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ABSTRACT 

 

The lethal factor (LF) component of Bacillus anthracis lethal toxin (LeTx) 

cleaves mitogen activated protein kinase kinases (MAPKKs) in a variety of 

different cell-types, yet not all cells are susceptible to the toxin.  Previous studies 

revealed that this toxin rapidly kills macrophages from specific genetic 

backgrounds whereas most other cell types are resistant.  The reason for this 

selective killing is unclear, but suggests other factors may also be involved in 

LeTx intoxication.  In the current study, DNA membrane arrays were used to 

identify broad changes in macrophage physiology after treatment with LeTx.  

Expression of genes regulated by MAPKK activity did not change significantly, 

yet a series of genes under glycogen synthase kinase-3-β (GSK-3β) regulation 

changed expression following LeTx treatment. Correlating with these 

transcriptional changes, GSK-3β was found to be below detectable levels in toxin-

treated cells, and, an inhibitor of GSK-3β, LiCl, sensitized resistant IC-21 

macrophages to LeTx.  In addition, zebrafish embryos treated with LeTx showed 

signs of delayed pigmentation and cardiac hypertrophy; both processes are subject 

to regulation by GSK-3β.   A putative compensatory response to loss of GSK-

3β was indicated by differential expression of three motor proteins following 

toxin treatment, and kif1c, a motor protein involved in sensitivity to LeTx, 

increased expression in toxin-sensitive cells yet decreased in resistant cells 

following toxin treatment.  Differential expression of microtubule associating 



 x

proteins and a decrease in the level of cellular tubulin were detected in LeTx-

treated cells, both of which can result from loss of GSK-3β activity.  In addition 

to examining the cellular impact of LeTx on macrophages, studies were 

performed in order to identify additional factors that govern LeTx sensitivity 

among different cell-types.  Specifically, comparisons were made regarding the 

rate of toxin entry among macrophage and non-macrophage lines.  These studies 

revealed differences in the rate of toxin entry among the cell lines tested, which, 

in turn, could contribute to the differences in susceptibility of these lines. 

Together, the data presented in this thesis provide new information on LeTx’s 

overall influence on macrophage physiology, and suggest that loss of GSK-3β as 

well as changes in kinesin motor proteins and microtubule stability  contributes to 

cytotoxicity. 
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INTRODUCTION 

 

In this thesis I will be discussing anthrax, its causative agent, and the virulence 

factors required for pathogenesis. Special focus will be given to anthrax toxin and 

its role in disease and, more specifically, the role of anthrax lethal toxin.  In 

addition, I will provide an overview of the host cell-types and signaling pathways 

implicated in disease as well as factors that govern host sensitivity.  In line with 

this, I will highlight the gaps in our current understanding regarding lethal toxin 

and the mechanism by which it causes lethality in the host.  

 

Due to its marked cytotoxic effects in vitro and in vivo, lethal toxin has been the 

focus of many studies related to anthrax.   In spite of all that is known about lethal 

toxin and its involvement in mediating death in the host, many questions remain 

regarding its cellular activity as well as its overall role in disease.  Therefore, my 

work focuses on studying the interaction of anthrax lethal toxin with mammalian 

cells in order to elucidate its mechanism of action. 
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LITERATURE REVIEW 

 

Organism 

The Bacillus genus encompasses a diverse group of Gram-positive, aerobic, 

spore-forming bacteria.  Within this group, members considered to be medically 

relevant include Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and 

Bacillus mycoides.  Of these, B. anthracis is the most prominent due to its history 

of causing widespread disease in animal and human populations.  In contrast, the 

other pathogenic Bacillus are more commonly considered to be opportunistic and 

are associated with diseases that tend to be rare and non-fatal.  

   

B. anthracis can normally be discriminated from other Bacillus species through 

phenotypic and genotypic comparisons.  This bacterium’s distinguishing 

characteristics include lack of motility, lack of hemolysis, and the presence of 

unique plasmid-encoded virulence factors that mediate this organism’s 

pathogenicity (Turnbull 1991).  B. anthracis is also unique with regards to the 

forms and severity of disease that it is associated with.  As the causative agent of 

anthrax, B. anthracis has been linked to zoonotic disease, affecting herbivores 

such as cattle, sheep, and horses, although disease can occur in all mammals 

including humans (Mock and Fouet 2001).  Disease in humans can manifest in 

one of three forms depending on the route of infection to include cutaneous, 

inhalational, and gastrointestinal.  Although the prevalence of disease differs 

among the three forms, all have the potential to cause a fatal, systemic infection 

unless proper treatment is administered. 
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Due to the extreme difference in the pathogenicity of B. anthracis versus other 

members of the Bacillus genus, genetic comparisons have been performed in 

order to determine the relative amount of homology that exists.  Interestingly, 

reports have indicated that the pathogenic Bacillus are virtually indistinguishable 

based on standard genotypic characteristics, including both the 16S and 23S 

rRNA sequences (Ash, C. et al. 1991; Ash, C. and Collins, M. D., 1992).  The 

high degree of chromosomal similarity prompted the contention that B. 

thuringiensis, B. mycoides, B. anthracis, and B. cereus are varieties of a single 

species (Somerville and Jones 1972; Kaneko, Nozaki et al. 1978; Seki 1978).  It 

has since been proposed that B. thuringiensis, B. mycoides, and B. anthracis are 

subspecies of B. cereus (Ash, Farrow et al. 1991; Ash and Collins 1992).  Efforts 

remain focused on elucidating the unique virulence factors of each of the Bacillus 

members in order to better define the pathogenicity associated with each.  

 

There is significant homology between B. anthracis and B. cereus.  This has been 

of particular interest since B. cereus is the most significant pathogen within the 

Bacillus genus second to B. anthracis.  B. cereus is most often associated with 

gastroenteritis (Kotiranta, Lounatmaa et al. 2000; Jensen, Hansen et al. 2003), 

ocular infections (Callegan, Kane et al. 2003; Chan, Liu et al. 2003), and 

opportunistic infections that occur in immunocompromised individuals (Tokieda, 

Morikawa et al. 1999; Ginsburg, Salazar et al. 2003; Girisch, Ries et al. 2003; 

Hilliard, Schelonka et al. 2003).  B. cereus-related gastroenteritis develops after 

consuming contaminated food while the associated ocular infections and 
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opportunistic infections are both secondary to existing illnesses.  B. cereus-related 

gastroenteritis is usually very mild and self-limiting while the ocular and 

opportunistic infections do require antibiotic treatment (Drobniewski 1993).  The 

major factor involved in managing B. cereus-related infections is the incidence of 

multi-drug resistance due to the organism’s production of β-lactamases (Coonrod, 

Leadley et al. 1971).  In spite of this, these infections are usually successfully 

controlled with specific antibiotic therapy (Drobniewski 1993).   

 

Due to the enhanced pathogenicity of B. anthracis and B. cereus compared to 

corresponding members of this species, studies have focused on identifying and 

characterizing potential virulence factors associated with each.  Comparative 

genome hybridizations have been performed from which it was reported that 

almost all of the potential virulence genes contained on the B. anthracis 

chromosome, including hemolysins, phospholipases, iron-acquisition genes, and 

surface proteins, have homologues in B. cereus (Read, Peterson et al. 2003).  

Additionally, Read et al. reported that only 141 B. anthracis genes, whose 

functions are unknown, out of approximately 5508 chromosomal genes did not 

have B. cereus homologues.  This study demonstrated the high degree of 

similarity that exists between these bacteria and further emphasized a common 

ancestral link.  Additionally, these data suggests that the virulence capabilities 

associated with each organism are not necessarily related to chromosomally-

encoded genes but are directed by unique plasmid-contained elements. 

 



 5

The homology between B. anthracis and B. cereus was further examined in a 

study that revealed an anthracis-like virulence plasmid in a confirmed B. cereus 

isolate.  This particular isolate was found to contain a large plasmid, pBc10987, 

that shared 65% homology in protein, 50% synteny, and retained the 

transcriptional direction exhibited by the corresponding plasmid, pXO1, of B. 

anthracis (Rasko, Ravel et al. 2004).  In contrast, this group reported only 7% 

homology between pBc10987 and a B. thuringiensis plasmid, pBtoxis.  The 

distinguishing feature of pBc10987 when compared to pXO1 of B. anthracis was 

the absence of the pathogenicity island containing the toxin genes and the 

corresponding regulatory elements that mediate anthrax disease.  In spite of this, 

Rasko et al. concluded that this particular B. cereus isolate was more closely 

related to the fully virulent Ames strain of B. anthracis than to another B. cereus 

isolate.   

 

Recent studies performed by Hoffmaster et al. not only complement the findings 

of Rasko et al. but provide evidence to further complicate the task of making 

clinical distinctions between B. anthracis and B. cereus.  This group identified a 

B. cereus isolate, G9241, that not only contained an anthracis-like plasmid but 

also possessed the toxin genes associated with anthrax disease (Hoffmaster, Ravel 

et al. 2004).  This bacterium was isolated from a patient with severe pneumonia 

whose clinical history and disease symptoms mimicked those described in 

previous cases of inhalational anthrax.  The phenotypes of B. cereus G9241, B. 

anthracis, and another B. cereus isolate were examined and compared on the basis 

of characteristics including hemolysis, motility, and antibiotic resistance.  G9241 
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displayed a non-anthracis phenotype in that it was hemolytic, motile, and 

penicillin resistant.  However, genomic comparisons revealed G9241 to be more 

closely related to B. anthracis than the other B. cereus isolate based on the 

existence of a pXO1-like plasmid that contained the anthrax toxin genes.  From 

this, it can be concluded that B. anthracis and B. cereus exhibit an exceptional 

degree of homology and can no longer be distinguished solely on the basis of 

standard phenotypic comparisons or on the severity of the associated disease.  

These findings support the need to further characterize the unique virulence 

factors that contribute to the varied degree of pathogenicity demonstrated among 

the Bacillus members and to identify the factors that determine the type of disease 

that ensues.  

 

Historical Significance of B. anthracis 

The long-standing history between B. anthracis and medical research has laid the 

foundation for the fields of microbial pathogenesis and immunology.  Work with 

this organism began in the mid-1800s in response to devastating outbreaks of 

anthrax that plagued animals and humans throughout Europe (Bryskier 2002).  

Aloys Pollender made one of the first reports in 1845 after studying animals that 

had died of anthrax.  At that time, the “stick-like bodies” observed in the blood of 

diseased animals were not characterized as bacteria but were instead referred to as 

“plants” (Munch 2003).  Later, in 1876, Robert Koch identified the organisms he 

observed as “Bacteridien” during his studies on anthrax (Munch 2003).  After 

transmission to rabbits, Koch was able to isolate these organisms from the blood 

of the infected animals.  Koch considered the organisms to be living and was able 
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to support this by cultivating them.  Taken together, these findings enabled Koch 

to specifically link this bacterium to anthrax disease (Koch 1876; Jay 2001).  In 

doing so, Koch’s postulates were established and have since remained 

fundamental to microbial pathogenesis (Jay 2001).   

 

Research on anthrax continued and in 1881, B. anthracis was the first organism to 

be used in a live, attenuated bacterial vaccine developed by Louis Pasteur.  This 

came in response to a widespread outbreak of anthrax among domestic livestock 

and was considered to be of great success.  In 1905, B. anthracis was central to 

studies performed by Metchnikoff following his discovery of macrophages and 

phagocytosis.  Specifically, Metchnikoff studied the uptake of anthrax bacilli by 

macrophages in order to examine variation in susceptibility to phagocytosis based 

on the organism’s level of virulence (Hirsch 1959).  Evidence revealed by these 

studies not only served as a foundation for the field of cellular immunology but 

also provided insight into anthrax pathogenesis, which remains under intense 

focus today.   

 

Anthrax  

The first reports of anthrax date back to 15th century B.C. when it was first 

described in the book of Genesis as one of the Egyptian plagues (Oncu and 

Sakarya 2003).  It is also believed to be the disease associated with the “Black 

Bane” that plagued Europe during the Middle Ages, having caused significant 

death among animals and humans (Bryskier 2002).  Anthrax has also been linked 

to widespread disease that occurred during the industrialization of Europe, 
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resulting in the death of more than half of the sheep throughout Europe by the 

mid-1800s (Bryskier 2002).  The prominence and devastation of disease are what 

first prompted intense focus on anthrax research and led to the notable scientific 

discoveries that began in the mid-1800s.  In modern day, anthrax remains 

endemic to developing countries of the world that do not vaccinate domestic 

livestock and primarily affects people who come into contact with infected 

animals or their products (Oncu and Sakarya 2003). 

 

Aside from reports of naturally occurring disease, anthrax has a long history with 

biological warfare.  The first account describing the use of anthrax as a biowarfare 

agent dates back to Moses (Bryskier 2002).  The use or misuse of B. anthracis 

became especially prevalent in the 20th century, beginning with Germany during 

World War I.  Additional reports describing the use of anthrax in biowarfare 

involved Japan and Great Britain during the early 1930’s and the mid-1940s.  

During that time, B. anthracis was deliberately used to contaminate food and 

water supplies while sporulated forms of this organism were aerosolized and 

tested for use with bombs.  The most notable, accidental outbreak of anthrax 

occurred in Sverdlosk in 1979 after an explosion in a Soviet biological weapons 

laboratory.  This explosion caused the release of aerosolized B. anthracis spores, 

leading to a severe outbreak of inhalational anthrax and resulting in 64 deaths 

(Meselson, Guillemin et al. 1994).  Prior to the 9/11 attacks of 2001, the most 

recent account of anthrax and bioterrorism involved a Japanese terrorist group 

that released B. anthracis spores in Tokyo subway stations in 1995, fortunately to 

no avail.  The anthrax attacks in the U.S. following 9/11 caused 11 cases of 
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inhalational anthrax, resulting in 5 deaths, as well as 11 cases of cutaneous 

anthrax (Spencer 2003).  This event renewed focus on B. anthracis due to its 

potential as a biological weapon and its ability to cause severe disease in humans. 

 

Disease Cycle 

Disease is initiated by host contact with spores at which point spores are engulfed 

by tissue-resident macrophages at the site of infection.  Once the spores have been 

phagocytosed, they are transported to regional lymph nodes (Ross 1957; Lincoln, 

Hodges et al. 1965).  Germination occurs within host macrophages during 

transport to regional lymph nodes (Ross 1957; Guidi-Rontani, Weber-Levy et al. 

1999; Guidi-Rontani, Levy et al. 2001; Welkos, Little et al. 2001; Guidi-Rontani 

2002; Welkos, Friedlander et al. 2002).  Replication of vegetative bacilli soon 

follows, and as the regional lymph nodes become overwhelmed, vegetative cells 

spread to surrounding tissues and into the bloodstream, ultimately causing 

systemic infection (Ross 1957; Lincoln, Hodges et al. 1965).  Finally, upon death 

of the host, sporulation of the vegetative cells occurs and is followed by the return 

of spores to the soil environment (Mock and Fouet 2001).  These spores exist in a 

dormant state until the disease cycle is initiated once again. 

 

Clinical Disease 

Anthrax disease manifests in one of three forms: cutaneous, inhalational, and 

gastrointestinal.  Cutaneous anthrax is the most common form of human disease 

(Inglesby, Henderson et al. 1999) and is easily recognized and treatable.  

Inhalational and gastrointestinal anthrax are more serious forms of disease and are 
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therefore associated with relatively high mortality rates, particularly with 

infections that are not treated within the early stages.  In these cases, disease 

results from the inhalation of spores or the consumption of contaminated meat, 

respectively.  Although less common, these forms pose a greater threat since 

diagnosis is difficult as early symptoms of disease are non-specific.   
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All three forms of anthrax disease have the potential to cause a fatal, systemic 

infection in the host.  Systemic anthrax occurs unless proper treatment is 

administered during the early stage of disease.  Once the disease progresses to the 

later stage, treatment is often ineffective.  During the later stage of anthrax, it has 

been reported that there are 107 – 109 organisms per ml of blood (Smith and 

Keppie 1954).  Furthermore, early studies revealed that sterile-filtered serum 

obtained from infected guinea pigs could induce death when injected 

intravenously (Smith and Keppie 1954).  This evidence prompted researchers to 

identify key virulence factors produced by this organism.  Studies have since 

shown that anthrax toxin, one of two major virulence factors produced by B. 

anthracis, is central to the disease process.  In addition to the high number of 

organisms contained in the blood at the later stage of disease, high levels of toxin 

contribute to death of the infected host (Keppie 1955).  The severity of systemic 

disease emphasizes the importance of elucidating the specific virulence 

mechanisms that facilitate the progression of anthrax infections.  

 

Treatment and Prevention of Disease 

In recent years, B. anthracis has gained increasing recognition for its potential use 

as a biological weapon.  The U.S. mandated an anthrax vaccine for all military 

personnel although the long-term effectiveness of this vaccine in response to 

exposure has not been determined.  In addition, current vaccine supplies are 

limited and therefore do not benefit the civilian population.  In the event of a 

biological attack, antibiotic therapy would be used to treat disease.  However, this 
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organism’s natural resistance to a variety of antibiotics, particularly 

cephalosporins and trimethoprim-sulfamethoxazole, limits the number of effective 

drugs that can respond to infection (Doganay and Aydin 1991; Odendaal, 

Pieterson et al. 1991).  Additionally, recent studies revealed the presence of two 

beta-lactamases within the genome of B. anthracis (Chen, Succi et al. 2003).  This 

finding further heightens the concern regarding the ability of this pathogen to 

circumvent current drug therapies.  Problems in determining the most effective 

drug treatments are compounded by the fact that, in order to be effective against 

severe forms of disease, administration of drugs must begin during the early 

stages of infection.  This is based on reports showing that death occurred in 

experimental animals once anthrax disease had progressed to a later stage despite 

having achieved sterility of the blood with antibiotic treatment (Keppie 1955).  

The limitations of current preventative and therapeutic measures support the need 

to further elucidate the role of key virulence factors in order to minimize the 

efficacy of B. anthracis within the host. 

 

Pathogenesis 

There are two major virulence factors involved in anthrax pathogenesis, each of 

which is encoded on a separate plasmid carried by B. anthracis.  The first major 

virulence factor is a tripartite toxin, encoded by pXO1, which consists of 

protective antigen (PA), lethal factor (LF), and edema factor (EF).  This toxin acts 

in binary combination whereby the binding domain (PA) facilitates the uptake and 

entry of the enzymatic domain (LF or EF) into the cytosol of host cells (Brossier 

and Mock 2001).  These binary combinations yield two distinct toxins, edema 
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toxin and lethal toxin, which cause edema and death.  The second major virulence 

factor produced by B. anthracis is an anti-phagocytic capsule composed of poly-

D-glutamic acid and is encoded by pXO2.  The capsule is thought to facilitate the 

disease process by inhibiting phagocytosis of vegetative bacilli by host cells 

(Makino, Uchida et al. 1989; Welkos 1991). 

 

Fully virulent strains of B. anthracis possess both virulence plasmids; strains 

lacking either of the plasmids exhibit a marked reduction in virulence.  

Specifically, strains lacking pXO2 have exhibited a 105-fold decrease in virulence 

compared to wild-type strains (Ivins, Ezzell et al. 1986; Welkos and Friedlander 

1988) while strains deficient in pXO1 are reportedly avirulent (Ivins, Ezzell et al. 

1986; Uchida, Hashimoto et al. 1986).  Because the detrimental effects associated 

with B. anthracis infections are attributed to pXO1-encoded factors, preferential 

focus has been given to studying anthrax toxin in order to better understand its 

role in disease.    

 

The requirement for this virulence factor reportedly begins during disease 

establishment.  Upon host contact with B. anthracis spores, rapid and efficient 

phagocytosis by macrophages occurs at the initial site of infection.  Following 

uptake, studies have revealed that germination of spores occurs rapidly within 

host macrophages (Guidi-Rontani, Weber-Levy et al. 1999).  During this 

intracellular step, it has been reported that the vegetative bacilli display an early 

onset of virulence gene expression, specifically that of the toxin-encoding genes 

(Guidi-Rontani, Weber-Levy et al. 1999; Dixon, Fadl et al. 2000).  Subsequent 
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comparisons of B. anthracis strain variants, differing in pXO1 plasmid content, 

revealed that strains devoid of anthrax toxin do not survive in host macrophages 

after germination (Guidi-Rontani, Weber-Levy et al. 1999).  This suggests that the 

early onset of toxin gene expression mediates the survival of vegetative bacilli 

during this intracellular step.  Separate from this is the contention that the toxin 

facilitates the release of the vegetative bacilli from host macrophages into the 

extracellular milieu.  This is based on studies that revealed a loss of membrane 

integrity among B. anthracis-infected macrophages (Dixon, Fadl et al. 2000; 

Guidi-Rontani, Levy et al. 2001).  The most notable change in membrane 

integrity occurred in macrophages infected with a strain containing functional 

pXO1.  In contrast, macrophages infected with strains deficient in pXO1 

exhibited minimal change in membrane integrity.  Taken together, these data 

suggest that early onset of toxin gene expression is essential for the progression of 

disease.  Beyond that, anthrax toxin is thought to play a vital role throughout the 

course of infection as it mediates edema and death in the host, as described in 

following sections. 

 

Virulence Plasmids 

Early studies revealed that anthrax toxin is encoded by a large plasmid that 

confers toxigenic characteristics (Mikesell, Ivins et al. 1983).  Preliminary 

analysis indicated that strains lacking this extrachromosomal element did not 

produce EF, LF, or PA.  Incubation at 42.5°•C cured toxigenic strains of the 

plasmid and completely eliminated toxin production.  In addition to discovery of 

the toxin-encoding plasmid, this work also explained Pasteur’s early observations 
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regarding the loss of virulence when B. anthracis was incubated at 43°•C.  

Subsequent work found that the toxin structural genes, cya, lef, and pag (which 

correspond to EF, LF, and PA, respectively), are all encoded on this plasmid, 

thereby making a direct link between toxin production and this extrachromosomal 

element.  pXO1 has now been found in all toxigenic strains of B. anthracis and 

there is currently no evidence of strains harboring toxin genes within the 

chromosome.   

 

Following discovery of pXO1, Leppla and colleagues subsequently cloned pag 

with cloning of lef and cya following soon thereafter.  Each of these genes were 

confirmed to be encoded by pXO1 as this plasmid was used for cloning each of 

these elements (Vodkin and Leppla 1983; Robertson and Leppla 1986; Mock, 

Labruyere et al. 1988; Tippetts and Robertson 1988).  Sequence comparisons 

revealed homology within the 5’end of lef and cya, suggesting this could be a 

common region of PA binding between these two enzymatic components (Bragg 

and Robertson 1989).  This possibility was subsequently confirmed by numerous 

functional and biochemical experiments over the next decade.   Each of these 

genes was found to share AT base composition similar to the genome of B. 

anthracis indicating co-evolution of these genes with this organism or one closely 

related. 

 

Okinaka and colleagues reported the complete sequence of pXO1 in 1999 and the 

plasmid was found to contain 181,654 bp of DNA encoding 143 ORFs (Okinaka, 

Cloud et al. 1999).  The genes of cya, lef, and pag are located within a 
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pathogenicity island, approximately 44.8 kb in size, and flanked by exact inverted 

repeats of IS1627 elements (Okinaka, Cloud et al. 1999).  This pathogenicity 

island also contains the regulators pagR and atxA.  Of the 31 ORFs within the 

pathogenicity island, Okinaka and colleagues reported that 15 have no assignable 

function. Interestingly, three spore germination responsive elements, gerX-A,B,C,  

are present on the pathogenicity island of pXO1.  Additionally, pXO1 encodes a 

type 1 topoisomerase, topA; a resolvase, and a transposase (Okinaka, Cloud et al. 

1999).  The G + C content of pXO1 is similar to that of the B. anthracis 

chromosome, both of which are approximately 33% G + C (Mock and Fouet 

2001). 

 

Anthrax Toxin Genes 

pagA.  The gene encoding PA (pagA: accession number M22589) is found at 

region 133161 to 135455 on pXO1 and is encoded on the negative strand of DNA 

(Okinaka, Cloud et al. 1999).  Early literature refers to pagA as pag; but, as 

described below, pag is encoded as a part of a bicistronic message with a 

regulatory element pagR.  Thus, the more current literature correctly refers to the 

gene encoding PA as pagA.  The DNA sequence of pagA encodes a protein 764 

amino acids in size with a molecular weight of 83 kDa (Okinaka, Cloud et al. 

1999).  The overall G+C content of PA is 31%.  pagA shares sequence homology 

with other known binary toxins, such as Clostridium perfringens iota toxin Ib and 

Clostridium spiroforme Sb (Lacy and Collier 2002).  These homologous proteins 

function in a similar fashion to PA, acting as cell entry components of binary 

toxins.  PagA has been cloned and expressed in a variety of recombinant systems, 
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and like the other two components of anthrax toxin, the three dimensional 

structure of this protein has been solved. 

 

lef.  The gene encoding LF (lef: accession number M29081 and M30210) is 

located upstream of pagA with the intervening sequence containing the pagR 

region. LF is encoded on the positive strand of pXO1 in the opposite direction 

from the pagA/pagR bicistronic element.  The open reading frame of lef lies at 

regions 127442 to 129871 on pXO1 and encodes a protein 809 amino acids in size 

(Okinaka, Cloud et al. 1999).  The mature protein consists of 776 residues 

following the cleavage of a 33-residue signal peptide (Duesbery and Vande 

Woude 1999).  Based on this sequence, the predicted size of LF is 90.2 kDa 

(Duesbery and Vande Woude 1999).  LF shares sequence homology with EF 

across the first 255 residues which reflects a common region of PA-binding 

(Collier and Young 2003).  With the exception of homology with EF, LF does not 

have any known protein neighbors.   

 

cya.  The gene encoding EF (cya: accession number M23179 and M24074) is 

located downstream of both lef and pagA at region 154224 to 156626 and is 

encoded on the negative strand of pXO1 (Okinaka, Cloud et al. 1999).  cya 

encodes an 800 amino acid protein, with a 767 amino acid mature protein 

following cleavage of the secretion signal peptide (Duesbery and Vande Woude 

1999).  The final predicted molecular weight of the mature protein is 88.8 kDa 

(Duesbery and Vande Woude 1999).  EF shares significant sequence homology 
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with the adenylate cyclase produced by Bordetella pertussis and with the amino-

terminal region of LF (Escuyer, Duflot et al. 1988). 

 

Regulation of Anthrax Toxin by Environmental Factors 

Anthrax toxin expression is inducible and responsive to environmental signals 

such as CO2 and temperature (Leppla 1988; Sirard, Mock et al. 1994).  

Furthermore, growth of B. anthracis in defined media leads to increased 

expression of PA, LF, and EF (Leppla, 1988).  Expression of pagA, cya, and lef is 

coordinated in response to these environmental signals, yet the genes are not 

organized within an operon.  

 

Growth of B. anthracis in the presence of bicarbonate (0.8%) provides CO2 levels 

adequate for the induction of toxin expression (Sirard, Mock et al. 1994).  In 

conjunction with CO2 levels, toxin expression is impacted by medium 

composition.  Bartkus and Leppla observed that toxin production was enhanced 

when B. anthracis was grown at 37° C in R minimal medium containing 0.1M 

Tris hydrochloride (pH 8.0) supplemented with uracil (40 µg/ml), sodium 

bicarbonate (0.8%), horse serum (5%), and streptomycin (500 µg/ml) compared to 

B. anthracis grown in brain heart infusion broth (Bartkus and Leppla 1989).  

Finally, under these growth conditions, toxin expression is also influenced by 

temperature (Sirard, Mock et al. 1994).  Using a lacZ reporter system, Sirard and 

colleagues found a four to six-fold higher expression level (based on β-

galactosidase activity) when B. anthracis was grown at 37° C compared to 28° C.   
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It is important to note that, despite the coordinated expression of pagA, cya, and 

lef in response to the environmental signals, the corresponding proteins do not 

accumulate at similar levels.  Results from lacZ fusion/reporter assays indicate 

pagA is transcribed at higher levels than lef and cya, with a ratio of about 5:1 for 

pagA:lef and 10:1 for pagA:cya (Sirard, Mock et al. 1994).  This corresponds with 

and explains the fact that protein levels of PA exceed LF and LF exceeds that of 

EF.  Reportedly, PA, LF, and EF are produced in relative levels of 20 •g PA, 5 •g 

LF, and 1 •g EF (Leppla 1988). 

 

Genetic Regulation of Virulence Factors 

Expanding on the initial observations of regulation of toxin production, Koehler 

and colleagues further demonstrated that regulation of pagA was modulated by 

CO2 through a specific trans-activating element (Koehler, Dai et al. 1994).  

Screening a transposon mutant library for the absence of toxin production led to 

identification of a site 13 kb upstream of pagA, proximal to the 3’ end of cya, 

which was important for toxin expression (Koehler, Dai et al. 1994).  This region 

corresponded to a trans-activator element termed AtxA (~55.6 kDa), which had 

recently been reported by Uchida and colleagues (Uchida, Hornung et al. 1993). 

 

AtxA is now known to control expression of both the pXO1-encoded toxin genes 

as well as the genes involved in capsule synthesis that are located on pXO2 (Dai, 

Sirard et al. 1995; Guignot, Mock et al. 1997; Uchida, Makino et al. 1997).  

Consequently, atxA-null mutant strains have been shown to be avirulent in a 
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mouse model (Dai, Sirard et al. 1995).  Studies conducted with B. anthracis strain 

variants, differing in plasmid components, suggest that atxA-mediated expression 

is required to direct the release of vegetative bacilli from macrophages during 

disease establishment (Dixon, Fadl et al. 2000).  This is based on observations 

with an atxA-null mutant strain that was incapable of escaping from the infected 

macrophages. 

 

Recent studies demonstrated that, in addition to controlling synthesis of the toxin 

and capsule genes, AtxA controls the expression of numerous other genes on both 

plasmids and the chromosome (Bourgogne, Drysdale et al. 2003).  For this reason, 

AtxA is now believed to be a major global regulator of virulence, controlling the 

expression of capsule, S-layer, and toxin.  An overview of AtxA-mediated 

virulence regulation is shown in Figure 1.  
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Fig. 1.  Regulatory Network Modulating Anthrax Toxin Expression  In 

response to environmental signals, AtxA induces expression of cya, pag, and lef.  

A bicistronic operon of pagApagR encodes the negative regulator pagR, which 

represses pagA expression and modulates levels of S-layer components Sap and 

Eag.  In addition to regulation of toxin production, AtxA modulates capsule 

synthesis genes on pXO2 as well as several genes on the chromosome.  AbrB 

functions as a growth-phase regulator of toxin production by repressing 

expression in lag and early exponential phase growth.  AbrB is subject to 

repression by phosphorylated Spo0A, which accumulates near stationary phase 

and allows increased toxin production and steady state levels during late stages of 

growth.   
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Once the AtxA-responsive region of pagA had been defined, it was also found 

that initiation of pag transcription occurred at 2 promoter binding sites termed P1 

and P2 (Koehler, Dai et al. 1994).  Koehler and colleagues reported that AtxA 

modulates P1, which lies 58 bp upstream of the pag start codon.  Initiation from 

P2 is minimal but does not require CO2 or AtxA (Koehler, Dai et al. 1994).  As 

expected, further studies found that in addition to pag, lef and cya expression are 

also modulated by AtxA (Dai, Sirard et al. 1995).   

 

The most compelling evidence supporting the role of AtxA as a major global 

regulator comes from recent experiments of Bourgogne and colleagues which 

used transcriptional profiling to identify genes subject to regulation by AtxA 

(Bourgogne, Drysdale et al. 2003).  Comparisons of mRNA profiles between 

wild-type organism and atxA-null mutants revealed several chromosomal genes 

regulated by AtxA.  Furthermore, this group reported that of the 38 plasmid-

encoded genes expressed under specific growth conditions, 18 were subject to 

regulation by AtxA (Bourgogne, Drysdale et al. 2003).  

 

As one might expect, regulation of toxin production does not occur independently 

of other factors within the cell.  Coordinated regulation of multiple factors 

important to virulence works to the advantage of B. anthracis.  Thus, it is 

important to briefly mention the influence toxin regulation has on other 

expression events within B. anthracis.  AtxA regulates the expression of capsule 

through two regulators, acpA and acpB (Drysdale, Bourgogne et al. 2004).  (This 

is depicted in Fig. 1 which provides an overview of AtxA-mediated gene 
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expression.)  Thus, pXO1- strains and atxA-null mutants are defective in capsule 

production.  Since the capsule encoding operon capBCAD is located on pXO2, it 

is evident that factors from pXO1 can influence pXO2.  To date, there are no 

reports of pXO2-dependent regulation by pXO1.  Finally, it is worth noting that 

the attenuation of pXO1- mutants is often attributed to loss of toxin production; 

however, given the influence of this plasmid and AtxA on expression of 

numerous genes, the possible involvement of other pXO1-regulated factors in 

virulence cannot be excluded.  

 

AbrB, Growth Phase-dependent Regulator of Anthrax Toxin 

Expression of pagA, lef, and cya and corresponding toxin production reaches 

maximal levels during late log phase when B. anthracis is grown in laboratory 

medium, and is retained at steady state into stationary phase of growth (Leppla 

1988; Koehler, Dai et al. 1994; Sirard, Mock et al. 1994).  There is limited 

production of anthrax toxin during early exponential phase of growth.  This 

growth phase-dependent expression of anthrax toxin is modulated by a negative 

regulator, AbrB (Saile and Koehler 2002).  Studies showed that AbrB is a growth 

phase-dependent regulator of anthrax toxin synthesis with a predominant impact 

on pag activation.  Orthologues of AbrB are encoded on the chromosome and 

pXO1; however, the plasmid-encoded element does not encode the first 27 

residues of abrB and isogenic strains lacking this gene are not altered in toxin 

production (Saile and Koehler 2002).  Conversely, chromosomal abrB encodes 

full-length protein and disruption of this gene leads to altered toxin production.  In 

the absence of chromosomal AbrB, toxin production is substantially increased 
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during early and mid-exponential phase growth (Saile and Koehler 2002).  AbrB 

apparently modulates toxin expression, at least in part, by the repression of AtxA.  

Interestingly, AbrB has a predominant impact on pagA expression with limited 

influence on cya and lef.  (Refer to Fig. 1 which illustrates the role of AbrB with 

regards to AtxA-mediated gene regulation.) 

 

Anthrax Toxin 

Although successful disease requires both major virulence factors produced by B. 

anthracis, there is substantial evidence suggesting that anthrax toxin serves as a 

critical mediator of pathogenesis.  First, it has been shown that although complete 

clearance of the organism can be achieved for septic infections, the host still 

succumbs to death (Keppie et al., 1955). This observation is attributed to the high 

level of toxin presumed to be present at the later stage of disease in addition to the 

high bacterial cell count.  Secondly, reports have indicated that highly purified 

preparations of the toxin cause death and edema in animals (Pezard, Berche et al. 

1991).  Furthermore, it has also been demonstrated that strains deficient in pXO1 

or in the individual toxin genes exhibit a marked reduction in virulence (Pezard, 

Berche et al. 1991).  Finally, there is evidence that immunization against the toxin 

components, particularly PA, protects against disease (Friedlander, Welkos et al. 

2002).  Based on these findings, efforts have been directed towards defining the 

mechanism of action of anthrax toxin in order to better understand its overall 

contribution to disease.  
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Components 

Anthrax toxin is comprised of three polypeptides: protective antigen (PA; 83kDa), 

lethal factor (LF; 90 kDa), and edema factor (EF; 89 kDa).  This toxin belongs to 

the family of AB toxins in which a cell-binding (B) moiety facilitates the entry of 

an enzymatic (A) moiety into target cells.  However, two features make anthrax 

toxin unique among other AB toxins.  First, the A and B moieties interact only 

after being secreted from the bacteria.  Second, the toxin has two distinct A 

moieties (LF and EF) that interact with a single B moiety (PA) (Collier and 

Young 2003).  During intoxication, PA works in combination with EF to form 

edema toxin (EdTx) and with LF to form lethal toxin (LeTx).  EdTx functions as a 

calmodulin-dependent adenylate cyclase (Leppla 1982) while LeTx acts as a zinc-

dependent metalloprotease (Klimpel, Arora et al. 1994; Kochi, Schiavo et al. 

1994).  These binary combinations act intracellulary to yield two separate toxic 

effects, edema and lethality, as suggested by each of the toxin’s names.  The 

components of anthrax toxin are shown in Figure 2. 
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Fig. 2.  Components of Anthrax Toxin  
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The three dimensional structure has been resolved for each of the toxin 

components.  Studies have revealed that PA consists of 4 distinct functional 

domains (Petosa, Collier et al. 1997).  Domain 1 contains the proteolytic cleavage 

site that mediates initiation of the intoxication process (Petosa, Collier et al. 1997; 

Gao-Sheridan, Zhang et al. 2003).  Domain 2 is involved in pore formation, which 

is required for the delivery of LF and EF into the cytosol of host cells (Petosa, 

Collier et al. 1997; Benson, Huynh et al. 1998).  Domain 3 functions in the self-

assembly of PA monomers into active heptameric complexes that are capable of 

binding individual molecules of LF and EF prior to intoxication (Petosa, Collier et 

al. 1997).  Lastly, Domain 4 mediates receptor binding to host cells (Singh, 

Klimpel et al. 1991).   

 

The structure of LF was first solved in the presence of one of its major cellular 

substrates and has been shown to consist of four distinct domains (Pannifer, 

Wong et al. 2001).  Domain I consists of the N-terminal portion of LF, also 

referred to as LFn, that contains the PA binding site (Lacy, Mourez et al. 2002).  

Domain II has an ADP-ribosyltransferase fold resembling that of a related toxin 

from B. cereus.  However, the active site has been mutated in LF.  Instead, this 

region is thought to enhance substrate recognition.  Domain III is a small α-

helical bundle that contains tandem repeats of a structural element of Domain II.  

This region is actually inserted into Domain II and it is thought to have functional 

significance involving substrate recognition.  Domain IV, the C-terminal domain, 

contains the zinc-binding site that mediates the activity of this protein.  Domains 

II-IV are closely associated with each other, possibly acting as a single folding 
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unit.  Together, these domains form the protein substrate-binding site (Tonello, 

Ascenzi et al. 2003; Turk, Wong et al. 2004).     

 

Mechanism of Cell Entry 

An overview of anthrax toxin’s mechanism of cell entry is illustrated in Figure 3.  

In the first step of cell entry, PA binds to the cell surface receptors ATR (anthrax 

toxin receptor), encoded by tumor endothelial marker 8 (TEM8), and capillary 

morphogenesis protein 2 (CMG2) (Bradley, Mogridge et al. 2001; Scobie, Rainey 

et al. 2003).  Following receptor binding, PA is cleaved by furin-like proteases 

causing the release of a ~20 kD from the amino-terminus (Klimpel, Molloy et al. 

1992).  This cleavage event yields a form of PA termed PA63 with sites exposed 

for LF and EF binding.  In the next stage of intoxication, PA63 oligomerizes into a 

heptamer (Milne, Furlong et al. 1994), forms a pre-pore complex (Miller, Elliott 

et al. 1999), and binds 3 molecules of EF and/or LF (Mogridge, Cunningham et 

al. 2002).  A homologous N-terminal region (Arora and Leppla 1993) mediates 

the binding of LF and EF to the PA63 heptamer and the complex is endocytosed 

via lipid rafts (Abrami, Liu et al. 2003). Following acidification of the endocytic 

vesicle, the heptamer fully inserts into the membrane by formation of a 14-strand 

beta-barrel to create an acid-pH dependent channel (Collier and Young 2003).  

This insertion and channel formation then leads to LF and EF exposure to the 

cytosol, although this process remains poorly defined.  There is evidence 

suggesting that upon translocation, LF is released into the cytosol of host cells 

while EF remains membrane bound (Guidi-Rontani, Weber-Levy et al. 2000).  
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Regardless, both EF and LF have a dramatic impact on cell physiology upon 

exposure to the cytosol. 
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Fig. 3.  Mechanism of Cell Entry  PA binds to cell surface receptor, ATR or 

CMG-2, and undergoes proteolytic cleavage by furin which releases a 20 kDa 

fragment (PA20).  PA63 remains bound and undergoes heptamerization.  The PA 

heptamer is then capable of binding LF and EF at which point the complex 

undergoes receptor-mediated endocytosis.  The complex is contained within an 

endosome until pH triggers the release of LF and EF into the cytosol.  Once in the 

cytosol, LF acts as a metalloprotease with specificity for members of the Mitogen 

Activated Protein Kinase (MAPK) cascade, specifically MEKs.  EF is an 

adenylate cyclase and as such it generates high levels of cAMP within the cell.  

The resultant phenotypes are lethality and edema.
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Fig. 3.  Mechanism of Entry for Anthrax Toxin 
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Lethal Toxin 

Studies have revealed that LeTx provides a selective advantage to the anthrax 

disease process.  B. anthracis strains lacking LF exhibit a 100-fold decrease in 

virulence compared to EF deletion strains (Pezard, Berche et al. 1991), 

emphasizing the importance of this toxin’s contribution to lethality in the host.  

As a result, preferential focus has been given to LeTx in order to elucidate this 

toxin’s mechanism of action. 

 

LF is a zinc-dependent metalloprotease that cleaves mitogen activated protein 

kinase kinases (MAPKK), which are described in the following section 

(Duesbery, Webb et al. 1998).  MAPKKs were first identified as the specific 

substrate of LF when it was revealed that LeTx had a similar effect on tissue 

culture cells compared to the MAPKK inhibitor PD 98059, as described in the 

following section (Duesbery, Webb et al. 1998).  Additionally, evidence from a 

yeast two-hybrid assay identified MEK-2 as the specific prey for an LF mutant 

that was used as bait (Vitale, Pellizzari et al. 1998). 

 

In vitro, LF has been shown to cleave 6 MAPKKs including MEK (1,2) and MKK 

(3,4,6,7) (Vitale, Bernardi et al. 2000).  These substrates share common amino-

terminal sites that are cleaved by LF.  Cleavage by LF may prevent MAPKK 

interaction with subsequent kinase targets since proteolysis removes an important 

MAPKK/MAPK docking site.  Given the known substrate targets of LF, the toxin 

has the potential to modulate extracellular signal regulated kinases 1 and 2 

(ERK1,2), c-jun N-terminal kinases (JNK), and p38 signaling pathways. 
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Based on the reported specificity of LF for certain MAPKKs, the impact of LF on 

MEK-regulated tumors has been examined.  Studies have revealed that LF 

inhibits growth in V12 H-ras-transformed NIH 3T3 cells (Duesbery, Resau et al. 

2001).  Additionally, LF reportedly causes apoptosis in human melanoma cells 

(Koo, VanBrocklin et al. 2002).  These observations regarding tumor inhibition 

and apoptosis were based on studies performed in vivo.  Hence, these findings 

provide additional evidence with regards to the impact of LF on MAPK signaling.   

 

Although MAPKKs have long been the only reported substrate for LF, cleavage 

of MAPKKs alone does not govern susceptibility to LeTx-induced cytotoxicity.  

Evidence to support this revealed that LF proteolysis of MAPKKs occurrs in cells 

resistant to LeTx (Watters, Dewar et al. 2001) and, at sub-cytotoxic doses in cells 

sensitive to the toxin (Pellizzari, Guidi-Rontani et al. 1999).  Furthermore, 

treatment of RAW 264.7 macrophages with inhibitors of the ERK signaling 

pathway does not cause cell death, suggesting direct inactivation of this pathway 

is not the sole contributor to cytotoxicity.  Recent studies by Park and colleagues 

indicated p38 prevents synergistic expression of NF-kappaB genes necessary for 

anti-apoptotic effects in activated macrophages (Park, Greten et al. 2002).  

Collectively, these studies indicate that while cleavage of MAPKK may be part of 

LeTx activity, a combination of events lead to cell death.   

 

MAPK Signaling 
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Cells must be able to detect extracellular stimuli and respond appropriately in 

order to regulate proliferation and differentiation.  The enzymatic activity 

required for regulating these events is governed by phosphorylation.  All 

eukaryotic organisms are subject to regulation via phosphorylation cascades.  

These cascades respond to a variety of extracellular signals including mitogens, 

TNF-alpha, interleukins, and environmental stressors such as UV.  In response to 

such stimuli, a series of phosphorylation events begins with an upstream kinase 

binding to and phosphorylating a downstream effector.  This intermediate kinase 

subsequently activates a third kinase which then initiates the transcription of 

specific genes.  The importance of phosphorylation is evident due to the number 

of protein kinases that have been identified in eukaryotes.  In fact, yeast have 

greater than 120 kinases and humans have over one thousand to date. 

 

The mitogen-activated protein kinase (MAPK) phosphorylation cascade has been 

implicated in the regulation of multiple cellular events in all eukaryotes.  The 

MAPK cascade comprises three distinct signaling pathways; one of which 

mediates responses to mitogenic and differentiation signals while the other two 

respond primarily to stress and inflammatory cytokines.  In addition to the 

extracellular stimuli associated with each, these pathways are defined by their 

MAPK component and are named accordingly.  The three MAPK pathways 

include the extracellular regulated kinase (ERK) pathway, the c-Jun N-terminal 

kinase (JNK) or stress activated protein kinase (SAPK) pathway, and the p38 

pathway.  An overview of the MAPK pathways is illustrated in Figure 4.  These 

pathways can operate independently or in combination to trigger gene expression.  
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However, the extent to which cross-talk occurs between these pathways is poorly 

defined as the efficiency of phosphorylation varies among the MAPKs.  

Additionally, it has been shown that different kinases associated with each 

pathway are localized in different cellular compartments, further complicating the 

understanding of the extent to which these proteins interact.  
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Fig. 4.  Mitogen Activated Protein Kinase (MAPK) Signaling Pathways 

Activation of the MAPK pathways occurs in response to a variety of extracellular 

stimuli.  Together, these signaling networks mediate cell growth, differentiation, 

development, inflammation, and apoptosis.  There are three major MAPK 

pathways (ERK, p38, and JNK) which are distinguished based on the terminal 

kinase associated with each as well as the resultant biological response.  Each 

pathway involves a phosphorylation cascade in which an upstream kinase 

(MAPKKK) is activated, thereby phosphorylating a downstream kinase 

(MAPKK), which then phosphorylates a third kinase (MAPK) which translocates  

the nucleus and initiates transcription.

Growth Factors Stress Signals

             Raf

         MEK 1,2

         ERK 1,2

       MLK3; MEKK1,4

         MEK 3/6;4/7

    p38;SAPK/JNK

Growth

 Differentiation

 Development

Inflammation

Apoptosis

   Growth Inhibition

Stimulus

MAPKKK

MAPKK

 MAPK

Biological Response

 



 37

Identification of Cellular Target of Lethal Toxin 

The link between MAPK signaling and anthrax pathogenesis was first revealed by 

a study comparing the cellular impact of a chemical inhibitor of the ERK pathway 

to that of anthrax lethal toxin (Duesbery, Webb et al. 1998).  Specifically, the 

impact of PD 098059 was compared to that of LF when tested on Xenopus 

oocytes, the maturation of which is strictly dependent on MAPK activation.  It 

was shown that complete inhibition of oocyte maturation could be achieved when 

LF was injected directly into the oocytes.  LF was presumed to somehow cause 

direct inhibition of the activation of MAPK; thus, prompting studies aimed at 

identifying its impact on upstream kinases.  As a result, LF-treated oocyte lysates 

were probed with antibodies specific for the COOH-terminus and the NH2-

terminus of MAPKK1 (MEK).  The resultant COOH-terminus immunoblot 

revealed a band at increased mobility for lysates containing LF while the NH2-

terminus immunoblot showed no reactivity.  Together, these data suggested that 

LF cleaved MEK, thereby causing the observed mobility shift with the C-terminal 

antibody and the lack of reactivity with the N-terminal antibody.   

 

This group further examined LF-mediated cleavage of MEK in NIH 3T3 cells in 

which the MAPK pathway is constitutively activated.  Immunoblots of these cell 

lysates revealed that LF inhibited MAPK activation/phosphorylation.  

Additionally, LF caused an increase in the mobility of MEK when probed with a 

COOH-terminus antibody and a loss of MEK when probed with an NH2-terminus 

antibody.  These results further supported the notion that LF inhibited MAPK 

signaling via cleavage of MEK.  Finally, an in vitro phosphorylation assay was 
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performed in the presence of LF from which it was shown that the presence of LF 

blocked phosphorylation of MAPK.  Together, these findings demonstrated LF’s 

ability to inhibit MAPK signaling in a variety of cell types and identified MEK as 

the first known substrate of anthrax lethal toxin.  Hence, these data laid the 

foundation for elucidating the cellular mechanism of action of anthrax lethal 

toxin. 

 

Cellular Factors That Govern Sensitivity to LeTx 

Mouse macrophages from specific genetic backgrounds, such as A/J and 

C57BL/6 mice, are resistant to LeTx (Friedlander, Bhatnagar et al. 1993) and 

provide useful reagents to better understand sensitivity to this toxin.  A 

comparative genetics approach by Watters and colleagues (Watters, Dewar et al. 

2001) found that macrophage sensitivity is linked to single nucleotide 

polymorphisms in the gene encoding for the kinesin-like motor protein Kif1C.  

Kif1C is also known to localize to the Golgi apparatus and is important for 

trafficking cargo between this site and the endoplasmic reticulum.  In the same 

study, this group showed that disruption of the Golgi apparatus with brefeldin A 

resulted in susceptibility to LeTx in otherwise resistant cells, suggesting 

localization of Kif1C is important for resistance to the toxin.  While the role of 

Kif1C in LeTx intoxication has not been determined fully, these data further 

suggest that events outside of direct inactivation of MAPKKs are involved in 

cytotoxicity. 
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Studies have revealed that proteasome activity is an important factor in governing 

sensitivity to LeTx among macrophage cell lines.   Specifically, it was shown that 

sensitive (RAW 264.7) macrophages pretreated with proteasome inhibitors were 

protected from LeTx-mediated cytotoxicity (Tang and Leppla 1999).  In this 

study, it was also revealed that the proteasome inhibitors did not prevent LeTx-

mediated cleavage of MEK; thereby suggesting that the requirement of the 

proteasome is independent of LF’s catalytic activity and is subsequent to cleavage 

of MEK.  In examining whether LeTx specifically activated the proteasome to 

disrupt homeostasis within macrophages, the investigators did not observe an 

increase in proteasome activity in the presence of LeTx.  Finally, it was shown 

that LeTx-induced cytotoxicity was inhibited by concentrations of proteasome 

inhibitor comparable to those that actually blocked intracellular activity of the 

proteasome.  From this, it was concluded that LeTx requires functional 

proteasomes to induce cytotoxicity in sensitive macrophages. 

 

The requirement of the proteasome in LeTx-mediated cytotoxicity was later 

linked to a study reporting the induction of transient resistance in macrophages 

that are normally sensitive to the toxin.  In this study, RAW macrophages were 

pretreated with a sublytic dose of LeTx prior to challenge with high dose LeTx.  

Cells subjected to this pretreatment were protected from the high dose challenge 

whereas non-pretreated cells underwent rapid lysis in response to the toxin 

(Salles, Tucker et al. 2003).  This phenotype was termed toxin-induced resistance 

(TIR).  In examining cellular events that contributed to TIR, proteasome activity 

was investigated based on its reported association with LeTx sensitivity.  From 
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this, it was found that both TIR macrophages and naturally resistant (IC-21) 

macrophages had a sustained level of ubiquitinated proteins after treatment with 

high dose LeTx whereas sensitive (non-TIR), RAW macrophages showed a 

marked reduction in ubiquitinated proteins.  As in the studies performed by Tang 

and Leppla (1999), no increase in proteasome activity was detected in association 

with TIR.  Instead, a direct correlation was made between normal levels of 

ubiquitinated proteins and cell survival in response to high dose LeTx.  This data 

further implicates proteasome activity in conferring resistance to LeTx in 

macrophages. 

 

In addition to the link between proteasome activity and TIR, the impact of LeTx 

on MAPK signaling was also examined in TIR and non-TIR RAW macrophages.  

MEK cleavage occurred in both TIR and non-TIR RAWs following high dose 

treatment of LeTx.  This suggested that susceptibility might be governed by 

changes that occurred downstream of this cleavage event.  It was shown that there 

was a sustained reduction in the levels of full-length MEK and diphosphorylated 

ERK for 24h following high dose LeTx treatment of TIR macrophages.  These 

cells showed an increase in monophosphorylated ERK within that same time-

frame.  Interestingly, 48h after high-dose treatment of TIR macrophages, levels of 

both monophosphorylated and diphosphorylated ERK were comparable to control 

while full-length MEK remained undetectable.   This suggests that these cells 

used a compensatory mechanism to regain activity of the ERK pathway.   In 

contrast, non-TIR macrophages showed no change in the level of 

monophosphorylated or diphosphorylated ERK in response to high-dose LeTx 
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although rapid cleavage of MEK was observed.  Thus, although MEK cleavage is 

not unique to LeTx-sensitive cells, the impact on this pathway and subsequent 

changes in the levels of downstream effectors may contribute to cell survival. 

 

Macrophages 

Macrophages play an essential role in host immune defense.  These cells are 

antigen presenting cells (APCs) that activate other macrophages, B cells, or T 

cells in response to bacterial and viral infections.  Macrophages are found in all 

tissues of the body and have unique receptors that recognize specific conserved 

motifs on pathogens that are not found on higher eukaryotes (Aderem 2002).  As 

phagocytic cells, their basic functions include phagocytosis, antigen presentation, 

and secretion of cytokines to activate both innate and adaptive immune responses.  

Additionally, macrophages also serve an important role in the elimination of 

senescent cells and in embryonic development (Henson, Bratton et al. 2001). 

 

As the first line of defense against bacterial and viral infections, macrophages 

rapidly recognize and ingest microbes.  Upon phagocytosis, the phagosome fuses 

with the lysosome to form the phagolysosome.  Ingested microbes are then 

destroyed within the phagolysosome by oxidative burst, acidification, nutrient 

starvation, and lysosomal enzymes.  Antigens from degraded bacteria are then 

presented at the macrophage cell surface to recruit other immune cells to the site 

of infection.  In addition, macrophages secrete cytokines that stimulate other 

immune responses to help clear infections.  Despite the array of anti-microbial 

activities used to defeat infectious agents, several bacterial pathogens such as B. 
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anthracis have adapted mechanisms that promote survival within host 

macrophages.  Interacting with host macrophages allows the pathogen to avoid 

the host’s immune system and ensures systemic spread.  In the case of B. 

anthracis, the macrophage reportedly provides a suitable environment for 

germination and commencement of the vegetative cell cycle (Guidi-Rontani, 

Weber-Levy et al. 1999; Dixon, Fadl et al. 2000).  Not only does this provide 

evidence of this pathogen’s ability to circumvent the host’s immune system, it has 

been proposed that this intracellular step is essential in order for disease to ensue 

(Guidi-Rontani, Weber-Levy et al. 1999).   

 

Macrophage Involvement in Anthrax Pathogenesis 

The specific host cell-types involved in anthrax disease have yet to be determined, 

particularly those targeted by anthrax toxin.  However, there is substantial 

evidence implicating macrophages as mediators of the disease process.  To begin, 

macrophages are the first host cells to contact B. anthracis spores during 

infection; upon which, spores are phagocytosed and transported to regional lymph 

nodes (Ross 1957; Lincoln, Hodges et al. 1965).  In addition, there have been 

several reports indicating that germination of spores occurs within macrophages 

following uptake (Ross 1957; Shafa, Moberly et al. 1966; Guidi-Rontani, Weber-

Levy et al. 1999).  Furthermore, studies have revealed that expression of toxin 

genes occurs in host macrophages as the vegetative life cycle begins (Guidi-

Rontani, Weber-Levy et al. 1999; Dixon, Fadl et al. 2000).  Although the role of 

anthrax toxin at this stage of disease is unknown, it has been proposed that the 

toxins facilitate the release of vegetative bacilli from macrophages into the 
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extracellular milieu, thus allowing systemic disease to ensue (Guidi-Rontani, 

Weber-Levy et al. 1999).  Taken together, these data suggest that macrophages 

provide B. anthracis with a suitable environment that allows for germination and 

commencement of the vegetative cycle. 

 

Based on the evidence described above, it has been proposed that an intracellular 

step within host macrophages is essential to the progression of disease.  With 

regards to this intracellular step, studies have been directed towards examining the 

potential role for LeTx at this stage of disease.  As described previously, reports 

indicate that toxin gene expression occurs within host macrophages during 

commencement of vegetative growth (Guidi-Rontani, Weber-Levy et al. 1999; 

Dixon, Fadl et al. 2000).  Additionally, it has been shown that non-toxinogenic 

strains of B. anthracis are unable to survive within the macrophages following 

germination (Guidi-Rontani, Weber-Levy et al. 1999; Dixon, Fadl et al. 2000).  

These studies reported a correlation between the survival of toxigenic B. anthracis 

strains to changes in the membrane integrity of infected macrophages; thereby 

suggesting a mechanism to mediate the release of vegetative bacilli into the 

extracellular environment.  Based on these findings, efforts have been directed 

towards identifying a potential role for LeTx during the establishment of disease.   

 

In addition to mediating the release of vegetative bacilli from infected 

macrophages, another possible role exists for LeTx with regards to macrophages 

and disease establishment.  Toxin produced during the preliminary stages of 

disease could serve as a protective measure for B. anthracis against resident 
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macrophages so as to allow maximal germination and growth prior to the spread 

of vegetative bacilli.  This is based on the contention that the events surrounding 

spore uptake, germination, commencement of vegetative growth, and escape from 

host macrophages likely occur over time rather than simultaneously.  As a result, 

a protective measure would be required after the initial release of vegetative 

bacilli into the extracellular environment so as to allow continued germination 

and vegetative growth of B. anthracis still contained in host macrophages.  One 

such protective measure is supported by the toxin-induced resistance (TIR) 

phenomenon in which transient resistance to high dose treatment of LeTx is 

induced in macrophages that have been pretreated with a non-lethal dose of LeTx 

(Salles, Tucker et al. 2003).  TIR could represent a mechanism to ensure that 

toxin produced by vegetative bacilli first released into the extracellular 

environment does not disrupt surrounding macrophages prior to completion of 

germination and growth.  This in turn, would allow the bacilli to achieve maximal 

growth before engaging the host’s immune system.  Although the role of anthrax 

toxin at the early stage of disease is still speculative, there is sufficient evidence to 

suggest that B. anthracis is uniquely suited to interact with macrophages such that 

optimal growth and persistence of disease is achieved. 

 

In spite of the evidence described above, the exact triggers for germination along 

with the host cell types involved during the establishment of disease have yet to 

be determined.  Recent reports dispute the role of macrophages based on evidence 

showing that germination of B. anthracis spores can occur independently of host 

cells, in an in vivo model (Cote, Rossi et al. 2005).  Additionally, it has been 
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reported that mice depleted of macrophages prior to infection with B. anthracis 

spores are more susceptible than mice with intact macrophages (Cote, Rea et al. 

2004).  The authors contend that although macrophages are involved in the 

disease process with regards to mediating the host’s defense mechanisms, these 

cells may not be uniquely suited for providing the necessary triggers for 

germination and outgrowth. 
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Macrophages & Other Cell Types Implicated in LeTx Sensitivity 

Aside from the proposed role of macrophages during disease establishment, there 

is also evidence suggesting that these cells govern host sensitivity to LeTx.  The 

link between LeTx and macrophages was first made when it was shown that these 

cells were uniquely sensitive to the toxin compared to a variety of other cell lines 

tested (Friedlander 1986).  In this case, it was shown that macrophages began to 

lyse 2 h after treatment with LeTx.  Additionally, it was shown that the resistance 

of certain mice strains to LeTx-induced lethality correlated with the resistance of 

their macrophages to the toxin (Welkos, Keener et al. 1986).  Later, it was 

reported that mice that had been depleted of their macrophages via silica 

injections had a 100% survival rate following challenge with LeTx. Furthermore, 

sensitivity to LeTx was restored in silica-treated mice by co-injection of cultured 

macrophages (Hanna, Acosta et al. 1993).  Taken together, these findings suggest 

that macrophages play a pivotal role in anthrax pathogenesis with regards to their 

interaction with LeTx.  However, the link between LeTx-induced cytotoxicity in 

these cells and LeTx-mediated death of the host remains to be determined.  

 

Initially it was thought that death of the host resulted from cytokine-induced 

shock.  This contention was derived from a study in which macrophages treated 

with sublytic doses of LeTx released interleukin-1 β and Tumor necrosis factor 

(TNF-α) (Hanna, Acosta et al. 1993).  Furthermore, it was shown that treatment 

of mice with anti-IL-1 β and anti-TNF-α sera provided protection against the 

toxin (Hanna, Acosta et al. 1993).  Hence, it was proposed that LeTx-treated 

macrophages experienced a build up of cytokines that were then released as these 
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cells began to lyse.  This, in turn, caused shock-like death in the host.  However, 

reports have since shown that LeTx treatment actually suppresses cytokine 

production in macrophages (Erwin, DaSilva et al. 2001).  Additionally, it has been 

reported that TNF-α and iNOS (inducible nitric oxide synthase) knockout mice 

are not protected from treatment with B. anthracis, thereby discounting the impact 

of cytokines on lethality (Kalns, Scruggs et al. 2002).  Finally, a recent study 

examined cytokine production and histopathology in mice following intravenous 

injection of LeTx.  This report indicated that death was not due to cytokine-

induced shock but instead resulted from hypoxia-induced liver failure (Moayeri, 

Haines et al. 2003).  It should be noted that the discrepancies in the above 

findings could be attributed to the fact that each group used differing amounts of 

toxin in their studies.  Based on the reported stoichiometry of anthrax toxin, 

differing amounts of the toxin subunits impacts the overall effective dose of 

LeTx, which, in turn, would have a dramatic impact on the observed phenotypes.  

Regardless, the conflicting reports on LeTx-mediated death necessitate a better 

understanding of the response of macrophages to the toxin and the significance of 

this interaction during disease.   

 

Current knowledge regarding the cellular impact of LeTx does not support the 

contention that macrophages are solely responsible for mediating cytotoxicity.  It 

has been shown that proteolytic cleavage of MEKs, the primary cellular targets of 

LF, occurs in both sensitive and resistant macrophages (Watters, Dewar et al. 

2001).  Additionally, recent evidence discounts a direct correlation between the 

sensitivity of animals to LeTx and that of their macrophages.  In fact, it has been 
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shown that different strains of mice are susceptible to treatment with LeTx 

regardless of whether they harbor sensitive or resistant macrophages (Cui, 

Moayeri et al. 2004).  Furthermore, some resistant macrophage lines are derived 

from species, including rats and humans, sensitive to both LeTx and anthrax 

(Popov, Villasmil et al. 2002; Kim, Jing et al. 2003).  Overall, this evidence does 

not disregard the involvement of macrophages in anthrax disease but it has 

prompted further investigation to elucidate the cellular impact of LeTx.  

 

In spite of the unique sensitivity demonstrated by macrophages, recent studies 

have examined the impact of LeTx on non-macrophage cell lines.  One report of 

this type describes the treatment of dendritic cells with LeTx; the result of which 

prevented their interaction with T cells.  Normally, the primary function of 

dendritic cells is to stimulate cellular immunity, thereby initiating an 

inflammatory response, antibody production, and differentiation of B and T cells 

into memory cells (Mourez 2004).  Although it is not known if dendritic cells 

actually have a role in controlling the progression of anthrax disease, this 

evidence implicates an additional mechanism, separate from interacting with 

macrophages, of LeTx directed at down-regulating the host’s immune response. 

 

It is plausible that additional cell types are susceptible to LeTx due to the fact that 

the only known cellular target of LF is central to the physiology of a variety of 

cells and that the receptors for anthrax toxin are ubiquitously expressed (Mourez 

2004).  Thus, investigators have begun to examine the impact of LeTx on cells 

types that are not strictly related to the immune response.  In line with this, it has 
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recently been reported that LeTx is cytotoxic to endothelial cells (Kirby 2004).  

Specifically, LeTx induced caspase-dependent apoptosis in endothelial cells, 

which also revealed evidence of MEK cleavage and subsequent inhibition of 

phosphorylation of ERK, p38, and JNK.  Based on these findings, it has been 

proposed that LeTx-mediated cytotoxicity in endothelial cells contributes to the 

vascular damage, including tissue hemorrhages and gastrointestinal bleeding, that 

has been reported in clinical cases of systemic anthrax (Kirby 2004). Collectively, 

these studies demonstrate the ability of this toxin to impact a variety of cell types.  

However, this does not discount the significance of host macrophages in 

mediating the disease process. 

 

Wnt Signaling and GSK-3β-related Activities 

In examining the effects of LeTx on RAW 264.7 macrophages, my preliminary 

data revealed changes in GSK-3β and its related activities.  These changes 

prompted further investigation as to whether or not the activity of this protein 

contributed to LeTx sensitivity.  Hence, this protein became a focal point for my 

research; data derived from those studies is presented in the following sections. 

 

Glycogen synthase kinase 3 (GSK-3) was first associated with insulin-related 

signaling based on its ability to phosphorylate and inhibit glycogen synthase 

(Ding, Chen et al. 2000).  It is a serine/threonine kinase that recognizes a specific 

target sequence contained not only by glycogen synthase but many other proteins 

including β-catenin.  GSK-3 has two isoforms, alpha and beta, and is highly 

conserved among mammalian cell types.  In addition to controlling the cellular 
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response to insulin, GSK-3 has been implicated in a variety of biological 

processes including the phosphorylation of microtubule-associated proteins.  This, 

in turn, links GSK-3 to microtubule polymerization and stability (Wang, Liu et al. 

2003).  Additionally, GSK-3β is well known for its role in Wnt signaling, acting 

as a negative regulator of this pathway. 

 

Wnt signaling is best known for its role in embryonic development and for its 

association with certain cancers.  The Wnt pathway is critical for regulating 

growth and cell fate during early stages of development (Cadigan and Nusse 

1997; Willert and Nusse 1998).  In adults, improper activation of this pathway 

resulting from deregulation of the essential mediator, β-catenin, has been linked 

to certain cancers (Polakis 2000).  In either case, activation of the Wnt pathway 

leads to accumulation of cytosolic β-catenin via inhibition of GSK-3β.  This, in 

turn, allows β-catenin to translocate to the nucleus where it initiates transcription 

of wnt target genes (Schneider, Finnerty et al. 2003).  However, in the absence of 

Wnt activators, GSK-3β acts as a member of a multiprotein complex, including 

Axin and adenomatous polyposis coli (APC), to inhibit this pathway by 

preventing the accumulation of β-catenin and its subsequent translocation to the 

nucleus.  GSK-3β achieves this by phosphorylating β-catenin, which targets the 

protein for ubiquitination and subsequent degradation via the proteasome (Aberle, 

Bauer et al. 1997).  As a result, GSK-3β-mediated phosphorylation effectively 

blocks β-catenin-mediated transcription.  In addition to its role in Wnt signaling, 

β-catenin is involved in cadherin-mediated cell-cell adhesion.  In either case, the 
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activity of this protein is dependent on its phosphorylation state.  

Unphosphorylated β-catenin accumulates in the cytosol at which point it either 

translocates to the nucleus to initiate wnt-related gene expression, or it binds to 

cadherins at the plasma membrane (Giarre, Semenov et al. 1998).  An overview of 

the Wnt pathway is illustrated in Figure 5. 
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Fig. 5.  Overview of Wnt Signaling Pathway  Proteins involved in the activation 

of this pathway are highlighted in green and together, their activity results in the 

accumulation of cytosolic β-catenin.  In this case, β-catenin translocates to the 

nucleus where it activates transcription.  In contrast, proteins involved in the 

inhibition of this pathway are depicted in red.  Their activity prevents the 

accumulation of β-catenin and subsequent activation of transcription.  This is 

achieved by tagging β-catenin for proteasome-mediated destruction.
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It has been shown that differential regulation of GSK-3β occurs according to the 

signaling pathway involved, with regards to insulin and Wnt serving as the 

extracellular signals (Ding, Chen et al. 2000).  In this case, it was reported that 

although both insulin and Wnt triggered a decrease in GSK-3β activity, inhibition 

by each signal led to different downstream events.  Specifically, Ding et al. 

reported that insulin did not result in the accumulation of cytosolic β-catenin and 

that Wnt did not increase glycogen synthase activity.  Hence, it was proposed 

regulation of GSK-3β differs among the signaling pathways involved (in this 

case, insulin and Wnt).  Additional studies revealed that GSK-3β activity can be 

artificially inhibited by LiCl, and that this inhibition mimics Wnt signaling 

(Stambolic, Ruel et al. 1996).  For our purposes, we used LiCl to implicate the 

involvement of GSK-3β in governing susceptibility to LeTx.  Data derived from 

those studies is presented in the following sections. 

 

Kinesins 

Kinesins were first associated with anthrax LeTx when it was reported that 

macrophage sensitivity is linked to single nucleotide polymorphisms in the gene 

encoding for the kinesin-like motor protein Kif1C (Watters, Dewar et al. 2001).  

Kif1C is also known to localize to the Golgi apparatus and is important for 

trafficking cargo between this site and the endoplasmic reticulum.  In the same 

study, this group showed that disruption of the Golgi apparatus with brefeldin A 

resulted in susceptibility to LeTx in otherwise resistant cells, suggesting 

localization of Kif1C is important for resistance to the toxin. 
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Our analysis of LeTx-treated macrophages revealed changes in kinesin-related 

proteins.  Due to the findings of Watters et al., these changes were of immediate 

interest and prompted further investigation.  As described in following sections, 

our data revealed a distinction in the expression of a particular kinesin that could 

be related to differences in LeTx sensitivity.   

 

Kinesins comprise one of two major groups of motor proteins that mediate 

microtubule-based intracellular transport.  These motor proteins use ATP 

hydrolysis to drive movement along microtubules as they transport various 

cargoes, including vesicles and organelles, throughout the cell.  Although kinesins 

were discovered two decades after the other major group of motor proteins, 

members of the dynein family, it has since been shown that they serve as the 

major molecular motors (Nakajima, Takei et al. 2002).  A total of 45 kinesins 

have been identified in mice (Miki, Setou et al. 2001), each of which is comprised 

of a globular head domain, which mediates microtubule binding and ATP 

hydrolysis, and a tail domain, which mediates cargo specificity.  Although the 

head domain is highly conserved, there is great variation in the tail domain which, 

reflecting broad specificity for various cargoes (Nakajima, Takei et al. 2002).     
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RATIONALE 

 

One of the major virulence factors produced by B. anthracis is a tripartite toxin.  

This toxin acts in binary combination as edema toxin or lethal toxin to cause 

edema and lethality in the host.  Although both toxins are required for full 

virulence, preferential focus has been given to LeTx based on its ability to cause 

death in animal models and because of its reported toxicity in mouse 

macrophages.  However, the mechanism by which LeTx elicits these effects is yet 

to be fully determined. 

 

LF is a zinc-dependent metalloprotease, which impacts MAPK signaling.  In fact, 

MAPKKs are the only known cellular target of LF to date.  However, inhibition 

of MAPK signaling alone does not cause cell death, as shown by studies that used 

a chemical inhibitor of MEK, PD 98059.  Additionally, LF-mediated cleavage of 

MAPKKs has been shown to occur in a variety of cell types yet not all cells are 

sensitive to LeTx.  Thus, although MAPKK cleavage is associated with the 

cellular activity of LF, events separate from this lead to cell death. 

 

In this study, we sought to identify unique events that occur in LeTx-sensitive 

macrophages in response to the toxin.  Specifically, we wanted to identify 

changes in macrophage physiology that occur separately or downstream of 

MAPKK cleavage.  In doing so, we hoped to identify distinguishing factors that 
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contribute to the death of these cells and account for differences in LeTx 

sensitivity among various cell types. 
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MATERIALS AND METHODS 

 

Cell culture and viability assay  

Cell culture media and additives were purchased from Invitrogen.  The cell lines 

RAW 264.7 (BALB/c mouse macrophage derived Abelson leukemia virus 

induced tumor macrophages) and IC-21 (C57BL/6 mouse macrophage derived 

SV-40 transformed peritoneal macrophages) were obtained from the American 

Type Culture Collection and maintained in RP-10 medium supplemented with 

10% fetal bovine serum.  The cell lines were grown at 37°C in a humidified 

atmosphere of 6% CO2.   

 

Cell viability was determined by visual observation for cell rounding and 

quantified using the Cell Counting Kit-8 (CCK-8; Dojindo), which determines 

cell viability via detection of cell dehydrogenase reduction of WST-8 (2-(2-

methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, 

monosodium salt).  Percent viability was determined using the formula 100* 

(A450test- A450background) / (A450control- A450background), wherein test= toxin-treated 

samples, control=buffer alone and background=untreated cells.  Viability assays 

were performed in triplicate. 

 

Purification of recombinant PA and LF   

Recombinant forms of PA and LF were purified from E. coli/BL-21 (DE3) 

(Novagen) using His-tagged affinity chromatography according to the 
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manufacturer’s protocol.  Purified proteins were desalted, passed over a 

polymyxin B agarose column, and eluted according to manufacturer’s instructions 

(Sigma).  Purified proteins were assayed for endotoxin using the Limulus 

Amebocyte Lysate (LAL) kit supplied by Biowhittaker, which has a detection 

minimum of 0.03 endotoxin units/ml.   

 

LeTx-treatment of RAW 264.7 macrophages for DNA array analysis   

For mRNA profiling, RAW 264.7 cells were grown in 75 cm2 tissue culture-

treated flasks as a confluent monolayer (approximately 1 X 107 cells per flask) 

and treated with 2 µg/ml LF and 2 µg/ml PA in a volume of 10 ml.  RNA and 

protein were isolated from cells 30 min and 90 min following treatment with 

LeTx.  Control cells were treated with an equal volume of endotoxin-free 20 mM 

Tris, pH 8.0 and subjected to the same incubation times.  

 

RNA isolation and cDNA probe synthesis 

Total RNA was isolated using Trizol according to manufacturer’s instruction 

(Invitrogen Life Technologies).  After the initial extraction, RNA samples were 

subjected to treatment with DNase (1 U) for 30 min.  This reaction was 

terminated by the addition of 1 ml of Trizol at which point the samples underwent 

a second round of extraction.  The final RNA samples were solubilized in RNase-

free water and immediately processed for cDNA synthesis.  The yield of total 

RNA for each sample was determined spectrophotometrically (OD260) and the 

quality of RNA was confirmed by analysis on a 0.6 % formaldehyde agarose gel.  

Approximately 25 µg of total RNA was used for the synthesis of each cDNA 
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probe.  For each sample, an initial annealing reaction was carried out in a 23 µl 

volume wherein RNA was combined with 1 µl of dATP, 1 µl of dTTP, 1 µl of 

dGTP (10mM stocks), 2 µl primer mix (Clontech), 6 µl 5X First Strand Buffer 

(Invitrogen Life Technologies), and 2 µl RNase-free water (Ambion) and 

incubated at 90° C for 2 min and 42°C for 20 min.  At the completion of the 

annealing reaction, 2 µl [33P]dCTP (10 mCi/ml; New England Nuclear), 3 µl 0.1 

M DTT, 1 µl SuperScript II reverse transcriptase (200 U/µl), and 1 µl (40 U/µl) 

Ribonuclease inhibitor (Invitrogen Life Technologies) was added to the reaction 

and the sample incubated an additional 2 h at 42°C.  Finally, each probe reaction 

was incubated at 94°C for 5 min in the presence of 5 µl 10 X denaturation 

solution (1 M NaOH, 10 mM EDTA) and 50 µl 2 X neutralization solution (1 M 

NaH2PO4, pH 7.0).  NucAway spin columns (Ambion) were used according to 

manufacturer’s instructions to remove unincorporated nucleotides. 

 

Hybridization, image captures and data analysis  

Each Mouse AtlasTM 1.2 expression array underwent a prehybridization reaction 

by incubating with 70 µl heat-denatured salmon sperm DNA (10.0 mg/ml) and 

5.0 ml ExpressHyb solution (Clontech) at 68°C for 2.0 h.  The purified cDNA 

probe was then hybridized to the AtlasTM array membrane at 68°C for 18 h.  

Following hybridization, membranes were washed 2 times with 50.0 ml 2 X SSC, 

1.0% SDS for 20 min, followed by 2 washes with 50.0 ml 0.1X SSC, 0.5% SDS 

for 20 min.  The arrays were then exposed to a storage phosphor screen 

(Molecular Dynamics-Amersham Pharmacia Biotech) for ~48 h.  Images were 
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acquired by scanning on a Storm phosphorimager (Molecular Dynamics-

Amersham Pharmacia Biotech) and intensities were quantified with ArrayVision 

software (Incyte Genomics, Inc.).  Data analysis was performed using an 

associative analysis approach as previously described by Dozmorov and Centola 

(Dozmorov and Centola 2003). 

 

Analysis of MEK-2 and Raf-1 

Protein extracts were taken from the phenolic phase of a Trizol extraction 

(Invitrogen Life Technologies) of RAW 264.7, IC-21, and NIH-3T3 cells treated 

with LeTx or control as described in the above section.  The protein samples were 

solubilized with 1% SDS and the relative concentrations were determined by the 

Bronsted-Lowry method (Lowry, Rosebrough et al. 1951).  For each sample 

subjected to analysis of MEK-2 or Raf-1, 10 µg of protein was separated by SDS-

PAGE and then electro-transferred to a polyvinylidene difluoride (PVDF) 

membrane.  Immunoblots were subjected to incubation with primary antibody (sc-

524; Santa Cruz Biotechnology) (1:500 dilution) targeting the amino-terminus of 

MEK-2 or primary antibody against Raf-1 (sc-7198; Santa Cruz Biotech) (1:1000 

dilution).  Primary antibodies were detected with the corresponding horseradish 

peroxidase-linked secondary antibodies.  Blots were developed with the ECL 

chemiluminescence detection system according to the manufacturer’s protocol 

(Amersham Pharmacia Biotech).  
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Zebrafish maintenance and LeTx treatment 

Zebrafish (Danio rerio) were obtained from a local retailer and maintained at 

28.5°C on a 14 h light/10 h dark cycle.  Embryos were collected and maintained 

at 28.5°C and the stage of development was determined by morphology and 

reported as hours post fertilization (hpf).  Fish embryos were placed in a 24-well 

plate with ten fish/ml/well and incubated with 20 µg/ml LF and 20 µg/ml PA and 

were observed for seven days post-treatment for morphological changes.   

 

Inactivation of GSK-3β 

To implicate GSK-3β signaling in LeTx-mediated cytotoxicity, RAW and IC-21 

macrophages were treated with 20 mM LiCl for 2 h.  Cells were subsequently 

treated with a range of LF (1.0  µg/ml to 0.005 ng/ml) plus PA (2.0 µg/ml) or 20 

mM Tris as a buffer control.  Cell viability, as determined by CCK-8 assay, was 

compared between LeTx-treated cells in the presence and absence of LiCl verses 

the corresponding Tris buffer controls.  

 

Analysis of GSK-3β 

As described previously for MEK-2 and Raf-1 analysis, protein extracts were 

taken from the phenolic phase of a Trizol extraction (Invitrogen Life 

Technologies) of RAW 264.7 cells treated with LeTx or control.  Samples were 

taken from NIH-3T3 and IC-21 cells 1.5 h, 3 h, 6 h, 12 h, and 24 h following 

treatment with LeTx or control as indicated for RAW 264.7 cells.  Additionally, 

samples were collected from “TIR” and “non-TIR” RAW 264.7 cells following 
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treatment with low dose LeTx or treatment with both low and high dose LeTx 1 h, 

3 h, 6 h, 10 h, 24 h, and 48 h.  The protein samples were solubilized with 1% SDS 

and the relative concentrations were determined by the Bronsted-Lowry method 

(Lowry, Rosebrough et al. 1951).  For each sample subjected to analysis of GSK-

3β, 10 µg of protein was separated by SDS-PAGE and then electro-transferred to 

a polyvinylidene difluoride (PVDF) membrane.  Immunoblots were subjected to 

incubation with primary antibody specific for the carboxy-terminus of GSK-3β 

(#361528; Calbiochem) (1:1000 dilution).  Primary antibody was detected with 

the corresponding horseradish peroxidase-linked secondary antibody.  Blots were 

developed with the ECL chemiluminescence detection system according to the 

manufacturer’s protocol (Amersham Pharmacia Biotech). Relative levels of GSK-

3β were determined by densitometry using NIH Image V. 1.62 software. 

 

In vitro stability of GSK-3β 

The ability of LF to mediate direct cleavage of GSK-3β was analyzed using 

purified purified GSK-3β (Upstate) in combination with LF.  Cleavage of GSK-

3β was examined by incubating 2.5 µg of GSK-3β with 1µg of LF or Tris buffer 

control at 37 °C for 2 h and resolving with SDS-PAGE.   

 

Comparative analysis of LF-mediated cytotoxicity and loss of GSK-3β  

RAW 264.7 macrophages were grown in 25 cm2 tissue culture-treated flasks as a 

confluent monolayer and treated with 2 µg/ml LF and PA, in the presence and 

absence of lactacystin, in a volume of 5 ml.  Samples subjected to pretreatment 
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with 10 µM lactacystin (Calbiochem) were incubated for 30 min at 37°C prior to 

treatment with LeTx.  Supernatant was collected from each flask (100 µl per 

flask) at designated time-points and used in a standard CytoTox One assay 

(Promega), performed according to manufacturer’s instructions.  After collecting 

supernatant to use in the cytotoxicity assay, cell extracts were collected from each 

flask in order to determine the relative level of GSK-3β at the designated time-

points.  To do so, the existing media was removed and cells were rinsed briefly 

with PBS.  Lysis buffer (1% SDS, 50 mM Tris-Cl, 5 mM EDTA, pH 7.4) was 

added (2 ml per flask) and the flasks were then incubated on ice for 10 min.  The 

lysates were then passed through a syringe 5 times prior to centrifugation at 

10,000 x g for 10 min in order to pellet cell debris.  The resultant supernatant was 

collected from each sample and relative amounts of protein were determined with 

the DC Protein Assay (Bio Rad), performed according to manufacturer’s 

instructions.   

 

Relative levels of GSK-3β and GAPDH were analyzed throughout the time-

course.  For each time-point, 10 µg of protein was separated by SDS-PAGE and 

then electro-transferred to a polyvinylidene difluoride (PVDF) membrane. 

Immunoblots were subjected to incubation with primary antibody (#9332; Cell 

Signaling) (1:50 dilution) that detects total levels of endogenous GSK-3β or with 

primary antibody against GAPDH (Advanced ImmunoChemical) (1:400 dilution).  

Primary antibodies were detected with the corresponding horseradish peroxidase-

linked secondary antibodies.  Blots were developed with the ECL 

chemiluminescence detection system according to the manufacturer’s protocol 
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(Amersham Pharmacia Biotech).  Densitometry analysis was performed in order 

to assess the relative levels of GSK-3β and GAPDH using a FluorChem 8900 

imager (Alpha Innotech) and the accompanying software.  The program assigned 

an integrated density value (IDV) for each sample based on pixel intensity.  The 

IDV values obtained from that analysis were then plotted against percent 

cytotoxicity for each time-point. 

 

To determine whether or not the observed loss of GSK-3β was linked to LF’s 

inhibition of MAPK signaling, RAW macrophages were treated with PD 98059, a 

chemical inhibitor of MEK, or LeTx.  Specifically, cells were treated with 20 µM 

PD 98059 (Calbiochem) or 2 µg/ml LeTx in a volume of 5 ml.  Cell extracts were 

collected 30 min, 60 min, 90 min, 120 min, and 150 min post-treatment according 

to the method described above.  Protein concentration was determined for each 

extract using the DC assay described previously and relative levels of GSK-3β 

were then examined in response to each treatment.  Immunoblot analysis was 

performed as described above, probing each extract with a primary antibody for 

GSK-3β (# 361528; Calbiochem) (1:1000 dilution) in the presence and absence of 

GSK-3β blocking peptide (# 361529; Calbiochem).   

 

Immunostaining for GSK-3β and β-catenin 

RAW 264.7 macrophages were grown on coverslips in 12-well plates.  Cells were 

treated with 2 µg/ml LeTx in the presence and absence of lactacystin.  Controls 

were subjected to a 30 min pretreatment with 10 µM lactacystin (Sigma) at 37 °C 
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and existing media was replaced with fresh RP-10 prior to LeTx treatment.  Cells 

were then fixed 0.5 h, 1 h, 1.5 h, 2 h, and 2.5 h following treatment with LeTx 

according to the company protocol supplied with the primary antibodies.  Briefly, 

existing media was aspirated from each well and cells were fixed with 4% 

paraformaldehyde by incubating 15 min at room temperature.  Cells were then 

wash three times with PBS and incubated for 5 min at room temperature per 

wash.  Cells were then incubated at –20 °C in 100% methanol for 10 min.  Cells 

were subjected to a final series of washes with PBS and incubated three times for 

5 min at room temperature.  The cells were then subjected to a blocking step prior 

to immunolabeling in which the cells were incubated at 37 °C for 2.5 h in 

blocking buffer containing 1% BSA, 1X TBS, 5% goat serum.  Cells were then 

washed three times and incubated for 5 min at room temperature in blocking 

buffer.  Primary antibody corresponding to GSK-3β (Cell Signaling) or phospho-

β-catenin (Cell Signaling) was added at a 1:25 dilution in blocking buffer and 

cells were incubated overnight at 4 °C.  Cells were then washed with blocking 

buffer for a total of three times as described above.  Cells were then incubated at 

37 °C for 2.5 h with corresponding rhodamine-conjugated secondary antibodies (2 

µg/ml) (Molecular Probes) prepared in blocking buffer.  Cells were washed with 

blocking buffer as described previously and subjected to an additional wash with 

PBS.  Cells were then stained with 300 nM 4’6-diamidino-2-phenylindole, 

dihydrochloride (DAPI) (Molecular Probes) for 5 min at room temperature.  Cells 

underwent a final series of washes with PBS before mounting the coverslips with 

ProLong Anti-fade medium (Molecular Probes).  IC-21 macrophages were 

subjected to the same staining protocol to serve as untreated controls.  Samples 
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were then viewed with an Olympus BX61 epifluorescence microscope using an 

UPLAN-APO 60X oil immersion lens and analyzed using Spot RT software 

(version 3.5).    

 

Semi-Quantitative Real-Time PCR 

Real-time PCR was performed on total RNA extracted from LeTx-treated and 

mock-treated macrophages.  Three primer sets were designed for Kif1C using 

Primer 3 software (Rozen and Skaletsky 2000).  All primers were 21 bases in 

length.  Pilot experiments showed optimal reaction with the primer set covering a 

region starting at nucleotide 732 and ending at nucleotide 832 in the open reading 

frame of kif1C and this pair was used throughout the real-time PCR analysis.  A 

similar approach was used for the glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) reference sample as well and optimal primers were used covering a 

region starting at nucleotide 764 and ending at nucleotide 872.  In each reaction, 

500 ng of total RNA was reverse transcribed using the TaqMan reverse 

transcription kit (Applied Biosystems) according to manufacturer’s instructions.  

Product from the reverse transcription was used as template in a subsequent real-

time PCR.  Each 25 µl reaction contained 400 nM primer, 0.5 ng of template, and 

12.5 µl 2 X SYBR-green PCR master mix (Applied Biosystems) which includes 

dNTPs and AmpliTaq gold polymerase.  The cycle protocol for real-time PCR 

was as follows: 1 cycle at 95° C for 10 min; 40 cycles of 95° C for 15 s, 48°C for 

30 s, 60° C for 30 s, and a final cycle of 60° C for 10 min.  These real-time PCR 

reactions and detection of accumulated product were performed in a Cepheid 

Smart-Cycler (Cepheid) and data was analyzed using the accompanying software.  
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Relative levels of expression were determined based on calculations involving the 

critical threshold (CT) value of each sample, which was considered to be the point 

of greatest change in SYBR-green fluorescence along the curve.  Calculations of 

fold changes in mRNA levels were made using the CT value in a standard curve 

approach according to manufacturer’s instructions (Applied Biosystems).  All 

samples and reactions were performed in quadruplicate. 

 

Analysis of tubulin 

Refer to previous sections regarding the analysis of MEK-2, Raf-1, and GSK-3β 

for method of cell treatment and protein extraction. The protein samples were 

solubilized with 1% SDS and the relative concentrations were determined by the 

Bronsted-Lowry method (Lowry, Rosebrough et al. 1951).  For each sample 

subjected to analysis of tubulin, 10 µg of protein was separated by SDS-PAGE 

and then electro-transferred to a polyvinylidene difluoride (PVDF) membrane.  

Immunoblots were subjected to incubation with primary antibody against alpha-

tubulin (CP06; Oncogene research product) (1:10,000 dilution). Primary antibody 

was detected with the corresponding horseradish peroxidase-linked secondary 

antibody.  The blot was developed with the ECL chemiluminescence detection 

system according to the manufacturer’s protocol (Amersham Pharmacia Biotech). 

Relative levels of tubulin were determined by densitometry using NIH Image V. 

1.62 software.     

 

In vitro stability of tubulin 
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The ability of LF to mediate direct cleavage of tubulin was analyzed using 

purified tubulin from bovine brain (Molecular Probes) in combination with LF.  

Cleavage of tubulin by LF was assayed by incubating 5 µg of tubulin with 1 µg of 

LF or Tris buffer control at 37 °C for 2.5 h and resolving with SDS-PAGE. 

 

Rate of PA-mediated toxin entry 

The rate of cell entry of PA-mediated toxins was examined in RAW 264.6 

macrophages, NIH-3T3 fibroblasts, HeLa endothelial cells, and IC-21 

macrophages.  Cells from each line were grown in a 96-well plate and treated 

with 2 µg/ml PA and 2 µg/ml LfnTcsL or LfnTcdB per well.  Following toxin 

treatment, 50 nM bafilomycin A (Sigma) was added to each test well every 10 

min for 2 h.  The plates were incubated at 37 °C during the course of treatment 

and viability was then determined 24 h following toxin treatment.  Viability was 

determined with CCK-8, as described previously, or according to cell rounding. 

 

 

 

 

 

RESULTS 

 

Immunoblot analysis of LF-mediated cleavage of MEK-2 in RAW 264.7 

macrophages   
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The time-frame for LF-mediated cleavage of MEK in LeTx-sensitive 

macrophages was established with immunoblot analysis in which an antibody 

specific for the N-terminus of MEK-2 was used.  MEK-2 is one of six MAPKKs 

cleaved by LF; the cleavage site for each is located at the N-terminus. Thus, the 

use of an antibody specific for the N-terminus allowed us to pinpoint the cleavage 

event during the course of intoxication in sensitive macrophages.  This, in turn, 

established a point of reference that would allow us to examine specific cellular 

events that occurred prior to and subsequent to MEK cleavage after treatment 

with LeTx. 
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Fig. 6.  Immunoblot analysis of proteolytic cleavage of MEK-2 in LeTx-

treated RAW 264.7 macrophages  To determine the time-course of LF-mediated 

cleavage of MEK-2, RAW 264.7 cells were treated with LeTx and extracts were 

collected at 30 min, 60 min, 90 min and 120 min time-points following treatment.  

Ten micrograms of extract was resolved by SDS-PAGE, transferred to PVDF 

membrane, and immunoblotted using primary antibody reactive to the amino-

terminus of MEK-2.  Time-points and samples are labeled within the figure.  C= 

control, mock-treated samples; T= LeTx-treated samples.  Immunoblot detection 

of Raf-1 was included to normalize for gel loading and variations in protein 

abudance. 
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   30          60          90         120       Time (min)
> Raf-1

> MEK-2
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mRNA profiles in LeTx-treated RAW 264.7 macrophages   

DNA array profiling can be used to gain insight about cellular activity as it relates 

to changes in gene expression.  In the case of analyzing toxin-treated cells, such a 

profile may reveal disregulation of genes controlled by a particular signaling 

pathway, thus providing clues to toxin activity for further investigation.  For these 

reasons, we analyzed mRNA changes in RAW 264.7 macrophages following 

intoxication by LeTx for 30 min or 90 min.  As shown in Fig. 6, these are time-

points at either 30 min prior to or 30 min following cleavage of MEK-2.  

Approximately 4 h following treatment with LeTx, these cells begin to lose 

viability and show signs of necrotic cell death (data not shown). 

 

The Mouse AtlasTM 1.2 membrane array system, which contains 1,185 gene 

targets that can be grouped into 157 functional categories, was selected for the 

mRNA analysis.  For each time-point, four independent experimental sets were 

generated for both toxin-treated and mock-treated samples (a total of 16 

membranes).  Total RNA was extracted from the treated cells, then reverse 

transcribed, and radiolabeled with [33P]dCTP.  Label incorporation routinely 

exceeded 90% efficiency.  Following the labeling procedure, an equal amount 

(based on nucleic acid concentration) of probe was hybridized to the membrane 

arrays.  Following this standard treatment, images were captured and spot 

intensity was quantified.  

 

To identify differentially expressed genes, results from a standard paired T-test 

were compared to those from an associative analysis.  A threshold of p<0.005 was 
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used to deem significance for both statistical analyses.  Genes identified by both 

the standard paired T-test and associative analysis are likely real positives, those 

selected by the standard T-test only may contain false positives, and those 

selected by the associative analysis only are potentially true positives.  Candidate 

genes expressed under only one condition, experimental or control, were not 

subjected to ratio analysis and were classified as increased or decreased 

expression.  Of the 1185 genes, detectable changes in mRNA levels were found in 

108 genes 30 min following toxin treatment.  By 90 min, there were 83 

differentially expressed genes in the intoxicated macrophages.     

 

Putative signaling pathways targeted by LeTx 

Interestingly, analysis of the DNA array data did not reveal a notable change in 

expression of genes regulated by ERK 1,2 signaling.  Of the differentially 

expressed genes, approximately 15% could be linked to known regulation by 

ERK 1,2.  A similar level of ERK 1,2-regulated genes was detected if a set of 

genes were selected at random from the array, indicating that toxin treatment did 

not dramatically change the expression of ERK 1,2-regulated genes.  

Furthermore, we found that treatment with PD 98059, an inhibitor of Raf /MEK 

interaction and ERK1,2 activation, was not toxic to either LeTx-sensitive or 

LeTx-resistant cells (data not shown).  Finally, p38 and JNK signaling pathways 

were not active in either control or experimental conditions, as determined by 

phosphorylation profiles, indicating these LF-targeted pathways did not impact 

our analyses (data not shown). 
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These results suggested the inactivation of MAPKKs might not be the sole 

contributing factor to the changes in physiology of LeTx-treated cells under these 

experimental conditions.  For this reason, the differentially expressed genes were 

further analyzed for other pathways possibly disrupted by LeTx.  As summarized 

in Table 1, several components of the Wnt signaling pathway appeared to be 

impacted when RAW 264.7 cells were treated with LeTx.  Along with alterations 

in components of the Wnt pathway and genes regulated by Wnt, we also detected 

changes in genes regulated by GSK-3β.  GSK-3β controls levels of β-catenin by 

phosphorylation which targets β-catenin for ubiquitination and proteasome-

mediated destruction.  Activation of the Wnt pathway results in GSK-3β 

inactivation, via dishevelled protein, and subsequent accumulation of β−catenin in 

the nucleus where transcription is regulated.  Thus, it seemed reasonable that the 

changes in Wnt signaling could be part of a compensatory response resulting from 

inactivation of GSK-3β.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TABLE 1. Genes differentially expressed in LeTx -treated RAW cells associated with Wnt signaling and GSK-3β. 
 
Genes names    Accession # p Valuea        p’ Valuea Foldb               

Timepoint 
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-Dishevelled, dsh homolog (Drosophila)^  U10115          8.5065E-05 1.85
 30 min 
-Low density lipoprotein receptor^  Z19521          0.00127                1.65
 30 min 
-Discs, large homolog 4 (Drosophila) ^  D50621          0.00153 -1.64
 30 min 
-Cbp/p300-interacting transactivator with  
Glu/Asp-rich carboxy-terminal domain^  U65091  0.03887         4.75066E-18 +
 30 min 
-Matrix metalloproteinase 9 ◊   X72795  0.02438        6.23703E-54 +
 30 min   
-Matrix metalloproteinase 14 ◊   X83536  0.00977        2.40232E-36 +
 30 min  
-Fibroblast growth factor receptor 4 ◊  X59927  0.03683        2.61219E-18 +
 30min  
-Dickkopf homolog 1 (Xenopus laevis)^  AF030433          1.65271E-12 +
 30 min 
-Frizzled homolog 7 (Drosophila)^  U43320          1.53642E-11 +
 30 min 
-Frizzled homolog 6 (Drosophila)^  U43319          7.13486E-77 +
 30 min  
-cAMP responsive element binding protein 〈  M95106          2.109E-38 -
 30 min 
-Dishevelled 2, dsh homolog (Drosophila)^  U2416          1.44327E-13 3.97
 90 min 
-Catenin (cadherin-associated protein), delta 2^ 
(neural plakophilin-related arm-repeat protein) U90331           0.00011 2.04
 90 min 
-Eph receptor B4 ◊    Z49085  0.00951        1.60623E-10 +
 90 min  
-Discs, large homolog 4 (Drosophila) ^  D50621           0.00150 +
 90 min 
-Frizzled homolog 7 (Drosophila)^  U43320           0.00179 +
 90 min 
-Matrix metalloproteinase 2 ◊   M84324  0.00094        2.17779E-07 +
 90 min 
-CCAAT/enhancer binding protein 
(C/EBP), delta 〈    X61800  0.01733        3.10031E-16 -
 90 min 
-Dishevelled 3, dsh homolog (Drosophila)^  U41285          1.12474E-07 -
 90 min  
  
a P and P’ values represent levels of significance in the standard paired analysis and the associative analysis respectively. 
b Fold refers to the difference in gene expression between control and experimental samples for genes expressed in both 
conditions (normalized value > 0.48, cf. Methods). Genes expressed only in one condition are represented by 
+(experimental) or  -(control).  Genes involved with Wnt signaling pathway are represented by ^.  Genes characterized as 
direct targets of Wnt signaling are represented by ◊.  Genes that are considered to be downstream targets of GSK-3β are 
represented by 〈. 

 

 

 

 

 

 

Effect of LeTx on zebrafish development  
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The role of GSK-3β signaling in macrophage physiology is poorly defined, and to 

our knowledge there are no reports of Wnt or GKS-3β pathways modulating 

macrophage activity.  GSK-3β activity, via Wnt signaling, has been largely 

defined in embryonic development.  To further address our hypothesis that LeTx 

is capable of modulating GSK-3β regulated activities, zebrafish embryos were 

treated with the toxin and analyzed for defects in development.  Embryos were 

treated with the toxin at the very early four-cell stage of development.  Following 

treatment, the embryos were examined for defects in embryo development and 

subsequent growth of the hatched fish.  Control embryos were treated with PA 

alone, LF alone, and PA plus an enzymatically inactive mutant of LF (LFH686C).  

Embryos were treated in triplicate in a 24-well plate (10 embryos/well), for a total 

of 30 embryos per sample.  A dose range of LeTx consisting of 10 µg - 40 µg 

LF/well and a constant amount of PA at 40 µg/well was tested.  Amounts of LF in 

excess of 20 µg were lethal to the embryos (data not shown).  Yet, when embryos 

were treated with functional LeTx at the non-lethal dose, gross defects in 

development were identified.  In contrast, control-treated fish developed with 

normal phenotypes.  A representative embryo elaborating defects following toxin 

treatment is shown in Figure 7.  Notably, embryos are slowed in development, 

demonstrate a delay in pigmentation, and show signs of cardiac hypertrophy when 

treated with LeTx.   As can be seen in Fig. 7J, fish show a major malformation of 

the anterior ventral region.  As will be discussed, each of these defects have been 

linked to Wnt activity in a variety of developmental models.  Taken together these 

data further indicate, in a well-established model, that LeTx is capable of 
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interfering with Wnt related activities, which would occur as a result of the loss of 

GSK-3β.  
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Fig. 7.  LeTx treatment of embryonic zebrafish  Zebrafish embryos were 

treated with LeTx (20 µg/ml LF + 20 µg/ml PA) between the 4-16 cell stage of 

development.  Control zebrafish were treated with an excess of PA (40 µg/ml). 

Lanes A-E, Control zebrafish; Lanes F-J, LeTx-treated zebrafish.  Arrows 

indicate points of decreased pigmentation and cardiac hypertrophy following 

treatment with LeTx. 

 

 

 

 

 

 

 

 

GSK-3β Signaling Pathway 

We further analyzed the role of the GSK-3β signaling pathway by inactivating 

this protein with LiCl, as previously described by others (Stambolic, Ruel et al. 

1996; Hedgepeth, Conrad et al. 1997), prior to treatment with LeTx.  
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Interestingly, as shown in Figure 8, pretreatment of cells with LiCl increases 

sensitivity to LeTx.  RAW 264.7 macrophages pretreated with LiCl exhibited a 

10-fold increase in sensitivity to LeTx.  In light of these observations, we also 

determined if LiCl could convert LeTx-resistant cells to a sensitive phenotype. 

IC-21 macrophages, which are reported to be resistant to LeTx, were pretreated 

with LiCl and tested for sensitivity to the toxin.  As shown in Figure 8, these cells 

became highly sensitive to LeTx following pretreatment with LiCl, further 

indicating that active GSK-3β promotes cell survival following treatment with 

LeTx.  Finally, treatment with LiCl alone results in minimal cytotoxicity, further 

suggesting a synergy between loss of GSK-3β activity and other LeTx-related 

activities. 

 

To determine if the enhanced sensitivity observed with LiCl was directly linked to 

toxin activity, we compared cell viability in response to treatment with PA, PA-

LFn1-556 (a modified form of LF capable of entering cells but lacking enzymatic 

activity), and LeTx after pretreatment with LiCl.  These conditions allowed us to 

determine whether or not enhanced cytotoxicity resulted from toxin binding or 

entry alone.  No change in viability was detected after treatment with PA or PA-

LFn1-556 in the presence or absence of LiCl (data not shown).  Thus, the enhanced 

sensitivity can be attributed to the combined intracellular effects of LiCl and 

LeTx. 

 

Finally, we examined whether the impact of LiCl on LeTx-sensitivity was cell-

type specific.  To do so, NIH-3T3 fibroblasts were subjected to the same 
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treatment conditions as the IC-21, resistant, macrophages.  Unlike the IC-21 

macrophages, pretreatment with LiCl did not render these cells susceptible to 

subsequent challenge with LeTx.  No change in cell viability was detected in 

LeTx-treated NIH-3T3 cells in the presence or absence of LiCl.  This data 

suggests that the impact of LiCl on LeTx-sensitivity is specific for macrophages. 
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Fig. 8.  Relative LeTx sensitivity in macrophages following treatment with 

LiCl  RAW 264.7 and IC-21 macrophages were pretreated with LiCl and 

subsequently challenged with  LF ranging from 1.0 µg/ml to 0.005 ng/ml and a 

fixed amount of PA (2 µg/ml).  Following a 15 h incubation with LeTx, cells were 

assayed for viability by CCK-8 staining.  Panel A) Effects of pretreatment with 

LiCl on LeTx cytotoxicity in RAW macrophages; Panel B) Effects of 

pretreatment with LiCl on LeTx cytotoxicity in IC-21 macrophages. Solid line = 

pretreatment with buffer control; dashed line = pretreatment with 20 mM LiCl.  

Each assay was performed in triplicate and the error bar represents the standard 

deviation from the mean. 
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Fig. 8 
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In vivo and in vitro analysis of GSK-3β following treatment with LeTx 

It was unclear as to whether LiCl pretreatment was potentiating a cytotoxic 

activity of LeTx or attenuating a protective response.  Furthermore, array data 

suggested that genes regulated by GSK-3β activity, and unrelated to Wnt 

signaling, were also modulated in LeTx-treated cells (see Table 1).  Additionally, 

immunoblot analysis of supernatant from LeTx-treated cells did not reveal any 

detectable Wnt-3A protein (data not shown), suggesting inactivation of GSK-3β 

was not due to increased Wnt expression, and may represent a more global change 

in GSK-3β.  To address this possibility, lysates from LeTx-treated RAW 264.7 

macrophages were immunoblotted with GSK-3β anti-serum.  As shown in Figure 

9A, cells treated with a cytotoxic dose of LeTx showed a marked reduction in the 

level of detectable GSK-3β.  Furthermore, cells treated with a non-toxic dose of 

LeTx (5 ng/ml LF, plus 1 µg/ml PA) show an approximately 60% decrease in 

detectable GSK-3β.  Α modified form of GSK-3β was not detected in the lysates 

of toxin-treated cells, suggesting a near complete degradation of the protein rather 

than limited-site cleavage.  This possibility was further confirmed by testing the 

ability of LF to directly cleave GSK-3β in an in vitro reaction.  As shown in 

Figure 9B, co-incubation of LF and GSK-3β did not result in any detectable 

degradation of GSK-3β.  Addition of cell lysates to this reaction did not trigger 

degradation of GSK-3β (data not shown).  Finally, there was no detectable change 

in the levels of GSK-3β in LeTx-resistant NIH-3T3 fibroblasts, IC-21 
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macrophages, or in RAW-TIR macrophages (cells pretreated with low-dose LeTx 

to confer resistance to subsequent challenge with a cytotoxic dose of LeTx).  

These data, shown in Figure 10, further suggest a correlation between decreases in 

GSK-3β and LeTx sensitivity. 
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Fig. 9.  In vivo and in vitro analysis of GSK-3β after treatment with LeTx  

Panel A) Immunoblot of GSK-3β from cells treated with LeTx.  Lysates were 

collected 2 h following treatment with LeTx, resolved by SDS-PAGE, and 

immunoblotted using GSK-3β-specific antibody.  Lane 1, Buffer Control; Lane 2, 

2 µg/ml LF; Lane 3, 5 ng/ml LF.   PA was included at a constant amount of 2 

µg/ml. The corresponding blots and conditions are shown within the figure.  Panel 

B) In vitro stability of GSK-3β in the presence of LF.  Purified GSK-3β (2.5 µg) 

was incubated with 1 µg of LF for 2 h at 37° C, resolved by SDS-PAGE, and 

stained with coomassie blue.  C=GSK-3β; T=GSK-3β plus LF. Immunoblot 

detection of Raf-1 was included to normalize for gel loading and variations in  

protein abundance. 
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Fig. 10.  Immunoblot analysis of GSK-3β in LeTx-resistant cell lines  Panel A) 

Immunoblot of GSK-3β•from NIH-3T3 fibroblast cells treated with LeTx.  

Lysates were collected 1.5 h, 3 h, 6 h, 12 h, and 24 h following treatment with 

LeTx, resolved by SDS-PAGE, and immunoblotted using GSK-3β-specific 

antibody.  The corresponding conditions are shown within the figure.  Panel B) 

Immunoblot analysis of GSK-3β from IC-21 macrophages treated with LeTx.  

Lysates were collected and probed as indicated for the NIH-3T3 samples.  Panel 

C)  Immunoblot analysis of GSK-3β in RAW “TIR” macrophages versus “non-

TIR” macrophages.  “A” corresponds to untreated control; “B” corresponds to 

cells treated with low, TIR-inducing, dose LeTx; “C” corresponds to TIR samples 

that were first subjected to low dose treatment with LeTx followed by subsequent 

high dose LeTx; “D” corresponds to non-TIR samples; “E” corresponds to 

untreated control for non-TIR samples; the designated time-points refer to time  

(h) post-treatment with high dose LeTx.
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Fig. 10 
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Loss of GSK-3β  in LeTx-treated RAW 264.7 macrophages 

To dismiss the possibility that the observed loss of GSK-3β in RAWs was merely 

due to the fact that cells were dying in response to the toxin, cytotoxicity was 

compared with levels of this protein throughout a time-course.  Cells were treated 

with LeTx in the presence and absence of proteasome inhibitor, lactacystin.  

Pretreatment with lactacystin served to protect the cells from high dose treatment 

with LeTx and to prevent the subsequent loss of GSK-3β via proteasome-

mediated destruction, thereby serving as a control for LeTx-treated RAWs.  At 

designated time-points, cytotoxicity and GSK-3β levels were determined 

following treatment with LeTx in the presence and absence of lactacystin.  

Cytotoxicity was determined using the CytoTox One Kit which measures the 

level of lactate dehydrogenase released from damaged cells.  As shown in Figure 

11, a decline in the level of GSK-3β was first observed between 90 and 105 min 

post-treatment with LeTx.  However, a significant increase in cytotoxicity was not 

observed until 120 min following treatment with LeTx; refer to Figure 11.  

Together, these findings suggest that the observed loss of GSK-3β is directly 

related to LF’s activity within RAW macrophages and is not part of a general loss 

of protein that occurs as cells succumb to the toxin. 
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Fig. 11.  Immunoblot analysis of GSK-3β in LeTx-treated RAW 264.7 

macrophages in the presence and absence of proteasome inhibitor  The level 

of GSK-3β was examined in LeTx-treated macrophages in the presence and 

absence of the proteasome inhibitor, lactacystin.  Cells pretreated with proteasome 

inhibitor were incubated with 10 µM lactacystin for 30 min at 37°C prior to 

treatment with LeTx (2 µg/ml).  Extracts were collected at 30 min, 60 min, 90 

min, 105 min, 120 min, 135 min, 150 min, 160 min, 170min, and 180 min time-

points following treatment with LeTx.  Ten micrograms of extract was resolved 

by SDS-PAGE, transferred to PVDF membrane, and immunoblotted using 

primary antibody reactive to GSK-3β.  Time-points and samples are labeled 

within the figure.  Immunoblot detection of GAPDH was included to normalize 

for gel loading and variations in protein abudance. 
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Fig. 12.  Levels of GSK-3β versus % cytotoxicity in LeTx-treated RAW 264.7 

macrophages  A time-course was performed in which RAW cells were treated 

with  2 µg/ml LeTx for a total of 3 h.  Within that time-frame, levels of GSK-3β 

and % cytotoxicity were determined at designated time-points.  For each time-

point, supernatant was collected and used to perform a CytoTox One assay to 

determine % cytotoxicity while cell extracts were collected to perform 

immunoblot analysis, shown in Figure 11.  Relative band intensities were 

determined using FluorChem 8900 software which assigns a value for each 

sample based on pixel intensity.  These values were then plotted against % 

cytotoxicity for each time-point in order to compare levels of GSK-3β and % 

cytotoxicity throughout the time-course.  Panel A) Relative level of GSK-3β 

versus % cytotoxicity in LeTx-treated RAW 264.7 cells, pretreated with 

lactacystin.  Panel B) Relative level of GSK-3β versus % cytotoxicity in LeTx-

treated RAW 264.7 cells, in the absence of lactacystin.  Panel C) Relative level of 

GAPDH versus % cytotoxicity in LeTx-treated RAW 264.7 cells.  GAPDH was 

used as a control to show that levels of this protein remained constant in  

comparison to those of GSK-3β.  
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The correlation between toxin activity and loss of GSK-3β caused us to question 

whether or not this was linked to inhibition of MAPK signaling or if it resulted 

from a separate activity of LF.  In order to determine this, levels of GSK-3β were 

examined in RAW macrophages treated with PD 98059, a chemical inhibitor of 

MAPK signaling.  PD 98059 disrupts MAPK signaling by preventing the 

phosphorylation of MEK, which, in turn prevents the activation of the 

downstream kinase, ERK.  In doing so, this inhibitor mimics LF’s cleavage of 

MEK and subsequent disruption of this pathway. Hence, we compared the level of 

GSK-3β in RAW macrophages treated with PD 98059 or LeTx.  As shown in 

Figure 13, there was no change in the level of GSK-3β following treatment with 

PD 98059 alone, thereby suggesting that the loss of GSK-3β is separate from LF’s 

inhibition of MAPK signaling. 
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Fig. 13.  Immunoblot analysis of GSK-3β in response to MAPK inhibition 

versus LeTx in RAW 264.7 macrophages  In order to determine whether the 

loss of GSK-3β occurs as a result of MAPK inhibition alone or if it results from a 

separate activity of LF, RAW 264.7 cells were treated with PD 98059 or LeTx 

and extracts were collected at 30 min, 60 min, 90 min, 120 min, and 150 min 

time-points following treatment.  Ten micrograms of extract was resolved by 

SDS-PAGE, transferred to PVDF membrane, and immunoblotted using primary 

antibody reactive to GSK-3β.  Time-points and samples are labeled within the 

figure. 
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Cellular localization of GSK-3β and related proteins 

The contribution of GSK-3β in governing susceptibility to LeTx, as shown with 

the LiCl assays, combined with the observed changes in the level of this protein in 

LeTx-sensitive cells caused us to examine its cellular localization patterns.  

Additionally, we investigated the localization of β-catenin due to its central role 

in GSK-3β-regulated activities, particularly those involved in the Wnt signaling 

which could account for the defects observed in the LeTx-treated zebrafish.  

Immunostaining was performed using primary antibodies specific for GSK-3β 

and β-catenin to probe LeTx-treated RAW cells throughout a time-course.  We 

used RAW 264.7 cells pretreated with lactacystin as a control since these cells are 

protected from subsequent challenge with LeTx and, as shown previously, do not 

experience a change in the level of GSK-3β.  Comparisons were then made in the 

localization patterns of GSK-3β and β-catenin in the presence and absence of 

lactacystin.  There was a noticeable decline in GSK-3β at later time-points, 

comparable to what had been observed with immunoblot analysis.  However, the 

staining patterns were as expected up until those times with GSK-3β concentrated 

in the cytoplasm (data not shown).  Surprisingly, the most notable staining 

patterns were observed for phospho-β-catenin.  As shown in Figure 14, all 

samples revealed nuclear localization of this protein.  Additionally, the most 

noticeable change that occurred in response to LeTx was hyper-phosphorylation 

of β-catenin 1 h and 1.5 h post-treatment.  This trend was not observed in 

corresponding cells that had been pretreated with lactacystin or in IC-21 

macrophages that served as an untreated control.   
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Fig. 14.  Cellular localization of phospho-β-catenin in LeTx-treated RAW 

264.7 macrophages  Panel A) Cells were treated with LeTx or Tris buffer control 

for 2.5 h.  Cells were fixed and stained for phospho-β-catenin at designated time-

points.  Panel B) Cells pretreated with lactacystin followed by treatment with 

LeTx or Tris buffer control and analyzed as described for Panel A.  Samples and 

time-points are designated within the figure. 
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Differential expression of kinesin motor proteins   

Reports have implicated a kinesin motor protein, Kif1C, as a factor that governs 

macrophage resistance to LeTx activity (Roberts, Watters et al. 1998; Watters, 

Dewar et al. 2001).  In our analysis, two kinesins, kinesin family member Kif5C 

and kinesin family member Kif3C, were up-regulated, while kinesin family 

member Kif3B was down-regulated in toxin treated cells (see Table 2).  It has 

recently been reported that APC and Kif3B proteins co-localize at microtubules 

along with β-catenin following phosphorylation by GSK-3β (Jimbo, Kawasaki et 

al. 2002).  This observation, along with the report of Watters et al. (Watters, 

Dewar et al. 2001), suggest that kinesins not only confer resistance to LeTx, but 

also respond to LeTx activity by altering transcript levels.  If such a hypothesis is 

true, then we reasoned that resistant versus sensitive cells might show differential 

expression of Kif1C.  Therefore, the level of mRNA encoding for Kif1C was also 

examined by real-time PCR in IC-21 and RAW 264.7 macrophages following 

treatment with LeTx.  As shown in Table 3, unlike the results from LeTx-treated 

RAW 264.7 cells, in IC-21 cells there is a decrease in the level of mRNA 

encoding Kif1C following treatment with LeTx.  Kif1C mRNA expression 

decreased 8.7 fold in IC-21 macrophages, while LeTx-sensitive RAW 264.7 

macrophages showed a 2.3 fold increase in expression.  These data suggest that in 

addition to single nucleotide polymorphisms in Kif1C between LeTx-resistant and 

sensitive macrophages, the levels of expression in response to the toxin may be a 

determining factor in cell survival during exposure to the toxin. 
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TABLE 2. Genes differentially expressed in LeTx -treated RAW cells related to kinesin motor proteins.  
   
Genes names   Accession #            p Valuea            p� Valuea                Foldb         Timepoint  
 
-Kinesin family member 5C  X61435              0.00615    9.51463E-07          2.47 90 min   
-Kinesin family member 3C  AF013116              0.00074                 1.86 90 min  
-Kinesin family member 3B  D26077              0.02960    9.98407E-06         -2.26 90 min 
 

a P and P’ values represent levels of significance in the standard paired analysis and the associative analysis respectively. 
b Fold refers to the difference in gene expression between control and experimental samples for genes expressed in both 
conditions (normalized value > 0.48, cf. Methods).  
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Table 3.  Real-time PCR Analysis of Kif1C in LeTx-Resistant 
and LeTx-Sensitive Macrophages 

 
 IC-21 RAW 
GAPDH aCT Fold Change aCT Fold Change 
Tris 21.4  18.4  
LeTx 20.6  19.8  
     
Kif1C     
Tris 25.9  26.9  
LeTx 28.4 8.7 decrease 27.1 2.3 increase 

            
aMean average of four independent real-time PCR analyses.  Fold change was 
determined by comparison with the standard curve generated for each target 
gene. 
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Decreased levels of tubulin in LeTx-treated RAW 264.7 macrophages   

Microtubules are a major intersecting point for the processes mentioned above.  

GSK-3β•activity and motor protein activity each involve a functional microtubule 

network (Flaherty, Soria et al. 2000; Cui, Dong et al. 2002).  Furthermore, GSK-

3β is reportedly involved in regulating microtubule stability (Sang, Lu et al. 

2001), and the array data indicated changes in microtubule-interacting proteins.  

As summarized in Table 4, levels of tubulin, beta 4 are reduced 30 min after 

treatment with LeTx, microtubule-associated protein EB family member 1 (EB1) 

is reduced by at least 11 fold 90 min following treatment with LeTx, and 

microtubule-associated protein 4 is also altered in expression following toxin 

treatment, making the overall stability of tubulin following treatment with LeTx 

of interest.  As shown in Figure 15A, following treatment with LeTx, there is a 

notable decrease in the level of cellular tubulin in RAW 264.7 cells.  

Densitometry analysis indicated a 60% reduction in total intact tubulin following 

treatment of the cells with LeTx.  This decrease occurs before cell death and cells 

maintain normal levels of Raf (control) at the time-point of decreased tubulin.  

Similar to the results with GSK-3β, LF does not appear to directly cleave tubulin.  

As shown in Figure 15B, there was no detectable loss of tubulin when the protein 

was incubated with LF.  
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TABLE 4. Genes differentially expressed in LeTx -treated RAW cells linked to microtubule stability.  
 
Genes names    Accession # p Valuea            p� Valuea Foldb         
Timepoint 
 
-Microtubule-associated protein 4  M72414          8.65563E-11 2.82
 30 min 
-Tubulin, beta 4    M28730  0.00272        2.19067E-11 -
 30 min 
-Microtubule-associated protein, RP/EB family, 
member 1     U51196  0.00225        4.72168E-38 -11.35
 90min 
 

a P and P’ values represent levels of significance in the standard paired analysis and the associative analysis respectively. 
b Fold refers to the difference in gene expression between control and experimental samples for genes expressed in both 
conditions (normalized value > 0.48, cf. Methods). Genes expressed only in control sample is indicated by( -).  
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Fig. 15.  Changes in cellular tubulin levels following treatment with LeTx  

Panel A) Cell lysates were collected at the indicated time-points from LeTx-

treated and mock-treated controls RAW 264.7 macrophages.  Extracts were then 

examined by immunoblot analysis for decreases in total tubulin, in 

correspondence with cleavage of MEK-2 as shown in Fig. 6. The corresponding 

conditions are shown within the figure.  Panel B) Stability of alpha-tubulin in the 

presence of LF.  Purified tubulin was incubated with LF for 2.5 h at 37°C, 

resolved by SDS-PAGE, and stained with coomassie blue.  C= control; mock-

treated and T=LeTx-treated samples. Immunoblot detection of Raf-1 was 

included to normalize for gel loading and variations in protein abudance. 
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Difference in PA-mediated entry among LeTx-sensitive and resistant cell types 

Preliminary data obtained from immunoblot analysis of MEK-1 in LeTx-resistant 

and sensitive cells revealed differences in the time-frame for this cleavage event.  

As shown in Figure 16, MEK cleavage occurred within 90 min following LeTx 

treatment in RAW macrophages, at which point no MEK was detected with the 

N-terminal antibody, thus indicating complete cleavage of this protein.  In 

contrast, cleavage occurred much later in IC-21 macrophages.  MEK became non-

reactive with the antibody used 6 h after toxin treatment, thus indicating complete 

cleavage from that point on.  Additionally, NIH-3T3 fibroblasts exhibited a delay 

in MEK cleavage compared to LeTx-sensitive RAW cells, with a profile similar 

to that obtained for IC-21 cells (data not shown).  Together, these data suggested 

that perhaps differences in rate of entry contributed, at least in part, to 

susceptibility to LeTx.  Therefore, we compared the rate of entry of PA-mediated 

toxins among LeTx-sensitive and LeTx-resistant cell lines based on changes in 

cell viability.   

 

We examined changes in cell viability among macrophage and non-macrophage 

cell lines in response to treatment with different PA-mediated toxins.  

Specifically, we treated RAW, NIH-3T3, HeLa, and IC-21 cells with fusions of 

LF and C. sordellii lethal toxin (TcsL) or LF and C. difficile toxin B (TcdB).  

These fusions consisted of a portion of LF, which contained the PA-binding site 

but lacked the enzymatic moiety, fused to the enzymatic domain of TcsL or TcdB.  

We chose to use these particular fusions because all cell lines in our assay 

experience a significant cytopathic effect in response to these modified toxins 
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unlike LeTx, although both the fusions and LeTx rely on PA-mediated cell entry.  

Following treatment with the fusions, bafilomycin was added at 10 min intervals 

for 2 h and cell viability was examined throughout the time-course.  Bafilomycin 

blocks acidification of the toxin-containing endosome, thereby inhibiting the 

release of pH-dependent toxins into the cytosol.  In this case, the use of 

bafilomycin allowed us to determine the time-frame for release of PA-mediated 

toxins into the cytosol of different cell lines.   

 

The bafilomycin assays revealed significant differences between macrophage and 

non-macrophage cell lines in response to treatment with the toxin fusions.  Most 

pronounced was the difference in the viability of NIH-3T3, HeLa, and RAW cells 

in response to treatment with PA, LFnTcsL1-556 followed by treatment with 

bafilomycin.  As shown in Figure 17, bafilomycin conferred significant protection 

in NIH-3T3 cells against the fusion for the duration of the 2 h time-course 

whereas the RAW cells experienced no protective effect.  Likewise, HeLa cells 

revealed a significant protective effect from bafilomycin throughout the same 

time-course.  IC-21 cells exhibited a minimal protective effect through the 50 min 

time-point but showed no significant protection when bafilomycin was added 

beyond that point (data not shown).  Data derived from assays in which PA, 

LFnTcdB1-556 was used correlated with data from the PA, LFnTcsL1-556 assays with 

respect to each cell type.  Taken together, these findings indicate that there is a 

difference in the rate of entry of PA-mediated toxins in different cell lines.  In 

particular, it seems that PA-mediated toxin entry occurs much quicker in 

macrophages compared to the other cell lines tested.  This, in turn, may contribute 
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to differences in susceptibility to LeTx.  However, it should be noted that the 

difference in LeTx sensitivity among RAW and IC-21 macrophages suggests that 

additional factors, such as those described previously, govern macrophage 

sensitivity.   
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Fig. 16.  Immunoblot analysis of MEK cleavage in LeTx-sensitive and 

resistant cells  In order to determine the time-course of LF-mediated cleavage of 

MEK-1, RAW 264.7 and IC-21 cells were treated with LeTx and extracts were 

collected at designated time-points following treatment.  Ten micrograms of 

extract was resolved by SDS-PAGE, transferred to PVDF membrane, and 

immunoblotted using primary antibody reactive to the amino-terminus of MEK-1.  

Time-points and samples are labeled within the figure.  C= control, mock-treated  

samples; T= LeTx-treated samples. 
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Fig. 17.  Difference in the rate of PA-mediated entry among LeTx-sensitive 

and resistant cell lines  RAW 264.7 macrophages, NIH-3T3 fibroblasts, and 

HeLa endothelial cells were treated with 2 µg/ml PA and LFnTcsL1-556.  

Bafilomycin A was then added every 10 min for 2 h and cell viability was 

determined for each of the designated time-points 24 h following toxin treatment.  

Samples and time-points are designated within the figure.   
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DISCUSSION 

 

The DNA array studies allowed us to characterize previously unidentified changes 

in macrophage physiology that occur following intoxication by LeTx.  

Reportedly, LeTx is cytotoxic to a very limited number of cell lineages although 

MAPKKs undergo cleavage by LF in a variety of different cell types.  

Consequently, yet undefined events outside of the MAPK signaling pathways 

may also contribute to LeTx’s cytotoxic activity.  As a broader approach to 

analysis of LeTx-intoxicated macrophages, we used a DNA membrane array to 

evaluate expression of over 1,000 categorized genes.  The DNA array data was 

scrutinized to determine whether or not transcriptional changes are the result of 

disruption of an upstream regulatory pathway or part of a compensatory response 

by the cell.  Thus, this data was used as a guide to find LeTx-induced changes at 

the protein level.  We believe our data reflects both pathway disruption (e.g. 

GSK-3β) and compensatory responses (e.g. kinesin motor proteins).  Using this 

perspective, analysis of the expression data suggested that the Wnt signaling 

pathway could be disrupted in LeTx-treated macrophages.  Additionally, our 

DNA array analysis indicated that kinesin motor-protein expression and tubulin 

stability may be altered in these cells in response to treatment with LeTx.  

 

Wnt signaling, which is regulated by GSK-3β, plays a major role in various stages 

of embryonic development.  Thus, we used a developing zebrafish model to 

further confirm LeTx’s impact on this pathway.  Phenotypic changes, indicative 

of defects in Wnt signaling, were revealed in toxin-treated embryos.  Temporal 
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loss of pigmentation and cardiac hypertrophy were the two prominent phenotypes 

of LeTx-treated embryos.  Both of these developmental processes have been 

shown to involve regulation by Wnt.  Specifically, Dorsky and colleagues 

reported on the requirement of Wnt in regulating pigment cell formation in 

zebrafish (Dorsky, Raible et al. 2000).  Furthermore, Wnt signaling is known to 

be involved with cardiogenesis and modulation of cardiac hypertrophy via GSK-

3β-related activities (Hardt and Sadoshima 2002).  Thus, the resulting phenotypes 

from LeTx-treated embryos correspond with the developmental defects expected 

following Wnt inactivation.  

 

Although disruption of GSK-3β was first indicated by the observed transcriptional 

changes associated with Wnt signaling, we also detected changes in a group of 

genes regulated by GSK-3β outside of the Wnt pathway.  This observation 

suggested these changes might be due to an overall loss of GSK-3β activity after 

treating cells with LeTx.  In line with this, results from the LiCl inhibitor studies 

suggest that GSK-3β is necessary for survival of LeTx-treated cells.  Inhibition of 

this protein and its related activities via LiCl not only enhanced cytotoxicity in 

LeTx-sensitive macrophages, but converted LeTx-resistant macrophages to a 

sensitive phenotype.  In addition to relating GSK-3β-regulated activities to LeTx 

sensitivity in macrophages, we also correlated a direct loss of this protein to cell 

sensitivity.  Specifically, loss of GSK-3β was only observed in LeTx-sensitive 

cells; i.e. RAW 264.7 macrophages or IC-21 macrophages that had been 

pretreated with LiCl.  Additionally, loss of GSK-3β occurred well before changes 
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in cell viability were detected, thereby indicating that this effect is specifically 

related to the cellular activities of LF.  Furthermore, the observed loss of GSK-3β 

was not solely attributed to LF’s inhibition of MAPK signaling, as levels of this 

protein remained unchanged in response to treatment with PD 98059, a chemical 

inhibitor of MEK.  Together, these findings suggest that the loss of GSK-3β is not 

an inconsequential downstream event in intoxication.  Instead, the observed 

changes regarding GSK-3β indicate a specific effect of LF which, in turn, relates 

to the susceptibility of different cell lineages to LeTx. 

 

A plausible explanation relating the observed effects to cytotoxicity in LeTx-

treated macrophages would link LiCl inactivation of GSK-3β to inhibition of NF-

κΒ−regulated expression of factors that are important for cell survival.  A report 

by Hoeflich and colleagues found that NF-κΒ is regulated by GSK-3β within 

transcriptional complexes (Hoeflich, Luo et al. 2000).  Thus, inactivation of GSK-

3β by LiCl could block NF-κΒ transcriptional regulation.  Park and colleagues 

(Park, Greten et al. 2002) have recently shown that NF-κΒ synergizes with p38 to 

regulate survival genes in the presence of inflammatory stimuli and that LeTx, by 

inactivating the p38 pathway, promotes cell death.  Thus, blocking GSK-3β 

function by LiCl treatment may heighten sensitivity to LeTx by preventing the 

expression of factors that promote survival.  It must be noted, however, that LiCl 

treatment may be having a broad effect on cell signaling; thereby impacting 

targets outside of the GSK-3β pathway.  For this reason, the LiCl sensitization 

data should be considered predominantly in light of results from the zebrafish, 
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immunoblot, and DNA array experiments.  In fact, detailed analysis of the DNA 

array data does further support the putative loss of GSK-3β in LeTx-treated cells.  

β-catenin, AP-1, cyclic AMP-response element binding protein, NFκB, Myc, heat 

shock factor-1, nuclear factor of activated T-cells, and CCAAT/enhancer-binding 

proteins are known targets of GSK-3β regulation and are represented on the 

membrane arrays (Wang, Fiol et al. 1994; Welsh, Wilson et al. 1996; Hoeflich, 

Luo et al. 2000).  Of these, β-catenin, cyclic AMP-response element binding 

protein, and CCAAT/enhancer-binding protein show changes in expression 

following treatment of macrophages with LeTx.   

 

It seems likely that GSK-3β signaling is most important at the low, apoptosis-

inducing, levels of LeTx treatment.  LiCl treatment did not alter the high-dose 

effects of LeTx but enhanced cytotoxicity at low-doses of the toxin.  Furthermore, 

cell death in IC-21 macrophages occurred at a relatively slow rate, indicative of 

apoptosis.  This would be in agreement with a study that reported apoptotic cell 

death in RAW 264.7 macrophages in response to treatment with sublytic amounts 

of LeTx (Popov, Villasmil et al. 2002).  Collectively, these data indicate that 

necrotic cell death occurs even in the absence of inhibition of GSK-3β, but the 

low-dose effects of the toxin are enhanced in cells in which GSK-3β has been 

attenuated. 

 

Based on the link between GSK-3β and LeTx sensitivity, we examined the 

staining and localization patterns of GSK-3β and related proteins in LeTx-treated 
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RAW cells.  In doing so, we found that β-catenin is hyper-phosphorylated in 

response to treatment with LeTx.  Phosphorylation of this protein is normally 

regulated by GSK-3β, targeting it for proteasome-mediated degradation.  In this 

regard, GSK-3β actively inhibits β-catenin-mediated transcription associated with 

Wnt signaling.  However, since we observed a loss of GSK-3β and its associated 

activities, we were surprised to observe the hyper-phosphorylation of a protein 

normally regulated by GSK-3β.  Additionally, our data revealed nuclear 

localization of phospho-β-catenin in LeTx-treated RAW cells.  We had expected 

that LeTx’s disruption of GSK-3β would have resulted in the accumulation of 

unphosphorlyated β-catenin in the cytoplasm prior to its translocation to the 

nucleus.  However, reports indicate that disruption of signaling involving Wnt or 

cell-cell adhesion, in which β-catenin is a central mediator, can result in 

accumulation of β-catenin in cytoplasm or nucleus (Roose, Huls et al. 1999; 

Behrens 2000).  Interestingly, hyper-phosphorylation of β-catenin was not 

observed in LeTx-treated RAW cells that had been pretreated with proteasome 

inhibitor.  In this case, pretreatment with proteasome inhibitor confers protection 

from LeTx for the duration of the time-course.  Interestingly, the staining pattern 

of β-catenin in these cells was similar to that of IC-21 macrophages.  In total, 

these results suggest that localization and hyper-phosphoylation of β-catenin may 

contribute to LeTx sensitivity.    

 

Separate from the findings regarding GSK-3β and its related activities, the array 

data also revealed changes in the expression of kinesin motor proteins.  These 
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changes were of immediate interest because of the findings of Watters and 

colleagues which linked a kinesin-like motor protein, Kif1C, to cellular resistance 

to LeTx (Watters, Dewar et al. 2001). Our experiments examined the role of 

motor proteins from a perspective different from Watters et al., which identified 

the resistance loci based on single nucleotide polymorphisms in the kif1C gene. 

Yet, there are correlations between these two studies.  In addition to the array data 

which showed changes in the expression of various kinesins in response to LeTx, 

we also demonstrated differential expression of Kif1C among sensitive and 

resistant macrophages.  Specifically, we observed a difference in the level of 

Kif1C in LeTx-treated RAW and IC-21 cells.  Watters and colleagues also found 

that destabilizing the cellular localization of Kif1C with brefeldin-A converts 

resistant IC-21 cells to a LeTx-sensitive phenotype.  Thus, alterations in Kif1C’s 

ability to function correctly may be linked to LeTx-sensitivity.  In the absence of 

the ability to make these adjustments, cells would be rendered more susceptible to 

the toxin, as is the case with RAW 264.7 macrophages.  

 

Taken together, the findings from the array studies allow for an encompassing 

model that could account for the observed effects, centering around the loss of 

GSK-3β.  In such a case, loss of GSK-3β and subsequent alterations in synergy 

with NF-κB may render the cell incapable of promoting survival.  Within the 

same model, loss of GSK-3β could lead to alterations in microtubule stability and 

corresponding compensatory responses involving kinesin protein expression.  

Defining specific details of such a model will require continued investigation.  

Furthermore, such a model should not dismiss a role for inactivation of MAPKKs 
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as a contributing factor.  The instigating event leading to loss of GSK-3β is not 

clear and could be a downstream result of MAPKKs inactivation.  However, this 

cannot be the full explanation for cell death since other cells with inactivated 

MAPK signaling do not necessarily succumb to the toxin.   

 

Our findings provide additional evidence to support the proposed role of the 

proteasome in mediating sensitivity to LeTx (Tang and Leppla 1999).  First, in 

examining the loss of GSK-3β versus cytotoxicity in LeTx-treated RAW cells, 

pretreatment with proteasome inhibitor, lactacystin, protected the cells for the 

duration of the time-course.  In addition, cells pretreated with lactacystin showed 

no change in the level of GSK-3β in response to LeTx.  Lastly, the hyper-

phosphorylation of β-catenin, observed with immunostaining, occurred in the 

absence of lactacystyin whereas cells pretreated with lactacystin did not show this 

alteration.  Together, our findings further emphasize the role of the proteasome in 

mediating sensitivity to LeTx. 

 

The bafilomycin assays suggest that the rate of PA-mediated toxin entry may play 

a role in governing sensitivity to LeTx among different cell types.  The data 

revealed that significant protection could be achieved for the non-macrophage cell 

lines, NIH-3T3 and HeLa, when treated with bafilomycin up to two hours 

following treatment with PA-mediated toxins.  In contrast, bafilomycin offered no 

protection to RAW macrophages and limited protection to IC-21 macrophages 

within that same time-frame, suggesting that entry occurs more rapidly within this 

cell type.   It has been shown that anthrax toxin entry is governed by the 
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association of its cell surface receptor with lipid rafts (Abrami, Liu et al. 2003).  

Although the reported receptor of anthrax toxin (ATR) is widely expressed, it is 

possible that there is a different mechanism of cell entry, other than a lipid raft-

mediated process, or a difference in the rate of entry among different cell types.  

These possibilities could account for differences in LeTx sensitivity observed in 

vitro.     

 

Summarized in Figure 18, the findings presented in this thesis provide new insight 

regarding LeTx’s mechanism of action in vitro and identify cellular factors 

involved in mediating susceptibility to this toxin.  These data identify a potential 

activity of LF, separate from its inhibition of MAPKKs, which contributes to 

LeTx sensitivity.  Specifically, toxin treatment causes alterations in GSK-3β in 

LeTx-sensitive cells.  Additionally, chemical inhibition of GSK-3β with LiCl 

converts resistant cells to a sensitive phenotype.  Taken together, these results 

suggest that GSK-3β activity is required to promote cell survival in response to 

LeTx and that the observed cytotoxicity in RAW macrophages results from 

disruption of GSK-3β and its related activities.  In addition to impacting GSK-3β, 

LeTx was shown to alter the expression of kinesin motor proteins as well as 

microtubule-associated proteins.  The kinesin motor protein Kif1C was previously 

linked to LeTx sensitivity based on a single nucleotide polymorphism in this gene 

in resistant versus sensitive macrophages.  The data presented in this thesis not 

only demonstrate differential expression of kinesin motor proteins in LeTx-

sensitive macrophages but also reveal differential expression of Kif1C in sensitive 

versus resistant macrophages.  In regards to the impact of LeTx on microtubule 
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stability, my studies revealed differential expression of microtubule-associated 

proteins and tubulin in LeTx-sensitive cells.  Furthermore, these cells exhibit a 

dramatic reduction in the level of tubulin in response to LeTx.  Finally, results 

from the bafilomycin assays implicate the rate or mechanism of entry as an 

additional factor in governing sensitivity to LeTx.  In summary, results from these 

studies portray LeTx as a virulence factor with multi-faceted activities and should 

encourage the continued investigation of this toxin’s ability to impact multiple 

cellular events.   
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Fig. 18 
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