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ABSTRACT

The facility location problem among rectangular 
regions involves location problems in the urban setting.
Here the existing facilities or customers are assumed to be 
uniformly distributed over rectangular regions. The problem 
is a special case of the probabilistic formulation or can 
be interpreted as a limiting case of the location problem in 
discrete space.

The sensitivity of this location problem with the 
rectilinear metric to a deterministic solution technique is 
discussed and contrasted to the relative insensitivities 
of the same problem with the Euclidean metric to the deter
ministic solution. Properties of the problem are developed, 
and algorithms are developed for both the single and multi
facility location problems with rectilinear distances. 
Computational experience is reported.

The location-allocation problem is then discussed 
in terms of its properties and its relation to the above 
facility location problem. The limitations of present solu
tion techniques are discussed. A branch and bound solution 
technique is then developed. The algorithm is verified, and 
computational results are given. These results are used to 
compare the algorithm to other algorithms and to adapt the 
algorithm to other versions of the location-allocation 
problem.
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CHAPTER I

INTRODUCTION

1.1 Overview of Location Analysis
Location analysis is a class of problems that has 

intrigued the human mind for centuries. Although applica
tions of location problems have been with man through all 
ages, the problem did not receive scholarly treatment until 
the seventeenth century.

Wesolowsky (1973) credits Fermat with proposing the 
first location problem— determining the location of a fourth 
point in relation to three given points in the plane so that 
the sum of the distances from that point to each of the 
three given points is minimized. This question was aptly 
named the Fermat problem. Toricelli was one of the first 
to solve this problem when he presented a geometrical solu
tion in 1640.

In the early 1900's Weber (1929) generalized the 
Fermat problem with an economic significance by assuming 
that two of the given points were sites of raw materials; 
the third was a market; and that the new point represented 
a factory that was to be located. He also assumed the
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weights on each of the three given points were unequal; 
thus, the objective became the minimization of the sum of 
the weighted distances. Since then, the basic location 
model has been referred to as the generalized Weber problem.

During the last twenty years, location analysis has 
received a significant amount of attention in the literature. 
This has been due to the use of high-speed computers which 
made solution of intractable location problems possible and 
a growing awareness of the application of the location problem 
to many different fields. Researchers in the areas of 
industrial engineering, operations research, transportation, 
management science, mathematics, computer science, geography, 
regional planning, urban development, economics, marketing, 
and political science have all studied the location problem, 
although their approach to the problem will be tempered by 
their particular discipline.

One result of this explosion of literature has been 
that certain variations of the location problem received 
most of the attention while other variations were left 
virtually untreated. For example, up until several years 
ago, most of the work considered location among deterministic 
points. Probabilistic formulations and location among areas 
instead of points had not been studied. On the other hand, 
in considering new problems there is always a danger of 
merely reworking existing problems or obtaining a result 
not significantly different from current methods. Thus,



anytime a new solution is proposed it should be superior in 
either the quality of the solution or computational time 
required to existing solution techniques.

The location of new facilities among rectangular 
regions is one area that has received very little attention.
In many different settings it is proper to treat the cus
tomers to be served as a region,such as in the location of 
a public service facility to serve a neighborhood or a 
densely populated urban area. Another example would be the 
case of locating an emergency services facility relative 
to an urban area where an incident could arise anywhere in 
the area with a certain probability distribution. Finally, 
even when the customers or users of the new facility are 
discrete, the number of customers may become so large that 
it may be infeasible in terms of data collection and compu
tational efficiency to consider them discrete. In this 
situation it may be necessary to make a regional assumption 
in order to solve the problem.

The traditional solution method has been to represent 
the regions by their centroids and to solve the problem 
using deterministic methods. However, the validity of this 
assumption has not been examined fully. One of the purposes 
of this research will be to examine cases where the assump
tion is appropriate, and where it is inappropriate. In the 
cases where the assumption is not viable, new solution 
techniques will be developed, tested, and compared to 
existing techniques.
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1.2 Location Problems to be Considered

Two types of location problems will be considered 
in this research. Both are variations on the generalized 
Weber problem. The problem involves the location of one 
or more points relative to several given points in order to 
minimize the sum of the weighted distances among the new 
points and the old points.

n m
Pi.2.1 minimize E E w^^ lx^-Pj„ + E v_.,_ |

'piii
where : n = number of new facilities to be located,

m = number of existing facilities.
Pi = coordinate location of existing facility i.
Xj = (Xj,yj) coordinate location of new facility j.
5-p = the type of norm used.

|X.-P.|. = distance between the locations of new facility j
p

and existing facility i.
|Xj-X^|^ = distance between the locations of new facilities 

j and k .
Vjĵ  = cost per unit time per unit distance between new 

facilities j and k.
Wji = cost per unit time per unit distance between

existing facility i and new facility j .
Here the Xj's are the decision variables, and all other terms 
are known parameters. A complete taxonomy of classifying 
location problems on the basis of the parameters can be found 
in Francis and White (1974).
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Notice that the distance metric is expressed as an 
norm. The 2^ norm is defined as follows:

= (|Xj-ai|P +

Thus, when p = 1, the distance metric becomes recti
linear, rectangular, or Manhattan distance.

When p = 2, the distance metric becomes Euclidean or 
straight-line distance. Finally, if p = “ , the distance 
metric becomes the less frequently used Chebyshev distance.

One variation on the generalized Weber problem to 
be considered is the n-center problem among rectangular 
regions. It is basically the same as the generalized Weber 
problem with existing facilities spread over rectangular 
regions with a particular probability distribution.

n m
PI. 2.2 minimize Z Z JJ w . . |X.-R.L 0(R. )dR.

j=l i=l R^ 1 *p ^ ^

All variables are the same as in the generalized 
Weber problem except:

R. = [a. ,b. ] X [a. ,b. ] coordinate locations 
^ ^1 ^1 ^2 ^2

encompassed by region.
0 (R^) = the joint probability density function of (a^,b^) 

defined on region R^.
A further generalization of the Weber problem is 

the location-allocation (L-A) problem. This problem assumes



that the allocation scheme of existing facilities to new 
facilities is not known a priori. Thus, the v., 's are 
assumed to be zero. The solution of the problem is twofold. 
First, the optimal allocation scheme must be determined and 
secondly, optimal locations for the new facilities must be 
determined.

n m
Z Z
j=l i=l R. J ~ "p
n m ..

PI.2.3 minimize Z Z J J  z . .w. .I X.-R.L 0(R.)dR.

where:

n
subject to: Z z . . = l  i = 1, ..., m

j=l
z^j = 0 ,  1 for all i and j

z . . = <13
1, if existing facility i is allocated to 

new facility j 
0, otherwise

Notice the implicit assumption that all new facilities 
have an infinite capacity to serve the existing facilities.
If capacity restrictions were made, the problem would become 
a transportation problem.

The term "facility" has been used in its loose sense. 
The existing facility may represent the locations of people 
in need of a service or people that will be potential cus
tomers. It may represent the location of a machine that needs 
to be maintained. Similarly, the "new facility" may assume 
the same realizations that the "existing facility" does.
It is not necessary for the new facility to maintain a 
relationship of purely service to the existing facilities 
either. For example, a new warehouse may have to be located
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relative to both the plants that supply it and the other 
warehouses it may interact with. Thus, the terms "facility" 
and "serve" or "interact" should be considered in their 
broadest senses.

1.3 Application of the Research
With the areas of possible application for location 

research expanding rapidly, an application exists for this 
research anytime a service or good is distributed among a 
group of consumers. Applications would range from the prob
lem of a chain of grocery stores seeking to locate several 
stores in a city to locating power-generating stations in an 
area containing both urban and rural regions with different 
types of needs for electricity.

A specific example of a possible application of this 
research was presented by Abernathy and Hershey (1972). Sev
eral health clinics were to be located within a medical- 
service area containing a population of 50,00 0. There were 
three small cities in the area whose total population was 
39,000 and surrounding rural areas comprising the balance 
of the population.

The planner was interested in maximizing the 
utilization of the clinics and realized that distance from 
the health facility was the most important factor in 
utilization from a set of variables that also included 
demographic, socioeconomic, and health status factors.
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Clearly, a centroid approach would fail to account for 

the different population densities in the urban and rural 
areas. Hence, the entire area was decomposed into subareas. 
Each subarea was given a utilization weight based upon the 
characteristics of the inhabitants. The weight was used to ■ 
determine the likelihood of a visit to the clinic from some
one living in the area. Thus, the criterion became to allo
cate subareas to clinics and subsequently locate the new 
clinics so that the distance per visit to a clinic is mini
mized.

Numerous other examples could be found in both the 
private and public sectors. Revelle et al. (1970) discuss 
such examples and their analyses relative to location models.

1.4 Scope and Limitations
The research effort will concentrate on both the 

multifacility location problem and the location-allocation 
problem with respect to rectangular regions. The tradeoffs 
between using the regions or an "areal" approach versus 
using their centroids and a deterministic approach will be 
analyzed. In the cases where the regional approach is 
warranted, properties and techniques for solution will be 
developed.

The probabilistic aspects of the areal approach will 
also be considered using the expected value criterion.
Although several distributions will be discussed, the 
uniform distribution will be emphasized for its practicality.
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The computational aspects of all solution procedures 

are emphasized and will be compared to existing results.

1.5 Order of Presentation
Because the literature dealing with the generalized 

Weber problem is extremely voluminous, the review of the 
literature in Chapter II will be a brief discussion of the 
basic types of approaches to location analysis. Each subse
quent chapter will then contain a more detailed description 
of the works relating to the subject of that chapter.

Chapter III will treat the multifacility location 
problem among rectangular regions. A model will be formu
lated and both the Euclidean and rectilinear metrics will 
be discussed. A heuristic algorithm will be developed and 
tested.

Chapter IV will include a development of the location- 
allocation model for rectangular regions. The emphasis 
will be on the model with a rectilinear metric. It will be 
shown that this development has an impact for both the cor
responding deterministic problem and the problem with 
Euclidean metric on the basis of extensive computational 
results. Chapter V will summarize the research effort and 
include recommendations for further research.



CHAPTER II

STATE OF THE ART

2.1 General Treatments of Location Theory
The literature dealing with location analysis is so 

extensive that a complete review of all works is impossible. 
Instead, a general overview of solution techniques will be 
presented here. Discussions of work relating to the research 
effort will be deferred to subsequent chapters.

An extensive bibliography of over two hundred works 
in location theory was compiled by Francis and Goldstein 
(1974). The reader is also advised to consult Francis and 
White (1974) for a thorough treatment of the state of the 
art regarding the formulation and solution of various 
solution methods.

Other extensive treatments include Elshafei and 
Haley (1974) who provided a complete literature search in 
addition to the formulations and solution aspects of dif
ferent location models. ReVelle et al. (1970) presented a 
brief overview of the different types of location problems.

In the area of location-allocation problems Scott
(1970) presented a review of the different formulations of

10
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the general location-allocation model. Lea (1973) compiled 
an annotated bibliography of all papers relating to 
location-allocation systems.

In light of these extensive treatments, it should be 
kept in mind that the location system may be conceptualized 
in two ways:

1) Location on a network
2) Location on a plane

Location on a network assumes that the existing 
facilities are nodes and that the new facility(s) may be 
located anywhere on the network— either on a node or on a 
link between nodes— in order to minimize the arc flow in 
the network. Although there is a large body of literature 
that considers location on a network, this type of problem 
won't be considered in this research effort.

The formulations in Chapter I are examples of loca
tion in the plane. The new facility(s) to be located are
represented as points in the plane, and similarly, the 
existing facilities are represented as points or areas on 
the plane. Even this broad category may be further subdivided 
in the following manner:

1) Finite solution space
2) Infinite solution space

The finite solution space means, as its name implies, 
that the new location site(s) must be chosen from a finite 
set of points in the plane. This corresponds to the



12
situation where one or more sites must be chosen from a set 
of alternative feasible sites. The problem is usually 
referred to in the literature as the "plant location problem." 
There has been a large amount of work devoted to this latter 
problem.

On the other hand, problems with the infinite solu
tion space have not been resolved quite as well. The infi
nite solution space corresponds to the situations when either 
no set of feasible solution sites has been chosen or the number 
of feasible solution sites becomes large. This is the focus 
of the work in this effort and all discussions of the litera
ture will be restricted to this theme.

2.2 Solution Techniques
In this section an overview of solution techniques 

for the location problem with infinite solution space will 
be considered. It will become obvious that certain tech
niques are superior to others; yet the superior techniques 
are the culmination of the years of work on the location 
problem which produced the other techniques. The organization 
of the techniques will be similar to that of Eilon et al.
(1971) .

2.2.1 Analog Techniques
Analog techniques may be used to solve the location 

problem by considering the forces at work in the system.
One of the simplest analog models is the "string-and-weights"
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approach to location. Here the existing facilities are repre
sented as weights proportional to the interaction term between 
the new and the existing facility. String is used to repre
sent distances. Kuhn and Kuenne (1962) discuss several 
methods used during the early twentieth century to locate new 
facilities based on a physical representation of the forces. 
Such analog systems served as a visual representation of vari
ously weighted existing facilities, where the more heavily 
weighted ones tended to pull the site of the new facility 
toward them.

Hitchings (1967) built an electrical analog to the 
same situation. Here the weights of different existing 
facilities were represented by either different materials 
with different resistivities or by different cross-sectional 
areas of materials with similar resistivity. Distance was 
represented by the length of a particular resistor.

A plotter was used in conjunction with the analog to 
plot the contour lines or "isocost" lines of location sites 
with the same weighted distance cost. Francis (1963) also 
described a method of drawing contour lines for a location 
system based on a weighted geometrical model. Although using 
contour lines is not the most efficient solution method, its 
value lies in the representation of the total surface of the 
cost function.

2.2.2 Simulation
Simulation is probably the best approach to solving 

the location system when heuristic or optimal algorithms
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are hard to solve. Massam (1974) used simulation to solve 
a facilities location problem with existing facilities uni
formly distributed over a rectangular region. Similarly, 
simulation could be used for irregularly shaped regions 
or other distributions. Another advantage to the simulation 
approach is the feeling for the shape of the cost function 
produced without explicitly having to draw contour lines.

2.2.3 Analytic Methods
Analytic methods are appealing in the respect that they 

sometimes provide optimal numerical solutions. Needless .to say, 
most of the literature seems to address itself toward this 
end. It is noteworthy that the first successful developments 
of analytic methods involved gradient descent approaches.
The gradient descent method has been widely used in attempts 
to develop solutions for some of the then unsolved problems. 
Analytic techniques for problems considered in this research 
effort will be discussed in the relevant chapters. Here 
the solutions to the single facility location problem will 
be presented.

The single facility location model is
m

P2.2.1 minimize Z w. |X-A^,̂i:i ‘i'l-

where: X = (x,y) the coordinate location of the new facility
Ai = (a^,b^) the coordinate location of existing 

facility i
w^ = cost per unit distance to serve facility i



15
m = number of existing facilities.
When p = 1, Francis (1963) showed through gradient 

reduction that the optimum is found by satisfying a median 
condition.

The solution of p = 2 was developed independently 
by Cooper (19 63) and Kuhn and Kuenne (1962). It was an 
iterative procedure based on a modified gradient condition.

Other innovative techniques used in solving location 
problems will be discussed later.

2.2.4 Heuristic Methods
When a location problem involves combinatorials, an 

analytic solution may be possible, but the number of combi
nations to be considered is so large that the problem becomes 
computationally infeasible. In such a case a "good" or 
near-optimal solution is all that can be hoped for. A 
heuristic never guarantees optimality but may guarantee a 
solution within a specified percentage of optimal. Some
times a heuristic can guarantee only a local optimum.

Most location problems employing heuristic solutions 
involve the making of allocations or assignments. One 
example of such a problem is the previously formulated 
location-allocation model. Cooper (1963, 1964 and 1967) 
has developed several heuristic algorithms to solve the 
model. These will be discussed in Chapter IV.

Another example is the partial covering problem which 
is related to the location-allocation problem. It is
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formulated as:

P2.2.2 minimize Z = E min/z.w. Ix.-A.L f
i=l i L 3  1 ^ ^pJ
n

subj ect to : E z . < k
j=l ^
Zj = 0,1

where: m = number of existing facilities
n = number of sites for new facilities 
k = maximum number of new facilities allowed 

w^ = weight on existing facility i 
Xj = coordinate location of new facility j

= coordinate location of existing facility i 
1, if a facility is located on site j 
0, otherwise

White and Case (19 74) present a treatment of heuristic 
solutions to this problem. Note this problem corresponds to 
the location-allocation problem in discrete space by its 
attempt to assign existing facilities to new facilities.

2.3 Probabilistic Location Problems-
Since there are probabilistic aspects to the location 

problems considered, a brief review of the literature con
cerning probabilistic formulations will be useful. The works 
to be reviewed consider either the existing facilities or the 
interaction weights (w^) to be random variables. Most of the 
works have focused on the normal distribution. Works dealing 
with the uniform distribution will be discussed in the next
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two chapters.

Katz and Cooper (19 74) considered the single facil
ity location problem with random existing destinations and 
a Euclidean norm under a minimization of expected value 
criterion. They developed an iterative descent alogrithm 
to obtain the global minimum and proved that order of con
vergence of the algorithm is linear. The results were then 
applied to the bivariate normal density function.

Katz and Cooper (1975) continued their work to 
develop sufficient conditions to assure that the location 
of the new facility will be within the convex hull of the 
means of the existing facilities. The exponential and the 
symmetric exponential distributions were also considered 
as further examples of their iterative algorithm. Cooper 
(19 74) presented computational experience for the results 
of the first paper.

Seppâla (1975) discussed the various objective 
function criteria relevant to probabilistic formulations.
He developed a location problem where the interaction weights 
are normally distributed and used the Euclidean metric. The 
problem is defined as follows;

P2.3.1 minimize Z
n m

subject to: { E E w..lx.-A.Lj=l i=l 3̂' J I'Hj

' S k i l  "jklXj-Xkl,, i i «
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where; a = a specified probability level

Z = decision variable, and
w . ., X., A., and V., are as defined before.ij J 1
This problem was solved with chance-constrained 

programming methods. The chance constraints were converted 
into deterministic equivalents by introducing new variables. 
Linear approximations were substituted for the nonlinear 
expressions, and the new linearized problem was solved as a 
linear programming problem.

Wesolowsky (1977) considered the single facility 
location problem where the existing facilities were deter
ministic and collinear, but the interaction weights had a 
multivariate normal distribution. Also, the rectilinear 
metric was used. He verified that the solution could be 
found by an application of the median condition on the means 
of the interaction weights.

This particular work was preceded by Aly (19 75) who 
considered both random existing facilities and interaction 
weights. He considered both the Euclidean norm and the 
rectilinear norm, which had received little attention up to 
that point. Both single facility and multifacility location 
problems were considered with the expected value criterion. 
Both unconstrained and constrained versions of the problem 
were considered. The constraints consisted of upper bounds 
on the weighted distance costs and chance constraints 
representing an aspired service level. The multivariate
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normal distribution was generally used in the treatment of 
the random variables.

Wesolowsky (1977) considered the different distri
butions a random existing facility may assume when the 
metric is rectilinear. He discussed the bivariate normal, 
bivariate uniform, and bivariate symmetric exponential 
distributions. He developed solution techniques that were 
rudimentary in light of previously developed techniques.

Thus, this review illustrates, not surprisingly, 
that normally distributed random variables are assumed in the 
consideration of probabilistic location problem formulations. 
The expected value criterion is nearly universally assumed 
as the objective function criterion, and until Aly's work 
the norm was always considered to be Euclidean.



CHAPTER III

FACILITY LOCATION PROBLEMS AMONG 
RECTANGULAR REGIONS

3.1 Introduction
In Chapter I the deterministic version of the gen

eralized Weber problem was presented. It was noted in 
Chapter II that single facility version of this problem has 
received considerable attention in the literature. In this 
chapter the different works devoted to the multifacility 
versions of the problems will also be reviewed.

This chapter will consider a version of the problem 
which has received relatively little attention— that is, 
locating new facilities among rectangular regions. There 
are two different interpretations that may be made from 
this problem. The first is that the existing facilities 
are points, and each point is a random variable with a 
uniform distribution over some rectangular area. The second 
interpretation is that the existing facilities are areas 
or rectangular regions. These areas may be deterministic 
or probabilistic. The deterministic case will receive most 
of the emphasis because its solution will be the same as the 
situation posed by the first interpretation.

20
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3.2 Problem Formulation

The generalized formulation to be considered in this 
chapter is as follows.

n m
P3.2.1 minimize Z Z J J w .  .|x.-R. L  0(R. )dR.

j=l i=l R^ 1 ^ ^

lSj<k<n ] *
where; n = number of new facilities

m = number of existing facilities
Xj = (Xj,Yj) coordinate location of new facility j
R. = [a. ,b. ] X [a. ,b. ] coordinate locations1 I2 %2

encompassed by the existing facility— region i.
In general, a particular coordinate location is 
(a^ /b .

0(R^)= the joint probability density function of (a^,b^) 
defined on region i.

Wji = cost per unit distance per unit time between 
region i and new facility j .

V . ,  = cost per unit distance per unit time between 
new facilities j and k.

When n = 1,this is the single facility location problem. 
Otherwise, it is a multifacility location problem.

Now consider the case of many existing facilities 
or "customers" distributed over rectangular regions. The 
objective is to minimize the sum of the distances each 
customer must travel, but since the number of existing
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facilities is large, it would be infeasible to consider a 
deterministic point model. Instead the cost of serving each 
of these customers is to be considered.

n m r rP3.2.2 minimize I Z J J w..|X.-R.L da.db.
j=l i=l a^bi 1 ^

where; n = number of new facilities
m = number of regions where existing facilities are 

located
Xj = (Xj,Yj) coordinate location of new facility j 

(ai,bi)= general coordinate representation for any 
existing facility in region i 

R. = [a. ,b. ] X  [a. ,b. ] rectangular region i1 Xi ^2 ^2
Wji = cost per unit distance per unit time between

region i and new facility j 
Vjk = cost per unit distance per unit time between 

new facilities j and k.
An example of this model is the location of libraries 

or other public service facilities in a densely-populated 
urban area in order to minimize the sum of the distances 
its patrons must travel to use it.

The probabilistic version of this problem would 
be to consider the expected distance a customer in region i 
must travel. In this case, the customers will be considered 
to be uniformly distributed over the region.
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n mIl Itl > ç
PS.2.3 minimize E Z J J w..|x.-R.L f(a.)f(b.) da.db.j=l i=l a.b. 31 3 1 1 1 1 1J 1 1  ^

where: f(a.) = ^

f(b.) = ^

and ail other parameters are as defined in PS.2.2. 
Note that f(a^)*f(b^) = ^

where is the area of rectangular region i.
This term would be a constant in relation to the 

integration taking place.

3.3 Related Work
This section will treat the development of the 

location problem with rectangular regions. Since the multi
facility location problem will be stressed, a discussion of 
works dealing with that problem will be provided.

3.3.1 Work Relating to Deterministic Formulations
Since the number of works relating to location among 

areas is few, the literature concerning the deterministic 
multifacility problem will be briefly reviewed. The solution 
methods reviewed will serve as background to those that will 
be later developed.
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There are two papers devoted to developing necessary 

and sufficient conditions for optimal solutions to location 
problems. Francis and Cabot (1972) considered the multi
facility problem for Euclidean distances. They explored 
properties of the objective function and its solution in 
addition to developing the properties of the dual. Wendell 
and Hurter (1973) developed similar properties for a location 
problem with general distance metrics. Kay, et al. (1978) 
extended these properties to the non-Euclidean space.

Surprisingly, there has been little work dealing with 
only the Euclidean distance metric although solution 
techniques are available. Eyster et al. (1973) developed an 
iterative procedure to solve both the rectilinear and the 
Euclidean distance multifacility location problem by using 
hyperboloids to approximate the cones formed by the original 
objective functions. This procedure was necessary since 
the partial derivatives of the objective function are not 
defined at all points in the solution space. Love and 
Morris (1975) used the same idea of using a hyperbolic 
distance function to approximate nondifferentiable objective 
functions under general distance metrics. Convex programming 
methods were then used to solve the problem. Ostresh (1977) 
observed that if an iterative procedure were used in solving 
the multifacility problem with a Euclidean metric that the 
convergence should be linear. He couldn't use this result 
to improve any of the existing solution techniques.
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More solution techniques have been developed for the 

rectilinear distance problem. The hyperbolic approximation 
procedures described above could be used since they were 
developed for general distance metrics. Wesolowsky and Love 
(1972) applied this procedure.

Pritsker and Ghare (1970) developed a method of 
locating new facilities by considering movements of each of 
the new facilities relative to existing facilities such that 
those movements show a potential for improving the objective 
function. Rao (1973) showed that this method produced an 
optimal solution only when no two new facilities had the 
same location. He suggested that a dual approach would be 
more efficient in general. However, Pritsker (1973) later 
corrected the algorithm in light of Rao's counter-example.

Dual results have been very useful in developing 
new solution techniques for problems with the rectilinear 
metric. Cabot et al. (1970) decomposed the problem into 
two subproblems— each of which could be expressed as a 
linear programming problem. The dual of each linear program
ming problem was formulated as a minimal cost network flow 
problem and solved using the out-of-kilter algorithm.

Wesolowsky and Love (1971) used the same approach 
of solving the dual, but they used linear programming tech
niques. Morris (1975) essentially used the same technique, 
but he extended it to cover the constrained problem also.
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3.3.2 Works Relating to Rectangular Regions

There have been only two papers done in this area.
Love (1972) developed a solution to the single facility 
location problem among rectangular regions with a Euclidean 
distance metric. The solution required the evaluation of a 
complex expression involving seven initial substitutions, four 
logarithms, and eight integrations. He was able to extend 
this result to constrained location problems by using SUMT.

Wesolowsky and Love (1971) considered both the cor
responding single and multifacility location problems with 
the rectilinear distance metric. A gradient reduction 
technique is used to solve the single facility problem. A 
solution for a two facility problem was developed by examin
ing the entire projection of the hyperplane formed by the 
objective function onto the two-dimensional plane.

3.4 The Centroid Approach
The motivation for the use of rectangular regions 

in location problems was the search for a better solution to 
that problem than the deterministic solution techniques could 
provide. As the literature illustrates, the "better" solu
tion involved several tradeoffs. The costs involved in this 
tradeoff were:

1) the evaluation of complex expressions. (As Love 
(1972) indicates, the expressions that were to be 
evaluated were far more complicated than anything 
that had been encountered in the deterministic case.)
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2) increased computational time. (This increase in

computational time is a function of both the complex 
expressions to be calculated described above and the 
number of rectangles to be considered. For example, 
in a real life situation an irregular shaped region 
may be approximated by decomposing it into rectangu
lar regions, thus increasing the number of regions 
to be considered.)

The question is then "is the improved solution worth these 
costs?"

Bennett and Mirakhor (1974) addressed the work of 
Love (19 72) with that intention. The centroid of each 
rectangular area was used to represent the region in each 
of the example problems. A deterministic solution was then 
obtained.

Aly (1975) applied his probabilistic formulations 
to deterministic problems worked by Francis and White (1974) 
in an attempt to make a comparison.

In Table 3.1 the various works will be compared.
The deterministic formulations include the centroid approach. 
The probabilistic formulations include both normal and uni
formly distributed variables.

Note that objective function values were not available 
in Problem 2. Love did give a value for his problem; Bennett 
and Mirakhor did not. The author was unable to replicate 
Love's value.



TABLE 3.1
A COMPARISON BETWEEN PROBABILISTIC AND DETERMINISTIC 

FORMULATIONS IN LOCATION PROBLEMS

Objective % Deviation
Problem Description Source of 

Results
Optimal
Location

Function
Value Objective Coordi

nate
Location-(Prob.) Function

A.l* Single facility Love (prob.) (9.15,2.47) 502.81
Euclidean metric 
constrained

Bennett &
Mirakhor
(deter.) (9.25, 2.25) 513.23

2% 5%

A.l* Single facility Love (prob.) (12.4,3.39) _

Euclidean metric 
unconstrained

Bennett & 
Mirakhor 
(deter.) (12.37,3.16) —

— 3.5%

A.l* Single facility 
rectilinear

(prob.) (11.375,3.22) 72.96
6% 17.8%

metric (deter.) (12,2.25) 77.29

A.2* Multifacility Aly (prob.) (4.65,5.12) 84.4
Euclidean metric

Francis & 
White (deter.)

(4.65,5.12) 
(8,7) (8,7) 88.76

5% 54%

A.2* Multifacility Aly (prob.) (6,6) (6,5) 136.9
rectilinear Francis & 17.6% 27%
metric White (deter.) (8,7) (8,7) 161.043
*Found in Appendix A.

**The values are averaged over both coordinates,

to
00



29
Table 3.1 indicates that location problems with 

Euclidean distance metric are relatively insensitive to a 
relaxation of the probabilistic assumptions. In other words, 
using the centroid approach for probabilistic location prob
lems with Euclidean distance metric amounts to using heuris
tic solution. In these problems, the centroid approach pro
duced a solution within five per cent of optimal. Although 
there is no guaranteed percentage within optimum, empirical 
results seem to indicate that there is a large region around 
the optimum whose objective function values are near optimal.

In considering the deterministic Euclidean distance 
location problem, the same result holds true. Cooper (1967) 
was one of the first to notice from computational experience 
that surface of the objective function was relatively flat 
around the global optimum. Larson and Stevenson (1972) 
also discovered the insensitivities of optimal facility 
location in designing urban service systems. They discovered 
that for their problem an optimal location reduced the mean 
service time by 25 per cent over a random location.

In considering the probabilistic formulations of 
this problem, Massam (1974) discovered through simulation 
that the objective function value with an expected value 
criterion is very insensitive to locations or solutions in 
an area around the global optimum but is characterized by sharp 
ridges around this area. Seppëla (1974) also noted that 
under an expected value criterion the probabilistic location
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problem with Euclidean distance metric was not significantly 
different from the deterministic formulation.

Thus, when the Euclidean distance metric is used in 
a probabilistic location problem under an expected value 
criterion, it may be more efficient to solve the determinis
tic version of the problem by applying the centroid approach.

On the other hand. Table 3.1 indicates that the trade
offs in considering the deterministic version of the recti
linear distance location problem are greater. This problem 
seems to be more sensitive to shifts from the optimal location. 
There has been no work to document the nature of the surface 
of the objective function with this metric. Consequently, 
in considering probabilistic formulations of this location 
problem it is necessary to develop solution techniques other 
than the deterministic methods.

3.5 The Single Facility Location Problem with Rectilinear Norm
The problem to be considered is the single facility

location problem with expected value criterion.
m w . ^ ̂  / \

P3.5.1 minimize E (Ix-a.I + ] y-b. jlda .db.1=1 R. V 1 1
Where; (x,y) = coordinate location of new facility

= general coordinate of any point in region 
w^ = cost per unit distance per unit time between 

the new facility and region 
= area of region R^
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Notice that if the term is eliminated from the formula
tion this formulation corresponds to the single facility 
version of P3.2.2. That problem does not use the expected 
value criterion, but the solution technique will be essen
tially the same.

3.5.1 Assumptions
The assumptions for this model will be stated below. 

Parts of Assumption 2 are modifications of assumptions pre
sented by Wesolowsky and Love (1971).

Assumption 1 ; The cost of interaction between the 
new facility and any of the regions may be deterministic or 
probabilistic. If it is probabilistic, it will be assumed 
that its expected value is known. Aly (1975) showed that 
under the expected value criterion, the expected weighted 
distance between a new and existing facility is:

E[w^]E[|x-A^|^ ] (3.5.1)
P

which is the product of the expected value of the interac
tion term and the expected distance between the two. The 
implications for this model is that E[w^] may be substituted 
for Wĵ  in P3.5.1 without changing either the formulation or 
solution technique. Thus, this model accommodates both 
probabilistic or deterministic interaction weights.

Assumption 2 : The regions are all distinct and
rectangular such that the following conditions hold:

i) None of the rectangular regions overlaps another.
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ii) No region contains any barriers that would affect 

interaction with the new facility, 
iii) The region should contain uniform density as far

as interaction with the new facility is concerned. 
This assumption states that any nonrectangular 

region must be decomposed into smaller rectangular areas. 
The decomposition of an irregularly shaped region is illus
trated in Figure 3.1.

«
Actual Region Rectangular Approximation

Figure 3.1. A rectangular approximation to an irregularly 
shaped region.

The first assumption states that the rectangular 
regions must not overlap. Any situation where this occurs 
can be rectified by a rectangular decomposition. For 
example, consider the situation given in Figure 3.2.
Rectangle 1 is [2,5] x [1,4] with weight 2. Rectangle 2 
is [4,8] X [1,4] with weight 3.

If we consider the problem without the expected value 
criterion, the overlaps would be removed in the following 
manner ;
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4

1

Figure 3.2. Two overlapping rectangles.

i) Decompose the area into nonoverlapping rectangles. 
In this case we would have three decomposed rec

tangles .
4

1) [2,4] X [1,4]
2) [4,5] X [1,4]
3) [5,8] X  [1,4]

ii) Accumulate the weights from the old rectangles for 
new rectangle j by the following expression:

w! = Z 
 ̂ kel j

w. (3.5.2)

where Ij is the set of indices of the original rectangles 
whose intersection with new rectangle j is not empty.

Here the weights are computed:

j=l. = {1} wi = 2
j=2. Ig = {1,2} ^2 = 2+3

j=3 . I3 = {2} w- = 3
This method of decomposition could also be used to 

rectify any situation violating condition 2. Discussions 
on removing overlaps will also be included as each of the
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algorithms is developed.

3.5.2 Development of a Solution Procedure
Notice that P3.5.1 can be decomposed into two sub

problems. If R. = [a. ,a. ] X [b. ,b. ], then one subprob-
1 2 1 2 

lem will be used to solve for x, and the other to solve for
y. The subproblems are;

m  w .  5 i „
P3.5.2 m i n i m i z e  f ( x )  = E - - - - - r- J I x - a . I  d a .

i=l 'a. ^
1

and
b .in w. r 1-

P3.5.3 minimize f (y) = E yr;---r-— r J |y-b.| d b .
i=i b,^ ' "

Hence, min f(X) = min f(x) + min f(y).
Thus, a solution technique need only be formulated 

for solving one coordinate. For the purposes of this dis
cussion, only P3.5.2 will be considered. The same results 
will also apply to P3.5.3. The objective function in P3.5.2 
will henceforth be referred to as f(x).

Theorem 3.5.1; The function f(x) is a convex 
function for all real values of x and is strictly convex
when ie[l,...,m] such that xe[a. ,a. ].

^1 ^2
Proof ; For this function, in order to prove that 

f(x) is convex, it is sufficient to show that at least one 
of the functions under the summation is convex. A sufficient 
condition for convexity is that the second derivative is 
always nonnegative. The sufficient condition for strict
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convexity is that the second derivative is positive.

Wi
Since -------- is a positive constant, it will be

s u f f i c i e n t  t o  e x a m i n e  t h e  c o n v e x i t y  o f  J | x - a . | d a . .
' h

Integration produces the following results:
a. (a. -x)^ - (a. -x )^
J  ̂ |x-a. |da. = -------  5̂-   if X  1 a.
a. 1 1 " ^1

( x - a . ) ^ +  ( a . - x ) ^1 9 i f  a .  I x i a ,
2 "il" -"i2

(x-a^ )  ̂ - (x-a^ )^
= --------  5---- --—  if a. < X (3.5.3)

The first derivatives of these expressions are, respectively:
a . - a . , if X  < a.If ig ^
2x - (a. +a. ), if a. lx<a.

^1 ^2 ^1 ^2
a. - a. , if a. < x (3.5.4)
^2 ^1 ^2

The second derivatives are 0, 2, and 0, respectively. Thus,
the individual functions âœ convex so f (x), the sum of convex
functions, is also convex.

Notice that if xe[a. ,a. ] for some i, then thell Ig
second derivative of f(x) will be positive because one 
of the functions under the summation has a positive second 
derivative.

Notice that the first derivatives as calculated in 
this proof are continuous. Thus, the observation can also
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be made that f(x) is continuously differentiable over all 
values of x.

Corollary 3.5.1; If a value of x can be found such 
that xe[a. ,a. ] and ^ f = 0, then that x is a globalll ig dx
minimum.

Hence, if we let wj represent the weight on region i
and assume the i's are labeled such that the a^'s are in
ascending order, then at point x = a the derivative is:

j-1 m
E w.'(a. -a. ) + 2aw! - w!(a. +a. ) - Z w.'(a. -a. ) 

i=l ^2 ^1 ] ] ^1 ^2 i=j+l ^2 ^1
m j-1

= - E w.'(a. -a. ) + 2 E w.'(a. -a. ) + 2w!(a-a4 )
i=l ^ ^2 ^1 i=l 1 ^2 ^1 ] ^1

where ae[a. ,a. ] (3.5.5)
3l ^2

This expression must be set equal to zero to solve
for a.

3.5.3 The Algorithm
This algorithm is based on the gradient reduction 

method of Wesolowsky and Love (1971). It will be more 
general than their algorithm since their algorithm was 
developed only in the framework of working one example 
problem. This algorithm is based on the developed theory.

Algorithm for Solving the Single Facility Location Problem
Initiali zation:

1. Sort the intervals [a. ,a. ] i = 1,2,...,m, on
^1 ^2

the basis of ascending a. .
^1
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w.

2. Compute w Î = -------  for each i .1 a. -a.i2 ijL
3. Decompose the intervals [a. ,a. ] into nonoverlapping

^1 ^2
intervals [r^fSj] j = l,...,p. The weight on each 
interval is:

iElj
where I^ is set of indices of the original intervals
i such that [r.,s. ] [a. ,a. ] ^

3 3 ll i2
Gradient Reduction:

p m
4. Compute M =  Z w! (s.-r.) = Z w.

i=i ] ]  ̂i=l ^
5. Let k = 1
6. Compute t̂  ̂ = w^ (s^.-r^j .

The derivative at x = s, is d(s, ) = -M + 2 Z t .
^ ^ i=l ]

7. If d(s^) < 0, set k = k+1 and go to 6.
8. If d(s^) = 0, then s^ < x* < r^^^. Stop.

^k“^k9. If d(s^) > 0, then x* = r^ - d(s^_^) ^ — . Stop.
Concisely, the weight 2t-̂ is added to

until the sum becomes nonnegative. If the sum becomes zero, 
there will be an interval solution to the location problem. 
This means that the new facility may be optimally located at
any given point on the interval. If the sum becomes posi
tive, there will be a point solution.

The justification for this result comes from (3.5.5). 
Obviously,

d(Sj^) = dXr^^^) for all k (3.5.6)
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Also, d(x) = d(s^) for (3.5.7)
This follows from the fact the intervals are non-overlapping, 

Thus, if d(s%) = 0, then d(x) = 0  for and all
X  on this interval are global optima;

The result for the point solution comes from a 
study of Figure 3.3.

0f(x)

f(x)

X 8

Figure 3»3* A graph of f(x) and its derivative
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X* is solved by considering the line between 

(r^^d(r^)) and (x*,0). This result was presented in Step 9 
of the algorithm.

3.5.4 A Numerical Example
A simple numerical result will be worked to illus

trate the algorithm.
Let = [1,3] X [1,3] w^ = 2

1̂ 2 ~ [2,3] X [2,4] Wg “ 1
Rg = [4,5] X [2,3] Wg = 3

X Subproblem:
j=l [ry,Sj] •= [1,2] w| = 1

2 [2,3] w^ = 1 + 1 = 2
3 [4,5] w^ = 3

M = 2  + l + 3 = 6
d(Sĵ ) = -6 + 2 = -4
d(s2) = - 6  + 2 + 4 = 0
Thus, there is an interval solution: 3 1 x* < 4.
y Subproblem:
j=l [ry,Sj] =. [1,2] w| = 1

2 [2,3] W 2 = 1 + ^ +  3 = 435
3 [3,4] w^ = %

M = 6
d(s^) = -6 + 2 = -4 
d(s_) = - 6  + 2 + 9 = 5

4
There is a point solution: y* = 2 + ^ 9"*
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3.6 The Multifacility Location Problem with Rectilinear Norm

The problem to be considered in this section is the
multifacility version of the problem in Section 3.5. It is
also formulated with the expected value criterion.

n m w . . rr .
P3.6.1 minimize Z E { |x .-a. 1 + I y .-b . I)da. d b .

j=l i=l *i\ ] 1 3 1 / 1 1

where: n = number of new facilities to be located
m = number of existing facilities

(Xj,yj) = coordinates of new facility j
(ai,bi) = general coordinates of any point in region R^.

The area of is .
Wĵ j = interaction cost per unit distance per unit time

between new facility j and existing facility i.
Vj^ = interaction cost per unit distance per unit time

between new facilities j and k .
The method used by Wesolowsky and Love (1971) 

involved consideration of the projection of the polyhedral 
surface formed by the objective function onto the planes 
formed by the coordinate axes, i.e., the x^Xg plane. The
projection of each edge of the polyhedral surface is con
sidered in turn. The minimum of the objective function on 
the considered projection is then computed by solving a 
single facility location problem. This method continues 
until all projections have been checked.
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There are several reasons why this algorithm can 
be considered too inefficient,

1. There is no criterion for optimality. The only way 
optimality may be ascertained is to consider all the 
projections. Thus, optimality may be achieved at 
the first iteration; however, one would never know if 
it were a local or global minimum until the last 
projection were checked.

2. The procedure becomes very complex for values of n 
larger than two, as Wesolowsky and Love stated.
They gave no evidence that they had been

able to program the algorithm for n > 2.
3. No computational experience had been developed. 

Although Wesolowsky and Love essentially presented 
their procedure for the two facility location problem, 
they did not even present the computational results 
for this algorithm. Thus, the algorithm will produce
the optimal solution, but it is untested in a compu
tational sense.
The algorithm to be presented will be a heuristic 

algorithm although it often produces the optimal solution. 
Computational experience with the algorithm will be stressed.

3.6.1 Assumptions for the Multifacility Problem
The assumptions for this algorithm will be the same 

as those described in Section 3.5.1. Assumption 1 concerning
the w..'s can also be directly applied to the v., 's. Thus,Ij
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Vj^ may reflect either a deterministic value or the expected 
value E[Vj^] when v^^ is a random variable.

It will be further assumed that there exists a k, 
k = 1, ..., n such that

Vj^ > 0 for every j .
This means that every new facility must interact with at 
least one other new facility. Basically, this is a formu- 
lational assumption because if there were some j such that 
Vjĵ  = 0 for each k, then that new facility j could be found 
by just solving a single facility location problem. Thus, 
the Vj^'s prevent the problem from degenerating into n single 
facility problems.

On the other hand, it will be assumed that at least 
one w^j = 0 .  If all w^j > 0, then the problem would become 
relatively uninteresting. It would only be necessary to solve 
the single facility location problem and then to locate all 
n of the new facilities on that solution point so that the 
interaction terms between new facilities would make no con
tribution to the objective function.

3.6.2 Properties of the Objective Function
It follows readily from the development of the 

single facility algorithm that the multifacility problem 
may also be decomposed into an x-coordinate subproblem and 
a y-coordinate subproblem. The difference is that the 
solution to each of the subproblems will be an n-dimensional 
vector. Once more, the x-coordinate subproblem will be
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addressed with the assumption that the results may be 
applied to the y-coordinate subproblem without loss of 
generality.

3.6.2.1 Convexity
Corollary 3.6.1: The function ffx^fXg, ..»,-K^) is

convex for all real values of x^, j = 1, ..., n. It is
strictly convex when there is an i for some Xj such that
X . e[â' /a. ].
 ̂ 1 2

Proof; The results of Theorem 3.5.1 will be used. 
For any value of x^, j = 1, ..., n, the general function 

m w . . ri,

is convex. It is strictly convex if Xj is located in some
interval [a. ,a. ]. The function v., |x.-x, I is also convex 

^2 2
since it has a second derivative of zero no matter what the
relative values of x. and x, are. Thus, since the summation3 ^
of convex functions is also convex, f(x^, ..., x^) is convex 
and strictly convex when there is a je{l, ..., n} such that 
x.e[a. ,a. ] for some i.
J ^1 ^2

3.6.2.2 Non-Differentiability
Although a partial derivative exists for all real 

values of x^, these partial derivatives are not necessarily 
continuous. This follows from the formula for a partial 
derivative :
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if(x,,...,x ) m (2Xj-(a^ +a^ ))

~ E w. . — E w. . + E z.w. .

+ Z V . ,  - E V . ,  (3.6.1)
kett ketT] ]

where: z . = [ 1, if x.e[a. ,a. ]
[_0, otherwise

st = the set of indices i such that x. > a. .
3 ] ^2

i = {1, ..., m}
ST = the set of indices i such that x. < a. .3 3
tt = the set of indices k such that x, < x ..3 ^ 3

k = {1, ..., n}
tT = the set of indices k such that x . < x, .3 3 k
Thus, to illustrate a discontinuity, consider the 

following case. Let x^ = a be such that ae(a^ '^(i+1)  ̂

for some i. In other words, x̂  ̂ is a point located between 
two nonoverlapping intervals. Assume v^g - 2, and let the 
partial derivative with respect to x^ be -1 at the point 
(a,a^ ). Thus, for all points (a,x̂ ) where x^ < a, the 
partial derivative is -1. When Xg > a, the v.̂ 2 term will 
change from having a negative sign in the formula to having 
a positive sign for a net increase of 4.

Thus,
9f (a,X2)

- a  = -1

3£(a,X2) = 3
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Hence, the partial derivative is not continuous.
The implications from this discussion are obvious.

It will not be possible to use a gradient as a solution 
technique because of discontinuities in the partial deriva
tives. On the other hand, the convexity results indicate
that if a local minimum can be found such that one of the x.'s3
is located on one of the nonoverlapping intervals, then this 
solution is a global minimum.

3.6.3 Development of a Solution Technique
The results of the previous discussion indicate that

a gradient-free nonlinear search technique is recommended to
solve the multifacility problem. Furthermore, if the search
could be restricted to the area formed by the projection of
the polyhedral edges of the objective function onto the plane,
this would be the same as requiring one of the variables
to be located within an interval [a. ,a. ]. Hence, one could

^1 ^2
be assured that the function being subjected to search was 
strictly convex.

3.6.3.1 A Direct Search Technique
An appropriate search method would be the Hooke and 

Jeeves (1961) direct search technique. Direct search tech
niques as well as other nonlinear optimization procedures 
are discussed by Himmelblau (1972), Geoffrion (1972), and Box 
et al. (19 69). The Hooke and Jeeves algorithm is gradient 
free and is adapted to convex nonlinear functions containing
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no cross products of variables— all characteristics of the 
multifacility location problem. This is a heuristic algorithm.

3.6.3.2 A Starting Point and Search Direction
With the Hooke and Jeeves algorithm as the backbone

to the solution technique, the remaining tasks for total
development of the algorithm are to obtain an initial point 
and a search direction. When the multifacility location 
problem is considered, there are two interesting points, 
excluding the optimum, because they represent two extremes.
The first point denoted w is the point with a minimum interac
tion cost between new and existing facilities. This point 
can be found by disregarding the terms involving interactions 
between new facilities (Vjj^'s) and just solving the remaining 
function as n single facility location problems. The second 
point is the point with a minimal interaction cost between 
new facilities and will be denoted v. Obviously an inter
action cost of zero occurs when all facilities are located
on the same point. This point will be located on the line
x^ = Xg = ... = x^. The location of this point is easily 
found by disregarding the interaction terms between new 
facilities (v., 's) and treating the remaining problem as 
one single facility location problem.

These two points represent the tradeoffs that are 
made in the multifacility location problem. The point w 
represents minimal interaction costs between new and existing 
facilities at a sacrifice to the interaction costs between
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existing facilities. On the other hand, the point v mini
mizes the interaction costs between new facilities while 
increasing the same costs between new and existing facilities. 
The optimal solution will strike a balance between these two 
costs.

Thus, when the v., 's are small relative to the w..'s
in a location problem, the optimum should be found in a
neighborhood of w. On the other hand, when the v., 's become
large relative to the w^^'s, the optimum will be forced
toward the line x^ = Xg = ••• “ may actually be
located at v. The problem is that there is no way to measure
the relative magnitudes of these interaction costs. The fol
lowing two examples illustrate this concept for the x-coordinate 
subproblem:
Example 3.6.1: (Two New Facilities--Two Existing Facilities)

a, = [1,2] w. .
= [5,6] [-]

When ^12 = 0 Xi = 1 J' *2 5 3
When ^12 = 1 2 < Xi < 5, X 2 = 5 1

6
When ^12 = 2 x^ = 5 8' *2 5 1

8
A graph of this example is presented in Figure 3.4.

Example 3.6.2: (Four Existing Facilities— Two New Facilities)
a^ = [1,2] Wj^
2̂ = [5,6]

^2 ~  [7'8] 
a^ = [11,12]

[0 0 2 ll
1 3 0 Oj
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Figure 3.4. A graph of Example 3.6.1.

When '̂ 12 = 0 - 7 §'
When ^12 = 1 Xi = 7

When ^12 = 2 = 7 T'
When ^12 = 3

When ^14 = 4 *1 = 5

'2

2̂

3
1
2

2
3

5
6

5
6

A graph of this example is presented in Figure
3.5.

In both Figures 3.4 and 3.5, the shaded region 
represents the projections of the edges of the polyhedron onto 
the x^Xg plane. The solution to any of the multifacility 
location problems is found in the shaded area which was 
expected because of previously discussed properties of the 
problem.
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Figure 3.5. A graph of Example 3.6.2.

Empirical results from these two examples indicate 
that the point w discussed before is a good initial point for 
a direct search technique. In these examples, some solutions 
were collinear on a line segment emanating from point w. This 
point becomes x° in the algorithm.

Intuitively, a good search direction would search 
the shaded area between x^ and the line x^ = Xg = ... =
It is obvious that this region reflects the previously 
discussed tradeoffs between the w..'s and the v., 's. Hence,J1
the optimum should be found by searching this region.

The search direction to be developed will be a vector 
from point x° toward the line x^ = Xg = ... = x^, which will 
be denoted line &. The point x° also defines a vector 
originating at the origin and passing through x ° . Let x^ 
represent a point on x^ also defines a vector.
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Consider the direction angles of these vectors.

The direction angles, denoted 0^, 8 ̂ 6^, of a vector 
are just the angles between the vector and the positive 
Xi“ , Xg-f ..f x^- axes, respectively. For an arbitrary 
vector (x^, x ^ , ..., x^), the cosine of the ith direction 
angle (0^) is defined as;

^icos 0. = — -— -—  (3.6.2)1 n
( Z X.):
i=l

Using this definition, the cosines of all the direction
angles of x^ are just —

/H“
Let the cosines of the direction angles of x be 

denoted cos 0^ i = 1, ..., n. For the ith coordinate axis,
if cos 0. > —  then the measure of x°'s ith direction angle
is less than that of x 's direction angle. Thus, to move 
x° toward Z, the coordinate value x? should be decreased by 
some amount.

On the other hand, if cos 0. < — , then x ° 's
A /ndirection angle is larger than x 's with respect to the ith 

coordinate axis. Hence, x? should be increased.
This concept is illustrated in Figure 3.6.
For any vector located on Z, both direction angles 

will be 45° with cosines of 2 In this figure 0^ > 45°
and 0 2 < 45°. Thus, cos 0^ < ^ so Xg should be decreased.
The resultant vector of these two adjustments is a direction 
toward Z, If is the magnitude of the change in each
doordinate value, then the initial search direction is (e,-e).
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Figure 3.6. Determining a search direction.

3.7 The Algorithm
The complete algorithm for the multifacility loca

tion problem is stated below.
The input parameters are;
M - number of rectangular regions 
N - number of new facilities 

EPS - size of each component in initial direction 
vector

ALPHA - a scalar z 1 to be used to increase a step size 
in a search direction
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BETA - a scalar (0<^<1) to be used to decrease a step 

size in a search direction 
EPSY - convergence criterion for terminating algorithm. 
IMAX - maximum number of iterations allowed

1. Input the above parameters, the Wj^'s, and the
intervals [a. ,a. ] x [b. ,b. ] for all regions i.

^1 ^2 ^1 ^2 
(The first interval refers to the x-coordinates;
the second to the y-coordinates.)

2. Solve a single facility location for each new 
facility j among the rectangular regions i where 
Wji > 0. (This step entails proceeding through the 
algorithm in Section 3.5.) Denote these locations 

(Xj'Yj)•
3. Input the Vj^'s.

The following steps will be addressed to the x-coordinate 
solution. They should then be repeated for the y-coordinate 
solution.

The Search Direction Vector— Direct
4. Compute —  .

/n X .

5. Compute cos (j) = TvzPt H each j.
6. If cos (j) < — , let Direct (j) = EPS

/n
If cos (j) > — , let Direct (j) = -EPS

Æ
If cos (j) = — , let Direct (j) = 0  

/n
7. Evaluate objective function at point (x^, ..., x^).
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Direct Search Procedure

8. Let k = 1. Put the objective function value of 
Step 7 in OPT, the current best value and WOPT, 
previous best. Put the ay's in the vector XOPT, 
the current best point and WXOPT, previous best 
point.

9. Let j = 1.
10. Compute x(j) = X(j) + Direct(j). Calculate the

objective function value W(j) with this new value.
If W(j) < OPT, go to 12.

11. Compute X(j) = X(j) - Direct(j). Calculate its
objective function value W(j). If W(j) > OPT, go 
to 18.

12. Replace OPT with W(j). Replace XOPT(j) with X(j).
13. j = j+1. If j = n+1, go to 14. Otherwise, go to 10.
14. If k > IMAX, stop. Go to 20.
15. If |:OPT - WOPt I < EPSY, stop. Go to 20.
16. k = k + 1.
17. Let X(j) = XOPT(j) + ALPHA-(XOPT(j) -WXOPT(j)) for

all j. Go to Step 9.
18. Calculate and replace Direct(j) with BETA•Direct(j).
19. If I Direct(j) I < EPSY, stop and go to 20. Otherwise,

go to Step 9.
Check for Interval Solutions

20. Let j = 1.
21. For i such that w . . > 0, if XOPT(j) e (a. ,a. . ),

XJ ^2 ^ -̂ 1
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then XOPT(j) will have an interval solution on the 
above interval. If not, go to 22.

22. j = j+1. If j < n, go to 20. Otherwise, terminate 
the algorithm with the vector XOPT as the optimal 
locations and objective function value OPT.
These last three steps were necessary because in 

location problems with interval solutions, any point on the 
interval will produce the same objective function value. The 
search method would not perceive a point in the interval to 
be an improvement in the objective function value so it would 
distregard interval solutions.

The algorithm was verified by testing it with the 
examples of Wesolowsky and Love plus other examples con
trived by the author. In all cases the objective function 
value and facility locations were all within a small neigh
borhood of optimal.

3.8 Computational Results
Computational results were developed for the multi

facility location problem. The test problems were randomly 
generated. The interaction weights, w . . and v., , were 
generated from a uniform distribution over the values [0,10]. 
The corner points of the rectangular regions, i.e., (a. ,b. )ll
and (a. ,b. ), were also randomly generated from a uniform 

^2 ^2
distribution over the interval [0,100]. The problems were 
run on an IBM 370/158J computer.
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The results are presented below in Figure 3.7.
Three problems were generated and run for each particular 
combination of new facilities and existing facilities. The 
average of the execution times for all three problems is 
displayed.

CPU 
(sec)* ‘
1.5

1.0 ..

•5

n = 4

n = 3

n = 2

5 10 15 20
Number of Existing Facilities (m)

Figure 3.7. CPU time required to solve a multifacility 
location problem with n new facilities.

The results indicate, not surprisingly, that the 
execution time is a function of first, the number of new 
facilities and secondly, the number of existing facilities. 
Figure 3.7 indicates that at least in the case of m = 4,
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the CPU time rises as n approaches m. However, the CPU 
time was relatively insensitive to changes in m from 10 to
15. At m = 20, the times rise rapidly; it would be 
expected that the time would continue to rise at an expo
nential rate for values of m greater than 20.

Although there are no other results to serve as a 
comparison to these values, twenty existing facilities is 
usually considered a medium-scale location problem. The 
fact that this problem could be handled in about 1.5 seconds 
of CPU time is promising for the algorithm's performance 
on larger problems using only a reasonable amount of compu
tational time.

3.9 Summary
In this chapter the location problem with respect to 

rectangular regions was considered. The centroid approach, 
a traditional approximation to the consideration of rectangu
lar regions, was discussed in terms of metric. With Euclidean 
distance, the centroid approach could be used in conjunction 
with deterministic techniques to obtain a near optimal solu
tion. The rectilinear distance metric was more sensitive 
to the use of centroids instead of rectangular regions.

The single facility location algorithm was a complete 
version of a gradient reduction procedure used by Wesolowsky 
and Love. The properties of the problem were developed as 
a basis for the completed algorithm.
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The properties of the multifacility location problem 

were discussed to serve as a motivation for a solution tech
nique. Because of discontinuities in the partial deriva
tives, a gradient-free direct search was used. Although 
it is a heuristic, the search yielded near-optimal solutions. 
Methods of developing a good initial point and search direc
tion were also discussed as a part of the algorithm. Com
putational results were obtained for the algorithm.

The chief contributions of the algorithm are;
1. Location problems with a large number of "existing 

facility" regions and a larger number of new facili
ties than had ever been solved before were handled 
in a reasonably small amount of computational time.

2. Computational results are provided to serve as a 
basis for comparison for future works.

3. The direct search technique may be used as a model 
to handle other similarly "difficult" location 
problems.

4. The results of the direct search method give insight 
to the surface of the objective function in an area 
around the optimum. This may become a basis for some 
sensitivity analysis.



CHAPTER IV 

THE LOCATION-ALLOCATION MODEL

4.1 Introduction
In Chapter III, the location problem was solved 

when the interaction between new and existing facilities 
was known a priori. In this chapter it will be assumed 
that only the locations of the existing facilities, their 
interaction costs with an arbitrary new facility, and the 
number of new facilities. The existing facilities must be 
allocated to the new facilities in a manner such that when 
the new facilities are located, the total cost of interaction 
between new and existing facilities is minimized. In this 
respect the location-allocation model will be built on the 
results of the location problems considered in the previous 
chapter.

4.2 Formulations
The general location-allocation model among 

rectangular regions is formulated as follows.
n m p p

P4.2.1 minimize Z E J J  z..w.|X.-R.L 9{R.)dR.
j=l i=l R. ^3 ] l ' 1

58
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n

subject to: E z . . = 1 for all i
j=l

Zfj = 0,1 for all i and j 
where: n = number of new facilities

m = number of existing facilities
Xj = (Xj,Yj) coordinate location of new facility j

= existing rectangular region i
0 (R^) = bivariate probability density function over R̂  ̂

w^ = interaction between region i and the new facility 
it will be allocated to

z . . = j 1 ,  i f  e x i s t i n g  f a c i l i t y  i  i s ' . a l l o c a t e d  t o  n e w
^  < f a c i l i t y  jI 0 ,  o t h e r w i s e
The particular problem to be emphasized in this 

chapter is the location-allocation problem among rectangular 
regions with bivariate uniform distributions. An expected 
value criterion will be used.

n iti z _j • V7 •  ̂ ^P 4 . 2 . 2  m i n i m i z e  2 E — 3—  J  J [ x . - R . L  d a .  d b .
j=l i=l ^i a. b. ] 1 *p 1

n
subject to: Z z .. = 1 i = 1, ..., m

j=l
z^j = 0,1 for all i and j 

where : (a^,bj^) = general coordinate location in region R^
= area of region R^ 

and n, m, w ., X., R ., and z . . are as defined in P4.2.1.1 J 1 1]INote that ^  in P4.2.2 is just the bivariate uniform 
i

density function over R^.
In Problems 4.2.1 and P4.2.2, the decision variables
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are the zx^'s— reflecting the allocation aspects of the 
problem and the x^'s— reflecting the location aspects of 
the problem.

Note also that there is an implicit assumption that 
the new facilities have an infinite capacity to serve the 
existing facilities. Thus, each existing facility will be 
allocated to and subsequently interact with only the closest 
new facility. If there had been capacity restrictions on the 
new facilities, the problem would have been a transportation- 
location problem.

The assumptions of Section 3.5.1 will be somewhat 
relaxed. The first assumption that the w^'s may represent 
either deterministic values or expected values of random 
variables still holds. The second assumption will be 
relaxed. The regions must be rectangular, but they may be 
overlapping.

4.3 Related Works
There have been several works that have served as the 

state of the art for location-allocation (L-A) systems.
Scott (1970) presented a review of the types of L-A models 
that had been formulated. Lea (1973) compiled an annotated 
bibliography of all works that dealt with an aspect of the 
L-A systems. In their comprehensive report on facilities 
location, Elshafei and Haley (1974) discussed the results 
of all types of research done with the model— whether it be 
solution techniques or applications. The reader is referred
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to these works for an overview of the L-A system.

The solution methods that have been developed for 
the deterministic version of the problem will be discussed 
in the rest of this section.

The use of dynamic programming was originally con
sidered by Bellman (1965). He took the single facility 
location problem with Euclidean distance metric and trans
formed it to a dynamic programming problem by using quasi
linearization, a technique he had developed earlier which 
involved transforming the Euclidean metric to a linear form 
subject to both linear and nonlinear constraints. Love 
(1976) later revived the idea to solve the multifacility 
location problem when the existing facilities are all col
linear. He used an absolute value distance metric, which is 
just the rectilinear metric applied to the one dimensional 
version of the problem.

Learner (1968) studied the location-allocation 
model when the customers are uniformly distributed over a 
planar area. Since he was using Euclidean distances, he 
determined that the ideal situation would be to consider 
one allocation to be all customers located within a circle 
around a new facility. However, since circles do not divide 
the plane, the hexagon or a honeycomb shape would be the 
best geometrical figure to both divide the plane and minimize 
transportation costs. His work was done in an economic 
setting with each hexagon representing a market area.
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In a series of articles, Cooper (1963, 1964, and 
1967) developed heuristic algorithms for and properties of 
this model. The details of the heuristics will be discussed 
later. His results have served as a basis for subsequent 
research efforts by others interested in the location- 
allocation model.

Love and Morris (1975) developed an exact solution 
technique for the L-A problem with rectilinear distances. 
Their technique involved two phases; first, determination 
of all possible new locations for the new facilities and 
secondly, determining the optimal allocations and solving 
for the locations of the new facilities.

Their work was preceded by Kuenne and Soland (19 72) . 
The main contribution of their work was the use of a branch 
and bound technique to optimally solve the location- 
allocation problem. Their work will also be discussed 
later in greater detail.

Kuenne and Soland*s work is one example of the 
larger role branch and bound techniques are playing in the 
solution of location problems. Versions of the L-A problem 
in discrete space, also known as the "plant location problem" 
or "fixed charge problem," had already been solved using 
branch and bound. Jarvinen et al. (1972) also applied 
branch and bound to solve the multifacility location problem 
on a graph. El-Shaieb (1973) also used branch and bound to 
solve a multifacility location problem with the restriction
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that a new facility must be located at the same site as an 
existing facility.

Ostresh (1975) worked on the Kuenne-Soland algorithm 
in terms of embellishing the bounding procedure. He applied 
the results of Wendell and Hurter (1973) to the two-facility 
problem. He determined that a simple test on the feasibility 
of an allocation scheme was to determine the convex hull 
of all the existing facilities allocated to one of the new 
facilities. The allocation scheme was feasible only if the 
two convex hulls were disjoint. However, this result could 
not easily be extended to location problems when the number 
of the new facilities, n, is greater than two.

In summary, all works reviewed here were addressed 
to the Euclidean distance metric except for that of Love and 
Morris (1975). All the research has been devoted to the 
L-A problem with the existing facilities being represented 
as deterministic points.

4.4 Characteristics of the Location-Allocation Problem
In this section several characteristics of the L-A 

problem will be discussed. These characteristics will 
explain the difficulties encountered in solving the L-A 
problem.

4.4.1 Non-Separability
The location-allocation problem is not separable.

This means that the master problem cannot be separated into
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an independent allocation subproblem and an independent 
location subproblem, each of which is capable of being 
optimized. Instead, the two aspects of the problem are 
interdependent. If the optimal allocation scheme is known, 
the locations of the new facilities can be easily found by 
solving n single facility location problems among the exist
ing facilities allocated to each of the n new facilities. 
Conversely, if the optimal locations of the new facilities 
are known, the allocation scheme can be determined by assign
ing each existing facility to the new facility which mini
mizes the weighted distance from it. This was the basis 
for Kuenne and Soland's heuristic algorithm CROSSCUT.

4.4.2 Non-Convexity
Cooper (1967) proved that the objective function of 

the location-allocation problem was neither convex nor con
cave because of the z variables. From the discussion above 
and the results of Chapter III it is obvious that if either 
the x's or the z variables assume values, the resulting loca
tion or allocation problem will be convex. This property 
indicates that a heuristic algorithm may find a local mini
mum that is not necessarily a global minimum. Thus, heuristic 
algorithms should be approached with some caution.

4.4.3 Insensitivities in Optimal Locations
The discussion in Chapter III indicated that many 

researchers have noticed that the multifacility location 
problem is extremely flat in the vicinity of the global
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optimum. Both Kuenne and Soland and Cooper observed that 
the same characteristic was true for the location-allocation 
problem. Hence, the objective function is more sensitive 
to inferior allocation schemes. An optimal allocation scheme 
will produce a near-optimal objective function value even if 
the new facilities are located at nonoptimal locations.
Hence, a good solution technique will emphasize obtaining 
the optimal allocation.

4.4.4 Computational Burden
The total number of allocation schemes, or ways that

m existing facilities can be assigned to n new facilities,
is the Stirling number of the second kind— denoted S(n,m).

n / n \ k , 1 » m 
S(n,m) = kl (n-k) I (4.4.1)

Hence, for example, there are 63 ways to allocate 
seven existing facilities among two new facilities. This 
number increases exponentially with m. Therefore, any 
algorithm involving complete enumeration of all allocation 
schemes would quickly become computationally infeasible.

4.5 Heuristic Algorithms
Cooper promoted the use of heuristic algorithms 

during the 1960's because at the time there were no exact 
algorithms in existence. Most of the heuristics developed 
by others were modifications or adaptations of a heuristic 
originally proposed by Cooper.
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Most of the heuristics involve the case where all 
the existing facilities have equal interaction weights.
These heuristics are discussed below;

i) The destination subset algorithm involves con
sidering all subsets of n existing facilities--that is, 
subsets in all— as a set of potential sites for the n new 
facilities. Although there was no guarantee, one of the 
subsets seemed likely to produce the optimal allocation.
This heuristic coupled with an exact method of facility 
location, after the allocations were generated, produced 
the best objective function values of all the heuristics 
presented up to 19 64. The computational times for this 
heuristic, however, were the worst requiring a prohibitive 
3h hours for a test problem where m = 60 and n = 4.

ii) The random destination algorithm involved the 
generation of n random numbers. Each random number was to 
be an integer between 1 and m. The n numbers indicated 
which existing facilities should become sites for the new 
facilities. The allocations were made and the resulting 
location problem solved. The procedure was repeated for a 
large number of trials until some arbitrary stopping criterion 
is met. This algorithm was deemed the best giving solutions 
only slightly higher than the previous algorithm at a fraction 
of the time. The test problem required only 8h minutes.

iii) The successive approximations algorithm first 
solves a two facility location problem using the destination
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subset algorithm. If three new facilities are to be located, 
a third new facility is arbitrarily placed at the site of 
one of the existing facilities. The existing facilities are 
then reallocated and the location problem solved. This 
procedure continues as the third new facility is located at 
each of the m-1 other existing facilities, in turn. The 
best solution is considered to be the optimal allocation 
for locating three new facilities among the existing facili
ties. This procedure is then repeated for locating 4, 5,
... n new facilities. This algorithm gives the worst solu
tions averaging at least eight per cent of those given by 
the first algorithm. However, the computational times were 
the best. Only 48 seconds were required to solve the test 
problem. Kuenne and Soland modified this same algorithm 
to use weighted distances.

iv) The alternate location and allocation algorithm 
was initially proposed by Cooper (1963); it was initiated with 
an arbitrary allocation of existing facilities to new facil
ities. A single facility location problem was then solved 
for each of the subsets. Each existing facility was then 
reallocated to the closest new facility. Hence, there was 
a new allocation scheme. This procedure continued until no 
further improvement could be made. This algorithm produced 
solution values averaging a two per cent deviation from the 
first heuristic algorithm. Its computational times were second 
lowest with a time of just over two minutes for the test 
problem.



68
v) The elimination-alternate-correction heuristic 

was introduced in Cooper (1967) and was based on the 
previous heuristics. The elimination phase of the heuristic 
involved computing the sum of the distances between a given 
existing facility and all other existing facilities. The 
existing facility with the greatest sum is eliminated.
The procedure is iterated until only n existing facilities 
remain. These facilities are taken as the locations of the 
new facilities. The alternate location and allocation algorithm 
is then applied until no further improvement is possible.

The correction phase is an attempt at further improve
ment. For each pair of existing facilities served by the 
same new facility, an interfacility distance is computed.
The two existing facilities with the maximum interfacility 
distance between them become sites of new facilities. The 
new facility that serves them is then eliminated, leaving the 
system with n+1 new facilities. The two new facilities 
that are closest together are then identified. One of these 
new facilities is chosen to be eliminated from the system 
and the elimination-alternate procedure is used to attempt 
an improvement on the previous best solution. Then the 
other new facility is chosen to be eliminated and the process 
is repeated. This heuristic produced objective function 
values better than those produced by the destination subset 
algorithm. The computational time had improved to about
2.5 minutes required to solve a test problem where m = 40 
and n = 3.
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vi) The means-alternate-correction heuristic was 

applicable only to location-allocation problems with five or 
fewer new facilities. It involved locating five points.
The first point was the coordinate values of the arithmetic 
means of the x and the y coordinates of all existing facili
ties. The other four points were the coordinates of the means 
of the existing facilities whose x-coordinates were less than
the total mean; those whose x-coordinates were greater than
the total mean; those whose y-coordinates were less than the
total mean; and those whose y-coordinates were greater than
the total mean. The elimination-alternate-correction algorithm 
is then used to eliminate the extra new facilities and 
improve the solution. This heuristic used in conjunction 
with the previous algorithm produced the best solution values.

vii) Cooper did not give a name to the heuristic he 
developed for solving the location-allocation problem with 
unequal interaction costs. Basically, it involved either 
just using the means-alternate-correction heuristic with 
weighted means or applying several of the heuristics in a 
progression. This meant one of the heuristics described 
above was chosen to generate an initial allocation. The 
alternate location and allocation algorithm was used 
several times to improve the solution. The correction 
phase of the elimination-alternate-correction algorithm is 
then used for further improvement. Cooper did not test 
this algorithm extensively.
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Several conclusions can be drawn from the above 
discussion of heuristic approaches.

1. The heuristics were adapted to location-allocation 
systems where the existing facilities could be represented as 
deterministic points. The location of a new facility at the 
sites of existing facilities precluded the use of both proba
bilistic existing facilities and areal existing facilities. 
Modifications in the heuristics were necessary to accommo
date these versions of the problem.

2. The heuristics were developed for the case when 
all existing facilities have equal interaction weights. Cooper 
was unable to develop a series of heuristics for the general 
problem with unequal interaction weights as he did for the 
case when all weights are equal. He discovered that the allo
cations produced by the best equal weight heuristics were 
usually never the optimal allocations for the L-A problem
with unequal weights. Consequently, the heuristics that 
produced inferior solution values for the equal weights 
problem usually performed the best in obtaining allocations 
for the unequal weights problem. Hence, Cooper's results 
were not directly applicable to other problems.

3. There was no guarantee on the near-optimality of 
the heuristics. When Cooper did his work, there were no 
exact algorithms in existence. Thus, he had no way of knowing 
how close his results were to optimality. .Heuristics could
be judged only on the relative performance of other heuristics.
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Eilon et al. (1971) studied the heuristics for a 

multifacility location-allocation problem with fifty existing 
facilities. They discovered that the per cent deviation from 
optimal of the worst local minimum generated by the heuristic 
ranged from 6.9 for n = 2 to 40.9 for n = 5.

The implications for the location-allocation problem 
are the following. The most important factor in obtaining 
an optimal solution is generating the optimal allocation 
scheme. The number of possible schemes is so large that 
complete enumeration is impossible. Heuristic algorithms 
will generate allocation schemes that correspond to local 
optima, but they may overlook the allocation scheme corres
ponding to the global optimum. Thus, with a heuristic 
algorithm there is no guarantee that even a near optimal 
solution will be produced.

Secondly, the fact that the best heuristics developed 
for a special case location-allocation system did not achieve 
the same success when applied to a general L-A system indi
cates that reliance on heuristic algorithms may dictate a need 
to generate new heuristic algorithms for every version of 
the location-allocation model.

In the next section an exact algorithm for the 
location-allocation model featuring implicit enumeration 
of all possible allocation schemes will be discussed. Since 
the branch and bound method was used by Kuenne and Soland 
(1972), the development of heuristic algorithms has been more
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or less, put to rest. Although other exact algorithms have 
been presented, there has been no comparison to date between 
heuristic and exact algorithms on the basis of computational 
results.

4 .6 A Branch and Bound Approach
The branch and bound algorithm as developed by Kuenne 

and Soland (1972) offered an optimal solution to the location- 
allocation problem with at least the same computational 
efficiency as the heuristic algorithms. Two good review 
papers on general branch and bound methods are Lawler and 
Wood (1966) and Mitten (1970).

The algorithm was based on partitioning the set of 
all possible solutions to the location-allocation problem 
on the basis of the allocations of the existing facilities to 
the new facilities. For example, one set of solutions could 
be characterized by the assignment of the second and fourth 
existing facility to the second new facility. Hence, all 
possible solutions with allocation schemes having this one 
characteristic would be included in the set.

Any subset of solutions, denoted S, can be partitioned 
into at most n disjoint sets by considering the total number 
of ways a previously unallocated existing facility can enter 
the allocation scheme. (Here again n represents the total 
number of new facilities.) Suppose that in S the allocated 
existing facilities have been assigned to k new facilities 
where k ^ n. An unallocated existing facility is chosen.
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If k = n, then S can be partitioned or separated into n 
subsets S2 f •••f where Sj is characterized by the
assignment of the existing facility to new facility j . On the 
other hand, if k <  n, then s may be partitioned into k + 1 
subsets where Sj, j=l, 2, ..., k is as described above. The 
subset would be the assignment of the existing facility
to a k+lth new facility. This k+lth new facility would 
have only one existing facility allocated to it.

The separation principle is illustrated below in 
Figure 4.1 for the case where m = 4 and n = 3. Each level i 
(i = 1 , ..., m) represents the assignment of existing 
facility i to the new facilities. Each node is then labeled 
by the new facility that the existing facility is assigned 
to. At level i (i = 2, ..., m) all nodes emanating from the 
same node at level i - 1 represent the complete partition 
of their predecessor node. An allocation scheme is devel
oped by choosing a node at the m^^ level, tracing back to 
its predecessor node at the m - 2 level, etc. Even for this 
small problem, eighteen different allocation schemes were 
generated.
Existing 
Facility

1
2
3
4

Figure 4.1. A complete enumeration of the ways 4 existing
facilities can be allocated among 3 new facilities.
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After a node or subset S has been partitioned, a 

lower bound is computed for each partition or succeeding 
node j. This bound is a lower bound on the objective func
tion value that would be produced by any allocation scheme 
containing the allocations that have been made at this node 
j. The lower bound will be a sum of two values. The first 
value is the cost of optimally locating the new facilities 
among the existing facilities that have been allocated; this 
is just a multifacility location problem. The second value 
is just a lower bound on the cost of locating n new facilities 
among the unassigned existing facilities. If the sum of these 
two values is greater than the current upper bound on the 
optimal objective function value for the total L-A problem, 
then further consideration of the node j will be unprofitable. 
The partial allocation scheme it represents would never be 
part of the optimal allocation scheme, thus the node is 
fathomed or no longer considered as a candidate for parti
tioning .

If, on the other hand, the lower bound on node j is 
less than the current upper bound on the optimal objective 
function value, its partial allocation scheme is still a 
promising candidate as the optimal allocation scheme. The 
node is then partitioned and its successor nodes are placed 
under the same scrutiny for fathoming.

When the m^^ level is reached a complete allocation 
scheme has been developed. Objective function values may
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be computed for each node at the level. The node with
the minimal objective function value that is still less than 
the current upper bound on the optimum represents the new 
best allocation scheme, and its objective function value 
becomes the new upper bound on optimal. Otherwise, these 
nodes are fathomed and nothing is changed. If all nodes 
have either been fathomed or partitioned, then the current 
upper bound is taken as the optimal objective function value.

There are two approaches to branch and bound: the
depth approach and the breadth approach or "backtracking" 
and "jumptracking." The difference between the two approaches 
involves the criterion for selecting the node which is to be 
partitioned. The depth approach involves partitioning a 
node at level i. For its successor nodes at level i + 1, 
the lower bounds are computed and fathomed if possible. The 
unfathomed node with the minimal lower bound among these 
successors is chosen as the next node for partitioning.
The other unfathomed nodes remain active. This procedure 
continues through the m^^ level. The predecessor node at the 
m - 2 level is considered. If it has active nodes among 
its successors at the m - 1  level, then another attempt can 
be made to fathom these active nodes with the new upper 
bound. If active nodes still remain, the active successor 
with the minimal lower bound is chosen for partitioning.
If no active nodes remain among the successors, the predecessor 
node at the m - 3 level is considered, and the process repeats.
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The backtracking process terminates when the node at the 
first level has been considered as the predecessor node.

The breadth approach involves partitioning a node, 
computing the lower bounds, fathoming if possible, and then 
just labeling the successor nodes left as "active." The 
next node to be partitioned is chosen as the active node 
with the smallest lower bound among all active nodes in 
the tree. Thus, the selected node may be found at any 
level or may emanate from any node. Similarly, once a node 
at the m^^ node is evaluated and a new upper bound is deter
mined, all active nodes in the tree must be considered for 
fathoming. The next node for partitioning is then chosen 
as the active node with the smallest lower bound. This 
process continues until all nodes have been fathomed or 
separated.

The breadth approach has the advantage of poten
tially considering fewer nodes than the breadth approach 
because the opportunity to fathom is greater. However, 
the breadth approach requires greater storage on the computer 
since virtually all active nodes in the tree must be avail
able at any time. The depth approach requires less storage 
since for any node, only its predecessor or its successor 
nodes need to be considered.

For the location-allocation model a depth approach 
is usually the better choice. Storage restrictions become a 
critical factor when the amount of storage required at each
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node is considered. The information to be stored would 
include information on the allocation of the existing 
facility chosen at this level, the locations of the new 
facilities, and the value of the lower bound. Thus, the 
L-A problem would be characterized as having many nodes 
since each partitioning of a node would produce, in general, 
n new nodes. The number of nodes and the storage require
ment at each node indicate that storage is the crucial 
factor.

Secondly, a subsequent discussion on the lower 
bounding procedure to be used indicates that using the 
breadth approach could practically generate the whole tree 
before a feasible allocation scheme were generated. This 
would happen when the lower bounds on the nodes at level i 
increase significantly for the successor nodes at level i + 1 . 
In a case like this it would be impossible to partition any 
node at level i + 1 until all nodes at level i had been 
partitioned.

4.7 A Branch and Bound Algorithm for the L-A Problem with 
Rectangular Regions and Rectilinear Distance

The preceding section discussed the use of branch 
and bound methods to get the optimal allocation scheme for a 
generalized L-A problem. Notice that the corresponding 
location problems are solved only to calculate lower and 
upper bounds. Thus, in the location-allocation system with 
rectangular regions, a deterministic approximation may perturb
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the lower or the upper bounds higher or lower so that it is 
possible that an optimal allocation scheme is fathomed.

The results of Chapter III indicate this problem is 
more pronounced with the rectilinear distance metric. Thus, 
the branch and bound algorithm will be developed for the 
L-A system with rectangular regions and a rectilinear dis
tance metric.

4.7.1 The Branching Rule
The branching rule is the criterion used to choose 

the unallocated existing facility at each level whose assign
ment will be considered as the basis for making the partitions, 
Any rule may be used. For example, an unallocated existing 
facility could be chosen at random or the i^^ existing 
facility could be chosen as the branching facility at the 
i^^ level. However, an approach based on the properties of 
the problem may be more useful.

The rationale is that it may be best to first 
branch on the existing facilities that are farthest away from 
the current new facilities. These existing facilities will 
be the most troublesome so they are taken care of first.
In this respect the new facilities will tentatively be 
located near the "remote" existing facilities during the 
first few iterations of the algorithm. As the clustered 
existing facilities are branched on, they will be allocated 
to the closest "remote" new facility and pull the location 
of the new facility toward them.
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Kuenne and. Soland (1972) tried two branching rules.

The first was branching on the existing facility whose 
weighted distance to the closest new facility is a maximum.
The second was branching on the existing facility whose weight 
times average distance is maximal. They found the latter 
case to work best.

For this problem where the sum of weighted expected 
distances is to be chosen, the expected distance from an 
existing facility to a new facility should be considered. 
Considering only the minimum distance or maximum distance 
between the existing facility and a new facility would 
disregard the size or variations of the locations contained 
in the existing facility.

The expected distance may be found by computing the 
following expression.

The expected distance between region i and new 
facility j is

b . a .
w. f ^2 r̂ 2

J J (|x.-aj + |y.-b.I) da db. (4.7.1) 
l b .  a. ] ^ ^ ^ ^

^1

where all parameters are defined as in P4.2.2.
This is equivalent to the following expression.

w. f^2 w. 1*^2
J |Xj-a,!da, t i  lYj-bJdb, (4.7.2)

^2 ^1 1 ^ ^2 ^1 1 ^

Each expression in the sum may be computed independently.
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Hence, there is an expected distance with respect to the
x-coordinate and another with respect to the y-coordinate.

Theorem 4.7.1; If x ^ (a. ,a. ) and y  ̂ (b. ,b. ),
1 ^2 ^1 ^2 

then the expected distance from (x,y) to region i defined
by [a. ,a. ] x [b. ,b. ] is equivalent to the rectilinearil ^1 ^2
distance from (x,y) to the midpoint of these intervals
a . +a. b . + b .
( ^1 ^2 ^1 ^2) .

2 2
Proof ; For the x coordinate, there are three cases

to consider.
Case I. If X <L a. ,

^1

(a. -a. )(a. +a. -2x) a. +a.

^2 ^1

Case II. If a. < x < a.
^1 ^2

^i« (a. -x)^ + (a. -x)^
then èi—  {  IX-Si I ^ 2 (a. -a. V----

2 ^1 i^ ^2 ^1

(a. -a. ) (a. +a. -2x) + 2x(x-2a. ) a. + a .
^2 ^1 ^2 ̂ 1   ^ ^2 ^1

2 (a . —a . 5 2
^2 1

-  X

x^-2a.

^2 ^1

Case III. If a. ^ x 
^2



a . + a .
^2 ^1 _ The proof for the y coordinate
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fip (a. -x)2 - (a. -x) ̂
L .  {  ^ 2 Ca." -a:̂ —

2 ^1 ^2 ^1

(a. -a. ) (2x-a. -a. ) (a. +a. )
= --- ^ 2(a. -arr  ~ = ^ -----  ̂— —  • (4.7.5)I 2

Thus, in Cases I and III only is the expected distance 
equivalent to 
is the same.

Theorem 4.7.1 serves two purposes. First, it 
presents simple computational expressions that can be used 
in both applying the branching rule and evaluating the 
objective function. Secondly, it indicates one source of 
deviation between the results of the L-A problem with 
rectangular regions and its deterministic equivalent.

4.7.2 Upper and Lower Bounds

4.7.2.1 Bounds on the Objective Function
When a branch and bound algorithm is initiated on a 

minimization problem, an upper bound on the objective func
tion value should be developed so that it would be possible 
to fathom nodes before the computation of the first objective 
function value associated with an allocation scheme generated 
by the tree. In this case the objective function value 
associated with an arbitrary allocation scheme may serve as 
an upper bound. This upper bound may be improved by using 
a modification of Cooper's alternate location and allocation 
heuristic.
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Consider the arbitrary allocation where existing 

facility i is allocated to new facility j where 
(mod n) if j is not divisible by n

(4.7.6)
otherwise

By this definition existing facility n would be allocated 
to new facility n, but existing facility n + 1  would be 
allocated to new facility 1 .

The location problem for this allocation is solved 
and the objective function value computed. This is an upper 
bound on the optimal solution. The upper bound could be 
tested for improvement by reallocating each existing facility 
to the new facility whose weighted expected distance from 
the former facility is a minimum. After the reallocations 
are made, the location problems are again solved and a 
new objective function value computed. If the new objective 
function is greater than the old objective function value, 
iterations cease. Otherwise, the reallocations start again. 
This heuristic may be iterated until no improvement is made 
or until a convergence criterion is met. The best objective 
function value from this heuristic becomes the upper bound 
on the optimal objective function value.

For a depth approach to branch and bound used to 
minimize an objective function value, a lower bound on the 
optimal is generally not needed. However, new developments 
in branch and bound such as the fictitious bound of Bazaraa 
and Elshafei (1977) require an initial lower bound. The
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fictitious lower bound is defined as

FUB = auB + (1-a) LB (4.7.6)
where; 0 < a ^ 1

UB = the upper bound
LB = the lower bound.

The fictitious lower bound may be used in place of the upper 
bound in order to fathom nodes quicker, thus hastening an 
in-depth tree search. In anticipation of future develop
ments of this sort in branch and bound methods, a lower 
bound on the optimal will be developed.

An upper bound on n, the number of new facilities
to be located is m, the number of existing facilities. If
n = m, then a new facility could be located in each region
to serve only that region. This poses the question of what
is the minimum expected cost of serving a region.

Theorem 4.7.2: The minimum expected cost of serving
w^

region i from a point within i is 7—  (a. -a. +b. -b. ) whereI2 ijL ^2 ^1
region i is defined as [a. ,a. ] x [b. ,b. ].

1 ^2 ^1 ^2
Proof : The expected cost of serving region i from

(x,y) a point within i is
/(a. -x)2+(a. -x)2 (b. -y)^+(b. -y) ̂

+ - \Tb. -b.S I
\ I2 3-2 ^2 ^1

The partial derivatives of this expression are:
-2 (a. -x)-2 (a. -x) 2x-a. -a.

9f ^ ^2 ^1 ^ ^2 ^1
"5x 2 (a. ) a . -a.

2 ^1 ^2 ^1
(4.7.8)
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- 2 (b. -y)-2 (b. -y) 2y-b. -b.
n - ...

12 12 ^1

Setting expressions 4.7.8 and 4.7.9 equal to 0 and solving 
yields;

(a . + a . b . + b . \

which is a minimum. Thus,

(a. +a. b. +b. \

The lower bound may then be found by computing the 
expression:

m
l.b. = Z T. (4.7.10)

i=l ^
Wi

where : T. = %- (a. -a. + b , -b. )
^ ^ 1; ii ^2

4.7.2.2 A Lower Bound for Each Node
Computing a lower bound was discussed in Section

4.6 as a two-part process. The first part was solving the 
location problem for the allocated existing facilities and 
computing the corresponding existing facility. The second 
part involved underestimating the expected cost of locating 
the n new facilities among the unallocated existing facilities 

In order to develop the second expression consider 
two unallocated regions and . Suppose that both are 
to be served by the same new facility X = (x,y). The 
expected cost of serving these two regions is
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f(X) = w^E[|x-a^l+|Y-b^l] + WgEflx-agl+jy-bgl] (4.7.11)
where; (a^,b^) are random variables representing the points

located in region i.
This expression can be considered the sum of the expected 
costs of serving the regions along the x-coordinate and the 
expected cost of serving the regions along the y-coordinate. 
These expressions are independent as indicated below. 

f(x) = w^E[|x-a^|] + WgEflx-agl]
f(y) = w^E[|y-b^|] + WgEfly-bgl] (4.7.12)

Thus, each one-dimensional case may be considered.
Notice that when the x-coordinate is considered 

f(x)% min{w^,W2 }(E[|x-a^|] + Etlx-agll) (4.7.13)
Let â  ̂ and ag assume any values where ^2 consider
the relative position of x. There are two ways to show 
|x-a^| + Ix-agI ^ la^-agl.

Case I. *1 " X < a2
L _ i J 1|x-a^| + 1Ix-Sgl =
^1 X *2

Case II. X < ^1 < *2
1 --- 1— _ _ 1 1|x-a^l + 1Ix-a^l >
X a. a_1 2

Case III. *1 < ^2 < X

L _ ----1— ---1 i + 1Ix-a^l >
&i *2 X

lai-aal

I®1"^2

*1-32

Also, by the triangle inequality
|a^-x^| + Ix-agI > la^-agl (4.7.14)

Since a^ and a^ are random variables, then
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E[|x-a^|] + EfIx-agI] k E[la^-agl] (4.7.15)

Substituting 4.7.15 into 4.7.13, a lower bound is produced. 
f(x) > miniw^/WglEtja^-agl] (4.7.16)
Thus, the expression given in 4.7.16 is an appropriate 

lower bound where Etja^-agl]represents the expected distance 
between regions 1 and 2 along the x-coordinate

^1
E[|a_-a_|] = f   ̂ f   ̂ |u-v|dudv. (4.7.17)

This expression may be evaluated for three cases.
For ease in reading, let a represent a, ; b represent a, ;

1 2̂ 
c represent a, ; and d represent a« (The second interval 

^1 ^2 
a^ is underlined).

Case I. a < c < d < b

(a^+b^) (d-c) - (a+b) (d^-c^) + |-(d^-c^)
= 2(b-a)(d-c) (4.7.18)

Case II. a < c < b < d

E[la^-agl]
(b-c)[(a^+c^)- (a+b)(b+c)]+^(b^-c^)+(d-b)(b-a)(d-c)

= 2 (b-a) (d-c) (4.7.19)

Case III. a < b < c < d

--------2 (b-a) (d-c)----------  (4.7.20)
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Corollary 4.7.1; If the two regions and have

nonoverlapping x intervals, then the expected distance
between the two is just | ^

Proof; This can be proved in two ways. One is to
simplify 4.7.20— the desired result will be obtained.

The other is to consider 4.7.15 and use the inde
pendence of the regions.
ECja^-agj] = IsLag-a^]! = |E[a2]-E[a^]| =

Thus, for any two rectangular regions R^ and R ^ , 
the expression

min{w\,Wj } (E[ | a^-a^ | + |b^-bj | ) . (4.7.21)
can be computed as an underestimate of the expected cost of 
serving these two regions with the same new facility.

Directly applying a result of Cooper (1964), it 
can be shown that a lower bound on locating one new facility 
among s regions is

E Z min(w. ,w. }(E[|a.-a. | + |b.-b.I) (4.7.22)J - j  r j  r j
Thus, the expression 4.7.21 is the building block 

for forming lower bounds. If there are p unallocated exist
ing facilities, then there are ^p(p-l) different realizations 
of expression 4.7.21. Assume that all the expressions are 
placed in ascending order.

Let be the i^^ term in this progression 
where i = 1, ..., %p(p-l). Next consider the expression 
4.7.10 labeled L^. Compute Lj for j = 1, ..., p and arrange 
these expressions in ascending order.
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Let be the term in this progression.
To underestimate the expected cost of allocating n 

new facilities among p existing facilities, the various 
combinations of allocations should be studied. For example, 
if p 1 n, then a new facility could be assigned to each of 
the p existing facilities. An underestimate of this cost 
would be the sum of all p of the r^ terms. This would follow 
since r^ represents a minimum expected cost for serving a 
region from a point in the region.

Another example is the case where p = n + 4. In this 
case, there are five possible combinations; four new facili
ties are allocated two existing facilities, all others are 
allocated one; one new facility is allocated three existing 
facilities, two are allocated two, and the others are allo
cated one; one new facility is allocated four existing facil
ities, one is allocated two, and all others are allocated 
one; two new facilities are allocated three existing facil
ities apiece, and all others are allocated one; and finally 
one new facility is allocated five existing facilities, and 
all others are allocated one.

Table 4.1 displays all lower bounds for these combi
nations using (4.7.22) and the definitions of the q\'s and 
the r%'s for different values of p-n.

It is obvious that as p-n becomes larger than five,
the number of combinations to be considered also becomes
large. Thus, a general lower bound will be used for values
of p-n greater than five.
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TABLE 4.1
LOWER BOUNDS FOR LOCATING N NEW FACILITIES AMONG 

P RECTANGULAR REGIONS

Value of 
P - N Lower Bound

m
0 or less 2 r .

i=l ^
n-1

q, + E r.
 ̂ i=l ^

n— 2 n— 1
min{q,+q„+ E r . (q,+q,+q_)+ E r .}

-L ^ i=l 1 ^ ^ j i=l 1

n—3 n — 2
min{q^+q2+q2+ E r^fq^+^Cqg+qg+q^jf E r^,

1 n-1■̂ (q, +. ..+qg ) + E r . }J J. G i=l 1

n—4 n—3
min{qi+...q^+ E r^ ,q^+q2+Js (q3+q4+q5 ) + _ 2 r^ ,

1=1 1=1

2 n—2 n—2
(q2^« • «̂ q^) q^^• . • ̂ qg)  ̂ ^1  ̂

1=1 1=1

j(q^+...+qio)+.%
1=1

n-5 n-4
mln{q^+. . .+q^+ E r^ ,qj_+q2+q3+%(q^+qg+qg) + _ E r^, 

1=1 1=1
, n—3 n—3

qj^+q2'^'j(q3'^... +qg)  ̂ ^1  ̂ q^^^ ( ̂ 2 *̂ • • • "̂ q-y) ^
n— 2 .

q-j^+^ (q2 ^. . « ^ f% ( q2^q2^9g) "̂ "3 (q^^* « • "^qg)

n— 2 n n—1
+ E r. ,^(q^ + . ..+q^^)+ E r . }
1=1 1 5 1 lb 1
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Theorem 4.7.3; A general lower bound on locating n
p-n

new facilities among p rectangular regions is % Z g.
i=l 1

where is as defined above.
Proof; To prove the Theorem, four cases are con

sidered.
Case I. No new facility has more than two existing 

facilities allocated to it. Here 2n & p. So (p-n) new 
facilities are allocated two existing facilities, and 2n-p 
new facilities are allocated one.

The lower bound is
p-n 2n-p p-n
E g . + E r. > ^ E q..

i=l ^ i=l ^ i=l ^
Case II. No new facility has more than three 

existing facilities allocated to it.
Let k new facilities have three regions allocated 

to each of them. Then p-n-2k new facilities will have no 
more than two regions allocated to them.

A lower bound is
p-n-2k p-n+k p-n+k

2 q. + % 2 q > % E q
i=l i=p-n-2k+l i=l

Since k > 1
p-n+k p-n+1 p-n
h E q. - % 2 q.> % E q

i=l ^ i=l ^ i=l 1

Case III. At least one new facility has more than 
three regions allocated to it.



91
If a new facility has four or more regions allo

cated to it, a lower bound is

gtqi+.'.+gg] = '3[*3i'̂ ‘32'^‘33]+3-[q4+q5+qg]

A new facility with three regions allocated to it has a 
lower bound of

2 [ q i + q 2 + q 3 ] •

A new facility with two regions allocated to it has a lower 
bound of

Si'
Thus, if every two-region new facility is paired with a 
three-region new facility, their combined lower bound is

Si 2'^S2+^3+‘34̂   ̂ 2^Si+q2+93+94]'
This is the same as in the four region new facility. 

Hence, the new facilities with two and three regions, respec
tively, may be paired to create a situation equivalent to 
one new facility with four regions. This may be done 
[2^] times where [•] is the greatest integer function. A
lower bound is

4[^^] p-n
4  ̂ g. > ^ Z qi since p-n is at least 3.
 ̂ i=l ^ ^ i=l

Case IV. All new facilities have more than three 
regions allocated to them.

Obviously p > 4n.
A lower bound for one new facility with at least 4
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regions as computed in Case III is 

4
% E q. 

i=l ^
For all n new facilities, the lower bound is

4n p-n
h Z q. > % Z q . .

i=l ^ i=l 1

p-n
Thus, h Z q. is a general lower bound with the 

i=l ^
property that no considerations of combinations has to be 
made. This lower bound is well-suited for the cases when
p-n is large. These cases will be levels 1,2, ..., m-5
of the tree. At these levels, the possibility of fathoming 
nodes is not as great as the other levels. This is because 
only a few existing facilities have been allocated, and the 
partial objective function value used in computing the lower 
bound will be far from the optimum. A tight lower bound 
would then involve considering all possible combinations 
of the unallocated facilities. To hasten the tree search, 
the general lower bound is used to quickly compute the lower 
bound and move to the next level.

On the other hand, in the last n+5 levels of the
tree enough facilities have been allocated to identify 
unprofitable allocation schemes. Here the tighter lower 
bounds given in Table 4.1 should be used to fathom as many 
nodes as possible.
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4.7.3 The Location-Allocation Branch-and-Bound Algorithm (LABB) 

In this section the complete branch and bound 
algorithm for the location-allocation problem is given.

The input parameters are 
N = number of new facilities 
M = number of existing regions

xl(I) and x 2 (I) = left and right endpoints, respectively,
of region I (R(I)) along x-axis.

yl(I) and y2 (I) = lower and upper endpoints, respectively, 
along y-axis 

w(I) = interaction cost for region I.
The parameters for computing bounds on the optimum 

value of the objective function are: 
z = upper bound on optimum 
£ = lower bound on optimum 

FX = current least upper bound on optimum 
F = objective function value to be compared with Fx
e = stopping criterion for alternate heuristic

(e>0)
The parameters for computing the branching facility

are:
L = current level

= index of branching facility chosen at level L 
IJt = set of indices of unallocated facilities atJLi

level L
AED(I) = vector of average expected distances from region 

I to all other regions
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AX(I) = vector of average distance of region I to the

new facilities that have been currently located
The parameters for creating and fathoming new nodes are ;

KL = number of new nodes to be created at current 
level

NODE = counter for nodes created
ND = node number of the last node created at previous

level
IP(L) = the new facility the branching facility at level 

L was allocated to according to the node that 
was partitioned at level L 

NL = number of new facilities at previous level
XX(J) = current location of new facility J

XLB(I) = lower bound at node I
Q(I) = the i^^ smallest value of

min{w(j),w(k)} E [ ]R(j)-R(k)j] for all j<k 
R(I) = the i^^ smallest value of

,25w(j)[x2(j) - xl(j) + y2(j) - yl(j)]
Step 0. Initialize the input parameters. (Compute upper 

and lower bounds on optimum.)
Step 1. Let FX = 00.
Step 2. Arbitrarily allocate region I to new facility

Step 3. Solve the single facility location problem for
each new facility XX(j), j = 1, n among the
regions allocated to new facility j .
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Step 4. Evaluate F, the objective function value of the L-A 

problem, for the results of Step 3.
Step 5. If FX-F > E , then replace FX with F. Otherwise, 

go to 7.
Step 6 . For 1 = 1 ,  ..., M, compute

k = min{w(I) *E[|XX(j)-R(I) | ].
j

Reallocate region I to new facility k. Go to 3.
Step 7. Let z = FX.

M
Step 8 . Compute z = .25 Z w(I)•[x2(I) - xl(I) + y2(I) - yl(I)]

_  1=1 
Step 9. If ^ = z, stop. Go to 31.
(Initialize for level 1)
Step 10. L = 1.

m
Step 11. For 1 = 1 ,  ..., M, compute AED(I) = Z E [ 1R(I)-R(k)[]

k=l
Step 12. Let jĝ  = max AED(I) . IJ^ = {1,2, ...,M }-
Step 13. Let NODE = 1. Assign region j^ to new facility 1.

Solve the location problem for xx(l). Let NL = 1.
Let IP(1) = 1.

(Advance to next level)
Step 14. Let L = L + 1.
(Compute Branching Facility)

, NL
Step 15. Compute AX (1) = ^  Z E[|r (I) - X X  (II)] for IEIJ]^_^.

11=1
Step 16. Let j^ = max AX.(I) and let = IJ^^^-j^.
(Create New Nodes)
Step 17. Let KL = min(L,N). Let ND = NODE.
Step 18. Create KL new nodes ND+1, ..., ND+KL by allocation 

region to new facility 1, ..., KL, respectively.
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Let NODE = ND + KL.
(Compute Lower Bounds on Nodes)
Step 19. For node I = ND+1, ..., ND+KL, solve the location 

problem for the partial allocation scheme: region
allocated to new facility I-ND; allocated 

to IP(k), k = L-l,L-2, ..., 1. Denote the objec
tive function value LB(I) .

Step 20. Compute the vectors Q(I) and R(I) using regions 
J , J £ I jy .

M-L-N
Step 21. If M-L-N > 5, let Qx = h % Q ( D .

1=1
If M-L-N ^ 5, compute the lower bound for the value
M-L-N as given in Table 3. Denote this value Qx.

Step 22. Let LB(I) = LB(I) + Qx I = ND+1, ..., ND+k.
If LB(I) ^ z, fathom node I.

Step 23. Among the unfathomed nodes in 22, choose I* as the
value of I such that LB(I*) = miiiLB(I) .

I
If all nodes are fathomed, go to 27.

Step 24. Let IP(L) = I*-ND.
Step 25. If L<M, Set NL and XX(j) j = 1, ..., NL equal to

the values found for I* in Step 19 and go to 14. 
Step 26. If L=M, compare LB(I*) to

If LB(I*) < z then z = LB(I*).
Fathom the newly created nodes at level M. 

(Backtracking Procedure)
Step 27. Let L = L-1. If L=l, stop. Go to 31.
Step 28. Consider all nodes I at level L that are unfathomed
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and have not been partitioned such that their
allocation scheme includes allocated to
IP(L-1). If there is a node I such that LB(I)< z,

go to 29. Otherwise go to 27.
Step 29. Choose I* such that LB(I*) = min LB(I) where I

I
are the active nodes identified in 27. Let LL 
denote the new facility j was allocated to at I*.jj
IP(L) = LL. Let NL and XX(j) become the appropriate
values found in Step 19 for I*.

30. Go to Step 14.
31. The optimal allocation scheme is the one associated

with z, the optimal objective function value.

4.7.4 Verification of the Algorithm
The algorithm of Section 4.7.3, LABB, was coded in

Fortran IV. The code was verified using Problem A.3 in Appendix
A. A graph of this problem is presented in Figure 4.2.

Figure 4.2. A graph of Problem A.3.
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Both manual computation and the code produced the 

optimal allocation scheme to be: serves regions 1 and
4 and x^ serves regions 2, 3, and 5. The two new facilities 
x̂ . and Xg were located at (2.5,9) and (9.5,1.5), respectively. 
The optimal objective function value was 18.5.

The same problem with a centroid approximation 
produced a different allocation scheme. It was xl serves 
regions 1, 2 and 4 and x2 serves regions 3 and 5.

The new facilities were located at the points (4,8.5) 
and (9.5,1.5), the centroids of regions 4 and 3, respectively. 
These locations used in the objective function involving the 
rectangular regions produced a value of 37, a 100 per cent 
increase over the optimal locations.

Thus, in a simple test example the algorithm was 
verified. The impact of the sensitivity of the rectilinear 
distance metric to the centroid approach on the location- 
allocation problem is serious; it has produced a non-optimal 
allocation scheme and inferior locations for the new facili
ties. As in the multifacility location problem, the centroid 
approach does not even offer a good approximation to the 
solution of the location-allocation model.

4.7.5 Computational Results
The computational results given in this section 

represent experience with the branch and bound algorithm (LABB) 
for rectangular regions using a rectilinear distance metric.
The problems were randomly generated from uniform distributions
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All w (I)'s were generated from a uniform [0,10] distribution. 
The xl(I)'s, x2(I)'s , yl(I)'s , and y2(I)'s were each gen
erated from a uniform [0,100] distribution. All problems 
were run on an IBM 370/158J computer. The results are sum
marized in Table 4.2.

Not surprisingly, the required computational times 
reflects the number of nodes created which, in turn, is a 
function of the size of the problem and the number of active 
nodes.

As depicted in Figure 4.3 for m > 11, the case n = 2 
is the critical case. Table 4.2 also affirms that for the 
larger values of m, it is faster to locate three or four 
new facilities than it is to locate two as was expected.

These results are compared to the results of Ostresh 
in Ruston et al. (1973). Using a branch and bound procedure 
for the deterministic Euclidean distance problem, the limits 
on the problems he could solve with an IBM 360/65 were: 

n = 2 m = 23 CPU time = 23.26 sec.
n = 3 m = 17 CPU time = 78.01 sec.
n = 4 m = 11 CPU time = 10.28 sec.

Kuenne and Soland (1972) using a similar branch and 
bound algorithm worked problems of size n = 4 m = 15 in aver
age times of 82.7 seconds and 54.2 seconds for problems with 
random and unit weights, respectively, on an IBM 360/91.

Cooper (1967) tested his heuristics by working 
problems of the size n = 3 m = 40 in times ranging from



N=4

100 
TABLE 4.2

COMPUTATIONAL RESULTS FOR LOCATION-ALLOUATION 
PROBLEMS WHERE N = 2, 3, AND 4

M N o . of 
Problems

CPU Time 
(sec.)

N o . of 
Nodes 

Created
Max. N o . of 

Active 
Nodes

Optimal
Node

N=2
5 2 .585 11 1 10
6 3 1.01 27.3 2.7 19.7
7 4 1.00 25.75 3.5 20
9 3 1.99 94.33 4.67 79

11 3 5.37 240.3 8 119
15 2 8.55 330 11 219
20 2 11.33 332 18 39
25 2 19.08 349 23 69
30 1 33.02 517 28 59
35 1 51.15 541 33 69

N=3
6 3 1.2 50 3.3 32
7 3 1.54 86 5.33 68
9 3 3.76 232 10.33 59

11 2 4.51 272 14 211.5
15 2 7.28 412.5 23 188
20 3 11.2 411 35.7 62.3
25 2 15.44 - 45 72
30 2 26.37 564 55 87
35 1 37.23 543 65 351

7 3 2.73 129.33 7.3 87.33
9 3 3.01 223 11.3 118

11 2 4.8 316 23 38
15 2 6.73 416 36 54
20 4 11.77 586 48 74
25 1 13.26 458 66 94
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CPU
(sec)

20 ..

10

10 20

Number of Existing Regions

... n = 3
 ; n = 4

Figure 4.3. A plot of computational times for selected 
problems.
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two minutes to 4.5 minutes on an IBM 7072.
The significance of the results is that location- 

allocation problems larger than those that have been solved 
before can be optimally solved in faster computational 
times. For the problems worked no computational time was 
over a minute. Further computational results of the algorithm 
will be given in the next section.

Another computational aspect is the performance of 
the lower bound. In each of the cases of m for n = 2, the 
optimal allocation was examined to determine what percentage 
of optimum was achieved by the lower bound at each level.
In cases where m was large, the general lower bound was used 
at the first m - 6 levels. The lower bound improved rapidly 
from level to level; a typical improvement was ten per cent 
of optimum. Usually at the m - 6^^ level, the lower bound 
was within 85-9 0 percent of optimum. Thus, the switch to 
the combinatorial lower bounds for the last five levels 
represented less improvement from level to level, but con
vergence occurred rapidly.

On the smaller problems where the combinatorial 
lower bounds were used through most of the algorithm, the 
lower bounds increased erratically from level to level, and 
the convergence of the lower bound during the last several 
levels was not as marked.

To illustrate these results the average percentage 
of optimum was computed at levels 2-7 for problems where
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m = 7, and the same was done for all levels where m = 15. 
The results are plotted in Figure 4.4. In the case m = 15, 
the level where the combinatorial lower bound was first 
applied is circled.

Per Cent of Optimum
100

80

60

40

20

m = 15

Level

Figure 4.4. A  plot of the lower bound at each level as a 
per cent of optimum.
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4 .8 Impact of the LABB Algorithm for Other Location Problems 
The LABB algorithm is significant not 

only in the respect that it optimally solves the L-A problem 
for rectangular regions with rectilinear distance but also 
in its impact on similar deterministic problems and on the 
L-A problem with Euclidean distance. In this section the 
various impacts will be discussed.

4.8.1 The Impact on the Deterministic Version of the Problem
In considering the deterministic version of the

L-A problem as formulated in Chapter I, it is immediately
obvious that a branch and bound algorithm similar to
the LABB could be developed. "'However, the deterministic
case is just the limiting case of the probabilistic case as
the areas of the rectangular regions become arbitrarily small.
Thus, a new algorithm need not be developed; the same LABB
algorithm, with minor modifications to the code, will handle
the case of the rectangular region with area e > 0 .

Computational aspects of this adaptation of the
algorithm were developed for three sets of randomly generated

2 2problems. Three values of e were assumed— (.025) , (.01) ,
2and (.0001) for each problem of size (m,n). For all 

problems n was assumed to be two; this was because the results 
for the large rectangular regions indicated that the value 
n = 2 was the critical value of n.

Not surprisingly, the size of the tree search, 
or the number of nodes created was virtually the same for
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problems with small regions as opposed to problems with 
large regions. The computational times were different as 

displayed in Figure 4.5.

CPU
(sec)

10

Number of Existing Regions

small regions
  large regions
.... Euclidean distances

Figure 4.5. A plot of average computational times for a
two facility L-A problem under three different 
assumptions.
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The results for all three sets of problems were 

averaged, and some are presented below in Table 4.3 in 
comparison with the results of Love and Morris (1975) 
which were discussed in Section 4.3. Their results also 
reflect an average of randomly generated deterministic 
prpblems; they used a Univac 1110 computer.

TABLE 4.3
A COMPARISON OF COMPUTATIONAL TIMES (IN SECONDS) FOR TWO 

EXACT ALGORITHMS IN SOLVING A TWO FACILITY
L-A PROBLEM

M = 14 15 16 18 20 25 30 35

LABB .. . . ' 4.29 9.6 10.9 17.64 28.09 44.5
Love and 
Morris 3.96 17.4 60 77 577 1995 5483

These results indicate a rather dramatic difference 
in results for values of m > 18. The time requirement for 
the Love and Morris algorithm is an infeasible 1% hours com
pared to a time of 44 seconds for the branch and bound method 
presented here. Thus, LABB. algorithm performs better compu- . 
tationally than other existing exact algorithms. ■  ̂ ■

Figure 4.5 displays the computational times for the 
small region problems versus the corresponding times for the 
large region problems. The computational results for the 
Kuenne-Soland algorithm for a deterministic problem with
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Euclidean distances as programmed in the monograph of Rushton 
et al. (1973) are also presented.

An obvious result is that the algorithm is faster for 
small regions or deterministic problems than it is for large 
regions. This is also borne out for the cases of m = 25,
30, and 35 where the algorithm is about six seconds faster 
for small regions.

Thus, the LABB algorithm is computationally more 

efficient compared to the other existing exact algorithm 

in the deterministic case with rectilinear distance.

4.8.2 The Impact on Euclidean Distance L-A Problems
In Chapter II the relative insensitivities of the 

probabilistic location problem with Euclidean distance to 
the centroid approach were discussed. This result may be 
capitalized on in reference to the location-allocation 
problem for rectangular regions using a Euclidean metric.
The same basic algorithm as in Section 4.7 may be used; 
however, the location problems may be solved with the centroid 
approach. Naturally, the objective function of the location 
problems would be evaluated with respect to the rectangular 
regions.

Kuenne and Soland who developed the branch and 
bound method for Euclidean distance deterministic problems 
noticed this insensitivity and used tentative new facility 
locations at several levels in order to avoid having to 
solve location problems at each node. The optimal allocation
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scheme was unaffected by the tentative new facility locations. 
Thus, it is reasonable to expect that the probabilistic problem 
would behave similarly to near-optimal facility locations.

It would be expected that the computational results 
for this modified branch and bound algorithm would be simi
lar to the results for the deterministic problem based on 
the results of the probabilistic and deterministic rectilinear 
distance problems.

It has already been observed that the size of the 
largest deterministic Euclidean distance L-A problems that 
have been solved is far less than the sizes of the largest 
probabilistic rectilinear problems. The large computational 
times for the former problem are the prohibitive factor.
The large computational times are the result of larger 
tree searches necessary to solve the Euclidean distance 
problem than that necessary to solve the rectilinear problem.

This phenomenon is best illustrated in the comparison 
of the results of branch and bound algorithm for rectilinear 
distance with the results of Kuenne and Soland (1972) in 
solving problems 1-8 presented in Cooper (1963). These 
problems are standards for testing location-allocation 
problems. Cooper tested his heuristics on these problems 
although he never reported any computational times. Others 
like Love and Morris (1975) also solved them. Some have 
reported their results in numbers of iterations, but Love 
and Morris did not do this nor did they report any times;
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hence, a direct comparison is impossible.

Table 4.4 presents a comparison of the average 
results of the LABB algorithm for rectilinear.distance with 
the results of Kuenne and Soland for Euclidean distances for 
the Cooper problems with unit weights.

TABLE 4.4
A COMPARISON BETWEEN THE RESULTS OF BRANCH AND BOUND 

ALGORITHMS FOR EUCLIDEAN AND RECTILINEAR 
DISTANCE METRICS

Metric CPU Time 
(sec.)

No. of Nodes 
Created

Max. N o . of 
Active Nodes

Euclidean .5 28.3 6.1

Rectilinear .51 19 4.1

Table 4.4 indicates that although the computational 
times are virtually the same, the tree search for the recti
linear metric is more efficient. As the Cooper problems are 
relatively small— m = 7, n = 2, the larger tree search is 
probably the critical factor for rendering the Euclidean 
problem relatively unsolvable in relation to the rectilinear 
problem as m and n become larger.

In order to help reduce the tree search, a large 
Euclidean distance L-A problem could first be solved using 
the rectilinear metric. Since rectilinear distance is an 
upper bound on Euclidean distance, the optimal objective 
function value from the rectilinear distance problem could
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be used as the initial upper bound on optimal for the 

Euclidean distance problem.

4.8.3 The Impact for Other Versions of the L-A Problem
The rectilinear branch and bound algorithm for the 

L-A problem has already shown itself to be versatile in 
several different situations. In this section other adapta
tions of the problem will be discussed.

4.8 .3.1 Constrained Problems
A L-A problem may have constraints on the allocation 

scheme, on the locations of the new facilities, or on both. 
Constraints on the allocation scheme may include restric
tions on the existing facilities that may be allocated to 
a new facility such as restrictions on the number of facili
ties allocated to a new facility or restrictions. In these 
cases, the constraints can be used as an additional test 
at each node as a basis for fathoming the node.

Constraints on the locations of the new facilities 
may be handled in the same manner that Love (1972) handled 
them. Any efficient nonlinear programming algorithm may be 
used to incorporate the constraints into the objective 
function. Thus, the objective function value of any 
allocation scheme violating the constraints will include a 
large penalty to warrant it fathomable.



Ill
4.8 .3.2 Interfacility Weights among New Facilities 

Although the general L-A problem assumes that all
interfacility weights between new facilities, the Vj^'s, 
are,zero, a problem with positive v., could be incor- 
porated into the LABB algorithm. Since locations of new 
facilities may vary widely from level to level, considera
tion of the Vjĵ  terms should be deferred until the m^^ 
level, where the generated allocation scheme for the m 
facilities may be used to solve the multifacility location 
problem as described in Chapter III. The objective function 
value of the multifacility location problem is then tested 
against z, the current upper bound. Using the interfacility 
weight at a level other than the m^^ may result in the fathom
ing of a potentially optimal allocation on the basis of 
tentative locations. Thus, at these levels the case v^^ = 0, 
for all j and k, should be used as a lower bound on the case
Vj^ > 0.

4.8 .3.3 Other Distributions
The branch and bound methods may be applied to location- 

allocation problems with distributions on existing facilities 
other than uniform. Since the branch and bound methods gen
erate optimal allocation schemes no matter what type of 
objective function is used, the only difference would be the 
way the location problems would be solved at each node.
Solution techniques were developed by Aly (1975) for 
existing facilities with a bivariate normal distribution in
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both the cases of a Euclidean and a rectilinear metric.
Katz and Cooper (1976) and Wesolowsky (1977) developed 
solution techniques for the bivariate symmetric exponential 
distribution for the cases of Euclidean distance and recti
linear distance, respectively. It would be expected that 
the computational times to solve these related problems 
would be similar to the times for the uniform distribution 
with adjustments made on the basis of the speed of the 
individual solution technique.

4.9 Summary
In this chapter the location-allocation problem for 

existing facilities uniformly distributed over rectangular 
regions was considered. Previous works dealing with L-A 
systems were discussed, and the properties of the problem 
were developed. These results indicated that developing the 
optimal allocation scheme was the most important step in 
optimally solving the problem.

Because the number of possible allocations is so 
large, heuristic algorithms have been a common solution 
technique. The heuristics indicated that there was often 
a tradeoff between computational efficiency and near- 
otpimality. Heuristic algorithms locate local minima which 
.often deviate significantly from global algorithms.

In order to implicitly enumerate all possible 
algorithms, a branch and bound algorithm was developed.
It was initially developed for the rectilinear distance
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metric because the location problem under this metric is 
very sensitive to the assumption of rectangular regions.
An example problem was solved to illustrate this sensitivity.

Computational results indicated that the algorithm 
was faster than heuristics and could solve problems larger 
than those that had been solved by other branch and bound 
algorithms. The algorithm proved its versatility by solving 
the deterministic problem with minimal modification. Compu
tational results were reported and compared to other 
algorithms. The application of this algorithm to the 
Euclidean distance metric was discussed as both a solution 
technique and an upper bound. Applications to other location 
problems were also discussed.



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS

Several conclusions can be drawn from this research 
effort regarding the consideration of new solution techniques 
for location problems. The following conclusions can be made:

1) Probabilistic formulations of location problems 
with the Euclidean metric were less sensitive to 
solution by the centroid approach than correspond
ing formulations with rectilinear metric.

In probabilistic formulations of the multifacility 
location problem, the centroid approach to solution produced 
objective function values that were near-optimal. The 
centroid approach serves as a heuristic algorithm with less 
computational burden than special purpose algorithms devel
oped for a certain formulation. The rectilinear metric was 
too sensitive to rely on the deterministic approach, and it 
was necessary to develop a special purpose algorithm.

2) The multifacility location problemfe objective 
function is convex but not differentiable.
Problems of this type are amenable to gradient- 
free nonlinear search methods.

114
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In the case of the multifacility location problem 
with rectilinear metric, the direct search method, a heuristic 
algorithm was computationally superior to a special purpose 
exact algorithm.

3) The optimal solution of the generalized location- 
allocation problem can be found only by an enumera
tion of all possible allocation schemes.

Heuristic algorithms could produce only a local 
minimum as a solution to the L-A problem, but could make 
no guarantees as far as percentage within optimality.
Implicit enumeration procedures such as LABB produce 
optimal solutions with reasonable computational effort.

4) The branch and bound approach is versatile in 
that it may be used for any probability distribu
tion, either metric, and deterministic formulations.

LABB, which originally was developed to solve the L-A 
problem among rectangular regions with a rectilinear metric, 
proved itself applicable to the deterministic formulations 
of the problem. Other versions of the L-A problem may also 
be solved with LABB.

Hopefully these conclusions may serve as a model for 
future developments in the area of location systems. As the 
various bibliographies indicate, the literature pertaining 
to location theory has grown rapidly; only a systematic 
approach to the location problem will provide a framework 
to evaluate future works.



116
Recommendations for further research in facility 

location among rectangular regions would be:
1) Development of a solution technique for the minimax 

location problem among rectangular distances.
2) Development of a solution technique for the location- 

allocation problem under the minimax criterion.
3) Development of a systematic method of sensitivity 

analysis for location problems.
4) Computational experience for the various adaptations 

of the branch and bound model considered in Chapter 
IV.

5) Considering the probabilistic formulations under 
dynamic location assumptions with both finite and 
infinite time horizons.
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APPENDIX A 

DATA FOR EXAMPLE PROBLEMS

Problem A.l
Single Facility Location— Five Existing Facilities 

Rectangular
Facility _________Region__________  Centroid Weight

1 [5.0,7.5] X [7.5,10.0] (6.25,8.75) 1

2 [10.0,14.0] X  [5.0,7.5] (12,6.25) 2

3 [16.0,18.5] X  [3.5,7.5] (17.25,5.5) 3
4 [12.5,15.0] X  [0.5,3.5] (13.75,2) 4
5 [7.5,11.0] :X  [1.0,3.5] (9 .25,2.25) 5

The constrained problem includes the constraints:
15 - X - y > 0 
30 - 3x - y > 0 
X ,  y k 0

where (x,y) is the new facility.

Problem A.2
Two Facility Location— Three Random Existing Facilities 

 ̂  ̂ i. 1 2  3
3 8 15 E[w.^] = j = 1 f2

x^ 2 5 4 ] 2 I 4 5
^y^ 4 7 2 E[Vi2 ]= 3

2 5 4
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Problem A.3
Location-Allocation Problem— Two New Facilities to be 
Located among Five Rectangular Regions 

Rectangular
Facility Region_______ Centroid Weight

1 [1,2] X  [9,10] (1.5,9.5) 2
2 [4,7] X  [3,5] (6.5,4) 1
3 [9,10] X  [1,2] (9.5,1.5) 2
4 [3,5] X  [8,9] (4,8.5) 2
5 8,9 X  4,7 (8.5,6.5) 1


