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ABSTRACT 

As humans accelerate their alteration of the landscape, it is increasingly 

important to understand relationships between organisms and their environment. 

Stable isotope analysis is an increasingly popular tool for identifying ecological 

processes and can be a valuable asset for understanding how landscape alteration 

influences species and communities.  In the Chihuahuan Desert, shrub encroachment 

due primarily to historic overgrazing and fire suppression and exacerbated by drought 

is a primary manifestation of indirect human landscape alteration and has 

consequences for endemic biodiversity.   

Shrub encroachment changes many habitat components for consumers, of 

which and physical structure potential energy source (i.e., diet) are paramount and lack 

of ability to discriminate between structural and dietary components of habitat 

suitability has confounded general understanding of the impacts of aridland 

desertification on faunal communities; however, stable isotopes have the potential to 

delineate components of overall habitat composition that comprise consumer diet.  

The research detailed in my dissertation uses black-throated sparrows (Amphispiza 

bilineata) along with grasshopper species Trimerotropis pallidipennis, Opeia obscura, 

and Melanoplus occidentalis to broaden understanding of consumer use of changing 

environments and to further the application of stable isotopes to analysis of ecological 

processes. 

My first chapter contributes to advancing stable isotope analysis as an accurate 

tool in avian ecology.  Using feathers from Japanese quail (Coturnix japonica) 

obtained from the George M. Sutton Avian Research center, I explored the question, 
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does the method by which a feather is cleaned prior to stable isotope analysis affect its 

resulting stable isotope values?  I applied a paired cleaning design to test the isotopic 

influence of the two most common cleaning agents, 2:1 chloroform:methanol solvent 

and dilute detergent, and not cleaning feathers.  I found that different cleaning 

methods resulted in highly variable stable isotope ratios for hydrogen and nitrogen, but 

stable carbon isotope ratios were not affected.  However, I further found that 

employing a two-step cleaning procedure, cleaning first with dilute detergent and 

second with 2:1 chloroform:methanol, greatly increased the precision and 

predictability for stable hydrogen and nitrogen values.  This experiment underscores 

the importance of delineating standardized procedures for tissue preparation for stable 

isotope analyses, increases reliability of data and improves the potential for data 

comparison between studies. 

In my second chapter, I explore the role of variation in isotopic sources in 

influencing consumer stable isotope ratios and how this variation affects data 

application toward two popular philosophies, 1) isotopic niche width, and 2) degree of 

individual isotopic specialization.  Using stable carbon isotope data from plants, 

grasshoppers, and black-throated sparrows collected at the Jornada Experimental 

Range in Las Cruces, New Mexico, I compared means and variances of consumers to 

two plant isosources—C3 and C4 plant photosynthetic types.  I found that consumers 

of C3 plants had higher variation in stable carbon isotopes, primarily due to higher 

variation in the C3 plant isosource.  I further compared my data to simulations in 

which consumers used different isosources.  I concluded that variance in consumer 
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stable carbon isotope ratios can be more clearly applied to inferences of individual 

specialization than to measures of a population’s niche width. 

In my third chapter, I use stable carbon isotope ratios to see how consumers 

analyzed in chapter two are using different facets of their carbonaceous habitat in the 

face of landscape change.  My study area is located in the northern Chihuahuan 

Desert, an area formerly dominated by semi-arid grasslands, but now, due to alteration 

of grazing and fire regimes, has become dominated by shrubs.  This landscape change 

inevitably affects the wildlife living there, so my objective was to see how shrubland 

habitats are used by species relative to grassland habitats, given current knowledge of 

species habitat use.  The results of this study indicate that all species analyzed occupy 

habitats representative of the overall available range of habitat types from grassland to 

shrubland.   Each grasshopper species employs a different foraging pattern:  T. 

pallidipennis consumes primarily C3 components of its habitat for food and O. 

obscura consumes primarily C4 components, despite both occupying areas ranging 

from nearly 100% C4 grass to 100% C3 shrubs.  M. occidentalis uses C3 and C4 habitat 

components for food proportional to their availability.  Black-throated sparrows, 

despite frequent classification as a shrubsteppe or shrub-preferring species and 

frequent nesting in shrubs, consume primarily or exclusively C4 grass-based food.  

This study illustrates that stable isotopes can help clarify how different components of 

habitats can be used for different purposes, that different species can have different 

consumption patterns across ecotones, and how classification of species like black-

throated sparrows into particular guilds may obscure use of other habitat components. 
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 xvii

My fourth chapter details an observed correlation between stable nitrogen and 

stable carbon isotope ratios in black-throated sparrows and suggests possible 

explanations.  Stable nitrogen isotopes are typically used to indicate trophic level or 

nutritional stress in consumers.  In this system, for all three grasshopper species 

analyzed in chapter 3 and both hatch-year and adult black-throated sparrows, no 

relationship was seen between a consumer’s stable nitrogen isotope ratio and the site 

at which the consumer was sampled, suggesting that the type of habitat which a 

consumer occupies does not influence stable nitrogen isotope ratios.  However, for 

black-throated sparrows, particularly adults, there are higher stable nitrogen isotope 

ratios for individuals consuming a higher proportion of C3 carbon.  Considering 

previous studies on stable nitrogen enrichment, trophic level, and nutritional and water 

stresses, the most feasible explanation for this pattern is that some black-throated 

sparrows are consuming higher trophic level food items containing C3-based carbon.  

Further studies of gut contents and foraging behavior would help clarify this 

explanation.  Additionally, the low trophic enrichment values seen (+2.75‰ for 

grasshoppers to a maximum of +3.37‰ for adult black-throated sparrows) relative to 

the average accepted trophic nitrogen enrichment of +3.4‰ (range 3-5‰) indicate that 

although this Chihuahuan Desert system is water limited, it does not exhibit overall 

water or nutritional-stress.  This suggests that dietary differences may explain 

differential stable nitrogen enrichment in black-throated sparrows.



 

 

 

CHAPTER 1 

 

EFFECT OF CLEANING REGIME ON STABLE ISOTOPE RATIOS OF 

FEATHERS IN JAPANESE QUAIL (COTURNIX JAPONICA) 

Jacqueline M. Paritte and Jeffrey F. Kelly, Department of Zoology/Oklahoma 

Biological Survey, University of Oklahoma, Norman, OK  USA 

Abstract 

Stable isotope analysis of feathers is an increasingly important source of 

information on diet and movement of birds.  Feathers are typically cleaned with a 

solvent prior to analysis, but the effects of this cleaning on resulting data have not 

been examined critically.  We conducted an experiment to determine if cleaning 

regime for feathers of Japanese Quail (Coturnix japonica) affected hydrogen (δD), 

carbon (δ13C), and nitrogen (δ15N) stable isotope ratios.  A paired design was used to 

clean feathers with 2:1 chloroform:methanol or detergent.  Results after initial 

cleaning indicate for hydrogen approximately 40‰ enrichment of 2:1 

chloroform:methanol-treated feathers over other treatments but no correlation between 

treatments.  We found a similar pattern among treatments for carbon, but the effect 

was on the order of 0.2‰.  Nitrogen values showed no discernible correlation, but 

both uncleaned and 2:1 chloroform:methanol treatments on average had enriched 

values compared to detergent.  Further, variance among samples was high for 
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hydrogen and nitrogen measurements.  After recleaning, differences in mean hydrogen 

isotope ratios were no longer evident data for hydrogen and carbon became less 

variable, and carbon maintained its initial pattern.  We suggest a standard method of 

cleaning feathers, first with a dilute detergent solution, then with 2:1 

chloroform:methanol solvent.  This study has implications for increasing repeatability 

of hydrogen, carbon, and nitrogen stable isotope measurements, which would increase 

validity inter-laboratory comparisons and the utility of large-scale projects using 

compiled data sets. 

Introduction 

Stable isotope analysis has become increasingly popular in avian ecology for 

tracing dietary inputs (DeNiro and Epstein 1978, 1981; Hobson et al. 1999; Wolf et al. 

2002), food webs (Hobson et al. 1993; Hobson et al. 1994; Kelly 2000; Birchall et al. 

2005), and movement patterns (Cherel et al. 2000; Kelly et al. 2005; Mazerolle et al. 

2005; Dunn et al. 2006) of birds.  The technique analyzes within-sample relative 

quantities of hydrogen, oxygen, carbon, nitrogen, or sulfur stable isotopes, which vary 

naturally due to physical, chemical, and biological phenomena. 

As stable isotope approaches have been rapidly incorporated into ecology, a 

multitude of sample preparation methods have been employed.  However, discovery of 

novel applications for isotopes has tended to overshadow advances in methodology.  

More attention has been given recently to detailing accuracy and precision of 

published results (Jardine and Cunjak 2005), furthering laboratory experiments to test 

assumptions (Gannes et al. 1997), developing correction techniques, such as those for 

exchangeable hydrogen (Wassenaar and Hobson 2000a, 2003), and identifying sources 
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of intrasample variation in stable isotope analysis in order to minimize impact on data 

(Wassenaar and Hobson 2006; Wunder and Norris 2008).  Wunder and Norris (2008), 

when comparing δD error from data interpolation to analytical error, concluded that 

analytical error was highly influential in the incorrect assignment of birds to their 

geographic origin; however, their definition of analytical error only considered mass 

spectrometric measurement error, not error from sample preparation.  Understanding 

the impact of various sample preparation methods on the mean and variance of stable 

isotope measurements is an important component of analytical error and requires 

controlled comparisons for each sampled tissue type. 

In avian isotope studies, primarily those that estimate geographic origin, 

feathers are commonly sampled because they are metabolically inert once grown 

(Hobson and Wassenaar 1997) and are relatively unintrusive to sample (Jaspers et al. 

2007).  Feathers are typically cleaned with a solvent prior to analysis to remove 

residual dirt and oil, yet there is no standard cleaning method and effects of 

differences in cleaning methods on resulting data have not been examined critically.  

Only one attempt at cleaning comparison was found in the literature.  Bensch et al. 

(2006), prior to analyzing feathers for an African willow warbler study, compared 

isotope ratios in detergent cleaned and uncleaned feathers and found no measurement 

difference.  This comparison is significant; however, more comprehensive studies are 

needed to determine the most effective feather cleaning method and to move toward 

standard sample preparation protocol.  Creating detailed cleaning protocols is a 

complex process, but may allow for more data consistency with the goal of obtaining 

the best possible estimate of the true isotope value in the tissue.  If cleaning regimes 
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influence stable isotope ratios, developing a consistent routine with appropriate 

cleaning agents can increase repeatability of analyses and reduce risk for isotopic 

fractionation due to cleaning, thereby improving the efficacy of hydrogen, carbon, and 

nitrogen values in their applications and increase reliability of comparison among data 

sets. 

Here we evaluate three common feather washing techniques to determine how 

they influence hydrogen, carbon, and nitrogen stable isotope ratios.  From these 

experiments we elucidate the presence and magnitude of bias that is introduced into 

isotope data through cleaning agent choice and suggest which method produces the 

most consistent data. 

Methods 

We reviewed 68 publications that used feathers for stable isotope analysis 

(Table 1) and found reports of 14 cleaning compounds used, the two most common 

being a solvent of 2:1 chloroform:methanol (43%; 29 publications) and detergent 

(15%; 10 publications).  Another eight publications (12%) either did not clean feathers 

before processing or did not document cleaning method.  Based on this survey, we 

chose to use 2:1 chloroform:methanol, detergent, and no cleaning as the cleaning 

treatments for this study.  Further, few publications mentioned comprehensive 

specifics of cleaning procedures (e.g., duration of washing/drying, agitation method), 

so our experiment protocol here is based on how we clean feathers in our lab. 

We obtained 17 frozen Japanese Quail (Coturnix japonica) of similar age, 

mass, and diet, from the Sutton Avian Research Center in Bartlesville, OK (36ºN, 

96ºW, elevation 230m).  To reduce isotopic variation seen among feathers in 
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individual birds, we used only the two first primary feathers from each bird, both of 

which should reflect isotope ratios in symmetrical patterns.  Since quail only have two 

of any corresponding feather, comparing three cleaning treatments requires that both 

the left and right feathers receive two of the three treatments such that one treatment is 

assigned to both the left and right feathers.  This duplicate treatment allows for 

transitive comparison of the other two treatments.  If replicated treatments yield the 

same values from both left and right primaries (which should yield similar isotope 

ratios), the other two treatment values should then be comparable. 

To do this, we removed left and right first primary feathers (Figure 1) and 

randomly assigned each feather to one of two cleaning treatments – 2:1 

chloroform:methanol and detergent or detergent and no cleaning – such that each quail 

received both treatments.  We halved feathers along the rachis. 

We randomly cleaned one feather half with 1 of the 2 cleaning types in its 

assigned treatment and the other half with the other cleaning type.  We placed feather 

halves cleaned in 2:1 chloroform:methanol in a 120mL sealed jar with the solvent and 

shook the jar for 30 seconds under a fume hood.  We then removed the feather and 

allowed it to air dry for 24 hours under a fume hood.  Similarly we cleaned the feather 

halves in detergent once with 1L of a 1:30 solution of Fisher® Brand Versa-Clean 

(catalog number 04-342) detergent:deionized water, then rinsed three times in 3-1L 

jars of deionized water and allowed to air dry for 24 hours under a fume hood. We 

changed the deionized water after every 5 feathers to prevent detergent accumulation. 

We left uncleaned feather halves in original condition.  We then sampled feathers for 

δD, δ13C, and δ15N analyses.  After this first sample was taken, to further test for 

 5



solvent residue effect on isotope values and data variation we recleaned feather halves 

treated with the 2:1 chloroform:methanol/detergent treatment with the other treatment 

in its respective pair and resampled for δD, δ13C, and δ15N analyses. 

To ensure any variation in feather stable isotope ratios was not due to variation 

along the feather, we took δD samples from only the last 1cm of the feather and 

δ13C/δ15N samples from next to last 1cm. One cm of feather provides enough tissue for 

2 samples, allowing us to resample the same section of feather a second time after 

additional treatment.  We used entire feathers, including rachis and barbs, for analysis.  

To reduce further sample variation due to isotopic variation within feather parts, we 

cut each sample to contain proportional quantities of the rachis and barbs. 

Stable isotope analyses 

Hydrogen stable isotope samples were run at the Environment Canada Stable 

Isotope Hydrology and Ecology Research Laboratory in Saskatoon, Saskatchewan, 

Canada as described in Wassenaar and Hobson (2003).  δ13C/δ15N samples were run at 

the Stable Isotope Laboratory of the Department of Earth and Planetary Sciences, 

University of New Mexico, Albuquerque, New Mexico. 

Statistical analyses 

To determine if cleaning treatments yield similar results, we performed paired 

t-tests to compare sample means.  We also provide least squares best-fit regression 

lines as a descriptor of data colinearity.  If treatments yield the same results, data 

points will fall along a 1:1 line (slope = 1, intercept = 0).  We also used these tests to 

compare data from the detergent treatments from left and right wings of the same 

quail.  These data should also fall along a 1:1 line if left and right wings are producing 
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equivalent values.  For the recleaning experiment, we used the aforementioned t-tests 

along with Levene’s test for equal variance to determine if within-sample variation 

decreased with recleaning. 

Results 

In the uncleaned/detergent treatment, uncleaned values were lighter than 

detergent values for δD (means, t14=-2.86, p=0.013; regression, Figure 2a), but heavier 

than detergent means for δ15N (means: t16=3.37, p=0.004; Figure 2e).  Uncleaned and 

detergent means for δ13C were not different (means, t16=0.64, p=0.529; regression, 

Figure 2c).  For detergent/2:1 chloroform:methanol pairs, 2:1 chloroform:methanol 

values were heavier for all three elements (means: δD – t16=11.91, p<0.001; δ13C – 

t16=4.018, p=0.001; δ15N – t16=6.66, p<0.001; regressions, δD – Figure 2b; δ13C – 

Figure 2d; δ15N – Figure 2f). 

When we compared detergent treatments from left and right wings for each 

quail we found no differences between means (δD – t16=-0.48, p=0.64; δ13C – 

t16=0.03, p=0.97; δ15N –  t16=-0.30, p=0.77).  There were 1:1 trends in δD and δ13C, 

though there was not a trend for δ15N (Figure 3). 

The recleaned feathers show less isotope ratio variation than those cleaned 

only once (Table 2, Figure 4).  There were no differences between means for δD and 

δ13C (δD – t16=-0.55, p=0.59; δ13C – t16=0.78, p=0.44), and only a marginal difference 

for δ15N (t16=2.14, p=0.05).  There were 1:1 trends for δD and δ13C (Figure 4).  The 

δ13C trend is strengthened if an outlier point is excluded (y=0.60[0.19]x-7.32[3.43], 

where numbers in square brackets are 1SE, r2=0.42). For δ15N, the linearity deviates 

slightly from 1:1. 
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Discussion 

These experiments show that cleaning method affects hydrogen, carbon, and 

nitrogen stable isotope ratios of bird feathers. Cleaning methods are not 

interchangeable and cleaning only once with a given agent may not be sufficient for 

both precise and accurate isotope analysis.  For feather cleaning prior to analysis, we 

propose first using detergent, then recleaning with 2:1 chloroform:methanol.  Though 

some studies we reviewed (Hobson 1999; Wassenaar and Hobson 2000b) cleaned 

feathers multiple times with the same solvent, we did not test this and make no 

judgment about its effectiveness. 

Challenges 

In stable isotope analysis, absolute values of samples measured are never 

known, but repeated measures of homogenized samples can improve confidence in the 

measured isotope ratio.  Cleaning agents may remove contaminants, but may also 

change feather isotope values either by leaving a residue with a different enough stable 

isotope ratio to change the measured value or by causing atom exchange, a 

phenomenon that involves removing atoms from the feather and replacing them with 

atoms from the cleaning agent.  Atom exchange is most commonly seen with 

hydrogen (Wassenaar and Hobson 2003) and varies with pH, temperature, and solvent 

(Schimmelmann 1991; Campbell et al. 1995).   

To infer how different cleaning treatment impacted feather isotope ratios 

relative to the real isotope values of the feathers, we examined the direction of isotopic 

shift after recleaning (Figure 5).  The case in which recleaning with a second solvent 

shifts isotope ratios toward those of feathers cleaned only in this solvent may suggest 
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that solvent is driving the isotope ratio of the sample.  If values shift either in the 

opposite direction or beyond those of the feathers cleaned only in this solvent, then it 

is unlikely that the solvent is primarily responsible for shifts in isotope ratios. 

For hydrogen, both recleaned treatments have stable isotope ratios closer to 

those of the original 2:1 chloroform:methanol treatment, which is consistent with the 

idea that 2:1 chloroform:methanol may be driving δD values.  Since both chloroform 

and methanol are highly volatile, potential for residue from either solvent is low.  

However, if we consider the known relationship between precipitation and feather δD 

(Hobson et al. 1999) and also that the predicted value for feather δD at Bartlesville, 

OK, where the quail were raised is -71±11‰ (based on water data from Bowen and 

Revenaugh [2003] and a standard -25‰ fractionation from water from Hobson et al. 

[1999]), our detergent recleaned with 2:1 chloroform:methanol (-74.12±3.77‰; Table 

1) and 2:1 chloroform:methanol recleaned with detergent (-73.35±6.11‰) treatments 

accurately reflect the predicted value, thus supporting the notion that these treatments 

reflect the true isotope values of the feathers.  The mean for the 2:1 

chloroform:methanol only treatment (-62.06±11.12‰) is also statistically similar to 

the predicted value (though heavier than the recleaned treatments), but, with a 

variance two to three times that of the recleaned treatments, these data may be less 

useful for geographic assignment.  Moreover, since all quail were given the same 

water with the same δD, regardless of the actual value, we did not expect a large δD 

range for quail feathers, as is seen in the recleaned treatment data.  This result further 

suggests that some cleaning procedures can yield results with low variance.  
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Carbon means did not shift when recleaned.  Their stability supports the notion 

that carbon stable isotope ratios are robust to contamination and that carbon exchange 

is insignificant.  However, there were differences in the variance resulting from 

recleaning.  The increased variation in the values from the feathers cleaned in 2:1 

chloroform:methanol and recleaned in detergent makes us reluctant to suggest 

cleaning in this order.  The other treatment, detergent recleaned with 2:1 

chloroform:methanol, maintains variation equivalent to that seen in the two original 

treatments which may favor using cleaning agent in this order. 

Nitrogen values for recleaned feathers are higher than both original treatments.  

Since neither chloroform nor methanol contains nitrogen, possibility for residue from 

these solvents is limited.  Further, nitrogen exchange has not been documented other 

than with terminal metal nitrides (Woo 1993). Thus, we suggest that treatment 

influence related to residue or exchange from either chloroform or methanol is 

negligible.  Detergent residue may have an effect, but since both recleaned treatments 

have similar means with low variance and both data sets fall outside the range of the 

two original treatments, we believe contamination is not a factor and the range of 

recleaned feather isotope ratios contains the actual feather isotope values. 

Implications 

In avian ecology, hydrogen stable isotopes are primarily used to assign birds to 

a particular geographic location.  An isotopic precipitation gradient relative to latitude, 

altitude, and distance from the coast is well documented and transfers reliably to 

animal tissues (Bowen and Revenaugh 2003; Hobson et al. 1999).  However, error in 

calculating tissue isotope ratios can alter geographic placement of birds.  For the two 
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initial treatments in this study, SD≈22‰ and the difference between their means is 

about 43‰.  Within a treatment, this can place a bird that belongs in Oklahoma as far 

north as South Dakota and southern Minnesota, or as far south as southern Texas.  If 

you compare between treatments this range extends north into southern Canada and 

south to coastal Mexico.  Recleaned values, which have no difference between means 

and SD≈8-12‰, result in a condensed geographic area within which a breeding bird 

may be assigned. Our Oklahoma bird would most likely still be placed in Oklahoma 

with these treatments, with a possible range from Kansas to north Texas.   

Carbon stable isotopes are used for diet analysis, but also indicate trophic 

level, with 1-2‰ enrichment per trophic step. The observed ≥1‰ within-treatment 

variation may lead to misclassification of trophic level, for example, an herbivore may 

be classified as a carnivore or vice versa.  Observed variation is not expected to 

significantly affect diet analysis unless isotopic distinction between dietary elements is 

small. 

Nitrogen is used mainly to identify trophic level with 3-5‰ enrichment per 

trophic step.  With an almost 2‰ difference in cleaning treatment means, cleaning 

method differences may misclassify an organism by one-half trophic level.  If a 

cleaning method with higher variance is chosen, additional error may occur. 

In conclusion, cleaning solvent choice does affect stable isotope ratios of bird 

feathers, a determination that should be considered in future experiments.  This 

seemingly small detail in the overall scheme of a project may have serious 

implications for data reliability and interpretation both within and among data sets.  

We propose a standard two-step cleaning method using both detergent and 2:1 
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chloroform:methanol.   Since our data suggests that the order of cleaner use may 

influence data variation, we specifically suggest cleaning with detergent first, then 

cleaning with 2:1 chloroform:methanol. This approach, however, should be considered 

a starting point in moving toward standardized preparation techniques for isotope 

samples.   
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Table 1.  References reviewed to determine the prevalence of cleaning agents and 
the elements analyzed in stable isotope studies using bird feathers. 

Reference 
Isotopes 
used Cleaning Agent 

Bearhop et al. 1999 C N 0.25M sodium hydroxide and water 
Bearhop et al. 2000 D C N 0.25M sodium hydroxide and water 
Bearhop et al. 2001 CN 0.25M sodium hydroxide and water 
Bearhop et al. 2002 C N 0.25M sodium hydroxide and water 
Bearhop et al. 2006 C N Uncleaned 
Bensch et al. 2006 C N Some uncleaned, some cleaned with 

detergent 
Caccamise et al. 2000 C N S Deionized water 
Chamberlain et al. 1997 D C Detergent and water 
Chamberlain et al. 2000 C N Not documented 
Cherel et al. 2000. C N 2:1 Chloroform:ether 
Cherel et al. 2005a C N 2:1 Chloroform: methanol 
Cherel et al. 2005b C N 2:1 Chloroform: methanol 
Clegg et al. 2003 D Detergent and water 
Dunn et al. 2006 D 2:1 Chloroform: methanol 
Graves et al. 2002 C N 2:1 Chloroform: methanol 
Hebert and Wassenaar 2005 D C N S Methanol 
Hobson 1999 C N 2:1 Chloroform:methanol 
Hobson and Clark 1992 C Ether 
Hobson and Wassenaar 1997 D 2:1 Chloroform:methanol 
Hobson and Wassenaar 2001 D C 2:1 Chloroform:methanol 
Hobson et al. 1993 N Ether 
Hobson et al. 1999 D 2:1 Chloroform:methanol 
Hobson et al. 2000 C D 2:1 Chloroform:methanol 
Hobson et al. 2001 D  Not documented 
Hobson et al. 2003 D C N  2:1 Chloroform:methanol 
Hobson et al. 2004a D 2:1 Chloroform:methanol 
Hobson et al. 2004b D O 2:1 Chloroform:methanol 
Hobson et al. 2004c D 2:1 Chloroform:methanol 
Hobson et al. 2006 D 2:1 Chloroform:methanol 
Kaushal and Walsh 2002 N Freeze-dried and stored in a dessicator 
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Table 1 (continued) 
Kelly 2006 D Detergent and water 
Kelly et al. 2002 D Detergent and water 
Kelly et al. 2005 D Detergent and water 
Klaassen et al. 2004 C Chloroform 
Lott and Smith 2006 D 2:1 Chloroform: methanol 
Lott et al. 2003  D S Detergent and water 
Mazerolle and Hobson 2005 D 2:1 Chloroform: methanol 
Mazerolle et al. 2005 D 2:1 Chloroform: methanol 
Meehan et al. 2001 D Detergent and water 
Meehan et al. 2003 D Detergent and deionized water 
Mehl et al. 2004 C N 2:1 Chloroform:methanol 
Mituzani and Wada 1988 C N Water 
Mituzani et al. 1990 C Water 
Mituzani et al. 1991 C N Physiological salt solution 
Mizutani et al. 1992 C N Water 
Møller and Hobson 2004 D C N 2:1 chloroform:methanol 
Møller et al. 2006 C N 2:1 chloroform:methanol 
Neto et al. 2006 D C N Uncleaned 
Newton et al. 2006 D 2:1 Chloroform: methanol 
Norris et al. 2004 D Not documented 
Ogden et al. 2004 C N Not documented 
Pain et al. 2004  D C N  0.25M sodium hydroxide and water 
Paszkowski et al. 2004 C N Distilled water 
Pearson et al. 2003 C N Ether 
Podlesak et al. 2005 C Sonication in distilled water and in 

petroleum ether 
Romanek et al. 2000 C N Mild detergent 
Rubenstein et al. 2002 D C  Not documented 
Smith and Dufty 2005 D 2:1 Chloroform: methanol 
Smith et al. 2003 D 2:1 Chloroform:methanol 
Smith et al. 2004 D 2:1 Chloroform:methanol 
Thompson and Furness 1995 C N Chloroform/acetone 
Thompson et al. 1995 C N Chloroform/acetone 
Wassenaar and Hobson 2000 D C 2:1 Chloroform:methanol. 

 26



Table 1 (continued) 
Wassenaar and Hobson 2001 D C  2:1 Chloroform:methanol 
Wassenaar and Hobson 2003 D 2:1 Chloroform:methanol 
Wennerberg et al. 2002 C Chloroform 
Wunder et al. 2005 D Frozen/thawed, then 2:1 

Chloroform:methanol 
Yohannes et al. 2005 D C N 2:1 Chloroform: methanol 
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Figure 1.  Schematic of treatment pairs.  We assigned treatments randomly to left and 
right wings and feather halves. 
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Figure 2.  Stable isotope ratios of hydrogen (squares; a and b), carbon (circles; c and 
d), and nitrogen (triangles; e and f) for paired treatments after initial cleaning.  Solid 
shapes represent uncleaned vs. detergent feathers, open shapes represent 2:1 
chloroform:methanol feathers.  Best-fit lines and equations are based on least squares.  
Equations include 1SE in parentheses for slope and intercept.  In d) the slope is not 
significantly different from 1 and the y-intercept is not significantly different from 
zero. 

Figure 2.  Stable isotope ratios of hydrogen (squares; a and b), carbon (circles; c and 
d), and nitrogen (triangles; e and f) for paired treatments after initial cleaning.  Solid 
shapes represent uncleaned vs. detergent feathers, open shapes represent 2:1 
chloroform:methanol feathers.  Best-fit lines and equations are based on least squares.  
Equations include 1SE in parentheses for slope and intercept.  In d) the slope is not 
significantly different from 1 and the y-intercept is not significantly different from 
zero. 
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Figure 3. Comparison of detergent treatments from left and right wings of quail, for 
hydrogen (squares; a), carbon (circles; b), and nitrogen (triangles; c). The slope in b) is 
not significantly different from 1 and the y-intercepts in a) and b) are not significantly 
different from zero. 
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Figure 4.  Comparison of stable isotope ratios for hydrogen (squares; a), carbon 
(circles; b), and nitrogen (triangles; c) of recleaned feather halves.  In a) and b) slopes 
are not significantly different from 1 and y-intercepts are not significantly different 
from zero.  It is clear that the y-value of one of the feather pairs is an outlier among all 
data in the experiment.  We were unable to identify the source of this discrepancy. 

 

 

 32



Figure 5.  Mean ± 1SD for hydrogen (squares; a), carbon (circles; b), and nitrogen 
(triangles; c) stable isotope ratios of original detergent (dark shapes) and 2:1 
chloroform:methanol (open shapes) treatments compared to the movement of the 
recleaned treatments, detergent recleaned in 2:1 chloroform:methanol (dark shapes 
with open centers) and 2:1 chloroform:methanol recleaned in detergent (open shapes 
with dark centers). 
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CHAPTER 2 

 

ISOSOURCE VARIANCE INFLUENCES ESTIMATES OF CONSUMER 
ISOTOPIC NICHE AND INDIVIDUAL SPECIALIZATION 

 
Abstract 

Variation in stable isotope ratios of consumers’ tissues has been assumed to 

reflect niche axis breadth.  In contrast, variation in stable isotope ratios of food items 

is treated with a ceteris paribus assumption. If this assumption is violated, it is unclear 

to what degree estimates of niche breadth and individual specialization would be 

effected. I collected stable carbon isotope (δ13C) data from 28 plants, three 

grasshoppers, and one bird species of the Chihuahuan Desert to examine the 

relationship between variation in producer isotope ratios and those of consumers. 

Consistent with a literature review, the δ13C from eight C4 species was less variable 

than from 20 C3 plants. A grasshopper species eating C3 sources (Trimerotropis 

pallidipennis) was more variable than that one eating C4 food sources (Opeia 

obscura); an herbivore with a mixed diet (Melanoplus occidentalis) showed the 

highest variation. Black-throated sparrows (Amphispiza bilineata) showed 

intermediate isotope ratios with intermediate variance. My results indicate that 

isotopic variance is a useful measure of individual specialization, but an inaccurate 

measure of niche axis width. In particular, variation in putative isosources may be 
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misinterpreted as higher niche axis breadths in consumers whereas conclusions about 

individual specialization remain consistent across trophic level. 

Introduction 

Defining niche axes transcends decades of modern ecology (Grinnell 1917, 

MacArthur 1958, Hutchinson 1959, Brown 1984, Pulliam 1988, Guisan and 

Zimmermann 2000).  Isotopic niche space is a new (Muscatine et al. 1989, Hobson 

1990) and controversial concept (Bearhop et al. 2004, Araujo et al. 2007, Newsome et 

al. 2009) which infers patterns of isosource use from a population’s isotopic range.  

Two interpretations of variance surrounding isotopic data sets infer either 1) 

population niche axis width, which posits that populations with larger isotopic ranges 

have wider niches (Bearhop et al. 2004), or 2) degree of individual specialization 

within a population, which suggests that isotopic variation in a population indicates 

the similarity of isosource use among individuals (Bolnick et al. 2003)  These two 

philosophies can lead to different types of conclusions from a single data set.  For 

example, if a population has a mean stable isotope ratio with a large variance, niche 

width theory would suggest that the isotopic niche width of this population is large, 

implying that the population can use a wide range of isosources.  However, individual 

specialization theory would suggest that there is a high degree of individual 

specialization in the population, which would suggest that not all individuals in the 

population are eating the same thing, and that high variance at the population level 

results from more specialized isosource use among individuals.   

What influences these differing conclusions and which application of isotopic 

data would be more useful in the long term?  Such analyses depend on controversial 
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assumptions, such as the scalars used for trophic enrichment (e.g., +3.4 ‰ for nitrogen 

and +1.1‰ for carbon; DeNiro and Epstein 1978, Post 2002, McCutchan et al. 2003).  

Here I evaluate the consequences of a second, ceteris paribus assumption that a 

consumer’s food sources have equal variances in stable isotope ratios or that existing 

differences are inconsequential. 

Terrestrial stable carbon isotopes (δ13C) are often used to identify proportion of 

C3 and C4 plant carbon in diets.  Differences in isotopic fractionation during carbon 

fixation (Smith and Epstein 1971, Bender et al. 1973, Osmond et al. 1976, O'Leary 

1988) among C3 and C4 photosynthetic pathways create distinct mean δ13C values for 

C3 (≈ -27‰ [per mil]) and C4 (≈-13‰) plants (Evans et al. 1986, Berry 1989).  C3/C4 

photosynthetic differences should not only create different means, but also should 

result in greater intra- and inter-species δ13C variation.  Because of greater variation in 

stomatal CO2 conductance in C3 plants, they should have higher δ13C variance than C4 

plants (Farquhar et al. 1989).  C3 carbon-fixing cells change 12C and 13C 

concentrations as stomata open and close, whereas C4 bundle sheath δ13C fluctuations 

are less pronounced; this difference should lead to lower δ13C variation in C4 plants.  

Re-examination of existing literature confirms both mean and variance differences in 

δ13C values of C3 vs. C4 plants (Figure 1; Fry et al. 1978, Evans et al. 1986, O'Leary 

1988, Farquhar et al. 1989, Martinelli et al. 1991). The difference in variance is rarely 

discussed. 

In light of both differing C3 and C4 δ13C variances and isotopic niche space 

controversy, I document producer δ13C variation and analyze how it translates to the 

δ13C values of primary and secondary consumers.  I use a simulation to evaluate the 
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influence of magnitude of variance and difference between mean values using 

consumers with two different foraging strategies.  I compare these simulations to my 

field data and summarize published examples of autotroph and consumer stable 

isotope variation and discuss consequences of trophic variance carryover for estimates 

of niche breadth and estimates of individual isosource specialization. 

 

Methods 

Field Data 

Plant isosources and consumers.  I sampled plants (i.e., carbon isosources), 

grasshoppers, and birds on 15 sites at the Jornada Experimental Range and Long Term 

Ecological Research Site (Jornada LTER; +32.5º N, -106.8º W, elevation 1188 m). 

The Jornada LTER is located in the northern Chihuahuan Desert (Figure 2), 

historically a semi-arid C4 grassland with C3 forbs and shrubs including playas 

(floodplain grasslands), shrublands, and ecotones (see Wainright (2006) and Brown 

and Archer (1989) for further description). 

Plants - I collected from 3 to14 individuals of 28 plant species in 2005 from 15 

1-ha sites;  in 2007 I resampled  5 of the 2005 sites and 5 other sites.  I chose sites 

based on initial inspection of vegetation composition to ensure that the sites spanned a 

wide range of plant compositions and species assemblages.  Not all species were 

collected in both years.  I dried plants for 48h at 60°C, then placed 300-450μg leaf 

material (or green stem material in a leafless species, such as Ephedra spp.) into tin 

cups for δ13C analyses.  I inspected samples for debris, but did not chemically clean 

samples due to potential difficulty removing solvent.  I chose samples primarily from 
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2005 clippings.  To eliminate repeated sampling of the same plant I did not select the 

same species from the same site on the same sampling date.  I used one to three 

samples from 2007 to verify 2005 data.  If a new species was recorded in 2007, I 

treated it as I did the 2005 species (n=3 of 28 species). 

Primary consumers – Though I collected numerous species in 2005, I analyzed 

10-15 individuals of the three grasshopper species (Orthoptera: Acrididae) found at the 

most sites.  I used sweep nets at random locations on 15 sites from June-August 2005.  

Trimerotropis pallidipennis is the most abundant New Mexico grasshopper and is 

found widely throughout western North American grasslands on forbs and grasses 

(Richman et al. 1993).  Opeia obscura is also found throughout the North American 

grasslands, but its plant hosts are exclusively grasses (Richman et al. 1993).  

Melanoplus occidentalis is found throughout New Mexico, the western United States, 

and Canada using a mixture of forbs and grasses for food (Richman et al. 1993).  Fry 

et al. (1978) indicate high C3 use for T. pallidipennis (64% C3 in diet; δ13C = -21.0‰) 

and almost exclusive C4 use for O. obscura (99% C4 in diet; δ13C = -13.2‰)  Fry et al. 

did not analyze M. occidentalis; however, based on diet descriptions in Richman et al. 

(1993), I predicted this species would have δ13C intermediate between C3 and C4 

plants.  For stable isotope analysis, I clipped 300-450μg of grasshopper wing, cleaned 

them in detergent and 2:1 chloroform:methanol solvent (Paritte and Kelly 2009), and 

packed them in tin capsules. 

Secondary consumers – From May-August, at 12 sites in 2004 and the 15-2005 

sites, I collected outer rectrices from hatch-year (HY) black-throated sparrows 

(Amphispiza bilineata; BTSPs) for δ13C analysis (Bolnick et al. 2003).  I cleaned 
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feathers in detergent and 2:1 chloroform:methanol (Paritte and Kelly 2009), removed 

≈350μg of distal rachis and barbs, and packed them in tin capsules. 

Stable isotope analysis.  Samples were run for δ13C on either a Thermo 

Finnigan Delta Plus XL Isotope Ratio Mass Spectrometer, interfaced to a Carlo Erba 

Elemental Analyzer through an open split valve (ConFlo II) at the Stable Isotope 

Laboratory of the Department of Earth and Planetary Sciences, University of New 

Mexico, Albuquerque, New Mexico, or on a Thermo Finnigan Delta V Isotope Ratio 

Mass Spectrometer interfaced through an open split valve (ConFlo III) with a Costech 

Elemental Analyzer at the laboratory of Michael H. Engel, Department of Geology 

and Geophysics, University of Oklahoma, Norman, Oklahoma.  All values are 

reported in per mil notation relative to the isotope standard Vienna Pee Dee Belemnite 

(vPDB). 

Data Analysis.  I examined δ13C data for outliers (i.e., C3 numbers for C4 

plants) and used independent samples t-tests and least-squares regression to identify 

trends with sampling date and site.  I used Levene’s test (SPSS 2004) to test 

homogeneity of variance of δ13C values among C3 and C4 plant species.  I used an 

independent-samples t-test on standard deviations of δ13C values to test for equal 

variances with species categorized as C3 and C4.  I used one-way ANOVAs and 

Tukey’s HSD post hoc where  δ13C grand means and mean standard deviations were 

dependent variables and species was the independent variable. to determine how 

consumers differed in means and variances of δ13C values.  I interpreted data and 

classify C3, C4, and intermediate species using a trophic enrichment of zero to 1.1‰ 

per trophic level, the range currently accepted for δ13C (DeNiro and Epstein 1978, 
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Post 2002, McCutchan et al. 2003).  This enrichment translates into 0-1.1‰ for 

grasshoppers and 0-2.2‰ for BTSPs, which eat insects (primarily grasshoppers) and 

plant seeds (Zimmer 1983). 

Data simulation 

I used the BASIC programming language to model the influence of isosource 

variance and magnitude on means and variances of stable isotope ratios of consumer 

populations.  I used two normally distributed isosources (means -26.8‰—C3 and -

15.27‰—C4) to create consumer populations in which either all individuals consumed 

identical mixed diets ranging from 100%C3 to 100% C4 diets (i.e., “mixed 

populations”), or where all individuals consumed only 100%C3 or 100% C4 diets and 

the population consisted of a range of 100% C3 individuals to 100% C4 individuals 

(i.e., “target populations”).  At 10% population intervals (e.g., 100% C3 and 0% C4, 

90%C3 and 10% C4, 80% C3 and 20% C4, etc.), I randomly generated δ13C values for 

100 consumers.  For target consumers, δ13C values were randomly generated from the 

appropriate isosource.  For mixed consumers, random δ13C values were generated 

from each isosource and consumer values were calculated proportionally from these 

random values.  I then calculated means and standard deviations (SDs) for each 

population increment and diet type.  I repeated this 100 times, and for each diet 10% 

group, calculated means, SDs, and 95% confidence intervals around means and SDs.  I 

ran four simulations using the following isosource SDs:  C3=1, C4=1; C3=5, C4=5; 

C3=5, C4=1; C3=9, C4=5.  For simplification, I assumed no trophic fractionation in 

these simulations.  I then performed a fifth simulation using the actual C3 and C4 SDs 
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calculated for this study – C3=1.61, C4=0.76 – and compared this simulation to 

grasshopper and BTSP δ13C values.   

Results 

Field data 

C3 and C4 photosynthetic groups differed as expected in mean δ13C (C3 δ13C=-

26.84±1.61‰, C4 δ13C=-15.60±0.76‰; t189=-54.27, p<0.001; Figure 3) and overall C3 

variation was higher than C4 variation (F1,189=24.61, p<0.001).  Additionally, C3 plants 

(average species 1SD=1.00±0.41‰) varied more intraspecifically in δ13C 

measurements than C4 species (average species 1SD=0.69±0.28‰; t26=-2.13, p=0.04).  

The δ13C values of five of 28 plant species varied with time (Appendix 1):  B. 

eriopoda δ13C  became more depleted with sample date in 2005 (y=-0.01x-13.38, 

r2=0.34, p=0.05) and S. brevifolia (y=-0.03x-10.84, r2=0.54, p=0.004), C. pottsii 

(t6=3.79, p=0.01), G. sarothrae (t12=-2.64, p=0.02), and S. angustifolia (t4=2.75, 

p=0.05) δ13C varied between years.   

Of the three grasshopper species, T. pallidipennis had a primarily C3 source-

carbon signature and O. obscura had a primarily C4 carbon signature (δ13C =-

23.51±1.53‰, n=15 and δ13C =-15.18±1.02‰; n=15, respectively; t24=-17.52, 

p<0.001; Fig. 3). When 0-1.1‰ trophic enrichment is considered, both species means 

overlap the range of means for their respective plant isosources suggesting that both 

species may target plants that use a single photosynthetic pathway.  Similar to plants, 

C3 grasshoppers (T. pallidipennis) had 0.51‰ greater within-species variance than C4 

grasshoppers (O. obscura, F1,28=6.31, p=0.02).  M. occidentalis had an intermediate 

signature (δ13C =-21.47±3.51‰, n=10) with greater variance than both the T. 
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pallidipennis (F1,23=4.76, p=0.04) and O. obscura (F1,23=11.12, p=0.003). The sample 

distribution of  M. occidentalis was bimodal, suggesting each individual targeted C3 or 

C4 sources rather than mixing sources, resulting in a higher population variance 

Black-throated sparrows had an intermediate signature with intermediate 

variance (2004 δ13C =-17.65±1.85‰, n=17; 2005 δ13C =-17.74±2.30‰, n=53).  BTSP 

variances were not as high as M. occidentalis variance because individual sparrows 

had mixed C3 and C4 diets with some variation in proportion, whereas M. occidentalis 

individuals had more targeted C3 or C4 diets, implying high variation in proportion. 

Data simulation 

Simulation of hypothetical primary consumer populations indicated that equal, 

relatively low variances among isosources provide relatively precise data (Figure 4a).  

Logically, populations using 100% of an isosource have variances close to that 

isosource regardless of diet strategy (target vs. mixed).  For target populations, as the 

percentage of individuals consuming each isosource approaches 50%, population 

variance rises dramatically.  In contrast, mixed population means stay similar to those 

of target populations, but variances slightly decrease as the diet mixing proportion 

approaches 50:50.  Increasing the magnitude of isosource variation increases variance 

around dietary means and increases the overall magnitude of means, though the curve 

pattern remains the same (Figure 4b). 

When isosource variances differ (Figure 4c and d), simulation patterns become 

asymmetrical.  Consuming 100% of an isosource still results in variation similar to the 

isosource, but if one isosource has higher variance, its respective consumer variance 

will be higher in magnitude than consumers of the other isosource.  For target 
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populations, dietary means are less variable closer to the lower variance isosource, but 

SDs are less variable toward the higher variance isosource.  Mixed populations show 

both less variable means and SDs closer to the lower variance isosource.  Similar to 

the equal variance simulations, increasing the magnitude of the variance pattern 

decreases the precision around means and SDs and increases the overall magnitude of 

the patterns, but maintains a similar pattern. 

Field-simulation comparison 

When I compare grasshopper data to the model pattern derived using the 

experimental plant means and variances (trophic fractionation=0 to 1.1‰; Figure 5), 

all three grasshoppers fall between predicted areas for 100% target and 100% mixed 

populations.  M. occidentalis targets either C3 or C4 isosources, with about 80% of the 

population targeting C3 plants.  Individual M. occidentalis data points suggest that 

individuals probably target isosources close to 100%, suggesting real data may show 

more constricted patterns relative to model estimates.  T. pallidipennis and O. obscura 

use mostly C3 or C4 isosources, respectively.  According to the model estimate, T. 

pallidipennis may use more of the C4 isosource than O. obscura uses of the C3 

isosource; however, both species still consume both isosources. 

Discussion 

Variance in δ13C was greater among C3 than among C4 plants in a Chihuahuan 

Desert ecosystem. Differential variance was reflected in the diets of consumers who 

focused on C3 and C4 plants.  δ13C values of consumers that focused on C3 plants 

varied more, not necessarily because of broader diet, but because of specialization on 

more isotopically variable food.  Further, variance of consumers that ate both C3 and 
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C4 plants can be used to differentiate between samples comprised of individuals 

targeting different sources vs. samples of populations where all  individuals have 

mixed diets. Failure to account for intraspecific isosource variation can lead to 

misinterpretation of variance among consumers across C3/C4 gradients.  Similar 

patterns have been overlooked in the literature, spanning various trophic levels and 

taxonomic classifications (Figure 6). 

My data are more clearly interpreted in the context of individual specialization 

than in the context of isotopic niche width.  For example, according to individual 

specialization theory, since both T. pallidipennis and O. obscura means show use of 

both C3 and C4 plants and low variance relative to their predominant isosource, I would 

conclude that both consume primarily one isosource and may target their respective 

isosource with slight mixing.  However, according to isotopic niche width arguments, 

the grasshopper T. pallidipennis (δ13C = -23.5±1.5‰ – primarily C3) could occupy a  

niche 50‰ wider than the grasshopper O. obscura (δ13C = -15.2±1.0‰ – primarily 

C4), despite both species having diet δ13C values that overlap their respective target 

isosource and published gut content analyses that document that each species favors 

one photosynthetic isosource (Fry et al. 1978). 

A second example of using isotopic variation to indicate more clearly 

individual specialization involves the grasshopper M. occidentalis and BTSPs.  Both 

have intermediate δ13C means, but lower BTSP variances indicate individuals 

maintain mixed diets, whereas M. occidentalis variance implies that individuals with 

both targeted and mixed diets.  Here, isotopic variance shows a clear specialization 

pattern.  Interpreting my data in terms of niche width, the grasshopper M. occidentalis 
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would occupy a 50-90% larger niche space than BTSPs, despite both using the same 

two isosources and the possibility  that BTSPs are possibly eating seeds and insects, 

thus consuming not only two isosources, but also multiple trophic levels.  Again, 

having a 50-90% wider niche in this system is not as understandable as the conclusion 

that M. occidentalis has greater individual specialization than do BTSPs. 

Simulated data suggests that for target populations with unequal variance 

isosources, dietary means are less precise closer to the higher variance isosource, but 

variance, and thus degree of specialization, becomes more precise as the trend moves 

toward the higher variance isosource.  Logically, precision on both axes increases as 

the difference between isosource means increases.  Furthermore, isosource normality 

may influence consumer values, but to varying degrees.  I performed additional 

simulations using continuously distributed isosources, which generally decreased the 

precision around means and increased the magnitude, but not precision, of SDs, 

compared to simulations with normally distributed isosources.  Comparing simulated 

data to field data generally confirmed initial data analysis and agreed with conclusions 

derived from individual specialization theory.   

In conclusion, isosources vary, often unequally, and consumer variation must 

be measured relative to its respective isosources.  Unequal source variance is 

discussed in the literature for its ability to complicate calculating source proportions 

(Phillips and Gregg 2001, Phillips et al. 2005, Newsome et al. 2007), but is largely 

ignored in discussions of niche axes and individual specialization where variance 

plays a crucial role.  Not surprisingly, C3/C4 variance dichotomy is not reflected in lab 

experiments with controlled isosources (Tieszen et al. 1983, Hobson and Clark 1992a, 
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b), underscoring the importance of delineating natural source variation with targeted 

natural experiments.  This unique call for more field experiments compliments recent 

pleas for more laboratory isotope tests (Gannes et al. 1997, Martinez del Rio et al. 

2009) and both, if designed correctly, can advance stable isotope use in ecological 

studies. 
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Table 1.  Plants identified in Jornada LTER study sites.  Some species were grouped to 
increase sample size: four species of the family Asteraceae, three species of the family 
Brassicaceae, two species of the genus Sporobolus, and two species of the genus 
Panicum.  One unidentified forb was included due to its association with P. mutica. 
Family Species N Mean±SD (‰) 
Agavaceae Yucca elata 6 -23.92±1.32 
Asteraceae Acourtia nana 6 -28.33±1.32 
 Baileya multiradiata 7 -28.06±0.87 
 Chrysothamnus pulchellus 3 -24.75±1.13 
 Flourensia cernua 5 -26.18±0.80 
 Gutierrezia sarothraeb 14 -27.24±1.10 
 Gutierrezia sphaerocephala 3 -28.31±0.67 
 Zinnia acerosa 4 -26.98±0.26 
 Asteraceae, other 8 -28.30±1.26 
Brassicaceae Brassicaceae spp. 8 -26.38±1.07 
Caesalpinaceae Caesalpinia jamesii 3 -27.68±0.16 
Chenopodiaceae Salsola tragus 5 -14.51±0.38 
Ephedraceae Ephedra spp. 5 -24.84±0.67 
Euphorbiaceae Croton potsiib 8 -26.49±0.75 
Fabaceae Janusia gracilis 3 -27.02±1.78 
 Prosopis glandulosa 13 -26.20±1.05 
Hydrophyllaceae Nama hispidum 6 -28.41±1.19 
Malvaceae Sphaeralcea angustifoliab 6 -28.72±0.69 
Poaceae Aristida purpurea 7 -14.92±0.99 
 Bouteloua eriopodaa 13 -15.64±0.54 
 Muhlenbergia porteri 6 -15.22±0.81 
 Panicum spp. 3 -14.59±1.02 
 Pleuraphis mutica 13 -16.15±0.38 
 Scleropogon brevifoliusa 14 -14.90±0.68 
 Sporobolus spp. 7 -15.44±0.54 
Polygonaceae Eriogonum trichopes 4 -25.79±1.13 
Solanaceae Solanum elaeagnifolium 6 -26.75±1.07 
Unidentified Unidentified forb 6 -25.67±1.70 
a Date within year significance 
b Date between years significance 



 
Table 2. BASIC code for computation of model values.  “Target model” simulated 
populations of 100 individuals that consume either 100% of one or the other isosource.  
“Mixed model” simulated populations of 100 individuals that all consume the same 
predetermined proportion of the two isosources. Output is 100 population means and 
1SDs for each 10% diet increment.  A mean and SD for the means and a mean and SD 
for the SDs were then calculated from model results. For each change of variance, 
some variables in the model were changed.  The variable A represents the 1SD for the 
C3 isosource, B represents the 1SD for the C4 isosource. 
Target Model Mixed Model 
1 CLS 
RANDOMIZE 
CLS 
PRINT "100 Trials for 100% Target 
Consumers of C3 Carbon" 

PRINT 
DIM xc3(100): DIM xc4(100): DIM ind(100) 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR k = 1 TO 100 
100 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 100 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
mean = sumc3 / 100 
FOR n = 1 TO 100 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
PRINT 
110 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 120 ELSE IF nx$ = "n" 
THEN 1120 ELSE 110 

120 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 90% Target 
Consumers of C3 Carbon, 10% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 

1 CLS 
RANDOMIZE 
CLS 
PRINT "100 Trials for 
Consumers of 100% C3 
Carbon" 

PRINT 
DIM xc3(100): DIM 
xc4(100): DIM ind(100) 

FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
100 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 100 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = 1 * xc3(k) + 0 * 
xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
110 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 120 ELSE 
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sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 90 
200 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 200 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 10 
210 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 210 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 90 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 10 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
PRINT 
230 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 240 ELSE IF nx$ = "n" 
THEN 1120 ELSE 230 

240 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 80% Target 
Consumers of C3 Carbon, 20% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 80 

IF nx$ = "n" THEN 1120 
ELSE 110 

120 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 
Consumers of Mixed 90% C3 
Carbon, 10% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
200 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 200 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = .9 * xc3(k) + .1 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
230 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 240 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 230 

240 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 80% 
Target Consumers of C3 
Carbon, 20% C4" 

PRINT 
FOR j = 1 TO 100 
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300 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 300 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 20 
310 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 310 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 80 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 20 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
PRINT 
330 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 340 ELSE IF nx$ = "n" 
THEN 1120 ELSE 330 

340 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 70% Target 
Consumers of C3 Carbon, 30% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 70 
400 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 400 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 

v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
300 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 300 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = .8 * xc3(k) + .2 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
330 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 340 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 330 

340 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 70% 
Target Consumers of C3 
Carbon, 30% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
400 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 400 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
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NEXT k 
FOR k = 1 TO 30 
410 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 410 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 70 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 30 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
PRINT 
430 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 440 ELSE IF nx$ = "n" 
THEN 1120 ELSE 430 

440 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 60% Target 
Consumers of C3 Carbon, 40% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 60 
500 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 500 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 40 
510 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 510 
y = SQR((-2 * LOG(w)) / w) 

xc4(k) = v2 * y * B - 
15.27 

ind(k) = .7 * xc3(k) + .3 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
430 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 440 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 430 

440 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 60% 
Target Consumers of C3 
Carbon, 40% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
500 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 500 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = .6 * xc3(k) + .4 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
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xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 60 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 40 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
PRINT 
530 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 540 ELSE IF nx$ = "n" 
THEN 1120 ELSE 530 

540 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 50% Target 
Consumers of C3 Carbon, 50% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 50 
600 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 600 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 50 
610 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 610 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 50 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 

totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
530 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 540 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 530 

540 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 50% 
Target Consumers of C3 
Carbon, 50% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
600 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 600 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = .5 * xc3(k) + .5 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
630 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 640 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 630 
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totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 50 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
PRINT 
630 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 640 ELSE IF nx$ = "n" 
THEN 1120 ELSE 630 

640 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 40% Target 
Consumers of C3 Carbon, 60% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 40 
700 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 700 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 60 
710 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 710 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 40 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 60 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 

640 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 40% 
Target Consumers of C3 
Carbon, 60% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
700 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 700 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = .4 * xc3(k) + .6 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
730 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 740 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 730 

740 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 30% 
Target Consumers of C3 
Carbon, 70% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
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stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
730 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 740 ELSE IF nx$ = "n" 
THEN 1120 ELSE 730 

740 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 30% Target 
Consumers of C3 Carbon, 70% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 30 
800 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 800 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 70 
810 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 810 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 30 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 70 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
830 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 840 ELSE IF nx$ = "n" 
THEN 1120 ELSE 830 

diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
800 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 800 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = .3 * xc3(k) + .7 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
830 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 840 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 830 

840 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 20% 
Target Consumers of C3 
Carbon, 80% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
900 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 900 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 
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840 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 20% Target 
Consumers of C3 Carbon, 80% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 20 
900 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 900 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 80 
910 v1 = 2 * (RND * 2) - 1: v2 = 2 * (RND 
* 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 910 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 20 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 80 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
930 INPUT "Are you ready for the next set 
(y or n)"; nx$ 

IF nx$ = "y" THEN 940 ELSE IF nx$ = "n" 
THEN 1120 ELSE 930 

940 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 10% Target 
Consumers of C3 Carbon, 90% C4" 

PRINT 

ind(k) = .2 * xc3(k) + .8 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
930 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 940 ELSE 
IF nx$ = "n" THEN 1120 
ELSE 930 

940 CLS 
 
RANDOMIZE 
CLS 
PRINT "100 Trials for 10% 
Target Consumers of C3 
Carbon, 90% C4" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
1000 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 1000 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = .1 * xc3(k) + .9 
* xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean)totdiff2 = 
diff2 + totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
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FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc3(n) = 0: xc4(n) = 0 
NEXT n 
FOR k = 1 TO 10 
1000 v1 = 2 * (RND * 2) - 1: v2 = 2 * 
(RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 1000 
y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8013 
sumc3 = sumc3 + xc3(k) 
NEXT k 
FOR k = 1 TO 90 
1010 v1 = 2 * (RND * 2) - 1: v2 = 2 * 
(RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 1010 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = (sumc3 + sumc4) / 100 
FOR n = 1 TO 10 
diff2 = (xc3(n) - mean) * (xc3(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
FOR n = 1 TO 90 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
1030 INPUT "Are you ready for the next 
set (y or n)"; nx$ 

IF nx$ = "y" THEN 1040 ELSE IF nx$ = "n" 
THEN 1120 ELSE 1030 

1040 CLS 
 
CLS 
RANDOMIZE 
CLS 
PRINT "100 Trials for 100% Target 
Consumers of C4 Carbon" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 0: sumc3 = 0: 
sumc4 = 0: mean = 0: diff2 = 0: 
totdiff2 = 0: stdev = 0 

FOR n = 1 TO 100 
xc4(n) = 0: xc4(n) = 0 

PRINT mean; stdev, 
NEXT j 
1030 INPUT "Are you ready 
for the next set (y or 
n)"; nx$ 

IF nx$ = "y" THEN 1040 
ELSE IF nx$ = "n" THEN 
1120 ELSE 1030 

1040 CLS 
 
CLS 
RANDOMIZE 
CLS 
PRINT "100 Trials for 100% 
Target Consumers of C4 
Carbon" 

PRINT 
FOR j = 1 TO 100 
v1 = 0: v2 = 0: w = 0: y = 
0: indsum = 0: mean = 0: 
diff2 = 0: totdiff2 = 0: 
stdev = 0 

FOR k = 1 TO 100 
1100 v1 = 2 * (RND * 2) - 
1: v2 = 2 * (RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF 
w > 1 THEN 1100 

y = SQR((-2 * LOG(w)) / w) 
xc3(k) = v1 * y * A - 26.8 
xc4(k) = v2 * y * B - 
15.27 

ind(k) = 0 * xc3(k) + 1 * 
xc4(k) 

indsum = indsum + ind(k) 
NEXT k 
mean = indsum / 100 
FOR n = 1 TO 100 
diff2 = (ind(n) - mean) * 
(ind(n) - mean) 

totdiff2 = diff2 + 
totdiff2 

NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
1110 INPUT "Do you want to 
start the calculator over 
(y or n)"; nx$ 

IF nx$ = "y" THEN 1 ELSE 
1120 

1120 PRINT "Thank you and 
good-bye!" 

1130 END 

Table 2 (Continued) 
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NEXT n 
FOR k = 1 TO 100 
1100 v1 = 2 * (RND * 2) - 1: v2 = 2 * 
(RND * 2) - 1 

w = v1 * v1 + v2 * v2: IF w > 1 THEN 1100 
y = SQR((-2 * LOG(w)) / w) 
xc4(k) = v2 * y * B - 15.3452 
sumc4 = sumc4 + xc4(k) 
NEXT k 
mean = sumc4 / 100 
FOR n = 1 TO 100 
diff2 = (xc4(n) - mean) * (xc4(n) - mean) 
totdiff2 = diff2 + totdiff2 
NEXT n 
stdev = SQR(totdiff2 / 99) 
PRINT mean; stdev, 
NEXT j 
1110 INPUT "Do you want to start the 
calculator over (y or n)"; nx$ 

IF nx$ = "y" THEN 1 ELSE 1120 
1120 PRINT "Thank you and good-bye!" 
1130 END 

 
 
 

Table 2 (Continued) 
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Figure 1.  Modified from O’Leary (1988). Histogram showing difference in both 
means and variances in C3 and C4 plant groups.  Squares are means ± 1.96 SD.  
Boxplots show median, 25th and 75th percentiles (box limits), 5th and 95th percentiles 
(whiskers), and outliers (X’s). 
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Figure 2.  Map of the Jornada Experimental Range and Long Term Ecological 
Research (LTER) Site (inset) and the Chihuahuan Desert (shaded region) within the 
context of the United States of America and the United States of Mexico.  Chihuahuan 
Desert Boundary based on an aridity index modified from Schmidt (1979) by Nolen 
and Monger (unpublished data).  The Chihuahuan Desert boundary found within the 
Jornada LTER boundary is elevation based.  The San Andres Mountain Range along 
the eastern boundary includes land that doesn’t classify as Chihuahuan Desert based 
on this index.  Data for this study was collected entirely within the Chihuahuan Desert 
area of the Jornada LTER. 
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Figure 3.  δ13C means vs. standard deviations for Chihuahuan Desert plants (shaded 
ovals show 95% confidence space), grasshoppers (squares; white square=T. 
pallidipennis, black square=M. occidentalis, gray square=O. obscura) , and black-
throated sparrows (triangles; black triangle=2004, white triangle=2005). Lower x-axis 
error bars show range in which isosource values may occur accounting for 0-1.1‰ per 
trophic level enrichment.  Letters in parentheses show post hoc groupings of x 
(Tukey’s HSD) and y axis (Levene’s test of variance in all combinations) values in the 
form (x group, y group). 
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Figure 4. Simulated data sets.  Graphs of means ± 1.96 SD are graphed at 10% 
intervals for the target diet populations (gray circles) and mixed diet populations (light 
red circles) with equal SDs of ±1‰ (a) and ±5‰ (b), and unequal SDs of 
±5‰C3/±1‰C4 (c) and ±9‰C3/±5‰C4 (d).  Differential shading of confidence ovals 
show degree of overlap between distributions.  For simplification, no trophic level 
fractionation factor was used. 
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Figure 5.  Simulated datasets derived using means and SDs from Chihuahuan desert 
plant means and SDs (C3=26.8±1.00‰ and C4=-15.27±0.71‰) compared to the 
actual data from the three grasshopper species collected in this study:  T. pallidipennis 
(white square), O. obscura (gray square), and  M. occidentalis (white square). 
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Figure 6.  Data from other published sources showing C3/C4 variance dichotomy. 
Shows either SD directly from publications or, if multiple populations were sampled, 
pooled SD. 
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CHAPTER 3 

 

STABLE ISOTOPES REVEAL THAT THE SHRUB OBLIGATE BLACK-
THROATED SPARROW IS A GRASSLAND SPECIALIST IN THE SHRUB-

ENCROACHED NORTHERN CHIHUAHUAN DESERT, NEW MEXICO 
 

Abstract 
 

To understand how consumers use their environments for different purposes, 

we can analyze consumer resource use relative to resource availability.  In the 

northern Chihuahuan Desert of New Mexico, I used C3 and C4 plants as stable carbon 

isotopic sources (“isosources”) to compare isosource proportions of areas inhabited by 

black-throated sparrows and grasshoppers to consumption of these isosources.  Using 

biomass and stable carbon isotope ratios (δ13C) of plants I calculated mass-balanced 

δ13C values for consumer habitats, which ranged from areas of nearly 100% C3 shrubs 

to areas of nearly 100% C4 grasses. I then compared these values to δ13C values from 

black-throated sparrow feathers and blood from multiple years and δ13C values from 

wing tissue from three species of grasshoppers.  I found that each species of 

grasshopper employed a different consumption pattern.  The grasshopper 

Trimerotropis pallidipennis consumed primarily C3 carbon regardless of the carbon 

isosource composition of the area they inhabited.  The grasshopper Opeia obscura 

consumed primarily C4 carbon regardless of the carbon isosource composition of the 

area they inhabited.  The grasshopper Melanoplus occidentalis consumed carbon 
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proportional to isosource availability.  Black-throated sparrows showed patterns 

similar to T. pallidipennis, indicating high consumption of C4 carbon in C3 shrubland, 

C4 grassland and mixed areas.  This study not only shows that different species can 

use the same areas in different ways, but also reinforces the notion that black-throated 

sparrows, historically considered a species highly associated with shrubs, are dietarily 

tied to C4 grasses in the Chihuahuan Desert. 

Introduction  

Stable isotope analysis has become a popular ecological tool because of its 

ability to reveal patterns in nature hidden to older methods.  If resources have distinct 

stable isotope ratios, stable isotope analysis can quantify the proportions of these 

resources assimilated by consumers.  Another area of inquiry is how these proportions 

in individual heterotrophs relate to the proportion of isotopic sources (“isosources”) 

available in the environment.  If isosources have distinct isotope ratios and a consumer 

uses these sources at random, the stable isotope ratio of an individual should 

correspond to that of the area-of-use regardless of proportions of isosources available. 

In contrast, differences between the isotope ratios of consumers and those expected 

based on the proportion of food items in the environment are evidence for selective 

foraging. 

My objective in this study is to describe the availability of isosources across a 

series of vegetation ecotones and to compare the availability of these isosources to the 

isotope ratios found in a variety of heterotrophs.  For this type of study, the northern 

Chihuahuan Desert of southern New Mexico is an ideal model system.  Much of this 

area was historically desert C4 grasslands interspersed with C3 shrubs, but as a result 
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of primarily historical overgrazing, shifts in shrub seed dispersal, periodic drought, 

and, secondarily, fire suppression (Buffington and Herbel 1965, Brown and Archer 

1989, Grover and Musick 1990), C3 shrubs have become dominant in plant 

communities.  The patchy nature of this transition resulted in a series of ecotones from 

grassland to shrubland that drives an isotopic gradient derived from the δ13C 

differences between C4 grasses and C3 shrubs (Smith and Epstein 1971).  I measured 

the physical and isotopic composition of animal habitats along this gradient and used 

these measurements to determine how consumers used isosources relative to their 

availability. 

Two types of information are needed to understand how animals respond to 

this habitat gradient. First, on an axis from 100% of one isosource to 100% of the 

second isosource, where are consumers found?  In the Chihuahuan Desert, do 

consumers rely on 100% C3 shrubs, 100% C4 grasses, or a mix of shrubs and grasses?  

This isotopic distribution information can establish whether or not consumers target a 

particular habitat type or range of habitat types.  Second, relative to what is available 

where consumers found, what portion of the habitat is consumed?  Do they consume 

resources at random, or do they target a particular source regardless of availability?  

These two measurements are metrics of consumer habitat use:  what they choose to 

inhabit and what they choose to consume, which can give investigators clues to how 

species respond to habitat variation.  Further, variation in these two metrics among 

species can show how coexisting consumers inhabiting areas of similar plant structure 

vary in dietary isosource uses.  In the Chihuahuan Desert system, does a species live in 

all types of structural habitats, but only consume C4 food sources, live in shrublands 
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and only eat C3 food sources, or does a species live everywhere and eat everything? 

Further, are different consumers consuming similar or different isosources in similar 

habitats? Answering these questions can reveal how consumers can target habitat for 

both its structural and dietary components. 

In the Chihuahuan Desert, I examined a relatively simple trophic chain as a 

model to investigate these questions.  Black-throated sparrows (Amphispiza bilineata; 

BTSPs) live in semi-arid ecosystems of the southwest United States of America and 

northwest Mexico.  According to decades of observations, BTSPs strongly associate 

with shrubs in these systems (Pidgeon 2001, Johnson et al. 2002).  BTSPs nest 

primarily in shrubs, so any habitat they occupy during the breeding season typically 

needs at least one shrub suitable for nesting.  During the breeding season, BTSPs eat 

mainly insects, most notably grasshoppers, by foraging in and around shrubs (Zimmer 

1983, 1993, Johnson et al. 2002).  Foraging behaviors, together with a higher nest 

density in shrublands than in grasslands, suggest that BTSPs target use of shrubby 

desert habitats.  However, BTSP nest success can be dramatically lower in shrublands 

than in grasslands, so much so that shrublands can at times become a reproductive sink 

(Pidgeon et al. 2003).  I analyzed the structural composition of BTSP areas-of-use to 

see where in the scheme of a grassland/shrubland habitat gradient BTSPs occur. Then, 

relative to BTSP areas-of-use, I examined BTSP stable carbon isotope ratios (δ13C) to 

see how assimilated stable carbon isotope ratios compare to the proportion of C3/C4 

carbon available to individuals.  Further, because BTSPs consume primarily 

grasshoppers during the breeding season, I analyzed commonly found grasshoppers in 

a similar manner to identify how grasshoppers use their respective habitat, and if this 
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affected the dietary carbon available to secondary consumers.  Identifying the 

proportion of BTSP habitat used for foraging and if and how this proportion changed 

from grassland to shrubland will support or refute previous observations of BTSP 

foraging and inform understanding of BTSPs status in the changing Chihuahuan 

Desert environment. 

Methods 

Site description and Black-throated Sparrows  

I performed this study at the Jornada Experimental Range and Long Term 

Ecological Research Site (Jornada LTER; +32.5º N, -106.8º W, elevation 1188 m; 

Figure 1) in the northernmost part of the Chihuahuan Desert (Wainright 2006) in 2004 

and 2005.  In 2004, I caught birds on four sites previously established for 

grassland/ecotone/shrubland (Bestelmeyer et al. 2007).  Each site was organized to 

include subplots considered grassland, ecotone, and shrubland for 12 total subplots, 

four each in grassland, ecotone (i.e., mixed grass and shrub), and shrubland.  I caught 

BTSPs using mistnets, banded all birds, collected bird measurements similar to those 

required by the MAPS bird banding program (DeSante and Saracco 2007), collected 

outer tail feathers, noted if these were currently growing or not (only growing feathers 

were used for δ13C analysis), and collected blood samples.  Feathers were stored in 

envelopes and blood was frozen in heparin-free capillary tubes.  In 2005, I used 15 

new sites identified by locating either adult and hatch-year (HY) BTSPs or adults and 

a nest during the breeding season, May-August.  I identified 15 locations, with care to 

inspect areas of use that spanned the gradient of habitats on Jornada LTER from 

nearly 100% grass to nearly 100% shrub (no 100% grass or 100% shrub landscapes 
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exist at Jornada LTER).  If a nest was identified, the nest location was used as the 

center of the site.  If I saw fledged young, I flushed birds to determine coarse 

boundaries of their areas of use (Wiens 1969), then estimated a center for this area.  I 

mistnetted birds as close as possible to the site’s center to maximize the probability of 

capturing only one family group.  I collected BTSP data as I did in 2004.  I prepared 

feathers for stable isotope analysis by washing with detergent and 2:1 

chloroform:methanol solvent (Paritte and Kelly 2009) and placing 300-400μg of the 

feather’s distal end (rachis and barbs) into tin capsules.  A subset of blood samples 

were randomly selected for analysis.  Blood was vacuum sealed in glass tubes. 

Primary consumers 

I used sweep nets at random locations to collect arthropods on all 15 sites in 

2005.  I collected numerous species, but only analyzed 10-15 individuals of the three 

grasshopper species (Orthoptera: Acrididae) found at most sites.  Trimerotropis 

pallidipennis is the most abundant grasshopper in New Mexico and is found on forbs 

and grasses (Richman et al. 1993).  Opeia obscura is found exclusively on grasses 

(Richman et al. 1993).  Melanoplus occidentalis uses varying plant hosts (Richman et 

al. 1993).  All three species are common in western North American grasslands.  Fry 

et al. (1978) indicated high C3 use for T. pallidipennis (64% C3 in diet; δ13C = -

21.0‰) and almost exclusive C4 use for O. obscura (99% C4 in diet; δ13C = -13.2‰).  

Fry et al.(1978) did not analyze M. occidentalis; however, based on Richman et al. 

(1993), I predicted that this species would have δ13C intermediate between the C3 and 

C4 plants.  For stable isotope analysis, 300-450 μg of a grasshopper wing was clipped, 
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cleaned in detergent and 2:1 chloroform:methanol solvent (Paritte and Kelly 2009), 

and packed into tin capsules. 

Plant measurements 

In 2005 I measured plants from May-August in four concentric circles of areas 

10 m2, 100 m2, 1000 m2, and 10,000 m2 around the center of each of the 15 sites 

(Figure 2).  Within each of these areas, I sampled plants using a 1 m2 circular frame 

placed randomly to determine if there were any scale-dependent patterns in vegetation 

use.  I measured three-1m2 plots in the 10m2 area and 9-1m2 plots in 100 m2, 1000 m2, 

and 10000 m2. Within each 1 m2 plot, cover was estimated for live and dead C3 and C4 

plants at 97 points.  All biomass was clipped to within 2cm of the ground.  Plants were 

placed in paper bags for storage and transport until drying.  Plants were dried for 48h 

in drying ovens at 55C.  The plants from each plot were separated into C3 and C4, and 

then were separated into live and dead biomass.  For woody biomass, if a stem seemed 

mostly alive, the entire stem was counted as live biomass.  Only live biomass was used 

for analysis in this study.  Live biomass was identified to species in order to confirm 

C3 or C4 classification. A total of 29 species or species groups were sampled.  Russian 

thistle, Salsola tragus, was omitted from measurements; this is not thought to 

significantly alter results because the species was only found in 16 of 450 plots in low 

biomass, and its biology as an invasive wind-disperser suggests it is of low value to 

consumers.  Each plant species was sampled for δ13C analysis by placing 300-400μg 

of leaf tissue (or green stem in a leafless species, such as Ephedra) into tin capsules. 
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Stable isotope analysis 

Grasshopper and BTSP stable isotope samples were run for δ13C on either a 

Thermo Finnigan Delta Plus XL Isotope Ratio Mass Spectrometer, interfaced to a 

Carlo Erba Elemental Analyzer through an open split valve (ConFlo II) at the Stable 

Isotope Laboratory of the Department of Earth and Planetary Sciences, University of 

New Mexico, Albuquerque, New Mexico, or on a Thermo Finnigan Delta V Isotope 

Ratio Mass Spectrometer interfaced through an open split valve (ConFlo III) with a 

Costech Elemental Analyzer at the laboratory of Michael H. Engel, School of Geology 

and Geophysics, University of Oklahoma, Norman, Oklahoma.  All values are 

reported in per mil notation relative to the isotope standard Vienna Pee Dee Belemnite 

(vPDB).  Blood samples were air dried and vacuum sealed in glass tubes, then 

combusted to CO2 at 550C.  The tubes were then cracked under cryogenic conditions 

and the CO2 was isolated offline for analysis.  Samples were run for δ13C on a Delta E 

Isotope Ratio Mass Spectrometer. 

Statistical Analysis 

Biomass and cover.  I performed all statistical tests using SPSS (2004).  For 

the 10,000m2 scale, I used biomass totals and mean δ13C values for plant species to 

calculate mass-balanced stable isotope ratios for the 14 sites using the equation 
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1 1

1313 δδ , where n is the number of plant species at each site, mi 

is the biomass of each species at each site, and δ13Ci is the mean δ13C of each plant 

species.  I used the resulting site δ13C values to classify sites as shrubland, 

mixed/ecotone, or grassland.  I removed one site from analysis because I only caught 
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one bird on it and the stable carbon isotope ratio of -20.29‰ did not clearly classify 

into one of the three categories.  Initially, I quantified 13 plant variables.  Due to the 

high incidence of zero data for C3 and C4 biomass and cover, I analyzed the frequency 

of presence of functional type first, then removed plots with zero data to analyze 

biomass and cover.  I defined zero biomass as ≤1g biomass per plot and zero cover as 

≤1 frame hit per plot.  I then log10(x+1) normalized all variables and created a 

correlation matrix using Spearman’s rho (2004) to determine colinearity.  If any 

variable pair showed ρ>0.80, I chose only one to analyze, such that the resulting suite 

of variables was biologically relevant (Table 1).  I analyzed presence/absence data 

using Chi Square.  I used MANOVA to analyze the effect of habitat type 

(shrub/ecotone/grassland) and scale on the remaining 8 variables.  I used Tukey’s 

HSD post hoc test to identify significant differences and calculated Hedges and 

Olkin’s (1985) unbiased effect sizes (dunbiased) between shrub and grass habitats. 

Stable carbon isotopes.  To test assumptions, I used Kolmogorov-Smirnov Z to test 

for normality and Levene’s test for homogeneity of variance.  If either of these 

assumptions is violated in particular cases, I present nonparametric test results.  For 

the 2004 data, I used a one-way ANOVA with Tukey’s HSD post hoc to determine if 

δ13C values of BTSPs differed between habitats.  For 2005 data, I used a two-way 

ANOVA to determine the main effects and interactions of both habitat and prey 

species on consumer δ13C.  I used a one-way ANOVA with Tukey’s HSD post hoc to 

compare consumer δ13C to the δ13C of the consumer’s habitat type.  If either normality 

or variance homogeneity assumption was violated, I replaced ANOVA with Kruskal 

Wallis H-test and either Tamhane’s T2 (as a conservative estimate) or Games-Howell 
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(as a more liberal estimate) to identify post hoc differences.  If both Tamhane’s and 

Games-Howell indicate significant differences, I reported Tamhane’s p-values.  If they 

differ in results, I reported p-values from both tests.  Because feather carbon can be 

considered metabolically derived from carbon in blood, I used least-squares regression 

to determine the relationship between feather and blood δ13C values, with blood δ13C 

as the predictor for feather δ13C. 

Results 

Plants  

Mass-balanced stable carbon isotope ratios for 14 of the 15 sites sampled in 

2005 fell cleanly into one of three isotopic groups:  shrublands (n=4) with δ13C =-

27.03 to -25.48‰, mixed/ecotones (n=5) with δ13C =-23.16 to -21.49‰, and 

grasslands (n=5) with δ13C =-18.97 to -17.49‰.  I used correlation matrix values to 

eliminate variables that were highly correlated (rho>0.80 or rho<-0.80).  I condensed 

13 variables to the following eight:  live C3, live C4, and total live biomass and total 

C3, total C4, total live, total dead, and total cover. 

 Chi square indicated no consistent pattern among spatial scales in either 

presence of vegetation or cover type.  As expected, presence of both C4 (i.e., grass) 

live biomass and C4 live cover was more common in grasslands than in shrublands at 

all scales (C4 live biomass— X2
2=72.76, p<0.001; C4 live cover—X2

2=81.94, 

p<0.001); however, the opposite trend for presence of C3 biomass and cover was only 

seen at the 100m2 scale for C3 biomass (X2
2=9.21, p<0.01).   

 Similar to the presence data, quantified cover and biomass also showed no 

scale effect.  Total cover was greater in grasslands than shrublands (F2=4.02, p=0.02; 
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Figure 3); the trend was similar, but less dramatic, in the total live biomass (F2=3.11, 

p=0.05).  C4 biomass was greater in grasslands than in shrublands (F2=3.06, p=0.05); 

however, C3 biomass was not significantly greater in shrublands than in grasslands 

(F2=2.97, p=0.06), despite a large effect size.  Similarly, greater C4 cover (F2=4.45, 

p=0.01) drove greater total cover measure in grasslands inhabited by BTSPs.  

Unbiased effect sizes confirmed that C4 plants drive increasing biomass and cover. 

Consumers 

In 2004, HY BTSP feather δ13C values were normally distributed with 

homogenous variance.  Feather δ13C did not differ across habitat types (Figure 4a), all 

with intermediate to slightly C4 tending δ13C signatures.  

In 2005, both BTSP feather and blood δ13C and grasshopper wing δ13C were 

normally distributed both overall and when examined by species.  δ13C for all tissues 

combined, adult BTSP δ13C, BTSP blood δ13C, and T. pallidipennis δ13C had 

homogenous variance.  HY BTSP δ13C (p=0.05), O. obscura δ13C  (p=0.01), and M. 

occidentalis δ13C (p=0.02) did not.  There were both species (F5,124=32.48, p<0.001, 

Figure 5a) and habitat (F2,127=8.01, p=0.001 Figure 5b) main effects.  Habitat patterns 

also varied by species (F9,120=2.18, p=0.03).   

 Hatch-year BTSPs had lower feather δ13C values in shrublands than those in 

ecotones or grasslands (Χ2
2=9.97, p=0.007; Figure 4b).  Adult BTSPs (Figure 4c), T. 

pallidipennis (Figure 4d), O. obscura (Figure 4e), and M. occidentalis (Figure 4f) δ13C 

did not vary between habitat types.   

Relative to the calculated plant δ13C (i.e., source carbon δ13C) at an 

individual’s capture site, each species shows a particular pattern (Figure 4, Table 2).  
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Both adult and HY BTSP feathers indicated primarily C4/grass-based δ13C values 

regardless of habitat.  Hatch-year BTSPs had δ13C values that were higher than 

expected from random habitat foraging for shrublands and mixed/ecotones, but not for 

grasslands.  Adult BTSPs had higher than expected δ13C from random habitat foraging 

for ecotones, but not for grasslands.  Only one bird was measured in a shrubland area, 

but the value was higher than expected for random grassland foraging (δ13C=-

19.05‰).   

Adult and HY BTSPs had similar blood δ13C values (t23=-0.1, p=0.92) and 

blood δ13C was highly correlated with feather δ13C (Figure 6a; r2=0.86, p<0.001).  On 

average, the best fit for feather δ13C was 1.54‰ higher than blood δ13C values.  When 

compared between habitat types, blood δ13C shows a predominantly C4 pattern, similar 

to feather δ13C (Figure 6b).  Blood δ13C was higher in grasslands than mixed/ecotones 

with intermediate values in shrublands.  Blood δ13C values were greater than expected 

from random habitat foraging In both shrublands and mixed ecotones, but not in 

grasslands  

Each grasshopper species showed a different trend when examined relative to 

habitat type.  T. pallidipennis maintained a mixed, but primarily C3 δ13C signature 

regardless of habitat.  T. pallidipennis δ13C was similar to the shrubland and ecotone 

site δ13C but lighter than grassland δ13C values.  In contrast, O. obscura showed a 

highly C4 signature regardless of habitat.  O. obscura δ13C is marginally heavier than 

shrubland δ13C, is definitively heavier than ecotone δ13C, but also marginally heavier 

than grassland δ13C, suggesting that even though “grassland” sites are not 100% grass, 

O. obscura may consume closer to 100% grass than the actual habitat composition. 
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The non-significant shrubland result based on Tamahane’s statistic is undoubtedly 

related to limited sample size for that category (n=4).  I caught both T. pallidipennis 

and O. obscura on all 14 sites.  M. occidentalis showed a highly variable C4-based 

δ13C signature in grasslands, but a more C3 signature in mixed/ecotones and 

shrublands.  M. occidentalis δ13C may be slightly heavier than habitat in shrublands, 

but was similar to respective habitat in mixed/ecotones and grasslands.  This species 

was found on 9 of 14 sites, but in all 3 habitat classifications. 

Discussion 

Black-throated sparrow habitats show a decrease in both total plant cover and 

biomass from grassland to shrubland, primarily driven by decreases in C4 plants.  

These BTSP habitat patterns reflect recent thinking about Chihuahuan Desert shrub 

encroachment dynamics.  Historic changes have produced large areas dominated with 

C3 shrubs at the expense of C4 grasses.  Some highly resilient areas of C4 dominance 

remain, with many habitats that are mixed (Grover and Musick 1990). 

This study is a prime example of how stable isotope analysis can highlight the 

manner in which resources are used by consumers.  BTSPs may use C3 components of 

habitat for their structure, but they rely on C4 habitat components for diet.  Despite 

wide ranging composition in BTSP habitat, BTSPs maintain primarily C4/grass-based 

δ13C values in body tissue.  Even in areas where C3 shrubs dominate, BTSPs rely on 

C4 grass productivity for food.  BTSPs reliably use C3 shrubs (with four-winged 

saltbush, Atriplex canescens, being one notable exception) for nesting, perching, 

shade, and territorial singing and calling (Johnson et al. 2002), which make shrubs an 

important structural part of a BTSP habitat.  However, because BTSPs are often seen 
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in shrubs, BTSPs have been categorized as shrub specialists, or at the very least 

generalists (Delesantro 1978, Zimmer 1983, Pidgeon 2001, Johnson et al. 2002).  

Heavy reliance upon grass-based food webs, even in shrub dense areas, suggests that 

BTSPs are, in fact, dietarily tied to grasslands.  Similar methods to those used here 

could be useful for understanding  how consumers target or do not target particular 

isosources relative to their availability.  Further research on BTSPs and other species 

will help confirm or redefine how species make use of their habitats for food and 

structure.   

If BTSPs are more tied to desert grasslands than originally thought, are BTSPs  

falling victim to changing desert habitats?  Over the past 25 years, the North American 

Breeding Bird Survey (BBS) documented decreased sightings of BTSPs on routes 

close to the Jornada LTER, which is representative of the overall trend in decreased 

BTSP sightings in the Chihuahuan Desert Ecoregion (Figure 7; Sauer et al. 2008).  

This is consistent with the large scale decrease in grass in the Chihuahuan Desert, but 

currently no data indicate that these decreases occurred during the period of the BBS 

record.  Further research is needed to determine if decreased BTSP sightings is 

directly related to grass loss.  Still, conservation of remaining intact grasslands and 

attempts to increase grass cover in shrub-dominated areas (Peters et al. 2006) are 

important conservation initiatives to ensure security of grass-based trophic systems in 

the Chihuahuan Desert. 
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Table 2.  P-values for post hoc tests for consumer δ13C values compared to 
habitat types.   

Species 
 

Shrubland Ecotone Grassland 

HY BTSPb FC <0.001 0.002 0.95 
 w/o FC <0.001 <0.001 >0.99 

Adult BTSPa FC NA 0.002 0.99 
 w/o FC NA <0.001 0.78 

All BTSP Blooda FC <0.001 <0.001 0.72 

 w/o FC <0.001 <0.001 >0.99 

T. pallidipennisa FC >0.99 >0.99 <0.001 
 w/o FC 0.93 >0.99 <0.002 

O. obscurab FC 0.32 0.002 0.24 
 w/o FC 0.23 <0.001 0.02 

O. obscurac FC 0.02 <0.001 0.03 
 w/o FC 0.02 <0.001 0.003 

M. occidentalisb FC 0.7 >0.99 >0.99 
 w/o FC 0.24 >0.99 >0.99 

M. occidentalisc FC 0.07 0.67 0.99 
 w/o FC 0.02 >0.99 >0.99 
Note:  “FC” refers to tests  between observed consumer d13C values and 
expected (i.e., site) δ13C values taking into consideration possible δ13C 
fractionation of 1.1 per trophic level   “w/o FC” refers to tests between 
observed values and expected values without any trophic fractionation 
consideration.  NA indicates insufficient sample site to calculate statistics. 
aTukey’s post hoc 
bTamhane’s post hoc 
cGames-Howell post hoc 
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Figure 1.  The Chihuahuan Desert (gray shaded area) occurs in the southwestern 
United States and north Central Mexico.  The Jornada Experimental Range and Long-
Term Ecological Research Site (inset) is in the northern Chihuahuan Desert of Las 
Cruces, New Mexico.  The Chihuahuan Desert boundary is based upon an aridity 
index modified from Schmidt (Schmidt 1979) by Nolen and Monger (unpublished 
data).  Within the Jornada LTER, the western and central portions are considered 
Chihuahuan Desert, but due to an elevation increase in the San Andres Mountain 
Range, the eastern portion does not classify as Chihuahuan Desert based on this index.  
Data for this study was collected within the Chihuahuan Desert portion of the Jornada 
LTER. 
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Figure 2.  Schematic of BTSP use area measurement.  Center point of measurement 
area was located at the determined central area of use or a nest, if found.  Four 
measurement circles (concentric open circles) were delineated—10 m2, 100 m2, 1000 
m2,  and 10,000 m2. Small dark circles represent sample 1m2 plots where plants were 
measured—3 in the 10 m2, and  9 each in 100 m2, 1000 m2,  and 10,000 m2.  Position 
of dark circles was determined randomly.  Each 1m2 plot contained 97 points on a grid 
where plant cover measurements were taken (enlarged circle, lower right). 
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Figure 3.  Means±1SE for biomass and cover measures in shrublands, mixed/ecotone 
areas, and grassland BTSP areas of use.  Letters show Tukey’s HSD post hoc 
differences.  Numbers above bars indicate dunbiased effect sizes between shrublands and 
grasslands for the variables measured.  Values for dunbiased that are greater than 0.8 
represent large effect sizes (Hedges and Olkin 1985). 
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Figure 4.  δ13C values for 2004 HY BTSP feathers (a), 2005 HY BTSP feathers (b), 
2005 adult BTSP feathers (c), T. pallidipennis (d), O. obscura (e), and M. occidentalis 
(f) compared to the δ13C expected for individuals if they foraged randomly in their 
respective areas of use.  Gray shaded areas are δ13C ranges that consumers should 
have if tissue δ13C matches use area δ13C.  Lower bounds of dark gray area = mean 
plant δ13C in each area of use category and upper bounds = mean plant δ13C + the 
appropriate diet-tissue fractionation factor (1.1‰ for T. pallidipennis, O. obscura, and 
M. occidentalis and 2.2‰ for all BTSPs).  Light gray areas = mean plant δ13C-1SD 
and mean plant δ13C + fractionation+1SD.  Letters are Tukey’s HSD post hoc groups.  
Stars below gray shaded areas show significant differences from mean plant δ13C.  
Stars above gray shaded areas show significant differences from mean plant δ13C + 
fractionation.  One star (*) = Tukey’s HSD, two stars (**) = Tamhane’s, and three 
stars (***) = Games-Howell post hoc tests. 
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Figure 5. Boxplots for each species (a) and habitat type (b) δ13C.  Center lines 
represent medians, boxes indicate 25%-75% range, whiskers represent 10%-90% 
range, and points indicate outliers.  The species M. occidentalis does not show outliers 
due to sample size constraints (n=9).  Letters indicate Tukey’s HSD post hoc 
groupings.  
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 Figure 6.  Regression relationship between blood δ13C and feather δ13C (a) and blood 
δ13C compared to δ13C values expected for individuals if they foraged randomly in 
their respective areas of use.  Closed circles ( ) are data from HY birds. Open circles 
( ) are data from adult birds.  There was no significant difference between HY and 
adult blood δ13C.  Gray shaded areas in (b) are δ13C ranges that consumers should 
have if tissue δ13C matches use area δ13C.  Lower bounds of dark gray area equal mean 
plant δ13C in each area of use category. Upper bounds were mean plant δ13C plus a 
corrected fractionation factor of 2.2‰ minus the average deviation of the best fit 
regression line from the 1:1 line (+1.54).  Stars (*) indicate significant differences 
between gray shaded areas and BTSP δ13C values based upon Tukey’s HSD post hoc. 
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Figure 7.  North American Breeding Bird Survey (BBS) data for a) the two closest 
routes to my study location, “Jornada,” located on the Jornada LTER (dark circles), 
and “Slaughter,” located near El Paso in west Texas (open triangles) and b) average 
data for all routes in the Chihuahuan Desert ecoregion (open squares) as defined by 
BBS.  Dashed best-fit lines further underscore decreasing bird sightings. 
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CHAPTER 4 

 

DIFFERENTIAL STABLE NITROGEN ISOTOPE ENRICHMENT IN BLACK-
THROATED SPARROWS ACROSS AN ECOTONE IN THE NORTHERN 

CHIHUAHUAN DESERT, NEW MEXICO 
 

Abstract 

 Stable nitrogen isotopes (δ15N) are commonly used to identify trophic status of 

consumers, but fractionation associated with nitrogen cycling and metabolism can 

confound data interpretation.  In a Chihuahuan Desert system, I used δ13C and δ15N 

values of plants, grasshoppers, and black-throated sparrows (Amphispiza bilineata) to 

investigate whether δ15N enrichment was coupled with habitat or diet of consumers.  

Grasshopper δ15N values were 2.75‰ greater than those of plants and hatch-year 

black-throated sparrows δ15N values were 2.36‰ greater than those of grasshoppers; 

both of these values are lower than the +3.4‰ per trophic level value that has been 

commonly reported.  Adult black-throated sparrows had δ15N values that were 3.37‰ 

heavier than those of grasshoppers.  There was no significant linear relationship 

between the average δ13C of plants at a site and the δ15N values of either plants or 

consumers sampled at those sites; however, all consumers and plants showed 

significant relationships between δ15N and δ13C values of individuals, which indicate 

diet in consumers and photosynthetic type in plants.  There was a negative trend 

between δ15N values and δ13C values in plants because C3 plants had slightly higher 
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δ15N than C4 plants.  This pattern was paralleled in grasshoppers.  This relationship 

between δ15N and δ13C values became more pronounced in hatch-year black-throated 

sparrows; those with more C3-based diets were slightly more enriched in δ15N than 

grasshoppers with equivalent δ13C values.  Adult black-throated sparrows had the most 

pronounced relationship between δ15N and δ13C values; birds with mixed C3/C4 diets 

were on average 5.5‰ heavier than birds with mostly C4 diets.  This pattern is most 

likely attributable to adults with mixed diets either consuming at a higher trophic level 

or being exposed to increased nutritional stress.  Further research is needed to 

distinguish these possibilities. 

Introduction 

Stable isotopes are useful for clarifying ecological processes.  Stable nitrogen 

isotopes (δ15N) have commonly been used to identify trophic status in food webs 

(DeNiro and Epstein 1981), with the primary assumption that there is a constant 

increase in δ15N of ~3.4‰ (per mil) per trophic level (Kelly 2000, Post 2002).  

Because nitrogen pathways are dependent on numerous ecological components, 

different environments with different nutrient, food, and water availabilities may 

diverge from this value, such that either individual food web components or entire 

food webs may deviate from predicted δ15N values (Hobson and Clark 1992, Hobson 

et al. 1993).   

In this study, I use the semi-arid grasslands of the northern Chihuahuan Desert 

as a model system to explore whether consumer species exhibit different δ15N patterns 

across an ecological gradient of changing plant composition.  The northern 

Chihuahuan Desert was historically C4 grassland, but due to historical overgrazing, 
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shifts in shrub seed dispersal, periodic drought, and fire suppression (Buffington and 

Herbel 1965, Brown and Archer 1989, Grover and Musick 1990), C3 shrubs have 

come to dominate much of the landscape.  These phenomena have created a habitat 

composition gradient from grassland to shrubland, which drives a stable carbon 

isotope (δ13C) gradient derived from the δ13C differences between C4 grasses and C3 

shrubs (Smith and Epstein 1971).  I use this δ13C gradient to examine trophic shifts in 

consumers with habitat structure.  

I focused on three trophic levels:  desert plants as primary producers, 

grasshoppers as primary consumers, and black-throated sparrows (BTSPs) as 

secondary consumers.  Grasshoppers are known to be the primary food source for 

BTSPs, which inhabit grassland, shrubland, and mixed environments while breeding 

(Zimmer 1983, 1993).  Grasshoppers specialize on various plants; for this study I used 

three representative species that live in all three environments.  Trimerotropis 

pallidipennis specializes upon shrubs and forbs.  Opeia obscura specializes upon 

grasses. Melanoplus occidentalis varies its host plants depending upon availability in 

the environment (Richman et al. 1993).  Personal observations confirm that these 

species are consumed by BTSPs, but BTSP diet is not limited to these species.  Still, 

with this simple three-level system, I can examine trophic shifts using δ15N values 

across a gradient of habitat structure. 

Methods 

Secondary consumers 

In 2005, I collected feather samples from black-throated sparrows at the 

Jornada Experimental Range and Long Term Ecological Research Site (JER; +32.5º 
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N, -106.8º W, elevation 1188 m) in the northernmost part of the Chihuahuan Desert 

(Wainwright 2006) in 2005.   Feathers were stored in envelopes. I identified 15 sites 

by locating either adult and hatch-year (HY) BTSPs or adults and a nest in a location 

during the breeding season, May-August, with care to inspect areas of use that 

spanned the gradient of habitats on JER from nearly 100% grass to nearly 100% shrub 

(no 100% grass or 100% shrub landscapes exist at JER).  If a nest was identified, the 

nest location was used as the center point of the site.  If fledged HY young were seen, 

I flushed birds to determine coarse boundaries of their areas of use, then estimated a 

center point for this area (Wiens 1969).  I mistnetted birds as close as possible to the 

site’s center point to maximize the probability of capturing only one family group.  I 

caught BTSPs using mistnets, collected outer tail feathers, and noted if these were 

currently growing or not (only growing feathers were used for δ15N analysis).  I 

prepared feathers for stable isotope analysis by washing with detergent and 2:1 

chloroform:methanol solvent (Paritte and Kelly 2009) and placing 300-400μg of the 

feather’s distal end (rachis and barbs) into tin capsules. 

Primary consumers 

I used sweep nets at random locations to collect grasshoppers on all 15 2005 

sites.  For stable isotope analysis, 300-450μg of grasshopper wing was clipped, 

cleaned in detergent and 2:1 chloroform:methanol solvent (Paritte and Kelly 2009), 

and packed in tin capsules. 

Plants 

I clipped biomass to within 2 cm of the ground at 30 1 m2 plots within a 1ha 

circle around the center of each of the 15 sites.  Plants were placed in paper bags for 
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storage and dried for 48h in drying ovens at 55C.   Live biomass was separated into C3 

and C4 photosynthetic groups and was identified to species to confirm C3 or C4 

classification. For woody biomass, if a stem seemed mostly alive, the entire stem was 

counted as live biomass. Twenty-nine species or species groups were sampled.  

Salsola tragus (Russian thistle/tumbleweed) was omitted from measurements; this is 

not thought to significantly alter results because the species was only found in 16 of 

450 clipped plots in low biomass and its biology as an invasive wind-disperser 

suggests it is of low value to consumers.  Each plant species was sampled for δ13C/ 

δ15N analysis by initially placing 300-400 μg of leaf tissue (or green stem in a leafless 

species, such as Ephedra) into tin capsules.  If more than a total of 1 kg of live 

biomass of a species was clipped, but 300-400 μg was too small an amount to resolve 

an accurate δ15N value (Bouteloua eriopoda, Gutierrizia sarothrae, Scleropogon 

brevifolius, Pleuraphis mutica), new samples were run using 1.5 mg of green tissue.  

Only the species having >1 kg live biomass (n=6; Figure 1), accounting for 89% of the 

total live biomass clipped, were then used for analysis.  I used live biomass totals and 

mean δ13C values for plant species to calculate mass-balanced stable carbon isotope 

ratios for the 15 sites using the equation , ∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
=

n

i

n

i
iiisite mCmC

1 1

1313 δδ where n is the 

number of plant species at each site, mi is the biomass of each species at each site, and 

δ13Ci is the mean δ13C of each plant species.  I then used the same equation and mean 

δ15N values for plant species to calculate mass-balanced stable nitrogen isotope ratios 

for each site. 
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Stable isotope analysis 

Stable isotope samples were run for δ13C/δ15N on either a Thermo Finnigan 

Delta Plus XL Isotope Ratio Mass Spectrometer, interfaced to a Carlo Erba Elemental 

Analyzer through an open split valve (ConFlo II) at the Stable Isotope Laboratory of 

the Department of Earth and Planetary Sciences, University of New Mexico, 

Albuquerque, New Mexico, or on a Thermo Finnigan Delta V Isotope Ratio Mass 

Spectrometer interfaced through an open split valve (ConFlo III) with a Costech 

Elemental Analyzer at the laboratory of Michael H. Engel, Department of Geology 

and Geophysics, University of Oklahoma, Norman, Oklahoma. Stable carbon isotope 

ratios are reported in per mil (‰) notation relative to the standard Vienna PeeDee 

Belemnite (vPDB). Stable nitrogen isotope ratios are reported in per mil (‰) notation 

relative to the standard atmospheric nitrogen gas (N2). 

Data analysis 

Data were analyzed using SPSS (2004).  I inspected all data for normality 

using Kolmogorov-Smirnov Z tests.   If assumptions were met, I used linear regression 

to determine if sites and plant species samples showed a δ15N trend on a gradient from 

C3 shrubland to C4 grassland as represented by site-level δ13C values.  I used one-way 

ANOVA to determine if overall tissue δ15N values differed among plants, 

grasshoppers, HY BTSPs, and adult BTSPs.  I then used linear regression to determine 

if plant, grasshopper, HY BTSP and adult BTSP δ15N showed trends relative to both 

(1) plant composition at the site of sample collection as represented by the composite 

δ13C values of the plant biomass at the site and (2) δ13C values of their own tissue, 

which in plants represents photosynthetic type (Smith and Epstein 1971) and in 
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consumers reflects diet composition (DeNiro and Epstein 1978).  Because tissue δ13C 

for plants and grasshoppers is bimodally distributed, tissue δ13C vs. tissue δ15N 

regressions are primarily descriptive and data are also analyzed using independent 

samples t-tests on tissue δ15N to confirm trends.  δ13C=-18‰ was used as the division 

point for plant and grasshopper groups.  Plants divided clearly into C3 and C4 plants.  

One grasshopper point did not clearly fall into either of the two groups (δ13C=-

18.64‰) and was removed for the independent-samples t-test. 

Results 

Stable nitrogen isotope values were normally distributed both overall 

(Z151=0.89, p=0.41) and separately for plants (Z44=0.48, p=0.97), grasshoppers 

(Z40=0.38, p>0.99), HY BTSPs (Z53=0.69, p=0.73) and adult BTSPs (Z14=0.55, 

p=0.93).  Sites showed no relationship between mass-balanced δ13C and δ15N values 

(r2=0.18, p=0.11). Plant species had different δ15N values (F5,38=3.72, p=0.01), but 

δ15N values for any one species did not vary across sites (Table 1; Figure 2).   

 Plants, grasshoppers, HY BTSPs, and adult BTSPs showed no relationship 

between tissue δ15N and site δ13C (Figure 3).  However, plants on average had the 

lowest δ15N values, grasshoppers had δ15N values approximately 2.75‰ heavier than 

plants, HY BTSPs had δ15N values approximately 2.36‰ heavier than grasshoppers, 

and adult BTSPs had δ15N values approximately 3.37‰ heavier than grasshoppers 

(F3,147=86.11, p<0.001; Table 2).  HY and adult BTSP δ15N values did not differ 

statistically. 

 When tissue δ15N was compared to tissue δ13C  each trophic group shows a 

different trend (Figure 4).  Plants show decreasing δ15N with increasing δ13C (r2=0.15, 
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p=0.01) such that C3 plants have slightly higher δ15N values than C4 plants (t42=-2.65, 

p=0.01).  Grasshoppers show a trend similar to plants (r2=0.16, p=0.01; t37=-2.59, 

p=0.01) with ~ 3‰ enrichment in δ15N.  HY BTSPs have a slightly steeper slope, 

showing that HY BTSPs that consume more C3 carbon exhibit higher enrichment 

relative to plants than those that consume more C4 carbon (r2=0.24, p<0.001).  This 

pattern becomes more evident in adult BTSPs (r2=0.70, p<0.001), which showed about 

a 9‰ enrichment relative to plants in more C3 birds, but only about a 4.6‰ 

enrichment in C4 birds. 

Discussion 

This simple Chihuahuan Desert trophic system consisting of desert plants, 

grasshoppers, and black-throated sparrows showed a standard δ15N trophic enrichment 

pattern, with plants having the lowest δ15N values, herbivorous grasshoppers having 

slightly higher δ15N values, and omnivorous to exclusively insectivorous (during 

nesting) BTSPs having the highest δ15N values.  However, in this system, trophic 

enrichment averaged ~2.8‰ per trophic level with high variation, not the 3.4‰ or 

more commonly associated with trophic enrichment (Kelly 2000).  Grasshoppers 

showed consistent trophic enrichment across both sites and diets.  However, BTSP 

δ15N trophic enrichment varied not with plant composition in consumer habitats, but 

with the δ13C values of consumer diets, indicating that consumers with more C3 based 

diets have higher δ15N than consumers with more C4 based diets, a pattern that was 

most evident in adult BTSPs. 

Nitrogen cycling is complex and there are many reasons why BTSPs with 

different dietary carbon sources may exhibit different δ15N enrichment patterns.  
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Because enrichment seems to be linked with diet and not simply consumer habitat or 

location, explanations may be related to dietary intake of nitrogen or nitrogen 

metabolism.  Three possible explanations derive from these assumptions:  1) 

consumers of diets containing more C3 sources actually eat at a higher trophic level 

than consumers of C4 sources, and 2) consumers of diets containing more C3 sources 

are exposed to increased water stress, and 3) consumers of more C3 sources incur 

increased nutritional stress. 

First, the explanation that BTSPs with more C3-based diets are eating at a 

higher trophic level that consumers with more C4-based diets may be most feasible for 

BTSPs.  Hobson and Clark (1992) showed that feeding consumers diets containing 

food from higher trophic levels produces higher δ15N values in consumers.  BTSPs eat 

primarily arthropods during the breeding season, and hatchling birds are fed primarily 

arthropods while in the nest and post-fledging.  However, when BTSPs do consume 

seeds, the seeds eaten are primarily from C4 grasses such as bush muhly 

(Muhlenbergia porteri) and Panicum spp. (Zimmer 1983, 1993).  This would suggest 

that BTSPs with more C4-based diets would have a higher probability of having a 

lower trophic status than those with C3 diets.  However, this would only be a logical 

conclusion if HY BTSPs were eating more C3 seeds than adults.  Consumption of C4 

grass seeds by BTSPs is common (Zimmer 1983, 1993), but significant consumption 

of C3 shrub or forb seeds has not been reliably documented.  Additionally, optimal 

foraging suggests consumers consume food sources that maximize their nutritional 

input over time (Fretwell and Lucas 1969, Paulissen 1987, Rosenzweig 1991).  Lower 

prey searching time and higher encounter rates of higher trophic level C3 arthropods 
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for adult birds and C3 seeds for HY birds (who would be less effective predators (Guo 

et al. 2010) may increase their respective nutritional potentials.  However, trophic 

differences may not only be limited to consumption of insects vs. seeds, but may 

distinguish different arthropod food sources from different trophic levels. 

The second explanation, that consumers with more C3-based diets are subject 

to increased water stress, is ambiguous. Lopes and Araus (2006) illustrated that water 

stress enriches δ15N in wheat.  With respect to consumers, some studies note increased 

δ15N in some consumers and attribute this to species adaptation to a dry climate 

(Schoeninger and Deniro 1984, Ambrose and DeNiro 1986) or consumer occupation 

of a xeric habitat (Kelly 2000).  Further, Sealy et al. (1987) described consumer δ15N 

correlation with rainfall in arid areas.  However, enriched δ15N in more C3-based 

BTSPs is tied to diet and not necessarily to habitat; thus, any explanation would have 

to account for C3 consumers in areas of mostly grass having higher δ15N values than 

those consuming C4 carbon.  Cormie and Schwarcz (1996) did link diet to enriched 

δ15N, but in their study enriched δ15N, which also correlated with precipitation, was 

more evident with increasing consumption of C4 plants.  This is opposite the trend 

seen in BTSPs, which showed enrichment with decreasing consumption of C4 based 

food.   

Third, the notion that more C3-based consumers are more nutritionally 

stressed, may be feasible, but is also ambiguous.  Owen-Smith (1994) showed food 

limitation can increase consumer foraging on less preferred food sources.  If C3- and 

C4- based foods in the Chihuahuan Desert system are differentially preferred, either C4 

food limitation or the actual C3-based food may be sources of nutritional stress.   
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Nutritional stress would more likely be tied to diet than to habitat, but  would not 

explain why birds in areas with high quantities of C4 grass (and presumably C4 grass-

based food) consume C3 sources if they are nutritionally stressful and other sources are 

available.   

In conclusion, it seems most likely that increased δ15N in BTSPs, particularly 

adults, that consume more C3-based diets is most likely attributable to consumption of 

a C3 food source of a higher trophic level than typical C4 food sources.  Further studies 

analyzing gut contents and fledgling and adult feeding behavior in BTSPs may help 

clarify this possibility.  
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Table 1. Mean and SD δ15N values for the six plant species used in data analysis.  
Both r2 and p-values are for the relationship between plant tissue δ15N and the δ13C 
values of the site at which the sample was collected.   

Species 
Mean δ15N 

(‰) SD r2 p 
B. eriopodaa 0.39 1.47 0.29 0.35 
P. muticaa 1.51 1.65 0.15 0.45 
S. brevifoliusab 2.57 1.84 0.15 0.34 
P. glandulosaab 2.7 2.15 0.03 0.59 
G. sarothrae/G. sphaerocephalaab 3.04 1.01 0.23 0.23 
F. cernuab 4.89 1.18 0.29 0.35 
Note:  Superscript letters a and b are Tukey’s HSD groupings for species δ15N main-
effect. 
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Table 2. Mean and SD δ15N values for plants, grasshoppers, HY BTSPs, and adult 
BTSPs.  Both r2 and p-values are for the relationship between tissue δ15N and either 
site or tissue δ13C values as indicated.   

Species Mean δ15N (‰)
Trophic Level δ15N 

difference  (‰) SD 
Site 

         r2     p 
Tissue 

        r2  p 
Plantsa 2.61  1.97 0.003 0.73 0.15 0.01 
Grasshoppersb 5.36 2.75* 1.70 0.02 0.40 0.16 0.01 
HY BTSPsc 7.72 2.36** 1.45 0.03 0.26 0.49 <0.001
Adult BTSPsc 8.73 3.37*** 1.94 0.01 0.75 0.84 <0.001
Note:  Superscript letters are Tukey’s HSD groupings for species δ15N main-effect. 
*Grasshopppers δ15N-Plants δ15N 
**HY BTSPs-Grasshopppers 
***Adult BTSPs-Grasshoppers 
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Figure 1.  Plant species found on 15 sites and their log-transformed and linear (inset) 
total dry live biomass.  Only species with >1 kg total dry live biomass were used for 
mass-balanced δ15N calculations for sites (black bars).  Of those not used in 
calculations, I was measured δ15N values for some (gray bars), but not others (white 
bars).  δ15N means and standard deviations are listed in Table 1. 
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Figure 2. Mass-balanced site δ13C vs. mass-balanced site δ15N for 15 sites (a) and 
mass-balanced site δ13C vs. δ15N for samples taken at those sites (b).  No trend was 
seen either within a plant species or overall.  Mass-balanced site δ15N values were 
calculated using species δ15N means. 
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Figure 3.  Mass-balanced site δ13C vs. consumer tissue δ15N.  Lines represent best fit 
and 95% confidence.  Black lines show best fit and confidence (CI) for overall plant 
sample pattern in Figure 2b. Regressions (1SE in parentheses):  Plants, y=-
0.03(0.09)x+1.94(1.97), r2=0.003, p=0.73; Grasshoppers, y=0.07x(0.08)+6.83(1.74), 
r2=0.02, p=0.40; HY BTSPs, y=-0.06x(0.05)+6.46(1.13),  r2=0.03, p=0.26; Adult 
BTSPs, y=-0.06x(0.18)+7.57(3.63), r2=0.01, p=0.75. 
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Figure 4.  Plant and consumer tissue δ13C vs. plant and consumer tissue δ15N.  Lines 
represent best fit and 95%CI.  Due to the bimodal nature of plant and grasshopper 
data, independent-samples t-test results are presented along with regression results.  
Regressions:  Plants, y=-0.14(0.05)-0.36(1.12), r2=0.15, p=0.01; Grasshoppers, y=-
0.16(0.06)-2.24(1.20), r2=0.16, p=0.01; HY BTSPs, y=-0.31(0.08)-2.28(1.38), r2=0.24, 
p<0.001; Adult BTSPs, y=-0.67(0.13)-2.36(2.11), r2=0.70, p<0.001.  Independent-
samples t-tests: Plants, t42=-2.65, p=0.01; Grasshoppers, t37=-2.59, p=0.01. 
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