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Abstract: Drought poses severe limitations on crop production. Therefore, drought 

tolerance mechanisms need to be better understood to select, modify and recommend 

certain cultivars of wheat. The grain filling stage of wheat development is particularly 

sensitive to water stress conditions. This research studied biological response to water 

stress under, well-watered (WW- 220 ml), moderate stress (MS- 110 ml), and severe stress 

(SS- 55 ml) conditions, with cultivars of soft white spring wheat (Alpowa and Idaho) 

during the early grain-filling stage of wheat development (Feekes 11.2) and under two 

duration of stress treatments (5, and 8 days), with a particular focus on the flag leaf and 

seed head. The flag leaf weights averaged across durations were 91%, 62% and 68%, 41% 

of well-watered under MS and SS in Alpowa and Idaho, respectively, compared with the 

well-watered control. The differential expressed genes were 2.32 and 3.9 fold more up and 

down-regulated genes in Alpowa compared to Idaho, respectively. Shared transcripts 

between stress intensities MS and SS constituted only 3 to 17% of the overall differentially 

expressed transcripts in both cultivars. Most of the top GO terms were predominantly 

down-regulated with a ratio of less than 1.0 under both stress intensities. The most 

abundant GO terms are related to transcriptional biological processes and to a lesser extent 

metabolic, transport, and translational activities. Seed head weights did not differ 

statistically among any of the water limitations treatments, cultivars, or durations. Idaho 

had 5.5 times the number of DE transcripts compared to Alpowa (338 in Alpowa, and 1843 

in Idaho) with only 53 transcripts shared between the two cultivars in their response to 

water stress. The top GO terms for the biological process was predominantly down-

regulated especially in Idaho under both conditions (MS and SS) while in Alpowa a 

moderate tendency towards down-regulation was detected. The top twenty up and down-

regulated transcripts were examined for flag leaf and seed head. 
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CHAPTER I 

 

INTRODUCTION 

 

Wheat production uses more land than any other crop. It is also an essential food grain for 

human nutrition (Curtis, 2002). The food products made from wheat are a staple diet for 

most people in the world. In addition, wheat is one of the most nutritious grains produced 

agriculturally containing a wide assortment of minerals, vitamins, carbohydrates, and 

proteins. Estimates show that by 2050, the world population will reach 9.37 billion which 

is 35% higher than today’s population, (FAO, 2017). With this increase in population, 

production of sufficient wheat will continue to be a major issue in feeding the planet. World 

wheat production increased dramatically after leveling off at 592 million tons in 1990. 

After 1990, the production has shown a gradual increase, and recently, the annual global 

wheat production has been estimated at 735 million tons (FAO, 2015). However, a 

projected 786 million tons of wheat will be required annually for human use by the year 

2025, highlighting the need for rapid and continuous increasing levels of production 

(Curtis, 2002). Currently, the average wheat yield worldwide is predicted to rise from 2.8 

to 3.8 metric tons/ha from 2011 to 2050 in response to accelerated demand and increased 

population counter balanced by increased production efficiencies (Alexandratos & 

Bruinsma, 2012). At the same time that yield must increase, climate scientists suggest that 

plant water availability will decrease as a function of intense and less frequent rainfall 
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events and increase in temperature, leading to greater evapotranspiration and greater soil 

water deficits. However, the total amount of wheat land farmed has been in decline, and 

producers are faced with the challenge of producing more crop from a smaller parcel of 

land. For this reason, the development of a water stress tolerant and high yielding varieties 

of wheat is critical to maintaining food security for much of the world’s population. 

Wheat is often planted in dry or semi-arid areas. Projected changes in the earth’s 

climate will exacerbate water stress conditions for agricultural crops, resulting in increased 

pressure on producers to adapt to limitations in water availability and quality. If rainwater 

is less available during the traditional growing season, wheat may replace or supplement 

other the traditional crops currently planted– increasing the importance of wheat as a global 

dietary staple. Currently, agriculture uses 70 percent of the world’s available freshwater 

(Pimentel et al., 2004). While advances in irrigation delivery systems, plant water use 

efficiency, and drought mitigation have increased the percent of arable land used for wheat 

cultivation, most of the world’s human population still lives in water-stressed 

environments. Furthermore, competition for water among agriculture, industry, 

environment, and human consumption may increase political friction and economic 

dislocations. Meeting urban water demands by siphoning off water that is needed for 

agriculture will, in the long run, jeopardize food security and rural economic sustainability 

(MacDonald, 2010). The recent drought in California pitted urban city dwellers against 

rural farmers – an example of just one of the conflicts that will begin to bubble up as the 

first signs of limiting water availability begins to manifest. It is critical to find ways to 

make agriculture more water use efficient, including the development of more water 

efficient crops. The development of water stress tolerant cultivars will constitute important 
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tools in a plant breeder’s arsenal to meet the growing demands for food in the face of an 

uncertain future (Nezhadahmadi, Prodhan, & Faruq, 2013). Drought stress is among the 

most severe of the abiotic stresses which limit crop productivity, mainly due to deleterious 

and/or adaptive responses of the plants itself to water limiting conditions (Chaves et al., 

2002; de Oliveira, Alencar, & Gomes-Filho, 2013). Losses in crop yield induced by 

drought probably exceeds that of all other causes of yield decline (de Oliveira et al., 2013). 

Wheat is often grown in areas where water availability is too low for many other 

types of crops to grow. Wheat is better suited to these climates because it can respond by 

either dehydration avoidance and/or dehydration tolerance. Dehydration avoidance results 

when the plant responds by slowing metabolism or increasing the rooting depth to extract 

more water. The inclination of plants to keep hydrated under drought is called dehydration 

avoidance (Blum, 2005). Drought tolerance involves the ability of plants to dehydrate 

partially and then revert back to growth when water becomes available. Tolerance inclines 

the plant to survive water inadequacy (Blum, 2005). Factors that influence wheat’s 

response to water stress include the underlying genetic composition, the developmental 

stage when water stress is experienced, the duration and severity of the stress, and the 

plasticity of the plant genome in response to stress (Nezhadahmadi et al., 2013). 

Drought tolerance in wheat is controlled by many genes (Nezhadahmadi et al., 

2013). Limited knowledge is available on drought-responsive genes and the roles they play 

during drought-stress. Most of the studies focus on the wheat seedling and vegetative stage 

of development. While important, during this time, important hardening and physical traits 

develop, which prepare the seedling for life under droughty condition which can 
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permanently determine morphological and structural traits which carry over into maturity. 

In terms of vegetative development, recent research reveals that the junction or jointing 

phase (between the vegetative and flowering stage) is highly susceptible to drought as well 

(Nezhadahmadi et al., 2013). By a large the greatest impact on wheat productivity is found 

during anthesis and grain filling stages of wheat development where the wheat plant is 

most vulnerable. Serious stress at either of these stages will result in a dramatic loss of 

yield. 

Beyond studying the morphological and anatomical response to stress at different 

stages of wheat development, recent attention has been paid to the transcriptional and 

translational responses to periods of water stress. The use of genome-wide transcript 

profiling and gene expression analysis under drought stress can identify drought-

responsive genes. Recently, many gene classes have been confirmed to be up- or down-

regulated by drought stress (Hu & Xiong, 2014; Langridge & Reynolds, 2015). The most 

efficient technique for identifying differentially expressed genes uses next-generation 

sequencing technology of RNA. RNA-sequencing permits the quantification of expression 

based on sequence abundance under control and treated conditions. A major advantage of 

next-generation sequencing is in its increasing processing power and decreasing costs per 

sequence. RNA sequencing allows investigators to simultaneously monitor the expression 

of thousands of drought-responsive genes (e.g. dehydration-responsive element-binding 

gene, aquaporin, late embryogenesis abundant proteins and dehydrins) and their pathways. 

Here we use RNA-seq to evaluate the transcription profile of two wheat cultivars exposed 

to water limitations. 
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The importance of the flag leaf and seed head in supplying and receiving 

carbohydrate during, respectively, during grain filling in cereals crops such as wheat, 

barley, oats, triticale, etc. cannot be overstated. It is the top most leaf and as such it 

intercepts quite a lot of radiation during the most critical stages of development. 

Assimilation translocation from the flag leaf (source) to the panicle (reproductive sink) is 

enhanced by the proximity of the flag leaf to the sink. After anthesis, it is generally accepted 

that the flag leaf provides a significant percentage of assimilates to the developing grain. 

When the flag leaf of a small grain cereal crop is lost or destroyed, grain yield is 

significantly reduced (Surya, 2015). In winter barley (Hordeum vulgare L.) and at the time 

of maximum stem mass, high molecular weight carbohydrates comprise approximately 

30% (dry weight) of the stem (Bonnett & Incoll, 1993). In wheat and during filling, carbon 

labelling (14C) studies showed that pre-anthesis carbon is remobilized from the flag leaf 

into the stem and subsequently remobilized again into the grain (Yang et al., 2004). 

Understanding the relationship between the source (flag leaves) and developing seed head 

during grain filling will provide significant insight into the transcriptomic associations of 

this source sink relationship. Currently there are no studies to date that examine 

simultaneously these two essential organs. Accordingly, our objectives are exploratory in 

nature in order to characterize the transcriptomic response in flag leaves and seed heads in 

response to decreasing water availability in two contrasting cultivars of soft white spring 

wheat. 
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CHAPTER II 
 

REVIEW OF LITERATURE 

Wheat, one of the first domesticated food crops, has been the basic staple food of 

the major civilizations of Europe, West Asia, and North Africa for 8,000 years (Curtis, 

2002). Currently, its production leads all crops in terms of land area and is one of the most 

important crops for human nutrition (Bruinsma et al., 2003). Wheat is grown globally in a 

wide range of environments under irrigated and rain-fed conditions. About 20% of 1.5 

billion hectares worldwide are irrigated and provide nearly 40% of the world’s wheat 

production with the remaining 60% is from rain-fed agriculture (Molden, 2007). With 

climate change, drought is considered one of the major limitations (among other abiotic 

stresses) to growth, development, and productivity of global wheat in many countries. The 

impact of climate change on wheat yields is predicted to be negative in the coming years 

(Cheng et al., 2016; Li, Ye, Wang, & Yan, 2009; Mwadzingeni et al., 2016). 

According to its growing season, wheat can be classified into two categories: winter 

wheat which can be planted in the fall and harvested in the spring (about 75% of wheat in 

U.S), and spring wheat which can be planted in the spring and harvested in early fall or late 

summer. Moreover, wheat can also be categorized by its hardness (hard and soft) and its 

color (red and white). In general, there are six types of wheat grown in the US: hard red 

spring, hard red winter, soft red winter, durum, soft white wheat, hard white wheat.
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Common bread wheat (Triticum aestivum L.) is the most widely grown type of wheat used 

for producing flour for bread, pancakes, muffins, and cakes to name a few. On the other 

hand, durum wheat (Triticum turgidum ssp. durum) is usually used in pasta and couscous. 

Soft white wheats are generally for pastries and cakes. 

Drought is the main limiting factor for crop production. Periodic droughts 

worldwide have participated in the reduction of wheat productivity throughout the ages. 

Historically, Australia one of the four largest wheat exporting countries in the world 

suffered a devastating drought between and 25% reduction in overall yield from 2002-2008 

(Long & Ort, 2010). In the US, drought caused extreme crop damage in 29 states in 2012, 

(Gilbert, 2012). This was ranked as one of the most expensive natural disaster in U.S. 

history exceeded $17 billion from Federal crop indemnity payments alone (USDA, 2013). 

Drought resistance is the ability of plants to grow and develop under limited water 

availability. For the study of drought resistance, wheat is an excellent system to study 

mechanisms associated with drought resistance due in large part to its large complex 

polygenic genome. The completion of the wheat genome sequence for hexaploid bread 

wheat was a major step in facilitating the identification of key genes that control complex 

traits like drought (Edmeades, 2008). Drought resistance can be divided up into three areas 

including: avoidance, tolerance, and escape. Avoidance of drought is the ability of plants 

to maintain plant water content by reducing transpiration and by increasing water uptake 

once the water is available (Agbicodo et al., 2009; Izanloo et al., 2008; Khan & Iqbal, 

2011). Furthermore, drought tolerance means that plants are capable of tolerating water 

deficiency conditions via biochemical and physiological mechanisms and subsequently 
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avoiding drought effects (Khan & Iqbal, 2011; Mitra, 2001). Drought escape from drought 

is the plant ability to complete the plant life annual cycle before starting of the drought 

season. Drought resistance mechanisms vary for each genotype requiring extensive 

analysis to identify the principle mechanism associated with a given cultivar. 

Tolerance to drought stress is a complex quantitative trait with a complicated 

physiological and biochemical phenotype that is controlled by many genes. Under 

molecular genetic analysis some of these genes are recognized as quantitative trait loci 

(QTL). The quantitative trait loci (QTL) exhibit effects when many genes combine into 

additive and non-additive effects. Tolerance to drought has low heritability because of 

polygenic nature of inheritance subject to environment interaction (Fleury et al., 2010; 

Khan & Iqbal, 2011). Despite these challenges, the genomic diversity and constituency 

within varieties still form the basis for improving these quantitative traits (such as, drought 

tolerance). Moreover, genetic variability in wheat can be explored by studying germplasm 

from centers of origin and diversity which typically contain plants that form the basis of 

our modern wheat cultivar pedigrees (Mwadzingeni et al., 2016; Nezhadahmadi et al., 

2013). 

Biotechnology and Drought Tolerance in Wheat: 

Genomics-assisted selection has not yet contributed much to wheat drought 

resistance improvement (Berkman, Lai, Lorenc, & Edwards, 2012). Most improvement is 

based on conventional breeding approaches. Private companies and public entities continue 

to seek to increase drought tolerance through their breeding programs or by using 

transgenic approaches. For example, the Monsanto Company is considered one of the 
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leading companies in transgenic research for drought tolerance in maize. They recently 

started commercial sales of a transgenic and drought tolerant maize product in 2012. These 

lines were produced by inserting a cold shock protein from a bacterum into corn resulting 

in increased drought stress tolerance and an average of 15% yield improvement under 

drought conditions. Investigations into mechanisms of this commercial transgenic corn 

indicated an increased sensitivity to abscisic acid associated with more rapid stomatal 

closure. The stomatal response was shown to reduce water loss via transpiration. However, 

Monsanto has since conceded that improvements in water use efficiencies varies based on 

other environmental factors indicating a substantial gene by environment interaction. 

Initial results from Bayer have resulted in other genes that decrease oxidant load that lead 

to tissue damage (Edmeades, 2008). Other genes that are being actively promoted to 

enhance transgenic tolerance to drought include genes from the DREB and CBF 

transcription factor families. Thus the transgenic approach holds some promise, but 

requires extensive characterization and adjustments for it to be practicable (Edmeades, 

2008). 

Breeding for Drought Tolerance  

Many efforts have been undertaken world-wide through the use of conventional or 

molecular breeding approaches for improving drought stress in wheat (Mwadzingeni et al., 

2016; Saleem et al., 2016). Tolerance to drought is a complex trait and its expression is 

typically affected by the environment. In wheat, the greater variability in genes associated 

with drought can be better explored from selections obtained from the germplasm centers 

of origin and diversity (Dvorak, Luo, & Akhunov, 2011), in the case of wheat the fertile 
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crescent area of the Middle East (Nevo, 1998). To improve drought tolerance, the diversity 

within breeding populations needs to be enhanced and used for genetic selection or 

modification of adaptive mechanisms (i.e. drought escape, dehydration tolerance, and 

dehydration avoidance) (Blum, 2010). In plant breeding systems, most traditional marker 

techniques cannot detect specific genes associated with transposable elements, non-coding 

regions, low-copy genomic regions, and less prolific repeats that could play critical roles 

in phenotypic traits (Edwards, Batley, & Snowdon, 2013; Elshire, 2011). Most breeding 

approaches examines genetic selection based on yield components to make progress in 

obtaining drought responsive cultivars. Yield components such as overall grain weight per 

plant, numbers of grains per plant, and individual grain weight have the greatest impact on 

overall yield. Additional factors that best explain yield response are under drought 

conditions include harvest index, water use efficiency and minimizing genotype by 

environment interaction (Eskridge, 1990; Gauch & Zobel, 1997). All these can be used in 

breeding programs to under water stress management to identify superior selections for 

wheat improvement purposes. 

Metatranscriptomics 

Whole transcriptome analysis enables scientists and researchers to better 

understand changes in gene expression-level responses to environmental stress. 

Transcriptomes of non-model organisms have been reported for many plants including 

wheat (Davidson et al., 2012; S. Singh, Parihar, P. Singh, R. Singh, & Prasad, 2016; Wan 

et al., 2008). Furthermore, study of drought resistance and drought tolerance by 

transcriptomic analysis is becoming more widespread within the scientific community 
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(Zhou et al., 2015). The advent of next-generation sequencing technologies has greatly 

expanded our capabilities by allowing for massively parallel sequencing efforts at a greatly 

reduced cost. With regard to NGS technology and its advances, RNA sequencing (RNA-

seq) has been widely used in plant breeding, especially in those plants that lack complete 

genomic information. In parallel, efforts to sequence the proteome in wheat treated with 

salinity and drought, salt (Guo et al., 2012; Peng et al., 2009) have provided translational 

insights into drought responsive mechanisms. Moreover, results coming from RNA-seq 

may facilitate the identification of new and interesting biochemical traits (Wang, Gerstein, 

& Snyder, 2009). The RNA-seq technologies generate large amounts of transcriptomic data 

in real time, so this data requires investments and expertise in bioinformatics for data 

management. Furthermore, genes involved in drought tolerance can be functionally 

characterized by transgenic incorporation and analysis. This is most easily performed in 

model species such as Arabidopsis, rice or brachypodium where functional information is 

much more available. Hexaploid wheat has one of the largest genomes of any crop species 

(17 gigabases in size) encoding for more than 124,000 gene loci. So far only 76% total 

genome has been sequenced (International Wheat Genome Sequencing Consortium 

[IWGSC], 2014). With the near sequencing of the wheat genome functional annotation by 

homology is becoming increasingly useful, but is a long way from complete in comparison 

to model organisms. The size and complexity of the wheat genome make transcriptomics 

especially challenging. In addition, RNA-seq and proteomic analysis may lead to the 

development of markers for a variety of traits to more efficiently advance cultivar 

development in breeding programs. 
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Instrumentation 

There are many approaches for RNA-seq. The Illumina company has created a wide 

range of kits and instrumentation to identify differentially expressed genes, targeted DNA 

sequencing, whole-genome sequencing, targeted RNA-seq, and whole-transcriptome 

sequencing. Other platforms have been used for RNA-seq analysis including Roche/454 

pyrosequencing (the first commercial platforms for NGS), SOLiD (developed by Life 

Technologies), MinION (Oxford Nanopore Technologies), and PacBio (Pacific 

Biosciences of California, Inc.). The latter two are currently referred to as third generation 

sequencing technologies and are much more capable of sequencing much larger fragments 

than the Illumina sequencers achieving of wider de novo genome sequencing and gene 

expression analysis (Berkman et al., 2012; Elshire et al., 2011; Mwadzingeni et al., 2016; 

Poland et al., 2012). The choice of platform to use often depends on the funds available, 

the difficulty in dealing with error rates, and requirement of transcript size. The earlier 

platforms provide more but small sequences while the more recent platforms provide much 

larger and fewer sequences. Matching the platform to the questions is one of the most 

critical steps in the process. At the time of initiation of this research the Illumina platform 

made the most sense for our purposes in that it provided greater read depth with sufficient 

sequence information for identification purposes and a relatively low error rate. 

Wheat Development and Drought Stress 

In most crops the most sensitive stage to yield loss due to stress is often during anthesis 

and grain filling. This is certainly true for corn and soybeans where large crop yield 

reductions were realized under short periods of water stress for several days (Hunt et al., 
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2014; Kebede, Fisher, & Young, 2012; Prasad, Pisipati, Momčilović, & Ristic, 2011). The 

Heading (pre and post anthesis) is also critical period in the development for the wheat 

plant. Heading begins with the emergence of the inflorescence from the sheath of the flag 

leaf. Early heading in certain cultivars may represent a drought avoidance mechanism that 

allows wheat cultivars to bypass drier and hotter temperatures during seasonal growth. 

(Kamran, Iqbal, & Spaner, 2014a). At heading the plant is being transformed from 

vegetative growth to reproductive development (i.e. redirecting assimilates to developing 

the spike). In winter wheats reproductive development is controlled by the vernalization 

gene system. Early spring growth can be controlled by one or more alleles involving 

vernalization: Vrn-1 (Vrn-A1, Vrn-B1, Vrn-D1) or Vrn-3 (Vrn-A3, Vrn-B3, Vrn-D3) 

(Kamran, Iqbal, & Spaner, 2014b). Vernalization occurs in winter wheats when wheat is 

exposed to near freezing conditions for 6 weeks or more. Once vernalized then vegetative 

to reproductive transition is completed. Without sufficient vernalization this will not occur. 

Drought stress during anthesis will result in reproductive failure due to a failure of the 

wheat to self-pollenate, possibly leading to spikelet sterility. Stress during anthesis results 

in a lower percentage of floret fertilization and a decrease in numbers of developing grains 

in the spike (Ji et al., 2010). The vulnerability of wheat plants to water stress is especially 

strong during to the grain-filling stage (Saeedipour & Moradi, 2011). Under drought 

stress,the ultimate yield depends strongly on the severity of water deficit (Maqbool, Ali, 

Haq, Majeed, & Lee, 2015). 
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Grain Filling and Drought 

Reproductive development begins prior to anthesis during the late stages of 

vegetative development where the number of cells that eventually will make up the 

growing kernel are set. A reduction in total cell numbers decreases the kernel’s ability to 

take up carbohydrate during grain filling resulting in a lower than average test weight (Saini 

& Westgate, 1999). Furthermore, a dramatic reduction in grain yield can occur during the 

stages when the grain is being filled with carbohydrates. Maqbool, et al., 2015 concluded 

that water stress induced at the grain-filling stage presented a significant reduction in wheat 

yield in comparison with other growth stage stresses. The reduction at grain filling may 

either affect the ability of the grain to incorporate the carbohydrate or the ability of the 

leaves (mainly the flag leaf) to export to the grain the carbohydrate. In other words, water 

limiting conditions may act on the source or the sink and most likely both to effect a 

reduction in grain yield. 

Flag Leaf and Seed Head Importance to Yield 

The flag leaf of the wheat plant plays a crucial role in the growth and development 

of wheat seeds (Ledent & Renerd, 1982). The qualities or characteristics of a flag leaf are 

regarded by breeders as signatures for high grain yields in wheat. The upper leaves of the 

wheat plant shade the vast majority of the lower leaves reducing the absorption of solar 

radiation by a part of the canopy (Birsin, 2005). During flag leaf maturation these lower 

leaves and stems undergo a carefully choreographed remobilization of nitrogen and carbon 

compounds for export to the grain. A strong source-sink connection between the 

developing grains and the flag leaf and the grain, respectively is established during the 
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grain filling period (Li et al., 2009). First and foremost, the flag leaf is responsible for 

approximately 75% to 80% of photosynthetic carbon imported into the seed head during 

grain filling. (Ghooshchi & Omidvar, 2012). 

In this manner, the flag leaf is the crucial source of assimilates for both the grain 

yield and grain filling at least partially because of its close physical association with the 

developing spike and because it likewise remains green and photosynthetically active for 

a longer period than the other leaves being the last leaf to senesce (Khaliq, Parveen, & 

Chowdhry, 2004). 

Many studies have been investigated on the effects of water stress on wheat and 

other crop plants. Most of these studies have been conducted during the vegetative stages 

of wheat development, much fewer during anthesis and very few if any during grain filling 

stages. The fact that wheat yields during grain filling are highly susceptible to water stress 

indicates that this stage should also be examined in detail. The objective of this work is to 

identify differentially expressed genes in the flag leaf and seed head of two spring wheat 

cultivars in response to moderate and severe water limitations.  
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CHAPTER III 

 

CHARACTERIZE YIELD RESPONSE AND IDENTIFYING DIFFERENTIAL 

EXPRESSION GENES IN THE FLAG LEAF OF TWO SPRING WHEAT 

CULTIVARS UNDER MODERATE AND SEVERE DROUGHT STRESS 

 

Introduction 

 

Drought is a key environmental stress factor that can greatly impact wheat yield 

world-wide. Farooq et al., 2014 wrote that drought can decrease wheat yields by up to 92% 

depending on the time of onset, the duration and the stress intensity. Plant responses to 

drought stress are very complex involving plant structures, physiology and molecular and 

cellular responses that increases the ability of plants to survive, and reproduce under 

drought stress conditions (Nezhadahmadi, Prodhan, & Faruq, 2013). The impact of water 

stress varies depending on the developmental state, and the genetic sensitivity to and 

tolerance towards stress (Lal & Stewart, 2012). 

Wheat can be classified into two categories: winter wheat which is planted in the 

fall and harvested in the spring (about 75% of wheat in U.S), and spring wheat which is 

planted in the spring season and harvested in early fall or late summer. Moreover, wheat 

can also be categorized by its hardness (hard and soft) and its color (red and white). In 
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general, there are six types of wheat grown in the US: hard red spring, hard red 

winter, soft red winter, durum, soft white wheat, hard white wheat. Common bread wheat 

(Triticum aestivum L.) is the most widely grown type of wheat used for producing flour for 

bread, pancakes, muffins, and cakes to name a few. On the other hand, durum wheat 

(Triticum turgidum ssp. durum) is usually used in pasta and couscous. Soft white wheats 

are usually used for bakery products such as cakes and pastries. Most research is performed 

on the hard red winter and spring wheats with much less on the soft white types. 

Developmentally speaking both the reproductive and grain filling stages in wheat 

development are acutely vulnerable to drought stress. Grain yield in most cereals depends 

on what is termed yield components including: the planting density, the number of spikes 

per plant, the number of grains per spike and the weight of the grain (Birsin, 2005). These 

yield components can be severely affected by water stress. The number of grains per spike 

is determined prior to anthesis when the initial cells are beginning to divide and populate 

the immature spikelet. Stress during this period reduces total number of initial cells that 

can form into mature spikelets thereby reducing the overall yield. Stress after anthesis 

during grain filling can also significantly impact yield by reducing the translocation of 

carbohydrate into the growing wheat kernel thereby reducing overall weight gain. 

Ultimately, final grain yield depends on formation, partitioning, accumulation, and 

translocation of photosynthesis during the grain filling period (Fischer & Stockman, 1986; 

Hafsi et al., 2001). 

Although, parts of the wheat plant contribute to spike development and formation, 

the upper three leaves in the wheat plant are exceptionally important to grain filling, and 



 
 

 

24 

yield (Birsin, 2005; Sen & Prasad, 1996). The flag leaf is last of the three upper leaves to 

appear; this leave begins it development and expansion after booting and prior to anthesis, 

and is clearly recognized by the collar ringing the stalk. The flag leaf of wheat was found 

to contribute more than 50% of the carbon associated with grain filling (El Wazziki, El 

Yousfi, & Serghat, 2015) indicating a critical importance to overall yield. High yield 

varieties prolong the grain filling activities of the flag leaf. An extension of this green phase 

allows more time for the production and translocation of organic carbon into the developing 

grain. Across 463 wheat lines from the International Maize and Wheat Improvement Centre 

(CIMMYT), a correlation between yield and a prolonged period of flag leaf photosynthesis 

was observed under drought and/or heat stress only. Wheat plants engineered with NAM 

RNAi gene which delays senescence carried out 40% more flag leaf photosynthesis than 

control plants, but the same plants had the same duration and rate in starch accumulation 

during grain filling and the same grain weight (Borrill, Fahy, Smith, & Uauy, 2015) 

indicating that flag leaf duration is only one component of a multicomponent pipeline. 

Focusing research on the molecular, physiological and photosynthetic activities of the flag 

leaf is particularly important in understanding the mechanisms associated with wheat 

productivity (Loss & Siddique, 1994; Turner, 1996). 

With age, the photosynthetic activity of flag leaves decreases and their grain filling 

function are taken over by photosynthetic tissue associated with the maturing seed head 

and their chlorophyll laden glumes. Glume photosynthesis during and after flowering also 

has a strong impact on grain yield (Olszewski, Makowska, Pszczółkowska, Okorski, & 

Bieniaszewski, 2014). The grain ears contribution to grain yield range from 10% -76% of 

total yield (Abbad, El Jaafari, Bort, & Araus, 2004). Unfortunately, few studies have 
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focused on the molecular aspects in drought stress in the flag leaf or seed head with most 

studies being conducted on young vegetative plants. Thus understanding the mechanisms 

associated with drought response and stress tolerance in these significant tissues may be 

more key to uncover drought response or drought tolerance mechanisms compared to 

vegetative wheat tissues. Furthermore, few studies have worked with soft white spring 

wheats with most studies focused on bread wheat both of the winter and spring cultivars. 

Whole transcriptome analysis enables researchers to better understand changes in 

gene expression responses to environmental stress. Furthermore, study of drought tolerance 

by transcriptomic analysis is becoming more widespread within the agricultural scientific 

community (Zhou et al., 2015). Transcriptomes of non-model organisms has been reported 

for many plants including wheat (Singh et al., 2016; Davidson et al., 2012; Wan et al., 

2008). The advent of next-generation sequencing technologies focused on transcriptomics 

has greatly expanded our capabilities of identifying differentially expressed genes by 

allowing for massively parallel sequencing efforts at a greatly reduced cost. Promising 

differentially expressed genes can be cloned and evaluated functionally for their impact on 

drought tolerance. 

There are many obstacles to understanding the wheat response to drought. The size 

and complexity of the wheat genome make transcriptomics especially challenging. 

Hexaploid wheat has one of the largest genomes of any crop species (17 gigabases in size) 

encoding for more than 124,000 genes making it more challenging to screen and identify 

candidate genes. Furthermore, only 76% total genome has been sequenced to date and 

many of the genes have yet to be functionally annotated with precision, (International 
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Wheat Genome Sequencing Consortium, 2014). The fact that the genome has only limited 

functional annotation makes interpreting gene expression data of limited value to wheat 

breeders and physiologists. Nevertheless, efforts must be made to move the work forward. 

Identifying genes that enable wheat plants to adapt to drought stress is a major goal 

of this project. Screening for differentially expressed genes is the first step in this process. 

Identifying key genes that are overexpressed during stress may provide markers for 

breeding programs to more efficiently develop drought tolerance cultivars (Inoue, Inanaga, 

Sugimoto, An, & Eneji, 2004). Using RNA-seq technology is likely the best way to probe 

the wheat genome for differentially expressed genes and to infer gene function efficiently. 

Therefore, the objective in this work was analyzed changes in the transcriptome associated 

with two levels of water limitation in two wheat cultivars that differ in terms of tolerance 

to water stress, in both the flag leaf during grain filling. 
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Material and Methods 

The experiments were performed at the #315 USDA greenhouse facility of USDA, 

in Stillwater, Oklahoma, during the spring season of 2016. The average of temperature was 

between 15- 25 °C, with 16 hours light. Two soft white spring wheat cultivars (Alpowa 

and Idaho) were planted in 10.2x10.2x30.5 cm. CP412CH TreePots (Stuwe and Sons Inc) 

to a depth of 5 cm. Pots were sanitized with 70% ethanol and then filled with 1.9 Kg of a 

sandy clay loam soil fertilized with ammonium nitrate to 70 kg/ha in a way that reduces 

pot to pot variation. Pots were planted with three seeds and upon emergence trimmed to 

one plant per pot. All pots were regularly hand weeded and checked for insects and were 

sprayed with Immunox (Spectracide, INC. OR, USA) in case of powdery mildew, and 

neem oil (Certis, LLC, MD, USA) in case of aphid infestation. Three tensiometers were 

installed in control pots to 15 cm depth, to measured water potential. Water was provided 

to all pots when the tensiometer reached (40 centibars) based on the recommendations of 

the manufacturer for wheat grown in silt loam soil (Irrometer Co. Inc., Riverside, CA). 

Five days after 50% of the plants showed anthers (Feekes 11.2, post-anthesis and early 

grain filling), wheat plants were watered with either 220 ml (100% well-watered), 110 ml 

(50% well-watered), and 55 ml (25% well-watered) and then water withheld for 5 and 8 

day at which time plants were harvested. There were a total of three stress intensity levels 

(WW, MS, SS), two cultivars, two stress durations and 5 replicate plants for a total of 60 

plants. 

At harvest, flag leaves were removed and weighed along with the remaining tissues. 

and wrapped in aluminum foil and frozen in liquid nitrogen and then stored at -80 °C for 

later use. Tissue was fixed within 2 to 3 minutes of harvest. Weight data were transferred 
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to an Excel spread sheet and analyzed statistically using in JMP® (SAS institute) software 

using multi-factor analysis of variance (ANOVA) based on the least-square fit significant 

differences among the effects, including: cultivar, duration, and stress intensity with 

interactions. Effects were cultivar, duration, and stress intensity. Tukey’s multiple 

comparison procedure was used to find differences within stress intensities along with 

interactions based on a significance p-value of 0.05. 

RNA extraction for flag leaves was performed using the TRIzol® Reagent protocol 

(Life Technologies Inc., Carlsbad, CA). The first step involved the manual homogenizing 

of flag leaf tissue samples in a mortar and pestle with liquid nitrogen. Frozen tissue 

weighing 0.25 g was then placed in a ground glass homogenizer with 1 ml of TRIzol 

reagent and homogenized until all tissue was solubilized (1 min). Extracts were placed on 

ice, analyzed for quantity and quality, and then frozen at -21 °C. RNA was further purified 

using the Qiagen RNAeasy kit (Qiagen, Valencia, USA) according to manufacturer’s 

instructions. Extracted RNA was analyzed on a NanoDrop spectrophotometer (ND-1000, 

ThermoFisher, MA), with the goal of obtaining extracts exhibiting 260 nm/280 nm 

absorption ratios greater than 1.8. (Barbas, Burton, Scott, & Silverman, 2007) and 

quantities greater than 33 g/ml based on the 260 nm absorbance. 

Frozen and purified RNA was sent to the Oklahoma Medical Research Foundation 

(OMRF) for RNA-sequencing using their Illumina HiSeq 3000 instrument. Ribosomal 

RNA (rRNA) and other RNA species were removed using the RNA depletion procedure 

(O'Neil, Glowatz, & Schlumpberger, 2013). Most of what is left over after depletion is 

mRNA and short sequence total RNA. According to Oklahoma Medical Research 

Foundation prior to RNA-seq analysis quality control measures was implemented. 
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Concentration of RNA was ascertained via fluorometric analysis on a Thermo Fisher Qubit 

fluorometer. Overall quality of RNA was verified using an Agilent Tapestation instrument. 

Following initial QC steps sequencing libraries was generated using the Illumina Truseq 

Stranded mRNA with library prep kit according to the manufacturer’s protocol. Briefly, 

mature mRNA was enriched for via pull down with beads coated with oligo-dT 

homopolymers. The mRNA molecules were then chemically fragmented and the first 

strand of cDNA was generated using random primers. Following RNase digestion, the 

second strand of cDNA was generated replacing dTTP in the reaction mix with dUTP. 

Double stranded cDNA then underwent adenylation of 3’ ends following ligation of 

Illumina-specific adapter sequences. Subsequent PCR enrichment of ligated products 

further selected for those strands not incorporating dUTP, leading to strand-specific 

sequencing libraries. Final libraries for each sample were assayed on the Agilent 

Tapestation for appropriate size and quantity. These libraries were then pooled in 

equimolar amounts as ascertained via fluorometric analyses. Final pools were absolutely 

quantified using qPCR on a Roche LightCycler 480 instrument with Kapa Biosystems 

Illumina Library Quantification reagents. Sequencing was performed on an Illumina Hiseq 

3000 instrument with paired-end 150bp reads. Samples were sequenced to an overall depth 

of 50 million reads per sample (OMRF). 

Bioinformatics analysis was performed for eight duration samples, using the OSU 

High-Performance Computing Center (HPCC). The sequence files were downloaded in 

Fastq format from the OMRF database. Quality control was attained using FastQC as a 

stand-alone program providing a swift analysis of the dependability of the sequence reads 

(Andrews,2010). The Fastq files were then screened to the level of Q30. Hisat2 was utilized 
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to align the genes to the wheat genome (Kim, Langmead, & Salzberg, 2015) using the 

International Wheat Genome Sequencing Consortium (IWGSC). The reference genome in 

Gene transfer format (GTF annotation) was downloaded and prepared for quantification 

according to the Hisat2 procedure (Pertea, Kim, Pertea, Leek, & Salzberg, 2016). SAM 

alignment (Li et al., 2009) file conversion, sorting, and preparation was performed using 

the Samtools program (Li, 2011). Quantitative predictions of the transcript were given by 

FPKM (fragments per kilobase per million sequenced reads) levels were produced using 

the RNA-seq software Stringtie. Statistical comparison of all transcripts was reached using 

the R package Ballgown (Pertea et al., 2016). Transcripts which revealed significant 

differential expression were annotated utilizing the UniProt database (UniProt, 2017). The 

level of expression was determined based on the number of sequences for each unigene. 

The degree of differential expression was determined based on the numbers of sequences 

for a given unigene in treated (MS, and SS) compared to WW. Ballgown was used to 

determine significant differential expression based on a p value < 0.05 and adjusted for 

false discovery rate (FDR). The fold up and down-regulation was calculated and those 20 

differentially expressed genes with the highest fold change were identified. Differentially 

expressed genes were further functionally assigned GO: Terms based on the wheat genome 

annotation. The top 20 GO terms with the most differentially expressed gene members 

were determined using an Excel spreadsheet for each cultivar and stress intensity. 
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RESULTS AND DISSCUSION 

 

Flag Leaf Weight (FL): 

Here we examine the response of two soft white spring wheat cultivars to drought 

stress under controlled greenhouse conditions, focusing our attention on the flag leaf during 

grain filling. Alpowa and Idaho, two white spring wheat cultivars are believed to be 

resistant to drought based on higher biomass levels (Alotaibi, 2018) and greater yield (Li, 

2011) under water limiting conditions. The mechanisms of resistance need to be 

investigated, whither from the perspective of avoidance, escaping or tolerating water 

limitations to be of use to plant breeders. 

Here we determined that flag leaf weights were significantly affected by wheat 

genotypes, drought stress intensity and their interactions at both durations (Figure 1). Flag 

leaf weight has been correlated with grain yield (Johnson, Bruckner, & Morey, 1990) as is 

flag leaf length and area (Yang et al., 2016) and under well-watered and drought conditions 

(Qian, Jing, Wang, & Chang, 2009). Surprisingly, flag leaves from susceptible Idaho 

contained significantly more mass than those of tolerant Alpowa under well-watered 

conditions after 5 and 8 days under stress intensity. This indicates that flag leaf mass is not 

a likely factor in the resistance differential between the two cultivars. In contrast to flag 

leaves shoot mass was greater in Alpowa than in Idaho (Alotaibi, 2018). 

There were cultivar differences associated with increased stress intensification 

going from WW to MS to SS. With increasing stress intensity there is an ever decreasing 

trend in flag leaf weight in Idaho at 5 and 8 day durations, while in Alpowa the trend is 
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much less pronounced, and probably non-linear. Alpowa flag leaf weights decrease less as 

a percentage of well-watered than Idaho at both 5 and 8 days. Alpowa flag leaf weights 

averaged across durations were 91% and 62% of well-watered under MS and SS, 

respectively, while Idaho was 68% and 41% under MS and SS, respectively. Guendouz et 

al., (2016) studied the effect of irrigation on specific leaf weight of durum wheat found that 

water stress reduced the specific leaf weight to 42% of well-watered. This decrease in leaf 

weight is most likely due to senescence induced dehydration which is much greater in 

Idaho than in Alpowa. Consequently, the Alpowa response showing a shallower decline in 

senescence induced dehydration may actually be associated with the resistance mechanism. 

Less senescence induced dehydration with stress intensification may actually permit 

greater level of photosynthesis which ultimately leads to greater yield. Inoue et al., (2004) 

who reported that the photosynthetic rate of; ear and flag leaf were significantly higher 

and less affected by drought in drought resistant wheat cultivars than in drought sensitive 

ones. It would be of interest to monitor flag leaf water potential throughout time and stress 

intensification to verify this suggestion. 

The grain filling process is complex and dynamic in nature beyond the limited 

nature of the treatment structures reported here. It also must be noted that the stress 

imposition here began 5 days after 50% anthesis which is likely to be early in the grain 

filling stage of development. It has been proposed that flag leaf photosynthesis contributes 

more during the early phases of grain filling compared to later stages. There are reports 

that later stages of grain filling are completed by stem fructan conversion and 

remobilization of carbohydrate into the developing grain (Borrill et al., 2015). Fructans 

storage in stem tissue may be a mechanism to store excess carbon produced 
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photosynthetically in flag leaves and other tissues while grain filling is under way and 

where grain import of carbohydrates is sink limited (Borrill et al., 2015). Thus speculating, 

Alpowa may have smaller but more photosynthetically active flag leaves and may be more 

capable of storing photosynthetic reserves than Idaho for later grain filling activities. 
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Fig 1. Flag leaf weights for two soft white spring wheat cultivars (Alpowa and Idaho treated 

under WW conditions to Feekes 11.2 and then treated under WW (well-watered, 100%) 

MS (moderate stress, 50% well-watered), SS (severe stress, 25% well-watered) for 5 and 

8 days thereafter. Different letters on top of columns represent significant differences (HSD 

p-value < 0.05). 
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Flag Leaf Transcriptomic Changing 

The sources sink balance associated with high yield are likely the result of metabolic 

activities associated with the flag leaf and seed heads. Here we concentrate on the 

transcriptomic response of flag leaf from two cultivars of wheat to water limitations 

exposed to MS and SS, and differentially expressed genes associated with comparisons 

between WW and MS and WW and SS stress. The numbers of up and down-regulated 

transcripts in Alpowa and Idaho under the two stress intensities are listed in Table 1. 

Overall there were 2.32 and 3.9 fold more up and down-regulated genes, respectively, 

indicating a much higher level of overall transcriptional activity in Alpowa compared to 

Idaho. There was a 10.1-fold greater transcriptional response in MS-Alpowa compared to 

SS-Alpowa. However, on the surface this imbalance may actually be artefactual in nature 

given that the sequences obtained under SS conditions were of substantially lower quality 

than those under WW or MS conditions making comparison across stress intensities more 

problematical. In MS-Idaho the imbalance is not as pronounced except for down-regulated 

transcripts where MS-Idaho showed 4.5 fold more down-regulated transcripts than SS-

Idaho. Shared transcripts between stress intensities MS and SS constituted only 3 to 17% 

of the overall differentially expressed transcripts in both Alpowa and Idaho, indicating that 

the two stress intensities share very little in common in terms of transcriptional response. 
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Table 1. Transcriptome changes in Alpowa and Idaho cultivars in the flag leaf as a 

response to moderate and severe water stresses conditions for eight duration treatment 

 

 Regulation MS MS+SS SS Total 

Alpowa 
Up 33704 8974 7962 50640 

Down 41448 1393 3619 46460 

Idaho 
Up 9936 1761 8361 20058 

Down 8527 1468 1880 11875 
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Gene Ontology 

 

It’s clear that RNA next-generation sequencing (RNA-seq) provides many minute 

details concerning the transcriptional landscape under considered treatment conditions. 

Gene ontology provides a systems biology approach that is simple and widely used to 

understand and highlight functional processes that are affected in response to treatment. 

Differentially expressed transcripts are grouped into preformatted functional categories 

including biological processes, cellular processes and molecular processes (Young, 

Wakefield, Smyth, & Oshlack, 2010; Glass & Girvan, 2014). Here we restrict our analysis 

to biological processes which constitute a category that gives functional information for a 

given set of differentially expressed transcripts. The GO analysis was achieved for the two 

cultivars under study (Alpowa and Idaho) in the two organs (flag leaves and seed heads) 

under two conditions of stress intensity (Moderate-Stress (MS) and Severe-Stress (SS) in 

comparison to Well-Watered (WW). This research constitutes the first analysis of 

transcriptional activities in the flag leaves during the critical stage of grain filling when a 

significant portion of grain yield is determined. The closest research associated with 

transcriptional activities in the flag leaf during grain filling was conducted in rice with a 

focus on stem remobilization of carbohydrates and not the transcriptional activities of the 

flag leaf itself (Wang et al., 2017), or in the flag leaf but not during grain filling (Xu et al., 

2011) 

The top 20 GO terms in of biological process for up and down-regulated transcripts, 

in response to MS and SS treatments have been selected (Table 2). In addition, the ratio of 

up to down-regulation is given as an indicator of the transcriptional direction. Most of the 
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top GO terms were predominantly down-regulated with a ratio of less than 1.0. This is 

especially true with Alpowa where all of the top 20 GO terms contained more down-

regulated than up-regulated DE genes under both stress intensities. Idaho showed a strong 

tendency towards down-regulation with 16 out of 20 under MS and 12 out of 20 under SS 

stress conditions. Thus in terms of biological processes it appears that in both cultivars, 

especially Alpowa, the turning off of genes is favored over turning on of genes. This is 

likely given that the wheat plants at the time were at Feekes 11.3 where senescence 

processes are likely to be operative and normal metabolic channels are likely to be more 

turned off than turned on. However, this contrasts with the data observed in Table 2. where 

for the most part up and down-regulation of gene expression are evenly balanced, and even 

in favor of up-regulation under SS conditions in Idaho. It must be remembered that only a 

small fraction (~2 - 6%) of total numbers of differentially expressed genes are represented 

with GO terms due to the lack of functional annotation in the wheat genome. A more 

complete analysis can be obtained by resorting to a GO Terms from another closely related 

model species such as Brachypodium, Rice, or even Arabidopsis which genomes are much 

more functionally annotated. 

In Flag leaves across all treatments, cultivars and up and down-regulation, the most 

abundant GO terms are related to transcriptional biological processes and to a lesser extent 

metabolic, transport, and translational activities. The GO term with the absolute greatest 

number of members was regulation in transcription (GO: 6355) and the next most abundant 

was transcriptional processes (GO: 6351). Of these two, down-regulation dominated across 

all treatments. Their child terms which include the negative regulation of transcription 

(GO: 45892) and the initiation of templated transcription (GO: 6352). Negative regulation 
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of transcription child terms was predominantly down-regulated for 28 DE transcripts in 

MS-Alpowa and 18 DE transcripts in MS-Idaho. This may indicate a general reduction in 

transcription factors that reduce transcription overall or the rate of transcription. The child 

term positive regulation of transcription was not observed either. Thus under water stress, 

it appears that the brake for transcription is down-regulated and the accelerator is not 

operative supporting a reduction in transcriptional regulation during grain filling. A 

reduction in regulation of transcription is likely to occur as a prequel to senescence induced 

cell death. The other predominant child term, initiation of transcription, also favored down-

regulation with 62 transcripts in MS-Alpowa and 22 in SS-Idaho showing reduction in 

comparison to control. Thus, initiation of transcription and control of transcription are 

downregulated late in wheat development during the early stages of grain filling and under 

drought stress conditions. 

Other active processes related to nucleic acid activities included DNA integration 

(GO:15074), DNA repair (GO: 6281), translation (GO: 6412). and RNA processing (GO: 

6396). RNA processing is associated with the maturation of RNA transcripts prior to 

translation. Child terms for with RNA processing in this study are those associated with 

the organelles: chloroplast and mitochondria. In general, RNA processing term showed 

substantial down-regulation in MS-Alpowa and MS-Idaho under the two water limiting 

conditions. Down-regulation in RNA processing corresponds nicely with reduced initiation 

and a general down-regulation of transcriptional control alluded to above. DNA repair is 

the mechanisms that operates to restore damaged DNA to functional activity. These DE 

transcripts exhibited down-regulation in both cultivars. The only child term was for 

mismatch repair (GO: 6298). Mismatch repair was predominantly down-regulated in 
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Alpowa across all treatments, but up-regulated in Idaho indicating a cultivar difference. 

Mismatch repair has been shown to be more active in response to environmental stress 

(Kunkel & Erie, 2015). Mismatch repair genes have been shown to be down-regulated 

under stress conditions in Arabidopsis (Kiselev, Ogneva, Dubrovina, Suprun, & Tyunin, 

2018). Greater need for mismatch repair in Idaho may reflect a greater level of oxidative 

stress leading to DNA damage. Translation (GO: 6412) is the cellular metabolic process 

that produces nascent proteins. Translational activities were for the most part down-

regulated under MS and SS Alpowa but strongly upregulated under MS and SS conditions 

in Idaho in both cultivars indicating a strong cultivar bias. Translational responses to 

drought stress are known to change dramatically under water limiting conditions compared 

to well-watered treatments (Lei et al., 2015). DNA integration (GO: 15074) which means 

the incorporation of small DNA fragments into larger DNA molecules such as a 

chromosome, were down-regulation in all treatments. While no child terms were found for 

integration activities, typical integration events in wheat may involve transposition events, 

given that 68% of the wheat genome has its origin with transposition (Li, Zhang, Fellers, 

Friebe, & Gill, 2004). Furthermore, transposition activities appear to be up-regulated under 

drought stress (Alzohairy et al., 2014). However, here, it appears that transposition is 

predominately down-regulated during the grain filling stages of wheat development under 

stress whereas in the vegetative stages it was up-regulated (Alotaibi, 2018) indicating that 

transposition activities are likely associated with pre compared to post-anthesis processes. 

Gene Ontology terms related to metabolic process (GO: 8152) were substantially 

down-regulated under stress in both cultivars. Metabolic processes are a general term that 
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includes anabolism and catabolism whereby macromolecular molecules are synthesized or 

degraded. Child terms of significance in this project included protein polyubiquitination 

(GO: 209) nitrogen compound metabolic process (GO: 6807), the general term biosynthetic 

processes (GO: 9058) and cellular metabolic processes (GO: 44237). Protein 

polyubiquitination involves the addition of multiple ubiquitin groups to protein destined 

for degradation or for endocytic trafficking. For the most part this process was down-

regulated in both MS-Alpowa and MS-Idaho but upregulated in SS-Alpowa. Nitrogen 

compound metabolic processes involve metabolism of nitrogen containing compounds 

including proteins and amino acids. This process was up-regulated in MS-Alpowa and 

down-regulated in the other treatments. Presumably nitrogen metabolism is critical to the 

recycling of nitrogen containing compounds for export to the developing grain. In previous 

work, nitrogen compound metabolic process were predominantly up-regulated under 

crowding (Choe, Drnevich, & Williams, 2016). The other two child terms associated with 

metabolism includes biosynthesis and cellular metabolism, both of which were strongly 

down-regulated in Alpowa indicative of the general relaxation of biosynthesis as opposed 

to catabolism during grain filling in the flag leaves. Additional GO terms related to 

metabolism included carbohydrate metabolic process (GO: 5975), lipid metabolic process 

(GO: 6629), and ubiquitin-dependent protein catabolic process (GO: 6511). Carbohydrates 

metabolic process (GO: 5975) are processes involving the synthesis, degradation of 

carbohydrates, or the attachment of carbohydrates to another molecule. For the most part 

these biological processes were well represented with on average of over 152 DE 

transcripts across cultivars and stress intensities. Down-regulation was especially evident 

in SS-Alpowa where only 18 genes were up and 107 genes down-regulated. Child terms of 
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carbohydrate metabolic processes were not well represented within this biological process. 

The down-regulation of carbohydrate metabolism during grain filling in the flag leaf is 

somewhat puzzling given carbohydrate synthesis is a major function of the flag leaf during 

grain filling. It may be that some synthesis processes associated with export are maintained 

but other carbohydrate metabolic activities associated with growth are curtailed. Lipid 

metabolic process (GO: 6629) were not as prevalent compared carbohydrate metabolisms 

in the flag leaf, and were down-regulated in flag leaf tissues under stress. The only major 

child term represented was for lipid catabolic processes. Lipid catabolism associated with 

oxidative stress in the flag leaves is known to function during senescence and drought stress 

(Simova-Stoilova, 2009). Along with the predominant down-regulation of Lipid and 

carbohydrate catabolism includes the GO term Ubiquitin-dependent protein catabolic 

process (GO: 6511) which involves the ubiquitin mediated degradation of proteins 

coinciding with the down-regulation of polyubiquitinization referred to above. This GO 

term was substantially down-regulated and the major child term associated with these 

activities involve the proteasome, a protein complex associated with protein degradation. 

Along with protein degradation activities in the flag leaf, protein folding (GO: 6457) was 

also down-regulated except under severe stress in the flag leaves of SS-Idaho where it was 

strongly up-regulated. The down-regulation of protein folding is likely co-regulated with 

the overall protein degradation activities except in the cultivar Idaho. Thus under stress in 

the flag leaf both carbohydrate, lipids and proteins catabolism appears to be substantially 

down-regulated in both cultivars. 
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During drought stress conditions cellular transport processes were substantially 

altered. Biological processes including the general GO term Transport (GO: 6810) which 

involves the movement of molecules between cellular components or between cells. Child 

terms for the general transport GO term included transmembrane transport (GO: 55085), 

the transportation of solute through the cell membrane, intracellular protein transport (GO: 

6886) which is the movement of protein between particular cellular compartments, and 

vesicle-mediated transport (GO: 16192) a cellular transport process that involves 

membrane-bounded vesicles. This latter process is a major contributor to protein 

integration into membrane structures. All of the above mentioned transport processes are 

down-regulated in all cases except for SS-Idaho where there is a slight up-regulation in 

transport associated DE transcripts. Interesting child terms associated with these include: 

vacuolar transport, protein targeting, exocytosis, and Golgi vesicle transport. Thus it 

appears under stress conditions there is significant transport of proteins to the vacuole 

and/or likely the exterior to the plasma membrane. Vacuolar transport may be associated 

with detoxification activities while exocytosis may be associated with senescence 

associated export of proteins for cell wall degradation. 

 A variety of other GO Terms were influenced by drought stress in the flag leaves. 

These include cell wall organization (GO: 71444), response to oxidative stress (GO: 6979), 

biosynthetic processes (GO: 9058), recognition of pollen (GO: 48544) and embryo 

development and seed dormancy (GO: 9793). With few exceptions these reflect substantial 

down-regulation. Changes in cell wall organization (GO: 71555) includes child terms such 

as cell wall organization, and modifications all down-regulated functions and involved in 
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maintaining cell shape, protection them from osmotic lysis, processes of assembly or 

disassembly in both cultivars and stress intensities. The response to oxidative stress was 

primarily down-regulated in both cultivars and stress intensities and particularly in SS-

Alpowa. This GO Term is associated with the cells reaction to oxidative stress as a result 

of exposure to high levels of reactive oxygen species, e.g. superoxide anions, hydrogen 

peroxide, and hydroxyl radicals. Oxidative stress under abiotic stresses or senescence 

processes creates an imbalance in the redox status of plant cells (Das, Nutan, Singla-

Pareek, & Pareek, 2015) leading to cell death. Oxidative stress response is indicated to be 

significantly connected with water limitations in wheat (Devi, Kaur, & Gupta, 2012) and 

other plants (Sharma, Jha, Dubey, & Pessarakli, 2012). The last two GO terms are 

recognition of pollen (GO: 48544) embryo development ending in seed dormancy (GO: 

9793). This is unexpected in that we are well beyond pollination. However, it is possible 

that these transcripts may have alternative functions unrelated to pollination. Embryo 

development ending in seed dormancy (GO: 9793) which constitutes a cascade of events 

that initiates in embryo development and terminates in seed dormancy. This function was 

slightly down-regulated in MS-Alpowa, SS-Alpowa and MS-Idaho but was up-regulated 

in SS-Idaho. 
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Table 2. Flag leaf gene ontology terms for Alpowa and Idaho cultivars after 8 days of water limiting treatments and under two conditions 

of stress intensity, moderate and severe stress. The number and ratio of up and down-regulated transcripts is given under each of the top 

twenty terms.   

 

Gene Ontology Terms                  GO# Up Down Ratio Up Down Ratio Up Down Ratio Up Down Ratio

Transcription, DNA-templated 6351 408 702 0.58 176 299 0.59 38 157 0.24 95 153 0.62

Regulation of DNA transcription 6355 587 1023 0.57 231 493 0.47 75 250 0.30 168 267 0.63

DNA integration 15074 68 138 0.49 44 89 0.49 8 44 0.18 14 61 0.23

DNA repair 6281 81 143 0.57 51 71 0.72 12 26 0.46 25 35 0.71

Translation 6412 166 183 0.91 270 76 3.55 14 33 0.42 89 34 2.62

RNA processing 6396 65 81 0.80 46 39 1.18 6 22 0.27 26 21 1.24

Metabolic process 8152 241 408 0.59 119 164 0.73 20 94 0.21 65 90 0.72

Carbohydrate metabolic process 5975 222 390 0.57 77 227 0.34 18 107 0.17 76 102 0.75

Lipid metabolic process 6629 94 131 0.72 22 61 0.36 10 40 0.25 27 32 0.84

Ubiquitin protein catabolism 6511 81 148 0.55 23 72 0.32 8 24 0.33 18 29 0.62

Protein folding 6457 93 108 0.86 29 53 0.55 11 20 0.55 51 35 1.46

Transport 6810 106 129 0.82 31 61 0.51 7 35 0.20 31 28 1.11

Transmembrane transport 55085 118 178 0.66 50 95 0.53 14 46 0.30 42 36 1.17

Intracellular protein transport 6886 157 186 0.84 23 79 0.29 15 30 0.50 47 43 1.09

Vesicle-mediated transport 16192 93 115 0.81 4 43 0.09 10 16 0.63 25 26 0.96

Cell wall organization 71555 59 110 0.54 29 54 0.54 11 25 0.44 16 29 0.55

Response to oxidative stress 6979 79 116 0.68 33 52 0.63 6 32 0.19 18 25 0.72

Biosynthetic process 9058 72 98 0.73 20 49 0.41 12 33 0.36 26 25 1.04

Recognition of pollen 48544 59 113 0.52 52 48 1.08 7 18 0.39 16 34 0.47

Embryo development seed dormancy 9793 71 87 0.82 37 39 0.95 8 25 0.32 29 21 1.38

Alpowa Idaho Alpowa Idaho

Moderate Stress (50% WW) Severe Stress (25% WW)



 
 

 

46 

Gene Expression 

The difference in the gene expression under the two stresses (MS and SS) in 

comparison to control (WW) was characterized, and the top 20 up and down-regulated 

genes were presented in Tables 3 and 4, respectively, depending on UniProt classifications 

and definitions (UniProt, 2017). The most striking aspect of the transcriptional response is 

the up and down-regulation of the top twenty differentially expressed genes associated with 

MS-Alpowa. MS-Alpowa exhibited 7.2 and 5.1 times the numbers of top 20 transcripts for 

up and down-regulated genes as the average across the other three treatments. This large 

differential expression in MS-Alpowa is matched by the overall imbalance exhibited in 

Table 1 for the same treatments. Thus MS in the cultivar Alpowa is transcriptionally very 

active with respect to the top twenty most abundant transcripts. 

The top twenty up-regulated transcripts were grouped into five functional 

categories (Photosynthesis, Photorespiration, methyl transferase, amino transferase and 

unknown) as presented in Table 3. Genes involved in photosynthesis and in particular the 

carboxylation reactions were most prominent including over half of the most active 

transcripts. These include: Rubisco small subunit, Rubisco activase, Carbonic anhydrase 

and a protein associated with photosystem II. This is not surprising given the known 

activity of photosynthesis in the flag leaf during grain filling. Clearly rubisco small subunit 

transcripts were highly upregulated in flag leaves to support their CO2 photoassimilation 

functionality. The small subunit of Rubisco is part of a multicopy nuclear encoded portion 

of the holoenzyme that apparently has substantial role in improving Rubisco catalytic 

efficiency and CO2/O2 specificity (Spreitzer, 2003; Genkov & Spreitzer, 2009). Here three 

small subunits showed very large and concurrent transcript expression in MS-Alpowa and 
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to a lesser extent in SS-Idaho, SS-Alpowa, and MS Idaho. The small subunit along with 

Rubisco Enzyme Rubisco activase both A and B were highly upregulated except in MS-

Idaho. Rubisco activases appear to function in adjusting the conformation of the enzyme 

regulating it carboxylation efficiency (Portis, 2003) and is necessary to activate Rubisco 

function. Furthermore, Rubisco activase is known to assist Rubisco in its adaptation to 

abiotic stresses including heat, salt and osmotic stresses (Chen et al., 2015; Portis, 2003), 

conditions that are likely operative prior to wheat harvest. Carbonic anhydrase functions 

inter-converts CO2 to bicarbonate ions in aqueous solutions. Bicarbonate serves as 

substrate for amino acid and lipid synthesis. The role of carbonic anhydrase in CO2 

concentration mechanisms is well established in C4, but its precise role in C3 

photosynthesis is much less clear. Proposals for multiple roles in stomatal movement, 

recycling of respiratory CO2 into photoassimaltes, amino acid and lipid synthesis and 

seedling assimilation of CO2 have all been proposed (DiMario, Layton, Mukherjee, 

Ludwig, & Moroney, 2017). The fact that flag leaves are highly active in terms of 

photosynthesis may suggest that at this stage of development carbonic anhydrase has a role 

in photoassimilation of CO2. Furthermore, evidence suggests that carbonic anhydrase may 

be necessary to maintain photorepiratory fluxes (Hodges et al., 2016). This is particularly 

intriguing because photorepiratory enzymes are also highly upregulated. The last transcript 

associated with photosynthesis is an unnamed Photosystem II polypeptide of unknown 

function. This is likely a structural protein supporting the photosystem II function of which 

there are many. 

Beyond photosynthesis there are four transcripts associated with photorespiration. 

A significant portion of the activity of Rubisco uses oxygen instead of carbon dioxide to 
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produce 2 phosphoglycolate. There exists a complex metabolic process commonly called 

photorespiration that is used to convert the toxic 2 phosphoglycolate into a usable form that 

can be metabolized by the Calvin Cycle, but this occurs at a considerable cost in terms of 

energy and carbon product. Thus photorespiration was considered to be a wasteful process. 

Some have considered this process to be like a safety valve to get rid of excess reductive 

power provided by the light reaction of photosynthesis avoiding free radical activities, 

especially under stress conditions (Stuhlfauth, Scheuermann, & Fock, 1990). However, this 

safety valve concept is probably too simplistic give that the photorespiratory pathway 

interacts with compounds associated with a range of metabolic pathways including nitrate 

assimilation, amino acid metabolism, C1-metabolism, and basic metabolic pathways. 

Furthermore, photorespiration is likely important in both biotic and abiotic stress response 

(Hodges et al., 2016). Moreover, photorespiration metabolic activities have been associated 

with decreasing productivity in terms of biomass and limiting nitrogen assimilation to 

maintain a constant C/N ratio (Dellero, Lamothe-Sibold, Jossier, & Hodges, 2015). 

Furthermore, activities of photorespiration appear to be co-regulated with carbon fixation 

itself (Timm et al., 2012). 

Three of the enzymes of the photorespiratory pathway are represented among the 

top 20 differentially expressed up-regulated genes. These include glycine decarboxylase P 

subunit, serine hydroxymethyltransferase, and serine-glyoxylate amino transferase. The 

first two are associated with the mitochondria while the last one is associated with the 

peroxisomes, all part of the photorespiratory pathway. Glycine decarboxylase is a pivotal 

enzyme in this pathway. This enzyme takes glycine and cleaves off ammonium and CO2 

producing 5, 10 methylenetetrahydrofolate to produce serine with the assistance of serine 



 
 

 

49 

hydroxymethyltransferase. The ammonia produced is recycled as is the CO2 through the 

Calvin cycle and the 5, 10 methylenetetrahydrofolate is used as a methyl donor for purine 

and methionine metabolism (Hodges et al., 2016). Glycine decarboxylase activities were 

shown to correlate with net photosynthetic activities indicating a connection between 

photorespiration and photosynthesis (Timm et al., 2012). The activities of serine 

hydroxymethyltransferase are downstream of glycine decarboxylase using a methyl from 

5,10 methylenetetrahydrofolate and glycine itself to form serine. All of these activities exist 

in the mitochondria. Subsequent events of the photorespiratory pathway occur in the 

peroxisomes where r serine and the enzyme serine gloyoxylate amino transferase takes 

glyoxylate to produce hydroxypyruvate which is two enzymatic steps away from reentry 

into the Calvin cycle. The fourth enzyme associated with photorespiration is the 

peroxisomal (S)-2-hydroxy-acid oxidase which functions in the production of H2O2. The 

H2O2 is often noted as a signaling molecule in biotic defense reactions. The activities of 

the photorespiratory enzymes mentioned above were all greatly induced in MS-Alpowa, 

moderately induced in SS- Idaho and very lightly induced or not induced in SS-Alpowa 

and MS-Idaho. It is interesting that there was a cultivar difference in that induction 

occurred in MS conditions in Alpowa and SS conditions in Idaho. 

The last five transcripts that were strongly upregulated in MS-Alpowa included 2 

methyl transferases, one amino transferase and two unknowns. All of these were up-

regulated in MS- Alpowa and moderately upregulated in SS- Idaho like all the others 

referred to above. S adenosyl methionine decarboxylase is an enzyme in the pathway of 

synthesis of polyamines which are nitrogen based compounds that show some regulatory 

features of stress responses (Minocha, Majumdar, & Minocha, 2014). End products of the 
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pathway include spermidine, tetramine spermine and damine putrescine. Polyamines may 

act in a dual manner in promoting resistance to stress through reactive oxygen scavenging 

or by promoting active oxygen. Furthermore, these compounds may serve as stress memory 

compounds or may be the active ingredient in regulating stress priming (Minocha et al., 

2014). Here there were two out of the twenty top up-regulated genes associated with the 

transcript of an enzyme connected to polyamine synthesis. Alanine amino transferase is 

well known for its participation in the Dicarboxylic acid pathway of C4 photosynthesis 

where CO2 is pumped into the bundle sheath cells to be captured by Rubisco. This enzyme 

is located on the recovery side of the cycle of products of that pathway. In addition, the 

enzyme is prominent in the catabolism of the amino acid alanine to pyruvate. The last two 

top twenty transcripts involve two unknowns whose activities are highly upregulated in 

MS-Alpowa in a similar manner as those above. 

Overall the top transcriptional activities associated with the flag leaf involve 

photosynthesis activities associated with carbon fixation, photorespiration and metabolic 

pathways associated with polyamine synthesis and amino acid metabolism. All of these 

show the primary pattern of extremely high up-regulation in MS-Alpowa and moderate 

upregulation in SS-Idaho with significant up-regulation in the remaining treatments. 
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Table 3. The top 20 up-regulated genes in the flag leaf with the greatest fold change under moderate stress (MS) and severe 

stress (SS) conditions for 8 days in comparison with well-watered control (WW) for Alpowa and Idaho cultivars. The genes 

are sorted based on functional categorization. ND: not differentially expressed. 

Down-regulated MS SS MS SS

Rubisco small subunit Photosynthesis 309 17.3 11.5 105 >200

Rubisco small subunit Photosynthesis 304 18.0 13.5 80 150-200

Rubisco small subunit Photosynthesis 299 23.8 11.7 108 100-150

Rubisco small subunit Photosynthesis 285 13.1 12.3 89 50-100

Rubisco small subunit Photosynthesis 285 14.6 7.3 80 1-50

Rubisco activase A Photosynthesis 369 3.2 ND 122 ND

Rubisco activase B Photosynthesis 351 3.4 ND 128

Rubisco activase Photosynthesis 346 3.7 1.1 80

Carbonic anhydrase Photosynthesis 310 9.4 1.7 77

Carbonic anhydrase Photosynthesis 315 8.4 2.0 89

Photosystem II polypeptide Photosynthesis 294 ND 1.0 80

Serine hydroxymethyltransferase Photorespiratian 311 2.3 1.1 97

glycine decarboxylase P subunit Photorespiration 296 ND 2.8 89

Serine-glyoxylate aminotransferase Photorespiration 284 ND 3.1 73

Peroxisomal (S)-2-hydroxy-acid oxidase GLO1 Photorespiration 286 3.4 ND 89

S-adenosyl methionine decarboxylase Methyl transfer 310 ND 28.4 80

S-adenosyl methionine decarboxylase Methyl transfer 300 ND 2.3 98

Alanine aminotransferase 2 Amino transferase 298 ND ND 80

Unknown Unknown 288 2.2 ND 97

Unknown Unknown 285 11.1 8.7 105

Differentially Expressed Genes or Proteins Fold change

Alpowa Idaho

Functional categories
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The top 20 down-regulated genes under the two drought stress treatments and two 

wheat cultivars are presented in Table 4. The differentially expressed genes in a down-

regulated way can be functionally categorized into 12 distinct categories. As with up-

regulation MS-Alpowa showed very strong down-regulation compared to the other three 

treatments. The strong down-regulation in MS-Alpowa for the top 20 genes reflect the 

overall down-regulation for the same treatment cultivar combination for all differentially 

expressed genes. Half of the top 20 transcripts were functionally unknown reflecting the 

lack of knowledge within the wheat genome of genes that are predominantly down-

regulated in response to water stress. The other 10 genes included a disparate range of 

functional attributes. 

In the DNA integration category, the gag polyprotein expression was 352 fold 

reduced in MS-Alpowa. This gene is considered to be part of the basic retroviruses 

infrastructure and essential for virion assembly and binding to the plasma membrane, 

creating spherical particles through protein-protein interactions (Jalalirad & Laughrea, 

2010). GAG polyproteins have been studied in terms of HIV infections (Ganser-Pornillos, 

Yeager, & Sundquist, 2008), but little is known concerning their presence in transcriptomic 

studies in plants. It has become clear that transposable elements (TEs) are considered a 

significant source of evolutionary innovation in eukaryotic genomes by providing non 

coding DNA which may provide novel regulatory sites to modulate gene and protein 

expression. The wheat genome is one of the largest genomes associated with crop 

production, much of which is non-coding sequence, of which a large majority is associated 

with transposable elements. The reason why these retroviral elements are significantly 

reduced in response to water limiting stress is a puzzle. Could it mean that under stress 
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conditions during grain filling, a critical stage in the survival of the wheat plant, that 

retroviral interactions are minimized by some unknown mechanism. Further research in 

this area should be conducted concerning the association of viral resistance to water 

limitation during grain filling. 

The VAN3-binding protein-like in Arabidopsis is responsible for formation the leaf 

veins via a canalization mechanism associated with the plant hormone auxin to generate a 

highly reproducible branched and reticulate pattern. Furthermore, VAN3 ARF-GAP may 

play an important role in the auxin signaling associated with vesicle transport that is 

required for differentiation of vascular (Koizumi, Sugiyama, & Fukuda, 2000; Koizumi, 

2005). Clearly both functions are associated with growth responses which under the current 

circumstances are likely down-regulated. 

Serine/arginine repetitive matrix protein 1 networked is a part of pre/post-transcript 

splicing multiprotein complexes of the small nuclear ribonucleoprotein particles (snRNPs), 

involved in pre-mRNA processing, formation of an exon junction complex that stimulates 

mRNA 3'-end cleavage, binding both RNA and DNA with low sequence specificity 

(Blencowe, Issner, Nickerson, & Sharp, 1998; Szymczyna et al., 2003). The down-

regulation of this gene is likely part of a more pronounced down-regulation of RNA 

processing as indicated in the GO: Term analysis and transcription in general. 

Protein networked 2A was down-regulated and may be part of membrane-

cytoskeletal adapter complex associated with F actin at the plasma membrane in growing 

pollen tubes (Deeks et al., 2012). Actin cytoskeletal networks are major actors in terms of 

cell trafficking and transport. The third transcript produce B3 domain-containing proteins 



 
 

 

54 

that represent a large transcription factor superfamily. The B3 superfamily specific to 

plants are composed of three family members and plays a central role in embryogenesis to 

seed maturation and dormancy in plant life (Wang et al., 2012). Family members include 

auxin response factors, abscisic acid insensitive factors, and the RAV family of 

transcription factors. In Arabidopsis thaliana, the B3 domain of At1g16640 structure 

composes of a seven-stranded β-sheet and two short α-helices (Deeks et al., 2012; Waltner, 

Peterson, Lytle, & Volkman, 2005). All three of the B3 domain transcription factors are 

associated with drought response (Fu et al., 2014; Mittal et al., 2014; Wang et al., 2010). 

Here their expression appears to be substantially down-regulated. Lastly, translation 

initiation factor that is required for initiation of translation was dramatically down-

regulated in the drought resistance MS-Alpowa in accordance with the general down-

regulation observed under the GO: TERM analysis. A gene involved in protein catabolism 

containing a U-box domain-was highly downregulated in MS-Alpowa. The plant U-box 

(PUB) proteins contain five distinct subclasses that suggest diverse roles. The only PUB 

gene functionally characterized is the ARC1 gene from Brassica which is required for self-

incompatibility. In yeast, the prototype U-box protein (Ufd2) was identified that involved 

in catalyzing ubiquitin chain formation on artificial substrates with ubiquitin-protein ligase, 

ubiquitin-conjugating enzyme and ubiquitin-activating enzyme (Azevedo, Santos-Rosa, & 

Shirasu, 2001; Hatakeyama, Yada, Matsumoto, Ishida, & Nakayama, 2001). The non-

specific lipid-transfer gene in plant is a basic small protein that is typically involved in 

abiotic stress response, pathogen defense, reproductive development and transfer of 

phospholipids across membranes. Its major function is associated with cuticular lipid 

export to create the cuticular wax layer (Kim et al., 2012). In maize, about 63 genes of non-
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specific lipid transfer proteins (nsLTPs), have been identified divided into five types (Wei 

& Zhong, 2014). 

 Bowles (1990) reported that by changing in physiological conditions of defensin-

protein, the higher plants protect themselves from various stresses such as harsh growing 

conditions (i.e. drought, heavy metals), pathogen attacks, application of chemicals 

including phytohormone, wounding, air pollutants like ozone, ultraviolet rays. This process 

of protective reactions in higher plants called "defense responses" and the actively 

synthesized proteins in this process called "defense-related proteins” or defensing like 

protein. This defense transcript was not differentially expressed in MS-Idaho, but a 

significant change in it expression was observed in Alpowa cultivar. Finally, a 

retrotransposon protein was substantially down-regulated in response to water limitations. 

Retrotransposition is responsible for the bulk of the wheat genome as indicated earlier.  
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Table 4. The top 20 down-regulated genes in the flag leaf with the greatest fold change under moderate stress (MS) and severe 

stress (SS) conditions for 8 days in comparison with well-watered control (WW) for Alpowa and Idaho cultivars. The genes are 

sorted based on functional categorization. ND: not differentially expressed, NP: not present.  
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CHAPTER IV 

 

CHARACTERIZE YIELD RESPONSE AND IDENTIFYING DIFFERENTIAL 

EXPRESSION GENES IN THE SEED HEAD OF TWO SPRING WHEAT 

CULTIVARS IN RESPONSE TO MODERATE AND SEVERE WATER 

LIMITATIONS 

 

Introduction 

In seed bearing plants it has been reported that drought stress affects the relationship 

between the content of carbon in photosynthetic organs (leaves) and the content of carbon 

in heterotrophic organs (seeds and roots, sink) indicating that carbon partitioning processes 

are sensitive to drought stress (Cuellar-Ortiz et al., 2008). An essential part of the plant life 

cycle is senescence processes where nutrient remobilization occurs from vegetative parts 

to storage organs, such as: seeds, tubers fruits, roots, and stems at the end of plant life cycle 

(Gregersen & Holm, 2007). Success for plants depends on the reproductive process leading 

to a high number and mass of the seeds. Significantly lower seed yield due to drought can 

occur during anthesis where seed number is predominantly affected by lower fertility 

(Salter & Goode, 1967). Seed development is also strongly affected by the availability of 

water during the grain filling stage of development. 
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Water deficits results in a significant decrease in seed yield for most crops. These 

decreases can occur due to a reduction in source effects such and photosynthesis or sink 

effects such as carbohydrate assimilation into developing seeds. Severe stress can cause 

reproductive structures to abort causing a drastic reduction in yield (Boyer & Westgate, 

2004; Marcelis et al., 2004; Paul et al., 2016). Grain yield can be divided into components 

including the weight and number of individual seeds, spiklets, seed heads and tillers. These 

easily accessible morphological traits are often used on breeding programs to identify good 

yielding varieties (Villegas et al., 2007). In wheat, it has been reported that grain yield is 

more closely correlated to grain number than to grain mass, so that, selecting for a high 

number of spikes per area unit and a high grain number per spike will lead to improved 

yield. Estimating the head numbers in the late spring will be more accurate than that made 

in the fall (Beharav, Cahaner, & Pinthus, 1998; Zamski & Grunberger, 1995). 

 Photosynthesis throughout plant development ultimately provides carbon that ends 

up in the grain. Maintaining functional green upper leaves, sheaths, and seed heads during 

grain filling are important for high yields. Most of the carbon destined for the grain comes 

from one of two sources: photosynthetic carbon produced during grain filling and carbon 

remobilized from vegetative tissues and translocated into the developing kernel. The flag 

leaf and seed head usually contribute most of the photosynthetic carbon to the developing 

grain, (Simmons, Oelke, & Anderson, 1985). 70 to 90 % of the final grain yield is derived 

from products of photosynthesis that are produced by the plant during grain filling. 

Depending on seasonal conditions, photosynthetic carbon produced by the flag leaf may 

contribute up to 50 percent of the grain yield while seed head, penultimate leaf, and other 

leaves can also contribute significantly. However, sink limiting conditions often apply 
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during grain filling which means that there is a limitation to the rate at which the developing 

kernel can absorb carbon. The excess carbon produced during this time, but not assimilated, 

can be translocated to the stem for temporary storage in the form of fructans. Once 

photosynthesis in vegetative tissues slows down then grain filling can continue by a 

remobilization of stem reserves. This usually accounts for later stage filling of the 

developing kernals (Borrell et al., 1989). 

Grain filling begins after pollination. Within 1 to 2 weeks after pollination, carbon 

is rapidly transferred from leafy tissues to the developing grain where it is transformed into 

starch and protein. During this early grain filling time the kernel consistency is milky and 

soft, the soft dough stage of grain development. Three weeks into grain filling and after the 

soft dough stage the developing kernel continues to fill and then begins to rapidly desiccate 

and solidify, termed the hard dough stage. At this point the grain approaches what is termed 

physiological maturity. Throughout this grain filling period, seed head photosynthesis 

through glumes and awns contribute to the carbon flow to the developing grain. Awns due 

to their close proximity to the developing kernel and photosynthetic capacity contribute 

significantly to the final mass of the developing grain. In awned and awnless genotype 

barley, Bort, Febrero, Amaro, Jarius (1004), suggested that awns improve net CO2 fixation 

and water use efficiency of ears throughout the grain filling. Based on shading experiments, 

the photosynthetic assimilation by the seed heads, from one week after anthesis to maturity, 

accounted for 40% of total grain filling, in the awned genotype, but only 15% in awnless 

cultivars. Thus the awns as photosynthetic organs contributors significantly to the carbon 

flow to the developing kernals. Furthermore, the awns and glumes, which are modified 

leaves, appear to be less sensitive to water stress conditions. During water stress, seed head 
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photosynthesis may in fact compensate for the reduction in photosynthesis experienced by 

flag leaves and other vegetative tissues (Weyhrich, Carver, & Martin, 1995). In durum 

wheat, photosynthesis was much greater in the ear than in the flag leaf under well-watered 

conditions. Whole ear photosynthesis correlated better than flag leaf photosynthesis with 

final grain yield (Abbad, El Jaafari, Bort, & Araus, 2004).) 

For molecular studies on wheat grain development, transcriptome data will provide 

a valuable resource to better understand the molecular mechanisms and regulators 

functioning during grain filling. Unfortunately, there is little work performed on identifying 

the transcriptome during this important stage of wheat development. Wan et al., (2008) 

determined the transcriptome of developing seed heads from hexaploid wheat (Triticum 

aestivum, cv.Hereward) in the period between 6 and 42 days after anthesis (DAA). 

Transcript abundance was analyzed into several stages including post-anthesis 

differentiation into grain filling stage (6–10 DAA), grain fill stage (12–21 DAA), 

desiccation and maturation stage (28–42 DAA), and found wide changes in transcript 

abundance which can be related to fundamental processes leading to wheat development 

under environmental stress. Using Illumina paired-end RNA-sequencing, transcriptome 

changes during barley grain development were investigated. In both genotypes, 38 

differentially expressed genes (DEGs) were found co-expressed during the barley grain 

development. The proteins encoded by most of those DEGs, such as alpha-amylase-related 

proteins, lipid-transfer protein, MYB transcription factors, Nuclear factor-Y and subunit B 

(NF-YBs), were detected, (Tang et al. 2017). 
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Our objective from this study was to identify the DEGs during the seed head stage 

in the two spring wheat cultivars under study (Alpowa and Idaho) under moderate and 

severe water limitation. 
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Material and Methods 

The experiments were performed at the #315 USDA greenhouse facility of USDA, 

in Stillwater, Oklahoma, during the spring season of 2016. Two soft white spring wheat 

cultivars, Alpowa and Idaho were planted in 10.2x10.2x30.5 cm. CP412CH TreePots 

(Stuwe and Sons Inc) to a depth of 5 cm. Pots were sanitized with 70% ethanol and then 

filled with 1.9 Kg of a sandy clay loam soil fertilized with ammonium nitrate to 70 kg/ha 

in a way that reduces pot to pot variation. Pots were planted with three seeds and upon 

emergence trimmed to one plant per pot. All pots were regularly hand weeded and checked 

for insects and were sprayed with Immunox (Spectracide, INC. OR, USA) in case of 

powdery mildew, and neem oil (Certis, LLC, MD, USA) in case of aphid infestation. Three 

tensiometers were installed in control pot to 15 cm depth, to measured water potential. 

Water was provided to all pots when the tensiometer reached (40 centibars) based on the 

recommendations of the manufacturer for wheat grown in silt loam soil (Irrometer Co. Inc., 

Riverside, CA). After five days when plants 50% of the plants showed anthers ( Feekes 

11.2, post-anthesis and early grain filling), wheat plants were watered with either 220 ml 

(100% well-watered), 110 ml (50% well-watered), and 55 ml (25% well-watered) and then 

water withheld for 5 and 8 day at which time plants were harvested. There were a total of 

three stress intensity levels (WW, MS, SS), two cultivars, two stress durations and 5 

replicate plants for a total of 60 plants. Plants were harvested at 5 and 8 days after watering. 

Seed heads were removed from the main stem for each plant individually, and weights 

recorded. Seed heads were wrapped in aluminum foil and frozen in liquid nitrogen and then 

stored at -80 °C for later use. Tissue was fixed within 2 to 3 minutes of harvest. Weight 

data were transferred to an Excel spread sheet and analyzed statistically using in JMP® 
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(SAS institute) software using multi-factor analysis of variance (ANOVA) based on the 

least-square fit significant differences among the effects, including: cultivar, duration, and 

stress intensity with interactions. Effects were cultivar, duration, and stress intensity. 

Tukey’s multiple comparison procedure was used to find differences within stress 

intensities along with interactions based on a significance p-value of 0.05. 

RNA extraction for seed head was based on Furtado et al., 2014, protocol using 

TRIzol® Reagent (Life Technologies Inc., Carlsbad, CA) and RNeasy Plant Mini Kit 

((Qiagen, Valencia, USA)). The first step involved homogenizing tissue samples in liquid 

nitrogen in a mortar and pestle to a fine powder. To 250 mg of fine powder was added 1.5 

ml of TRIzol in a 2 ml bead beating tube. Tissues were lysed in Mini-Beadbeater (BioSpec 

Products Inc., Bartlesville, OK) with sterile glass beads 2.5 mm-diameter at 5000 rpm for 

1 min. The tubes were centrifuged at 14,000 rpm for 10 min at 4 °C. The upper phase (350 

µl) was transferred to fresh tube and the RNA extraction was analyzed based on NanoDrop 

spectrophotometric measurements with the goal of obtaining extracts exhibiting 260/280 

nm ratios greater than 1.8. (Barbas, Burton, Scott, & Silverman, 2007) and quantity greater 

than 33 µg/ml based on the 260 nm absorbance. Frozen and purified RNA was sent to the 

Oklahoma Medical Research Foundation (OMRF) for RNA-sequencing using their 

Illumina HiSeq 3000 instrument. Ribosomal RNA (rRNA) and other RNA species were 

removed using the RNA depletion procedure (O'Neil, Glowatz, & Schlumpberger, 2013). 

Most of what is left over after depletion is mRNA and short sequence total RNA. According 

to Oklahoma Medical Research Foundation prior to RNA-seq analysis quality control 

measures was implemented. Concentration of RNA was ascertained via fluorometric 

analysis on a Thermo Fisher Qubit fluorometer. Overall quality of RNA was verified using 
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an Agilent Tapestation instrument. Following initial QC steps sequencing libraries was 

generated using the Illumina Truseq Stranded mRNA with library prep kit according to the 

manufacturer’s protocol. Briefly, mature mRNA was enriched for via pull down with beads 

coated with oligo-dT homopolymers. The mRNA molecules were then chemically 

fragmented and the first strand of cDNA was generated using random primers. Following 

RNase digestion, the second strand of cDNA was generated replacing dTTP in the reaction 

mix with dUTP. Double stranded cDNA then underwent adenylation of 3’ ends following 

ligation of Illumina-specific adapter sequences. Subsequent PCR enrichment of ligated 

products further selected for those strands not incorporating dUTP, leading to strand-

specific sequencing libraries. Final libraries for each sample were assayed on the Agilent 

Tapestation for appropriate size and quantity. These libraries were then pooled in 

equimolar amounts as ascertained via fluorometric analyses. Final pools were absolutely 

quantified using qPCR on a Roche LightCycler 480 instrument with Kapa Biosystems 

Illumina Library Quantification reagents. Sequencing was performed on an Illumina Hiseq 

3000 instrument with paired-end 150bp reads. Samples were sequenced to an overall depth 

of 50 million reads per sample (OMRF). 
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 RNA-Seq data was analyzed by Brian Couger, Bioinformatics Specialists of the 

OSU High Performance Computing Center. The sequence data was downloaded from the 

OMRF where they were checked using FastQC application to insure the quality at Q30 

level. Sequencing data were downloaded to the Cowboy super computer where they were 

further analyzed for eight durations samples based on the Bioconductor packages under the 

R software environment. All Fastq reads produced by sequencing were aligned to the wheat 

genome using the read alignment program Hisat2 (Kim, Langmead, & Salzberg, 2015). 

The reference genome and GTF annotation for wheat were downloaded and prepared for 

read quantification according to the Hisat2 protocol (Pertea, Kim, Pertea, Leek, & 

Salzberg, 2016). SAM alignment (Li et al., 2009) file conversion, sorting, and preparation 

were achieved using the Samtools program (Li, 2011). Quantitative prediction of transcript 

FPKM levels was produced using the RNA-seq software Stringtie. Statistical comparison 

of all transcripts was achieved using the R package Ballgown (Pertea et al. 2016). 

Transcripts which showed significant differential expression were annotated using the 

Uniprot database. The functional categorization according to UniProt classifications and 

definitions database, (UniProt Consortium, 2017). 
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RESULTS AND DISSCUSION 

 

Seed Head Weight (SH): 

Here we treated wheat to three levels of water availability during the grain filling 

stages of wheat development. Water was withheld from wheat plants producing three levels 

of stress intensity and two different stress duration during the early stages of grain filling. 

At the end of stress imposition, transcriptional responses were analyzed using RNA 

sequencing procedures. Seed head weights did not differ statistically among any of the 

water limitations treatments, cultivars, or durations (Fig. 2). While there was no statistical 

difference among treatments there was a relatively large numerical reduction in overall 

seed weight in SS-Alpowa, MS-Idaho, and SS-Idaho and these reductions were 

numerically greater in Idaho than Alpowa. Grain yield weights ranged from 68 to 105% 

(SS-Idaho) of WW. The lack of statistical sensitivity to water limitation can be most likely 

be alleviated by increasing overall replication. Thus water limitation did lower overall 

grain weight in either cultivar, and differences between cultivars were too slight to be 

statistically noticeable, if at all. It may be possible that yield differences between Alpowa 

and Idaho are not associated with the grain filling stages of wheat development. Khan and 

Naqvi (2011) found significant differences in spike length as affected by water stress. 

Also, Abdel-Moneam et al., (2014) noticed a 21 to 26% reduction in spike length as 

affected by water stress. 
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Fig 2. Seed head weights for two cultivars, Alpowa and Idaho at Feekes 11.2 treated under 

WW (well-watered, 100%) MS (moderate stress, 50% well-watered), SS (severe stress, 

25% well-watered) conditions for 5 and 8 days. Different letters on top of columns 

represent significant differences (HSD p-value < 0.05). 

 

 

 

 

 



 
 

 

75 

Seed Head Transcriptomic Changing 

Transcriptional analysis was performed on RNA-seq data from seed heads treated 

under water limiting conditions for eight days duration. Differential transcriptional 

response under water limiting conditions compared with WW were based on whether 

transcripts were DE based on a p value of < 0.05 adjusted for false discovery. Comparing 

the total numbers of DE transcripts between cultivars and across stress intensities: Idaho 

had 5.5 time the number of DE transcripts compared to Alpowa (338 in Alpowa, and 1843 

in Idaho) with only 53 transcripts shared between the two cultivars in their response to 

water stress (data not shown). Thus the data suggests limited similarity in transcriptional 

response between the two cultivars. However, the lack of similarity could reflect subtle 

differences in homologous sequences between the two cultivars rather than functional 

responses. Furthermore, resistance to drought in these spring wheats appears to be 

associated with a limited transcriptional response. Limited transcriptional activity in 

Alpowa may actually reflect a more stable metabolism under water limited conditions. In 

contrast the Idaho response may be more transcriptionally responsive to cope with 

damaging effect of water stress. 

The total numbers of differentially expressed genes under MS, and SS treatments 

only, and under both MS and SS conditions for both cultivars are presented in Table 5. 

Comparing among stress intensities Alpowa showed greater up and less down regulation 

in response to increasing stress intensity (MS to SS). Alpowa up regulation was 20% 

greater in MS compared to SS conditions and down regulation 70% greater in SS than MS. 

Thus in Alpowa up regulation is favored under MS compared SS conditions and down 

regulation SS is favored compared to MS conditions. The exact opposite is true in Idaho 



 
 

 

76 

and to even a greater extent compared to Alpowa. Idaho exposed to SS conditions up 

regulated 99% more transcripts than under MS conditions while under down regulated 

conditions 87% more transcripts were DE under MS compared to SS conditions. Thus 

Idaho up-regulation favored SS stress conditions compared to SS and down regulation MS 

in favor of SS conditions. This pattern of transcriptional regulation may also be associated 

with the water limited resistant phenotype in these soft white spring wheats. 

When comparing DE transcriptional responses between pre-anthesis flag leaves 

and post-anthesis seed heads on average over 56,308 transcripts were associated strictly 

with flag leaves, while only 776 transcripts with seed heads and 492 transcripts common 

between the two organs. The imbalance between seed head and flag leaf expression may 

be partially due to the difficulty in extracting and analyzing seed heads via Triazol 

extraction and RNA-seq technique, respectively. 

 

Table 5. Transcriptomic changes in Alpowa and Idaho cultivars in the seed head in 

response to moderate and severe stress for eight days duration. 

 

  Direction MS MS and SS SS Total 

Alpowa 
Up 135 0 112 247 

Down 80 0 136 216 

Idaho 
Up 364 0 725 1089 

Down 676 0 361 1037 
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Gene Ontology 

 

The Gene Ontology analysis was performed for the two cultivars under study in 

seed heads under two treatment of water limitation (Moderate-Stress (MS) and Severe-

Stress (SS) in comparison to Well-Watered (WW). This research constitutes one of the first 

analysis of transcriptional activities in the seed head during the critical stage of grain filling 

when a significant portion of grain yield is determined. In seed heads, the top 20 GO terms 

for biological process are indicated in Table 6. The trend in GO terms was predominantly 

down regulated especially in Idaho under both conditions (MS and SS) while in Alpowa a 

moderate tendency towards down regulation was detected. Not all of the top 20 GO Terms 

were represented in all treatments. Out of the top 20 GO Terms MS-Idaho included all 20 

GO terms while all other treatments include anywhere from 6 to 10 of the top 20 GO terms. 

MS-Idaho GO terms were predominantly down regulated, a total of 159, while the rest of 

the stress intensity treatments ranged from a low of 9 to 44 in both cultivars. Thus the most 

represented top 20 GO terms were mostly defined by the MS Idaho down regulated 

treatments. 

All GO Terms in Table 6 were categorized and sorted according to numbers of DE 

transcripts into generalized areas including transcription/translation, metabolic processes, 

cell wall, stress response along with two un-generalized GO terms. The numbers of DE 

transcripts summed across treatments associated with each GO Term ranged from a high 

of 53 to a low of 5. These numbers are considerably lower than those found in the flag 

leaves during the same developmental stages which ranged from a high of 387 to a low of 

38. The much lower level of categorized transcriptional response in seed heads may be due 
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to difficulties in extracting sequenceable RNA from seed materials and/or to the genuinely 

lower level of transcription associated with seed heads. 

GO terms containing the greatest numbers of DE transcripts across all treatments 

included: DE transcription (53) with carbohydrate metabolic processes (31), metabolic 

processes (23) and regulation of transcription (21) indicating that transcriptional processes 

and metabolic processes especially those involving carbohydrates predominate in seed 

tissues. This was also true for the flag leaves, where metabolic and nucleic acid associated 

processes dominated the list. The GO terms involving nucleic acid associated processes or 

contained the greatest numbers of DE transcripts including regulation of transcription (GO: 

6355), DNA transcription (GO: 6351), DNA repair (GO: 6281), DNA integration (GO: 

15074) and signal transduction processes (GO: 7165). Fracasso et al., (2016) reported that 

GO terms related to regulation of DNA replication (GO: 6275), the controlling of cell 

development by the extracellular stimulus (GO: 1560) were the most enriched GO terms 

in sorghum at vegetative stage. Regulation of transcription (GO: 6355) and transcription 

(GO: 6351) showed significant numbers of DE transcripts across all treatments and 

especially in MS Idaho where for the most part transcription was down regulated. Thus one 

of the most active processes in the seed head appears to be the down regulation of 

transcriptional processes. This is not too surprising given that seed head tissues during 

grain filling are undergoing senescence. In contrast, the same processes in the flag leaves 

were predominantly upregulated. The other DNA related processes contained a limited 

number of DE transcripts, and especially in MS-Idaho. 
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The next most abundant category in seed heads are the GO terms for metabolic 

process (GO: 8152) and biosynthetic process (GO: 9058), and their related child GO terms, 

carbohydrate metabolic process (GO: 5975), pectin catabolic process (GO: 45490), and 

cellulose catabolic process (GO: 30245). Metabolic processes include both biosynthetic 

and catabolic processes with the main purposes of conversion of food to energy to run 

cellular processes. This GO term showed down regulation in all cases except MS-Alpowa. 

One of the major child terms under metabolic processes is carbohydrate metabolic process 

(GO: 5975) which involve chemical reactions and pathways involving carbohydrates and 

formation of carbohydrate derivatives by the addition of a carbohydrate residue to another 

molecule. This GO term had nearly the same trend as in metabolic process GO term and 

shows a relatively large number of DE transcripts compared to other metabolic processes. 

Metabolic processes refer to both catabolic and anabolic reactions so it is not surprising 

that in seed heads where sugar import is transformed into starch that carbohydrate 

metabolic processes would be prevalent. Hübner et al., (2015) found that at least four out 

of 12 GO term categories in the tolerant accessions were associated with carbon 

metabolism. Thus carbon metabolism appears to be highly responsive to water limitation. 

Pectin catabolic process (GO: 45490), and cellulose catabolic process (GO: 30245) 

contained a surprising number of down regulated DE transcripts with 5 and 9 transcripts 

under MS-Idaho as indicator of plant reducing pectin and cellulose catabolism in seed 

heads during live grain filling. Cheng et al., 2016 identified proteins involved in protein 

translation/processing/degradation, metabolism, photosynthesis, and defense in two wheat 

cultivars (Triticum aestivum L.) under dehydration and rehydration conditions. 
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Furthermore, proteins involved in transcription, redox homeostasis, energy, cellular 

structure, signaling and transport were also characterized in the same study. 

Seed head cell wall processes appear to be affected including: cell wall organization 

(GO: 71555) which is a process that results in the assembly, arrangement of constituent 

parts or disassembly of the cell wall; cell wall modification (GO: 42545) which leads to 

chemical and structural alterations of an existing cell wall that can result in loosening and 

increased extensibility or disassembly, and cell wall biogenesis (GO: 42546) that results in 

the biosynthesis of constituent macromolecules, assembly, and arrangement of constituent 

parts of a cell wall. Cell wall associated GO Terms were almost exclusively included down 

regulated DE transcripts in MS-Idaho. Down regulation was especially prominent in cell 

wall organization. Down regulation of cell wall functions during senescence in stressed vs 

well-watered conditions appears to be a significant factor in grain filling seed heads. Borrill 

et al., (2015) carried out GO term enrichment for differentially expressed genes in 

hexaploid wheat (Triticum aestivum L.) finding that cell wall organization was affected. 

Concerning the stress response GO terms in seed head, response to oxidative stress 

(GO: 6979), defense response (GO: 6952), hydrogen peroxide catabolic process (GO: 

42744), response to stress (GO: 6950) and response to water (GO: 9415) were all 

represented by DE transcripts. Hydrogen peroxide catabolic process (GO: 42744) includes 

metabolic process that results in hydrogen peroxide degradation and removal. This process 

was highly associated with MS Idaho with 8 DE down regulated transcripts. In SS-Idaho 

both hydrogen peroxide degradation and response to oxidative stress (GO: 6979) contained 

3 up regulated DE transcripts compared to only 1 down regulated transcript. Thus in seed 
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heads during senescence conditions, oxidative stress response may be substantially up 

regulated. Oxidative stress results from the presence of high levels of reactive oxygen 

species, e.g. hydroxyl radicals and singlet oxygen and hydrogen peroxide. This may reflect 

the plant response to water limitation under severe stress in both cultivars in the face of 

water shortage. Defense response (GO: 6952), response to stress (GO: 6950) and response 

to water (GO: 9415) are related to processes that help plants survive extensive water 

limitation. However, for the most part these processes exhibited down regulation especially 

under MS-Idaho. 

Finally, and during drought stress conditions the cellular transport processes were 

somewhat affected including a predominant down regulation of DE transcripts associated 

with transmembrane transport (GO: 55085) in MS Alpowa but an up regulation in SS 

Idaho. Transmembrane transport is defined as the transportation of solute through the cell 

membrane. The last GO:Term was sexual reproduction (GO: 19953) which showed 

exclusive down regulation in MS Idaho. This is not surprising given that the seed head 

tissues were harvested post-anthesis and during grain filling. Apparently stress reactions 

accelerate the down regulatory trend. 

Unfortunately, the limited numbers of GO terms and the high numbers in one 

treatment (MS-Idaho) provides very limited information to develop overall conclusions 

concerning metabolic processes in seed heads in comparison to flag leaves. Very few child 

terms were present to allow us to go beyond broad generalizations. The fact that most of 

the GO Terms were down regulated is consistent with a senescing tissues where metabolic, 
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transcriptional functions are likely to be down regulated under stress conditions compared 

to WW conditions.  
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Table 6. Seed head gene ontology terms for Alpowa and Idaho cultivars after 8 days of 

water limiting treatments under two conditions of stress intensity, moderate and severe 

stress. The number and ratio of up and down regulated transcripts is given under each of 

the top twenty terms.   

 

 

 

 

Gene Ontology Terms                  GO# Up Down Up Down Up Down Up Down

Reg. of transcription, DNA-templated 6355 2 2 6 16 1 4 3 19

Transcription, DNA-templated 6351 0 2 5 11 1 0 2 0

DNA repair 6281 0 0 0 3 0 0 0 3

DNA integration 15074 0 2 0 2 1 1 4 6

Signal transduction 7165 0 0 0 5 1 0 0 1

Metabolic process 8152 2 1 3 11 0 1 1 4

Biosynthetic process 9058 0 0 0 4 1 0 1 2

Carbohydrate metabolic process 5975 2 0 3 20 1 1 0 4

Pectin catabolic process 45490 0 0 0 9 0 0 0 0

Cellulose catabolic process 30245 0 0 0 5 0 0 0 0

Cell wall organization 71555 0 1 1 15 0 0 0 0

Cell  wall modification 42545 0 0 0 9 0 0 0 0

Cell  wall biogenesis 42546 1 0 0 3 0 1 0 0

Hydrogen peroxide catabolic process 42744 0 2 2 8 1 0 3 1

Response to oxidative stress 6979 0 2 2 8 1 0 3 0

Defense response 6952 1 0 2 6 1 1 0 2

Response to stress 6950 1 0 0 11 0 0 0 0

Response to water 9415 0 0 0 6 0 0 0 0

Transmembrane transport 55085 0 3 0 1 1 0 3 2

Sexual reproduction 19953 0 0 0 6 0 0 0 0

Moderate Stress (50% WW) Severe Stress (25% WW)

Alpowa Idaho Alpowa Idaho
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Gene Expression 

While GO: Terms are useful for determining effects on broad overall functions 

related to biological processes they tend to provide generalized less specific information. 

More focused attention on specific functions may be obtained by examining those 

transcripts with the most elevated function. In seed heads, the top 20 up-regulated genes in 

the two cultivars under study and under the two treatments in comparison to WW control, 

are presented in Table 7. It is interesting that of the top 20 DE transcripts the highest level 

of up regulation is found almost exclusively in Idaho compared with Alpowa and that the 

intensity of expression is often correlated with increasing stress intensity. This dramatic 

up-regulation in Idaho was shown by the 5.5 fold greater number of differentially expressed 

transcripts overall as shown in Table 5. Thus overall differential expression and top 20 DE 

show the same pattern of response. The most abundant up regulated DE transcript is alpha-

amylase/trypsin inhibitor with (228-fold MS-Idaho), followed by the drought-responsive 

factor, (167-fold, MS-Alpowa,), gamma prolamin (162-fold, SS-Alpowa), 18S ribosomal 

RNA (158-fold, MS-Idaho) and peroxidase (157-fold in SS-Idaho). The alpha amylase 

trypsin inhibitor is an albumin seed protein that is typically found expressed during seed 

development (Finnie, Melchior, Roepstorff, & Svensson, 2002; Zhou et al., 2017) and is 

complicit in sensitivity to wheat digestive allergies distinct from the gluten celiac disease 

complexes (Reig-Otero, Manes, & Manyes, 2018). This protein biological function has yet 

to be determined but there is evidence of its function to improve grain yield in rice (Zhou 

et al., 2017). 
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Related to drought stress, the drought-responsive factor gene up-regulated 

surprisingly in MS-Alpowa and approximately half as much was observed with MS-Idaho. 

The exact biological function of this apparent transcription factor is not known beyond its 

role in drought response. Through binding to their promoters, these proteins can modulate 

expression of a specific set of genes as regulatory proteins converting the stress-induced 

signals to cellular responses. Under drought and other stresses, plants activate many 

regulons to optimize plant growth as determined in Arabidopsis (Singh & Laxmi, 2015). 

The next most DE transcripts associated with seed heads is a gamma gliadin 

transcript which codes for a major class of storage monomeric proteins found in wheat 

seeds (Wieser, 2007). Here we find strong up regulation in SS-Alpowa and MS-Idaho. The 

up regulation of seed storage protein production is consistent with its occurrence during 

seed development where storage proteins are being synthesized. The small subunit 18S 

ribosomal transcript was found to be highly upregulated in Idaho only. This is peculiar in 

that this particular gene is usually thought to be constitutively expressed in tissues, but here 

there is a distinct cultivar differentiation in response to stress. 

Plants exposure to harsh environmental conditions results in an increase in reactive 

oxygen species (ROS) production of species as: hydrogen peroxide (H2O2), singlet oxygen 

and hydroxyl radical (OH). To cope with the high level of ROS, antioxidant defenses 

transcripts are typically differentially expressed in plants (Caverzan et al., 2012). Here 

peroxidase transcripts representing a response to oxidative stress was dramatically up-

regulated in SS-Idaho by 71 fold and even more dramatically up regulated in SS-Alpowa 

(76 fold) and SS-Idaho (157-fold). As an electron acceptor to catalyze a number of 
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oxidative reactions, peroxidases are haem-containing enzymes that degrade hydrogen 

peroxide to less reactive products. Peroxidases are known to function in lignin synthesis 

and degradation, auxin catabolism and response to wounding oxidative stress (UniProt) 

and drought stress in wheat (Zhang & Kirkham, 1994). A specific 16.9 kDa heat shock 

protein was shown to be up regulated in Idaho under both stress conditions but not in 

Alpowa showing another cultivar specific response. Heat shock protein also can be 

expressed when plants are exposed to persistently changing stress factors such as drought, 

cold and hot temperatures, chemicals and salinity. These stress factors can cause plant cell 

damage and lead to osmotic and oxidative stresses as secondary stress. This specific heat 

shock protein is known to show increased expression during heat stress (Young, Yeh, 

Chen, & Lin, 1999). Gog- pol polyproteins were found to be up regulated in Idaho only. 

This gene is considered to be part of the basic retroviruses infrastructure and essential for 

virion assembly for binding to the plasma membrane, creating spherical particles through 

the protein-protein interactions (Jalalirad & Laughrea, 2010). GAG polyproteins have been 

studied in terms of HIV infections (Ganser-Pornillos, Yeager, & Sundquist, 2008), but little 

is known concerning their presence in transcriptomic studies in plants. GDP-mannose 

transporters were found to be strongly up-regulated in MS-Alpowa, MS-Idaho and SS-

Idaho. This enzyme may be included in the import of GDP-mannose from the cytoplasm 

to Golgi lumen for extracellular usage in either cell wall synthesis or protein modifications 

in Arabidopsis thaliana (Baldwin, Handford, Yuseff, Orellana, & Dupree, 2001; Handford, 

Sicilia, Brandizzi, Chung, & Dupree, 2004). Dehydrins play a fundamental role in plant 

adaptation and response to abiotic stresses and especially to drought. Dehydrins are known 

accumulate in vegetative tissues following salinity, cold, freezing and dehydration stress, 
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and in seed tissue during development (Hanin et al., 2011; Wang et al., 2014; Lopez, 

Banowetz, Peterson, & Kronstad, 2003). Dehydrins were shown to be expressed in MS-

Alpowa, MS-Idaho and SS-Idaho, more so under MS conditions than SS. The exact 

biological function of this important class of stress proteins has yet to be discovered but to 

date they are thought to be involved in protection from oxidative stress and the stabilization 

of membrane structure under stress conditions (Graether, & Boddington, 2014). 

Other proteins involved in drought stress response include serpin 1, galactinol 

synthase, ervatamin-B protein and tryptophan synthases proteins. serpins are a group of 

proteins that inhibit chymotrypsin-like serine proteases (serine protease inhibitors) (Khan 

et al., 2011). Their exact role in seed tissue of wheat during grain filling is currently not 

known. However, serpin has been implicated in wheat allergies, reduced grain quality, and 

insect pest resistance (Ram, 2012; Mameri et al., 2012). Serpin protein showed a strong up 

regulation in Idaho across stresses compared to a very moderate up regulation in Alpowa. 

As osmoprotectants function, galactinol synthase included in the biosynthesis of raffinose 

family oligosaccharides (RFOs) and subsequently induce the plant stress tolerance to 

salinity, chilling, heat, a superoxide radical generating via accumulation the 

osmoprotective substance raffinose (Panikulangara et al., 2004). This enzyme introduced 

transgenically was shown to function in protecting rice grain yield from drought stress 

through the enhancement of several physiological functions, (Selvaraj et al., 2017). 

Moreover, the Ervatamin-B which functions as a cysteine protease enzyme, showed a 

considerable differentiation in its expression compared to the serpin protein indicating a 

different functional arrangement. It is interesting the dehydrins, ervatamin B protein, and 

galactinol synthase transcripts are very closely associated in terms of transcript expression 
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patterns, a possible indicator of co regulation. Tryptophan synthase was shown to be up-

regulated only in Idaho indicating a cultivar differentiation. This enzyme is an important 

step in the tryptophan synthesis pathway which also leads to the synthesis of the growth 

hormone auxin (UniProt). Possible stress roles may include bacterial defense or wounding 

responses (Niyogi & Fink, 1992). 

The final top 20 differentially expressed genes include an egg apparatus, sucrose 

phosphate synthase II, premnaspirodiene oxygenase, and helicase transcripts. All four of 

these proteins show remarkably similar expression patterns in that they are up-regulated 

almost exclusively in Idaho, thus showing a strong cultivar differentiation. This pattern is 

also matched by tryptophan synthase, gag-pol polyprotein, heat shock 16.9 kDa protein 

and two unknowns possibly indicative of coregulation. The egg apparatus protein is a 

secretory protein that is known to be associated with pollen tube attraction to female 

gametophytes (UniProt) (Gray-Mitsumune, & Matton, 2006). However, given the post-

anthesis stage of development it may be possible that this protein has additional functional 

activities that are associated with stress and likely with cytoskeleton actin filaments. The 

premnaspirodiene oxygenase enzyme is involved in the biosynthesis of solavetivone 

(potent antifungal phytoalexin). This enzyme promotes the hydroxylations of 

premnaspirodiene and solavetivol (Takahashi et al., 2007). Thus antifungal activities are 

likely to be important to protect the wheat seed heads during its last stages of its vegetative 

life cycle from fungal infection. The last top 20 DE transcript codes for helicase enzyme. 

This enzyme use ATP to remodel or bind RNA or ribonucleoprotein complexes (RNPs). 

RNA helicases are found in all kingdoms of life and participate in eukaryotes in nearly all 

aspects of RNA metabolism (Jankowsky 2011).
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Table 7. The top 20 up-regulated genes in seed head with the greatest fold change under moderate stress (MS) and severe stress 

(SS) conditions for 8 days duration in comparison with well-watered control (WW) for Alpowa and Idaho cultivars. The genes 

are sorted based on functional categorization. ND: not differentially expressed 

 

 

MS SS MS SS

Differentially Expressed Genes or Proteins   Functional categories

Alpha-amylase/trypsin inhibitor Alpha-amylase endopeptidase inhibitor 20 ND 228 1 >200

Drought-responsive transcription factor Drought response transcription factor 167 ND 74 ND 150-200

Gamma gliadins Seed protein storage ND 162 74 ND 100-150

18S ribosomal RNA gene Translation ND ND 158 ND 50-100

Peroxidase Oxidative stress ND 76 71 157 1-50

No significant similarity Unknown ND 2 64 149 ND

Heat shock protein 16.9 kda Protein homooligomerization ND ND 69 142

Putative gag-pol polyprotein? DNA integration ND ND 67 139

GDP-mannose transporter Transmembrane carbohydrate transport. 41 ND 64 138

Dehydrin Response to drought stress 136 ND 76 13

Serpin 1 Serine-type endopeptidase inhibitor activity 3 7 105 133

Hypothetical protein TRIUR3_27653 ABA inducible protein ND ND 72 129

Galactinol synthase Osmoprotection, drought stress 127 ND 64 2

Ervatamin-B protein Cysteine-type peptidase activity 124 ND 64 4

Tryptophan synthase Tryptophan biosynthesis ND ND 74 123

Hypothetical protein TRIUR3 ABA inducible protein ND 123 65 ND

Egg apparatus Pollen tube attraction to ovary 5 ND 89 123

Sucrose phosphate synthase II Sucrose biosynthetic process ND ND 88 123

Premnaspirodiene oxygenase Sesquiterpanoid sysnthesis ND ND 73 122

Helicase RNA processing ND ND 99 120

Alpowa Idaho

                    Up-regulated

Fold change
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Down regulation provides information on biological processes that are substantially 

reduced in activity and importance in seed heads exposed to water limiting conditions. The 

top 20 down regulated transcripts in seed heads exposed to MS and SS in comparison to 

control are found in Table 8. The overall pattern of expression differs from that of up-

regulated DE transcripts in that the differences in degree of expression is more uniform 

across stress intensities and cultivars with MS Idaho having a slightly higher degree of 

expression than the other stress intensities. The overall average for the top 20 down 

regulated transcripts was 92 fold with a range from 230 fold for a maximum and 26 for a 

minimum. MS-Idaho had an overall average of 106 somewhat higher than the overall 

average. Of the top 20 down regulated transcripts five were also found in the up-regulated 

list, including: alpha-amylase/trypsin inhibitors, 18S rRNA gene, drought responsive 

factor, two egg apparatus proteins and a putative gag pol polyprotein. These were discussed 

extensively above and will not be discussed here. These proteins likely belong to 

multigenic families which exhibit complex regulation where a portion of the genes are up-

regulated or down regulated depending on the conditions. In addition to the functionally 

known DE transcripts, discussed above, there were several transcripts with basically 

unknown functions. While functionally unknown, they appear to be important 

transcriptional responders to changes inherent in water limiting conditions. These may 

serve as important target for further research into the mechanisms of drought stress. 

Seed head transcripts that are not found on the top 20 up-regulated genes include 

myrosinase-binding protein (MyroBP), two plasma membrane H+ ATPases, a RPM1 

interacting protein and a SEC1 transport protein. The Myrosinase-binding proteins 

(MyroBP) have been studied in Arabidopsis thaliana. This gene was found in plants as a 
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complex with the glucosinolate-degrading enzyme that plays a role in defense against 

pathogens (Takeda et al., 2008; Rask et al., 2000). The two plasma membrane H+ATPase 

are plants plasma membrane proton-pumping ATPase (H+-ATPase) that activate most of 

the ion and metabolite transport via proton motive force across the plasma membrane 

(Morsomme & Boutry, 2000). The two distinct transcripts show very similar down 

regulated expression patterns except for SS-Alpowa where expression was changed 183 

fold in comparison to WW treatment. With the application of water limitation, the RPM1 

interacting protein was substantially down regulated. This protein is an essential signal 

transduction regulator of plant defense in the case of pathogen infection and is targeted to 

recognize selected bacterial avirulence genes triggering the defensive hypersensitive 

response that helps in limiting the spread of disease (Mackey et al., 2003). The SEC1 family 

transport protein SLY1 is utilized in vesicular transport between the Golgi and the 

endoplasmic reticulum for exocytosis (Halachmi & Lev 1996). These proteins are highly 

conserved among species and are most known to be involved in synaptic transmission in 

mammalian systems (Halachmi & Lev, 1996). Their association with plants is not known. 

The next set of down regulated proteins induced by water limitation include a 

serine/threonine protein kinase PBS1, a retrotransposon protein, a pectinesterase, a 

tetratricopeptide repeat protein and a period clock protein. The serine/threonine protein 

kinase PBS1 has been shown in Arabidopsis to be a signal transduction regulator of 

pathogen defense mediated by plant resistance proteins (Swiderski & Innes, 2001). The 

expression patter of this transcript is also similar with the RPM1 interacting proteins 

suggesting a co-functional unit. Retrotransposon proteins are involved in DNA integration 

activities associated with “jumping genes”. These transcripts which facilitate this activity 
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are substantially down regulated in seed heads possibly indicating a protection of the seed 

tissues from transposition. This process is likely to be very active especially in germline 

tissues during stress to induce evolutionary genomic changes. The down regulation in 

vegetative seed tissue indicates a deactivation of a process which in vegetative tissue will 

have no evolutionary effects. The pectin esterase is a cell wall-associated enzyme that 

facilitates plant cell wall modification and breakdown. Pectin is one of the central 

components of the plant cell wall. This enzyme catalyzes the de-esterification of pectin 

into pectate and methanol. The tetratricopeptide repeat (as interaction modules and 

multiprotein complex mediators) is highly conserved across all kingdoms of live. Proteins 

containing this repeat are typically associated with diverse biological processes, such as 

biomineralization, protein import, organelle targeting, and vesicle fusion to name a few 

(Zeytuni & Zarivach, 2012). A clock protein plays a central role as a transcription factor in 

regulating the circadian rhythms in mice. In mice this protein is associated with the 

regulation of the renal epithelial sodium channel and control of sodium balance (Gumz et 

al., 2009). While studied in mice and other mammals, this protein has yet to be identified 

in plants. The remaining 4 proteins all have unknown functions which presents an 

opportunity for further research in to novel drought responsive mechanisms. 
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Table 8. The top 20 down-regulated genes in the seed head with the greatest fold change under moderate stress (MS) and severe 

stress (SS) conditions for 8 days in comparison with well-watered control (WW) for Alpowa and Idaho cultivars. The genes are 

sorted based on functional categorization. ND: not differentially expressed. 

 

MS SS MS SS

Differentially Expressed Genes or Proteins Functional categories

Alpha-amylase/trypsin inhibitor Protein degradation 72 89 ND 230 >200

18S rRNA gene Protein synthesis 78 183 28 77 150-200

Drought-responsive factor Stress 166 70 ND 63 100-150

Egg apparatus Pollen tube attraction to ovary 76 90 153 73 50-100

Egg apparatus Pollen tube attraction to ovary 76 90 132 73 1-50

Putative gag-pol polyprotein DNA integration 84 122 141 66 ND

Myrosinase-binding protein Flower development, defense 83 72 133 62

Plasma membrane H+-ATPase ATP biosynthesis, salt stress 76 71 129 84

Plasma membrane H+-ATPase ATP biosynthesis, salt stress 78 183 125 62

RPM1-interacting protein Disease resistance 83 103 127 62

SEC1 family transport protein SLY1 Transport 81 76 ND 124

Serine/threonine-protein kinase PBS1 Disease resistance 74 71 124 86

Retrotransposon protein Retrotransposition 87 86 120 75

Pectinesterase Pectin catabolic process 87 75 120 62

Tetratricopeptide repeat protein RNA editing 119 78 61 100

Period clock protein Circadian rythmns 84 122 26 62

Unknown Unknown 71 79 122 64

Unknown Unknown 76 121 26 70

Unknown Unknown 74 78 ND 150

Shematrin-like protein Unknown 110 71 121 64

Alpowa Idaho

                Down-regulated

Fold change
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