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PREFACE 

Capital budgeting is an exceedingly complex decision­

making situation and this is especially true when the asso­

ciated cash flows a_re probabilistic. Utility theory has 

been the backbone of most previous work in the probabilistic 

case. However, not only is this approach fraught with com­

plexity7 but also the validity of utility functions has been 

questioned. Thus 7 this research was undertaken to attempt a 

more practical and simple solution for a particular kind of 

probabilistic problem without explicitly involving cardinal 

utility theory. • 
The dissertation is perhaps the culmination of a 

student's career and I want to take this opportunity to 

thank all my teachers, past and present, without whose 

"developmental" work I would not be writing this today. 

Specifically, I would like to acknowledge my gratitude 

to the late Professor Wilson J. Bentley. His encouragement, 

guidance and ofttimes most tangible help made it all 

possible. 

Special thanks are due the members of my committee: 

Dr. James E. Shamblin, the chairman, for his generosity and 

thoughtfulness throughout the doctoral program; Dr. G. T. 

Stevens, who has been a most patient and understanding 

thesis adviser - I am deeply grateful for having had the 



opportunity of being associated with him; Dr. M. P. Terrell 

for his consideration in accepting a position on the com­

mittee at unavoidably short notice and for his valuable 

assistance since; Dr. P. L. Claypool for his help with 

statistical problems in particular and advice in general 

during my graduate work. 

Finally, I wish to thank Miss Velda Davis for typing 

the manuscript and Mr. Eldon Hardy for drawing the figures. 
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CHAPTER I 

INTRODUCTION 

The purpose of this research is to obtain a solution to 

a probabilistic capital budgeting problem without the 

explicit use of cardinal utility theory. This basic problem 

consists of determining the optimum choice from projects 

(investments) competing for limited resources where project 

cash flows are probabilistic. 

Theoretical solutions for this problem as well as the 

closely related portfolio selection problem have been ob­

tained through the use of the von Neumann and Morgenstern 

(15) utility theory. This theory, on the basis of a series 

of axioms of rational behavior, .. permits a numerical measure 

(utility) to be assigned to monetary payoffs which have 

varying degrees of risk. It accomplishes this by presenting 

a series of "gambles" to a decision-maker and plotting 

responses to define his utility function. Through this pro­

cedure a preference ordering among alternatives involving 

risk, for the particular decision-maker, is obtained. 

Markowitz (1J) uses the von Neumann-Morgenstern utility 

concept to provide an explanation for the practice of diver­

sification in investment portfolios. Adherence to a simple 

policy of maximization of expected net present value means 



the investor will put all his money into what appears to be 

the "best" security. However, the prudent investor chooses 

to reduce over-all risk and possibly over-all gain by 

investing in several securities. Explaining this kind of 

investor behavior, Markowitz hypothesizes an expectation­

variance function of the form: 

2 

E(U) 2 
= µ - Ao ( 1) 

where 

E(U) = expectation-variance or the expected 

utility of the return for a particular 

portfolio. 

µ = the mean return for the portfolio. 

er = standard deviation of the return. 

A = coefficient of risk aversion. 

It can be seen that for a given variance the expected 

utility is greater for a larger mean. Also, for a given 

mean, the expected utility decreases as variance increases. 

Maximization of the expectation-variance function thus leads 

to an optimum answer for a given coefficient of risk aver-

sion A. Successive repetitions with different coefficients 

of risk aversion yield a set of such optimums. 

A few observations need to be made regarding Markowitz's 

model. Firstly, in economic terms the model is positive and 

not normative. In other words, it emphasizes what is, and 

does not lay any claim to stating what should be. It. merely 

says what a decision-maker does if he has an expectation­

variance function of this kind and a particular coefficient 
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of risk aversion A. 

Secondly, it explains the logic of diversification of 

investments. In cases where the expected returns from 

investments are negatively correlated, the over-all port-

folio variance is reduced; and where the expected returns 

are positively correlated, the over-all variance is in-

creased. Hence 9 a decision-m~ker with a large coefficient 

of risk aversion tends to choose the former, while one with 

a small coefficient of risk aversion is inclined towards the 

latter. 

Thirdly, the model is designed for portfolio selection 

and thus a fraction of available funds can be allocated to a 

security. Therefore, the model as such cannot be directly 

applied to the attribute (0/1) situation that exists in the 

1 capital budgeting problem. However, it is still of consid-

erable consequence since it clearly demonstrates that under 

conditions of uncertainty maximization of net present value 

by itself is not sufficient as a criterion for project 

selection. 

Farrar (6) in his doctoral dissertation tests 

Markowitz 1 s hypothesis using the portfolios of actual mutual 

funds. He shows that funds can be distinguished in their 

risk attitudes (different coefficients of risk aversion) on 

the basis of the variances of the portfolio investments. 

1 In a capital budgeting problem, a project is either 
accepted or rejected. Consequently, the decision variables 
can only have values of zero or one. 



He also shows that as long as there is diminishing marginal 

utility of money, the relationship between the coefficient 

of risk aversion and the utility function of monetary income 

is, 

A = 
u"(µ) 

2 

This is, of course, based on an expectation-variance 

function of the same form as used by Markowitz; namely, 

E[U(t)] = µ - Aa2 • 

However, it needs to be mentioned that Farrar also 

assumes a utility function of the form 

U(t) = At - Bt 2 

and proceeds to derive Equation (J) from this by taking 

( 2) 

( 3) 

(4) 

expected values. The expectation of Equation (4) does not 

yield Equation (J). Insead, Equation (J) derives from a 

utility function of the form 

U( t) = 1 -
-at 

e ( 5) 

This error has been noted by footnote in a later edi-

tion of the published· work. The utility function in Equa-

tion (5) is also the basis of Freund 1 s method (8). 

Cramer and Smith (J) introduce a further sophistication 

into the Markowitz and Farrar utility models by including a 

term for the amount of investment. Their model is of the 

form: 



5 

E[U(t)] a b 
= µ - Acr I ( 6) 

where 

I = amount of investment in the project. 

a = a constant. 

b = a constant. 

The constants 1 a 1 and 1 b 1 are determined as follows. 

The utility of money curves are first obtained through 

direct inquiryo Then appropriate logarithms of the right-

hand side terms of Equation (6) are plotted over a range of 

indifference, that is where U(t) = O. The slopes of these 

graphs give 1 a 1 and 1 b 1 • 

Although these models provide a theoretical solution to 

the probabilistic capital budgeting problem, they do not 

give the practitioner a ready answer, largely due to the 

practical difficulties of establishing a valid utility func-

ti on. In the first place, it is difficult to persuade 

decision-makers to participate in such an experiment, and 

then also to provide them with questions realistic enough to 

compare with situations they will actually experience. Even 

when individual utility functions are determined for the few 

top executives of a firm, there remains the problem of 

unifying these into a group function representative of 

company objectives. Swalm (20) raises the question as to 

how stable these utility functions are over time. These 

questions concerning cardinal utility theory indicate that 

it is still in its infancy. 

Critics of utility theory also believe that it is 
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normative - that it indicates how decision-makers should 

behave rather than how they actually behave. In discussing 

the Savage (17) theory which combines cardinal utility with 

subjective probability, Raiffa (16, p. 690) says that it is 

a theory which purports to advise its believers "how he 

(they) should behave in complicated situations provided he 

(they) can make choices in a coherent manner in relatively 

simple, uncomplicated situations." He puts forward the con-

tention that people do not always behave in a manner con-

sistent with maximizing their utility; namely, the theory is 

not predictive, which is perhaps the most damaging criti-

cism of all from the viewpoint of project selection in 

capital budgeting. 

Other approaches to the problem (without the use of 

utility theory) are proposed by English (5) and Solomon (19). 

English presents a varying discount rate model where in-

creasing risk in the more distant future is accounted for by 

changing the discount rate. Since variable discounting rate 

functions cannot be readily used, English has developed what 

he terms an operationally useful one. 

where 

r(n) = ..!.. 0n __ 1 __ 
n 1 - r n 

0 

= the initial rate. 

r(n) = the rate at time period n. 

( 7 ) 

The advantage of this model lies in the relatively easy 

way it compensates for long term risk, though the accuracy 
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of the calculated discount rate as a measure of risk can be 

debatable. It also fixes a planning horizon N, which is the 

reciprocal of r 0 • Thus r 0 = 1/N. The implication is that a 

long planning horizon yields a low initial discount rate - a 

result that cannot always be considered reasonable. 

Solomon's method of varying the discount rate is different, 

but here again the risk-compensatory rate changes tend to be 

rather arbitrary. 

It can be seen from this review of some of the current 

literature that neither the utility approach nor the varying 

discount rate method offer practical solutions to the prob­

abilistic capital budgeting problem. Thus, a solution (or 

even a good approximation) to this problem without the use 

of cardinal utility theory would be of great practical value. 

It is to such an aim that this research is directed. 



CHAPTER II 

ANALYSIS: THE CHOICE BETWEEN 

TWO PROJECTS 

The probabilistic capital budgeting problem as defined 

in Chapter I is the optimum choice from projects competing 

for limited resources where project cash flows follow a 

probability distribution. More specifically, the problem 

considered in this dissertation meets the following three 

conditions: 

(1) The net present values for every project are 

normally distributed. 

(2) The net present values for every project are 

mutually independent. 

(3) The budget constraint is based on the expected 

values of investment. 

A solution to this problem can be approached with the 

hypothesis that given two projects such that, 

(expected loss) 2 < (expected loss) 1 

and 

(expected gain) 2 > (expected gain) 1 

then a rational decision-maker prefers project 2. 

However, before a solution is possible, certain basic 
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concepts must be developed. Thus, the purpose of this 

chapter is the presentation and explanation of these con-

cepts. One of the fundamental concepts used is the 

expected loss as proposed by Schlaifer (18) and utilized by 

Canada (2). A loss, as defined by Canada and also as 

employed in this dissertation, occurs when a project has a 

negative net present value. 

The Expected Loss (EL) 

With the preceding definition of a loss, the expected 

loss can be mathematically defined as 

EL = r° INPVif(NPV) d(NPV) ( 8) 
•I 
-CXI 

for a continuous probability density function of net present 

value. If the density function, f(NPV), is assumed to be 

normal, then Equation (8) becomes (see Appendix A): 

EL= crNPV • G(u). ( 9) 

G(u) is the unit normal loss integral defined and eval-

uated by Schlaifer and 

(10) 

where 

µNPV = the expectation of the net present value 

distribution, 



aNPV = the standard deviation of the NPV 

distribution. 1 

As a simple example of the use of Equation (9), con-

10 

sider a project that has a normally distributed net present 

value with µ = $2000 and a = $1000. 2 

Now, 
µ 2000 

u = a = 1000 = 2 

and from the table of unit normal loss integrals (Schlaifer 

(18), p. 706) 

G(u) = G(2) = 0.008491. 

Therefore, by Equation (8), the expected loss is 

EL = 1000 (0.008491) = $8.491. 

The Expected Gain (EG) 

The expected gain is just the converse of expected 

loss; namely, 

EG INPVI f(NPV) d(NPV). (11) 

For a normally distributed net present value function, 

Equation (11) reduces (se: Appendix A) to 

EG = cr • G(-u) (12) 

1For convenience, the subscript NPV is now dropped so 
that henceforth µNPV = µ and crNPV = a. 

2Methods of evaluating the mean and variance of the NPV 
distribution are available in the literature, e. g. 
Hillier (7). 
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where 

G(-u) = u + G(u). (13) 

For the example µ = $2000 and cr = $1000, the expected 

gain is calculated as follows: 

From Equation (13) 

G(-u) = 2 + 0.008491 

= 2.008491. 

Then, applying Equation (12), 

EG = 1000 (2.008491) 

= $2008.491. 

The Choice Between Two Projects 

Given two projects and their net present value distri­

butions, two situations can occur with regard to their 

expected losses and gains; namely, 

A. EL2 < EL 1 

EG2 > EG1 

B. EL 2 < EL 1 

EG2 < EG1 • 

In the first situation, the rational decision-maker 

chooses project 2. In the second situation, the choice is 

not as obvious and additional criteria are needed before a 

decision is possible. Which of these two situations occurs 
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can be predicted by considering again the formula for EL 

and EG. 

EL = cr • G(u) 

EG = cr . G(-u) 

= cr [u + G(u)] 

= cr[~ + G(u)] from Equation ( 10). 

Therefore, EG = µ + EL 

Thus, 

and 

Since EL2 < EL1 (in both situations), it is seen that 

EG2 is greater than EG1 only when the difference of the 

means is greater than the difference in expected losses; 

that is, if 

(15) 

Now, Equation (15) need not always be satisfied as when 

µ 1 = µ 2 with the result that situation B occurs. This 

points out more explicitly the need for additional criteria 

in order to obtain a solution. 

In order to determine these supplementary criteria, the 

expected loss and expected gain functions are examined 

3The mean µ is equal to the difference between the gain 
and loss expectations and not the s~m because EL is always 
positive; refer to. Equaj;ion 8 where the absolute value 
of NPV is used in the calculation of EL. 
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empirically. A group of projects are constructed by varying 

µ and cr and the expected loss and expected gain are calcu-

lated for each project. 
µ EL 

In addition, the ratios a' -µ 1 and 

EG -µ- are also computed. These ratios are designated, respec-

tively, the Worth Ratio, the Loss Ratio, and the Gain Ratio 

and will be referred to later in this chapter. In Table I, 

all these results are summarized. 

Plots of EL and EG versus the Worth Ratio ~ are shown 

in Figure 1. The curves can be observed to be hyperbolic 

with the 11hori~ontar'portion extending beyond~= 1.9. This 

region is called the Low-Risk Zone since EL is very nearly zero 

throughout the region without any appreciable change. For this 

reason, it is logical to emphasize EG in any comparison of 

projects in this region. 

From Equation (14), EG =µ+EL. 

Since, EL is negligible, 

therefore, EG ~ µ. 

Thus, in any comparison of projects in the Low-Risk 

Zone, the emphasis is placed on µ. It is of note that in 

practice a large group of projects lie in this zone, that is 

Where µ > 1 9 cr • • 

For ~ < 1.9, the curves rise very steeply and are 

asymptotic to the vertical EL/EG axis. This region is 

termed the High-Risk Zone. Since both expected loss and 

expected gain undergo rapid increases in this area, both 

are significant and must be considered. Thus, in a 



TABLE I 

DATA FOR A GROUP OF PROJECTS 

u=.1:±. EL EG 
Project iJ cr cr G(u) EL EG µ µ 

1 1000 200 5.00 ~ ~ ~1000.00 ~ ~1 

2 1000 400 2.50 .0020 0.80 1000.80 0.00080 1.00080 

3 1000 600 1.67 .0202 12.12 1012.12 0.01212 1.01212 

4 1000 800 1.25 .0506 40.48 1040.68 o.o4o48 1.04048 

5 1000 1000 1.00 I .0833 83.30 1083.30 0.08330 1.08330 

6 1000 2000 0.50 .1978 395.60 1395.60 0.39560 1.39560 

7 1000 3000 0.33 .2555 766.50 1766.50 0.76650 1. 76650 

8 1000 4000 0.25 .2863 1145.20 2145.20 1.14520 2.14520 

9 1000 5000 0.20 .3069 1534.50 2534.50 1.53450 2.53450 

10 2000 200 10.00 ~ -;:::£) R12000 -;:::£) ~1 

11 2000 400 5.00 ~ ~ ~000 ~ ~1 

12 2000 600 3.33 iP1135 0.06 2000.06 .00003 1.00003 

13 2000 Boo 2.50 D22Doo 1.60 2001.60 .00080 1.00080 

14 2000 1000 2.00 .da500 8.50 2008. 50 .00425 1.00425 

15 2000 2000 1.00 .08330 166.60 2166.60 .08330 1.08330 

16 2000 3000_ 0.67 .15300 459.00 2459.00 .22450 1.22950 

17 2000 4600 0.50 .19780 791. 20 2791. 20 .39560 1.39560 

18 2000 5000 o.4o .23040 1152.00 3152.00 .57600 1.57600 
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comparison of projects, percentage differences between the 

expected loss of each and between the expected gain of each 

are evaluated and compared. This can be done according to 

the following basic premise. 

If percentage-wise, the difference between the expected 

losses is greater, then the project with the lower EL is 

chosen. Conversely, if the percentage difference between 

the expected gains is greater, then the project with the 

larger EG is selected. Expressed as ratios and algebraically, 

if EL1/EL2 > EG1/EG2 , then project 2 is selected. Conversely, 

if EG 1/EG2 > EL1/EL 2 , then project 1 is preferred. It is to be 

noted that situation Bis being considered; that is, EL2 < EL1 

and EG2 < EG 1 • It is implicitly assumed that the above 

decisions are within the fin~ncial 6apacity of the firm; that 

is, an adverse project outcome will not result in financia·1 

disaster. 

Finally, as a result of this premise, in a comparison of 

projects with one in the high-risk zone and the other in the 

low-risk zone, the choice must always be the low-risk project. 

This is because, for comparable projects, the low-risk one 

must always have a negligible EL. Thus, in any percentage-wise 

comparisons of the EL and EG differences, the EL percentile 

must be larger. Hence, the project with the smaller EL, 

namely the low risk project, is always selected. 

A complete selection procedure for comparing two proj­

ects can now be summarized as below: 

(1) If a situation exists such that EL2 < EL 1 and 

EG2 > EG 1 , then project 2 is selected. 

(2) If, however, EL2 < EL1 and EG2 < EG1 , 



then 

(i) the projects are examined to see if they 

lie in the high-risk or low-risk zones. 

(ii) If both projects lie in the low-risk 

zone, then the project with the larger 

µ is chosen. 

(iii) If one project is in the high-risk zone 

and the other in the low-risk zone, then 

the low-risk project is selected. 

(iv) If both projects lie in the high-risk 

zone, the percentage-wise changes in EL 

and EG are examined and an appropriate 

choice (as explained on the previous 

page) made. 

17 

The comparison of the net present value of projects on 

a basis of its two parameters µ and cr gives rise to five 

cases which are shown in Figure 2. All of these are now 

considered in turn and numerical examples used to illustrate 

the selection process. 

Case I 

This trivial case, included for completeness, yields 

and 

EL1 = EL2 

EG1 = EG 2 • 



CASt I 

CASE II 

CASE ID 

CASE nz 
µ, = l-L2 
a-, > 0-2 

CASE1l 

PROJECT l 
PROJECT 2 

Figure 2s Cases in Project Comparison 
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The decision-maker is, therefore, indifferent to a 

choice between the two projects. 

Case II 

µ1 < µ2 

O' 1 = O' 2. 

It is known that EL = O' . G(u) 

= O' . G(~). 

19 

( 9 ) 

(10) 

From Appendix A, it can be seen that the function G(u) 

decreases as u increases. Now, in this particular case, it 

is always true that, 

µ1 
< 

µ2 

O' 1 0'2 
. 

Therefore, G (µ1:) 
0'1/ 

> G (µ2) 
0'2 .• 

and, consequently, cr1 • G cu1J> cr 2 • G c~:)(since cr1 = a 2 ). 
O' 1 

Thus, it is always true in this case that EL 2 < EL1 • 

For EG2 to be greater than EG1 , condition ( 15) .must· 

be met; that is, 

In the low-risk region, it is known from Figure 1 that 

both EL1 and EL2 are negligible and, thus, their difference; 

also, since here u2 > u1 , the above condition is satisfied. 

Thus, 
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and 

and project 2 is selected. 

If one project is high-risk and the other low-risk, 

then according to prior discussion the low-risk project 

(namely 2) is chosen. 

If both projects are in the high-risk zone, then 

percentage-wise changes in EL and EG. need to be considered. 

If percentile increases in EL (EG) are'greater than the 

corresponding percentile changes in EG (EL), then th~ 

project with.the smaller EL (larger EG) is selected. 

Consider the following example: 

Project 1 Project 2 

IJ.1 = 1000 IJ.2 = 2000 

0"1 = Boo 0"2 = Boo 

1000 
1. 25 

2000 
2.5. u1 = 8oO u2 = 8oO = 

From the table of unit normal loss integrals: 

G(u1 ) = 0.0509 G(u2 ) = 0.002004 

EL1 = a 1 • G ( u 1 ) EL2 = a 2 • G ( u 2 ) 

= 40.472 = 1. 6032 

EG 1 = 1040.472 EG2 = 2001.6032. 

Thus, 

and 



21 

Hence, a rational decision-maker chooses project 2. 

It is noteworthy that in Case II the transition point 

where the situation EL2 > EL1 and EG2 > EG 1 occurs is where 

the worth ratio (µ) is of a sufficiently low order to be 
(J 

seldom encountered in practice. 

Case III 

The analysis in this case is very similar to the pre-

vious one. 

Also, since 

Thus, 

is always greater than G(µ 2 ). 
cr2 

EL 1 is always greater than EL2 

EL < EL1 • or 2 

If EG 2 is to be greater than EG1 , then from Equation 

( 15) : 

In the low-risk region, this condition is met (since 

EL 1 ~ EL2 ~ 0) and EG 2 is greater than EG 1 • Thus, 

and project 2 will be selected. 
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If one project is high-risk and the other is in the 

low-risk region, then the low-risk project (namely 2) is 

selected. 

If both projects are in the high-risk zone, then the 

percentage changes in EL and EG need to be considered. If 

the percentage increase in EG (EL) is greater than:the corre-

sponding percentage increase in EL. (EG), then the project 

with the lar~e~ EG (smaller EL) is chosen. 

Consider the following example: 

Project 1 Project 2 

µ1 = 1000 µ2 = 1200 

O' 1 = 1000 0'2 = Boo 
1000 1 1200 1.5 u1 = 1000 = u2 = 8oO = 

From the table of unit normal loss.integrals: 

G(u1 ) = 0.08332 

EL1 = 83.32 

EG1 = 1083.32 

G(u2 ) = 0.02931 

EL2 = 23.448 

EG2 = 1223.448 

Thus, 

and project 2 is selected. 

Again for Case III, it needs to be noted that the 

transition point, where the situation EL 2 > EL1 and 

EG2 > EG 1 occurs, is at a very low worth ratio and is 

seldom encountered in practice. 
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Case IV 

a 1 > ()2 

Again, 
µ1, 

is always less than 
µ2 - . 

a 1 ()2 

G(µ1) 
0"1 

is always greater than G(µ2) 
cr2 

and EL1 is always greater than EL2 

Thus 

Now for EG2 to be greater than EG, 

However, since µ 2 = µ 1 , in this case the above condi-

tion can never be met. 

Hence EG1 must always be > EG2 • 

Thus, the situation that always exists in this case is 

This conflict can be resolved in the following manner. 

In the low-risk region, the potential for loss is 

insignificant since EL 1 and EL2 are negligible. Also, since 

EG = µ + EL, the expected gains for the projects are approx-

imately the same. Thu~ the rational decision-maker is 

indifferent as regards choice. However, since the option is 

available and since there are no obvious advantages in not 
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doing so, it is wise to minimize risk and choose the project 

with the smaller standard deviation. 

In the high-risk region and also when one project is 

high-risk and other low-risk the loss potential is signifi-

cant and cannot be ignored. In fact, percentage-wise it is 

greater than the corresponding potential gain. Thus, the 

project with the lower EL is chosen. Since EL2 < EL1 , proj­

ect 2 is preferred. 

To illustrate this case, consider the following example 

where one project is marginally high-risk and the other 

marginally low-risk: 

Project 1 Project 2 

µ1 = 1000 µ2 = 1000 

0'2 = Boo 0'2 = 4000 

1000 
1. 25 

1000 
2.5. u1 = 8oO = u2 = ~= 

From the table of unit normal loss integrals: 

G(u1 ) = 0.05059 

EL1 = 40.472 

EG 1 = 1040.472 

G(u2 ) = 0.002004 

EL 2 = 0.8016 

EG2 = 1000.8016. 

However, the loss potential for project 1 is about 50 

times that of project 2 while the gain potentials of both 

are approximately the same. Thus, a rational decision-

maker chooses project 2. 
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Case V 

It is not possible in this case to derive generalities 

as has been done in the previous ones. Consequently, each 

selection problem has to be dealt with on an individual 

basis. As in previous cases, there are three types of prob-

lems: (i) where both projects are low-risk; (ii) w·here 

one project is low-risk and the other high-risk; and (iii) 

where both projects are high-risk. It is found that the 

selection algorithm is still applicable and this is illus-

trated in the following examples of each of the three types 

of problems. 

( i) Low-Risk Projects (µ > 1. 9) : 
(J 

Project 1 Project 2 

µ1 = 1000 µ2 = 2000 

(J1 = 500 (J2 = Boo 
1000 2 2000 

2.5. u1 = 500 = u2 = ~ = 

From the table of unit normal loss integrals: 

G(u1 ) = 0.008491 

EL1 = 4.2455 

EG 1 = 1004.2455 

G(u2 ) = 0.002004 

EL2 = 1.6032 

EG2 = 2001.60)2. 

Thus, the choice is obviously project 2. It is to be 

noted that if µ 2 = 1600, then EL2 = 6.7928 and is greater 



than EL1 • However, the choice must still remain project 2 

since EL here is of an order of magnitude that is 

insignificant. 

(ii) Mixed Projects (µ 1 < 1.9; µ 2 > 1.9): 
cr1 cr2 

Project 1 Project 2 

µ1 = 500 µ2 = 2000 

0'1 = 500 0'2 = Boo 
500 1 2000 

2.5. u1 = 500 = u2 = lr50 = 

From the table of unit normal loss integrals: 

Thus, 

and 

Project 2 

(iii) 

G(u1 ) = 0.08332 

EL1 = 41.660 

EG 1 = 541. 660 

is therefore selected. 

High-Risk Projects (µ < 
a 

Project 1 

µ1 = 1000 

0'1 = 1600 

1000 
0.625 u1 = 1600 = 

1. 9): 

G(u2 ) = 0.002004 

EL 2 = 1.6032 

EG2 = 2001. 6032. 

Project 2 

µ2 = 2000 

0'2 = 2500 

2000 o.B. u2 = 2500 = 

From the table of unit normal loss integrals: 

Thus, 

and 

G(u1 ) = 0.1620 

EL 1 = 259.2 

EG1 = 1259.2 

G(u2 ) = 0.1202 

EL2 = 300.5 

EG2 = 2300.5 

26 
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However, an examination of percentage changes in EL and 

EG shows that the percentage increase in expected gain of 

doing project 2 outweighs the corresponding percentage in-

crease in expected loss. Thus, project 2 is preferred. At 

this point, it is desirabLe to consider the loss and gain 

ratios mentioned earlier in this chapter. 

Loss and Gain Ratios 

The loss ratio ( EL) (EG) and the gain ratio ~ have been µ µ 

computed for a series of projects and are given in Table I. 

Each of these ratios are plotted against the worth ratio ( µ) 
CJ 

in Figure J. The curves produced are hyperbolic in appear-

ance and are nearly horizontal for * > 1.9, that is in the 

low-risk region; and, the curves are nearly vertical in the 

µ 
high-risk region where - < 1.9. 

CJ 

It is to be noted that these ratios are dimensionless 

quantities developed from the project parameters. Thus, an 

inherent property of the loss/gain ratio versus worth ratio 

curves is that any project must lie on these curves. Conse-

quently, any two projects can be compared. This comparison 

can be illustrated by using the two preceding examples, 

V(ii) and V(iii), of mixed and high-risk projects. The data 

for these projects is repeated with the addition of the loss 

and gain ratios. 
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Mixed Projects 

Project 1 

µ1 = 500 

01 = 500 

µ1 
1 = 

01 

EL1 = 41. 660 

EG 1 = 541.660 

EL1 
0.08332 -- = 

µ1 

EG 1 
t.08332 -- = 

µ1 

High-Risk Projects 

Project 1 

µ1 = 1000 

01 = 1600 

µ1 
0.625 = 

01 

EL 1 = 259.2 

EG 1 = 1259.2 

EL1 
0.2592 -- = 

µ1 

EG1 
1. 2592 -- = 

µ1 

It is noted that in both examples, 

EG2 
greater than EG 1 , the gain ratio is 

µ2 

Project 2 

µ2 = 2000 

02 = Boo 

µ2 
2.5 = 

02 

EL2 = 1. 6032 

EG2 = 2001.6032 

EL2 
0.008016 = 

µ2 

EG2 
1.008016 -- = 

µ2 

Project 2 

µ2 = 2000 

02 = 2500 

µ1 
o.8 = 01 

EL 2 = 300.5 

EG2 = 2300.5 

EL2 
0.15025 -- = 

µ2 

EG2 
1.15025. = 

µ2 

while EG2 is 
EG1 

less than --. 
µ1 

29 
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Figure 3 confirms that as the worth ratio increases the gain 

ratio decreases. This is also true for the loss ratio. 

However, the loss ratio decreases at a faster percentile 

rate (see Figure 3 and the examples). In each of 

these examples, the loss ratio of project 2 is less than 

that of project 1 and percentage-wise this reduction is 

greater than the corresponding reduction in the gain ratio 

of project 2. Hence, in each case project 2 is selected. 

This answer is the same as that obtained by examining the 

percentile changes in the expected gains and losses. 

From these results, it is possible to develop a simpler 

method for comparing two projects. Now, consider that while 

project 2 is preferred in both examples, in the first 

example EL2 is less than EL1 , and in the second example EL2 

is greater than EL1 • The loss ratios, however, show that 

(loss ratio) 2 is always less than (loss ratio) 1 • From 

Figure J, it can be seen that the loss ratio has a base of 

approximately zero compared to a gain ratio base of about 

one. Consequently, the percentile change in loss ratio is 

always greater than the corresponding change in gain ratio. 4 

Thus, the project with the lower loss ratio is preferred. 

Now, a smaller loss ratio corresponds to a larger worth 

ratio ( u) 
CT • Therefore, for high-risk and mixed projects, a 

valid means of selection is to pie~ the larger worth ratio. 

4rt is not possible to make such a statement for the 
expectation curves (Figure 1) since, in the high-risk zone, 
as µ varies the curves are laterally displaced. The pre­
ceding high-risk example, V(iii), where the expected gain 
provided the greater percentile change confirms this. 
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When considering mixed projects, this policy results in the 

low-risk project being automatically selected. 

In the low-risk region (both projects are low-risk), 

the change in risk is ~nsignificant (nearly horizontal EL 

and loss ratio curves) and as has been shown previously the 

selection criterion is to choose the project with the larger 

µ. 

The techniques developed in this chapter and summarized 

later provide a basis for the construction of an algorithm 

for the solution of the multi-project problem. This is the 

subject of the next chapter. 

A Summary of Selection Procedures 

for the Choice Between 

Two Projects 

Case Classifi~atiqn 

Case I: 

Course of action: Indifferenc~ between projects. 

Case II: 

Course of action: Select project 2 in low-risk region. 

Max* otherwise and, thus, also project 2. 
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Case III: 

Course of action: Select project 2 in low-risk region. 

Max ~ otherwise and, thus, also project 2. 

Case IV: 

Course of action: Select project 2 in low-risk region. 

Max % otherwise and, thus, also project 2. 

Case V: 

(i) Low-risk projects(%> 1.9): 

(ii) 

Course of action: 

. . •t· (µ1 < Mixed proJec s -
O' 1 

Course of action: 

Select project 2. 

µ2 ) 1.9, - > 1.9 • 
0'2 

Select low-risk project -

in this instance project 2. 

(iii) High-risk projects(~< 1.9): 

Course of action: Select project with the 

larger ~ 



Risk Zone Classification 

(i) High-Risk Projects (* < 1.9): 

(ii) 

Course of action: Select the project with 

the smaller loss ratio (E~) or 

equivalently the larger worth ratio 

Mixed Projects 

Course of action: Select the low-risk 

project - in this instance project 2. 

(iii) Low-Risk Projects (~ > 1. 9): 

Course of action: Select the project with 

the larger µ. 

33 



CHAPTER III 

AN ALGORITHM FOR THE MULTI-PROJECT 

PROBLEM WITH A 

BUDGETARY CONSTRAINT 

The next stage of the probabilistic capital budgeting 

problem consists of selecting, within a budget, one or more 

projects from several available. The concepts developed in 

the last chapter are now used to form an algorithm for the 

solution of this problem. However, first some comments are 

necessary on the method of bundling. 

Bundling of Projects 

The method of bundling is used by several authors, as 

for example Fleischer (7). It refers to determining all 

possible combinations of projects that do not violate a 

constraint. These combinations are evaluated and then com-

pared in pairs to obtain the best bundle. A numerical exam-

ple of this procedure is included'in the next chapter. For 

n projects, there are 2n- 1 combinations. Thus, as n in­

creases, the number of combinations become large enough to 

make the method impractical. Hence, the need exists for an 

alternative solution. 



An Algorithm for the Multi-

Project Problem 

From the analysis of the comparison of two projects 

(Chapter II), certain selection criteria have been deter-

mined. These, adapted for consideration of the budgetary 

constraint, are the following: 

( 1 ) In the case of low-risk (µ > 1.9) projects, cr 

the risk level is negligible and the selec-

tion process is based on the maximization of 

expected net present value (µ) subject to the 

budgetary constraint. 

(2) In the case of high risk (~ < 1.9) projects, 

( 3) 

the procedure consists of maximizing the 

worth ratio (~) subject to the budgetary 

constraint. 

In a choice between low-risk (µ > 1.9) and 
O' 

high-risk (~ < 1.9) projects, the low-risk 

ones are preferred. 

The preceding selection criteria provide a basis for 
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an algorithm for the selection of projects with probabilis-

tic parameters within a prescribed budget. In step form, 

this is as follows: 

Step 1: 

Step 2: 

Eliminate all proj~cts with ~ < 1.9. 

If the remainder of the projects (i.e., 

those with ~ > 1.9) require an invest­

ment that is greater than the permissible 



Step 3: 

budget, the choice will be among these. 

Select by maximizing µNPV subject to the 

budgetary constraint and that will be 

the solution. 

If this remainder of projects (those with 

(~ > 1.9) require an investment that is 

less than the permissible budget, then 

choose all of them. 

Step 4: The budgetary constraint now consists 

of the budget remaining afte~ Step J. 

To utilize this remainder, retu~n to 

all the projects with~< 1.9 and 

maximize ~ subject to the budgetary 

constraint. 

The precise mathematical statement of the problem 

resulting from Step 2 (denoted Case A) is the following: 

subject to 

where 

µr = 

r = 

c = r 

expected 

project 

project 

Maximize 

r=1 

~ µ x L r r 
r=1 

x 
r 

< B 

xr = o,. 1 

net present value 

number 

for 

investment for the th project r 

the th r 
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B = budget limit 

X d . . . bl f th th . t = ec1s1on varia e or e r proJec • 
r 

And the precise mathematical statement of the problem 

resulting from Step 4 (denoted Case B) is as follows: 

subject to 

where 

cr = r 
( µ) = cr r 

b = 

standard 

Maximize ~ (.b!.) l cr r 

deviation 

r=1 

x 
r 

for 

< b 

the 

x 
r 

r th project 

worth ratio for the th project r 

remaining budget limit after the selection 

of low-risk projects. 
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In the next chapter, the preceding algorithm is applied 

to the solution of numerical examples. 



CHAPTER IV 

APPLICATIONS 

The object 0£ this chapter is to apply the concepts 

developed in Chapters II and III to some numerical examples. 

In this way, the use 0£ these concepts and their validity 

are demonstrated. 

The Method 0£ Bundling 

Bundling, as mentioned previously, re£ers to deter-

mining all possible combinations 0£ projects that do not 

violate a particular restriction. As an example 0£ this 

procedure, consider the £our projects below: 

Project No. 1 2 3 4 

µ ( $) 500 500 3000 4000 

(J ( $) 500 1500 1000 1000 

µ 1.0 0.3 3.0 4.o 
(J 

Investment $ 7000 5000 15000 18000 

There is also a budgetary limit 0£ $41,000. 

In the example, there are 2 4 - 1 = 15 combinations i£ the 

budget restriction is not considered. The £i£teen combina-

tions and their associated data are shown in Table II. 

These combinations 0£ projects (Table II) are established 

without a budget restriction. I£ a budget constraint is 



Project 
Symbol 

A 

B 

c 

D 

E 

F 

G 

H 

J 

K 

L 

M 

N 

p 

R 

TABLE II 

DATA FOR PROJECT COMBINATIONS IN THE 
BUNDLING PROBLEM 

Com bi- Invest-
U=.fd G(u) 

EL 
nation ment µ (j (j =CT·G(u) 

1 7000 500 500 1.000 .08332 41.6600 

2 5000 500 1500 0.667 .15130 227.0000 

3 15000 3000 1000 3.000 .a3J822 0.3822 

4 18000 4000 1000 4.000 n"'7145 0.0071 

1,2 12000 1000 1580 0.633 .15980 252.0000 

1,3 22000 3500 1120 3.125 D32435 0.2725 

1,4 25000 4500 1120 4.020 n66538 0.0073 

2,3 20000 3500 1800 1.945 D:?c)827 17.6700 

2,4 23000 4500 1800 2.500 D~004 3.6072 

3,4 33000 7000 1414 4.950 D76982 i::::! 0 

1,2,3 27000 4000 1870 2.140 .cf5788 10.8800 

1,2,4 30000 5000 1870 2.675 D21.151 2.1575 

1,3 ,4 40000 7500 1500 5.000 D75330 i::::! 0 

2,3,4 38000 7500 2060 3.640 D43321 .0685 

1,2,3,4 45000 8000 2120 3.770 D41933 .0409 
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EG 
=µ.+EL 

541.6600 

7~7.0000 

3000.3822 

·4000.0071 

. 1252.0000 

3500.2725 

4500.0073 

3517.6700 

4503.6072 

7000 

4010.8800 

5002.1575 

7500 

7500.0685 

8000.0409 
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imposed, then those combinations that violate it (or any 

other restriction) are eliminated. Thus, when the example 

budget limit of $41,000 is applied, project combination R 

(projects 1, 2, J, and 4) is eliminated. Once all the 

combinations that do not violate any restrictions have been 

determined, then the concepts developed in Chapters II and 

III can be used to obtain the best combination of projects. 

Table III illustrates this selection procedure. The final 

answer is to do projects 1, J, and 4. 

The Algorithm Approach 

For a large number of projects, the bundling method 

becomes impractical because of the number of combinations 

that need to be determined. For this reason, the algorithm 

developed in Chapter III provides a more practical approach. 

Applying this algorithm to the four-project example results 

in the initial choice of projects J and 4 since they are in 

the low-risk zone (~ > 1.9). The investment required for 

these is $33000 which leaves 41000 - JJOOO = $8000 as the 

remaining budget. This means that out of the tw.o high-risk 

projects (1 and 2), just one can be attempted. 

The problem has now reduced to 

subject to 7000 x1 + 5000 x2 < 8000 



TABLE III 

SELECTION OF THE OPTIMUM PROJECT COMBINATION 
IN THE BUNDLING PROBLEM 

Comparison Relationship Case 

A vs. B µB = UA IV 

O'B > O'A 

A vs. c µA < µc V(ii) 

crA < ere 

c vs. D µc < µD II 

crc = crD 

D vs. E µE < µD III 

crE > crD 

D vs. F µF < Un III 

crF > crn 

D vs. G µD < µG V(i) 

crD < crG 

G vs. H µH < µG III 

crH > crG 

G vs. J µJ = µG IV 

cr J > cr G 

G vs. K µG < UK III 

O'G > crK 

K vs. L µL < µK III 

crL > O' K 

K vs. M ~< µK III 

crM > crK 

41 

Decision 

A 

c 

D 

D 

D 

G 

G 

G 

K 

K 

K 
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TABLE III (Continued) 

Comparison Relationship Case Decision 

K vs. N µK < µN V(i) N 

O'K < crN 

N vs. P ~ = µN II N 

0:P > O'N 

Note that combination R cannot be considered since it 
exceeds 'the budget limit of $41000. Thus, combination N is 
the preferred choice and the solution to the proolem is to 
do projects 1, J, and 4. 
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By inspection, the solution is X1 = 1, X2 = 0. Thus, the 

complete solution is that projects 1, 3, and 4 are selected. 

The algorithm is next applied to the following, much 

larger problem: 

Project µ($) (J ( $) g 
(J 

Investment ( $) 

A 500 2000 0.25 1BOOO 
B Boo 1600 0.50 10000 

c 1000 1500 0.67 30000 

D 900 1200 o. 75 26000 

E 1200 1000 1.20 25000 

F 1500 900 1.67 22000 

G 1Boo 1400 1.2B 33000 

H 2000 1000 2.00 24000 

J 2500 900 2.7B 20000 

K 3000 Boo 3.75 16000 

L 3500 700 5.00 2Booo 
M 4400 1100 4.oo 42000 

N 5000 1200 4.17 32000 

p 5600 1500 3.73 25000 

R 6000 2000 3.00 40000 

It can be seen that the method of bundling is prac-

tically impossible for this problem because the total number 

of combinations (2 15 -1) is very large. 

Case A: Where the total investment for all the 

low-risk projects exceeds the budget 

limit. 

To illustrate this case, a budget of $150,000 is 

assumed. The low-risk(~> 1.9) projec"t;sareH, J,, K, L,~M, N,P, 

R with a total required investment of $227, 000. For conven-

ience in writing, these are labeled 1 through B, thus H is 1 



and R is 8. Since, in the low-risk region, the object is to 

maximize µ, the statement of the problem is as follows: 

Maximize 2000 x1 + 2500 x2 + 3000 X3 + 3500 X4 + 4400 x5 

+ 5000 x6 + 5600 x7 + 6000 x8 

subject to 24000 x1 + 20000 x2 + 16000. X3 + 28000 X4 

+ 42000 x5 + 32000 x6 + 25000 x7 + 40000 x8 

< 150,000 

and 

x 1 ~ x 2 , ••• , x8 = o, 1 • 

This is an integer programming problem. Several algo­

rithms are available for its solution, notably Gomory (10), 

Glover (9), Land-Doig (12), Dakin (4), Balas (1), and also 

dynamic programming. It is solved (in Appendix B) by 

dynamic programming using a method explained by Nemhauser ( 14). 

The final result is that projects 3, 4, 6, 7, and 8 (namely, 

K, L 9 N, P, and R) are selected for a total capital outlay 

of $141,000; hence, $9000 is left over. The projects yield 

a total expected net present value of $23,100. 

Case B: Where the total investment for all the 

low-risk projects is less than the 

budget. 

To illustrate this type of application, consider the 

same set of projects, but this time with a budget limit of 

$300,000. The low-risk (~ > 1.9) projects are H, J, K, L, 

M, N, P, R and they require a total investment of $227,000. 

All of these are selected which leaves a remaining budget 



of $73,000. To invest this, the high-risk projects are now 

examined. In the high-risk zone, the criterion for selec~ 

tion is maximization of the worth ratio ~- The problem can 

then be stated as follows: (For convenience, the high-risk 

projects A through G are nuµibered 1 through 7, 

respectively). 

Maximize .25 x1 + .50 x 2 + .67 x 3 + .75 x 4 + 1. 20 x 5 

+ 1. 67 x 6 + 1. 28 x 7 

subject to 18000 x1 + 10000 x2 + 30000 x3 + 26000 X4 

+ 25000 x5 + 22000 x6 + 33000 x7 < 73000 

and 

This is solved using dynamic programming in Appendix B. 

The answer is that projects 4, 5, and 6 (namely 1 D, E, and F 

are selected for a total investment of $73,000). Thus, the 

complete solution states that projects D, E, F, H, J, K, L, 

M, N, P, R are selected. All of the budget is utilized for 

an expected net present value yield of $35,600. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The basic problem considered in this study concerns the 

optimum choice from projects competing for limited resources 

where project cash flows follow a probability distribution. 

Most previous work in this area has centered around the 

utility theory approach, which involves the determination of 

the utility of money functions for decision-makerss Because 

of the difficulties encountered with evaluating such func­

tions, this study provides a solution to this problem with­

out the explicit use of cardinal utility theory. 

A primary assumption is made for choosing between two 

projects, that if 

(expected loss) 2 < (expected loss) 1 

and (expected gain) 2 > (expected gain) 1 

then a rational decision-maker selects project 2. 

A secondary hypothesis is necessary where the above 

situation does not occur; that is~ when 

and 

(expected loss) 2 < (expected loss) 1 

(expected gain) 2 < (expected gain) 1 • 

In this circumstance 1 percentile changes are examined and if 



the percentage change in the expected losses is the greater, 

project 2 is selected; conversely, if the percentage change 

in the expected gains is the greater, project 1 is chosen. 

In addition, the concepts of Worth Ratio (~), Loss 

Ratio (EL) and Gain Ratio (EG) are introduced. With these 
µ µ 

basic assumptions and concepts, a selection procedure 

(summarized at the end of Chapter II) is devised for the 

choice between two projectse 

This selection procedure is next extended to the larger 

problem of selecting, within a prescribed budget, a number 

of projects from several available, and an algorithm is 

developed for this purpose. 

While the methods of selection presented in this study 

do not claim to give the "best" answer to the problem, they 

do provide a good solution. For example, a particular 

decision-maker may not always agree with the greater-

percentile-change assumption and may make decisions contrary 

to ite This does not necessarily mean, however, that he is 

making the best choice, rather that he is being biased by 

his own personal preferences. From a corporate standpoint 

and in the long run, decisions based on a comparison of per-

centage changes are more likely to give consistently better 

choices. 

It is of note that the fundamental assumption, namely, 

the choice of project 2 if EL2 < EL 1 and EG2 > EG 1 , implies 

only an increasing marginal utility of money. The rate of 

increase can be constant, decreasing or increasing, that is, 



the utility function itself can be a straight line, concave 

downwards or convex, or even a combination of these. 

The object of this study has been to obtain a solution 

that combines conceptual simplicity with ease in applica­

tion. The worth ratio versus loss/gain ratio plots offer an 

at-a-glance impression of projects to the "lay" (not mathe­

matically oriented) decision-maker. They exclude the in­

tangibles of utility theory and are based entirely on 

available project information. Furthermore, the algorithm 

provides an easily programmed solution to the larger com-

plete selection problem. It is believed that this study is 

a contribution to the understanding, simplification, and 

solution of the complex probabilistic capital budgeting 

problem. 

Proposals for Future Investigations 

In this work, the mean µ and the standard deviation cr 

are assumed to be known. As has been mentioned previously, 

methods are easily available in the literature for the cal­

culation of these parameters of the net present value dis­

tribution once the corresponding parameters for the 

individual annual cash flows are known. However, further 

work is necessary in improved and more accurate estimation 

of these parameters for individual cash flows. 

Project independence has also been assumed in this 

study. Even if projects are not independent, the selection 

procedure for the choice between two projects remains valid. 



However, for the larger problem (namely, the selection of a 

number of projects, within a budget, from several available) 

the algorithm method becomes limited to the low-risk zone 

only and cannot be applied when high-risk projects are 

involved because of the dependence of cr. The bundling 

method, for when the number of available projects is small, 

is still applicable, with slight alterations to include co­

variance terms in the calculation of the standard deviations 

of project combinations. Further research is needed to 

extend the algorithm or develop an alternative to solve the 

dependent project problem. 

Normality of the project net present value distribu­

tions is another assumption that has been made in this 

research. Exactly how essential and necessary this is, is 

another area for further investigation. Following from thi~ 

further work is required for cases where net present value 

distributions are skewed, that is when moments of higher 

order than two need to be considered. 

Finally, a simulated comparison using the methods de­

veloped in this study and those of utility theory, involving 

both risk-averse and risk-taker behavior, would be 

worthwhile. 
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APPENDIX A 

EXPECTED LOSS AND EXPECTED GAIN 

Expected Loss (EL): 

EL = J 0 I NPV If ( NPV) d ( NPV) 
-ex> 

= cr ( NPV ) • G ( u ) 

Schlaifer (12) calls this expected opportunity loss and 

gives a derivation. 

Expected Gain (EG): 

CXI 

EG = I INPVlf(NPV) d(NPV) 
0 

For convenience in writing, let x = NPV, 

then EG = Iex> x • f ( x) dx. 
0 

For a normal density function f(x) 

where cr is the standard deviation and µ is the mean. 

EG = ICXI x • 
0 

1 

cr/2TT 

1 -2? (x-µ)2 
e dx 

1 
- 2 cra ( x - µ ) a 

(x - µ) e dx + 
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rm -·~(x _ µ) 2 

+ µ ~1~ • e 2a dx 
·o a/2ii' 

= 

1 ;...._( )2 
. 2 x - µ 
20 

e [ + µ • P(x > 0) 

2 

a -·2"?-= + / 2n e + µ • P(x > 0) 

u 2 a 2 

a - ·-;:::-:a 
= 

/2n 
e 2a + u a P ( z > -u) 

f a 
a -·-U 

= 
/2rr 

e 2 +ua(1-P(z > u)) 

= a . g(u) - u a . P(z > u) + ua 

= a . [ [g ( u) - u . P(z > u) } + u] 

= a • (G(u) + u) where G(u) is the unit normal loss 

integral 

= a • G(-u) 

The table of the unit normal loss integral is given in 

Schlaifer (12, pp. 706-707). 



APPENDIX B 

SOLUTIONS TO NUMERICAL EXAMPLES 

In this appendix, the actual solution to problems in 

Chapter IV are presented. 

The first problem (Case A) is 

Maximize 2000 x1 + 2500 x2 + 3000 x3 + 3500 x 4 + 

4400 x5 + 5000 x6 + 5600 x7 + 6000 XB 

subject to 24000 x1 + 20000 x2 + 16000 x3 + 

28000 X4 + 42000 x5 + 32000 x6 + 

25000 x7 + 40000 XB < 150000 

and the decision variables x1' x2, . . . ' XB = o, 1. 

The budgetary constraint can be re-written, 

24 x 1 + 20 x2 + 16 x 3 + 28 x 4 + 42 x 5 + 32 x 6 + 

25 x7 +. 40 x 8 < 150. 

The problem is solved by dynamic programming using a 

method discussed by Nemhauser ( 9) • First, state variables 

s0 , S 1 , s2 , s 3 , .s4 , s5 , s6 , s 7 , and s8 are defined as the 

feasible values of the budget at the beginning of each 

stage. Next, these are evaluated. 
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SB = 150. 

s7 = 150 - 40 XB = 150, 110 (since XB can be 0 or 1) . 

s6 = s - 25 7 x7 = 150, 110, 125, B5. 

s5 = s 6 - J2 x6 = 150, 110, 125, B5 ' 

11B, 78 ., 9J, 5J· 

S4 = s - 42 5 x5 =150, 110, 125, B5, 11B, 7B, 9J' 5J, 

10B, 6B, BJ' 4J, 76, J6, 51, 11. 

SJ = s 4 - 2B x4 = 150, 110, 125, B5, 11B, 7B, 9 J' 5J, 

10B, 6B, BJ, 4J, 76, J6, 51, 11, 

122, B2, 97, 57, 90, 50, 65, 25' 

Bo, 40, 55, 15, 4B, B' 2J, -. 

52 = s - 16 J XJ = 150, 110, 125, B5, 11B, 7B, 9J' 5J, 

10B, 68, BJ, 4J' 76, J6, 51, 11, 

122, B2, 97, 57, 90, 50, 65, 25, 

Bo, 40, 55, 15, 4B, B' 2J, -
1J4, 94, 109, 69, 102, 62, 77, J7, 

92, 52, 67' 27, 60, 20, J5, -, 

106, 66, B1, 41, 74, J4, 49, 9, 

64, 24, J9, -, J2, - ' 7, -. 
s1 = s - 20 2 . X2 =150, 110, 125, B5, 11B, 7B, 9J, 5J' 

10B, 6B, BJ, 4J, 76, J6, 51, 11, 

122, B2, 97, 57' 90, 50, 65, 25, 

Bo, 40, 55, 15, 4B, B' 2J' -

1J4, 94, 109, 69, 102, 62, 77, J7, 

92, 52, 67' 27, 60, 20, J5, -, 

106, 66, B1, 41, 74, J4, 49, 9, 

64, 24, J9, -, J2, - ' 7, -



130, 90, 105, 65, 9B, 5B, 73, 33, 

BB, 4B, 63, 23, 56, 16, 31, -, 

102, 62, 77, 37, 70, JO, 45, 5, 

60, 20, 35, -, 2B, -, J, -

114, 74, 89, 49, 82, 42, 57, 17, 

7 2 ' 3 2 ' 4 7 ' 7 ' 40 ' 0 ' 15 ' - ' 

86, 46, 61, 21, 54, 14, 29, -

44, 4, 19, -, 12, -, -

56 
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Stage 1: 

0 1 

0 0 

3 0 

'* 0 

5 0 

7 0 

8 0 

9 O* 

11 0 

12 0 

14: 0 

15 0 

16 0 

17 0 

20 0 

21 0 

23 0 

24: 0 (2000) 

25 0 (2000) 

150 0 (2000) 

NOTE: Parentheses imply state optimums. 

Asterisk implies final solution. 



Stage 2: 

7 
8 

9 
11 

15 

20 

23 

24 

25 

4J 

48 

49 

150 

0 

0 

0 

O* 

0 

0 

0 

0 

2000 

2000 

2000 

2000 

2000 

2000 

1 

(2500) 

(2500) 

(2500) 

(2500) 

(2500) 
2000+2500 

(4500) 

(4500) 

(4500) 

58 
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Stage 3: 

0 1 

8 0 

11 0 

15 0 

23 2500 (3000) 

25 2500 (3000)* 

36 2500 250?+5000 5 00) 

40 2500 (5500) 

43 2500 (5500) 

48 4500 (5500) 

50 4500 (5500) 

51 4500 (5500) 

53 4500 (5500) 

55 4500 (5500) 

57 4500 (5500) 

65 4500 
450?+3000 

7500) 

68 4500 (7500) 

150 4500 (7500) 
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Stage 4: 

0 1 

11 0 

.36 (5500) .3500 

4.3 (5500) .3500 
,3ooo+G500 

51 5500 ( 500) 

5.3 5500 (6500) * 
68 7500 5500t?a88> 
76 7500 (9000) 

78 7500 (9000) 

8.3 7500 (9000) 

85 7500 (9000) 
750?+{500) 

9 .3 7500 1 000 

108 7500 (11000) 

110 7500 (11000) 

118 7500 (11000) 

125 7500 (11000) 

150 7500 (11000) 
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Stage 5: 

0 1 

53 (6500)* 4400 
5500+4400 

78 9000 (9900) 

85 9000 (9900) 
6500+4400 

93 (11000) 10900 
9000+4400 

110 1f000 (13400) 

118 11000 (13400) 

125 11000 (13400) 

150 11000 (13400) 

Stage 6: 

0 1 

6500+5000 
85 9900 (11500)* 

9900+5000 
110 13400 (14900) 

11000+5000 
125 13400 (16000) 

13400+5000 
150 13400 (18400) 



Stage 7: 

Stage 8: 

110 

150 

I 
150 I 

0 

14900 

18400 

0 

21600 

1 

11500+5600 
(17100)* 

16000+5600 
(21600) 

1 

17100+6000 
(2J100)* 

62 

Thus, the optimum expected net present value return is 

$2J,100. 

Tracing back through the tableaus, the projects 

selected are J, 4, 6, 7, and 8; namely, K, L, N, P, and R. 

These require a total investment of $141,000. Hence, $9000 

is left over. 



The second problem (Case B) from Chapter IV is 

Maximize .25 xi + .50 x 2 + .67 x 3 + .75 x 4 + 

i.20 x 5 + i.67 x 6 + i.28 x 7 

subject to i8000 Xi + 10000 x 2 + JOOOO XJ + 

26000 x 4 ~ 25000 x 5 + 22000 x 6 + 

JJooo x 7 < 7Jooo 

and the decision variables xi, x2, ••• , x7 = o, i. 

The budgetary constraint can be re-written, 

i8 xi + io x 2 + JO xJ + 26 x 4 + 25 x 5 + 22 x 6 + 

JJ x 7 < 7J. 

63 

This problem is also solved using dynamic programming. 

State variables s 0 , Si, s 2 , SJ' s 4 , s 5 , s 6 , and s 7 are 

defined as the feasible values of the budget at the begin-

ning of each stage. They are then determined as follows: 

s7 = 7J. 

s6 = s7 - JJ x7 = 7J, 40. 

s5 = s6 - 22 x6 = 7J, 40, 5i, i8. 

S4 = s5 - 25 x5 = 7J' 40, 5i, i8, 48, i5, 26, -

SJ S4 - 26 X4 = 73, 40' 5i, i8, 48, i5, 26, -
47, i4, 25, - ' 22, - ' o, - . 

s2 = SJ - JO XJ = 73, 40' 5i, 18, 48, i5, 26, -

47, 14, 25, - 22, - o, -
43, 10, 2i, - i8, -, -

i7, -
Si = s2 - 10 x 2 = 73, 40, 5 i, i8, 48, i5, 26, 

47, i4, 25, 22, o, 
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43' 10, 21, 18, 17, 

63' JO, 41, 8, 38, 5, 16 ' 

37, 4, 15, 12, -
33, o, 11, 8, 7 • 

so = 51 - 18 x1• 
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Stage 1: 

x1 

51 0 1 

0 O* 

4 0 

5 0 

7 0 

8 0 

10 0 

11 0 

12 0 

14 0 

15 0 

16 0 

17 0 

18 0 (.25) 

21 0 (.25) 

22 0 (.25) 

25 0 (.25) 

26 0 (.25) 

30 0 (.25) 

33 0 (. 25) 

37 0 (.25) 

38 0 (.25) 

40 0 (.25) 

41 0 (.25) 

43 0 (. 25) 

47 0 (.25) 

48 0 (.25) 

51 0 (. 25) 

63 0 (. 25) 

73 - 0 (. 25) 
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Stage 2: 

0 1 

0 O* 

10 0 (. 50) 
14 0 (.50) 
15 0 (. 50) 

17 0 (. 50) 
18 .25 (.50) 
21 .25 (. 50) 
22 .25 (. 50) 

25 .25 (.50) 
26 .25 (. 50) 
40 .2~+-5~ 

-~5 .75 
4.3 ..• 25 (. 75) 

47 .25 (. 75) 
.48 .25 (. 75) 
51 .25' (. 75) 

7.3 .25 (. 75) 
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Stage J: 

,1 

x3 

S3 0 1 

0 0* 

14 (. 50) 

15 (. 50) 

18 (. 50) 

22 (.50) 

25 (. 50) 

26 (. 50) -
.5.0+.6~ 

40 ,75 ( 1.17 

47 • 75 (1.17) 

48 • 75 (1.17) 

51 . 75 (1.1l) 
. 75+4 ~ 

73 .75 ( 1. 2 



Stage 4: 

Stage 5: 

0 

15 (.50) 

18 (.50) 

26 

40 

48 

51 

73 

18 

40 

51 

73 

.50 

1.17 

1.17 

1.17 

1.42 

0 

(. 50) 

1. 25 

1.25 

1.92 

1 

(.75)* 
.50+.75 

( 1. 25) 

( 1. 25) 

( 1. 25) 
1.17+. 75 

( 1. 92) 

1 

.50+1.20 
( 1. 70) 

-75+1.20 
(1.95)* 

1. 25+1. 20 
(2.45) 

68 



Stage 6: 

0 

40 1. 70 

73 2.45 

Stage 7: 

0 

73 (3.62)* 

1 

.50+1.67 
(2.17) 

1.95+1.67 
(3.62)* 

1 

2.17+1.28 
3.45 

Tracing back through the tableaus, the high-risk proj-

ects selected are 4, 5, and 6; i.e., D, E, and F. These 

require a total investment of $73,000 (so that no money is 

left ovetj and provide an expected net present value return 

of $3,600. 

Thus, the complete solution to the 1froblem states that 

projects D, E, F, H, J, K, L, M, N, P, Rare selected. The 

total budget is utilized for an expected net present value 

return of $35~600. 
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