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Abstract

In the model organism Arabidopsis thaliana the heterotrimeric transcription factor NUCLEAR FACTOR Y (NF-Y) has been
shown to play multiple roles in facilitating plant growth and development. Although NF-Y itself represents a multi-protein
transcriptional complex, recent studies have shown important interactions with other transcription factors, especially those
in the bZIP family. Here we add to the growing evidence that NF-Y and bZIP form common complexes to affect many
processes. We carried out transcriptional profiling on nf-yc mutants and through subsequent analyses found an enrichment
of bZIP binding sites in the promoter elements of misregulated genes. Using NF-Y as bait, yeast two hybrid assays yielded
interactions with bZIP proteins that are known to control ABA signaling. Accordingly, we find that plants mutant for several
NF-Y subunits show characteristic phenotypes associated with the disruption of ABA signaling. While previous reports have
shown additive roles for NF-YC family members in photoperiodic flowering, we found that they can have opposing roles in
ABA signaling. Collectively, these results demonstrated the importance and complexity of NF-Y in the integration of
environmental and hormone signals.
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Introduction

Successful acclimation of plants to temporal environmental

changes requires the integration of multiple intersecting signals.

These environmental signals, such as changing light and water

availability, profoundly modify growth and developmental pro-

grams. Phytohormones often play a central role in these responses

and recent studies identified several integrators of light and

hormone signaling pathways (reviewed in [1] and [2]). For

example, the basic leucine zipper (bZIP) transcription factor

ELONGATED HYPOCOTYL 5 (HY5) has been intensely

studied for its roles in light regulated development, but was only

recently found to additionally mediate abscisic acid (ABA)

signaling in germinating seeds [3]. Thus, pathway integrators

can act as hubs for multiple environmental inputs, but how they

coordinate these variable inputs to generate unique transcriptional

outputs remains unknown [2].

One possibility for coordinating multiple environmental inputs

is through interactions with combinatorial transcription factors.

Increasing evidence suggests that the combinatorial transcription

factor NUCLEAR FACTOR Y (NF-Y) plays important roles in

facilitating plant responses to various environmental signals and

hormones [4–7]. In fact, like HY5, NF-Y complexes can regulate

both light signaling (blue light) and hormone perception (ABA,

[7]). NF-Y transcription factors bind at CCAAT cis-elements and

function as trimeric complexes consisting of three distinct protein

subunits, NF-YA (NF-Y, subunit A), NF-YB, and NF-YC [8].

These individual subunits are each encoded by small gene families

found throughout the plant lineage – e.g., Arabidopsis thaliana

(Arabidopsis) has 36 NF-Y encoding genes (10 NF-YA, 10 NF-YB,

and 10 NF-YC [9–11]). Because the mature DNA-binding NF-Y

complex is thought to contain only one of each subunit type,

hundreds of unique combinations are theoretically possible. Thus,

unique combinations of NF-Y transcription factors may provide a

flexible system for fine-tuning the integration of environmental

signals to transcriptional outputs [9,12,13].

NF-Y are known to regulate a variety of developmental

phenotypes and stress responses. For example, NF-YB and NF-

YC subunits regulate photoperiod-dependent flowering [5,6,13–

16] and overexpression of both NF-YA and NF-YB proteins can

confer drought tolerance in plants [17,18]. In the legumes Phaseolus

vulgaris and Medicago truncatula, specific NF-YA and NF-YC

subunits are necessary for the development of nitrogen fixing

nodules [19–21]. Other studies have implicated NF-Ys in

embryogenesis, light perception, unfolded protein responses

(UPR), and photosynthesis [7,22–27].

Although NF-Y itself represents a multi-protein complex that

can independently integrate multiple signals, recent studies have

shown additional interactions with other transcription factor

families, especially those in the bZIP family. Yamamoto et al. [4]
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demonstrated that central regulators of embryogenesis, LEAFY

COTYLEDON 1 (LEC1/NF-YB9) and LEC1-LIKE (L1L/NF-

YB6), interact with bZIP67 to regulate the expression of genes

with ABA-responsive elements (ABRE) in their promoters. More

recently, Liu and Howell [25] proposed a model where a complex

of bZIP28, NF-YA4, NF-YB3, and NF-YC2 binds to endoplasmic

reticulum stress response elements (ERSE) to regulate genes

related to the unfolded protein response (UPR). In both cases, full

activation of target promoters required the presence of NF-Y and

bZIP components. Therefore, the complexity of NF-Y transcrip-

tion factors can be further increased through interactions with

bZIP proteins.

Like NF-Ys, bZIPs are also found throughout the eukaryotic

lineage. In Arabidopsis bZIP proteins represent a large family

containing 75 members in ,20 phylogenetically related sub-

groups [28]. Similar to NF-Y, bZIP proteins are involved in

diverse processes ranging from environmental stress tolerance to

development. Group A bZIP proteins are particularly important

for the integration of environmental stress signals (e.g., drought)

with hormone-related responses (especially ABA, [29]). Examples

of Group A bZIP proteins include the previously discussed

bZIP67, as well as ABSCISIC ACID INSENSITIVE 5 (ABI5) and

the ABA RESPONSE ELEMENT BINDING PROTEINS/ABA

BINDING FACTORS 1–4 (AREB/ABF1–4). Mutations in ABI5

allow developing seeds to germinate and grow on normally

restrictive levels of ABA [30]. Mutant and overexpression lines for

ABF1-4 show characteristic morphological and molecular pheno-

types typically associated with ABA responses, including altered

growth, transpiration rates, and seed germination in response to

abiotic stress [31]. Although not in Group A, the light and ABA-

signaling integrator HY5 is also a bZIP protein. HY5 directly

regulates the expression of ABI5 and hy5 mutants have reduced

sensitivity to ABA in a variety of assays, including seed

germination and root growth [3].

Previously, we showed that NF-YC3, NF-YC4, and NF-YC9 have

overlapping roles in photoperiod-dependent flowering [16]. In the

current study we used transcription profile analysis of nf-yc3 nf-yc4

nf-yc9 triple mutants to investigate other pathways potentially

affected by these genes. This analysis revealed an over-represen-

tation of cis-elements with putative bZIP binding sites. We

hypothesized that NF-Y mutants would share phenotypic similar-

ities to various bZIP mutants and tested this idea by assaying seed

germination, seedling greening, and root elongation for abnor-

malities as well as quantitative reverse transcriptase polymerase

chain reaction analyses (qPCR) on known bZIP regulated genes.

We found that various mutant and overexpression combinations of

NF-YB and NF-YC genes significantly altered characteristic

morphological and molecular phenotypes associated with ABA

signaling. Additionally, we found that NF-Y subunits from the

same family can have opposing roles in a given process. Overall,

these data suggested that NF-Y and bZIP transcription factors

coordinately regulate ABA-related phenotypes.

Results

Misregulated Genes in nf-yc Mutants are Enriched for
bZIP Binding Sites

We previously used qPCR and microarray analyses to

demonstrate that FLOWERING LOCUS T (FT) was downregulated

in the 10 day-old seedlings of long day grown nf-yc3 nf-yc4 nf-yc9

triple mutants (hereafter nf-yc triple) [16]. To generate new

hypotheses and extend the nf-yc triple analysis here, we further

examined this published microarray data by searching for over-

represented promoter motifs within the 59 upstream sequences of

the misregulated gene set (both up and down regulated genes,

p,0.05 without false discovery rate correction; see Materials and

Methods). This set consisted of 83 nuclear-encoded genes that

were at least 1.5 fold misregulated in the nf-yc triple. Initially, we

used the online software package Athena to search this gene set for

enriched promoter motifs (http://www.bioinformatics2.wsu.edu/

cgi-bin/Athena/cgi/home.pl, [32]).

Using the Athena analysis suite, three statistically over-

represented promoter motifs were discovered (Table I). All three

were bZIP-binding sites with the core-conserved sequence ACGT.

The most highly significant motif was the 3.3-fold over-represent-

ed CACGTG motif, also called the G-box [33]. The G-box is found

in the promoters of many light responsive genes and is a known

binding site for HY5 [34–36]. The other two significantly enriched

sequences were related to the ABRE and also have the ACGTG

portion of the G-box. ABREs are also bound by bZIP proteins,

specifically the Group A bZIP transcription factors AREB/ABF1-

4 [28,37,38]. These data are consistent with a previous report that

L1L (NF-YB6) [24,39] physically interacts with the Group A bZIP

protein bZIP67 to regulate ABRE containing promoters [4]. Also

of note in Table I is the enrichment of the unfolded protein

response (UPR) element, as identified in animal systems [40].

Although just missing statistical significance in our dataset, Liu and

Howell recently showed that NF-Ys can physically interact with

bZIP28 and affect the expression of genes with the UPR promoter

element [25].

In addition to Athena, we used MEME (Multiple Em for Motif

Elicitation, http://meme.nbcr.net) to search for shared motifs in

the misregulated gene set [41,42]. MEME uses a Hidden-Markov

model and is not constrained by searching for known motifs (i.e., it

can find both known and novel motifs). Three low E-value motifs

were discovered and each was tested for resemblance to previously

identified transcription factor binding sites using the TOMTOM

motif comparison tool [43]. While two of the motifs showed no

clear homology to known binding sites, one showed significant

resemblance to known bZIP binding sites, including those bound

by ABF, HY5 and EmBP-1 (Figure 1A). Consistent with our

previous results, bZIP binding sites were often located between

2100 to 2200 bp of the transcription start site within the

promoters of the misregulated gene set (Figure 1B). These data, as

well as several recent reports [4,25], suggest that NF-Y may have a

generalizable relationship with bZIP proteins in the transcriptional

regulation of numerous genes.

Predicted NF-YC Interaction Network Include bZIP
Proteins

Bioinformatic analysis of promoter elements enriched on the nf-

yc triple microarray revealed a possible interaction with bZIP

domain containing proteins. To further investigate the predicted

protein-protein interaction network of NF-YC3, NF-YC4, and

NF-YC9, we used the web-based software GeneMANIA that is

designed to identify functional associations [44,45]. For visualiza-

tion, individual protein-protein interaction networks from Gene-

MANIA were integrated into a single network map using the open

source software Cytoscape (Figure 2, [46]). In addition to the

predicted interaction network provided by GeneMANIA, we

included previously published NF-Y by CCT (Constans, Constans-

Like, TOC1) protein interactions. We also included bZIP and

CCT protein interactions discovered in a yeast two hybrid (Y2H)

screen using NF-YC9 as bait and the directed Y2H data shown

below ([16] and RWK and BFH unpublished). As expected, all 13

Arabidopsis NF-YB proteins, as well as four of 10 NF-YA proteins,

were predicted to interact with the NF-YC proteins. In addition to

the previously described interactions with NF-YA, NF-YB and

NF-Y Role in ABA Signalling
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CCT proteins [5,6,16], there were two other large classes of

proteins represented on the network map - histone 2A and bZIP

containing proteins. These data further support the bZIP binding

site enrichment found in the nf-yc triple microarray gene set, as well

as previously reported interactions between NF-Y and bZIP

proteins.

NF-Y can Physically Interact with ABA Related bZIP
Proteins

Relevant to the promoter analyses, NF-YC interaction network,

and hypothesis that bZIP/NF-Y interactions are common, we

isolated bZIP proteins in Y2H screens using both NF-YB2 and

NF-YC9 as bait. When NF-YB2 was used as the bait, we isolated

and sequenced 42 positive clones. Five of the positive clones were

either bZIP1 (2 independent clones) or ABF3 (3 independent

clones). Further, a screen using NF-YC9 as bait yielded a single

clone of ABF2 out of 200 sequenced positives. Although a single

clone of ABF2 appears low, it should be noted that 78% of the

sequenced positive clones from the NF-YC9 screen were either

NF-YB or CCT proteins (155 out of 200).

To further validate and extend the bZIP/NF-Y interactions

from the Y2H library screens, we independently cloned full-length

versions of five bZIP genes with known roles in ABA responses:

ABF1, ABF2, ABF3, ABF4 and HY5. Each of these was tested for

interaction with a panel of NF-YB and NF-YC proteins in directed

Y2H assays. For the NF-YC proteins, we chose the members of

the nf-yc triple used in the above microarray analysis (NF-YC3, NF-

YC4, and NF-YC9). These three proteins are known to genetically

interact in an overlapping manner to control FT expression and

presumably they are interchangeable in the NF-Y complexes

controlling FT transcription [16]. Likewise, we tested NF-YB2 and

NF-YB3 against the panel of bZIPs. NF-YB2 and NF-YB3 are

known in vivo interactors with NF-YC3 and NF-YC4 and also have

overlapping functions in the control of FT expression [14,16].

Finally, NF-YB1 was tested because of its known roles in drought

resistance [18] - i.e., we hypothesized a possible connection to the

known roles of the ABF/AREBs in various ABA-related responses,

including drought resistance.

NF-YC4 and NF-YC9 interacted with all five of the tested bZIP

proteins (Figure 3A). NF-YC3 also likely interacted with the four

ABFs, but this result was difficult to accurately interpret due to

previously reported autoactivation ([16], compare to empty vector

interaction in Figure 3A). Previous reports indicate that NF-YC

subunits also mediate bZIP interactions in fungal and mammalian

systems [47,48], suggesting broad evolutionary conservation of

these interactions in the eukaryotic lineage.

Although the NF-YB2 by ABF3 interaction was reproducible in

the directed Y2H tests (Figure 3B), no other NF-YB by bZIP

interaction was detected. This result was unanticipated because

NF-YB2 and NF-YB3 share nearly 70% amino acid identity over

their entire proteins. Further, their central conserved domains, the

95AA histone fold motif (HFM), are 93% identical and 100%

Table 1. Over-represented cis motifs in promoters of genes misregulated in nf-y triple mutants.

Motif Name Sequence Database % in set (#) % in genome (#) Pvalue

CACGTG CACGTG PLACEa 30% (25) 9% ,10e27

(S000042) (2797)

ABRE like BACGTGKM AtcisDBb 28% 12% ,10e24

(24) (3681)

ACGT ABRE ACGTGKC PLACE 24% 9% ,10e24

(S000394) (20) (2788)

UPR Motif II CCNNNNNNNNNNNNCCACG PLACE 8% 2% 0.001

(S000426) (7) (613)

aDatabase of Plant Cis-acting Regulatory DNA Elements, http://www.dna.affrc.go.jp/PLACE/[80].
bArabidopsis cis-regulatory element database, http://arabidopsis.med.ohio-state.edu/AtcisDB/[81,82].
doi:10.1371/journal.pone.0059481.t001

Figure 1. Misregulated genes in the nf-yc triple mutant have
ABRE-like promoter elements. A) ABRE-like motif discovered
through MEME analysis. B) Positional distribution of MEME motif within
the promoter set. TSS - transcriptional start site. To help assess the
relationships between Arabidopsis NF-Y proteins discussed here and
below, note that phylogenetic trees were previously published
[9,76,77].
doi:10.1371/journal.pone.0059481.g001
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similar (Figure S1). This led to the hypothesis that regions outside

of the conserved domain in NF-YB2 are responsible for its unique

ability to interact with ABF3.

To test this hypothesis we dissected the NF-YB2 protein into

three different regions: the N-terminal region up to the

conserved domain (Figure 4A, B2N, AA 1–25), the conserved

HFM (B2HFM, AA 26–121) and the C-terminal region (B2C,

AA 122–190). Constructs containing each of the regions were

tested in Y2H for interaction with ABF3. None of the partial

NF-YB2 clones showed interaction with ABF3 (Figure 4A),

although the conserved histone fold motif of NF-YB2 still

retained the ability to interact with NF-YC proteins (data not

shown). This led to the hypothesis that one of the ends of NF-

YB2, in conjunction with the HFM, could drive the interaction

with ABF3. Clones were generated from the start of NF-YB2

through the HFM (B2N+B2HFM, AA 1–121) and starting from

the first AA of the HFM through the end of the protein

(B2HFM+B2C, AA 26–190). Like the partial constructs above,

neither of these constructs interacted with ABF3 (Figure 4A).

Thus, if the N or C terminal ends were required for NF-YB2

specificity for ABF3 interactions, these appeared to still require

the context of the full-length protein.

To explore this latter idea, we created chimeric proteins

between NF-YB2 and NF-YB10. We chose NF-YB10 because it

has highly divergent terminal ends outside of the HFM and also

showed no interaction with ABF3 (Figures 4B, S1). The constructs

contained either the N-terminal region of NF-YB2 or NF-YB10

through the first half of the HFM fused to the C-terminal region of

the other NF-YB (Figure 4B). Interestingly the NF-YB2 N-

terminal/NF-YB10 C-terminal chimeric protein was able to

interact with ABF3, although more weakly than the native full

length NF-YB2. This is in contrast to the complementary construct

Figure 2. NF-YC3, NF-YC4 and NF-YC9 protein-protein interaction network. Both demonstrated and GeneMANIA predicted protein-protein
interaction data for NF-YC3, NF-YC4, and NF-YC9 were visualized using Cytoscape [46]. Predicted physical interactions are depicted as dashed lines,
while demonstrated interactions ([6,16] and this work) are depicted as solid lines. Input nodes NF-YC3, NF-YC4 and NF-YC9 are shown as squares.
Circle nodes are those predicted data from GeneMANIA [44,45]. Octagonal nodes represent demonstrated physical interactions (e.g., Y2H, some
shown in this report - see below). Related protein nodes are color coded as follows: red-bZIP; blue – CCT; green - H2A; orange/tan - NF-YB; yellow –
NF-YA; gray – unclassified interacting proteins. A Microsoft Excel file is available to recreate/manipulate this data (File S1). Common names were used
where available - File S1 contains all AGI numbers and references for sources of data.
doi:10.1371/journal.pone.0059481.g002
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(NF-YB10 N-terminal/NF-YB2 C-terminal), which did not

interact (Figure 4B). Further, neither constructs containing the

NF-YB10 N-terminal (B10N, AA 1–22) or C-terminal (B10C, AA

123–228) regions alone interacted with ABF3. Collectively, these

data suggest that the N-terminal domain of NF-YB2 is necessary

but not sufficient for the specific interaction with ABF3. A previous

report in Arabidopsis also suggested that bZIP28 interactions with

NF-Ys were subunit specific (NF-YB3) and additionally required

the initial formation of an NF-YB3/NF-YC2 dimer [25]. Thus,

additional interactions may be masked in our two way directed

tests.

Figure 3. NF-YB and NF-YC subunits interact with bZIP transcription factors. Directed Y2H interactions between NF-YB or NF-YC subunits
fused to DNA binding domains (DBD) and select bZIP proteins fused to activation domains (AD). Two independent colonies are shown for the
activation of a b-galactosidase reporter gene (similar activation seen for two other reporters). A) NF-YC3, NF-YC4 and NF-YC9 interactions with ABF1-4
and HY5. B) NF-YB1, NF-YB2 and NF-YB3 interactions with ABF1-4 and HY5. MC = manufacturer’s controls (+ = strong positive, +/2 = intermediate
positive, 2 = negative), EV = empty vector.
doi:10.1371/journal.pone.0059481.g003

NF-Y Role in ABA Signalling
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NF-YC have Opposing Roles in ABA Responses
Our bioinformatic analyses and Y2H screens suggest that NF-

Y/bZIP interactions may be commonplace. These findings led us

to hypothesize that, like many bZIPs, NF-Y are also involved in

ABA responses. Warpeha et al. [7] previously demonstrated that

several Arabidopsis nf-y mutants have delayed germination in the

Figure 4. Full length NF-YB2 is required for the ABF3 interaction. Y2H assays were performed between AD:ABF3 and DBD fused to: A) Full
length NF-YB2 (AA 1–190), B2HFM (AA 26–121), B2N (AA 1–25), B2C (AA 122–190), B2N+B2HFM (AA 1–122), and B2HFM+B2C (AA 122–190); B)
Chimeric constructs - full length NF-YB10 (AA1–228), NF-YB2/NF-YB10, NF-YB10/NF-YB2, NF-YB10N (AA1–27) and NF-YB10C (AA 123–228).
doi:10.1371/journal.pone.0059481.g004

NF-Y Role in ABA Signalling
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presence of ABA. We extended these analyses by first testing the

germination of nf-y triple mutants on non-ABA containing media,

where no significant differences to control were observed

(Figure 5A). Conversely, on media supplemented with ABA,

germination inhibition was significantly reduced in nf-yc triple

mutants compared to Col-0 control plants (Figure 5B–C,J). This

result was similar to previous observations of both abf1 or hy5

mutants [49,50].

Although NF-YC3, NF-YC4 and NF-YC9 have overlapping

functionality in photoperiod-dependent flowering, it was unclear

whether the same would be true for these ABA related phenotypes.

In fact, it was previously shown that nf-yc4 single mutants were

hypersensitive to ABA [7] - the opposite of what we observed for

the nf-yc triple mutant which includes the same nf-yc4-1 loss of

function allele. Therefore, we tested the germination of all possible

single and double mutant combinations of nf-yc3, nf-yc4, and nf-yc9

(see Materials and Methods for allele designations).

The response of nf-yc3 nf-yc9 double mutants on ABA media was

non-distinguishable from the nf-yc triple, indicating that NF-YC4

does not normally play a role in repressing ABA-mediated

germination (Figure 5D–F,J). As was previously reported [7], nf-

yc4 single mutants were hypersensitive to ABA in our germination

assays (Figure 4H,J). Like nf-yc4, the nf-yc3 nf-yc4 and nf-yc4 nf-yc9

double mutants were also slightly hypersensitive to ABA and

germinated later than controls (Figure 5E,J). The opposite is true

in nf-yc triple mutants where the early germination phenotype of the

nf-yc3 nf-yc9 double mutant is observed (Figure 5B). To extend

these ABA analyses beyond germination, we additionally mea-

sured cotyledon greening and root elongation.

For cotyledon greening assays, seeds were sown on media

containing 1 mM ABA and the percentage of plants with open

green cotyledons was scored after 10 days of growth in continuous

light [51]. As predicted from the germination data, nf-yc3 nf-yc9

double and nf-yc triple mutants performed much better than

controls - after 10 days nearly 100% of these plants had open

green cotyledons compared to less than 20% for parental Col-0

(Figure 5K–L). Poor greening for nf-yc4 single and nf-yc3 nf-yc4

double mutants also correlated with the germination phenotypes.

However, nf-yc9 single mutants, which showed no significant

differences in germination, had a significantly greater number of

seedlings that greened (Figure 5K). Additionally the nf-yc4 nf-yc9

double mutants greened similarly to nf-yc9 single mutants. This is

in contrast to the ABA germination phenotype exhibited by the nf-

yc4 nf-yc9 double mutant where the nf-yc4 phenotype was observed.

Unlike cotyledon greening, NF-YC mutants showed no clear root

elongation differences on media supplemented with ABA (Figure

S2). These observations indicate that NF-YCs not only have

opposing roles in ABA responses, but also have separable roles in

germination and post-germination growth in the above ground

plant.

NF-YB2 and NF-YB3 Overexpression Significantly Delays
Germination

Because of the known physical interactions between NF-YB2/

NF-YB3 and NF-YC3/NF-YC4/NF-YC9 [16], as well as our

demonstration that NF-YB2 can physically interact with ABF3, we

additionally tested these NF-YBs in ABA germination assays and

root elongation assays. As with nf-yc3, nf-yc4, and nf-yc9 mutants,

we measured no root growth defects in response to ABA for the nf-

yb2 and nf-yb3 mutants (Figure S2). Further, we found that neither

nf-yb2 or nf-yb3 single knockdown mutants, nor nf-yb2 nf-yb3 double

mutants showed any significant alteration in germination on either

regular media or ABA-supplemented media (Figure 6A–B; note

that the same nf-yb alleles have clear late flowering phenotypes

[12,14,15].

We additionally used the 35S promoter from the cauliflower

mosaic virus [52] to overexpress both NF-YB genes in transgenic

plants [Note that the same experiment with the NF-YC genes was

not possible due to the consistent inability to obtain stable

overexpressing transgenic lines]. Stable, single insertion, third

generation NF-YB overexpressing plant lines were chosen. When

assayed on non-ABA growth media, p35S::NF-YB2 and p35S::NF-

YB3 seeds reached 100% germination approximately 24 hours

later than control plants (Figure 6C). In the presence of 1 mM

ABA, p35S::NF-YB2 and p35S::NF-YB3 seeds were much later

germinating and never reached 100% germination (typically

peaking at ,50% total germination by 120 HAI, Figure 6D).

These data demonstrate that NF-YB2 and NF-YB3 overexpression

can significantly alter seed germination responses, but knockdown

data suggests this may not be their normal biological role. These

results are similar to what is observed with abf mutants, where

single loss of function alleles did not show strong phenotypes, but

ABF overexpression could inhibit germination on ABA media

[51,53,54]. Thus, higher order mutants combining nf-yb2, nf-yb3,

and additional nf-yb knockdown alleles might uncover a biological

role in seed germination for NF-YB2 and NF-YB3.

To help sort through these possibilities, we examined the tissue-

specific expression of NF-YB2 and NF-YB3 in imbibed seeds using

previously described transgenic plant lines expressing the reporter

gene b-glucuronidase (GUS) driven by native NF-Y promoters

(pNF-Y::GUS lines, [9]). If these NF-Y were likely to be normally

involved in seed germination, expression would be expected in

either the developing embryos or endosperm. As controls, we also

examined the pNF-Y::GUS lines for NF-YC3, NF-YC4, and NF-YC9

where our loss of function data already clearly demonstrated a

biological role in germination. As expected from the nf-yc mutant

data above, all three NF-YC genes were consistently expressed in

seeds, including both the embryos and endosperm layer

(Figure 7C–F, I–L). Although there were variations in specific

expression patterns, all three NF-YC had expression throughout

the embryonic root with the strongest GUS staining in the

meristematic regions. Additionally, staining was typically stronger

in the vascular regions of the cotyledons than the remainder of the

seed leaf (this contrast was strongest for NF-YC3, Figure 7J).

However, most pNF-YB2::GUS seeds showed no staining in the

embryo or endosperm (Figure 7B, H) and pNF-YB3::GUS seeds

showed only weak and inconsistent staining in the embryo and

endosperm (Figure 7C, I). The observed expression patterns for

the promoter fusion constructs are consistent with publically

available seed microarray data (Figure S3). The addition of ABA

did not significantly change the expression patterns for any of the

constructs or mRNA patterns from public microarray studies (data

not shown). These data support the hypothesis that NF-YB2 and

NF-YB3 are not normally the major NF-YB components of the

germination-influencing NF-Y complexes. Nevertheless, both can

clearly and reproducibly alter germination when ectopically

expressed in seeds.

ABA and Germination Marker Genes have Altered
Expression in NF-Y Mutants

To further test NF-Y roles in ABA signaling and germination,

we used qPCR to examine transcript levels of several genes that

are well-known to be responsive to bZIPs - ABI3, ABI5, AIA, AIL,

RAB18, and RD29B [3,31,53]. For these assays we examined

transcripts from imbibed seeds after 24 h of light exposure (see

Materials and Methods). Based on our phenotypic data, we chose

to compare the nf-yc3 nf-yc9 double mutants to the nf-yc4 single
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Figure 5. NF-YC mutants show opposing phenotypes in response to ABA. A–C) Germination of nf-yc triple mutants on B5 media, B5 media
with 1 mM ABA, and in response to variable ABA dosage at 84 hours, respectively. D–F) As in A–C for all nf-yc double mutant combinations and G–I)
single mutants. J) Percent germination for all nf-yc mutant combinations on 1 mM ABA at 84 hours. K) Percentage of plants with open green
cotyledons at 10 days for all combinations of nf-yc mutants. L) Picture of 10 day old seedlings grown on 1 mM ABA; 1 = Col-0, 2 = nf-yc3, 3 = nf-yc4,
4 = nf-yc9, 5 = nf-yc3/c4, 6 = nf-yc3/c9, 7 = nf-yc4/c9, 8 = nf-yc triple. Asterisks for J–K represent Fisher’s Exact Test p-values; *p,0.01, **p,0.001,
***p,0.0001. Germination data is a compilation of two experiments (n = 6 replicates per genotype) using independent sets of matched seeds. Each
replicate contained at least 30 seeds.
doi:10.1371/journal.pone.0059481.g005
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mutant. Additionally, we examined gene expression in the ABA-

hypersensitive p35S::NF-YB2 and p35S::NF-YB3 lines. Consistent

with ABA-insensitivity phenotypes, the germination inhibitors

ABI3 and ABI5 were downregulated ,5–10 fold in nf-yc3 nf-yc9

mutants (Figure 8A–B). The ABA-hypersensitive lines nf-yc4,

p35S::NF-YB2, and p35S::NF-YB3 all had less dramatic, but

increased levels of ABI3 expression. ABI5 expression only

increased in the NF-YB overexpressing lines. Collectively, these

data are also consistent with previous research showing that ABI3

expression is positively regulated by LEC1 (NF-YB9, [55,56]). For

the ABA-regulated genes AIA, AIL, RAB18, and RD29B, we

consistently measured downregulated expression in the nf-yc3 nf-

yc9 mutants, ranging from 22.5 fold (AIA) to 214.3 fold (AIL,

Figure 8C–F). Once again, the two p35S::NF-YB lines consistently

had the opposite response. For several genes the differences were

quite dramatic. For example, in the p35S::NF-YB2 transgenic

seeds, AIL was upregulated 22.5 fold (Figure 8D) and RAB18 was

up 15.5 fold (Figure 8E). None of these ABA-regulated genes were

strongly misregulated in nf-yc4 mutants, although the general trend

was unexpectedly slightly down for each gene other than ABI3.

The lack of strong differences in nf-yc4 may be due to the relatively

weak ABA sensitivity phenotypes reported here and elsewhere [7].

Future experiments examining higher order mutants, especially a

double mutant between NF-YC4 and its apparent paralog NF-YC1

[9], may improve the resolution of this analysis.

Discussion

Through bioinformatics and mutant analyses we add to the

growing body of evidence that NF-Y and bZIP transcription

factors cooperatively regulate similar subsets of genes and, thereby,

some of the same plant processes. It also appears likely that NF-Y

and bZIP form higher order regulatory complexes capable of

integrating inputs from many signaling pathways. Examination of

the cis-regulatory regions of mis-expressed genes in nf-yc triple

mutants uncovered an over-representation of G-box and ABRE-

like bZIP binding motifs. ABRE and G-box elements are common

in the promoters of genes responsive to abiotic stress and light

[57,58]. Studies of ABRE containing promoters demonstrated that

single ABRE sequences are not sufficient to induce transcriptional

activation and a coupling element is required for induction of

ABA-responsive genes [59]. Our data suggests that the NF-Y-

bound CCAAT box might play the role of the ABRE coupling

element for some bZIP-responsive promoters.

In Arabidopsis, Liu and Howell show that a G-box containing

promoter (ERSE-I) required intact CCAAT and CACGTG (G-box)

elements for full activation in response to ER stress [25]. Further

support that the CCAAT box may act as a coupling element to the

G-box comes from outside the plant kingdom. Motifs similar to the

ABRE were over-represented in NF-Y bound mammalian

promoters [60]. Further, in response to ER stress, mammalian

NF-Y must bind to the CCAAT box in ERSE containing promoters

before the bZIP protein ATF6 can bind an adjacent G-box-like

element [48].

Figure 6. NF-YB overexpression results in late germination. A–B) nf-yb2, nf-yb3 and nf-yb2/b3 double mutants on B5 and B5+1 mM ABA media.
C–D) p35S::NF-YB2 and p35S::NF-YB3 on B5 and B5+1 uM ABA media. Germination data is compilation of two experiments (total of n = 6 replicates per
genotype) using independent sets of matched seeds. Each replicate contained at least 30 seeds. A Fisher’s Exact Test was performed for both mutants
(no difference) and overexpression lines at 84 hrs post-incubation. Both overexpression lines were significantly different (p,0.01) from parental Col-0.
Separate, independent NF-YB overexpression lines had similar results.
doi:10.1371/journal.pone.0059481.g006
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In contrast, Yamamoto et al. demonstrated that NF-YB, NF-

YC, and bZIP proteins collectively activate the ABRE-containing

promoter of CRUCIFERIN C (CRC), but claim that this activity

does not require the CCAAT box sequence [4]. Further, the

addition of NF-YA subunits to their protoplast assays inhibits CRC

expression. These data suggest a non-canonical use of the NF-YB/

NF-YC dimer where NF-YA subunits are not involved in the final

transcriptional complex. In rice, OsMADS18 was shown to

interact with an NF-YB/NF-YC dimer, without the NF-YA,

suggesting some NF-Y may have evolved to form atypical

complexes in plants [27]. Atypical NF-Y complexes (i.e., lacking

NF-YA) would be unlikely to bind CCAAT boxes because the NF-

YA subunit is thought to make all the direct physical contacts with

the CCAAT nucleotide sequence [61,62]. Nevertheless, while it is

possible that some NF-Y might not bind the actual CCAAT box,

they were still necessary for bZIP67 activation of CRC expression.

NF-Y and bZIP proteins not only bind the same promoters, but

also can physically interact [4,25]. Here we show that NF-YC

subunits interact with different bZIP proteins fairly indiscrimi-

nately in directed Y2H assays. This result is consistent with data

from animals and fungi where the NF-YCs appear to make the

primary contacts with bZIP proteins [47,48]. While NF-YC

proteins indiscriminately bound bZIP proteins in our Y2H assays,

the NF-YB proteins were more selective. This suggests that NF-

YBs may play a role in discriminating which bZIP binds to an NF-

YB/C dimer or the full complex. In addition we demonstrate that

regions outside of the highly conserved HFM are likely driving the

preference of NF-YB for bZIP partners. This observation is of

interest because it is consistent with protoplast assays where only

the closely related NF-YB6 and NF-YB9 could interact with

bZIP67 to activate the CRC promoter, as well as the finding that

bZIP28 only interacts in complexes containing NF-YB3 [4,25].

Together, these data raise an intriguing hypothesis for the large

expansion and maintenance of NF-YB subunits in plants as

compared to animal and fungal systems. It is possible that NF-YB

have evolved specific interactions with bZIP proteins whereas in

other systems the interactions are more general.

In addition to promoter analyses and Y2H assays, we show that

NF-Y mutant plants have morphological phenotypes related to

ABA signaling and that several well-known marker genes are

misregulated in the various mutant backgrounds. Initial germina-

tion studies with nf-yc triple mutants showed that they are less

sensitive to ABA treatments. This was surprising because the nf-yc4

single mutant, one of the mutants comprising the nf-yc triple, was

previously reported as being more sensitive to ABA in germination

assays [7]. We then tested all possible double mutant combinations

as well as the single mutants of NF-YC3, NF-YC4, and NF-YC9.

Out of this analysis an epistatic relationship between NF-YC3/NF-

YC9 and NF-YC4 emerged. nf-yc3/nf-yc9 double mutants showed

identical ABA germination phenotypes to nf-yc triple mutant plants.

This suggests that NF-YC3 and NF-YC9 are interchangeable as

negative regulators of germination, and NF-YC4 does not have

overlapping functionality in this process. The fact that NF-YC3

and NF-YC9 work as functional equivalents is not surprising as

their amino acid sequences are 100% identical throughout the

conserved DNA binding and NF-YA/NF-YB interaction domains

[16]. NF-YC4 is more divergent in these domains and in

agreement with previous reports [7] we demonstrated that nf-yc4

single mutants are late germinating on ABA-containing media.

Figure 7. NF-YC are strongly expressed in embryos and the
endosperm 24 hours post incubation in light. A,G) Col-0, B,H) NF-
YB2, C,I) NF-YB3, D,J) NF-YC3 E,K) NF-YC4 F,L) NF-YC9. Scale bar in (A)
equals 200 mm.
doi:10.1371/journal.pone.0059481.g007
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Epistasis analysis between the late germinating nf-yc4 mutants and

early germinating nf-yc3/nf-yc9 mutants revealed that NF-YC3 and

NF-YC9 collectively suppress the role of NF-YC4 as a positive

regulator of seed germination.

The epistasis of NF-YC3/NF-YC9 to NF-YC4 suggests a simple

linear genetic pathway where NF-YC4 is upstream and possibly

directly regulates NF-YC3 and NF-YC9. Another possibility is that

NF-YC3, NF-YC4 and NF-YC9 are acting competitively at single

hubs to regulate the ABA germination response. Similar functional

antagonism between closely related family members has been seen

with the seed specific bZIPs, ABI5 and EEL (Enhanced EM Level,

bZIP12, [63]). Mutant analysis revealed that EEL is a negative

regulator of embryogenesis-abundant genes and is dependent on

the presence of the positive regulator ABI5. Interestingly, instead

of a simple linear pathway where EEL regulates ABI5, it was

shown that ABI5 and EEL could interact and possibly compete for

the same ABRE promoter elements in embryogenesis-abundant

genes. It will be interesting to determine if positive and negative

regulatory NF-Y complexes can compete for the same elements. In

addition it stands to reason that bZIP proteins could also be

involved in these complexes.

In an attempt to determine the composition of biologically

active NF-Y complexes related to ABA signaling, we additionally

tested nf-yb2 and nf-yb3 mutants for their roles in germination.

Both of their encoded proteins interact in vivo with NF-YC3 and

NF-YC4 to regulate flowering, but these assays only utilized

seedlings [16]. nf-yb2 and nf-yb3 loss of function mutants showed

no clear difference to controls in ABA germination assays, but gain

of function p35S::NF-YB2 and p35S::NF-YB3 lines showed strong

repression of germination in the presence of ABA. While these

gain of function phenotypes suggest a role for NF-YB2 and NF-

YB3, their lack of native expression in the endosperm/embryo and

the absence of loss of function phenotypes suggest other NF-YB act

natively in the germination complex. It is likely that NF-YCs

partner with LEC1 and L1L (NF-YB6 and NF-YB9, respectively)

as these NF-YB proteins are well-known, embryo-specific regula-

tors [7]. Similar to nf-yc3 nf-yc9 double mutants, lec1 mutant plants

are less sensitive to ABA in germination assays [23]. In addition,

Figure 8. ABA related genes are misregulated in NF-Y mutant lines. Gene expression in 24 hr post light incubation seeds analyzed by
quantitative RT-PCR for A) ABI3, B) ABI5, C) AIA, D) AIL, E) RAB18, and F) RD29B. For each gene, the expression level in Col-0 was defined as 1. Data
represent means and standard deviation of three replicates.
doi:10.1371/journal.pone.0059481.g008
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NFYC3, NF-YC4 and NF-YC9 can all interact with LEC1 and

L1L in directed Y2H assays [64,65] and we consistently isolate

LEC1 and L1L in library screens using NF-YC9 as bait (BFH,

CLS, RWK unpublished data). Although nf-yc3 nf-yc9 and lec1

mutants share reduced ABA sensitivity in germination assays, nf-

yc3 nf-yc9 mutants do not have the lec1 leafy cotyledon or

desiccation intolerant phenotypes. This suggests that there may be

additional, as yet unidentified NF-YC(s) involved in embryogen-

esis.

Although NF-Y can interact with bZIP proteins and can

regulate the expression of a similar subset of targets, it remains to

be determined how and if these complexes form in planta. With the

recent discovery of the long sought ABA receptor, it has become

clear that Group A bZIP transcription factors are directly

activated through phosphorylation in the presence of ABA

[29,66]. In contrast to these bZIP proteins, relatively little is

known about NF-Y complexes. How NF-Y activity is regulated

and what cis-regulatory elements they are capable of binding

remains to be determined for the plant lineage.

In this study we begin to uncover the complex and sometimes

antagonistic roles that NF-Y play in ABA signaling. In addition,

we add to the mounting evidence that plant, animal, and fungal

NF-Y interact with bZIPs to form multi-protein, transcription-

regulating hubs to affect gene expression. Future studies describing

the regulation and formation of these complexes will further our

understanding of how plants integrate multiple signals to fine-tune

growth and development.

Materials and Methods

Plant Materials
All plant material used were of the Col-0 ecotype. All mutants

are combinations of the following alleles; nf-yc3-1 (SALK_034838),

nf-yc4-1 (SALK_032163), nf-yc9-1 (SALK_058903), nf-yb2-1

(SALK_025666), nf-yb3-2 (SALK_150879). The p35S:NF-YB2

and p35S:NF-YB3 lines and the various SALK insertion lines were

all previously described [7,12,14,16]. Introduction of native

promoter genomic constructs into the nf-yc triple mutant demon-

strate that NF-YC3 and NF-YC9 can rescue the early germinating

phenotype on ABA media. As expected, NF-YC4 does not rescue

this phenotype (Figure S4), although it does rescue an nf-yc triple

late flowering phenotype [16].

All germination and root growth assays were performed using

seeds that were collected from plants grown concurrently in the

same growth chamber under standard long day conditions (16 h

day/8 h night, 90 mmol m22 s21, 22uC). Plants for matched seeds

were grown in media containing equal parts Farfard C2 Mix and

Metromix 200 supplemented with 40 g Marathon pesticide and

dilute Peter’s fertilizer (NPK 20:20:20).

Germination and Root Growth Assays
Matched seed sets were harvested and allowed to after ripen for

between 2 to 4 months before use in assays. Seeds were surface

sterilized and plated onto Gamborg’s B5 media (SIGMA, St.

Louis, MO, Cat#G5893) or B5 media containing the appropriate

amount of (+/2) ABA (SIGMA, Cat#A4906). For germination

and cotyledon greening assays, plates were cold stratified for 3

days and placed in continuous light at 90 mmol m22 s21 at 22uC
in a Conviron model ATC13 chamber. Seeds were scored every

12 hours post incubation for visible radical emergence as a proxy

for seed germination. Greening was assayed by counting plants

with open green cotyledons on day 10 [51]. Plants for root growth

assays were sown to B5 plates and incubated under long day

conditions for four days before transfer to plates supplemented

with ABA. Plates were oriented vertically for an additional seven

days. All plates were photographed and primary root length was

measured with image J [67]. All germination, greening, and root

growth assays were repeated a minimum of three times with at

least two independent sets of matched seeds with consistently

similar results (see Figures S5–S7 for additional replicates). All

statistics were performed in either INSTAT or Prism (GraphPad

Software - La Jolla, CA).

Promoter Analysis
Over representation analyses on nuclear encoded genes from

the nf-yc triple were performed on genes misregulated #21.5 and

$1.5 fold (p,.05) compared to Col-0. Details of the microarray

experiment and public access to MIAME compliant data were

previously reported [16]. Because the purpose of the current

analysis was hypothesis generation (which were later tested), we

relaxed the stringency of the microarray analysis here by removing

the Benjamini-Hochberg false positive correction. For MEME de-

novo motif discovery, 2500 bp of upstream sequence of the

misregulated genes was obtained using the bulk data retrieval tool

at The Arabidopsis Information Resource (TAIR, www.

arabidopsis.org). Upstream DNA sequences were fed to the

MEME program and analyzed using the following parameters:

motif width between 5 and 12 bp, any number of repetitions of

motifs, and search for up to 6 motifs. All other options were left as

default (http://meme.nbcr.net/meme4_5_0/intro.html, [42]).

Motifs discovered through MEME analysis were then compared

against known transcription factor binding sites from Jasper,

Transfac and Uniprobe using the TOMTOM motif comparison

tool [43]. Positions of CACGTG motifs relative to the transcrip-

tional start were adapted from the MEME analysis. The same

misregulated gene list was input into the Athena analysis suite

using a 500 max bp upstream cutoff and, otherwise, default

settings (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/

cgi/home.pl, [32]).

Protein-Protein Interaction Network
Individual protein-protein interaction networks were built for

NF-YC3, NF-YC4 and NF-YC9 using GeneMANIA (http://

www.genemania.org, [44,45]). Selection criteria to develop the

network map in GENEMANIA were predicted interactions and

physical interactions with a 50-gene output. Default settings in

GeneMANIA were used for network weighting. The individual

network maps built in GeneMANIA for NF-YC3, NF-YC4 and

NF-YC9 were downloaded as text files and combined to build a

protein interactome in Cytoscape 2.8.0 (http://www.cytoscape.

org, [46]). Data from Y2H library screens and directed Y2H

assays done in the Holt lab and published interactions of NF-YC3,

NF-YC4 and NF-YC9 [16] were manually added to the protein

interactome in Cytoscape. See File S1 for a fully annotated list of

genes (with AGI numbers and references) used to build the protein

interactome.

RNA Isolation and qPCR
Total RNA was isolated from 20 mg of matched, stratified seeds

using the E.Z.N.A. Plant RNA Kit per the manufacturer’s

instructions for difficult samples (Omega Biotek, Inc., Norcross,

GA, CAT#R6827-01). Prior to RNA extraction, seeds were sown

on beds of Whatman paper saturated with liquid Gamborg’s B-5

media, cold stratified for 2 days, and exposed to 24 hours of

continuous light at 22uC before harvesting. To completely remove

genomic DNA, samples were DNAse treated on E.Z.N.A. RNA

isolation columns (Omega Biotek, CAT# E1091). Quality and

quantity of RNA samples were confirmed by spectrophotometry
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(Thermo Scientific, Waltham, Massachusetts, NanoDropTM

1000). First-strand cDNA synthesis was performed using the

Superscript III First-Strand Synthesis System (Invitrogen, Carls-

bad, California, Cat#18080-051) with supplied oligo dT primers.

qPCR was performed as previously described [14], except we used

an Applied Biosystems Prism 7500 analyzer (Life Technologies,

Carlsbad, California) and the Fermentas Maxima SYBR Green

qPCR Master Mix (Fermentas, Glen Burnie, Maryland,

Cat#K0222). For each genotype, we analyzed three independent,

biological replicates in two separate experiments with similar

results. All samples were normalized to the constitutively expressed

gene At2g32170 as previously described [68]. Sample comparisons

were performed by the 2(2DDC
T

) method [69], and errors (standard

deviation) were computed as previously described [70]. qPCR

primers for ABI3, ABI5, AIA, AIL, RAB18, and RD29B

(AT3G24650, AT2G36270, AT1G64110, AT3G17520,

AT5G66400 and AT5G52300, respectively) were designed using

Primer3 in Genious Pro 5.1.4 (www.genious.com, [71]). Primer

sequences for qPCR and cloning are in File S2.

DNA Manipulations
All target DNA fragments were generated by PCR using Pfu

Ultra II (Agilent Technologies, Santa Clara CA, Cat#600670-51)

and cloned into the GatewayTM entry vector pENTR/D-TOPO

(Invitrogen, Carlsbad, California, Cat#45-0218). The full length

coding regions of NF-YB2, NF-YB3, NF-YB10 NF-YC3, NF-YC4,

NF-YC9, ABF1, ABF2, ABF3, ABF4, and HY5 (AT5G47640,

AT4G14540, AT3G53340, AT1G54830, AT5G63470,

AT1G08970, AT1G49720, AT1G45249, AT4G34000,

AT3G19290, and AT5G11260, respectively) were generated from

Col-0 cDNA populations by standard methods. Partial clones of

NF-YB2 and NF-YB10, as well as chimeric constructs between

NF-YB2 and NF-YB10, were generated by PCR using Pfu Ultra II

and cloned into the GatewayTM entry vector pENTR/D-TOPO.

In partial clones that do not contain a native start codon an ATG

was added in front of the region of interest. All constructs were

sequenced and found to be identical to the expected sequences

found at The Arabidopsis Information Resource database [72].

Yeast Two-Hybrid Analyses
GatewayTM entry clones containing the full length coding

regions of NF-YC3, NF-YC4, NF-YC9, ABF1, ABF2, ABF3, ABF4,

and HY5 were recombined using the LR Clonase II reaction kit

(Invitrogen, cat#56485) into ProQuestTM Two-Hybrid System

vectors pDEST22 and pDEST32 (Invitrogen, Cat#PQ10001-01).

All interactions were tested per the manufacturer’s instructions. X-

Gal assays were performed on nitrocellulose membranes contain-

ing yeast colonies frozen in liquid nitrogen and incubated at 37uC
in Z-buffer containing X-Gal (5-Bromo-4-chloro-3-indoxyl-beta-

D-galactopyranoside, Gold Biotechnology, St. Louis, MO,

cat#X4281L). Y2H library screening with NF-YB2 and NF-

YC9 was previously described [16] using published libraries [73].

These libraries were derived from mRNA extracted from flowers,

siliques, seeds, and seedlings (including hormone treated).

Gus Staining and Microscopy
All pNF-Y::GUS fusions used in seed coat expression assays were

previously described [9]. Seed coats were dissected and GUS

staining was performed as previously described [74,75]. Seeds

coats and embryos were visualized using a Zeiss AxioImager Z1 m

with Apotome (Zeiss - Oberkochen, Germany), using the DIC/BF

filter and recorded using onboard Axiocam MRm and MRm5

camera. Images are compressions of a 3D Z-stack into a 2D image

using the deconvolution and extended focus feature in the

Axiovision software (version 4.8.1).

Supporting Information

Figure S1 Protein alignment of NF-YB2, NF-YB3 and
NF-YB10. Full-length amino acid sequences for NF-YB2, NF-

YB3 and NF-YB10 were aligned and visualized using ClustalW

within the software package Geneious Pro5.6 (www.geneious.

com). The junction site used to create chimeric constructs between

NF-YB2 and NF-YB10 is annotated.

(TIF)

Figure S2 NF-YB and NF-YC mutants show no signifi-
cant differences in root growth on ABA. Mutant lines were

germinated and grown on B5 media for four days and then

transferred to B5 media, B5 media +10 mM ABA, or B5 media

+50 mM ABA and grown vertically for 7 days. Bars represent the

mean primary root length (n $12 plants from 2 separate

experiments). Error bars are 95% confidence intervals. No

statistical significance between any samples on the same growth

media was measured using ANOVA (p.0.05).

(TIF)

Figure S3 Public microarray data visualized by eFP
browser show NF-YC3 and NF-YC9, but not NF-YB2 and
NF-YB3 are expressed in seeds and during early
germination. Absolute levels for NF-YC3, NF-YC4, NF-YC9,

NF-YB2, and NF-YB3 were queried in the eFP browser with a

signal threshold of 250 [78,79]. Note that the lack of NF-YC4

signal on public microarrays is likely due to problems with the

probe (which is predicted to detect more than one gene) and not

our GUS fusion. For example, according to public microarrays,

NF-YC4 is not expressed in leaf tissues, although we have

previously published mRNA and protein data (using a native

antibody) showing this is incorrect and there is a clear genetic

requirement for NF-YC4 in the leaf-initiated process of photope-

riod-dependent flowering [16].

(TIF)

Figure S4 Rescue of the nf-yc triple mutant early
germination phenotype on ABA media. Seeds were plated

on media supplemented with 0.5 mM ABA as previously described

(approximately 30 seeds/replicate, three replicates per line).

Percent germination is shown at 84 hrs. These rescue lines were

previously described and used to show rescue of the late flowering

phenotypes of nf-yc triple mutants [16]. Asterisks represent

significant differences in Fisher’s Exact Test comparing nf-yc triple

mutants to all other lines (p,0.05).

(TIF)

Figure S5 NF-YC mutants show opposing phenotypes in
response to ABA. Seeds were plated on media supplemented

with 1 mM ABA as previously described and germination was

scored every 12 hours. Each replicate of at least 30 seeds was

independently graphed along with wild type controls for A) nf-yc3,

B) nf-yc4, C) nf-yc9, D) nf-yc3/c4, E) nf-yc3/c9, F) nf-yc4/c9, and G)

nf-yc triple.

(TIF)

Figure S6 NF-YC mutants show opposing phenotypes in
response to ABA. Seeds were plated on media supplemented

with 2 mM ABA as previously described and germination scored

every 12 hours. Each replicate of at least 30 seeds was

independently graphed along with wild type controls for A) nf-

yc3, B) nf-yc4, C) nf-yc9, D) nf-yc3/c4, E) nf-yc3/c9, F) nf-yc4/c9, and

G) nf-yc triple.
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(TIF)

Figure S7 NF-YC mutants show altered greening re-
sponse to ABA. Percentage of plants with open green cotyledons

at 10 days for all combinations of nf-yc mutants. Each bar

represents an independent replicate containing at least 90 plants.

Three replicates for each genotype are presented.

(TIF)

File S1 List of genes that interact with NF-YC3, NF-YC4
and NF-YC9. AGI numbers are included and common names

are given. Additionally the type of interaction (published physical

interaction/predicted interaction) and the reference/source of

information are given. The.xlsx file can be directly uploaded to

Cytoscape (http://www.cytoscape.org/) to build a interactive

protein interactome.

(XLS)

File S2 List of primers used to generate all clones and
perform qPCR experiments (Microsoft Excel format).

(XLSX)
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