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PREFACE

The analysis of continuocus structures of variable moment of inertia
by moment distributiop or slope deflection equations is a laborious pro-
cess. The carry-over moment prodedure (1) has certain advantages over
these two methods in that no solutions of simultaneous equations are
required and no distribution of moments is necessary. Analysis by this
method, however;, requires the evaluation of certain constants that are
not readily available in existing tables.

In thié thesis mathematical expressions and a computer program are
developed to evaluate constants for beams with parabolic haunches.

The author wishes to express his indebtedness to Professor J. J.
Tuma for his valuable guidance and assistance in the preparation of this
thesis and for acting as the writer's major adviser. Acknowlsdgment is
also due Professor William Granet for making the facilities of the Okla-
homa State University Computing Center available; the staff of the School
of Civil Engineering for their aid and instruction during the writer's
years of graduate study.

The author wishes to thank Mr., J. D. Cobb, Mr. C. O, Heller, and
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CHAPTER I
DEFINITION OF BEAM CONSTANTS

1. General.

The analysis of continuous beams by carry-over moments requires the
evaluation of certain constants which are defined as either angular func-
tions or moment functions of a simple beam. An isclated span of a con-
tinuous beém of variable cross—section is considered. The location of

the cross-section is given by the ordinates x and x' (Fig. 1-1).

® | ®

Fig. 1-1.—1Isolated Span of Continuous Beam.

//
2. Angular Functions.
(a) Angular Flexibilities. The angular flexibility is the end slope
of a simple beam due to-a unit couple applied at that end. For the given

beam (Fig. 1-2)

(1-1a)




Lo
_ 1 xV dx
Fpp~ 2 BT . (1-1b)
0 X

{b) Carry-Over Values. The carry-over value is the end slope of a

simple beam due to a unit couple applied at the far end (Fig., 1-2).

L
o _1 dx
G = Gyp = Gy~ “’2‘] 1 ° (1-2)
L o X
(®) | - ®
M = 1/3 M=-1 S
) ( ==
L L
Cap ' Fpa Frp Gpa

Fig. 1-2.—Angular Beam Functions.

Substituting the identity

x'=- L ~-x

and rearranging Eqs. (1-1b, 2) gives

L
1 xdx
G=1 BT, ~ "ma (1-3)
0
L .
- ax
Fpp = EL~ 26 - Fpa . (1-4)



(e¢) Angulsr Load Functions. The angular load functions are the end
slopes of a simple beam due to applied transverse ‘iloadsu
Live Load. If a utit load is applied to the beam (Fig. 1-3), the

angular load functions are

(1~5)

(1-6)
Loaded
Beam
A , A
L
Elastic
\\\—/—/  burve
(LL) | ~(LL)
TiB " BA

Fig. 1~3.—Angular Live Load Functions.

Load. If a uniform load of intensity w is applied to the

beam (Fig. 1-4), the angular load functions are

L 2 L
- W dx W x-dx -
T éﬁ” - 2| TEL_"aL EI (1-7a)
0 0
L rL,
(UL) _ wL xdx W x~dx (UL)
"B T 2 EI_ 2 BT~ TRy (1-7b)



® ®

W
'y 7 ¥ i .
- Loaded
Beam
/ \
L
Elastic
\\/ - Curve
~(UL) ~(UL)
AB - BA
Fig° 1=/ ,—Angular Uniform load Functions.
In terms of Egs. (1-la,2) Egs. (1-7a,7b) become
L 5~
S owlf v | P (1-8)
TBA "2 ‘BAT 2L EI, g
0
T(UL) = WL2 G - 'T(UL) (1-9)
AB 2 BA °

Haunch Loads. The angular load functions due to the dead load of

the right haunch (Fig. 1-5) are

L ,
- Lo .
(L) - S S el (1-10a)
ML :
H(HL)__ [x~L(éEBI]4de _,TéiL)o (1-10b)
12(BL) L(1-g) X |

where
p = The maximum intemnsity of the haunch load as shown in

Fig. (1-5).



Loaded

q,— I\A Beam

LA _
L Lo
Elastic
Curve
T,(HL) (HL)
AB ‘ BA
Fig., 1~5.-—Angular Haunch Load Functions.
In terms of Egs. (1-la,3), Egs. (1-10a,b) become
2:2 L 4,
LAHL) _ 2 L B (x~L(1-8)] *xdx
= Foy = (1-11)
TBA BA T Toe213 EL_
L{1-B)
2R L ; ]4
(HL) _ p8°L . p x~(1-8)] *xdx (HL)
TAB - 12 (G + FBA) il o - TBA 0(1_12)

2.2 El
L X
L 1(1-8)
If the beam is symmetrical with two haunches of length LB, Egs.

(1-11,12) become

22 [* o L 4
TéEL) R P Lattis))
- 0 Ix 1261 L(1-g)

(1-13)

Noting that for the symmetrical beam

Fap~ Tpa

and writing Eq. (1-13) in terms of Eq. (1-4)

A(HL) = (BL) _ p@sz

L
(x-L(1-B)] bax

=. (Fppt G) -

TBA AB AB 12521,

T (1-14)
L(1-B)




More complete derivations of Egs. (1-1) to (1-14) may be found in
(2). The apparent difference in the limits of integration for Egs.
(1-10a) to (1-14) in this work and the reference work is due to the

selection of different reference axes.



CHAPTER II

INTEGRAL FUNCTIONS

1. Genersl,
The expressions for angular functions in Chapter 1 contain the re-

curring integrals

~L
k
X dx (2-1)
IX
Jo
™ In
k
xdx (2-2)
IX
JO

The solutions of integrals (2-1,2) may be greatly facilitated by
relocating the reference axis and expressing the integrals in terms of
integral functions R, Q, Xkr’ and qu° The angular functions may then be
expressed in terms of the integral functions as coefficients.

2. Integral Functions - Constant Depth.
A typical haunched beam'is considered Fig. (2-1). The cross—section

of the beam is constant over the length L. The moment of inertia

Ix= Ip= 15 bhy {2-3)
where

constant width

o
I

hy= reference depth .



The location of the cross—-section is given by

x = La + t, LY (24,)

in wﬁich t, varies between the limits

A FAN
tXL7’

La Ly

L

Fig, 2-1.—Typical Haunched Beam .

In terms of Egs. (2-3,4) the integral (2-1) for constant cross-

section becomes

ML(a+7) gkl 1 .
T | (athe) ity
Le - X 0 o
(2-5)
_
IO kr

If the upper limit is x = Ln such that the corresponding upper limit

x= M = n;;a"“ s (2-6)

integral (2-2) becomes in terms of Egs. (2-3,4,6)

Ln M
k k+1
x dx - L (a+tx7)k7dt’x
Ix IO
La 0
(2-7)
k+1
:,L____ X!
I kn °



Egs. (2=-5,7) will be evaluated in Chapters 3, 4, and 5 for values
k=0, 1, 2, 3

in terms of the following integral functions and their equivalents.

™1
Ry = | dtg=1
< 0
™1
- 1
Ry = | tydty= 3
0
™1
_ 2 _ 1
R2 = tx dtx— 3
0
M1
- 3 1
Ry = ty Aty = (2-8)
Jo
Y
Ron = Aty = M
0
Ryp = | todb,= o
In ~ XVxT D
w0
,L(
_ 2. K
Ron = | tydbg =3
0

3. JIntegral Functions - Parabolic Haunch.

A typical héiunch- of length 1B is ‘considered (Fig. 2-2). The depth
of haunch varies as a parabola-of second degree and its depth v“at support
B is

hh: who
The location of the cross-section is given by.

x = Lagtz = Lajtt LB | (2-9).
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in which tz varies between the limits

© @ ® 0

)
| e
-7'h0
Y
/ ! hih: who
L F

Fig., 2-2.—Typical Haunched Beam.

The depth of the cross-section at x is

hx:: hZ = hOTZ ’ . (2-10)
where TZ is the parabolic function

- 2
TZ =1 +<ntz o (2-11)

From Eq. (2-10) the moment of inertia at x is

_ _ 3
IX— IZ- IOTZ . (2=12)

In terms of Egs. (2-9,13) the integral (2-1) for the parabolic haunch

is
L{a+R)- 1 k
81 Fax _ el (ag+t, p) “Bdt,
I I ‘ 3
La, x 0 Jo I,
k+1
= —I; qu . (2-13)

If the upper limit x = In is such that the corresponding upper limit

ey ‘
t, =M< TR , (2-14)




11
integral (2-2) becomes in terms of Egs. (2-9,12,14)
LIn
el | M1 (apre p)pat,
I, I 3
la * ° Jo T, (2-15)
kt+l
=y, .
0 n

The following algebraic equivalents are introduced for the solution
of Egs. (2-13,15).

B = 1 B,= -———El———
T4’ W1 *)?
C = —-1——-— | C '— ____,;11'____.
8(1tw) n 8(1+u452) (2-16a)
D= i%ijrlﬁT ,DnzgiiTwr;fﬁﬁ;
1
Lg= 5 Log (ltw)

With notations (2-16a) Egs. (2-13,15) will be evaluated in Chapters

3y 4, and 5 in terms of the following integral functions and their equi-
valents.,

Q= Atz _ B+ 3C + 3D
0 7 3 .
0] %
Q= bad Z2- B+ 20
0 -z
(2-16b)
MLy 24
Q= —5——55-:2%(-3 + C + D)
T
YO Z
™1
3 3
\Jo T
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M

o 1 dt §

Qn = T3 = By+3C,+ 3Dy
U0 I

~ o
1 tydt,

@n = 3= H1(By + 2Cp) . (2-16b)
Jo . (Cont,)
P eta, -

Qon = 3~ G(=Bp+ Cy + Dy)

0 Iy

Expressed in terms of tz and TZ, the integrals contained in the

expressions for haunch load angular functions (Eqs. 1-11,12,13,14) are

LB 1 5 4
zAdz _&5 B tg dt,
I T I 3
2 0
0 0 Tz (2-17)
= ﬁ X
- Tp Tha
B o4(lay + a)az g%t ey + b Rt
I, o3
0 Tz (2-18)
6

With notations (2-16a,b) Egs. (2-17,19) will be evaluated in Chap-

ters 3, 4, and 5 in terms of the following integral functions and alge-

braic equivalents.

_ ! tZAdtz_ 1
z (2-19)
1.5 '
t,7dt
N N
Q5 T3 wB(Lg 200 Q3 Ql) ©
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4. Integral Substitution And Numerical Evaluation.

Substituting the lower limits
tx,z2= 0
into Eqs. (2-8,16a) reduces all expressions to zero. Hence, Egs. (2-8,
16b,19) need be evaluated only at the upper limit to obtain the desired

solutions.

The integrals (2-1,2) will be replaced by the integral functions

L#m-

208 = Xk
. o
(2-20)

In
o xfax _y
I, kn

0
in which the symbpls Xy, Xy, are the sum of the X-functions as indicated
by the limits.
| The algebraic expressions for R-functions (Eqs, 2-8) and Q-functions
(Egs. 2-16b) will be evaluated numerically on the IBM 650 Electronic Com-
puter. From these values, the numerical solutions for the X~functions
(Eqs. 2=-20) and finally the angular function coefficients to be derived

in Chapters 4 and 5 will be obtained.



CHAPTER III
ANGULAR COEFFICIENTS - BEAMS WITH ONE HAUNCH

1. General.
A beam of length L with one parabolic haunch is considered Fig.
(3=1). The beam is of constant depth over the length L& and the ref-

erence moment of inertia is Eq. (2-3)

— 41,3 -
IO‘_ 12bho . (3-1)

The length of the haunch is LS and the moment of inertia at any cross-

section within the haunch is Eq. (2-11)

.= IpT,” & (3-2)
®) ®
]—7Fh
.+ 0
9
La LB
L

Pig. 3=-1,—Beam With One Haunch.

2. Integral Functions_zkr (x = 0—>1Lg).

The location of the cross-section is given by (Fig. 3-2)

X = FKLQ 0

14



X . x!
_\ why
A—r
tha
La LB
L
Fig. 3-2,—Beam With One Haunch For x = 0—=L«.
Substituting
a=20
into Egs. (2-5,7) gives
1
_ k4l k
Xkr_ Q ‘bx dat
0
u
1= o ¢ Kay
kn X X
0
In terms of functions R, Egs. (2=7; 3-4,5) are
. 1
XOr: (04 “ dtv = aRO
0
m1 N
- 2 .2 2 - 2
fHr= «a bxdty= a "Ry X'n= « txdty= @ Ryp
Jo Jo
~1 o
- 3 214 _ 3 — 2, - 3
Lip= « ty Tty = « R2 Xion= « by dty= a”Rop
0

15

(3-5)

(3-6)
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1
- 4 3 4y (3-6)
X, = t -dt_= « o
3r~ & X X 3 (Cont.)
o)
If the upper limit x = Ln (Egs. 2-6,7) is such that
0< n<a,
with notation (2-20)
— ] -
an_ X kn ° (3-7)
3, Integral Functions ékq (x=La=1).
The location of the cross-section is given by (Fig. 3-3)
x = La+ t LB . (3-8)
® ®
X x!
l il
_ i
\Z—m_who
tZLB
Lo LB
L
Fig. 3=-3.—Beam With One Haunch For x = Loa-—=L.
Substituting
a= a= 1-8 (3-9)
into Egs. (2-12,13) yields
b a-s1-t,)] Fat
X, = 2 2 (3-10)
kq 7 3 '
0 Z
M1 _+ 3k
X0 - [l B(l tz):\ Bdtz . (3-11)
kn T 3

o) 7
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The bracketed terms in Eqs. (3-10,11) may be replaced by the iden-
tities
z:1-5(1-tz)

O:

Z 1

2l= 3 (3-12)

2°= B%(1 - £ )% + 22 - 1

2= g1 -4)7+ 377 - 32+ 1 .
Thus, each succeeding power of Z is written in terms bf preceeding
powers.

Expressed in terms of Q functions (Eqs. 2-18) and with notations
(3-12) Egs. (3-10,11) are

1l 9
. = ZBdtZ_B
0q : 7 3 - QO
0 ]
"l 3
— Z‘Bdtz_ 2
Xq = P L Tl U
JO O Tzo
| (3-13)
~ Z°pat, 5
X2q— 3 -B(QO-2Q1+Q2)+2X1q—XOq
<0 A
1.3
X, = ZBdtZ:BZ’(-Q +3Q, - 3Q,+ Q) + 3, -3% +X
0 2

The qu functions for uniform and dead loads (Egs. 2-17,18) ex-

pressed in terms of notations (2-19; 3-8) are

"Ll 5. 4,
X = Bty Aty - 5Q
4q T3 PN
JO z
(3-14)
"1l 5 4
_ B t, Zdtz__ 6 _
z
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Similarly as for functions X

kq
o 3 =B%n
T
JO z
. 1zgat, s |
In = 3= B Q- @) + X} (3-15)
uJO 1, : ‘
My 2
1 z°pdt
X34 = T?z ’(Qon - 2Q1n + Q) + 2814 - X3h -
0 Z.

If the upper limit x = Ln (Egs. 2-14,15) is such that
a<n< 1,

X~ Xt X . (3-16)

4. Angular Functions -~ Coefficients.
The angular function coefficients are introduced as noted., With
notations (2-5,7,13,15) the angular beam functions become:

(a) Angular Flexibility, EBAQEQ. 1-1a).
. .

po= L | Xax_ Ly
BAT "2 EI_ ~ EI, "2
L' Jg X 0
(3-17)
L
= == f
EI, "BA
hence,
fo.o= X+ X, . (3-18)

BA 2r 29

(b) Angular Carry Over Value, G (Eq. 1-3).

L

- 1 xdx _ L
G =1 EQ-FM—E%(ﬁ'fm)

0 (3-19)

L
EL, &
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in which B
g=Xypt Xg =Ty o (3-20)
(¢) Angular Flexibility, E,; (Eq, 1-4).
rL
P,y = E%i-- 26 - Fy, = E%B (%, - 2 - £p)
0 | (3-21)
- i%%'fAB
and
£4p= Xopt xoq - 2g - £y, (3-22)

Expressed in terms of qu functions (Egs. 2-5,13) and angular beam
function coefficients (Egs. 3-18,20,22), the uniform load angular coef-

ficients are:

. (UL
(a) Apgular Load Function Ipa ) (Eq. 1-8) ,
2 L 3 3
T(UL)-—EL_F A xdx _ wL i(f - X))
BA T 2 "BAT 2L EI, “EI; 2 "BAT 3
0 (3-23)
-l (o)
=~ EI. “BA
0
in which
(uL)_ 1
tpy - 2 (fmy = X3, - X3)) (3-24)

(b) Angular Load Function T'UL) (Eq, 1-9).

~AB
(UL) _ wI’ (VL) w1 (VL)
_ _owlm 1
Tpg ~ o G- Tpy < EIO(2 g - tg )
(3-25)
1’ (VL)
" N

- E%) AB



20
in which

(= 1g {00 (3-26)

The haunch dead load angular coefficients expressed in terms of
qu functions (Eqs. 2-17,18; 3-14) and angular beam function coefficients
(Egs. 3-18,20,22) are

(a) Angular Load Function ISL) (Eq. 1-11).

L 4
T(HL) _ 1 212 o p zZ (La1+ z)dz
BA 12 BAT 23 A -
-4
3 2
P B, 1y (3-27)
EIO 12 “BA 1252 5q
_ ()
I ‘tma
since
p = ghyw
(HL)_ wB” 2
_ W [0%)
tpy - 1z fRa T 13P Esq - (3-28)
(b) Angular Load Function I(AgL) (Bq. 1-12).
LB
(8L)_ pglL (PG - P 2z
AB 1z (Fpy Y . I,
3 2 2
S E - 1) (3-29)
‘12 e tIz 1282 4a
pL (L)
= EI. “AB
0
in which
g HL) in(f +g) -2 Xx
AB ~ 1z “'BaT E 18R b (3-30)



2”1

The live load angular coefficients expressed in terms of X, func-
tions (Egs. 3-6,12) and angular beam function coefficients (Eqs. 3-18,
20,22) are

(a) Angular Load Function léiL) (BEg, 1-5),

In , Ln
(LL) _ 1 x“dx xdx
Tpy & plGt+ 4 EL " ET
0 0
12 ‘
= iﬁg (ng - nXln + X2n) (3-31)
_ 12 (w)
- E
I, “BA
where
(LLY_ -
gy - nle - X)X, . (3-32)
(b) Angular Load Function I}%L) Eg. 1-6).
In Ln
(LL) _ 1 axy . 1 xdx . (LL)
Tpp - BLG+Fp -F T)tE T~ BA
0 b4 0 X
= —112 (ng + nf,, = nX__+ X t(LL)) (3-33)
" EL, g AB 0 1n = “BA
__1? (1)
EI, “AB
and
(LL) _ _ _ (L) _
tap = n(g + 5 XOn) AR ST A . (3-34)



CHAPTER IV
ANGULAR COEFFICIENIS - SYMMETRICAL BEAMS

1. General.

A beam of length L with \two symmetrical parabolic haunches is con-
sidered (Fig. 4-1). The beam is of constant depth over the length Ly
and from Eq. (2=3)

_ 1 3
Ix— IO— I?,_bhO . (4-1)

The length of each haunch is LB and for any cross-section within

either haunch from Egs. (2-11,12)

I.=IT (4-2)

® ® ® @

A/ \A:: who

LB L LB

Fig. 4-1.—Symmetrical Beam.

2. Integral Functions gkq (x = 0—=LB8).

The location of the cross-section is given by (Fig, 4=2)

X:LB- tZLB o

22
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For
&= F
and, noting the change in sign, from Eq. (2-13)

1l k k
o = Lk+l B (1- tz) Bdtz
kq I 7 3
0 ]

(4-3)

With notations (3-9,10) the integral functions Xf{q may be expressed in

terms of integral functions quq Thus,

1kl TR -1 -8 - 5,1 Bat,

Xp =
kq I 3
0 Jo -TZ
(4=4).
M1 k,
:Lk+l (1 —.Z) Bdt,z
IO 0 T23
® O ®
X x! ]
| |
4
h
-1 0
/ why
t LB 3
LB Ly LB
L

Fig. 4~2.~—Symmetrical Beam For x = 0—»Lg.

For values
=0, 1, 2
1 0
(1 - 2) Bdtz

X(Bq = 7 3 - XOq-' ‘ (4-5)
: 0 2z




R4

L - 2)lgat
| — = -
X1q . 73 X0q ™ *1q
P4
1 (4~5)
(1 - z)%Bdtz (Cont. )
] - _—_ = -
X3 = Xoq = Fpgt Xy -
0 2

Since the beam is symmetrical the angular live load coefficients
need not be computed for the unit load in positions that require the
computation of X, =~functions for the left haunch.

3. Integral Functions ‘)‘(’kr (x = LB=>L(BtN)).

The location of the cross-section is given by (Fig. 4-3)

x = LB+ tLa .

Q © ® 6

X | x! |
| | |
A/ X hy
b, Ly
LB LY LB
L
Fig. 4~3.—Symmetrical Beam For x = LB3-L(7+f8).
‘Substituting into Eq. (2-4)
a =B
gives for functions X'ﬁ:r (Eq. 2-5)
1
o= | (Bt Far, . (4-6)
0

Expressed in terms of notations (3-6), Eq. (4~6) for values

k=0, 1
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1

_ , 0 -

Xér = (B + 7tx) thx = Xy,
0

1 (4-17)

X3

1., -
1 (B +7t )77t = BX, + X

1r °
0

Evaluating Eq. (4-6) in terms of Egs. (4~7) and with notations (3-6) for
k = 2 gives
1
X = (B +7t.)%7at, = 8%t + 28X! + X (4-8)
2r X X Or 1r 2r °
0
Thus, each function Xﬁr is written in terms of previously evaluated func-
. . . _

tions Xkr and notations (3-6)°

For uniform load angular functions (Eqs. 1-7a,b) the integral (2-1)

must be evaluated for

1
_7 _ 7
1t = -
Yor~ 2| 95T 5By
0 .
(4-9)
1
— 1\3 2 _ (I\3
1t = (L - (L
X = Q) todb, = (37 Ry .
0
No other Xﬂ; functions are necessary.
» ) a u
Similarly as for functions Xkr
(MM
xiie= | B+ 7e,)%7at, = xs
On X X On
0 )
) (4-10)
N
. 1..,
09t — . - 3 1
X (B + th) Tdt,X XOn + Xln
« 0



26

IL'( .
- 2 _ 2 (4-10)
gte = . = o i 71t )
Xon B+ th) T, = X T2 E Y Xy (Cont.)
0
If the upper limit x = Ln (Egs. 2-6,7) is such that
B<ng BHT
p~ Xf{q+ SR (4-11)

4. Integral Functions qu (x= LB >1),
The location of the cross-section is given by (Fig. 4~4)

Cx =LB+7) +t,LB
and

a1:_5 +7 =1-8

which is identical to the value for & in Eq. (3-8), therefore with the
exception of uniform load (Egs. 1-7a,b), the solutions for functions qu

and an are given by Egs. (3-10,11,12,13,15,16).

® 6 ®  ®

< | X i x!
| ]
by
. —_~_—cah
2
L8 | Ly LB
: . -

Fig. 4=4.—Symmetrical Beam For x = L(B+7)—>L.

For uniform load the cross-—section is measured from the center of

the beam (Fig. 4-5)

_ T
x—IJ—2— +tZLB °
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Substituting

a=1=50-28

into Eq. (2-12) and considering notation (3-9) gives for k = 2

1y

1 %- B(l—tZ)J Z,Bdtz _ 2 - 2)%at_

2q 3 3
0 T, 0 T, (4-12)

Fig. 4=5,—Symmetrical Beam For Uniform ILoad.

5. Angular Functions - Coefficients.
Similarly as for the unsymmetrical beam, the angular functions will

be expressed in terms of coefficients as follows:

BA

= = ! 1 . : -
X, = Xh + X+ x2q . | - (4 13)_

(a) Angular Flexibility Coefficient, £ E =17).

fea

(b) Angular Carry-Over Value Coefficient, g (Eq. 3-19).

— - — ] ] —
g =X - fp 'qu + XL+ qu . (4-14)
(c) Angular Flexibility Coefficient, QAB -21).
» = - - - X! 9 - - ' -
fop= %, - 28 - £, xoq + X+ xoq 2g - gy - (4-15)
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For symmetrical -beams the uniform load angular functions may be

written (3)

L L
AUL) _(UL) _ ELE. 2 ax _ w ? Pax (4-16).
BA- 7 'AB ~ 8E I 2B 1 ° '
o % o *
Proceeding as in Eqs. (3-23,24) and with notations (3-13; 4-9)
(UL)_ 1 1
= gy eng) - gy (4-2)

The haunch load angular functions are (Eq. 1-13)

(HL) _ . (HL) _ pB dx p z dz
Tea = Tap T IE| T T2 (4-18)
0

Proceeding as in Eqs. (3-27,28) and with notations (3-13,14; 4-9)

(HL) — (9]
2 = -
Bw(pn+x ) - X . (4~19)

t
BA 1
1257 M

The coefficients for the angular live load functions are given by

Eqs. (3-32,34).



CHAPTER V
PROGRAM FOR THE IBM 650 ELECTRONIC COMPUTER

1. General

Programming for the solution of any problem on'a digital computer
is usuaily accomplished in two steps. First, a drawing showing each phase
of the problem and the sequence of operations is made. Second, from the
schematic drawing, or flow chart, a series of instructions fof the com~
puter is established.

The program in this chapter was prepared in floating decimal arith-
metic for the IBM 650 Electronic Computer at Cklahoma State University“s
Computing Center. The coding form ﬁsed is that of IBM's Symbolic Opti—
mum Assembly Programming, Type 1I. Storage locations have been re-used
as soon as possible in order to téke advantage of the available sixty

high-speed storage locations.

2. Functional Evaluation.

The subroutines for the evaluation of the square roots, arc-tangents,
and logarithms required for the solution of Egs. (2-16a) are an integral
part of the program, therefore no library subroutines are necessary.

The square roots are obtained by Newton's method which is as follows:

W
)

1
Bi= 2 Rt w5

(5-1)

in which

w = number for which the square root is desired,

29
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R, = ith approximation of the square root,

Ri_l:: preceding approximation of the square root.

For all values of w the initial approximation is one and fifteen success-
ive approximations are made.

With notation (2-10) the arc-tangents are evaluated by the infinite

series
1 R{ 2 2ol 2 2eseb . 3
- =V = + £ R4 o /e s (5e2)
Tan — t Jw =V tzﬁ(l SRt SE RS+ SRR
in which
Lk)t 2 T_l
R - .3 - 2
¢ lﬁptzz Tz

The series converges for all values of

2
wt, < o
£

For wvalues

2 - -
whk, = 0.1

]
computations are limited to eleven terms to avoid overflow in the com-
puter. For larger values twenty-five terms are evaluated to obtain the
desired accuracy.

With notation (2-10) the logarithms are evaluated by the infinite

series
T L ip 3, 1 5 1.7 -
Lg = 5 LogeT, = Ry + BRy + 5Rp + Ry (5-3)

in which

T -1
Z

R, = 5 '
i lz+1

The above series converges for all values
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and nineteen terms are used.

The accuracy of Egs. (5-1,2,3) depends upon the magnitude of the
value for which the function is reqﬁired° Using the number of terms in-
dicated and rounding off the angular function coefficients to four deci-

mal places gives results that agree with those published in other works

for

max —

3. Input Card Format.

The description of the beam for which constants are desired is in-
troduced into the computer with seven words., Fig. (5-1) shows the arrange-

ment of input data,

Word Card Columns Data
Inclusive
1 l-10 S
2 11 - 20 B
3 21 - 30 AW
4 31 - 40 AB
5 41 = 50 “max
6 51 - 60 P max
7 61 - 70 Beam Type
8 71 - 80 zZeros

Fig. 5-1.—~—Input Card Data.

The meanings of w and B have already been established. The symbols
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Aw and AR are the increments by which the dimension coefficients are‘to
be increased, These twp’wofds,must,have séme positive value even thpugh
computations may be required for only one beam. The fifth and sixth words
are the maximum values the dimension coefficients may attain. The beam
type number is zero for unsymmetrical beams and one for symmetrical.,

The first six words of the input card must be in floating decimal
form, The position ;f the decimal is obtained by subtracting 50 from
the last two digitso If the result is zero the decimal immediately pfe—
cedes the first digit. If the result is negative pr‘positive the deci-
mal is shifted to fhe left or right the indicated number of places.

(Fig. 5-2).

The beam type number must be entered as a fixed point number, either

ten zeros for unsymmetricél beams or one preceeded by nine zeros for sym-

metrical beams.,

Number Floating Decimal Form
345.6 3456000Q53
0.3456 3456000050
0.03456 3456000049

Fig., 5-2.—Examples of Floating Decimals,

Exzmple 1.
| Beam constants are to be computed for the symmetrical bqam in Fig.
(5~3). |
Since computations are required for only one beam the maximum values

of dimension coefficients are equal to the initial values and the incre-
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ments will be unimportant as long as they have some: positive value.

® O ® ®

K \: by

3L 4L 3L

b

Fig, 5=3.—Symmetrical Beam .

The beam type number is one and the data is entered as in Fig. (5-4).

Word Data Entered
1 5000000050
2 3000000050
3 1000000050
4 1000000050
5 5000000050
6 3000000050
7 0000000001
8 Not Used

Fig., 5-4.—Input Card For One Symmetrical Beam .

Example 2.

Beam constants are required for the beam shown in Fig, (5-5) for all

combinations of



wW=0,2—+-1,0 in increments of 0.2

B=0,1-1.,0

in increments of 0.1 .

Fig. 5-5.— Unsymmetrical Beam.

The input data is entered as in Fig. (5-6) and the computer will

calculate the constants for the required 50 beams.

Word Data Entered
1 2000000050
2 1000000050
3 2000000050
4 1000000050
5 1000000051
6 1000000051
7 0000000000
8 (Not Uéed)

Fig, 5-6.—Input Card For Series of Unsymmetrical

Beams.

4. Qutput Card Format.

34

The angular function coefficients will be in floating decimal form
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on either three or four cards depending on the type of beam. The first
word of each card will be an identification number. The first two digits
are ten times the value w, the fourth and fifth digits are ten timeslthe
value B, and the last digit is the beam type number. The identification
number for angular live load functions will have, in addition, ten times
the last computed value of n as the seventh digit. Thus, the identifi-
cation number
05 003 00 001
will appear on the first output card for the symmetrical beam for which
w =0.5
B=0.3,
and the number
05 003 09 001
will appear on the card containing influence coefficients for
n=0.,7, 0.8, 0.9 .

The first output card for each beam will be arranged as follows:

Word Information

1 Identification

18]

fpa

g

f

N lwv s W

=3
ct

Fig. 5-7.~First Output Card.
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‘The angular live load coefficients will appear as in Fig. (§-8). 1In
the case of §ymmetrica1 beams the second and third words are not used for
cards bearing identification numbers of the form.

xx Oxx 06 001 .

Position

Word Information Of Losd

1 Identification

(LL)
tBA“ n

N

s ~J o W £~ w
c’.
=
=]

{Not Used)

Fig. 5-8.~Output Card For Live Load Function
Coefficients. o

The flow chart in Fig, (5-9) was prepared as an aid to programming
the solutions for angular function coefficients for beams with one haunch
and symmetrical beams.

READ
Read Card

START
Initialize
]

Figo 5=9 0 —FlOW Charta .
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\
Compute Jo~

Store in CO001 i

ST1 %
Set t =1 '

Store in C0002

y

Compute a =1-8

. Branch On
() )
0 1
&/ Bean Type =/
AQ _ CAl
Store « Compute 7=a-8
in €0020 Store in C0020
Are Contents Of
®
C0020 RNeg?
HAN
<§> Load Distributor

With 9's and Stop

KRS

Y te X
ompute X

Store in C0014

C X
ompute 17

Store in C0015
I

Fig. 5=9 (Cont.)
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Compute X
2r

Store in C0016

Are These Cales,

38

(1) )
N For Live Loads? ~
BI2 \ BCO -y
Branch On ~ Branch On
O/ |
Beam Type Beam Type
Q ' > O
. <:> Go To ADXR * <:>
XR1S TUL l
' L]
Compute X 1n CAT

Store in C0015

Compute X“Zn

Store in C0016

Go To ADXR

Compute Tan'ltZJZ§

Store in C0005

Compute B

Store in C0006

Compute C

Store in CO007

Compute D

Store in C0003

Compute QO

Store in CO005

i

|

Fig. 5-9 {Cont.)

Are These Calcs.
| For Unif. Loads?

<%>
SCUL

Compute t

(UL)
BA

Store in PO00O5

tBéDL)

Store in PO006

Compute

. (UL), (UL)
Store tAB tBA

in PO007

A

)

r . (DL), (DL)
Store tAB "tBA
in PO0O08

]

|
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Compute Q;

Store in C0008

V
Compute Q2

Store in CO009

Conmpute qu

Store in COC1l

Compute qu

Sto:e in COdlZ

A

Compute qu

Store in CO013

®

Go To ADXQ

Are. These Calcs.

For Live Loads?

39

v

Set For No Unif,

Load Cales.

Go To IDEN

0
&

BVA

TPl

®

C te X!
ompute 0q

Store in C0031

3

Compute X“l

Store in C0032

Fig. 5-9 (Cont.)

Branch On

Beam Type

©

TPO l

Store Zeros

in C0031,32,33

Go To ADXR




¥

Compute X!
2q

Store in C0033

Compute X'!
omp 2q

‘Store in C0O034

¥

Compute X!
1ir

Store in CO015

]
Comptite er

Store in C0016

ADXR v

— 1
Compute Xor = qu-+ X

Store in C001l4

1

Or!

4

.Compute X_. = X} + X

1r 1gq
Store in C0015

1r

;= Xi
Compute er X2q + X

Store in C0016

2r

COL

ADXQ '

Are These Cales.

For Live Loads?

9

=X X
Compute XO XOr +

Store -in C0011
‘ l

Fig. 5-9 (Cont.)

1C0

Step Storage

|

l



‘g Store C0022

Store in C0002

lt

Fig. 5-9 (Cont.)

b 4
= X o (L1
Compute Xl Xerf qu Compute tp,
Store in CO012 Store For
Punching
Compute X_ = X X
OIPEEE S5 T T T Mg ,
Store in C0013 Step Storage
Are These Calcs, Compute t\2L)
(¥) 4B
For Live Loads? =4 Store For .
Pﬁnching
©) Go To IFO
SCV TESTB
Compute fBA /E\ Was Last Value
Store in PO002 N Stored in PO007?
and CO017
SETB
Compute g Initialize
‘Store in PO003 | | STEPN
and CO018 Storage Stepn =n+ An
{ Store in ROO09
y
c Go To IDEN
ompute fAB o To _
Store in P0004 'fi\ Is
and C0019 THA 4
: Is n< 17
TAL Y ' ~
>1 - R?
B Branch On n 1 B \§/
! Beam Type I
@ © =
1 . fm . Is
Compute —-Iog T Compute Hl 7> 0?




COCA |

L

Compute Q4

Store in C0024

v
Go To BCO
CTO 4
Compute XAq Compute M

Store in CO007

Store in CO002

|

Branch On

Beam Type

UVl

|
uvo

g

Restore Values

X L,X ,X
0g” 1g° Z2q

Restore Value
X
Og

Compute &Eigg

Store in C0020

Set For

Unif. Load

Go To XRS

Compute X3q

Store in CO010

Compute X
ompute 5

Store in C0028

Store in PO005

(DL)
BA

Store in PO006

Compute t

(UL)
AB

Store in PO007

Compute %

(DL)
1B

Store in PO008

Compute

Go To XRS

_ STB

&%’5:B+AB
Store in RO00R2

Is

B> Bmax.

] Go To ST1

oM
Stép Wz w+Aw

Store in RO0OO1

Is

(“:>‘“max E

&

SIA l -

Set B = AR

i Store in RO0O0OZ

Fig. 5-9 (Cont.)
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IDEN 4

v

Determine
I.D. Number

Go To START

Store in PO0OO1

43

Go To READ o=

¢
Punch A Card

From POOO1

l

Were Last
Computations
For Live Loads?

®

SETB v

Set Key Instr.

For Live loads

l

NO1

©

Store Zeros

in P0008,9

_ y
L Go To STEP N

Branch On

Beam Type

f

{

~

Fig. 5-9 (Cont.)

¥

NO5

Store Zeros

in P0002,3,8

Set Punch Stor.

To PO004

Set,

n =0.5




d

Compute 7 = 1=2f

Store in COOB20

L

Is
(1)
e Y =02
(v
Set t =0
Go To CTO -
H Go To XRS |

Fig. 5-9 (Cont.)

6. IBM 650 Program.

With tﬁe program in Fig, (5-10) the computer will calculate beam con-
stants including 10-point influence coefficients for beams of either type
for which 1is expressed as a multiple of one-tenth. Beam constants are
available for beams with constant moment of inertia (2). No provision
is made for them in this program and entry of « or B equal to zero will
result in an attempt to divide by zero. The computer will stop with ten
nines in the :‘distributor if « or 7 become negative as would be the case
if for a symmetrical beam g would be entered as 0.6. No other progrgmmed

stops are incorporated.

T T
TS Oper. Data Al Instr, | A
P| N| Location| Code |Address | G |Address | G| Remarks
1 BE AM CO | N| STANT (S
1
REG R9000 9009 READ AREA

Fig, 5-10.—IBM 650 Program.



T T
I8 Oper.| Data A| Instr., | A
P| N| Location| Code [Address | G |Address G| Remarks
REG C9010 9049 CALC AREA
REG PO050 9059 PCH AREA
SYK READ 0000 BEGIN 0000
1
READ RDP1 ROOO1 ~ START RFAD CARD
START I1DD ZERO INITIALIZ
STD RO0O09 N ‘
STD PO009 NO DL OP
RAA ROO07 BM TYPE
RAB 0000 NO LL OP
1
RAC 0015 TRMS S@ RT
RAU RO0O01 STORE
FAD ONE INITIAL
FMP HALF APPROX
STU Co001 SUB1 SQ RT
1
SUB1 RAU ROOO1 COMPUTE
FDV C0001 AND
FAD C0001 STORE
FMP HALF S@ RT
STU Co001
SXC 0001
BMC ST1 SUB1
1
ST1 RAU ONE SET T TO
STU 0002 ONE AND
FSB R0O002 COMPUTE
NZA CAl SAO ALPHA OR
CAl FSB R0O002 SAO GAMMA
SAO STU C0020 AND STORE
BMI HAN XRS IF NEG
HAN DD NINES STOP
HLT
1
xRS RAU 0020 COMPUTE
FMP 0002 AND STORE
STU Co014 XO0R
FMP C0014
FMP HALF
STU 0015 X1R
FMP C0014
FMP FRAC | AND
STU C0016 X2R
NZB BT2 BCO
1

Fig. 5-10 (Cont.)
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=i

location

Oper,

BCO
TP9

CAT

ATSV
NAT

ATC

SUM

STEP

ARTAN

NZA
RAU
NZU

RAU
FMP
STU
FMP
FAD
STU
FSB
FSB
BMI
RAG
RAC

LDD
STD
STD
STD
STD

RAU
FAD
FAD
STU
FSB
FMP
FDV
STU
RAU
FSB
FMP
FDV
STU
FMP
FAD
STU
BMC

SXC
RAU
FAD
STU

Code

Fig. 5-10 (Cont.)

T , T
Data A | Instr. A
Address G |Address G| Remarks

79 CAT IS ARC
PO009 TANGENT
SCUL CAT REQD?
Co001 COMP AND
C0002 STORE
C0Q03 TANGENT
o003 SQUARE
ONE AND SET
C0004 NUMBER OF
ONE TERMS
DELTN BY MAG
ATSV NAT

0010 ATC

0024 ATC

ONE INITIALIZE
0022 FOR SERIES
0023

00024
£0025 SUM

0022 COMPUTE
C0022 SERIES
ONE TERMS
0026

ONE .

C0024
C0026

C0024

Co004
ONE
C0023
CO004
0023
C0024
C0025 SUM AND
0025 STORE
ARTAN STEP

0001 STEP FOR
0002 NEXT -
ONE TERM AND
C0022 SUM REPEAT
C0025 COMPUTE

46
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T T

IS Oper.| Data 4 A

P| N Code |Address G G! Remarks
FMP | C0003 ARC TAN
FDV C0004 AND
STU C0005 STORE
RAU | CO002 COMPUTE
FDV FOUR AND STORE
FDV C0004
FDV C0004
STU C0006 B
FMP C0004
FMP | HALF
STU C0007 C
RAU C0002
FMP C0005
FDV OCT
FDV | C0003 AND
STU C0003 D
FAD 0007 COMPUTE
FMP THREE AND STORE
FAD ‘C0006
STU C0005 Q
RAU 0007
FMP TWO
FAD C0006
FMP C0002
STU 0008 A
RAU C0007
FAD 0003
FSB C0006
FDV RO0O0O1 AND
STU C0009 QR
RAU C0005 COMPUTE
FMP | RO002 AND STORE
STU C0011 . X0Q
RAU 0008
FSB 0005
FMP RO002
FMP RO002
FAD o011 AND
STU Co012 X1Q
RAU RDO02 COMPUTE
FMP RO00Z2 AND STORE
FMP RO0O02 3 POWRS

PO010 OMEGA

Fig. 5-10 (Cont.)




T T
T S Oper.| Data A | Instr., | A
P| N| Location| Code |Address | G |Address | G| Remarks
RAU C0005 COMPUTE
FAD €0009 AND STORE
FSB €0008
FSB C0008
FMP PO010
FAD C0012
FAD C0012
FSB C0011
STU C0013 X2Q
NZB ADXQ BVA BRN LL OP
1 ,
BVA NZA TPl TPO BRN BM TP
1| 3
TPO 1DD ZERO LT HAUNCH
STD Co031 X0Q
STD C0032 X1Q AND
STD C0033 ADXR X2Q
1
TPl 1LDD C0011 LT HAUNCH
STD | G0031 - X0Q°
RAU | COO1l
FSB C0012
STU C0032 X1Q
RAU C0013
FAD Co011
FSB C0012
FSB C0012
STU | C0033 X2Q
RAU Co011
FDV FOUR
FAD C0o013
FSB C0012 AND MOD
- STU C0034 XR1S X2Q
1 {
XR1S RAU | “RO0O2 COMPUTE
FMP C0014 AND STORE
FAD 0015 FOR TYPE 1
STU C0015 AR
FAD C0015
FDV R0O002
FSB C0014
FMP RO002
FMP RO002
FAD C0016 AND
STU C0016 ADXR X2R
1
ADXR RAU Co031 | i

Fig. 5-10 (Cont.)

| Sm LT XKQ

48



T T
Il S Oper.; Data Al Instr. | A
P| N| Location! Code | Address GiAddress | G| Remarks
FAD C0014 AND XKR
STU C0014 X0R
RAU 0032
FAD C0015
STU C0015 1R
RAU C0033
FAD C0016 AND
STU C0016 COL X2R
1 ‘
COL NZB ICO ADXQ BRN LL OP
1
ADXQ RAU Ccooll SUM XKR
FAD C0014 AND XKQ
STU 0011 X0Q
RAU C0o012
FAD C0015
STU Cco012 X1Q
RAU 0013
FAD C0016 AND
STU 0013 X2Q
l .
NZB IF0 SCV BRN LL OP
1
SCV LDD Cc0013 COMPUTE
. STD P0002 AND STORE
STD C0017 FBA
RAU C0012
FSB c0017
STU FO003
STU C0018 G
RAU Co011
FSB Cc0018
FSB C0018
FSB cood7
STU POCOL AND
STU C0019 TAl FAB
1
TA1 NZA COCA SUB3 BRN BM TP
1
SUB3 RAC 0018 SET TERMS
LDD ZERO INITALIZE
STD 0022 FOR LOG -
LDD ONE SERIES
STD C0023
STD C00R4
RAU C0004

COMPUTE

Fig. 5-10 (Cont.)
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T T
T Oper.| Data A} Instr., | A
P Location| Code |Address | G|Address | G| Remarks
FAD ONE RATIO FOR
STU C0025 SERIES
FSB WO
FDV C0025
STU C0026
FMP C0026
STU C0028 LOOP
1
LooPp RAU C0024 COMPUTE
FMP C0026 SUM OF
FAD C0022 TERMS
STU C0022 STORE LOG
BMC CoCA STA
1
STA RAU C0023 STEP FOR
FAD TWO NEXT TERM
STU C0027 - AND
RAU C0023 REPEAT
FMP C0024
FMP C0028
FDV C0027
STU C0024
1DD C0027
STD €0023
SXC 0001 Loop
1
COoCA RAU ROO01 COMPUTE
FMP RO001 AND
STU C0023 STORE
RAU | Qpo05
FDV OCT
FSB C0007
FMP OCT
FDV C0023
STU C0024 QU
RAU P0010 °
FMP RO002 p)
FMP RO002 POWRS OF
STU P0010 BETA
FMP C0024 AND
STU C0007 X4Q
NZA uvl ovo BRN BM TP
1
uvo RAU Co011 RESTORE
FSB C0014
STU

0011

X0Q

Fig. 5-10 (Cont.)
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I|8 Oper. | Data Instr.
P| N| Location | Code |Address Address Remarks
RAU Cool12
FSB C0015
STU 0012 X1Q
'RAU C0o013
'SB C0016
STU C0013 X2Q
RAU C0008 COMPUTE
FSB C0009 AND
FMP THREE STORE
FAD C0006 '
FSB C0005
FMP | POO1O
FDV ROOCR
STU C0010
RAU 0013
FSB Cco012
FMP THREE
FAD C0010
FAD Coo1l
STU C0010 X3Q
RAU C0006
FMP ROOO1
FMP TWO
FAD 0008
FMP RO001
STU 0025
RAU 0022
FSB | C0025
FDV €0023
FDV RO0O01
FSB 0024 Q5
FMP PO010
FMP RO0O02
FAD C0007 AND
STU 0028 X5Q
1
RAU C0020 BRN IF
NZU ANO AEQO AILPH EQ O
1
AEQO RAU 0017 SX4R DO NOT
1
ARO RAU Co017 DIVIDE
FDV C0014 BY ZEROC
FDV DEC 1 IN THESE
FSB C0016 CALCS -
FMP

C0014

Fig. 5-10 (Cont.)



T T
T| S Oper.| Data A| Instr. | A
P| N| Location| Code |Address | G jAddress | G| Remarks
FMP DEC SX/R
1
SX4R FSB C0010 COMPUTE
FMP HALF AND STORE
STU P0005 UL TBA
RAU PO010
FDV R0O002 FOUR POWRS
STU POO10 OF BETA
FMP C0017
FSB 0028
FMP R0O0O01
FDV | . TWELV
FDV RO002
FDV RO002
FAD P0005
STU P0006 DL TBA
RAU o018
FMP HALF
FSB PO005
STU PO00O7 UL TAB
RAU Ccool17
FAD 0018
FMP POO10
FSB Co007
FMP RO0O02
FDV TWELV
_FDV ROQO2
FDV RO002
FSB PO006
FAD PO007 AND
STU PO0O08 IDEN DL TAB
l .
wil RAU CO011 RESTORE
FSB C0014
STU C0011 X0Q
RAU C0020 COMPUTE
FMP HALF GAMMA AND
STU C0020 SET FOR
RAU ONE DL OP
STU PO009 IRrS
1
SCUL RAU C0014 COMPUTE
FAD Co011 AND STORE
FDV FOUR
FSB | (0016
FSB C0034

Fig. 5-10 (Cont.)
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T T
T S Oper, | Data A| Instr, | A
P| N!| Location| Code |[Address | G |Address G| Remarks
FMP HAIF
STU PO005 UL TBA
RAU PO0O10
FDV RDCO2
STU POC10
RAU Co014
FAD o011
FMP PO010
FSB Cooo7
FMP RO0OO1
FOv TWELV
FOV RO0O02
FDV ROO0O2
FAD PO005
STU - PO006 DL TBA.
LDD PO0OC5
STD PO0OO7 UL TAB
IDD PO006
STD PO008 DL TAB
1LDD ZERO SET FOR
STD PO009 IDEN NO DL OP
1
IDEN RAU ROOO1 STORE
FSB ONE FOR
BMI SFT1 SFT2 IDENTIF
SFT1 RAL ROO0O1
SRT 0003
SLT 0002
STL C0035 IDB CMEGA
SFI2 RAL ROOO1
SRT 0002
SLT .0002 OR
STL 0035 1DB CMEGA
1DB RAU ROOO2
FSB ONE
BMI SFT3 SFT/
SFT3 RAL RO002
SRT 0008
SLT 0004
STL C0036 IDN BETA
SFT4 RAL RO002
SRT 0008
SLT 0005 OR
STL 0036 IDN BETA
1
IDN RAL RO009 COMPOSE

Fig. 5-10 (Cont.)
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T
I8 Oper, { Data Instr. | A
P| N| Location| Code |Address Address | G| Remarks
SRT 0006 AND STORE
ALO 8005
ALO C0035
ALO C0036
STL PO001
WR1 PO001 ID NUMBER
NZB STEPN SETB BRN LL OP
1
SETB RAB 0001 INIT LL OP
NZA NO5 NO1 BRN BM TP
1
NO1 1DD ZERO
STD PO008 TYPE O LL
STD RD0O09 STEPN N TO ZERO
1 "
NO5 LDD ZERO TYPE 1 LL
STD P0002 INITIAL
STD PO003 | VALUES
STD PO008 STORAGE
AXB 0002
1LDD HATF AND
STD RO009 N IS HALF
RAU ONE COMPUTE
FSB RO002 GAMMA
FSB RO0OC2
STU €0020
NzU CTO GAO IF ZERO
GAO STU 0002 XRS LM IS ZER
1
CTO RAU | RO009 COMPUTE
NZA SR2 CTAL AND STORE
SR2 FSB RO0O0CR CTAL UPPER LIM
CTAL FDV C0020 FOR CONST
STU C0002 XRS I
1
STEPN RAU RO009 STEP N
FAD DELTN AND TEST
STU RO009
FSB ONE IF LESS
BMI THA TAL THAN ONE
1
THA RAU ONE AND GRTR
FSB RO0O02 THAN ONE
FSB ROO09 MIN BETA
BMI CTH NEB o
1

Fig. 5-10 (Cont.)
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T T
T| S Oper.| Data Al Instr. | A
P| N| Location| Code |Address G |Address G| Remarks
NEB RAU 0020
" NZU CTO CTH
1
CTH RAU ROO0O2 COMPUTE
FSB OKE AND STORE
FSB RO009 UPPER LIM
FDV RO002 FOR VAR
STU 0002 BCO I
1
Ico AXB 0001 COMPUTE
RAU C0018 AND
FSB C0015
FMP RO0O09 STORE
FAD C0016 :
STU POOO0 | B LL TBA
RAU C0018
FAD 0019
FSB C0014
FMP R0O0O09
FAD C0015
FSB P0O000 B
AXB 0001 AND
STU POO0O B TESTB LL TAB
1 ;
TESTB RAU 8006 IF LAST
SUP SVEN VALUE IN
BMI STEPN AD1 PO007
1
AD1 RAB 0001 IDEN INIT B PCH
1 . ‘
IFO AXB 0001 COMPUTE
RAU Cc0018 FOR VAR I
FSB C0012 AND STORE
FMP RO009
FAD .C0013
STU PO0O0O B LL TBA
RAU 0018
FAD C0019
FSB 0011
FMP RO0O09
FAD Coo1l12
FSB POO0OO | B
AXB 0001 | AND
STU POOOO B TESTB LL TAB
1
TAL RAU RO002

IEST IF

Fig. 5-10 (Cont.)




T T
I S Oper.| Data A| Instr. | A
P! N| Location |Code |Address | GjAddress | G| Remarks
FAD ROOO4 BETA IS
STU RO002 MAX IF NO
RAU RO006 STEP IF
FSB RO002 YES
BMI TOM ST1
1
TOM RAU ROOO1 TEST IF
FAD RO003 OMEGA IS
STU RO0O0O1 MAX AND
RAU RO005
FSB RO0O0O1
BMI READ SIA READ OR
1 .
SIA RAU RO004 STEP BETA
STU RO002 START
1
1 CON STANT | S
1
ZERO 00 0000 0000
ONE 10 0000 0051
HALF 50 0000 0050
NINES 99 9999 . 9999
FOUR 40 0000 0051
THREE 30 0000 0051
TWO 20 0000 0051
OCT 80 0000 0051
- DEC 75 0000 0050
TWELV 12 0000 0052
DELTN 10 0000 0050
SVEN 00 0000 0007
FRAC 66 6666 6750

Fig. 5-10 (Cont.)
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CHAPTER VI
SUMMARY AND CONCLUSIONS

The development of a high speed computer program to evaluate beam
constants for use in the carry~over moment procedure has been the purpose
of this study.

The number of instructions in the program has been held to a mini-
mum by expressing the beam constants in terms of recurring integrals
which could be evaluated by supplying appropriate upper limits in equiv-
alent algebraic expressions and by expressing succeeding beam constants
in terms previously defined.

Using the program presented the computer will evaluate constants for
beams with either -one parabolic haunch or two symmetrical parabolic
haunches for whiéh B is expressed as a multiple of one-tenfh and w does
not exceed two. If beam constants are desired for « greater than two the
number of terms in the sﬁbroutines for functional evaluation should be
checked for accuracy.

The output from the computer may be listed on the IBM 402 Tabulator.
Plate I shows typical results of such tabulations for a symmetrical beam
for which

w = 1.0,
B=0.1-0.5

From Chapter 5 and plate I the beam for which
w= 1,0,
B=0.3
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 PLATE I

Tabulated Constants
w=1.0,8B=0.1-0.5

1000100001
1000106001
1000109001
1000200001
1000206001
1000209001
1000300001
1000306001
1000309001
1000400001
1000406001
1000409001
1000500001
1000506001

1000509001

2905140250
0000000000
5852543049
2526261050
0000000000
5570671049
2188819950
0000000000
5120138049
1884941050
0000000000
4526512049

1606747650

0000000000

3863797249

1639384150
0000000000

4504481049

1562787650

0000000000
4357426049
1444752950
0000000000
4093080049
1293156150
0000000000
3700761049
1115873850
0000000000

3203876849

2905140250
6178512349

4689558049

2526261050

5964048549
4373982049
2188819950

5606609249

13896282049

1884941050
5106193849
3371631049

1606747650

4462803549

2857954049

4098460949
6178512049
3167466049
3906969049
5964049049
3054115049

3611882249

5606609049

2842467049
3232890349
5106194049
2549814049

2789684349

4462803549

2200587049

4135960949
6315527449
2726573049
4040302349
6067359749
2422136049
3874382249
5663373649
2102808049
3632890349
5111444549
1806545049

3310517649

744243874449

1532499049

4098460949
5541497049
1630451049
3906969049
5360737049
1558226049
3611882249
5049844049
1441250049
3232890349
4600943549
12900880489

2789684349

4010423649

1113038049.

4135960949

4040302349

3874382249

3632890349

3310517649
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is given by lines 7,8, and 9 where the identification numbers are of the
form
100030n001,

and the’coefficients (Fig. 6-1) are used with Egs. (4-13) to (4-19) in-
clﬁsive and related equations in chapter 3 to obtain the desired con-
stants. The angular live load functions for

n=0.1, 0.2, 0.3, 0.4
are obtained from symmetry.

Beam constants have been computed for all combinations of

W =0,1—2.0

B=0,1-1.0
for unsymmetrical beams and

B=0.1-0.5

for symmetrical beams. Comparisons were made with values presented in

(2) and the results published in (3).

" L) | . (o5 | . (o) . (oL)
fea g fap | Pma | ma | Fap | tap

2189 | 1445 | .2189| .0361| .0387 | .0361 | .0387

(a)

s
n | 0.1 0.2 ] 0.3 0.4 0.5 | 0.6 | 0.7 | 0.8 | 0.9

téﬁL) L0144 | 0284 | 0409 | 0505 .0561 | 0566 | .0512 | .0390 | .0210

tigL) .,0210 | .0390 | ,0512 | .0566 | 0561 | .0505 0409 | 0284 | .0144

(b)
Fig, 6-1.,—Beam Constants For w =1.0, R=0.3.

Computations requiring the use of these constants are normally such

that four place accuracy is sufficient.
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