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ABSTRACT

Certain results from the theory of ordinary dif
ferential equations have been combined with the concepts of 
that area of systems work concerned with the determination 
of mathematical models for physical processes. The result 
is a coherent structure which defines'a novel method by 
which the characterization of linear systems, regardless of 
their particular time dependent nature, may be achieved.

The relationship between the system characterization 
achieved by means of the technique and the familiar impulse 
response and (where applicable) the transfer function is 
elucidated through examples dealing with the identification 
of hypothetical systems.

The somewhat obscure expression resulting from an 
error analysis of the matrix operations involved in the esti
mation of the system weighting function has been replaced with 
a practical approximation which is shown to be valid.

The technique is applied to the determination of the 
heat transfer dynamics of a jacketed backmix chemical reactor. 
Results of this study indicate that the cost of obtaining a 
mathematical model is greater than those associated with 
pulse testing or frequency response testing. However, the
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relative costs reverse if the reactor is considered as a 
multiple input/output system„

The technique is applied to the identification of 
the dynamic response of a hypothetical system which is highly 
time-varying. Results of this study indicate that the cost 
of obtaining a model for such a process are no higher than 
those for a similar time invariant system.
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A GENERALIZED PULSE TESTING TECHNIQUE 
FOR LINEAR SYSTEM IDENTIFICATION

CHAPTER I 

INTRODUCTION

The acquisition of information concerning physical 
entities, phenomena, or processes by any means other than 
direct measurement involves the use of a model of the situa
tion,, The veracity of this statement becomes obvious upon 
reflection on the methods for determining such diverse items 
as the height of a tree, the time of the next equinox, or the 
temperature increase resulting from isentropic compression of 
an ideal gas. The laws of Euclidian geometry serve as the 
model in the first example. These laws are combined with 
Newton's laws of motion to model the second situation. In 
the third example, the equation of state for an ideal gas 
together with the first and second laws of thermodynamics 
form the basis for calculating the required temperature rise.

Other common forms of models include the use of an 
electronic circuit (analog computer) to model the behavior 
of an automobile suspension system following a bump in the 
road, the use of iron filings on a sheet of paper to elucidate
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2
two dimensions of the force field surrounding a permanent 
magnet, and the use of an actual physical model in a wind 
tunnel to study aircraft performance. While very little 
imagination is needed to extend this list indefinitely, 
certainly the most, common form of model is the mathematical 
statement of the physical laws which apply to a given 
situation,,

These mathematical expressions generally consist, of 
combinations of algebraic, differential and integral equa
tions, together with appropriate boundary conditions and/or 
constraints. Such a model must, of course, be specialized 
to the particular situation through the inclusion of measured 
physical parameters as coefficients of the model,.

The intelligent application of such a model rests on 
two fundamental assumptions.

1, The mathematical model is truly descriptive of
the physical phenomena or process.

2 The cost of obtaining and employing the model is
less than that, of making the required measure
ments .

In general, physical phenomena and processes can be 
described in terms of differential equations which have the 
familiar mass, energy, and momentum balances as their bases 
These equations commonly involve non-linear functions of time 
and one or more space coordinates, as well as multiple sources 
of excitation While such equations can be derived, their
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usefulness may be severely limited by the cost associated 
with specializing and employing them. This cost includes the 
difficulties of measuring the particular physical parameters 
involved and of actually solving the model equations.

Traditionally the path around the implied dilemma has 
been to sacrifice some of the descriptive power of the model 
in a trade for a lessening of the cost of its attainment and 
subsequent use. This trade is accomplished by adopting a more 
tractable model of the physical situation., through the intro
duction of simplifying assumptions, and establishing a “good
ness" criterion to limit the range of its application.

Common examples of this approach include such assump
tions as the Navier-Stokes constraints on a flowing fluid, 
perfect mixing of the liquid on the trays of a distillation 
column, Newton’s cooling law as a description of the heat flux 
across a solid-fluid boundary, and a truncated Taylor series 
as a "linearization" of product type non-linearities (see 
Stewart (32) ),

While notable exceptions, such as the description of 
turbulent velocity profiles, certainly do exist, the adoption 
of relatively simple mathematical models has facilitated the 
acquisition of a vast amount of information on the behavior of 
physical phenomena and processes,, It. seems doubtful that the 
great technological advances of recent years would have been 
possible without the information gained through the use of 
models.
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Mathematical Models in Automatic Control

One area of application for mathematical models which 
has received major emphasis in the last few years is that area 
of systems work commonly designated as process dynamics or 
system identification. The precise control of a physical 
process, regardless of its nature, depends on the satisfaction 
of two requirements;

1. A thorough knowledge of the cause and effect
relationships which operate, within the process, 
to determine its response to a specific excita
tion.

2., A well defined control strategy, the application 
of which results in optimal (in some sense) 
behavior of the process.

It is clear that without a relatively complete model of the 
system's dynamic behavior, the spectrum of possible control 
strategies which may be employed is very narrow, hence the 
interest in techniques for obtaining mathematical models on 
the part of the control engineer.

In the area of system identification, the approach of 
adopting a more tractable model through the introduction of 
simplifying assumptions has usually been tantamount to the 
assumption that the response of the process in question may 
be adequately described by the solutions of linear, constant 
coefficient, ordinary differential equations. Models of this 
simple form are eminently usable, generally consistent with 
the quality of measurements available, and therefore appropri
ate for most applications.
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Throughout the first decade of application of feedback 

control theory to chemical processes the emphasis was on the 
solution to the so-called regulator problem. The reasons for 
this emphasis lay in the fact that the simple model's validity 
was limited to narrow ranges of the process variables, and in 
the economic structure of the chemical industry itself.

The economic structure of the industry was such that 
while the savings in operating costs attainable by smoothing 
out the operation of the plant were certainly large enough to 
warrant automatic control, it was not clear that the invest
ment required to develop truly optimal control of the plant, 
could be justified in terms of additional profit return.

The economic picture has changed rapidly over the 
last decade. Today it is mandatory that the last few per cent 
of yield (of which a plant is capable) be obtained merely to 
hold an economic position. Consequently the goals of process 
control have changed.

A few years ago manual operation of plants was employed 
during start-up and operating level changes, automatic control 
being employed only when "steady state" had been established. 
Today processes are controlled automatically through minor 
level changes and one would like to consider control through 
major changes— control that would minimize the time during 
which off specification product is produced and accomplish the 
change at minimum operating cost. Another approach to the 
problem of maximizing profit involves innovations in operating
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procedures wherein the plant is operated on a transient basis^ 
McWirter and Lloyd (26) have discussed this concept in connec
tion with operation of distillation and extraction units in a 
controlled cycle mode.

Today the situation is that most large companies find 
themselves replete with optimal control strategies, or rather 
with methods for defining them, i.e. the Maximum Principle 
(29), the Principle of Invariance (21), Dynamic Programing 
techniques (4), etc. Unfortunately this wealth of optimiza
tion techniques is balanced by a dearth of plant applications. 
This insufficiency does not imply that the control problems 
of interest are all solved; rather it is evidence of the 
mismatch that exists among the descriptive powers of the 
usual process model, the complexity of the physical processes 
of interest, and the class of systems to which the optimiza
tion techniques may be applied. Further, it is not clear that 
the cost of correcting the mismatch is even finite, let alone 
reasonable.

In order to make the inevitable decision as to whether 
or not it is possible to justify the expenditure necessary to 
develop practical optimal control policies for complex physi
cal processes one requires two types of information:

1. An estimate of the improvement in operation and 
hence economic position which would result from 
truly optimal plant operation.

2. An estimate of the increased cost associated with 
obtaining and using a more complex mathematical
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model in the implementation of some optimal 
control strategyo 

It is clear than an investigation to determine this information 
in a general context would be nearly impossible due to its 
complete dependence upon the specific physical process involved 
and the specific optimization technique and model generaliza
tion envisioned.

However, one small step toward acquisition of the 
necessary information is possible through investigation of the 
increased cost associated with a specific generalization of 
the class of equations used as models.

Basis for This Investigation
The investigation reported herein deals with the 

removal of the constant coefficient constraint on the differ
ential representation of the process model. This particular 
constraint was chosen for attack for two reasons:

1. There exists a well established and complete 
theory pertaining to the solution of linear 
differential equations, thus permitting a 
general approach to the problem, of obtaining 
a model (12, 22, 28, 33, 36).

2. There are many important physical systems which 
are characterized by linear time-varying dynamic 
behavior; therefore the results of the investi
gation are of considerable practical interest 
(8, 14, 19, 26, 31) .
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The intent to evaluate the cost of obtaining models 

for physical processes whose behavior is linear but not neces
sarily time invariant implies the existence of suitable tech
niques for specializing linear differential equations to a 
particular system* A review of the capabilities of the stan
dard plant testing techniques indicates that;

1* Frequency response techniques are applicable only 
if the system to be identified is time invariant 
(1, 17, 18, 35) „

2* Statistical techniques for the analysis of non- 
stationary systems (time-varying) are enormously 
complex due to the loss of the ergodic property 
(9, 23, 24)*

3 o Pulse testing techniques are perfectly applicable 
to the identification of linear systems but the 
requirement for forcing large amounts of "energy" 
across the boundaries of a physical system in a 
short time often presents experimental diffi
culties (16, 23).

The theory of ordinary differential equations provides 
the basis for a novel technique for system identification 
which is recognized as a generalization of the pulse testing 
method. This technique involves measurement of the unforced 
transient response of the physical system and provides charac
terization of the system in terms of weighting functions. The 
transition from these weighting functions to the differential
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representation of the model is seen to be a relatively simple 
one V

The technique possesses a number of desirable featuresu 
Four of these are of prime importance.

1. General applicability to linear systems.
2. Ease of application to multiple input/output 

systems.
3. Relatively mild system perturbation required.
4. Very simple calculations required.
There are, of course, important undesirable features 

of the technique:
1. Severe requirements on the measurability of 

process variables.
2. High precision measurements required, since
3. Calculations involve numerical matrix 

operations.

Purpose and Scope of the Investigation 
This investigation was undertaken for the purposes 

of elucidating the generalized pulse testing technique, assess
ing its value as a practical tool for the identification of 
linear process models, and, in so far as practical, comparing 
the cost of its use with those of the standard techniques.

The elucidation of the generalized pulse testing 
technique is accomplished by means of a parallel presentation 
of the formal theory and pertinent example. Three examples
are presented which detail the application of the technique 
to hypothetical systems of up to the third order.
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Two of these examples involve numerical calculations 

and thereby introduce the necessity for consideration of the 
effect of small imprécisions in the response data on the qual
ity of the weighting function estimate. This consideration 
leads to the development of a formal expression for the error 
growth in the combined operations of matrix inversion and 
multiplication required to estimate the weighting functions.

The usefulness of this expression is obscure since 
it involves the knowledge of the true system response. There
fore a practical method for estimating the maximum error asso
ciated with the computational procedure is developed. This 
method is used.- in connection with the estimation of weight
ing functions for a hypothetical system from systematically 
corrupted response data, to gain an appreciation for the 
magnitude and nature of weighting function quality degenera
tion due to types of error which are considered pertinent to 
the experimental phase of the investigation.

The technique is applied to the identification of a 
linear model for the heat transfer dynamics of a backmix 
chemical reactor. This study was made in order to determine 
whether or not the data obtainable by experimental measurement 
of the response of a physical system may be successfully used 
in the calculation of weighting functions by the matrix methods,, 
and to assess the cost of applying the technique to a time- 
invariant physical system.

The application of the technique to a hypothetical 
time-varying system is made in order to assess the cost of
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computing estimates of weighting functions for a time-varying 
system and to introduce the concept of redundant testing of 
physical processes.

While the relationship of the coefficient matrix of 
the differential equation representation of the process model 
is employed to establish the validity of the model for the 
backmix reactor, the specific problems of obtaining the differ
ential representation from the weighting functions have been 
arbitrarily placed outside the scope of this investigation. 
Similarly, practical considerations of the cost of obtaining 
unforced response information from time-varying systems have 
arbitrarily been excluded.

Literature on Time-Varvina Svstems 
The vast majority of reported effort in the area of 

time-varying linear systems is to be found in the electrical 
engineering and Russian automatic control literature.

Because of the fact that the electrical engineer is 
primarily interested in either the analysis problem (calcula
tion of the response of a system for which a model is avail
able) or the synthesis problem (design of a circuit, which 
possesses a desired response) there has been very little 
attention given to the problem of identifying a mathematical 
model for an existing physical system. Consequently the 
literature which has been found beneficial to this investiga
tion deals with the peripheral (although important) problems 
of making the transition between various forms of mathematical 
models and their subsequent employment.
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Bennett (5) has provided a survey of the effort, in 

this country, prior to 1950„ Zadeh (38) has surveyed the area 
and has compiled a very complete bibliography of publications 
through 1960„ An entire issue of the IRE Transactions (Circuit 
Theory ) (11, 18, 28), published in 1955, was devoted to the 
‘ State of the A r t T h e s e  three sources represent an excellent 
introduction to the literature of time-varying systems.

Pipes (28) has described the four basic techniques 
for the analysis of time-varying systems: Classical solution
of the differential equation, Matrix theory application (essen
tially the state space concept, see Zadeh (34)), use of the 
Brillouin-Wentzel-Kramers approximation of Quantum Mechanics, 
and the use of Laplace transforms and integral equations in 
the solution of variable parameter problems.

A variation, (using the concept of the adjoint sys
tem) of the classical approach is given by Matyash (25) and
by Aseltine and Faurear (2) in papers which discuss the
application of analog computer techniques to the solution of 
linear non-constant coefficient differential equations,

Aseltine (1), Gerardi (17), Gerlach (18) and 
Gilbert (20) have done an excellent job of describing the 
analysis of systems which may be described in terms of
Bessel's or Euler-Cauchy differential equations, as well as
those for which an admissible solution may be expressed in 
terms of an infinite summation of functionally weighted 
solutions to constant coefficient equations.
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A number of authors (3, 8, 9, 11, 12, 27, 35, 38) have 

written on the problems associated with the transitions between 
the differential, integral, and frequency domain representa
tions of the model for physical systems.

Emel'yanov and Taran (14) and Shigin (31) have pub
lished papers which consider the application of automatic con
trol systems which contain variable physical parameters to 
the control of time-varying physical systems. Gibson and 
Meditch (19) have discussed the problems of real time control 
of variable parameter processes.



CHAPTER II

THEORETICAL ASPECTS OP THE GENERALIZED 
PULSE TESTING TECHNIQUE

Consider the operation of the linear system indicated 
schematically below. This operation may be described, implic
itly, in terms of a linear differential equation or, explic
itly, in terms of an integral equation.

X(t) system Y(t)

The implicit description of the system's operation in 
terms of a differential equation consists of a linear vector 
differential equation, a value taken on by the output vector 
at some point in time and the statement that the equation is 
valid at that time:

Y(t) = A(t)Y(t) + X(t) Y(r) = Z, T 6 t

Y(t) is the time derivative of the system's N-dimensional 
output vector, Y(t). X(t) is an N-dimensional vector which 
represents the system's input. A(t) is an N by N matrix of 
system parameters which describes the internal structure of

14
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the system's operation. A restriction on the class of systems 
covered is that no variation in the system parameter matrix, 
A(t), may be dependent on the nature of the input vector, X(t).

The differential description of the system as given 
here is generally referred to as the "state space" formulation 
{34). In this formulation, the state of the system is regarded 
as being described by the point, in an N-dimensional vector 
space, defined by the system's output vector, Y(t), at any 
instant of time. The path taken by the state vector, Y(t), in 
moving from one state to another is to be regarded as a state 
trajectory. The point, Y(T) equals Z, is a point on the par
ticular trajectory being considered, thereby completing the 
definition of the state of the system at any time. The sym
bolic statement: T € t, is an assurance that time T is in
cluded in the range of time for which the formulation is 
applicable„

The discussion which follows is more lucid if a 
second order linear system, the operation of which is described 
by the vector differential equation:

Y-. (t) *11(t) aijCt)

*22(t)

X, (t) z.

is considered. A detailed schematic of this system may be 
constructed if three kinds of operational elements are defined:
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1„ Energy Storage Elements: operational elements which

perform analogously to the mathematical operations of 
combined summation and integration; symbolically:

l^(t)---^ ( t ) d t
/dt

rtI El i
j i i

..

Multiplication Elements: operational, elements which
perform analogously to the mathematical operation of 
multiplication by a function of time; symbolically:

l(t)--------- ^ I--------- >l(t)a(t)

3. Initial Value Elements: elements which perform
analogously to the mathematical operation of provi
sion of an instantaneous value; symbolically:

------r 1̂  (T)

The schematic of this second order linear system is given, on 
the following page. Referring to the schematic, the inter
pretation of the passage of signal y^ (t) through an element, 
^ i j i s  multiplicative modification of the output of the 
jth energy storage element prior to its entry to the ith 
energy storage element. Recognizing that the sum of the 
signals entering the ith energy storage element must, by
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definition, be the time derivative of the output of that 
element permits writing;

and

Y2Ct) = a2i(t)yi(t) + a22(t)y2(t) + X2(t), y^lT) » %2

which is precisely the operation described by the vector 
differential equation.

dt

dt

Amplifying the definition of the energy storage ele
ments, it is clear that if the interpretation of the output 
vector, Y(t), is as a point in an N-dimensional vector space 
which describes the state of the system, then the interpreta
tion. of an energy storage element is as being definitive of



18
one of the coordinates of that point. Physically, the inter
pretation of an energy storage element is as an entity, such 
as a capacitor (in an electrical network) or a mass (in a 
mechanical network) having associated with it a measure 
(potential or velocity) of the state of the system.

The interpretation of the multiplication elements in 
the state space formulation is that they act as functional 
descriptions of the system interactions. Physically, they 
describe constraints on the rate of energy transfer between 
the energy storage elements.

The interpretation of the initial value elements in 
the state space formulation is obvious from the definition.
The interpretation of these elements physically is nonexistant; 
one may say only that at some time, T, the measure of the 
system's state associated with each energy storage element 
must be defined.

At this point an example, which will serve to illus
trate the discussion to follow, becomes pertinent. Consider 
the electrical network consisting of a parallel arrangement 
of an inductor, a resistor and a capacitor, driven by a 
current source given schematically below.

ig(t)

L e(t)

i(t) 1
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Defining the current, i(t), flowing, in the inductor, L, and 
the voltage rise,- e(t), across the capacitor, C, as state 
variables (base vectors for the two dimensional vector space 
used to describe the state of the system at any instant of 
time), the transient behavior of the network may be expressed 
as follows:

Kirchoff's first law (Sum of currents at 
a node equals zero) at node 1 gives:

-ig(t) + Ce(t) + e(t)/R + i(t) = 0

Kirchoff's second law (sum of voltage 
drops around a loop equals zero) around 
the loop containing the capacitor and the 
inductor gives;

Li(t) - e(t) = 0

These expressions may be rearranged to give, with the 
specification of initial conditions:

• 1/L

-1/C -1/RC

X

i_(t)/C
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The schematic representation of this system is then:

>  i(t)dt
-1/C1/L

dt

-1/RC

The operation performed by energy storage element #1 is:

i (t) = l / L / e ( t ) d t +  Iq
'o

which is the definition of the current flowing in an inductor. 
The operation performed by energy storage element #2 is:

e(t) = -1/C I (e(t)/R + i(t) - ig(t))dt + E

which is the definition of the voltage rise across a capacitor. 
Notice that the multiplicative modification of the state vari
ables by system parameters does describe the system inter
actions (state space interpretation) and does describe
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constraints on the rate of energy transfer (physical interpre
tation) .

Returning now to the general development, since the 
state of the system is described by the solution to the vector 
differential equation, it is of interest to consider that solu
tion,, It is well known that, by the method of "Variation of 
Constants", the solution to a non-homogeneous differential 
equation is expressible as a functionally (with the independ
ent variable) weighted combination of the solutions to the 
homogeneous form of the differential equation.

It is equally well known that the solution of the homo
geneous differential equation:

Y(t) = A(t)Y(t) Y(T) = Z

depends upon the "initial" vector Y(T). The question of how 
many linearly independent solutions, Y(t), to the homogeneous 
equation exist is answerable in terms of how many linearly 
independent vectors, Y(T), exist in the N-dimensional vector 
space which is spanned by solution vectors. The definition 
of linear independence is, essentially, that if a set of 
quantities are linearly independent of one another, then they 
are not linearly dependent on one another. If a set of quan
tities are linearly dependent, then there exists a set of N 
constants, c^, Cg, . . not all zero, such that the
linear equation:

N
^  C iQi = 0
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holds. Suppose that for an N-dimensional vector space one 
chooses N initial vectors, Z^(T), such that:

=i+l

N

i = 1,2, ,N

The sum of these vectors, each multiplied by a constant, Cĵ  
is:

N °1

which is clearly not zero unless every constant, Cĵ , is identi
cally zero; thus demonstrating that there are at least N lin
early independent vectors (T). Suppose now that one addi
tional initial vector, Z , (T), is added to the set, where:N+1

N+1

N-1
N

The sum of these vectors each multiplied by a constant,
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N+1

I . . .

Clearly, there are an infinite number of choices of the N+1 
constants, c^, not all zero, such that • • •■*’°n+ i2n+1
is zero; thus demonstrating that there are no more than 
N linearly independent initial vectors, Z(T), in an N-dimen
sional vector space.

Defining 0 ^ (t) to be the solution to the linear homo
geneous differential equation, Y(t) = A(t)Y(t), Y(T) = Z^, 
it is clear that one could equally well write the complete set 
of solutions in the matrix form ^(t) = A(t)0(t), 0(T) = In 
this formulation, 0(t) is an N by N matrix created,by adjoining 
the N linearly independent solutions, 0j(t), and ^  is an N by N 
matrix created by adjoining N linearly independent initial
vectors Z .. The matrix of solution vectors, 0(t), is called J —
the fundamental matrix of solutions as any particular solution 
may be formed as the product of the fundamental matrix and 
some appropriate column vector, C.

Considering the second order case, the matrix differ
ential equation above becomes:
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.
^11(t) ^12 (t)

' 2 2

Z =

*12(t)

*21(t) *22(t)

r -

: ^ 1 1 ^12

i
1 z , z
i 21 22

011(t) 012(t)

^21(t) 022(t)

It should be noted that (t) indicates thé output of the ith 
energy storage element in the trajectory which corresponds to 
the jth set of initial values. Similarly, Zĵ j refers to the 
initial state of the ith energy storage element in the jth set 
of initial values.

The solution of the non-homogeneous differential equa
tion by the method of "Variation of Constants" is:

Y(t) = 0(t)P(t)

where P(t) is an N-dimensional column vector of weighting 
functions for the fundamental matrix of solutions, 0(t). 
Differentiation of this expréssion with respect to time gives:

Y(t) = i(t)P(t) + 0(t)P(t)

Substitution for 0(t) in terms of the homogeneous form of the 
differential equation gives:

Y(t) » 0(t)P(t) + A(t)0(t)P(t)
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or;

Y(t) = F(t)P(t) + A(t)Y(t)

Substitution for Y(t) in terms of the non-homogeneous form of 
the differential equation gives;

A(t)Y(t) + X(t) = 0(t)P(t) + A(t)Y(t)

or;
X(t) = 0(t)P(t)

Multiplication, from the left, of the differential equation
by the inverse of the fundamental matrix gives;

—1 —1 
0 (t)X(t) = 0 (t)0(t)P(t) = P(t)

Integration with respect to time between the limits, zero and 
the current instant, gives;

P(t) = 1 0  (s)X(s)ds 
0

Finally, substitution for P(t) in the statement of the “Varia
tion of Constants" theorem gives:

t
-  r - '  -Y(t) = 0(t) 0 (s)X(s)ds
"  V

The linear integral equation derived above describes - 
the state of the system explicitly, requiring information about
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the nature of the fundamental matrix of operations performed 
by the system and the input vector of interest. However, as 
has been seen earlier, the complete definition of a particular 
trajectory includes the location of that trajectory at some 
instant of time. By recalling the linear nature of the system 
one may immediately write the response of the system from some 
non-zero set of initial conditions as;

Y(t) = 0j(t) + I H(t,s)X(s)ds (1)

-1 -1
where H(t,s) = 0(t)0 (s) and 0j(t) = 0(t)0 (T)Zj. Zj is the 
particular set of initial conditions of interest.

Equivalence of the Weighting Function 
and the Impulse Response

The equivalence of the function H(t,s) and the familiar 
impulse response function should be noted at this point. Sup
pose that at time t = T, a system in equilibrium, (Zj = 0) 
receives a unit impulse to its jth energy storage element;

x^it)

X . (t) Ô(t-T)

where: 6(t-T) is the Dirac Delta function at time t = T. Then
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the solution of the integral equation becomes:

(t) = Hj(t,s) 6j(s-S)ds = Hj(t,S) 
T

where Hj(t,s) is the jth column of the weighting function 
H(t,s). Suppose, on the other hand, that at time t = T, the 
state of the system is described by the vector Zj where:

Further suppose that the input vector, X(t), is identically 
zero for all time, t. Then the solution to the integral 
equation becomes:

-1
Y(t) - 0j(t) - ?(t)? (T)Zj - Hj(t,T)

which, since s is a dummy variable for t, is identical to the 
impulse response.

Again, considering a second order system, which for 
simplicity may be considered to operate from equilibrium; the 
integral representation is:
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ĥ (̂t,s)
hjjCt,.)

x^(s)
X

Xgfs)
ds

ors

B

ds21 22

The elements of the output vector, Y(t) are expressible as:

t
y^(t) =

N

L 3
E h. . (t,s)x.(s)
4=1 ]

ds, y^(T) = 0

i = 1,2,...,N

where the subscript i refers to the energy storage element, 
the output of which is described and j refers to the energy 
storage element to which the input is applied. Further, con
sideration of the subscripts on the elements of the H(t,s) 
matrix reveals that hj^j(t,s) is the response of the ith energy 
storage element to an impulse applied to the jth energy storage 
element.

Returning to the electrical network which has been 
chosen as an example, it has been shown that the state space
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formulation of the system's operation was given by the linear 
vector differential equation:

i(t)

e (t)

1/L

-1/C -1/RC

i(t)

e(t)

The solution to the homogeneous form of the equation is easily 
accomplished by Laplace transformation techniques as follows:

Y(t) = AY(t) Y(0) = Z

Making the Laplace transformation:

pUY(p) - Z = AY(p)

Note that U is understood to be the unit matrix. Solving this 
expression for the column vector, Z:

(pU - A)Y(p) = Z

Multiplication from the left by the inverse of the (pU - A) 
matrix gives:

-1
Y(p) = (pU - A) Z

or, making the inverse Laplace transformation:
-1 -1 

Y(t) = £ |̂ (pU - A) ] Z

Since the A matrix is:

A =
1/L

-1/C -1/RC
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the (pU - A) matrix is:

(pU - A) =
p -1/L

1/C P+(1/RC)

and the inverse of the (pU - A) matrix is:

(pU - A)
-1

p+(l/RC) 1/L

-1/C P.
p + pRC + 1/LC 

or, if the values: R = 1^3, L = 1/2, c = 1 are chosen:

-1
(pU - A)

(p+3)/(p+l) (p+2) 2/(P+l) (p+2)'

-l/(p+l)(p+2) p/(p+l)(p+2)

Making the inverse Laplace transformations:
-1 -t “2t

£ ((p+3)/(ptl)(p+2)) = 2e - e
-1

£ (2/(pfl)(pf2))
-1

£ (-l/(p+l) (p+2))
-1

£ (p/(p+l)(p+2))

-t -2t 
= 2e - 2e

-t -2t 
= —e + e

-t -2t 
= -e + 2e

—1 —1
gives for the transition matrix, T = £ ((pU - A) ):

T =
-t -2t -t -2t

2e - e 2e - 2e
-t -2t -t -2t

—e + e -e + 2e



31
and the solution to the differential equation is:

Y(t) = T(t)Z

It is of interest to note, from the similarity of the above 
expression and the definition of 0j(t) in the integral expres
sion for the sytem output# that the transition matrix in this 
solution is precisely the weighting function for the system.
At time zero both the transition matrix and the product of 
the fundamental matrix and its inverse reduce to the unit 
matrix; at time equals infinity both functions reduce to zero.

In order to completely establish the relationship 
between the H(t,s) function, the impulse response, and the 
transfer function (applicable since the system is time invar
iant) one may consider the response of the inductor (current 
as a function of time) to the variation of the current source 
as an input. The differential equation which describes this 
behavior is a second order linear, constant coefficient, 
ordinary differential equation of the form:

y(t) + a^y(t) + agy(t) = x(t)

where y(t) = i(t), x(t) = ig(t)/LC, â  ̂= 1/RC, ag = 1/12.
Making the Laplace transformation, with the numerical values 
chosen previously for R, L, and C, and solving for the transfer 
function:

H(p) = m i ------!—
X(p) p“ + 3p + 2
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or:

H(p) = (2/(pH) - 2/(pf2))

Making the inverse Laplace transformation, the impulse response 
becomes :

-t -2t 
H(t) = 2e -2e

This expression is seen to be identical to element 
t^2 (t) in the transition matrix, T, or as mentioned above, it 
is identical to element in the weighting function ma
trix, H(t,s). The failure of the dummy variable, s, to appear 
is explained by the fact that for time invariant systems, the 
independent variable in the weighting function is the differ
ence between the values of t and s; since the “impulse" is 
assumed to have occurred at t = s = 0, the difference, t-s, 
is simply t. Note that a more careful solution of the dif
ferential equation would have taken cognizance of the fact 
that the impulse might not have occurred at time zero, but 
rather at some time, s. Had this been the case, the argument 
for the weighting function would have been t-s.

The fact that the element h 2 2 (t,s) was selected is 
consistent as h 2 2 (t,a) describes the response of the first 
energy storage element (the inductor) to an impulse applied 
to the second energy storage element (the capacitor).

Experimental Determination of the Weighting Function: 
From consideration of Equation (1) one recognizes that a know
ledge of the weighting function, H(t,s), for the system and
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its state at some point in time, T, is sufficient information 
from which to calculate the state of the system at any time, t, 
greater than T. One has only to solve the integral equation 
with the system input of interest substituted for X(t).

Further, one recognizes that a knowledge of the weight
ing function, H(t,s), consists of possessing a fundamental set 
of solutions to the homogeneous differential equation which 
describes the system's transient behavior. Assuming, as must 
be done, that the differential equation, the solution of which 
is desired, is a valid model for the behavior of the system, 
then the autonomous gyrations of the elements of the output 
vector, as the system returns to equilibrium after being appro
priately displaced, constitute measures of the columns of a 
fundamental matrix, 0(t), applicable for t greater than T. __

If the system, the model of which is being sought, 
could be manipulated such that at time t = T, the state of the 
system could be arbitrarily set such that;

0 (T) =

(Ẑ lj(T) 0

. (T) 1
]]

. (T) 0N]

j = 1,2,...,N

then the measured gyrations of the elements of the matrix 
created by adjoining the N 0^{t) would give H(t,s) directly. 
In general, however, a physical system cannot be so manipu
lated; therefore, the weighting function must be obtained by
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manipulation of the measured fundamental matrix F(t) as indi
cated by the definition of the weighting function:

_  _-l
H(t,s) = 0(t)0 (s) t ^ s

It is clear, from the definition, that the weighting function 
for an Nth order physical system is determinable from informa
tion obtained from a set of N linearly independent autonomous 
responses of the system.

It must be noted that unless the variation of the sys
tem parameters is periodic, either within or between operations 
the likelihood of obtaining linearly independent responses 
under identical parametric conditions is very doubtful. For
tunately, however, this limitation is not serious as the vast 
majority of systems of interest are operated according to 
some set pattern.

Since a set of linearly independent autonomous system 
responses are required for the determination of the system 
weighting function, it is of interest to consider techniques 
for generating them. Since, in general, there exists no 
facility for the establishment of an arbitrary distribution 
of "energies" among the energy storage elements of the physi
cal system and because time "zero" is a rather arbitrary 
designation of some particular time during the operation of 
the system, the following technique is valid.

Beginning with the system in equilibrium at some time, 
Tq , impress upon the system some non-zero input, X^(t); the
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response of the system is then:

Y^(t) = J H(t, s)Xĵ  (s)ds 

"̂ 0

At some time T*, greater than Tq, the distribution of "ener
gies" among the elements is:

/ T*
H(T*,s)Xi(s)ds =

T'O

If at time T*, the input vector is removed, X^ft) = 0, then
the system output for t greater than T* is:

Y^(t) = 0(t)0 (T*)Zi = 0^(t) t a T*

and one column of a fundamental matrix for the system has been 
generated.

Repetition of the process given above employing a 
different input vector, Xgft) would give rise to a second auto
nomous response. In fact N-1 repetitions would provide suffi
cient information from which to create a fundamental matrix 
provided certain conditions have been met.

The first of these conditions has been touched upon 
previously, namely, that if the parameters of the system are 
time-varying in nature, then the variation must be identical 
in each of the N repetitions. The second condition is, of
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course, that the N repetitions must give rise to N linearly 
independent response vectors. _ -

As shown earlier, the linear independence of the 0i(t) 
depends directly on that of the conditions at T*, or the Z^. 
Since the N are numbers which correspond to the N forced 
responses evaluated at time T*, the question of the linear 
independence of the 0^{t) may be answered by examination of 
the proposition: does there exist a set of constants, Cĵ , not
all zero, such that the following equation holds

fT*
N / ?L  C i  I H(T*,s)Xi(s)ds = 0

Since the c^ are constants they may be taken inside the inte
gral; in fact, the integrand may be written as H(T*,s )Xĵ  (s)ĉ ds. 
It is also apparent that the order of summation and integra
tion may be reversed. Further, it is clear that since H(T*,s) 
is a member of every term in the summation the proposition 
may be rephrased as follows:

T*
N ?

H(T*, s) (Z2C. (s)c. )ds = 0 c. 7̂ 0 i=l, 2, . . . ,N

The only way in which the integral might be zero is the case 
where:

N
S X^ (s)cĵ  = 0
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Clearly then, if the N input vectors used to drive the system 
away from equilibrium are linearly independent, then the re
sulting energy distributions at time T*, and hence the result
ing j?̂ (t) are linearly independent.

Consider the case wherein a system of N energy storage 
elements is displaced from equilibrium in Nfl linearly inde
pendent ways. Clearly, this condition is possible since there 
exist an infinite number of linearly independent functions 
which are potential forcing functions, X^ft). The result would 
be N+1 forced responses of the system, which if evaluated at 
time T*, would give rise to N+1 N-dimensional vectors, Z^,
Since each vector at T* acts as an initial vector to define 
the trajectory followed by the system in the subsequent auto
nomous return to equilibrium, Iffl autonomous trajectories are 
generated. It is of interest to inquire as to whether or not 
these trajectories are linearly independent. Each response 
may be written:

__ _-l
0. (t) = 0(t)0 (T*)Z.

and since by the existance and uniqueness theorems on the
solutions of differential equations one may state that if two
solutions are linearly independent at one point in the time
domain, then they are linearly independent at every point,
it is sufficient to inquire whether or not the:

-1
0i(T*) = 0{T*)0 (T*)Zi = Zi 

are linearly independent.
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Each of is an N-dimensional column vector and it 

was shown previously that there exist exactly N linearly in
dependent N-dimensional vectors which span an N-dimensional 
vector space. Therefore, even though linearly independent 
inputs are applied to the system, the N-dimensionality of 
the vector space required to describe the state of the system 
precludes more than N of these inputs from generating linear
ly independent autonomous responses.

Determination of Differential Model from Svstem Weight
ing Function; As mentioned earlier, the most useful form of a 
mathematical model for control purposes is the differential 
equation form. It was noted that this statement is particular
ly true if the system is time-varying. It is clear, from the 
discussion of the state space formulation of the differential 
equation form of a mathematical model for a physical system 
that all of the characteristics of the system are described 
in the structure of the A(t) matrix; therefore, assuming that 
one has available a fundamental matrix of solutions, the matrix 
form of the differential equation

^(t) = A(t)#(t)

serves as a defining equation for the parameter matrix.
Since the weighting function H(t,s) has been shown to 

be a .fundamental matrix:
_  _-l

H(t,s) = (s) t 2: s
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one may write the differential equation in the forms

H(t,s) = A(t)H(t,s) t ^ s

or, upon multiplication from the right by the inverse of H(t,s)s
-1 “1

H(t,s)H (t,s) = A(t)H(t,s)H (t,s) = A(t)U = A(t) t ^ S

The implication of the above expression for the A(t) 
matrix in terms of the experimentally determinable weighting 
function is that the problem of the requirement for an infinite 
number of weighting function models, one of each possible para
metric variation, mentioned earlier may not be as serious as 
first imagined. Consider a situation wherein the weighting 
function has been determined under some measurable parametric 
variations

aij(t) = f\j(t), fĵ j measurable

In this situation, one could obtain a differential equation
representation of the system’s operation by implementation
of the experimental techniques given earlier and implementation
of the expression for the A(t) matrixs

. —I
A(t) = H(t,s)H (t,s) t a s

This knowledge of the A(t) matrix might then be combined with 
the measured variation in the system parameters which existed 
during the experimental determination to define functional 
expressions for the elements of the A(t) matrix. Given such a
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model together with the measurablity of the variation in system 
parameters during the operation of interest, there appears to 
he no fundamental barrier to the acquisition and implementa
tion of time-varying mathematical models.

Theoretical Conclusions: In summary of the material
presented in this chapter, the following statements may be 
made.

If a physical process or system can be adequately des
cribed in terms of the linear vector differential equation;

Y(t) = A(t)Y(t) + X(t) Y(T) = z T 6 t

then the behavior of the system in response to any input, X(t), 
can be calculated explicitly from the linear integral equation;

Y(t) = H(t,T)Y(T) + / H(t,s)X(s)ds
T

where;
—1

H(t,s) = #(t)# (s) t a s

A knowledge of a fundamental matrix, J0(t) is therefore 
sufficient information from which to define a mathematical 
model for the physical system in the form of a weighting 
function.

The fundamental matrix of autonomous responses of the 
system (solutions to the.matrix differential equation
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0{t) = A(t)0(t), ^(T) = ^(T) may be obtained from experimen
tal measurements of the autonomous return to equilibrium by 
the system after it has been displaced in N (where N is the 
number of elements in the state vector Y(t)) linearly inde
pendent ways by forcing with N linearly independent input 
vectors X^(t) prior to time T. Stated mathematically:

0(T) = H(T,Tq)^(T^) + J H(^r,s)X(s)ds
To

Alternatively, if the model is desired in the differ
ential equation form one may employ the experimentally deter
mined weighting function together with information on the 
time variation of the system parameters and the relationship:

—1
A(t) = H(t,s)H (t,s) t z s

to define a mathematical model for the system's operation in 
the differential equation formulation:

Y(t) = A(t) Y(t) + X(t) Y(T) = Z

Important constraints on the technique are that:
1. all elements of the response vector Y(t) are 

measurable.
2. it is possible to make N experiments (for an 

Nth order system) under ..the same conditions of 
parametric variation.
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3 . certain aspects of the parameter variation are 

measurable.



CHAPTER III

APPLICATIONS OF THE GENERALIZED PULSE 
TESTING TECHNIQUE

This chapter presents three relatively simple examples 
of the application of the generalized pulse testing technique 
for the identification of linear system models. The purpose 
of these examples is to familiarize the reader with the 
weighting function form for a mathematical model, its use, 
the computations required for its definition, and to intro
duce some of the practical difficulties encountered in carry
ing out these computations using experimentally measured 
response data.

The first example employs a first order time-varying 
system, or rather the differential equation which describes 
its transient behavior, to introduce the weighting function 
and its use in the calculation of the response of the system 
to some arbitrary input. The introduction of the weighting 
functions consists of an analysis of the solution to the dif
ferential equation in the two regions of interest in the time 
domain and their use in the generation of the weighting func
tion. The geometric interpretation of the weighting function, 
as a surface, is employed for the purpose of its description.

43
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The composition calculation to determine the response of the 
system to some arbitrary input demonstrates the use of the 
weighting function and points up the role of the arguments 
of the weighting function as either a running variable or 
a parameter.

The second example employs an electrical circuit, 
programmed on an analog computer, as a time invariant phys
ical system. The practicalities of system testing, data 
reduction, and manipulation to define a model in the form of 
weighting function are discussed. The results of making the 
required manipulations are presented in graphical form. These 
results provide an introduction to the difficulties encountered 
in the naive attempt to carry out the processes of matrix in
version and multiplication using data which are numerically 
imprecise. A more complete discussion of these calculations 
using data which, for various reasons, is imprecise, is 
presented in Chapter IV. Since it is possible to choose arbi
trarily a specific distribution of the energy among the ele
ments of this physical system, the autonomous responses which 
correspond to the weighting function may be measured. These 
are presented as a check of the numerical calculations.

The third example also makes use of the analog com
puter as a physical system. In this case the electrical 
circuit simulates the behavior of a system which is describ- 
able in terms of a third order constant coefficient differ
ential equation. In addition to pointing out the deleterious
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effect of an increase in the size of the data matricies 
manipulated on the quality of the calculated weighting func
tion, the Cannonical form for a system coefficient matrix is 
introduced. Finally, and perhaps most significantly, this 
system with its naturally occurring Cannonical coefficient 
matrix is used to demonstrate a technique for the definition 
of a system model in the form of a differential equation which 
utilizes the same experimental measurements used for the deter
mination of the weighting function model.

Example 1; First Order Time-Varvinq Svstem (Analytic)
A first order system, the parameter of which under

goes a single step change in magnitude represents the most 
elementary time-varying system of interest. Its consideration 
will, despite the simplicity, serve to demonstrate the gener
ation of a weighting function and introduce the composition 
calculation used to compute future outputs of the system 
resulting from arbitrary inputs.

Consider the system shown below;

X(t)_________ ^ system  ^Y(t)

which performs the following linear operation:

y(t) = A(t)Y(t) 4- X(t) Y(0) = 0
where :

-a for the range - oo a t 3  T. 
A = < 1

-ag for the range ^ t a œ
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on the input to the system, X(t), to define the output of the 
system, Y(t). One may study the behavior of the weighting 
function, H(t,s), on the t, s plane by recalling that the 
weighting function was defined, in Chapter II, to be;

-1
H(t, s) . = 0(t)0 (s) t a s

Consideration of the t, s plane in the light of the 
differential equation and the definition of the weighting func
tion indicates that there are four distinct regions of the 
weighting function to be considered. These regions are iden
tified, located, and characterized as to their time dependence 
in Table III-l. These regions are indicated schematically 
below:

S1

t
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TABLE III-1

Areas of Interest of First Order Weighting Function

Region Location Definition of 
H(t,s)

Time Dependence

1 0  < t 3 T^ 
0  s 5  t

_ — 1
(s) =

H (t,s)
1 '

Time Invariant

2 t 5 0 0  

s 3  t
0 2 (t) 0 2  (s) =

Hgtt.s)
Time Invariant

3 t Ê QD 
0  < s g

— 1

Hg(t,S)
Time-Varying

4 0  3 t a s 
0  3 s g 0 0

0 Time Invariant

Note : W ^(t) is the fundamental matrix of solution which
applies ]prior to T]̂ ; 0 2  (t) is the fundamental matrix of
solution which applies after T^.

Calculation of the weighting function for this 
simple system is quite straight forward as for a first 
order system:

H(t, s) = h(t, s)
0 (t) = 0 (t)
0  ^ ( s )  = 1/0(s)



48
0 (t) = a#(t) 0 (0 ) - Z]̂
a = a, for 0 a t 3  T.
a = a^ for s t ^ 00

Therefore:

S2(t,s) = e-*2(t-s)

HjCt.s) = e'^2(t-n) âi(s-Si)

H^(t,s) = 0

Notice that along the line s — 8 ^̂, (t, s) = HgftyS); along 
the line t = T^, Hj^(t,s) = Hg (t, s) ; and along the line t = s, 
H^(t,s) = HgftfS) =H^(t,s) = 1.0.

In order to develop a further appreciation for the 
nature of the weighting function for this simple system let 
its parameters be specialized as follows:

^ 1
= 0.50

^ 2 = 0 . 2 0

= 8 . 0 0

and to permit the calculation of 0(t) let 0(0) = 10.0. The 
solution of the homogeneous form of the differential equa
tion is:

-O.OSt
0(t) = lOe 0 3  t 3  T^

0.15T -0.20t
0(t) = lOe le T^ ^ t 3  @)
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This solution is equivalent to the autonomous gyrations which 
the system would undergo if it had been forced, prior to time 
zero, such that at time zero the output took on the value 
y{0) = 10.0. This response is plotted in Figure III-l.

The weighting function has been evaluated for values 
of t and s from zero to thirty (t equal to or greater than s) 
and is presented in Table III-2, and in Figures III-2 and III-3. 
Table III-2 consists of an array of values of the weighting 
function in the interval (for both t and s) zero to fifteen.
The fact that the weighting function is symmetric in t and s 
for time invariant systems is reflected by the data in the
two sub-arrays O ^ s s S ,  t & s and 8  3  s 3  15, t a s. The
fact that symmetry, about the line t = s/4 is reflected in 
the data which appear in the sub-array B ^ t ^ Q D ,  O s s s B  

is the result of the fact that the system parameter undergoes 
a simple step change, its magnitude being a factor of four. 
Figure III-2 is an "iso-weight" plot of the weighting function. 
Lines of constant H(t,s) are projected onto the t,s plane.
The relatively different spacing of the "iso-weights" in 
each of the three non-trivial regions of the surface reflects 
the differences in the slope as a function of t and s. The
isoweight plot reveals that the lines t = 8  and s = 8  are
respectively a ridge and a crease in the function surface. 
Finally, Figure III-3 is a projection of the H(t,s) surface 
as viewed from the point t = 30, s = 0, along a line t = -s.
The purpose of including a third representation of the
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Figure III-l
Autonomous Response of First Order Time-Varying System



T 0 1 2  3 4 5 6  7 8  9 10 11 12 13 14 15
S
0 1.000 .951 .905 .861 .819 .779 .741 .705 .670 .549 .449 .368 .301 .247 .201 .165
1 1.000 .951 .905 .861 .819 .779 .741 .705 .577 .472 .387 .317 .259 .212 .174
2 1.000 .951 .905 .861 .819 .779 .741 .606 .497 .407 .333 .272 .223 .182
3 1 . 0 0 0 .951 .905 .861 .819 .779 .638 .522 .427 .350 .286 .235 ,192
4 1 .000 .951 .905 .861 .819 .670 .549 .449 .368 .301 .247 .202
5 1 . 0 0 0 .951 .905 .861 .705 .577 .472 .387 .317 .259 .212
6 1 .000 .951 .905 .741 .606 .497 .407 .333 .272 .223
7 1.000 .951 .779 .638 .522 .427 .350 .286 .235
8 1.000 ,819 .670 .549 .449 .368 .301 .247
9 TABLE III-2 1.000 .819 .670 .549 .449 .368 .301

1 0

1 1

TABULATION OF FIRST ORDER WEIGHTING 1.000 .819 
FUNCTION

1 . 0 0 0

.670 .549 

.819 .670
.449 .368 
.549 .449

1 2 1 .000 .819 .670 .549
13 1 . 0 0 0 .819 .670
14 1.000 .819
15 1 . 0 0 0
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FIGURE lil-3
PERSPECTIVE REPRESENTATION OF FIRST ORDER 

TIME-VARYING WEIGHTING FUNCTION



54
weighting function is to provide an appreciation for the 
shape of the surface which is not entirely obvious from 
the preceding two representations.

In order to demonstrate the composition calculation 
for which the weighting function form of the system model 
is most useful, suppose that it is of interest to compute 
the value of the system output at time T*, greater than 
in response to an input of the form X(t) = sin(wt). For 
simplicity, it is assumed that the system is in equilibrium 
at time zero.

The composition calculation is described as follows:

T*
Y(T*) = / H(T*,s)X(s)ds

0

As mentioned earlier, the implication of this calculation is 
that one forms the product of the system input X(s) and a 
constant t (T*) cut in the weighting function, H(T*,s) and 
integrates from s = 0 to s = T*. For the case of interest 
the cut H(T*,s) crosses two regions of the weighting function, 
namely, H 2 (T*,s) and H 2 (T*,s) necessitating breaking the inte
gration into two parts:

r": rY(T*) = / H 3 (T*,s)X(s)ds + / H 2 (T*,s)X(s)ds
0  Ti

or on substitution for (T*,s) and H 2 (T*,s):
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Y(T*) = e-az'T'-Tllg-aiSl / ^ais
T)

T*
-a^T* / aos . ,+ e / e sin(ws)ds

■'i
Integration by parts gives; 

Y(T*) = (agSinfwT*) - wcos(wT*))/(w^+a^)

+ [(a^/(w2  + a^) - ag/fw^+a^)] sin (wT^)

- (w/(w^+a^)-w/Cw^+a^) cos (wT̂ )̂

+ «e-aiTl/(«2+a2))e-a2'T'-Tl)

which is precisely the solution to the nonhomogeneous dif
ferential equations:

y(t) = -a^Y(t) + sin(wt) Y(0) = 0 0 a t a

Y(t) = -agYft) + sin(wt) Tj^st^GD

evaluated at t = T*.

Example 2: Second Order Time Invariant Svstem
A linear time invariant system containing two energy 

storage elements was chosen to begin the investigation of 
practical difficulties associated with the application of the 
generalized pulse testing technique. A pair of simultaneous
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linear constant coefficient first order differential equations 
was programed on the University of Oklahoma Process Dynamics 
Laboratory's analog computer; this electrical circuit was then 
used to simulate the operation of some arbitrary physical sys
tem. For the purposes of logical discussion, the experiment 
may be broken down into three phases: the System Testing phase,
the Computational phase, and the Weighting Function Generation 
phase.

Svstem Testing: The system testing phase of the
experiment consisted of forcing the system, initially at 
equilibrium, prior to time zero, with two linearly independent 
input signals and measuring the autonomous gyrations of the 
system variables as it returned to equilibrium.

One response vector was generated by forcing the 
system prior to time zero with the input signal being a nega
tive ramp function. The behavior of the system variables, 
in response to the negative ramp, for a few increments of 
time prior to zero and approximately one hundred twenty in
crements after zero are reproduced in Figure III-4A. A 
second linearly independent response vector was generated 
by forcing the system prior to time zero with the input signal 
being a sine wave. The system's response to this forcing func
tion is reproduced, in the same, range, in Figure III-4B. In 
each case, the responses were recorded on a six channel Sanborn 
recorder, each channel being fifty millimeters in width; Figure 
III-4 is reproduced on an equivalent grid system.
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The autonomous response data recorded from the two 

experiments described constitutes a fundamental matrix of the 
system responses. This data was "read," tabulated (to form 
four arrays of one hundred twenty elements each), and adjoined 
appropriately to form the 0 (t) matrix in the range 0  ^ t ^ 1 2 0 ,

Computations ; A digital program was written to make 
the computations stated in the definition of the weighting 
function:

  —1
H(t,s) = 0 (t) 0  (s) t ^ s

The actual calculations involved are: inversion of the funda
mental matrix at time t = s and matrix multiplication of the 
fundamental matrix at each value of t & s; this procedure is 
repeated over the entire range 0 s s s 120. The results of 
these calculations are presented in Figure III-5.

Figure III-5 presents the calculated values of the 
weighting function H(t,s) calculated for four values of s, 
namely, 0, 5, 10, and 20. The system is known, a priori, to 
be time invariant, therefore h^j(t,s) may be expressed as 
h^j(t-s) and plots for various values of s versus the argu
ment (t-s) should l i e  one on top of another. It is clear, 
from Figure III-5 that the calculated elements h^^(t-s), 
h 2 i(t-s), and h 2 2 (t-s) represent a successful application 
of the technique. However, h^gft-s) represents a consider
ably less satisfactory calculation. While the general nature 
of the weighting function is apparent, one would have
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great difficulty stating precisely what value of the weight
ing function to use at any given value of (t-s).

The reasons for the apparent failure of the technique 
to generate a weighting function of equally high quality for 
all four elements in the weighting function is investigated 
in Chapter IV; suffice it to say, at this point, that the 
fault lies in the accuracy and precision available in the 
experimental response data and a happenstance unique to the 
particular pair of vectors chosen, namely, the relative 
polarities and magnitudes of elements in the two matricies 
which are multiplied together.

Weighting Function Generation; The calculation of 
the weighting function for this particular physical system 
may be checked because of its nature; that is, one may solve 
the differential equations in their homogeneous form from 
appropriate initial conditions on an analog computer. In 
order to check the calculated weighting function two more 
runs were made. The first of these was made to check the 
elements h^^(t-s) and hg^ft-s) and involved solving the homo
geneous form of the differential equation with the initial 
conditions ;

h^(0 ) =
1.0
0.0

The second run was made to check the calculation of the two 
elements h^gft-s) and h 2 2 (t-s), the initial conditions being:



6 1 _____
0.0

hgtO) * 1.0

The results of these analog simulations are presented, in 
normalized form, in Figure III-6 .

Example 3 ; _ Third Order Time Invariant Svstem
A third order linear constant coefficient differential 

equation programed on the University of Oklahoma Process Dynamics 
Laboratory analog computer was chosen as an arbitrary physical 
system for investigation. This choice was made to permit the 
demonstration of three aspects of the generalized pulse test
ing technique. The first aspect to be demonstrated is the 
relationship of the elements of the weighting function for 
the case in which the coefficient matrix, A, is of the cannon
ical form. The second aspect demonstrated is the determination 
of a mathematical model in the differential equation formulation 
from experimental measurements. The third aspect is consider
ation of the effect of erroneous measurements in the computa
tional phase of the generalized pulse testing technique when 
applied to systems of order higher than two.

An electrical circuit, programmed on an analog com
puter the behavior of which is described by the differential 
equation:

y(t) + agytt) + a^y(t) + a^yft) = x(t)

where :
a ^  = 1.00
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= 0.75

& 2  = 0.98

y(0 ) = y(0 ) = y(0 ) = 0

was chosen as a physcial system for investigation. A sche
matic diagram of the analog computer program used in this 
example is given in Figure III-7.

In order to recast the differential equation into the 
state space formulation, the following variables are introduced:

y^(t) = y(t) 
y 2 (t) = y(t) 
y^(t) = y‘(t)

The definitions of these new variables may be combined with 
the third order differential equation to give the first order 
vector differential equation:

ÿi(t)

y^tt) ! -a -a -a_ I2 !

y^(t)

y2 (t)

y^ft)

0

x(t) Y(0) = 0

The coefficient matrix possessing the properties that the 
elements in the diagonal one to the right of the major diago
nal are unity and that all non-zero elements exclusive of 
these and those in a single row of the matrix are zero is
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said to be of the cannonical form. Note that if the non-zero 
elements appeared in any row other than that corresponding 
to the non-zero element in the input vector, then the Nth 
order differential equation would necessarily be of the form:

[L] y(t) = [M] x(t) y(0) = 0

where :

N i, i[L] = S a.d /dt 
i= 0

N—1
[M] = r b.dVdt^ 

i= 0  1

Since the weighting function, H(t,s) is expressible 
in terms of a fundamental set of solutions to the homogeneous 
form of the differential equation:

  —  1
H(t,s) = 0(t)0 (s) t 2  s

where :

l(t) = A0(t) 1(0) = Z

and since the ith element of a solution vector has been 
defined to be the time derivative of the i-lst element, it 
is clear that h^j(t,s), (the response of the ith energy stor
age element to an input on the jth energy storage element) is 
the time derivative of the element h^  ̂ j(t,s).

As shown in the previous chapter, a knowledge of the 
weighting function and its time derivative ôH(t,s)/ôt is
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sufficient information from which to determine the coeffic
ient matrix, A. Recognition of the fact that the weighting 
function is nothing more than a particular fundamental matrix 
for the system makes clear the fact that the coefficient 
matrix, A, is determinable from the relation:

» ■ —  1
A = 0{t)0 (t)

Noting the relation mentioned above between the ele
ments in the response vector for the particular type of sys
tem chosen (cannonical A matrix) it is clear that for this 
case a great savings of labor can be effected over the gen
eral case in which the fundamental matrix must be differen
tiated with respect to time. It is only necessary to measure 
one signal (the sum of signals entering the first integrator) 
in addition to those which must be measured to calculate the 
weighting function. Of course the fact that the required 
signal is measurable is not generally true but rather is a 
consequence of the fact that any voltage existing in the ana
log circuit is measurable. In general one would necessarily 
become involved with the problems associated with differen
tiation of experimental data.

0{t) =

«Sll(t) ^13(t)

^23^^^

^3l(t) ^32^^^ ^33(t)

0^{t) d 2 (t) d^(t)

d^(t) 02 (t) 1^3 (t)

^i(t) I dgCt) ^3
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0(t) =

0-1 (t) (t)

0^ (t)

4o(t) (t)

For simplicity the analog runs which were made to check the 
calculated values for the weighting function (H(0) = U) were 
used to provide the required fundamental matrix and the addi
tional vector element, . The results of making the
digital calculation of the elements of the coefficient matrix 
are presented in Table III-3.

The system testing phase of the investigation of the 
third order system was accomplished in a manner similar to 
that discussed in connection with the second order time invari
ant system (Example 2). Since this system is of third order 
it was necessary to perform three experimental runs. The 
linearly independent forcing functions chosen were x^(t) =
K]̂ , XgCt) = Kgt, and Xg(t) = Xq sin(wt) . As before, the 
response of the system for t greater than zero (unforced) 
was recorded, read, tabulated, and adjoined appropriately 
to form nine arrays, each one corresponding to an element 
in a fundamental matrix.

As before, the calculation of the inverse matrix and 
the weighting function as the product of the fundamental matrix 
and its inverse was accomplished using a digital computer. The 
analog computer was used to generate a weighting function
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TABLE III-3
DIGITAL COMPUTATION OF THIRD ORDER COEFFICIENT MATRIX

Time Third Order Coefficient Matrix

0 -0 . 0 0 0 0 1 . 0 0 0 0 -0 . 0 0 0 0
0 . 0 0 0 0 -0 . 0 0 0 0 1 . 0 0 0 0

-0.0980 -0.7519 -1 . 0 0 0 0

2 -0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0

-0.0980 -0.7520 -1 . 0 0 0 0

5 0 . 0 0 0 0 1 . 0 0 0 0 -0 . 0 0 0 0
0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0

-0.0980 -0.7519 -1 . 0 0 0 0

1 0 0 . 0 0 0 0 1 . 0 0 0 0 -0 . 0 0 0 0
0 . 0 0 0 0 -0 . 0 0 0 0 0 . 0 0 0 0

-0.0980 -0.7519 -1 . 0 0 0 0

2 0 -0 . 0 0 0 0 1 . 0 0 0 0 -0 . 0 0 0 0
-0 . 0 0 0 0 -0 . 0 0 0 0 1 . 0 0 0 0
-0.0980 -0.7519 - 1 . 0 0 0 0

50 -0 . 0 0 0 0 1 . 0 0 0 0 -0 . 0 0 0 0
0 . 0 0 0 0 -0 . 0 0 0 0 1 . 0 0 0 0

-0.0981 -0.7520 - 1 . 0 0 0 0

1 0 0 -0 . 0 0 0 0 1 . 0 0 0 0 0 . 0 0 0 0
0 . 0 0 0 0 -0 . 0 0 0 0 1 . 0 0 0 0

-0.0980 -0.7518 - 1 . 0 0 0 0
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against which the digitally computed weighting function was 
checked. As in Example 2, the "check" weighting function 
was generated by solving the matrix differential equation;

tit) = A0(t) 1(0) = U

The results of the calculation of the normalized weighting 
function, H(t,s), for s = 0 and normalized data from the 
solution for the "check" weighting function are presented 
in Figure III-8 . As one would reasonably expect, the effect 
of larger matricies on the computational phase of the technique 
(inversion of matricies and matrix product formation) is dele
terious. While the general criterion for high quality com
putational results presented in Chapter IV is applicable, its 
implementation for systems of order greater than two has arbi
trarily been placed beyond the scope of this project.
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CHAPTER IV

THE EFFECT OF SMALL ERRORS IN EXPERIMENTAL DATA

Examples 2 and 3 in Chapter III provided an intro
duction to the deleterious effect of imprecisely known funda
mental matricies on the quality of the weighting function 
definable by the generalized pulse testing technique. In 
Example 2 the manipulations of the experimental data (read 
from continuous recordings of analog voltages) generated 
very satisfactory estimates of three of the four elements 
of the weighting function as indicated by a comparison of 
Figures III-5 and III-6. This same comparison, on the 
fourth element, h^ 2 (t-s), reveals an unexpected and quite 
dramatic failure of the technique to provide a sound esti
mate of the weighting function for the response of the 
first energy storage element to inputs applied to the second 
energy storage element. Example 3, on the other hand, reveals 
a general degradation of the quality of the estimate which is 
of the magnitude and nature one might expect upon increasing 
the size of the matricies being manipulated. This chapter 
is devoted to three topics generally concerned with the prob
lem of manipulating erroneous data: a formal error criterion
for the calculation, the derivation of maximum error bounds

72
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for the calculation specifically for two by two matricies, 
and a discussion of the sources and effects of these errors. 
The final section consists of an application of the bounding 
estimates to the unsatisfactory element in the weighting func
tion calculated in Example 2.

Formal Error Criterion; A formal error criterion for 
the manipulation of combined matrix inversion and multipli
cation which is the basis for the definition of weighting func
tion models in the generalized pulse testing technique is suf
ficiently complex so as to make a heuristic approach profitable. 
This particular derivation is based on consideration of the 
determination of the weighting function for a second order 
system; its result, however, is applicable to N by N matricies.

Consider the fundamental matrix of homogeneous re
sponses :

0(t) =
, (t) ! <0, _ (t)

(t)

and its inverse at time t = s:

1
ill(s) il2<s)

(s) = I(s) =
i2,(s)

The manipulation required to generate the weighting function 
at a particular point on the t, s surface is:
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H = 0 I

Note: Neglecting the arguments in the above equation and
those following, except where confusion could arise, will 
simplify the presentation.

Writing out the previous equation in detail:

h h 0 i +0 i11 12 ! 11 11 12 21
f6 i +f6 i 11 12 12 22

h h i6 i +f6 i 0 i +0 i21 22 21 11 22 21 21 12 22 22

emphasizes the functional relationship:

H f(d\^'^2l'^12'^22'^ll'^2l'^12'^22)

the derivative of which is:

(3f/81^2>S2

or, if very small finite differences are used to replace 
differentials :
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AH = (af/3d^^)Ad^^ + (af/adgilAdgi +

+ (af/adgglAdgg +

(af/ai^^)Ai^^ + (af/ai^^iAi^i +

(af/aii2)Ai^2 + (af/aigziAizz

Alternately, the expression for the weighting function may 
be differentiated to give:

H = 0 i + i  I

or by replacing differentials with small differences:

AH = 0AI + A0I

where, of course:

A0 =

6^21 A^22

and

AI = " h i  " h ;

" h i  " h 2

The elements of the A0 and AI matricies are to be regarded 
as the errors occurring in the measurement of the elements of
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the fundamental matrix and these errors as compounded by 
the inversion of the fundamental matrix.

The partial derivatives appearing in the expression 
for the weighting function error matrix, AH, are thus seen 
to be replaceable in terms of values of 0 and I as follows:

A^ll = + A0^2"21 + ^iiAiii + ^i2^Sl

Ah2i = ^<^21^11 ^^22^21 ^21^^11 ^22^^21

^̂ 1̂2 ^^11^12 ^^12^22 ^11^^12 *^12^^22

^^22 ^^21^12 *^22^22 ^21^^12 ^22^^22

In order to express the elements of the inversion error matrix 
in terms of measurable quantities, one may again write a 
functional form, differentiate it appropriately, replace 
differentials with small differences, and substitute into the 
differentiated expression. For example:

where the argument of 0^^ is understood to be (s). Differ
entiation of the functional relation:

^11 ^^^ïl'^21'^12'^22^

gives :

+ (3 2 /3 4 2 2 )^ 2 2
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or by replacing differentials with small differences

Ai = (af/a^. )Ad + (af/ad: )A^ +11 "LI" 11 21

Performing the indicated differentiations gives:

a^ll/a^ll = "^^2^22^(^11^22 " *^21^12^ 

aiii/ajz$2i = *^12^22^(^11^22 " ^21^12^

aiii/34i2 =

a^ll/a^22 "^^1^12^(^11^22 " ^^1^12^

which, upon substitution, gives:

^ (^12^^21 ^22^^^11^^22 ^^22^^12 ~ ^12^^22^^21 
(^11^22 " ^21^12^^

Similar manipulation of the remaining three elements of 
the inverse matrix gives :

(^$21^^11 - <^11^^21^ ̂ 22 ■*■ (^11^*^22 “ ^ 2 1 ^^ 1 2 ) ^ 2 1Ai?i  --------------------------------- :----------------
(^11^22 “ ^ 2 1 ^ 1 2 )

_ (^22^^11" ̂ 1 2 ^^2 1 ) ^ 1 2  (^12^^22 ~ ^ 2 2 ^^ 1 2 ) ^ 1 1

(^11^22 ” ^ 2 1 ^ 1 2 )
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^ ~ ^ 2 1 *^ 1 1 ) ^ 1 2  ~ ^11^^22^^11
22 ^^11^22 " ^21^12^^

Examination of the assembled AI matrix reveals that one may 
write it in the shorter matrix form;

AI = -IA0I

where the matrix A0 is understood to be evaluated at t = s.
The final result then is an expression for the error 

in the calculated weighting function in terms of the funda
mental matrix at time t , the inverse of the fundamental matrix 
at time s , and the errors in the measured values of these 
matricies:

AH(t, s) = A0(t)I(s) - 0(t) I (s) A^(s) I (s)

If the maximum error in a ^  matrix is considered, 
then the error criterion may be expressed in terms of this 
maximum error estimate and the values of the fundamental 
matrix and its inverse at times t and t = s respectively.
The result is an estimate of the maximum error in the weight
ing function:

 — 1   — 1
or, since I(s) = 0 (s) and H(t,s) = 0(t)0 (s):

 — 1
AH (t,s) = (U - H(t,s) AM 0 (s)

max max
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where AM is a matrix of numbers which correspond to the max
maximum error existing in each of the elements of a measured 
fundamental matrix. If one desires to obtain a percentage 
estimate of the error, then the initial formulation which 
considers the errors at time t and time t = s individually 
must be used. This percentage formulation would probably 
be more useful for the situation wherein the errors at the 
various points in the time domain were available and impor
tant, i.e., the case in which the responses contained more 
than one zero crossing, therefore, introducing regions of 
very poor quality calculations on a percentage basis within 
one generally high quality estimate.

Specialization of Error Criterion for a Two by Two 
Matrix: While the general criterion for the errors in a
.weighting function calculation given above is valid and 
asthetically pleasing, its practical usefulness is somewhat 
obscure. One simply does not have available the "true" values 
of the elements of the fundamental matrix and its inverse.
In order to arrive at a more useful version of the criterion 
for maximum error in the calculated values of the weighting 
function for a second order system a slightly different 
approach was made.

Consider a matrix of measured values of the fundamental 
set of responses of a physical system:

M =
mil "̂ 12

"̂ 21 ”̂ 22
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Clearly, if m. = f6, , ± e _, then gf, .1] 1] 1] 1]
fundamental matrix becomes;

m Te., and the
ij

0 =
” l2 ^ 'l2

” 21 " '21 ” 22 '22

and the inverse of the fundamental matrix becomes :'

-1
0

<”22 ^ '22> - ( ” 1 2

- < ” 2 1  *2 1 ' <” 1 1  'll>

((mii=F e^^) (m22^ ®22^ " "̂̂ 12̂  ̂®12^ (^^1^ ®21^

The expression for the inverse of the fundamental 
matrix indicates that the error growth in the inversion oper
ation depends on the magnitude and polarity of both the meas
urements and their associated errors and the ratio of magnitudes 
among both the measured elements and their associated errors, 
as well as the ratio of the magnitudes and polarities of the 
measured elements to the magnitudes and polarities of the 
associated errors. Further, the question of what constitutes 
the most erroneous inversion of the true matrix has no clear 
cut answer.

The criterion chosen to define the most erroneous 
inverse may be stated as follows : That particular cohfiguraticn
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of error polarities which gives rise to a determinant of 
minimum absolute magnitude generates the most erroneous 
inverse matrix. Clearly, it may be possible, by sane arbi
trarily chosen arrangement of error polarities, to find a 
single element in an inverse matrix which is more in error 
than that predicted by concentrating attention exclusively 
on the determinant. The savings in computational labor 
affected by this choice of error criterion and by the assump
tion that all errors are equal in absolute magnitude to the 
largest error reduces the problem of estimating the error 
generation in the inversion operation to a tractable level. 
Since the effect, if any, of the assumption concerning the 
magnitude of the determinant is to underestimate the error 
generation and the effect of the assumption of equal measure
ment error in all elements is certainly to overestimate the 
error generation, the combination of these assumptions may 
reasonably be expected to be valid. This expectation has 
been borne out by much experience.

Focusing attention on the determinant of the funda
mental matrix, one writes:

V = (m^^ f e) (m^ 2  T e )  - (m^^ =F e) (m^^ t e)

or:

’ = *11*22 - *21*12 - *<i*ll**22**12**21**tel

where e is the absolute magnitude of largest measurement error
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Clearly only the terms appearing within the parentheses need 
be considered in the determination of the minimum determinant. 
The four sign choices in the original determinant give rise 
to sixteen combinations of possible error. The parentheses 
is evaluated for each of these choices and that one giving 
the maximum value is chosen as the error polarity configur
ation which generates the worst error in the inversion pro
cess. The maximum error generated in the inversion process 
is then calculated by inverting both the measured fundamental 
matrix and the measured fundamental matrix as modified by the 
predicted "worst" error configuration; the difference between 
corresponding elements of these matricies is an estimate of 
the maximum error introduced by the inversion operation. 
Written in symbolic form, the matrix of maximum inversion 
errors is defined as:

*-l -1AI = M - M max

where ;
M = M + E

and E is a matrix of errors of the polarity configuration
*chosen to minimize the determinant of M .

The manipulations required for the definition of 
the weighting function in terms of the fundamental matrix 
and its inverse are, as given previously:

   — 1
H(t,s) = 0(t)0 (s)
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However, the calculation actually performed is:

H' (t,s) = M(t)I(s)

where M(t) is the matrix of adjoined measured system re
sponses, existing at time t and I(s) is the matrix which is 
the result of inverting M(t) which existed at time t = s; 
of course, H'(t,s) is an estimate of the true weighting 
function H(t,s). As noted above, the matrix of measured 
values may be expressed as a combination of the fundamental 
matrix and a matrix, the elements of which are the errors 
made in measuring the fundamental matrix:

M(t) = ^(t) + AM(t)

Similarly, the calculated inverse matrix. I, may be expressed 
in terms of the inverse of the fundamental matrix and a matrix 
the elements of which are the difference between the calcu
lated and true values of the inverse:

 — 1
I(s) = 0 (s) + AI (s)

Thus the expression for the calculated weighting function 
may be expanded as follows :

   —1
H'(t,s) = 0(t)0 (s) + (M(t) - AM(t)) Al(s) +

AM(l(s) - AI(s)) + AM(t) AI(s) 

which becomes, upon simplification and rearrangement:

H'(t,s) -H(t,s) = M(t)Al(s) + AM(t)l(s) - AM(t)Al(s)
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The left hand side of the above equation is clearly the error 
in the calculated value of the weighting function. Substi
tution of for AI(s) and E for AM(t) renders this
expression an estimate of the maximum error in the calculation 
of the weighting function:

AH (t,s) =M(t)AI (s) + El(s) + EAI (s)—max max max

It should be noted that through this equation, the absolute 
magnitude of the maximum error in the calculation, as a 
function only of the estimated maximum error in any element 
of the measured set of system responses is defined; further, 
these error limits are not to be applied to the true weighting 
function, but rather to the calculated value. It is clear, 
however, that if a calculated value lies within given error 
limits of the true value, say H(t,s) ± €, then the true value 
must lie within these same error limits applied to the calcu
lated value. These designations being equivalent, the values 
of the weighting functions determined by the generalized pulse 
test technique are reported as being the calculated value plus 
or minus the maximum error predicted for its calculation.

Possible Sources of Errors in the Data: There are
five distinct sources of errors inherent in the acquisition 
and reduction procedures followed in the process of providing 
experimental data for the computational phase of the identi
fication technique. Needless to say, the error in any one 
piece of data may be, and probably is, due to a combination
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of two or more of these types. In order to discuss faulty 
data on a logical basis it is necessary to treat the error 
sources individually. The five sources of errors may be 
expressed as follows;

1. Imprecision due to limits of recording equip
ment .

2. Imprecision due to random reading error.
3. Inaccuracy due to erroneous equilibrium state 

designation.
4. Faults due to erroneous designation of input 

removal time.
5. Inaccuracy due to erroneous designation of 

applicable signal attenuation or amplification.
The first two sources of error are important in all of the 
experiments performed, regardless of whether the source of 
the data is the analog computer or the physical process 
chosen for the experiment. The remaining three sources are 
particularly important in considerations of the data acquired 
from the physical process, although if the total variable, 
rather than its transient portion, is recorded in the analog 
type of experiment, then the designation of the equilibrium 
state of the system becomes of prime importance.

As background for the discussion of the five sources 
of error it is profitable to examine the data acquisition 
and reduction procedures. Consider first the problem of 
acquisition of data from the analog computer experiments.
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This discussion is equally valid for those experiments in
volving the experimental apparatus as the procedure followed 
was to telemeter data from the apparatus to the analog com
puter, amplify it further, and record computer voltages which 
were proportional to the state variables of the process car
ried out in the apparatus.

As described in Example 2 of Chapter III, the system 
testing phase of the determination consisted of making a 
series of continuous recordings of the voltages, existing 
in an electrical network, which were analogous to the state 
variables of the process being simulated. These recordings 
were made on a Sanborn six channel hot wire recording oscil
lograph. Each recording channel has a span of fifty milli
meters width with gradations each millimeter. Assuming that, 
at best, one is able to estimate the position of the hot wire 
trace (approximately 0.15 millimeters wide) to the nearest 
0.25 millimeter, one could expect to report data with a max
imum resolution of 0.5 per cent. While for most uses this 
resolution is adequate, it represents two significant figures 
with up to fifty per cent uncertainty in a third.

Experience has shown that the maximum error bound 
predictions made in the computation phase may be uncomfortably 
large for calculations based on two significant figure data. 
Further, and far more important, it has shown that no guarantee 
can be made that the calculated values will lie in a suffic
iently close packed pattern so as to permit a sound estimate 
of the true value.
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The result of these considerations is an indication 

that there exists a limit on the precision of the data 
acquired which is purely an equipment constraint, namely, 
that each recorder channel has a finite span. Since the 
resolution analysis includes the implication that the atten
uation controls on the recorder are set to utilize the full 
recorder span, circumvention of the difficulty requires 
either alternate or additional auxiliary recording equipment. 
The second choice was made and implemented by the development 
of switching equipment to provide eleven adjustable finite 
steps of recorder reference voltage zero suppression, thus 
effectively telescoping 550 millimeters of channel span onto 
the original fifty millimeter span. With this addition, the 
equivalent resolution became three significant figures with 
up to fifty per cent uncertainty in a fourth.

Regardless of the increase in precision introduced 
by the development of the zero suppression switch arrangement, 
any number read and taken to be the value of the recorded 
variable is merely an estimate of the true value. In an 
effort to make this estimate as nearly correct as possible, 
there is a great tendency to "over-read" the chart. This 
instinctive reaction introduces a small random variation in 
the data which may be noted by examination of the second 
differences of the data. While "over-reading" may be con
demned, it, together with analyses of second difference 
information is more logically viewed as an attempt to ex
tract the maximum amount of information contained in the 
recording.
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Consideration of the additional complications of 

reducing experimental information generated in the laboratory 
reveals the remaining three sources of imprecision. The 
actual data reduction procedures vary between types of sig
nals but the amplification of signal level is common to all 
types. In general, the procedures involve transducing the 
physical variable to a voltage, preamplification, transmission 
to the analog computer, further amplification, and recording 
this amplified voltage as discussed previously. The oper
ations of signal transducing and amplification involve both 
zero suppression and amplification factors which must be deter
mined correctly if one is to extract the signal from the re
cordings. Quite obviously, since one cannot ordinarily measure 
the transient portion of physical variables to the complete 
exclusion of their level, the adjustments to be made and 
calibrated on the reduction equipment may introduce errors 
in both the attenuation factor and steady state or equilib
rium level correction to be applied to the recorded voltages.

Finally, the question of the designation of the time 
at which the recorded responses truly become autonomous re
sponses of the physical system must be considered. It is 
quite reasonable to expect to be able to switch an electrical 
input to zero at an arbitrary instant as is the case in the 
analog computer experiments. Unfortunately it is impossible 
to exercise such complete control over inputs, such as tem
perature or flow rate, to a physical process. It must be
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understood that the concept of setting the input to zero 
should be more precisely stated when dealing with most phys
ical processes. Since all of the theory has been developed 
using only the transient portion of the responses, setting 
an input to zero is the equivalent of instantaneously setting 
the total input variable to its equilibrium level. In general, 
it is impossible to make an instantaneous change in a physical 
variable, therefore the "time at which the input is removed" 
must be taken, for experimental purposes, to mean the time 
at which the input variable settles to its equilibrium level. 
Since this point on a recording of experimental data is quite 
arbitrary, a reasonable amount of care must be exercised in 
its designation. The computational phase of the identification 
process treats all data as if it were bonafide autonomous re
sponse data. Therefore, an error in the designation of the 
initial piece of data for which the computations are appli
cable may be the source of a vastly misleading estimate of 
the weighting function.

Effects of Erroneous Data; Three of the five types 
of data inaccuracies mentioned in this chapter involve some 
sort of systematic error. It is not unreasonable to expect 
that the effect of this type of error on the quality of the 
calculated weighting function should follow some sort of 
pattern. If such an error pattern could be recognized, then 
steps could be taken to prevent its recurrence, if not to 
correct for it. Therefore, it is of interest to investigate
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the nature of the effects of the various types of error on 
the quality of the estimate of a weighting function. The 
complexity of these effects is such that a complete quanti
tative treatment has arbitrarily been placed beyond the scope 
of this work. Instead, a qualitative presentation of their 
nature is offered together with evidence in support of the 
validity of the prediction technique, given in this chapter, 
as a practical estimate of the maximum errors associated with 
the calculated values of the weighting function.

The investigation of the effects of the various types 
of error was accomplished by simulation of the responses of 
a physical system, the transient behavior of which is described 
by the vector differential equation;

Y(t) = AY(t) + X(t) Y(T) = Z

where:

A =
- 0.2 -0.3

by calculations carried out to five significant figure pre
cision on a digital computer. This particular system was 
chosen because the underdamped nature of its response leads 
to multiple zero crossings by its weighting function and 
because the duration of its autonomous response is relatively 
short.
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The "experimental" data were generated each 0.5 units 

of the independent variable from calculation of the numerical 
solution of the differential equation (Runge-Kutta) made each 
0.01 units of the independent variable. The relatively high 
frequency of calculation was required to assure the specified 
precision because of the oscillatory nature of the solution. 
The actual calculations consisted of solving the non-homogen- 
eous matrix differential equation:

ÿi^(t)

ÿ22<t)
X

yii(t) y^2<*;>

Y2i(t) 222

where:

X22(t)

x^^ft) = 50
Xggft) = 5 sin (0.0628t)

in the range 0 ^ t  ̂T and the matrix differential equation:

"21<‘> " 2 2 '^’

1

- 0.2 —0 . 3

1211X

21 22
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I ( T )  =
y u ( « y i2 (T )

in the range T ^ t ^ (T+50).
The spirit of the investigation was to compute the 

weighting function for the system, based on five significant 
figure data and to compare the results of this "ideal" calcu
lation to the results of calculations of the weighting function 
made with data which were controlled corruptions of the "ideal" 
data. The types of error studied in this manner are inaccur
acies due to erroneous attenuation factor determination, and 
faults due to erroneous designation of the initial instant of 
autonomous response. By regarding a piece of data corrupted 
by errors in the steady state determination as "ideal" data 
either misread or containing random measurement error, the 
investigation of steady state errors may be used to shed 
light on these sources of imprecision.

Figure IV-1 is a presentation of the weighting func
tion for this system calculated from the "ideal" data for two 
values of s, zero and twenty. The quality of the convergence 
of calculated values to a smooth curve is an indication both 
that the system is time invariant and that five significant 
figure "experimental" data are truly "ideal."

Consideration of Figure IV-2, which is a plot of the 
absolute magnitude of the determinant of the fundamental set
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of autonomous response, emphasizes the quality of the "ideal" 
data. Recall that the weighting function is calculated from 
the expression:

  — 1
H(t,s) = 0(t)0 (s) t s s

 —1
and that the elements of 0 (s) are inversely proportional to 
the determinant of 0(s). It is apparent that as s increases, 
any error in the elements of ^(s), hence in its determinant, 
may generate very large errors in the elements of 0 (s),
hence in the elements of the weighting function. Clearly, 
if one is able to see that the maximum error predicted for 
the inversion operation was large enough to include the pos
sibility that the matrix being inverted was a singular matrix, 
then there would be no point in attempting to calculate the 
weighting function at that value of s.

Figure IV-3 presents the calculated values of the 
determinant of the fundamental matrix modified by the addi
tion of steady state errors equal in magnitude to one per 
cent of its maximum value. The vertical bars in the Figure 
indicate the predicted maximum errors associated with the in
version of the erroneous fundamental matrix. The fact that 
the calculated values of the determinant are much closer to 
the "ideal" determinant than required by the error bounds is 
simply a statement that this particular corruption was not 
the worst possible choice. The sense of the maximum error 
bounds predicted is that for s greater than ten units, there
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can be no guarantee that the matrix, with its estimated in
accuracy was not singular; hence there is no guarantee that 
the value of the calculated weighting function is valid.

Figure IV-4 shows the normalized comparison of the 
"ideal" weighting function to that calculated using one per 
cent steady state error data. The value of the parameter s 
in the calculation was zero. It should be noted that while 
the "ideal" results lie within the predicted maximum error 
bounds associated with the calculated values, these bounds 
are not overly generous. The variation in the size of the 
error bounds associated w i t h  specific elements differs 
because of the relative sizes of multiplicative factors and 
of the normalization constants.

Figure IV-5 also shows the normalized comparison of 
the “ideal" weighting function to that calculated using one 
per cent error data. The difference is that the value of 
the parameter s in this calculation was five. Consideration 
of the relative sizes of the ratio of predicted maximum error 
in the determinant to its magnitude (see Figure IV-3) indi
cates that the values calculated at s equals five are less 
reliable than those calculated at s equals zero. This indi
cation is borne out in Figure IV-5 by the increased predicted 
error bounds and a slight worsening of the estimate of the 
"ideal" weighting function.

Figure IV-6 again shows the normalized comparison of 
the "ideal" weighting function to that calculated using one
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per cent error data. The value of s at which these calcu
lations were made is twelve and one half. Consideration of 
Figure IV-3 indicates that very little reliability may be 
attached to these calculations. The extent of the predicted 
maximum error bounds in Figure IV-6 also reflect this indi
cation. It should be noted that while the calculated values 
represent a much better estimate of the weighting function 
than the maximum error bounds predict, the polarity of the 
deviation from the "ideal" calculation has changed and the 
estimate itself is considerably worse.

Figure IV-7 presents the values of the determinant 
of the fundamental matrix estimated from data modified by 
the addition of errors, equal in magnitude to two per cent 
of its maximum value, to each element. The vertical bars 
which represent the maximum error bound predicted for the 
inversion operation are larger than those appearing in Figure 
IV-3, thus reflecting the increased data error. The calcu
lated values lie further from the "ideal" calculation than 
do those of Figure IV-3 but much closer to it than the pre
dicted error bounds require. This behavior is the result of 
the fact that the error configuration chosen has a less dele
terious effect on the calculation than at least one other 
choice. It should be noted that, based on the predicted 
maximum error, determinants evaluated at values of the param
eter s greater than seven and one half must be used cautiously 
as the possibility of a singular matrix exists.
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Figure IV-8 shows the normalized comparison of the 

"ideal" weighting function to that calculated using the two 
per cent error data. The value of the parameter s in the
calculation is zero. It should be noted that the calculated
values are displaced further from the "ideal" weighting func
tion than are those of Figures IV-4, 5, 6 and that the pre
dicted maximum errors are larger than those of these figures. 
The calculated values of elements h^^ and h^^ deviate from
the "ideal" by an amount nearly equal to the limit predicted
by the error bounds, thus indicating that these elements are 
very sensitive to the particular choice of error configuration.

Figure IV-9 again shows the comparison of the "ideal" 
weighting function to that calculated using the two per cent 
error data. The value of the parameter s for this calculation 
was five. Comparison of Figure IV-8 and IV-9 shows, as did 
a similar comparison of Figures IV-4, 5, 5, that values cal
culated for different values of s deviate from one another.
In general, the magnitude of the deviation from the "ideal" 
becomes larger as the value of the parameter s is increased.
The source of this quality degradation is the quality of the 
inverse matrix used in the calculation. Note, however, that 
the maximum error predicted has grown sufficiently so as to 
include the "ideal" calculation within its bounds.

The result of making the calculation at steadily 
larger values of the parameter s is the prediction of steadily 
larger error bounds until the situation is reached wherein
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virtually any weighting function is covered by the field 
defined by the error-bounded calculation. This senseless 
waste of computational effort may be avoided by the refusal 
to make a calculation at a value of s from which a plot of 
the error-bounded determinant, i.e., Figures IV-3 and IV-7, 
indicates the possibility of a singular matrix. Since 
Figure IV-7 indicates this possibility beginning at s equals 
seven and one half, no calculation of the weighting function 
for s equals ten was made for the two per cent error data.

To conclude the qualitative study of the effect of 
steady state errors on the calculated weighting function, 
the following statements are appropriate.

1. The effect of a constant error in the data used 
is an error in the final value approached by the 
calculated function.

2. In general, the magnitude of the error in the 
calculated function is proportional to that of 
the data.

3. No guarantees regarding the polarity of the 
error in the calculated function can be given 
for a specific polarity of the data error. The 
dependence on the relative magnitude of the 
data elements appears to control polarity.

These qualitative results may be used to gain an 
appreciation of the effect of random measurement error on 
the quality of the calculated weighting functions. Consider
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one specific calculated point on any of the Figures IV-4, 5,
6, 8, 9. It is the result of making the weighting function 
calculation using erroneous data. More specifically it is 
the result of using data which quite randomly happened to be 
in error by a positive measurement error equal in magnitude 
to some percentage of the maximum value of each element. The 
deviation of this calculated point from the "ideal" is an esti
mate of the effect of that size random error on the calculation. 
It is difficult to imagine measurement errors in excess of one 
per cent, so Figures IV-4, 5, and 6 probably reflect the approx
imate magnitude of the random measurement error effect in a 
more realistic manner than do Figures IV-8 and 9.

If one considers truly random errors in the data, then 
it is to be expected that some of the calculated values would 
be greater than the true weighting function and some would be 
smaller. The effect of these errors on a plot of the calcu
lated weighting function would be to cause it to have the 
appearance of a braod saw-tooth trace. Since the true weight
ing function is a continuous, smooth curve, its location neces
sarily is between the "valleys" of the saw-tooth; thus the 
region of possible location of the true function tends to be 
constrained to be somewhat smaller than that predicted by 
the maximum error bounds.

Figures IV-10, 11, and 12 show the effect of two, five, 
and ten per cent attenuation errors on the major diagonal ele
ments of the calculated weighting function. Calculations made
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with the value of the parameter s equal to zero and five are 
compared to the "ideal" weighting function in each of these 
figures. The weighting function calculation automatically 
normalizes the major diagonal elements at time t equals s; 
hence in a normalized calculation only the minor diagonal 
elements are considered for normalization. The process of 
arbitrarily normalizing the minor diagonal elements nullifies 
the effect of proportional type errors, of which attenuation 
imprécisions are an example. Therefore only the major diag
onal elements are presented in these figures.

Figure IV-10 reveals that the element which contained 
the erroneous data has a negligible effect on element h^^(t-s) 
and a relatively small effect on element h 2 2 (t-s). Further, 
for values of the argument (t-s) greater than fifteen, the 
values of the weighting function calculated for s equals five 
are indistinguishable from those for s equals zero.

Figure IV-11 reveals a behavior pattern very similar 
to that of Figure IV-10, the only difference being in the mag
nitude of the effect. Figure IV-12 likewise shows nothing 
new in terms of the nature of the effect, with the exception 
of larger deviations from the "ideal" calculation at larger 
values of the argument (t-s). It would appear from the study 
presented here that any effect of small errors in the attenu
ation determined for the elements of the fundamental set of 
responses may be for most purposes neglected if normalized 
calculations are employed in the identification process.
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The effect of gross errors in attenuation on the 

weighting function calculation has not been considered here 
for two reasons. The first of these is that the intent of 
this section was to study the effect of errors of the magni
tude to be expected from considerations of amplifier drift 
and minor calibration adjustments rather than gross errors 
attributable to careless data reduction. The second reason 
is that it should be quite obvious that gross error in report
ing attenuation factors would lead to catastrophic errors in 
the calculation. Further, these effects are very closely tied 
to the relative magnitudes and polarities of an individual set 
of autonomous responses; hence no general conclusions regarding 
their effect may be reached.

Figure IV-13 presents the results of a study of the 
effect of erroneous designation of the time at which the meas
ured data actually become autonomous responses of the system. 
Figure IV-13 shows values of the weighting function calculated 
from data for values of the parameter s equal to minus ten, 
minus five, and zero. The data for "negative" time, required 
for these calculations, was obtained from forced system re
sponse data generated prior to the removal of the linearly 
independent input signals.

As mentioned previously, the computational phase of 
the identification process treats the initial data it receives 
as if it were autonomous response data, generating the unit 
matrix at time t equals s. Examination of Figure IV-13
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indicates that in the range of the argument (t-s) greater 
than zero but less than that at which the response data is 
truly autonomous, the weighting function calculation pro
ceeds smoothly but generates some strange function. Promptly 
at the value of the argument (t-s) at which the data becomes 
representative of the autonomous responses of the system, the 
calculations begin to generate a function which is very simi
lar to, although distinctly different from, the true weighting 
function. The difference is that the "initial" value of the 
similar behavior is definitely incorrect. Therefore a simple 
shift of the function along the (t-s) axis cannot successfully 
correct the erroneous function.

Two important characteristics of the weighting function 
calculated from data containing this type of error are:

1. The calculated values of the major diagonal 
elements tend to be larger than those of the 
true function. Often these values exceed the' 
theoretical maximum value of one.

2. The calculated values of the minor diagonal 
elements tend to be smaller than those of the 
true function. The derivative of a trace of 
these calculated points generally can be expected 
to undergo a violent discontinuity at the point 
at which the measured response data becomes 
truly autonomous.

In general, fault of this type which may occur in the 
measured response data may be spotted readily because of their
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catastrophic effect on the calculated weighting function. The 
remedy for this type of fault is quite simple; one simply dis
cards response data until the effect disappears.

There is one possibility of this type of error which 
represents a very serious and fundamentally intolerable situ
ation. It is the case wherein there exists an unrecognized 
cause of non-autonomous system behavior such as an unrecog
nized and uncontrolled input to the system. The weighting 
function which would be calculated in this very plausible 
situation would certainly be erroneous and would bear little, 
if any, resemblance to the function being sought. The treat
ment of this situation would involve non-homogeneous, and 
possibly non-linear, weighting functions; therefore it has 
arbitrarily been placed beyond the scope of this investigation. 
The solution of this problem would represent a very important 
extension of this investigation.

Application of Maximum Error Estimates ; At this point 
it is of interest to return to the consideration of Example 2 
of Chapter III. Figure III-5 is a graphical representation 
of the second order time invariant weighting function calcu
lated from the autonomous response data generated using an 
analog computer circuit as a physical system. Three of the 
four elements of the weighting function are very satisfactory 
estimates of the true function as shown by a comparison with 
Figure III-6. The fourth element, h^gft-s) is such poor qual
ity that a sound estimate of the true function is not possible.
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The nature of the physical system tested was such 
that the actual instant of autonomous response as well as 
the actual steady state and attenuation values could be pre
cisely determined. Therefore the only meaningful criticism 
of the experiment falls on the precision of the measurements. 
Consideration of Figure III-4A and B reveals deviations from 
steady state of forty-two, forty-nine, twenty-eight, and 
twenty-seven millimeters respectively for the elements 
^21' ^12' ^22’ Taking the maximum reading precision to
be 0.25 millimeters, elements and possess a precision
of approximately 0.5 per cent while elements and {6̂  ̂pos
sess a precision of approximately one per cent.

The discussion presented earlier in this chapter with 
regard to the precision requirements on experimental data to 
guarantee high quality estimates of the true weighting func
tion indicates that one might expect marginal results in 
this case. This limitation has been seen to be the situation. 
Therefore it is of interest to apply the maximum error bound 
estimates to the calculated values of the hj^2 element and to 
inquire as to whether or not its true value is included with
in these predicted bounds. Figure IV-14, 15, 16, and 17 show 
the results of the calculation of the element for
values of the parameter s equal to zero, five, ten and twenty, 
using a maximum measurement error estimate of plus or minus 
0.125 millimeters.
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Figure IV-14 reveals that the true weighting function 

is included in the range of values defined by the calculated 
values with their associated maximum error bounds. The ex
tremes of the band of maximum errors follow the saw-tooth 
pattern suggested earlier for the effect of random errors 
in the response data. Further, the fact that the true func
tion lies very close to the limit of the maximum error band 
at several values of the argument (t-s) implies that the 
error estimates are of a realistic magnitude.

Figure IV-15 again shows that the true weighting 
function is included in the range of values defined by the 
calculated values with their associated maximum error bounds. 
It should be noted that these maximum error bounds are larger 
than those of Figure IV-14. This enlargement is a result of 
the decreased reliability which is predicted for the matrix 
inversion operation at larger values of the parameter s. 
Because of the fact that the true weighting function is more 
easily accommodated within the maximum error bounds, there 
exists the implication that the predicted worsening of the 
quality of the inverse matrix may not actually have been 
experienced.

Figure IV-16 follows the pattern established in the 
Figures IV-14 and 15. The difference in this figure is one 
of magnitude of the effect rather than its nature. The pre
dicted maximum errors have become large enough so that one 
might question the advisability of using the calculated values 
as an estimate of the true weighting function.
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Figure IV-17 also shows a continuation of the pattern 

established in Figures IV-14 and 15. The magnitude of the 
predicted maximum calculational errors has become so large 
that virtually any reasonable weighting function could con
ceivably be represented by the calculated values.

It should be noted that the error predictions are 
for maximum and not probable error in the calculation. It 
is apparent that the random errors made in the measurement 
of the system's autonomous responses have not had the dele
terious effect on the quality of the calculated weighting 
function that they might have had. However, since this type 
of information generally can not be obtained, the quality 
estimates as expressed in this chapter are very useful and 
appear to be quite valid.



CHAPTER V

ADDITIONAL APPLICATIONS OF THE GENERALIZED 
PULSE TESTING TECHNIQUE

This chapter is devoted to the presentation of studies 
of two additional applications of the generalized pulse test
ing technique for the determination of the dynamic character
istics of linear systems.

The first study is concerned with the application of 
the technique to a backmix chemical reactor in an effort to 
determine its dynamic heat transfer characteristics when oper
ated as a time invariant system. This study is of great 
interest as it represents the initial attempt to apply the 
technique to an actual physical process (excluding computers) 
and as such introduces the questions of model applicability 
and data quality. The study is also of interest because 
through it one is able to assess the "cost", in terms of both 
experimental and calculational effort, of employing the tech
nique to a system of the type so successfully modeled by 
frequency response, statistical, and impulse response tech
niques. Of course, once this "cost" has been assessed, one 
is in a position to compare it to that of the other techniques.

123
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Although application of the generalized pulse testing 

technique to the backmix reactor, operated as a time-varying 
system, was planned at the outset of the investigation, prac
tical considerations of time and equipment forced cancellation 
of the study. Therefore the second study presented is that 
of a hypothetical second order time-varying system, programmed 
on a digital computer. There are a number of reasons for the 
inclusion of this study in addition to those presented in 
Chapter III.

Aside from the consideration of completeness, this 
study has been included to demonstrate the technique further, 
for only in its application to time-varying systems does the 
technique realize its full potential.

Inclusion of this study does provide the mechanism by 
which at least a partial assessment of the "cost" of employing 
the technique of time-varying systems may be made. Since the 
other applicable techniques (statistical and "impulse" response) 
have been discussed in the literature, this study is of value.

The final reason for inclusion of this study in the 
Chapter concerned with practical considerations of applying 
the technique is that through it the very practical benefits 
of redundant testing of time-varying systems may be introduced.

Time Invariant Svstem
The familiar backmix chemical reactor was chosen as 

the system to be used in the investigation of the experimental 
difficulties associated with the application of the generalized
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pulse testing technique to an actual physical process. As no 
chemical reaction was carried out in the experiments, the 
dynamic behavior studied was exclusively that of heat transfer 
from the contents of the reactor, through its wall, to the 
coolant flowing in the reactor jacket. This seemingly mundane 
choice of physical process was made for several reasons, the 
most important being that previous-investigations (15, 16, 32) 
have shown that its heat transfer dynamics may be successfully 
characterized in terms of a linear second order mathematical 
model.

Two of the cited investigations obtained experimental 
information on the process' response by frequency response 
techniques (15, 32); the third employed a statistical deter
mination technique (16). The success of these investigations 
implies either that the actual nonlinearities of the process 
had a negligible effect on its response, or that the data 
acquisition techniques and subsequent operations on that 
data are sufficiently insensitive to small variations so as 
to permit description of the process with a relatively simple 
mathematical model. In either case the important point is 
that these techniques have been successful.

The material presented in Chapters III and IV suggests 
that the calculations involved in the determination of the 
process weighting functions by the generalized pulse testing 
technique may be very sensitive to small deviations from 
linear behavior (considered previously as data error). There
fore it becomes important to determine whether or not actual
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process data can be used successfully in the matrix calcula
tions required for the determination of the weighting functions. 
Clearly, success in this application is prerequisite to further 
consideration of the technique as a practical tool for the 
determination of process models.

Other considerations entering the choice of the back
mix reactor as the physical system to be studied were prima
rily matters of convenience. Notably, temperatures and liquid 
flow rates may be conveniently, if not easily, measured and 
controlled. Since no chemical reaction was carried out in the 
reactor, the problems of material acquisition and disposal as 
well as those of product analysis were nonexistent; in fact 
closed process fluid and coolant cycles were used.

The details of the physical system are probably best 
presented through comparison with the hypothetical reactor 
considered in the derivation of a linear second order mathe
matical model of the actual reactor dynamics. The procedure 
will be to derive the mathematical model, then discuss the 
differences between the hypothetical and actual reactors, thus 
pointing up the liberties taken with reality in order to gen
erate a model of reasonable complexity.

Linear Process Mode1: Figure V-1 is a schematic
representation of the hypothetical reactor. Process fluid 
enters the reactor at temperature T^^ and flow rate F. As it 
is tacitly assumed that the contents of the reactor are per
fectly mixed, the outlet temperature is identical to the bulk 
temperature T^. The contents of the reactor give up heat to
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the reactor wall, which is assumed to present an appreciable 
resistance to heat transfer. The wall is assumed to operate 
at a temperature which is not a function of position. The 
reactor wall, in turn, gives up heat to the coolant flowing 
in the jacket. In order to limit the model of the reactor 
at second order it is necessary to assume that the coolant 
operates at a temperature T^ and possesses an infinite capa
city to absorb heat.

Process 
Fluid Outlet

Coolant Outlet

4 k

Process Fluid Inlet 
?in' ^

Figure V-1. Schematic Diagram of the Hypothetical
Reactor

An energy balance on the contents of the reactor gives 
rise to the following differential equation:

■'b = - "F=pb + hi''i>/̂bPb'=pb̂b + <'’l*l/Wpb” ŵ +

Similarly an energy balance on the reactor wall gives rise to 
the differential equation:
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"̂ w “ "[(hgAQ + h )/V^p^Cp^]1^ + (hj^Aj^/V^p^Cp^) T^ +

(̂ o^o/^wPw^pw ̂^c

where the notation is as follows:
T = Temperature
F = Flow rate (mass)
V = Volume
A = Area for heat transfer
p = Density 
Cp = Heat Capacity
h = Convective heat transfer coefficient

with the subscript notation : 
in = reactor inlet
b = bulk reactor contents (process fluid)
w = reactor wall ^
c = coolant
i = inside wall
o = outside wall

and T indicates the derivative of temperature with respect to 
time.

Assuming that the process fluid flow rate F is to be 
maintained at some constant value, it is apparent that there 
are two time invariant energy storage elements: the contents
of the reactor and the reactor wall. The state variables are
the temperatures associated with these energy storage elements. 
Further, there are two possible input variables: the inlet
and coolant temperatures. The assumption that the densities
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and heat capacities of the process fluid and reactor wall are 
negligible functions of temperature completes the derivation 
of the linear total variable model.

Extraction of the steady state portion of the total 
variables from these equations (T(t) = Tgg(t) + T*(t)) leads 
to the vector differential equation which describes the tran
sient behavior of the system's state

Y(t) = AY(t) + X(t)

where the state vectors and coefficient matrix have the 
definitions given below:

Y(t) =

Y(t) =

(t)

T (t)

T, (t)

T t)

X(t) =
(^^pb/^bOb^pb ) "̂ in ̂ ̂ )

A =
-((FCp̂ +hjÂ j/Vĵ ObCpb)
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Physical Svstem: The reactor used as a source of
dynamic heat transfer data in this investigation is visible 
in the upper center of Figure V-2. Also visible in the photo
graph are portions of the signal conditioning system (upper 
left)/ the reactor coolant cycle (lower left and center), and 
the flow splitter (right center).

Figure V-3 is a sketch of the reactor used as the 
source of dynamic heat transfer data for this investigation.
The sketch has not been drawn to scale nor has any detail not 
germane to the discussion to follow been included. The reac
tor jacket, support and "head" secions, as well as the agitator 
are parts of the reactor used by Stewart (32). The original 
reaction vessel was replaced by a thick walled tube specially 
cast of printer's type metal.

The derivation of the mathematical model assumed that 
the wall temperature was not a function of position. It was 
also assumed that the wall presented an appreciable resistance 
to heat transfer. Clearly these two assumptions are not con
sistent, for if the resistance of the wall is appreciable, then 
its temperature will be given by the solution to the partial 
differential equation;

T^(t) = Dv^T^(t)

subject to appropriate boundary conditions. However, if the 
thermal diffusivity of the wall material is high, then the 
transient portion of the wall response (exclusive of that due
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Figure V-2 
View of the Continuous, Backmix Reactor
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to forcing by or T^) would be very short-lived and the 
temperature profile would approach a logarithmic function of 
the radius and at worst a monotonie function of the reactor's 
axial dimension. Thus measurement of the wall temperature at 
the log mean radius and the median axial position can reason
ably be expected to represent the "average" wall temperature.

On the basis of this consideration, a thick walled 
tube was cast of printer's type metal and installed in the 
reactor. This material was chosen over other high thermal 
diffusivity materials because of its low melting point. The 
low melting point material was desirable for two reasons.
The first, and most obvious, was the simplicity of the cast
ing technique which could be employed. The second reason was 
that, at the time of casting, four thermocouples could be 
positioned at approximately the chosen position with reason
able assurance that their integrity would be maintained. The 
average of these four measurements was taken to be the wall 
temperature, T^.

The installation of the wall in the reactor involved 
press fitting the tube into the lower section of the reactor 
"head", effectively making it part of the reactor wall. Since 
this additional "wall volume" does not operate under the same 
conditions of heat flux and temperature as the tube section, 
one would expect deviations from the "average" wall tempera
ture to be largest in this region. In fact these deviations 
might be large enough to affect materially the measured 
temperature.
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In an effort to minimize this expected deviation, a 

low thermal conductivity gasket material was used to prevent 
intimate contact of the lower "head" section with the upper 
"head" and jacket support sections. The bottom of the tube 
was sealed from the jacket chamber and thermally insulated 
from the jacket wall with the same material.

The second state variable, namely the process fluid 
temperature, was measured at a point approximately half the 
distance between the reactor inlet and outlet. The assump
tion of perfect mixing seems to be justified by the results 
obtained by Stewart (32) with essentially the same reactor 
system.

Recall that in the derivation of the mathematical 
model the constraint that the model be of second order was 
introduced by the assumption that the coolant possesses an 
infinite capacity to absorb heat. Not only was this assump
tion somewhat unrealistic on the grounds that such a coolant 
is nonexistent but it also implied that the coolant operates 
at a temperature T^ which is physically not measurable. This 
deviation from reality was minimized in the experimental pro
gram by the use of very high coolant flow rates. The temper
ature, Tg, was taken to be the average of the temperatures 
measured at the inlet and outlet of the reactor jacket.
These temperatures differed by less than three degrees Fahren
heit for the range of operating conditions used.

The process fluid inlet temperature was measured 
immediately prior to the fluid's entry into the reactor. The
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physical arrangement of the reactor inlet was such that the 
conduit connections were in intimate contact with the jacket 
wall, thus providing a small heat transfer area which was not 
accounted for in the model. The effect of this arrangement on 
the model, if any, would be the indication of a falsely large 
value for both the reactor volume and inside convection heat 
transfer coefficient.

One final criticism of the model might be the fact 
that no accounting has been made of heat losses. Even though 
the actual reactor is partially insulated, it would be un
reasonable to assume that the losses are negligible. The 
reason for neglect of the heat losses in the model is that it 
would be impossible to account for them correctly— should they 
appear in the wall equation, the process fluid equation, or 
both? If the answer is both, the question is how the total 
heat loss (which is measurable) should be split between the 
two equations. Notice that while the neglect of the heat 
loss is indeed a poor assumption, it is not unreasonable to 
assume that the heat losses for the total variable model 
would be the same as the heat losses at steady state. There
fore since the transient variable model is obtained by sub
tracting the steady state expressions from those of the total 
variable model, its heat losses are probably negligible.

Support Svstems: Thus far the discussion of the physi
cal system has dealt strictly with the reactor itself, ignoring 
the necessary support systems. This approach has been made 
intentionally in an effort to direct the reader's attention



136
to the experimental investigation rather than to the experi
mental apparatus.

The discussion of the support systems is conveniently 
separable into four sections and hence is presented in Appen
dices D, E, F, and G. These Appendices should be consulted 
for details concerned with the support systems.

Appendix D contains a description of the Data Acquisi
tion and Signal Conditioning System. This system consists of 
the electronic circuitry required to amplify, condition, and 
record voltages which are proportional to the temperatures 
and flow rate measured in the experiments.

Appendix E gives a description of the closed Process 
Fluid Cycle, excluding the path through the reactor itself.
This cycle is made up of the constant temperature feed tanks, 
pumps, flow controllers, flow splitter, surge and storage tanks. 
The hydraulic function generator forms part of this cycle but 
is described separately.

Appendix F describes the Hydraulic Function Generation 
System. This system consists of the electronic circuitry for 
the electronic function generation, transducing equipment for 
conversion of the voltage function to a position function, and 
the hydraulic cylinder which transduces this position function 
to a temperature function at constant process fluid flow.

Appendix G contains a description of the closed 
Reactor Coolant Cycle. Included here are the Freon refrigera
tion system, coolant feed tank, pump and temperature control 
circuitry.
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The reactor and the associated support systems are 
shown pictorially in Figures V-2, V-4, V-5, V-6, and V-7.
Figure V-4 shows an overall view of the apparatus including 
portions of the Data Acquisition and Signal Conditioning 
System (left center), the Reactor Coolant Cycle (lower center), 
the Process Fluid Cycle (right center), and the laboratory 
instrument panel (right center).

Figure V-5 is a view of the laboratory instrument 
panel (left) and the analog computer and Sanborn recorder 
(right) which formed a portion of the Data Acquisition and 
Signal Conditioning System.

Figure V-6 is a view of the rear of the laboratory 
instrument panel showing transducers, controllers, and switch
ing circuitry used in the various support systems.

Figure V-7 shows that portion of the experimental 
apparatus housed in the analog computer laboratory (adjacent 
to the process laboratory). The signal voltages proportional 
to the process variables are transmitted from that portion of 
the Data Acquisition and Signal Conditioning System located 
in the process laboratory to that portion of the system pro
grammed on the computer, further conditioned, and recorded on 
the Sanborn recorder which is located at the left of the 
picture.

Experimental Procedure ; With the implicit assumption 
that the model actually represents the dynamic behavior of the 
physical system, consider the A matrix of the model:
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Figure V-4
Overall View of the Experimental Apparatus
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Figure V-5
View of the Process Laboratory Instrument Panel
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Figure V-6 
Rear View of the Instrument Panel



Figure V-7
Donner Model 3100 D Analog Computer and Auxiliary Equipment



142

A =
-[(FCpb+hiAi)/VbPbCpb]

(hiAi/VwPvfpw) -[(hoAo+hiAi)/VwPwCpw]

Provided that the process fluid flow rate is held constant, the 
elements of the matrix are seen to be time invariant within the 
model assumptions. Therefore one requirement on the experimen
tal procedure is that the flow rate must be held constant.

Consider the system forcing vector X(t):

X(t) =
(FCp^/VjjPbCpb ) T ( t )

(̂ O^o/^wPw^pW)^C

As it has already been pointed out, the flow rate, F, is to be 
held constant. The requirements of the generalized pulse test
ing theory are that during the period of data acquisition (homo-

* *
geneous response) both T\^(t) and T^(t) must be zero. In terms 
of the real temperatures, the requirement is that during the 
period of data acquisition, the reactor inlet and coolant tem
peratures must be at their steady state values.

* *
The state variables, T^(t) and T^(t), are the transient 

portions of the measurable temperatures T^(t) and T^(t). There
fore in the measurement of these temperatures the steady state 
values were suppressed by using the zero suppression capability 
of the signal conditioning equipment.

In summary, the data taken in each experiment consisted
of :
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1. The zero suppressed measurement of T^(t).
2. The zero suppressed measurement of Tjj(t).
3. The zero suppressed measurement of T^^(t).
4. The zero suppressed measurement of

( t c i ( t )  + T c o ( t ) ) / 2 .

5. The measurement of the flow rate, F(t).
Voltages, proportional to these five process signals together 
with an indication of the arbitrary t^ and of chronological 
time were recorded on a six channel Sanborn oscillographic 
strip chart recorder. Figure V-8 is a photograph of a portion 
of the recorded process data from a typical experiment.

The theoretical aspects of the testing technique 
discussed in Chapter II suggest that the procedure followed in 
the acquisition of homogeneous response data from the actual 
reactor involves driving the system away from its equilibrium 
state (steady state for a particular T^, and F) and by
forcing either or both Tĵ  ̂and T̂ , prior to time t^. At the 
arbitrary time t^, the forced variable is to be returned to 
its equilibrium value; the subsequent gyrations of the state 
variables [T^(t) and T^(t)] as the system returns to its 
equilibrium state constitute the dynamic information acquired 
in the experiment.

Reflection, on the constraints of the model, suggests 
that Tg not be employed as a forcing variable. However, due 
to the nature of the physical system being studied, one could 
employ the process fluid flow rate, F, to force the system 
into some, possibly very desirable, non-equilibrium state
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provided that F assumed its equilibrium value at time t^. 
Unfortunately, experimentation showed that the hysteresis 
effect of the valves used to control the flow rate precluded 
its use as a forcing variable. Therefore all of the experi
ments reported herein were conducted using .the inlet process 
fluid temperature as the forcing variable.

This temperature forcing, at constant flow rate, was 
accomplished through the use of a hydraulic function generator, 
which was designed and constructed for this investigation.
The details of the function generator appear in Appendix F.

The procedure followed in making a dynamic data acqui
sition experiment is summarized below:

1. Establish equilibrium conditions in the reactor 
at some particular level of T^^, T^, and F.

2. Make final adjustments (zero suppression) to data 
acquisition and signal conditioning system.

3. Drive system into appropriate non-equilibrium 
state through use of hydraulic function generator 
operating on the process fluid inlet temperature.

4. Follow system trajectory away from equilibrium 
until some desirable distribution of energies is 
achieved.

5. Choosing this instant as the arbitrary time t^, 
return the forcing variable [Tin^t)] to its 
original level.

6. Follow the system's trajectory as it returns to 
its equilibrium state.
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7. Establish that the system has returned to its 

equilibrium state.

Data Reduction Procedure; For various reasons, such 
as the difficulty mentioned with the flow control valve, and 
what appeared to be drift in the signal conditioning system, 
it was found that completion of procedure step seven was not 
always possible. Therefore the experimentally measured homo
geneous system trajectories used in the calculation phase of 
this investigation were chosen on the basis of experimental 
assurance that the system did in fact return to its initial 
equilibrium state. Of course further selection was made on 
the basis of the linear independence of the forcing functions 
employed in the various experiments. On these bases, the 
experiments chosen for use in the calculation phase of the 
investigation consist of a set of four response trajectories 
generated by forcing functions which include positive and 
negative steps as well as sine waves for which the state 
variables were on both positive and negative excursions at 
the time of withdrawal of the forcing function. These experi
mental response data are reproduced in tabular form in 
Appendix B.

Given a pair of response vectors which satisfy the 
criteria given above, the first step in data reduction is the 
choice of time t^. While this time was selected during the 
experiment, one is faced with the fact that physical systems 
do not respond instantaneously. Thus, in order to be assured
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that the response vector is truly homogeneous, it is necessary 
to discard the data prior to the time at which the recorded 
value of the input variable returns to its equilibrium level.
As a consequence of the physical imperfections of the hydraulic 
function generator, it was also necessary to establish that the 
process inlet flow rate, F, had returned to its equilibrium 
level.

Granting these requirements, consider the recordings 
of the state variables, T^(t) and T^(t). For the purpose of 
discussion, consider Figure V-9. This figure shows idealized 
recordings of raw data corresponding to the experimental 
measurements of the zero suppressed wall and bulk temperatures. 
Recall that in Chapter IV the requirement for precision in the 
experimental measurements was discussed. A technique for 
obtaining the necessary precision was suggested which involved 
telescoping eleven chart spans onto one such span through 
incremental suppression of the recording's zero level. The 
second step in the reduction of the experimental data involves 
the re-assembly of the homogeneous response vectors. This 
procedure will be described in terms of the segmented vectors 
of Figure V-9.

This figure has been constructed such that two small 
divisions on the horizontal run correspond to one unit of 
chronological time; further, that each "channel" is forty 
small divisions in width with zero suppression increments 
occurring each time the vector reaches a point five small 
divisions from the "channel" boundary. Thus the figure shows.
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for each of the vectors, four "windows", each thirty small 
divisions wide, telescoped onto a single chart with a forty 
small division span. In the ninety units of time shown, the 
true zero of the recording is incrementally suppressed three 
times.

The problem of reconstruction of the vector is, of 
course, solved quite easily as follows:

Assume that the steady state value is at twenty small 
divisions above the lower "channel" boundary with no incre
mental zero suppression. In order to determine the value of 
the assembled homogeneous response vector from the raw data 
segments, the following formulae are used:

AHRV(t) = RD(t) + 3x30 - 20 t on segment 1
AHRV(t) = RD(t) + 2x30 - 20 t on segment 2
AHRV(t) = RD(t) + 30 - 20 t on segment 3
AHRV(t) = RD(t) + 0 - 20 t on segment 4

This procedure has been followed and a plot of the assembled 
homogeneous response vector appears as Figure V-10.

The task of adjusting the incremental zero suppression 
equipment to a standard increment proved quite difficult even 
though the equipment was infinitely adjustable. As a result, 
the assembly procedure was modified slightly from that given 
above; a summation of the zero suppression increments applica
ble was used in place of the product of a standard increment 
with the appropriate number of increments. The details of 
this procedure appear in Appendix B.
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Figures V-11 and V-12 present, graphically, the 
elements of the four experimentally measured homogeneous 
response vectors used in the calculational phase of the 
investigation. Figure V-11 shows the elements of the homo
geneous response vectors assembled from experiments Group II, 
Runs 1 and 7. Figure V-12 shows the absolute value of the 
elements of the homogeneous response vectors assembled from 
experiments Group II, Runs 6 and 8. The Table below describes 
the forcing functions employed in these experiments.

TABLE V-1 
SUMMARY OF EXPERIMENTAL CONDITIONS

Experiment Forcing Function State Polarity at tg

GII,R1 Positive Step Positive
GII,R6 Sine Wave Negative
GII,R7 Sine Wave Positive
GII,R8 Negative Step Negative

It should be noted that the data in Figures V-11 and 
V-12, indicated by the plotting symbols, show random, low 
amplitude, relatively high frequency deviations from the 
smooth response one would expect from a system describable by 
the simple process model proposed above. These deviations are 
attributed to four possible causes; the type of integral fil
tering used in the signal conditioning system (see Appendix 
D), small uncontrolled variations in the inlet and coolant
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FIGURE V-12
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temperatures, momentary failures (instability) of components 
in the data acquisition and signal conditioning system, and, 
of course, the lack of sophistication of the process model. 
While the magnitude of the variations of the temperatures is 
not greater as the system approaches equilibrium, the fraction 
of the total "input" to the individual "energy storage ele
ments " from these "sources" is indeed greater. Any trend in 
the experimental response away from that typical of the model 
is easily explained in terms of the failure of the constraints 
on the model to correspond with reality.

As a result of the presence of these small deviations, 
smooth curves were drawn through the reliable portion of the 
elements and extrapolated to determine the equilibrium level 
of the experimental data. These smooth curves have been in
cluded in Figures V-11 and V-12. In order to prevent degenera
tion of the normalized calculations, certain data in the range 
of 65 ^ t 6 75 seconds have been replaced with values read 
from these smooth curves.

Calculation Procedure ; A digital computer was employed 
to carry out the calculations indicated by the theory of the 
generalized pulse testing technique.

The information required as input for the calculation 
consisted of a pair of linearly independent homogeneous response 
vectors from the experimental apparatus. This information, 
together with an estimate of the maximum "reading" error, was 
used to compute an estimate of the elements of the weighting
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function representation of the mathematical model. As dis
cussed in Chapter IV, calculations were made to determine the 
maximum error to be expected in these estimates.

The computer program contained several options, the 
selection of which permitted some freedom concerning the as
pects of a particular calculation. Examples of these options 
include choices as to whether or not:

1. The calculated weighting functions are normalized.
2. Possibly singular matrices (by the maximum error 

criteria) are used in the calculation.
3o A graphical display, in addition to the tabular 

form, is made of the calculated weighting 
functions.

4. A deck of cards containing the calculated weight
ing functions is punched.

The theory implies that the procedure for determining 
the non-zero regions of the weighting function (0 a t 3 «,
0 3 s ^ t) is as follows: for successive points in the s
variable the weighting function is calculated for all points 
in the range s S t  s <». Even though the maximum value of t 
for which experimental data are available is substituted for 
the upper limit on the range of t, a huge number of calcula
tions are being implied. While these calculations are clearly 
necessary for complete characterization of a time-varying sys
tem, the requirement for the definition of a time invariant 
weighting function is considerably less severe. Because of 
the symmetrical nature of the weighting function for a time
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invariant system, the calculations need only be made at enough 
values of s to insure that the function is truly symmetrical. 
Therefore the computer program was written to make the calcula
tion at increments of s chosen for a particular calculation.

Table V-1 presented a summary of the forcing functions 
and state variable polarities for the measured homogeneous 
response vectors which were considered suitable for use in the 
calculation phase of the investigation. Three sets of calcula
tions were made to determine the weighting function representa
tion of the model for the backmix reactor. These calculations 
were made using the vector pairs Group II-Runs 1 and 7, Group 
II-Runs 6 and 8, and Group II-Runs 7 and 8. These pairs are 
seen, by examination of Table V-1, to be linearly independent.

The choice of these pairings permitted the investiga
tion of the possibility that the response of the system to 
positive inputs might differ from that to negative inputs due 
to the variation of the physical properties of the process 
fluid with temperature.

Results of the Investigation; The results of the 
three sets of calculations are presented in Figures V-13, V-14, 
V-15, and V-16.

Figure V-13 is a photograph of the tabular form of 
the computed weighting function. The first page of the com
puter output is devoted to identification of the particular 
calculation and a summary of its procedural aspects. The 
statement "the vector choice for this calculation is 14“ is
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an indication of the location, on each card of a combined 
input deck, where the computer is to find the data to be used 
in the calculation. In this case the first vector on the card 
is Group II-Run 7; the fourth vector on the data card is Group 
II-Run 8. The second and third pages of computer output list 
the input data contained on the cards and that data as modi
fied by considerations of steady state correction and attenua
tion. The remaining pages of computer output list the cal
culated values of the weighting function and the associated 
maximum error prediction. The format may not be completely 
obvious, therefore the following diagram is given:

t t-s h 2 i(t,s)

h2ĵ (t,s) e2ĵ (t,s) h22(t,s) ê gft.s)

Figure V-14 is a photograph of the assembled graphical 
display of the weighting functions calculated from the homo
geneous response vectors Group II-Runs 1 and 7. The necessity 
for such an output format is clear after perusal of Figure 
V-13. This calculation used two positive energy distributions 
at time to and is therefore taken to represent the response of 
the system to positive input signals.

Figure V-15 is a photograph of the assembled graphical 
display of the weighting functions calculated from the homo
geneous response vectors Group II-Runs 6 and 8. This calcula
tion used two negative energy distributions at time to and is 
therefore taken to represent the response of the system to 
negative input signals.
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Figure V-16 is a photograph of the assembled graphical 
display of the weighting functions calculated from the homo
geneous response vectors Group II-Runs 7 and 8. This 
calculation used one positive and one negative energy distribu
tion at time t© and is therefore taken to be the response of 
the system to a mixture of positive and negative input signals.

These three figures are seen to be essentially identi
cal, thus indicating that the temperature variation of the 
physical properties of the process fluid is not of sufficient 
magnitude to cause difficulty in the definition of a process 
model of sophistication comparable to those obtained from 
frequency response and statistical techniques.

The calculated values of the weighting functions 
exhibit characteristics similar to those noted in the discus
sion of weighting function estimates in Chapters III and IV.
As seen previously, the quality of the estimate degenerates 
rapidly with decreasing magnitude of the determinant of the 
fundamental matrix. The choice of the option not to calculate 
weighting functions at values of the parameter s for which the 
fundamental matrix is possibly singular resulted in the termina
tion of useful calculations after those made at s = 30. As is 
quite apparent upon examination of the quality of the estimate 
obtained from the calculation at s = 30, further calculation 
would have been a waste of time.

The second characteristic noted earlier, namely the 
apparent greater sensitivity of the quality of the estimate of
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second order weighting functions to data imperfections, is 
also seen in these calculations. It must be noted that the 
reduced magnitude of these weighting functions themselves 
rather than a larger error is responsible for the proportion
ally greater scatter indicated in a normalized presentation 
of the weighting functions.

TIME-VARYING SYSTEM
The inclusion, in this chapter, of an application of 

the generalized pulse testing technique to a system which 
contains a parameter that varies significantly with time is 
desirable for three reasons. The most obvious is that only 
in such an application is the full potential of the technique 
realized. The determination of a mathematical model of such 
a process from experimental measurements is beyond the capa
bility of frequency response methods and represents an exceed
ingly lengthy and complex calculation if statistical techniques 
are employed. Therefore the relative simplicity of the re
quired calculations and the versatility of this method come 
into excellent focus.

The second reason for the inclusion of this application 
is that through it some appreciation for the "cost", in terms 
of calculational effort, may be gained. Admittedly an appli
cation which involved the difficulties associated with the 
acquisition of dynamic response data from an actual time-varying 
system as well as those associated with manipulation of such 
data would constitute a much more valid*'assessment of the true
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cost of using the technique„ However, since one of the primary 
concerns of this investigation is with the ramifications of the 
technique itself (as stated in Chapter II), the following mate
rial is very useful.

The third reason that inclusion of the following 
material is desirable is that it serves as a vehicle for the 
natural introduction of the practical concept of redundant 
testing of time-varying systems. The process of redundant 
testing represents a mechanism for obtaining improved quality 
of the weighting function estimates for timg-varying systems 
at large values of the variable t ■ s,

Description of the Svstem; The time-varying system 
chosen as the source of dynamic data for this study was the 
purely hypothetical one described by the vector differential 
equation;

Y(t) = A(t)Y(t) + X(t) Y(0) = 0

where the time variation of the parameter matrix, A(t) is 
given by:

A(t) =

f(t) = /
1.0
2.5 - 0.03(t-t+) 
0.1

0.0 1.0
---------------------------------------------- --------------- ------  .

-0.2f(t) -0.3

0 ^ t
t* + 50 s t 2 t+ + 80
t + 80 3 t a »
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The inclusion of the parameter, t^, provides a reference time 
for the purpose of locating the region of the t domain for 
which a mathematical model is obtained. The variation of the 
parameter matrix element, ^21' shown diagramatically
below:

f(t)

1.0

0.1

t*+50 t \ e o

Consider the analytic solution to the differential 
equation:

y(t) + . 3y(t) + ,2y(t) = 0 y(0) = k, y(0) = k'

which is just the system definition (provided t < t"*" + 50) 
written in the form of a second order ordinary differential 
equation. The solution is seen to a degenerate oscillation 
given by:

y(t) = exp(-.15t)(kcos.422t + (.15kk'/.422)sin.422t)

The amplitude of the solution at the point t = t* + 50 is seen
to be no greater than kexp(-(7.5 + .15t^)). Assuming that.
+ •t ^0, the maximum value of the solution is 0.00056k; hence 
for all practical purposes, the response is complete.
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Consider now the analytic solution to the differential 

equation:

y(t) + .3y(t) + .02y(t) = 0 y(0) = k, y(0) = k'

which is the system definition (if t"*" were chosen to be -80) 
written in the form of a second order ordinary differential 
equation„ The solution is seen to be composed of the sum of 
negative exponentials:

y(t) = (10k' + 2k)exp(-.lt) - (10k' + k)exp(-.2t)

Evaluation of the slowest decaying exponential indicates that 
at t = t^ + 130, the amplitude of the solution is 0.00675k. 
Clearly the response is complete.

It is obvious that measurements of the homogeneous 
response of this system may be terminated after fifty units of 
time without loss of measurable information. This fact makes 
the computation of the numbers to be considered as "experimen
tal data" convenient but introduces an interesting problem of 
system identification.

Procedure Equivalent to Data Acquisition Experiments: 
Since this system is hypothetical, it was simulated on a digi
tal computer, the experiments on a real system being replaced 
by the calculation of the numerical solution (Runge-Kutta-Gill 
method) to the system describing equations. The non-homogeneous 
form of the vector differential equation was solved in the 
range o f O ^ t ^ t  + s ( 0 : S s ^ t  + 80) , and the homogeneous
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+ +form of the equation was solved in the range t +s3tat +s+50. 

These solutions correspond to the forced responses of the 
system terminating at t = t* + s and the subsequent free 
responses. Calculations were made every 0.1 units of t with 
the result reported every 0.5 units of t. This calculation 
frequency provided more than 148 evaluations of the solution 
per cycle at the natural frequency of the system. Doubling 
the calculation frequency made no change in the numbers 
calculated, therefore the conclusion that numerical approxima
tion was valid seems justified.

As has been seen previously, two experiments are 
required to obtain the information necessary for the char
acterization of a second order system. Therefore, the cal
culations outlined above were made twice, once with the 
non-homogeneous portion of the equation chosen to be a sine 
wave of amplitude, M, and frequency w, and once with the 
forcing function chosen to be a step of amplitude M.

Suppose that the value of t"*" is chosen to be a large 
positive number; then the solution to the differential equation:

y(t) + .3y(t) + . 2y(t) = x(t) y(0) = y(0) = 0

is given by the sum of the homogeneous solution (form displayed 
above) and a particular solution. For t > 50 the homogeneous 
portion has been shown to be negligible, therefore at t = t^:

y(t^) = -M/((w^-.2)^+.09w^)(.3wcoswt + (w^-. 2)sinwt*^ )

y (t^) = -wM/ ( (w^- . 2 ) . 09w^ ) (w^- . 2 ) coswt^ - . 3ws inwt^ )



168

for the case in which x(t) = Msinwt. Notice that if, rather 
than choosing t^ very large and solving the non-homogeneous 
form of the equation with zero initial conditions, one chose 
t = 0 and solved the non-homogeneous differential equation 
with the initial conditions:

y(t'*') = -.3M/((w^-.2)^+.09w^)

y(t^) = - (w^-. 2)wM/( (w^-. 2) . 09w^)

then the solutions for t s t"*" would be identical. This idea 
was incorporated into the computer program for both sets of 
calculations (initial conditions for response to step were 
y(0) = 5M, y(0) = 0 )  in order to minimize the computer time

required to generate the "experimental data".
Five sets of calculations were made at values of the 

parameter, s, equal to 0, 20, 40, 60, and 80. The reason for 
these repeated calculations is explained in the section on 
redundant testing.

Redundant Svstem Testing: As mentioned in the section
on the description of the system, the fact that the homogeneous 
response of this system is complete within fifty time incre
ments after it begins, poses an interesting problem in system 
identification. This problem is rooted in the fact that the
onset of the parameter variation does not occur until 
t = t^ + 50, a point at which the response begun at t = t 
retains insufficient amplitude for recognition of the variation.
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This situation leads to one of two types of difficulty 
depending on the measurability and controllability of the 
parameter variation.

If one assumes that the parameter variation is not 
controllable but is measurable, then the ultimate success or 
failure of efforts to obtain a model for the system depends 
on whether or not the variation is repetitive.

Consider the case in which the variation is repetitive. 
Without a priori knowledge that the system is time-varying, one 
would proceed to drive the system from equilibrium using an 
appropriate forcing function, remove this forcing function upon 
achievement of some desirable energy distribution, and measure 
the subsequent homogeneous response. Since two linearly inde
pendent response vectors are required for the determination of 
a second order system's characteristics, this process would be 
repeated using a second appropriate forcing function.

Assume that the desirable energy distribution was 
achieved at time t = t"*" in the first experiment, then at time 
t = t + 5 0  the response would be complete. Assume further 
that the desirable energy distribution for the second experi
ment was achieved at the time t = t^ + 50 + T, where T a 30.
The response of the system in the second experiment would be 
complete by time t = t^ + T + 100.

Examination of the equations which describe the system's 
behavior indicates that these two measured responses would not 
represent the same system, therefore subsequent calculation
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based on the fundamental matrix formed by adjoining these 
measured responses is doomed to failure.

It is clear that unless the parameter variation is 
repetitive (it was assumed not controllable) the generalized 
pulse testing technique is not applicable. Similarly, if the 
parameter variation is not measurable then the technique can
not be employed. These situations are examples of the basis 
for the constraint on the measurability of the parameter 
variation given at the end of Chapter II.

Alternatively, if the parameter variations are weakly 
controllable (in the sense that they may be "reset"), then the 
outlook is much brighter. Consider the case wherein the 
parameter variation is 'resettable". Essentially what is being 
suggested is that a means exists for returning to the time 
t = t*. In this situation the first data acquisition experi
ment proceeds as above; the second proceeds in a similar 
manner, namely a second homogeneous response vector which is 
representative of the system in the range t ^ t rS t + 50 is 
obtained. While subsequent calculation of the weighting func
tion based on these responses determines the model for the 
system in the specified range of time, the model contains no 
clue that the nature of the system is time-varying.

Figure V-17 shows a diagram of the t,s plane which 
illustrates the situation. The homogeneous responses obtained 
experimentally serve as the basis for the calculation of an 
estimate of the weighting function which applies in the area
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designated by the number 2. It is clear that the areas 
designated 1 and 2 represent the region in which the system 
is time invariant with a2 i = 1.0. The area designated by the 
number 3 defines the region in which the system is time-varying. 
The area designated by the number 4 represents the region in 
which the system is again time invariant (a^i = 0.1). Since 
area 2 is completely contained within the first time invariant 
region of the t,s plane, the subsequent time-varying nature of 
the system goes unrecognized in the weighting function 
determination.

The clue to the means by which this difficulty 
may be handled is contained in the discussion of the case in 
which the parameter variation was not controllable. Recall 
tv.at in that instance the system represented by the second 
homogeneous response vector differed from that represented 
by the first due exclusively to the passage of time. There
fore in order to obtain homogeneous response information on 
which to base calculations in the region t a s a 50, one has 
only to make repeated experiments which involve forcing the 
system in the range t > t . Notice that in the case of a 
time invariant system, these tests provide no new information 
and hence are redundant.

Figure V-18 shows the coverage on the t,s plane made 
possible through redundant tests at values of t = s = t* + 0,
20, 40, 60, and 80 units of time respectively.

Examination of Figure V-18 reveals that certain areas 
of the t,s plane are covered by the calculations made possible
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on the basis of more than one set of tests. It has been 
recognized that the magnitude of the determinant of the funda
mental matrix decreases rapidly with increasing time. Further, 
it has been recognized that the quality of the estimates of the 
weighting functions is a strong function of this magnitude. 
Therefore it is clear that an improved estimate of the weighting 
function may be obtained from the calculations based on the 
redundant set of tests.

For example, consider the calculation of the weighting 
function at s = 25, 25 zt 3 50 from the homogeneous response 
data acquired by removing the forcing function at t = s = 0.
It is clear that at t = s = 25, the magnitude of the determi
nant of the fundamental matrix will be very small, thus 
implying that the errors in the estimate of the weighting 
function are likely to be very large. Since an experiment 
has been carried out in which the forcing function was removed 
at t = s = 20, the data for calculating the weighting function 
in the range s = 25, 25 3 t 3 70 is available. Not only may 
the calculations be made, but the magnitude of the determinant 
of the fundamental matrix which is formed from the second set 
of experiments must be much larger at t = s = 25 than that 
formed from the first set of experiments. Therefore one may 
expect that magnitude of the errors in the estimate of the 
weighting function would be much smaller.

Calculation Procedure : The data reduction process
for the "experimental data" used in this study was trivial
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since the homogeneous response vectors were available in 
digital form from the numerical solution of the system des
cribing equations. These data were computed to three decimal 
precision; hence an estimate of 0.001 was used as the maximum 
error contained therein. The origin of the 1.0 attenuation 
factors and the 0.0 steady state corrections is obvious. The 
"data" were "measured" at increments of 0.5 A t.

The estimates of the weighting functions were calcu
lated using a slightly modified version of the digital computer 
program listed in Appendix C. A time scale change of t = 0.5t 
was made for convenience in the calculations which were made 
at intervals of At for parameters of s = t + 0, 10, 20, 30, 40, 
50, increments of t respectively for the five sets of "experi
mental data" corresponding to removal of the forcing function 
at t = s = 0, 20, 40, 60, and 80 increments of t respectively. 
These results were punched on cards which were subsequently 
used as input information for a slightly modified version of 
the plotting routine which appears in Appendix C.

It is of interest to note that calculations were not 
made for parameters of s = t at which the maximum error cri
teria indicated the possibility of a singular fundamental 
matrix. Further, the estimates of the weighting functions 
were not normalized in the calculation as normalization at 
this point would destroy one of the more interesting charac
teristics of the time-varying weighting functions.

Results of the Studvt The results of the calculation 
of estimates of the time-varying weighting function
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characterization of the system under consideration appear 
graphically in Figures V-19, V-20, V-21, and V-22. A typical 
section of the tabular form of these results has been photo
graphed and appears as Figure V-23.

Advantage has been taken of the benefits associated 
with redundant testing in order to present the best estimates 
of the weighting functions over the range of the t,s plane 
which is shown in these figures. Table V-2 summarizes the 
procedure followed in the selection of the estimates for 
plotting.

Figure V-19 is a photograph of the normalized graphic 
display of the computed estimate of the time-varying weighting 
function element hĵ 2^(t,s). The two areas of time invariant 
parametric behavior (0 i t s 50, s ^ t and 80 s t s: s a t)
are reflected by the identical nature of the cuts at s = 0, 20, 
and 40 and at s = 80 and 100. The time variation of the para
meters (50 s t ^ 80) is reflected in the cut at s = 60. Notice 
that the maximum value (1.0) exists along the line t = s; this
behavior is a consequence of the definition of the weighting

—  1
function as: H(t,s) = 0(t)0 (s).

Figure V-20 is a photograph of the normalized graphic 
display of the computed estimate of the time-varying weighting 
function element hi2 (t,s). As noted in connection with Figure 
V-19, the two areas of time invariant behavior are reflected 
by the cuts at s = 0, 20, 40 and at s = 80, 100. The cut at 
s = 60 is different due to the time varying nature of the
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TABLE V-2

PLAN USED FOR SELECTION OF WEIGHTING FUNCTION 
BASED ON REDUNDANT TESTS

Region of t,s plane 
for which H(t,s) was 

calculated
Initial value t for which 
homogeneous version of the 
differential equation was 

solved

0 3 s ^ 20
0

s s: t i 50

20 < s ^ 40
20

S 3 t ^ 70

40 3 s ^ 60
40

s 3 t ^ 90

60 3 s ^ 80
60

S 3 t <110

80 2  s <130
80

S t <130
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system parameters. It should be noted that the magnitude of 
the response as well as its general shape change as a function 
of time. Since this element is the weighting function of the 
system when it is looked upon as a system described by the 
ordinary second order differential equation:

y(t) + .3y(t) + .2y(t) = x(t)

where x(t) is the input and y(t) is the output, one infers 
that magnitude of the response of an overdamped system to a 
specific input is larger than that of an underdamped system, 
which is true.

Figure V-21 is a photograph of the normalized graphic 
display of the computed estimate of the time-varying weighting 
function element h 2 i(t,s). Again the time invariant behavior 
of the system in certain ranges is reflected by the cuts at 
s = 0, 20, 40, and 80, 100. Examination of the results plotted 
in this figure shows that as was the case with element h^2 (t,s) 
the maximum magnitude of the response, as well as its general 
shape, is a function of time. In this case, however, the 
magnitude is a maximum when the system is underdamped.

Figure V-22 is a photograph of the normalized graphic 
display of the computed estimate of the time-varying weighting 
function element h 2 2 (t,s). As seen previously, the time in
variant portions of the system response are reflected in the 
cuts at s = 0, 20, 40, and 80, 100; the time-varying portions 
are reflected in the cut at s = 60. Again, as in element
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hii(t,s) the magnitude of the maximum response is constrained 
to be unity by the definition of the weighting function.

Figure V-23 is a photograph of a typical section of 
the tabular form of the computed estimate of the time-varying 
weighting function, H(t,s). With the exception of the comment 
that t as listed in the photograph is actually t in the 
notation of this report, there is little to be said about the 
figure. It has been included only for the sake of completeness.



CHAPTER VI

RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

The results of and conclusions drawn from this 
investigation are presented in this chapter. The discussion 
has been sectioned along lines corresponding to the specific 
areas of interest which developed in the course of the in
vestigation. These areas may be summarized as follows :

lo Theoretical Aspects of the Generalized Pulse 
Testing Technique.

2. Calculation and Presentation of the Weighting 
Function Estimates.

3. Acquisition of the Required Dynamic Responses.
4. Application of the Technique to an Actual 

Physical Process.
5. Application of the Technique to a hypothetical 

Time-Varying System.
6. Comparison with Other Applicable Modeling 

Techniques to Assess the Relative Costs.
Recommendations for future work concerned with the 

development of the generalized pulse testing technique appear 
as the final section of this chapter as they represent ques
tions which have been left unanswered by this investigation.

185
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Also, these areas tend to represent the current interests 
of the author.

Theoretical Aspects of the Generalized Pulse Test
ing Technique; No new theories, either mathematical or in 
terms of systems work, have been developed in the course of 
this investigation. Instead, certain results from the theory 
of ordinary differential equations have been combined with 
the concepts of that area of systems work concerned with the 
determination of mathematical models for physical processes. 
The result is a coherent structure that defines a novel method 
by which the characterization of linear systems, regardless 
of their particular time dependence, may be achieved.

The relationship between the weighting function, 
determined through application of this technique, and the 
impulse response (alternatively the transfer function), deter
mined by the standard techniques, has been thoroughly eluci
dated in Chapter II. This relationship may be summarized by 
noting that for systems which may be described adequately by 
the linear differential equation:

Y(t) = A(t)y(t) + X(t) y(T) = Z T € t

the behavior of the system in response to any input, X(t), 
may be calculated explicitly from the linear integral equation:

t
y(t) = H(t,T)y(T) + j" H(t,s)X(s)ds t 2 s

T
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where H(t,s) is that N by N fundamental matrix of solution 
to the homogeneous form of the differential equation which 
when evaluated at t = T is the unit matrix. If the A matrix 
is of the canonical form then the h-ĵ jj(t,s) element of the 
weighting function matrix is identically the impulse re
sponse of the system for which the descriptive equation is 
the order ordinary differential equation;

N-1
[L(t)] y(t) = x(t) y(0) = ...... = y(0) = 0

In the case of time invariant systems, the transfer function 
is the ratio of the Laplace transforms of the output and in
put functions.

H(p) = £ [h^g(t-s)} = y(p)/x(p)

Through comparison of the solution of the non-homo- 
geneous form of the differential equation by the method of 
"variation of parameters" with the integral representation
of the model, one is able to show that:

   —  1
H(t,s) = 0(t)0 (s) s ^ t

This expression suggests that measurement of any fundamental 
matrix of homogeneous responses, W(t), will permit character
ization of the system in terms of its weighting functions. 
Further, since the weighting function matrix evaluated at 
t = s is seen to be the unit matrix, the measurement of a 
set of unforced system responses is recognized as a
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generalization of the measurement of the impulse response 
of the system; hence the name: generalized pulse testing
technique.

The method by which a fundamental matrix of unforced 
system responses in the range t s T may be measured is stated 
mathematically as follows:

0(t) = A(t)0(t) t 2: T

0(T) = H(T,T^)g(T^) + / H(t,s)X(s)ds
To

where X(t) is a non-singular matrix of system forcing 
functions.

The final step in the theoretical development is con
cerned with the relation of the weighting function to the 
linear differential operator, A(t). The transition between 
the integral (weighting function) and the differential repre
sentations of the model may be defined in terms of the matrix 
equivalent of the homogeneous differential equation:

H(t,s) =A(t)H(t,s) H(t,t) = U

Multiplication of this equation, from the right, by the in
verse of the weighting function matrix yields:

—  1
H(t, s)H (t, s) = A(t)

which simplifies to the following form provided the evalu
ation is s = t.
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A(t) = H(t,t)

There are'two constraints on the class of system
to which the technique is applicable which are implied by
the mathematical statements but which deserve special notation,

1. Since the differential equation which describes 
the system behavior is vectorial in nature, all 
elements of the state vector must be measurable.

2. Since the fundamental set of unforced system 
responses is a matrix formed by adjoining re
sponse vectors, the time dependent nature of 
the system must be either repetitive and measur
able or controllable (and measurable).

Granting the constraints on the nature of the physical
process mentioned above, it is clear that time variation of
the system parameters represents no fundamental difficulty in 
the determination of its mathematical model by application to 
the technique. Further, the state space formulation used in 
the elucidation of the technique points up the extreme ease 
with which it may be applied to multiple input/output systems; 
the only single input/output systems actually recognized being 
those which are characterizable in a one dimensional state 
space.

Three potential advantages to the use of the technique 
as a practical method for the determination of mathematical 
models are implied by the mathematical statement of the way in 
which the fundamental matrix of unforced responses is to be 
generated.
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Since the forcing function, applied prior to the 

arbitrary time, T, is a vector quantity, any one of it? 
elements may be chosen for actual system manipulation. Of 
course the choice is made on the basis of the relative con
venience and controllability of the actual signals which 
correspond to the elements of the vector.

The mathematical statement of the way in which a 
set of unforced responses is to be obtained indicates the 
advantage gained by the generalization of the impulse test
ing technique. Rather than attempting to impress an impulse 
of sufficient strength to permit measurement of the response, 
one simply drives the system away from the equilibrium state 
and releases it. This feature represents a significant prac
tical advantage in the study of physical processes which 
characteristically display sluggish response.

A third potential advantage of the technique is that 
all possible input-output relationships are determined for 
the same amount of experimental and computational effort 
required for the determination of one such relationship. This 
advantage is particularly important in the study of multiple 
input/output systems.

Calculation and Presentation of Weighting Function 
Estimates ; While the calculation of the weighting function 
matrix for a system is quite simple as a theoretical propo
sition, its application to data obtained from an actual phys
ical process is not a trivial matter. Due to the combined
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effects of nonlinearities which are unaccounted for in the 
model and imperfections in the measured data, the calcu
lations are necessarily based on an estimate of the true 
homogeneous response of a linear system. The error con
tained in the measured data is severely compounded by the 
nature of the matrix operations required; therefore one must 
regard the calculated result as an estimate of the true 
weighting function. If this estimate is to be used with any 
confidence one must have an appreciation for its quality. 
Examples 2 and 3 in Chapter III demonstrate the validity of 
this statement.

The material in Chapter IV is devoted to the con
sideration of the effect of small errors in the data on the 
quality of the estimate. Recognizing that instead of cal
culation the weighting function as the product of the funda
mental matrix, and time t , and its inverse, at time s, the 
estimate:

H'(t,s) = (^(t) + A0(t))(0(s) + A0(s))

is actually calculated, the error in the estimate (H*(t-s) - 
H(t,s)) may be expressed as follows :

AH(t,s) = (A^(t) - ^(t) I (s) A0(s) ) I (s)

_-l
I (s) = 0  (s)

Alternatively, if a maximum error matrix (for all values of
t and s), AM , is defined one may write: max
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— 1

AH (t,s) = (U-H(t,s))AM 1  (s)max max

These expressions for the error in the estimate suffer, from
the practical point of view, in that they involve knowledge
which is normally not available, namely the values of the
actual weighting function and its inverse.

The error criterion has been specialized for case
of the calculation of a second order weighting function matrix,
This was accomplished by consideration of the calculation in
two phases: matrix inversion and matrix multiplication.
Defining a matrix AI as:max

“1 —1 AI = (M + E) - Mmax

where M is the matrix of measured unforced system responses 
and E is that matrix of maximum errors with their polarities 
cho'sen so as to minimize the determinant of (M + E) , the max
imum error in the calculation of the weighting function esti
mate as :

H'(t,s) =M(t)I(s) t 2 s

I (s) = M (s)

is shown to be:

AH (t,s) =M(t)AI (s) + El(s) + EAI (s) max max max
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These three equations form the Basis for the digital 

computer program used in the investigation. A listing of 
the Fortran statements in the program appears in Appendix C. 
The procedure followed in the calculations was to consider 
the variable s as a parameter and the variable t as the run
ning variable; hence the calculations correspond to cuts in 
the weighting function hypersurface along lines of constant 
s. Examples of the tabular form of the computed weighting 
function estimates with associated maximum error appear in 
Figures V-13 and V-23.

While the tabular form of presentation of the weight
ing function estimate is desirable for subsequent utilization, 
it is not desirable from the point of view of assessing the 
characteristics and general quality of the estimate. This 
statement is particularly true in the case of a time-varying 
system. Therefore a digital computer program was written 
which plots the weighting function estimates in a manner which 
approaches a perspective view of the weighting function sur
face. Examples of this form of the presentation of the com
puted estimates of the weighting function appear as Figures 
V-14, V-15, V-16, V-19, V-20, V-21, and V-22. The listing 
of Fortran statements for the plotting program is included 
in Appendix C.

Acquisition of the Required Dynamic Responses; The 
theory of the generalized pulse testing technique is quite 
specific regarding the method by which the fundamental set
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of homogeneous system responses is to be obtained. The 
state variables are measured as the system returns to equi
librium along N (the order of the system) linearly independent 
trajectories. These trajectories are the system's unforced 
responses to a set of non-equilibrium states existing at an 
arbitrary time zero which, in turn, are the result of forcing 
the system, prior to time zero, in N linearly independent ways,

Since the measured responses of any real systems are 
actually estimates of true linear responses, the requirements 
on the set of forcing functions used are more complicated than 
the linear independence requirement of the theory. The ques
tion of what constitutes a desirable set of forcing functions 
must be answered in terms of the constitution of a desirable 
set of energy distributions at time zero. While this investi
gation produced no quantitative answers to the question, the 
following discussion (qualitative in nature and based mainly 
on experience) may be helpful.

It has been noted that the quality of the estimate of 
the weighting function calculated at a specific value of the 
dummy time variable, s, is proportional to the magnitude of 
the determinant of the fundamental matrix evaluated at time 
t = s. Further, it has been noted that as time increases (and 
the system approaches equilibrium), the errors contained in 
the response data become proportionally much larger. Finally, 
at some large value of time, t, there is no assurance that the 
measured responses are linearly independent of one another.
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The obvious conclusion is that the set of energy 

distributions which gives rise to the largest value of the 
determinant when evaluated at time zero is most desirable. 
Consider the determinant of the fundamental matrix of a 
second order system for the purpose of discussion:

V =

It is clear, from this equation, that the easiest (and prob
ably best) way to maximize the determinant is to generate a 
mismatch of polarities among the elements, either three posi
tive and one negative or vice versa. This scheme works nicely 
for systems which are underdamped but is virtually impossible 
to implement if the system's response is sluggish.

A second way to maximize the determinant is to achieve 
a mismatch among the magnitudes of the elements, either large 
main diagonal elements combined with small minor diagonal 
elements or vice versa. This situation may be achieved easily 
provided that one is free to force both energy storage elements 
alternately. However, care must be exercised to avoid diffi
culties caused by the ratio of the magnitude of the small ele
ment to the maximum measurement error estimate becoming uncom
fortably small.

A less obvious conclusion regarding the distribution 
of energies at time zero involves consideration of the "shape" 
of the trajectories. In certain cases it is possible to 
achieve distributions which give rise to convexo-concave
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trajectories. This type of response, when combined with the 
more usual concave trajectory, may give rise to a determinant 
which retains a greater magnitude for larger values of time, 
to In this case the rate of degeneration in the quality of 
the weighting function is somewhat smaller.

The comment regarding the ratio of the magnitudes of 
the responses to those of the error estimates points up the 
second important feature of a desirable set of initial energy 
distributions. The magnitudes of the elements must differ 
from their equilibrium values by an amount which is large com
pared to the estimated error in the measurements if high qual
ity in the estimate of the weighting function is to be insured.

Immediately one recognizes the.dilemma. From the 
point of view of maximizing the determinant, it is desirable 
to use a vector which possesses one small element; however, 
this policy severely limits the quality of the estimate pos
sible at large values of the dummy time variable, s.

A reasonable policy for the choice of initial energy 
distributions for the study of the backmix reactor was found 
to include a combination of the "shape" concept with a modi
fication of the polarity mismatch concept (two positive and 
two negative). The magnitudes of the vector elements at time 
zero were all greater than 100 times that of the maximum esti
mated error.

The table given below is based on information gained 
from the study of the heat transfer dynamics of the backmix
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TABLE VI-1

COMPARISON OF DETERMINANT; ERROR RATIO WITH WEIGHTING 
FUNCTION ESTIMATE QUALITY BASED ON BACKMIX 

CHEMICAL REACTOR STUDY

Ratio: V' / {error| Quality

1750
1500 i Superior

1000 I

620
395 Good
334
138

100
87
72
31 Poor
11
10

10
7 Worthless
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reactor. It compares the ratio of the magnitudes of the 
"initial" determinants and attenuation corrected maximum 
errors with qualitative assessments of the quality of the 
calculated weighting functions.

The process of acquiring the unforced system trajec
tories from a real system necessarily involves conditioning 
of the measured signal as well as its amplification. The 
process of suppressing the equilibrium level of the various 
state variables in order to transform the total variable 
(which is measurable) to the transient form (which is required 
in the model) is quite well known and understood. A second 
type of signal conditioning, used in the study of the backmix 
reactor, is equally well known and understood but deserves 
mention.

It is well known that measurements of temperature in 
liquid streams which are in turbulent flow are characteris
tically noisy. This characteristic may be explained in terms 
of the fact that the velocity measured, at some point in 
space, as a function of time shows chaotic variations. Since 
heat transfer in this situation proceeds principally by the 
mechanism of convection, one must expect similar chaotic vari
ation in temperature.

In order to describe heat transfer under these con
ditions one normally writes an energy balance in terms of a 
temperature variable which is the sum of the "time smoothed" 
temperature and the fluctuation about this temperature. The
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definition of "time smoothed" temperature is, of course:

r "  r ~T(t) = (1/t*) / T(t)dt = (1/t*) / (T+T')dt
0 0

which implies that T = T and T' = 0 .  The resulting energy 
balance then includes a term which describes additional con
vective heat transfer due to the turbulent nature of the 
flow.

Implicit in the definition of the "time smoothed" 
temperature is the requirement that the period of integration, 
t*, be large compared to the period of the chaotic fluctuations 
but small compared to variations in temperature caused by 
dynamic behavior.

The temperatures which were measured in the experi
mental phase of the study of the backmix reactor displayed 
this characteristic low amplitude, very high frequency fluc
tuation.' Therefore the measurements were "time smoothed" in 
the signal conditioning system as elucidated in Appendix D.
It should be mentioned that fluctuations which appeared in 
the measurement of the wall temperature (which were attrib
uted to electronic noise) were also eliminated by the "time 
smoothing" process implemented in the signal conditioning 
system.

Since the study of the backmix reactor involved 
operation of real experimental apparatus, which cannot respond
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instantaneously, that point of the recorded system trajec
tories which corresponds to the initial instant of unforced 
response cannot be selected with precision. The procedure 
followed was to choose a point well separated from "time 
zero" at which the inlet temperature had clearly returned 
to its equilibrium value. This choice was made on the basis 
of the catastrophic effect a selection of a premature time 
has on the calculated estimate of the weighting function 
(see Figure IV-13).

While this procedure had no particularly adverse 
effect on the study of the time invariant system, the situ
ation would have been more serious had the system under study 
been time-varying. In that case the largest value of time 
at which unforced response begins would define the smallest 
value of t = s for which the technique would be applicable.

The final comment regarding the acquisition of the 
unforced response data is concerned with the problem of re
ducing the recordings of the conditioned system response data 
to a form suitable for use in the computational phase of a 
given study. The procedure followed is described in Chapter 
V and in Appendix D. Briefly, it consisted of transcribing 
the measured temperatures from stripchart recordings to tabu
lar form, reassembling the incrementally zero suppressed 
response trajectories, and generating a deck of punched cards 
for use as input to the computer program. This task is not 
trivial.
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However, it is the opinion of the author that it 
would be unrealistic to count this task as a major portion 
of the cost of employing the generalized pulse technique to 
the study of a physical system, as subsequent studies would 
surely employ more sophisticated instrumentation which would 
avoid the necessity for the transcription and reassembly 
portions of the task.

Application of the Technique to an Actual Physical 
Process ; As stated in Chapter V, the purpose of the study 
of the heat transfer dynamics of the backmix chemical reactor 
was twofold. 1) The study was used to determine whether or 
not the nature of the required matrix operations would pre
clude use of the technique as a practical means for obtaining 
simple mathematical models for physical processes. 2) Assum
ing that reasonable estimates of the weighting function may 
be calculated, the study provided a means by which the cost, 
in terms of both experimental and computational effort, could 
be assessed.

The results of the three sets of weighting function 
estimate calculations made in this study appear in Figures V-13, 
V-14, V-15, and V-15, the latter three figures Being graphical 
displays of the computed estimates. These figures indicate 
that smooth estimates of the weighting function, consistent 
within the maximum error bounds, were produced in the compu
tation phase of the study.

Since the three sets of weighting function estimates 
are superposable (within the error bounds), one must conclude
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that the variation of the system parameters with temperature, 
in the range studied, has a negligible effect on the system's 
response.

The graphical displays of the weighting function 
estimates, do not provide information on the maximum error 
associated therewith. To evaluate the quality further, con
sider the plot of a typical estimate with its associated max
imum error bounds presented in Figure VI-1. This Figure 
depicts the cut in the normalized weighting function surface 
along the line s = 0 as computed from data acquired from the 
experiments designated Group II, Runs 7 and 8.

Figure VI-1 reveals that the first order weighting 
function estimates are quite smooth and are characterized by
a very narrow band of predicted maximum error. The second
order weighting functions are also quite smooth but have a 
much wider maximum error band associated with them. The 
width of the error bands reflects the fact that, while the 
magnitudes of the first and second order weighting functions 
are quite different, the magnitudes of the maximum error 
associated with their computation by matrix operations are 
similar. The normalization process presents the error on 
what is essentially a percentage basis;

h' (t-s) = h (t-s) ± O.OlSh' (t-s)H  I j_ 1 1 .  niâx

h'^(t-s) = hj^(t-s) ± 0.143h'^(t-s)^ax

h ' (t-s) = h (t-s) ± 0.133h' (t-s)12 12 12 max
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=  h22(t-s) ±  0 . 0 2 0 h ; 2 ( t - 8 ) ^ a x

It is necessary to bear in mind, however, that 
these percentages represent the maximum error in the esti
mates. The smoothness of the estimates implies that they are 
much better than required by the maximum error predictions.

In order to assess the validity of the model con
sider the roughestimate of the A matrix obtainable by extrap
olating the first differences in the calculated weighting 
function to time, t = 0. This procedure is an approximation 
of the relationship;

A = H(t,t) t = 0

As indicated by Figure VI-2, the approximate A matrix is :

A =
-0.098 0.038

0.018 -0.051
[=] sec“^

This information, combined with the measured flow rate 
(F = 0.6 gal./min.) and physical properties of the process 
fluid and reactor wall material given by Haskins (21) as:

'p oil
^ oil 
'p wall
^wall

0.538 BTU/lb. °F,
52.3 lbs/ft.3
0.042 BTU/lb. =F 

3= 603.2 lbs/ft,
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permit calculation of certain system parameters as followsi

= -F(vol)/(a^^ + a^g)

î"̂ i “ ^ 1 2 V o i l  S  oil

=" (^12Voil S  oil)/(^21^wall S  wall^

V o ^^22 ^ 2 1 ^ ^wall wall

Haskins estimated and from measurements made on the 
printer's type metal tube which was cast for use as a reactor 
wall (see Chapter V) and estimated huA^ and h^A^ from an 
energy balance for steady state operation of the reactor.
A comparison of the values for these parameters as determined 
in the two investigations appears in Table VI-2.

It is obvious that there are significant differences 
in the estimates taken from the two investigations and it is 
of interest to attempt to rationalize them.

TABLE VI-2 
COMPARISON OF SYSTEM PARAMETERS

Parameter This Investigation Haskins (21)

V = ft.3b 0.023 0.0287

= ft-' 0.053 0.0246

h.A. = BTU/hr.°F. 1 1 85.9 25.6

h^A^ = BTU/hr.°F. 157.0 26.3



207
The volume of the reactor, V^, calculated from 

measurements of the cast tube dimensions neglects the volume 
of the agitator and the thermocouple well (estimated as 
0.0028 ft ). Therefore the fact that the volume determined 
in this investigation is smaller than that estimated by 
Haskins is not surprising.

The difference in the magnitude of the estimates of 
the reactor wall volume, V^, may be attributed to the fact 
that the estimate calculated in this investigation is an 
apparent value. As was pointed out in the section of Chapter 
V which dealt with the assumptions necessary to obtain a 
simple model, the effect of the "additional" wall volume due 
to intimate contact between the lower section of the reactor 
head and the thick walled tube is neglected in the model. 
Therefore one might expect the effective volume of the wall 
to be larger than that of the tube.

The steady state experiments from which Haskins esti
mated the heat transfer parameters were conducted with the 
reactor operating at lower process fluid temperature and flow 
rates than those chosen as the equilibrium state in this 
investigation. This fact accounts for the direction, but 
probably not the magnitude, of the difference in the estimates 
of these parameters. It is interesting to note that since the 
heat flux out of the reactor wall is inversely proportional to 
the wall volume (see energy balance on reactor wall), the 
large apparent wall volume determined in this investigation 
is partially responsible for the large value of h^A^.
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Finally, "one must recognize that the estimation of 

these parameters involved calculations based on handbook data 
and experimental measurements which probably are not perfectly 
accurate and precise.

Based on the smoothness of the estimates of the 
weighting functions, the relatively small maximum error pre
dictions, and the qualitative consistency with Haskins' esti
mates of the reactor parameters, it is the conclusion of the 
author that mathematical model of the backmix reactor's heat 
transfer dynamics is valid. As a consequence of the success 
obtained in this study one must conclude that the generalized 
pulse testing technique may be employed with data of the 
quality obtainable experimentally.

The cost of employing the generalized pulse testing 
technique for the determination of the mathematical model of 
a physical system's dynamic behavior may be separated into 
three areas; data acquisition, data reduction, and estimate 
computation. Since this cost obviously depends largely on 
the nature of the physical system, only the cost of the 
techniques application to the backmix reactor can be discussed.

The cost of acquiring the raw data in this study 
involved the design and construction of a special signal 
transducer to be used in the manipulation of the temperature 
of the process fluid as it entered the reactor, development 
of an appropriate data acquisition and signal conditioning 
system from laboratory instruments and analog computer com
ponents, and the expenditure of the man hours required to
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conduct the experiments. These costs are nominally the same 
as those associated with the acquisition of data for model 
determination by either frequency response or impulse re
sponse techniques.

The cost, in terms of man-hours expended, of reducing 
the raw data to a form suitable for use with the digital com
puter program was very high. This cost is that associated with 
"reading" strip chart recordings of the elements of the un
forced responses as segmented by the incremental zero suppres
sion equipment, assembling this information into tabular 
representations of the response vectors, and generating the 
deck of cards which served as input to the program. While 
this cost was high, it must be pointed out that it represents 
a cost which could be eliminated from subsequent studies by 
the purchase of appropriate recording equipment, thus trading 
dollars spent once for generally useful equipment against 
numberless tedious hours.

The cost of computing the estimate of the weighting 
function may be specialized in terms of the rental rates for 
time on a specific computer. One hour of IBM 7072 time at 
the rate of $200/hr. was required for the calculation and 
presentation of the three estimates of the weighting functions 
of the backmix reactor presented in Chapter V as Figures V-13, 
V-14, V-15, and V-16. It should be noted that this time does 
not include the IBM 1410 time required to print the computed 
estimates (twenty-one minutes).
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Application of the Technique to a Hypothetical 

Time-Varying System; As stated in Chapter V, the purpose 
of the study of the dynamic behavior of the hypothetical 
time-varying system was threefold. 1) The study provided 
a means by which the power, relative simplicity, and versa
tility of the technique could be demonstrated. 2) It pro
vided a partial estimate of the cost of applying the technique 
to a time-varying system. 3) It served as a vehicle for the 
introduction and discussion of the concept of redundant 
testing.

Graphical displays of the computed estimates of the 
elements of the system weighting functions were presented in 
Figures V-19, V-20, V-21, and V-22. These displays contain 
the best estimates of the weighting functions (selected on 
the basis of the benefits of redundant testing) available 
from five sets of calculations.

The nature of the input data (digital solution of 
a time-varying differential equation) was such that very 
small maximum computational errors were predicted (see Fig
ure V-23), therefore the presentation is made mainly for 
tutorial purposes.

The characteristic behavior of the weighting func
tions for this particular system involves variation in the 
maximum amplitude of the second order weighting functions as 
the nature of the system changes from underdamped to overdamped.

The parameters of the hypothetical system were chosen 
such that its homogeneous response was essentially complete
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after fifty units of time had elapsed. A second feature of 
the system was that the parametric variation did not begin 
until time zero plus fifty units; therefore this variation 
could not be measured in the homogeneous responses begin
ning at time zero.

The concept of redundant testing was introduced to 
obtain the information necessary to the elucidation of the 
time-varying nature of the system. Implementation of this 
concept involves repetition of the system tests at choices 
of the initial instant of homogeneous response greater than 
time zero (obviously redundant for time invariant systems).
The result, for time-varying systems, is homogeneous response 
information at larger values of t and s (arguments of the 
weighting function) which permit estimation of the model.
Since this procedure permits duplication of the computed esti
mates at certain points on the H(t,s) surface, the more reli
able estimate may be selected for subsequent use (or 
presentation).

The cost which may be assessed from this study is 
purely that of computing the weighting function estimates 
from information of the homogeneous response of the system.
As in the case of the backmix reactor study the cost may be 
expressed in terms of the rental rate for computer time and 
the required time for calculation. The calculations from 
which the information plotted, in the graphical displays was 
selected required one hour and eighteen minutes at $200/hr.
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or $260. The time required to plot the selected results 
was approximately twelve minutes at $200/hr. ($40) plus 
approximately six minutes of IBM 1410 time.

It must be concluded that the technique has shown 
great promise as a tool for the investigation of time-varying 
physical systems provided the required response information 
can be obtained (a problem not specifically considered in 
this investigation).

Assessment of Comparative Costs; The assessment of 
the costs associated with applying any particular technique 
to the determination of the mathematical model for a physical 
process is quite difficult. Clearly the cost involves con
sideration of the nature of the particular process, the com
putational facilities available, and so forth. Further, any 
attempt to compare the relative costs of the various methods 
involves a value judgment on the part of the assessor which 
involves personal preferences. Therefore, the standard tech
niques which have applicability to general types of systems 
are compared on an "order of preference by the author" basis. 
Experience in the application of each of the techniques to 
single input-output time invariant physical processes and 
at least computational experience in the application of 
impulse response and statistical techniques to multiple 
input/output physical systems should insure some degree of 
validity to the comparison.

Designating the various techniques as follows:
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Generalized Pulse = 1
Impulse = 2
Frequency Response = 3
Statistical = 4

the comparison is given in Table VI-3.

TABLE VI-3
COMPARISON OF ORDER OF PREFERENCE AMONG VARIOUS MODELING 

TECHNIQUES FOR VARIOUS TYPES OF SYSTEMS
(Order: most . . . .  . least)

System Types Time Dependence of Parameters

Time Invariant Time-Varying

Single
Input/Output 2,3,..(1/4) (2/1) , . .4

Multiple
Input/Output 1,2,4,3 1,2,..0.4

Recommendations for Future Work: There are two
fundamental constraints on the generalized pulse testing 
technique which limit its usefulness as a tool for the deter
mination of mathematical models of physical processes. The 
first of these is the requirement that each element of the 
system's unforced response vector must be measurable. The 
second constraint is the requirement that the system's dynamic 
response be described in terms of linear differential equations.
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It is usually necessary to simplify the mathematical 

description of a physical process somewhat in order to apply 
any of the standard data acquisition techniques on a reason
able basis. In the case of the generalized pulse testing 
technique, as elucidated herein, this procedure often in
volves generation of "imaginary" state variables which cannot 
be physically measured.

This situation arose in the study of the backmix 
reactor's heat transfer dynamics at the point in the model 
derivation at which the reactor wall temperature was intro
duced. It was assumed that the wall temperature is not a 
function of any space variable. The question of measuring 
this non-existant variable was answered in this case by the 
measurement of the temperature at a geometric location thought 
to be roughly characteristic of the entire wall.

Clearly this approach is not usually reasonable. 
Therefore, an investigation of the possibilities of making 
a linear transformation (change of base of the state vector 
space) which would permit description of the system behavior 
in terms of all physically measurable quantities would be 
valuable.

The constraint of linear behavior by the physical 
system to which the generalized pulse testing technique is 
applicable is, of course, the source of a large area for 
future work. As is obvious, from consideration of the simpli
fying assumptions made in order to cast the energy balances
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on the contents of the reactor and its wall into the class of 
equations required, the backmix chemical reactor was actu
ally a slightly non-linear system.

None the less, a linear mathematical model which is 
valid in the range of temperature covered was obtained.
Answers to the usual questions of model applicability and 
range of validity are complicated in the case of the tech
nique used herein because of the sensitive nature of the 
matrix calculations involved. Since the computations do 
not differentiate between deviations from linear behavior 
which are due to measurement error and those due to system 
non-linearities, it is important to define the extent of 
non-linearity which is tolerable.

The necessity of finding an alternative method for 
making the transition from the integral to the differential 
representation of the model is emphasized by consideration 
of the propagation of error associated with the weighting 
function estimates.

The author is currently investigating one such 
possibility. It involves optimization of the coefficients 
of the matrix in question by minimizing the mean square error 
between computed weighting function estimates and the analytic 
weighting functions obtained by solution of the vector differ
ential equation. Of course this approach is an iterative pro
cedure which uses the A matrix obtained by numerical differ
entiation as an initial differential representation of the 
system's behavior.



BIBLIOGRAPHY

1. Aseltine, J. A., "Transformations for Linear Time-
Varying Systems," Journal of Applied Physics,
Vol. 25, pp. 761-764, June 1954.

2. Aseltine, J. A. and R. R. Faurear, "Weighting Functions
for Time-Variable Feedback Systems," IRE Proceedings, 
Vol. 42, No. 10, 1954.

3. Batkov, A. M., "On the Problem of Synthesis of Linear
Dynamic Systems with Variable Parameters," Avtoma- 
tika i Telemekhanika. Vol. 19, No. 1, pp. 49-54,
1958.

4. Bellman, R. E. and S. E. Dreyfus, "Applied Dynamic Pro
gramming," Princeton University Press, Princeton,
New Jersey, 1962.

5. Bennett, W. R., "A General Review of Linear Varying
Parameter and Non-linear Circuit Analysis," IRE 
Proceedings, Vol. 38, No. 3, pp. 259-263, 1950.

6. Bishop, K. A. and R. A. Sims, "Analog Computation Using
the Modified Donner Model 3100-D," University of 
Oklahoma Research Institute Publication, Norman, 
Oklahoma, 1963.

7. Bishop, K. A. and R. A. Sims, "Electronic Instrumentation
for Research in Process Control," Paper Presented 
at 1962 Mid-America Electronics Conference, Kansas 
City, Missouri, November 20, 1962.

8. Bishop, K. A., Sliepcevich, C. M. and T. H. Puckett,
"Techniques for the Transition between Differential 
and Integral Representations of Linear Time-Varying 
Processes," Chemical Engineering Progress Symposium 
Series, Vol. 59, No. 48, pp. 106-114, 1963.

9. Booton, R. C., Jr., "An Optimization Theory for Time-
Varying Systems with Non-stationary Statistical 
Inputs," IRE Proceedings. Vol. 40, No. 8, pp. 977- 
981, 1952.

216



217
10. Borskii, V., "On the Properties of Impulsive Response

of Varying Parameter Networks," Avtomatika i 
Telemekhanika, Vol. 20, No. 7, pp. 848-855,
July 1959.

11. Brodin, J., "Analysis of Time-Dependent Networks,"
IRE Transactions (Circuit Theory), Vol. CT2, No. 1, 
pp. 12-16, March 1955.

12. Coddington, E. A. and N. Levinson, "Theory of Ordinary
Differential Equations," McGraw-Hill Book Company, 
Inc., New York, New York, 1959.

13. Desoer, C. A. and A. Paige, "Linear Time-Varying G-C
Networks; Stable or Unstable," IEEE Transactions 
(Circuit Theory), Vol. CTlO, No. 2, pp. 180-190, 
June 1963.

14. Emel'yanov, S. V. and V. A. Taran, "Stabilization of
Automatic Control Systems by Means of Inertial 
Elements with Variable Time Constants," Avtomatika 
i Telemekhanika, Vol. 25, No. 6, pp. 790-794, June 
1964.

15. Fanning, R. J. and C. M. Sliepcevich, "The Dynamics of
Heat Removal from a Continuous Agitated-Tank Reactor," 
AIChE Journal, Vol. 5, No. 2, pp. 240-244, June 1959.

16. Gallier, P. W., Sliepcevich, C. M. and T. H. Puckett,
"Some Practical Limitations of Correlation Techniques 
in Determining Process Frequency Response," Chemical 
Engineering Progress Symposium Series, Vol. 57,
No. 36, pp. 59-68, 1961.

17. Gerardi, F . R., "Application of Mellin and Hankel Trans
forms to Networks with Time-Varying Parameters,"
IRE Transactions (Circuit Theory), Vol. CT6, No. 2, 
pp. 197-208, June 1958.

18. Gerlach, A. A., "A Time-Variable Transform and Its
Application to Spectral Analysis," IRE Transactions 
(Circuit Theory), Vol. CT2, No. 1, pp. 22-25,
March 1955.

19. Gibson, J. E. and J. S. Meditch, "On Real Time Control
of Time-Varying Linear Systems," IRE Transactions 
(Automatic Control), Vol. AC7, No. 4, pp. 3-9,
July 1962.

20. Gilbert, E. G., "An Approximate Method for Analytically
Evaluating the Response of Time-Varying Systems,"
IRE Transactions (Circuit Theory), Vol. CT8, No. 3, 
pp. 289-295, September 1961.



218
21. Haskins, D. E., "The Synthesis of Invariance Principle

Control Systems for Chemical Processes," Ph.D.
Thesis, University of Oklahoma, 1964.

22. Ince, E. L., "Ordinary Differential Equations," Dover
Publications, Inc., New York, New York, 1956.

23. banning, J. H., Jr., and R. H. Battin, "Random Processes
in Automatic Control," McGraw-Hill Book Company,
Inc., New York, New York, 1956.

24. Lee, Y .  Mi., "Statistical Theory of Communication,"
John Wiley and Sons, Inc., New York, New York, 1960.

25. Matyash, I., "Methods of Analog Computer Solution of
Differential Equations with Variable Coefficients," 
Avtomatika i Telemekhanika, Vol. 20, No. 7, pp. 
813-821, July 1959.

26. McWhirter, J. R. and W. A. Lloyd, "Controlled Cycling
in Distillation and Extraction," Chemical Engineering 
Progress. Vol. 59, No. 6, pp. 58-63, June 1963.

27. Naylor, A. W., "Generalized Frequency Response Concepts
for Time-Varying, Discrete Time Linear Systems,"
IEEE Transactions (Circuit Theory), Vol.CTlO, No. 3, 
pp. 428-440, September 1963.

28. Pipes, L. A., "Four Methods for the Analysis of Time-
Variable Networks," IRE Transactions (Circuit Theory), 
Vol. CT2, No. 1, pp. 4-11, March 1955.

29. Pontryagin, L. S., "Optimum Control Processes," Auto
mation Express. Vol. 1, No. 10, pp. 15-18, 1959
and Vol. 2, No. 1, pp. 26-30, 1959.

30. Rudnitski, B. E ., "Determining the Transfer Function
for Certain Systems with Time-Varying Parameters," 
Avtomatika i Telemekhanika. Vol. 21, No. 12, pp. 
1115-1125, December 1960.

31. Shigin, E. K., "On Improving the Transient Response of
Connecting Links with Variable Parameters," Avto
matika i Telemekhanika, Vol. 19, No. 4, April 1958.

32. Stewart, W. S., Sliepcevich, C. M. and T. H. Puckett,
"Dynamics of Heat Removal from a Jacketed Agitated 
Vessel," Chemical Engineering Progress Symposium 
Series. Vol. 57, No. 36, pp. 118-125, 1961.

33. Yoshida, K., "Lectures on Differential and Integral
Equations," Interscience, New York, New York, 1960.



219
34. Zadeh, L. A., "An Introduction to State-Space Tech

niques ," Preprint. 1962 Joint Automatic Control 
Conference, AIEE paper 10-1, pp. 1-5, June 1962.

35. Zadeh, L. A., "Frequency Analysis of Variable Net
works," IRE Proceedings, Vol. 38, No. 3, pp. 291- 
296, March 1950.

36. Zadeh, L. A. and C. A. Desoer, "Linear System Theory,"
McGraw-Hill Book Company, Inc., New York, New York, 
1963.

37. Zadeh, L. A., "The Determination of Impulsive Response
of Variable Networks," Journal of Applied Physics, 
Vol. 21, pp. 642-645, July 1950.

38. Zadeh, L. A., "Time Varying Networks I," IRE Proceedings,
Vol. 49, pp. 1488-1503, October 1961.



APPENDIX A 

NOMENCLATURE

Upper Case Letters

AHRV = Assembled homogeneous response vector
A^ = Heat transfer area (inside reactor wall)
A q = Heat transfer area (outside reactor wall)
A(t) = N by N coefficient matrix of differential

form of the mathematical model
C = Capacitance
Cpĵ  = Heat capacity of process fluid
Cp^ = Heat capacity of reactor wall (printer's

typemetal)
E = N by N matrix of errors in measurement of a

fundamental matrix with polarities chosen to 
minimize its determinant

F = Process fluid flow rate
H(p) = System transfer function
H(t,s) = N by N matrix of system weighting functions
H.(t,s) = Weighting function in the ith region of t,s
^ plane

H'(t,s) = Computed estimate of the weighting function
I(s) = The inverse of a fundamental matrix; the sum

of this inverse and AI(s)
= A specific constant

220
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L = Inductance; linear differential operator

(in square brackets)
M = N by N matrix of measured values of the

fundamental matrix; amplitude of a sine wave; 
linear differential operator (in square 
brackets)

M* = The matrix sum of M and E
p(t) = N vector of weighting functions
Q = Any quantity
R = Resistance
RD = Reading (from strip chart recording)
S = A specific value of s (dummy time)

= A specific value of s 
T = A specific value of t (time)
T^ = Temperature of process fluid in reactor
T^ = Temperature of coolant (imaginary)
T^^ = Temperature of coolant (inlet)
T^q = Temperature of coolant (outlet)
Tĵ  ̂ = Temperature of process fluid at reactor inlet
T^ = Temperature of reactor wall
T = N by N state transition matrix
T* = A specific value of t ; steady state temperature
Tq = A specific value of t
T-ĵ = A specific value of t
U = Identity matrix
V, = Reactor volumeb

= Reactor wall volume 
X(p) = Laplace transform of system input
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X(t) = N vector representing system input
y(p) = Laplace transform of system output
y ( t )  = N vector representing system output
Z = N vector representing system output at

specific t
ZSI = Zero Suppression Increment

Lower Case Letters
a. = A coefficient of an Nth order differential
^ equation

a^j(t) = An element of the coefficient matrix A(t)
c^ = An arbitrary constant
dt = A differential period of time
e(t) = Voltage
f..(t) = A measurable element of the coefficient

 ̂ matrix A(t)
h^(t) = Convective heat transfer coefficient (inside

reactor wall)
h (t) = Convective heat transfer coefficient (outside
° reactor wall)

h.(t) = Solution to differential equation under con
straints h(0) = 1, h(0) = 0 or h(0) = 0,
&(0) = 1

h . .(t,s) = An element of the weighting function matrix
H(t,s)

i(t) = Current
i..(s) = An element of the inverse of the fundamental

matrix I(s)
k = A specific constraint on the solution to a

differential equation
k ' = A specific constraint on the derivative of

the solution to a differential equation
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1 = Any signal

J = An element of the matrix of measured values
^  M

p = The argument of the Laplace transformation
s = A dummy variable for t (time)
ssc = Steady state correction
t = Time
t"*" = A specific value of t
"t = Scaled time
t* = An increment of time
tij(t) = An element of the state transition matrix T
w = Frequency of a sine wave
x(t) = An element of the N vector X(t)
y(t) = An element of the N vector Y(t)
z = An element of the N vector Z

Greek and Special Symbols 
A = A small amount
AH(t,s) = The difference between H'(t,s) and H(t,s)
AH (t,s) = Maximum error in a system weighting function

estimate
AI(s) = Error in the inverse of the fundamental matrix
AM = Maximum error in measured fundamental matrixmax
A^(t) = Error in fundamental matrix
^(t) = Fundamental matrix
Ô = Dirac delta function (unit impulse)

= Process fluid density
p = Printer's typemetal densityw
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0(t)

Ô
7

7"

£

= A fundamental response of the system 
(N vector)

= An element of the fundamental matrix 
= Time derivative 
= Partial derivative 
= Determinant of a matrix 
= Laplacian differential operator 
= Laplace transformation operator



APPENDIX B 

EXPERIMENTAL DATA

This appendix is devoted to presentation of the 
raw experimental data from Group II runs 1, 6, 7, 8, the 
corresponding reduced data (homogeneous system response 
vectors), and the combination of reduced data and values 
from the smooth curves of Figures V-11 and V-12 which were 
used as input to the digital computer program for calcu
lation of the weighting function estimates.

Table A-1 contains tabulated values of pen position, 
in ra.m., at one second intervals as recorded from the strip 
chart recordings of the state variables (T^ and T^) . The 
numbers which appear in the columns immediately to the 
right of the data are to be added to it in order to assemble 
the response vectors. They represent appropriately summed 
zero suppression increments and steady state corrections.

While the steady state correction is obtained from 
the strip chart recording, the contribution to the sum of 
incremental zero suppression is obtained from a knowledge of 
the initial increment and the suppression policy. The indi
vidual suppression increments are listed in Figure A-1.
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TABLE A-1 

RAW DATA WORKSHEET

SOURCE Group II, Run I SYSTEM Backmix Reactor SIOIA Time Invariant

COMPONENT Bulk FORCED T inlet FUNCTION Pos. Step

ATTENUATION 0.10*F/mm STEADY STATE COR.-10 .0 mm READING ERROR 0.25 mm

DATES : RUN 10/12/63 READ 3/30/64 REDUCED 5/25/64 RUN/page Il/l/l

No. Data No. Data No. Data No. Da ta

1 48.5 -10.0 26 22.8 -10.0 51 14.7 -10.0 76 11.8
2 46.7 27 22.3 52 14.5 77 11.7
3 44.9 28 21.8 53 14.4 78 11.6
4 43.3 29 21.3 54 14.2 79 11.6
5 41.8 30 20.9 55 14.0 80 11.5
6 40.3 31 20.4 56 13.9 81 11.5
7 39.0 32 20.0 57 13.7 82 11.4
8 37.7 33 19.6 58 13.6 83 11.4
9 36.4 34 19.3 59 13.4 84 11.3
10 35.4 35 18.5 60 13.3 85 11.1

11 34.2 36 18.0 61 13.2 86 11.1
12 33.1 37 18.0 62 13.1 87 11.0
13 32.1 38 17.8 63 12.9 88 11.0
14 31.2 39 17.6 64 12.8 89 11.0
15 30.3 40 17.3 65 12.7 90 11.0
16 29.4 41 17.0 66 12.6 91 - 11.0
17 28.6 42 16.7 67 12.5 92 11.0
18 28.0 43 16.5 68 12.4 93 11.0
19 27.1 44 16.2 69 12.5 94 10.9
20 26.5 45 16.0 70 12.2 95 10.8
21 25.7 46 15.7 71 12.5 96 10.8
22 25.1 47 15.5 72 12.3 97 10.7
23 24.5 48 15.3 73 12.0 98 10.5
24 23.9 49 15.1 74 11.9 99 10.5
25 23.2 50 14.9 75 11.8 100 10.6
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RAW DATA WORKSHEET

SOURCE Group II, Run I SYSTEM Backmix Reactor
COMPONENT Wall FORCED T inlet

SIGMA Time Invariant
FUNCTION Pos. Step

ATTENUATION 0.05°F/mm STEADY STATE COR.-19.2 mm READING ERROR 0.25 mm 
DATES : RUN 10/12/63 READ 3/30/64 REDUCED 5/25/64 RUN/page II/1/2

No. Data No. Da ta No. Data No. Data

1 31.4 +66.5 26 12.0 51 33.5 76 24.6
2 27.8 27 10.5 52 32.9 77 24.4
3 24.4 28 9.1 53 32.4 78 24.2
4 21.1 29 7.8 54 31.9 79 24.0
5 17.9 30 6.5 55 31.4 80 23.8
6 14.7 31 5.3 56 30.9 81 24.2
7 11.7 32 4.1 57 30.5 82 24.2
8 49.5 +25.8 33 48.0 -19.2 58 30.1 83 24.2
9 46.7 34 46.9 59 29.4 84 23.5
10 44.0 35 45.8 60 29.2 85 23.0
11 41.4 36 44.8 61 28.9 86 22.5
12 38.9 37 43.8 62 28.5 87 23.0
13 36.5 38 42.9 63 28.1 88 23.6
14 34.2 39 41.5 64 27.8 89 23.1
15 31.9 40 40.5 65 27.5 90 22,8
16 29.7 41 40.0 66 27.1 91 22.2
17 27.6 42 39.5 67 26.9 92 21.8
18 25.7 43 38.7 68 26.9 93 21.2
19 23.8 44 37.9 69 26.7 94 21.2
20 21.8 45 37.2 70 26.0 95 21.2

21 20.0 46 36.5 71 25.2 96 21.9
22 18.3 47 35.9 72 25.5 97 21.2
23 16.6 48 35.2 73 25.2 98 21.3
24 15.0 49 34.6 74 24.7 99 21.5
25 13.4 50 34.0 75 24.6 100 21.2
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RAW DATA WORKSHEET

SOURCE Group II, Run 6 SYSTEM Backmix Reactor SIGMA Time Invariant

COMPONENT Bulk_______  FORCED T inlet__________ FUNCTION Sine Wave (r)
ATTENUATION 0.10°F/mm STEADY STATE COR.-26.8 mm READING ERROR 0.25 mm 
DATES : RUN 10/12/63 READ 3/31/64 REDUCED 5/25/64 RUN/page 1/6/1_______

No, Da ta No. Data No. Da ta No. Data

1 26.2 -113.3 26 4.2 -26.8 51 18.9 76 23.9
2 31.7 27 5.2 52 19.2 77 23.3
3 36.8 28 6.1 53 19.5 78 24.1
4 41.4 29 7.0 54 19.8 79 24.2
5 45.7 30 7.9 55 20.1 80 24.3

6 5.6 -69.2 31 8.7 56 20.4 81 24.4
7 9.3 32 9.5 57 20.6 82 24.5
8 12.7 33 10.2 58 20.8 83 24.0
9 15.8 34 10.9 59 21.1 84 24.3
10 18.8 35 11.6 60 21.3 85 24.7
11 21.5 36 12.2 61 21.5 86 24.8
12 24.0 37 12.8 62 21.9 87 24.7
13 26.4 38 13.4 63 22.3 88 25.0
14 28.6 39 13.9 64 22.5 89 26.2
15 30.7 40 14.5 65 22.6 90 26.1
16 32.6 41 15.0 66 22.8 91 24.8
17 34.4 42 15.4 67 22.6 92 25.2
18 36.1 43 15.9 68 22.8 93 25.3
19 37.7 44 16.3 69 22.9 94 25.0
20 39.2 45 16.8 70 23.1 95 25.3
21 40.6 46 17.2 71 23.2 96 25.2
22 42.0 47 17.5 72 23.4 97 25.2
23 43.2 48 17.9 73 23.5 98 24.9
24 44.4 49 18.3 74 23.3 99 24.8
25 45.5 50 18.6 75 23.3 100 24.8
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RAW DATA WORKSHEET

SOURCE Group II,Run 6 SYSTEM Backmix Reactor SIGMA Time Invariant

COMPONENT Wall FORCED T inlet FUNCTION Sine Wave (-)
ATTENUATION 0.05°F/mm STEADY STATE COR.-21.6 mm READING ERROR 0.25 mm 
DATES ; RUN 10/12/63 READ 3/31/64 REDUCED 5/26/64 RUN/page H/6/2______

No. Data No. Data No. Data No. Da ta

1 46.2 -195.2 26 6.2 51 44.4 76 12.1
2 5.7 -150.2 27 8.5 52 45.3 77 12.9
3 10.2 28 10.7 53 46.2 78 13.7
4 14.6 29 12.8 54 47.3 79 14.6
5 19.0 30 14.9 55 2.1 -21.6 80 14.8
6 23.3 31 16.9 56 3.6 81 14.8
7 27.5 32 18.8 57 4.3 82 14.8
8 31.6 33 20.6 58 4.3 83 14.8
9 35.6 34 22.4 59 4.3 84 15.1
10 39.5 35 24.1 60 5.0 85 15.4

11 43.3 36 25.7 61 5.7 86 15.6
12 6.3 -109.5 37 27.3 62 6.3 87 15.8
13 9.9 38 28.9 63 7.1 88 15.3
14 13.4 39 30.3 64 7.8 89 15.8
15 16.8 40 31.8 65 7.8 90 16.5
16 20.1 41 33.1 66 7.9 91 16.7
17 23.3 42 34.4 67 9.0 92 16.9
18 26.4 43 35.7 68 9.8 93 16.7
19 29.5 44 36.9 69 9.9 94 16.8
20 32.4 45 38.1 70 10.6 95 17.4
21 35.2 46 39.2 71 10.8 96 17.5
22 37.9 47 40.3 72 11.2 97 18.2
23 40.5 48 41.4 73 11.6 98 18.3
24 1.4 -67.8 49 42.4 74 12.0 99 18.5
25 3.8 50 43.3 75 12.4 100 18.6
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RAW DATA WORKSHEET

SOURCE Group II, Run 7 SYSTEM Backmix Reactor SIGMA Time Invariant

COMPONENT Bulk________ FORCED T inlet__________ FUNCTION Sine Wave (+)
ATTENUATION 0.10°F/mm STEADY STATE COR.-19.8 mm READING ERROR 0.25 mm
DATES ; RUN 10/12/63 READ 3/30/64 REDUCED 5/27/64 RUN/page II/7/1

No. Data No. Data No. Data No, Data

1 18.7 +66.7 26 41.2 51 27.2 76 22.8
2 13.1 27 40.2 52 26.9 77 22.6
3 8.0 28 39.3 53 26.6 78 22.4
4 3.3 29 38.4 54 26.3 79 22.3
5 43.1 +22.6 30 37.6 55 26.1 80 22.2
6 39.1 31 36.8 56 25.8 81 22.0
7 35.4 32 36.1 57 25.6 82 21.9
8 32.0 33 35.4 58 25.4 83 21.8
9 28.9 34 34.7 59 25.1 84 21.8
10 26.0 35 34.1 60 24.9 85 21.7
11 23.3 36 33.5 61 24.7 86 21.6
12 20.8 37 32.9 62 24.5 *87 21.5
13 18.4 38 32.4 63 24.4 88 21.5
14 16.2 39 31.9 64 24.2 89 21.5
15 14.2 40 31.4 65 24.0 90 21.3
16 12.3 41 30.9 66 23.8 91 21.4
17 10.5 42 30.4 67 23.8 92 21.4
18 8.9 43 30.0 68 23.5 93 21.2
19 7.3 44 29.6 69 23.4 94 21.3
20 5.9 45 29.2 70 23.3 95 21.2
21 46.9 -19.8 46 28.8 71 23.1 96 21.1
22 45.6 47 28.5 72 23.0 97 21.0
23 44.4 48 28.1 73 23.0 98 21.0
24 43.3 49 27.8 74 22.9 99 20.9
25 42.2 50 27.5 75 22.8 100 21.0
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RAW DATA WORKSHEET

SOURCE Group II, Run 7 SYSTEM Backmix Reactor SI0IA Time Invariant
COMPONENT Wall  FORCED T inlet________  FUNCTION Sine Wave (+)
ATTENUATION 0.05°F/mm STEADY STATE COR.-26.8 READING ERROR 0.25 mm
DATES : RUN 10/12/63 READ 3/31/64 REDUCED 5/27/64 RUN/page II/7/2

No. Data No. Data No. Data No. Data

1 35.0 +101.8 26 37.9 51 2.5 76 35.1
2 31.0 27 35.8 52 1.7 77 35.1
3 27.0 28 33.8 53 0.9 78 35.2
4 23.1 29 31.8 54 46.3 -26.8 79 34.2
5 19.2 30 29.9 55 45.6 80 33.9
6 15.4 31 28.1 56 44.9 81 33.8
7 11.6 32 26.3 57 44.2 82 33.4
8 7.9 33 24.6 58 43.5 83 33.2
9 4.2 34. 22.9 59 42.9 84 32.8
10 41.4 +61.1 35 21.3 60 42.3 85 32.6
11 37.9 36 19.8 61 41.7 86 32.2
12 34.5 37 18.3 62 41.1 87 31.7
13 31.2 38 16.9 63 41.0 88 31.3
14 28.0 39 15.5 64 40.6 89 31.3
15 24.9 40 14.2 65 40.1 90 31.0
16 21.9 41 12.9 66 39.6 91 31.1
17 1-8.9 42 11.7 67 38.6 92 30.6
18 16.1 43 10.5 68 38.1 93 30.7
19 13.3 44 9.4 69 37.7 94 30.7
20 10.6 45 8.3 70 37.3 95 30.6
21 49.7 +19.4 46 7.2 71 36.9 96 30.3
22 47.2 47 6.2 72 36.5 97 29.6
23 44.8 48 5.3 73 36.1 98 29.4
24 42.4 49 4.3 74 35.8 99 29.8
25 40.1 50 3.4 75 35.4 100 29.3
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RAW DATA WORKSHEET

SOURCE Group II, Run 8 SYSTEM Backmix Reactor SIGMA Time Invariant
COMPONENT Bulk________ -FORCED T inlet__________ FUNCTION Neg. Step
ATTENUATION 0.10°F/mm STEADY STATE COR.-20.8 mm READING ERROR 0.25 mm 
DATES ; RUN 10/12/63 READ 4/2/64 REDUCED 5/27/64 RUN/page Il/B/l

No. Data No. Data No. Data No. Data

1 35.5 -156.1 26 40.7 51 ' 13.8 76 18.2
2 45.0 27 41.9 52 14.1 77 18.3
3 4.8 -107.3 28 43.0 53 14.3 78 18.4
4 12.6 29 1.6 -20.8 54 14.6 79 18.5
5 19.7 30 2.5 55 14.9 80 18.6
6 26.2 31 3.4 56 15.1 81, 18.7
7 32.1 32 4.3 57 15.3 82 18.9
8 37.5 33 5.1 58 15.5 83 18.9
9 42.4 34 5.8 59 15.8 84 18.9
10 46.9 35 6.5 60 16.0 85 19.3
11 6.9 -63.2 36 7.2 61 16.1 86 19.5
12 10.7 37 7.8 62 16.3 19.4
13 14,1 38 8.4 63 16.5 88 19.3
14 17.3 39 8.9 64 16.7 89 19.3
15 20.2 40 9.5 65 16.8 90 19.4
16 22.9 41 10.0 66 17.0 91 19.4
17 25.3 42 10.4 67 17.1 92 19.4
18 27.6 43 10.9 68 17.3 93 19.5
19 29.7 .44 11.3 69 17.4 94 19.5
20 31.7 45 11.7 70 17.6 95 19.6
21 33.5 46 12.1 71 17.8 96 19.6
22 35.1 47 12.5 72 17.8 97 19.7
23 36.7 48 12.8 73 17.9 98 19.7
24 38.1 49 13.2 74 18.0 99 19.8
25 39.5 50 13.5 75 18.1 100 19.8
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RAW DATA WORKSHEET

SOURCE Group II, Run 8 SYSTEM Backmix Reactor SIGMA Time Invariant
COMPONENT Wall________ FORCED T inlet__________ FUNCTION Neg. Step
ATTENUATION 0.05 F/mm STEADY STATE COR.-10.4 mm READING ERROR 0.25 mm
DATES; RUN 10/12/63 READ 4/2/64 REDUCED 5/28/64 RUN/page II/8/2

No. Data No. Data No. Data No. Data

1 32.5 -137.8 26 3.3 51 35.4 76 47.7
2 33.9 27 5.1 52 35.8 77 47.9
3 36.2 28 6.9 53 35.8 78 48.2
4 37.3 29 8.7 54 36.8 79 48.9
5 39.3 30 10.3 55 37.9 80 49.5
6 41.4 31 11.9 56 38.6 81 49.2
7 43.5 32 13.5 57 39.2 82 49.4
8 45.8 33 15.0 58 39.9 83 4.4 -
9 6.4 -96.1 34 16.5 59 40.4 84 4.7
10 8.8 35 17.9 60 41.0 85 ■ 4.9
11 11.1 36 19.3 61 41.6 86 5.1
12 13.5 37 20.6 62 42.1 87 5.4
13 15.9 38 21.9 63 42.6 88 5.6
14 18.3 39 23.2 64 43.1 89 5.8
15 20.6 40 24.4 65 43.6 90 5.9
16 23.0 41 25.5 66 44.0 91 5.9
17 25.3 42 26.6 67 44.8 92 6.3
18 27.5 43 27.7 68 45.5 93 6.5
19 29.8 44 28.7 69 46.4 94 6.7
20 31.9 45 30.0 70 46.9 95 6.9
21 34.1 46 30.7 71 47.0 96 6.9
22 36.2 47 31.6 72 47.2 97 6.9
23 38.2 48 32.5 73 47.1 98 6.6
24 40.2 49 32.9 74 47.1 99 6.3
25 1.4 -55.4 50 34.2 75 47.4 100 6.1



+ 100 V 0-100 V

jr

LEVEL BULK WALL

0-1 42 4 m.m. 46.2 m.m.

1-2 44.1 41.7

2-3 48.8 40.7

3-4 46.3 45.0

4-5 45.2 40.5

N)W4̂

FIGURE A-1

SCHEMATIC DIAGRAM OF INCREMENTAL ZERO SUPPRESSION 
CIRCUITS WITH INCREMENT VALUES
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The steady state correction and zero suppression 

information were combined with the strip chart recording 
readings according to the following formulae:

To obtain the assembly constant for a reading on 
ith segment from equilibrium:
For positive vectors:

i-1
AHRV. = RD. + ssc + E ZSI1 1 j=o ]to]+l

For negative vectors:
i-1

where :
i = an integer number of zero suppressions

RD = a reading in the interval recorded ii
increments from equilibrium

AHRV. = a value of the assembled homogeneous 1
response vector corresponding to RD^

ZSI , = the increment of zero suppression]tO]+l
between intervals j and j+1

Table A-2 and Table A-3 contain tabulations of the 
assembled homogeneous response vectors corresponding to the 
state variables in the four sets of experiments. Certain 
locations in these tables contain two entries. The entry on 
the left is the result of the assembly process ; the entry on 
the right is the result of reading the smooth curves of
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Figures V-11 and V-12. These figures are, of course, graph
ical displays of the information contained in the tables.

Table A-4 is a list of the deck of punched cards 
used as input information in the computational phase of the 
study of the heat transfer dynamics of the backmix chemical 
reactor.
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TABLE A-2 

REDUCED DATA WORKSHEET

SOURCE Group II, Runs 7 & 1 SYSTEM Backmix Reactor SIGMA Time Invariant

^ . FORCING FUNCTION Run 7 + sine T inlet „ FORCING FUNCTION Run 1 +
step T inlet

ATTENUATION 0.10 0.05 0.10 0.03 (°F/mm
S.S. CORRECTION.0.0 0.0 0.0 0.0
READING ERROR 0.25 mm

No. «<ll(7B) 42i(7W) 42Z(1W)

1 85.4 136.8 38.5 97.9
2 79.8 132.8 36.7 94.3
3 74.7 128.8 34.9 90.9
4 70.0 124.9 33.3 87.6
5 65.7 121.0 31.8 84.4
6 61.7 117.2 30.3 81.2
7 58.0 113.4 29.0 78.2
8 54.6 109.7 27.7 75.3
9 51.5 106.0 26.4 72.5
10 48.6 102.5 25.4 25.3 69.8
11 45.9 99.0 24.2 67.2
12 43.4 95.6 23.1 64.7
13 41.0 92.3 22.1 62.3
14 38.8 89.1 21.2 60.0
15 36.8 86.0 20.3 57.7
16 34.9 83.0 19.4 55.5
17 33.1 80.0 18.6 53.4
18 31.5 77.2 18.0 17.9 51.5 51.4
19 29.9 74.4 17.1 49.6 49.5
20 28.5 71.7 16.5 16.4 47.6
21 27.1 69.1 15.7 45.8
22 25.8 66.6 15.1 44.1
23 24.6 64.2 14.5 42.4
24 23.5 61.8 13.9 40.8
25 22.4 59.5 13.2 13.3 39.2
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REDUCED DATA WORKSHEET 

(CONTINUED)
RUN/page 7 & 1/2 
SIOiA Time Invariant

No. 'll ^21 ^21 ^22

26 21.4 57.3 12.8 37.8
27 20.4 55.2 12.3 36.3
28 19.5 53.2 11.8 34.9
29 18.6 51.2 11.3 33.6
30 17.8 49.3 10.9 32.3

31 17.0 47.5 10.4 31.1
32 16.3 45.7 10.0 29.9
33 15.6 44.0 9.6 28.8
34 14.9 42.3 9.3 27.7
35 14.3 40.7 8.5 8.9 26.6
36 13.7 39.2 8.0 8.5 25.6
37 13.1 37.7 8.0 8.2 24.6
38 12.6 36.3 7.8 7.9 23.7
39 12.1 34.9 7.6 22.3 22.8
40 11.6 33.6 7.3 21.3 21.9
41 11.1 32.3 7.0 20.8 21.1
42 10.6 31.1 6.7 20.3
43 10.2 29.9 6.5 19.5
44 9.8 28.8 6.2 18.7
45 9.4 27.7 6.0 18.0
46 9.0 26.6 5.7 17.3
47 8.7 25.6 5.5 16.7
48 8.3 24.7 5.3 16.0
49 8.0 23.7 5.1 15.4
50 7.7 22.8 4.9 14.8
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REDUCED DATA WORKSHEET 

(CONTINUED)
RUN/page 7 & 1/3
SIGMA Time Invariant

No. "ii ^21 ^12 ^22

51 7.4 21.9 4.7 14.3
52 7.1 21.1 4.5 13.7
53 6.8 20.3 4.4 13.2
54 6.5 19.5 4.2 12.7
55 6.3 18.8 4.0 12.2
56 6.0 18.1 3.9 11.7
57 5.8 17.4 3.7 11.3
58 5.6 16.7 3.6 10.9
59 5.3 16.1 3.4 10.2 10.4
60 5.1 15.5 3.3 10.0
61 4.9 . 14.9 3.2 9.7
62 4.7 14.3 3.1 9.3
63 4.6 14.2 13.8 2.9 8.9
64 4.4 13.8 13.2 2.8 8.6
65 4.2 13.3 12.7 2.7 8.3
66 4.0 12.8 12.2 2.6 7.9
67 4.0 3.9 11.8 2.5 7.7 7.6
68 3.7 11.3 2.4 7.7 7.3
69 3.6 10.9 2.3 7.5 7.1
70 3.5 10.5 2.2 6.8
71 3.3 10.1 2.5 2.1 6.3 6.5
72 3.2 9.7 2.3 2.1 6.3
73 3.2 3.1 9.3 2.0 6.0
74 3.1 3.0 9.0 1.9 5.5 5.8
75 3.0 2.8 8.6 1.8 5.4 5.6
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REDUCED DATA WORKSHEET 
(CONTINUED)

RUN/page 7 & 1/4
SIGMA Time Invariant

No. “u ^21 ^12 4>22

76 3.0 2.7 8.3 1.8 5.4
77 2.8 2.6 8.3 8.0 1.7 5.2
78 2.6 2.5 8.4 7.7 1.6 5.0
79 2.5 2.4 7.4 1.6 4.8
80 2.4 2.3 7.1 1.5 4.6
81 2.2 7.0 6.8 1.5 5.0 4.4
82 2.1 2.2 6.6 . 1.4 5.0 4.2
83 2.0 2.1 6.4 6.3 1.4 1.3 5.0 4.1
84 2.0 6.0 6.1 1.3 4.3 3.9
85 1.9 5.8 1.1 1.2 3.8
86 1.8 5.4 5.6 1.1 1.2 3.3 3.6
87 1.7 1.8 4.9 5.4 1.0 1.1 3.8 3.5
88 1.7 4.5 5.2 1.0 1.1 4.4 3.4
89 1.7 1.6 4.5 5.0 1.0 1.1 3.9 3.2
90 1.5 1.6 4.2 4.8 1.0 3.6 3.1
91 1.6 1.5 4.3 4.6 1.0 3.0
92 1.6 1.5 3.8 4.4 1.0 0.9 2.6 2.9
93 1.4 3.9 4.3 1.0 0.9 2.0 2.8
94 1.5 1.3 3.9 4.1 0.9 2.0 2.7
95 1.4 1.3 3.8 3.9 0.8 2.0 2.6
96 1.3 1.2 3.5 3.8 0.8 2.7 2.5
97 1.2 2.8 3.6 0.7 0.8 2.0 2.4
98 1.2 2.6 3.5 0.5 0.7 2.1 2.3
99 1.1 3.0 3.4 0.5 0.7 2.3 2.2
.00 1.2 1.1 2.5 3.2 0.6 0.7 2.0 2.1
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TABLE A-3

REDUCED DATA WORKSHEET 
SOURCE Group II, Runs 6&8 SYSTEM Backmix Reactor SIGMA Time Invariant

FORCING FUNCTION Run 6 (-)Sine T inlet FORCING FUNCTION Run 8
ATTENUATION 0.10 0.05 0.10 0.05 (F/mm)
S.S. CORRECTION 0.0 0.0 0.0 0.0
READING ERROR 0.25 mm

Step
T inlet

No. -«521 (6W) -dl2(*B) -422(*W)

1 87.1 149.0 120.6 105.3
2 81.6 144.5 111.1 103.9
3 76.5 140.0 102.5 101.6 102
4 71.9 135.6 94.7 100.5
5 67.6 131.2 87.6 98.5
6 63.6 126.9 81.1 96.4
7 59.9 122.7 75.2 94.3
8 56.5 118.6 69.8 92.0
9 53.4 114.6 64.9 89.7
10 50.4 110.7 60.4 87.3
11 47.7 106.9 56.3 85.0
12 45.2 103.2 52.5 82.6
13 42.8 99.6 49.1 80.2
14 40.6 96.1 45.9 77.8
15 38.5, 92.7 43.0 75.5
16 36.6 89.4 40.3 73.1
17 34.8 86.2 37.9 70.8
18 33.1 83.1 35.6 68.6
19 31.5 80.0 33.5 66.3
20 30.0 77.1 31.5 64.2
21 28.6 74.3 29.7 62.0
22 27.2 71.6 28.1 59.9
23 26.0 69.0 26.5 57.9
24 24.8 66.4 25.1 55.9
25 23.7 64.0 23.7 54.0
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REDUCED DATA WORKSHEET 
(CONTINUED)

RUN/page 6 & 8/2
SIGMA Time Invariant

No. -^11 ■^21 - h i -^22

26 22.6 61.6 22.5 52.1
27 21.6 59.3 21.3 50.3
28 20.7 57.1 20.2 48.5
29 19.8 55.0 19.2 46.7
30 18.9 52.9 18.3 45.1
31 18.1 50.9 17.4 43.5
32 17.3 49.0 16.5 41.9
33 16.6 47.2 15.7 40.4
34 15.9 45.4 15.0 38.9
35 15.2 43.7 14.3 37.5
36 14.6 42.1 13.6 36.1
37 14.0 40.5 13.0 34.8
38 13.4 38.9 12.4 33.5
39 12.9 37.5 11.9 32.2
40 12.3 36.0 11.3 31.0
41 11.8 34.7 10.8 29.9
42 11.4 33.4 10.4 28.8
43 10.9 32.1 9.9 27.7
44 10.5 30.9 9.5 26.7
45 10.0 29.7 9.1 25.4 25.7
46 9.6 28.6 8.7 24.7
47 9.3 27.5 8.3 23.8
48 8.9 26.4 8.0 22.9
49 8.5 25.4 7.6 22.5 22.0
50 8.2 24.5 7.3 21.2
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REDUCED DATA WORKSHEET 

(CONTINUED)
RUN/page 6 & 8/3
SIGMA Time Invariant

No. -^11 ">21 ">12 -^22

51 7.9 23.4 23.5 7.0 20.0 20.4
52 7.6 22.5 22.6 6.7 19.6
53 7.3 21.6 21.8 6.5 19.6 18.9
54 7.0 20.5 20.9 6.2 18.6 18.1
55 6.7 19.5 20.1 5.9 17.5
56 6.4 18.0 19.4 5.7 16.8
57 6.2 17.3 18.6 5.5 16.2
58 6.0 17.3 17.9 5.3 15.5
59 5.7 17.3 17.2 5.0 15.0
60 5.5 16.6 4.8 14.4
61 5.3 15.9 4.7 13.8
62 4.9 5.1 15.3 4.5 13.3
63 4.5 4.9 14.5 14.7 4.3 12.8
64 4.3 4.7 13.8 14.2 4.1 12.3
65 4.2 4.5 13.8 13.6 4.0 11.8
66 4.0 4.3 13.7 13.1 3.8 11.4
67 4.2 12.6 3.7 10.6 11.0
68 4.0 11.8 12.1 3.5 9.9 10.5
69 3.9 11.7 3.4 9.0 10.1
70 3.4 11.0 11.2 3.2 8.5 9.8
71 3.6 10.8 3.0 3.1 8.4 9.4
72 3.4 10.4 3.0 8.2 9.0
73 3.3 10.0 2.9 8.3 8,7
74 3.5 3.2 9.6 2,8 8.3
75 3.5 3.0 9.2 2.7 8.0
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REDUCED DATA WORKSHEET 
(CONTINUED)

RUN/page 6 & 8/4
SIGMA Time Invariant

No. -'<11 -^21 -^12 -«$22

76 2.9 9.5 8.9 2,6 7.7
77 3.5 2.8 8.7 8.5 2.5 7.5 7.4
78 2.7 7.9 8.2 2.4 7.2 7.1
79 2.6 7.0 7.9 2.3 6.5 6.9
80 2.5 6.8 7.6 2.2 5.9 6.6
81 2.4 6.8 7.3 2.1 6.2 6.3
82 2.3 6.8 7.0 1.9 2.0 6.0 6.1
83 2.8 2.2 6.8 1.9 6.0 5.9
84 2.5 2.1 6.5 1.9 5.7 5.6
85 2.1 6.2 1.5 1.8 5.5 5.4
86 2.0 6.0 1.3 1.7 5.3 5.2
87 2.1 1.9 5.6 1.4 1.7 5.0
88 1.8 6.3 5.6 1.5 1.6 4.9 4.8
89 - 0.6 1.8 5.8 5.3 1.5 4.6
90 0.7 1.7 5.1 1.4 1.5 4.5
91 2.0 1.6 4.9 1.4 4.5 4.3
92 1.6 4.7 1.4 4.1
93 1.5 4.9 4.6 1.3 3.9 4.0
94 1.8 1.4 4.8 4.4 1.3 3.7 3.8
95 1.5 1.4 4.2 1.2 3.5 3.7
96 1.6 1.3 4.1 1.2 3.5
97 1.6 1.3 3.4 3.9 1.1 3.5 3.4
98 1.9 1.2 3.3 3.8 1.1 3.8 3.3
99 2.0 1.2 3.1 3.6 1.0 4.1 3.1
100 2.0 1.1 3.0 3.5 1.0 4.3 3.0
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TABLE A-4
LIST OP IMPOT IBPORHATIOM FOR THE COMPUTATIONAL 
PHASE OF THE BACKMIX CHEMICAL REACTOR STUDY

Fluid Wall Fluid Wall Fluid Wall Fluid Wall

85.4 136.8 38.5 97.9 -87.1 -149.0 -120.6 -105.3
79.8 132.8 36.7 94.3 -81.6 -144.5 -111.1 -103.9
74.7 128.8 34.9 90.9 -76.5 -140.0 -102.5 -102,3
70.0 124.9 33.3 87.6 -71.9 -135.6 -94.7 -100.5
65.7 121.0 31.8 84.4 -67.6 -131.2 -87.6 -98.5
61.7 117.2 30.3 81.2 -63.6 -126.9 -81.1 -96.4
58.0 113.4 29.0 78.2 -59.9 -122.7 -75.2 -94.3
54.6 109.7 27.7 75.3 -56.5 -118.6 -69.8 -92.0
51.5 106.0 26.4 72.5 -53.4 -114.6 -64.9 -89.7
48.6 102.5 25.3 69.8 -50.4 -110.7 -60.4 -87.3
45.9 99.0 24.2 67.2 -47.7 -106.9 -56.3 -85.0
43.4 95.6 23.1 64.7 -45.2 -103.2 -52.5 -82.6
41.0 92.3 22.1 62.3 -42.8 -99.6 -49.1 -80.2
38.8 89.1 21.2 60.0 -40.6 -96.1 -45.9 -77.8
36.8 86.0 20.3 57.7 -38.5 -92.7 -43.0 -75,5
34.9 83.0 19.4 55.5 -36.6 -89.4 -40.3 -73.133.1 80.0 18.6 53.4 -34.8 -86.2 -37.9 -70.831.5 77.2 17.9 51.4 -33.1 -83.1 -35.6 -68.629.9 74.4 17.1 49.5 -31.5 -80.0 -33.5 -66.328.5 71.7 16,4 47.6 -30.0 -77.1 -31.5 -64.227.1 69.1 15.7 45.8 -28.6 -74.3 -29.7 -62.025.8 66.6 15.1 44.1 -27.2 -71.6 -28.1 -59.924.6 64.2 14.5 42.4 -26.0 -69.0 -26.5 -57.923.5 61.8 13.9 40.8 -24.8 -66.4 -25.1 -55.922.4 59.5 13.3 39.2 -23.7 -64.0 -23.7 -54.021.4 57.3 12.8 37.8 -22.6 -61.6 -22.5 -52.120.4 55.2 12.3 36.3 -21.6 -59.3 -21,3 -50.319.5 53.2 11.8 34.9 -20.7 -57.1 -20.2 -48.518.6 51.2 11.3 33.6 -19.8 -55.0 -19.2 -46.717.8 49.3 10.9 32.3 -18.9 -52.9 -18.3 -45.117.0 47.5 10.4 31.1 -18.1 -50.9 -17.4 -43.516.3 45.7 10.0 29.9 -17.3 -49.0 -16.5 -41.915.6 44.0 9.6 28.8 -16.6 -47.2 -15.7 -40.414.9 42.3 9.3 27.7 -15.9 -45.4 -15.0 -38.914.3 40.7 8.9 26.6 -15.2 -43.7 -14.3 -37.513.7 39.2 8.5 25.6 -14.6 -42.1 -13.6 -36.113.1 37.7 8.2 24.6 -14.0 -40.5 -13.0 -34.812.6 36.3 7.9 23.7 -13.4 -38.9 -12.4 -33.512.1 34.9 7.6 22.8 -12.9 -37.5 -11.9 -32.211.6 33.6 7.3 21.9 -12.3 -36.0 -11.3 -31.011.1 32.3 7.0 21.1 -11.8 -34.7 -10.8 -29.910.6 31.1 6.7 20.3 -11.4 -33.4 -10.4 -28.810.2 29.9 6.5 19.5 -10.9 -32.1 -9.9 -27.79.8 28.8 6.2 18.7 -10.5 -30.9 -9.5 -26.79.4 27.7 6.0 18.0 -10.0 -29.7 -9.1 -25.79.0 26.6 5.7 17.3 -9.6 -28.6 -8,7 -24.78.7 25.6 5.5 16.7 -9.3 -27.5 ,-8.3 -23.88.3 24.7 5.3 16.0 -8.9 -26.4 ■ -8.0 -22.98.0 23.7 5.1 15.4 -8.5 -25.4 -7.6 -22.07.7 22.8 4.9 14.8 -8.2 -24.5 -7.3 -21.27.4 21.9 4.7 14.3 -7.9 -23.5 -7.0 -20.47.1 21.1 4.5 13.7 -7.6 -22.6 -6.7 -19.66.8 20.3 4.4 13,2 -7.3 -21.8 -6.5 -18.96.5 19.5 4.2 12.7 -7.0 -20.9 -6.2 -18.16.3 18.8 4.0 12.2 -6.7 -20.1 -5.9 -17.56.0 18.1 3.9 11.7 -6.4 -19.4 -5.7 -16.85.8 17.4 3.7 11.3 -6.2 -18.6 -5.5 -16.25.6 16.7 3.6 10.9 -6.0 -17.9 -5.3 -15. 55.3 16.1 3.4 10.4 -5.7 -17.2 -5.0 -15.05.1 15.5 3.3 10.0 -5.5 -16. 6 -4.8 -14.44.9 14.9 3.2 9.7 -5.3 -15.9 -4.7 -13.84.7 14.3 3.1 9.3 -5.1 -15.3 -4.5 -13.34.6 13.8 2.9 8.9 -4.9 -14.7 -4.3 -12.84.4 13.2 2.8 8.6 -4.7 -14.2 -4.1 -12.34.2 12.7 2.7 8.3 -4.5 -13.6 -4.0 -11.84.0 12.2 2.6 7.9 -4.3 -13.1 -3.8 -11.43.9 11.8 2.5 7,6 -4.2 -12.6 -3.7 -11.03.7 11.3 2.4 7.3 -4.0 -12.1 -3.5 -10.53.6 10.9 2.3 7.1 -3.9 -11.7 -3.4 -10.13.5 10.5 2.2 6.8 -3.7 -11.2 -3.2 -9.83.3 10.1 2.1 6.5 -3.6 . -10.8 -3.1 -9.43.2 9.7 2.1 6.3 -3.4 -10.4 -3.0 -9 03.1 9.3 2.0 6.0 -3.3 -10.0 -2.9 -b ’73.0
2.8

9.0
8.6

1.9
1.8

5.8
5.6 -3.2

-3.0 -9.6
-9.2

-2.8
-2.7

-8.3
-8.0



APPENDIX C 

DIGITAL COMPUTATION PROGRAMS

This appendix is devoted to presentation of the 
Fortran statements of the digital computer programs used 
to calculate and prepare graphical displays of the estimate 
of weighting functions. These statements appear as Table 
A-5.
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JOB 2 7 6 t 

, 0 8 / 1 8 / 6 4  

FORTRAN

BISHOP.  TIME (251

,RMWJ2. 00*,

2 ;§;Kiu#;;&:2:fgT :4iP̂ :2 ,i %,,NAT > M0P4 - 13 IF(NATI601,602,603
GO^TO 610
GO^TO 610
I M nÂt )604,605^606604 NET « 3 GO TO 610605 NET - 4 GO TO 610
IFfNAT?607,608^609
GO^TO 610
W x S  t i e  
lSiîili:55I?U4 

B8 laMi: 6î2;°iî5. 614,615.

TABLE A-5  
FORTRAN STATEMENTS 

OF DIGITAL 
COMPUTATION PROGRAM

I.U l u i e i A *  tii£f oi»t o i « .  0 & 9 ,  6 1 6 *  ,NET
611 %EA0^2 |65 C)RA U11 ( I  I . R A U 2 1 ( I ) .RAM12( I ) ,R A U 22 (1 1

612  R | A 0 ( 2 . 6 5 1 ) R A h l l ( I ) . R A M 2 1 ( 1 ) , R A W 1 2 ( I I , R A U 2 2 ( I )
GO TO 333

613 R E A 0 ( 2 . 6 5 2 ) R A M 1 1 I I ) . R A H 2 1 ( 1 ) . R A W 1 2 I I ) , R A U 2 2 ( I )Go TO 333
614 ^ A D ( 2 j 6 5 3 ) R A W l l ( I I  .RAU21 ( I I  .RAW12 ( I )  ,RAM22( 1)

615  l E A D ( 2 . 6 5 4 ) R A W l l i n  .R A W 2 1 ( I )  , R A W 1 2 i n , R A U 2 2 ( I I  Go TO 333 . .
616 R E A D ( 2 , 6 5 5 ) R A M 1 1 ( I ) . R A M 2 1 ( I ) .RAW1211) *RAU22( 11

I ill
49 9  FORMAT 
SCO FORMAT

UE
7 X , 4 ( F 5 . 2 , 5 X n

4 X , 2 ( F 5 . 2 , 2 X ) I

w3VW r u % n n 1 13115.5X11
^ 0 l l Ç 0 ^ M A T | 9 X i l 3 | 2 X . I 3 . 2 X . I 3 ,  2 X . I 3 . 2 X , I 3 , 2 X , I 3 . 2 X , 1 2 , 3 X , 1 2 . 3 X , 1 2 , 3X,

WRITEI2.41
'  S 5 Î 1 »  ? } ’
5 F0RMATÎ38X.42H GENERALIZED PULSE TEST CALCULATION 12X21 *

l & X , f 6 H  INCORRECT DATA SELECTION I

6 fS rNa V  $ 8 X a 4 H  K. A .  BISHOP , 1 9 X ,  5H RUN , 1
7 k I mAT i U x , 2 3 H  CALCLLATICN PROCEOURE / *LJA # Wm # • t

L I M I T  WITH INCRCNENT I
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12 r o U H l l o x î l 3 7 4 9 4  OAT? POINTS PER VECTOR. CALCULATIONS NAOE EVERT 
l . I 2 | | H  POINTS.  / / / I

13 r a l M A T l § 2 X . 1 6 H  RUN PARAMETERS / / )
14 r a T N A T f l è x . l O H  ELEMENTS . 1 2 X . 4 H  11 . 1 S X . 4 H  2 1  , 1 6 % , 4 M  1 2  ,1 6%

1 ,4 H  22 / )
I S ^ M l M A i l l o x i l M  S. S .  CORRECTION 2 % , F T . 3 , 1 3 % , F T . 3 ,  1 3 % ,F T . 3 ,  1 3% ,F 7 . 3

16 r o * M A T l I o x | l 3 H * * A T T E N t A T I C N  8 X , F 6 . 3 , 1 4 % , F 6 . 3 , 1 4 % ,  F 6 . 3 ,  1 4 % , F 6 . 3  / I

I T  M T M A T I I c X . I B H ^ E S T .  READ. ERROR , 3 % , F 5 . 3 , 1 4 % , F 6 . 3 , 1 4 % , F 6 . 3 , 1 4 % , F 6 .  
1 3 / / / / / / / I
GO TO 1 4 0 1 ,  4CO) ,POP1

4 0 2  Fo I mA T { { o x ,^8 5H  OPTION CNE D E S I R E D .............. ... . . P O S S I B L V * S I N G U L A
U  MATRICES ARE CALCLLATED / I
SO TO 4C3

4C4 FORMAT! icx^^85R OPTION CNE NOT DESIRED .........................  POSSIBLY SIMGULA
IR MATRICES ARE NOT CALCULATED / I

4 0 3  SO TO ! 4 C 5 .  4 C & I ,M 0P 2
4CT F O R M A M Îc x . ^ àsM  OPTION TWO NOT D E S I R E D ...........................RESULTS ARE MOT

IMORMALIZEO / I
SO TO 4Ce

4C9 O R M A T l I c X . ^ e S R  OPTION TWO DESIRED .....................................  RESULTS ARE MORM
lAL IZE D / )

4C8 GO T 0 ^ ! 4 I C ^ ^ 4 1 1 I , M 0 P 3

412  FOR M A T! ic x ,  3SH OPTION THREE NOT DESIRED ...................... A DATA DECK IS  M
lOT PINCHED / )

3̂ 0 10 41 3

41 4  FOR M A Tl ic x ,  35H OPTION THREE D E S I R E D ................................ A DATA DECX IS  P
lUMCHED / )

41 3  W R I T E I 2 . 5 2 0 I  M0P4
520 FORMAT! I cx ,43 H H E  VECTCR CHOICE FOR THIS CALCULATION I S  , 1 2 / / *

WRITE 1 2 , 1 6 )
18 FO R M A TI IH l )  

mR 1 T E !2 , 1 9 )R U N
19 F0RMAT!#4X.18H RAW DATA FOR RUN , 1 3 / / )

WR ITE12.2C)
20 FORMAT! I6X,7M POINT , 1 0 X , 4 H  11 , 1 S X , 4 H  21 , 2 X , 1 4 H  -  ELEMENTS -  , 4H 

1 12 , 1 6 X , 4 H  22 / )
MM a C —
0 0  211  I«1 ,M0STM
W R I T E ! 2 . 2 1 ) N P , R A W 1 1 I I ) , R A W 2 1  ! I ) . R A W 1 2 ! I ) , R A U 2 2 ! 1 1

21 F 0 R H A T ! i e x , I 3 , 9 X , F 8 . 3 , I 2 X , F 8 . 3 , 1 2 X , F 3 . 3 , 1 2 X , F 8 . 3 )
M* a NP ♦ 1

W R I l Ê K ^ T Z I
22 FORMATI Ih I )

§îîll!SiH1lKi{ïi./.'||é5i;iirîHfH}îi, t a b l e  a -5  
» c o n t in u e d

00 24 J « l , 2
24  R E O E R ! I , J )  » R E R O R I I , J ) « A T T N I I , J )

713  H R IT E I2 .2 51 R U N
25 ^ ^ < ! | 7 ( ^ 2 X . 2 2 H  REDUCED DATA FCR RUN , 1 2 / / 1 

WR1 Wc# 2#26#
26 FORMAT!I6X.7H POINT , I 0 X , 4 H  I I  ,1 5 % ,4 H  21 , 2 X , I 4 H  -  ELEMENTS -  , 4 H  

I  12 , I 6 X , 4 H  22  / I
MP a C
00 2 77  la l .M OS TM
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alîiiîi:
30 1*1 

LMTLO

in\

I  *  D A T l l l L )

' * oÂt21(

TABLE A-5 
CONTINUED

INCRL

O A Ï 2 2 C N V , E I N V . E R , M A R K , P H O E T , EROET»

51

II
• Ml

55

56

INCRL *

l l i lP H I ( 2 , 2 )  = un

5SbÉT*;''?S4r.‘-
EROET *  EROET 
N I  *  N A R K ( l )
M2 *  MARKI2I  
M3 « MA RKOI

SSiiliP»”
Io M i‘ ! i

u r Î tIII* Icli
WRITE 2I  317  NARKT. P H I(1,1), E R11.1I .PHII1,21,ERI1,2),PHDET,PHINW 

1 ) , P H I N V I 2 , 2 ) , E I N V ( 2 , 2 )

ss‘îb‘18

21

57

59
60  

61

il
304 )

ibi!GO TO 
H R { T E | 2 ,

W R IT E I 2 :  32Ô)MARK T,PH I1 1 , 1 1 , E R ( 1 , 1 )  , P H I f 1 , 2 ) , E R I 1 , 2 I , P H D E T , E R D E T  
GO TO ( 5 9 ,  6 0 ) , M 3
N R I T E I 2 .  3 2 1 ) P H I I 2 , 1 ) , E R ( 2 , 1 ) , P H I ( 2 , 2 ) , E R ( 2 , 2 )
GO fO 69
W R IT E ( 2 .  3 2 2 )  PHI ( 2 , 1 ) ,  E R ( 2 , 1 ) ,  P H I I 2 , 2 ) ,  E R I 2 , 2 *
GO TO 69 
W R IT E( 2 ,

62II
I )
69
68

iS I!

, (1,2)•ER(1,2),PHDET,PHIMVI 
Ir(2,2),PHINVI2, 1),EIWI2,1

,M3

,M2

S ili'
307)
.'■ô a t i i Î mII'HRR

:g: A
• MARKT

INCRM

- S K I REOER, EH)
* I N I T L
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3?E-'i’5rs!«.. t a b l e  a -5
CONTINUED

1 1 J  i
HEUIZIN) * EH I

liKiSfiliit : 1:1.,.,
70 I F I A B S F ( H 1 2 ( H f )  7 1 * 7 2 # 7 2

72 H I I ™ » ^ A B S F ( H 1 2 J M ) I  ^

74 I F l A B S F t H Z l C N f l  - * H I 2 1 i 7 5 * 7 6 , 7 5  

76 H I2 1 ° » ^ A B S F ( H 2 1 ( H » I

FAC22 *  l . C  
7B 60  TO 179* 8 0 ) ,H0P2
79 FAC 12 « 1 . 0  

GO TO 81
80 FAC 12 « 1 . C / H I 12  

H I 1 2  « 0 . 0
81 GO TO ( 8 2 *  83) *FOP2
82 FAC21 « 1 . 0  

GO TO 84
83  FAC21 « 1 . 0 / H I 2 1  

H I 2 1  « C.O
84 INCRP « 2*INCRM

H 1 2 I N )  « H12(M)*FAC12  
H 2 1 I H )  « H21(M)*FAC21

: i i i ! i : i  :  M :M E i!
92 CONTINUE 

709 00  87 N « L .  MOSTP. INCRP

1 2 2 ( M * 1 ) * H E R 2 2 I M + 1 I

87 g o i î U g i  
W R IT E I 2 *  301 )
M R I T E ( 2 .  3 9 9 ) F A C 1 1 ,  FAC12* FAC21,  FAC22 
GO TO ( 9 0 *  88 ) .POP3

88 00  89 M« I ,  MOSTM, INCRP

l ^ «  T ( M I - * T P S ( M )
89 I R I T E ( 2 ,  3 2 8 )  ICARO *H11 (P)  *H12 (H)  * H 2 1 (M )  * H 2 2 ( N ) * T ( N ) * S
90  CONTINUE

4 0  t î i t u n
hô'\h 30

42  U R I T E ( 2 , 4 3 )
43 FO%HAT(10X*13H L I M I T  ERROR)
44  CONTINUE

m  B i i .

» '’ i535S*T")jriN «;lE  a  s 'ïlo 'J .îiK »  IK K  ' “ U M n IK "? *
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F 0 % H A T n 6 t * 2 ( 5 X * F 7 * 3 « l S i  F 7 . i )  « S X i F D . S t  3%,  2 *  F 7 . 3 #  W #  F 7 - 3 t  SX I# F

. 2 ,  OF X S . «lULAR MAIftfx .5X.F10.31 _ ..
Ill FolMâ?IuxÏ2(F7.3lfx»^f.3lSx/«IOX( 33H ERROR 6REX7ER 7HRN S U E  OF
l i î l f « î { } l ; f 5 Î l l2 5 ; i i ; r , t ! i ÎF ’7Îf.3‘ x î:rfS !t« .ïs "!flx .’F7.3 .«.F7.3.3X l 
325^F0AMAT(9Xt 2 (2X.F7. 3 d  X.F7.3 *3X1 .pXt2 t2X»F7.3» IXt FT.3« 3X I  )

i f f i i i l i i l p » ! # . . '
END

TABLE A-5  
CONTINUED

FORTRAN

m m \ n
END

( A . B . Ç )

{ ; !  i i
,2)*A

FORTRAN

FORTRAN

•2) ,0(2,2) ,E(2,2),F(2,2),G(2r2),MI 2,2)
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E S t t W f â î ' "001 1-1,2
E?^^^«ZbSF IF (1 ,J))*ABSF (GII . J) I^ABSFIHI I ,  J) I 
END **

TABLE A-5 
CONTINUED

FORTRAN

N-O
TENP-C.
E -B ll. l l
1F(E-B(1,2))82,83,B3

82 E-BI1.21
83 IF IB I2 ,n-E )85,85,84
84 E-BI2.U
85 IFCBC2.2)>E)87,87,86

if i 5:!:i
29 HARK?3)*'2 I
2 CONTINUE 

200 CONTINUE
3 CaÇl INVRS(A,C,DET)

SUBROUTINE
,2),D(2,2),ERC2

0E1
N-O
S-

OET

60 TO 20

m

m :

m̂  10.2*c“
I H "

,1)*A(2,2)-AI2 
,1)*AI2,2)-AI2 
,1)+AI2,2)-AI2 
,1)«A(2,2I-A(2 
,1)+AI2,2)*AI2 
,1)+AI2,2I*A(2 
,1I*AI2,2I*AI2 
,1)»AI2,2)*AI2 
,1)-AI2,2)-AI2 
,1:-AI2,2I-AI2 
,1)-AI2,2)-AI2 
,1I-AI2,2I-A#2 
,1I-AI2,2)«AC2 
,1)-A I2,2I*A12 
,1)-AI2,2I*A(2

,1 )-A tl,2 )
,1)-A (l,2 )
,1)»AI1,2I
,U*AI1,2I
,1 )-A fl,2 l
,1)-A(1,2I
,U tA ll,2 *
,1)*AI1,2)
,1)-AI1,2I
,1)-AI1,2)
,1I*AI1,2)
,1I*AI1,2I
,1I-A|1,2I
,I)-A ( i,2 )
,1)«AII,2I

12,21,6(2,2) s s n -
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18 S“ -A ( I  i l l —A (2 i2l*A 12 t l l * A ( l  #21 T A B I  C  A 8CTABLE A-5
« jIsHI'"'’” ' "• » CONTINUED

00*̂ 10 25
IF(S^TEMP)25. 25, 24

24 TEMP *S
25 GO TO (4,5,6,7,8,9,10,11,12#13,14,15,16,17,18,19),M

Sâ’WHc-  ̂
it GO TO 54 

54 M«M-8 

GO TO 57 

57 N-y-4
II E R lS T fî- i” ' ”

GO TO 113
HI ss'iii'r'.i.a00 114 J=l,2 

FOETfFDET
71
73 e o e r-  ÂBàPÎFÔÊTl -  AGSFIOET}

G0*T0^^6* ^
‘  S8’ ? n : i : l

50 SÉftiRN ’  *®SF(5<I,jn -  ABSF(Cfl,J)l 
END

START



TABLE A-5 
CONTINUED
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JOB 2 7 6 ,  BISHOP,  1 I P E ( 2 C I  

C S / n / 6 4  1 6 . 5 8 . 4 1 . 1 4

FORTRAN

MOUNT LARGE SCRATCH TAPE CN DRIVE 3

PROGRAM PLOTS 10 GRAPHS AT SELECTED VALUES CF S
114 POINTS PLOTTED FCR F IRST GRAPH

REPEATS FOLR TIMES FCR 4 ELEMEMS CF A 2 X2 MATRIX

CONTROL CARDS REQLIREO IK  ORDER

CARD VARIABLES FORMAT
1 S I M T I A L  4 F 1 0 . 0
1 S IKCREMEKT
1 S RESCLUTICK
1 H RESCLUTICK
1 KORMALIZE CPTIGK 15

1 IK  CCLIMK 45 I F  KCT,
2 IN  CCLIMK 45 IF

2 SYMBOLS LSED I K  PLCTTIKG AKO FOR DRAWING CCCRCINATES 
2 BLANK S 1 - * * C > 8 .  , * $ /

DATA FOLLOWS (NEED NCT BE ORDERED)

LAST CARD MIST HAVE 9999  IK  AK 15 FERMAT
DIMENSION A ( 1 1 5 ) , 8 ( 1 1 5 ) , C ( 1 1 5 ) , 0 1 1 1 5 ) , E ( 1 1 5 ) , F ( 1 1 5 ) , G ( 1 1 5 ) , H ( 1151  

1 , 0 ( 1 1 5 ) , P ( 1 1 5 ) , STORE(4 )
W R I 1 E ( 2 , 5 1 )

51 FORMAT (4H1NC. ,1 3X ,2 HY 1  ,13X ,2HY2 , 1 3 X , 2 H Y 3 , 1 3 X , 2 » - Y 4 ,  12X,  IH T ,  13X,  IH S ,  1 9X //)
B I6 N » C .
00  56 J > 1 , 4  

56 STORE(J)>C.
REWIND 3
R EA 0( 1 , 1 )S IP C I ,S IK C , S K E S ,H R C S, K C R M

1 F 0 R M A T (4 F 1 C . C , I5  ) 
R E A D ( l , 5 3 ) B l , A K , A L , A M , A A , A B , A C , A D , A E , A F , A G , A H , A I , A J

S 1 - # * C X B  \  , - $ /
52 FORMAT(14A1)

S IP 1 1 « S IP C I « S I N C
S I P 2 I » S I P 1 I * S I K C
S I P 3 I» S IP 2 1 * S 1 N C
S I P 4 I > S I P 3 U S I N C
S IP 5 I> S 1 P 4 I « S I N C
S IP 6 I> S I P 5 1 « S I N C
S IP T I« S IP 6 1 « S IN C
S I P 6 I - S I P 7 U S I K C
S I P 9 1 « S l P 8 I * S i N C

2 R E A O ( l , 3 ) N , W , X , Y , 2 , T , S
3 F 0 R M A T ( i 5 , 5 > , 4 F 1 0 . 0 , 2 ( 5 X , F 5 . 0 ) )

I F (  l - S ) 2 , 6 4 , 6 4
64 M R I I E ( 2 , 5 C ) N , W , X , Y , 2 , T , S  
50 FORMAT(1H , I 5 , 6 F 1 5 . 4 )
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WRI1E 1APE 3. S,T.h.X.V|2»A _  . — , —  .  g
IF(N-SSS9)4,13,4 TABLE A*9

4 IF(ABSFIk)-SIOREIl))6>6i5
5 S T O R E i n « A B S F ( k )  A M T I M  I I F n
6 IFC AB SFC X I -S IO RE fZ )  ) 8 » 8 , 7  V U N I I N U C U
7 S T0 R E (2 ) * A B SF (X )
8 IF(ABSFIV)-S1CRE(3))10.10»9
9 S T 0 R E (3 )« A 8 S F i V )

1C lF(ABSFI2}-STCREt4) )12fl2fll
11 STORE(4)>ABSF(2)
12 60  TO 2
13 DO 59 J « l t 4

IFC ST0RE(J)-BIGN)59,59,58
58 B1GN>ST0RE(J)
59 C0N1INLE  

REMIND 3
DO 47 M « l , 4
GO TO 1 6 1 , 6 0  ,NCRK

60 DIV>STORE(F)
B IG N > 1 .
GO 10 62

61 D I V l .
62 SI2E » 2 . * B IG N /H R E S  ♦ (SIPOI* 9 . « S I AC)/SBES * 5 .

DO 14 1 * 1 , 1 1 5
A d  ) — S IP C I /S R E5  Bin — S I P I I / S R E S  
C ( D  — S1P21/SRES 
0 ( I ) « - S I P 3 I / S R E £
E d  ) — S I P 4 I  /SRES 
F d ) « - £ I P 5 I / S R E S  
G d ) » - S I P 6 l / S R E <
H C I ) » - S I P 7 l / S R E £
0 (  I ) — S I P 8 I  /SRES

14 PCI ) « - S I P 9 I / S R E S  
M R I T E ( 2 , 2 C 2 C ) P , D I V

2C2C F 0 R K A T d 5 , F l C . 3  / )
15 GO 1 0 ( 1 6 , 1 7 , 1 8 , 1 9 1 ,P
16 READ TAPE 3 , S , T  , k , X  , Y , 2  ,A 

GO TO 2C
17 READ TAPE 3 , S, T , X , k , V , 2 ,A 

GD TO 20
18 READ TAPE 3 , £ , T , X , V ,k  ,2  ,N 

GO TO 20
19 READ TAPE 3 , S,T , X ,  V ,2  ,b ,A
20 INT«T

IF  (F L O A T F d  M l - 1 ) 1 5 , 5 5 , 1 5  
55 I « I N T * 1

! F ( N - 9 9 9 9 ) 2 1 , 4 5 , 2 1
21 I F ( T - 1 1 4 . ) 2 1 0 , 2 1 0 , 1 5  

210 I F ( T - £ ) 2 2 , 2 4 , 2 4
22 H R I T E ( 2 , 2 3 ) S , T
23 FORMAT 12CH £ GREATER THAN T ,S«,F10.6,2HT-,F10.6)

GO TO 15
24 I F ( S - S 1 P C 1 ) 2 6 , 2 5 , 2 6
25 A d  ) . h / ( H R E S " D l k ) * A ( l )

GO TO 15
26 I F ( £ - £ i P l l ) 2 e , 2 7 , 2 8
27 B d  )> k / ( H R E S « D I  V)»B ( I )

GO TO 15
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I5*SIP5î$l* T A  B  I  p  Æk gt
I 6 - S I P 6 I + 1 .  T A B L E  A “ 0
n»siP7i*i.

iUnîp'Jîil. CONTINUED
LMARK>2 
DO 3 J*liN2 
DO 26 M>1,115 

36 Q(M)>BL
NUMBR=BIGN/HRES+.5 
L«FLOATF(NLPBR-J)*1. 
i F ( L ) e 3 , e 4 , e 4

64 HL>FLOA1F(L)»HRES«1CO.
LMARK'l
GO 10 es 

63 ML — FIOATF (LI«SRES
65 DO 41 KL«ItlC

I F ( ( S I N C  / S R E S ) * F L C A 1 F ( K l - 1 ) * F L C « T F ( L ) ) 4 1 f 4 2 i 4 3
42 L S T R T » S I N C * F L C A T F ( K l - l ) * l .

IF(L£1R1-115)82»82,81
62 00 44 L I N E * L S r R 1 f l I 5  
44 Q ( L I N E )< A P  
61 LMARK' l  

GO 10 43 
41 C0N1INLE
43 DO 6 I«1,115 

1 * 1 - 1
IF(I-£IPCI)51,5C,51 

5C IF1A ( I Cl-FLCA1F ( D )  69,69 ,71
71 I F ( S I P C I / S R E S * F L O A T F ( L ) > 6 9 , 6 9 , 7 0
51 I F I 1 - S I P l I > 5 3 , 5 2 , 5 3
52 I F C f a ( I l > - F L C A 1 F ( L > > 6 9 , 6 9 , 7 2
72 I F I S I P I I / S R E S * F L O A T F ( L >  >69,69,70
54 I F ( C ( I 2 > - F L C A 1 F I L > > 6 9 , 6 9 , 7 3
53 I F (  I - S I P 2 I > 5 5 , 5 4 , 5 5
73 I F ( S 1 P 2 I / £ R E S * F L 0 A 1 F ( L > > 6 9 , 6 9 , 7 0
55 I F ( 1 - S I P 3 I >57,56,57
56 I F ( 0 ( I 3 > - F L C A t F ( L > ) 6 9 , 6 9 , 7 4
74 1F( S I P 3 I  /£RES+FLCA1FIL> >69,69,70
57 I F ( 1 - S I P 4 I > 5 9 , 5 a , 5 9
58 I F ( E ( I 4 > - F L C A I F ( L > > 6 9 , 6 9 , 7 5
75 I F 1 S I P 4 I / S R E S * F L 0 A 1 F ( L >  > 6 9 , 6 9 , 7 0
59 I F C 1 - £ I P 5 I > 6 1 , 6 C , 6 1
60 I F ( F U 5 ) - F L C A 1 F I L >  > 6 9 , 6 9 , 7 6
76 I F ( S I P 5 I / S R E S t F l O A l F ( L >  > 6 9 , 6 9 , 7 0
61 I F ( 1 - S I P 6 I > 6 3 , 6 2 , 6 3
62 I F ( G ( I 6 ) - F L C A 1 F ( L > ) 6 9 , 6 9 , 7 7
77 I F I S I P 6 I / S R E S + F I O A I F ( L >  > 6 9 , 6 9 , 7 0
63 I F ( 1 - S I P 7 I ) 6 5 , 6 4 , 6 5
64 I F ( H ( I 7 ) - F L C A 1 F ( L > > 6 9 , 6 9 , 7 B
78 I F I S I P I I / S R E S t F l O A l F I L >  > 6 9 , 6 9 , 7 0
65 I F I  1 - S I P 6 I > 6 7 , 6 6 , 6 7
66 I F I 0 I I 6 ) - F I C A 1 F I I > > 6 9 , 6 9 , 7 9
79 I F I S 1 P 8 I / S R E S « F L 0 A 1 F I L ) > 6 9 , 6 9 , 7 0
67 I F | 1 - £ I P 9 I > 6 9 , 6 8 , 6 9
68 I F I P I I 9 ) - F I C A 1 F I I > > 6 9 , 6 9 , 8 0
80 I F I S I P 9 I / S R E S * F L 0 A Î F I L > > 6 9 , 6 9 , 7 0  
70 0 ( 1 >«AL
69 I F l - F L O A 1 F  I I > * S R E S - F I C A T F ( I - 1 >  > 4 0 , 3 5 , 4 0
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25 0( 1 )»AK
4C IF(P(I ) ) n i t l 7 8 , l 7 8  

177 MP«P(I)-.5 
GO TO 175 

176 MP»P(I)*.5 
179 IF(MP-LI4,96,4 
98 IF(T-SIP9I)4t31f31 
21 0(I)>AJ 

GO 10 6 
4 IF(0(I))174,175,175

174 M0«0(I)-.9 
GO 10 176

175 MO»OCI)*.5
176 IF(M0-L)12,S7,12
97 IF( 1-SIPei)12t29,29 
29 Q(I)>AI 

GO 10 6 
12 IF(H(I))171.172.172

171 MH*H(I)-.5 
GO 10 173

172 MH«H(I)*.5
173 IF(PH-L)16.96.16
96 IF(1-£IP7I)16.27,27 
27 0(I)>AH 

GO 10 6 
16 IF(G(I))16E.169.169

168 MG«G(I)-.5 
GO 10 17C

169 HG>G(I)«.5
17C IF(MG-L)18.95.18

IF(1-SIP6I)18.25.25 
0(1 )*AG 
GO 10 6
IF(F(I) 1165.166,166

165 MF»F(I)-.5 
GO 10 167

166 HF«F(I)*,5
167 1F(MF-LI2C.94.2C
94 IF(1-5IP5I12C.23.23
23 0(1 l«AF 

GO 10 6
2C IF(E(I11162.163.163

162 ME»t(Il-.5 
GO 10 164

163 ME»E(I1*.5
164 1F(ME-L122.93.22
93 IF(1-SIP4I122.21.21
21 0(I1«AE 

GO 10 6
22 IF(0(I11159.160.160

159 MO =0(11-.5 
GO 10 161

160 MD»U(I1+.5
161 IF(MD-L124.92.24
92 IF(1-SIP3I124.19.19 
19 0(II>AO 

GO 10 6
24 IF(C(I11156.157,157 

156 MC«C(Il-.5

TABLE A-5 
CONTINUED

952*=
18
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GO 10 15 6 a m jà g
157 MC»C(I)*.5 TABLE A“D
150 I F ( M C - L ) 2 6 , 5 1 | 2 6

n c o n t in u e d
GO 10 6 

26 IF{U(I))153,154,154
153 MB=0(IJ-.5 

GO 1C 155
154 MB*b(l)+.5
155 IF(MB-L)2e,SC,2e
5C IF(1-SIPlI)28illtil 
11 0 ( 1 )=AB 

GO 10 6 
20 1F(A(I))15C,151,151 

15C MA=A(I)-.5 
GO 10 152

151 MA=A(I)+.5
152 IF(PA-L)6,€5,6 
69 IF(1-SIPC1)6,5,5
5 0(1 )>AA
6 CON 11N LE

GO l O d C f l B )  tlPARK 
10 WRI1E(2,7)CiPL
7 F0RP.A1(1H«,115A1,I3J 

LMARK*2
GO 10 3

13 K R I 12(2,14)0
14 F0RPA1 (1H*,115A1)
3 CONIINLE

RETLRN
END

STAR1



APPENDIX D

DATA ACQUISITION AND SIGNAL CONDITIONING SYSTEM

A schematic diagram of the data acquisition and 
signal conditioning system is shown in Figure A-2.

Wall Temperature: The temperature of the reactor
wall is measured at four locations (ninety degrees apart, 
approximately midway along the axial dimension, and approx
imately at the log mean radius) by means of copper-constantan 
thermocouples (twenty-four gauge). The thermocouples are 
connected in aprallel; therefore the voltage measured (refer
ence to an ice bath at 32“F.) is proportional to the average 
of the four measurements.

The thermocouple voltage is amplified, in the Pro
cess Laboratory, by means of a Sanborn, Model 350-1500, low- 
level dc preamplifier (Model 350-2 plug-in unit). The 
amplifier is operated at a gain of 2,000 (nominal)with up 
to ± 100 mvo of zero suppression. The output voltage is 
transmitted, by wire, to the instrument panel where it is 
connected to one of the remote lines which terminate on the 
analog computer's program board.

A first order filter network (time constant of 0.4 
sec. (nominal) and zero frequency gain set such that the

260
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system gain is 8.34 x 10 ) is programed on the computer 
program board. This filter conditions the amplified thermo
couple voltage by further amplifying it, further suppressing 
its zero level, and time smoothing it. The filter is dis
cussed further in a section to follow.

The output voltage from the smoothing filter is sum
med with the output voltage from the incremental zero sup
pression circuit (see Chapters IV, V, and Appendix B) . This 
voltage, which corresponds to the transient portion of the 
temperature response of the reactor wall, is recorded, at an 
attenuation setting of 0.01 volts per millimeter, in channel 
1 of the six channel Sanborn, Model 156-llOOC, strip chart 
recorder.

These choices of system gain, recorder attenuation, 
and an appropriate amount of zero suppression result in the 
capability to record a voltage as a pen position on a fifty 
millimeter chart such that a 2.5°F. change in wall temper
ature is represented by a full scale deflection of the 
recording pen. Note; This statement is based upon a lin
ear relationship between thermocouple voltage and temper
ature of 0.024 millivolts per degree Fahrenheit.

Bulk Fluid Temperature: The temperature of the
process fluid in the reactor is measured by means of a 
copper-constantan thermocouple in an oil field thermowell 
(stainless steel) which is inserted, through the reactor 
head, into the reactor chamber (approximately midway along 
the axial dimension and somewhat off center).
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This thermocouple voltage (reference to an ice bath) 

is amplified, in the Process Laboratory, by means of a San
born low-level preamplifier (similar to that used in the 
wall temperature measuring system) which is operated at a 
nominal gain of 2,000. The output voltage is transmitted, 
as described above, to the analog computer for conditioning.

There it is smoothed, amplified, and its zero is 
further suppressed in a first order filter (time constant 
of 1.1 sec. (nominal) and zero frequency gain set such that 
the system gain is 8.34 x 10^). The resulting signal is 
summed with the output voltage from an incremental zero 
suppression circuit and recorded, at an attenuation setting 
of 0.02 volts per millimeter, in channel 2 of the six chan
nel Sanborn recorder.

These choices of system gain, recorder attenuation, 
and an appropriate amount of zero suppression result in the 
capability to record a voltage (proportional to the transient 
portion of the reactor bulk temperature) as a pen position 
on a fifty millimeter chart. A change of five degrees in 
this temperature is represented by a full scale deflection 
of the pen. This range assumes that a change of one degree 
Fahrenheit in the bulk temperature causes a 0.024 millivolt 
change at the input to the Sanborn preamplifier.

Inlet Temperature; A thermopile, consisting of 
three copper-constantan thermocouples connected in series 
and mounted in a teflon plug, which is installed in the
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reactor inlet stream, is used to acquire data on the 
behavior of the temperature of the process fluid entering 
the reactor.

The thermopile voltage (reference to an ice bath) 
thus generated is the input to a Philbrick operational 
amplifier which is operated at a gain of 100 and is equipped 
with a 0.05 microfarad feedback capacitor. The output of 
this amplifier is transmitted to the analog computer program 
borad as described above.

There it is conditioned by passage through a first 
order filter network (time constant of 1.4 sec. and zero 
frequency gain of 278) prior to being recorded (at an attenu
ation setting of 0.2 volts per millimeter) in channel 3 of 
the Sanborn recorder.

This choice of system gain, recorder attenuation, 
and an appropriate zero suppression results in the capability 
to record a voltage as a pen position on a fifty millimeter 
chart such that a fifty degree change in the inlet temper
ature is represented by a full scale deflection of the 
recording pen. Note that this recording channel is used 
primarily to provide a check on the fact that the system 
forcing has been removed. Therefore the amplification 
requirement is not as severe as are those of channels 1 and
2. It was the policy, however, during the experimental 
phase of the investigation, to employ smaller recorder atten
uation settings to establish removal of system forcing more 
precisely.



265
Coolant Temperature; The temperature of the coolant, 

as discussed in Chapter V, is a fictitious variable and 
therefore cannot be measured. An approximation of the 
required temperature may be obtained by averaging the meas
urements of the temperature of the coolant as it enters and 
leaves the reactor cooling jacket. These temperatures are 
measured by means of copper-constantan thermocouples which 
are inserted through the wall of the Polyflow tube which 
carries the coolant.

The thermocouple voltages (reference to an ice bath) 
are summed at the input junction of a Donner, Model 3101, 
operational amplifier which is operated at a gain of 100 
and equipped with a 0.05 microfarad feedback capacitor. The 
output of this preamplifier is transmitted, as described 
above, to the program board of the analog computer.

There it is filtered by passage through a first 
order filter network (time constant of 2.1 sec. and zero 
frequency gain of 208). The conditioned signal is then 
recorded, at an attenuation of 0.2 volts per millimeter, in 
channel 5 of the Sanborn six channel recorder.

This choice of system gain, recorder attenuation, 
and appropriate zero suppression results in the capability 
to record a voltage as a pen position of a fifty millimeter 
chart such that a ten degree change in the average of the 
inlet and outlet temperatures is represented by a full scale 
deflection of the recorder pen. This channel is used essen
tially to provide a check on the assumption (in the derivation
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of the model equations) that the coolant temperature remains 
constant.

Reactor Flow Rate: The flow rate of process fluid
through the reactor is measured by means of a Waugh, Model 
FL-6SB-1, turbine flow sensor, which generates electrical 
pulses at a rate which is proportional to the turbine 
rotation rate. Since the turbine is driven by passage of 
process fluid through the sensor, the pulse rate is pro
portional to the flow rate.

The train of pulses generated in the sensor is 
transmitted, by wire, to the Process Laboratory instrument 
panel where it becomes the input signal to the Waugh, Model 
FR-111, pulse rate converter, which generates a dc voltage, 
between zero and 250 millivolts, proportional to the pulse 
rate. This dc voltage signal is transmitted, via the remote 
lines, to the program board of the analog computer.

This signal is used by the feedback flow controller 
associated with the hydraulic function generator (see Appen
dix F , specifically the point designated 4 in Figure A-7) 
in addition to its use as a measure of the flow rate. This 
signal is conditioned by passage through a first order smooth
ing and amplification filter (time constant of 0.04 sec. and 
zero frequency gain of 40) prior to being recorded.

The output signal from the conditioning filter is 
recorded, at an attenuation of 0.2 volts per millimeter, in 
channel 6 of the six channel recorder.
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The combination of system gain and recorder atten
uation permits recording the 250 millivolt maximum output 
from the pulse rate converter on a fifty millimeter chart 
span. As is seen in Figure A-3, the calibration of the 
pulse rate converter for a particular range of flow sensor 
causes some discrepancy.

System Calibration; The calibration of the data 
acquisition and signal conditioning system proceeded on two 
levels. Firstly, the characteristics of the particular flow 
sensor and of a thermocouple, made from the same reel of 
copper-constantan wire as those used in the investigation 
were established (see Figures A-3 and A-4). Secondly, the 
gains of the systems were checked periodically during the 
investigation and adjusted if necessary.

The calibration of the flow sensor and reactor flow 
rate measurement system was accomplished as follows.

1. Using analog computing components and a 
Hewlett-Packard, Model 412A, vacuum tube 
voltmeter, the gain of the conditioning 
filter was set at forty.

2. With the flow sensor, pulse rate converter, 
and the flow rate controller (see Appendix F) 
in operation, steady state operation of the 
experimental apparatus was established.

3. Setting the flow rate at various levels
(by means of the flow rate controller's set
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point) in random order, the calibration
experiments were made. These experiments
consisted of measuring the time required to
fill a standard bucket (6552 c.c.) and noting
the pen position in channel 6.

The calibration curve was established at temperatures 
(measured at the reactor inlet, indicated by channel 3) of 
124, 140, and 160°F. It was found that variation of the
curve due to density changes was less than the variation in
the experimental measurements of one flow rate at one tem
perature. Therefore, the curve determined at 140°F. was 
used and is presented in Figure A-3.

The method employed to calibrate the thermocouples 
used in the investigation is of questionable value, as it 
simply does not include the idiosyncracies of the individual 
thermocouples. However, it is the considered opinion of 
the author that calibration of the specific thermocouples
would be pointless in the light of the difficulty of linear
izing the true characteristics for recording purposes; the 
error which is introduced by the data reduction procedure 
(see Appendix B) and the fact that multiple thermocouples 
are used in three of the four data acquisition systems.

The actual reason for calibrating a "standard" 
thermocouple at all is simply to establish that its char
acteristic is essentially linear.

The procedure used to check the gain of the signal 
conditioning systems involved replacement of the sensor with
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a voltage of known magnitude. The indication (at the recorder) 
of a precalculated pen position constituted the desired check. 
As an example, consider the wall temperature system:

1. The four thermocouples (connected in parallel) 
are replaced with a one millivolt test signal.

2. With no zero suppression and an attenuation 
setting of 0.2 volts per millimeter (channel 1) , 
the pen position should be:

Imv 9340V 1 mm
lOOOmv Iv 0.2v

3. Suppose that rather than 41.7, the pen position 
is 40.3. The setting of the coefficient poten
tiometer associated with the variable gain 
summing amplifier used in the conditioning 
filter would be reduced until the desired pen 
position is achieved.

Assuming that the data acquisition element (the 
thermocouple) does provide a signal change of 0.024 millivolts 
per degree of wall temperature change, resetting of the atten
uation of channel 1 to 0.01 volts per millimeter completes 
the check.

Signal Conditioning Filters: With minor variations
to take care of signal polarity and the lack of the necessity 
to suppress the zero level of a signal, the schematic diagram 
given below represents the filter network employed in each 
of the five signal conditioning systems.
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e. (t) e^(t)

C

The circuit consists of a variable gain summing amplifier 
(see Bishop and Sims (6, 7) for details) equipped with a 
capacitor as a feedback element. A combination of Kirchoff's 
first law with the common approximations for the operation 
of a high gain operational amplifier may be employed to 
derive the differential equation which describes the response 
of the network:

eg(t) + (k/CRg)eQ(t) = - ( 1/CR^) e^ ( t)

e^(t) = e^(t) + R^e^/R^

which may be expressed, in terms of Laplace transforms, as:

H(p) = (E^(p)/E^(p) = (R^/R^)/( (CR^/k)p + 1)

Replacement of the argument of the Laplace transform with jw 
and separating the resulting complex number into its real 
and imaginary parts gives:
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H(jw) = X + jy

X  = (Rg/kR^)/(l + (CR^w/k) ) 

y = - ( R ^ c y k V ) / [ l  + (CR^w/k)^]

The normalized magnitude ratio is then:

| A j j | =  k R ^ / R ^ ( x ^  +  y 2 ) %

N = 1/[1 + (CR^w/k)^]^

The above expression reveals the reason for giving 
time constants, (CR^/k) and zero frequency gains, (Rf/kR^) 
as nominal values earlier.

The normalized magnitude ratio for the conditioning 
filters used on the wall and bulk temperatures are shown in 
Figure A-5. They are presented in comparison to the normal
ized magnitude ratios of the wall and bulk energy storage 
elements as determined from the computed estimates of the 
weighting functions. This figure is of interest as it indi
cates that the "noise" which was smoothed out of the measured 
responses was just that— noise.

An alternative way of stating the proposition is 
that if the reactor is viewed as a filter, its character
istic response involves much stronger attenuation of the 
signal at a given frequency than does the characteristic 
response of the conditioning filter. Therefore it is
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doubtful that any important level of response of the 
reattor has been lost because of the filters.

It is well known that the chaotic temperature 
variation with time seen when turbulent flow conditions 
prevail may be treated as a statistical variation about a 
time smoothed temperature, defined as:

r ~T(t) = (1/t*) / (T+T')dt
0

where T is the time smoothed temperature, T ' is the fluctu
ation about that temperature, and t* is an increment of time 
which is long compared to the period of T ' but short com
pared to the time required for the system to respond. If 
this approach is made to smoothing (T+T') for successive 
intervals of t*, the result is a series of steps, the ampli
tude of which is T during a particular t*.

The filtering approach made in this investigation is 
recognized as essentially a series of time smoothings, where 
the initial instant of the second smoothing increment occurs 
at dt rather than t*. Of course the smoothing increment is 
approximately SCRf/k.



APPENDIX E 

CLOSED PROCESS FLUID CYCLE

A schematic diagram of the closed process fluid 
cycle, exclusive of the path through the hydraulic function 
generator (see Appendix F) and the reactor (see Chapter V), 
is shown in Figure A-6. The item and stream designations 
given therein correspond to those in the description which 
follows and in other appendicies which deal with the des
cription of the experimental apparatus.

The process fluid (Super Service hydraulic lift oil) 
is pumped by the surge pump, PI (1/2 hp, centrifugal), from 
the surge tank T3 (42 gal.), through a heat exchanger and 
into the constant temperature source tank, T1 (42 gal.).
The purpose of cooling the process fluid with tap water in 
the exchanger is to insure that the temperature of the fluid 
entering Tl is-lower than that of the contents of Tl.

Skipping the equipment associated with Tl and the 
outlet stream which passes through the flow controller for 
the moment, the process fluid is removed from Tl through a 
standpipe (to maintain the tank level) and pumped by the 
crossover pump, P3 (1/10 hp, centrifugal), into the second 
constant temperature source tank, T2 (42 gal.). This tank
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is maintained at a temperature which is higher than that 
maintained in tank Tl.

The process fluid is removed from tank T2 through 
a standpipe (to maintain a liquid level) and pumped hy the 
surge return pump, P4 (1/10 hp, centrifugal), back to the 
surge tank T3 via the surge tank manifold.

In as much as the two constant temperature source 
tanks, Tl and T2 are similarly constructed and equipped, only 
tank Tl need be described. The tank, which is well agitated 
by means of a Lightnin mixer, Al (model NC2, 1/8 hp, 1725 rpm), 
is equipped with two sets of internal coils. One coil car
ries tap water, thus providing a relatively constant heat 
load which is large compared to the heat losses to the sur
roundings. The second coil carries steam for heating purposes.

The temperature of the contents of the tank is con
trolled by a feedback control system consisting of a copper- 
constantan thermocouple, installed in the tank outlet, (sen
sor) , a Minneapolis Honeywell Brown Electronic Potentiometer 
Pyrometer, (two mode recording controller), and a Research 
Controls, Model 758, ATO, pneumatic control valve which 
throttles th^ flow of steam to the heating coil (manipulative 
element) .

Prooëss fluid is pumped by the feed pump, P2 (Calirr 

fornia Bronze, 3 gal./min., gear pump driven by a Goulds #2,
3/4 hp electric motor), from the bottom of the tank to the 
inlet of the Kates Model MF Flowrator (range: 0.1 to 1.5
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gal./min.). The needle valve in the process fluid return 
line (downstream of the pump) is used in conjunction with 
the adjacent pressure indicator to adjust the pressure 
upstream of the flow controller.

The points designated A in Figure A-6 represent 
connections to the hydraulic function generator. The sys
tems upstream of these points perform the function of making 
available two streams of essentially constant temperature 
and flow rate.

The points designated C and D in Figure A-6 represent 
connections to the flow splitter section of the hydraulic 
function generator and the outlet of the reactor respec
tively. These streams are combined in the surge tank mani
fold and pass back to the surge tank.

The storage tank, T4 (55 gal.), together with the 
surge tank provide storage for the process fluid when the 
system is not being operated.

The points designated G on the schematic diagram 
represent connections to tap water facilities. The point 
designated H represents a connection to a source of steam.
The points labeled I represent connections to drains.

A test of the ability of the system to perform the 
required function showed the capability to maintain temper
atures of 110®F. and 180°F. within ± 0.2°F. for two hours 
under flow conditions of 2.0 ± .03 gal./min. for the com
bined outlet streams (measured with an appropriate turbine 
flow rate sensor at the outlet of the mixing section of the 
hydraulic function generator).



APPENDIX F

HYDRAULIC FUNCTION GENERATOR

A schematic diagram of the hydraulic function 
generator which was used to force the temperature of the 
process fluid at the reactor inlet is shown in Figure A-7.
The item and stream designations given therein correspond 
to those in the description which follows and in the other 
appendicies which deal with the description of the experi
mental apparatus.

As described in Appendix E, the process fluid is 
available (at points A in Figures A-6 and A-7) at two dis
tinct and essentially constant temperatures and flow rates. 
These streams pass through the chambers of the double ended 
double acting piston and cylinder arrangement (see Figure 
a -7). The cylinder is twenty-four inches long, four inches 
in diameter (inside) and is made of brass. The piston con
sists of double acting rubber cups mounted on a one inch 
diameter stainless steel shaft. The cylinder heads are 
aluminum and have been drilled and tapped to accept 1/2 
inch pipe connections.

After passage through the piston _and cylinder arrange
ment, the two streams are joined in the mixing section.
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Subsequently the stream (of intermediate temperature) is 
separated into two portions in the flow splitter section.
One portion of the flow passes through the flow rate sensor 
(Waugh Turbine Flowmeter, Model FL-6SB-1, range: 0.15 to
1.0 gal./min.) and then to the reactor inlet (point B in 
Figure A-7). The other portion of the stream passes through 
a needle valve (adjusted to approximate the reactor pressure 
drop) and then to the surge tank, T3, manifold (points C 
in Figures A-7 and A-6).

In principle, the operation performed by the piston 
and cylinder arrangement is that of generation of a constant 
flow rate stream, the temperature of which is proportional 
to the derivative of piston position. This operation may be 
explained simply as follows.

Assume that process fluid is entering the chambers 
of the cylinder at 120 and 140°F. respectively at identical 
flow rates of 0.8 gal./min.. Provided that the piston is 
stationary, the flow rate and temperature of the stream 
leaving the mixing section is 1.6 gal./min. at 130°F. Now 
let the piston be moved toward the low temperature end of 
the cylinder at a constant rate of 19.6 in./min. The flow 
into each chamber remains 0.8 gal./min. but the flow rate 
out of the low temperature chamber is 0.8 plus the rate of 
decrease of chamber volume (0.1 gal./min.). Similarly the 
flow rate out of the high temperature chamber is reduced to 
0.7 gal./min. The result is 1.6 gal./min. leaving the mix
ing section at'â temperature of 128.7°F.
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If the piston is stopped, the ratio of flow rates 

returns to its original value and the temperature, at the 
exit of the mixing section, returns to its original value 
according to that section's time constant. The approximate 
relation between the temperature of the fluid leaving the 
mixing section and the rate of change of chamber volume, 
or derivative of piston position, is apparent.

Clearly there are important practical limitations 
to the actual operation of the function generator. For 
example, the rate at which the piston may be moved is 
limited by the flow rates through the chambers. Also, the 
finite length of the cylinder places a limitation of the 
period of time for whi^h a monotonie function may be applied 
to the generator.

An advantage of the particular nature of the function 
generator's operation, in terms of providing the system forc
ing for generalized pulse testing, is that to "remove" the 
forcing function (see Chapter II), one has only to stop 
moving the piston.

In order to generate motion of the piston, a Fischer 
pneumatic valve operator is employed. The four inch stroke 
of the valve operator (in response to a 3 to 15 psi control 
air signal) is multiplied by a factor of five and changed, 
in direction, by 90° in a double rack and pinnion gear box 
which was designed and constructed for this investigation.
The piston is, of course, connected directly to the output 
rack of the gear box.



284
The integral of the desired forcing function is 

generated electrically by the analog computer and trans
mitted to the instrument panel in the Process Laboratory. 
There the signal voltage is transduced by means of a Taylor 
Transet, Model 701T electro-pneumatic transducer to a 3 to 
15 psi signal which is transmitted to the valve operator.

A requirement for successful operation of the func
tion generator which has been mentioned only as an assumption 
is that the flow rates into the chambers are, in fact, con
stant. Even though the flow controllers, C2, (Figure A-6) 
are endowed with impressive specifications (with respect to 
the quality of flow control in the face of downstream pres
sure fluctuations), it was found necessary to introduce a 
feedback control system on the flow splitter section.

The flow rate sensor provides a train of electrical 
pulses, the frequency of which is proportional to the flow 
rate. A transducer (Waugh Pulse Rate Converter, Moder FR- 
111, 0 to 250 mv output) converts the frequency of pulses to 
a continuous voltage. This voltage is transmitted to the 
analog computer, where it is amplified and negatively summed 
with an arbitrary control signal. The resulting error signal 
is transmitted to the Process Laboratory instrument panel 
where it is transduced (Taylor Transet, Model 701T) to a 3 
to 15 psi pneumatic signal.

This pneumatic signal is transmitted to a pair of 
linear control valves (Research Controls, Type 75, c^ = 0.2,
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range spring: 3 to 15 psi), one of which operates air to
close, the other, air to open. These valves control the 
flow of process fluid through the legs of the flow splitter 
section.

Notice that this control system would permit intro
duction of arbitrary variation of the flow rate simply by 
making the arbitrary control signal something other than a 
constant voltage. This technique was employed to attempt 
non-linear forcing of the reactor. Unfortunately, the hys
teresis of the control valves was of such magnitude that 
following extreme manipulation of the flow rate, the return 
to equilibrium level was not reproducible; thus precluding 
the use of the technique.



APPENDIX G 

CLOSED REACTOR COOLANT CYCLE

A schematic diagram of the reactor coolant cycle is 
shown in Figure A-8. The item and stream designations given 
therein correspond to those in the description which follows 
and in other appendicies which deal with the description of 
the experimental apparatus

The coolant (a 50% by weight mixture of glycol and 
water) was maintained at 30°F. in the coolant reservoir, T5, 
by means of a freon refrigeration system (T6, the compressor, 
and the coil in T5).

The coolant is withdrawn from the reservoir by the 
coolant feed pump P5 (1/4 hp, gear pump) and fed to the 
reactor's cooling jacket (point E in Figure A-8). After 
passage through the jacket, the coolant returns to the reser
voir (from point F in Figure A-8).

The coolant reservoir is well agitated by a Precision 
Scientific Company mixer, A 2 , which is rated at twenty watts.

The temperature of the coolant in the reservoir is 
controlled by means of a simple on-off controller which uses 
a Fenwal bi-metallic switch (Catalog number 17552-0, range: 
-100 to 600°F.) as a temperature sensor.
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A temperature rise closes the switch connecting a 

six volt (dc) signal, through a chatter smoothing circuit, 
across the coil of a computing relay (located in the analog 
computer). Closure of the computing relay contacts connects 
six volts (dc) across the coil of a relay located on the 
process laboratory instrument panel. Activation of this 
relay places 110 volts (AC) across the coil of a power relay 
on the panel which in turn completes the 230 volt (AC) power 
circuit to the freon refrigeration system compressor.

Operation of the compressor causes a pressure rise 
in the freon reservoir, T6, and subsequent passage of freon 
through the refrigeration coil located in the coolant 
reservoir.

The subsequent drop in coolant temperature causes 
the bi-metallic switch to open, thus deactivating all relays 
and disconnecting the power to the compressor.

The closure of the computing relay contacts also 
makes the ground connection for a circuit which lights a 
small neon bulb on the analog computer console, thus pro
viding remote indication of normal operation.


