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Abstract:  The lower Missouri River has been highly modified and it is hypothesized that the loss 

of shallow-water habitat (SWH) has decreased prey availability, negatively affecting young-of-

year (YOY) sturgeon. Young-of-year sturgeon (Scaphirhynchus spp.) from five reaches of the 

lower Missouri River that varied in amount of SWH (47 to 295 ha) were sampled bi-monthly 

from May through October in 2014 and 2015. For each site, I analyzed prey use and condition in 

relation to the amount of SWH along a longitudinal gradient of the river. I analyzed 506 YOY 

shovelnose sturgeon in 2014 and 569 in 2015 (14 to 120 mm FL) and found diet items were 

restricted to three macroinvertebrate orders: diptera, ephemeroptera, and trichoptera.  In 2015, 

YOY shovelnose sturgeon consumed nearly twice as many prey as in 2014 and had many fewer 

instances of empty stomachs. Regarding the predominant prey type, number of diptera larvae 

eaten peaked at middle reaches and moderate amounts of SWH in 2014 and high numbers were 

consumed at sites further downstream and as SWH increased in 2015. The number of diptera 

larvae consumed grew exponentially with length, however, in 2015, rate of diptera larvae 

consumed was least in high amounts of SWH. Prey quantity did not appear to be limited and 

factors beyond amounts of SWH appear to be affecting prey use and survivorship of YOY 

shovelnose sturgeon. The highest percent lipid (i.e. body condition) for YOY shovelnose sturgeon 

was at lengths ≤40mm, attributed to assimilation of the yolk sac. Condition was best explained by 

location along the river continuum, increasing with increased distance upstream (r2 ≤ 0.27). An 

interannual influence was observed with average percent lipid in lengths 41-120mm being lower 

in 2014 than in 2015. Emaciated and healthy control YOY shovelnose sturgeon were acquired to 

compare to the condition of wild-caught fish.  In 2014, length categories >41mm were not 

statistically different from emaciated specimens and, in 2015, only length category 101-120mm 

differed from control specimens (P ≤ 0.05). These results provide the first description of YOY 

sturgeon prey use and condition at a large spatial scale along the lower Missouri River. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

Rivers and streams have long been manipulated by humans such as for transportation 

routes when roads were few in the early settlement days of the United States and as a source of 

power in the boom of the Industrial Revolution (NRC, 1992).  Beginning in the 20th century, there 

was an escalation of river engineering initiatives in the attempt to harness the power of rivers and 

streams. With growing populations and urban development along rivers there was a demand for 

flood control, water supply, hydropower and recreation.  The growth of agricultural and mineral 

production industries created a need for irrigation and navigable waterways for transportation of 

goods.  All these initiatives shaped the physical structure and function of rivers currently.  

The Mississippi River is emblematic of these systems being the world’s second largest 

drainage basin as well as being heavily altered.  The basin has a total watershed of 4.8 million 

square-km, encompassing more than 90 major river systems (Hesse et al., 1993), including the 

Ohio, Platte and Missouri Rivers (Figure 1), all of which have been altered to varying degrees.  

The prevailing influence of industrial activity in urban areas to the east, agricultural practices in 

the rural areas to the west, and a demand for navigable channels across the nation has constrained 

waterways and transformed the dynamic riverscape.  Degradation of the Ohio River, for example,
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occurred shortly after colonization, initially as a result of logging in the upper reaches of the river 

buffered by hardwood forests.  But, as population increased so did agriculture and mining leading 

to wide-spread pollution in the river (Thomas et al., 2004).  In 2013, the Ohio River ranked 

number one for pollution discharge with over ten thousand four hundred metric tons of chemicals 

dumped into the river (Environmental Protection Agency, 2015).  Additionally, to sustain a 

navigation channel, twenty high-lift dams have been constructed (Emery et al., 2003).  

Fragmentations of rivers suppress biotic diversity, inhibit passage of organic matter, and affect 

seasonal flows (Ward and Stanford, 1983).  The Platte River system has had much of its water 

diverted to create reservoirs for domestic needs in large cities and water supply for agriculture use 

in the plains (Strange et al., 1999).  These actions have increased the risk for population 

extinctions of native fish fauna by altering thermally suitable habitat in this once cold-water high-

elevation stream (Rahel et al., 1996; Strange et al., 1999).  

Recently, however, there are ongoing efforts in many of the large watersheds of the 

Mississippi River Basin to restore certain characteristics that have been lost from anthropogenic 

alterations.  Restoration efforts in the upper Mississippi River Basin (above the confluence with 

the Missouri River) are guided by a master plan developed by the Upper Mississippi River Basin 

Commission (UMRBC, 1982); a multi-agency and stakeholder cooperation to address policy and 

program priorities to create a healthier and more resilient ecosystem (USACE, 2015a).  

Construction of setback levees allow the river to meander in a prescribed floodplain and dredged 

diversions create backwater refugia for aquatic organisms (Gore and Shields, 1995).  In addition, 

Ten National Fish and Wildlife Refuges have been established along the upper Mississippi River 

to contribute to the preservation of floodplain and riparian land (NRC, 1992).   

Regulatory and management actions of the U.S. Fish and Wildlife Service (USFWS) in 

particular have guided restoration activities to benefit threatened and endangered species in the 

Mississippi River corridor.  The 2000 Water Resource Development Act delegated funds for 

projects within the Mississippi River basin to evaluate and better protect, restore and create  
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aquatic and related habitat.  Actions in the Ohio and Platte River watersheds such as barrier 

removal at low water crossings, riparian habitat plantings, timed releases from reservoirs to create 

vegetation-free sand bars, acquiring habitat complexes to shield main-channel and interconnected 

side channels are implemented to restore ecological functions to benefit threatened and 

endangered species. 

 The Missouri River, however, is the largest of the Mississippi River basins and has one of 

the longest histories of river engineering.  As early as 1832, there had been interest in channel 

modifications on the Missouri River for transportation of goods; mainly the removal of obstacles 

to ease passage of steamboats, finally made possible by the 1912 Bank Stabilization and 

Navigation Project.  Further modified by the Rivers and Harbors Act of 1945, these acts 

congressionally authorized the U.S. Army Corps of Engineers (USACE) to maintain a navigation 

channel for commercial transport (USFWS, 2000).  These anthropogenic influences have led to a 

loss of habitat diversity on the Missouri River (USFWS, 2000; USFWS, 2003), shifting from a 

meandering, shallow, turbid river into a channelized, deep, clear waterway. 

 Channelization of the Missouri River has altered an estimated 1.2 M ha of natural river 

habitat, eliminated the reproduction of native cottonwood trees Populus deltoides, and reduced 

aquatic insect abundance by seventy percent (USACE, 2009).  Furthermore, many native fish 

species have declined (NRC, 2011) and, in response, the USFWS issued a Biological Opinion 

(BiOp) on the USACE operation of the Missouri River to prevent jeopardy of threatened and 

endangered species.  The Missouri River Recovery Program (MRRP) was created to implement 

the reasonable and prudent alternatives of the BiOp to restore the Missouri River to a semblance 

of its original dynamic riverscape and physical processes.  Restoration activities are conducted in 

an adaptive management framework and include improving floodplain connectivity, constructing 

chutes or side channels, implementing a natural flow regime, and creating sandbar habitat 

(USFWS, 2000; USFWS, 2003). 

One critical restoration goal of the MRRP is the reestablishment of shallow-water habitat  
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(SWH).  Shallow-water habitat is created by the modification of existing river control structures 

and construction of off-channel chutes.  In a regulatory context, SWH is defined as water less 

than 1.5 m deep and a flow velocity less than 0.6 m/s (USACE, 2015b).  Examples of SWH 

include backwaters, depositional sandbars detached from the bank, and low-lying depositional 

areas adjacent to shorelines (USFWS, 2003). The SWH construction goal is 8-12 ha per 1.61 km 

(2,833 ha to 8,094 ha total) on the channelized lower Missouri River, below Gavins Point dam 

near Yankton, South Dakota to Saint Louis, Missouri 2024 (USFWS, 2000; USFWS 2003). 

Shallow-water habitat is critical for young and small-bodied fishes by providing low 

velocity nursery zones for growth and development (Schiemer et al., 2001).  Shallow-water may 

encourage increased forage opportunities for fishes by retaining higher rates of organic matter, 

phytoplankton, and zooplankton (Knowleton and Jones, 2000; Brown and Coon, 1994).  Shallow-

water habitat also provides a refuge in the channelized areas of the river for drifting larval fishes 

growth and development (Schiemer et al., 2001).   

Two long-lived river sturgeon species occur in the lower Missouri River Basin, both with 

similar life history traits (Wildhaber et al., 2007).  The pallid sturgeon Scaphirhynchus albus is 

rare and endangered in most of its range (Colombo et al., 2007) and is one of the species for 

which the BiOp was written prompting habitat restoration along the lower Missouri River.  The 

shovelnose sturgeon S. platorynchus, the more common of the two, is listed as threatened when 

sympatric with pallid sturgeon due to similarity of appearance.  Because pallid sturgeon are rarely 

captured, shovelnose sturgeon is often considered a surrogate for pallid sturgeon.   

Early life stages of shovelnose sturgeon depend on nursery habitat availability that slows 

larval drift, increases retention of food sources and provides habitat conditions for recruitment to 

age-1 (i.e., SWH) (Braaten et al., 2008).  The transition from the yolk sac to exogenous feeding is 

important for survival of young-of-year (YOY) sturgeon, so an abundance of benthic 

macroinvertebrates, their main prey source (Sechler et al., 2012), is critical.  While the creation of 

more SWH may provide areas favorable to fishes and macroinvertebrate production (Schiemer et  
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al., 2001; Sechler et al., 2012), it is currently unknown if SWH restoration is providing the 

hypothesized benefits to support early life stages of YOY sturgeon.  For example, YOY sturgeon 

were more likely to have empty stomachs in SWH within constructed chutes compared to SWH 

in mainstem habitats of the lower Missouri River (Gosch et al., 2016; T. Starks, Oklahoma State 

University, unpublished data).  The goal of this research is to identify whether SWH restoration 

affects YOY sturgeon prey use and body condition in the lower Missouri River at a large spatial 

scale. 
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FIGURE 1. Map of the Mississippi River Basin and select major tributaries. 

 

 

 



12 
 

CHAPTER II 
 

 

EFFECT OF HABITAT QUANTITY ON YOUNG-OF-YEAR SHOVELNOSE STURGEON 

PREY USE ALONG A LONGITUDINAL GRADIENT 

 

 

Introduction 

Anthropogenic influences have led to a loss of habitat diversity on the lower Missouri 

River (USFWS, 2000; USFWS, 2003), engineered from a meandering, shallow, slow-moving 

river into a channelized, deep, swift-moving waterway.  An estimated 90 percent of historical 

shallow, slow-moving aquatic habitat has been lost due to construction, operation, and 

maintenance of structures to improve boat navigation (USFWS, 2000).  Since 2000, restoration 

actions have been directed at the reestablishment of shallow-water habitat (SWH) through 

modification of existing river structures and construction of off-channel chutes.  The regulatory 

definition of SWH was defined as water less than 1.5 m deep and a flow velocity of less than 0.6 

m/s and includes backwaters, depositional sandbars detached from the bank, and low-lying 

depositional areas adjacent to shorelines (USFWS, 2000; USFWS, 2003; USFWS 2009).  As of 

2014, there were 45,367 ha of SWH created throughout the entire Missouri River (USACE, 

2014).  Shallow-water habitat is thought to benefit the early-life stages of small bodied fish, 

especially, federally endangered pallid sturgeon Scaphirhynchus albus and its ecologically similar  
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relative - shovelnose sturgeon Scaphirhynchus platorynchus (Braaten et al,. 2007, 2012; Gosch et 

al., 2015).  Most sturgeon captured on the lower Missouri River in 2014 and 2015 were 

genetically confirmed shovelnose sturgeon (E. Heist, Southern Illinois University, unpublished 

data) which is the focus of this study.   

Whether constructed SWH benefits river sturgeon and their early life stages has only 

recently been investigated.  The SWH restoration is under the umbrella of the Missouri River 

Recover Program and is set in an adaptive management framework that uses the best available 

science to make management decisions (USFWS, 2003; USACE, 2014).  Current monitoring 

attempts to assess system-wide responses for long-term recruitment of pallid sturgeon and the 

short-term responses to SWH creation, such as increased retention of YOY sturgeon and 

increased food availability (USACE, 2012).  The early life stages of Scaphirhynchus species are 

thought to depend on SWH as nursery areas (Colombo et al., 2007; Wildhaber et al., 2007) where 

larvae fall out of the drift  in areas of high food source retention improving survival (Braaten et 

al., 2008).   

A link between macroinvertebrate density in SWH and Scaphirhynchus recruitment is 

hypothesized to be the bottleneck to sturgeon population viability in the lower Missouri River 

(Wildhaber et al., 2007; Steffensen et al., 2014).  In large rivers, slow water velocities and high 

concentrations of silt and organic matter coincide with an increase in productivity and availability 

of macroinvertebrate prey (Schiemer et al., 2001; Schiemer et al., 2002; Galat et al. 2005; Ning et 

al., 2010; Benke and Cushing, 2011; O’Neil and Thorp, 2011; Sechler et al., 2012).  

Longitudinal, as well as lateral connectivity to adjacent shallow water areas benefits river fishes 

through input of nutrients and prey sources (Humphries et al., 1999; Wildhaber et al., 2007; 

Schiemer et al., 2002).  An abundance of benthic macroinvertebrates, the main prey source for 

young-of-year (YOY) Scaphirhynchus, is a determinant of survival during the transition from the 

yolk sac to exogenous feeding (Gisbert and Williot, 1997; Deng et al., 2003; Wildhaber et al., 

2007; Braaten et al. 2012).    
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Successful feeding at initiation of exogenous feeding and an increase in prey use as they 

grow and develop is closely linked to survival at this critical period in YOY Scaphirhynchus life 

history.  Dietary studies of YOY shovelnose sturgeon in the lower Missouri River are sparse 

(Gosch et al. 2015), but have been conducted more extensively in the middle Mississippi River 

(Sechler 2012, 2013), lower Mississippi River (Harrison et al., 2014), and the upper Missouri 

River (Braaten et al., 2007).  In these studies, YOY shovelnose sturgeon rarely had incidences of 

empty stomachs (Braaten et al., 2007; Sechler et al., 2012; Harrison et al., 2014), suggesting 

abundant prey, with diets dominated by two macroinvertebrate orders: diptera and ephemeroptera 

(Braaten et al., 2007; Sechler et al., 2012, 2013; Harrison et al., 2014; Gosch et al., 2016).  In 

addition, an exponential increase in prey consumption was observed concomitant with fish sizes 

(Braatan et al., 2007, Sechler et al., 2012, 2013). 

With the restoration goal of creating SWH, the hypothesis is that an increase in SWH will 

increase production and retention of food sources increasing YOY river sturgeon prey use, 

ultimately leading to greater YOY shovelnose sturgeon survival.  The objective of this study is to 

examine prey use and stomach fullness of YOY shovelnose sturgeon at a large spatial scale along 

a linear gradient of the lower Missouri River.  

 

 

Methods 

Study site. - The geographic extent of the SWH restoration includes the main-stem lower 

Missouri River and main-stem connected side channel chutes from Ponca, Nebraska to the 

confluence with the Mississippi River in Saint Louis, Missouri (USACE, 2015; Figure 1).  The 

lower Missouri River is channelized from self-dredging powered by dikes and revetments 

constricting the thalweg and directing flow toward the middle of the river (Jacobson and Galat, 

2006).  Five reaches of the lower Missouri River between Kansas City and Saint Louis that varied 
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in amount of cumulative SWH (47 to 295 ha) were sampled bi-monthly from May through 

October in 2014 and 2015 when river conditions permitted (Table 1).   

Sampling Design. - Sampling was conducted by the U.S. Army Corps of Engineers (reach 

1 and 2) and the U.S. Fish and Wildlife Service (reach 3, 4, and 5; Figure 1) using a bow-

mounted or stern-mounted otter trawls (OTO4) in accordance with the Missouri River Standard 

Operating Procedures for Fish Sampling and Data Collection (Welker and Drobish, 2012).  The 

OTO4 is a 4 mm mesh nylon net with a 4.88 m opening that is pulled with the river current along 

the riverbed and spread open by two, 91.4 cm by 38.1cm boards (a.k.a. doors).  The OTO4 was 

used to catch YOY shovelnose sturgeon in benthic habitats between 1.5 and 5 m deep with a 

trawling distance from 75 to 300 m and between 1 and 1.5 m deep with a trawling distance from 

15 to 150 meters.  When three or more YOY shovelnose sturgeon were captured in a single trawl, 

an additional two trawls were conducted in the same location.  If ten or more YOY shovelnose 

sturgeon were captured in either additional trawl, one duplicate trawl was conducted for a 

maximum of five trawls in the same location.  Repeated sampling of habitats was necessary to 

achieve the desired sample size in each length category. 

Captured YOY sturgeon were measured for fork length (FL) or total length (TL), 

depending on presence of the heterocercal tail filament.  Fin clips were sent to Southern Illinois 

University to verify species identity through genetic analysis.  Young-of-year shovelnose 

sturgeon were kept at -18ºC and preserved in ethanol to minimize oxidative decomposition and 

slow deterioration.  After each sampling season was complete, up to 20 YOY shovelnose 

sturgeon were randomly selected from each of the six separate length categories (0-20, 21-40, 41-

60, 61-80, 81-100, 101-120 mm) for gut content analysis (Table 2).  

Diet quantification. - The lower esophagus and stomach of YOY shovelnose sturgeon 

were removed in the laboratory, blotted dry and weighed (0.0001g), gut contents removed, and 

the stomach reweighed.  By subtraction, this provided stomach content weight (plus 

unidentifiable material and fluid) to give a proportion of prey items relative to gut size (percent 
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stomach fullness) (Terry, 1976; Hyslop, 1980; Hintz et al., 2015).  Gut contents were then 

enumerated under a Nikon SMZ800 microscope and identified to order (family for diptera) and 

sub-sampled if prey items exceed 250.  Sub-sampling was conducted by spreading the gut 

contents out in gridded tray (mm2) counting items in three randomly selected grids to count, 

which were averaged, and multiplied by the number of filled grids to estimate the total number of 

prey items (Hayslip, 2007).  A search for large and rare organisms was also conducted before 

sub-sampling. 

Statistical methods. - Trends of percent fullness by length category in relation to the 

amount of SWH (ha) and distance from the mouth of the Missouri River (i.e. river kilometer 

(rkm) along a longitudinal gradient) was examined with quadratic regression analysis in 

SigmaPlot 12 statistical software.  The number of each major prey type consumed by each length 

category in relation to the amount of SWH and location along the river (RKM) was analyzed with 

zero inflated negative binomial regression and zero inflated Poisson regression, depending on 

convergence and model fit, in 2014 and 2015 using SAS 9.4 software.  To separate the influence 

of location from SWH quantity, the residuals of the number of prey eaten and percent fullness for 

the RKM models were extracted and plotted against the amount of SWH (ha). 

The rate of change in prey consumed with YOY shovelnose sturgeon length and age 

(ontogenetic diet shift) for each study site, was examined with exponential regression using 

SigmaPlot version 12 statistical software. Young-of-year shovelnose sturgeon age (days) was 

estimated by quantifying post-hatch length-increases as a function of water temperature (Braaten 

and Fuller, 2007) using data from the USGS National Water Information System in approximate 

location to the five study reaches (Table 1).  Slope estimates (±95% CI) of the regression models 

were plotted against quantity of SWH and river location (rkm) for each year to investigate how 

these two variables affected the rate of prey consumption as a function of YOY shovelnose 

sturgeon length and age.  
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Results 

A total of 506 YOY sturgeon in 2014 and 569 YOY sturgeon in 2015 were randomly 

selected, but not all length categories were represented by the goal of 20 individuals (Table 2).  

Genetic analysis confirmed that all YOY sturgeon used for this analysis were shovelnose 

sturgeon.  Diet items were restricted to mainly two macroinvertebrate orders: diptera (larvae and 

pupae) and ephemeroptera (nymphs). Cyclopoid copepods and trichopterans were rarely 

consumed and excluded from further analysis (Table 3).  I identified 80909 diet items from 506 

individual YOY shovelnose sturgeon in 2014 (Table 5); 21 fish had empty stomachs (Table 4).  

In 2015, I identified 197344 diet items from 569 YOY shovelnose sturgeon (Table 6) and only 8 

were empty (Table 4). The number of prey items consumed in 2015 was over twice as many as in 

2014, paralleling to the number of empty stomachs (Table 4).  Diptera larvae was the most 

frequently encountered prey item (88% in 2014 and 93% in 2015), followed by diptera pupae 

(46% and 49%) and ephemeroptera (29% and 19%; Table 3).   

In 2014, percent fullness was significantly and non-linearly related to river location 

(distance from mouth; rkm) for all length categories of YOY shovelnose sturgeon <80 mm (4 

categories) (Figure 2; left column), whereas only 2 length categories (0-20 and 60-80 mm) 

exhibited significant models as a function of SWH quantity (Figure 2; middle and right columns). 

For the smallest YOY shovelnose sturgeon category, percent fullness peaked farthest away from 

the river mouth and in areas with the least amount of SWH. For larger-sized YOY shovelnose 

sturgeon, percent fullness peaked at moderate distances from the mouth and moderate amounts of 

SHW. After accounting for the effect of river location, percent fullness, when significant, peaked 

at low amounts of SWH. However, explanatory ability of these models was fairly low (r2 ≤0.21). 

In 2015, percent fullness was significantly and non-linearly related to RKM and amount 

of SWH (Figure 3), but different from 2014. Significant relationships between percent fullness 
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and distance from mouth, as well as amount of SWH, were found for larger-sized YOY 

shovelnose sturgeon (60-80, 80-100, and 120-140 mm). Young-of-year shovelnose sturgeon from 

60-80 mm had peak stomach fullness at both ends of the variables (far and near the mouth; low 

and high SWH). In contrast, length categories 80-100 mm and 120-140 mm had peak stomach 

fullness far from the mouth and in areas with lower amounts of SWH (Figure 3; left and middle 

columns). Adjusting for river location, only YOY shovelnose sturgeon 41-60 mm exhibited a 

significant relationship with amount of SWH, peaking at the lower quantities. Similar to 2014, 

however, these models all exhibited low explanatory power (r2 ≤ 0.27).   

In 2014, SWH was significantly related to the number of each prey type consumed; 

however, it depended on YOY shovelnose sturgeon length.  Not including the smallest length 

category (0-20mm), there were peak numbers of diptera larvae and diptera pupae consumed at 

sample sites with moderate amounts of SWH (Figure 4).  The 0-20mm YOY shovelnose sturgeon 

had more diptera larvae and pupae consumed at low amounts of SWH (Figure 4; diptera larvae P 

= 0.01, r2 = 0.54 and diptera pupae P=0.01, r2=0.47).  Ephemeroptera, for the statistically 

significant models, were consumed more at high and low amounts of SWH (Figure 4; right 

column). 

The 2015 analysis for number eaten in relation to the amount of SWH was significantly 

related but with varying results based on prey type.  Diptera larvae did not show as strong of a 

peak as in 2014, but more of a slight increase in consumption as the amount of SWH increased 

(Figure 5; left column).  For diptera pupae, YOY shovelnose sturgeon > 20 mm consumed more 

of this prey type at sites in the moderate range of SWH (P = 0.01, r2 ≥ 79).  All but one model 

was statistically significant for the ephemeroptera prey type and the trend showed an increase in 

number eaten for YOY shovelnose sturgeon 21-40 mm (P = 0.05, r2 = 47) and > 61 mm (P ≤ 

0.02, r2 ≥ 51) in the reach with the highest amount of SWH (Figure 5; right column). 

The spatial relationship of distance from mouth (rkm) and number of prey type consumed 

depended on the year sampled and the prey type.  In 2014, there were strong relationships in the 
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number of diptera larvae and diptera pupae eaten (P ≤ 0.05, r2 ≥ 0.43; Figure 6 left and middle 

column) with site location.  In 2014, peak number of diptera larvae and diptera pupae consumed 

occurred at areas mid-distance from the mouth.  The number of ephemeroptera consumed peaked 

at sites furthest upstream from the mouth (Figure 6; right column). The 2015 results tended to 

explain more of the statistical variation between distance from mouth (rkm) and number of prey 

type eaten (P ≤ 0.05, r2 ≥ 0.53) than in 2014.  RKM had a significant influence on the number of 

diptera larvae eaten with higher numbers consumed at sites closer to the mouth of the Missouri 

River (Figure 7; left column).  Similar to 2014, there were more diptera pupae present in the gut 

in the middle sample reaches in 2015 forming a peak in the mid-reaches (Figure 7; middle 

column).  In 2014 and 2015, there were more ephemeroptera consumed in reach 1 (Table 5 and 

6). 

The residual number of prey eaten in relation to amount of SWH analysis models all 

exhibited low explanatory power (r2 ≤ 0.17) and few instances of significance (Figure 8 and 

Figure 9).  For the statistically significant models in 2014, diptera larvae consumption peaked at 

moderate amounts of SWH and a declining slope in relation to amount of SWH for diptera pupae.  

No significant models were produced in 2015 (Figure 9). 

Young-of-year shovelnose sturgeon exhibited exponential increases in number of prey 

consumed (predominately diptera larvae) as a function of size and age at all study reaches.  

Comparatively, across all reaches, there was a trend for exponential models to have greater 

explanatory power in upstream reaches (1 and 2) in both years (Figure 10 and Figure 11).  The 

rates at which YOY shovelnose sturgeon consumed diptera larvae was not a function of distance 

from mouth or amount of SWH in 2014 (Figure 12). However, in 2015, the lowest rate of 

consumption was at the site with the most amounts of SWH, near the mouth of the Missouri River 

(Figure 13). Additionally in 2015, there was an indication for the highest rate of prey 

consumption to occur at the site with the least amount of SWH. 
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Discussion 

It is evident that the influence of SWH on prey use (i.e. fullness, by prey type, and 

ontogenetically) depends on year, fish length, and prey type.  However, YOY shovelnose 

sturgeon appeared to consume adequate amounts of prey throughout the sample reaches in 

comparison to published studies in other areas.  In the upper Missouri River, YOY shovelnose 

sturgeon consumed an average of 4655 diet items per individual, with one percent incidence of 

empty stomachs (Braaten et al., 2007).  In the middle Mississippi River, there was a one percent 

incidence of empty stomachs out of 404 YOY Scaphirhynchus captured (Sechler et al. 2013).  

Although instances of empty stomachs was greater in the lower Missouri River, they coincided 

with the smallest length categories, when these fish transition from endogenous yolk to 

exogenous feeding on invertebrate prey (Snyder, 2002), suggesting chance captures during the 

transition period rather than a failure to feed (Sechler et al., 2013).  Whether my results from the 

lower Missouri River are indicative of this section of river compared to the upper Missouri River 

or Mississippi River is occluded by the differences between years. YOY sturgeon in 2015 

consumed nearly twice as many prey as in 2014 and had many fewer instances of empty 

stomachs, suggesting that environmental variability influenced feeding.  Water levels and 

temperatures were greater in 2015 than 2014, but it is unknown how these two variables might 

have affected feeding by YOY sturgeon.  Plausibly, higher water levels would influence 

productivity, increasing prey availability for YOY sturgeon. Additionally, higher water 

temperatures could have led to increased activity and consumption rates by YOY sturgeon 

(Phelps et al., 2010). Either of these hypotheses would require additional studies to identify the 

causative role that these variables would exert on YOY sturgeon prey use. 

Shallow-water habitat was defined for regulatory purposes at a medium August flow 

(USACE, 2014) and remained fixed at that cumulative amount for analyses.  In reality, the 
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amount of SWH fluctuates over time; by annual releases from reservoirs through dams as well as 

rainfall and snowmelt through tributaries that change temperature and discharge in the river 

seasonally.  The lower Missouri River historically had more SWH overall (USFWS, 2000; 

USFWS, 2003); however, under current modified river conditions, SWH is believed to be 

maximized during extremely low flows (Jacobson and Galat, 2006).  Water level (i.e. discharge) 

likely influenced the available prey and the amount of SWH available for feeding by YOY 

sturgeon in my study.  Although intermittent rises in river stage likely increases prey available by 

washing prey into settling areas (Harrison, 2012) SWH would generally be scarce during seasons 

of higher water levels (Jacobson and Galat, 2006).  In 2015, when water levels were higher, 

relationships between amount of SWH and prey use were more evident, suggesting that SWH 

was more important when it was less abundant.   

Factors beyond amounts of SWH appear to affect prey use by YOY shovelnose sturgeon.  

Longitudinal factors, for instance, are likely major drivers of shovelnose sturgeon prey use. 

Gavins Point Dam, the first dam on the Missouri River, acts as an ecological reset for conditions 

downstream (Ward and Stanford, 1983). In this stretch below the dam, the channel is sinuous and 

braided, promoting the production of collector and predatory insects that dominate the 

macroinvertebrate assemblage (i.e. diptera and ephemeroptera) (Vannote et al., 1980) and this 

was exemplified in the peak trend in number of prey eaten and greater incidences of 

ephemeroptera at the upstream reach.   

The use of the best available science to implement restoration actions (i.e. SWH creation) 

on the lower Missouri River is imperative to the adaptive management framework that is being 

used to manage the lower Missouri River (USFWS, 2000; USFWS, 2003).  Only recently have 

restoration projects involving the creation of SWH in the lower Missouri River been conducted to 

determine their effect.  In 2012 and 2013, richness of age-0 fishes differed between created chute 

SWH and mainstem SWH (Starks et al., 2014) as well as lower probability of catching 

exogenously feeding YOY shovelnose sturgeon in habitats that meet SWH criteria (Ridenhour et 
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al.,2011; Gemeinhardt et al., 2015; Gosch et al., 2015).  Based on these findings, the role of 

habitat on YOY sturgeon feeding and ultimate survivorship is in need of further study.  The 

results of this study provide the first description of YOY shovelnose sturgeon prey use at a large 

spatial scale along the lower Missouri River and suggests that prey quantity is not limited; other 

factors that affect sturgeon survivorship may exist and should be investigated (e.g., body 

condition).  
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TABLE 1. A description of each sample site including the length, cumulative 

amount of shallow-water habitat, approximate location of USGS water gauge 

location used to gather data, average water temperature by water year, and annual 

discharge for 2014 and 2015.  (* incomplete data). 

 

 

 Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 

Distance from mouth 

(river kilometer) 
494 – 526 

346 – 

381 
253 – 290 151 – 177 53 - 87 

Amount of shallow-

water habitat 

(hectares) 

47 191 137 58 295 

Approximate stream 

gauge location 

Kansas City, 

MO 

Glasgow, 

MO 

Jefferson 

City, MO 

Hermann, 

MO 

Saint Charles, 

MO 

2014 Annual water 

temperature (Celsius) 
15.62 14.24 13.94 15.95 22.91* 

2015 Annual water 

temperature (Celsius) 
13.34 16.67 14.49 14.61 15.61 

2014 Annual 

discharge 

(cubic meters/second) 

1378 1561 1631 1770 1879 

2015 Annual 

discharge 

(cubic meters/second) 

1872 2275 2401 2877 3194 
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TABLE 2. Goal set for the number of individuals to be sampled within five 

reaches on the lower Missouri River. 

 

 

 

 

 

 

 

 

 

Length Category Number of Individuals Reaches 

0 – 20 mm 20 All (1-5) 

21 – 40 mm 20 All (1-5) 

41 – 60 mm 20 All (1-5) 

61 – 80 mm 20 All (1-5) 

81 – 100 mm 20 All (1-5) 

101 – 120 mm 20 All (1-5) 

Total 120 600 
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TABLE 3. Metrics for all prey types in the gut of 506 young-of-year shovelnose 

sturgeon from sample year 2014 and 569 young-of-year shovelnose sturgeon from 

sample year 2015 sampled in the lower Missouri River. 

 

 

 

Metric 
Diptera 

Larvae 

Diptera 

Pupae 
Ehemeroptera Trichoptera Cyclopoida 

Sample year 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 

Frequency of occurrence 

(%) 
88 93 46 49 29 19 4 1 0 <1 

Median number per gut 37 166 0 0 0 0 0 0 0 0 

25% Quartile 3 7 0 0 0 0 0 0 0 0 

75% Quartile 174 540 4 7 1 0 0 0 0 0 

Minimum number per gut 0 0 0 0 0 0 0 0 0 1 

Maximum number per 

gut 
1345 2363 475 756 16 21 11 3 0 1 
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TABLE 4. Number of empty guts from 2014 (n=506) and 2015 (n=569) by 

location and length. 

 

 

 

Year Metric Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 

2014 

Length 

(mm) 
19, 20, 20 

17,17,19,19

,22 

15,15,17,17

,18,18,19 
- 

15,17,17,18

,18,20 

Total 3 5 7 0 6 

2015 

Length 

(mm) 
18, 18, 20 18,19 17 - 19, 21 

Total 3 2 1 0 2 
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TABLE 5. Number of certain prey type by reach and the percent of the total diet 

for 2014. 

 

 

 

Prey Type Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 Total 

Percent of 

Diet 

Ephemeroptera 154 42 31 53 81 361 0.45% 

Diptera larvae 9765 11114 23534 19667 11614 75694 93.55% 

Diptera pupae 215 1167 1313 1868 253 4816 5.95% 

Trichoptera 16 0 1 3 18 38 0.05% 

Cyclopoida 0 0 0 0 0 0 0.00% 

Total 10150 12323 24879 21591 11966 80909  
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TABLE 6. Number of certain prey type by reach and the percent of the total diet 

for 2015. 

 

 

 

Prey Type Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 Total 
Percent of 

Diet 

Ephemeroptera 118 29 46 15 23 231 0.12% 

Diptera Larvae 51627 47803 50567 27207 10889 188093 95.31% 

Diptera Pupae 566 2288 1016 4743 401 9014 4.57% 

Trichoptera 0 3 2 1 0 6 < 0.01% 

Cyclopoida 0 0 1 0 0 0 < 0.01% 

Total 52311 50123 51631 31966 11313 197344 
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FIGURE 1. Map of the lower Missouri River including sample reach and 

approximate stream gauge location (red dot). 
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FIGURE 2. 2014 percent fullness in relation to the distance from mouth (rkm), 

amount of shallow-water habitat (ha), and residual percent fullness as it relates to 

amount of shallow-water habitat (ha). Each row is a different length category 

decreasing from top to bottom (0-20, 21-40, 41-60, 61-80, 81-100, 101-120mm).
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FIGURE 3. 2015 percent fullness in relation to the distance from mouth (rkm), 

amount of shallow-water habitat (ha), and residual percent fullness as it relates to 

amount of shallow-water habitat (ha). Each row is a different length category 

decreasing from top to bottom (0-20, 21-40, 41-60, 61-80, 81-100, 101-120mm).
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FIGURE 4. 2014 number eaten of three main macroinvertebrate prey types in relation 

to the amount of shallow-water habitat (ha). Letters A-F are length categories (0-20, 

21-40, 41-60, 61-80, 81-100, 101-120mm) 
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FIGURE 5. 2015 number eaten of three main macroinvertebrate prey types in relation 

to the amount of shallow-water habitat (ha). Letters A-F are length categories (0-20, 

21-40, 41-60, 61-80, 81-100, 101-120mm) 
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FIGURE 6. 2014 number eaten of three main macroinvertebrate prey types in 

relation to the distance from mouth (rkm). Letters A-F are length categories (0-20, 

21-40, 41-60, 61-80, 81-100, 101-120mm)  
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FIGURE 7. 2015 number eaten of three main macroinvertebrate prey types in relation 

to the distance from mouth (rkm). Letters A-F are length categories (0-20, 21-40, 41-

60, 61-80, 81-100, 101-120mm)  
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FIGURE 8. 2014 residual number eaten of three main macroinvertebrate prey types in 

relation to the amount of shallow-water habitat (ha). Letters A-F are length categories 

(0-20, 21-40, 41-60, 61-80, 81-100, 101-120mm) 
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FIGURE 9. 2015 residual number eaten of three main macroinvertebrate prey types 

in relation to the amount of shallow-water habitat (ha). Letters A-F are length 

categories (0-20, 21-40, 41-60, 61-80, 81-100, 101-120mm). 
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FIGURE 10. Exponential models of diptera larvae eaten by young-of-year 

shovelnose sturgeon as a function of length and age in five locations of the lower 

Missouri River in 2014.  Numbers 1-5 are sample reach locations moving 

downstream to the mouth.

 



45 
 

FIGURE 11. Exponential models of diptera larvae eaten by young-of-year 

shovelnose sturgeon as a function of length and age in five locations of the lower 

Missouri River in 2015.  Numbers 1-5 are sample reach locations moving 

downstream to the mouth. 
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FIGURE 12. The slope values or rate of increase of diptera larvae eaten with ± 95% 

confidence intervals for both length and daily age of young-of-year shovelnose 

sturgeon from 2014 captured at 5 sample sites along the lower Missouri River 
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FIGURE 13. The slope values or rate of increase of diptera larvae eaten with ± 95% 

confidence intervals for both length and daily age of young-of-year shovelnose 

sturgeon from 2015 captured at 5 sample sites along the lower Missouri River 
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CHAPTER III 
 

 

EFFECT OF HABITAT QUANTITY ON YOUNG-OF-YEAR SHOVELNOSE STURGEON 

CONDITION ALONG A LONGITUDINAL GRADIENT 

 

 

Introduction 

As early as 1832, there had been interest in channel modifications on the Missouri River 

for transportation of goods; mainly the removal of obstacles to ease passage of steamboats, finally 

made possible by the 1912 Bank Stabilization and Navigation Project.  Further modified by the 

Rivers and Harbors Act of 1945, these acts congressionally authorized the U.S. Army Corps of 

Engineers (USACE) to maintain a navigation channel for commercial transport (USFWS, 2000).  

These anthropogenic influences have led to a loss of habitat diversity on the Missouri River 

(USFWS, 2000; USFWS, 2003), shifting from a meandering, shallow, turbid river into a 

channelized, deep, more clear waterway.  

 Channelization of the Missouri River has altered an estimated 1.2 M ha of natural river 

habitat, eliminated the reproduction of native cottonwood trees Populus deltoids in some areas, 

and reduced aquatic insect abundance by seventy percent (USACE, 2009).  Furthermore, many 

native fish species have declined (NRC, 2011) and, in response, the U.S. Fish and Wildlife 
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Service issued a Biological Opinion (BiOp) on the USACE operation of the Missouri River to 

prevent jeopardy of threatened and endangered species.  The Missouri River Recovery Program 

(MRRP) was created to implement the reasonable and prudent alternatives of the BiOp to restore 

the Missouri River to a semblance of its original dynamic riverscape and physical processes.  

Restoration activities are conducted in an adaptive management framework and include 

improving floodplain connectivity, constructing chutes or side channels, implementing a natural 

flow regime, and creating sandbar habitat (USFWS, 2000; USFWS, 2003). 

One critical restoration goal of the MRRP is the reestablishment of shallow-water habitat 

(SWH).  Shallow-water habitat is created by the modification of existing river control structures 

and construction of off-channel chutes.  In a regulatory context, SWH is defined as water less 

than 1.5 m deep and a flow velocity less than 0.6 m/s (USACE, 2015b).  Examples of SWH 

include backwaters, depositional sandbars detached from the bank, and low-lying depositional 

areas adjacent to shorelines (USFWS, 2003).  Shallow-water habitat is critical for young and 

small-bodied fishes by providing low velocity nursery zones for growth and development 

(Schiemer et al., 2001).  Shallow water may encourage increased forage opportunities for fishes 

by retaining higher rates of organic matter, phytoplankton, and zooplankton (Knowleton and 

Jones, 2000; Brown and Coon, 1994).  Shallow water habitat also provides a refuge in the 

channelized areas of the river for growth and development of drifting larval fishes (Schiemer et 

al., 2001), particularly Scaphirhynchus sturgeon (pallid sturgeon S. albus and shovelnose 

sturgeon S.platorynchus).   

There is a hypothesized link between the creation of SWH and its influence on YOY 

sturgeon survival during the transition from the yolk sac to exogenous feeding during the first 

year of life (USFWS, 2000; USFWS 2003;Wildhaber et al., 2007).  Fish survival or well-being is 

quantified by indices of condition that attempt to perceive growth rates, energy storage, 

reproductive potential, and overall fitness (Adams, 1999).  On the lower Missouri River, prey 

quantity did not appear to be limited and factors beyond amounts of SWH appear to affecting 
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prey use and ultimately survivorship by YOY shovelnose sturgeon (Chapter 2).  Quantifying 

condition can also provide insight into characterizing the aquatic habitat, including prey 

availability, and whether the ecological and physiological processes are ideal for survival at the 

population scale (Pope and Kruse, 2007; Adams, 1999).   

Condition is often measured mathematically with weight-length relationships (Anderson 

and Neumann,1996), but a more direct measure of physiological parameters, such as energy 

stores, yields a more accurate representation(Copeland et al., 2008), especially for juvenile and 

YOY fish species (Patrick, 1992).  Energy density of fish can be measured directly using a 

calorimeter (Sechler et al., 2012), but this method is expensive and tedious.  Analysis of whole-

lipid content is an alternative to energy density and is relatively inexpensive.  Lipids represent the 

long-term storage of energy that fish need for basic metabolic needs as well as the vital energy 

needed to sustain during periods of low food intake (Adams, 1999).  The quantity of lipids 

extracted allow for an indication of health to be quantified for many individuals, which can help 

evaluate population dynamics (Henderson and Tocher, 1987; Adams 1999).   

With the restoration goal of creating SWH, there is an inherent hypothesis that an 

increase in SWH will increase production and retention of food sources leading to improved 

condition and survival of YOY shovelnose sturgeon.  The objective of this study is to examine 

the influence SWH on the condition of YOY shovelnose sturgeon at a large spatial scale along a 

linear gradient of the lower Missouri River.  

 

 

Methods 

Study site. - The geographic extent of the SWH restoration includes the main-stem lower 

Missouri River and main-stem connected side channel chutes from Ponca, Nebraska to the 

confluence with the Mississippi River in Saint Louis, Missouri (USACE, 2015; Figure 1).  The 

lower Missouri River is channelized by dikes and revetments constricting the thalweg and 
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directing flow toward the middle of the river (Jacobson and Galat, 2006).  Five reaches of the 

lower Missouri River between Kansas City and Saint Louis (Figure 1) that varied in amount of 

cumulative SWH (47 to 295 ha) were sampled bi-monthly from May through October in 2014 

and 2015 when river conditions permitted.   

Sampling Design. - Sampling was conducted by the U.S. Army Corps of Engineers (reach 

1 and 2) and the U.S. Fish and Wildlife Service (reach 3, 4, and 5; Figure 1) using a bow-

mounted or stern-mounted otter trawls (OTO4) in accordance with the Missouri River Standard 

Operating Procedures for Fish Sampling and Data Collection (Welker and Drobish, 2012).  The 

OTO4 is a 4 mm mesh nylon net with a 4.88 m opening that is pulled with the river current along 

the riverbed and spread open by two, 91.4 cm by 38.1cm boards (a.k.a. doors).  The OTO4 was 

used to catch YOY shovelnose sturgeon in benthic habitats between 1.5 and 5 m deep with a 

trawling distance from 75 to 300 m and between 1 and 1.5 m deep with a trawling distance from 

15 to 150 meters.  When three or more YOY shovelnose sturgeon were captured in a single trawl, 

an additional two trawls were conducted in the same location.  If ten or more YOY shovelnose 

sturgeon were captured in either additional trawl, one duplicate trawl was conducted for a 

maximum of five trawls in the same location.  Repeated sampling of habitats was necessary to 

achieve the desired sample size in each length category. 

Captured YOY sturgeon were measured for fork length (FL) or total length (TL), 

depending on presence of the heterocercal tail filament.  Young-of-year shovelnose sturgeon were 

kept at -18ºC and preserved in ethanol to minimize oxidative decomposition and slow 

deterioration.  After each sampling season was complete, up to 20 YOY shovelnose sturgeon 

were randomly selected from each of the six separate length categories (0-20, 21-40, 41-60, 61-

80, 81-100, 101-120 mm) for lipid content analysis (Table 1). 

Condition quantification. - A broad measure of condition was obtained by performing a 

modified Folch lipid extraction that measures energy reserves within the tissue (Folch et al., 

1957).  The Folch et al.(1957) extraction utilizes a 2:1 ratio of organic solvents (chloroform and 
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methanol) to remove virtually all lipids from the specimen and is the preferred methodology for 

fish tissue (Cabrini et al., 1992; Iverson et al., 2001). The modification included the substitution 

of ethanol for methanol (J. Truschenski, University of Southern Illinois, personal 

communication), which was verified using pure vegetable oil (i.e., 100 percent lipid) with an 

average of 97.3 ± 1.7 percent recovery (n=16) of lipid material determined gravimetrically.  After 

weighing, the specimen’s body was kept in the original storage vial of ethanol to ensure all lipid 

content was retained.  Individual specimens within each length category (Table 1) were 

homogenized separately and a 2:1 ratio of chloroform and ethanol was confirmed by adding 

chloroform to the original ethanol and then vortexed.  The sample was placed into the freezer (-

20ºC) for one hour and removed before adding 0.88g of 0.88% potassium chloride (KCl) aqueous 

wash to aide in phase separation.  The sample was placed back in the freezer for five minutes then 

centrifuged at 1500 RPM for five minutes.  The bottom layer of the partitioned mixture that 

contained the purified lipid was transferred through a sodium sulfate filter (to remove 

contaminating material) into an aluminum weigh pan and placed on a hot plate at medium heat 

until evaporation of the solvent was complete.  Lipid content as a percentage of body weight was 

then determined gravimetrically (Folch et al., 1957).  

To allow comparison to the YOY shovelnose sturgeon condition captured in the wild, I 

worked with biologists at the U.S. Geological Survey, Columbia Environmental Research Center 

(CERC) to raise two groups of YOY shovelnose sturgeon that were representative of healthy and 

starved groups (Table 1).  Two hundred and forty hatchery-reared individuals were raised to 

similar size length categories as wild fish and fed ad libitum a diet of live Artemia sp. and 

Lumbriculus sp., frozen foods including Artemia sp. and Chironomus sp., and prepared rations of 

Otohime Fish Diet.  One-half of the individuals were separated into a healthy ‘control’ group that 

were not isolated from food prior to collection and preservation.  The other half were isolated 

from food until they became moribund or deceased, representing the ‘emaciated’ group.  

Hatchery specimens were obtained out under an animal care and use protocol developed and 
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approved by CERC as part of other related sturgeon research.  These two groups provided 

opposing levels of condition to compare with the YOY shovelnose sturgeon captured in the wild.   

Statistical methods. - Linear regression was used to identify differences in lipid 

percentage from each length category in 2014 and 2015 in relation to the amount of SWH (ha) 

and distance from mouth (RKM).  To separate the influence of location from SWH quantity, the 

residuals of the percent lipid for the RKM models were extracted and plotted against the amount 

of SWH (ha).  Box plots of percent lipids for each sturgeon length category were used to compare 

years of wild-caught fish, control, and emaciated YOY.  Two-way analysis of variance (ANOVA) 

and the arcsine square root transformation of YOY shovelnose sturgeon lipid percentage was 

used to determine statistical differences among length categories and group (sample year of wild-

caught fish and the opposing condition levels of hatchery-reared fish).  A Tukey’s post-hoc test 

was used to determine the factors influencing the significant results in each treatment group.  All 

statistical procedures were analyzed using SigmaPlot 12 statistical software.  

 

 

Results 

A total of 493 YOY sturgeon in 2014 and 537 YOY sturgeon in 2015 were used for lipid 

analysis, but not all length categories were represented by the goal of 20 individuals in each reach 

(Table 2).  Genetic analysis confirmed that all YOY sturgeon used for this analysis were 

shovelnose sturgeon (E. Heist, Southern Illinois University, unpublished data).  Of the six length 

categories, the ≤ 40mm YOY shovelnose sturgeon had the highest percent lipid (Figure 5).  The 

control group consistently had a higher median percent lipid regardless of length (Figure 5).  

There was a statistically significant interaction between effects of length category and group 

(sample year of wild-caught fish, and hatchery-reared control or emaciated) on the lipid 

percentage of YOY shovelnose sturgeon (F = 4.6, P = 0.01).  Tukey’s post-hoc analysis 
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indicated, for wild fish, YOY shovelnose sturgeon captured in 2014 had significantly lower 

average percent lipid than 2015 for all length categories >41mm (P ≤ 0.04).  In 2014, the length 

categories >41mm were not statistically different from the emaciated specimens (P > 0.05).  In 

2015, only the 101-120mm length category significantly differed in lipid percentage from the 

control specimens (P = 0.01).  

Models of lipid percentage as a function of SWH had low explanatory power (r2 ≤ 0.07) 

for each length category in 2014, but were comparatively higher in 2015 (r2 ≤ 29; Figure 2).  In 

2014, the smallest length category (0-21mm) showed a positive relationship with lipid percentage 

and amount of SWH while the large length categories (61-100mm) had a negative relationship 

with amount of SWH.  In 2015, the one statistically significant model had a negative relationship 

exhibiting a decrease in condition as the amount of SWH increased (P = 0.01, r2 = 29).  The 

percent of individuals below the maximum starvation condition (shaded gradient) from each 

length category steadily increased in 2014 as the YOY shovelnose sturgeon length category 

increased (Table 4).  In 2015, the percent of individuals below the maximum starvation condition 

stayed rather constant in the smaller three length categories and actually decreased as length 

categories increased (right column).  The percent of individuals above the maximum control 

condition was higher in 2015 than in 2014 (left column).   

The spatial variable of RKM had more statistically significant models in 2014 and 2015 

than the SWH variable (Figure 3).  In 2014, all but the smallest length category (0-21mm) 

exhibited an increase in percent lipid with increasing distance upstream (r2 ≤ 0.27).  In 2015, the 

61-80mm and 81-100mm length categories decreased in condition with increasing distance 

upstream, however, the relationships were comparatively weak (r2 = 0.08).   

The residual percent lipid in relation to amount of SWH exhibited few instances of 

significance (Figure 4).  In 2014, the 41-60mm length category showed a significant and positive 

relationship in the residual percent lipid with SWH.  Similar to the percent lipid analysis related 

to SWH, the smallest length category for both 2014 and 2015 had an increase in percent lipid as 
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SWH increased (P ≤ 0.03, r2 ≤ 0.08).  In addition, the 2015 statistically significant models had a 

negative relationship exhibiting a decrease in condition as the amount of SWH increased.   

 

 

Discussion 

The ability to quantify condition of YOY shovelnose sturgeon has provided the means to 

extend the period to which we can infer the health of year classes and the population as a whole.  

From this measurement of body condition, where lipids represent long-term energy storage, YOY 

shovelnose sturgeon in 2014 were similar to those starved of food.  This is the most surprising 

result of the study due to the fact YOY shovelnose sturgeon that had consumed prey and were 

captured in the wild were in similar condition to the emaciated specimens raised in the laboratory.  

Based upon prey use alone, an adequate amount of prey was consumed in both sample years and 

in all sample reaches (Chapter 2).  However, prey use doubled in 2015 which translated to 

condition levels above starvation levels, closer to well-fed control individuals.  These results 

provide reference to how much prey improves condition in the wild and suggest interannual 

differences in hydrology (e.g., stage, discharge, water temperature) might affect condition.   

Percent lipid decreased with increasing size, attributed to the transition from endogenous 

yolk-sac feeding to exogenous feeding (Gershanovich, 1991; Schiemer et al., 2002), suggesting 

that lipid percentage of larger-sized YOY shovelnose sturgeon are more indicative of habitat 

suitability.  Furthermore, differences of 1-3 percent lipid content in these larger YOY shovelnose 

sturgeon, which appear minor, may be significant.  The early life stages of large river fishes are 

most sensitive to environmental stressors (Schiemer et al., 2001) that could preclude YOY 

shovelnose sturgeon from finding, consuming and digesting prey.  Habitats that promote foraging 

success and provide shelter are all important for maximizing allocation of energy from prey 

sources to lipid storage (i.e. better survival) (Adams, 1999).  Shallow-water habitat was a poor 

variable affecting lipid concentration and often showed a negative trend, suggesting it has little 
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influence on sturgeon body condition.  Factors other than strict amounts of SWH appear to affect 

the percent lipid of YOY shovelnose sturgeon on the lower Missouri River, but which of the 

potentially other myriad of variables that may be important would require additional research. 

Shallow-water habitat is measured for regulatory purposes at a medium August flow 

(USACE, 2014) and was fixed at that cumulative amount for analyses.  In reality, the amount of 

SWH fluctuates over time; by annual releases from reservoirs through dams as well as rainfall 

and snowmelt through tributaries that change temperature and discharge in the river seasonally.  

The lower Missouri River historically had more SWH overall (USFWS, 2000; USFWS, 20003); 

however, under currently modified river conditions, SWH is believed to be maximized during 

extremely low flows (Jacobson and Galat, 2006).  Abiotic influences on aquatic habitats such as 

water velocity as well as temperature (Deslauries et al., 2016; Heironimus, 2014) can dictate 

YOY shovelnose sturgeon condition.  In 2015, the relationships between prey use and body 

condition with SWH were more evident; suggesting that SWH was more important when it was 

less abundant.  Anthropogenic influences, such as channelization on the lower Missouri River, 

have altered the temperature regime, benthic habitats, and water velocity in which sturgeon 

species have had to adapt to survive (USFWS, 2003; Bergman et al.. 2008).  However, SWH by 

its current definition does not appear to affect body condition to a large degree, but variables 

related to location along the river continuum appear to be important.   Research from reaches 

farther upstream in the lower Missouri River would help better understand the role that location 

might play in the early life stages of river sturgeon. 
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TABLE 1. Goal set for the number of individuals to be sampled within five 

reaches on the lower Missouri River and for specimens received from USGS 

Columbia Environmental Research Center (Emaciated (E) and Control (C)). 

 

 

Length Category Number of Individuals Reaches Standard 

Groups 

0 – 20 mm 20 All (1-5) E + C 

21 – 40 mm 20 All (1-5) E + C 

41 – 60 mm 20 All (1-5) E + C 

61 – 80 mm 20 All (1-5) E + C 

81 – 100 mm 20 All (1-5) E + C 

101 – 120 mm 20 All (1-5) E + C 

Total 120 600 240 
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TABLE 2. A description of each sample site including the length, cumulative 

amount of shallow-water habitat, approximate location of USGS water gauge 

location used to gather data, average water temperature by water year, and 

annual discharge for 2014 and 2015.  (* incomplete data available). 

 

 

 Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 

Distance from mouth 

(river kilometer) 
494 – 526 346 – 381 253 – 290 151 – 177 53 - 87 

Amount of shallow-water 

habitat (hectares) 
47 191 137 58 295 

Approximate water gauge 

location 

Kansas City, 

MO 

Glasgow, 

MO 

Jefferson City, 

MO 

Hermann, 

MO 

Saint Charles, 

MO 

2014 Annual water 

temperature (Celsius) 
15.62 14.24 13.94 15.95 22.91* 

2015 Annual water 

temperature (Celsius) 
13.34 16.67 14.49 14.61 15.61 

2014 Annual discharge 

(cubic meters/second) 
1378 1561 1631 1770 1879 

2015 Annual discharge 

(cubic meters/second) 
1872 2275 2401 2877 3194 
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TABLE 3. Values are means and standard errors for percent lipid of each length 

category from each treatment group.  Means in a row without a common 

superscript letter differ (P < 0.05) as analyzed by two-way ANOVA and the 

TUKEY post-hoc test. 

 

 

Length Category Control 2014 2015 Emaciated 

1 12.9 ± 0.8a 13.3 ± 0.3a 11.8 ± 0.3a 6.7 ± 0.8b 

2 5.4 ± 0.8a 4.9 ± 0.3a 4.6 ± 0.4a 2.1 ± 0.9b 

3 3.3 ± 0.8a 1.5 ± 0.4b 2.2 ± 0.4ac 1.6 ± 0.9bc 

4 2.5 ± 0.8ab 1.6 ± 0.4a 2.3 ± 0.3b 1.4 ± 0.8ab 

5 3.2 ± 0.8a 1.5 ± 0.4b 2.1 ± 0.4a 1.3 ± 0.8ab 

6 3.8 ± 0.8a 1.1 ± 0.5b 2.3 ± 0.4c 1.2 ± 0.9bc 
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TABLE 4. Percent of each length category that falls above the minimum control percent 

lipid and under the maximum emaciated percent lipid by year. 

  
Length Category 

  
1 2 3 4 5 6 

Control 

2014 76.3 57.0 6.5 27.5 18.8 2.1 

2015 76.5 65.2 18.6 51.0 39.9 21.1 

Emaciated 

2014 42.3 43.4 69.9 60.0 53.6 80.9 

2015 44.9 34.8 44.2 20.4 14.1 11.3 
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FIGURE 1. Map of the lower Missouri River including sample reach and 

approximate stream gauge location (red dot). 
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FIGURE 2. Influence of the amount of SWH (ha) on the percent lipid on six 

length categories increasing in length from the top to bottom (0-20, 21-40, 41-60, 

61-80, 81-100, 101-120) in 2014 and 2015.  Emaciated average lipid percentage is 

depicted by the dashed line and the gradient in color increases in darkness as you 

move from the maximum to the minimum percent lipid of emaciated YOY 

shovelnose sturgeon.
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FIGURE 3. Influence of distance from mouth (rkm) on the percent lipid on six 

length categories increasing in length from the top to bottom (0-20, 21-40, 41-60, 

61-80, 81-100, 101-120) in 2014 and 2015.  Emaciated average lipid percentage is 

depicted by the dashed line and the gradient in color increases in darkness as you 

move from the maximum to the minimum percent lipid of emaciated YOY 

shovelnose sturgeon.
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FIGURE 4. Influence of the amount of SWH (ha) on the residual percent lipid of 

six length categories increasing in length from the top to bottom (0-20, 21-40, 41-

60, 61-80, 81-100, 101-120) in 2014 and 2015. 
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Box plots of percent lipid by length category.  The letter or number above each 

box designates the group Control (C), 2014 (14), 2015 (15), Emaciated (E). 
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