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CHAPTER I 
 

INTRODUCTION 

1.1 Alveolar epithelium  

 The lung alveoli are the basic and functional units involved in gaseous exchange. 

The lungs undergo constant expansion and compression during the process of respiration. 

Lung alveoli are lined with lung surfactant that reduces surface tension to prevent the 

collapse of alveoli at the end of expiration. Lungs are also frequently exposed to harmful 

microbes, toxins and pollutants. The alveoli are equipped with defense mechanisms to 

counteract the pathogens. The cell types that line the alveoli are uniquely adapted to 

withstand the constant mechanical stretch and to function under dynamic conditions. The 

cells in the lung also communicate by a paracrine or autocrine manner to regulate lung 

functions (1).   

 The alveoli are lined by two distinct epithelial cells, the squamous alveolar type I 

(type I) cells and cuboidal type II cells. They perform distinct and diverse functions. Type 

II cells constitute two-thirds of alveolar epithelial cell populations whereas type I cells 

form the other remaining one-third of the population. However type I cells occupy 95% 

of the surface area owing to their large size. Type I cells are involved in gaseous 

exchange, fluid homeostasis and act as mechano-sensors for the stretch that is induced 

during the respiratory process (2).   

Type II cells secrete antimicrobial peptides including defensins. They act as 

progenitors for type I cells and replace the injured type I cell population. Additionally 
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type II cells are involved in fluid homeostasis (3). Another major function of type II cells 

is to synthesize, store and secrete lung surfactant. Deficiency of surfactant leads to acute 

respiratory distress syndrome in infants and is characterized by alveolar collapse and in 

extreme cases leads to death.  The current study investigates the functions of type II cells, 

in particular surfactant secretion. 

1.2 Lung surfactant composition, synthesis and secretion 

 The lung surfactant is a lipid-rich substance consisting of 90-95% lipids and about 

5-10% proteins. Phospholipids constitute 80% and the remaining 20% are contributed by 

neutral (such as cholesterol) and other lipids.  Dipalmitoylphosphatidyl choline is 

responsible for lowering surface tension.   

The protein components of lung surfactant include surfactant protein –A, B, C and 

D (SP-A, B, C and D). They are synthesized in the endoplasmic reticulum and are further 

processed in Golgi. The proteins (SP-B and SP-C) are stored in lamellar bodies until 

released. SP-B and –SP-C are secreted along with surfactant lipids in a regulated manner 

(4, 5).  However, SP-A and –D are secreted in a constitutive fashion and independent of 

lamellar bodies (6). The secreted SP-A and SP–B aids in the formation of tubular myelin, 

a precursor of the surfactant monolayer at the air-liquid interface. On the other hand, the 

secreted SP- B and SP-C help in the adsorption and distribution of surfactant. Apart from 

surfactant related functions, surfactant proteins are also involved in alveolar defense (7).   

  Physiologically, type II cells are stimulated by mechanical stretch induced by 

labor and ventilation. Stretch induces an increase in intracellular Ca2+ ([Ca2+]i),  which 

propagates as a wave to the neighboring type II cells through gap junctions. The net 

increase in [Ca2+]i results in surfactant secretion (8, 9). Type II cell exocytosis is 
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extremely sensitive to fluctuations in [Ca2+]i (10). However, Ca2+ sensors in type II cells 

are unknown, but, the role of annexin A2 as a possible sensor is proposed (11).   

 Natural agonists including ATP, UTP, adenosine, platelet activating factor, 

lipopolysaccharide and IL-1 also stimulate surfactant secretion.  A number of compounds 

including β2-adrenergic agonists (terbutaline), A2B receptor agonists (adenosine), P2Y2 

receptor agonists (ATP and UTP), protein kinase C activators (phorbol esters) and 

calcium ionophores (A23187) stimulate surfactant secretion (12). Terbutaline and 

adenosine activate adenyl cyclase which further activates protein kinase A. On the other 

hand, ATP and phorbol esters activate PKC. The ionophores increase the [Ca2+]i which 

activates PKC and Ca2+/calmodulin-dependent kinase II. The activation of various 

kinases leads to phosphorylation of exocytotic proteins. However, the mechanism of how 

the phosphorylation induces lung surfactant secretion is poorly understood.   

 Exocytosis involves the interaction of proteins present on the lamellar bodies and 

plasma membrane (13). The soluble N-ethylmaleimide sensitive factor attachment protein 

receptor (SNARE) hypothesis was proposed to explain eukaryotic membrane fusion 

machinery. According to the SNARE hypothesis, during membrane fusion, the proteins 

residing on the vesicle or v-SNAREs (on lamellar bodies in type II cells) interact with 

those on plasma or target membrane or t-SNAREs to form a highly stable coiled-coil 

ternary SNARE complex. One coil each is contributed by vesicle associated membrane 

protein (VAMP) and syntaxin and two by SNAP-25.  Later, N-ethylmaleimide sensitive 

factor (NSF), an ATPase along with its adaptor protein, α-souble NSF attachment protein 

(α –SNAP), binds the SNARE complex, separating the interacting SNARE partners for 

subsequent rounds of exocytosis. In vitro the formation of SNARE complex is sufficient 



 4

for close apposition and membrane fusion. The vesicular contents are released through a 

fusion pore. Evidence for the involvement of SNARE proteins in membrane fusion is 

strengthened with a recent study which revealed that transmembrane regions of syntaxin 

protein line the fusion pore (14).  

 More than 30 SNARE isoforms are reported in mammals, all of which are 

characterized by conserved aminoacids sequences close to the membrane anchors which 

form the coiled-coiled structures (15). There are about 15 syntaxin isoforms which 

inhabit various membranes. Syntaxins 1-4 are involved in exocytosis.  Syntaxins 

associate with membrane by a transmembrane anchor at the C-terminus of the protein.  

Syntaxins are associated with nSec1/Munc18-1 thus limiting the availability of this 

protein for interaction. However, following the activation of small GTPases, Rab 

proteins, the syntaxin is released from nSec1 for subsequent interaction (16). SNAP-

25/23 proteins associate with membrane owing to multiple palmitoylations on the 

cysteine residues.  Seven different forms of VAMP proteins are reported. They are 

anchored to the membrane by a transmembrane domain.  The membrane fusion 

machinery in type II cells contains t-SNAREs (syntaxin-2 and SNAP-23) and v-SNARE, 

VAMP-2, apart from α-SNAP and the ATPase, NSF (17, 18).   

 A number of studies from our laboratory had indicated the role of annexin A2 in 

surfactant secretion (11, 19, 20). Annexins are cytosolic proteins that bind with 

phospholipid membranes in a Ca2+-dependent manner. Annexin A2 facilitates not only 

aggregation of liposomes but also promotes the fusion of lamellar bodies with plasma 

membranes (21-23). Moreover, annexin A2 mediates cortical actin disassembly 

facilitating surfactant secretion (24). The knockdown of annexin A2 in type II cells 
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results in reduced secretion, indicating its crucial role in secretion (19, 20). Annexin A7 

has also been shown to be involved in surfactant secretion (25, 26). 

1.3 Lipid rafts 

 Cell membranes consist of mixtures of lipids and proteins. According to the raft 

hypothesis, the lipid bilayer consists of saturated and unsaturated lipids. Saturated lipids 

confer an ordered (Io) or gel phase whereas unsaturated lipids confer disordered (Id) or 

liquid phase to the membrane. These ordered domains (lipid rafts) are enriched in 

glycosphingolipids, cholesterol and sphingomyelin. Lipid rafts are defined as “small (10–

200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that 

compartmentalize cellular processes. Small rafts can sometimes be stabilized to form 

larger platforms through protein-protein and protein-lipid interactions" (27). The lipid 

composition of lipid rafts renders them insoluble to ice-cold 1% TX-100 (v/v) 

solubilization and they float when subjected to sucrose gradient centrifugation. They are 

hence called detergent resistant or detergent insoluble membrane fractions. Since lipid 

rafts are highly enriched in cholesterol, its enrichment following isolation and cholesterol 

dependent association of proteins should be confirmed. The unique lipid composition of 

lipid rafts enrich them in proteins that are doubly acylated (Src kinases), cholesterol- 

binding (caveolins), myristoylated and palmitoylated (flotillins) and GPI-anchored. By 

sequestering proteins and lipids, membrane microdomains exert influence not only on 

protein-protein interaction but also protein-lipid and lipid-lipid interactions.  Thus lipid 

rafts serve as regulatory centers in various physiological conditions. They are reported to 

be crucial in a number of metabolic and pathogenic diseases (28). During resting 

conditions lipid rafts contain few proteins, however, upon stimulation, they cluster and 
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recruit additional proteins (29). They are thus ideally suited for membrane traffic, signal 

transduction, and protein sorting in polarized epithelial cells as well as non-polarized 

cells (30).  

SNARE proteins associate with lipid rafts (31-33), although in vitro studies revealed 

that SNARE proteins prefer disordered phases more than ordered (34). In LT3 

adipocytes, PC12 and HIT-T15 cells, SNARE proteins are enriched in rafts with SNAP-

25/23 to a higher extent (35-37).   SNAP-23 has a higher enrichment than its neuronal 

isoform, SNAP-25, due to its additional cysteine residues (37). The enrichment of v-

SNARE is variable with the highest in LT3 cells.  However, it was also reported that in 

PC12 cells, syntaxin was detergent soluble and did not co-localize with the raft markers 

(38). All the studied SNARE regulatory proteins are efficiently excluded from rafts. 

Moreover, SNARE complexes are highly enriched in raft fractions, indicating that rafts 

could be the sites of exocytosis (35). Similarily, Munc18-2/syntaxin3 complexes were 

excluded from the rafts indicating that a spatial control exists (39). Cholesterol depletion 

results in altered exocytosis indicating a role of lipid rafts in regulated exocytosis. In 

summary, raft association of SNARE proteins might pave a way for the interaction of 

SNARE proteins and provide suitable lipid environment for the membrane fusion. 

However, there are no reports of SNARE protein organization in type II cells. 

 Annexin A2 translocates to the Triton X-100 insoluble fractions in bovine 

chromaffin cells upon stimulation. Annexin A2 is associated with the lipid raft clusters in 

a Ca2+-dependent manner (40, 41). Cleavage of annexin A2 abolishes its binding with the 

rafts, indicating that alteration in protein structure may affect its association with rafts 

(42). Moreover, annexin A2 promotes the formation of lipid microdomains and organizes 
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the exocytotic machinery (43). There are no reports on raft association of annexin A2 in 

alveolar type II cells. 

 Downregulation or knockdown of raft marker proteins have been undertaken to 

elucidate their roles (44).  Caveolin-1 knockdown results in the loss of caveolae, the 

plasma membrane invaginations. Type II cells lack distinct caveolae in contrast to AT1 

cells. Flotillins on the other hand are highly expressed in type II cells and hence can be 

used as marker proteins to study their roles in lipid rafts formation and surfactant 

secretion. 

 Flotillins (or reggies) are highly conserved and ubiquitously expressed. There are 

two flotillin isoforms, namely -1 (or reggie-2) and -2 (or reggie-1). Different cell types 

may express both or one of the isoforms. Initially, flotillins were thought to be caveolae-

associated proteins. However, it has been shown that its expression is independent of 

caveolae. Flotillins do not have a distinct transmembrane domain. They associate with 

rafts owing to the multiple palmitoylation in case of flotillin-1 and additionally 

myristoylation in case of flotillin-2. Nuclear localization of flotillin-1 but not -2 has also 

been reported in PC-3 cells (45). The distribution of these proteins thus enable to them to 

be involved in a number of cellular functions.  

Flotillins are implicated in a number of functions including interactions with actin 

cytoskeleton, formation of filopodia, insulin signaling, axonal regeneration and 

membrane trafficking (46). Their association with kinases (such as Thy-1) and cell 

adhesion molecules such as F3 implicates them in signal transduction and the 

establishment of cell-cell contacts (47). Its role in clathrin-independent endocytosis has 

been recently reported (48). Silencing or mutation studies in Zebra fish and Drosophila 
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has indicated the importance of these proteins in embryogenesis. Other studies have 

indicated that flotillins are involved in neuroprotection following ischemic and 

reperfusion injury and in progression of Alzheimer pathology (49, 50).  The role of 

flotillins in the formation of membrane rafts has been speculated (51).   

 Lipid rafts sequester only specific groups of proteins while excluding others. 

Some proteins specifically translocate into lipid rafts under certain patho-physiogical 

conditions from non-raft compartments. Similarly, a vice-versa phenomenon was also 

reported. Such reports indicate the compositional complexity and the need to critically 

evaluate the lipid raft association of proteins. Proteomic profiling provide a tool to reveal 

the protein component of these microdomains. 

 Lipid raft proteomic analysis has been previously reported in various cell types 

including monocytes (52), sperm cells (53), Jurkat T-cell line (54), HeLa cell line (55), 

human endothelial cells (56), neutrophils (57) and the rat liver (58). These studies have 

revealed that raft protein machinery is diverse and specific to each cell type. The 

identified proteins are important in the functioning of endoplasmic reticulum, early and 

late endosome trafficking, phagosomes, mitochondria, cytoskeletal assembly and signal 

transduction. Some of the proteins such as V-ATPases, Ca+2-ATPases, SNARE proteins, 

annexins, Rab proteins and myelin vesicular protein of 17 kDa (MVP17) are involved in 

membrane fusion and vesicular trafficking. However, there are no reports on the 

complete proteomic profile of type II cell lipid rafts.  

1.4 V-ATPases 

 V-ATPases are multi-subunit enzymes which drive the movement of protons 

against the concentration gradient using the energy of ATP hydrolysis. During this 
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process they generate a transvesicular proton-electrochemical potential gradient (Δψv) 

and a transvesicular pH gradient (ΔpHv). 

Structurally, V-ATPases consists of a peripheral catalytic unit, V1 and a 

transmembrane proton translocator, VO. The catalytic unit contains 8 subunits (A-H) 

whereas the proton translocator contains 5 subunits labeled a, c, c´, c´´ and d. V-ATPases 

are predominantly localized on the intracellular organelles such as lysosomes, 

endosomes, chromaffin granules, clathrin-coated and synaptic vesicles in a number of 

cell types including sperm, kidneys and macrophages (59). Plasma membrane 

localization of V-ATPases is reported in osteoclasts, renal intercalated cells, interdental 

cells of inner ear, narrow and clear cells in the epididymus and vas deferens (60). The 

altered plasma membrane V-ATPase activity results in bone resorption, renal 

acidification, and spermatogenesis (61, 62).  

Various isoforms for each of the subunits were reported with tissue specific 

localization patterns. For example, a1 and a2 localised to organelles other than lysosomes 

whereas a3 to endosomes and lysosomes in murine macrophages (63). Such expression 

patterns implicated V-ATPases in diverse tissue specific functions and also inherent 

differences in regulation of H+ pumping activity.   

Previous studies have indicated the expression of different subunits in bovine, rat 

and mouse lungs such as a1, a2, a3, c2-a, e1, d1, d2, G1 (64-66). In rat lung type II cells, 

a and e1 mRNA are stably expressed encoding until 4 days after isolation, whereas c2 

expression is drastically reduced by 1 day after isolation (67). The c2-a isoform co-

localised with the mouse lamellar body membrane protein, LB-180 (68). The differential 
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expression of protein subunits might indicate either the regulation of enzyme activity or 

its role in lamellar body functions.  

V-ATPases on intracellular organelles are involved in secretory processes such as 

the uptake and processing of secretory proteins including serotonin, histamine and 

glutamic acid (69, 70). V-ATPases play a role in exocytosis processes such as the 

formation of the fusion pore and membrane fusion (71, 72). V-ATPase a1 and c subunits 

interact with SNARE proteins and are crucial in late stages of vesicular exocytosis (73-

76). In a3 knockout mice, normal acidification and processing of insulin in granules took 

place in the absence of a3 protein. However, insulin secretion was decreased, indicating 

that V-ATPase also functions downstream of the acidification (77).  

Lung lamellar bodies maintain acidic pH (78). The acidic pH is essential for the 

processing of SP-C, aggregation and condensation of surfactant lipids (79, 80) 

Additionally Ca2+ uptake was also dependent on acidification (81). Earlier studies utilized 

methylamine or NH4Cl for disrupting the lamellar body pH (82). However, these agents 

increase cytoplasmic pH along with lamellar body pH. It hence becomes difficult to 

deduce the effects of disrupting lamellar body pH and its effect of surfactant.  There are 

no studies on the role of V-ATPases in lung surfactant secretion.  

1.5 Specific aims and significance 

Role of lipid rafts had been studied in PC12, LT3, mast cells, sperm cells, and 

pancreatic-alpha cells. Type II cells are unique, since the exocytosis is slower when 

compared to other systems.  Thus, it might be possible that lipid rafts might serve as one 

of the regulatory mechanisms. Moreover, there is no study on the role of lipid rafts in 

surfactant secretion. Thus, the present study was designed to study lipid raft organization 
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of type II cell surfactant protein machinery. To this end, we have laid down three specific 

objectives: 

Specific Aim I: Investigate the role of lipid rafts in surfactant secretion, 

membrane fusion and fusion pore formation.   

Specific Aim II:  Examine the role of lipid raft marker proteins, flotillin-1 and -2 

in the biogenesis of lipid rafts and surfactant secretion.  

Specific Aim III: Determine the proteomic profile of type II cell lipid rafts and 

functions of identified protein, V-ATPase.   

The study hence would be the first of its kind to implicate lipid rafts in general 

and flotillin and V-ATPase proteins specifically in surfactant secretion.  
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CHAPTER II 
 

EFFECT OF CHOLESTEROL DEPLETION ON EXOCYTOSIS OF ALVEOLAR 
TYPE II CELLS 

 

2.1 Abstract 

Alveolar epithelial type II cells secrete lung surfactant via exocytosis. Soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNARE) are implicated in 

this process. Lipid rafts, the cholesterol- and sphingolipid-rich microdomains, may offer a 

platform for protein organization on the cell membrane. We tested the hypothesis that 

lipid rafts organize exocytotic proteins in type II cells and are essential for the fusion of 

lamellar bodies, the secretory granules of type II cells, with the plasma membrane. The 

lipid rafts, isolated from type II cells using 1% Triton X-100 (v/v)  and sucrose gradient 

centrifugation, contained the lipid raft markers, flotillin-1 and -2 whereas excluded the 

non-raft marker, Na+-K+ ATPase. SNAP-23, syntaxin 2 and VAMP-2 were enriched in 

lipid rafts. When type II cells were depleted of cholesterol, the association of SNAREs 

with the lipid rafts was disrupted and the formation of fusion pore was inhibited. 

Furthermore, the cholesterol-depleted plasma membrane had less ability to fuse with 

lamellar bodies, a process mediated by annexin A2. The secretagogue-stimulated 

secretion of lung surfactant from type II cells was also reduced by methyl-beta-

cyclodextrin. When the raft-associated cell surface protein, CD44, was cross-linked using 

anti-CD44 antibodies, the CD44 clusters were observed. Syntaxin 2, SNAP-23, and 

annexin A2 co-localized with the CD44 clusters. Our results suggested that lipid rafts 
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may form a functional platform for surfactant secretion in alveolar type II cells, and raft 

integrity was essential for the fusion between lamellar bodies with the plasma membrane.  

 

Key words: Lipid rafts, SNARE proteins, alveolar type II cells, membrane fusion, 

surfactant secretion, exocytosis 
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2.2 Introduction 

Lung alveolar epithelium consists of two different types of cells, the cuboidal type 

II cells and squamous type I cells.  Type II cells synthesize, store, and secrete a surface-

active lipid-rich substance, the lung surfactant. The released surfactant lines the alveolar 

epithelium, lowers the surface tension, and thus prevents the collapse of alveoli at end-

expiration. Lung surfactant deficiency causes Respiratory Distress Syndrome (RDS) in 

infants. Type II cells are also involved in defense, injury and repair, and trans-

differentiation into type I cells. 

 Lung surfactant, stored in lamellar bodies, is released upon its fusion with the 

plasma membrane via exocytosis. The formation of fusion pore precedes the release of 

lamellar body contents. The SNARE hypothesis was proposed to elucidate the 

mechanisms of membrane fusion during exocytosis. During fusion, the proteins on the 

plasma membrane (target or t-SNAREs) and vesicles (vesicular or v-SNARE) form a 

highly stable, hetero-tetrameric SNARE complex. The two coiled-coil domains are 

contributed by SNAP-25/23 and one each from syntaxin and VAMP (1). NSF, an 

ATPase, binds to its ligand, α-SNAP, and then to the SNARE complex to dissociate it 

and, thus, recycling the interacting components for subsequent cycles. In vitro studies 

have revealed that SNARE complex formation suffices membrane fusion (2), but in vivo 

fusion is a much faster and more complex phenomenon due to the existence of numerous 

SNARE regulatory proteins. The transmembrane regions of syntaxin appear to line the 

fusion pore (3). Previous studies from our laboratory have indicated that syntaxin 2, 

SNAP-23, α-SNAP, and NSF were required for surfactant secretion (4,5).  
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Annexins are a family of highly conserved proteins known for their Ca2+- 

dependent association with the negatively charged phospholipids. Some of the members 

mediated aggregation, as well as the fusion of liposomes. Annexin A2 tetramer had an 

exceptionally low Ca2+ requirement for inducing the membrane fusion. Annexin A2 

tetramer has been reported not only to promote the fusion of lamellar bodies with 

liposomes or the plasma membrane at µM Ca2+ concentrations, but also to reconstitute 

surfactant secretion in permeabilized type II cells (6,7).  The silencing of annexin A2 by 

RNA interference in primary cultures of alveolar type II cells significantly reduced the 

surfactant secretion (8).  

The studies during the past decade have revolutionized the understanding of 

membrane organization. According to the newly proposed raft hypotheses (9,10), 

membrane lipids exist in two phases, ordered phase rendered by saturated lipids and 

disordered phase by unsaturated lipids. The ordered phase lipids form lipid microdomains 

or lipid rafts, which are rich in cholesterol, sphingolipids, and gangliosides, and are 

reported to sequester and segregate a number of specific proteins. Thus, they are ideally 

suited for various processes, including membrane traffic, signal transduction, and apical 

protein sorting (9). Their involvements in other functions are being reported regularly. 

The resident raft proteins include GPI-anchored proteins on the exoplasmic leaflet and 

doubly acylated proteins, and palmitate-anchored proteins on the cytoplasmic leaflet. 

With their unique property of clustering, these microdomains provide an interacting 

platform for the various proteins to bring about the ultimate cellular response. 

SNARE proteins have been shown to be associated with the lipid rafts in several 

cell types (11-14). However, when constituted into giant unilamellar vesicles, syntaxin 
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1A and synaptobrevin 2 preferred disordered domains (15). There are no reports of 

SNARE protein organization in type II cells. Furthermore, whether lipid rafts participate 

in the formation of fusion pore and thus membrane fusion was unclear. We hypothesized 

that lipid rafts organize SNARE proteins on the plasma membrane of alveolar type II 

cells and are essential for the fusion of lamellar bodies and the plasma membrane during 

exocytosis. To this end, we isolated lipid rafts from type II cells and determined the 

association of SNARE proteins with the lipid rafts. We further determined whether the 

disruption of lipid rafts by the depletion of cholesterol affected fusion pore formation, 

membrane fusion and surfactant secretion. Additionally, a raft-associated cell surface 

transmembrane glycoprotein, CD44, was cross-linked to form raft clusters using anti-

CD44 antibodies and we determined whether the raft clusters contained exocytotic 

proteins was determined. 
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2.3 Materials and Methods 

2.3.1 Materials 

All chemicals and reagents were of analytical grade and purchased from Sigma 

(St. Louis, MO), unless otherwise stated. Elastase was purchased from Worthington 

Chemicals (Lakewood, NJ). Fetal bovine serum (FBS) was from Gibco (Grand Island, 

NY). Minimal essential medium (MEM) was from ICN Biomedicals (Aurora, OH). 

Nitrocellulose membrane was from Schleicher & Schuell (Keene, NH). Horseradish 

peroxidase (HRP)-conjugated goat anti-rabbit antibody, and protein molecular mass 

markers were from Bio-Rad (Hercules, CA). Cy3-conjugated anti-mouse IgG, HRP-

conjugated goat anti-mouse antibodies and bovine serum albumin (BSA) were from 

Jackson Immunologicals (West Grove, PA). Paraformaldehyde was from Electron 

Microscopy Services (Ft. Washington, PA). Monoclonal anti-flotillin-1 and -2, anti-α-

SNAP, anti-NSF, and anti-CD44 antibodies were from BD Transduction Laboratories 

(Lexington, KY). Monoclonal anti-Na+-K+ATPase antibodies were from Upstate 

Biotechnology (Lake Placid, NY). Monoclonal anti-LB180 antibodies were from 

Covance Research products (Richmond, CA). Polyclonal rabbit anti-syntaxin 2 and anti-

SNAP-23 antibodies were from Synaptic Systems (Gottingen, Germany). Polyclonal 

rabbit anti-VAMP-2 antibodies were from Stressgen (Victoria, Canada). Polyclonal goat 

anti-SP-C antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA). 

Amphiphilic dye, N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium 

dibromide (FM 1-43), Octadecyl rhodamine B chloride (R18), all Alexa-conjugated 

secondary antibodies and cholesterol assay kit were purchased from Molecular Probes 

(Eugene, OR). Enhanced chemiluminescence (ECL) detection system was from 
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Amersham Biotech (Piscataway, NJ). Polyclonal anti-annnexin A2 antibodies were raised 

in rabbits against isolated bovine annexin A2 and were affinity-purified. TRI reagents 

were from Molecular Research Center (Cincinnati, OH). 

2.3.2 Isolation and culturing of alveolar type II cells  

Alveolar type II cells were isolated from male Sprague-Dawley rats (175-200 

gms) as previously described (16). The perfused lungs were lavaged, digested with 

elastase, chopped and filtered. The cells were subjected to IgG panning to remove 

contaminating macrophages. The unattached cells were pelletted, resuspended in MEM, 

counted for number, and assayed for viability using trypan-blue exclusion assay. The cell 

viability ranged from 95-97%. Purity of the cells was greater than 90%, as ascertained by 

Papanicolou’s staining. For the RT-PCR experiment, >96% pure freshly isolated type II 

cells were obtained by our recently modified protocol (17), in which an additional step, 

using anti-leukocyte common antigen antibodies and magnetic beads, was included to 

remove the residual macrophages.  

For studying the differential expression of flotillins, isolated type II cells were 

plated on 35 mm2 plastic dishes at a density of 1.5×106 per dish. The cells were cultured 

for 3 or 7 days in MEM supplemented with 10% FBS. Media was changed after 

overnight culture and then every other day. In this culture system, type II cells loose their 

phenotypes and convert to the type I-like cells with some characteristics of alveolar type I 

cells.  

2.3.3 RT-PCR  

Total RNA was isolated from the lung by homogenizing the tissue in TRI reagent 

or from freshly isolated type II cells by dissolving them in the reagent. The mRNA (1 μg) 



 27

was reverse-transcribed to cDNA using M-MLV reverse transcriptase and random 

hexamer primers and PCR-amplified using gene specific primers against caveolin-1α 

(Forward: 5’-AAATTGATCTGGTCAACCGC-3’; Reverse: 5’-

ATCTCTTCCTGCGTGCTGAT-3’), caveolin-1β (Forward: 5’- 

ATTGGTTTTACCGCTTGCTG-3’; Reverse: 5’-ATCTCTTCCTGCGTGCTGAT-3’), 

caveolin-2 (Forward: 5’-CTTCATTGCGGGTATCCTGT-3’; Reverse: 5’-

CAGTTGTGGCTCAGTTGCAT-3’), caveolin-3 (Forward: 5’-

GGACATTGTGAAGGTGGATTT-3’; Reverse: 5’-GCACTGGATCTCAATCAGGTA-

3’), flotillin-1 (Forward: 5’-GCTGAAGAAAGCCACCTACG-3’; Reverse: 5’-

CTCAGCTTCAGCTTCTGCCT-3’), flotillin-2 (Forward: 5’-

GGGTACAAGGGTTCTGCGTA-3’; Reverse: 5’-TCTGTGCCTCTATGGTGCAG-3’). 

18S rRNA was amplified using classic 18S RNA primer pairs (Ambion, Austin, TX). The 

conditions for PCR amplification were: 10 mM Tris-HCl (pH 9.0), 50 mM KCl and 0.1% 

Triton X-100, 1.6 mM MgCl2, 0.16 mM dNTP mix, 1.6 μM of each primer, 1 unit DNA 

Taq polymerase and 20 ng of cDNA in a final reaction volume of 25 μl. The thermal 

conditions were  940C for 2 min, 35 cycles of  940C  30 sec, 550C  40 sec, 720C 1 min, 

followed by 720C for 8 min. The PCR products were electrophoretically separated on 

agarose gel for studying the expression pattern of the raft marker proteins.  

2.3.4 Western blot  

  Type II cells, freshly isolated or cultured on plastic dishes for 3 and 7 days, MLE-

12 cells, and L2 cells were lysed in the lysis buffer (50 mM Tris-HCl , pH 7.4, 150 mM 

NaCl, 1% Triton X-100, 5 mM EGTA, 1 mM PMSF, 10 µg/ml aprotonin, 10 µg/ml 

leupeptin, and 1 mM benzamidine). Lung tissue was homogenized in the lysis buffer. 
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Lamellar bodies (LB) and plasma membrane (PM) were directly dissolved in the SDS 

sample buffer. Proteins were separated on SDS-PAGE, transferred onto nitrocellulose 

membranes and immunoblotted with specific antibodies. The primary antibodies were 

used at the following dilutions, 1:250 for flotillin-1 and VAMP-2; 1:1000 for syntaxin 2, 

annexin A2, SNAP-23, Na+-K+ ATPase, NSF; and 1:5000 for flotillin-2 and α-SNAP. 

HRP-conjugated secondary antibodies were used at a 1:2500 dilution in all the cases. The 

protein bands were visualized with the ECL reagents. The protein bands were quantified 

using a Bio-Rad densitometric scanner (Hercules, CA). 

2.3.5 Immunohistochemistry  

The lungs from male Sprague-Dawley rats were perfused with 50 mM PBS (pH 

7.4) and then lavaged four times with 5 ml of normal saline. Lungs were fixed by 

infusing 5 ml of 4% paraformaldehyde into the lungs and kept immersed in the same 

solution at room temperature for overnight. Paraffin-embedded lungs were sectioned (2 

µm) and placed on glass slides (Fisher Scientific, Pittsburgh, PA). The slides were 

deparaffinized with xylene and rehydrated with graded alcohol and PBS. Antigen 

retrieval was done by boiling the slides with citrate buffer (10 mM disodium citrate, pH 

6.0, and 0.05% Tween-20) for 20 minutes. Immunohistochemistry was performed as 

previously described (18).   Goat anti-SP-C antibodies were used at a dilution of 1:50, 

whereas mouse anti-flotillin-1 and -2 at 1:100. Alexa 546-conjugated anti-goat and Alexa 

488-conjugated anti-mouse antibodies were used at 1:250 dilutions.  

2.3.6 Isolation of lipid rafts 

  Lipid rafts were isolated from alveolar type II cells according to the previously 

reported method (12). In brief, freshly isolated type II cells (25 – 30 × 106) were washed 
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twice with MEM and once with MBS buffer (25 mM MES and 150 mM NaCl, pH 6.5). 

The cell pellet was lysed in 700 µl of ice-cold lysis buffer (MBS with 1% Triton X-100, 5 

mM EGTA; 1 mM PMSF, 10 µg/ml aprotonin, 10 µg/ml leupeptin, and 1 mM 

benzamidine) for 45 minutes on ice. Six hundred µl of lysate was carefully mixed with an 

equal volume of 80% sucrose (w/v) and gently laid at the bottom of an ultracentrifuge 

tube. Later, 1200 µl, each of 30% and 5% sucrose were laid over the 40% sucrose 

gradient and centrifuged at 200,000 ×g for 16 hours. Seven fractions were collected from 

top to bottom as follows: first two fractions of 600 µl each, followed by three fractions of 

400 µl each and two fractions of 600 µl each. Pellet was dissolved in 600 µl of lysis 

buffer and labeled as the eighth fraction. Equal volumes of each fraction were 

immunoblotted for various raft and non-raft marker proteins. For studying the effects of 

cholesterol depletion on lipid raft association of SNARE proteins, type II cells were 

solubilised in MBS containing Saponin (0.5% w/v), 0.5% TX-100, and a cocktail of 

protease inhibitors. A similar procedure was used in PC12 cells (12). 

2.3.7 Fusion pore formation 

Alveolar type II cells were grown on coverslips overnight. After removal of the 

unattached cells and equilibration with fresh MEM for 30 minutes, amphiphilic dye FM1-

43 (4 µM) was added and incubated for 10 minutes (19). The cells were stimulated with a 

combination of secretagogues (0.1 µM phorbol 12-myristate 13-acetate, 100 µM ATP 

and 20 µM terbutaline) for indicated periods of time in the presence of the dye. The cells 

were rinsed with 50 mM ice-cold phosphate buffered saline (PBS) and fixed with 4% 

paraformaldehyde. Under these conditions, the signals were not lost although extensive 

washing resulted in the loss of the signals. Excess fixative was quenched with 50 mM 
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ammonium chloride solution in PBS for 5 minutes. The cells were later washed three 

times with PBS and mounted onto the slides using mounting solution (1.5 % w/v n-

propyl gallate and 60% v/v glycerol in PBS). The positively stained lamellar bodies were 

counted in 50 cells selected at random under oil immersion (100X). Cholesterol depletion 

from alveolar type II cells was done by incubating the cells with media containing 3 mM 

methyl β-cyclodextrin (MCD) for about 30 minutes at 370C. The control cells were 

treated the same with MCD-cholesterol complex (40 μg cholesterol and 0.5% (w/v) or 

3.78 mM MCD). The cells were washed to remove MCD and incubated with fresh media 

for further studies. The extent of cholesterol depletion was assessed by cholesterol 

oxidase method (Amplex Red Cholesterol Assay Kit), as per the instructions of the 

manufacturer.  

To determine if cholesterol depletion affected lamellar body staining, overnight 

cultured type II cells were used. Following fixation, permeabilization and blocking for 

non-specific proteins, the cells were incubated with LB-180 antibodies (1:1000) for 

overnight. Later, they were incubated with Cy3-conjugated anti-mouse antibodies 

(1:250). Florescence was observed with Nikon Eclipse E600 Microscope. 

2.3.8 Membrane fusion  

  Lamellar bodies and plasma membrane were isolated from perfused rat lungs 

according to our previous protocols (7). The fusion of lamellar bodies with the plasma 

membrane was determined by the de-quenching of R18 as previously described (7).  R18-

labeled plasma membrane (5 μg protein) was incubated with lamellar bodies (10 μg 

protein) in 1 ml of Ca2+-EGTA buffer (40 mM Hepes, pH 7.0, 100 mM KCl, 1 mM 

EGTA, 1 mM Ca2+ free Ca2+) at 37oC for 2 min. The purified annexin A2 tetramer was 
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added to initiate the fusion. Fluorescence was monitored at Ex = 560 nm and Em=590 

nm. Fusion was expressed as a percentage of the maximal fluorescence (in the presence 

of 0.1% Triton X-100). 

2.3.9 Surfactant secretion from type II cells 

Isolated alveolar type II cells were pre-labeled with 0.6 µCi of [3H] choline and 

grown in 35 mm2 cell culture dishes. After overnight culture, unattached cells were 

removed by washing cells with warm MEM and then incubated in fresh media for 30 

minutes. The cells were stimulated with 0.1 µM phorbol 12-myristate 13-acetate, 100 µM 

ATP and 20 µM terbutaline for 2 hrs. Surfactant secretion assay was done as previously 

described (6). For cholesterol depletion, cells were incubated with 3 mM MCD for 30 

minutes before the stimulation. 

2.3.10 Raft Clustering 

  CD44 cross-linking was done as described (20). In brief, freshly isolated type II 

cells were washed three times with MEM. The cells were equilibrated in MEM, 

supplemented with 1 mM MgCl2 and 1 mM CaCl2, at 370C for 30 minutes. For cross-

linking, the cells were incubated with mouse anti-CD44 antibodies (20 µg/ml) for 60 

minutes, followed by incubation with Alexa-488-conjugated anti-mouse antibodies (20 

µg/ml) for another 60 minutes. The reaction was stopped by adding ice cold PBS. The 

cells were fixed with 4% paraformaldehyde and cytospun onto glass slides. The control 

type II cells were incubated with mouse anti-CD44 antibodies and then fixed, followed 

by the incubation with the secondary antibodies (see below). For cholesterol depletion, 

the cells were treated with 3 mM MCD for 30 minutes, washed three times with MEM, 

and cross-linked as described above. 
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For the double-labeling with CD44 and SNARE or annexin A2 antibodies, the 

slides above were washed with PBS and then permeabilised with 0.5% (v/v) Triton X-

100 for 30 minutes. The fixed cells were incubated with 10% (w/v) FBS and 1% (w/v) 

BSA for blocking non-specific binding. The cells were incubated with rabbit anti-annexin 

A2, syntaxin 2, or SNAP-23 antibodies at 1:100, 1:50, and 1:100 dilutions, respectively at 

40C overnight. The slides were washed and incubated with Alexa-488-conjugated anti-

mouse antibodies (20 μg/ml, for control non-cross-linking cells only) and Alexa-546-

conjugated anti-rabbit antibodies at 1:250 dilutions.  The cells were examined with a 

Leica confocal laser scanning fluorescent microscope. 

2.3.11 Protein Concentration Assay  

  Total protein concentration in cell lysates was determined by the Dc method 

(BioRad), and the protein concentration in each fraction of sucrose gradients was 

measured by the Bradford assay (BioRad). 

2.3.12 MTT assay  

  Overnight grown type II cells (1.5 ×106) in 35 mm dishes were used for the assay. 

The cells were treated with different concentrations of MCD for 30 minutes at 370C. 

Next, cells were washed with 50 mM PBS and incubated with 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT, 0.5 mg/ml) for 2 hours at 370C. Later, 

formazan crystals were dissolved in 2 ml of dimethyl sulfoxide by shaking the dishes for 

10 minutes. Absorbance was measured at 570 nm. The results were expressed as a 

percentage of the untreated control cells. 
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2.3.13 Statistical analysis  

 All the experiments were repeated atleast with 3 independent biological samples. 

Statistical significance was considered only when the p ≤ 0.05.  Student t test was used to 

compare the significant differences between the the control and treatment groups.  
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2.4 Results 

2.4.1 Identification of raft marker proteins  

Previous studies have reported the presence of lipid raft marker proteins in lung 

tissue (21,22). However, it is unclear whether these markers exist in alveolar type II cells. 

RT-PCR was performed to assess the presence of mRNA of various lipid raft markers in 

these cells, including caveolin-1α, -1β, -2, and -3, and flotillin-1 and -2.  Our results 

indicated that flotillin-1 and -2 mRNAs were expressed in both type II cells and lung 

tissue, whereas caveolin-1α, -1β, -2, and -3 mRNAs were only expressed in lung tissue, 

but not in type II cells (Fig. II. 1A). Western blotting revealed that flotillin-1 and -2 

proteins were expressed in freshly isolated type II cells (Fig. II. 1B). However, flotillin-1 

and -2 protein expression decreased when type II cells were cultured on plastic dishes, in 

which type II cells were known to trans-differentiate into the cells with some type I cell 

characteristics. Furthermore, both flotillin-1 and -2 were highly enriched in lamellar 

bodies fractions and plasma membrane fractions. They were also expressed in two lung 

epithelial cell lines: MLE-12 (mouse) and L2 (rat). Double-labeling with anti-SP-C 

(alveolar type II cell marker) and anti-flotillin-1 and -2 on rat lung tissue revealed that 

both flotillins were specifically localized in alveolar type II cells, but expression was 

minimal or low in type I cells (Fig. II. 1C). The controls without primary antibodies did 

not show labeling (data not shown).   
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Fig.  II. 1.   Identification of lipid raft markers in alveolar type II cells. (A) RT-PCR: 

The mRNAs extracted from freshly isolated alveolar type II cells (> 96% purity, T2) and 

whole lung tissue (L) were reverse-transcribed and amplified for 35 cycles with gene 

specific primers against caveolin (Cav) 1α, 1β, 2 and 3, flotillin (Flot) 1 and 2, and 18S 

rRNA. PCR products were electrophoretically separated on an agarose gel. MW: 100 bp 

DNA ladder. (B) Western blot: Freshly isolated type II cells (D0),  3 or 7 day-cultured 

type II cells on plastic dishes (D3 and D7), lung epithelial cell lines, MLE-12 and L2 

cells, along with lung homogenate (LH), purified plasma membrane (PM) and lamellar 

bodies (LB), were either lysed and/or solubilised in SDS sample buffer. Equal amounts of 

total protein (20 µg) were separated by SDS-PAGE and immunoblotted using anti-

flotillin-1 and -2 antibodies.  (C) Immunohistochemistry: Lung tissue sections were 

permeabilised and blocked before being incubated with goat-anti-SP-C and mouse anti-

flotillin- 1 and -2 antibodies. They were then incubated with donkey anti-goat Alexa-546-

conjugated and rabbit anti-mouse Alexa-488-conjugated antibodies. The slides were 

Phase contrast SP-C Flotillin-1 Merged

Bright Field Flotillin-2 Merged 

C 

Phase contrast SP-C Flotillin-2 Merged
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observed for immunoflorescence. Upper panels: double labeling with anti-flotillin-1 and 

SP-C antibodies; Lower panels: double labeling with anti-flotillin-2 and SP-C antibodies. 

Shown in the inset is the magnified image (100 ×) of a single type II cell. Scale bar: 20 

µm. 
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2.4.2 SNARE protein association with lipid rafts 

Lipid rafts are characterized by their resistance to non-ionic detergent 

solubilization and flotation when subjected to a discontinuous sucrose gradient 

centrifugation. Additionally, they are highly enriched in cholesterol.  We solubilized type 

II cells in ice-cold 1% (w/v) Triton X-100 and subjected the lysate to a gradient 

centrifugation. A white flocculent band was visible at the interface of 5 and 30% sucrose 

gradients. Seven fractions, collected from top to bottom (fractions 1 through 7), and the 

pellet (fraction 8), dissolved in lysis buffer, were analyzed for the contents of total 

proteins and cholesterol. Fraction 3 contained only 0.79 ± 0.15% of total protein, but 

22.30 ± 4.76% of total cholesterol (Fig. II. 2A and B). In contrast, soluble fractions 

(fractions 6 and 7) contained significant amount of total proteins (29.44 ± 2.74 and 38.94 

± 1.79% respectively), but a relatively small amount of cholesterol (21.43 ± 1.1 and 

12.56 ± 2.23% of total cholesterol, respectively). Each of the fractions was also screened 

for the presence of the lipid raft markers, flotillin-1 and –2, and the non-lipid raft marker, 

Na+-K+ ATPase. The results showed that fraction 3 was enriched in flotillin-1 and -2, 

whereas Na+-K+ ATPase was confined to the soluble fractions 6 and 7 (Fig. II. 2C). Thus, 

fraction 3 was confirmed to be the detergent insoluble and cholesterol-rich raft fraction. 

We further quantified the data by calculating the enrichment. A ratio of the flotillin band 

density and total protein in fraction 3 was first obtained. Similarly, a ratio of flotillin band 

densities in all the fractions and total protein in all the fractions was obtained. The first 

value was divided with the second to arrive at enrichment for flotillin. The data revealed 

that flotillin-1 and -2 were enriched by 42.66 ± 2.00 and 28.76 ± 9.09 fold (n=3) in the 

raft fraction. To study the effect of cholesterol sequestration on the lipid raft integrity, we 



 39

depleted cholesterol from type II cells using saponin (0.5% w/v) and 0.5% TX-100 in 

lysis buffer according to a reported procedure (12). In this case, cholesterol content in 

fraction 3 was reduced by approximately 75%. A major portion of flotillin-1 and -2 

shifted from raft (fraction 3) to non-raft fraction (Fig. II. 2C).  

 To examine the association of SNARE proteins with the lipid rafts of type II cells, 

an equal volume of each fraction was immunoblotted for the presence of major SNARE 

isoforms in type II cells: SNAP-23, syntaxin 2, and VAMP-2. Both t-SNAREs were 

present in the rafts, but SNAP-23 was highly enriched (24.12 ± 4.80 fold, n=3) in lipid 

rafts in comparison with syntaxin 2 (11.80 ± 3.73 fold, n=3) (Fig. II. 2C). On the other 

hand, VAMP-2, a v-SNARE, was moderately enriched (17.73 ± 4.45 fold, n=3) in lipid 

rafts. Other two SNARE regulatory proteins: α-SNAP and NSF were not found in the raft 

fraction of type II cells (data not shown).  When type II cells were solubilized in 0.5% 

saponin and 0.5% TX-100, the amount of SNARE proteins associated with the raft 

fraction was markedly decreased. The results indicated a genuine association of SNARE 

proteins with the lipid rafts.  
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Fig. II. 2. Effect of cholesterol depletion on SNARE protein association with lipid 

rafts. (A, B) Isolation of lipid rafts from alveolar type II cells: Lipid rafts were isolated 

from freshly isolated type II cells based on their detergent insolubility in 1% (w/v) Triton 

X-100 flotation on sucrose gradients. Seven fractions (1-7) were collected from top to 

bottom and the pellet solubilized in lysis buffer (fraction 8). Protein (A) and cholesterol 

(B) were measured in each of the fractions before and after cholesterol depletion (0.5% 

Triton X-100 and 0.5%, w/v Saponin). The results were expressed as a percent of total 

protein and cholesterol, respectively. Data shown are means ± S.E. (n=3).  Diamonds: 1% 

Triton X-100, circles:  0.5% Triton X-100 and 0.5% Saponin. (C)  SNARE association 

with lipid rafts: Type II cells were lysed in either 1% Triton X-100 (control) or 0.5% 

Triton X-100 and 0.5% saponin (cholesterol depletion) and subjected to raft isolation.  

Seven fractions were collected from top to bottoms. P: pellet. 5%, 30% and 40% 
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represent sucrose gradient. Each fraction was examined, by western blot, for the presence 

of the lipid raft marker proteins, flotillin-1 and -2, the non-lipid raft protein marker, Na+-

K+ ATPase, various SNARE proteins, SNAP-23, syntaxin 2 and VAMP-2. The 

immunublots shown are representatives of 3 independent experiments. 

 

Table. II. 1. Distrubution of in fractions following differential centrifugation (per 
cent of total) 
 

Fraction # Flotillin-1 Flotillin-2 Syntaxin-2 SNAP-23 VAMP-2 

1 3.42 ± 1.22 0.91 ± 0.33 1.90 ± 0.71 0.74 ± 0.39 6.29 ± 1.15 

2 4.00 ± 0.91 4.33 ± 2.28 2.58 ± 0.80 5.86 ± 1.98 7.31 ± 1.41 

3 32.87 ± 3.47 20.06 ± 2.06 9.10 ± 1.41 26.76 ± 2.76 14.13 ± 1.51

4 7.96 ± 1.74 7.21 ± 2.07 3.87 ± 0.80 10.51 ± 1.28 9.67 ± 1.46 

5 6.95 ± 1.33 7.85 ± 1.45 14.83 ± 2.75 14.52 ± 0.80 15.06 ± 0.88

6 9.96 ± 2.37 22.06 ± 2.68 25.81 ± 2.87 19.35 ± 0.40 20.35 ± 1.11

7 11.96 ± 1.46 21.23 ± 2.02 27.27 ± 3.25 19.96 ± 0.81 17.56 ± 1.48

8 22.45 ± 4.95 16.33 ± 1.70 15.34 ± 2.86 11.21 ± 2.09 9.32 ± 0.85 
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2.4.3 Effect of cholesterol depletion on fusion pore formation 

Having confirmed the association of SNARE proteins with the lipid rafts, we then 

questioned whether it has functional relevance to surfactant exocytosis in type II cells. To 

maintain the integrity of cell membrane and viability of the cells, MCD was used to 

deplete membrane cholesterol from type II cells. Cyclodextrins have been reported to 

specifically deplete membrane cholesterol (23). Incubation of type II cells with MCD for 

30 minutes at 37°C resulted in a dose-dependent decrease of cholesterol in type II cells 

(Fig. II. 3A). 3 mM MCD depleted 57 ± 6% of cholesterol without significantly affecting 

the cell viability (>90 %).  

During exocytosis, surfactant laden lamellar bodies fuse with the plasma 

membrane and release their contents via the fusion pore. The dynamics of surfactant 

release can be monitored for the formation of fusion pore using an amphiphilic dye, FM 

1-43 (19,24). The amphiphilic dye gains access to the lipids in the lamellar bodies 

through the fusion pore and stains the vesicular contents green. We sought to determine 

whether cholesterol depletion affects the fusion pore formation.  Type II cells were pre-

loaded for 10 minutes with FM1-43 (4 µM) and stimulated with a mixture of 

secretagogues. The formation of fusion pore was monitored by counting positively 

stained lamellar bodies. When the cells were cholesterol-depleted with 3 mM MCD, the 

fusion pore formation was completely inhibited. When the cells were treated with 

cholesterol-MCD complex, the fusion pore formation was unaffected (Fig. II. 3B, C). The 

effect of cholesterol depletion on the fusion pore formation is not due to the decrease in 

the number of lamellar bodies caused by MCD, because MCD does not affect the number 

of lamellar bodies as determined by staining type II cells with antibodies against a 
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lamellar body membrane protein, LB-180 (Fig. II. 3D). The number of positively stained 

lamellar bodies in the control and cholesterol-depleted cells was 25.92 ±1.42 and 24.56 

±1.37 per cell, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

 



 45

0 2 4 6 8 10
0

20

40

60

80

100

MCD (mM)

%
 C

on
tr

ol

 

 

 

 

 

 

 

 

 

 

FM1-43 

Phase contrast 

         Cont                Cont                  MCD                MCD            MCD-Chol        MCD-chol 
         0 min            30 min sti           30 min             30 min sti          30 min            30 min sti 

B 

A 



 46

C. Quantification of fusion pore formation 

 
Condition Number of FM1-43 positive lamellar 

bodies/50 cells 

0-time 0.67 ± 0.67 

30 minute control 6.00 ± 6.00 

30 minute stimulation 346 ± 17.35 

MCD-0-time 0.00 

MCD-30 minutes 0.00 

MCD-30 minutes-stimulation 6.08 ± 6.00 

MCD-Cholesterol-0-time 0.00 

MCD-Cholesterol-30 minutes 0.00 

MCD-Cholesterol-30 minutes-stimulation 362 ± 13.57 
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Fig. II. 3. Cholesterol depletion inhibits the fusion pore formation in type II cells. 

(A) Cholesterol concentration and viability: Overnight cultured type II cells were treated 

with different concentrations of methyl-β-cyclodextrin (MCD) and the total cholesterol 

concentration and cell viability were measured using the Amplex red cholesterol assay kit 

and MTT assay, respectively. The results were expressed as percentage of control. Data 

shown are means ± SE from 3 independent cell preparations. Square: cholesterol, 

Diamond: cell viability. (B) Fusion pore formation: The overnight cultured cells were 

treated with 3 mM MCD or MCD-cholesterol complex (MCD-chol) and stimulated (sti) 

with secretagogues (0.1 mM ATP, 0.1 µM PMA and 20 µM terbutaline) for 30 min. The 

fusion pore formation was monitored by FM1-43 fluorescence. Upper panel, FM1-43 

staining; lower panel, phase contrast. (C) Quantification. The fusion pore formation was 

expressed as the number of the FM1-43-positive lamellar bodies per 50 cells. The results 

shown are means ± SE (n=3 independent cell preparations). (D) Effect of cholesterol 

depletion on the quality of lamellar bodies. Overnight cultured type II cells were treated 

with 3 mM MCD. The number of lamellar bodies was monitored by staining the cells 

with antibodies against a lamellar body membrane protein, LB-180.  
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2.4.4 Effect of cholesterol depletion on membrane fusion 

 We have previously shown that annexin A2 promotes the fusion of lamellar 

bodies with the plasma membrane using an in vitro assay (7). Using this assay, we 

determined whether the depletion of cholesterol affects the membrane fusion. The 

incubation of the isolated plasma membrane with MCD resulted in a dose-dependent 

reduction of cholesterol in the plasma membrane preparation (Fig. II. 4A). Three mM 

MCD depleted ∼ 50% of cholesterol from the plasma membrane. Under this condition, 

annexin A2-mediated fusion of lamellar bodies with the cholesterol-depleted plasma 

membrane was significantly decreased (Fig. II. 4B and C). The controls without the 

addition of annexin A2 did not show fusion for the untreated or cholesterol-depleted 

plasma membrane. 

 

0

20

40

60

80

100

120

0 3 6 10 20
MCD(mM)

%
 C

on
tro

l r
em

ai
ni

ng

A

 



 50

 

 

Fig. II. 4. Cholesterol depletion alters membrane fusion activity.  (A) Plasma 

membranes isolated from lung tissue were treated with different concentrations of MCD 

for 30 min at 37oC. Cholesterol content was assayed and the results expressed as a 

percentage of control. Data shown are means ± SE (n=3). (B, C) 5 µg/ml of control or 
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cholesterol-depleted plasma membranes (3 mM MCD) were mixed with 10 µg/ml of 

lamellar bodies in 1 ml of 1 mM Ca2+-EGTA buffer and membrane fusion was initiated 

by addition of 10 µg annexin A2 tetramer. The basal fusion was without the addition of 

annexin A2 teramer. B illustrates fusion curve as a function of time and C the fusion 

content at 6 minutes after the addition of annexin A2 (means ± SE, n=3). *P<0.05 v.s 

control. 
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2.4.5 Effect of cholesterol depletion on surfactant secretion by type II cells 

We also examined the effects of cholesterol depletion on surfactant secretion. As 

shown in Fig. II. 5, the secretion of lung surfactant was stimulated 4 fold by 

secretagogues. 3 mM MCD reduced the stimulated surfactant secretion by 69%. MCD 

also reduced the basal secretion, but did not reach a significant level. 

 

 

 

 

 

 

 

 

 

 

Fig. II. 5. Effect of cholesterol depletion on surfactant secretion. Overnight cultured 

type II cells were treated with 3 mM MCD for 30 min and then incubated without (basal) 

and with 0.1 mM ATP, 0.1 µM PMA, and 20 µM terbutaline for 2 hours (stimulated). 

Surfactant secretion was assayed. *P <0.05 vs no MCD treatment (Student t test, n=3) 

White bars, -MCD, Shaded bars, +MCD. 
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2.4.6 Co-localization of SNARE proteins with raft clusters 

The characteristic feature of rafts is their clustering upon cross-linking the raft-

associated proteins. The clusters, thus, aggregate the different protein associated with 

them and might represent the sites for protein interactions. CD44 is a transmembrane cell 

surface glycoprotein expressed by type II cells. We cross-linked CD44 proteins using 

anti-CD44 and secondary antibodies to determine whether SNARE proteins were 

recruited to rafts clusters. Both control and cross-linked cells were counterstained with 

anti-syntaxin 2 or SNAP-23. In the control cells, CD44, syntaxin 2, and SNAP-23 stained 

the plasma membrane, and cholesterol depletion did not change the distribution of these 

proteins (Fig. II. 6A and B). However, in the cross-linking cells, CD44 formed clusters or 

patches. Syntaxin 2 and SNAP-23 co-localized with the CD44 clusters, suggesting that 

syntaxin 2 and SNAP-23 may reside in the same lipid rafts. Efforts to further test this 

idea by disrupting rafts using 3 mM MCD were equivocal. Incomplete reduction in 

cluster formation and loss of CD44 florescence was observed owing to a 50-60% 

decrease in cholesterol content under our conditions. However, reasons for the loss of 

CD44 staining are unknown.  
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Fig. II. 6. SNARE proteins co-localize with raft clusters: Cells shown in the top two 

rows were fixed with 4% (w/v) paraformadehyde after exposure to mouse anti-CD44 but 

before exposure to anti-mouse IgG antibody. Cells shown in the bottom row were not 

fixed until after exposure to ant-mouse IgG antibody. Cells were double-labeled with 

anti-CD44 and anti-syntaxin 2 (A) or anti-SNAP-23 (B) antibodies. Images were taken 

with a confocal fluorescence microscope. 
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2.4.7 Annexin A2 and raft clustering 

Our previous reports have indicated that annexin A2 plays an important role in 

surfactant secretion (6,7). We investigated whether annexin A2 is associated with the 

lipid rafts of type II cells. Since annexin A2 binds to phospholipids in a Ca2+-dependent 

manner, we included 200 µM Ca2+ in the lysis buffer and subjected the type II cell lystate 

to the raft isolation. We found that annexin A2 was enriched in the raft fraction by 38-

fold in the presence of Ca2+ (Fig. II. 7A). There was no association of annexin A2 with 

lipid raft in the absence of Ca2+.  We further cross-linked CD44 proteins to see whether 

annexin A2 was recruited to rafts clusters. In the control cells, annexin A2 stained the 

plasma membrane (Fig. II. 7B). In the cross-linking cells, a co-localization of annexin A2 

with CD44 in the patches was evident, suggesting that annexin A2 was recruited to the 

raft clusters at the cytosolic side. 
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Fig. II. 7. Annexin A2 co-localizes with the lipid raft clusters. (A) Association of 

annexin A2 with the lipid rafts: Freshly isolated type II cells were lysed with 1% Triton 

X-100 in the presence or absence of 200 µM Ca2+, and separated on sucrose gradients. 

Seven fractions were collected from top to bottoms. P: pellet. 5%, 30% and 40% 

represent sucrose gradients. Each fraction was immunoblotted for annexin A2. (B) Raft 

clustering: CD44 clustering was done as described earlier. Cells were double-labeled with 

anti-CD44 and anti-annexin A2 antibodies. Images were taken with a confocal 

fluorescence microscope. 
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2.5 Discussion 

Exocytosis is an orderly process involving the interaction of highly conserved and 

diverse classes of proteins, resulting in the fusion between two opposing membranes. 

Lung surfactant secretion by type II cells is a highly regulated process. SNAREs and 

annexin A2 have been implicated in surfactant secretion. Our present studies 

demonstrated that SNARE proteins were associated with the lipid rafts of type II cells 

and that lipid raft integrity was essential for this association as well as fusion pore 

formation, membrane fusion, and lung surfactant secretion. The cross-linking of a 

transmembrane glycoprotein, CD44, using antibodies caused raft clustering and the 

recruitment of SNAREs and annexin A2 into these raft clusters.  These results suggested 

that lipid rafts may organize the exocytotic proteins on the membrane, and raft clusters 

may provide the docking and fusion sites for exocytosis. 

Earlier studies have shown that caveolin and flotillins were highly expressed in 

lung tissue (21,22,25,26). Caveolin-1 protein was detected in both alveolar epithelial type 

I and type II cells, but distinct plasma membrane invaginations were not observed in type 

II cells (25-27). However, we were not able to detect caveolins 1-4 in the freshly isolated 

type II cells by RT-PCR although their mRNAs expression were observed in lung tissue 

under the same conditions. The reasons for the contrary results are not clear. Both mRNA 

and protein expression of flotillin-1 and –2 were present in type II cells. 

Immunohistochemistry confirmed their specific localization in type II cells, but not type I 

cells. Flotillin-1 and -2 protein expression in the type II cells cultured on plastic dishes 

was decreased. A similar expression pattern for flotillin was reported when PC12 cells 

were cultured in vitro (28). Expression pattern of flotillins and caveolins in type I and II 
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cells might reflect the specific roles of these proteins in different cells, although there are 

a number of cells expressing both caveolins and flotillins, such as skate erythrocytes (29) 

and neonatal rat cardiomyocytes (30). Additionally, flotillin-1 and -2 were enriched on 

the plasma membrane and lamellar bodies, indicating their possible roles in membrane 

trafficking. 

Lipid rafts offer an interacting platform for many proteins involved in signal 

transduction and membrane trafficking, apart from being involved in protein sorting in a 

number of cells. Based on cellular fractionation and biochemical analysis, SNARE 

proteins were observed to be enriched in the lipid rafts of alveolar type II cells. This is 

also supported by the co-localization of SNAP-23 and syntaxin 2 with raft clusters upon 

cross-linking of a raft-associated cell surface protein CD44. The extent of enrichment for 

SNAP-23 was higher than its cognate t-SNARE partner, syntaxin 2, and v-SNARE 

protein, VAMP-2. Similar results were observed in other cells (12,14). The enrichment of 

SNAP-23 might be attributed to the palmitoylation at multiple cysteine residues.  Most 

recently, it has been reported that SNAP-23 was enriched to a higher extent than SNAP-

25 in PC12 cells, due to the substitution of phenyl alanine residue in SNAP-25 with a 

cysteine residue in SNAP-23 (31). However, the mechanism for the association of 

syntaxin 2/VAMP-2 with lipid rafts of type II cells is unknown.  Most syntaxin isoforms 

were associated with lipid rafts to various degrees depending on cell type and isoform 

(12,32,33). However, one report showed that syntaxin 2 was excluded from the lipid rafts 

in mast cells (14). When reconstituted into simple artificial membrane (liposome) 

containing phospholipids, cholesterol and spingomyelin, syntaxin 1A and VAMP-2 

preferred liquid-disordered domains (non-raft phase) (15), even though syntaxin 1A was 
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able to bind to cholesterol (13). Although the role of other lipid factors, such as 

phosphatidylinositol-4,5-bisphosphate in the targeting of syntaxin to lipid rafts can not be 

ruled out (34), it appeared that additional intrinsic factors and/or protein-protein 

interactions were required for the association of syntaxin and VAMP with lipid rafts in 

biological membranes. For example, SNAP-23 might bring syntaxin 2 into the rafts via 

the formation of a heterodimer since syntaxin and SNAP-23/25 were observed to form 

dimers, which may act as a docking site for VAMP-2, ultimately leading to the formation 

of a ternary SNARE complex (35).  Also, the cleavage of SNAP-25 by botulinum 

neurotoxin E disrupted syntaxin 1-SNAP-25 dimer and its co-localization in defined 

clusters (36). There was a significant amount of SNAREs present in non-raft fraction. 

Since lipid rafts are dynamic structures, it is likely that SNAREs can move in and out of 

lipid rafts, depending on the cell status and the physiological response. 

When type II cells were treated with MCD, cellular cholesterol content was 

reduced to ∼50-60%. Under the depleted conditions, the secretagogue-stimulated 

surfactant secretion decreased by ~70%. Since MCD can not enter the cells (23), it might 

deplete cholesterol on the plasma membrane without affecting intracellular membrane 

cholesterol. Thus, the actual reduction of cholesterol on the plasma membrane may be 

higher than 50%, which may account for a higher inhibition of surfactant secretion. The 

reduced secretion was probably not due to the decreased surfactant synthesis owing to the 

inability of MCD to permeate the cells or due to the depletion of lamellar bodies because 

MCD does not affect the number of lamellar bodies. Since SNARE proteins are enriched 

in lipid rafts and the lipid raft integrity depends on cholesterol, the reduced surfactant 

secretion by MCD is likely due to the disruption of lipid raft integrity and thus 
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disassembly of interacting platforms, provided by lipid rafts that are necessary for the 

SNARE complex formation.  

The size of lipid rafts is small (< 70 nm). Although cross-linking and fluorescence 

energy transfer (FRET) revealed their existence in living cells (37,38), lipid rafts are too 

small to function as docking and fusion sites. Individual rafts contain only a few numbers 

of proteins for protein-protein interactions to occur.  However, lipid rafts might aggregate 

or form clusters and act as the possible sites of exocytosis. Indeed, we observed that 

syntaxin 2 and SNAP-23 were co-localized with CD44 clusters. The mechanisms of lipid 

raft cluster formation in the cells are however unclear. One of the candidates that might 

play a role in this process is annexin A2. It was associated with lipid rafts in type II cells 

(Fig. 7) and other cells (39) in a Ca2+-dependent manner. The N-terminus of annexin A2 

is required for the association (40). The Ca2+-independent binding of annexin A2 to the 

membrane has also been reported (41), and this binding appears to depend on cholesterol 

(42,43). Similar to syntaxin 2 and SNAP-23, annexin A2 was recruited to raft clusters 

upon the cross-linking of CD44 (Fig. 7), suggesting role of annexin A2 in raft clustering 

and, thus, in the creation of docking and fusion sites in secretory cells. This conclusion is 

further supported by the following observations: (i) the infection of HeLa cells with 

enteropathogenic E. Coli induced actin-rich pedestals, clustering of raft clusters and 

recruitment of annexin A2 to such clusters (44); (ii) a trans-dominant mutant of annexin 

A2 comprising the N-terminal domain of annexin A2 and the N-terminus of p11 lead to 

the formation of large annexin A2 aggregates and co-clustering of the raft-associated 

protein, CD44 with the aggregates (20); and (iii) annexin A2 was found to be associated 

with nicotine-induced lipid rafts in chromaffin cells (45).  
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In summary, lipid rafts in type II cells may organize the SNARE protein 

machinery and their integrity is crucial for the fusion of lamellar bodies with the plasma 

membrane. 
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CHAPTER III 
 

KNOCKDOWN OF FLOTILLIN-2 INHIBITS LUNG SURFACTANT SECRETION 
BY ALVEOLAR TYPE II CELLS 

 
 
 

3.1 Abstract 
 
 Lung surfactant secretion involves the fusion of lamellar bodies with the plasma 

membrane. Membrane rafts enriched with SNARE proteins are crucial for this process. 

We investigated the role of flotillins, membrane raft proteins, in this process by 

decreasing the expression of flotillin-1 and -2 by RNA interference. The reduction of 

flotillin-2 inhibited lung surfactant secretion, but it did not disrupt membrane rafts or the 

association of SNAREs with the rafts nor did it alter the cellular cholesterol level. We 

conclude that flotillin-2 is required for surfactant secretion but not via the association of 

SNAREs with the rafts or cholesterol homeostasis. 

 

Keywords: flotillin-2; lung surfactant; alveolar type II cells; lung; membrane fusion; 
exocytosis  
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3.2 Introduction 

 Lung surfactant is stored in lamellar bodies and exocytosed following fusion of 

the lamellar bodies with the plasma membrane of alveolar type 2 (type II) cells [1]. 

However, the secretion of surfactant is a much slower process when compared to 

neurotransmitter release, indicating that additional control mechanisms are needed for 

surfactant secretion. A number of proteins have been shown to be involved in surfactant 

secretion including SNAREs, NSF, α-SNAP and annexin A2 [2-5]. In addition, SNAP-

23, syntaxin-2 and VAMP-2 are enriched in type II cell membrane rafts. Cholesterol 

depletion has been shown to drastically reduce membrane fusion and surfactant secretion 

[6], indicating a role for membrane rafts in surfactant secretion. 

 Flotillins (or reggies) are evolutionarily conserved and ubiquitously expressed 

proteins in bacteria, yeast and eukaryotes. There are two isoforms, flotillin -1 (or reggie-

2) and flotillin-2 (or reggie-1). They are expressed in many cell types including type II 

cells [6]. Flotillins associate with membrane rafts owing to multiple palmitoylation at 

Cys-34 in the case of flotillin-1 and additional myristoylation at Gly-2 in the case of 

flotillin-2. Flotillin-1, but not flotillin-2, is also located in the nuclei of PC-3 cells, a 

human prostate cancer cell line [7]. The distribution of these proteins indicates that 

flotillin-1 and flotillin-2 may differ in their cellular functions. 

 Several functions of flotillins have been reported including interaction with actin, 

kinases and the cytoskeleton; formation of filopodia; insulin signaling; axonal 

regeneration and cell-cell contacts and membrane trafficking [8-10]. Overexpression of 

flotillins results in defects in the imaginal discs in the eyes and wings of Drosophila [11]. 

Other evidence shows that flotillin overexpression leads to the emergence of filopodia in 
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various epithelial cell lines [12]. Flotillins are highly expressed during certain stages of 

zebrafish embryonic development, and knockdown of flotillins by morpholino antisense 

oligonucleotides has been shown to cause brain defects in zebrafish embryos [11-13].  

 The evidence for a role of flotillins in exocytosis is lacking except for a recent 

study which indicates the participation of flotillin-1 in mast cell exocytosis [14]. In this 

study, we investigated the functional role of flotillins in relation to surfactant secretion in 

type II cells. 
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3.3 Materials and Methods 

3.3.1 Construction of adenoviral vectors: 

 The mouse U6 promoter was PCR-amplified with Pfu DNA polymerase from 

pSilencer 1.0 vector with upstream primer 1 (5’-

CACCGCGGATCGATCCGACGCCGCCATCTCTA-3’) and downstream primer 2 (5’-

GCTTCGAAGAATTCCCGGGTCTCTCAAACAAGGCTTTTCTCCAA-3’). Five 

restriction sites (Eco31I, SmaI, EcoRI, BstBI and BglII) were introduced at the 3-end of 

the mU6 promoter. After the double digestion with SacII and BglII restriction enzymes, 

the mU6 promoter was inserted into the pENTR/CMV-EGFP vector (Invitrogen, 

Carlsbad, CA) through corresponding sites as described earlier [15]. Later, the 

pENTR/mU6-CMV-EGFP vector was linearized with Bsa1 and BstBI restriction 

enzymes to facilitate directional cloning of the annealed shRNAs oligonucleotides with 

5`-TTTG and 5’-GC overhangs. We designed three siRNA sequences targeted to 

different regions of each gene using Web-based SiRNA Design Software 

(http://i.cs.hku.hk/~sirna/software/sirna.php). These siRNAs include 118-137, 522-540 

and 584-603 of flotillin-1 mRNA which were designated as F-1 shRNA (A), (B) and (C), 

respectively. Similarly, shRNAs, 53-73, 602-620 and 1163-1182 of flotillin-2 mRNA 

were named F-2 shRNA (A), (B) and (C), respectively. The annealed oligonucleotides 

with 5`-TTTG and 5’-GC overhangs were composed of a sense strand containing 19-21 

nucleotides, followed by a short spacer (5'-TTCAAGAGA-3'), an antisense strand and 

five thymidines. All the shRNA inserts subcloned into the pENTR/mU6-CMV-EGFP 

vector were verified by DNA sequencing. The shRNA and EGFP expression cassette in 

the pENTR vector were then switched into the adenoviral vector, pAd/PL-DEST, through 
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the Gateway technique, exactly as described by the vendor. The resulting adenoviral 

plasmids were linearized by PacI, purified by Phenol-chloroform, and then transfected 

into 293A cells with Lipofectamine 2000 for adenovirus generation. Later the viruses 

were further amplified in 293A cells. The titers of adenovirus were determined through 

the EGFP signal in 293A cells after one day post-infection with serial dilutions of the 

virus. 

3.3.2 Knockdown of flotillins in L2 cells 

 L2 cells, derived from rat lung epithelial cells, were used at 18-25 passages. The 

cells (1×105) were subcultured in 0.5 ml of F12K (Ham’s modification) supplemented 

with 10% FBS, non-essential amino acids and penicillin and streptomycin in 12-well cell 

culture plates. The cells were infected with various doses of adenoviruses with 

multiplicity of infection (MOI) units from 0-150 on the day of subculture. The media was 

changed after day 1 and day 3 of culture. At day 5, the cells were washed with ice-cold 

50 mM phosphate buffered saline (PBS) and lysed with lysis buffer [50 mM Tris (pH 

7.4); 150 mM NaCl; 1% (v/v) Triton X-100 and protease inhibitor cocktail]. Protein 

concentrations were determined using the Dc method (BioRad, Hercules, CA). The 

lysates were used for immunoblotting. 

3.3.3 Surfactant secretion 

 Type II cells were isolated as previously described [6]. The purity and viability of 

the cells were greater than 90% and 95%, respectively. Type II cells were cultured on 

collagen-matrigel matrix with air-liquid interface as reported earlier [16]. Surfactant 

secretion was assayed as previously described [4]. 
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3.3.4 Knockdown of flotillins in type II cells: 

 The cells were cultured and infected (100 MOI) as described earlier [17]. 

Following infection on day 2, the cells were further cultured for 5 more days on an air-

liquid interface. Cells were lysed at the end of 5 days of culture. Cell lysates were later 

probed for flotillin-1 and -2 to assess the level of knockdown. The blots were re-probed 

with anti-β-actin as a loading control. 

3.3.4 Isolation of membrane rafts 

 The protocol for isolation of L2 cell membrane rafts was similar to that from type 

II cells as previously described [6]. Adenovirus (100 MOI) was added at the day of 

subculture, and culture continued for 5 days. Later the cells were solubilized in ice-cold 

lysis buffer (MBS with 1% Triton X-100 and protease inhibitor cocktail) for 45 min. 

Equal amounts of total protein from control and siRNA-treated cells were then subjected 

to raft isolation using a discontinuous sucrose gradient centrifugation.  Fractions 1, 2, 3 

and 4 were collected from top to bottom of the gradients. The membrane pellet (fraction 

5) was re-suspended in lysis buffer. Membrane rafts (fraction 2) were enriched at the 

interface between the 5% and 30 % sucrose gradients.  Equal volumes of fractions were 

used for detecting flotillin-1, -2 and SNAREs by Western blot. 

3.3.5 Cholesterol content 

 Cholesterol content was determined using the Amplex Red Cholesterol assay kit 

(Invitrogen, Carlsbad, CA) according to the instructions of the manufacturer. 

2.3.6 Immunoblotting 

 Immunoblotting was done exactly as described earlier [6]. Proteins were 

separated on 10% SDS-PAGE and transferred onto nitrocellulose membranes. The 
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membranes were blocked with 5% non-fat skim milk and then incubated overnight with 

either anti-flotillin-1, anti-syntaxin-2, anti-SNAP-23 or anti-β-actin at a 1:1000 dilution 

or with anti-flotillin-2 or anti-GAPDH at a 1:5000 dilution. After washing, the 

membranes were incubated with HRP-conjugated goat anti-rabbit or goat anti-mouse 

antibodies at a 1:2500 dilution. Later, the proteins were visualized using ECL reagents 

and X-film. 

3.3.7 Cell Viability  

 Cell viability following adenovirus infection was ascertained by the MTT assay as 

described previously [6]. 

3.3.8 Statistical analysis  

 All the experiments were repeated atleast with 3 independent biological samples. 

Statistical significance was considered only when the p ≤ 0.05.  Student t test was used to 

compare the significant differences between the the control and treatment groups.  
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3.4 Results 

3.4.1 Knockdown of flotillins in L2 cells 
 
 Adenoviral vectors containing shRNA sequences are being extensively used for 

knockdown of protein owing to their high infection efficiency in cells, particularly 

primary cells. The adenoviral vectors used in the present study contained shRNA 

sequences under the control of the mouse U6 promoter and EGFP expression under the 

control of the CMV promoter. The siRNA sequences were targeted to different regions of 

flotillin-1 and -2. The construct with irrelevant sequences served as a virus control (VC). 

The cells which were not infected with any virus were used as blank controls (BC). The 

use of VC and BC enabled us to monitor any virus effects. 

L2 cells were used for screening the effective constructs. Our earlier studies have 

demonstrated the expression of flotillin-1 and -2 in L2 cells [6]. Our preliminary studies 

indicated that shRNA sequences targeted to flotillin-1 nucleotides 118-137 [F-1 shRNA 

(A)], but not to nucleotides 522-540 [F-1 shRNA (B)] or 584-603 [F-1 shRNA (C)] was 

effective in silencing the expression of flotillin-1 (data not shown). Therefore, this 

sequence was used for subsequent experiments. Infection efficiency was increased as the 

MOI of the virus increased as observed by the EGFP florescence (Fig. III. 1A). When the 

cells were infected with F-1 shRNA (A), a significant decrease in protein expression of 

flotillin-1 was observed. This effect was virus-dose dependent. A maximal depression of 

flotillin expression was seen at MOI ≥ 70 (Fig. III. 1B). The control virus had no effects 

on flotillin-1 expression. There was no statistically significant difference in cell viability 

in all the treatments (data not shown). 
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 Similar analysis was performed for the flotillin-2 knockdown. Preliminary results 

indicated that the siRNA sequences targeted to 1163-1182 [F-2 shRNA (C)] of flotillin-2 

were the most effective in silencing the flotillin-2 protein expression in comparison with 

53-73 [F-2 shRNA (A)] and 602-620 [F-2 shRNA (B)] (data not shown). Once again, 

virus dose-dependent infection efficiency was observed (Fig. III. 1D). The F-2 shRNA 

(C) decreased flotillin-2 protein expression and the control virus had no effects (Fig. III. 

1D). The F-2 shRNA (C) did not affect the cell viability (data not shown). 
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Figure III. 1. Knockdown of flotillin-1 and flotillin-2. L2 cells were infected with 

different doses (MOIs) of F-1 shRNA (A) adenovirus and cultured for 5 days. A) 

Infection efficiency. Shown are the representative EGFP fluorescence images, indicating 

the infection efficiency. B) Dose-dependent knockdown of flotillin-1. The flotillin-1 

protein level was determined by Western blot. Equal loading was confirmed by re-
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probing the membranes with anti-GAPDH antibodies. L2 cells were also infected with 

various doses MOIs of F-2 shRNA (C) adenovirus and cultured for 5 days. C) Infection 

efficiency. Shown are the representative EGFP florescence images. B) Dose-dependent 

knockdown of flotillin-2. The flotillin-2 protein level was determined by Western blot. 

BC: blank control, VC: virus control (MOI= 140).  
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3.4.2 Effect of flotillin silencing on surfactant secretion 

 The role of flotillins in surfactant secretion by type II cells was subsequently 

studied. To this end, type II cells were cultured on an air-liquid model and infected with 

adenovirus containing F-1 shRNAs and F-2 shRNAs. F-1 shRNA (A) almost completely 

silenced flotillin-1 expression (Fig. III. 2A). However, F-1 shRNA (A) also decreased 

flotillin-2 expression although a significant amount of flotillin-2 remained in the F-1 

shRNA (A)-treated type II cells (Fig. III. 2B). Among F-2 shRNAs, F-2 shRNA (C) was 

the most effective in silencing flotillin-2 expression. This shRNA also reduced flotillin-1 

expression (Fig. III. 2A and B), probably because the stability of flotillin-1 is dependent 

on flotillin-1 [11, 18]. Using F-1 shRNA (A) and F-2 shRNA (C), we determined the 

effect of flotillin-1 and -2 silencing on surfactant secretion. There were no statistically 

significant differences in the basal and stimulated secretions between control and F-1 

shRNA (A) - treated cells (Fig. III. 2C). However, F-2 shRNA (C) reduced stimulated 

surfactant secretion. The basal secretion appears to be decreased in the F-2 shRNA (C)-

treated cells but did not reach a significant level. The control virus had no effect on 

surfactant secretion. 
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Figure III. 2. Effect of flotillin silencing on surfactant secretion. Type II cells were 

infected with different shRNA adenovirus at an equal dose of 100 MOI and cultured for 5 

days. Equal amounts of proteins were immunoblotted for A) flotillin-1 and B) flotillin-2. 

The same membranes were re-probed for β-actin to confirm equal loading. C) Surfactant 

secretion. The control and flotillin knockdown cells were washed and equilibrated 30 min 

in serum-free medium (0-time). The cells were incubated 2.5 h in the absence (control) or 

presence of 100 μM ATP, 0.1 μM PMA and 10 μM terbutaline (stimulated). The results 

were expressed as means ± S.E. *P < 0.05 versus VC (Student t test n ≥ 3). BC: blank 

control, VC: virus control (MOI= 140). 
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3.4.3 Effect of flotillin silencing on raft formation 

 Earlier studies speculated a role of flotillins in the formation of membrane rafts 

[19]. We examined whether the loss of flotillin affects raft formation in lung cells. 

Because large amounts of cells were needed for this experiment, we used L2 cells rather 

than type II cells for this experiment. The control and flotillin knockdown L2 cells were 

subjected to raft isolation. Following raft isolation, various fractions were collected.  

Fraction 2 represents the raft fraction (the interface between 5% and 30% sucrose). Each 

fraction was analyzed for protein and cholesterol content. When compared with blank 

and virus controls, there were no obvious differences in the amounts of protein and 

cholesterol of the raft fractions between control and flotillin-1 or -2 knockdown cells 

(Fig. III. 3A and B). When cholesterol concentration was expressed as μg per μg protein, 

cholesterol content in the raft fraction (fraction 2) was enriched 3-, 10-, and 20- fold in 

comparison with fractions 3, 4, and 5 (data not shown).   

3.3.4 Effect of flotillin silencing on SNARE protein association with membrane rafts 

Membrane rafts have been implicated in exocytotic processes. SNARE proteins 

were differentially enriched in rafts in a number of cell types including type II cells [6, 

20]. We therefore examined whether knockdown of flotillin leads to dissociation of 

SNAREs with membrane rafts. Following silencing, little flotillin-1 and -2 proteins were 

detected in any of the fractions, indicating an effective silencing. When raft fractions 

(fraction 2) were probed for SNARE proteins following silencing, there was no change in 

the association of these proteins with membrane rafts (Fig. III. 3C and D). The results 

indicate that flotillin-1 and -2 were not involved in the association of syntaxin-2 and 

SNAP-23 in L2 cells. 



 82

 

 

Figure III. 3. Effect of flotillin silencing on membrane raft formation. A and B) Total 

protein content and total cholesterol content. Following flotillin-1 and -2 knock down 

with F-1shRNA (A) or F-2 shRNA (C) adenovirus (100 MOI), L2 cell lysates were 

subjected to raft isolation. Total protein A) and cholesterol content B) in each fraction 

were measured and expressed as a percentage of total protein or cholesterol in all 

fractions.  Following knockdown of flotillin-1 C) or -2 D) with F-1shRNA (A) or F-2 

shRNA (C) adenovirus (100 MOI), membrane rafts were isolated. Equal volumes of 

various fractions were probed for flotillin-1 or flotillin-2, SNAP-23 and syntaxin 2. BC: 

blank control, VC: virus control (MOI= 140).  Lanes 1-5 represent the respective 

fractions.     
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3.4.5 Effect of flotillin silencing on cholesterol content 

Membrane rafts are also reported to be involved in cholesterol homeostasis. We 

further investigated the effects of flotillin-1 and -2 silencing on cholesterol levels in L2 

cells. Following silencing of flotillin-1 and -2, cell lysates were analyzed for total 

cholesterol levels. Our results indicated that there were no statistical significant 

differences in cholesterol levels under silencing conditions when compared with controls 

(Fig. III. 4). 

 

 

 

Figure 4: Effect of flotillin silencing on cholesterol content. L2 cells were infected 

with F-1shRNA (A) or F-2 shRNA (C) adenovirus (100 MOI). Cholesterol levels were 

assayed and expressed as a percentage of BC. Blue bars, F-1 shRNA (A); Purple bars, F-

2 shRNA (C). Shown are means ± S.E. (n ≥ 3). BC: blank control. VC: virus control 

(MOI= 140). 

 

MOI
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3.5 Discussion 

 Flotillins are membrane-bound raft marker proteins involved in a number of 

functions including membrane trafficking. The present study investigated the role of 

these proteins in surfactant secretion. Our results indicated that silencing of one of the 

isoforms, flotillin-2, decreased surfactant secretion. 

Our results indicated that the flotillin-2 knockdown led to reduced expression of 

flotillin-1. Previous studies have demonstrated that the stability of flotillin-1 protein 

depends on the presence of flotillin-2 as the former undergoes proteosomal degradation in 

the absence of the latter [11, 18]. Similar results have been reported for other SPFH 

family proteins such as prohibitins, HflK and HflC [21, 22]. In the caveolin-1 knockout 

mice, the caveolin-2 level is decreased [23]. 

Flotillin-2, but not flotillin-1 knockdown, resulted in a reduced surfactant 

secretion. Similar to our results, flotillin-1 knockdown did not affect the mast cell 

degranulation following simulation with phorbol esters or the calcium ionophore, 

A23187. However, a reduction of flotillin-1 level decreased degranulation induced by 

FcεR cross-linking, indicating its role in IgE-mediated signaling [14]. 

Surfactant secretion by type II cells is a SNARE protein-dependent process and 

SNAREs are associated with membrane rafts [2, 3, 5, 6]. We hypothesized that flotillins 

may play a role in the SNARE association with membrane rafts. However, our results 

indicated that there were no changes in the pattern of SNARE association with membrane 

rafts in the absence of flotillin-1 or -2. Thus, SNARE protein association with rafts 

appears to be independent of flotillins. Previous studies reported that flotillin-2 did not 
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interfere with the targeting of Gαq, Cbp and Lyn kinase proteins to the membrane rafts, 

but regulated their activities [14, 24]. 

In the present study, we found that the formation of membrane rafts was not 

altered by the knockdown of flotillins as indicated by total cholesterol content and the 

amount of total protein in the raft fractions. This is consistent with the finding in RBL-

2H3 cells [14]. The loss of caveolin-1 disrupts the distinct plasma membrane 

invaginations, but does not affect the raft formation [23]. The detergent-resistant 

membrane rafts isolated by sucrose gradient centrifugation are extremely diverse and 

heterogeneous and are composed of several rafts with distinct raft markers [25, 26]. It is 

possible that the changes in a particular type of raft on lamellar bodies or plasma 

membrane due to the loss of flotillins can not be detected by the chosen biochemical 

analyses. 

In 3T3-L1 cells, flotillin-1 co-localized with LAMP-1 positive vesicles and in 

macrophages, thus implicating the protein in phagosome maturation [27-29]. Moreover, 

flotillin-1 was shown to interact with ABCA1, the main protein involved in cholesterol 

transport in human macrophages [30]. ABCA1 deficiency in mice resulted in altered 

surfactant metabolism [31]. Our previous study indicated an abundance of flotillins on 

lamellar bodies [6]. These findings prompted us to investigate cholesterol homeostasis 

following flotillin-1 and -2 knock down. However, we did not find any changes in total 

cellular cholesterol after flotillin-1 or -2 silencing. 

 In summary, flotillin-2 is required for surfactant secretion independent of 

SNARE association of membrane rafts. The mechanisms for flotillin-2-mediated 

surfactant secretion require further investigation. 
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CHAPTER IV 

VACUOLAR ATPases: POTENTIAL ROLES IN LUNG SURFACTANT SECRETION 
BY ALVEOLAR TYPE II CELLS 

 
4. 1 Abstract 

 
Lipid rafts organize protein and lipid machinery involved in many biological 

functions. The proteomic profile of alveolar type II cell lipid rafts revealed a small,  but 

diverse group of proteins involved in the regulation of pH, cell cycle and proliferation, 

metabolism, oxygen transport, and exocytosis. Vacuolar ATPases (V-ATPase) dominated 

lipid raft proteome and was examined for its role in surfactant secretion. The a1 and B 

subunits were enriched in lipid rafts and lamellar bodies. Bafilomycin A1 (Baf A1), an 

inhibitor of V-ATPase dissipated the lamellar body pH gradient as indicated by the loss 

of quinacrine accumulation. V-ATPase inhibition increased surfactant secretion. Baf A1-

stimulated secretion was effectively blocked by intracellular Ca2+-chelator, BAPTA-AM. 

This increase in secretion was inhibited by staurosporine and KN-62, the inhibitors of 

protein kinase C and calcium/calmodulin-dependent kinase II, respectively. Moreover, 

thapsigargin reduced the Baf A1-induced surfactant secretion, indicating the role of 

endoplasmic reticulum Ca2+ pool in Baf A1-mediated secretion. Further, the stimulation 

of alveolar type II cells with lung surfactant secretagogues increased pH in lamellar 

bodies. In summary, we conclude that V-ATPase regulates surfactant secretion via an 

increased Ca2+ mobilization and the activation of protein kinase C and Ca2+/calmodulin-

dependent kinase II. 
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 92

4. 2 Introduction 
 

 Lipid rafts are specialized microdomains on the plasma membrane or subcellular 

membranes. Lipid rafts are enriched in saturated lipids including sphingolipids and 

cholesterol and specialized groups of proteins such as those which are acylated (Src 

kinases), post-translationally modified (flotillins) and cholesterol bound (caveolins).  

Lipid rafts can be isolated based on their Triton X-100 insolubility at 4oC. Cholesterol 

depletion resulted in decreased association of raft proteins and ultimately their associated 

functions.  

 Lipid rafts are implicated in exocytosis (1-7), endocytosis (8), signal transduction 

(9), membrane trafficking (10), bacterial entry (11) and virus budding (12). They are 

associated with a number of metabolic diseases including Alzheimer’s (13). 

The cuboidal alveolar type II cells synthesize, store and secrete lung surfactant, a 

lipid-rich surface active substance. The lung surfactant lowers the surface tension 

preventing the collapse of lungs. The secretion of surfactant is a relatively slow process 

when compared neurotransmitter release. Lung surfactant secretion is a highly regulated 

process. Our laboratory had earlier reported that SNAP-23 and syntaxin 2 were critical 

for lung surfactant secretion. Additionally, NSF and α-SNAP were implicated in 

surfactant secretion (14, 15). Our recent study indicated lipid rafts existed both on the 

lamellar body and plasma membranes. SNAP-23 associated with lipid rafts to a greater 

extent when compared syntaxin 2 and VAMP-2. Cholesterol depletion not only 

drastically reduced surfactant secretion but also fusion of lamellar bodies with plasma 

membrane.  Syntaxin 2 and SNAP-23 co-localised with CD44 clusters.    
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Lipid rafts contain only distinct proteins. The lipid raft proteomic profile would 

help to uncover the protein machinery contained in them and enable to further study these 

proteins in different functions. Lipid rafts proteomic studies have been undertaken in T-

cells (16, 17), human endothelial cells (18), mouse sperms (19), human smooth muscle 

cells (20) rat inestitinal mucosal cells (21), exocrine pancreatic cells (22) and HL-60 cells 

(23). These studies indicated that lipid rafts contained proteins involved in 

phosphorylation, cytoskeletal rearrangements, exocytosis, cell cycle and signal 

transduction (24).  

Vacuolar ATPases are multi-subunit enzymes that drive the movement of protons 

using the energy of the ATP hydrolysis. They are present on intracellular organelles 

including endosomes, lysosomes, secretory granules and synaptic vesicles and mediate 

the acification of these organelles. V-ATPases also exist on plasma membranes in some 

types of cells such as macrophages, neutrophils, kidney intercalated cells and osteoclasts. 

Organellar acidification is crucial for the dissociation of ligand-receptor complexes, 

processing of secretory proteins and accumulation of neurotransmitters. Extracellular 

acidification is crucial for bone resorption, urinary acidification or alkalinization and 

maintenance of intracellular pH. The mutations in genes coding for V-ATPase subunits 

contribute to a number of diseases (24-27). 

V-ATPases has been implicated in exocytosis.  The secretion of insulin in a3-

subunit knock-out mice was reduced. Several subunits interact with SNARE proteins in a 

number of cells systems (29-31). In yeast, integral membrane VO subunits a form a 

fusion pore during membrane fusion. (32, 33).  
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Lung lamellar bodies have lysosomal properties.  They maintain an internal acidic 

milieu owing to the presence of V-ATPases (34). The acidic lamellar body pH is crucial 

for surfactant protein B and C processing (35). NH4Cl or methylamine increased 

surfactant secretion. However, it should be noted that these agents not only increase 

lamellar body pH but also cytosolic pH (42).  

 In this study, we attempted to identify new components in type II cell lipid rafts 

using mass spectrometry. Our results revealed a number of novel proteins involved in 

energy metabolism, cytoskeletal re-arrangement, cell proliferation and pH regulation. We 

further studied the role of one of the identified proteins, V-ATPases in lung surfactant 

secretion and underlying mechanisms. 
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4.3 Materials and methods 

4.3.1 Reagents 

 Horseradish peroxidase (HRP)-conjugated goat anti-rabbit antibody, and protein 

molecular mass markers were from Bio-Rad (Hercules, CA). HRP-conjugated goat anti-

mouse antibody was from Jackson Immunologicals (West Grove, PA).  Porcine 

pancreatic elastase was obtained from Worthington (Lakewood, NJ), mouse anti-flotillin-

1 was from BD Biosciences (San Jose, CA), rabbit anti-v-ATPase a1 (H-140) and mouse 

monoclonal B1/2 were from Santa Cruz Biotechnology (Santa Cruz, CA). Monoclonal 

mouse anti-Na+-K+ATPase α1-subunit antibodies were from Upstate Biotechnology 

(Lake Placid, NY). Bafilomycin A1 was from LC Laboratories (Woburn, MA). Enhanced 

Chemiluminiscence detection system was from GE Health Care (Piscataway, NJ). 

Methyl-3H-Choline chloride was from PerkinElmer (Waltham, MA). All the reagents and 

chemicals used for 2-D gel electrophoresis were from Bio-Rad.  

4.3.2 Alveolar type II cell Isolation 

 Type II cells were isolated from Sprague-Dawley male rat lungs as described 

earlier (7). Purity and viability of the cells were greater than 90 and 95%, respectively.  

4.3.3 Isolation of lipid rafts 

Following isolation, the type II cells were washed once with MEM and then with 

MBS (25 mM MES and 150 mM NaCl, pH 6.5) buffer twice. Lipid rafts were isolated 

exactly as described earlier (7). In brief, the cell were lysed in ice-cold 1% Triton X-100 

and incubated on ice for 45 min. For cholesterol depletion, type II cells were lysed with 

0.5% Triton X-100 and 0.5% (w/v) saponin. Equal amounts of proteins in 600 μl were 

used for isolation of lipid rafts. Ther lysates (in 600 μl) were mixed with equal volume of 
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80% sucrose and laid at bottom of the ultracentrifuge tube.  Similarly, 1200 μl of 30% 

and 5% sucrose were laid on top of 40% sucrose. The gradients were then subjected for 

raft isolation. Following rafts isolation, different fractions were collected from top to 

bottom of the gradients. First two fractions (1 and 2) of 600 μl each were drawn from top 

of the gradients. Three fractions (3, 4, and 5) of 400 μl each were collected.  

Subsequently, two fractions (6 and 7) of 600 μl were drawn. The pellet was dissolved in 

600 μl of lysis buffer. The fractions were probed for the raft marker protein, flotillin-1. 

Lipid rafts were consistently isolated from the interface between 5 and 30% sucrose 

gradients i.e., fraction 3. The raft fractions were diluted four times with MBS buffer, 

followed by centrifugation at 25,000 rpm. The pellet was resuspended in MBS buffer and 

stored at -800C until used. We consistently obtained ~125 µg of raft protein from 25 

million type II cells.  

4.3.4 2-dimensional (2-D) Gel Electrophoresis 

Lipid rafts fractions were first cleaned up using the ReadyPrep 2-D cleanup kit 

and the resuspended in 2-D rehydration/sample buffer (8 M Urea, 2% CHAPS, 50 mM 

DTT, 0.2% Bio-Lyte 3/10 ampolyte, 0.002% bromophenol blue). Precast immobilized 

pH gradient (IPG) strips (pH 3-10) were rehydrated and loaded with the protein samples 

for overnight at room temperature. The proteins were separated on the first dimension by 

isoelectric focusing (IEF) at room temperature until 40-60,000 Vhrs were reached. It took 

12-16 hours for IEF.  Following IEF, the IPG strips were equilibrated in SDS-PAGE 

equilibration buffer I [6 M Urea, 0.375 M Tris-HCl, pH 8.8, 2% SDS, 20% glycerol, 2% 

(w/v) DTT] for 10 min and then with buffer II (equilibration buffer I plus 2.5% (w/v) 

iodoacetamide] for additional 10 min.  The proteins were further separated on precast 8-
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16% polyacrylamide gels based on their molecular masses. The gels fixed with 40% (v/v) 

methanol and 10% (v/v) acetic acid for 1 hour, washed with sterile water for two times 

(10 min each) and stained for overnight in staining buffer [0.08% (w/v) coomassie 

brilliant blue G250; 1.6% (w/v) ortho-phosphoric acid; 8% (w/v) ammonium sulphate; 

20% (v/v) methanol]. The gels were then destained with 1% acetic acid several times 

until coomassie particles were removed. The gel was later scanned and proteins spots 

excised for trypsinolysis and mass spectrometry. 

4.3.5 Matrix-Assisted Laser Desorption/Ionisation-Time Of Flight (MALDI-TOF) 

mass spectrometry 

 The gel spots were first destained with 50% acetonitrile and then with 100% 

acetonitrile and 100 mM ammonium bicarbonate (ABC). The gels were subsequently 

rehydrated with freshly made reducing buffer (10 mM DTT, 25 mM ABC) for 1 hour at 

560C.  The proteins were subjected for alkylation for 1 hour (55 mM iodoacetamide in 25 

mM ABC) and then to dehydration and rehydration with 100% and 50% acetonitrile for 

additional 1.5 hours. Subsequently the proteins were subjected to trypsin digestion (8.3 

µg/ml in 25 mM ABC) for 4 hours at 370C. The proteins were then precipitated with 

0.1% trifluoroacetic acid. The trypsinized proteins were spotted onto MALDI plates and 

overlaid with freshly made matrix (5 mg/ml of alpha-cyano-4-hydroxycinnamic acid). 

For better mass accuracy, the calibration standards were spotted in neighboring wells of 

the plate. Peptide mass fingerprints were obtained on a mass spectrometer based on 

MALDI-TOF data (Voyager DE-PRO, Applied Biosystems) in the reflector mode. The 

post-acquisition processing was done using the Explorer software.  The spectra were 

smoothed by Gaussian method.   
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4.3.6 Database searching 

  The peptide mass spectra generated following mass spectrometry was searched 

against mass spectrometry protein sequence database using MASCOT software (Matrix 

Science Ltd., London). Peptide masses were searched against both mammalian and 

rodent databases. Peaks obtained due to keratin contamination were excluded from 

database searching. The proteins were identified according to their probability based 

MOlecular WEight SEarch (MOWSE) score. Only those proteins with high scores are 

included. The higher the score, the more likely is the confidence in the identification 

(p<0.05). The following parameters were set in the search process: only monoisotopic 

masses were included in the search, only one missed cleavage per peptide, variable 

modifications such as carbamidomethyl and propionamide of cysteines, oxidation of 

methionines, peptide mass tolerance ± 100 ppm, peptide charge state of 1+. All matching 

spectra were manually reviewed.  

4.3.7 Phosphatidylcholine (PC) secretion Assay 

 Overnight cultured cells were assayed for PC secretion exactly as described 

earlier (7). In brief, overnight cultured were washed to remove unattached cells. The cells 

were treated with Baf A1 for 1 hour.  A set of dishes were taken out for estimation of 

lipid secreted during this time (zero time). The cells were stimulated with a combination 

of secretagogues (100 µM ATP, 0.1 µM PMA and 10 µM terbutaline) for additional 2 

hours in the presence of inhibitor. Media and cell were collected and lipid extraction was 

exactly as described before (7). The amounts of lipids secreted were expressed as a 

percent of total lipids. The zero time secretion values were subtracted from control and 

stimulated values to arrive at a net basal and stimulated secretion.   
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 To study the role of thapsigargin on the Baf A1-induced PC secretion, the cells 

were pre-treated with 100 µM thapsigargin for 15 min and then with Baf A1. 

 To determine the activation of protein kinase C (PKC) and Ca2+/Calmodulin-

dependent Kinase II (CaMKII) following V-ATPase inhibition, overnight cultured type II 

cells were treated with 100 nM of staurosporine and 10 µM KN-62 to inhibit PKC and 

CaMKII, respectively in the presence of 20 nM Baf A1. The cells were then assayed for 

their secretory capabilities as described above. 

4.3.8 Quinacrine staining 

 Type II cells were plated at a density of 0.5-1x106 cells in 35 mm2 dishes. 

Following overnight culture in DMEM (supplemented with 10% FBS, non-essential 

amino acids, penicillin and streptomycin), the cells were washed to remove unattached 

cells.  Freshly made quinacrine was added to media at a final concentration of 10 µM. 

Lamellar body staining was examined  within 1-2 minutes upon addition of the dye using 

florescence microscope.  

For detecting the changes in lamellar body, overnight cultured type II cells were 

stimulated with lung surfactant secretagogues (200 µM ATP, 0.1 µM PMA and 10 µM 

terbutaline) for various times. At the end of incubation, the cells were loaded with 10 µM 

quinacrine for about one minute. The media was immediately decanted and the cells fixed 

with 4% paraformaldehyde.  Fluorescence was monitored by florescence microscopy 

(Nikon). We included unstimulated control cells for each of the time points to prevent 

bias with respect to loading and quenching of the dyes. The microscopic fields were 

chosen at random and at least 2-3 fields with about 8-10 cells in each field were selected 

for further analysis. The time lapse between capturing the images under both the 
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conditions (stimulated and unstimulated) for that time point was ≤ 5 min. During this 

time, we did not observe any quenching of the dye. Identical exposure settings were used 

for capturing images for each time-point. The images were captured with a 40X objective 

lens. Sometimes the order of capturing images between control and treated was reversed 

to check if there were any differences due to the time of capturing images.  In our hands, 

the order of capturing images did not reveal any differences when captured within this 

time. 

For quantitation, the intensity of quinacrine was studied using the Metavue 

software. In brief, the stained regions (in this case lamellar bodies) were carefully 

selected and integrated intensity of the quinacrine stained regions was measured and 

expressed as arbitrary units per cell. The intensity of all the cells was thus measured and 

the average intensity was calculated. Later, the intensity was expressed as per cent of 

control.   

4.3.9 MTT assay 

 The viability of the cells following V-ATPase inhibition was monitored using 

MTT assay exactly as described earlier (7).  

4.3.10 Statistical analysis  

 All the experiments were repeated atleast with 3 independent biological samples. 

Statistical significance was considered only when the p ≤ 0.05.  Student t test was used to 

compare the significant differences between the the control and treatment groups.  
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4.4 Results 

4.4.1 2-D gel electrphoresis 

 We isolated lipid rafts from alveolar type II cells and performed proteomic 

analysis to identify proteins present in lipid rafts. Alveolar type II cells were solubilized 

with 1% Triton X-100 and subjected to a sucrose gradient centrifugation as previously 

described (7). The isolated rafts were enriched in flotillin-1, a lipid raft marker but 

excluded Na+-K+-ATPase, a non-raft marker protein. (Fig. IV. 1A, fraction 3). 

Additionally, the association of flotillin-1 was cholesterol dependent which indicated the 

standardized isolation protocol (7). Raft proteins (500-600 µg) were separated on first 

dimension by IEF using a IPG strip (pH 3-10) and then by SDS-PAGE using a 8-16% 

gradient gel.  The gels were stained with colloidal coomassie blue (Fig. IV. 1B).  In 

addition to rodent database, which is a relatively small, we also searched human and 

mouse databases for the identification of proteins. Some of the identified proteins are 

shown in 2-D gel (Fig. IV. 1B).  The proteins were identified using probability based 

MOWSE scores. The results of the peptide mass fingerprinting are summarized in Table 

1. The list included cytoskeletal proteins, V-ATPases, phospholipid binding proteins and 

some mitochondrial enzymes. Because of their importance in lamellar body acidification, 

we chose V-ATPase for further studies. 
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B 

 

           

Fig. IV. 1. 2-D gel electrophoresis of type II cell  lipid rafts: A) Confirmation of lipid 

rafts isolated from type II cells: Freshly isolated type II cells were lysed in the presence 

of 1% Triton X-100 (control) or 0.5% Triton X-100 and 0.5% (w/v) saponin (cholesterol 

depleted) at 40C for 45 minutes. Later, the lysate was subjected for sucrose gradient 

centrifugation. Seven Fractions were collected from the top. The pellet was dissolved in 

lysis buffer (fraction P).  The fractions were immunoblotted for flotillin-1, a raft marker 

protein and Na+-K+ ATPase, a non-raft marker protein. Shown are the representative 

pI 4.0 pI 10.0 
Mr 
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immunoblots. B) 2-D gel electrophoresis: Lipid rafts proteins were subjected 2-D gel 

electrophoresis. Later, the gels were stained with coomassie blue stain. Shown is a 

representative of 3 runs.  
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Table. IV. 1: Proteomic profile of lipid rafts isolated from alveolar type II cells 

Protein NCBI 
Accesion # 

Mr 

 (kDa) 
pI Peptides 

matched 
      / 
Searched

Sequence 
covered 

Mascot score 
       / 
Mascot 
threshold 

Vacuolar Acidification 
V-ATPase, V1  subunit A  AAC52410 68 5.46 23/103 36 97/67 
V-ATPase, V1 subunit B AAC52411 57 5.57 14/79 27 155/55 
V-ATPase,  VO subunit D1 Q5M7T6 40 4.89 8/23 26 79/55 
V-ATPase, V1 subunit E1 Q6PCU2 26 8.44 12/52 43 84/55 
V-ATPase, V1 subunit F BAB24692 13 5.52 8/35 63 97/55 

ATP synthesis     

F-ATPase  subunit β  1MABA 53 8.73 19/48 37 151/55 

F-ATPase, subunit E 1MABB 49 5.11 11/26 34 97/63 

Cytoskeleton-associated 

β -actin ATRTC 42 5.29 10/14 28 113/55 
Vimentin P31000 54 5.06 22/96 45 126/55 
SPFH domain family, 
member 2 

Q8BFZ9 38 5.37 10/10 25 157/63 

Cell Cycle and repair 
Prohibitin AAH72518 30 5.57 8/13 24 84/63 
Ca2+-dependent membrane binding 
Annexin A2 NP_06370 39 7.53 19/50 52 155/55 
Signal transduction 

Caveolin 1β AAL33580 17 4.97 7/19 31 76/55 
Miscellaneous 

Globin β1 AAB30298 16 7.98 8/46 58 81/55 
Hemoglobin subunit α-1/2 HBA_RAT 15 7.93 5/15 50 70/55 
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4.4.2 Association of V-ATPase subunits with lipid rafts 

 We first used western blot analysis to confirm the association of V-ATPase with 

lipid rafts. Each fraction from raft isolation was examined for V-ATPase a1 and B1/2 

subunits. As shown in Fig. IV. 2, B1/2 and a1 subunits were present mainly in raft 

fraction (fraction 3). Furthermore, depletion of cholesterol resulted in the dissociation of 

both subunits with lipid rafts. Our results indicated a genuine association of a1 and B1/2 

with lipid rafts in a cholesterol dependent manner.  

 

 

 

 

 

 

 

Fig. IV. 2. Association of V-ATPase subunits with lipid rafts: Type II cells were lysed 

in 1% Triton X-100 (control) or 0.5% Triton X-100 + 0.5% saponin (cholesterol 

depleted). Later, the lysates were subjected for raft isolation and various fractions were 

collected. Equal volumes of fractions were immunoblotted for v-ATPase a1 and B1/2 

subunits.  
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4.4.3 Differential expression of V-ATPase subunits 

 We then studied the subcellular localization of V-ATPase subunits.  

Immunoblotting revealed a much higher amount of a1 and B1/2 subunits in type II cell 

lysates when compared to lung homogenate (Fig. IV. 3). While plasma membrane 

fraction had a small amount of both subunits, lamellar body fractions contain abundant a1 

and B1/2 subunits.  

 

Fig. IV. 3. Western blots of V-ATPase subunits: Equal amount of total protein isolated 

from plasma membrane (PM), Lamellar bodies (LB), type II cells (T2), and lung tissue 

(LH) were immunoblotted for V-ATPase a1 and B1/2 subunits.  
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4.4.4 Effect of V-ATPase inhibition on lamellar body pH gradient and surfactant 

secretion 

 The acidic milieu in the lamellar bodies is required for processing of surfactant 

proteins and packaging of surfactant lipids (35, 42). Since V-ATPases were involved in 

the acidification or generation of the pH gradient across the lamellar body membrane, we 

studied if V-participate in surfactant secretion (34). We inhibited V-ATPase with Baf A1, 

a macrolide antibiotic isolated from Streptomyces griseus. Baf A1 is a specific and potent 

inhibitor of V-ATPase at nanomole concentrations. We ascertained the inhibition of V-

ATPase by monitoring the accumulation of quinacrine (34, 35). Type II cells were treated 

with 20 nM Baf A1 for various times.  The pH gradient was effectively dissipated within 

an hour. As shown in Fig. IV. 4A, in untreated type II cells, quinacrine accumulates in 

the acidic lamellar bodies. Fluorescence in the cells treated with Baf A1 was lost, 

indicating an increase in lamellar body pH.  

 To investigate the effect of V-ATPase inhibition on surfactant secretion, type II 

cells were treated with Baf A1 and surfactant secretion measured. Baf A1 increased 

surfactant secretion to 4.30 ± 0.29 when compared to 1.75 ± 0.21 percent in untreated 

cells (Fig. IV. 4B).  The increase in secretion was not due to deleterious effects as cell 

viability was unchanged in the Baf A1-treated cells (data not shown). Additionally, 

stimulated surfactant secretion was also examined. Lung secretagogues were added 

following 1 hour of treatment with Baf A1 since by that time the pH gradient was lost. 

When type II cells were stimulated with a combination of secretagogues, Baf A1 slightly 

affected surfactant secretion. This probably is because the secretion had reached a 

saturation level under stimulated conditions.  
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Fig. IV.4. Effect of Baf A1 on the pH gradient of lamellar bodies and surfactant 

secretion: A) Overnight cultured cells were treated without or with 20 nM Baf A1 for 1 
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hour. Later the quinacrine was added at a final concentration of 10 µM. Fluorescence 

microscopy was undertaken to monitor quinacrine staining. Shown are the representative 

images of 3 biological independent cell preparations. Scale bar: 40 µm B) PC secretion: 

Freshly isolated type II cells were labeled with [3H]-choline overnight. Later, cells were 

treated with 20 nM Baf A1 for 1 hour. The cells were then stimulated with a combination 

of 100 µM ATP; 10 µM terbutaline and 0.1µM PMA for 2 additional hours. Secreted 

lipids were assayed and expressed as per cent of total lipids. Shown is means ± SE. *P ≤ 

0.05 v.s control (Student t test n ≥ 3). Open bars, control; shaded bars, Baf A1.  
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4.4.5 Effect of Ca2+ chelators and thapsigargin on V-ATPase-mediated surfactant 

secretion  

In a quest to understand the mechanisms of Baf A1-induced increase in 

surrfactant secretion, we first explored the possibility of an increase in intracellular Ca2+ 

([Ca2+]i) as one of the reasons.  To this end, type II cells were pre-treated with BAPTA-

AM to chelate intracellular Ca2+ and then treated with Baf A1. BAPTA-AM slightly 

increased secretion consistent with an earlier report (36). BAPTA-AM significantly 

decreased Baf A1-stimulated secretion, indicating mobilization of intracellular Ca2+ 

following V-ATPase inhibition (Fig. IV. 5A).  

Endoplasmic reticulum (ER) is one of the Ca2+ stores in cells.   Ca2+-ATPase is a 

Ca2+ channel on ER membrane responsible for the accumulation of Ca2+ in ER. We 

depleted the ER Ca2+ pool by inhibiting the Ca2+-ATPase using thapsigargin. There were 

no differences in secretion following treatment with thapsigargin when compared with 

the control (Fig. IV. 5). However, Baf A1-mediated secretion was effectively inhibited by 

thapsigargin.  
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Fig. IV. 5. Effect of Ca2+ chelators and thapsigargin on V-ATPase mediated- 

surfactant secretion: Overnight cultured type II cells were treated with Baf A1 in the 

presence or absence of intracellular Ca2+-chelator, A) BAPTA-AM (50 µM) and B) ER 

Ca2+-ATPase inhibitor, thapsigargin (TPG; 100 µM ). Data shown are means ± SE. 

*P<0.05 v.s control; #P<0.05 v.s Baf A1 (Student t test n ≥ 3). Numbers shown in the 

bars indicated the number of independent cell preparations.  

 

 

 

 

 

 

 

 

0

2

4

6

Control Baf A1 TPG TPG + Baf A1

S
ec

re
tio

n 
(%

)
*

# 



 113

4.4.6 Effect of PKC and CaMKII inhibition on V-ATPase-mediated surfactant 

secretion  

 An increase in intracellular Ca2+ may activate protein kinase C (PKC) and 

Ca2+/calmodulin-dependent kinase II (CaMKII), which have been shown to be involved 

on surfactant secretion. We thus examined whether the inhibition of PKC and CaMKII 

would block the Baf A1-mediated secretion. Staurosporine and KN-62 were used to 

inhibit PKC and CaMKII, respectively. Both agents effectively inhibited the Baf A1- 

mediated increase in surfactant secretion (Fig. IV. 6). The inhibitors alone had no effect. 

 Surfactant secretion can be stimulated through β2-adrenergic receptors and the 

activation of protein kinase A. If Baf A1 elicits its effect by Ca2+, PKC/CaMKII 

pathways, an additive effect should be observed when Baf A1 and terbutaline (β2 

agonist) were used together. Indeed, the addition of Baf A1 and terbutaline resulted in an 

additive increase in secretion (Fig. IV. 6).  
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Fig. IV. 6 Effect of PKC and CaMKII inhibitors on V-ATPase-mediated secretion: 

Overnight cultured type II cells were treated with Baf A1 in the presence or absence of 

A) Staurosporine (100 nM) or B) KN-62 (10 µM) and C) Terbutaline. Later PC secretion 

assay was done. Data shown are Means ± SE. *P<0.05 v.s control; #P<0.05 v.s Baf A1 

(Student t test n ≥3).  Numbers shown in the bars indicated the number of independent 

cell preparations. 
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4.9 V-ATPase is inhibited during lamellar body exocytosis  

 Finally we asked if there were a physiological relevance of V-ATPase inhibition 

in surfactant secretion. We examined the effect of type II cell stimulation on the pH 

gradient across lamellar body membrane. We stimulated type II cells with a combination 

of lung surfactant secretagogues for various times and monitored the lamellar body pH by 

the accumulation of quinacrine.  A gradual decrease in accumulation of the dye was 

observed in the lamellar bodies following stimulation with secretagogues (Fig. IV.7A). 

The quantitation of the intensity of fluorescence revealed  a ~ 50% decrease at 60 min 

(Fig. IV. 7B). 
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Fig. IV. 7. Monitoring of lamellar body pH following stimulation of type II cells: 

Overnight cultured type II cells were stimulated with a combination of ATP (200 μM) 

and terbutaline (20 μM) for various times as indicated in the figure. At the end of 

incubation time, the cells were loaded with 10 μM quinacrine for about one minute. The 

cells were then immediately fixed before microscopy.  A) Shown are the representative 

images indicating the changes in quinacrine accumulation patterns as a function of time. 

Scale bar: 40 μM. B) The intensity of quinacrine staining was quantified and expressed as 

percent of control. Shown are means ± SEM (n = 3 independent cell preparations).  
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4. 5 Discussion 

 Type II cells are involved in synthesis, storage and secretion of lung surfactant. 

Our previous study indicated the role of lipid rafts in surfactant secretion (7). However, 

data is lacking on the entire protein components of lipid rafts in many cell types including 

type II cells. The results uncovered the proteomic profile of lipid rafts isolated from type  

II cells. The proteomic profile indicated proteins involved in diverse processes. V-

ATPases subunits were present in the lipid rafts and hence this protein was studied in 

detail for its role in surfactant secretion. Our results indicated that inhibition of V-ATPase 

triggers surfactant secretion by mobilizing [Ca2+]i which activate PKC and CaMKII. 

 Type II cell lipid raft proteins included those involved in acidification (V-

ATPases), metabolism (ATP synthases) and cellular proliferation and differentiation 

(prohibitin), phospholipids-binding proteins (annexin A2), cytoskeletal proteins (actin), 

and oxygen exchange (globin beta1). Many of these proteins were also found in lipid 

rafts of other cells (16-24).  Our studies indicated that type II cell lipid rafts contained a 

small set of proteins. However, the numbers of proteins identified in other studies were 

higher than this study mainly due to use of tandem mass spectrometry in those studies.   

 The presence of V-ATPases in the type II cell lipid rafts appears intriguing. The 

preponderance of V-ATPase in the lipid rafts of other cells have been reported (37-39). 

These proteins have specialized functions on the plasma membranes apart from 

intracellular membranes. Our previous studies have shown that the lipid raft marker 

proteins, flotillin-1 and -2 were present on lamellar bodies, indicating that lipid rafts exist 

in intracellular compartments (7).  
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Lamellar bodies in type II cells maintain acidic milieu (pH 5.5-6.0) due to the V-

ATPase activity (34, 40). The acidic pH was confirmed by accumulation of dyes such as 

quinacrine and acridine orange (34, 42). Acidic pH in the lamellar body is essential for 

packaging of surfactant lipids, surfactant protein-A dependent aggregation of lipids, 

proteolytic processing of surfactant protein-B and C and Ca2+ uptake (34, 41-43). V-

ATPases on the organelles generate transvesicular proton-electrochemical potential 

gradient (Δψv) and pH gradient (ΔpHv).  The treatment of type II cells with methylamine 

and ammonium chloride increases lamellar body pH and enhances surfactant secretion 

(42).  However, methylamine and ammonium chloride also increase cytosolic pH 

transiently. Our results indicated that the dissipation of lamellar body pH by Baf A1 

increases surfactant secretion suggesting that the increase of surfactant secretion is due to 

an increase in lamellar body pH but not due to cytosolic pH. Inhibition of V-ATPase 

resulted in decreased exocytosis in PC12, GH3, pancreatic alpha and beta cells (45-49) 

whereas increased secretion in pituitary, glial, macrophages and neutrophils (50-52).  

Interestingly in some cases, there was no effect of V-ATPase inhibition on secretion (49, 

53). It thus appears different cell type respond differently to V-ATPase inhibition. 

  Intracellular Ca2+ can be altered by influx of Ca2+ from extracellular mileu and 

mobilization of Ca2+ from intracellular pools. Lamellar bodies contain high levels of Ca2+ 

and could be one of the potential intracellular sources. Our results have shown that 

intracellular Ca2+ chelation abrogated the Baf A1-induced secretion. Lysosomal pH 

dissipation in macrophages led to gradual loss of lysosomal Ca2+ with a simultaneous 

increase in cytosolic levels (54). A similar process may occur in lamellar bodies since V-

ATPase were predominantly expressed on lamellar body membrane and its inhibition led 
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to the dissipation of pH gradient.  It is possible that released Ca2+ from lamellar bodies 

increases localized Ca2+ concentration and thus increase surfactant secretion. In fact, it 

has been reported that the Ca2+ concentration in exocytotic lamellar bodies is higher than 

that in perinuclear lamellar bodies (55). Similarly, in adrenal chromaffin cells, increase in 

vesicular pH induced release of Ca2+ and increased secretion (56).  

Depletion of ER pool inhibited the V-ATPase-mediated increase in secretion 

indicating the cross-talk between ER and lamellar body Ca2+ pools. Our study is 

supported by previous reports which indicated that small, localized changes in Ca2+ 

induce global Ca2+ waves due to interplay between different Ca2+ pools. In arterial 

smooth muscle cells, NAADP increases Ca2+ release from Baf A1-sensitive 

compartment, which in turn further induces Ca2+ release from sarcoplasmic reticulum by 

calcium induced calcium release owing to the close apppsition of these two pools (57). It 

is possible that such an apposition exist in type II cells. 

When type II cells were treated with PKC and CaMKII inhibitors, we observed an 

inhibition in Baf A1-induced surfactant secretion. Similar results were reported for 

lysosomal secretion in macrophages. (58). Our results thus supported the idea that the V-

ATPase mediated surfactant secretion is mediated by PKC and CaMKII and that the  

activation was due to  increase in [Ca2+]i
 .  

 We then asked if the V-ATPase activity was modulated during normal 

physiological conditions.  The accumulation of quinacrine dye gradually decreased when 

the cells were stimulated with lung surfactant secretagogues. When quinacrine 

accumulation was quantified, we found ~ 50% reduction in intensity. It should be noted 
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that this is an average intensity of all the lamellar bodies in type II cells irrespective of 

whether there were undergoing exocytosis. 

 In summary, we propose the following model for V-ATPase mediated-surfactant 

secretion. V-ATPase mediates the acidification of lamellar bodies. Inhibition of V-

ATPase results dissipation of lamellar body pH gradient. The increase in lamellar body 

pH results in mobilization of Ca2+ from lamellar bodies, leading to an increase in 

cytosolic free Ca2+. Such an increase further releases Ca2+ from the ER pool. The net 

surge on Ca2+ concentration activates PKC and CaMKII. The activation of these enzymes 

finally results in increased surfactant secretion.   
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Fig. IV. 8. Schematic representation of proposed events following V-ATPase 

inhibition: 

In this model, following V-ATPase inhibition by Baf A1, we propose that there is 

mobilization of Ca2+ from lamellar bodies. The small localized changes in Ca2+ 

concentration leads to further release of Ca2+ from  ER store (probably by activation of 

RyR). The global increase in Ca2+ concentration leads to activation of PKC and CaMKII 

leading to their activation and finally increased surfactant secretion. 
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CHAPTER V 
 

SUMMARY AND CONCLUSIONS 

 Type II cells synthesize, store and secrete lung surfactant. Earlier studies 

indicated that annexin A2, syntaxin 2, SNAP-23, VAMP-2, NSF and α-SNAP were 

involved in surfactant secretion. However, their organization on the cell membrane was 

not studied. The present study was designed to investigate the role of lipid rafts in the 

organization of surfactant secretion protein machinery.  In the second part of work, 

flotillins, the lipid rafts marker proteins were selected for investigating their roles in 

surfactant secretion. Finally, the proteomic profiling of lipid rafts was performed to 

unravel the protein components of lipid rafts. Various subunits of V-ATPase were found 

in the proteomic profile along with other proteins. We have studied in detail the role of 

V-ATPases in regulating lung surfactant secretion. 

 We studied the expression profiles of flotillins and caveolins, the lipd raft marker 

proteins in isolated type II cells and rat lung tissue sections. Our results indicated that 

type II cells express flotillins but not caveolins and hence these proteins were used for 

confirming lipid rafts isolation. Lipid rafts were isolated based on their ability to resist 

1% Triton X-100 solubilization and floatation on discontinous sucrose gradients. Isolated 

lipid rafts were characterized by enrichment of flotillin-1 and -2 and high cholesterol 

content. Furthermore, Na+-K+ATPase, a non-raft marker protein was completely 

excluded from lipid raft fractions. SNARE proteins were enriched in lipid rafts in a 

cholesterol dependent manner. Cholesterol depletion reduced surfactant secretion, fusion  
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pore formation and membrane fusion. Hence, lipid rafts integrity was essential for all 

these processes. Additionally, SNARE proteins co-localised with CD44 clusters. Annexin 

A2 was associated with lipid rafts in a Ca2+-dependent manner and also with CD44 

clusters.  The results suggest that lipid rafts might provide an amicable atmosphere for 

SNARE protein interactions and organize membrane fusion machinery.  

 Flotillin-1 and -2 were highly enriched in type II cells when compared with type I 

cells. Additionally, their expression was abundant on plasma membranes and lung 

lamellar bodies, indicating that lipid rafts existed in the intracellular compartments also. 

We further studied the role of these proteins in surfactant secretion. To this end, the 

expression of flotillins was silenced using adenovirus-mediated RNAi. We successfully 

silenced the expression of flotillins in type II cells and the lung cell line, L2. Flotillin-2 

but not -1 silencing reduced surfactant secretion by type II cells. To further undertand the 

mechanism of the decrease, lipid rafts were isolated following knockdown of flotillins in 

L2 cells. When analysed for SNARE protein association with lipid rafts, we did not find 

any significant differences following flotillin-1 and -2 silencing, indicating that SNARE 

protein association with lipid rafts was independent of flotillins. Since flotillins were 

involved with cholesterol homeostasis, we have assayed for cholesterol contents 

following silencing of flotillins. Cholesterol levels were unchanged after silencing. Thus 

it appears that flotillin-2 affects surfactant secretion independent of SNARE protein 

association and raft formation.  

 Lipid rafts contain only specific proteins, which are involved in diverse functions. 

We hence studied the proteomic profile of lipid rafts by mass spectrometry. Our results 

revealed that lipid rafts proteins are associated with vacuolar acidification, energy 
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metabolism, oxygen exchange and cell cycling. We selected V-ATPases, to study their 

roles in surfactant secretion. Following inhibition of V-ATPase by Baf A1, the lamellar 

body pH gradient was dissipated as indicated by the loss of quinacrine statining. V-

ATPase inhibition resulted in increased surfactant secretion when compared with 

controls. The V-ATPase mediated increase in secretion was effectively inhibited by 

intracellular Ca2+-chelator suggesting the mobilization of intracellular Ca2+ following V-

ATPase inhibition. Additionally, staurosporine, and KN-62, inhibitors of PKC and 

CaMKII, respectively inhibited the V-ATPase mediated increase in secretion, indicating 

the activation of these enzymes following V-ATPase inhibition. When lamellar body pH 

was monitored following stimulation with a combination of secretagogues, we found a 

gradual increase in lamellar body pH, indicating that V-ATPase activity might be reduced 

during surfacatant secretion. Thus, we conclude that V-ATPase regulates surfactant 

secretion by type II cells.  We proposed a mechanism of V-ATPase mediated surfactant 

secretion.  

 In summary, we for the first time implicated the role of lipid rafts in the 

organization of surfactant protein secretion machinery. Further, flotillin-2 had been found 

to be involved in surfactant secretion independent of lipid raft formation. Finally, V-

ATPase, one of the proteins identified in the proteomic profile of lipid rafts has been 

shown to regulate surfactant secretion.  
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Scope and Method of Study:  
 The present study was initiated to elucidate the role of lipid rafts in lung 

surfactant secretion. Lipid rafts were isolated and probed for the association of 
SNARE proteins. Cholesterol depletion was done to study its role in modulating 
the surfactant secretion and membrane fusion. Flotillin proteins were silenced to 
examine their role in surfactant secretion. Finally, we determined the proteomic 
profile of type II cell lipid rafts to identify novel proteins in this unique 
subproteome and study the roles of one of the identified proteins, namely, v-
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to address the biological phenomenon.  

 
Findings and Conclusions:   

1. SNARE proteins were differentially associated with lipid rafts in a cholesterol-
dependent manner. 

2. Cholesterol depletion drastically reduced surfactant secretion, membrane fusion 
and fusion pore formation. 

3. SNARE proteins were associated with CD44 clusters.  
4. Flotillin-2 but not -1 reduced surfactant secretion. 
5. Flotillin (s) did not affect the association of SNARE proteins with rafts. 
6. Lipid raft formation was not altered by knockdown of flotillin-1 and -2. 
7. Type II cell lipid raft proteome contained proteins involved in cell proliferation, 

pH regulation and energy metabolism. 
8. V-ATPases mediate the acidification of lamellar bodies and V-ATPase inhibition 

leads to increased surfactant secretion.  
9. V-ATPase inhibition leads to the mobilization of Ca2+ from lamellar bodies, 

which in turn cause further release of Ca2+ from ER. The net surge activates 
protein kinase C and Ca2+/calmodulin-dependent kinase II leading to increased 
secretion.  
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