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Abstract:

Network coding has been shown to be an effective approach to improve the wireless
system performance. However, many security issues impede its wide deployment in
practice. Besides the well-studied pollution attacks, there is another severe threat,
that of wormhole attacks, which undermines the performance gain of network coding.
Since the underlying characteristics of network coding systems are distinctly differ-
ent from traditional wireless networks, the impact of wormhole attacks and counter-
measures are generally unknown. In this thesis, we quantify wormholes’ devastating
harmful impact on network coding system performance through experiments. Firstly,
we propose a centralized algorithm to detect wormholes and show its correctness rig-
orously. For the distributed wireless network, we propose DAWN, a Distributed de-
tection Algorithm against Wormhole in wireless Network coding systems, by exploring
the change of the flow directions of the innovative packets caused by wormholes. We
rigorously prove that DAWN guarantees a good lower bound of successful detection
rate. We perform analysis on the resistance of DAWN against collusion attacks. We
find that the robustness depends on the node density in the network, and prove a nec-
essary condition to achieve collusion-resistance. DAWN does not rely on any location
information, global synchronization assumptions or special hardware/middleware. It
is only based on the local information that can be obtained from regular network
coding protocols, and thus the overhead of our algorithms is tolerable. Extensive
experimental results have verified the effectiveness and the efficiency of DAWN.
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Chapter 1

Introduction

In the efforts to improve the system performance of wireless networks, network coding

has been shown to be an effective and promising approach (e.g., [1, 2, 3, 4, 5]) and

it constitutes a fundamentally different approach compared to traditional networks,

where intermediate nodes store and forward packets as the original. In contrast,

in wireless network coding systems, the forwarders are allowed to apply encoding

schemes on what they receive, and thus they create and transmit new packets. The

idea of mixing packets on each node takes good advantages of the opportunity di-

versity and broadcast nature of wireless communications, and significantly enhances

system performance.

However, practical wireless network coding systems face new challenges and attacks,

whose impact and countermeasures are still not well understood because their un-

derlying characteristics are different from well-studied traditional wireless networks.

The wormhole attack is one of these attacks. In a wormhole attack, the attacker can

forward each packet using wormhole links and without modifies the packet transmis-

sion by routing it to an unauthorized remote node. Hence, receiving the rebroadcast

packets by the attackers, some nodes will have the illusion that they are close to the

attacker. With the ability of changing network topologies and bypassing packets for

further manipulation, wormhole attackers pose a severe threat to many functions in

the network, such as routing and localization [6, 7, 8, 9, 10]. To investigate wormhole

attacks in wireless network coding systems, we focus on their impact and countermea-
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sures in a class of popular network coding scheme - the random linear network coding

(RLNC) system [2]. In this system, in order to best utilize resources, before data

transmissions, routing decisions (i.e., how many times of transmissions a forwarder

should make for each novel packet) are made based on local link conditions by some

test transmissions.

Since in wireless network coding systems the routing and packet forwarding proce-

dures are different from those in traditional wireless networks, the first question that

we need to answer is: Will wormhole attacks cause serious interruptions to network

functions and downgrade system performance? Actually no matter what procedures

are used, wormhole attacks severely imperil network coding protocols. In particular,

if wormhole attacks are launched in routing, the nodes close to attackers will receive

more packets than they should and be considered as having a good capability in help

forwarding packets. Thus they will be assigned with more responsibility in packet

forwarding than what they can actually provide. Furthermore, other nodes will be

correspondingly contributing less. This unfair distribution of workload will result in

an inefficient resource utilization and reduce system performance. Wormhole attacks

launched during the data transmission phase can also be very harmful. First, worm-

hole attacks can be used as the first step towards more sophisticated attacks, such as

man-in-the-middle attacks and entropy attacks [11]. For example, by retransmitting

the packets from the wormhole links, some victim nodes will have to process much

more non-innovative packets that will waste their resources; these constitute entropy

attacks. Secondly, the attackers can periodically turn on and off the wormhole links in

data transmissions, confusing the system with fake link condition changes and making

it unnecessarily rerun the routing process. To further quantify the impact of worm-

hole attacks in wireless network coding systems, we perform extensive experiments

and investigate the results in Chapter 3.

The main objective of this paper is to detect and localize wormhole attacks in wireless

network coding systems. The major differences in routing and packet forwarding

rule out using existing countermeasures in traditional networks [12, 13, 9, 10, 14,

6, 8, 7, 10, 15, 16]. In network coding systems like MORE[5], the connectivity in
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the network is described using the link loss probability value between each pair of

nodes, while traditional networks use connectivity graphs with a binary relation (i.e.,

connected or not) on the set of nodes. For this reason, prior works based on graph

analysis [10, 6, 14, 8] cannot be applied. Some other existing works rely on the packet

round trip time difference introduced by wormhole attacks to detect them [13, 15, 16].

Unfortunately, this type of solutions cannot work with network coding either. They

require either to use an established route that does not exist with network coding,

or to calculate the delay between every two neighboring nodes which will introduce

a huge amount of error in network coding systems.

In this thesis, we first propose a centralized algorithm to detect wormholes leveraging

a central node in the network. For the distributed scenarios, we propose a distributed

algorithm, DAWN, to detect wormhole attacks in wireless intra-flow network coding

systems. The main idea of our solutions is that we examine the order of the nodes

to receive the innovative packets in the network, and explore its relation with a

widely used metric, Expected Transmission Count (ETX), associated with each node

[17, 5]. Our algorithms do not rely on any location information, global synchronization

assumption or special hardware/middleware. Our solutions only depend on the local

information that can be obtained from regular network coding protocols, and thus

the overhead that our algorithms introduce is acceptable for most applications.

Different wireless networks have different characteristics and requirements. Some

wireless networks have central controller, while others are highly distributed without

any centralized authority. It is desirable to apply different solutions based on the

network types. Our centralized algorithm is inspired by the fact that the wormhole

link can significantly change the network topology, which can be measured by ETX.

This idea is also heuristic to our distributed solution DAWN, which emphasizes on

the scenario where no central administration node exists. Thus, our algorithms can

address different scenarios. We first present the centralized solution and then dis-

cuss the distributed one, for a clear logic flow. On the other hand, compared with

our distributed algorithm DAWN, our centralized algorithm also owns several ad-

vantages. The centralized algorithm concentrates the computation workload to the
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central node, and thus each normal node will suffer much less workload than DAWN.

Since the transmissions between each node and the central node are unicast, the

caused communication overheads of the centralized algorithm are lower than DAWN,

which broadcasts the reports. The centralized algorithm leverages the global informa-

tion of the flows, and thus it can detect the wormhole link efficiently, and the resulted

warnings can be delivered to each node more quickly than DAWN.

1.1 Contribution Summarization

We summarize the contributions of this thesis as follows.

• We are the first to study the impact and countermeasures of wormhole attacks

in wireless network coding systems.

• We investigate the harmful impact of wormholes on system performance and

regional nodes’ resource utilization. We demonstrate the results via simulations

on various scenarios.

• We propose a centralized algorithm to detect wormholes. In this algorithm,

a central node collects the information from all the nodes in the network and

analyzes whether there exists a wormhole link. The algorithm leverages the

order of the nodes to receive the innovative packet, and utilizes machine learning

techniques to distinguish the wormhole cases. We also give rigorous analysis of

the centralized algorithm and find the condition of its effectiveness.

• For distributed network without centralized authority, we propose DAWN, a

Distributed detection Algorithm against Wormhole in wireless Network cod-

ing systems. In DAWN, during regular data transmissions, each node records

the abnormal arrival of innovative packets and share this information with its

neighbors. This algorithm is efficient and practical without strong assumptions.

Furthermore, we theoretically prove that DAWN guarantees a good lower bound

of successful detection rate.
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• We perform analysis on the resistance of DAWN against collusion attacks. We

find that the robustness depends on the node density in the network, and prove

a necessary condition to achieve collusion-resistance.

• We use extensive experiments in various network settings, to verify that DAWN

is effective (with over 89.43% detection rate), and efficient.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 will introduce re-

lated technical preliminaries. Then we will demonstrate the detrimental influences of

wormhole attack in Chapter 3. Chapter 4 will explain how to determine the ETX of

each node, and Chapter 5 will propose a centralized algorithm to detect the wormhole

attack. In Chapter 6, we will describe our wormhole attack detection algorithm, and

we will show the effectiveness and robustness of our solutions. Our experiments and

the related analysis will be discussed in Chapter 7. After the Related Work Chapter

8 we will conclude this paper in Chapter 9.
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Chapter 2

Technical Preliminaries

In this chapter, we describe the technical preliminaries needed in this paper.

2.1 Random Linear Network Coding (RLNC)

Linear Network Coding (LNC), especially Random Linear Network Coding (RLNC),

owns numerous applications [18, 19, 20]. Linear network coding permits each node

in the network to pass on the combinations of the received data, in order to optimize

the information capacity. Let r1, r2, · · · , rn denote the received data, and s be the

encoded data to be passed to another node. We can obtain the combination f based

on the received data based on Equation (2.1).

s = f(r1, r2, · · · , rn) (2.1)

For RLNC, f in Equation (2.1) is a random linear combination in the field GF (2k).

f(r1, r2, · · · , rn) =
n

∑

i=1

ξiri (2.2)

Here, ξi is a randomly generated coefficient.

In network coding, every node except the recipient applies a random linear mapping

from the inputs to outputs over the field GF (2k). Each packet contains a vector in
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the m-dimensional code vector space V . Particularly, each packet sent by the source

node contains a basis of the code vector space V . If one intermediate node receives

a packet which is linearly independent from previous packets, this packet is called an

innovative packet. Essentially, an innovative packet must contain at least one basis

that the node has not received, and the arrival of an innovative packet will increase

the rank of the received packets by one. When the destination receives m innovative

packets, whose vectors are linearly independent from each other, it can restore the

source information S based on the received data R.

S = C−1R (2.3)

Here C is the matrix of the coefficients of the received packets. Since each received

packet is essentially a linear combination of the original packets from the source,

we can perfectly restore the original messages by multiplying the inverse of C.

The capacity of RLNC converges to the optimum in probability [2], and owns an

ideal performance on the compression of the transmitted data. However, since the

packet can derive various forms during the transmissions in network coding, when

the wormhole attack is initiated, it is difficult to apply some traditional solutions (i.e.

tracing the timestamps of a particular packet) to defend. Thus, the wide applications

of network coding push us to find another way to defend against wormhole attack.

2.2 Expected transmission count (ETX)

ETX has extensive applications in network coding systems [5, 3, 4, 21]. In this paper,

the ETX of a node u in the network coding system denotes the expected total number

of transmissions (including retransmissions) that the source node should make, in

order to make the node u receive one innovative packet successfully. A node of high

ETX means it is difficult to make it heard from the source, usually because the node

is far from the source and the links between them are very lossy. Thus, the metric of

the ETXs is a good representation of the network structure.
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In existing works (e.g., [5, 17]), the ETXs are calculated based on the probabilities of

packet loss between each pair of the nodes in the network. Let u and v be two nodes,

and p(u, v) be the probability of successful transmission between nodes u and v. For

the simplest case, if the network only has a sender u and a recipient v, then the ETX

of the sender u is 1.0, and the ETX of v is shown as Equation (2.4).

ETX(v) =
1

p(u, v)
(2.4)

The probability p(u, v) can be estimated based on the previous transmission record,

using some statistical models like weighted means and window-based observation[5].

Based on (2.4), if the link between the nodes is very lossy, the ETX of v can be

very high, indicating that it is difficult to deliver messages through the link. Usually

too many hops might contribute to the high link loss probability. As we will talk

about, the wormhole link connects two distant nodes with one hop of very low loss

probability, and thus reduces the ETXs significantly. This fact is heuristic to our

algorithms.

2.3 RLNC with ETX

In this paper, we consider a wireless network with a set of homogeneous nodes running

network coding protocols (including routing protocols like [5] to calculate the number

of per-packet transmissions for each node, and data transmission protocols). Nodes

are connected via lossy wireless links. For any two nodes u and v in the network such

that the successful transmission rate between u and v, p(u, v) > 0, then we say u

and v are neighbors. We assume that ETXs are calculated to describe the network

topology, and are measured periodically to support routing functions. Each node

knows its own ETXs and its neighbors’ ETXs.

In the wireless network systems, we consider that Public Key Infrastructure (PKI)

is in place to implement the public key cryptographic techniques. For the wireless
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network, we regard each node1 as a user who has a pair of public and private keys.

The identity and the public key of each user are managed by the Certificate Authority

(CA), which is a trusted entity. If any node A wants to safely communicate with node

B, A has to request B’s public key from the CA firstly. After the transmission, node

B has to request A’s public key from the CA in order to verify the message from A.

CA is also responsible to predistribute and revoke the key pairs of the nodes. The

nodes and the CA together form the PKI, which can guarantee that no node can

forge reports from other nodes.

2.4 Wormhole Attack Model

In wormhole attacks, the attackers between distant locations transmit packets using

a out-of-band tunnel. The transmission tunnel is called a wormhole link. The packet

loss rate on the wormhole link is negligible. The kinds of the wormhole links can be

various, such as an Ethernet cable, an optical link, or a secured long-range wireless

transmission [8]. When the wormhole attack is initiated, the attackers can capture

data packets on either side, forward them through the wormhole link and rebroadcast

them on the other node.

Figure 2-1 gives the basic scenario of wormhole attack. Two malicious nodes A and B

are connected by a wormhole link. Hence B can have access to A’s neighbors a1, a2, a3

with only one hop, even though B is supposed to be remote from A’s neighborhood.

Clearly the wormhole link AB significantly changes the network’s topological struc-

ture.

1Here each node includes the normal nodes in the wireless network, and the central administrator,
which presents in our centralized algorithm.
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Figure 2-1: Wormhole attack model.
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Chapter 3

Negative Impacts of Wormhole

Links on RLNC Systems

As we have mentioned earlier in Chapter 1, wormhole attacks have severe impact on

wireless network coding systems. Depending on different launching time, wormhole

attacks can seriously downgrade the system performance (by forging link states and

thus generating inefficient routing assignment), and cause individual nodes to deal

with many non-innovative packets and waste their resources. We now examine these

negative impact via simulations.

We configure a RLNC network with seven nodes randomly distributed as Figure

3-1. In the network coding system, MORE [5] is running (including the routing

phase). The link loss probability p′(u, v) between two nodes u and v is calculated

as p(u, v) = PB · f(d(u, v)), where PB is the baseline loss probability, and f(·) is

a coefficient function based on the transmission distance d(u, v). A data flow is

established between node 1 (the source), and node 7 (the destination). The default

data sending rate is 40 kbps.

3.1 Impacts on Throughput

We first examine wormholes’ impact on network throughput if launched in the routing

phase. In particular, we let the wormhole link be established between node 2 and 6, in

11
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Figure 3-1: We show the coordinates of each node. In our simulation, the wormhole
link between node 2 and 6 is valid when the topology sensing is going on. The
wormhole link will disconnect one minute after the network starts to transmit the
packets, giving a huge reduction in the network performance.

Figure 3-2: The average throughput for different baseline link loss probabilities with
or without wormhole link.
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Figure 3-3: The average throughput for different source sending rates with or without
wormhole link.

Figure 3-4: The No. of local transmissions (node 3) in RLNC network with or without
wormhole attack
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the routing procedure. The wormhole link disconnects one minute after the network

starts to transmit the packets from the source to the destination. The simulation

runs for 10 minutes, and we measure the average network throughput and compare

it with the case without the wormhole attack.

Figure 3-2 shows the wormhole attack brings great negative influence on the network

throughput. The throughputs of normal network are always greater than twice of

those with wormhole link for the same setting. Similar results can be found in Figure

3-3 when we test the network with different data sending rates and PB = 30%. The

reason is that the existence of wormhole link cheats each node in the topology sensing,

making the ETXs of the surrounding nodes lower than the actual values. Thus, in

the packet forwarding phase, when the wormhole link disconnects, the throughputs

will decrease due to the insufficient times of packet forwarding.

3.2 Impacts on Local Workload

We then investigate the wormhole links’ impact on local nodes’ resource consumption

if launched during data transmission phase. Figure 3-4 shows the number of trans-

missions of node 3 in different scenarios, with and without wormhole link respectively.

The result demonstrates that Node 3 suffers a significant increment of transmissions

and thus energy consumption for redundancy due to the wormhole link.
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Chapter 4

Characterizing Wormhole Attacks

in Wireless Network Coding

Systems

As we have mentioned, detecting wormhole attacks in wireless network coding systems

is difficult compared with traditional networks, due to the different nature of topology

description and different principle of packet transmission. In order to facilitate the

design of countermeasures, in this chapter we investigate the unique characteristics

of network coding system behavior with wormhole links.

Unlike traditional networks, packet round trip time is not a valid metric for wireless

network coding to distinguish the system under attack and the normal case. The

fundamental reason is that with network coding, the packets being transmitted on

each hop are different, and thus it is difficult to track down packets and record their

trip time. Therefore, this packet-centric idea does not work for network coding. In

stead, in this paper, our method is node-centric, i.e., we focus on the metrics that

can be naturally obtained by nodes in the existing network coding protocols. In

particular, we explore the relationship between the innovative packet transmission

direction and ETX.
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4.1 General Result

In wireless network coding systems, packets are transmitted from source to destination

not in their original form. Actually, given fixed source and destination nodes, for a

pair of intermediate neighbor nodes, it is difficult to tell whether the information flow

directions are always the same. To figure out this question, we leverage one widely

used metric, ETX. In wireless network coding systems, where no fixed routes exist,

ETX, the expected number of the packets for the source node to transmit so that

the target node (intermediate node or recipient) receives the packet, provides a way

to portray the topological structure of the network and the relations among nodes.

On the other hand, to describe the information flow direction, one important concept

to explore is innovative packet, i.e., the packet received by a node containing new

information that cannot be derived from already received packets.

In particular, for systems without wormhole links, we quantify the probability of the

packet transmission directions between a pair of neighbor nodes, based on the concept

of innovative packet and ETX, as shown in Theorem 1.

Theorem 1. For any two neighbor nodes u and v in the network satisfying ETX(u) <

ETX(v), the probability that v will receive an innovative packet from u is ETX(v)−1
ETX(u)+ETX(v)−1

.

Proof. ETX is the expected number of the sent packets to make sure the forward-

ing node or recipient receives the innovative packet. Let p = 1/ETX(u) and q =

1/ETX(v), and then p and q are the probabilities to deliver the novel packet from

the source node to u and v, respectively. Since ETX(u) < ETX(v), p > q. We set

up two random variables X and Y , that X = x is the event it takes x packets to make

u hear the innovative packet, and Y = y is the event y packets make the novel packet

arrive at v successfully. In fact, X and Y apply to geometric distribution and they

are independent from each other. We calculate the probability of the event X < Y
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as Equation (4.1).

P (X < Y ) =
∞
∑

x=1

∞
∑

y=x+1

P (X = x)P (Y = y)

=
p− pq

p+ q − pq
=

ETX(v)− 1

ETX(u) + ETX(v)− 1
(4.1)

The basic idea of this theorem is that in general information flows are more likely to

be transmitted from the nodes of low ETXs to those of high ETXs.

When the network contains wormhole links, they will change the overall topological

structure of the network. The actual ETX (with wormhole links) metric suffers a huge

change as well, and then the transmissions of the novel packets are distinguishable

from the expected.

4.2 Algorithm to Determine ETX

Since ETX is an important metric to characterize wormhole attacks, below we de-

scribe how to determine the ETX of each node based on the probability of successful

transmission P (i, j) between every two nodes vi and vj. Each P (i, j) between two

nodes can be measured by sending and receiving small packets and getting the statis-

tical result. All the probabilities of successful transmission P (·, ·) together form the

network adjacency matrix P . We assume the matrix P is known for the network. We

propose Algorithm 1 EDA to calculate the ETX for each node.

In Algorithm 1, we make the ETXs depict the difficulty of delivering the innovative

packet to each node. For each transmission of innovative packet, any node can receive

it as long as at least one of its neighbors has received the packet and successfully

transmit it to the node. That gives rise to lines 9 to 11 in Algorithm 1. Another

important revelation is any node can derive its own ETX given the ETXs of its

neighbors and the relevant loss probabilities. That is, it is not necessary for each

node to know the global ETXs or any location information of other nodes. Thus, our
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Algorithm 1 ETX-Determining Algorithm (EDA)

Input: the entire network G with nodes V and their locations L, and the source node vs
Output: the ETXs for all the nodes in the network G
1: ETX(vs)← 1.0
2: for each node vi in V , except vs do

3: ETX(vi)← +∞
4: end for

5: repeat

6: ETXupdated ← false
7: for each node vi in the network G, other than vs do

8: Let N be the set of the neighbors of vi s.t. ETX(vk) < +∞ for any vk ∈ N
9: if ETX(vi) >

1
1−

∏
vk∈N

1
ETX(vk)

(1−P (vk,vi))
then

10: ETX(vi)← 1
1−

∏
vk∈N

1
ETX(vk)

(1−P (vk,vi))

11: ETXupdated ← true
12: end if

13: end for

14: until ETXupdated = false
15: return the ETXs for all the nodes

algorithms are independent on location information. In Theorem 2, we can show that

Algorithm 1 can determine the ETXs with a unique answer.

Theorem 2. The returned solution of Algorithm 1 is unique.

Proof. We first study the scenario of connected network. The outer loop from line 5

to 14 keeps decreasing the ETXs based on the successful transmission probabilities

between each pair of nodes. Note that if the ETX of any node decreases, the ETXs

of all its neighbor nodes will remain the same according to the conditional branch at

line 9. That is, if ETX(vi) decreases, and let vj be any one of vi’s neighbors and

let N be the set of vj’s neighbors, we have the value T = 1
1−

∏
vk∈N

1
ETX(vk)

(1−P (vk,vi))

increases and thus ETX(vj) < T . Then the value of ETX(vj) cannot change. Thus,

there is no pair of nodes whose ETX values are directly dependent on each other.

Algorithm 1 can halt in definite steps and output a unique solution. If the network

is not connected, all the ETXs of the nodes that are not connected with the source

node will be infinite, and the solution is also unique. Proof completes.

Since our wormhole detection algorithm will rely on the values of ETXs, it is impor-

tant to ensure that the system has appropriate defense against possible attacks on
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Figure 4-1: Node rank increment order of normal RLNC network.

ETXs. In practice link loss probabilities used in ETXs calculation are measured and

reported using small control packets sent among nodes and these packets are trans-

mitted under conventional protocols instead of network coding. To protect these

protocols from wormhole attacks, existing countermeasures of wormholes in conven-

tional wireless networks can be leveraged such as [13, 16, 15]. To defend against other

cheating and malicious behavior in measuring link loss probabilities, i.e. submitting

untruthful reports, both cryptographic and incentive-mechanism approaches can be

used [22].
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Figure 4-2: Node rank increment order of network under wormhole attack.
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Chapter 5

The Centralized Algorithm

In this chapter, we propose the centralized algorithm, which utilizes the ETX metric

and the order of rank increment to detect wormhole attacks. In order to protect

the validity of our method, we also introduce the public cryptographic scheme for

the network. For the proposed algorithm, we not only perform the analysis of its

correctness, but also discuss its technical details in this chapter.

5.1 Algorithm Design

As what we have presented in Chapter 2.1, for each forwarding node in RLNC net-

work, receiving the innovative packet will cause the rank of the previously received

packets increases by one. We also find that the nodes with lower ETXs will be more

likely to receive innovative packets (i.e., increase the rank) earlier than other nodes.

On the other hand, wormhole links will make some nodes receive innovative packets

(i.e., increase the rank) much earlier that they should. Thus, in the proposed cen-

tralized algorithm, we explore the order of rank increments in order to detect the

wormhole links.

Basically, in RLNC, when an innovative packet is sent from the source node, the

nodes near the source node are more likely to receive the innovative packets earlier

than the nodes that are far from the source node. In Chapter 4, we have demon-

strated ETX is a proper metric to measure the distances between each node and the
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source node. Thus, the nodes with low ETXs can probably receive the innovative

packets earlier. However, the existence of wormhole link intuitively changes the nor-

mal network topology since the innovative packets can be transmitted through the

wormhole link directly and safely, and thus the nodes around the remote side of the

wormhole link can receive the novel packets earlier than expected. With a wormhole

link, the order of the rank increments among the nodes will be significantly changed.

To illustrate the significant changes, we have a RLNC simulation and Figures 4-1 and

4-2 demonstrate the orders of rank increments with and without wormhole link. Here

we have 100 nodes in the network, and we run Algorithm 1 to calculate the ETXs. In

the figures, the red curve denotes the ascending ETXs of the nodes. Then we start

the network coding transmission. The source node sends out an innovative packet,

and for each node, receiving the innovative packet will result in rank increment from

0 to 1. We collect the time stamps of rank increments on the nodes during the whole

transmission, and find out the time order of rank increments. That is the blue line,

which denotes the ETXs of the nodes based on the ascending time order of rank

increments. We find that the blue line deviates from the red line when the wormhole

link exists. That is, the wormhole link truly changes the network topology as well as

the transmission flows. Therefore, we can observe the time order of rank increments,

and release alerts when the deviation of the order exceeds the bound, which is set

by the administrator. We can even determine the range of the nodes who may be

involved in wormhole attack. For example, in Figure 4-2, the nodes whose ETXs are

from 6.0 to 10.0 may be involved with wormhole attack, since they contribute majorly

to the deviation of the blue curve.

For the centralized algorithm, we set up a central node, which owns the authority

to gather information from all the nodes in the network, and we run a wormhole

detection algorithm based on the rank increasing information on the central node.

Each node is responsible to record the time when the rank of the received packets

increases and then generates a report, which includes the details such as the time,

the node address, and the rank. Each node delivers the reports to the central node

via common unicast.
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Based on the intuitions above, we propose Algorithm 2, the centralized algorithm

to detect wormhole attacks on the central node. In Algorithm 2, the central node

chooses an event of rank change, i.e., the rank increment from i to i + 1, and then

searches the received reports to find all the related ones. Then we compare the

time order of ETXs with the ascending ETX sequence and calculate the distance

between them. If the distance exceeds the threshold, we decide there exists wormhole

attack, and release the warning. At last, we update the bound of the distance for

the next detection, in order to make our algorithm adaptive. We apply k-means [23]

to determine the bound, since k-means is powerful to learn the bound distinguishing

two opposite samples1.

In Algorithm 2, each report t is a tuple as Equation (5.1).

t = (time, addr, ETX, rank,Kpub, sig) (5.1)

Here, time denotes the time stamp of the rank increment; addr denotes the address

of the node who sends the report; ETX is the ETX of the reporting node; the value

rank means the rank increased from rank − 1 to rank. Kpub is the public key of

the reporting node. sig is the digital signature of the report. The signature can be

calculated by Equation (6.2). In Equation (6.2), we adopt a hashing function to obtain

the abstract of the plain data P = (time, addr, ETX, rank,Kpub), and then encrypt

the abstract using secret key Ksec of the local node. The result is the signature sig.

In Algorithm 2, Tr denotes the set of the reports of rank increment from r − 1 to r.

5.2 Analysis

We now perform the analysis of the correctness of Algorithm 2. That is, the wormhole

link can remarkably aggravate the Distance in Algorithm 2 so that we can leverage

some learning mechanisms to distinguish whether wormhole links exist with high

1Here the scenario is unsupervised learning since we do not know whether there exists wormhole
link temporarily after each transmission. If we have the knowledge of some historic wormhole attacks,
we can utilize the supervised learning algorithms, such as Support Vector Machine [24].
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Algorithm 2 The Centralized Algorithm

Input: T : the reports from all the nodes V in the network G; D: the number of
dimensions of the code vector space; Normal: the normal distance; Threshold:
the threshold of alert

Output: whether there exists a wormhole attack in the network G; the updated
Normal

1: Randomly select a rank r s.t. r ≥ 1 and r should be small enough, i.e., 1 ≤ r ≤ 5.
2: Let Tr be the set of the reports whose rank increments are from r − 1 to r.
3: Sort Tr into a sequence T e

r s.t. the values of ETX in T e
r are ascending.

4: Let Le be the sequence of ascending ETXs in T e
r .

5: Sort Tr into a sequence T t
r s.t. the values of time in T t

r are ascending.
6: Let Lt be the sequence of ETXs in T t

r while preserving the order.
7: Distance ← Calculate-Distance(Le,Lt, |V |)
8: if Distance−Normal > Threshold then
9: Find out the addresses of the nodes with the most aberrant ETXs.

10: Release a warning of wormhole attack.
11: end if
12: Update the value of Normal using k-means.

Algorithm 3 Calculate-Distance

Input: L1, L2: two lists; n: the number of nodes
Output: the distance between L1 and L2

1: Set up two n-dimensional vectors X and Y .
2: d← 0
3: for i from 1 to n do
4: d← d+ (L1[i]− L2[i])

2

5: end for
6: return

√
d
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accuracy. The Distance essentially illustrates the Euclidean distance between the

two ETX orders. One order owns ascending ETXs, and the other applies the order

of rank increments. We now analyze the Distance in quantitative way. We denote

by δ(l) the set of the ETX differences between two nodes, and the location distance

between the two nodes is l. For instance, in the network there is a node a with ETX

2.0, and there is a node b with ETX 5.0. The location distance between a and b is

10 units. Thus, the ETX difference 5.0− 2.0 = 3.0 is in the set δ(10). We denote by

maxl≤r δ(l) the maximum ETX difference when the location distance is no longer than

r, and minl≥r δ(l) denotes the minimum ETX difference when the location distance

is no shorter than r. Let R be the radius of neighborhood, and let L be the length of

wormhole link, if any. Then we have the lower bound of Distance.

Theorem 3. If there exists a wormhole link with length L in the connected RLNC

network, we have

Distance ≥ min
l≥L

δ(l)−max
l≤R

δ(l). (5.2)

Proof. Let the wormhole link connect the nodes a and b. Without loss of generality,

we assume ETX(a) < ETX(b). The order of the nodes with ascending ETXs should

be

· · · , a, c1, c2, · · · , ck, b, · · · (5.3)

The ETX difference between a and c1 has to be no larger than maxl≤R δ(l). Otherwise,

in (5.3) no node before a (including a) can be neighbor of any node after a. Thus

the RLNC network is not connected, with at least two separated components. The

wormhole link can directly deliver the innovative packet from a to b. Thus, with the

wormhole link, the order will be

· · · , a, b, · · · (5.4)
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We next estimate the lower bound of Distance based on (5.3) and (5.4). That is

Distance

≥ETX(b)− ETX(c1)

=ETX(b)− ETX(a)− (ETX(c1)− ETX(a))

≥ETX(b)− ETX(a)−max
l≤R

δ(l)

≥min
l≥L

δ(l)−max
l≤R

δ(l).

(5.5)

Here to obtain the first inequality, we consider the minimal difference between (5.3)

and (5.4). That is, the change from (5.3) to (5.4) is only the swap between b and c1.

The above inequality finishes the proof.

Since the length of wormhole link L is much longer than the neighborhood radius

R, for most cases the ETX difference for L is much larger than that for R, and thus

minl≥L δ(l) is much larger than maxl≤R δ(l).2 That is, we can guarantee a sufficiently

large lower bound for the Distance given the long enough wormhole link. Since the

estimation of the lower bound in the proof of Theorem 3 is quite rough, the actual

Distance is much larger than the lower bound here. Thus, the wormhole link can

guarantee a large enough Distance to make it recognizable.

5.3 Discussions

We now discuss the technical details in Algorithm 2. We first explain why we have

the bounds (Normal and Threshold) on Distance, a value describing the deviation

of ETX order, at line 8 of Algorithm 2. The main reason is that the Distance owns

uncertainty in nature. In order to study the uncertainty in Distance, we need to ana-

lyze the transmissions of each innovative packet. Let p be the successful transmission

probability over one hop. From the source node to the destined node, the number

2There are some cases that the ETX difference is very small even if L is much longer than R. To
circumvent such scenarios, we may choose another pair of source and destination, and recalculate
the ETXs to make the ETXs distinguishable.
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of the sent packets until the transmission succeeds is a random variable X which

conforms to geometric distribution. Denoted by TX the ETX value of the destined

node, and then TX is the expected value of X3. Thus, we have

TX = E[X] =
∞
∑

k=1

kp(1− p)k−1 =
1

p
. (5.6)

In RLNC, since the transmissions over the hops are independent from each other,

the successful transmission probability p between two nodes is the product of all the

probabilities of the hops that together connect both nodes.

p =
∏

hk∈H

pk (5.7)

where H denotes the set of the hops that connect the source and destination, and

pk denotes the successful transmission probability over the hop hk. In RLNC, each

innovative packet can be transmitted through different sequences of hops H. Among

the hop-sequences, there exists one that can transmit the packets in the shortest time.

To make sure that the packets through the fastest hop-sequence arrive earlier than

others in a high probability, the variance of X over the fastest hop-sequence should

be as low as possible. We calculate the variance as follows:

Var(X) = E[X2]− E2[X] =
1− p

p2
. (5.8)

Applying Equation (5.6), we obtain Equation (5.9).

Var(X) = E[X](E[X]− 1) = TX(TX − 1). (5.9)

As the ETX value TX increases, the variance Var(X) becomes even larger and it

increases much faster than ETX. That means if the ETX of the target node is high

(that is, the target node is far from the source node), it is difficult to predict the

3According to [17], ETX denotes the expected number of the packets to send until one packet
successfully arrives at the destination.
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time when the innovative packet arrives at the target node. In Figure 4-1, there are

obvious deviations on the nodes of high ETXs (around 8.0 to 12.0), even though there

is no wormhole link. Thus we have to give tolerance to such deviations. We define a

deviation Normal for the normal case at line 8 of Algorithm 2, and we leverage some

unsupervised learning techniques to obtain the bounds Normal and Threshold. Since

wormhole links contribute more deviation by redirecting innovative packet flows, the

centralized algorithm can correctly detect the wormhole links with proper learning

algorithms.

We next explain why we choose a relatively small rank at line 1 of Algorithm 2. The

essential reason is about the correspondence between the order of rank increments and

the innovative packet sent by the source node. In RLNC, each innovative packet sent

by the source contains a basis of the code vector space. For each forwarding node,

an innovative packet must have at least one basis that the node has not received.

Thus, the order of rank increments is essentially the order of receiving the basis from

the source. However, if there are pervading undelivered innovative packets in the

network, it is difficult to guarantee that the rank increment of each node is due to the

latest basis sent by the source. Thus, it is desirable to observe the rank increments

when there are relatively a small number of innovative packets pervading the whole

network. In other words, the rank of the sent innovative packets should be small

enough. Thus, we choose a relatively small rank at line 1 of Algorithm 2. A small

enough rank can guarantee the correspondence between the order of rank increments

and the basis, and thus the centralized algorithm can effectively distinguish whether

there exists wormhole link based on the order of rank increments.
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Chapter 6

The Distributed Detection

Algorithm

In this chapter, we consider a practical scenario where centralized authority cannot

be found. We propose DAWN, a distributed algorithm to detect wormhole attacks in

wireless network coding systems. We will perform rigorous analysis on the detection

rate of our algorithm and its resistance against collusions.

6.1 Algorithm Design

The basic idea of DAWN is based on the result of Theorem 1. For any two nodes

in the neighborhood, the one with lower ETX is supposed to receive novel packets

earlier than the other one with high probabilities. In other words, innovative packets

are transmitted from low ETX nodes to high ETX nodes with high probabilities.

In order to monitor the innovative packets transmission direction, nodes will work

collaboratively. In particular, DAWN has two phases on each node: 1) Report packets

direction observation results to its neighbors (Algorithm 4) and 2) Detect whether

any attackers exist (Algorithm 5). The Detect phase is based on the received results

from neighbors during the Report phase. Both of the algorithms are running on every

node in the network. Algorithm 4 runs simultaneously while passing on the packets,

and Algorithm 5 should be asynchronous for different nodes and run at random time
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slots.

Report Phase As shown in Algorithm 4, for each node, it will suspect that one

neighbor is an attacker if it receives novel packets from the neighbor but the ETX of

this neighbor is much higher than that of itself (i.e. , the distance between the ETXs

is greater than the threshold δ). It sends its judgment as a report to its neighbors

(Line 3 - 5). A node is called a judge node of a neighbor if the distance between their

ETXs is greater than the threshold. Each report r is a tuple as Equation (6.1).

r = (time,Asuspect, Aself , Kpub, Snovel, sig) (6.1)

Here, time is when the reporting node discovers the abnormal transmission. Asuspect is

the address of the suspected node, which sends out a novel packet and owns a higher

ETX than the recipient’s. Aself is the address of the reporting local node. Since

any node can modify the report when forwarding it, we need to apply cryptographic

techniques to protect the integrity of the reports. We use digital signatures of the

reports to defend against malicious modification, and abstract of the novel packet

for administrative verification. Thus, we introduce symmetric cryptographic scheme

into our system to make it more robust against attacks. In Equation 6.1 Kpub is the

public key of the reporting node. Snovel is the set of the signatures of the received

novel packets. sig is the signature of the report. The signatures are produced as

Equation (6.2).

sig = Encrypt(Ksec, (Hash(P )) (6.2)

Here Ksec is the secret key of the reporting node. P is the novel packet that was

received from the target.

Detect Phase Algorithm 5 presents the pseudocode of the Detect phase of DAWN.

For each node in the Detect phase, it receives reports from the judge nodes of any

potential attackers. It first examines whether a report is from a valid judge node. If

so, it will forward the report unless it has already been forwarded twice. Three-hops

of the reports make sure that more (reachable) neighbors of the potential attacker will

hear this report (Line 8). Figure 6-1 illustrates an example that a report is forwarded
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Algorithm 4 ReportFunction

Input: N(u): the set of u’s neighbors; the number of the novel packets u received
from each neighbor in the last batch; δ: the threshold on ETX difference.

Output: sv: the local observation result for each neighbor v ∈ N(u) ; Report mes-
sages if any.

1: for v ∈ N(u) do
2: Denote pv the number of novel packets that u received from v during the last

batch
3: if ETX(v) − ETX(u) > δ AND pv > 0 then
4: u broadcasts the report r(u, v, 0);
5: Note: r(u, v, 0) represents the report sent from u about suspicious wormhole behavior

of v, with hop count 0.

6: sv = 1;
7: else
8: sv = 0;
9: end if

10: end for

Figure 6-1: An illustration of report forwarding.
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twice to make sure more neighbors receive it.

The detection algorithm on each node accumulates and calculates the number of its

judge nodes who send report about the reported potential attacker in the current

batch. If the number of judge nodes compose the majority (Line 15), the node will

make the decision that the attacker is involved in a wormhole attack and block it

from future communications.

Algorithm 5 The Distributed Detection Algorithm for Wormholes in
Wireless Network Coding Systems(DAWN) on Node u

Input: R: the set of reports received in the last batch; N(u): the set of u’s neighbors; sj :
the local observation result of each neighbor j ∈ N(u); δ: the threshold.

Output: Detected wormhole attackers in N(u), if any.

1: for Each report r(i, j, k) ∈ R do

2: if ETX(j) − ETX(i) ≤ δ OR i /∈ N(j) then
3: Discard this report;
4: else

5: if j ∈ N(u) then
6: sj ← sj + 1;
7: end if

8: if k < 2 then

9: Forward this report r(i, j, k + 1);
10: end if

11: end if

12: end for

13: for each v ∈ N(u) do
14: Let C(v)={i |i ∈ N(v) s.t. ETX(v) − ETX(i) > δ}
15: if sv ≥ ⌈ |C(v)|+1

2 ⌉ then
16: Mark v as a detected wormhole attacker, and block any traffic from or to node

v in future batches.
17: end if

18: end for

6.2 Lower Bound of Detection Rate

In this section, we will show our proposed distributed algorithm DAWN can perform

well with a high lower bound on detection rate. In particular, we have obtain the

result in Theorem 4.

32



Theorem 4. For an individual node v to be detected, let N(v) denote the set of the

neighbors of v, and S(v) is the subset of N(v) s.t.

∀w ∈ S(v), ETX(w)− ETX(v) > δ (6.3)

Here δ is the threshold. Let n = |S(v)|, then the lower bound of the success rate of

the algorithm is

B = 1− exp (−2(np− ⌊n
2
⌋)2

n
) (6.4)

Here p is specified as Equation (6.5).

p =
ETX(v) + δ − 1

2ETX(v) + δ − 1
(6.5)

Proof. Based on Theorem 1, one lower bound of the probabilities that one node in

S(v) will receive the novel packet earlier than v equals to p in Equation (6.5) by

introducing the threshold δ. Thus, the success rate R satisfies

R ≥
n

∑

k=⌈n+1
2

⌉

(

n

k

)

pk(1− p)n−k (6.6)

The lower bound B can be determined by applying Hoeffding’s inequality [25].

R ≥ 1−
⌊n

2
⌋

∑

k=0

(

n

k

)

pk(1− p)n−k (6.7)

≥ 1− exp (−2(np− ⌊n
2
⌋)2

n
) = B (6.8)

To illustrate the lower bound more clearly, we now show some numerical results with

different settings. Figure 6-2 demonstrates the lower bound of the detection rate of

DAWN with various number of judge nodes and threshold (i.e., n and δ in Equation

(6.4) and (6.5) respectively). We may set proper n and δ for each node (i.e. n = 41,

δ = 10.0, ETX = 5.0) in order to address the attackers successfully with a high
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Figure 6-2: The lower bound of the success probability of the proposed distributed
algorithm, with variables n and δ. The ETX of the node to be detected is 5.

Table 6.1: Lower bounds B for different scenarios
ETX(v) δ n B

5.0 9.0 39 98.66
5.0 8.0 49 98.97
5.0 10.0 41 99.38

probability near 1, as what Table 6.1 indicates. As the simulations in Chapter 7, the

real detection rate is much higher than the lower bound.

6.3 Collusion Resistance of DAWN

The distributed detection algorithm DAWN requires the collaboration of the worm-

hole attackers’ neighbor nodes, i.e., monitoring attackers’ behavior, sending, forward-

ing and analyzing reports. It is possible that although these nodes do not participate

in wormhole links, they collude with wormhole attackers by making false reports

against honest nodes or other misbehavior in the report procedure to make the de-

tection algorithm malfunction.

In this section, we analyze the resistance of DAWN against collusions in the report
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procedure. In particular, we obtain a condition on the number of colluding nodes,

under which DAWN is resistant against colluding attacks, as stated in Theorem 5.

Theorem 5. Let M be the set of the colluding nodes in the whole network. Then

a necessary condition for DAWN to be resistant against colluding attacks is that

Equation (6.9) holds for any node v.

|M ∩ S(v)| < ⌊|S(v)|+ 1

2
⌋ (6.9)

Here S(v) is the same as in Theorem 4.

Proof. Sketch: We prove by contrapositive, i.e., if Equation (6.9) does not hold, the

decision error rate is not bounded. Suppose that DAWN is making a decision whether

any node v is a wormhole attacker. If v is innocent, all the malicious nodes in S(v)

can send false reports claiming v is involved in the wormhole attack. However, the

number of the good nodes in S(v) who can send reports indicating v is innocent is

specified as Equation (6.10).

|S(v) \M | < ⌈|S(v)| − 1

2
⌉ ≤ |M ∩ S(v)| (6.10)

Because it is the same with the scenario that most nodes of S(v) is honest while v

is malicious, it is impossible to judge whether v is malicious. For the case where v

is a wormhole attacker and Equation (6.9) does not hold, similar conclusion can be

drawn.

For other scenarios where the colluding nodes dominate the neighborhood of worm-

holes attackers, since it falls out of the main scope of this paper, we omit the detailed

solutions here and leave it to future work.

6.4 Attackers Can Be Smarter

Above discussions have covered the ordinary wormhole attack and the collusion at-

tack. However, the attacker can manipulate the wormhole link more intellectually.
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For example, the attacker may cheat its neighbors about its ETX by misreporting the

link loss probabilities. The attacker can also initiate the wormhole link opportunisti-

cally. The ultimate objective of the attacker is to avoid being detected by the judge

nodes. In this section, we discuss the defending solutions against these intellectual

strategies.

The attacker can successfully forge its ETX only by misreporting the distances be-

tween its neighbors and itself. Otherwise, its neighbors, which are good nodes and

can share correct information with each other, can find the attacker’s claimed ETX is

incorrect. Moreover, we can eliminate such misreporting behaviors by letting at least

three of its neighbors work collaboratively to discover that the attacker’s claimed posi-

tion (based on its claimed distances) does not exist. Thus, we can make it impractical

for the attacker to forge its ETX given the threshold and others’ ETXs.

It is still possible for the attacker to apply a opportunistic policy on initiating the

wormhole link, in order to avoid being detected. That is, the attacker only initiates

the wormhole link when there is no judge node in its neighborhood, assuming the

wireless network is dynamic (i.e. some mesh networks or sensor networks). For this

scenario, we can assign some trusted nodes along the network boundary1 to ensure

that there are always enough judge nodes for each node. Even though this solution

is a little expensive, we believe it is efficient when the network is deployed within a

not too large area.

1There are very few nodes near the network boundary, indicating some nodes may have insufficient
judge nodes.
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Chapter 7

Evaluations

To evaluate the effectiveness and efficiency of our Centralized Algorithm and DAWN,

we have developed a C based discrete event simulator for network coding systems and

implemented our algorithms in the simulator.

7.1 Simulation Setup

We run our simulations on a Linux workstation (2.0 GHz CPU and 32 GB memory).

We use the cryptography library Beecrypt [26] to implement the encryption and

signature algorithms. We adopt RSA [27] and MD5 [28] algorithms with 4096-bit key

size. We also simulate a certificate authority (CA), which manages the public keys

and identities of the nodes. That is, a public key infrastructure (PKI) is applied in

our simulations. When we calculate the time cost and communication overhead, we

also include the contribution of PKI.

Performance Metrics: The main performance metrics in our evaluations include

True Positive Rate (TPR), False Positive Rate (FPR), extra computation time and

the ratio of extra communication over the total data transmissions. We define TPR

and FPR as follows.

1. TPR, the true positives out of the positives, is defined as Equation (7.1).

TPR =
TP

∑

u∈M |N(u)| (7.1)
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Figure 7-1: Deployment of the 100 nodes. Malicious node 21 and 22 are connected
by a wormhole link. The attackers can enable or disable the wormhole link at any
time.

Here TP denotes the number of the attackers’ neighbors, who correctly detect

the attack.
∑

u∈M |N(u)| is the total number of attackers’ neighbors.

2. FPR is false positives out of the negatives, as Equation (7.2).

FPR =
FP

∑

u 6∈M |N(u)| (7.2)

Here FP denotes the total number of the false detection alarms initiated by any

node.

7.2 True Positive Rate v.s. False Positive Rate

To take a closer look at the effectiveness of our algorithms, our first simulation is

on the network with a fixed topology. 100 nodes are distributed uniformly within

the area of 1000x1000 length units, as Figure 7-1 illustrates. Two nodes, whose

addresses are 21 and 22, are involved in the wormhole link. The attackers can initiate
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the wormhole link at any time during the simulation. We consider the unicast and

broadcast. For the unicast case, the source node’s address is 1 and the destination

node’s is 31. When node 31 receives each innovative packet, it sends an ACK message

to node 1 in unicast. For broadcast, the destination node is not specified. We will test

random topologies later, when we will choose the source and destined nodes randomly

as well. For unicast, if the source and destination are not connected by the network,

we eliminate this trial when we calculate the measurements.

Figure 7-2 presents the ROC diagram of Centralized Algorithm and DAWN with the

fixed deployment of Figure 7-1. The points in the ROC diagram are drawn using the

pairs of TPR and FPR with different thresholds, i.e., Threshold in Algorithm 2 and

δ in Algorithm 5. Too low threshold (i.e. Threshold < 10 or δ < 0.5) will make both

TPR and FPR near 100%. That is, the system is over sensitive and always gives

false alarms. Reversely, too high threshold (i.e. Threshold > 100 or δ > 2.0) will

make both TPR and FPR near 0%. That is, the system seldom releases warnings

about attacks, because the Centralized Algorithm is too tolerant, and for DAWN

there will be few judge nodes of the target due to the strict requirement brought

by high threshold. If we choose proper threshold (i.e. Threshold around 50 and

δ ∈ (1.4, 1.6)), for Centralized Algorithm the TPR is over 92.00% and the FPR is

less than 11.50%, and for DAWN the TPR is over 91.10% and the FPR is less than

12.01%. It verifies both Centralized Algorithm and DAWN can detect the attackers

accurately.

The second set of simulations is on multiple networks with various topologies. We

deploy 100 different topologies, and calculate the average TPR and FPR. For each

topology, we run 100 instances. The TPR and FPR for each topology are averaged

over the 100 instances. Figure 7-3 presents the ROC diagram of Centralized Algorithm

and DAWN on networks with different topologies. The TPRs of both the algorithms

still remain over 89.43% for multiple topologies and the FRPs can be less than 11.10%.

The performance is a little worse than that in Chapter 7.2 as there are some scenarios

where the wormhole link connected two nodes whose ETXs are close. It verifies that

Centralized Algorithm and DAWN can detect the malicious nodes accurately for
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Figure 7-2: The ROC diagram of Centralized Algorithm and DAWN based on the
deployment of Figure 7-1.

Figure 7-3: The ROC diagram of Centralized Algorithm and DAWN on networks
with various topologies.
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Figure 7-4: The TPR increases as the number of the judge nodes surrounding the
attacker increases.

Figure 7-5: The ROC diagram of colluded attacks for different scenarios. The perfor-
mance reduces as the number of attackers in the judge nodes increases. There were
7 judge nodes of the attacker in total.
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Figure 7-6: Centralized Algorithm: the average time cost of the central node in
different scenarios

Figure 7-7: DAWN: the average time cost per each node in different scenarios
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different scenarios.

7.3 Impact of the Amount of Judge Nodes on DAWN

To investigate the influence of the number of judge nodes on the performance of

DAWN, we conduct the following experiments. We vary the node density in the

network to change the number of judge node around the wormhole attackers. For

different scenarios with different judge nodes, we calculate the actual TPR in the

network as well as the theoretical lower bound (as described in Chapter 6.2).

Figure 7-4 demonstrates the TPR with different number of judge nodes in the unicast

networks. Basically, we can see that both the actual TPR and the theoretical lower

bound increase when the number of the judge nodes increases from 2 to 7. Even in

the scenario where there are only 2 judge nodes around the wormhole attackers, the

TRP can still be over 92.32%. Moreover, the actual TPR is always greater than the

theoretical lower bound. It verifies the TPR can be sufficiently high if the number of

the judge nodes is big enough.

7.4 Evaluation on Collusion Resistance of DAWN

In order to examine the capability of DAWN in resisting collusions among judge

nodes. We test our algorithm in the scenarios with different numbers of colluding

judge nodes. We perform experiments in the setting where there are 7 judge nodes

in total. We observe the TPRs with different number of colluding nodes.

In Figure 7-5, it shows that the TPR decreases as the number of the colluding judge

nodes increases. There is an abrupt reduction of the TPR when the number of

colluding nodes changes from 3 to 4. In the cases with 1, 2 and 3 colluding nodes, all

the TPRs are over 87.41%. It verifies that DAWN has strong resistance against the

colluding attacks.
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7.5 Overhead

We investigate the overheads of Centralized Algorithm and DAWN using two metrics:

the computation time and communication overhead in percentage.

7.5.1 Computation Cost

We measure the average computation time of the central node in the Centralized

Algorithm, as well as the average time cost per each node in the network for DAWN.

The simulation takes one batch of the data transmission.

For Centralized Algorithm, Figure 7-6 shows the average computation time cost of

the central node, when we set different node densities of the network (with different

number of nodes in the 1000x1000 sized area). The computation time grows linearly

with the total number of the nodes, since more nodes can generate more reports for

the central node to process. For both unicast and broadcast, the total time cost is

several milliseconds, which is tolerable for most RLNC systems.

For DAWN, Figure 7-7 shows the average computation time cost per node and per

batch with various node densities. We can observe that our algorithm costs more

time, when there are more nodes in the network and correspondingly more events to

monitor and report. Overall it shows the computation time cost of DAWN is tolerable

for most RLNC applications, with a few milliseconds at most.

7.5.2 Communication Overhead

For communication overhead, the metric we use is the ratio of the number of the extra

packets generated by the wormhole attack defending algorithm, and the number of

the original total data packets transmitted. Table 7.1 and Table 7.2 show the commu-

nication overheads for Centralized Algorithm and DAWN in unicast and broadcast

respectively. It demonstrates that both the communication overheads are tolerable if

the node density in the network is not too high.
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Table 7.1: The communication overhead statistics for unicast
# nodes Centralized Alg. overhead (%) DAWN overhead (%)

30 1.32 3.54
40 1.44 3.64
50 3.01 8.22
60 3.53 10.49
70 4.11 12.72

Table 7.2: The communication overhead statistics for broadcast
# nodes Centralized Alg. overhead (%) DAWN overhead (%)

30 1.45 4.34
40 1.65 3.71
50 3.41 9.43
60 3.94 12.44
70 4.32 15.90
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Chapter 8

Related Works

Random Linear Network Coding (RLNC) has extensive applications in wireless net-

working community as it can significantly boost the throughput and utilization of

the information capacity [1, 2]. Many schemes that can achieve RLNC have been

proposed, such as ExOR [3], COPE [4] and MORE [5]. It is challenging to bring

these solutions to the real world due to the complexity of implementation or lacking

research of the related security problems. The naive RLNC is vulnerable to several

types of attack, such as pollution attack [29], Byzantine attack [30] and wormhole

attack [9]. We will focus on wormhole attack at RLNC network.

For classically modeled networks, researchers have offered several solutions to detect

and avoid such attacks [9, 8, 10, 13, 14, 31, 32, 15, 33, 16, 12, 34, 6, 35]. We can divide

these existing solutions into two major categories: utilizing temporal and spatial

information, and detecting network topology change based on topology and graph

analysis.

• The first category [9, 13, 31, 15, 16, 32] uses information on time or space within

the network. For example, Hu et al [13] use packet leashes to detect wormhole

attacks, by appending in each packet the location information of the senders

and they accordingly detect the physically impossible transmissions. Both [16]

and [15] are based on the round-trip travel time of packet to detect wormhole

links. Khalil et al [32] introduced the guard node to help the local node detect
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the malicious attackers, assuming the network had a static topology. Li et al

[31] proposed forced collisions to defend against wormhole attacks. There are

two major limitations for the methods dependent on time and space: the nodes

in the network have to be tightly synchronous and the node location information

is available [32].

• In the second category [10, 6, 14, 8, 35], topological structures and graph models

are used. Among them, Wang et al use visualization methods to detect worm-

hole links in sensor networks, revealing the intrinsic change of network topolog-

ical structure under attacks [14]. In [6], Dong et al detect and locate various

wormholes and relies on observing inevitable topology deviations introduced in

the network by wormholes. Maheshwari et al [8] leverage the connectivity in-

formation to detect wormhole links within wireless multi-hop networks. They

assume the network can always be modeled as a graph, and the connectivity

can always be represented by edge between vertices. Nevertheless, in wireless

network coding systems, the connectivity in the network is described in differ-

ent ways than traditional networks. Xu et al [35] use the abnormalities in hop

counts brought by wormhole link. The significant change in hop counts reveals

the essential change in network topological structure. The authors can detect

such a change by sending probe packets. However, in RLNC, each innovative

packet may spread by a series of multicasting and thus a hop counting scheme

cannot be established. Thus one cannot use the ideas in the second category.

Before my work, there is no solution of the wormhole attack detection for wireless

network coding systems.
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Chapter 9

Conclusion

In this paper, we have investigated the negative impacts of wormhole attacks on wire-

less network coding systems. We have proposed two algorithms that utilize the metric

ETX to defend against wormhole attacks. We have proposed a Centralized Algorithm

that assigns a central node to collect and analyze the forwarding behaviors of each

node in the network, in order to react timely when wormhole attack is initiated. We

have proven the correctness of the Centralized Algorithm by deriving a lower bound

of the deviation in the algorithm. We have also proposed a Distributed detection

Algorithm against Wormhole in wireless Network coding systems, DAWN. DAWN is

totally distributed for the nodes in the network, eliminating the limitation of tightly

synchronized clock. DAWN is efficient and thus it fits for wireless sensor network.

For both centralized and distributed algorithms, we have utilized the digital signa-

tures to ensure every report is undeniable and cannot be forged by any attackers.

The simulations have shown that the proposed algorithms can detect the malicious

nodes participating in wormhole attack with high successful rate and the algorithm

is efficient in terms of computation and communication overhead.
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