 2 1

dpj
h v hv

M
M

S S e

M M

φ

ρ ρ
ρ ρ

ρ

ρ ρ

∗ ∗

∗
−

⎡ ⎤−
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⎢ ⎥

− −⎢ ⎥⎣ ⎦

vhC .    (3.11) 

Note that the only difference between Chv and Cvh is in the sign of the differential phase. 

Now the likelihood-ratio function is obtained as followed: 

( )
( ) ( ) ( )

2 1 1
, , , , ,

1 12 22

0 0

sup det exp

1 1exp

h v dr hv dp

M H
SNR v Z

M MM

h v h v
m mh v

THR
N N V m V m

N N

σ ρ φ π

π

− − −

− −−

= =

−
≥

⎛ ⎞
− −⎜ ⎟
⎝ ⎠

∑ ∑

C V C V
.    (3.12) 
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where SNRh is the signal-to-noise ratio estimated from the horizontal channel signals, and 

Zdr is the ratio of signal powers in horizontal and vertical channels (i.e., differential 

reflectivity ZDR = 10log10Zdr) (Seliga and Bringi 1976). Eq. (3.12) can be simplified to: 

( ) ( ) ( )1 1
1 12 2

, , , , ,
0 0

ln det
1 1 max

h v dr hv dp

H
M M

h v SNR v Z
m mh v

THRV m V m
N N σ ρ φ

− −
− −

= =

′−+ + ≥∑ ∑ C V C V ,(3.13) 

where THR’ = ln(THR/(NhNv)M). Unfortunately, the set of parameter values producing the 

maximum of the second term in (3.13) cannot be found analytically due to the complexity 

of the expression in the brackets (i.e., ln|detC-1|-VHC-1V). Alternatively, it can be found 

using a search technique by varying these six parameters (listed in the subscript of the 

second term) through a discrete list of predetermined values, and choosing the 

combination for which ln|detC-1|-VHC-1V has a maximum value. Note that by doing this, 

an actual maximum likelihood estimation of signal parameters is performed. Once this is 

done, the threshold THR’ must be determined so that: 

( ) ( )2 2
1 1

1 1

0 0

ln det only noise present
M M

h v H

m mh v

THR
V m V m

P
N N

ε
− −

− −

= =

′
⎛ ⎞
⎜ ⎟+ + − ≥ =
⎜ ⎟
⎝ ⎠
∑ ∑ C V C V .(3.14) 

In (3.14), ε denotes the probability of rejecting the hypothesis that only noise is present 

when this hypothesis is actually true (i.e., the probability of false signal detection). In 

weather radar applications it is desired that the probability of false detection is fairly 

small. In the remainder of the text, the probability of the false detection is referred to as 

the Probability of False Alarm (PFA). Next, we discuss the brute force search for the 

maximum likelihood solution. 

Assume that the list of predetermined values for each of the six parameters is of 

length Np (where subscript p denotes one of the six parameters and takes values of 
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1,…,6). Then the maximum of ln|detC-1|-VHC-1V in (3.13) is determined by evaluating all 

possible combinations of parameter values (i.e., through multiple trials). This requires a 

total of N1N2…N6 trials. Evidently, for larger values of Np more computations of  

ln|detC-1|-VHC-1V are needed. Alternatively, to decrease the computational intensity of 

the process, one could estimate the six parameters prior to detection (e.g., using sub-

optimum processing like autocovariance (Doviak and Zrnić 1993) for velocity and 

spectrum width), and attempt to locate the maximum by searching in the vicinity of these 

estimates. Note that in every trial, the matrix C in the expression (3.13) is calculated for 

predetermined (or nominal) values of parameters SNR(2), v, σv, ZDR, ρhv, and φdp, and the 

resulting likelihood-ratio is adjusted (tuned) for detection of a signal with exactly these 

parameter values. Hence, it detects such a signal with the highest possible Probability Of 

Detection (POD) subject to the constraint that PFA is less than or equal to ε  (as stated by 

the Neyman-Pearson lemma). But, if any parameter of the signal to be detected changes 

from the one the expression (3.13) is adjusted for, the POD will inevitably decline; for 

example, if the difference between the nominal velocity value (i.e., the one used to 

calculate the matrix C) and the mean velocity of input samples in V is not 0 m s-1, the 

likelihood-ratio test does not produce the highest possible POD. Consequently, the 

intensity (i.e., coarseness) of the search for the maximum of ln|detC-1|-VHC-1V depends 

on the sensitivity of the maximum likelihood (ML) detector (whose matrix C is 

calculated for nominal parameter values) to the change in the parameters of input samples 

in V. In addition, the amount of the variation in POD can be a function of the signal 

parameters (i.e., the amount of decline in POD may depend on the signal parameter type, 

                                                 
2 For brevity the subscript h is dropped from further text. By default the parameter SNR stands for SNR in 
horizontal channel. 



 

 22

as it departs from its nominal value). Therefore, the granularity/steps (i.e., spacing 

between each two consecutive values in the discrete list for each of the six signal 

parameters), with which we search through values of each parameter, ought to be set so 

that the changes in POD per step increment are about equal. The sensitivity of the ML 

expression to the variation in signal parameters is investigated using Monte Carlo 

simulations for the case where the detector is tuned to the following nominal signal 

parameters, SNR = 0.5 dB, v = 0 m s-1 (va = 8.9 m s-1), σv = 2 m s-1, ZDR = 2 dB, ρhv = 

0.96, φdp = 90 deg, and THR’ is chosen so that the PFA is 10-5 (i.e., ε = 10-5). 

Additionally, the performance of the likelihood-ratio test is plotted against that of the 

single-polarization system for the SNR threshold set to 2 dB above the noise level. In 

both cases the number of samples M is chosen to be 17. The 2 dB power threshold and M 

of 17 are used because these are the standard settings for the surveillance scan in the 

WSR-88D system. The results are shown in Figure 3.1. Notice that the PFA for the 

likelihood-ratio is 10-5 as opposed to the 1.1749×10-6 for the single-polarization system 

(Appendix A). The empirical criterion for choosing 10-5 for PFA is that it produces only 

3.6 false detections (on the average) in the Planar Position Indicator (PPI) of a weather 

field with 360*1000 = 360000 data points. In Figure 3.1 (a) the POD is directly 

proportional to the change in SNR difference. This is expected because the higher the 

SNR the stronger the signal power is, which makes it more discernible from noise. Figure 

3.1 (b) shows the POD behavior vs. the difference between the input samples velocity 

and the velocity for which the ML detector is adjusted for (i.e., nominal velocity). As 

expected, the local maximum occurs at 0 m s-1 difference. At the same time, notice that 

the POD declines rapidly as the velocity difference departs from 0 m s-1. Note that the 
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curve presented in Figure 3.1 (b) does not change regardless of the choice of the velocity 

to which the detector is tuned to. The reason is that the phase of the E{VHC-1V} depends 

on the difference between the input samples mean velocity and the nominal velocity. In 

Figure 3.1 (c) the spectrum width difference is varied from -1.5 to 4 m s-1 to show that the 

POD significantly deteriorates as the signal σv changes further from the value the ML 

detector is tuned to (i.e., 2 m s-1 in this case). Assessment of ZDR difference behavior in 

Figure 3.1 (d) reveals that the POD is inversely proportional to ZDR. Such behavior is 

logical because the higher ZDR indicates the lower SNR in V channel, which adversely 

affects the detection. The Figure 3.1 (e) indicates that in the case of weather signal, the 

variation in ρhv bears no significant impact on detection. Finally, in Figure 3.1 (f) the φdp 

difference is varied from -90 to 270 deg to show that the ML detector performance 

rapidly degrades as the input samples φdp departs from the value for which the detector is 

adjusted for. Similar to velocity, the phase of the E{VHC-1V} is influenced by the 

difference between the input samples differential phase and the φdp that the detector is 

tuned to (i.e., nominal φdp). Consequently, the curve in Figure 3.1 (f) remains the same 

regardless of the nominal φdp choice. Clearly, the assessment of the ML detector’s 

sensitivity to the variation in signal parameters verifies the need for multiple trials. Note 

that if the likelihood-ratio with the given PFA (i.e., 10-5) is used, the actual POD at and 

near the nominal parameter values improves compared to the POD produced by the 

power-threshold-based detector in single-polarization (despite the loss in SNR, but at the 

cost of higher PFA). In addition, when samples are selected from the population with 

nominal parameters values, the likelihood-ratio test achieves the maximum POD subject 

to the constraint that PFA is less than or equal to ε.. This is known as the venerable 
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Neyman-Pearson lemma and is stated as follows (within the framework given at the 

beginning of the chapter): 

Neyman-Pearson Lemma: Let us define the decision rule represented through 

function φ(x) as 
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,       (3.15) 

where φ takes value of one if we choose that samples belong to population with 

parameters θ0 and zero if the test outcome is θ = θ1. Then we can represent the PFA and 

the POD as: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1 1

0 0

PFA p d E x

POD p d E x

θ

θ

φ φ θ θ φ θ θ

φ φ θ θ φ θ θ

= = = =

= = = =

∫
∫

x x x

x x x
.    (3.16) 

Given the decision rule (3.15) with T(θ0, θ1) chosen to give PFA(φ)  = ε, there is no other 

decision rule φ’ such that PFA(φ’) ≤ ε  and POD(φ’) > POD(φ). 
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Figure 3.1 Assessment of the likelihood-ratio test sensitivity to variation in difference 
among the input samples parameters and those that the likelihood-ratio is tuned to. The 
likelihood-ratio is adjusted for SNRn = 0.5 dB, vn = 0 ms-1, σv

n = 2 ms-1, ZDR
n = 2 dB, 

ρhv
n = 0.96, and φdp

n = 90 deg. It is also compared to the single-polarization mode power 
detector. Likelihood-ratio PFA is 10-5 and the single-polarization PFA is 1.1749×10-6. 

The number of samples M is 17. 
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Apparently, the likelihood-ratio presents a quite appealing candidate for signal 

detection on the WSR-88Ds. The important aspect however, is the computational 

intensity of this scheme (exemplified by the need for multiple trials). Let us quantify the 

amount of computational load each trial puts on a processor in terms of GFLOPS (i.e., 

109 floating point operations per second) for the case of M = 17. We start by first 

analyzing the calculation of the first two terms in (3.14). Each sum requires 2M real 

multiplications and 2M-1 real additions. In total, it takes 4M real multiplications, 4M-1 

real additions and two divisions to calculate and add the first two terms. To calculate 

VHC-1 it takes (2M)2 complex multiplications and 2M(2M-1) complex additions. Taking 

that each complex multiplication requires 4 real multiplications and 2 additions we get 

16M2 real multiplications and 16M2-4M real additions. To get (VHC-1)V we note that the 

final result is always real, hence the complex part of the vector multiplication need not be 

calculated as it always amounts to zero. The total number of basic real computations is 

given in Table 3.1. 

 Additions No. Multiplications No. Divisions No. 

Current method 2M-1 2M 1 

Likelihood-ratio 16M2+4M-1 8M(2M+1) 2 

Table 3.1 Number of real computations as function of the number of samples M. 

We immediately notice that the likelihood-ratio, compared to the current method, 

requires (in the limit) a factor of 8M more additions and multiplications (with 

multiplications being more important as they require more processing time) for each trial. 

To put this in terms of GFLOPS we calculate the computational workload of the 

surveillance scan in VCP-11 (M = 17) per each trial as the ratio of the total number of the 
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required real operations versus the allowed processing time frame. To get the time frame 

allowed for processing we take the range resolution to be 250 m (e.g., the range 

resolution of the WSR-88D system), which can be written as a function of the speed of 

light c and the time between contiguous samples τR (i.e., cτR/2 = 250m). The processing 

time is then MτR. As a result, the computational workload is given by the following 

formula (based on the total number of basic computations): 

2 2

9

32 12 1 32 17 12 17 1 GFLOPS0.33364 trial2 250 10 17 500 10 3
M M

M c
+ + ∗ + ∗ +

= =
∗ ∗ ∗ ∗ ∗

.   (3.17) 

Current NEXRAD signal processor is based on the Sigmet RVP8 which features “Dual 

SMP Pentium processors easily upgradeable as faster processors become available” 

(RVP8 specifications). To be on the safe side, let us assume these two processors run at 4 

GHz each. Assuming the peak performance (1 FLOP per each cycle) this processor 

would deliver total of 8 GFLOPS of computing power, which would permit 24 trials to be 

performed. In reality, though, no system can sustain the processor peak performance 

continuously. In addition, it also must perform the operating system tasks, as well as to 

generate Doppler moments and polarimetric variables, which further tapers off 

performance. In addition, when M increases to 32 and 52 the expression (3.17) shows the 

workload to increase to about 0.6 and 1 GFLOPS per trial, respectively. We can readily 

see that the likelihood-ratio approach would be extremely demanding on computing 

resources to the point that its applicability would not be feasible. Consequently, we 

proceed by pursuing alternative (i.e., computationally less demanding) approaches based 

partly on our knowledge of the signal features and partly on intuition. This is achieved by 

having in mind the constraints imposed by the current NEXRAD signal processing 

capabilities. 
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4. Coherency Based Methods 

 The main idea of the proposed approach is to exploit the coherency of weather signals 

in sample-time and/or across channels to improve detection. This is achieved by 

comparing the value of a function f[Vh(0,τs),…, Vh(M-1,τs), Vv(0,τs),…, Vv(M-1,τs)] 

against a threshold to decide whether or not the signal is present at the range location τs, 

where Vh(m,τs), and Vv(m,τs) are complex random variables obtained by sampling signals 

in the horizontal and vertical channels. Clearly, these samples can be combined in many 

ways to obtain the function f. However, a good combination is the one that can emphasize 

known signal features in white Gaussian noise. For example, the total power in horizontal 

and vertical channels is the sum of signal and noise powers, thus the total power reflects 

the notion that the estimated total power is higher when a signal is present. Moreover, the 

autocorrelation function of white noise at lags other than zero is zero but increases if 

signal is present. Hence, the autocorrelation coefficients estimates in each channel are a 

measure of the coherency in sample-time. Finally, because weather signals from 

horizontal and vertical channels are highly correlated, the cross-correlation has much 

higher value when signal is present. The estimators of powers and autocorrelations at the 

first lag in horizontal and vertical channels, as well as the cross-correlation are (3): 
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  (4.1) 

                                                 
3 Note that the range designation τs has been dropped as it is understood that the same procedure is repeated 
for each set of 2M samples at all range locations 
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We refer to these estimators as the core functions. Consequently, various signal detection 

schemes can be devised by building a function f as a combination of several core 

functions which would, presumably, yield different POD given the same desired PFA. 

Note that extra computations added to the existing processor are minimized because these 

core functions are already used for the fundamental spectral moment and polarimetric 

variables calculation. The previous discussion showed that the POD of the maximum-

likelihood detector rapidly declines when signal’s velocity and differential phase change 

from those that the detector is adjusted for. In addition, if the complex values of the auto 

and cross-correlation estimates were to be used for detection, the function f would be 

complex as well, which would significantly complicate the analysis. To avoid these 

problems, the absolute values of autocorrelations and cross-correlation are used.  By 

doing so, the amount of information used for signal detection is decreased; consequently 

the performance is not expected to achieve that of the ML detector. Thus, performance is 

traded for simplicity. 

Performance is assessed for 10 functions (i.e., combinations) listed below: 

1. 1
ˆ ( )hR T THR≥  

2. ( ) 2
ˆ ˆ( ) ( )h vR T R T THR+ ≥  

3. ( ) 3
ˆ ˆ( ) ( )h vR T R T THR+ ≥  

4. 4
ˆ (0)hvR THR≥  

5. ( ) 5
ˆ ˆ ˆ( ) ( ) (0)h v hvR T R T R THR+ + ≥           (4.2) 

6. ( ) 6
ˆ ˆ ˆ( ) ( ) (0)h v hvR T R T R THR+ + ≥  
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7. ( ) 7
ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)h v h v hvP P R T R T R THR+ + + + ≥  

8. ( ) 8
ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)h v h v hvP P R T R T R THR+ + + + ≥  

9. 9
ˆ ( )hR T THR≥ OR ( ) 10

ˆ ˆ( ) ( )h vR T R T THR+ ≥  OR 11
ˆ (0)hvR THR≥  

10. 13
ˆ ( )hR T THR≥ OR ( ) 14

ˆ ˆ( ) ( )h vR T R T THR+ ≥  OR 15
ˆ (0)hvR THR≥  

The threshold for each function is chosen so that the PFA of the corresponding function 

is the same. Clearly, false detections should not significantly clutter the radar product 

display. Consequently, the values of PFA around 10-5 are taken as a reference for 

comparisons among the 10 listed functions. 

From a set of real data collected by the KOUN radar, the noise powers were measured 

(in the internal processor power units) for both the horizontal and the vertical channels. 

• Nh = 3.4174×10-6 for the horizontal channel 

• Nv = 2.8259×10-6 for the vertical channel. 

Notice that noise powers in H and V channels are not the same and in this particular case 

the noise is higher in the horizontal channel. In practice, the amount of noise power is 

particular to each radar and may vary over time even in the same system. Let us now 

examine how the noise powers affect the corresponding threshold of each detection 

scheme. For a single-pol system, it is clear that a threshold determined for the unit value 

of the noise power can be appropriately scaled to work in any system by simply 

multiplying it by the actual measured noise power value. When the samples from both the 

H and V channels are used, it is obvious that a simple scaling by the measured noises 

does not produce the desired result. To investigate such a case it is illustrative to examine 
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the censoring scheme listed under number 7 due to its generality. This function can be 

written as 

ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)
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When only noise is present it reduces to 
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  (4.4) 

where VU(m) (m = 0,…, 2M) are samples of white Gaussian noise with unit power (i.e., 

variance). The expression (4.4) shows that in this case, the threshold can be expressed as 

a function of noise power in the H (or V) channel and the ratio of noise powers in V (or 

H) and H (or V) channel. Thus, when the threshold is determined for the unit noise power 

in H channel and some ratio of noise powers in V and H channels, such threshold can be 

scaled to any actual noise power value in H channel as long as the ratio of noise powers 

remains the same. This gives us assurance that a comparison of detection schemes carried 

out for a certain values of noise powers holds exactly for any other case as long as the 

ratio of noise powers is the same (or at least similar). The actual ratio Nv/Nh of the 

measured noise powers is 0.8269. Because it is closely half way between 0.5 and one, 

this appears like a good ratio value to carry out the comparisons for; namely, it seems 

highly unlikely that the noise power in H channel would ever be more than twice higher 

than in V channel, or vice versa. Additionally, the expression on the right side of (4.4) 
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shows that the output of the sample detection scheme for the unity Nh and some value x 

of the ratio Nv/Nh is the same as when Nv is one and Nh/Nv equals x. Thus, the comparison 

carried out for Nv/Nh ratio value of 1-Δ holds for the Nv/Nh ratio value of (1-Δ)-1 as well. 

To simulate the 3 dB reduction of the SNR, the noise power values of the investigated 

detection functions were multiplied by two and used for the threshold calculation. This 

way the same noise samples can be used for comparison to the legacy detector (i.e., by 

keeping the noise power in H channel unchanged). Consequently, for comparison 

purposes all calculations are performed for the following effective noise powers: 

• Nh = 2×3.4174×10-6 for the horizontal channel 

• Nv = 2×2.8259×10-6 for the vertical channel. 

The threshold for each function with a desired PFA (e.g., 10-5) can be obtained using the 

following equation 

  
pdf (x)dx =  

THR

∞

∫ Desired PFA ,        (4.5) 

where pdf(x) is the probability density of the function for which we seek the threshold. 

Because pdf(x) is unknown, the simple Hit or Miss Monte Carlo method of integration 

(Rubinstein 1981) was used to calculate the PFA for each THR value. It is based on the 

fact that: 

f (x)dx = lim
n→∞

1
n

Xi
i=0

n−1

∑
THR

∞

∫ ,         (4.6) 

where n is the number of trials, and X0,…,Xn-1 are independent identically distributed 

Bernoulli random variables such that: 

  
Xi =

1 if Xi ≥ THR
0 if Xi < THR

⎧
⎨
⎪

⎩⎪
 i = 0, …, n-1.       (4.7) 



 

 33

Proof: We have 
  
P( Xi = 1) = f (x)dx

THR

∞

∫ , and P( Xi = 0) = 1− f (x)dx
THR

∞

∫ = f (x)dx
0

THR

∫ . 
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     (4.8) 

Using values for noise power, the noise samples were generated in MATLAB as: 

randn('state',sum(100*clock)); 
IQNh = sqrt(Nh/2)*(randn(M,K) + j*randn(M,K)); 
IQNv = sqrt(Nv/2)*(randn(M,K) + j*randn(M,K)); 

To estimate how many trials are required to achieve the desired level of accuracy, the 

variance of the estimate is calculated as follows. Let us introduce the random variable X 

as: 

X =
1
n

Xi
i=0

n−1

∑ .           (4.9) 

Then, { } ( )
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∞

= =∫ . To obtain the variance we calculate the second moment 
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The variance is then 

{ } { } { }2 2 (1 )p pVar X E X E X
n
−

= − =  .     (4.11) 

Let us now calculate the probability that the estimate lies within a certain error limit ε. 

That is 

( ) ( ) ( )P p X p P X p P X pε ε ε ε ε− < < + = − < − < = − < .  (4.12) 

Clearly, the Chebyshev’s inequality provides the upper bound as: 

( ) { }
2 2

(1 )1 1
Var X p pP X p

n
ε

ε ε
−

− < ≥ − = − .      (4.13) 

For instance, when n = 108, p = 10-5, and ε = 10-6 we get a confidence level of at least 

90%. 

A different approach can be taken using the DeMoivre-Laplace limit theorem which 

says that for each random binomial variable Y defined on n independent trials for which 

p=P(success) the following holds 

  
lim
n→∞

P a ≤
Y − np
np(1− p)

≤ b
⎛
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⎠
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This can be used as: 
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Thus, the PFA estimator distribution is approximated by a Gaussian. Using this approach 

for n = 108, p = 10-5, and ε = 10-6 we get the confidence level of 99.843%. 

In our analysis we use a large number of trials (well in excess of 106), which implies 

that the random variable X is normally distributed in the limit. Also, as shown by an 

earlier study (Erchard 1991), the pdf of a PFA estimator is approximately Gaussian if n ≥ 

10/p. Consequently, we can confidently rely on the error estimate using the DeMoivre-

Laplace limit theorem. 

A total of 108 trials were used to calculate the PFAs. The PFAs as a function of 

thresholds for the first 8 functions listed in (4.2) are shown in Figure 4.1 for the case of M 

= 17. In addition, the relationship between the PFAs and POD for these approaches is 

shown in Figure 4.2. It is apparent that the function  

( ) 7
ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)h v h v hvP P R T R T R THR+ + + + ≥ ,     (4.16) 

produces the highest detection rate. This outcome is intuitively expected because this sum 

captures all signal features that discern it from the noise. In the remainder of the text this 

approach will be referred to as the uniform sum. 

To evaluate the OR combinations (i.e., the last two functions in (4.2)) a range of 

thresholds were used. For each threshold, the OR combination PFA was calculated. 

Subsequently, POD was calculated for each combination. The results are shown in Figure 

4.3. For comparison, the results from the uniform sum are included as a reference. It is 

apparent that the uniform sum performs significantly better than these two approaches. 

Let us now examine how the uniform sum behaves in terms of the POD for the preset 

PFA of 10-5 and an M that equals 17. The threshold was obtained by linear interpolation 

of the values shown in Figure 4.1 based on the two nearest neighboring values of 10-5. 
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For POD evaluation, a total of 50,000 trials were used. For example, using Chebyshev’s 

inequality, a confidence levels of 98.2% and 95% are obtained for ε = 10-2 and p values 

of 0.1 and 0.5, respectively (note that when p = 0.9 the confidence level is the same as 

when p = 0.1). If a normal approximation is used, the resulting confidence level is 100% 

for all practical purposes. In Figure 4.4, SNR varies from -1 to 2 dB and 2 to 5 dB in dual-

polarization and single-polarization cases, respectively. The POD for the power-

threshold-based detector in single-polarization is presented as the standard so that the 

performance of all other detectors can be compared to it. In dual-polarization, the 

thresholds of 2 and 1.4 dB are applied to the power-threshold-based detectors. The POD 

for the first is presented to show how much the detection rate deteriorates if the legacy 

detection scheme is retained after the 3 dB SNR loss. The POD for the second is shown 

for fair comparison against the uniform sum because the threshold of 1.4 dB yields the 

PFA of 10-5. For given signal parameters in Figure 4.4 (a), the power-threshold-based 

detection in a single-polarization system slightly outperforms the detection using the 

uniform sum in the dual-polarization case. Nevertheless, the latter offers substantial 

improvement over both the power-threshold-based legacy detection in the dual-

polarization system, and the square-law detector with the same PFA. In Figure 4.4 (b), 

the ZDR is decreased by 2 dB in which case the performance of the uniform sum surpasses 

that of the single-polarization legacy detector. Figure 4.5 shows similar comparisons of 

PODs but as a function of σv. In Figure 4.5 (a) similar trend is observed as the uniform 

sum approaches (but does not exceed) the single-polarization performance at lower 

spectrum widths, while yielding significant increase in POD with respect to the square 

law detector in dual-polarization. It is interesting to note that the POD of uniform sum 
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appears approximately constant up to spectrum width of 2 m s-1 but decreases with 

increasing spectrum width afterwards. This is because the uniform sum takes advantage 

of signal correlation for detection. Thus, as correlation of signals decreases at larger 

spectrum widths, the detection gain diminishes. In Figure 4.5 (b) the POD behavior vs. σv 

is examined but for the ZDR that is decreased by 2 dB. In such case, it shows the POD for 

uniform sum to be less sensitive to the change in σv than the power based detector. This 

is because both powers and autocorrelations are used for detection by the uniform sum. 

For highly correlated signals the power estimates have higher statistical uncertainties that 

cause the spreading of the power estimator probability density function. Because the 

mean value of the power estimator is fixed (for constant signal power), more of the 

probability mass is shifted below the threshold degrading the performance for the case 

where only the power estimate is used for detection. The uniform sum, however, 

mitigates this effect through the inclusion of the autocorrelation whose mathematical 

expectation is directly proportional to signal coherency resulting in the larger expected 

value of the uniform sum for highly correlated signals. Larger expected value of the 

uniform sum can effectively shift more of the cumulative probability mass above the 

threshold level thus offsetting negative effects caused by spreading of the pdf. On the 

other hand, in the case of high spectrum widths, the autocorrelation estimates decrease 

and the mean of the uniform sum is closer to the threshold. Nonetheless, because the 

samples are less correlated the uniform sum estimate is more stable (i.e., pdf has less 

spread) resulting in the reduced amount of probability mass that falls below the threshold. 

Overall, this produces more balanced and improved detection rates (i.e., POD) for varied 

σv. Figure 4.6 demonstrates that the POD of the uniform sum is inversely proportional to 
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ZDR. This is expected because the variance of the cross-correlation estimates is directly 

proportional to ZDR (Melnikov 2004). At the same time, the POD of the power-threshold-

based detector does not depend on ZDR because only power in horizontal channel is used 

for detection. The uniform sum contains the modulus of the cross-correlation and the 

autocorrelation sum for detection; hence its performance is insensitive to variation in the 

velocity and differential phase. Typically, the weather signals from the horizontal and the 

vertical channels are highly correlated. Sachidananda and Zrnić (1985) indicate the 

theoretical value of |ρhv(0)| is larger than 0.99 for rain drops with negligible canting. 

Additionally, the measured values in precipitation other than hail and melting snow are 

between 0.96 and 0.99 (Doviak and Zrnić 1993).  This implies that the variations in the 

cross-correlation coefficient are fairly small and bear no significant impact on the 

uniform sum performance. 
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Figure 4.1 PFAs for different approaches. 
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Figure 4.2 POD comparison for several detector functions. 
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Figure 4.3 POD comparison for OR combination. 
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Figure 4.4 POD for varied SNR. For comparison, the uniform sum curve is plotted 

against the case with no 3 dB loss (single-polarization) with the power threshold set to 2 
dB above the noise, and the 3 dB loss (dual-polarization) with the power thresholds of 2 

and 1.4 dB.
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Figure 4.5 POD for varied σv. For comparison, the uniform sum curve is plotted against 

the case with no 3 dB loss (single-polarization) with the power threshold set to 2 dB 
above the noise, and the 3 dB loss (dual-polarization) with the power thresholds of 2 and 

1.4 dB. 
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Figure 4.6 POD of uniform sum for varied ZDR. 

4.1 Comparison with the Likelihood Ratio Hypothesis Testing 

So far, it has been established that the uniform sum yields significant improvement in 

signal detection compared to the standard power-threshold-based approach. The next 

objective is to find the maximum POD that can be achieved subject to the condition of 

the predetermined PFA. 

Hypothesis testing using the likelihood-ratio, in case when the distribution parameters 

are known, provides the most powerful detection (as shown in Chapter 2). In this 

particular setting, Eq. (3.13) becomes: 

( ) ( )
1 12 2 1 1

0 0

1 1 ln det
M M

H
h v

m mh v

V m V m THR
N N

− −
− −

= =

′+ + − ≥∑ ∑ C V C V ,   (4.17) 



 

 46

where THR’ is set so that 

( ) ( )2 2
1 1

1 1

0 0
ln det only noise present

M M
h v H

m mh v

THR
V m V m

P
N N

ε
− −

− −

= =

′
⎛ ⎞
⎜ ⎟+ + − ≥ =
⎜ ⎟
⎝ ⎠
∑ ∑ C V C V ,(4.18) 

and C is calculated assuming known distribution parameters. In the Figure 4.7 the 

Maximum-Likelihood-ratio (ML) and the uniform sum are compared for several sets of 

signal parameters. The comparison shows that the difference between these two methods 

is inversely proportional to the SNR. For example, the difference in POD is 

approximately 0.04, 0.11 and 0.17 for SNR = 2 dB, 0.5 dB and -1 dB, for the PFA of 10-5. 

In all cases, the ML approach performs better than the uniform sum. This result is 

expected as the uniform sum utilizes less information about the signal than the ML 

detector. Nonetheless, the significant difference in performance may imply that further 

improvements to the uniform sum could be possible. We speculate that a weighted sum, 

such as 

ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)h v h v hvP P R T R T Rα β γ+ + + +       (4.19) 

might provide a better performance than the uniform sum. This will be discussed in the 

next chapter. 
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Figure 4.7 ML vs. uniform sum comparison. 
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5. Optimizing Detection Using Weighted Sum 

In an attempt to improve the performance of the uniform sum, different weights are 

introduced to each term in the sum to produce a weighted sum. We speculate that the 

weights can be appropriately selected to maximize the rate of detection (i.e., POD) given 

specific values of SNR, σv, ZDR, and ρhv. Inevitably, the performance of the weighted sum 

degrades as the difference between the mean parameters of samples in V and the ones 

that the sum is optimized for grows larger. We can, however, attempt to find a set of 

values for SNR, σv, ZDR, and ρhv, that the weighted sum is optimized for, which would 

minimize the performance degradation. We speculate that for each parameter such value 

is its median. For example, it can be assumed that 2 m s-1 is the median of σv for most 

weather events of interest (Fang et al. 2004) and we would like to adjust the weights 

accordingly. Similar approach can be applied for other parameters. Nonetheless, what the 

proper median values are for these parameters remains an open question. Another 

possible approach would be to find such a combination of weights that would produce 

relatively balanced detection rate for a wide range of signal parameters of interest. 

Let us now analyze the approach in which the weights are adjusted for a given set of 

median values, as well as the desired PFA. An idealized way to achieve this is to find the 

pdf of the weighted sum in a closed form (which is a function of signal parameters and 

their weights). If we could do this, we would essentially have two functions. One is the 

pdf of the weighted sum for noise only, and the other one is for the case where both 

signal and noise are present. The former is denoted as f(WSN) and the latter one is denoted 

as f(WSS+N), where the WSN and WSS+N are the random variables that represent the 

weighted sum outputs when noise and signal+noise are present. Note that both functions 
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have similar notation except for the subscripts, which stand for the function input (i.e., N 

for noise only and N+S for signal and noise). This is done purposely because these two 

functions have the same form except that if only noise is present, we set SNR = -∞ dB, σv 

= ∝ m s-1 (i.e., ρ = 0), ρhv = 0, and ZDR to the known value which can be obtained by 

measuring the noise powers in both H and V channels. Now we can define the problem as 

follows: 

We want to find values for weights α, β, and γ such that: 

( ) ( )

( ) ( )

      , , , ,

                                                                                                for    , ,

; , , ; , ,

S N S N

S N S N S N
THR THR

P WS THR P WS THR

OR

f WS dWS f WS

α β γ α β γ

α β γ

α β γ α β γ

+ +

∞ ∞

+ + +

′ ′ ′≥ ≥ ≥

′ ′ ′∀ ∈

′ ′ ′≥∫ ∫ S NdWS +

,  

under the condition that 

( ) ( ), , ; , ,N N N
THR

P WS THR f WS dWSα β γ α β γ ε
∞

> = ≤∫        (5.1) 

where ε  is the desired PFA, and THR is the threshold. 

Clearly, both WSN and WSS+N are functions of the observation vector V = [Vh(0), 

…,Vh(M-1),Vv(0),…,Vv(M-1)]T. Note that each element in the vector is a random variable 

and therefore, WSN and WSS+N are transformations of random variables in V. Thus, to 

derive f, we naturally start with the joint pdf (look at eq. (3.5)) for all the elements in V. 

Nonetheless, a brief examination of the problem indicates that finding the pdf of either 

WSN or WSS+N is not feasible in an analytical form.  All is not lost however, let us state 

the goal using formulas in Chapter 3 (i.e., (3.5) and (3.8)) which give us the exact 

expression for joint pdf’s as: 

We want to find values for weights α, β, and γ such that: 
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⎛ ⎞
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⎝ ⎠

∑ ∑∫ V ,   (5.2) 

where ε is the desired PFA, and THR is the threshold. 

Because there are 2M random variables, each integral in (5.2) represents a volume in a 

2M multidimensional space. Thus, the condition WSN+S
α, β, γ ≥ THR specifies the region in 

a 2M dimensional sample space where the weighted sum is greater than, or equal to, the 

threshold, for the case when both signal and noise are present. The condition WSN
α, β, γ ≥ 

THR stands for the region in 2M dimensional sample space in which the weighted sum is 

greater than, or equal to, the threshold, in case only noise is present. These two regions 

can be viewed as sets of all possible values of observation vector for which the weighted 

sum exceeds the threshold for some values of α, β, and γ. Because in both cases noise 

present or signal+noise present, an observation vector can take any value (but with 

different probability), these two regions are the same. Thus, by changing the values of the 

weights, this region is shaped in the 2M dimensional space. Consequently, given the set 

of signal parameter values for which we want to optimize detection, the goal is to find 

such set of the values of α, β, and γ that shape this region so that the integration over it, 

when signal and noise are present, is maximized, while maintaining the same integration 

value in the presence of noise only. Because it is not feasible to derive the pdf 

analytically, an efficient method of evaluating integrals in (5.2) is needed. 
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The plain (i.e., conventional) Hit or Miss Monte Carlo integration method is one of 

the candidates. Given the set of values of α, β, and γ  and the threshold value THR, the 

resulting PFA can be evaluated, using this method, as 

( )
1

, ,

0

1 K

N
k

PFA D WS
K

α β γ
−

=

= ∑ ,           (5.3) 

where K is the number of trials and 

( ), ,
ˆ ˆ ˆ ˆ ˆ1   if    ( ) ( ) (0)

ˆ ˆ ˆ ˆ ˆ0  if   ( ) ( ) (0)

h v h v hv

N

h v h v hv

P P R T R T R THR
D WS

P P R T R T R THR
α β γ

α β γ

α β γ

⎧ + + + + ≥⎪= ⎨
+ + + + <⎪⎩

.   (5.4) 

Elements of the observation vector V are generated from the distribution given in (3.8); 

thus, the observation vector elements can be generated directly using a Gaussian random 

number generator. The POD is evaluated as 

( )
1

, ,

0

1 K

S N
k

POD D WS
K

α β γ
−

+
=

= ∑ ,         (5.5) 

where K is the number of trials and 

( ), ,
ˆ ˆ ˆ ˆ ˆ1   if   ( ) ( ) (0)

ˆ ˆ ˆ ˆ ˆ0   if   ( ) ( ) (0)

h v h v hv

S N

h v h v hv

P P R T R T R THR
D WS

P P R T R T R THR
α β γ

α β γ

α β γ
+

⎧ + + + + ≥⎪= ⎨
+ + + + <⎪⎩

.   (5.6) 

Elements of the observation vector V are generated from the distribution given in (3.5). 

Note that when both signal and noise are present the covariance matrix C is not 

necessarily diagonal and the observation vector elements can not be generated directly 

using a Gaussian random number generator, but rather using methods given in Zrnić 

(1975) and Torres (2001). 

Clearly, the optimal set of weights is the one producing the largest POD among all 

possible weight combinations. To find such set, a large number of weight evaluations 

needs to be performed. Based on the simulations carried out previously, estimating POD 
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for a known set of weights and a given threshold does not require exorbitant number of 

trials to achieve the desired accuracy; hence this can be done relatively fast. Yet, before 

estimating the POD, an appropriate threshold value that preserves the desired PFA must 

be obtained. So far, the only tool we have at our disposal is the plain Monte Carlo. Due to 

the low values of the desired PFA (on the order of 10-5 ÷ 10-6), evaluating each candidate 

threshold requires a large number of trials (as shown in Chapter 4). This makes the plain 

Monte Carlo approach computationally impractical when evaluation of numerous 

thresholds is required. Additionally, if the weighted sum is to be used for detection 

operationally, an efficient method for threshold calculation needs to be devised. 

Consequently, it becomes imperative to introduce an optimization that will reduce the 

number of trials required to achieve the desired accuracy of Monte Carlo integration in 

case when only noise is present. Having done so, an appropriate threshold could be found 

by starting with an arbitrary value and varying it (i.e., increasing or decreasing it) until 

the one that yields the desired PFA is located. Unfortunately, every change in the THR 

value requires a corresponding PFA evaluation and, even with the optimizations, the 

entire process is still likely to prove time consuming. Consequently, it would be 

extremely helpful if the pdf of the weighted sum could be roughly approximated with a 

closed form. Such approximation can be used for better selection of the initial threshold, 

(i.e., the one closer to the desired result) in the iterative process, in order to reduce the 

number of PFA evaluations using the Monte Carlo integration. 

The tools for the threshold computation are developed in this chapter, which is laid 

out as follows. First, a variance reduction technique, aimed at decreasing the number of 

trials needed for Monte Carlo integration, is presented in section 5.1. An approach for 
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approximating weighted sum pdf with a generalized gamma distribution is described in 

section 5.2. Because it is based on matching the first three moments of the weighted sum, 

an approach to moment evaluation is given in sections 5.3 and 5.4. An iterative method, 

that uses tools developed in previous sections, to calculate the threshold, given the 

desired PFA, is described in section 5.5. Using this method and the plain Monte Carlo 

integration for POD evaluation, as in (5.5), the effects of weighting are assessed in 

section 5.6. Finally, some implementation issues are discussed in section 5.7. 

5.1 Importance Sampling Application 

When simulating the occurrence of random rare events (as this is clearly the case), it 

has been shown that the Importance Sampling (IS) technique has the potential to 

dramatically reduce the number of trials needed to meet the accuracy requirements 

(Mitchell 1981). The principle of Importance Sampling (IS) is to select samples from a 

population different from the original one, so that the occurrence rate of initially rare 

event increases. Subsequently, the occurrence of each event is scaled by the ratio of the 

joint probabilities of the original and the biased population in order to compensate the 

skew in PFA. In other words, different importance is placed on each sample; depending 

on how likely such a sample would be, if it were generated by the original distribution 

(e.g., distribution p), rather than the bias sampling distribution (e.g., distribution q). To 

formulate this approach mathematically, let the original joint pdf be denoted as 

p(y1,…,yn) and the biased one as g(y1,…,yn), where y1,…,yn are n random variables. The 

result can be represented in an integral form as: 

( ) ( )1 1 1, , , ,n n nI D f y y p y y dy dy
∞ ∞

−∞ −∞

= ⎡ ⎤⎣ ⎦∫ ∫ … … ,      (5.7) 
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where D[f(   y1,…, yn )] denotes the decision criterion which is defined by the function f of 

random variables   y1,…, yn . Naturally: 

( )1

1 if criterion satisfied
, ,

0 if criterion NOT satisfiednD f y y ⎧
=⎡ ⎤ ⎨⎣ ⎦
⎩

… .      (5.8) 

We use the biased distribution to re-write I as: 

( )
( ) ( ) ( )1

1 1 1
1

, ,
, , , ,

, ,
n

n n n
n

p y y
I D f y y g y y dy dy

g y y

∞ ∞

−∞ −∞

= ⎡ ⎤⎣ ⎦∫ ∫
…

… …
…

.    (5.9) 

 This result can now be estimated as: 

( ) ( )( )
( ) ( )( ) ( ) ( )( )

1
1

1
0 1

ˆ ˆ, ,1ˆ ˆ ˆ, ,
ˆ ˆ, ,

K
n

n
k n

p y k y k
I D f y k y k

K g y k y k

−

=

⎡ ⎤= ⎣ ⎦∑
…

…
…

,      (5.10) 

where ŷ1(k),…,ŷn(k) is k-th occurrence of the set generated from the joint pdf g(y1,…,yn). 

The IS algorithm is now (Denny 2001): 

1. Sample ŷ1(k),…,ŷn(k) from g(y1,…,yn). 

2. Apply decision criteria D[f( y1,…, yn )]. If it is true set Ik = 

p(ŷ1(k),…,ŷn(k))/g(ŷ1(k),…,ŷn(k)) else set Ik = 0. 

3. Estimate the integral as
1

0

1ˆ
K

k
k

I I
K

−

=

= ∑ . 

What remains is the proper choice of the bias distribution. It is our goal to choose the bias 

function that will minimize the variance, defined in the following form  

( ) { } { }2 2ˆ ˆ ˆVar I E I E I= − .          (5.11) 

The value of the second term cannot be influenced by the choice of function g, which 

leaves us with: 
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  (5.12) 

Hence, the variance is: 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

21
1 2

12 2
0 1

ˆ ˆ, ,1 1ˆ ˆ ˆ, ,
ˆ ˆ, ,

K
n

n
k n

p y k y k
Var I E D f y k y k I

K Kg y k y k

−

=

⎧ ⎫⎪ ⎪⎡ ⎤= −⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑
…

…
…

.  (5.13) 

It also can be written: 

( ) ( ) ( )( )
1

2
12

0

1 1ˆ ˆ ˆ, ,
K

n
k

Var I E D f y k y k I
K K

−

=

⎧ ⎫⎡ ⎤′ ′= −⎨ ⎬⎣ ⎦⎩ ⎭
∑ … ,     (5.14) 

where each set ŷ’1(k),…,ŷ’n(k) is chosen from a population distributed as 

p2(ŷ’1(k),…,ŷ’n(k))/g(ŷ’1(k),…,ŷ’n(k)). 

Let us investigate how to apply IS to the case when only noise is present given the 

joint pdf p in eq. (3.5). The main question is how to choose the biased pdf (i.e., g) in order 

to maximize improvement in the estimate performance. Among many biasing methods, 

scaling technique has been widely used (Srinivasan 2002). The objective is to shift the 

probability mass toward the region of desired event in order to effectively increase the 

occurrence (i.e., probability) of the rare event. If the scaling technique is used, a biasing 

distribution is obtained as g(x) = 1/a·f(x/a), whereas parameter a is chosen to minimize 

the estimate variance. The implementation of the scaling method is described now. 

It is convenient to choose g in the following form: 
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( ) ( ) ( )
( )

212 1 2 1
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==
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∑∏V .     (5.15) 

In order to select the values of N(m), the Cross-Entropy method (de Boer et al. 2005) was 

used. The general stochastic equation, as given by (22) in de Boer et al. (2005), is as 

follows 
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For each value N(m) we have 
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yielding: 
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from which we get: 
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The algorithm for estimating the PFA is summarized as (de Boer et al. 2005): 

(1) Define ( )0
ˆ

hN m N=  and ( )0
ˆ

vN m M N+ =  for m = 1,…, M. Set t = 1 (iteration = 

level counter) 

(2) Generate a sample V1, …, VK  from the density: 

( ) ( ) ( )
( )

212 1 2 1
2

1
00 1

ˆ exp ˆ
M M

M
t

mm t

V m
g N m

N m
π

−− −

−
== −

⎛ ⎞⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑∏V .     (5.20) 

Calculate WS(V(i)) for all and sort them in ascending order. Compute the sample 

(1-ρ)-quantile t̂T  of the performance according to ( )( )ˆ 1tT WS Kρ= −⎡ ⎤⎢ ⎥ , provided 

t̂T  is less than THR. Otherwise set t̂T  = THR. 

(3) Use the same sample V(1), …, V(K) to solve the stochastic equation as given by 

(5.19). Denote the solution by ˆ
tN . 

(4) If t̂T  < THR, set t = t+1 and reiterate from step 2. Else proceed with step 5 

(6) Estimate the PFA using: 
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(5.21) 

The above algorithm provides an efficient avenue for obtaining the PFA for a given 

threshold. However, our problem is that given a desired PFA we need to determine the 

corresponding threshold. The process for threshold finding is proposed as follows. 

1. Choose initial threshold arbitrarily. 

2. Estimate the corresponding PFA. 

3. If the estimated PFA is within an acceptable range of the desired one, accept the 

threshold. If the estimated PFA is greater than the desired one, increase the 

threshold by some small value Δ, and go back to step 2. If the estimated PFA is 

smaller than the desired one, decrease the threshold by some small value Δ, and go 

back to step 2. 

The above algorithm would work reliably, but even with the optimization techniques 

introduced, the process could still prove very time consuming, because the further the 

initial threshold is from the solution, the longer it takes for the process to converge. Thus, 

we proceed by finding an approximation to the pdf of the weighted sum with an 

analytical function. Such function is used to calculate the threshold given a desired PFA. 

Hopefully, this threshold is close enough to the one that produces the desired PFA, and 

when used as the initial threshold in the iterative process reduces the numbers of steps 

needed to reach the final result. Consequently, the following section is devoted to finding 
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an acceptable approximation to the pdf of the weighted sum by fitting it to some 

distribution function model. 

5.2 Distribution Fitting 

The goal of distribution fitting is to select the model of statistical distribution that fits 

best to the data generated by a random process. In this work, the moments of the 

distribution are used as the criteria for fitting. Let’s consider the n-th moment of the 

weighted sum 

( ){ }ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)
n

n h v h v hvm E P P R T R T Rα β γ= + + + + .      (5.22) 

Using the multinomial theorem we can write: 
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⎫⎛ ⎞ ⎪⎜ ⎟ ⎬⎜ ⎟ ⎪⎝ ⎠ ⎭

 (5.23) 

Note that if we have moments evaluated for unit Nh power and the ratio Nv/Nh, we can 

scale the moments to any power value in the H channel as long as the ratio Nv/Nh remains 

the same. Similarly, the threshold found for the unity power can be scaled to fit any 

power in H channel (as long as the ratio Nv/Nh is similar) by simply multiplying it by the 

measured Nh. 

Now, how can one select a proper model for the fitting algorithm? In order to address 

the question, the histograms of the uniform sum are shown in Figure 5.1 for both cases of 

noise and signal+noise. 
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Figure 5.1 Histogram of the uniform sum pdf for noise only case and signal+noise. 

There are several known distributions that follow the shapes similar to the ones given in 

Figure 5.1. The best known among those is gamma distribution which is defined as: 

1 if 0
( ) ( 1)

0 if 0

xx e x
f x

x

α θ

αθ α

−

+

⎧
>⎪= Γ +⎨

⎪ <⎩

.        (5.24) 

It is known that the mean and the variance of the distribution are: 

( )
( )2 2

1
1 .

m α θ
σ α θ

= +
= +

          (5.25) 

In addition, the parameters α and θ can be presented in terms of m and σ2 as: 

α +1= m2 σ 2

     θ = σ 2 m.
          (5.26) 
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In other words, the gamma distribution function is determined by the first two moments. 

Therefore, the fitting using the gamma distribution function is performed by only fitting 

the first two moments. However, this approach does not guarantee matching of any 

moments higher than the second. If matching to higher moments is desired, the procedure 

of error correction (Papoulis and Pillai 2002) can be applied. It uses polynomials 

orthogonal with respect to the probability function(4) to correct its n-th moment. In case 

of gamma distribution, there is a family of polynomials that are orthogonal with respect 

to it. These are known as Laguerre polynomials. A more detailed description is given in 

Appendix B. Intuitively, polynomial moment correction can be perceived graphically as 

slightly changing the shape of the gamma distribution function so it better matches the 

shape of the pdf that is being modeled. Thus, it should work fine as long as the shape of 

the distribution being modeled is reasonably similar to the gamma distribution. In many 

cases, though, even after setting the first two moments of the gamma distribution to those 

of the unknown pdf, the shape of the gamma distribution is so dissimilar from the target 

one that even the polynomial moment matching is unable to tweak it into the desired 

shape. In such cases, it is desirable to find a more general model which is flexible enough 

to accommodate various distribution shapes more closely. Such a model is likely to have 

more degrees of freedom so higher moments can be matched. Therefore, a generalized 

gamma distribution (Stacy 1962) is proposed, which accommodates for matching up to 

the third moment. This model function is listed below: 

                                                 
4 Two polynomials p0 and p1 are orthogonal with respect to a function w(x) if ( )0 10

0p p w x dx
∞

⋅ ⋅ =∫ . 
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         (5.27) 

The n-th moment of the distribution is given by: 
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Let’s assume the values of the first three moments as m1, m2, and m3 are known. The 

problem becomes how to find values of a, q, and p so that: 
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         (5.29) 

This is a non-linear system of three equations with three unknowns, and clearly a closed-

form solution for an arbitrary values of a, q, and p cannot be obtained. Therefore, an 

iterative numerical method is used, which is described now. 

Let us consider the case when q is a positive integer. Then we have: 
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         (5.30) 

Apparently, when q is an integer this new system of equations may not have the solution 

that will match all three moments. Instead, it is possible to find a and p for a given integer 
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q so the first two moments are matched. This can be achieved using the following 

equation 

( ) ( ) ( ) ( )
1 2 1 2 1 1

2 2
2 1 1 2

0 0

0
q q q q

i i q i q i

qp i m m qp i m qp i qp i m
− − − −

= = = =

+ = + ⇔ + − + =∏ ∏ ∏ ∏ .   (5.31) 

Then, possible solutions for p are the zeroes of the polynomial. We choose only positive 

real zeroes and discard the complex conjugate and negative ones. For each real p the 

corresponding a can be found as: 

( )
1

1

0

q

i

ma
qp i

−

=

=
+∏

.         (5.32) 

Each pair (p,a) produces the corresponding third moment that is different from the 

desired value of m3. We select that pair (p,a) which yields the third moment closest to the 

desired value of m3. This can be performed over an arbitrary number of integer values of 

q until the third moment closest to m3 is obtained. Subsequently, the q value can be fine 

tuned by varying it by some small amount. After this change q is not an integer any more. 

Therefore, the Newton’s iterative method (Ypma 1995) is applied to solve for a and p. In 

this method, an initial guess, reasonably close to the true root, is selected. Then, the 

function is approximated by its tangent line (which can be computed using the tools of 

calculus), and one computes the x-intercept of this tangent line (which is easily done with 

elementary algebra). This x-intercept will typically be a better approximation to the 

function's root than the original guess, and the method can be iterated. An update formula 

is: 

( )
( )1

n
n n

n

f p
p p

f p+ = −
′

.         (5.33) 
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To apply Newton’s method we setup the following: 

( )
( ) ( )2

1 22

2
0

qp q
m qp m

qp q
Γ +

Γ − =
Γ +

.       (5.34) 

Hence: 

( ) ( )
( ) ( )2

1 22

2n
n n

n

qp q
f p m qp m

qp q
Γ +

= Γ −
Γ +

.      (5.35) 

We now find the derivative: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

2
1 2

2
1 3

2
1 2

2
1 2

2 2

2
                2

2 2 2
           

2
                2

        

n n n n n

n n

n n
n

n

n n n n n n

n

n n
n

n

df p qp q qp qp q qp
m

dp qp q

qp q qp
m qp q

qp q

qp q qp q qp qp q qp qp
m q

qp q

qp q qp
m qp q q

qp q

ψ ψ

ψ

′ ′Γ + Γ +Γ + Γ
= −

Γ +

Γ + Γ
′Γ +

Γ +

+ Γ + Γ +Γ + Γ
= −

Γ +

Γ + Γ
+

Γ +

( ) ( ) ( ) ( ) ( )
( )

2
1 2

2 2
   2 ,n n n

n n
n

qp q qp qp q
m q qp q qp

qp q
ψ ψ ψ+ + − +

= Γ + Γ
Γ +

 (5.36) 

where ψ is digamma function (Abramowitz and Stegun 1964). We now devise an 

algorithm to fine tune q after the integer value of q, that yields the third moment closest 

to m3, is obtained. 

(1) Set the desired errors εm2 = |m2’/m2 – 1| and εm3 = |m3’/m3 – 1|, where m2’ and 

m3’ are the second and third moments obtained from the (a,p) pair at the end of 

iteration process. Set the initial value for p0 to be the value obtained from the 

chosen integer value of q0. Then we need to decide on the initial step for q (i.e., 

Δq). We choose: 

( )
3 1

3
3

0

0   0.1      0.1
q

i

if m a qp i q else q
−

=

⎛ ⎞
− + > Δ = Δ = −⎜ ⎟

⎝ ⎠
∏ ,    (5.37) 
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where q is an integer value that yields the third moment closest to the true one, 

and a, p are the corresponding values. Set n = 0 and pn = p. 

(2) Update qn+1 = qn +  Δq 

(3) Set pp0 = pn, k = 0. 

(4) Start Newton’s iteration: 

( ) ( ) ( )( )
2
1 2

1 2
1 1 1 1 1 1 12 2

k
k k

n k n k n n k n k n

m T mpp pp
m q T q pp q q pp q pp qψ ψ ψ+

+ + + + + +

−
= −

+ + − +
,(5.38) 

where ( ) ( )
( )

1 1 1
2

1 1

2n k n n k
k

n k n

q pp q q pp
T

q pp q
+ + +

+ +

Γ + Γ
=

Γ +
. 

Note: In cases when argument is too large (e.g., in excess of 200) gamma function 

may overflow and yield ∝ as output. To avoid this Tk can be calculated using 

formula (3) in Raff (1970). 

(5) if ( )
( ) ( )

2
1 1 11

1 1 22
2 1 1 1

2
1n k n

n k
n k n

q pp qm q pp m
m q p q

ε+ + +
+ +

+ + +

Γ +
Γ − <

Γ +
 go to step 6, otherwise set k = k 

+ 1 and go back to step 4. 

(6) Set pn+1 =ppk+1, set m3’ = m1
3Γ2(qn+1pn+1) Γ(qn+1pn+1+3qn+1)/ Γ3(qn+1pn+1+qn+1). 

If | m3’ /m3-1| < εm3 go to step 7. If sgn(m3 – m3’) ≠ sgn(Δq) set qn = qn -  Δq, Δq 

= Δq/10, else n = n + 1. Go to step 2. 

(7) Set q = qn+1, p =  pn+1, a =  m1Γ(qpn)/ Γ(qpn+q). 

This process is terminated when the result matches the third moment up to the desired 

accuracy. Once the first three moments are matched, the PFA approximation can be 

determined using 
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( ) ( )
1

1
11 ,

qx
p qa

incp
THR

THRPFA x e dx qpaqa qp

⎛ ⎞∞ −⎜ ⎟− ⎝ ⎠
⎛ ⎞

≈ = Γ ⎜ ⎟⎜ ⎟Γ ⎝ ⎠
∫ ,    (5.39) 

where Γinc(x, α) is an incomplete gamma function that is defined in Appendix A.  

If matching to moments higher than the third order is desired, one needs to consider 

the polynomial moment matching. In the case of generalized gamma distribution, there is 

no family of polynomials that are orthogonal with respect to it. Nevertheless, it is still 

possible to perform the moment matching but each polynomial must be algebraically 

obtained. A general process is presented next. 

It is known that any orthogonal sequence has a recurrence formula that relates any 

three consecutive polynomials in the following form: 

( )1 1 1 1n n n n np x b p c p+ + + −= − − ,         (5.40) 

where bn and cn are some constants and p’s are polynomials defined by: 

   
pn = xn + kn,ix

i         kn,i ∈
i=0

n−1

∑ .       (5.41) 

Thus, if we know two polynomials in a row, we can calculate the third in a row. In order 

to describe the procedure for calculating pn+1 we shall use the inner product 

( ) ( ) ( ) ( ) ( )
0

,f x g x f x g x w x dx
∞

= ∫ ,      (5.42) 

where f(x), g(x) are some arbitrary functions and w(x) is a weight function. If we are 

dealing with polynomials orthogonal with respect to some function, we take w(x) to be 

exactly it. Hence, the approach is general. In this particular case, the choice of function is 

generalized gamma distribution. Now we can establish formulas based on the fact that 

pn+1 is orthogonal to both pn and pn-1. This gives us: 
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1 1 1

1
1 1 1 1 1 1 1

1 1

,
, 0 , , 0 ,

,

,
, 0 , , 0 .

,

n n
n n n n n n n n

n n

n n
n n n n n n n n

n n

xp p
p p xp p b p p b

p p

xp p
p p xp p c p p c

p p

+ + +

−
+ − − + − − +

− −

= ⇔ − = ⇒ =

= ⇔ − = ⇒ =

   (5.43) 

The next step is to choose the first two polynomials. It is common that we choose the 

zeroth polynomial to be unity. As for the first one we choose it as: 

( ) ( )0 0
1 0 0 1 0 0 1

0 0 0

,
  , 0

,
xp p

p x b p p p b xw x dx m
p p

∞

= − ∧ = ⇒ = = =∫ ,   (5.44) 

where m1 is the first moment. For the first two moments we now have: 

0

1 1

1,
.

p
p x m

=
= −

          (5.45) 

Once we have all polynomials, perform correction as: 

( ) ( ) 1
j

n n
n i

pdf x w x C p
=

⎛ ⎞
≈ +⎜ ⎟

⎝ ⎠
∑ ,       (5.46) 

where i and j are the first and the last moment that we want to correct for, respectively. 

The next step is to find coefficient Cn values. Let us find Ck (k∈[i,j]) using 

( )
0

1 ,1
j j

k k
k n n n n

n i n i

m x w x C p dx x C p
∞

= =

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
∑ ∑∫ .     (5.47) 

It is apparent that xk can be written as a linear combination of polynomials up to and 

including the k-th polynomial as: 

xk = An pn
n=0

k

∑ .          (5.48) 

Then we can write: 

  
xk , Cn pn

n= i

j

∑ = Al pl
l=0

k

∑ , Cn pn
n= i

j

∑ .       (5.49) 
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Due to the orthogonality of polynomials we have: 

  
xk , Cn pn

n= i

j

∑ = Al pl
l=0

k

∑ , Cn pn
n= i

k

∑ = xk , Cn pn
n= i

k

∑ = Ci
n= i

k

∑ xk , pn .  (5.50) 

This results in: 

( )
0

,
k

k k
k n n

n i

m x w x dx C x p
∞

=

= +∑∫ .       (5.51) 

Thus, assuming coefficients up to the (k-1)-st have been calculated, we have: 

( )
1

0

,

,

k
k k

k n n
n i

k k
k

m x w x dx C x p
C

x p

∞ −

=

− −
=

∑∫
.       (5.52) 

After we have a pdf approximation corrected up to the j-th moment, we can obtain PFA 

approximation using 

( ) 1
j

n n
n iTHR

PFA w x C p dx
∞

=

⎛ ⎞
≈ +⎜ ⎟

⎝ ⎠
∑∫ .        (5.53) 

In case of a generalized gamma distribution and a correction up to the 4-th moment: 

( )

( ) ( ) ( )

1
4

1
4

0

1 14

4
0

1 1

       , , ,

qx
p na

np
nTHR

q q
inc n inc

n

PFA x e C z x dx
qa qp

THR THRqp C z q p na a

⎛ ⎞∞ −⎜ ⎟− ⎝ ⎠

=

=

⎛ ⎞≈ +⎜ ⎟Γ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
≈ Γ + Γ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑∫

∑
    (5.54) 

where zn are the coefficients of the polynomial p4. Having the tools presented so far, we 

now turn to methods for evaluating noise moments. 

5.3 Evaluation of Moments for Noise 

 In the previous chapter it was shown that the unknown pdf can be approximated by its 

first few moments. The accuracy of the approximation depends on the number of 

moments used, the moment accuracy, as well as the degree of similarity between the 
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model function and the unknown pdf (i.e., the one being modeled). This is important for 

PFA calculation because we are trying to determine the area below the pdf curve at the 

tail. Nonetheless, if the model for fitting is not appropriate, the approximation can be 

significantly biased even if the moments are evaluated with high accuracy. Because the 

weighted sum is a function of random variables, the n-th moment is defined as in (5.22). 

Certainly, the n-th moment can be estimated from simulated data as: 

( )
1

( ) ( ) ( ) ( ) ( )

0

1 ˆ ˆ ˆ ˆ ˆˆ ( ) ( ) (0)
K n

k k k k k
n h v h v hv

k
m P P R T R T R

K
α β γ

−

=

= + + + +∑ ,   (5.55) 

where k is the trial number, and K is the total number of trials. To validate the moment 

estimator, we examine its bias and consistency. Mathematical expectation of the moment 

estimator is 

{ } ( ){ }
( ){ }

1
( ) ( ) ( ) ( ) ( )

0

1 ˆ ˆ ˆ ˆ ˆˆ ( ) ( ) (0)

ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)

.

K n
k k k k k

n h v h v hv
k

n

h v h v hv
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E m E P P R T R T R
K

E P P R T R T R

m

α β γ

α β γ

−

=

= + + + +

= + + + +

=

∑
   (5.56) 

Equation (5.56) shows that the moment estimator is unbiased. In addition, the variance of 

the estimator can be written in the following form 

{ } { } { }

( )

( )

2 2
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( ) ( ) ( ) ( ) ( )
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1
( ) ( ) ( ) ( ) ( )
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=
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⎭
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∑

∑

( ){ }ˆ ˆ ˆ( ) ( ) (0) .
n

h v hvR T R T Rγ+ +

   (5.57) 

Because all trials are independent we have: 
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{ } ( )

( ){ }

21
2 ( ) ( ) ( ) ( ) ( )

2
0

1
( ) ( ) ( ) ( ) ( )

2
,

( ) (

1 ˆ ˆ ˆ ˆ ˆˆ ( ) ( ) (0)

1 ˆ ˆ ˆ ˆ ˆ               ( ) ( ) (0)

ˆ ˆ                          

K n
k k k k k

n h v h v hv
k

K n
k k k k k

h v h v hv
k l
k l

l
h v

E m E P P R T R T R
K

E P P R T R T R
K

E P P

α β γ

α β γ

α

−

=

−

≠

⎧ ⎫⎪ ⎪⎡ ⎤= + + + + +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

+ + + + ×

+

∑

∑

( ){ }
{ } { }

) ( ) ( ) ( )

2 2

ˆ ˆ ˆ( ) ( ) (0)

1 1          .

n
l l l l

h v hv

n n

R T R T R

KE m E m
K K

β γ+ + +

−
= +

 (5.58) 

Finally: 

{ } { } { }( ) { }2 2 21ˆlim lim lim 0n
n n nK K K

Var m
Var m E m E m

K K→∞ →∞ →∞
= − = = .    (5.59) 

Hence, the moment estimator (5.55) is consistent. 

Recall that the plain Monte Carlo requires a large number of iterations for estimating 

moments in order to achieve high accuracy. Moreover, fitting pdf to model functions does 

not lend itself to a reliable variance analysis (like the one given in Chapter 2) and offers 

no guarantee that the result will be unbiased. Regardless of these drawbacks, this 

approach still has the potential to provide an approximation that is reasonably close to the 

true result. More importantly, as shown at the beginning of Chapter 5, the results of 

moment evaluation apply to a wide range of power values in H and V channels, as well as 

various weights. However, to achieve this, a moment needs to be broken into terms as 

given by the multinomial theorem (eq. (5.23)). Then, once evaluated, each term can be 

re-used with different powers and weights. In addition, some of the terms in the above 

sum can be evaluated analytically, while others need to be estimated. Because we are 

using this approach for the noise case, we can concentrate on moment evaluation in such 

case only. 

We shall analyze each moment separately, starting with the first one. It is given by 
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{ } { } { } { }1
ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)h v h v hvm E P E P E R T R T E Rα β γ= + + + + .   (5.60) 

Obviously, the first two terms of expected values are the noise powers in the horizontal 

and vertical channels respectively. The third expected value cannot be determined 

analytically and must be estimated. Finally, the last term can be calculated using formula 

(E.4) given in Appendix E. 

The second moment is represented by the following formula  
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  (5.61) 

Terms { } { } ( ){ }22 2ˆ ˆ ˆ,  ,  and 0h v hvE P E P E R  can be determined using formulas given in 

Appendix A, and E, while { }ˆ ˆ
h v h vE P P N N= . The second term can be calculated as given 

in Appendix F as 

( ) ( ){ } 2 22ˆ ˆ .
1

h v
h v

N NE R T R T
M
+

+ =
−

        (5.62) 

The rest of the terms are to be estimated. The estimator of the second moment is now 
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 (5.63) 

The third moment is expressed as: 
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( ) ( ) ( ){ }
{ (

3 42
1

1 2 3 4

3
, , , 1 2 3 4

3 33 3 3 3 3 2 2 2

22 2 2

6 ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)
! ! ! !

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    ( ) ( ) (0) 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ        ( ) ( ) ( ) ( ) (0)

       

k kkk
h v h v hv

k k k k

h v h v hv h v h v

h h v h h v h hv

m E P P R T R T R
k k k k

E P P R T R T R P P P P

P R T R T P R T R T P R

α β γ

α β γ α α

β β γ

γ

= +

= + + + + + + +

+ + + + +

∑

) (

2 22 2 2 2

2 22 2 2 2

22

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(0) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ       (0) (0) ( ) ( ) (0)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       ( ) ( ) (0) 6 ( ) ( ) (0)

          

h hv v h v v h v

v hv v hv h v hv

h v hv h v h v h v hv

P R P R T R T P R T R T

P R P R R T R T R

R T R T R P P R T R T P P R

α β αβ

α γ αγ β γ

βγ αβ αγ

βγ

+ + + + +

+ + + +

+ + + + +

)}ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) (0) ( ) ( ) (0) .h h v hv v h v hvP R T R T R P R T R T Rαβγ+ + +

 (5.64) 

ˆ n
hP and ˆ k

vP  Appendix A 
2ˆ (0)

m

hvR  Appendix E 
2ˆ ˆ( ) ( )

l

h vR T R T+  Appendix F 
2ˆ ˆ ˆ (0)

mn k
h v hvP P R  Appendix G 

2ˆ ˆ ˆ ˆ( ) ( )
ln k

h v h vP P R T R T+  Appendix H 

Table 5.1 The table relating appendices to moment approximations for some forms. 

The terms which can be evaluated analytically are of the form 

2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)
l mn k

h v h v hvP P R T R T R+  where n, k, l, m ∈ {0, 1, …}. The formulas for these are 

derived in Appendices. The Table 5.1 relates several forms to the appendices in which 

their expected values are derived. The third moment can now be evaluated using the 

following form 
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Thus, the terms in each of the three moments can be divided into the ones that can be 

expressed in a closed form and the ones that are estimated. It is possible to use the plain 

Monte Carlo to estimate these moments. Naturally, it is desirable that the moments are 

evaluated as accurately as possible. The use of the plain Monte Carlo, however, may 

require large number of trials to achieve this. Hence, the question now is whether we can 

improve the accuracy of moment estimates by using some types of the variance reduction 

techniques (Rubinstein 1981). In this particular case, the control variates technique has 

the potential to improve the estimates errors.  The main idea is that one or more control 

variates can be employed to achieve variance reduction by exploiting the correlation 

among the control random variables and the one being estimated. The application of this 

technique is discussed in the next section. 
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5.4 Control Variates for Moment Estimation 

 The method of control variates can be used when a random vector C = (C1, …, Cq) 

with a known mean vector μC  = (μ1, …, μq) is correlated with the random variable X to 

be estimated. The vector of control variates C can be used to construct an unbiased 

estimator of the mean value μX as: 

( ) ( )( ) ( )
1

0

1ˆ
K

T T
X k k

k

X X
K

μ
−

=

= − − = − −∑ C Cβ β C μ β C μ .    (5.66) 

The variance of such estimator is: 
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   (5.67) 

Hence, to determine vector β that minimizes the variance we set up the following 

equation.  

( )( ) ( )( ){ } ( )( ){ }ˆ
2 2

                      0,

TX
X
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E X E

μ
μ

∂
= − − − + − −

∂
=

C C C

β
C μ C μ C μ β

β   (5.68) 

which gives us: 

( )( ){ } ( )( ){ }
1

-1  ,

T

X

C XC

E E X μ
−

= − − − −

=

C C Cβ C μ C μ C μ

Σ σ
     (5.69) 

where σXC is a q-dimensional vector whose components are the covariances between X 

and Cq’s and ΣC
-1 is the covariance matrix of C. The resulting variance reduction of such 

estimator is 
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Let’s discuss how this approach can improve the moment estimates. Let us assume that a 

random variable P is the product of an arbitrary number of jointly normal random 

variables. The expected value of any such product can be evaluated in a closed form 

(Appendix C). Nonetheless, the mathematical expectation of P raised to the fractional 

power cannot be obtained analytically. Instead, P raised to an integer power is used as a 

control variate. For example, let the product to be estimated be E{Pm/n}, where m and n 

are relatively prime (i.e., their greatest common divisor is 1), and m, n ∈ N. Then, we can 

use Pk and Pl as control variates; as a result, we have C = (Pk, Pl), where k ≠ l, and k, l ∈ 

N. Let us now examine the structure of the covariance vector σXC and matrix ΣC
-1, which 

are used to determine the vector β. We have: 
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{ } { } { } { } { }
{ } { } { } { } { }

2 2

1

2 2

,

.

k m n m n k

PC l m n m n l
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    (5.71) 

It is apparent that the covariance matrix ΣC
-1 can be determined exactly, while the 

covariance vector σXC cannot, as it contains the very expression that we desire to 

estimate. Let us assume that we know the pdf of X = Pm (i.e., fX(x)). In such case we can 

obtain the pdf of Y = Pm/n by taking the substitution Y = X1/n: 

( ) ( ) ( ) ( )1

n

n

b b
n n n n

X X
aa

P a Y b P a X b f x dx ny f y dy−< < = < < = =∫ ∫ .  (5.72) 

Thus: 
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( ) ( )1
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n n
P P

f y ny f y−= .         (5.73) 

Now we can find any moment as: 

( )1
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m

m k n k nn
P

E P ny f y dy
∞

− +⎧ ⎫
=⎨ ⎬

⎩ ⎭
∫ .        (5.74) 

The problem is, of course, that we do not know the distribution of Pm. We can, however, 

approximate this distribution using the moment fitting as described previously, and obtain 

the following result 

( ) ( ) 1
j

m n
n n

n i

pdf P w y C p
=

⎛ ⎞
≈ +⎜ ⎟

⎝ ⎠
∑ ,       (5.75) 

where pn is a polynomial of yn, and w(yn) is a weighting function which is in most cases 

the generalized gamma distribution function. This gives us an approximate formula: 

( )1
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1
m jk n k nn

n n
n i

E P ny w y C p dy
∞

− +

=

⎧ ⎫ ⎛ ⎞
≈ +⎨ ⎬ ⎜ ⎟

⎝ ⎠⎩ ⎭
∑∫ .      (5.76) 

Using this formula we can obtain approximations of odd moments of P and use those to 

get vector σXC. Moreover, the formula can also be used for calculation of all moments, in 

which case it produces the exact values for even moments used for obtaining the formula. 

With these tools in hand, we obtain an accurate estimation of the terms in the moment 

expressions. Approximations are given in Appendices that are listed in Table 5.1. We 

proceed now with developing procedure for evaluation of the threshold for a given PFA.
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5.5 Threshold Calculation 

 The threshold calculation is based on the pdf approximation by fitting moments to the 

generalized gamma distribution. Once the parameters of the functions are adjusted so the 

first three moments are matched, the threshold needs to be found such that: 

( ) ( )
1

1
11 ,

qx
p qa

incp
THR

THRPFA x e dx qpaqa qp

⎛ ⎞∞ −⎜ ⎟− ⎝ ⎠
⎛ ⎞

= = Γ ⎜ ⎟⎜ ⎟Γ ⎝ ⎠
∫ .    (5.77) 

Clearly, the THR value cannot be directly determined. Hence an iterative method is 

proposed. We start with an arbitrary THR value and decrease or increase it, in pre-

determined steps, as long as the absolute difference between the obtained and the desired 

PFA is decreasing. Once the difference starts increasing, we deem to be close enough to 

the solution so we can continue using the Newton’s method as: 
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The derivative in the denominator cannot be found using tables, hence we resort to the 

definition. It is 
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  (5.79) 

The derivative is found by decreasing Δ until the limit expression reaches the desired 

accuracy. 
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After the threshold is obtained, the corresponding PFA is evaluated using the 

importance sampling technique. If the difference between the estimated value and the 

desired PFA is larger than a pre-determined accuracy, a correction is needed. The 

corrected threshold is obtained using the modified Newton’s approach presented below 

( ) ( ) ( ) ( ){ }
( )

1
1

,

N d

q

inc

E f WS THR n PFA
THR n THR n

THR n qpa

≥ −
+ = −

⎛ ⎞
⎛ ⎞⎜ ⎟′Γ ⎜ ⎟⎜ ⎟⎝ ⎠
⎝ ⎠

.    (5.80) 

The term E{f(WSN)≥THR(n)} is estimated using the CE technique, and the derivative in 

the denominator is calculated as given in (5.79). Apparently, the slope of a tangent at a 

given threshold value obtained from an approximation is assumed to be close to the 

tangent slope of the true pdf. This assumption may fail, however. The failure of the 

assumption is detected when 

( ) ( ){ }
( ) ( ){ } 0

1
N d

N d

E f WS THR n PFA
E f WS THR n PFA

≥ −
<

≥ − −
.      (5.81) 

When this occurs, the new threshold is found using the straight line approximation as: 
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PFA E f WS THR n
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− ≥
+ = ×
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− − +

  (5.82) 

Several iterations may be needed to determine the threshold that produces the PFA with 

sufficient accuracy. 

5.6 Assessment of Weight Optimization  

The optimal weights, in the weighted sum, for given parameters of SNR, σv, ZDR and 

ρhv are defined by those that maximize POD for a desired PFA. To illustrate how the 
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weighted sum behaves, weights α and β are ranged through a set of values while γ  is 

kept constant. This allows for graphical representation as shown in Figure 5.2. 
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Figure 5.2 3-D representation of the POD vs. α and β for the following γ = 2,  

SNRh = 1.5 dB, σv = 2 m s-1, ZDR = 1 dB, ρhv = 0.96, M = 25, and Nv/Nh = 1. 

Note that in Figure 5.2 the results are almost the same for all PFAs, except that they 

are shifted in the POD value. Consequently, the maximum POD is achieved for the same 

weights in all four cases presented in Figure 5.2. This result indicates that for the given 

parameters, the combination of the weights for the best POD is always the same. The 

only difference is that the maximum value of POD changes and is higher for higher PFA. 
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In this particular case the values α = 1.5 and β = 1 yield the highest PODs which are: 

0.947, 0.968, 0.969, 0.979 for PFAs of 1.2×10-6, 5.2×10-6, 1.2×10-5, 5.2×10-5, 

respectively. In other words, this implies that PFA has no impact on the choice of 

weights. This conclusion is extremely important because it allows us to analyze how 

POD changes for different combinations of weights without performing expensive 

simulations to determine the thresholds for PFA on the order of 10-5 or lower. Simply, we 

can establish the best weights for a higher PFA value (e.g., 10-3 or higher) because these 

weights produce the highest POD for any PFA. The threshold for the desired PFA can 

then be calculated using the iterative process described earlier. Furthermore, depending 

on the accuracy of the approximation, one may even be able to circumvent the simulation 

part and determine the best combination of weights just using the approximation. Such an 

approach would clearly require much less time to execute as it leaves out the simulation 

steps. The accuracy of the approximation is discussed in Appendix K. This assessment 

shows the approximation error to be within 2.9% for M = 25, and PFA of  

10-2. Consequently, all further analysis will be done using the approximation. 

Next we shall investigate how the choice of weights is affected by the SNR  (i.e., SNR 

in H channel). It is shown in Figure 5.3 that the shapes are the same and the maximum of 

POD is reached for the same weight combination for all four different SNRs. This 

indicates that the same weight combination produces the best POD for all SNRs. Thus, 

the SNR need not be taken into account when determining the optimal weights. 
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Figure 5.3 3-D representation of the POD vs. α and β for the following γ = 2,  

σv = 2 m s-1, ZDR = 4 dB, ρhv = 0.96, M = 25, Nv/Nh = 1, and PFA = 10-2. 

Next, let us examine how the spectrum width affects the weights. This is shown in 

Figure 5.4 for the fixed value of γ = 2. The (α,β) weight pairs producing maximum POD 

are (1, 2), (1, 1.5), (1, 0.5), (1, 0.5) for spectrum widths 1, 2, 3, 4 m s-1, respectively. 

Thus, the weights are sensitive to the variation of spectrum width less than 3 m s-1. For 

higher σv (i.e., larger than 3 m s-1), on the other hand, the weights do not appear to be 

affected by the spectrum widths. 
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Figure 5.4 3-D representation of the POD vs. α and β for the following γ = 2,  

SNRh = 0 dB, ZDR = 1 dB, ρhv = 0.96, M = 25, Nv/Nh = 1, and PFA = 10-2. 

The impact of ZDR on the choice of weights is shown in Figure 5.5. It shows that 

different weight choice produces maximum POD at different ZDR values. If possible, a set 

of weights should be chosen so the weighted sum yields balanced results for weather 

returns having a wide range of ZDR values. Alternatively, weights that maximize detection 

of signals with ZDR values that are of most interest can be used. 
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Figure 5.5 3-D representation of the POD vs. α and β for the following γ = 2,  

SNRh = 0 dB, σv = 2 m s-1, ρhv = 0.96, M = 25, Nv/Nh = 1, and PFA = 10-2. 

The sensitivity of the weights to ρhv is inspected in Figure 5.6. Because weather 

signals from H and V channels are highly correlated, the plots are shown for ρhv of 0.99, 

0.98, 0.97, and 0.96. In all four cases the maximum POD is achieved for α = 1 and β = 

1.5 with the estimated detection rate of 95.431%, 95.367%, 95.388%, 95.383% for ρhv 

values of 0.99, 0.98, 0.97, 0.96, respectively. This implies that for weather signal the 

cross-correlation coefficient has miniscule impact on the choice of weights. There are 
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other signals of interest, however, which do not exhibit high correlation between H and 

V. For example, the returns from biological scatterers (i.e., birds and insects), can exhibit 

cross-correlation as low as 0.4. The analysis for such a case is exemplified in Figure 5.7. 

The POD maxima for ρhv = 0.4 is achieved for α = 1.5 and β = 2. Thus, if the detection of 

biological scaterrers is of interest, the effect of the cross-correlation needs to be 

considered. 
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Figure 5.6 3-D representation of the POD vs. α and β for the following γ = 2,  
SNRh = 0 dB, σv = 2 m s-1, ZDR = 1 dB, M = 25, Nv/Nh = 1, and PFA = 10-2. 
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Figure 5.7 3-D representation of the POD vs. α and β for the following γ = 2,  

SNRh = 0 dB, σv = 2 m s-1, ZDR = 1 dB, M = 25, Nv/Nh = 1, and PFA = 10-2. 

The effect of the ratio of the noise powers in H and V channels is demonstrated in 

Figure 5.8. The maximum POD is achieved for α = 1, β = 1.5 for Nv/Nh of 0.9, 1, and 1.1. 

For Nv/Nh of 1.2, the maximum POD is obtained for α = 0.5, β = 1, but compared to the 

case when α = 1, β = 1.5 the difference in POD is extremely small (97.265% compared to 

97.126%). It is evident that the optimal weights depend on the Nv/Nh ratio. 
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Figure 5.8 3-D representation of the POD vs. α and β for the following γ = 2,  

SNRh = 0 dB, σv = 2 m s-1, ZDR = 1 dB, M = 25, ρhv = 0.96, and PFA = 10-2. 
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Figure 5.9 3-D representation of the POD vs. α and β for various γ values, and the 
following SNRh = 0 dB, σv = 2 m s-1, ZDR = 1 dB, M = 25, ρhv = 0.96, Nv/Nh = 1, and  

PFA = 10-2. 

Next we examine how the POD is varied by different γ values in Figure 5.9. The 

maximum POD is achieved for α = 1, β = 1.5, and γ = 2. The difference in POD, 

compared to other weight combinations, appears to be miniscule, however. This may be 

attributed to the fact that the maximum POD is obtained for the PFA of 10-2. For lower 

PFA the difference may be more significant. To validate this assumption, a similar plot 
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for PFA of 10-6 and γ of 1 and 2 is given in Figure 5.10. It shows that the weights α = 1,  

β = 1.5, and γ = 2 yield maximum POD 0.8% higher than the uniform sum. This 

moderate improvement may not be sufficient to show advantage of applying weights. 

Nonetheless, if we compare the two plots in Figure 5.10, the overall POD is higher for  

γ = 2 and is in general more balanced for a wide range of α and β  weights. Because the 

maximum POD producing weight values depend on signal parameters (i.e., σv and ZDR), 

this could imply that setting the weight γ  to 2 might produce better cumulative detection 

rate for various mean values of input samples parameters in V. 
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Figure 5.10 3-D representation of the POD vs. α and β for various γ , and the following 
SNRh = 0 dB, σv = 2 m s-1, ZDR = 1 dB, M = 25, ρhv = 0.96, Nv/Nh = 1, and PFA = 10-6.  

Now we investigate how the number of samples affects the weights. The results are 

summarized in Table 5.2. It shows that the choice of optimal weights is not dependent on 

the number of samples. To further verify the result, the same is shown for Nv/Nh = 0.8269 

in Table 5.3. As expected, the weights do not vary with M. Nonetheless, because the ratio 

Nv/Nh is different, the weights changed accordingly (i.e., α changed from 1 to 1.5). 
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From the 3-D plots a sort of a plateau around the optimal weight combination can be 

observed, where the POD does not depart significantly from the maximum when the 

weights change slightly. This could be significant because, if the max. POD producing 

weights for a wide range of weather parameters are all concentrated within a relatively 

small volume, one set of weights could prove, for all practical purposes, to yield 

detection rate close to maximum over various signal parameters and for a wide range of 

Nv/Nh values. 

M α β γ 
17 1 1.5 2 
27 1 1.5 2 
37 1 1.5 2 
47 1 1.5 2 

Table 5.2 Max. POD weight combination as a function of M for σv = 2 m s-1, ZDR = 1 dB, 
and Nv/Nh = 1. 

M α β γ 
17 1.5 1.5 2 
27 1.5 1.5 2 
37 1.5 1.5 2 
47 1.5 1.5 2 

Table 5.3 Max. POD maximizing weight combination as a function of M for σv = 2 m s-1, 
ZDR = 1 dB, and Nv/Nh = 0.8269. 

So far, we have established that the choice of weights depends on the parameters of 

σv, ZDR and the Nv/Nh. For a radar system, the ratio of powers in H and V channels is slow 

varying and can be considered as a constant over the period of at least one volume scan. 

Consequently, for a given ratio of Nv/Nh, we would like to find the set of weights that 

would produce the best overall detection rate over a wide range of values of σv and ZDR. 

In Figure 5.11 a plot showing how POD changes as σv and ZDR vary is shown. The POD 

is considerably more sensitive to ZDR than to σv variations, which agrees with the 

conclusions drawn from Figure 4.5, and Figure 4.6. The weights used to generate the plot 



 

 91

were adjusted for ZDR = 1 dB and Nv/Nh = 1; hence we would like to examine if adjusting 

weights for other ZDR values can improve the overall POD behavior over a wide range of 

differential reflectivity values.  
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Figure 5.11 3-D representation of the POD vs. variation in σv and ZDR for α = 1, β = 1.5, 
γ = 2, and the following SNRh = 0 dB, M = 25, ρhv = 0.96, Nv/Nh = 1, and PFA = 10-6. 

The weight settings for various ZDR values and for a range of Nv/Nh ratios are given in 

Table 5.4. Listed values for α indicate that the weights for the vertical channel power are 

directly proportional to the SNR in this channel (i.e., lower Nv/Nh ratio indicates higher 

SNR in V channel). This is expected because the weighted sum puts more emphasis on 

the terms with higher SNR to enhance the detection. The weights associated with the 

cross-correlation also appear to be inversely proportional to the Nv/Nh ratio. This can be 

explained by the fact that the weighting scheme attempts to put more accent on this term 

when the overall noise in both channels is smaller. The weight of the term 
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( ) ( )ˆ ˆ
h vR T R T+  exhibits less variation but generally appears to be declining with the 

decrease of the vertical channel SNR. This may be the case because this term is the sum 

of estimates from both H and V channels. When the SNR of V channel is higher, a larger 

weight is applied and vice versa.  

ZDR = 0 dB ZDR = 2 dB ZDR = 4 dB Nv/Nh α β γ α β γ α β γ 
0.5 5 2 4 3 1.5 3 2 1.5 2 
0.55 4.5 2 4 2.5 1.5 3 1.5 1 2 
0.6 3 1.5 3 2.5 1.5 3 1.5 1 2 
0.65 3 2 3 2 1.5 2 1 1 2 
0.7 3 2 3 1.5 1.5 2 1 1 2 
0.75 2 1.5 2 1.5 1.5 2 1 1 1 
0.8 1.5 1.5 2 1 1.5 2 0.5 1 1 
0.85 1.5 1.5 2 1 1.5 2 0.5 1 1 
0.9 1.5 1.5 2 1 1.5 2 0.5 1 1 
0.95 1.5 1.5 2 0.5 1 1 0.5 1 1 

1 1 1.5 2 0.5 1 1 0.5 1 1 
Table 5.4 POD maximizing weights for σv = 2 m s-1. 

It has been established that ZDR has much more impact on the resulting POD than the 

signal coherency. Thus, to examine how various optimal weight combinations (from 

Table 5.4) perform over the range of differential reflectivities, the resulting POD is 

estimated for different Nv/Nh ratios of 1, 0.9, 0.8, and 0.7 in Figure 5.12, and Figure 5.13 

for M of 17 and 52. For comparison, the detection rate of uniform sum is also included. 

Figure 5.12 shows that the uniform sum has balanced performance for all cases, except 

possibly when Nv/Nh is unity. In this case, as shown in Figure 5.12 (a), the weights for 

ZDR of 4 dB may result in significantly better detection when the power in V channel is 

more than 3 dB smaller than that in the H channel, while producing closely the same 

POD for ZDR greater than 3 dB. Figure 5.13 shows the similar trend for the increased 

number of samples (i.e. M is 52). In this case the curves show the performances of all 
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weighted sums to be quite similar up to ZDR of 3 dB, while the difference in PODs 

increases for higher ZDR values. 
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Figure 5.12 POD for different weight combinations and several Nv/Nh ratios as a function 

of varied ZDR, for SNR = 0 dB, M = 17, σv = 2 m s-1, ρhv = 0.96, and PFA = 1.2×10-6. 
Bracketed ZDR value indicates the weight optimization parameter. 
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Figure 5.13 POD for different weight combinations and several Nv/Nh ratios as a function 

of varied ZDR, for SNR = 0 dB, M = 52, σv = 2 m s-1, ρhv = 0.96, and PFA = 1.2×10-6. 
Bracketed ZDR value indicates the weight optimization parameter. 



 

 97

5.7 Implementation Issues 

The weighted sum approach was designed to improve the detection by exploiting the 

fact that the signals are coherent, while the noise is not. Nonetheless, if the measured 

power is substantially higher than the known noise, we can accurately classify it as a 

signal. For example, if only 17 samples are used for estimation, and the measured power 

is 2 dB above noise, the probability of a false detection (i.e., PFA) is only ≈1.2×10-6 (see 

Appendix A). Therefore, for practical implementation, we may want to combine both the 

power and uniform sum based approaches. The apparent arrangement is: 

( )
( ) ( )

1

1 2

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ    ( ) ( ) (0) ,

h

h h v h v hv

P THR OR

P THR AND P P R T R T R THRα β γ

≥

⎡ ⎤< + + + + ≥⎢ ⎥⎣ ⎦

  (5.83) 

where a signal is present if the above Boolean combination is true. To give a formal 

description, we use again the Bernoulli random variable. Let us define: 

( )
( ) ( )

1

1 2

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ     ( ) ( ) (0) ,

h

h h v h v hv

X P THR OR

P THR AND P P R T R T R THRα β γ

= ≥

⎡ ⎤< + + + + ≥⎢ ⎥⎣ ⎦

  (5.84) 

where 

  
X =

1 ⇒ signal present
0 ⇒ signal NOT present
⎧
⎨
⎩

.        (5.85) 

Clearly, PFA = P(X = 1 | only noise is present), and POD = P(X=1 | both signal and noise 

are present). Note that the POD will vary for different values of signal parameters (i.e., 

SNR, ZDR, σv, ρhv). 

Typically the values of THR1, and THR2 are determined by the desired PFA. Thus, we 

would like to express the P(X) in terms of numerical operators as opposed to Boolean 

ones. To do this we use: 
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P( A) OR P(B) = P( A) + P(B) − P( A AND B)
P( A AND B) = P(B | A)P( A).

     (5.86) 

Let us denote the events as: 

( )
( )

( )

1

1

2

ˆ

ˆ 

ˆ ˆ ˆ ˆ ˆ( ) ( ) (0) .

h

h

h v h v hv

A P P THR

A NOT A P P THR

B P P P R T R T R THR

= ≥

= = <

= + + + + ≥

    (5.87) 

Then, 

( )( ) ( )( )     ( ) (   )     P X P A OR A AND B P A P A AND B P A AND A AND B= = + − . (5.88) 

Obviously, events A and Ā are mutually exclusive and we have: 

( ) ( ) ( )( ) ( )   ( )P X P A P A AND B P A P B A P A= + = + ,     (5.89) 

which yields: 

( )
( )
( )

1

2 1

1

ˆ( 1)

ˆ ˆ ˆ ˆ ˆ ˆ                  ( ) ( ) (0)

ˆ                  .

h

h v h v hv h

h

P X P P THR

P P P R T R T R THR P THR

P P THR

α β γ

= = ≥ +

+ + + + ≥ < ×

<

  (5.90) 

If 1
ˆ( ) 1hP P THR< ≈  we can write: 

( )
( )

1

2 1

ˆ( 1)

ˆ ˆ ˆ ˆ ˆ ˆ                  ( ) ( ) (0) .

h

h v h v hv h

P X P P THR

P P P R T R T R THR P THRα β γ

= ≈ ≥ +

+ + + + ≥ <
 (5.91) 

This is valid if the power threshold is set at 2 dB above noise (i.e., only ≈1.2 power 

estimates out of million are larger than N + 2dB). Consequently, if (5.83) is used with the 

THR2 set so that ( ) 5
2

ˆ ˆ ˆ ˆ ˆ( ) ( ) (0) noise only 10h v h v hvP P P R T R T R THRα β γ −+ + + + ≥ =  the 

resultant PFA cannot be greater than 1.12×10-5 (i.e., 10-5 + 0.11749×10-5 < 1.12×10-5). 



 

 99

Moreover, the structure of the weighted sum implies that in the case of noise samples, it 

is dominated by the power estimates (as autocorrelations in sample-time and cross-

correlation between H and V channels are very small). Thus, the statistics of the weighted 

sum for independent samples is similar to the case where only power estimates are used. 

In practice, this implies that the cumulative false alarm rate of this combination is 

practically the same as the larger of the two. This was verified experimentally using 109 

trials and the PFA of 1.0519×10-5 was obtained. Apparently, not much difference as 

opposed to when only the weighted sum is used. The same analysis is done when the 

false alarm rates for both the power threshold and the weighted sum are comparable and 

the outcome was the same (i.e., no significant difference in PFA). In addition, the 

comparisons of PODs are shown in Figure 5.14. It is apparent that for all practical 

purposes there is no difference. Hence, we conclude that these two approaches are 

effectively the same. From the computational point of view, though, using just the 

weighted sum may be more effective. 
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Figure 5.14 POD of the OR combination of power and uniform sum versus the POD of 

the uniform sum only. 
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6. Implementation of Weighted Sum on Real Data  

To demonstrate and assess the performance of the weighted sum, a set of dual-pol 

time series data collected by the KOUN radar is used. This data set was collected on 

03/19/06 using the long PRT with unambiguous range of 466 km, with M = 17, and at 

elevation of 0.48 deg. In a standard operation, this corresponds to the surveillance scan 

with the threshold set to 2 dB above noise power. This threshold will be used in 

subsequent analysis. To simulate the effect of the 3 dB power loss, the noise power was 

doubled in each channel by simply adding the noise samples as: 

  Vh(n) =Vh(n) + Nh(n) and Vv (n) =Vv (n) + Nv (n) ,     (6.1) 

where each noise sample is generated in MATLAB as: 

Nh(n) = sqrt(Nh/2)*(randn(1,1) + j*randn(1,1)); 
Nv(n) = sqrt(Nv/2)*(randn(1,1) + j*randn(1,1)); 

Threshold for each of the investigated weighted sum is set so that the PFA is 1.2×10-6 

(i.e., the same as for the 2 dB power threshold and M = 17). The original “single-pol” 

reflectivity field is presented in Figure 6.1, and the histogram of the SNR distribution in 

the horizontal channel is given in Figure 6.2. Each bar in the histogram is roughly 1 dB 

wide and the first shows the percentage of data with signal power between 2 and 3 dB. 

Hence, the first three bars represent data with power between 2 and 5 dB. These are 

critical because after the transmitted power is halved their returned power falls below the 

legacy 2 dB censoring threshold and thus are lost. The histogram shows that, for the 

given case, out of all detections these data amount to about 8.4%. Adding the additional 

noise (i.e., doubling the noise power), without changing the threshold, yields the 

reflectivity field in Figure 6.3 (a). All detections for this case are classified with respect 

to the “single-pol” case and presented in Figure 6.3 (b). Missed detections are highlighted 
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in red. Data that are detected in both the “single” and the “dual-pol” case are given in 

green. Those that are classified as “significant returns” after doubling the noise, but not 

before, are shown in white (i.e., additional detections). This is equivalent to setting the 

threshold to -1 dB above the noise power in the original case. It is apparent that the 

number of spurious speckles has significantly increased due to the fact that the PFA has 

increased from ≈1.2×10-6 to 0.003. The result when the threshold is elevated to 2 dB 

above the noise level is shown in Figure 6.4. It can be observed that a significant portion 

of the features on the periphery of the phenomena is lost compared to the original 

reflectivity field in Figure 6.1. It is expected that these features will be recovered if the 

weighted sum approach is used. 

 
Figure 6.1 The original “single-pol” reflectivity field. 
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Figure 6.2 The histogram of the SNR distribution in the horizontal channel before the 

noise power is doubled. 

The ratio of H and V noise powers for this data set is Nv/Nh = 0.8269. Thus, for 

implementation, optimal weights (i.e., which produce maximum POD) were found for 

ZDR ranging from 0 to 6 dB. These are shown in Table 6.1. The resulting PODs as a 

function of ZDR for these and the unity weights are evaluated using simulation and are in 

Figure 6.5. As shown at the end of section 5.6, the results are similar for most of the 

weight combinations except for the case of differential reflectivity of ≥ 4 dB. Most of our 

concern is for detection of signals with H power smaller than 2 to 3.5 dB above the noise 

level. At such SNR, noise influences the estimates significantly. Consequently, it seems 

logical that more emphasis ought to be put on detection of signals with lower differential 

reflectivities, simply because the cumulative SNR ratio for such signals is higher; thus 

resulting in more detections and better estimates. Following this rationale, it appears 
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more beneficial to choose weight arrangements that produce better results for lower ZDR 

values than those that put more emphasis on detection of signals with higher ZDR. 

 
(a) 
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(b) 

Figure 6.3 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, but not changing the threshold. 
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(a) 

 
(b) 

Figure 6.4 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and increasing the threshold to 2 dB above the doubled noise 

power. 
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ZDR α β γ 
0 1.5 1.5 2 
1 1.5 1.5 2 
2 1 1.5 2 
3 1 1.5 2 
4 0.5 1 1 
5 0.5 1 1 
6 0.5 1 1 

Table 6.1 POD maximizing weights for Nv/Nh = 0.8269. 
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Figure 6.5 POD for different weight combinations as a function of varied ZDR, and  
SNR = 0 dB, M = 17, σv = 2 m s-1, ρhv = 0.96, Nv/Nh = 0.8269, and PFA = 1.2×10-6. 

Results for the case of α = 1.5, β = 1.5, and γ = 2 are shown in Figure 6.6. In addition, 

the results using the OR combination are shown in Figure 6.7. To asses how change in 

weights influences the performance on real data, the resultant reflectivity fields, and 

detections classifications, are shown in Figure 6.8, to Figure 6.11 for weight values of  

α = 1, β = 1.5, γ = 2, α = 0.5, β = 1, γ = 1, and the uniform weights (i.e., α = 1, β = 1,  
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γ = 1), respectively. Notice that the choice of weight combinations is the same as in 

Figure 6.5. 

 
(a) 
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(b) 

Figure 6.6 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the weighted sum for detection. 
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(a) 

 
(b) 

Figure 6.7 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the OR combination of power and weighted sum for 

detection. 
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(a) 

 
(b) 

Figure 6.8 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the weighted sum for detection. 
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(a) 

 
(b) 

Figure 6.9 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the OR combination of power and weighted sum for 

detection. 
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(a) 

 
(b) 

Figure 6.10 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the weighted sum for detection. 
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(a) 

 
(b) 

Figure 6.11 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the OR combination of power and weighted sum for 

detection. 
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(a) 

 
(b) 

Figure 6.12 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the uniform sum for detection. 
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(a) 

 
(b) 

Figure 6.13 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the OR combination of power and uniform sum for 

detection. 
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A visual comparison of reflectivity fields for various weights indicates that the 

differences are subtle. It can be observed that most of the features on the perimeter (i.e., 

of low reflectivity) have been recovered in all cases. To quantify the performance, the 

ratio of detections is introduced. Let us consider the PPI image as a matrix of size 

360×NRB, where NRB stands for the Number of Range Bins. Let W denote the original 

reflectivity PPI matrix where each element is the power value, in H channel, at the given 

PPI location. Let MN(D) denote the matrix for the case of reflectivity with doubled noise 

power and each element is either 1 or 0 depending on the decision that signal is present at 

a given PPI location or not. D in the brackets denotes the decision test used in 

determining the matrix entries. Then the values in the row termed as the Ratio of total 

detections are calculated as: 

[ ] ( )( )
[ ]( )

2 .*
2

num W NOISE dB MN D
num W NOISE dB

≥ +

≥ +
       (6.2) 

The Greater than operator is binary (1 if true, and 0 if false) and is applied to each 

element in the matrix to produce a new matrix with values of 0 and 1. The operator .* 

acts as an element-wise matrix multiplication (same as in MATLAB). The num operator 

determines the total number of 1s in the matrix. The Ratio of bounded detections is 

obtained as: 

[ ] ( )( )
( )

5 2 .*
5 2

num NOISE dB W NOISE dB MN D
num NOISE dB W NOISE dB

+ ≥ ≥ +

+ ≥ ≥ +
    (6.3) 

This ratio essentially gives the number of range bins that fall below the 2 dB threshold 

due to the 3 dB loss in power, but are still detected using the approach being evaluated. 

The Ratio of additional detections is: 
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[ ] ( )( )
( )

2 .*
2

num W NOISE dB MN D
num W NOISE dB

< +

≥ +
      (6.4) 

This ratio gives the number of bins that are originally censored, but are detected as 

signals using the evaluated detector function. 

The described statistics is summarized in Table 6.2 and Table 6.3, for the weighted 

sum and the OR combination, respectively, as defined in (6.2), (6.3), and (6.4). 

According to the statistics, the best detection of the signals with power smaller than 2 dB 

above noise, was achieved for weights α = 1.5, β = 1.5, and γ = 2 (i.e., 83%), and the 

worst for α = 0.5, β = 1, and γ = 1 (i.e., 79%). The performance for α = 1, β = 1.5, and  

γ = 2 and the uniform sum was practically identical and only ~0.7% worse than the best 

recovery rate. The results in the tables are in agreement with the simulation results and 

both imply that the benefits of the weighted sum are minimal. They also verify that the 

uniform sum produces detection rates almost equal to the maximum ones obtained by 

non-uniform weighting. 

α, β , γ 1.5, 1.5, 2 1, 1.5, 2 0.5, 1, 1 1, 1, 1 
Ratio of total 
detections 0.985014 0.984376 0.981211 0.984358 

Ratio of bounded 
detections 0.827755 0.821095 0.786889 0.820519 

Ratio of additional 
detections 0.021214 0.019522 0.014455 0.018693 

Table 6.2 Real data statistics comparison for various weights in the sum when  
Nv/Nh = 0.8269, and PFA = 1.2*10-6. 

α, β , γ 1.5, 1.5, 2 1, 1.5, 2 0.5, 1, 1 1, 1, 1 
Ratio of total 
detections 0.985215 0.984565 0.981314 0.984482 

Ratio of bounded 
detections 0.829621 0.822791 0.787786 0.821720 

Ratio of additional 
detections 0.021233 0.019541 0.014469 0.018707 

Table 6.3 Real data statistics for the power/weighted sum OR combination when  
Nv/Nh = 0.8269 and PFA = 1.2*10-6. 
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The statistics for power thresholds and uniform sum is given in Table 6.4. Note that 

when the power threshold is -1 dB below noise as well as when power & uniform sum or 

uniform sum only is used, approximately 2.6% and 1.9%, respectively, of the bins that 

initially were censored are detected as signals. In Figure 6.3, Figure 6.12, and Figure 

6.13, these additional detections are highlighted for all three cases. It can be observed 

that the additional detections gained by the uniform sum (as well as those gained by the 

weighted sum) are predominantly located at the perimeter of the weather phenomena. 

This reinforces the hypothesis that the majority of these detections are indeed valid 

weather returns. 

D P≥Nh-1dB P≥Nh+2dB P&UNIFORM SUM UNIFORM SUM 
Ratio of total 
detections 0.982318 0.912253 0.984482 0.984358 

Ratio of bounded 
detections 0.801132 0.141260 0.821720 0.820519 

Ratio of additional 
detections 0.026012 0.000166 0.018707 0.018693 

Table 6.4 Real data statistics for surveillance scan collected on 03/19/06. 

The next case is the scan of the same weather system, where data were collected with 

M = 52, right after the collection with M = 17 (i.e., as part of the same volume coverage 

pattern). Because this is a Doppler scan, both reflectivity and velocity fields are presented 

in Figure 6.14. For Doppler scans the default threshold on all WSR-88Ds is SNR > 3.5 

dB, so it is used as standard for comparisons. After adding noise to the time series data in 

both H and V channels, the reflectivity/velocity field in Figure 6.15 is obtained, as well as 

the corresponding detection classification image. As expected there is apparent loss of 

data compared to the “single-pol” case. To recuperate this lost data, a lower SNR 

threshold of 0.5 dB is applied, and the result is in Figure 6.16. By visual comparison the 

reflectivity/velocity fields in Figure 6.14 and Figure 6.16 appear the same. This is also 
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supported by the lack of missed detections in Figure 6.16 (c). One would, however, 

expect the velocity field to be more cluttered by speckles after lowering the threshold (as 

in the case of the surveillance scan). This, however, does not happen; after lowering the 

threshold to 0.5 dB, the image is still very similar to the one in “single-pol” with the 3.5 

dB threshold. The lack of cluttering from speckles can be explained by examining the 

false alarm rates for 3.5 and 0.5 dB thresholds. These are very low, 2.3368×10-26 and 

2.1429×10-10, respectively. Lowering the threshold to 0.5 dB (with M = 52) significantly 

increases the rate of false alarms compared to the case where 3.5 dB threshold is applied. 

Nonetheless, the probability of false detections still remains so low and therefore, no 

significant speckling in the reflectivity or the velocity fields is apparent. 

 
(a) 
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(b) 

Figure 6.14 Reflectivity (a) and mean velocity (b) fields for SNR threshold of 3.5 dB 
with the number of samples per velocity estimate M = 52. 

 
(a) 
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(b) 

 
(c) 

Figure 6.15 Reflectivity (a) and velocity (b) fields with the classification of detections (c) 
obtained after doubling the noise power, but not changing the threshold. 
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The field obtained after application of threshold based on the weighted sum, with  

α = 1.5, β = 1.5, and γ = 2 is now discussed. The velocity field obtained is shown in 

Figure 6.17. Obviously the area of “useful” data is noticeably larger than in the cases 

where power thresholds were applied. This is not surprising because the false alarm rate 

for the “best” sum is 1.2×10-6 which is much higher than the false alarm rate for any of 

the power thresholds. Consequently, the probability of detecting the signal is also 

relatively high compared to the probability of detection for the cases based on power 

thresholds. For comparison, the same is done when the uniform sum is used, and the 

results are shown in Figure 6.18. Moreover, the performance of the power threshold 

approach for PFA of 1.2×10-6 (using eq. (A.11) in Appendix A we get power threshold to 

be -1 dB) is demonstrated in Figure 6.19. The statistical comparison between the power 

thresholds with weighted and uniform sum is given in Table 6.5. 

 
(a) 
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(b) 

 
(c) 

Figure 6.16 Reflectivity (a) and mean velocity (b) fields with the classification of 
detections (c) obtained by lowering the threshold to 0.5 dB above the artificially doubled 

noise. 
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(a) 

 
(b) 
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(c) 

Figure 6.17 Reflectivity (a) and mean velocity (b) fields with the classification of 
detections (c) obtained after doubling the noise power, and using the weighted sum for 

detection. 

 
(a) 
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(b) 

 
(c) 

Figure 6.18 Reflectivity (a) and mean velocity (b) fields with the classification of 
detections (c) obtained after doubling the noise power, and using the uniform sum for 

detection. 
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The statistics presented in Table 6.5 indicates that the performance of both weighted 

sum and uniform sum is extremely similar. The weighted sum produces miniscule 

improvement of 0.08% in additional detections (some improvement is expected as 

weighted sum is tuned to the actual ratio Nv/Nh). By setting the power threshold to -1 dB 

above the noise (so the PFA equals that of the weighted/uniform sum), we achieve the 

performance of a uniform sum when detecting signals that fall below the threshold of 3.5 

dB after doubling the noise power (i.e., bounded detections). The difference occurs when 

comparing detections of range bins that fall below the power threshold before doubling 

noise (i.e., in “single-pol”) but are detected after the noise has been doubled (i.e., in 

“dual-pol”) using one of the improved detection schemes (i.e., additional detections). 

This comparison shows that the uniform sum detects 3.3% more than the power based 

thresholding given the same PFA. 

 
(a) 
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(b) 

 
(c) 

Figure 6.19 Reflectivity (a) and mean velocity (b) fields with the classification of 
detections (c) obtained by lowering the power threshold to -1 dB above the artificially 

doubled noise. 
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To better understand to how gains in detections would benefit real operations, and 

particularly in the case of the Doppler scan, the range unfolded velocities are shown in 

Figure 6.20 to Figure 6.24. The previous scan with M = 17 and a long PRT with 

unambiguous range of 466 km was used for unfolding. The Figure 6.20 was obtained 

from the original data using surveillance scan for range unfolding. A range location, that 

contains several overlaid echoes, is deemed resolved only if a signal exists that is 5 dB 

larger than the sum of the returns from all other trips. 

Decision 
criteria P≥Nh+3.5dB P≥Nh+0.5dB P≥Nh-1dB WEIGHTED 

SUM 
UNIFORM 

SUM 
PFA 2.34×10-26 2.14×10-10 1.2*10-6 1.2*10-6 1.2*10-6 
Ratio of 
total 
detections 

0.956255 0.996208 0.999842 1.0 1.0 

Ratio of 
bounded 
detections 

0.055355 0.675441 0.740029 0.741758 0.741758 

Ratio of 
additional 
detections 

0 0.003514 0.016587 0.050202 0.049198 

Table 6.5 Real data statistics for Doppler scan with M = 52, and weights α = 1.5, β = 1.5, 
γ = 2. 

Also, if a signal is detected at a range location, but all other range locations, from which 

potential overlaid echoes can originate in Doppler scan, are classified as noise; such 

range location is deemed resolved. To simulate the dual-pol situation with the unaltered 

censoring scheme, Figure 6.21 is obtained using exactly the same processing as for 

Figure 6.20, except that noise was doubled. By visual comparison, one notices the 

expected loss of features, especially at ranges beyond 150 km (i.e., unambiguous range of 

the Doppler scan). Power based thresholds were relaxed to -1 and 0.5 dB for surveillance 

and Doppler scan, respectively, to obtain Figure 6.22. Visual comparison reveals that 

lowering power thresholds produces the results similar to the original “single-pol” case. 
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This conclusion is supported by the statistics in Table 6.6. Namely, if we add the values 

from the third and the fifth row in column three (i.e., total and additional detections), we 

obtain the overall number of detections of approximately 100% of those in the “single-

pol”. Note that even though the ratio of total detections is ~99%, the overall ~100% is 

obtained by adding the additional detections that amount to ~1%. Small difference in 

detection distribution can be attributed to statistical uncertainty. The detection threshold 

for power is even further relaxed to -1 dB in Doppler scan to attain the PFA of 1.2×10-6, 

which resulted in the velocity field presented in Figure 6.23. Both visual evaluation and 

the statistics in Table 6.6 suggest a gain of 0.7% with respect to the total body of 

detections in the “single-pol”. It is interesting to note that in both Figure 6.22, and Figure 

6.23 no apparent speckle cluttering is present even though the rate of false detections in 

surveillance scan is 0.003 (i.e., power threshold is lowered to -1 dB above noise). This is 

because the PFA in the corresponding Doppler scan remains low. Thus, all of the false 

detections that occur during the surveillance scan are discarded. 
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Figure 6.20 Original range unfolded velocity field for SNR thresholds of 2 and 3.5 dB in 

surveillance and Doppler scans, respectively. Sample numbers M are 17, and 52 in 
surveillance and Doppler scans, respectively. 

Finally, Figure 6.24 shows the resulting velocity field where the uniform sum was used 

for detection in both scans. Visual comparison to the “single-pol” image in Figure 6.20 

shows noticeable increase in detections. This is further quantitatively verified by statistics 

in Table 6.6, which shows that the addition of the ratios of total and additional detections 

amounts to 2.7% more detections than in “single-pol” case. 
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Figure 6.21 Unfolded velocity field obtained after doubling the noise power, but not 

changing the thresholds. 

In Table 6.7 to Table 6.10 real data statistics (for data collected on 03/09/06) 

dependent on the Nv/Nh ratio for the same weight combinations as in Figure 5.12 and 

Figure 5.13 is given. The results in Table 6.7 show that the weights α = 1, β = 1.5, and  

γ = 2 produce the most detections when compared to the single-pol case, while the 

uniform sum yields almost the same performance when Nv/Nh equals one and M is 17. 

When M equals 52 the Table 6.7 shows the performance to be practically the same for all 

weight combinations. In Table 6.8, Table 6.9, and Table 6.10 the statistics for the Ratio of 
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bounded detections, when M is 17, shows the increase of difference in performance 

between the best weighted and the uniform sum as the ratio Nv/Nh decreases (i.e., from 

0.3% to 2% for Nv/Nh of 0.9 and 0.7). When compared to the curves in Figure 5.12 we 

notice that the weighted sum producing the best performance in real data statistics is the 

one yielding the maximum POD at ZDR of 0 dB in Figure 5.12. This can be explained by 

the fact that, for the fixed horizontal channel SNR, the SNR in the vertical channel is 

inversely proportional to ZDR resulting in better detections of signals with lower 

differential reflectivities. Thus, using weights that put more stress on detection of signals 

with lower ZDR values appear to produce better overall results. Moreover, the curves in 

Figure 5.12 show the difference between the uniform sum POD and the maximum POD, 

produced by the weighted sum, at 0 dB to be increasing with the Nv/Nh ratio decrease. 

This is in agreement with the real data statistics presented in Table 6.7 to Table 6.10. 

When the number of samples M increases to 52 the real data statistics shows no 

significant difference in performance among different weighted sums (including the 

uniform sum). This is in agreement with the simulation results because the curves 

presented in Figure 5.13 show no significant difference in POD at ZDR values smaller 

than 3 dB. 
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Figure 6.22 Unfolded mean velocity field obtained by lowering the threshold to -1 dB, in 

surveillance, and to 0.5 dB in Doppler scan, above the artificially doubled noise. 
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Figure 6.23 Unfolded mean velocity field obtained by lowering the threshold to -1 dB, in 

both the surveillance and Doppler scan, above the artificially doubled noise. 

D P≥Nh+3.5dB P≥Nh+0.5dB P≥Nh-1dB UNIFORM SUM 
PFA 2.34×10-26 2.14×10-10 1.2*10-6 1.2*10-6 
Ratio of total 
detections 0.947989 0.989575 0.991954 0.995178 

Ratio of bounded 
detections 0.044919 0.637883 0.691226 0.724477 

Ratio of 
additional 
detections 

0.003204 0.007643 0.014769 0.033545 

Table 6.6 Statistics for range unfolded Doppler scan collected on 03/19/06. 
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Figure 6.24 Unfolded mean velocity field obtained after doubling the noise power, and 

using the uniform sum for detection. 

α, β , γ M 1.5, 1.5, 2 1, 1.5, 2 0.5, 1, 1 1, 1, 1 
17 0.977888 0.978784 0.977130 0.978486 Ratio of total 

detections 52 1 1 1 1 
17 0.752096 0.759877 0.741156 0.754620 Ratio of bounded 

detections 52 0.741758 0.741758 0.741758 0.741758 
17 0.014702 0.014360 0.011847 0.013726 Ratio of additional 

detections 52 0.046716 0.047320 0.046451 0.046462 
Table 6.7 Real data statistics comparison for various weights in the sum when 

M = 17/52, Nv/Nh = 1, and PFA = 1.2*10-6. 
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α, β , γ M 1.5, 1.5, 2 1, 1.5, 2 0.5, 1, 1 1, 1, 1 
17 0.982271 0.981958 0.979384 0.981994 Ratio of total 

detections 52 1 1 1 1 
17 0.798968 0.794607 0.765031 0.795916 Ratio of bounded 

detections 52 0.741758 0.741758 0.741758 0.741758 
17 0.017547 0.017293 0.013153 0.016527 Ratio of additional 

detections 52 0.048520 0.048644 0.047178 0.047896 
Table 6.8 Real data statistics comparison for various weights in the sum when 

M = 17/52, Nv/Nh = 0.9, and PFA = 1.2*10-6. 
 
α, β , γ M 1.5, 1.5, 2 1, 1.5, 2 0.5, 1, 1 1, 1, 1 

17 0.985693 0.985348 0.981885 0.984679 Ratio of total 
detections 52 1 1 1 1 

17 0.833819 0.831230 0.795289 0.824392 Ratio of bounded 
detections 52 0.741758 0.741758 0.741758 0.741758 

17 0.021804 0.019748 0.014786 0.018842 Ratio of additional 
detections 52 0.050867 0.050606 0.048542 0.049746 

Table 6.9 Real data statistics comparison for various weights in the sum when 
M = 17/52, Nv/Nh = 0.8, and PFA = 1.2*10-6. 

 
α, β , γ M 1.5, 1.5, 2 1, 1, 2 3, 2, 3 1, 1, 1 

17 0.989157 0.989518 0.989234 0.984679 Ratio of total 
detections 52 1 1 1 1 

17 0.874128 0.877505 0.874646 0.857314 Ratio of bounded 
detections 52 0.741758 0.741758 0.741758 0.741758 

17 0.026079 0.024452 0.028573 0.021606 Ratio of additional 
detections 52 0.052318 0.051242 0.052369 0.050852 

Table 6.10 Real data statistics comparison for various weights in the sum when 
M = 17/52, Nv/Nh = 0.7, and PFA = 1.2*10-6. 

 
Furthermore, another case of weather phenomena is presented. The original 

reflectivity field of data collected on 04/24/07 is shown in Figure 6.25 and the histogram 

of the SNR distribution in the horizontal channel is given in Figure 6.26. In this case 

about 10% of all the detections in the “single-pol” have SNR between 2 and 5 dB. The 

censored reflectivity field using the same threshold but with additional noise is shown in 

Figure 6.27. After elevating the threshold to 2 dB above the noise, the field is presented 

in Figure 6.288. Using the uniform sum yields Figure 6.29. The statistics is given in 

Table 6.11. We notice that the Ratio of bounded detections has decreased for uniform 
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sum compared to the statistics in Table 6.4. This can be explained by the fact that the 

ratio Nv/Nh increased from 0.8269 to 0.9378, thus the overall amount of noise in H and V 

channel is larger. 

D P≥Nh-1dB P≥Nh+2dB P&UNIFORM SUM UNIFORM SUM 
Ratio of total 
detections 0.977623 0.893241 0.963456 0.961887 

Ratio of 
bounded 
detections 

0.798316 0.143310 0.687322 0.679773 

Ratio of 
additional 
detections 

0.041272 0.000192 0.024048 0.023965 

Table 6.11 Real data statistics for surveillance scan collected on 04/24/07. 

 
Figure 6.25 The original “single-pol” reflectivity field. 
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Figure 6.26 The histogram of the SNR distribution in the horizontal channel before the 

noise power is doubled. 
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(a) 

 
(b) 

Figure 6.27 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, but not changing the threshold. 
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(a) 

 
(b) 

Figure 6.28 Reflectivity field obtained after doubling the noise power, and increasing the 
threshold to 2 dB above the doubled noise power. 
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(a) 

 
(b) 

Figure 6.29 Reflectivity field (a) and classification of detections (b) obtained after 
doubling the noise power, and using the uniform sum for detection. 
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As in the previous case, a Doppler scan with M = 52 and the unambiguous range of 

150 km was executed after the surveillance scan. The range unfolded velocities of the 

original field are presented in Figure 6.30. After the noise is artificially doubled, the field 

in Figure 6.311 is obtained. Lowering thresholds to -1 dB in surveillance and to 0.5 dB in 

Doppler scan, above the artificially doubled noise, produces the image in Figure 6.32. 

Further lowering the threshold in Doppler scan to -1 dB, to obtain the same false alarm 

rate as used for the uniform sum, produces the image in Figure 6.33. When uniform sum 

is used for signal detection, one gets velocity field in Figure 6.34. The statistics is given 

in Table 6.12. Compared to the statistics given in Table 6.6, we notice that the Ratio of 

bounded detections is higher even though the overall amount of noise is larger (i.e., the 

ratio Nv/Nh is higher). This could be due to the nature of this event where the resolved 

bounded detections in single-pol are simply more coherent which makes them more 

susceptible to detection by the uniform sum after increasing the noise power.   

D P≥Nh+3.5dB P≥Nh+0.5dB P≥Nh-1dB UNIFORM SUM
PFA 2.34×10-26 2.14×10-10 1.2*10-6 1.2*10-6 
Ratio of total 
detections 0.922536 0.987867 0.988286 0.989894 

Ratio of bounded 
detections 0.053373 0.844268 0.849786 0.866426 

Ratio of additional 
detections 0.003863 0.025328 0.031937 0.072861 

Table 6.12 Statistics for range unfolded Doppler scan collected on 04/24/07. 
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Figure 6.30 Original range unfolded velocity field for SNR thresholds of 2 and 3.5 dB in 

surveillance and Doppler cuts, respectively. Sample numbers M are 17, and 52 in 
surveillance and Doppler scans, respectively. 
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Figure 6.31 Unfolded velocity field obtained after doubling the noise power, but not 

changing the thresholds. 
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Figure 6.32 Unfolded mean velocity field obtained by lowering the threshold to -1 dB, in 

surveillance, and to 0.5 dB in Doppler scan, above the artificially doubled noise. 
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Figure 6.33 Unfolded mean velocity field obtained by lowering the threshold to -1 dB, in 

both the surveillance and Doppler scan, above the artificially doubled noise. 
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Figure 6.34 Unfolded mean velocity field obtained after doubling the noise power, and 

using the uniform sum for detection. 
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7. Real-Time Implementation of the Weighted Sum  

 Real-time system implementation of the weighted/uniform sum requires a different 

approach for threshold computation, which needs to be based on the real-time 

measurement of the ratio Nv/Nh and the number of pulses M in the operational mode. This 

can be achieved possibly by following the procedure described in section 5.5. 

Unfortunately, the mathematics behind the implementation of such a procedure is very 

involved, and the execution times are unacceptable for real-time systems. A viable 

solution could be look-up tables, where the threshold is pre-computed for each M value 

available in the operational mode and for a given PFA. Different radar systems, however, 

have different values of the ratio Nv/Nh, which may vary over time. Let us examine the 

sensitivity of a PFA to various values of Nv/Nh. The analysis for the uniform sum is 

shown in Figure 7.1 for several values of M. The curves show that the PFA is extremely 

sensitive to Nv/Nh. Moreover, the results suggest that if the desired PFA accuracy of 

±10% is required, the system ratio Nv/Nh must not differ more than 0.5% from the ratio 

for which the threshold is calculated. More important, though, is how much the resulting 

POD varies as the actual ratio Nv/Nh departs from the one for which the threshold is 

calculated. This is shown in Figure 7.2 and Table 7.1. These show that the POD is 

moderately sensitive to the variation in Nv/Nh. For instance, for M of 17 a 2% drop of the 

Nv/Nh produces only 0.5% loss in the detection rate. Moreover, the loss in POD for the 

same change in noise power ratio decreases as M increases. For M = 52 the detection rate 

is merely 0.05% smaller for the 0.02 drop in the Nv/Nh. To further examine how this 

reflects on the detection of real signals, the following experiment is performed. The 

actual measured ratio of Nv/Nh is 0.8269. In order to assess the performance for various 
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values of Nv/Nh, additional noise power is introduced in the V channel as follows. Let Δ 

be the amount by which we want the Nv/Nh to be skewed (i.e., the desired difference 

between the Nv/Nh ratio for which the threshold is given and the true one). Then the 

additional noise power x, in the V channel, to obtain the desired ratio is 

  

Nv

Nh

+ Δ =
Nv + x
2Nh

⇒ x = Nv + 2ΔNh .        (7.1) 

The results of various Δ are given in Table 7.2 and Table 7.3, for M = 17, and M = 52, 

respectively. These results agree with the simulation results in Table 7.1. 
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Figure 7.1 Uniform sum PFA sensitivity to change in the ratio Nv/Nh for threshold 

adjusted for PFA of 1.2×10-6, and the unity ratio Nv/Nh. 
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Figure 7.2 Uniform sum POD sensitivity to change in the ratio Nv/Nh for threshold set to 

PFA of 1.2×10-6, for the unity ratio Nv/Nh, and signal parameters SNR = 0 dB,  
σv = 2 m s-1, ZDR = 1 dB, ρhv = 0.96. 

The previous analysis implies that for each M, an efficient method for threshold 

computation based on the measured Nv/Nh ratio, should be devised. The results in Figure 

7.3 exhibit the threshold as function of the Nv/Nh ratio for M = 17 and PFA = 1.2×10-6. 

The circles denote the thresholds for Nv/Nh ranging from 0.5 to 1 with the step of 0.05. 
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The dashed line is the least squares fit, to the data (denoted by circles), using function 

xBeA+Cx, where x = Nv/Nh, and the coefficients A, B, and C are obtained as described in 

Appendix L. As an assessment of the interpolation quality, red square markers are placed 

on top of the interpolation curve. These represent the estimated thresholds for Nv/Nh ratio 

ranging from 0.6 to 0.98 with the step of 0.02. This shows that the least square fitted 

curve is an excellent approximation and can be used to efficiently calculate the threshold 

for any ratio of noise powers in H and V channels. Moreover, when the fitting function 

coefficients are found for the unity noise power in H channel and the desired PFA, the 

threshold for any system can be obtained by plugging the measured Nv/Nh ratio into the 

function and multiplying the output with the measured Nh. Notice that the fitting function 

found for the unit Nh and the Nv/Nh ratio range of [1-ε, 1], where ε ∈ [0, 1] (i.e., when Nv 

< Nh), can be reused for the case when Nh/Nv ∈ [1-ε, 1] (i.e., when Nv > Nh) by simply 

swapping the places of Nh and Nv. The threshold is then found as 

( ) ( )
( )

( )
( )

min , min ,
max , · ·exp ·

max , max ,

B

h v h v
h v

h v h v

N N N N
THR N N A C

N N N N
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.   (7.2) 

Coefficients for some M values used in operation are given in Table 7.4. 

Δ Nv/Nh -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 
Δ POD 
(M=17) -2.28×10-3 -4.57×10-3 -6.91×10-3 -9.19×10-3 -1.15×10-2 -1.39×10-2 

Δ POD 
(M = 32) -1.44×10-3 -2.86×10-3 -4.5×10-3 -5.84×10-3 -7.65×10-3 -9.11×10-3 

Δ POD 
(M = 52) -2.45×10-4 -4.71×10-4 -6.9×10-4 -9.28×10-4 -1.16×10-3 -1.41×10-3 

Table 7.1 The estimated drop in uniform sum POD vs. the drop in the ratio of Nv/Nh for 
threshold set to PFA of 1.2×10-6, for the unity ratio Nv/Nh, and signal parameters  

SNR = 0 dB, σv = 2 m s-1, ZDR = 1 dB, ρhv = 0.96. 
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Δ 0 -0.01 -0.02 -0.05 -0.1 -0.2 
Ratio of total 
detections 0.984366 0.983747 0.983924 0.983573 0.982610 0.980850

Ratio of bounded 
detections 0.822027 0.814692 0.814696 0.812835 0.800011 0.782148

Ratio of additional 
detections 0.021714 0.021760 0.021615 0.020041 0.018912 0.015892

Table 7.2 The uniform sum detections vs. the difference between the actual ratio of Nv/Nh 
and the one the threshold was adjusted for, in case of M = 17, and PFA of 1.2×10-6. 

Δ 0 -0.02 -0.05 -0.1 -0.2 -0.4 
Ratio of total 
detections 1 1 1 1 1 1 

Ratio of bounded 
detections 0.741758 0.741758 0.741758 0.741758 0.741758 0.741758

Ratio of additional 
detections 0.471704 0.466731 0.457801 0.451406 0.437871 0.404143

Table 7.3 The uniform sum detections vs. the difference between the actual ratio of Nv/Nh 
and the one the threshold was adjusted for, in case of M = 52, and PFA of 1.2×10-6. 
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Figure 7.3 Least squares approximation using xBeA+Cx yielding function that takes the 

Nv/Nh ratio as an input and outputs threshold for PFA = 1.2×10-6. 
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M/PFA 5×10-7 6×10-7 7×10-7 8×10-7 9×10-7 1×10-6 1.1×10-6 1.2×10-6

A 1.4207 1.4156 1.4127 1.4137 1.4071 1.4020 1.3988 1.3975
B -0.1047 -0.1027 -0.1001 -0.0947 -0.0961 -0.0965 -0.0957 -0.093910 
C 0.6079 0.6062 0.6030 0.5968 0.5990 0.5999 0.5994 0.5973
A 1.3904 1.3873 1.3762 1.3697 1.3709 1.3668 1.3653 1.3615
B -0.0859 -0.0825 -0.0863 -0.0873 -0.0823 -0.0821 -0.0802 -0.080311 
C 0.5857 0.5821 0.5872 0.5888 0.5832 0.5833 0.5811 0.5816
A 1.3534 1.3473 1.3443 1.3395 1.3410 1.3349 1.3338 1.3298
B -0.0767 -0.0758 -0.0736 -0.0731 -0.0681 -0.0697 -0.0676 -0.067912 
C 0.5774 0.5771 0.5745 0.5745 0.5687 0.5710 0.5684 0.5693
A 1.2242 1.2281 1.2252 1.2134 1.2204 1.2084 1.2048 1.2036
B -0.0595 -0.0517 -0.0494 -0.0549 -0.0459 -0.0525 -0.0526 -0.051116 
C 0.5650 0.5551 0.5530 0.5606 0.5496 0.5583 0.5587 0.5570
A 1.2201 1.2175 1.2099 1.1990 1.1965 1.1936 1.2064 1.2039
B -0.0402 -0.0381 -0.0395 -0.0439 -0.0425 -0.0419 -0.0300 -0.029317 
C 0.5404 0.5369 0.5399 0.5468 0.5456 0.5450 0.5285 0.5285
A 1.1271 1.1217 1.1149 1.1103 1.1056 1.1040 1.1087 1.1026
B -0.0351 -0.0353 -0.0359 -0.0364 -0.0369 -0.0356 -0.0292 -0.031921 
C 0.5405 0.5406 0.5433 0.5439 0.5453 0.5437 0.5356 0.5396
A 1.0785 1.0733 1.0728 1.0703 1.0678 1.0644 1.0648 1.0622
B -0.0141 -0.0142 -0.0109 -0.0097 -0.0088 -0.0089 -0.0064 -0.006225 
C 0.5180 0.5181 0.5145 0.5133 0.5125 0.5129 0.5098 0.5100
A 1.0457 1.0408 1.0378 1.0352 1.0326 1.0313 1.0282 1.0280
B -3.77e-3 -3.42e-3 -2.56e-3 -1.53e-3 -9.05e-4 5.05e-4 3.24e-4 2.19e-328 
C 0.5064 0.5067 0.5055 0.5046 0.5041 0.5025 0.5031 0.5009
A 1.0227 1.0232 1.0189 1.0148 1.0099 1.0090 1.0068 1.0098
B -9.29e-3 -5.25e-3 -5.11e-3 -5.29e-3 -6.4e-3 -4.8e-3 -4.32e-3 -2.64e-429 
C 0.5171 0.5118 0.5122 0.5129 0.5147 0.5127 0.5125 0.5072
A 0.9939 0.9966 0.9869 0.9916 0.9907 0.9872 0.9847 0.9848
B -1.21e-3 4.3e-3 4.25e-4 5.99e-3 8.1e-3 7.71e-3 7.02e-3 9.02e-332 
C 0.5103 0.5028 0.5089 0.5005 0.4986 0.4994 0.4994 0.4970
A 0.9472 0.9462 0.9430 0.9422 0.9409 0.9374 0.9354 0.9350
B 4.74e-3 7.63e-3 8.14e-3 1.01e-2 1.14e-2 1.09e-2 1.14e-2 1.27e-237 
C 0.5062 0.5030 0.5026 0.5001 0.4986 0.4996 0.4993 0.4976
A 0.9312 0.9431 0.9516 0.9339 0.9391 0.9365 0.9361 0.9352
B 0.0197 0.0317 0.0414 0.0297 0.0373 0.0371 0.0388 0.039841 
C 0.4873 0.4710 0.4588 0.4737 0.4661 0.4662 0.4646 0.4634
A 0.9271 0.9382 0.9343 0.9375 0.9125 0.9247 0.9221 0.9155
B 0.0288 0.0399 0.0393 0.0441 0.0277 0.0395 0.0393 0.035943 
C 0.4754 0.4604 0.4609 0.4542 0.4773 0.4625 0.4630 0.4677
A 0.9022 0.9014 0.8983 0.9041 0.9064 0.8942 0.8955 0.8969
B 0.0275 0.0301 0.0304 0.0372 0.0416 0.0340 0.0372 0.039446 
C 0.4801 0.4768 0.4765 0.4679 0.4633 0.4734 0.4700 0.4665
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A 0.8782 0.8715 0.8579 0.8564 0.8729 0.8735 0.8745 0.8572 
B 0.0404 0.0377 0.0299 0.0310 0.0464 0.0480 0.0508 0.0394 52 
C 0.4673 0.4699 0.4806 0.4793 0.4602 0.4573 0.4543 0.4704 
A 0.8368 0.8422 0.8406 0.8431 0.8411 0.8359 0.8368 0.8342 
B 0.0265 0.0330 0.0347 0.0385 0.0389 0.0369 0.0396 0.0388 56 
C 0.4871 0.4778 0.4766 0.4713 0.4709 0.4741 0.4716 0.4722 
A 0.8352 0.8348 0.8319 0.8338 0.8319 0.8207 0.8252 0.8252 
B 0.0405 0.0430 0.0429 0.0469 0.0467 0.0405 0.0451 0.0467 60 
C 0.4686 0.4659 0.4656 0.4610 0.4606 0.4700 0.4636 0.4618 
A 0.8377 0.8412 0.8236 0.8336 0.8210 0.8276 0.8238 0.8246 
B 0.0538 0.0588 0.0485 0.0576 0.0505 0.0567 0.0552 0.0576 63 
C 0.4528 0.4457 0.4607 0.4476 0.4588 0.4497 0.4515 0.4492 
A 0.8202 0.8211 0.8107 0.8160 0.8100 0.8085 0.8121 0.8052 
B 0.0441 0.0474 0.0422 0.0478 0.0448 0.0456 0.0498 0.0461 64 
C 0.4663 0.4619 0.4696 0.4616 0.4652 0.4648 0.4593 0.4646 
A 0.8056 0.8211 0.7950 0.7969 0.8031 0.8024 0.7897 0.7985 
B 0.0525 0.0673 0.0492 0.0532 0.0594 0.0602 0.0521 0.0606 70 
C 0.4568 0.4381 0.4615 0.4575 0.4489 0.4475 0.4588 0.4487 
A 0.7601 0.7510 0.7447 0.7379 0.7324 0.7542 0.7433 0.7718 
B 0.0615 0.0586 0.0530 0.0519 0.0488 0.0668 0.0599 0.0827 87 
C 0.4477 0.4544 0.4577 0.4630 0.4667 0.4423 0.4524 0.4216 
A 0.7150 0.7596 0.7450 0.7438 0.7495 0.7417 0.7495 0.7407 
B 0.0285 0.0663 0.0573 0.0592 0.0634 0.0593 0.0662 0.0610 88 
C 0.4912 0.4429 0.4554 0.4551 0.4462 0.4525 0.4427 0.4505 

Table 7.4 Parameters for the uniform sum threshold calculation as THR = max(Nh,Nv)·  
(min(Nh,Nv)/max(Nh,Nv))B·exp(A+C·min(Nh,Nv)/max(Nh,Nv)). 

When the batch mode(5) is used, there are cases in which only several pulses with long 

PRT are transmitted (i.e., surveillance). For example, only 6 pulses are used for 

surveillance in the batch mode of VCP 11. If power based censoring is used with the 

threshold of 3.5 dB above the noise power, the rate of false detections can be obtained 

using eq. (A.11) in Appendix A, which gives the PFA of 1.1078×10-4. The coefficients 

for least squares fit, for such case, are given in Table 7.5. 

                                                 
5 This is mode where several long PRT pulses are followed by a large number of short PRT ones 
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M/PFA 5×10-5 6×10-5 7×10-5 8×10-5 9×10-5 1×10-4 1.1×10-4 1.2×10-4

A 1.4783 1.4664 1.4758 1.4558 1.4507 1.4463 1.4424 1.4425 
B -0.1114 -0.1114 -0.0975 -0.1054 -0.1027 -0.1011 -0.0991 -0.09566 
C 0.6228 0.6240 0.6050 0.6168 0.6151 0.6126 0.6105 0.6047 

Table 7.5 Parameters for threshold calculation as THR = max(Nh,Nv)·  
(min(Nh,Nv)/max(Nh,Nv))B·exp(A+C·min(Nh,Nv)/max(Nh,Nv)). 

Similarly, when 8 pulses are used, the resulting false alarm rate is 1.1713×10-5. The 

coefficients for the fit are given in Table 7.6. 

M/PFA 7×10-6 8×10-6 9×10-6 1×10-5 1.1×10-5 1.2×10-4 1.3×10-4 1.4×10-4

A 1.4396 1.4429 1.4383 1.4358 1.4296 1.4170 1.4263 1.4067 
B -0.0965 -0.0890 -0.0878 -0.0857 -0.0863 -0.0931 -0.0822 -0.09478 
C 0.6016 0.5918 0.5908 0.5881 0.5898 0.5983 0.5850 0.6012 

Table 7.6 Parameters for threshold calculation as THR = max(Nh,Nv)·  
(min(Nh,Nv)/max(Nh,Nv))B·exp(A+C·min(Nh,Nv)/max(Nh,Nv)). 
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8. Summary and Conclusions 

A number of different approaches for thresholding spectral moment and polarimetric 

data aiming at optimal detection were developed and assessed using both simulations and 

real data. Initially, a detection scheme within the framework of the classical probability 

theory was developed. It was concluded that the classical likelihood-ratio test (which 

yields the best possible detection rate) is not practical for implementation, in real-time, on 

current systems due to excessive computational requirements. Therefore, alternative 

approaches tailored for real-time implementation, based on intermediate computations 

used for computing Doppler spectral moments and polarimetric variables, were 

investigated. A promising scheme that directly sums the powers as well as auto- and 

cross-correlations produces the high rate of detection. It is termed the “uniform sum” and 

its performance was compared to the likelihood-ratio. The analysis indicates that the 

uniform sum has satisfactory performance but it still falls somewhat short of the best 

possible detection rate produced by the maximum likelihood approach. One of the 

possible reasons is that the maximum likelihood approach utilizes the information about 

the signal velocity and the cross-correlation phase for detection, in addition to powers, 

absolute values of autocorrelations and the cross-correlation used in the uniform sum. 

Thus, more information about the signal is used for detection in case of the maximum 

likelihood method than in the uniform sum approach. In reality, though, we have no prior 

knowledge about the signal velocity and the cross-correlation phase (as these are the 

parameters we need to measure). Additionally, detection using the signal velocity and 

cross correlation phase has detrimental effect as the detection rate produced by the 

maximum likelihood method rapidly declines if the actual signal velocity and the cross-
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correlation phase deviate from the values that the likelihood-ratio detector is tuned to. 

The uniform sum, on the other hand, is not limited by this issue. It is ascertained that the 

performance of the uniform sum, when detecting weather signals with high correlation 

between H and V components, depends mostly on the SNR in the horizontal and the 

vertical channel and to a lesser extent on the spectrum width. Moreover, compared to the 

power thresholds, the uniform sum exhibits more stable detection rates with varying σv. 

This is because the variance of the power estimates declines with increasing σv producing 

better detection rates for signals that are less coherent, and vice versa. The uniform sum 

estimates, however, balance out this phenomenon by using the autocorrelation 

measurements that have higher values for strongly coherent signals, thus offsetting the 

mean of uniform sum away from the threshold, effectively producing less variation in 

detection for various spectrum widths. Secondly, comparison to maximum likelihood 

method may imply that the uniform sum does not achieve the best possible detection rate 

given the signal information embedded in it. Consequently, it is speculated that the 

detection can be improved by appropriately weighting the terms in the uniform sum. This 

approach was investigated and it was shown that the weighting produces marginal 

improvements compared to the uniform sum. 

Further, the guidelines for operational implementation of the uniform sum for 

detection were developed. Given the desired rate of false detections, the threshold value 

is dependent on the number of samples M and the ratio of noise powers in the horizontal 

and the vertical channel. The procedure for calculating the thresholds based on these 

parameters is devised and described. It involves assessing the probability rates of rare 

events for which no analytical probability distribution function can be obtained. Due to 
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this, Monte Carlo simulations with variance reduction techniques are used for threshold 

calculation yielding the procedure that is mathematically and computationally extremely 

intensive. Thus, it is recommended that the results be presented in a form of a look-up 

table with entries for each number of samples and the desired false alarm rate. The table 

contains coefficients which, when plugged in the appropriate formula along with the 

measured noise powers in horizontal and vertical channel, produce the threshold for the 

desired false detection rate. 

This research is motivated by the desire to improve detection on dual-polarized 

weather radars. It was prompted by the 3 dB SNR loss in radars that transmit (and 

receive) simultaneously electromagnetic waves at horizontal and vertical polarizations. 

The forthcoming dual polarization upgrade of the WSR-88D network will employ this 

technique. Thus the goal is to mitigate the effects of this loss in sensitivity. The uniform 

sum exhibited significant improvement in signal detection rate compared to the legacy 

power-based censoring, hence it presents a viable solution for enhancing the signal 

detection capabilities in dual-polarization weather radars. 

From the research work presented in this dissertation, the following topics are 

suggested for future study: 

1. Similar approach utilizing the signal coherency along-sample time (i.e., 

autocorrelation) can be derived for single-polarization weather radars. The sum, in 

this case, would consist of the power and the autocorrelation absolute value 

estimates. These may be weighted for improved performance. Similar analysis 

ought to be performed to produce the threshold values. 
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2. Analysis of signal detection for oversampled signals where additional coherency 

in range can be used to enhance the detection. The absolute value of the lag 1 

correlation in range can be added as the additional term in the sum. This may have 

the potential to enhance the detection because the coherency in range for 

oversampled signals is very stable. In case of oversampled signals, though, the 

SNR is decreased as opposed to non-oversampled case because of the increased 

receiver bandwidth. Thus, care should be taken when devising the detection 

scheme so that the maximum possible improvement can be achieved by using the 

correlation in range. 

3. Investigate the possibility of signal detection in the spectral domain. The natural 

approach to detection in the spectral domain would be to utilize the periodogram. 

The signal power is concentrated in a few coefficients as opposed to the noise that 

is evenly spread across the entire spectrum; thus, the largest power spectrum 

coefficient can be used for comparison to some threshold. When working with 

signals from dual-polarized radar it makes sense to work with the cross-spectrum 

in order to utilize the cross-correlation among H and V samples. The cross-

spectrum is found as ( ) ( ) ( )*ˆ ˆ ˆ
hv h vA k A k A k= , where ( )ˆ

hA k  and ( )ˆ
vA k  are the 

Fourier coefficients obtained from samples in horizontal and vertical channels, 

respectively. 

In general, this work explored the use of partial coherency in signals to enhance 

detection in presence of noise. Principles and approaches developed during the course of 

the research are not limited to dual-polarized weather radars and can be applied (with 
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some modification) to any case where sensing of partially coherent signals is of interest 

(e.g., single-polarized radars, sodars, lidars, etc.). 
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Appendix A 

PFA Calculation for Power Based Signal Detection 

 The requirement of signal censoring for weather surveillance radars is that PFA is 

sufficiently small so that false detections do not clutter the PPI images. Moreover, 

because meteorological radars deal with distributed targets, missing 5 to 10 out of 100 is 

an acceptable trade-off for achieving low PFA. Consequently, calculation of PFA for a 

given threshold requires integral evaluation at the tail of pdf. This makes Monte Carlo 

methods extremely time consuming and makes it imperative to know the pdf in a 

functional form. 

It is a well known fact that the sum 

1

0

M

m
m

X X
−

=

= ∑ ,          (A.1) 

of M independent exponentially distributed random variables Xm with: 

( )1
1 , 0

;
0 , 0

ye y
f y

y

θ

θ θ
−

−
⎧ ≥⎪= ⎨
⎪ <⎩

,          (A.2) 

has gamma distribution. For completeness the proof is given as follows. 

Proof: The moment generating function for each Xm is: 

( ) ( ) 11
mXM t tθ −= − .          (A.3) 

Hence, 

( ) ( ) ( )
1

0
1

m

M
M

X X
m

M t M t tθ
−

−

=

= = −∑ .        (A.4) 

This is the same as the moment generating function for gamma distribution with 

parameters: 
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( ) ( )
1; ;  for 0

1 !

x
M

M

ef x M x x
M

θ

θ
θ

−
−= >

−
.       (A.5) 

The formula used for power estimate is: 

1

0

1ˆ
M

k
k

P P
M

−

=

= ∑ ,           (A.6) 

with the mean and variance P and P2/M, respectively. Equating these values with the 

mean and the variance for (A.5) (i.e., Mθ and Mθ2) gives θ = P/M from which we get: 

( ) ( )
1; ;  for 0

1 !

Mp
P

M M
N M

ef p M P M p p
P M

−

−= >
−

,      (A.7) 

which after replacing P with the noise power N gives us the following PFA for a certain 

threshold as a function of THR: 

( ) ( )

1

; ,
1 !

M Mp
N

inc
THR

M M MPFA M THR p e dp THR M
N M N N

−∞
−⎛ ⎞ ⎛ ⎞= =Γ⎜ ⎟ ⎜ ⎟⋅ − ⎝ ⎠ ⎝ ⎠∫ ,   (A.8) 

where Γinc(x,α) is the incomplete gamma function defined as: 

( ) ( )
11, t a

inc
x

x e t dtα
α

∞
− −Γ =

Γ ∫ .          (A.9) 

We can express THR as a function of N as: 

( )101 10 dBTHRTHR N= + ,          (A.10) 

where THRdB is the threshold expressed in dB relative to the noise power N (i.e., THRdB = 

10log10(THR/N)). Note that in operation, the known (measured) noise power is always 

subtracted from the estimate. Hence, the effective threshold for (A.6) is as above. Now 

we can calculate the PFA for power threshold as: 

( ) ( )10 10; 1 10 1 10 ,dB dBTHR THR
incPFA M N M M⎡ ⎤ ⎡ ⎤⋅ + = Γ ⋅ +⎣ ⎦ ⎣ ⎦ .    (A.11) 
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If we put the power threshold to be 2 dB above the noise level this gives us low PFA of 

only 1.1749×10-6. If the threshold is lowered to -1 dB above noise the PFA increases to 

0.003. If we desire to have PFA to be 10-5, then the threshold needs to be set to 1.4183 dB 

above noise. 

In the remainder of this appendix we also find the general moment expression for 

noise power estimates. We have: 

( ) { } ( )ˆ ˆ
0

ˆ1  and  
M n

n
nP P

t

P dM t t E P M t
M dt

−

=

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

,      (A.12) 

which gives 
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In general: 
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1
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Appendix B 

Use of Gamma Distribution and Generalized Laguerre Polynomials for pdf 
Approximation and Moment Interpolation 

Gamma distribution is defined as: 

1 if 0,
( ) ( 1)

0 if 0.

xx e x
f x

x

α θ

αθ α

−

+

⎧
>⎪= Γ +⎨

⎪ <⎩

         (B.1) 

It is known fact that the mean and the variance of this distribution are: 

( )
( )2 2

1
1 .

m α θ
σ α θ

= +
= +

           (B.2) 

Knowing this we can express the parameters α and θ in terms of m and σ2 as: 

2 2

2

1
.

m
m

α σ
θ σ
+ =

=
           (B.3) 

Thus, if the mean and the variance of a pdf are known we can approximate it with the 

gamma distribution. If matching to more than just the first two moments is desired, an 

error correction must be applied as described in Chapter 10. When the weighting function 

is gamma distribution, to achieve error correction we turn to generalized Laguerre 

polynomials which are defined as: 

( ) ( )( )

!

x n
x n

n n

x e dL x e x
n dx

α
α α

−
− += .        (B.4) 

The associated Laguerre polynomials are orthogonal over [0,∝) with respect to the 

weighting function xαe −x: 

( ) ( )( ) ( )

0

( 1)
!

x
n m nm

ne x L x L x dx
n

α α α α δ
∞

− Γ + +
=∫ .       (B.5) 

The generalized Laguerre polynomial of degree n is: 
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The first five generalized Laguerre polynomials are: 
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Apparently, if we use gamma approximation as previously shown the first two moments 

of the approximation will be the same as those of the true pdf. Unfortunately, this is not 

valid for higher moments. Let’s say we want to perform error correction up to the n-th 

moment. Let our approximation function be: 

( )
1

0
( )

( 1)

x n

k k
k

x e xpdf f x C L
α θ

α
αθ α θ

−

+
=

⎛ ⎞≈ = ⎜ ⎟Γ + ⎝ ⎠
∑ ,       (B.8) 

where Ck are coefficients which need to be determined so that mk = m’k (where mk is true 

pdf k-th moment, and m’k is the approximation k-th moment) for k = 0,…,n. 

For f(x) to be pdf it must satisfy: 

0

1 ( ) 1f x dx
∞

⋅ =∫ .          (B.9) 

Apparently, 1 = L0
(α)(x/θ) so we write: 
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which after taking x/θ = t becomes 
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Using (B.5) we get: 

0 0
0

1 ( 1)1 ( ) 1
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To find C1: 
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(B.13) 

Apparently, from (B.2) we have C1 = 0. Following the same approach we also get C2 = 0. 

This is expected as gamma distribution parameters are set so that the first two moments 

are the same as those of true pdf, hence do not need correction. Notice that because 

Laguerre polynomials are orthogonal to each other and each xk is represented uniquely as 

a linear combination of Ln
(α) ‘s where n ≤ k, the value of each Ck influences only the 

moments of order greater than or equal to k. This enables for the moment correction in a 

step-wise manner, where the values obtained in each stage have no bearing on the values 

yielded by previous steps. To demonstrate this let us find the value of C3. 
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where A0 = 1, A1 = -3, and A2 = 6. Then: 
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Finally we have: 
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Following this procedure we can perform error correction up to the n-th moment. Listed 

below are coefficient values for error correction up to the 5-th moment: 
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General coefficient is: 
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Taking into account that C0 = 1, and C1, C2 = 0 the approximation expression with error 

corrected up to the n-th moment is: 
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Given the approximation (B.19) we can now interpolate the moments as described in 

section 5.4. Substituting y = x1/2 and using formula we get: 
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Thus the moment approximation formula is: 
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General expression that we need to solve is: 
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Let us do the following substitution: 
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Thus we get: 
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Finally: 
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In order to approximate using an exponential distribution, we use the previous 

derivation by noting that if we set α = 0 and θ = m, gamma distribution becomes 

exponential with the mean m. Because exponential distribution has only one degree of 

freedom the correction starts from the second moment. Then we have: 
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where each coefficient is found as: 
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Appendix C 

Use of Generalized Gamma Distribution for pdf Approximation and Moment 
Interpolation 

The generalized gamma distribution is given as (Stacy 1962): 

( ) ( )

1

1

if 0

0 if 0

qx
p a

p

x e xf x qa qp
x

⎛ ⎞−⎜ ⎟− ⎝ ⎠
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⎪ <⎩

 .         (C.1) 

This distribution has three degrees of freedom hence if matching to more than the first 

three moments is required the correction needs to be performed. Unfortunately, this 

distribution does not have the family of polynomials that are orthogonal with respect to it. 

Consequently, orthogonal polynomials must be derived following the procedure given in 

section 5.2. To do this, we need to define the inner product as: 

( ) ( ) ( ) ( ) ( )
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1

0

,

qx
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p

x ef x g x f x g x dx
qa qp
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=
Γ∫ .       (C.2) 

Because in our case f(x) and g(x) are polynomials it is convenient to note that: 

( )
( )
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1

1
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qx
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n n n
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qp qnx ex x dx a
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= =

Γ Γ∫        (C.3) 

Then, the inner product of two polynomials is carried by multiplying them to obtain new 

polynomial in which each variable power of n is replaced by (C.3). This provides an 

avenue for efficiently evaluating inner products. Despite of this, the derivation of higher 

order polynomials and the correction coefficients proves extremely involved. Because of 

that, it is done with the aid of the MATLAB symbolic toolbox. In that regard, all further 
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formulas in this chapter will be given in MATLAB format. The procedure is described 

next. 

Let us introduce the following notation: 

G = gamma(q*p);              
G1 = gamma(q*p+q);             
G2 = gamma(q*p+2*q);            
G3 = gamma(q*p+3*q);            
G4 = gamma(q*p+4*q);            

        G5 = gamma(q*p+5*q);             (C.4) 
G6 = gamma(q*p+6*q);            
G7 = gamma(q*p+7*q);            
G8 = gamma(q*p+8*q);            
G9 = gamma(q*p+9*q);            
G10 = gamma(q*p+10*q);           

First we set symbolic variables as: 

>> syms x a G G1 G2 G3 G4 G5 G6 G7 G8 

Then we choose the zeroth and the first polynomials as: 

>> p0 = 1 

>> p1 = x - a*G1/G 

Then we need to find the coefficient b2 as: 

>> collect(x*p1*p1) 

Replace the powers of x as in the Table C.1. 

x^6 a^6*G6/G 
x^5 a^5*G5/G 
x^4  a^4*G4/G 
x^3 a^3*G3/G 
x^2 a^2*G2/G 
x a*G1/G 

Table C.1 Variable replacement. 
We get: 

>> t0 = a^3*G3/G-2*a^2*G2/G*a*G1/G+a*G1/G*a^2*G1^2/G^2 

Then: 
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>> collect(p1*p1) 

Again replace the powers of x to get: 

>> t1 = a^2*G2/G-2*a*G1/G*a*G1/G+a^2*G1^2/G^2 

The b2 coefficient is then found as: 

>> b2 = simplify(t0/t1) 

The similar procedure is then followed to obtain c2. It goes as: 

>> collect(x*p1*p0) 

Because p0 equals one: 

>> c2 = a^2*G2/G-a*G1/G*a*G1/G 

Get the p2 polynomial as: 

>> p2=collect(simplify((x-b2)*p1-c2*p0)) 

>> p2 = x^2+(-a*G3*G+G2*a*G1)/(G2*G-G1^2)*x+(a^2*G3*G1-a^2*G2^2)/(G2*G-

G1^2); 

The polynomial p3 is obtained in a similar manner as: 

>> collect(x*p2*p2) 

Replace powers of x to obtain t0. 

>> collect(p2*p2) 

Replace powers of x to obtain t1. 

Get b3 as: 

>> b3 = simplify(t0/t1) 

Then, 

>> collect(x*p2*p1) 

Replace powers of x to obtain t0. 
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>> collect(p1*p1) 

Replace powers of x to obtain t1. 

Get c3 as: 

>> c3 = simplify(t0/t1) 

Get p3 as: 

>> p3=collect(simplify((x-b3)*g2-c3*g1)) 

By now the expression for the third polynomial has grown so large and we shall omit the 

expression itself because it does not contribute to the clarity of the procedure description. 

We calculate the fourth polynomial next (using the same procedure already described for 

the first three polynomials). The C4 correction coefficient is now: 

( )
( )

4
4

4 4
4

4

,

qp q
m a

qp
C

x p

Γ +
−

Γ
=  .         (C.5) 

Thus, we need to calculate the inner product in the denominator. This is done as: 

>> collect(x^4*p4) 

Replace powers of x to obtain t0. Then, 

>> C4 = (m4 - a^4*G4/G)/simplify(t0) 

We could continue by finding the p5 and C5, but it is the experience of the author that the 

correction, in MATLAB, for moments beyond the 4-th fails due to the rounding errors. 

Hence, when the general gamma distribution is used for approximation of the correction 

only up to the 4-th moment is numerically possible. 

The approximation function is now: 

( ) ( ) ( )( )

1

1

4 41

qx
p a

p

x ef x C p x
qa qp

⎛ ⎞−⎜ ⎟− ⎝ ⎠

≈ +
Γ

.        (C.6) 



 

 180

Let us now analyze how to achieve the interpolation of odd moments. Substituting y = 

x1/2 we get: 

( ) ( ) ( )( ) ( ) ( )

1 1
2 2

2 1 2 1 4
2 2

4 4 4 4
0

2 1 2 1

q qy y
a ap p

k
pp p

k

y e y ef y C p y C c k y
qa qp qa qp

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

=

⎛ ⎞≈ + = +⎜ ⎟Γ Γ ⎝ ⎠
∑ ,  (C.7) 

where cp4(k) are the coefficients of the polynomial. Then the n-th moment is: 

( ) ( )

( ) ( ) ( )

1
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2 1 4
2

4 4
00

4
22 2

4 4
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2 1

2 2   .

qy
ap

k
n pp
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n n k k
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k

y em C c k y dy
qa qp

n nq p q p k
a C c k a y

qp qp

⎛ ⎞
−⎜ ⎟⎜ ⎟∞ − ⎝ ⎠

=

+

=

⎛ ⎞≈ +⎜ ⎟Γ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞Γ + Γ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠≈ +
Γ Γ

∑∫

∑

    (C.8)
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Appendix D 

Gaussian Random Variable Product Mathematical Expectation 
In Papoulis (2002) (pg. 258) it is shown that the product of four jointly normal 

random variables with zero mean is: 

 { }1 2 3 4 12 34 13 24 14 23E VV V V C C C C C C= + +        (D.1) 

where Cij = E{ViVj}. In our applications, however, we encounter cases where we desire to 

evaluate the mathematical expectation of the product of six or more jointly normal 

random variables. Following the same procedure as in Papoulis (2002), it can be proved 

that in general: 

{ }
1 2 11 n nn m m m mE V V C C

−
= ∑… … ,        (D.2) 

where the sum in this particular case denotes the sum of all products 
1 2 1n nm m m mC C

−
…  

obtained by taking all possible n/2-combinations of the elements of the set 

A={(m1,m2),…,(mn-1,mn)} such that m1 ≠ m2 ≠ … ≠ mn. The set A is obtained by taking all 

possible 2-combinations from the set {1,…,n}. 

Proof: From Papoulis (2002) we have (pg. 257, eq. 7-60): 

( ){ }1 1

1 1

1exp
2

n n
n n

j V V
m k mk

m k

E e Cω ω ω ω+ +

= =

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑∑… .     (D.3) 

We expand exponentials on both sides of  (D.3) and show explicitly only the terms 

containing the product ω1…ωn: 
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( ){ } ( ){ }
( ) ( )

( ) { }

( )
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… … …
…
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… …

   (D.4) 

Because ωmωkCmk = ωkωmCkm, we can write the double summation term as: 

( )2

1 1 1 , ,

2
n n n n

m k mk k kk m k mk
m k k m k m k

C C Cω ω ω ω ω
= = = ≠

= +∑∑ ∑ ∑ .     (D.5) 

The second term denotes the sum of all elements ωmωkCmk, where each (m,k) is a two 

element combination (i.e., 2-combination) from the set {1,…,n}. Because we are 

interested only in terms containing the product ω1…ωn we can write: 

( )
( ) ( )

( )
( )

( )
( )

( ) ( )

( )
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−
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∑

∑

… …

… …

…

…

(D.6) 

Again, we are interested only in terms containing the product ω1…ωn, hence we have li = 

1 (i=1,…,n/2). Note also that in the above formula not all cases when li = 1 will have the 

product ω1…ωn as some of the subscripts values in ω will repeat. Thus, we choose only 

the terms where all ω subscripts are different. Finally, to single out the terms with the 

product ω1…ωn we write those as: 
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( )
1 2 1

2
1

1 1

1exp 1
2 n n

n n n

m k mk n m m m m
m k

C C Cω ω ω ω
−

= =

⎧ ⎫
− = + − +⎨ ⎬
⎩ ⎭

∑∑ ∑… … … …,   (D.7) 

where each {(m1,m2)…(mn-1,mn)} is a n/2-combination of the elements taken from the set 

of all possible 2-combinations of the set {1,…,n} such that m1 ≠ m2 ≠ … ≠ mn. This 

proves (D.2). 

In particular, for n = 6 we have: 

{ }1 2 3 4 5 6 12 34 56 12 35 46 12 36 45

13 24 56 13 25 46 13 26 45

14 23 56 14 25 36 14 26 35

15 23

                              
                              
                              

E VV V V V V C C C C C C C C C
C C C C C C C C C
C C C C C C C C C
C C

= + + +

+ + +
+ + +

46 15 34 26 15 36 45

16 34 25 16 23 45 16 24 35                              .
C C C C C C C

C C C C C C C C C
+ + +

+ +

     (D.8) 

We deal with complex random variables and the form we encounter is { }* * *
1 2 3 4 5 6E VV V V V V . 

The weather radar voltage sample is of the form (Doviak and Zrnić 1993): 

k kj j
k k kV s e n eθ α= + ,         (D.9) 

where sk and nk are the signal and the noise amplitudes, respectively. Both are 

independent Rayleigh distributed random variables. Uniformly distributed random 

variables αk and θk represent signal and noise phases, respectively. Let us now consider: 

{ } { } ( ){ } { } ( ){ }k l k lj j
k l k l k lE V V E s s E e E n n E eθ θ α α+ += + .    (D.10) 

We claim that: 

{ } 0k lE V V = , because ( ){ } 0k ljE e β β+ = .       (D.11) 

for every two uniformly distributed random variables βk and βl between [–π, π]. 

Proof: The resultant pdf of the sum γ = βk + βl is: 

Case 1: If k = l 
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( )
2
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b b

k k k
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a bP a b P d dβ β β γ
π π

⎛ ⎞< < = < < = =⎜ ⎟
⎝ ⎠ ∫ ∫ .    (D.12) 

Hence, the sum is uniformly distributed between [–2π, 2π]. Then we have: 

( ){ } { }
2 2 2
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1 0
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k l

j j
j j j e eE e E e e d

j

π π π
β β γ γ
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π π
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Case 2: If k ≠ l 

( )
( )2

1 1
22

b b

k l k
a a

P a b d d d
γ π

γ π

β β β γ γ
ππ

+

−

< + < = =∫ ∫ ∫ .      (D.14) 

Hence, the sum is uniformly distributed between [–π, π]. Then we have: 

( ){ } { } 1 0
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j j
j j j e eE e E e e d

j

π π π
β β γ γ

π

γ
π π

−
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= = = =∫ .      (D.15) 

Using (D.8) we write: 

{ }* * *
1 2 3 4 5 6 12 34 56 12 36 45 14 23 56 14 25 36

16 34 25 16 23 45                                .

E VV V V V V C C C C C C C C C C C C

C C C C C C

= + + + +

+
   (D.16) 

Similarly, 

{ }
( )
( )

* * * *
1 2 3 4 5 6 7 8

12 34 56 78 34 58 67 36 45 78 36 47 58 38 56 47 38 45 67

14 32 56 78 32 58 67 36 25 78 36 27 58 38 56 27 38 25 67

16 32 54 78 32 58 47 34 25 78 34

     

     

     

E VV V V V V V V

C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C

=

+ + + + + +

+ + + + + +

+ + +( )
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18 32 54 76 32 56 47 34 25 76 34 27 56 36 54 27 36 25 47     .

C C C C C C C

C C C C C C C C C C C C C C C C C C C

+ + +

+ + + + +

 (D.17) 

and, 
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{ }
( )
( )

* * * * *
1 2 3 4 5 6 7 8 9 10

12 34 56 78 9,10 56 7,10 89 58 67 9,10 58 69 7,10 510 78 69 5,10 67 89

36 54 78 9,10 54 7,10 89 58 47 9,10 58 49 7,10 5,10 78 49 5,10 47 89

38 5

       

      

E VV V V V V V V V V

C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C
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 (D.18) 

Apparently, it does not appear profitable to proceed any further. As previously shown, in 

case of complex samples we combine only complex conjugates with the ones that are not. 

Thus we can modify (D.2) as: 

{ }
( )

{ }

1 2 / 2 1 / 2

1 / 2

2,4, ,
* *

1 2 1 1 3 ( 3) ( 1)
, ,

n n

n

n

n n m m n m n m
Perm m m

E VV V V C C C C
−− − −= ∑

…

…
… …      (D.19) 

where the sum in this particular case denotes the sum of all possible products 

1 2 /2 1 /21 3 ( 3) ( 1)n nm m n m n mC C C C
−− −…  where each m1,m2,…,mn/2-1,mn/2 is a n/2-permutation of the 

elements of the set {2, 4, 6,…,n}. 
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Appendix E 

Noise Moment Computation for ( )ˆ 0
n

hvR  

The pdf for ( )ˆ 0hvR  is given by (Jong-Sen Lee et al. 1994, eq. 32): 

 ( )
( )( )
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11
4 2M M
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h vh v

M x Mxf x K
N NM N N

+

−+

⎛ ⎞
= ⎜ ⎟⎜ ⎟Γ ⎝ ⎠

,      (E.1) 

where KM-1 is the modified Bessel function of the second kind. Using the infinite sum 

identity for KM-1 we can express f(x) as: 
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     (E.2) 

Consequently, the general moment expression is: 
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     (E.3) 

After taking the variable substitution 2 h vt Mx N N=  and solving the integral, the 

general moment expression becomes: 
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  (E.4) 

The above formula was programmed in MATLAB as: 

k = 1:mn; 
m_R0Nhv = zeros(1,mn); 
for m=0:17 

m_R0Nhv = m_R0Nhv+... 
4*sqrt(Nh*Nv).^k./(gamma(M)*2.^(M+k+1).*M.^k).*sqrt(pi/2).*... 
2^(-m).*exp(gammaln(M+k-m+1/2)-gammaln(m+1)).*exp(gammaln(M-
1+m+1/2)-... 
gammaln(M-1-m+1/2)); 

end 

where mn is the number of desired moments to be calculated, and m stands for the term 

number in the (E.4) sum. It was established that if m > 18 MATLAB gives NaN as a 

result. This is most likely due to the overflows/underflows in the computation. 

Nevertheless, it appeared that taking the first 17 terms in the sum yields outputs that do 

not change even when the number of terms in the sum is increased. There is no certain 

way to verify the accuracy of all the results yielded by the (E.4) formula. We know for 

certain, though, that for the noise case the exact formula for the second moment is: 

( ){ }2

2
ˆ 0 h v

hv
N Nm E R

M
= = .         (E.5) 

For the values Nh = 3.4174e-006, Nv = 2.8259e-006, M = 17, the above formula yields m2 

= 5.680724e-013, while (E.4) gives m2 = 5.681313e-013. These two results are in good 

agreement which gives us confidence in other values obtained using (E.4). 
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In case really high accuracy is needed we shall derive the exact formula 

for ( ){ }2ˆ 0
k

hvE R . 

We have: 
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(E.6) 

We now proceed by attempting to derive the recursion formula by examining how pairing 

of Vh(m0) sample with each other sample in horizontal channel affects the samples in 

vertical channel. 
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Notice that all terms on the right side of (E.7) have the same expected values. Let us now 

calculate the general term: 
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   (E.8) 

Thus, 

( ){ } ( ){ }2 2 2ˆ ˆ ˆ0 0
k k

hv h hv v
kE R N E R P
M

−
= .       (E.9) 

After applying this formula recursively we get: 

( ){ } { } ( )2

2 1

1 !! !ˆ ˆ0
!

k k k k k
hv h v h vk k

M kk kE R N E P N N
M M M−

+ −
= = .    (E.10) 

Knowing even moments one can, due to the numerical stability, choose to use the 

polynomial approximation to obtain odd moments. Further, these can be used for 

enhanced estimation using control variates (as described in section 5.4). It is the 

experience of the author that the polynomial approximation using gamma distribution 

with error correction up to the 5-th moment yields satisfactory results. 
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Appendix F 

Evaluation of Noise Moments for ( ) ( )ˆ ˆ n

h vR T R T+  

The evaluation when n is even can be performed analytically. To evaluate odd 

moments we can apply the approach given in section 5.4. Hence, we shall calculate the 

even powers and use those to find an approximation to the ( ) ( )( )2ˆ ˆ
h vpdf R T R T+ , 

which can be used to approximate ( ) ( )( )ˆ ˆ
h vpdf R T R T+ , and hence all other odd 

moments. These approximations can be used for enhanced odd moment estimation using 

control variates. To make it consistent with the notation in section 5.4 we have: 

( ) ( ) ( ) ( )
2 1

2ˆ ˆ ˆ ˆ    and    =h v h vP R T R T Y P R T R T= + = + .     (F.1) 

We now proceed by finding the moments: 

( ) ( ){ } ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ){ }

22 * *
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2
* *
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* *

1ˆ ˆ 1 1
1

                                                          1 1

ˆ ˆ ˆ ˆ                           

        

M

h v h h v v
m

M

h h v v
n

h v h v

E R T R T E V m V m V m V m
M

V n V n V n V n

E R T R T R T R T

−

=

−

=

⎧ ⎡ ⎤+ = + + + ×⎨ ⎣ ⎦− ⎩

⎫⎡ ⎤+ + + ⎬⎣ ⎦⎭

= + +

∑

∑

( ){ } ( ) ( ){ } ( ) ( ){ }
( ){ }

2 * *

2*

2 2

ˆ ˆ ˆ ˆ ˆ                   

ˆ                               

                           ,
1

h h v v h

v

h v

E R T E R T R T E R T R T

E R T

N N
M

= + + +

+
=

−

  (F.2) 

because 
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( ){ } ( )
( ) ( ) ( ) ( )

( )
( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ){ }

2 22 * *
2

0 0

2 2
* *

2
0 0

* *

2

1ˆ 1 1
1

1                  1 1
1

                                                  1 1

                   = ,
1

M M
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M M
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E R T E V m V m V n V n
M

E V m V m E V n V n
M

E V m V n E V m V n

N
M

− −

= =

− −

= =

⎧ ⎫
= + +⎨ ⎬

− ⎩ ⎭

⎡= + + +⎣−

⎤+ + ⎦

−

∑ ∑

∑ ∑
   (F.3) 

and 

( ) ( ){ } ( ){ } ( ){ }* *ˆ ˆ ˆ ˆ 0h v h vE R T R T E R T E R T= = .     (F.4) 

For n = 4: 

( ) ( ){ } ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 24 * *

4 2 2 2* * *
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ˆ ˆ ˆ ˆ ˆ ˆ                                 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                 2 4 2

ˆ                                 

h v h v h v

h h h v h v
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R T R T R T R T R T R T R T R T

+ = + +

= + + +

+ + +

( ) ( ) ( ) ( ) ( ) ( ) }42 2 2* * *ˆ ˆ ˆ ˆ ˆ2 .h v v h v vR T R T R T R T R T R T+ +

 (F.5) 

We can readily see that the mathematical expectation of all terms except the first, the 

middle, and the last is zero. Consequently: 

( ) ( ){ } ( ){ } ( ){ } ( ){ } ( ){ }4 4 2 2 4ˆ ˆ ˆ ˆ ˆ ˆ4h v h h v vE R T R T E R T E R T E R T E R T+ = + + .  (F.6) 

We already know: 

( ){ } ( ){ } ( )

2 22 2

2
ˆ ˆ

1
h v

h v
N NE R T E R T
M

=
−

.        (F.7) 

To find ( ){ }4ˆE R T  we first write it as: 
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( ){ } ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ){

1 2
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2 3 4

2 24 * *
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  (F.8) 

Apparently, we can utilize formula (D.19) to evaluate the mathematical expectation as: 

( ){ } ( )
( ) ( ){ }

( )

{ }

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }

1 2 3 4

1 2 3 4 1 2 3 4

, 1, , 12 2 2 24 *
1 14

0 0 0 0 , , ,
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2 2 3 3 4 4
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                                     1 .

m m m mM M M M
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E R T E V m V n

M

E V m V n E V m V n E V m V n

+ +− − − −

= = = =

= + ×
−

+

∑ ∑ ∑ ∑ ∑
 (F.9) 

We approach this in a somewhat unconventional manner. First, we notice that in the case 

of noise samples 

( ) ( ){ } ( )* ,
0
N m n

E V m V n N m n
m n

δ
=⎧

= =⎨ ≠⎩
.       (F.10) 

Hence, evaluating (F.8) reduces to counting the sum of products δ(m1+1,n1)δ(m2,n2) 

δ(m3+1,n3)δ(m4,n4)N4 as m1, m2, m3, m4 are ranged through values 0 to M-2, for each 4-

permutation (n1, n2, n3, n4) of the set {m1, m2+1, m3, m4+1}. Consequently, we rewrite 

(F.9) as: 

( ){ } ( )
( ) ( )

( )

{ }

( ) ( )

1 2 3 4

1 2 3 4 1 4

, 1, , 14 2 2 2 24

1 1 2 24
0 0 0 0 , ,
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+

∑ ∑ ∑ ∑ ∑
…   (F.11) 

By looking at (F.11) we notice that the quadruple sum has the most products 

δ(m1+1,n1)δ(m2,n2)δ(m3+1,n3)δ(m4,n4) equal to one when n1=m2+1, n2 = m1, n3 = m4+1, 
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and n4 = m3. This gives m1=m2 and m3 = m4, for which case the quadruple sum is (M-1)2. 

This tells us that ( ){ }4ˆE R T  is of the form: 

( ){ } ( )
( )

44 2
4

ˆ
1

NE R T AM BM C
M

= + +
−

,       (F.12) 

where A, B, and C are some unknown integer constants. Given the conclusions so far, one 

can easily see that the quadruple sum computation can be easily programmed using for 

loops in any programming language, thus allowing us to compute the expression 

AM2+BM+C for arbitrary M. To determine the constants A, B, and C all we need to do is 

to compute AM2+BM+C for three arbitrary values of M thus setting the system of three 

linear equations with three unknowns. Moreover, we can generalize this approach for any 

arbitrary even integer k as: 

( ){ } ( )
( ) ( )

( )

{ }

( ) ( ) ( ) ( )

( )

1 2 1

1 1

, 1, , , 12 2

1 1 2 2
0 0 , ,
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k k

k k

m m m mk M Mk

k
m m Perm n n

k k k k

k kk
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m n m n m n m n
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−
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−
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∑ ∑ ∑
…

…

…

  (F.13) 

We also notice that we can deduce the value of the first coefficient (i.e., Ck/2) by the 

following rationale. To get the maximum sum (i.e., (M-1)k/2), we fix the permutation in 

positions n1, n3,…, nk-1 where given permutation is chosen from the set {m2+1, 

m4+1,…,mk+1}. The choice in these positions determines the values of n2, n4,…, nk. For 

instance, if n1 is chosen to be m2+1 then n2 must equal m1, in order for the first and 

second sum combined to yield (M-1), and so forth. This tells us that the coefficient Ck/2 = 

(k/2)!. 

In particular: 
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( ){ } ( )
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We can now calculate: 
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To validate the above formulae, the first 20 moments of ( ) ( )ˆ ˆ
h vR T R T+  were found 

through simulation and using the approximation, for odd moments, with the exponential 
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function and correction up to the 5-th moment of ( ) ( )
2ˆ ˆ

h vR T R T+ . Four simulation runs 

were executed and the results are shown in Figure F.1. The approximation and the 

simulation appear to be in a very good agreement up to the 15th moment when the 

simulation variance becomes more apparent. 
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Figure F.1 Comparison between moments obtained through simulation and 

approximation.
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Appendix G 

Evaluation of Noise Moments for ( )ˆ ˆ 0
nkh

h hvP R  and ( )ˆ ˆ ˆ 0
nkh kv

h v hvP P R  

We start by evaluating ( ){ }22ˆ ˆ 0h hvE P R  as 

( ){ } ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( )}
1 2 3 4

1 1 1 122 * *
1 1 2 24

0 0 0 0

* *
3 3 4 4

1ˆ ˆ 0

                                                               .
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h hv h h h h
m m m m

v h h v

E P R E V m V m V m V m
M

V m V m V m V m

− − − −

= = = =
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   (G.1) 

Note that because noise samples in H and V channel are independent we can discard all 

permutations where Vv(m3) and Vv
*(m4) are not paired together. Thus we rewrite (G.1) as: 

( ){ } ( ) ( ) ( ) ( ){

( ) ( )} ( ) ( ){ }
1 2 3 4
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* *
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   (G.2) 

Further, because noise samples are uncorrelated m3 = m4, so we have: 
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=

=

∑ ∑ ∑

(G.3) 

Finally, using the result (A.14) we get: 

( ){ } ( )( ) 222 3 3
3 3

1 2 3 2ˆ ˆ 0h hv h v h v

M M M ME P R N N N N
M M

+ + + +
= = .     (G.4) 

We proceed in a similar fashion for higher moments: 
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(G.5) 

The first product term in the brackets imposes m5=m7 and m6=m8, whereas the second one 

m6=m7 and m5=m8. Hence: 
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Apparently, two terms in the sum are the same so we can readily write: 

( ){ } ( ) ( )44 6 2
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  (G.7) 

To find ( ){ }66ˆ ˆ 0h hvE P R  we write: 
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Given that there are 3! permutations in the expected value for V samples, and for each 

case the expectation for H samples is the same we can calculate the sum for just one and 

multiply it by 6 to obtain the total sum as 
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Based on the previous derivations we can write the general formula for ( ){ }2ˆ ˆ 0
nk

h hvE P R  

as 
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from which we get: 
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Using previous derivations we find 
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where: 
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Finally: 
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Appendix H 

Evaluation of Noise Moments for ( ) ( )
2ˆ ˆ ˆ ˆ nvk hk

v h h vP P R T R T+  

To find these moments we shall first derive result which will be of general 

importance for further derivations. Namely, we shall show that in the case of noise 

samples: 
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First we represent the expression as: 
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Using formula (D.19) we can write (notice that for notational simplicity both sides are 

multiplied by Mk(M-1)2n): 
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We now proceed further by calculating the second term which we will designate as A: 
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By examining the first two terms in the sum we notice that if we replace m2 = m3 and m3 

= m2 the second term becomes the same as the first one, and so forth. Consequently, we 

can write: 
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Because in the case of noise samples: 
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The first term in A which we designate as B can be further calculated: 
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We now go for the optimization of the second term in A which we denote as C: 
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Using noise feature we write: 
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Finally we get: 

( ){ } ( )
( ) ( ){ }

( )
( ) ( ){ }

( ) ( ){ }

2 22
2

22
2

21

1ˆ ˆ ˆ ˆ1
1

1 ˆ ˆ                        1
1

1 2 ˆ ˆ                        .

n nnk k k
nk

nnk k
nk

nk

E P R T M M NE P R T A
M M

M M NE P R T B C
M M

M k n
E P R T N

M
−

⎛ ⎞= − +⎜ ⎟
⎝ ⎠−

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠−

+ − +
=

   (H.10) 

This result is of universal importance because it allows us to express each 

( ){ }2ˆ ˆ nkE P R T  as a function of ( ){ }2ˆ n
E R T . That is: 
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This enables us now to calculate the following results which we shall find useful in future 

derivations. We find first: 

( ) ( ){ } ( ) ( )( ) ( ) ( )( ){ }
( ){ } { } ( ){ }

( )
( ){ } ( )

( ){ }

2 * *

2 2

1 1
2 2

2 1
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ                              

ˆ ˆ                              .

k k
h h v h h v h v

k k
h h h v

k k

ki i
h v hk k

E P R T R T E P R T R T R T R T

E P R T E P E R T

M i M i
E R T E R T N

M M

+ −

= =
−

+ = + +

= +

⎛ ⎞+ +
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∏ ∏

(H.12) 

Using the results from Appendix F: 
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Similarly: 
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Finally: 
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Further: 
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Similarly: 
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The next moment is: 



 

 208

( ) ( ){ } ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( )( ){ }
( ){ } ( ){ } ( ){ }

( ){ } ( ){ } { } ( ){ }
( )

( ){ } ( )
( )

3 36 * *

6 4 2 2 4 6

6 4 2

2 4 4

5 3
6

6 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ  9 9

ˆ ˆ ˆ ˆ ˆ  9

ˆ ˆ ˆ ˆ ˆ          9

ˆ ˆ  9

k k
h h v h h v h v

k
h h h v h v v

k k
h h h h v

k k
h h v h v

k k

ki i
h h hk k

E P R T R T E P R T R T R T R T

E P R T R T R T R T R T R T

E P R T E P R T E R T

E P R T E R T E P E R T

M i M i
E R T N E R T

M M

+ +

= =

+ = + +

= + + +

= + +

+

+ +
= +∏ ∏ { } ( ){ }

( )
( ){ } ( ){ } ( )

( ){ }

( )
( ) ( )

( )
( ) ( )

4 2

1 1
2 4 6

2 1
1

5 13 2
6 66 1

6 1

2
3 14 2

5 4 2

ˆ

          

ˆ ˆ ˆ        9

6 36 6 180  
1

2 2 8         9
1

k
h v

k k

k ki i
h h v h vk k

k k

ki i
h v hk k

k k
h vi ik

N E R T

M i M i
E R T N E R T N E R T

M M

M i M iM M M N N N
M MM

M M M i N N M i N
M M

+ −

= =
−

+ −

= =
−

+ +

= =

+

+ +
+

⎛ ⎞+ ++ − − ⎜ ⎟= + +
⎜ ⎟− ⎝ ⎠

+ −
+ + +

−

∏ ∏

∏ ∏

∏ ∏( )2 4 .k
h v hN N

(H.18) 

Similarly: 
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Appendix I 

Evaluation of Noise Moments for ( ) ( ) ( )ˆ ˆ ˆ0
n n

hv h vR R T R T+  

To interpolate the odd moments we need to determine the even ones. We shall 

evaluate the following: 
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Using the fact that: 
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we get: 

( ) ( ) ( ){ } ( ){ ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) )}

4 4 4 4 2 *

22 2 2 4* *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ     4 4 2 .

hv h v hv h h h v

h v h v v h v v

E R R T R T E R R T R T R T R T

R T R T R T R T R T R T R T R T

+ = + +

+ + + +
 (I.4) 

Similarly: 
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To evaluate these we need to determine the intermediate expressions. First we find 
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hv hE R R T . This goes as follows: 
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Let us examine the case when k = 1: 
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The term ( ) ( ){ }*
1 2v vE V m V m implies that m1 = m2 so we have: 
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When k = 2 we have: 
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The first term in the brackets imposes m1 = m3, and m2 = m4, whereas the second one 

implies m2 = m3, and m1 = m4. Using this we have: 
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Thus for general case we can write: 
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Using the result (H.1) 
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Similarly: 
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We shall now evaluate some other intermediate results: 
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We observe V channel samples with m5 index. Obviously, if these two samples are paired 

together, zero expected value is resulted. Thus, Vv
*(m5) must be paired with either Vv (m3) 

or Vv(m4), and Vv(m5+1) with Vv
*(m1) or Vv

*(m2). Each pairing imposes either m3 = m5 or 

m4 = m5, and m1 = m5+1 or m2 = m5+1, respectively. Regardless of the pairing, the 

outcome expected value is the same. In total, there are 22 such pairings. Then, we have: 
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Apparently, we can generalize this principle so that each expression: 
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Using this formula we evaluate: 
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As for other expressions, it does not appear possible to arrive at a convenient recursion 

formula, thus in this case we shall resort to using the computational method. Then we 

have: 
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Finally: 
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or: 
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To arrive at the solution for ( ) ( ) ( ){ }8 6 2ˆ ˆ ˆ0hv h vE R R T R T , let us analyze the expression 

as: 



 

 223

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 8 9 16

8 6 288

4 81 1 2 2
* *

1 1 2 2
0 0 0 0 1 1 2 5

11 14
* * *

3 3 4 4 15 15
3 9 4 12

ˆ ˆ ˆ1 0

       

      1 1 1                    

                 

hv h v

M M M M

h l v l v l h l
m m m m l l

h l h l h l h l v v
l l

M M E R R T R T

E V m V m V m V m

V m V m V m V m V m V m

− − − −

= = = = = =

= =

− =

⎧
⎨
⎩

+ + +

∑ ∑ ∑ ∑ ∏ ∏

∏ ∏
( ) ( )}

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 8 9 16

*
16 16

4 81 1 2 2
*

1 2
0 0 0 0 1 1 2 5

11 14
* *

3 3 4 4
3 9 4 12

4 8
* * *

1 2 15 15 16 16
1 1 2 5

  1

     

        1 1

        1 1 .

v v

M M M M

h l h l
m m m m l l

h l h l h l h l
l l

v l v l v v v v
l l

V m V m

E V m V m

V m V m V m V m

E V m V m V m V m V m V m

− − − −

= = = = = =

= =

= =

+

⎧
= ⎨

⎩

⎫
+ + ⎬

⎭
⎧ ⎫

+ +⎨ ⎬
⎩ ⎭

∑ ∑ ∑ ∑ ∏ ∏

∏ ∏

∏ ∏

 (I.31) 

By analyzing the above expression, the first expected value requires 10! permutations, 

while the second one needs 6!. Thus, in total 10!×6!= 2.612736×109 permutations are 

needed. This is a very high number, especially if we take into account that to program the 

first expected value, 14 nested loops need to be executed. Consequently, optimizations 

based on the following rationale are introduced. First by looking at the permutation 

formulae we note that we can break the expression as: 

( ) ( ) ( ) ( ){ }8 6 288 ˆ ˆ ˆ1 0hv h vM M E R R T R T A B C− = + + ,     (I.32) 
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If we examine closer the expression A for the cases when i=5 and i=i0 (i0∈{6,7,8}) by 

swapping m1=mi0 and mi0=m1 we realize that these two expressions are equivalent (i.e., 

their overall sums are the same). Furthermore, by applying the same analysis for 

expressions B and C we can show the same. Consequently, we write: 
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We shall now use result which will be derived later and get: 
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We see that not only the number of permutations evaluated is decreased in the expression 

for A but even more important the number of nested loops is less by two. Using the 

computational approach we get: 
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Let us apply the same to B and C: 
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Following the similar rationale we shall further optimize the B and C expressions: 
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After using the noise feature we can break B and C into: 

B BA BB BC
C CA CB CC
= + +
= + +

          (I.43) 

where 
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If we examine the expressions we notice that BA = CA, BB = CC, and BC = CB, which 

implies B = C. Consequently,  
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By way of computational approach we get: 
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Similarly: 
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Using we (I.18) get: 
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Finally: 
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Appendix J 

Evaluation of Noise Moments for ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ 0
n nnh nv

h v h v hvP P R T R T R+  

We start by finding: 
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Let us consider case when k = 2: 
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In general: 
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Thus: 
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Let us consider case when nv = 1 and k = 1: 
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Let us consider case when nv = 1 and k = 2: 
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In general: 
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where: 
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Let us calculate the general term in B: 
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Let us calculate the general term in C: 
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Now we can establish the following: 
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Next we find the following: 
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Let us calculate the general term in B: 
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Let us calculate the general term in C: 
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Let us find general term in D: 
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Let us find general term in E: 
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When we put them all together we get: 
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Or by the same rationale: 
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Similarly: 
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Now we can calculate some useful expressions: 
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Following the same procedure we derive: 
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Appendix K 

Assessment of the Accuracy of the Weighted Sum pdf Approximation  
Usage of general gamma distribution for the approximation of a weighted sum pdf 

inevitably raises the question: what is the accuracy of such approximation? Here the 

approximation assessment is done for the following PFA values 10-2, 10-3, 10-4, 10-5, and 

for the range of weight values. The error assessment was performed by first calculating 

the thresholds using the generalized gamma pdf approximation for the desired PFA, and 

subsequently evaluating the true PFA through Monte Carlo simulations. The results are 

presented in Figs. K.1, K.2, and K.3 for M of 17, 25, and 32, respectively. The max. 

errors obtained are 3.7%, 17.4%, 38.3%, and 59.2% for PFA’s of 10-2, 10-3, 10-4, 10-5, 

respectively. Notice that errors gradually increase with the number of samples M. In 

addition, approximation errors appear to be significantly smaller in the area where the 

weight α is of greater value than β. 
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Figure K.1 3-D plot of a weighted sum approximation errors using generalized gamma 

distribution for M = 17, and γ = 2. 
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Figure K.2 3-D plot of a weighted sum approximation errors using generalized gamma 

distribution for M = 25, and γ = 2. 
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Figure K.3 3-D plot of a weighted sum approximation errors using generalized gamma 

distribution for M = 32, and γ = 2. 
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Appendix L 

Calculation of Fitting Function Coefficient 

To perform least squares fitting with function 

( ) iA CxB
if y x e +≈ .          (L.1) 

We define the minimization function as 
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By setting these to zero we get 
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This can be represented in a matrix form 
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Then coefficients can be obtained by solving the system of linear equations. 
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Appendix M 

Censoring Algorithm Using Uniform Sum for the Operational Dual-pol 
WSR-88D 

The main motivation for this work is the upgrade of the WRS-88D network to dual-

polarization; and the goal is to devise an improved censoring algorithm that mitigates the 

degradation of radar sensitivity to minimize its impact on the radar products with 

minimal impact on radar operation. In the legacy WSR-88D system, the operator is 

allowed to vary the SNR thresholds in the range of ±20 dB with respect to the noise 

power in the H channel. Thus, the proposed censoring algorithm sensitivity needs to be 

manually adjustable. At the same time, it is desirable that the algorithm can be easily 

implemented. 

Given the threshold (THRdB) specified in dB the SNR threshold (THRSNR) is computed 

as 

1010
dBTHR

SNRTHR = .         (M.1) 

At each range gate the SNR in the H channel is estimated as, 

1
2

0

1

1

M

i
i

h
h

H
MSNR

N

−

== −
∑

,        (M.2) 

and compared to (M.1). If SNRh ≥ THRSNR it is classified as a “significant return”, 

otherwise it represents a “non-significant return”. After the dual-polarization upgrade, the 

power of the returned echoes in the H channel is halved and the portion of the SNR 

estimates, which would be classified as “significant returns” in the single-pol system, will 

inevitably fall below the censoring threshold (i.e., THRSNR). This results in the loss of the 

low SNR features as shown in Chapter 6. Clearly, if this loss is to be mitigated, the 
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missed estimates need to be recovered, but with an acceptable false alarm rate. One 

possibility is to simply lower the SNR threshold to THRSNR /2. Unfortunately, this has the 

potential to increase the false alarm rate to unacceptable level (as shown in Chapter 6). 

The PFA increase depends on the number of samples M (Figure M.1) for the cases when 

the default thresholds of 2 and 3.5 dB are cut by half (i.e., to -1 and 0.5 dB). 
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Figure M.1 False alarm rate dependency on the number of samples M. 

The solid line obtained using the formula (A.11) shows that, if M is greater than 52, the 

default threshold of 2 dB can be reduced by half while still maintaining the PFA below 

1.2×10-6. Similarly, the dashed line obtained using the formula (A.11) shows that, if M is 

greater than 29, the default threshold of 3.5 dB can be reduced by half while still 

maintaining the PFA below 1.2×10-6. The default threshold of 2 dB is used for censoring 

in surveillance scans whereas the number of samples M is, in most cases, less than 52. 
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Thus, lowering the threshold by half is unacceptable in such situations; clearly, a more 

sophisticated approach is required. 

Because of its improved detection rate, the uniform sum can be used to detect signals 

whose SNR estimate falls below the THRSNR. Thus, one possible arrangement would be to 

estimate the uniform sum, for all range gates where the SNRh estimate is less than the 

THRSNR, and compare these estimates to some threshold (e.g., THRUS) for classification. 

This, however, contradicts the concept of adjustable thresholds because comparing the 

uniform sum estimate (US) to THRUS inevitably leads to classification of some of SNR 

estimates, which are smaller than THRSNR in single-pol, as “significant returns”. 

Consequently, an additional condition that the SNRh estimate must be larger than THRSNR 

/2 ought to be applied at each range gate (and before the classification using the uniform 

sum). Therefore, the proposed signal censoring algorithm that applies to each range gate 

is: 

if M > 89 

if SNRh ≥ THRSNR/2 
accept as “significant return” 

else 
reject as “non-significant return” 

end 
else 

if (SNRh ≥ THRSNR) or (SNRh ≥ THRSNR/2 and US ≥ THRUS) 
accept as “significant return” 

else 
reject as “non-significant return” 

end 
end 
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Note that if M is greater than 89 the algorithm proposes that the square law detector is 

used for detection after the legacy SNR threshold is lowered by half. The reason for this 

is twofold. First is that the majority of operational modes use the number of samples that 

is less than 90. Second, the curves in Figure M.1 show that, if M is greater than 89, 

lowering the default thresholds by half yields the false alarm rates that are well below the 

acceptable ones. The threshold for the “uniform sum” (i.e., THRUS) is computed using 

(7.2). The coefficients are chosen so that the uniform sum produces the PFA of 1.2×10-6 

in all cases where the legacy square law detector, with the default SNR threshold (i.e., 2 

dB for reflectivity, and 3.5 dB for velocity estimates), yields the false alarm rate that is 

less than or equal to 1.2×10-6. If this is not the case, the coefficients are set so the uniform 

sum matches the PFA of the legacy detector with the default threshold. This occurs when 

M is 6, 7, 8, or 9, for which the SNR based detector with the threshold of 3.5 dB produces 

the PFAs of 1.1×10-4, 3.6×10-5, 1.2×10-5, and 3.8×10-6. In case when M = 16 and the 

halved default threshold is -1 dB, the resulting PFA is 2.28×10-6. The coefficients are 

given in Table M.1. 

M 6 7 8 9 10 11 12 
A 1.4424 1.4367 1.417 1.4044 1.3975 1.3615 1.3298 
B -9.911e-2 -8.97e-2 -9.307e-2 -9.361e-2 -9.394e-2 -8.032e-2 -6.791e-2 
C 0. 61055 0. 59579 0.59827 0.59864 0.59725 0.58165 0.56929 
M 13 14 15 16 17 18 19 
A 1.3024 1.2576 1.239 1.1946 1.2039 1.1552 1.1511 
B -5.574e-2 -6.159e-2 -4.879e-2 -3.914e-2 -2.933e-2 -4.542e-2 -2.944e-2 
C 0.55685 0.56567 0.55126 0.54377 0.52846 0.55309 0.53341 
M 20 21 22 23 24 25 26 
A 1.1223 1.1026 1.0953 1.0798 1.0691 1.0622 1.0454 
B -3.266e-2 -3.1927e-2 -2.1782e-2 -1.8855e-2 -1.3561e-2 -6.174e-3 -6.1895e-3
C 0.54113 0. 53956 0.52826 0.52593 0.51962 0.50996 0.51269 
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M 27 28 29 30 31 32 33 
A 1.0313 1.028 1.0098 0.99348 0.99406 0.98481 0.98154 
B -5.154e-3 2.1922e-3 -2.6402e-4 -2.9082e-3 6.8651e-3 9.0159e-3 1.5671e-2 
C 0.51222 0.50091 0.50718 0.51114 0.49914 0.49704 0.4895 
M 34 35 36 37 38 39 40 
A 0.96288 0.95693 0.94897 9.3505 0.93681 0.92138 0.9188 
B 9.7531e-3 1.3140e-2 1.5368e-2 1.2681e-2 2.0367e-2 1.5745e-2 2.0107e-2 
C 0.49788 0.49382 0.49269 0.49756 0.48692 0.49384 0.48811 
M 41 42 43 44 45 46 47 
A 0.93523 0.90515 0.91548 0.89475 0.89016 0.89692 0.8842 
B 3.9809e-2 2.2990e-2 3.5888e-2 2.6591e-2 2.8431e-2 3.9408e-2 3.5303e-2 
C 0.46344 0.48666 0.46772 0.48242 0.47995 0.46646 0.4728 
M 48 49 50 51 52 53 54 
A 0.87752 0.87178 0.86942 0.85894 0.85721 0.85255 0.83821 
B 3.5153e-2 3.4939e-2 3.8871e-2 3.5241e-2 3.9386e-2 3.9818e-2 3.3166e-2 
C 0.47314 0.47245 0.46917 0.47388 0.47038 0.46945 0.47848 
M 55 56 57 58 59 60 61 
A 0.84241 0.83417 0.8987 0.84118 0.8275 0.82514 0.82332 
B 4.0473e-2 3.8784e-2 9.0213e-2 5.14e-2 4.5207e-2 4.6739e-2 4.8742e-2 
C 0.46883 0.4722 0.40202 0.45508 0.46448 0.46184 0.45937 
M 62 63 64 65 66 67 68 
A 0.81501 0.82465 0.80524 0.81076 0.81984 0.80407 0.79094 
B 4.6716e-2 5.7596e-2 4.6096e-2 5.3856e-2 6.2571e-2 5.4979e-2 4.7713e-2 
C 0.46332 0.44921 0.46461 0.45511 0.44152 0.45374 0.4629 
M 69 70 71 72 73 74 75 
A 0.79447 0.79848 0.79574 0.77834 0.78912 0.7843 0.78488 
B 5.3431e-2 6.0617e-2 6.1305e-2 5.0397e-2 6.1416e-2 6.0368e-2 6.3499e-2 
C 0.4557 0.44867 0.44756 0.46121 0.44682 0.4483 0.44447 
M 76 77 78 79 80 81 82 
A 0.77636 0.77323 0.77593 0.77078 0.7684 0.75642 0.75893 
B 5.9776e-2 6.021e-2 6.4660e-2 6.3186e-2 6.3552e-2 5.823e-2 6.2054e-2 
C 0.44982 0.44968 0.44393 0.4458 0.44489 0.45462 0.44882 
M 83 84 85 86 87 88 89 
A 0.77053 0.75412 0.75366 0.75373 0.77179 0.74069 0.74232 
B 7.2384e-2 6.2609e-2 6.4402e-2 6.659e-2 8.2723e-2 6.1024e-2 6.4296e-2 
C 0.43402 0.44794 0.44572 0.44276 0.42155 0.45054 0.44636 

Table M.1 Coefficients for the “uniform sum” threshold (THRUS) calculation as a 
function of the number of samples M. 

The algorithm is tested on the same data sets as those used in Chapter 6. The results 

are given in Figure M.2 and Figure M.3, and statistics in Table M.2 and Table M.3. 
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(a) 
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(b) 

Figure M.2 Reflectivity field (a) and the classification of detections (b) obtained after 
doubling the noise power, and using the proposed algorithm for detection. 

D P≥Nh-1dB UNIFORM SUM P&UNIFORM SUM 
Ratio of total 
detections 0.982318 0.984358 0.975147 

The Ratio of 
bounded detections 0.801132 0.820519 0.718047 

Ratio of additional 
detections 0.026012 0.018693 0.008848 

Table M.2 Real data statistics for surveillance scan collected on 03/19/06. 
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Figure M.3 Unfolded velocity field obtained after doubling the noise power, and using 

the proposed algorithm for detection. 

D P≥Nh+0.5dB UNIFORM SUM P&UNIFORM SUM 
PFA 2.14×10-10 1.2*10-6 1.2*10-6 
Ratio of total 
detections 0.989575 0.995178 0.986660 

The Ratio of 
bounded detections 0.637883 0.724477 0.685400 

Ratio of additional 
detections 0.007643 0.033545 0.014736 

Table M.3 Statistics for range unfolded Doppler scan collected on 03/19/06. 

The comparison between statistics obtained using the uniform sum exclusively and the 

proposed algorithm (i.e., columns 3 and 4 in Table M.2 and M.3) reveals that combining 
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the square law detector and the uniform sum, as proposed by the novel detection 

algorithm, produces the detection rates that are somewhat smaller than what would be 

obtained if the uniform sum were used solely. This is expected because the added 

condition, discards some data with SNR estimates smaller than THRSNR/2, which 

according to the uniform sum detection rule contain “significant returns”. In view of the 

description given in Chapter 5, the added condition reduces the region, in 2M 

dimensional space, which contains all possible values of the observation vector V that 

meet the detection requirement as given by the proposed algorithm. Moreover, the 

proposed detection algorithm, when used in the Doppler scan, yields practically the same 

results as if the SNR threshold has been lowered by half (i.e., SNRh ≥ THRSNR/2), for the 

given case. This is because for the given case of M = 52 and THRSNR/2 = 0.5 dB the 

PFA(SNRh ≥ THRSNR/2) = 2.1×10-10, which is much smaller than the PFA of the uniform 

sum. Consequently, the use of the uniform sum could be omitted whenever  

PFA(SNRh ≥ THRSNR/2) << PFA(US). Adding additional logic, that determines when to 

use the uniform sum, has the potential to decrease the amount of real-time computations, 

but it imposes additional implementation requirement, whereas the false alarm rate of the 

SNR based detector has to be evaluated using (A.11). This in turn requires calculation of 

the incomplete gamma function which is not a part of the standard C language 

mathematical library. Nonetheless, the open source C++ code, working at double 

precision, that computes the incomplete gamma function can be obtained via Internet. 

Another interesting thing is that the proposed algorithm still does significantly better 

when compared to simple lowering SNR by half in both surveillance and Doppler scans 

(i.e., second column in Table M.3). This is because for M = 17, the PFA(SNRh ≥ -1 dB) = 
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0.003 and the PFA(US) = 1.2×10-6; hence, the uniform sum sifts through the SNR 

detections discarding those that are noise. This results in an improved range unfolding 

using the surveillance scan. 
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