
ANALYSIS AND IMPLEMENTATION OF DECIMAL

ARITHMETIC HARDWARE IN NANOMETER CMOS

TECHNOLOGY

 By

IVAN DARIO CASTELLANOS

 Bachelor of Science in Electrical Engineering
 Universidad de los Andes

 Bogotá, Colombia
 2001

 Master of Science in Electrical Engineering
 Illinois Institute of Technology

 Chicago, Illinois
 2004

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 DOCTOR OF PHILOSOPHY

July, 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SHAREOK repository

https://core.ac.uk/display/215234796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

ANALYSIS AND IMPLEMENTATION OF DECIMAL

ARITHMETIC HARDWARE IN NANOMETER CMOS

TECHNOLOGY

Dissertation Approved:

Dr. James E. Stine

Dissertation Adviser

Dr. Louis Johnson

Dr. Sohum Sohoni

Dr. Nohpill Park

Dr. A. Gordon Emslie

Dean of the Graduate College

 iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION...1

1.1 Importance of Decimal Arithmetic...2

1.2 The Decimal Floating-Point Standard...4

1.3 A case for Decimal Arithmetic in General-Purpose Computer Architectures7

2. BACKGROUND...9

2.1 Binary Comparison ...9

2.1.1 Magnitude Comparator Design ..11

2.1.2 Two’s complement and binary floating-point comparator14

2.2 Addition...17

2.2.1 Binary addition..17

2.2.2 Carry save addition (CSA)..19

2.2.3 4:2 Compressors ..20

2.2.4 Decimal excess-3 addition ...21

2.2.5 Direct decimal addition ...23

2.2.6 Decimal Floating-Point Adder...24

2.3 Binary Multiplication..26

2.4 Decimal Multiplication ...30

2.4.1 High frequency decimal multiplier ..34

2.4.2 Multiplication with efficient partial product generation..35

3. DECIMAL FLOATING-POINT COMPARATOR ..37

 iv

Chapter Page

3.1 Decimal floating-point comparison ...37

3.2 Comparator Design...40

3.3 Coefficient magnitude comparison ...42

3.4 Special case scenarios ...44

3.4.1 One or both numbers is infinite ..45

3.4.2 Both operands are zero..46

3.4.3 Exponent difference off-range..46

3.4.4 Alignment shift-out, overflow ..47

3.4.5 Coefficient comparison...48

3.5 Combined binary floating-point, two’s complement and decimal floating-point

comparator...50

4. EXPERIMENTS FOR DECIMAL FLOATING-POINT DIVISION BY RECURRENCE53

4.1 Decimal Division by Digit Recurrence Theory ..53

4.2 Quotient Digit Selection ..56

4.3 Considerations for the IEEE-754 Decimal Case ..60

5. DECIMAL PARTIAL PRODUCT REDUCTION ...65

5.1 Decimal Carry-Save Addition ...68

5.2 Delay analysis of the decimal 3:2 counter by recoding ..75

5.3 Decimal 4:2 Compressor Trees..77

6. PARTIAL PRODUCT GENERATION SCHEMES...83

6.1 Multiplier Recoding ...83

6.2 Multiplicand Multiples Generation...87

6.2.1 2x and 5x with Conventional Binary Logic ...87

6.2.2 2x and 5x using BCD recoding...88

6.3 Partial Product Generation Architectures ...90

 v

Chapter Page

7. RESULTS..93

7.1 Decimal comparator design..95

7.2 Decimal/Binary Combined Comparator ..96

7.3 Partial Product Reduction Schemes...99

7.4 Partial Product Generation Architectures ...102

8. CONCLUSIONS ..105

BIBLIOGRAPHY..109

APPENDIX A – DENSELY PACKED DECIMAL ENCODING ..113

 vi

LIST OF TABLES

Table Page

Table 1. Numerical differences between decimal ...3

Table 2. Decimal floating-point format ..5

Table 3. Decimal FP Combination Field..6

Table 4. Floating-point Condition Codes...11

Table 5. BCD Magnitude Comparison ..13

Table 6. Excess-3 Code..21

Table 7. Decimal Multiplication Table, from [20]. ..32

Table 8. Restricted range, signed magnitude products, from [32].35

Table 9. BCD Magnitude Comparison ..42

Table 10. 8421, 4221 and 5211 BCD representations. ...71

Table 11. Radix 5/4 digit recoding...85

Table 12. Area and delay estimates..95

Table 13. Area and delay results for comparator designs...105

Table 14. Dynamic and Static power results for comparator designs.106

Table 15. Comparison results for proposed compressor trees106

Table 16. Dynamic and static power comparison results for proposed.........................107

Table 17. Area and delay results for VAM [40], LN [42] architectures107

Table 18. Dynamic and static power consumption for partial..108

 vii

Table Page

Table 19. DPD Encoding / Compression, taken from [8]...113

Table 20. DPD Decoding / Expansion, taken from [8]...114

 viii

LIST OF FIGURES

Figure Page

Figure 1. Example: decimal floating-point representation of number -8.35.......................7

Figure 2. Block diagram of the binary portion of the comparator, taken from [15].12

Figure 3. Magnitude comparator example ..13

Figure 4. Full adder cell and Truth Table. ...18

Figure 5. 4-bit Ripple Carry Adder. ...18

Figure 6. Full adder cells used for carry-save addition. ..20

Figure 7. Weinberger 4:2 Binary Compressor...21

Figure 8. Adder for Excess-3 code, taken from [20]..23

Figure 9. Decimal Floating-Point adder, from [23]. ...25

Figure 10. Partial products during multiplication, taken from [24].26

Figure 11. Carry Save Array Multiplier, CSAM..28

Figure 12. Wallace Tree multiplier reduction for two 4-bit operands.29

Figure 13. Implementation detail for Wallace tree, 5th column ..29

Figure 14. Three column 8-bit 4:2 binary compressor tree ...31

Figure 15. Decimal multiplication table Left and Right algorithm example......................33

Figure 16. Classic approach to floating-point comparison. ...39

Figure 17. Decimal floating-point comparator design..41

Figure 18. Coefficient Aligner, logarithmic barrel shifter..41

Figure 19. BCD magnitude comparator. ...44

 ix

Figure Page

Figure 20. Combined two’s complement, binary and decimal comparator......................52

Figure 21. Robertson's diagram showing selection intervals for q=k-1 and k.55

Figure 22. Truncated inputs to the QDS function. ...56

Figure 23. PD Diagram, Sk selection points as a function of truncated d, [34].58

Figure 24. Decimal division by digit recurrence implementation.64

Figure 25. Multiplication Algorithm ..65

Figure 26. Binary full adder cells used for decimal carry-save addition.68

Figure 27. Block diagram for full adder cells used for decimal Carry-Save addition.69

Figure 28. Result of the addition, carry vector shifted left. ..70

Figure 29. Multiplication by 2, recoded result..71

Figure 30. Multiplication by 2, result in BCD-4221. ...72

Figure 31. Decimal 3:2 counter with BCD recoding example..73

Figure 32. Block diagram for decimal 3:2 counter [38]..74

Figure 33. Nine gates Full Adder / 3:2 counter cell. ..76

Figure 34. Decimal 9:2 counter, adapted from [38]. ..78

Figure 35. Proposed decimal 4:2 compressor. All signals are decimal (4-bits)...............79

Figure 36. Decimal 8:2 compressor, all signals are decimal (4-bits)...............................80

Figure 37. Decimal 8:2 compressor. Critical path and ∆ delays shown.........................81

Figure 38. Decimal 16:2 compressor, all signals are decimal (4-bits).............................82

Figure 39. Multiplication Algorithm ..84

Figure 40. Digit recoding for radix-5, [38]. ...86

Figure 41. Quintupling through BCD recoding. ...89

Figure 42. Lang-Nannarelli radix-10 partial product generation.91

Figure 43. Vásquez-Antelo radix-5 partial product generation.92

 x

Figure Page

Figure 44. Design Flow methodology..94

Figure 45. Concept block diagram for implementation comparison.96

Figure 46. Delay estimates for comparator designs..97

Figure 47. Area estimates for comparator designs. ..98

Figure 48. Dynamic power consumption for comparator designs.98

Figure 49. Delay estimates for compressor trees vs. counter trees designs.................100

Figure 50. Area estimates for compressor trees vs. counter trees designs.101

Figure 51. Dynamic power estimates for compressor trees vs. counter trees designs. 101

Figure 52. Delay results, partial product generation architectures.103

Figure 53. Area comparison for partial product generation architectures.103

Figure 54. Dynamic power comparison, partial product generation.104

 1

1. INTRODUCTION

Many scientific, engineering and commercial applications call for operations with real

numbers. In many cases, a fixed-point numerical representation can be used.

Nevertheless, this approach is not always feasible since the range that may be required

is not always attainable with this method. Instead, floating-point numbers have proven to

be an effective approach as they have the advantage of a dynamic range, but are more

difficult to implement, less precise for the same number of digits, and include round-off

errors.

The floating-point numerical representation is similar to scientific notation differing in that

the radix point location is fixed usually to the right of the leftmost (most significant) digit.

The location of the represented number’s radix point, however, is indicated by an

exponent field. Since it can be assigned to be anywhere within the given number of bits,

numbers with a “floating” radix point have a wide dynamic range of magnitudes that can

be handled while maintaining a suitable precision.

The IEEE standardized the floating-point numerical representation for computers in 1985

with the IEEE-754 standard [1]. This specific encoding of the bits is provided and the

behavior of arithmetic operations is precisely defined. This IEEE format minimizes

calculation anomalies, while permitting different implementation possibilities. Since the

1950’s binary arithmetic has become predominantly used in computer operations given

its simplicity for implementation in electronic circuits. Consequently, the heavy utilization

of binary floating-point numbers mandates the IEEE binary floating-point standard to be

 2

required for all existing computer architectures, since it simplifies the implementation.

More importantly, it allows architectures to efficiently communicate with one another,

since numbers adhere to the same IEEE standard.

Although binary encoding in computer systems is prevalent, decimal arithmetic is

becoming increasingly important and indispensable as binary arithmetic can not always

satisfy the necessities of many current applications in terms of robustness and precision.

Unfortunately, many architectures still resort to software routines to emulate operations

on decimal numbers or, worse yet, rely on binary arithmetic and then convert to the

necessary precision. When this happens, many software routines and binary

approximations could potentially leave off crucial bits to represent the value necessary

and potentially cause severe harm to many applications.

1.1 Importance of Decimal Arithmetic

Decimal operations are essential in financial, commercial and many different Internet

based applications. Decimal numbers are common in everyday life and are essential

when data calculation results must match operations that would otherwise be performed

by hand [2]. Some conventions even require an explicit decimal approximation. A study

presented in [3] shows that numeric data in commercial applications, like banking,

insurance and airlines is predominantly decimal well up to 98%. Furthermore, another

study discussed in [4] shows that decimal calculations can incur a 50% to 90%

processing overhead.

One of the main causes for decimal’s performance cost is that binary numbers cannot

represent most decimal numbers exactly. A number like 0.1, for example, would require

an infinite recurring binary number, whereas, it can be accurately represented with a

 3

decimal representation. This implies that it is not always possible to guarantee the same

results between binary floating point and decimal arithmetic. This is further illustrated in

the following table where the number 0.9 is continuously divided by 10.

Table 1. Numerical differences between decimal
and binary floating-point numbers.

Decimal Binary
0.9 0.9
0.09 0.089999996
0.009 0.009
0.0009 9.0E-4
0.00009 9.0E-5
0.000009 9.0E-6
9E-7 9.0000003E-7
9E-8 9.0E-8
9E-9 9.0E-9
9E-10 8.9999996E-10

It is, therefore, considerably difficult to develop and test applications that require this

type of calculations and that use exact real-world data like commercial or financial

values. Even legal requirements, like the Euro (€) currency regulations, dictate the

working precision and rounding method to be used for calculations in decimal digits

[5]Error! Reference source not found.. These requirements can only be met by

working in base 10, using an arithmetic which preserves precision.

Typically, decimal computations are performed on binary hardware through software

emulation and mathematical approximations, since requirements specific to decimal

numbers cannot always be met in pure binary form. These requirements may include

arithmetic that preserves the number of decimal places (including trailing zeroes or

unnormalized coefficients) and decimal rounding among others. In all cases, any scaling,

rounding, or exponent has to be handled explicitly by the applications or the

programmer, a complex and very error-prone task. Since binary computations for

decimal arithmetic tend to be slow, significant performance improvements may result

 4

from using decimal floating-point hardware. Native (hardware) decimal floating-point

arithmetic will make programming far simpler and more robust, and produce a

significantly better performance in computer applications. The impact of this type of

hardware can improve decimal floating-point calculations speed by two or three orders

of magnitude compared to a software approach and is further highlighted with IBM’s

release of the Power6 processor, the first UNIX microprocessor able to calculate decimal

floating-point arithmetic in hardware [7].

As an example, shown in [4], division of a JIT (Java Just-In-Time compiled) 9-digit

BigDecimal number type, takes more than 13,000 clock cycles on an Intel® Pentium™

processor, while a 9-digit decimal addition requires more than 1,100 clock cycles. On

the other hand, binary arithmetic takes 41 cycles for integer division and 3 cycles for an

addition on the same processor. Dedicated decimal hardware would be comparable to

these values, if available.

1.2 The Decimal Floating-Point Standard

The increasing importance of decimal arithmetic is highlighted by the specifications

being included in the current revision draft of the IEEE-754 standard for floating-point

arithmetic or IEEE-754R [8]. Decimal floating-point numbers are in a format similar to

scientific notation:

(-1)S x Coefficient x 10 (Exponent – Bias),

where S is either 1 or 0 and determines the sign of the number. The exponent is biased

to avoid negative representations. In other words, all exponents are represented in

relation to a known value given to exponent zero. For example, if the bias is 127

numbers below 127 are negative and above 127 are positive. To illustrate a specific

 5

example, suppose an exponent of 125 is utilized with a bias of 127, this exponent

represents a value of -2 according to the IEEE standard.

The current draft specifies the representation of three decimal number types: decimal32,

decimal64 and decimal128 encoded in 32, 64 and 128-bits respectively. The value of the

number is encoded in four different fields. An illustration of this representation for

decimal64 numbers is shown in Table 2, taken from [9].

Table 2. Decimal floating-point format

Length (bits) 1 5 8 50

Description Sign Combination
Field

Exponent
Continuation

Coefficient
Continuation

Decimal64 numbers are comprised of a 16 digit coefficient and a 10-bit biased exponent.

The sign bit indicates the sign of the number as indicated earlier, in the same way as

binary floating-point numbers. Both exponent and coefficient are encoded with part of

their value given in the combination field: the two Most Significant Bits (MSBs) for the

exponent and the Most Significant Digit (MSD) of the coefficient. The combination field

also determines if the number represented is a finite number, an infinite number or a

NaN (Not-a-Number). Quiet and signaling NaNs (in which case an exception is triggered

or signaled) are determined by the first bit of the exponent continuation field. Table 3,

shown in [9], illustrates the combination field which depends if the number is Infinity, a

NaN or a finite number. The combination field is encoded differently as well if the finite

number’s MSD is greater than or equal to 8 or if the number is less as illustrated in the

first two entries of the table. The exponent is therefore a biased unsigned 10-bit binary

number and the coefficient is given by a specific 10-bit per 3 decimal-digits encoding

representing a 16 decimal digits number. An additional important characteristic of

 6

decimal floating-point numbers is that they are not normalized, as opposed to binary

floating-point numbers.

Table 3. Decimal FP Combination Field

Combination Exponent Coefficient
Field (5 Bits) MSBs (2-bits) MSD (4-bits)

a b c d e Finite < 8 a b 0 c d e
1 1 c d e Finite > 7 c d 1 0 0 e
1 1 1 1 0 Infinity - - - - - -
1 1 1 1 1 NaN - - - - - -

Type

For example, suppose a programmer wants to encode the number -8.35 into decimal64.

The first step is to break the number into its coefficient and exponent, which produces

835 (with 13 leading zero decimal digits given that coefficients are 16 digits long) and –2

respectively, i.e. –835x10–2. For decimal64 numbers, where the bias value is of 39810, an

exponent of –2 becomes 39610 (01 1000 11002). The combination field for –835x10–2

contains the two most significant bits or MSBs of the exponent (01 in this example) and

the most significant digit (MSD) of the coefficient (4-bits, 0000 in this case since the

MSD is zero). According to Table 3, for finite numbers with the most significant digit

value below 8, the 5-bit combination field abcde decodes ab as the Exponent’s MSBs

and 0cde as the MSD. To illustrate an example, the number –8.35 becomes 01 | 000.

The remaining 8-bits of the exponent, 0x8C, are arranged in the exponent continuation

field. Finally, the coefficient is given in the coefficient continuation field using Densely

Packed Decimal (DPD) encoding [10]. DPD encoding provides an efficient method of

storing and translating 10-bit / 3 decimal digits into BCD representation and vice versa

by using simple Boolean expressions. A more detailed explanation of DPD can be found

in the Appendix.

 7

The DPD codification of the three BCD decimal digits into 10-bits is called compression

and it depends on the size of each digit, small or large (3-bit for less than or equal to 7,

and 4-bits for greater than 7). A specific mapping is used in each situation: when all

digits are small, left digit is small, middle digit is large, etc [10]. The three digits 835 are

given in BCD as bits abcd efgh ijkm (1000 0011 0101)2. Bits a, e and i are used to

indicate if the numbers are large or small. For this specific case, in which left digit is a

large number, the mapping used for the encoding has the form [jkd fgh 1 10 m] or 0x23D

(see second table in Appendix A). Therefore, the decimal64 representation for –8.35 is,

in hexadecimal, A2 30 00 00 00 00 02 3D.

Figure 1. Example: decimal floating-point representation of number -8.35.

1.3 A case for Decimal Arithmetic in General-Purpose Computer Architectures

Decimal arithmetic has long been studied in computer architectures, however, most

silicon implementations of digital logic suffered due to area requirements. By the year

-8.35

- 835 x 10-2

39610 = 01 1000 835 = 23Dhex

Separate in
Coefficient and

Biasing with 39810
DPD encoding

Combination field:
exp. MSBs = 012
coeff. MSD = 00002

01000

with 13 leading zeroes

Table row 1 abcde

1 01000 10001100 0000 … 0010 0011 1101

sign

Combination
Field

Exponent
Continuation

Coefficient
Continuation

A2 30 00 00 00 00 02 3D HEX = -8.35 in decimal64

 8

2010, processors with 2 billion transistors are expected to be developed [11]. Therefore,

the large number of transistors available within silicon implementations and the

increased sophistication of design tools gives designers the ability to include new and

important features, such as decimal arithmetic. Previous implementations in decimal

arithmetic include high-speed multipliers [12][13][14], algorithms for decimal adders

[15][16][17] and multi-operand addition [18][19], and algorithms for decimal partial

product generation [14][19][20]. Although there has been a large amount of interest and

research interest into decimal arithmetic architectures, many of the architectures fail to

produce designs that are targeted at real implementations, especially at designs below

180nm. This dissertation attempts to study these designs by offering possible solutions

and implementations in decimal arithmetic and, in some cases, how they possibly can be

combined with binary arithmetic to produce combined binary/decimal arithmetic units.

 9

2. BACKGROUND

Decimal arithmetic operations were significantly researched in the 1950’s and the latter

part of the 20th century, but nonetheless binary arithmetic hardware took over computer

calculations. The reasoning behind this came after Burks, Goldstine, and von Neumann

published a preliminary study on computer design [12]. They argued that for scientific

research, simplicity was the major advantage of binary hardware and therefore

increasing its performance and reliability. Furthermore, decimal numbers would need to

be stored in binary form requiring extra storage space (bits) to maintain the same

precision as binaries and require more circuitry than operations performed in pure binary

form. Nevertheless if conversions from decimal to binary and vice-versa are needed then

it is significantly more efficient to perform operations in decimal hardware [4].

In many cases, techniques developed for binary arithmetic hardware can be applied to

some extent to decimal hardware. It is therefore important to explore relevant

approaches and research for binary arithmetic since an invaluable insight into solving

decimal arithmetic problems can be gained.

2.1 Binary Comparison

An important element in general purpose and application specific architectures is the

comparator [22]. The design of high speed and efficient comparators aids in the

performance of these architectures. The idea of designing efficient comparators however

is not new as seen from previous studies in [23], [23], [23], [25]. Nevertheless further

 10

gains in area usage and power can be obtained by designing a comparator that can

handle different data-types using an efficient compatible comparison method.

The work on [26] presents the design and implementation of a high performance

comparator capable of handling 32-bit and 64-bit two’s complement numbers and single

and double precision binary floating-point numbers. This type of design is especially

useful to reduce costs in processors, since it allows the same hardware to be used to

compare multiple data types. A novel approach to the magnitude comparison problem

was utilized with a comparator module that has logarithmic delay. This design can also

be easily extended to support 128-bit binary floating point numbers and can

accommodate pipelining to improve throughput.

The IEEE 754 standard [1] specifies floating-point comparisons where the relation

between two numbers is given greater than, less than, equal or unordered. When either

of the operands compared are Not-a-Number or NaN the result of the comparison is

unordered. If the NaN is a signaling NaN then an Invalid exception flag bit is asserted.

The result of the comparison is represented by Floating-point Condition Codes or FCC

[27].

Table 4 shows the FCC representation of the comparison result in this design. Note that

bit FCC[1] is analogous to a greater than flag (GT) and FCC[0] is analogous to a less

than flag (LT). When both flags are zero the numbers are equal and when both are one

the numbers are unordered.

 11

Table 4. Floating-point Condition Codes.

FCC [1] FCC [0]
(GT) (LT)

0 0 A = B
0 1 A < B
1 0 A > B
1 1 Unordered

Relation

As illustrated in [26], the combined comparator is composed of three blocks. The 2-bit

Sel signal indicates the type of operands being compared. The first block converts 32-bit

operands to 64-bit operands so that all operand sizes are handled by the same

hardware. Like most floating-point implementations, 32-bit numbers are converted to 64-

bit numbers to simplify the logic. The second block performs a magnitude comparison.

Finally, the third block takes care of exceptions and special cases according to the IEEE

754 standard. It also correctly handles the signs of the input operands.

2.1.1 Magnitude Comparator Design

The magnitude comparator devised in [26], and shown in Figure 2, is the core of the

comparator module. The two operands A and B are compared in stages. The first stage

compares corresponding 2-bit pairs from each operand. Two output bits, GT (greater

than) and LT (less than), from each element indicate if the result of the compared pair is

greater than, less than or equal as shown in Table 5. If the bit pairs of A and B are

denoted by A[2i+1, 2i] and B[2i+1, 2i] then the values for GT[i]1 and LT[i]1 (where the

subscript 1 indicates the first stage of the comparison) are given by:

⋅⋅+++⋅+=]2[]12[]12[]12[][1 iAiAiBiAiGT]2[]12[]2[]2[iBiBiAiB ⋅+⋅+ ,

⋅+++⋅+=]12[]12[]12[][1 iAiBiAiLT]2[]12[]2[]2[]2[iBiBiAiBiA ⋅+⋅+⋅ .

 12

for (⎡ ⎤ 12/0 −≤≤ ni) where n is the operand size, in this case 64.

Figure 2. Block diagram of the binary portion of the comparator, taken from [26].

In subsequent stages the same process is used except the GT[i]j signals replace the A[i]

signals and LT[i]j replace B[i] where j denotes the comparator stage. There is however

an additional reduction possible in subsequent stages since GT and LT can not be equal

to 1 at the same time and therefore for j > 1 the equations are simplified to:

jjjj iLTiGTiGTiGT]12[]2[]12[][1 +⋅++=+ ,

jjjj iLTiGTiLTiLT]2[]12[]12[][1 ⋅+++=+ .

A total of ⎡ ⎤)(log2 nk = stages are required to obtain the final result given by GT[0]k and

LT[0]k. In the case of this implementation with 64-bits, n = 64 and k = 6 stages are

required.

A B
64 64

Input Conversion

64 64

Magnitude
Comparator

LT, GT

2

Exception Handling

2

Sel

2

LT, GT

Floating-point / two’s
complement.
32-bit / 64-bit.

 13

Table 5. BCD Magnitude Comparison

GT[i] LT[i] Result
0 0 A[2i+1,2i] = B[2i+1,2i]
0 1 A[2i+1,2i] < B[2i+1,2i]
1 0 A[2i+1,2i] > B[2i+1,2i]
1 1 invalid

CMP AB
G

10
LT

CMP AB
G

01
LT

CMP AB
G

00
LT

Result : 0 1 A < B

CMP AB
G

10
LT

10 00 11 01

10 01 00 11

Top number A: 8Dhex
Bot. number B: 93hex

0001

CMP AB
G LT

1001

CMP AB
G LT

0110

CMP AB
G LT

0 1 1 0

Figure 3. Magnitude comparator example, A = 0x8D and B = 0x93. n= 8, k = 3 stages

necessary.

Figure 3 illustrates an example using this logarithmic tree magnitude comparator. The

operand size in this case is 8-bits and therefore only 3 stages are necessary (k=3). The

comparison to be computed is A to B where A = 0x8D and B = 0x93. Each number is

separated in bit pairs and each corresponding pair is compared individually. Subsequent

stages group LT and GT signals together as shown. The final stage yields GT = 0 and

LT = 1 as expected giving A < B.

 14

2.1.2 Two’s complement and binary floating-point comparator

The magnitude of the operands however is not the only characteristic considered when

comparing numbers. To compare two’s complement or floating-point numbers the sign

should also be considered. The third stage shown in Figure 2 sets the LT output to one

in any of the following four cases:

1) A is negative and B is positive.

2) A and B are positive and the magnitude of A is less than the magnitude of B.

3) A and B are negative two’s complement numbers and the magnitude of A is less

than the magnitude of B.

4) A and B are negative floating point numbers and the magnitude of A is greater

than the magnitude of B.

To minimize the complexity of the other predicates like Greater Than (GT) and Equal to

(EQ), logic is asserted based on whether the input operands are LT or not LT given that

LT, GT, and EQ cannot all be asserted simultaneously. This translates to simple logic for

both 32 and 64-bit numbers. In order to make sure the values for the cases listed above

are produced correctly for the implementation presented in this paper, only LT[0]6 and

GT[0]6 are computed utilizing the logic since EQ[0]6 can be produced by the following

equation:

666]0[]0[]0[GTLTEQ +=

The subindex 6 denotes the sixth level of the magnitude comparator, or the final stage

given that the operands considered are 64-bits, i.e. LT[0]6 and GT[0]6 are the outputs of

the magnitude comparator module.

 15

Consequently, the values of LT, EQ, or GT for the whole design can be produced for

two’s complement numbers as:

)]63[]63[]63[]63[(]0[6 BABAEQEQ ⋅+⋅⋅=

6]0[]63[]63[]63[(LTBBALT ⋅+⋅= EQLTA ⋅⋅+)]0[]63[6

EQLTGT +=

Floating-point comparisons on the other hand are complicated because of the

incorporation of exceptions which are mandated by the IEEE 754 standard. The major

exception that should be detected with comparisons is if the operands are Unordered.

According to the IEEE 754 standard, values are unordered if either operand is a NaN

and a floating-point comparison is being performed. The hardware for detecting

unordered may vary from one processor to the next, because the standard allows

discretion in defining specific signaling and quiet NaN’s bit patterns. The IEEE 754

standard also states that comparisons must also output an Invalid Operation exception if

either operand is a signaling NaN [1]. Furthermore, a final test must be performed to

make sure +0 and −0 compare Equal, regardless of the sign.

In summary, the floating-point comparisons must be able to handle Invalid operations,

both types of NaN’s, and not differentiate between both types of zeroes. As with two’s

complement numbers, the comparator is simplified by computing whether the two

operands are Equal or Less than each other. Once these two outputs are known, it is

simple to produce Greater than output. For the combined unit, the Less than comparison

utilizes the same cases tabulated previously accounting for a floating-point operation. On

the other hand, floating-point comparisons for Equal need to be modified to account for

 16

either equal operands or the comparison of zeroes. Therefore, the combined comparator

(two’s complement and floating-point) handles two cases for determining whether the

operands are Equal:

1) The operand magnitudes are equal AND the operands’ signs are equal.

2) The operand magnitudes are zero AND the operands are floating point numbers.

The final equations for the combined comparator are given below, where Azero

represents a literal testing of whether A is +0 or −0, fp represents a literal specifying a

floating-point operation and UO represents a literal indicating unordered operands:

fpBAUO NaNNaN ⋅+=)(

]63[]63[]63[]63[(]0[6 BABAEQEQ ⋅+⋅⋅= UOfpAzero ⋅⋅+)

6]0[]63[]63[]63[]63[(LTBABALT ⋅⋅+⋅= fpLTBA ⋅⋅⋅+ 6]0[]63[]63[

UOEQfpLTBA ⋅⋅⋅⋅⋅+)]0[]63[]63[6

UOEQLTGT ++=

For these equations, logic is saved by only testing whether A is zero since EQ[0]6

already indicates if the operands are equal making a test of B equal to zero redundant.

Sign extension for 32-bit two’s complement numbers is implemented by sign extending

the 32nd bit into the upper 32-bits of the comparator. IEEE single-precision numbers do

not need to be converted to double-precision numbers, since the two formats have the

same basic structure and the exponents are biased integers. The logic to detect NaNs

and zeros for the two floating-point formats differs slightly, since single precision

numbers have smaller significands and exponents than double precision numbers.

 17

2.2 Addition

Addition is a fundamental arithmetic operation and the design of efficient adders aids as

well in the performance and efficiency of other operation units like multipliers and

dividers. Decimal addition has been researched but not as heavily as binary addition and

only a handful of research papers can be found on the topic. Nevertheless, binary

arithmetic is important for the decimal case since decimal numbers are represented in

binary and many concepts and techniques developed for binary can be applied to some

extent as well. An overview of some relevant binary addition concepts is therefore

necessary.

2.2.1 Binary addition

One of the most basic elements in addition is the Full Adder (FA) or 3:2 counter. Adders

are sometimes called counters, because they technically count the number of inputs that

are presented at their input [28]. The FA takes three single bit inputs, xi, yi and ci and

produces two single bit outputs si and ci+1 corresponding to [29]:

xi + yi + ci = 2·ci+1 + si ,

where ci is commonly referred to as the carry-in and ci+1 the carry-out. The logic

equations for the Full Adder cell are given by:

si = xi ⊕ yi ⊕ ci

and ci = xi yi + xi ci + yi ci .

 18

Figure 4. Full adder cell and Truth Table.

The full adder cell can be utilized to create n-bit operand adders as shown in the next

figure. This simple approach, called Ripple Carry Adder or Carry Propagate addition

(RCA/CPA), has the disadvantage of a significant time-consuming delay due to the long

carry chain as the carry propagates from c0 to c1 all the way until the MSB, in this case

s3.

Figure 5. 4-bit Ripple Carry Adder.

In order to speed up this process, certain aspects of the addition in each cell can be

exploited, as is the case for the Carry Look-ahead Adder (CLA). If a carry is present at

the FA’s carry-in from the previous significant bit it is said to propagate if either xi or yi

Full Adder

yi

si

xi

ci

ci+1

x i y i c i c i+1 s i
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

FA

y3

x3

s3

c4

FA

y2

x2

s2

c3

FA

y1

x1

s1

c2

FA

y0

x0

s0

c1

c0

 19

are equal to 1. On the other hand if a carry is generated within the FA cell, when both xi

and yi are 1, the cell is said to generate a carry-out. Logic equations for generate and

propagate signals (g and p) as well as an equation describing when a carry-out takes

place can therefore be determined from the inputs:

g = xi · yi ,

p = xi + yi ,

ci+1 = gi + ci · pi

The last equation can be utilized to determine the carry-out of the next significant bit FA:

ci+2 = gi+1 + ci+1 · pi+1 = gi+1 + (gi + ci · pi)·pi+1 .

Showing that ci+2 can be obtained exclusively with the operands inputs without the need

of the carry ci+1 as in Figure 5. This provides a method of obtaining the carry-out result

for each bit position without the need of a carry chain and hence speeding up

significantly the process.

As the operand size is increased, however, the complexity of each new bit’s carry-out

logic grows significantly making the method impractical for operands of more than 4-bits,

depending on the technology used. In this case, further techniques allow carry generate

and propagate signals to be obtained for an n-bit block and improve the adder’s

implementation.

2.2.2 Carry save addition (CSA)

Carry-save addition is the idea of utilizing addition without carries connected in series as

in the Ripple Carry Adder but instead to count and hence avoid the ripple carry chain. In

 20

this way multi-operand additions can be carried out without the excessive delay resulting

from long carry chains. The following example shows how a 4-bit CSA accepts three 4-

bit numbers and generates a 4-bit partial sum and 4-bit carry vector, avoiding the

connection of each bit adder’s carry-out to the carry-in of the next adder.

Figure 6. Full adder cells used for carry-save addition.

The example shown demonstrates how performing addition in a given array (each

column in the figure) produces an output with a smaller number of bits; in this case form

3 bits to 2. This process is called reduction and is very useful during multiplication.

2.2.3 4:2 Compressors

One particular useful carry-save adder is the 4:2 compressor presented in [30]. The

main reason for using compressors is that their carry-out (cout) is no longer dependent on

the cin, as shown in Figure 7. This gives compressors a significant advantage over

traditional carry-save adder trees implemented with 3:2 counters in that it can expedite

processing the carry chain while still maintaining a regular structure.

3 0 0 1 1

7 0 1 1 1

 + 8 1 0 0 0

12 1 1 0 0

6 0 0 1 1 -

A

B

C

FULL
ADDER
Cell

SUM

Carry

Decimal
Value

 21

Figure 7. Weinberger 4:2 Binary Compressor.

2.2.4 Decimal excess-3 addition

As stated earlier, usually decimal numbers are stored as Binary Coded Decimals (BCD).

BCD numbers have 6 unused combinations, from 10102 to 11112, and this complicates

addition and subtraction for the decimal case. Furthermore, negative numbers can not

be represented in two’s complement fashion which is a common method for subtraction

for the binary case.

A different coding for decimal numbers, called Excess-3, is important since it has many

useful properties for subtraction and addition. Excess-3 code can be generated by just

adding a binary 3 to the common BCD code, as shown in Table 6.

Table 6. Excess-3 Code.

Decimal Value Excess-3 Code
0 0011
1 0100
2 0101
3 0110
4 0111
5 1000
6 1001
7 1010
8 1011
9 1100

c2

cin

c1 s

3:2
Counter

3:2
Counter

 22

Except for some corrections necessary during addition/subtraction, common binary

techniques can be applied for arithmetic operations. Most importantly the addition of two

numbers creates a decimal carry which is available by using the carry output of the most

significant binary bit. This occurs because the addition of two excess-3 digits creates a

result in excess-6 which already eliminates the unwanted 6 binary combinations.

Furthermore, the code is self-complementing [31]. This implies that a subtraction or

negative number addition can be obtained by inverting all bits of the digit and adding a

binary ulp, in the same way as two’s complement binary numbers.

The following equation, taken from [31], shows the operation result of two Excess-3

numbers added together, where the underline represents a digit in BCD:

SUM = D1 + D2 = D1 + 3 + D2 + 3 = D1 + D2 + 6

There are two possibilities to consider for the sum result. When D1 + D2 < 10 then no

carry to the next higher digit is needed and the Excess-6 result can be corrected by just

subtracting 3 from the sum. This can be easily accomplished by adding 13 and ignoring

the carry output, which effectively subtracts 16. When D1 + D2 ≥ 10 a decimal carry

should be signaled to the digit in the next place. This can be accomplished by sending

the Carry out signal of the most significant bit. Nevertheless this sends a carry of 16 (6

too much) and hence by adding 3 the result is restored into Excess-3 code. Note that in

both cases the correction requires the addition of 3 or 13 which can be accomplished by

a simple inverter on the LSB output. Figure 8 shows an implementation of an Excess-3

adder.

 23

Figure 8. Adder for Excess-3 code, taken from [31].

2.2.5 Direct decimal addition

The use of Excess-3 code permits the addition of two decimal numbers by using a

correction method to that corrects the six unwanted values in BCD code after the

operation takes place (10102 to 11112). Regardless, a different approach proposed in

[15] presents logic that performs direct decimal addition where a combinational element

has as inputs two 4-bit BCD numbers xi and yi and a carry-in ci[0] and outputs a 4-bit

BCD digit si and a 1-bit carry-out ci+1[0] satisfying:

(ci+1, si) = xi + yi + ci[0] ,

where ci+1 represents ten times the weight of si . The following are the logic equations

that describe the direct decimal adder [12]:

][][][jyjxjg iii ⋅= 30 ≤≤ j “generate”

FA
C S

FA
C S

FA
C S

FA
C S

FA
C S

A3 B3 A2 B2 A1 B1 A0 B0

Cin

S3 S2 S1 S0

Cout

FA
C S

•

FA
 S

 24

][][][jyjxjp iii += 30 ≤≤ j “propagate”

][][][jyjxjh iii ⊕= 30 ≤≤ j “addition”

])0[]0[(]0[]1[
])1[]2[(]2[]3[

])1[]2[(])1[]3[(])2[]3[(]3[

iiii

iiiii

iiiiiiii

cpgc
gpgpl

pgppppgk

⋅+=
⋅++=

⋅+⋅+⋅+=

])1[)]1[(()]1[)]1[((]1[

]0[]0[]0[

iiiiiii

iii

clhckhs

chs

⋅⊕+⋅⊕=

⊕=

)]1[]))1[]2[(]3[(()]1[]2[]3[(])1[]2[(]2[iiiiiiiiii chhgphpgps ⋅⋅++⋅⋅+⋅=

])1[]))2[]3[(])1[]2[(])1[]2[]3[(((iiiiiiii cppggppp ⋅⋅+⋅+⋅⋅

])1[(]0[
])1[]))1[]2[]3[()]3[]3[((()]1[)((]3[

1 iiii

iiiiiiiiii

clkc
chhhhgclks

⋅+=
⋅⋅⋅+⋅+⋅⋅=

+

These equations describe a decimal full adder that can be utilized for either carry-save

or carry propagate addition.

2.2.6 Decimal Floating-Point Adder

To the author’s knowledge the only published work to date of an arithmetic module

compliant with the IEEE-754 current revision draft is the decimal floating-point adder

published by Thompson, Karra and Schulte in [16] and hence its inclusion in this section

is of significance. This design differs from previous decimal adders in that it is fully

compliant with the standard including special value cases and exception handling, and

 25

that it is capable of generating a complete result in a single cycle instead of a single digit

per cycle.

Figure 9. Decimal Floating-Point adder, from [16].

Figure 9 shows a block diagram of the adder design. Initially the two IEEE-754 decimal

numbers are decoded into their sign bits, coefficient (BCD) and Exponent fields (two’s

complement binary). The operand exchange block orders the coefficients according to

which number’s exponent is greater followed by the operation unit which determines the

actual operation to be performed (addition or subtraction) depending on the signs of the

operands. The coefficients, or significands, are aligned and a conversion into Excess-3

format follows for their respective binary addition and flag bits determination. The result

is finally corrected, depending on the previously set flags, shifted and rounded allowing it

to be encoded back into IEEE-754 decimal format. The adder presented in this work also

 26

allows up to 5 stages of pipelining which improves its critical path delay. Also it is of

importance since it explores the advantage of using Excess-3 coding for decimal

addition.

2.3 Binary Multiplication

Since decimal operations are performed on binary circuits, understanding how binary

multiplication is achieved aids in the application and development of new techniques for

the decimal case. A brief overview on its most significant implementations is given in this

Section for that purpose.

The multiplication of two binary numbers, multiplier X (xN-1, xN-2, …, x1, x0) and

multiplicand Y (yM-1, yM-2, …, y1, y0) is determined by the following equation [32]:

∑ ∑∑∑
−

=

−

=

+
−

=

−

=

=⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

0

1

0

1

0

1

0

222
N

i

M

j

ji
ji

N

i

i
i

M

j

j
j yxxyP .

This is illustrated in Figure 10 for the case of 6-bit operands:

Figure 10. Partial products during multiplication, taken from [32].

 27

Each partial product bit position can be generated by a simple AND gate between

corresponding positions of the multiplier and multiplicand bits as shown in figure 3. All

partial products are reduced or “compressed” by addition into a single product result.

A direct implementation of this method is given in the Carry Save Array Multiplier or

CSAM. In this type of multiplier the partial product array shown in Figure 10 is skewed

into a square shape so that its implementation is more efficient for VLSI. The

compression is performed by the use of full adders (FAs / 3:2 counters) and half adders

(HAs). Figure 11 shows this array for the multiplication of two 8-bit operands. MFA and

MHA cells represent full adders and half adders with an additional AND gate input to

generate the partial product. The highlighted arrow shows the critical path of the circuit,

the longest carry propagation chain. In Figure 10, which has 6-bit operands instead of 8,

this would correspond to the addition of the 6th column (partial products x0y5 to x5y0) plus

the carry propagation through the last adder that generates the product, from p5 to p11.

This long carry chain limits significantly the performance of the multiplier and is even

more considerable as the operand size is incremented.

One of the most significant works that addressed this problem was proposed by Wallace

[33]. Wallace suggested the use full adders and half adders in a recursive fashion

adding three elements at a time in a carry propagate free way. In this manner, the partial

product array can be reduced in stages subsequently to two numbers without carry

propagation. When the resulting two numbers are obtained, a Carry Propagate Addition

(CPA) takes place to obtain the final result [34].

 28

Figure 11. Carry Save Array Multiplier, CSAM.

This is shown in the example in Figure 12. The diagram illustrates a 4-bit multiplication

where the resulting partial products are shown at the top, analogous to the 6-bit

multiplication of Figure 10. Each dot represents a partial product bit position (e.g. x0y5,

x3y2, etc.) The second step shows the partial product array reorganized in a triangular

shape where the oval around the dots represents a full adder (3 inputs) or a half adder

(2 inputs). The result of each addition produces two elements, a sum and a carry-out to

its next significant bit position (column to its left). The process is repeated again until at

the final stage only two bit array numbers are left, and a reduced size carry propagate

addition is required to produce the final result.

 29

Figure 12. Wallace Tree multiplier reduction for two 4-bit operands.
Carry and sum bits for the Half Adder shown.

Figure 13 illustrates how a Wallace tree for 6-bit operands is implemented using FAs

and HAs. In this case the partial products corresponding to the 5th column are detailed. A

partial product column array of 5-bits feeds a FA and a HA. The carry-out bits produced

are the inputs for the 2nd stage FA on the next column. The output sum bits are passed

directly to the next stage FA, within the same column. In this manner a partial product

reduction tree can be formed.

Figure 13. Implementation detail for Wallace tree, 5th column (only 2 stages are shown).

FA

FA

5th Column

 11 10 9 8 7 6 5 4 3 2 1
Partial products
from column 5

HA

1st Stage

2nd Stage

Carry-outs for
next column,
next stage

Carry-in from
previous column

C S C S

C S

To 3rd Stage

Final stage
CP addition

Carry & Sum
bits

 30

As can be seen from the example shown in Figure 13, the resulting Wallace reduction

tree is not regular and hence causes difficulties when the circuit layout is implemented.

Nevertheless, the use of 4:2 compressors (exposed in Section 2.2.3), can be organized

into efficient interconnection networks for reducing the partial product matrix in a matter

that is regular and more suitable for implementation. However, careful attention has to

be placed when organizing these compressor trees, because the carry terms within the

4:2 compressor have a weight that is one more than its sum, corresponding to the next

significant bit (column to its left). This means that compressor trees must be built

according to the following:

- The column sum output sum for any compressor tree utilizes the current weight
of its column.

- The column carry output for any compressor tree must utilize the previous weight
of the current column.

Therefore, although compressor trees are traditionally drawn as binary trees, they must

be organized carefully so that the counter outputs are summed together properly. Figure

14 shows an example of an 8-bit compressor tree for three columns. It can be seen that

the carry-in for each element comes from its previous column.

2.4 Decimal Multiplication

Decimal multiplication is considerably more involved and has not being researched as

heavily as its binary counterpart. There are however certain studies and ideas from the

1950’s, when decimal arithmetic was researched significantly, that are worth mentioning

 31

and that sometimes have aided in more modern developments but nevertheless there

are only a very few modern papers on the topic.

Figure 14. Three column 8-bit 4:2 binary compressor tree

One of the main difficulties lies in the generation of the partial products. In the binary

case this could be accomplished by a simple AND gate which produced a single bit per

digit result. In the decimal case however the inputs are not single bits but decimal

numbers usually coded in BCD which implies two 4-bit inputs per digit multiplication. The

result is in decimal as well and therefore a 4-bit output is produced.

One possible form of implementing the multiplication algorithm is to follow the pencil-

and-paper approach, as shown in [31]. In this method a multiplication table is known

beforehand and the result of the multiplication of each multiplicand digit with a multiplier

can be determined by table lookup or combinational logic. A performance improvement

 32

might be obtained if the resulting number is considered separately and divided into left

digit (tens) and right digit (units). An addition accumulator can be used for each digit and

the final result computed at then end. Table 7 shows the decimal multiplication table

used for each component and Figure 15 shows an example of the algorithm.

Table 7. Decimal Multiplication Table, from [31].

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 7 8 9
2 0 0 0 0 0 1 1 1 1 1 2 0 2 4 6 8 0 2 4 6 8
3 0 0 0 0 1 1 1 2 2 2 3 0 3 6 9 2 5 8 1 4 7
4 0 0 0 1 1 2 2 2 3 3 4 0 4 8 2 6 0 4 8 2 6
5 0 0 1 1 2 2 3 3 4 4 5 0 5 0 5 0 5 0 5 0 5
6 0 0 1 1 2 3 3 4 4 5 6 0 6 2 8 4 0 6 2 8 4
7 0 0 1 2 2 3 4 4 5 6 7 0 7 4 1 8 5 2 9 6 3
8 0 0 1 2 3 4 4 5 6 7 8 0 8 6 4 2 0 8 6 4 2
9 0 0 1 2 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 2 1

Left Digit Component Right Digit Component

Nevertheless, with this approach a performance constraint is that the number of

additions required to perform multiplication is one greater than the number of digits in the

multiplier and hence slow when compared to other methods.

An alternative approach, proposed on [31] as well, attempts to generate the partial

product digits by addition instead of a table lookup. This is accomplished by over-and-

over addition where the digits of the multiplier are checked one by one and the

multiplicand is added an equivalent number of times to an accumulator. This approach

however can be very time consuming as the number of additions required is significant.

 33

 916 Multiplicand
 93 Multiplier

Left-Components Right-Components
 Accumulator Accumulator

 2010
 80500 738

 1940
 82510

2678 2678

 85188

Figure 15. Decimal multiplication table Left and Right algorithm example, taken from [31].

To reduce the number of additions and speed up the multiplication a technique called

Doubling and Quintupling can be used. With Doubling the value of twice the multiplicand

is calculated before the actual accumulation takes place. This allows a faster

accumulation as it reduces the number of additions necessary. If the multiplier digit is 5

for example the number of additions required is 3 (2+2+1) instead of 5. The value of

twice the multiplicand can be obtained by adding the number to itself with a decimal

adder. An important speedup can be accomplished however since the number is only

added to itself and some combinations are never present which simplifies significantly

the functions for the output result and does not require a full decimal adder. Quintupling

on the other hand can also be used and it consists on calculating five times the

multiplicand, 5M, before hand. This can be accomplished by noting that a multiplication

by 5 can be performed by a multiplication by 10 (decimal left shifting) and a division by 2

(binary right sift) with certain corrections. In this way a value of 5M can be used for the

accumulation and further reduce the number of additions required for the multiplication.

 34

The discussed ideas have been implemented utilizing mostly a serial or sequential

approach as shown in [35], [36], [37] and [38]. Two proposals however are significant

and are detailed below.

2.4.1 High frequency decimal multiplier

One of the recent research papers on decimal multiplication worth mentioning is the one

by Kenney, Schulte and Erle in [13]. The design proposed presents an iterative

multiplication that uses some of the ideas exposed above, doubling and quintupling. In

this design a set of multiplicand multiples are computed using combinational logic. In this

way the values of 2M, 4M, and 5M are obtained and then divided into two sets of

multiples: {0M, 1M, 4M, 5M} and {0M, 2M, 4M}. Depending on the value of the multiplier

digit, a selector picks a multiple from each set and in that way their addition produces

any value from 0M to 9M in a single operation. The design is further improved by

allowing a two stage pipeline increasing its operating frequency and by utilizing a new

decimal representation for intermediate products which speeds up the process. This

representation, called overloaded decimal, permits the complete use of all 4-bits

comprising the decimal digit and hence the numbers from A16 to F16 are allowed. In this

way the correction back into decimal is avoided in each iteration’s addition. The process

continues until all digits in the multiplier operand are consumed. In the final product each

digit is corrected from overloaded decimal back into BCD by adding 610 when a digit lies

in the range of A16 - F16, which is easily accomplished with two level logic. A carry of

value 1 is also added to the next order digit.

 35

2.4.2 Multiplication with efficient partial product generation

A different iterative multiplication approach is proposed by Erle, Schwarz and Schulte in

[14]. In this design the partial products are calculated in a digit-by-digit multiplier creating

a digit-by-word (multiplicand multiple) signed-digit partial product.

The multiplier operand is examined digit by digit from least significant digit to the most

significant digit and as each partial product is obtained it is accumulated with previous

results to obtain the product. The most significant characteristic in this design is the

recoding of the multiplier and restricting the range of each digit by utilizing a redundant

representation from -510 to 510. In this way the digit multiplier is simplified since there are

no longer two input numbers with ten possibilities each but two inputs with values

ranging from 0 to 5. The sign of the product is obtained simply by looking at the signs of

the input digits. The multiples of 0 and 1 correspond to trivial multiplication results and

therefore the range of input digits considered is virtually restricted to just the numbers

from 2 to 5. This significantly speeds up the process since the possible input

combinations are reduced from 100 to only 16 but nevertheless complicates the final

product calculation since the result needs to be recoded back into BCD from a

redundant representation. Table 8 shows the multiplication table for the recoded

operand digit values.

Table 8. Restricted range, signed magnitude products, from [14].

 36

The problem however with these two last propositions, [13] and [14], is that they have

limited parallelization and hence are difficult to use in a pipelined system. In other words,

the computation of the multiplication in both cases is highly sequential since the partial

products are added by accumulation one by one as they are obtained. This forces the

multiplier to be busy and unavailable for further computations in a pipeline until a result

is computed. Only then it can accept a new operation which is unacceptable in most of

today’s floating-point units. It is therefore desirable to research methodologies which

allow multiplication to be as parallel as possible as, for example, the CSA Multiplier and

the Wallace tree for the binary case.

 37

3. DECIMAL FLOATING-POINT COMPARATOR

As stated earlier, a comparator is an important element in general purpose and

application specific architectures. The design of an efficient and high speed decimal

comparator aids in the performance of these architectures. This design proposes a high

performance 64-bit decimal floating point comparator, compliant with the current draft of

the IEEE-754R standard for floating-point arithmetic. This is the first implementation of a

decimal floating-point comparator compliant with the draft standard. The design can also

be easily extended to support 128-bit decimal floating point numbers and even though it

is not pipelined, it can accommodate pipelining to improve throughput.

3.1 Decimal floating-point comparison

Floating point comparisons are specified by the IEEE 754 standard [1]. The comparator

proposed accepts two 64-bit decimal floating point numbers. In the same way as binary

comparisons, the relation between the two numbers is given by four mutually exclusive

conditions: greater than, less than, equal and unordered. The numbers are unordered

when either one or both operands compared are Not-a-Number or NaN. If the NaN is

specified as a signaling NaN then an Invalid exception flag bit is asserted. The result of

the comparison is represented by Floating-point Condition Codes or FCC and presented

in Table 4. Again, bit FCC[1] is analogous to a greater than flag (GT) and FCC[0] is

analogous to a less than flag (LT).

 38

The design however differs significantly from its binary counterpart mainly because the

current IEEE 754 revision specifies that decimal floating-point numbers are not

normalized and, therefore, the representation is redundant in nature. This implies for

example that numbers 125 x 10-5 and 1250 x 10-6 are both representable and should be

recognized as equal during comparison. Binary floating-point numbers on the other

hand do not allow redundancy. Without redundancy numbers can be compared as pure

binary integer numbers (since biased exponents are used) without the necessity of

separating exponent and coefficient and perform alignment as proposed in [26].

The core of the comparison lies on the magnitude comparator used for the coefficients.

A usual scheme to approach the comparison of the two coefficients is to subtract them.

Taking into account the signs of the operands, the sign of the result determines if the

comparison is greater than, less than or equal when the subtraction result is zero. This

type of approach is advantageous in a system in the sense that the existing decimal

floating-point adder/subtractor hardware can be utilized also for this purpose without an

area increment.

A decimal comparator however is only reasonable if it provides a significant speed

improvement at the cost of a small area overhead when compared to a floating-point

subtraction approach. To its advantage, however, the comparator can benefit from the

fact that the difference between both numbers is not required and that the result of the

subtraction does not need to be rounded and recoded into decimal floating-point

standard again. Furthermore, an adder/subtractor requires a greater working digit

precision (extra guard bits for example) than what can be represented in the format to

account for rounding and normalization [29].

 39

Before subtraction takes place, since the floating-point numbers to be compared may

have different exponents, their coefficients need to be aligned. Once alignment is

performed, and taking into account the signs of the operands, the sign of the subtraction

result determines if the comparison is greater than, less than or equal when the

subtraction result is zero. This type of approach is advantageous in a system in the

sense that the existing addition/subtraction hardware can be utilized also for this

purpose without an area increment. The example in Figure 16 illustrates the classic

approach to comparison where the number 3149 x 1023 is compared to 90201 x 1016.

Figure 16. Classic approach to floating-point comparison.

0 0 0 0 3 1 4 9

7 6 5 4 3 2 1 0

0 0 0 9 0 2 0 1

7 6 5 4 3 2 1 0

A = 3149 x 1023 B = 90201 x 1016

Exponent difference = 7,
coefficient alignment is
necessary

The number with the biggest
exponent (big) is shifted left
to remove leading zeros.

3 1 4 9 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 9 0 2 0 1

7 6 5 4 3 2 1 0

A = 31490000 x 1019 B = 90201 x 1016

?

?

The number with the smallest
coefficient (small) is shifted
right by exponent difference
(3)

Exponent difference = 3,
alignment is still necessary

3 1 4 9 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 9 0

7 6 5 4 3 2 1 0

A = 31490000 x 1019 B = 90.201 x 1019

?

Exponent difference = 0!
Coefficient comparison can
take place.

notice how
the digits
are lost right
after shifting

A > B

 40

The comparator proposed however utilizes a scheme that avoids subtraction for the

coefficient comparison and instead uses a faster approach. It also avoids the use of

extra digits. Only a working precision of 16 decimal digits, as in the standard, is used.

3.2 Comparator Design

An overview of the design of the decimal floating-point comparator is given in Figure 17.

A decoding module, IEEE 754 decoder, converts the decimal64 operands (A and B) into

a format that can be utilized for comparison. The combination field is processed and the

IEEE 754 decoder outputs the number sign, exponent in unsigned 10-bit binary form,

coefficient as a 64-bit BCD encoded number and tells if the number is infinite, a quiet

NaN or a signaling NaN.

Since alignment is needed, the value of the difference between the operands’ exponents

is necessary and subtraction is, therefore, required. The 10-bit unsigned binary

exponents are compared in the Exponent Comparison module. This module contains a

10-bit Carry Look-ahead Adder for fast operation and performs subtraction to determine

which exponent is smaller or if they are equal and the amount of shifting necessary for

the coefficient alignment. This amount is passed to the Coefficient Alignment module.

Alignment is performed by left shifting the coefficient of the number with the greatest

exponent and, thus, reduce its exponent magnitude. Since the representation allows for

16 digits, shifting is limited from 0 (or no shift) to 15 digits. Larger alignment needs are

evaded by treating them as special case scenarios. Consequently, this aids in

maintaining the coefficient digit size (i.e. working precision) restricted to 16 digits

allowing the coefficient magnitude comparison module to yield a result faster given that

 41

its delay and complexity grows logarithmically (log4). These special cases or scenarios

will be treated in the following subsections.

BCDs

4

2x16
digits

LT_mag,
GT_mag

Exponent
Comparison

Coefficient
Alignment

Special case
handling module

Coefficient
Magnitude

Comparator

Operand B

64

Operand A

64

IEEE 754 Decoder

A and B: signs,
Infinite, NaN

20

Coefficient A,
Coefficient B

6

128

Exponent A, Exponent B

Shift
amount

Aligned
coefficients

2

greater_exp,
shift_off-range

Shift_overflow

1

2

1

GT
FCC[1]

LT
FCC[0]

Comparison
Result

Figure 17. Decimal floating-point comparator design.

Figure 18. Coefficient Aligner, logarithmic barrel shifter.

4-bits hardwired
Left Shift

Input Data (64-bits)

1 BCD Shift

2 BCDs Shift

4 BCDs Shift

8 BCDs Shift

Output Data (64-bits)

Overflow
detection

8-bits hardwired
Left Shift

16-bits hardwired
Left Shift

32-bits hardwired
Left Shift

4-bit encoded
shift amount

 42

3.3 Coefficient magnitude comparison

Once the 64-bit/16-digit coefficients are correctly aligned their magnitude can be

compared. The magnitude comparator designed is based on the comparator proposed in

[26] and exposed in Section 2.1 with significant performance modifications tailored

specifically for BCD number comparison.

The two operands A and B are compared in stages. The first stage compares

corresponding 4-bits BCD digits from each operand. Sixteen of these elements are used

in parallel to process the complete 16-digit coefficients. Two output bits (GT and LT)

from each of these elements indicate the result as greater than, less than or equal.Table

9 shows the magnitude comparison where GT[i]j and LT[i]j represent greater than and

less than flags respectively as in Section 2.1 and A[i] and B[i] represent the digit i of the

operand coefficients. The subscript j indicates the stage of the comparison.

Table 9. BCD Magnitude Comparison

GT[i] LT[i] Result
0 0 A[i] = B[i]
0 1 A[i] < B[i]
1 0 A[i] > B[i]
1 1 invalid

The first stage’s elements (one per digit pair compared) have 8 input bits (two BCDs)

and 2 single bit outputs each, producing a truth table of 256 possibilities per output.

Since the numbers compared are BCD encoded, and not binary, the truth table is

simplified by ignoring all entries where the 4-bit BCD numbers are greater than 9. This

reduces the cases to be considered from 256 to 100 (the rest are don’t cares) and

reduces significantly the minimized sum-of-products expressions for LT[i] 1 and GT[i] 1.

 43

Subsequent stages compare the results of the previous stage in the same manner

forming a logarithmic tree, comparing 4-bit GT[i]j sets to corresponding LT[i]j sets of the

result where GT[i]j replaces A[i] and LT[i]j replace B[i] signals. These elements are

further optimized given that GT[i]j and LT[i]j are never both asserted at the same time as

shown in Table 9. The truth table cases are further reduced from 100 to 82 producing

fast and simplified minimized sum-of-products expressions for LT[i]j+1 and GT[i]j+1

considering it is a 4-bit 2 number comparison:

LT[i]j+1 = LT[i+3]j + (GT[i+3] j’ • LT[i+2] j) + (GT[i+3] j • GT[i+2]j’ • LT[i+1] j) + (GT[i+3] j’ •

GT[i+2] j’ • GT[i+1] j’ • LT[i] j)

GT[i]j+1 = GT[i+3]j + (GT[i+2] j • LT[i+3] j’) + (GT[i+1] j • LT[i+3]j’ • LT[i+2] j’) + (GT[i] j •

LT[i+3] j’ • LT[i+2] j’ • LT[i+1] j’)

The number of comparator stages is given by k = log4(4n) where n is the coefficient digit

size. With n = 16 digits a total of log4 (4x16) = 3 stages are needed to yield the resulting

LT and GT for the magnitude comparison of the coefficients.

Figure 19 illustrates an example using this logarithmic tree magnitude comparator. The

operand size is reduced to 4 digits instead of 16 for clarity. The comparison to be

computed is A to B where A = 271310 and B = 219510. Each number is separated in digits

and each corresponding digit pair is compared individually. Subsequent stages group LT

and GT signals together as shown. The final stage yields GT = 1 and LT = 0 as expected

giving A > B.

 44

01000011

CMP A B
G

0 1
LT

CMP A B
G

1 0
LT

CMP A B
G

0 0
LT

CMP A B
G

1 0

LT

CMP A B
G

1 0
LT

0010 0111 0001 0011

0010 0001 1001 0101

Top number A: 2713BCD
Bot. number B: 2195BCD

A > B Result:

Figure 19. BCD magnitude comparator.

3.4 Special case scenarios

The result of the comparison of the two operands cannot always be obtained by a

magnitude comparison of the aligned coefficients. It is possible for either of the operands

to be a NaN (in which case the result should be unordered), plus/negative infinity or

plus/negative zero which are both representable. These possibilities are treated as

special cases and can be determined early in the decoding phase.

The coefficients of the operands cannot always be correctly aligned within the 16-digit

working precision for the magnitude compare module. There are two possibilities that

can arise that are also considered as special cases. The first one occurs when the

absolute value of the exponent difference between operands is greater than 15 and the

second when the alignment of the coefficient produces a digit shifted out (overflow). This

is treated along with the cases for NaNs, infinities and zeros and their respective

signaling flags.

 45

Each of the possible comparison scenario cases sets its own output signals LT and GT

which affect the FCC comparison result. Five different mutually exclusive enable flag bits

are used to indicate when each scenario occurs. The special case handling module, at

the bottom of Figure 17, is the one responsible for determining the result according to

the given situation.

3.4.1 One or both numbers is infinite

If one or both numbers are infinite the comparison result can be obtained right away by

examining the sign of the operands. If the operands are A and B then: A is less than B if

A is negative infinity and B is positive infinity OR if A is negative infinity and B is not

infinity OR if B is positive infinity and A is not infinity.

LT_inf = (inf_A · sign_A · sign_B’) + (inf_A · sign_A · inf_B’) + (inf_A’ · inf_B · sign_B’)

A is greater than B if A is positive infinity and B is negative OR if A is positive infinity and

B is not infinity OR if A is not infinity and B is negative infinity.

GT_inf = (inf_A · sign_A’ · sign_B) + (inf_A · sign_A’ · inf_B’) + (inf_A’ · inf_B · sign_B);

Note that if both numbers are positive infinite or negative infinite the result is 1-1 for

GT_inf and LT_inf signaling an unordered comparison. The signaling flag that indicates

this scenario is given by:

infinite_flag = infinity_A + infinity_B

where infinity_A/B is 0 if numbers are finite and 1 if infinite.

 46

3.4.2 Both operands are zero

In the IEEE-754 current draft the value of zero in decimal is indicated by a zero value for

the number coefficient as opposed to a zero exponent in binary floating-point. If both

operands are zero then both numbers are always equal regardless of their sign taking

into account that +0 and -0 are both equivalent as specified by the standard.

The bits LT and GT remain unmodified (both are zero indicating equality) guarded by the

flag enable bit zero_flag which prevents all other scenario modules to affect the result

(except for infinite numbers). This flag is given by:

zero_flag = (A_zero · B_zero) & infinite_flag’

where A/B_zero is 0 if the number is non-zero and 1 if it is zero.

3.4.3 Exponent difference off-range

If the absolute value of the exponent difference between operands is greater than 15

(indicated by the signal shift_off-range in Figure 17) then the coefficients cannot be

aligned since the working precision allows 16 digits. This means that one of the numbers

is evidently greater in magnitude than the other (e.g. 512 x 1040 and 123 x 10-3). The

comparison result can be obtained by knowing which of the number’s exponent is

greater and by examining the signs of the numbers. The signal greater_exp indicates

which exponent is greater.

A is less than B if exponent B is greater than exponent A (greater_exp = 1) and both

numbers are positive OR if A is negative and B is a positive number OR if both numbers

are negative and exponent A is greater, (greater_exp = 0). Numbers are never equal.

 47

LT_off-range = (greater_exp · sign_A’ · sign_B’) + (sign_A · sign_B’)

+ (sign_A · sign_B · greater_exp’).

A is greater than B if both numbers are positive and exponent A is greater than

exponent B (greater_exp = 0) OR if A is positive and B is negative OR if both numbers

are negative and exponent B is greater (greater_exp = 1).

GT_off-range = (greater_exp’ · sign_A’ · sign_B’) + (sign_A’ ·sign_B)

+ (sign_A · sign_B · greater_exp)

The signaling flag for this case is:

exp_flag = shift_offrange • zero_flag’ • infinite_flag’,

where shift_offrange is determined by calculating the exponents difference in the

exponent compare module (>15).

3.4.4 Alignment shift-out, overflow

If the exponent difference is within range (<15), alignment of the coefficient takes place

by left shifting. If a digit is shifted out (shift_overflow) then the comparison result can be

determined by knowing the signs of the numbers.

The greatest exponent determines which of the two numbers compared is the one being

aligned with respect to the other. When greater_exp = 0, exponent A is the one aligned

and vice-versa. If alignment overflow occurs A is less than B if: A is negative and B is

positive OR if A alignment overflows (magnitude of number A is greater) and it is

negative OR if B alignment overflows (magnitude of number B is greater) and B is

positive.

 48

LT_of = (sign_A · sign_B’) + (greater_exp’ · sign_A) + (greater_exp · sign_B’)

A is greater than B if: A is positive and B is negative OR if A alignment overflows and it

is positive OR if B alignment overflows and it is negative.

GT_of = (sign_A’ · sign_B) + (greater_exp’ ·sign_A’) + (greater_exp · sign_B)

The equation for the signaling flag of this scenario is:

align_flag = shift_overflow · exp_flag’ · zero_flag’ · infinite_flag’

where shift_overflow is asserted during alignment if a digit is shifted out.

3.4.5 Coefficient comparison

If the exponent difference is within range and no shift overflow occurs after alignment

then this indicates that the coefficients are correctly aligned and their comparison can be

executed by the dedicated coefficient magnitude comparator module discussed in

Section 3.3. The output signals from this module (LT and GT) are renamed to avoid

confusion as LT_mag and GT_mag. Nevertheless, the final result of the comparison is

not yet determined as the relationships of greater than, less than or equal do not only

depend on which number’s magnitude is greater but also on their signs. The result of the

comparison in this scenario is then given by the following conditions.

A is less than B if: A is negative and B is positive OR A and B are positive and the

magnitude of A is less than the magnitude of B OR A and B are negative and the

magnitude of A is greater than the magnitude of B.

LT_cmp = (sign_A · sign_B’) + (sign_A’ · sign_B’ · LT_mag) + (sign_A · sign_B · GT_mag)

 49

A is greater than B if: A is positive and B is negative OR if A and B are both positive and

the magnitude of A is greater than B OR if both numbers are negative and the

magnitude of A is less than B.

GT_cmp = (sign_A’ · sign_B) + (sign_A’ · sign_B’ · GT_mag) + (sign_A · sign_B · LT_mag)

Mag_flag determines if the outputs GT_cmp and LT_cmp should affect the final result

and it is given by:

mag_flag = align_flag’ · exp_flag’ · zero_flag’ · inifinite_flag’

In other words, the magnitude comparison of the coefficients is only valid (through

mag_flag) if none of the previous enable flags was triggered.

The final equations for the comparator considering all possible scenarios are:

GT = unordered + ((GT_inf · infinite_flag) + (GT_off-range · exp_flag)

+ (GT_of · align_flag) + (GT_cmp · mag_flag)),

LT = unordered + ((LT_inf • infinite_flag) + (LT_off-range • exp_flag)

 + (LT_of • align_flag) + (LT_cmp • mag_flag)).

The signal unordered is asserted when either of the operands is a NaN. If this occurs the

result is overridden and is always unordered (GT=1, LT=1) as specified in Table 4.

The signals GT and LT are finally produced in the special case handling module. It is the

one that receives the flags indicating the different scenarios and is responsible for the

handling of the different comparison cases described in this section.

 50

3.5 Combined binary floating-point, two’s complement and decimal floating-

point comparator

Given the similarity of approaches of the decimal comparator described and its binary

counterpart exposed in Section 2.1, a single design capable of handling 32-bit and 64-bit

two’s complement numbers, single and double precision binary floating-point and 64-bit

decimal floating-point numbers is interesting since it would result especially useful to

reduce costs in processors, by allowing the same hardware to be used to compare all

three data types.

The main difference between the binary and the decimal comparator schemes is that

decimal floating-point representation is redundant, as stated before, and therefore

requires alignment while binary does not. Binary 32-bit floating-point numbers only

require a sign extension given that 32-bit and 64-bit number formats can both be

handled by the same hardware. The logic that can be shared between both cases

however is the core of the comparators, the magnitude comparison module which, in the

decimal case, comes into effect after alignment.

The magnitude comparator logarithmic tree for the decimal case is composed of

comparator elements that handle 4-bit BCD digits. Each element had two digit inputs

(two 4-bit BCDs) as opposed to handling 2-bit pairs as in the binary case (Section 2.1).

Optimization of the BCD element was possible since in BCD no numbers are encoded

after 9hex and hence Ahex, Bhex, Chex, Dhex, Ehex and Fhex can be ignored providing further

simplification. An additional benefit is the fewer number of stages necessary since 4-bit

digits are compared instead of 2-bit pairs. Nevertheless the binary pair comparator

element can be used for the decimal case instead of the BCD and provide a way of

saving hardware since it would be used by both formats. Tests and simulations were run

 51

however to see the impact of using the bit pair comparison module from the previous

section for the decimal comparator and the results justified the joint design of the module

proposed. Furthermore, less area would be required when implemented on a system

since the decoding of the IEEE 754 decimal floating-point can be handled by the decimal

floating-point unit potentially already existent in the system.

An overview of this combined design is shown in Figure 20. The 3-bit signal Sel

determines the format type of the operands, 32-bit or 64-bit two’s complement, binary

floating-point or decimal floating-point. If the operands are binary then the sign extension

module sign extends 32-bit numbers into 64-bit so that the same hardware can be

utilized. In the decimal case the input for the magnitude comparator is obtained after

decoding and coefficient alignment. The exception and special case module handles the

result of the magnitude comparator taking into account the signs of the numbers, the

data type and the flags for overflow, off-range and others exposed in Section 3.4, for the

decimal case.

 52

 Operand A Operand B

6464

Sel

Decimal IEEE-
754 Decoder

Sign Extension

Logarithmic Magnitude
Comparator

Exponent Comparison,
Coefficient Alignment

Exceptions, special
cases handling

2 LT, GT

20 128
Coefficients Exponents

3

1 1

GT
FCC[1]

LT
FCC[0]

Comparison
Result

6

2x64 2x64

Infinites,
Signs, NaNs

Off-range,
greater_exp
Flags

3

 2
Binary/Decimal

BCD

BINARY DECIMAL

Figure 20. Combined two’s complement, binary and decimal floating-point comparator.

 53

4. EXPERIMENTS FOR DECIMAL FLOATING-POINT DIVISION BY

RECURRENCE

One method widely used for division is performed by recurrence or sequentially. In this

method, the quotient is represented by a chosen radix and a digit is produced after each

iteration. The quotient digit can also be selected from a redundant digit set as this

approach has noteworthy speed and cost advantages.

The main difficulty using a digit recurrence algorithm lies in the quotient digit selection

function or QDS. Several studies have been made to simplify or improve this function.

The Kornerup study presented in [40] shows an accepted analytical approach to

determine a minimum number of digits required for the QDS function. This theory,

however, is specific to the binary case and, hence, requires modification to be applied to

the decimal case. This study attempts to provide an insight into the implementation

feasibility of a decimal digit recurrence divider utilizing the recurrence division theory.

4.1 Decimal Division by Digit Recurrence Theory

As discussed previously, when implementing division by recurrence, the quotient digit of

radix r lies within a symmetric redundant selection set of consecutive integers given by:

2
 },...,1,0,1,...,{ raaaDq j ≥∀=∈ , (1)

 54

such that ā = – a. The redundancy factor or measure of redundancy for a digit set is

defined by:

1−
=

r
aρ with 1

2
1

≤< ρ . (2)

The main equation when implementing division by recurrence for a dividend, x, and

divisor, d, is given by [41]:

w[j+1] = rw[j] – dqj+1 , (3)

where r denotes the quotient radix, qj+1 the selected quotient digit and w[j] the partial

remainder in iteration j. Naturally, in our case, the radix is decimal or r = 10.

In order for the recurrence in (3) to be valid through all iterations and guarantee a result,

two basic conditions for the QDS should be met: containment and continuity. And, the

value of the quotient digit qj+1 is given by the selection function:

qj+1 = SEL(rw[j], d). (4)

The containment condition specifies that the quotient digit selected must maintain the

next partial remainder bounded to satisfy convergence of the algorithm, or:

djwd ⋅≤≤⋅− ρρ][. (5)

This is summarized in Robertson’s diagram, shown in Figure 21, where the limits on the

vertical axis for w[j+1] are noted by the horizontal doted lines. The selection interval of

rw[j] for which it is possible to select qj+1 = k and keep the next residual bounded is

defined as [Lk (d), Uk (d)]. Each interval, as shown in Figure 21, defines a specific interval

for a given quotient digit (e.g. qj+1 = k–1 produces the interval given by [Lk-1 (d), Uk-1 (d)]).

 55

Expressions for Lk (d) and Uk (d) can be obtained from Robertson’s diagram defined by

[41][29]:

dkdLk ⋅−=)()(ρ and dkdUk ⋅+=)()(ρ . (5)

Figure 21. Robertson's diagram showing selection intervals for q=k-1 and k.

The continuity condition ensures that for any possible rw[j] (horizontal axis in

Robertson’s diagram) there exists a selectable quotient digit k (i.e. rw[j] lies always

within a selection interval [Lk,Uk]), otherwise a quotient digit would not be selectable.

Therefore, the overlap present between two consecutive intervals must exist or be equal

to zero, at minimum, or Lk ≤ Uk–1. This condition is imposed by:

1−≤≤ kkk USL , (6)

where Sk denotes the partition points within the selection interval [Lk ,Uk-1] such that the

QDS returning qj+1 may be defined by [40]:

kqSjrwS jkk =⇒<≤ ++ 11][. (7)

rw[j]

w[j+1]

ad

dρ−

dρ

drρ

kd (k-1)d

Uk Uk-1 Lk Lk-1

Interval for
 q=k-1

Interval for
 q=k

drρ−
-

 56

4.2 Quotient Digit Selection

The overlap is critically important, since it allows an inexact value of the divisor and the

partial remainder to determine a suitable quotient digit. In this sense, only a limited

number of leading digits of both divisor and partial remainder are required. With this

consideration, the truncated partial remainder, rŵ[j], is defined as:

rwjrwjwr ε+=][][ˆ (8)

where εrw denotes the truncation error. Carry-save representations are often utilized for

division by recurrence algorithms when computing (3), because carry-propagate adders

would lengthen the critical path excessively. The truncation error, using a carry-save

representation, is defined by [40]:

])[ˆ(20 jwrulprw ⋅<≤ ε . (9)

In a similar way, the truncated divisor is given by:

ddd ε+= ˆ with)ˆ(0 dulpd <≤ ε . (10)

Figure 22. Truncated inputs to the QDS function.

Partial Remainder, rw[j]

t

.
Divisor, d

u

.

 57

Figure 22 illustrates the truncation of both divisor and partial remainder. The number of

digits to the right of the radix point is given by u and t, respectively. Since both divisor

and partial remainder utilize decimal representations or radix 10, it follows that:

t
iwrulp −= 10)ˆ(, (11)

udulp −= 10)ˆ(, (12)

where ulp indicates unit in the last place (less significant digit). Therefore, the truncated

divisor can be represented as an integer multiple m of an)ˆ(dulp :

umd −×= 10ˆ . (13)

Division by digit recurrence theory is often implemented for fractional normalized divisors

[41]. Figure 23 illustrates the reasoning behind this, since a non-normalized divisor

would require an infinite precision as d approaches zero. Hence, the values of d are

normalized and bounded by:

110
1 <≤ d , (14)

which implies, due to (13), that:

uu m 1010 1 <≤− . (15)

Following the analysis approach in [40], Figure 23 shows the partition of the interval [Lk

,Uk-1] by Sk, defined in (6), as a function of d̂ and not d. Below Sk, the value of the

selected quotient digit is q = k–1, and above Sk, q = k.)ˆ(dSk is now a staircase function

due to the truncation of both divisor and partial remainder and indicates rectangles

 58

where a given quotient digit can be selected due to quantization. The value of)ˆ(dSk
 can

also be expressed as an integer multiple of ulp(rŵi) by constants given by k and m, or

sk,m:

t
mkk sdS −×= 10)ˆ(, . (16)

Figure 23. PD Diagram, Sk selection points as a function of truncated d, [40].

The dotted rectangle in Figure 23 has its lower left hand corner at))ˆ(,ˆ(dSd k and is limited

by:

)ˆ(ˆˆ dulpddd +<≤ (17)

and)ˆ(2)ˆ()ˆ(ikik wrulpdSrwdS ⋅+<≤ . (18)

The study by Kornerup defines boundary conditions on this rectangle to determine the

minimum amount of digits after truncation for the partial remainder and the divisor; t and

u respectively. The rectangle should lie above Sk and, therefore, the boundary condition

on its right hand corner yields:

d

rw[j]

1/r 1

Lk

Uk-1

Sk

.

 59

)ˆ())ˆ(ˆ)(())ˆ(ˆ(dSdulpdkdulpdL kk ≤+−=+ ρ . (19)

It follows, using (5), (12) and (16):

⎡ ⎤ t
mk

uu smk −−− ×=+⋅− 10)1010)((,ρ , (20)

⎡ ⎤ mk
ut smk ,)1)((10 =+−− ρ . (21)

The height of the rectangle is of 2·ulp(rŵi). Nevertheless, consecutive rectangles aligned

vertically are spaced by one ulp(rŵi) (resolution of Sk). Overlapping rectangles from the

bottom should have a value of k – 1 and, therefore, the midpoint on the left edge should

lie under Uk-1. This boundary condition, combined with (5), yields:

dkdUwrulpdS kik
ˆ)1()ˆ()ˆ()ˆ(1 ⋅+−=≤+ − ρ . (22)

Again, using (11) and (16) on this inequality gives:

⎣ ⎦1)1(10, −+−≤ − mks ut
mk ρ . (23)

Combining (21) and (23) yields floor and ceiling expressions for the possible values of

Sk:

⎡ ⎤ ⎣ ⎦1)1(10)1)((10 −+−≤+− −− mkmk utut ρρ . (24)

Rearranging terms results in an expression of the form:

⎡ ⎤ ⎣ ⎦mCABAm)(+≤+ , (25)

 60

with A = 10 t–u (k – ρ), B = 10 t–u (k – ρ) + 1 and C = 10 t–u (2ρ –1). For the nontrivial

solution, where the quotient selected is zero and given condition (2), it is seen that A ≥ 0,

B ≥ 1 and C > 0 for k ≥ 1. For condition (25) to withstand, it is necessary that C·m ≥ B.

Nevertheless, the stronger condition C·m – B ≥ 1 allows a minimum of one integer

between the floor and ceiling functions yielding:

11)(10)12(10 ≥−−−− −− ρρ km utut . (26)

This condition should hold at the extreme case for the values of m and k in order for (25)

to be valid. This occurs at the maximum value for the quotient digit k = a and, due to

(15), at the minimum case when m = 10u–1. Rearranging terms gives:

2
)(10)12(1010

1 ρρ −−−
≤

−−
− au

t , (27)

which produces a minimal value for t for a known u. Furthermore, it is clearly seen that

the numerator in (27) should be positive enabling a minimum u to be obtained as:

)(10
1210
ρ

ρ
−
−

<−

a
u , (28)

4.3 Considerations for the IEEE-754 Decimal Case

The application of the previous analysis, with radix = 10, to the IEEE 754 revision draft

for decimal floating-point requires some considerations. Most significantly, the revision

draft specifies that decimal floating-point numbers are not normalized and, therefore, the

representation is redundant in nature. This implies for example that numbers 125 x 10-5

and 1250 x 10-6 are both representable and are equal in magnitude. The standard also

specifies that the mantissa is represented as an integer and not a fraction with a leading

 61

binary 1, as in the binary case (i.e. 0.1xxxx…2). This complicates the algorithm

application, since both the divisor and dividend operands in the binary case are limited in

range to 0.12 ≤ x < 12.

Unsigned integer division has operands 0 ≤ x < rn – 1 and 0 ≤ d < rn – 1. The division

result produces a quotient q such that [41][29]:

⎣ ⎦dxq /= . (29)

As mentioned previously, basic integer division algorithms require full-precision for the

QDS function. To apply fractional division theory, the divisor d should first be normalized,

by shifting, so that the most-significant bit is a nonzero digit. With a shift of p digits, the

normalized divisor d* is:

dd p10* = . (30)

Consequently, the resulting quotient is:

⎣ ⎦ ⎣ ⎦*/10/ dxdxq p== . (31)

To use the algorithm, fractional operands are modified as defined by:

n
f rxx −×= , (32)

n
f rdd −×= * . (33)

Expressions (27) and (28) can be used to obtain minimum bounds for the number of

decimal digits of the partial remainder and divisor, t and u respectively. There is a

 62

choice, however, in the value of a, or the amount of redundancy as shown in (1). In the

decimal case a can vary from 6 to 9.

As redundancy is incremented (a increases), the overlap described in (6) is augmented

thus simplifying the QDS function by allowing for selection of the quotient digit and

consequently a smaller look-up table. On the other hand, a greater value of a

complicates the generation of the quotient digit multiples (qj+1d) needed for the iterative

algorithm (3). For example, with a = 9 the possible divisor multiples required are (–9d, –

8d, …, –1d, 0, 1d, …, 8d, 9d). Nevertheless, as a is decremented and the possible

quotient multiples are reduced, the additional digit inputs to the QDS function are

incremented as more precision is required. Since each digit is a decimal digit the size of

a look-up table for the QDS would increase by an order of magnitude with each

additional digit required. Therefore, the smallest look-up table size is achieved with a =

9 and, hence, a maximum redundant digit set with ρ = 1, from (2). In this case, (28) and

(27) yield: u ≥ 2 and t ≥ 2 implying that only 2 decimal digits are required for the divisor

and the partial remainder.

The shifted partial remainder, however, can still be within the allowed boundary (5) but

be greater than 1 in which case integer digits are needed. Since the divisor is normalized

(30) its range is limited to 1/10 ≤ d < 1, this observation is also shown in Figure 23 with

the vertical line at 1/r. The possible range for the shifted partial remainder is then given

by:

1010][10][<⋅≤⋅= djwjrw ρ , (34)

due to the containment condition given in (5). This implies that at most a single integer

digit is required. The total number of digit inputs to the QDS function is 5 digits, 2

 63

decimals for the divisor (. xx) and 2 decimals and an integer for the partial remainder (x.

xx). A table based QDS function will then have 5 decimal inputs and a decimal output.

Considering a 5-bit encoding for the signed decimal quotient digit output the total

number of QDS entries in the table would be:

105 × 5 bits = 100,000 × 5 bits.

The division by recurrence algorithm requires a subtraction and a multiplication of the

truncated divisor by the quotient digit which can be positive or negative. Since the

numbers treated are decimal this complicates significantly the arithmetic operations

involved.

Furthermore, a significant complication of using a maximal redundant quotient digit set is

the generation of extra divisor multiples (–9d, …, 0, …, 9d), as discussed previously.

The proposed scheme utilizes ideas from decimal multiplication presented in [31]. The

divisor multiples (qj+1d product) generation starts by computing a priori the multiples 0, d,

2d, 4d and 5d which can be added in combination to create all possible divisor multiples

from 1d to 9d. Figure 24 shows an overall scheme of the decimal division by recurrence

design.

 64

Decimal IEEE-754 Decoder

Divisor
64

Dividend
64

Normalization, initial w[0]

Exponents

Decimal left shift

QDS Table

Excess-3 Converter

w[0]

rw[j]

w[j+1] = rw[j] – qj+1d

x .xx .xx

Divisor, d

qd product
generation (qj+1d)

qj+1

TRUNCATED

Excess-3
subtractor

Quotient result,
rounding, scaling

Coefficients
(BCD)

IEEE-754 Recoder

Special cases,
rounding

Decimal
Scaling

RESULT

wS wC

Decimal IEEE-754 Decoder

Divisor
64

Divisor
6464

Dividend
64
Dividend

6464

Normalization, initial w[0]

Exponents

Decimal left shift

QDS Table

Excess-3 Converter

w[0]

rw[j]

w[j+1] = rw[j] – qj+1d

x .xx .xx

Divisor, d

qd product
generation (qj+1d)

qj+1

TRUNCATED

Excess-3
subtractor

Quotient result,
rounding, scaling

Coefficients
(BCD)

IEEE-754 Recoder

Special cases,
rounding

Decimal
Scaling

RESULT

wS wC

Figure 24. Decimal division by digit recurrence implementation.

 65

5. DECIMAL PARTIAL PRODUCT REDUCTION

A few of the approaches to decimal multiplication were described in Section 2.4. The

different methods discussed included serial or iterative accumulate addition to obtain the

multiplication result. Parallel multiplication however is used extensively in binary floating-

point hardware ([42], [43]) and is of importance if performance is to be extended to the

decimal case.

Figure 25. Multiplication Algorithm

Parallel multiplication can be divided in three main steps, as illustrated in Figure 25. The

first step entails partial product generation where the multiplicand multiples are obtained.

Then, partial product reduction occurs using a fast addition scheme to reduce the partial

products to two. Finally, a carry propagate addition is necessary to obtain the final result.

The overall performance of the multiplier, therefore, is closely related to the individual

performance for these stages. However, improvement in partial product

7 9 8
x 3 4 7
5 5 8 6

3 1 9 2
+ 2 3 9 4

2 7 6 9 0 6

Partial Product
Reduction

Multiplicand

Multiplier

Final Carry
Propagate Addition

Multiplicand
multiples (Partial
Products)

 66

reduction for example, often increases complexity in partial product generation. This is

the reasoning behind binary methods, like Booth encoding, where the number of partial

products to be added is reduced at the expense of more complex multiplicand multiple

generation through recoding [44][45]. Unfortunately, this condition can offset the gains in

performance of the resulting multiplier.

As discussed in Section 2.3, binary multiplication with tree multipliers typically use carry-

save adders to repeatedly reduce the partial product matrix until only two rows remain

which are then added using a fast carry-propagate adder to form the final product.

Although tree multipliers are typically much faster algorithmically than array multipliers

(see Section 2.3), they produce an irregular structure which can affect their performance.

Traditional decimal codes are different than binary codes in that more information per bit

has to be coded into the digital logic. The most common decimal encoding is 4-bit Binary

Coded Decimal (BCD) which represents decimal codes 0 through 9. This code is also

referred to as BCD-8421 where the numbers 8421 represent the weight of each bit in the

encoding. BCD-8421 has the advantage that each decimal number is represented in a

common binary number system and, hence, some of the binary operations can be

performed with regular binary logic structures [31].

Although BCD-8421 codes are straightforward, they have two distinct disadvantages.

First, the binary representation of ten through fifteen has no meaning and must be

eliminated. Another major disadvantage is that BCD-8421 is not self-complementing,

whereas, a self-complementing BCD code is one where the 9's complement of the

decimal digit may be obtained by changing the 1's to 0's and 0's to 1's (bit inversion)

[31]. The 9's complement operation is necessary to perform subtraction in much the

 67

same way as two’s complement numbers are used to perform subtraction with binary

numbers.

Although these two disadvantages make BCD-8421 more challenging to work with,

simple Boolean logic can be used to obtain its 9’s complement:

00 TC =

11 TC =

21212 TTTTC +=

3213 TTTC ++=

where the letters T and C refer to true and complement digit, respectively.

Efficient addition of decimal numbers is an interesting topic since it is not only used as a

standalone operation but also required in other calculations like multiplication and

division. Multi-operand addition, where more than two numbers are added, is of

particular importance since it can be used to reduce the partial products that occur in a

multiplication operation (see Figure 10). To avoid the time consuming carry propagation

in multi-operand addition, two different schemes used in binary radix numbers are also

applicable to the decimal case. These are signed-digit addition and carry-save addition,

explored in this work.

 68

5.1 Decimal Carry-Save Addition

One of the most common elements within partial product reduction is the full adder cell

or the 3:2 counter, as stated in Section 2.2.1. As with the binary case, decimal partial

product reduction can also utilize 3:2 counters except that each digit is 4-bits long to

accommodate the BCD-8421 encoding. In this case, four 3:2 counters are used for each

bit of the BCD digit as shown in Figure 26. Figure 27 shows how this scheme would be

implemented with a block level diagram.

Figure 26. Binary full adder cells used for decimal carry-save addition.

The result of the addition is obtained by adding the sum and the shifted carry vector.

Each carry bit in H, in Figure 26, represents the carry input for the next significant bit.

The addition of both vectors assumes that H is shifted left one bit or, in binary, multiplied

by two.

3 0 0 1 1

7 0 1 1 1

 + 8 1 0 0 0

12 1 1 0 0

3 0 0 1 1

A:

B:

C:

S:

H:

Decimal BCD
8 4 2 1

BINARY
FULL
ADDER

SUM

Carry

 69

Figure 27. Block diagram for full adder cells used for decimal Carry-Save addition.

The function of the 3:2 counter or full adder can be summarized using the following

equation:

A + B + C = S + 2 x H

where A, B, C, S and H are decimal numbers with

∑
=

×=
3

0i
ii raA

such that ai is the bit value of A at position i and ri the corresponding weight (r3r2r1r0 =

8421 for BCD-8421). Although using binary 3:2 counters is relatively simple, it has one

major disadvantage for BCD-8421 coding. As seen in Figure 28, the sum vector S is out

of range since the sum S = 1100BCD is not a valid decimal representation and the

addition of S and H yields a result in binary as opposed to correctly displaying a valid

C BCD-8421 B BCD-8421 ABCD-8421

FA
C S

FA
C S

FA
C S

FA
C S

4

4

4

• • •

• • •

•

8

4

2

1

•

•

• •

• •

4

4

S H

 70

BCD-8421 number. Consequently, the conversion to BCD would require additional logic

and, hence, it is not efficient.

Figure 28. Result of the addition, carry vector shifted left.

One solution can be obtained by using a different weighted BCD representation during

the summation process. That is, the bits are recoded to another valid decimal

representation which allows the carries to be generated correctly when a shift occurs. To

find the best BCD representation to utilize for the recoding, it is important to look at an

important property of adding two numbers. In order to avoid the out of range result,

decimal codes are employed such that the sum of the weights of each 4-bit decimal

code is equal to 9. In the previous example, since the code BCD-8421 was used, it was

possible to represent digits with a value greater than 9 (10 through 15, since we had 4-

bits BCD). If the maximum possible value was 9 instead (since the sum of the weights of

all 4-bits is 9) then the result will never be out of range. This property is also utilized with

binary signed digit adders to avoid carry-propagation [29].

The following BCD codes: 5211, 4311, 4221, and 3321 can satisfy this condition.

Additionally, an advantage of these encodings is that they are self-complementing,

meaning that the 9's complement of the number can be obtained by a simple bit

inversion of each of the 4-bits [31]. Using this trivial simplification allows the ten's

12 1 1 0 0

 + 6 0 0 1 1 -

S :
W = 2 x H :

Decimal
Value

BCD
8 4 2 1

Left-shifted

18 1 0 0 1 0

Out of
range [0,9]

Result in
binary, not in
BCD-8421

 71

complement of the number to easily be obtained in much the same way as the two's

complement for binary numbers is performed. Table 10 shows some of the mentioned

codes.

Table 10. 8421, 4221 and 5211 BCD representations.

Decimal BCD-8421 BCD-4221 BCD-5211
0 0000 0000 0000
1 0001 0001 0001 | 0010
2 0010 0010 | 0100 0100 | 0011
3 0011 0011 | 0101 0101 | 0110
4 0100 1000 | 0110 0111
5 0101 1001 | 0111 1000
6 0110 1010 | 1100 1001 | 1010
7 0111 1011 | 1101 1100 | 1011
8 1000 1110 1110 | 1101
9 1001 1111 1111

Furthermore, since the value of 2xH (the carry vector) is required to obtain the final sum,

a BCD coding that facilitates a multiplication by 2 is desirable to use. This is because, in

binary, a multiplication by 2 is easily accomplished by a bitwise left shift. However, in the

self-complementing codes shown above the weights do not increase in powers of two

and, hence, shifting cannot be applied directly. Nevertheless, if the number is re-

encoded this might be accomplished in a simpler way.

Figure 29. Multiplication by 2, recoded result.

H: 6 1 0 0 1

Decimal BCD
5 2 1 1

New
encoding

W=2xH: 12 1 0 0 1
10 4 2 2

 BCD

 72

One potential solution for recoding the carries into a self-complementing output is to use

the 5211 code, shown in Table 10. By using this code, a multiplication by 2 would result

in a 10, 4, 2, 2 encoding, as seen in Figure 29 without the need to even modify the bits.

Although this encoding is not useful, since it does not satisfy the two conditions

described earlier (self-complementing and sum in-range), the most-significant bit can be

passed to the next significant digit or column. The resulting BCD code will be 4221 as

illustrated in Figure 30.

In summary, if a BCD-5211 recoding is utilized, a shift asserts a carry-out for the 10-

weight and allows the decimal code to be transformed to BCD-4221, which is self-

complementing. The bit shifted out is the carry out to the next decimal digit and the

space opened in the least significant bit position after the shift would be available to

receive a carry input from the previous significant digit. For the least-significant decimal

digit, it is assumed that this value is 0.

Figure 30. Multiplication by 2, result in BCD-4221.

1 0 0 1

Decimal BCD
5 2 1 1

New
encoding

1 0 0 1 -
 4 2 2 1

BCD

Left Shift

 4 2 2 1
BCD

W=2 x H : 12

H : 6

Digit X 1 Digit X 10

 73

Figure 31. Decimal 3:2 counter with BCD recoding example.

Figure 31 also shows the multiplication by 2 operation on H. H is shifted left after

recoding allowing a carry-in to be accepted (“-” in the example) and generating a carry-

out (“1” in the figure). The value of 2xH is then composed of a decimal digit and a single

bit decimal carry-out. The decimal digit is W with a value of 1000BCD-4221 or 410

considering a carry-in of zero to its LSB. The single bit carry-out of 1 represents a value

of 1 in the tens place and, together with W = 4, represents 14. W has the same

arithmetic weight as S. The operation is summarized as:

A + B + C = S + 2 x H = S + (Carry-out x 10) + W + Carry-in.

The following figure shows the implementation of the decimal 3:2 counter:

3 0 1 0 1
7 1 1 0 1

 + 8 1 1 1 0
4 0 1 1 0
7 1 1 0 1
7 1 1 0 0

A:
B:
C:

 S:
 H4221:
 H5211:

Decimal
Value

BCD
4 2 2 1

BINARY
FULL
ADDERS

Recoding
BCD4221 to
BCD5211
Left Shift (x2)

14 1 1 0 0 - W in BCD4221 W=2xH:

Result =S+2·H=S+W=18 Carry-in

Carry-out

 74

Figure 32. Block diagram for decimal 3:2 counter [44].

Although this recoding works nicely, a conversion is necessary to convert the input of the

3:2 counter into the desired decimal code (4221). Using Table 10, a BCD-8421 number

can be converted into BCD-4221 through simple logic utilizing the following Boolean

equations:

H0 = D1

H1 = D1 + D3

H2 = D3

H3 = D2 + D3,

where D3D2D1D0 represent the BCD-8421 digit and H3H2H1H0 is the BCD-4221 decimal

digit. The counter then takes three 4-bit decimal numbers as inputs in BCD-4221

decimal code. These binary full adders perform the bit-wise addition which results in a

x 2

ABCD-4221 BBCD-4221 CBCD-4221

3:2 Counter
C S

4

4

4

4

4

Carry-in

1

1
Carry-out

SBCD-4221 WBCD-

Single-bit carry-out after
recoding and left shift.

‘X10’ going to next column

Both S and W
have the same

arithmetic weight

Single-bit carry-in after
recoding and left shift.
From previous column

4

 75

sum vector S and a carry vector H, both in BCD-4221. When H is recoded into BCD-

5211, this allows the left shift to obtain the correct decimal value in BCD-4221.

It is important to see that by using recoding the correct result is obtained. Previously,

without recoding, binary counters produced an incorrect result. By using a scheme that

allows the carry-out to be in the correct notation (i.e. BCD-4211 code) the result is

produced correctly.

Recoding from BCD-4221 to BCD-5211 can be accomplished using the following

Boolean logic expressions, derived from Table 10 [44]:

]0[]1[]2[])0[]1[]2[(]3[]3[hhhhhhhw ⋅⋅+++⋅=

]1[]2[)]0[]3[(])0[3(]1[]2[]2[hhhhhhhhw ⊕⊕⋅+⊕⋅⋅=

])1[]2[(]0[]3[])0[]3[(]1[]2[]1[hhhhhhhhw ⊕⋅⋅+⊕⋅⋅=

]0[]3[])1[]2[(]0[hhhhw ⊕⊕⋅= ,

where w3w2w1w0 represent the BCD-5211 digit and h3h2h1h0 the digit in BCD-4221. This

logic is implemented in the block that performs the multiplication of the carry vector by

two (“x2” in Figure 32).

5.2 Delay analysis of the decimal 3:2 counter by recoding

An insight to the performance and flow structure of the 3:2 decimal counter proposed in

[44] (shown in Figure 32) can gained by utilizing the ∆ delay model frequently used for

binary arithmetic delay analysis. The use of ∆ delays aid in considering design trade-

 76

offs in a circuit. Consider the case of a regular 1-bit Full Adder or 3:2 counter. Typically a

3:2 counter can be implemented using nine logic gates as shown in the following figure:

Figure 33. Nine gates Full Adder / 3:2 counter cell.

If the delay through a logic AND or OR gate is estimated to be of 2 ∆ delays and the

delay through an inverter gate of 1 ∆ then we have the delay of the paths, from inputs to

outputs:

∆=→
∆=→
∆=→

∆=→

4
5
9,
10,

outin

in

out

CC
SumC
CBA
SumBA

i.e. it takes 10 ∆ delays for the signal to propagate from A or B to the Sum output for

example. In the same way, the delay through the “x2” block can be obtained by looking

at the logic equations used to implement it. This block consists of a recoding from BCD-

4221 to BCD-5211 and a single bit hardwired left shift. The left shift does not incur a

delay while the BCD recoding can be implemented using simple two level logic. Its delay

therefore consists of 2 gate delays and an inverter delay used to create the logic

predicates, resulting in 5 ∆ . Consequently the delay of the complete decimal 3:2 counter

 77

of Figure 32, and considering the delay model for the binary 3:2 counter shown above, it

requires:

∆=→ 10, SBA

∆=∆+∆=→ 1459, WBA

∆=→ 5SC , through carry-in path,

∆=∆+∆=→ 954WC , through carry-in path.

This analysis can be used to evaluate the feasibility of the proposed partial product

reduction scheme described in the next section, using decimal 4:2 compressors.

5.3 Decimal 4:2 Compressor Trees

Decimal partial product reduction trees that use the BCD recoding technique are

different than their binary counterpart in the way the weights are handled. Binary partial

product reduction trees always take the carry and pass it onto the next column as shown

in Figure 14. This occurs because the carry-out is at a more significant weight than the

sum. However, using the coding discussed in the previous section, it is apparent that for

the decimal case this is completely different as it produces a carry-out digit at the same

weight as the sum and a carry-out bit to the next significant digit.

The use 3:2 counters for partial product reduction is common in binary arithmetic. In [44],

partial product reduction is handled by using a tree of decimal 3:2 counters, in a similar

fashion to a Dadda tree [46]. This is shown in Figure 34 where the X2 block represents

the recoding logic discussed earlier.

 78

Figure 34. Decimal 9:2 counter, adapted from [44].

In [44], partial product reduction is handled by using a tree of decimal 3:2 counters, in a

similar fashion to a Dadda tree [46]. This is shown in Figure 34 where the X2 block

represents the recoding logic discussed earlier where a multiplication by 2 is obtained

through BCD recoding. It is apparent however from Figure 34 that the resulting circuit is

very irregular difficulting its implementation as its interconnection is complex and most

likely affecting its performance and area consumption, in part due to unpredictable long

wiring and its general layout.

Regularity is one of the reasons why in binary arithmetic the Weinberger 4:2 compressor

[30] is used for partial product reduction. Its extension to the decimal case is therefore

an interesting problem as it can provide performance enhancements for partial product

reduction.

W S

3:2
Counter

3:2
Counter

3:2
Counter

3:2
Counter

3:2
Counter

3:2
Counter

3:2
Counter

X 2 X 2 X 2

X 2 X 2

X 2

X 2

 79

Apart from its improved regular structure, the proposed decimal 4:2 compressor has the

advantage that the carry-in is no longer dependent on the carry-out, as shown in Figure

35, breaking the carry chain path. This gives compressors a significant advantage over

traditional carry-save adder trees in that it can expedite processing the carry chain while

still maintaining a regular structure. Although compressor trees are different than

traditional counters, they can be organized into efficient interconnection networks for

reducing the partial product matrix. This allows partial product reduction trees to be built

easily and with regularity.

Figure 35. Proposed decimal 4:2 compressor. All signals are decimal (4-bits).

The new decimal compressor’s structure is similar to the binary case except for the fact

that in binary the signals Cout and W are both passed to the next column since their

weight corresponds to the next significant bit, unlike S. In decimal however both Cout and

W are composed of 2-digits, a “tens” digit and a “units” digit where a BCD number

represents the “units” weight and a single bit the “tens” value. The “tens” single bit is

generated in the X2 blocks during shifting as a carry-out and, at the same time, a carry-

x2

Cout

Cin

 S W

BCD-4221

BCD-4221

x2

C 3 : 2 S

C 3 : 2 S

D0 D1 D2 D3

 80

in is accepted from the previous column. Figure 35 does not show the “tens” single bit

generated at the X2 blocks for clarity (carry-out) or the single bit carry-in.

Utilizing the delay statements shown in Section 5.2 allows ∆ delay analysis of the

decimal compressor:

∆=∆+∆=→ 201010,,, 0123 SDDDD

∆=∆+∆=→ 241410,,, 0123 WDDDD

∆=→ 14,,, 0123 outCDDDD

∆=→ 5SCin

∆=∆+∆=→ 954WCin

This model is important since it determines the feasibility of higher order compressors

that use this block since, as opposed to the binary case, the Cout and the W signals incur

an additional delay due to the X2 block logic.

Figure 36. Decimal 8:2 compressor, all signals are decimal (4-bits).

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 3:2 S

 81

Figure 36 shows an 8:2 compressor tree that performs the same function as Figure 34

yet is regular. Assuming that the inputs are given in time 0, and using the ∆ delay

expressions determined for the 4:2 compressor the ∆ delay for each path can be

determined. The time when the corresponding signal is available is shown in the

following figure for the 8:2 compressor.

Figure 37. Decimal 8:2 compressor. Critical path and ∆ delays for signals are shown.

The Cout signal only requires 14 ∆ as shown and is fast enough that it does not delay

further the subsequent 4:2 compressor where its carry-out is attached. In other words,

the delay is determined by the 24 ∆ alone required for the W signal in each compressor.

If this was not the case, it will imply that the delay will accumulate with each stage

affecting performance, even more significantly as the size of the compressor is

increased (Ex: 16:2, 32:2, etc).

Subsequent column heights (digits) compressors can easily be built with log4(n) levels,

where n represents the number of digits to be compressed (8 digits as shown, 16, etc).

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 3:2 S

14 ∆ 14 ∆

24 ∆
20 ∆

20 ∆
24 ∆

48 ∆ 44 ∆ 38 ∆

62 ∆ 58 ∆

 82

Figure 38 illustrates a 16-digit (64-bit) decimal compressor tree using the same

technique used to build the 8-digit tree from Figure 36.

Figure 38. Decimal 16:2 compressor, all signals are decimal (4-bits).

Decimal
W 3:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

Decimal
W 4:2 S

 83

6. PARTIAL PRODUCT GENERATION SCHEMES

Due to its complexity, decimal multiplication was previously implemented using

sequential methods [31]. These designs generally required the iteration of each of the

multiplier digits and, depending on its value, the addition of the corresponding multiple of

the multiplicand to the result. This value has to be pre-computed and stored before the

process takes place and is typically performed through costly lookup tables [12].

Enhancements to this approach included the reduction of the multiplier digit range

through recoding to reduce the number of combinations, a method similar to Booth

multiplication. Digit recoding allows the computation on the fly of multiplicand multiples to

avoid their storage and the use of decimal carry save or sign-magnitude addition to

speed the partial product reduction process [13], [14].

Currently there are only two propositions in the literature of decimal parallel multipliers,

[44] and [20], with similar implementation architectures but significantly different

multiplicand multiple generation schemes. Although these implementations are

noteworthy, there are still many enhancements that require clarification which this

section addresses.

6.1 Multiplier Recoding

As stated above typical decimal multiplication is more involved than binary requiring the

need to generate the radix-10 multiplicand multiples 0x, 1x, 2x, …, 9x, as shown in

Figure 39 (copied from Section 5 for clarity). Multiples like 3x and 7x are considered

 84

“hard multiples”, since their generation with binary logic is not straight forward and

usually require a carry propagate addition which is slow. Previous methods for

generating multiples utilized either this approach or costly look-up tables.

Figure 39. Multiplication Algorithm

The common multiplication algorithm is given by:

∑
−

=

⋅=⋅=
1

0

n

i

i
i ryxyxp ,

where x and y denote an n digit BCD multiplicand and multiplier, respectively, and r =10

denotes the radix and yi ∈ [0, 9]. Recoding of the multiplier is an efficient technique for

reducing its implementation since it permits a different set of multiples to be utilized

avoiding the need for generating “hard multiples”. One method recodes each multiplier

digit yi ∈ [0, 9] to yi = yHi + yLi where yHi ∈ {0, 5, 10} and yLi ∈ {-2, -1, 0, 1, 2}. In this

manner only the multiples 2x and 5x, which can be generated without excessive

overhead, are required to create all other decimal multiples. This is illustrated in Table

11 in the radix-5 columns. Similarly, multiple 10x is produced with a simple 4-bit wired

left shift (1-digit shift).

7 9 8
x 3 4 7
5 5 8 6

3 1 9 2
+ 2 3 9 4

2 7 6 9 0 6

Partial Product
Reduction

Multiplicand

Multiplier

Final Carry
Propagate Addition

Multiplicand
multiples (Partial
Products)

 85

In [44], a radix-5 multiplier using this approach is described. A block diagram of this digit-

recoding scheme is shown in Figure 40. Hot-one coded multiplexors are used avoiding

the need of an extra ‘0x’ input. The selection signals are determined directly from BCD-

8421 input digits, yi:

]3[10 iHi yxy =

]0[]1[]2[5 iiiHi yyyxy ⋅+=

]0[]1[]0[]3[]1[]2[2 iiiiiiLi yyyyyyxy ⋅+⋅+⋅=

]0[]1[]2[]0[]2[1 iiiiiLi yyyyyxy ⋅⋅+⋅=

]0[]1[]2[]0[]1[]2[]3[iiiiiii yyyyyyysign ⋅⋅+⋅⋅+= .

Table 11. Radix 5/4 digit recoding.

Decimal
y i y Hi y Li y Hi y Li
0 0 0 0 0
1 0 1 0 1
2 0 2 0 2
3 5 -2 4 -1
4 5 -1 4 0
5 5 0 4 1
6 5 1 4 2
7 5 2 8 -1
8 10 -2 8 0
9 10 -1 8 1

Radix-5 Radix-4

 86

Figure 40. Digit recoding for radix-5, [44].

The second recoding approach, similar to the radix-5 case, recodes each multiplier digit

yi ∈ [0, 9] to yi = yHi + yLi where yHi ∈ {0, 4, 8} and yLi ∈ {-2, -1, 0, 1, 2}. It is named radix-4

recoding in [19] and is also shown in Table 11. In this approach, the hard multiples are

avoided and instead 2x, 4x and 8x are required to generate all others. The multiple 4x

can be generated by cascading two consecutive 2x modules. An additional 2x module

yields 8x implying a latency three times as large to that required to obtain 2x. The logic

equations for the digit recoding of yi are:

])0[]1[]2[(]3[8 iiiiHi yyyyxy ⋅⋅+=

])0[]1[(]2[4 iiiHi yyyxy ⋅⊕=

]0[]1[2 iiLi yyxy ⋅=

]0[1 iLi yxy =

]0[]1[ii yysign ⋅= .

10X 5X

Hot-one MUX {yHi10x, yHi5x}
{ yLi2x, yLi1x}

sign 9’s complement

 2X 1X

Hot-one MUX

 87

6.2 Multiplicand Multiples Generation

The recoding schemes discussed in the previous section avoid the computation of

complicated multiples of x. Instead, in the case of radix-5, only 2x and 5x modules are

required as all other multiples can be generated from them. Two main approaches for

the generation of these multiples can be identified in available literature. The first method

for obtaining 2x and 5x is studied in [31] with a conventional binary logic approach and

utilized in [12] and [20]. A more recent technique proposed in [19] utilizes BCD recoding

and shifting instead.

6.2.1 2x and 5x with Conventional Binary Logic

The multiples 2x and 5x can be produced rapidly as opposed to other multiples since in

both doubling and quintupling of BCD-8421 numbers no carry is generated beyond the

next significant digit. Logic equations for doubling and quintupling of BCDs are given in

[12]. When doubling takes place, the Least Significant Bit (LSB) of each decimal BCD

digit is initially zero. When the digit value is in the range of [5-9] a carry-out of at most

one is produced (9 x 2 = 18). Therefore, it will not further propagate since the LSB of the

next digit zero as well. The equations for doubling each multiplicand digit can be formed

as follows:

])3[])0[]2[()]0[]1[]2[(]0[2 111111 −−−−−− +⋅+⋅⋅= iiiiiii aaaaaax

)]0[]3[()]0[]1[]2[(])0[]2[]3[(]1[2 iiiiiiiii aaaaaaaax ⋅+⋅⋅+⋅⋅=

)]0[]3[(])1[]2[(])0[]1[(]2[2 iiiiiii aaaaaax ⋅+⋅+⋅=

])0[]3[()]0[]1[]2[(]3[2 iiiiii aaaaax ⋅+⋅⋅=

 88

On the other hand, when a number is odd and quintupling takes place, its value

becomes initially five and when the number is even it becomes zero. Quintupling

produces a carry out of at most four (9 x 5 = 45). Since the initial value is zero or five,

adding the carry results in at most 9, preventing the carry to propagate any further.

Therefore, by checking the next significant digit LSB (ai[0]) to check if the digit is 0 or 5,

equations for 5x can be determined as follows:

])3[]0[(])1[]0[()]1[]3[]0[(]0[5 1111 −−−− ⋅+⋅+⋅⋅= iiiiiiii aaaaaaax

)]1[]2[(])1[]2[]0[(])2[]0[(]1[5 11111 −−−−− ⋅+⋅⋅+⋅= iiiiiiii aaaaaaax

+⋅⋅+⋅⋅= −−−−])1[]2[]0[()]1[]3[]0[(]2[5 1111 iiiiiii aaaaaax])3[]0[(])1[]2[]0[(111 −−− ⋅+⋅⋅ iiiii aaaaa

])3[]0[(])1[]2[]0[(]3[5 111 −−− ⋅+⋅⋅= iiiiii aaaaax

The generation of the remaining “hard multiples”, as described in the previous section

and Table 11, requires the addition of negative 1x or 2x which can be implemented by

obtaining the nine’s complement of the number. As stated in Section 5, the nine’s

complement of a BCD-8421 digit can be determined from simple two-level logic. This

allows the complete multiple digit set to be obtained.

6.2.2 2x and 5x using BCD recoding

In [19], doubling and quintupling are performed using BCD recoding. Doubling or

multiplying by 2 is explained in Section 5.1 and Figure 30 and is implemented for

multiple generation in the same way.

Quintupling is performed in a similar fashion in [19]. In this case, the digit starts in BCD-

8421 code, as shown in Figure 41. A simple 3-bit hardwired left shift performs the

multiplication assuming the result to be in BCD-5421 code.

 89

Figure 41. Quintupling through BCD recoding.

As opposed to BCD-8421 code, an advantage of using BCD-4221 is that, since the sum

of the weights of all 4-bits is equal to 9, the representation is self-complementing as

shown in Chapter 5. This means that the 9’s complement of the number can be obtained

by a simple bit inversion of each of the bits. In this manner, the ten’s complement of the

number for subtraction can be obtained in much the same way as the two’s complement

for binary numbers, a bit inversion followed by an addition of a unit or one in the least

significant place (ulp) without requiring additional logic.

The BCD recoding approach is convenient as well as simple, since the partial product

reduction technique presented in Section 5 receives the partial products in BCD-4221

code and hence no recoding back from BCD-4221 to BCD-8421 is required in the

doubling scheme. One disadvantage, however, is that the conversion from BCD-8421 to

5211 for doubling and from BCD-5421 back to 4221 after quintupling is not straight

forward and requires dedicated logic that incurs a slight overhead. Its latency, however,

is comparable with the doubling and quintupling logic equations presented earlier in

Section 6.2.1.

1 0 0 1

Decimal
Value

 BCD
 8 4 2 1

New
encoding

- 1 0 0 1 - - -
 5 4 2 1
 BCD

3-bit Left
Shift

 5 4 2 1
 BCD

5x = 45

x = 9

Digit X 1 Digit X 10

 90

6.3 Partial Product Generation Architectures

Partial product generation schemes for parallel multipliers were proposed in [19] and

[20]. In [20], a radix-5 multiplier is implemented using the binary techniques discussed in

Section 6.2.1. An overview of this architecture is shown in

Figure 42. A BCD digit input recoder determines the appropriate multiple selection

signals for the multiplexors and binary logic is used to implement the logic equations

described for doubling and quintupling. Since the code used, BCD-8421, is not self-

complementing a dedicated 9’s complement unit is required to create the negative

multiples. Complementing modules, containing the logic to perform the equations given

at the beginning of Chapter 5, are hence required as shown in the diagram.

The design also includes a specialized radix-10 carry-save adder that is used to add

both multiples to generate the corresponding partial product before the reduction tree.

This procedure effectively halves the number of partial products and simplifies the partial

product reduction tree. In the case of 16 digits multiplier operands the number of partial

products would be reduced from 32 to 16. The equations for the radix-10 carry-save

adder are detailed in Section 2.2.5. Nevertheless the cost in area and delay of

performing this addition during partial product generation is significant and outweighs the

benefits when utilizing a reduction scheme like the one proposed in Chapter 5. This is

explored in Chapter 7 where implementations for different architectures possibilities are

explored.

A similar architecture to Figure 42 is presented in [19] for the radix-5 case but instead

BCD recoding is utilized for multiplicand doubling and quintupling. Additionally, hot-one

logic for digit recoding and for the multiplexors is used, saving digital logic as shown in

 91

Figure 43. The radix-4 case utilizes the same architecture, but instead the multiples 4x

and 8x are created with consecutive 2X BCD recoding modules. In both cases, radix-4

and radix-5, two partial products per multiplier digit are produced (refer to Table 11). For

the case of 16 digit operands, as is the case for decimal64 numbers in the IEEE-754R,

this translates into 32 partial products requiring a 32 level partial product reduction tree.

Figure 42. Lang-Nannarelli radix-10 partial product generation.

An additional enhancement is that since the BCD code utilized is self-complementing a

dedicated 9’s complement unit, like shown in Figure 42, is not necessary. A simple bit

inversion performs this operation and can be activated on command with an XOR gate

saving logic. The resulting architecture is fast and efficient; each multiplicand digit is

Radix-10 CSA

Yi

RECODER

5 X
Decimal digit

Left-shift

X

2 X

10 5 0

0

-2 -1 0 1 2

9’s comp

9’s comp

0

d*4

d+1

(d+1)*4 (d+1)*4

4

1
3

2

Carry-in

(d+1)*4

S:XYi C:XYi

 92

recoded to select the appropriate multiple and two (d+1) digits operands are produced

as shown in Figure 43. For operands of 16 decimal digits in size the resulting number of

partial products is 32.

Figure 43. Vásquez-Antelo radix-5 partial product generation.

An additional insight into the performance of these architectures propositions can be

obtained by combining the methods discussed previously for doubling and quintupling,

specifically through direct Boolean logic or through BCD digit recoding. For this reason

two hybrid versions were implemented: the radix-5 Vásquez-Antelo using binary logic for

the 2x and 5x modules instead of the BCD recoding scheme and the Lang-Nannarelli

architecture replacing the doubling and quintupling modules for their BCD recoding

counterparts. The results of the original designs and these hybrid propositions were

explored and shown in Chapter 7, Implementations.

Yi

SD Radix-5
Recoder

X

10X 5X

XOR

d*4

(d+1)*4

4

2
2

Sign bit

2 X

YLi Є [-2,2]
hot-one

Yi Є [0,9]

BCD-4221 BCD-8421

5 X

2X X

YHi Є [0,2]
hot-one

1

(d+1)*4

Digit
shift-left

 93

7. Results

As technology improves and microchip minimum feature size is reduced more

functionality can be included in a single chip. However, with CMOS designs moving to

90nm, 45nm and smaller technologies, a number of new physical effects have to be

considered by the designer due to the short-channel nature of the transistor. This work

utilized these technologies to portray the nature of decimal arithmetic and its impact

upon different measures of performance. Consequently, the results will allow designers

as well to choose the best suitable decimal units for nanometer-scale integration, rather

than to extrapolate the results of research performed with older technologies. This

chapter presents the results of the different implementations and comparisons of the

proposed arithmetic hardware: the decimal floating-point comparator, the combined

decimal/binary floating point comparator, the partial product generation architectures and

the partial product reduction schemes for decimal multiplication.

One of the goals of this work was to create high-quality professional nanometer

implementations. Therefore, having a well-defined design flow or sequence of steps

within design tools that utilizes the maximum degree of design automation is of great

importance. To help illustrate the designs within this dissertation, several commercially

developed Electronic Design Automation (EDA) tools are used with VLSI design flows,

including OSU’s TSMC 180nm Standard Cell Library [47], Cadence Design Systems

GPDK 90nm and NCSU/OSU FreePDK 45nm [48]. Many of this flows and libraries, such

as the OSU 180nm and FreePDK 45nm are developed for use in this dissertation.

 94

Specifically, the FreePDK 45nm is developed with Synopsys’ Cadabra to create a full

standard cell library with automatic transistor layout (ATL) to generate the library

automatically. Figure 44 shows the design flow utilized for the arithmetic hardware

presented in this work.

Figure 44. Design Flow methodology.

Each unit was first modeled using Verilog hardware descriptive language (HDL).

Extensive testing of each functional unit was done to verify its correct operation using a

copious number of test vectors in each design. Synthesis optimized for delay was

performed using one of different tools: Cadence Design Systems Build Gates, RTL

Compiler or Synopsys Design Compiler. The placement of cells and the routing of

interconnect was performed with Cadence Encounter SoC which provides area, power

and delay estimates using back-annotated layout.

Verilog

Synthesis

Place & Route

Simulation

Analysis

Flow Flow Inputs

Gate level netlist

Switching activity

Wire delays

Constraints

Cell timing

Cell geometry

 95

7.1 Decimal comparator design

Since there are no other previous decimal floating-point comparators published, the

delay and area results cannot be compared against other designs. An insight to how

good the decimal comparatorproposed performs can be gained by comparing it to the

only IEEE-754R [8] draft compliant decimal floating-point adder found, published in [16],

even though the delay and area results for this design are given for a different

implementation technology. Table 12 gives the post-synthesis area and delay results for

both designs.

Table 12. Area and delay estimates

Technology Area Delay
of implementation (mm^2) (ns)

Decimal FP Comparator TSMC 0.18um 0.070 2.73
Decimal FP Adder LSI Logic 0.11um 0.148 3.83

Design

Given that a common approach to comparison is to subtract both numbers and check

the result’s sign (if result is zero the numbers are equal, if result is negative then the first

operand is less than the second) a dedicated floating-point comparator is only justifiable

if its performance enhancement is considerable and its implementation does not incur in

a significant area overhead.

The delay estimate presented is faster than that of the floating point adder and the area

utilized is significantly smaller despite larger feature size of the implementation (0.18µm

as opposed to 0.11µm). A rough estimate of scaling this design to 0.11µm technology by

1/S2 yields a ~5 times smaller area requirement than the adder and about twice the

speed with a factor of 1/S. The delay and area estimates after place and routing were

4.328ns and 0.073mm2 respectively.

 96

The performance difference can also be in part attributed to the adder’s necessity for a

precise rounded result as opposed to the comparator. On the other hand, a decimal

floating-point comparator would generally only be added to an architecture with decimal

floating-point hardware. The presented implementation included decimal floating-point

decoding logic and hence this portion would be removed making its area impact even

smaller than the results shown.

7.2 Decimal/Binary Combined Comparator

Again, just as in the decimal floating-point comparator from the previous section an

important step to validate the proposed combined comparator is to weigh it against the

common approach method for comparisons in which an adder/subtractor scheme is

used. For this purpose a combined comparator was implemented using a high speed 64-

bit Carry Look-Ahead adder (CLA) to compare the operands’ magnitudes instead of the

proposed logarithmic tree described in Chapter 3. This is illustrated in Figure 45.

Figure 45. Concept block diagram for implementation comparison.

A B
64 64

Input Decoding

Magnitude
Comparator

Exception Handling

Proposed
comparator tree

2

LT, GT

Either:

CLA adder/subtractor
for comparison

 97

Synthesis was performed using Synopsys Design Compiler and the Carry Look-Ahead

adder, DW01_add1, was implemented using Synopsys’ DesignWare Intellectual

Property library [50]. Previous designs, the combined two’s complement and binary

floating-point comparator given in [26] and the decimal floating-point comparator

presented in this work in chapter 3 and implemented in section 7.1, were also

synthesized and Place and Routed under the same conditions and included for

comparison purposes in terms of area, delay and power consumption. Dynamic power

figures were obtained using Encounter’s power analysis through simulation utilizing a set

of 10000 random generated input test vectors for each device under test. Figure 46-48

illustrate the results.

Delay Comparison

0

0.5

1

1.5

2

2.5

3

3.5

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

D
el

ay
 [n

s] Combined proposed
Combined Add/Sub based
Decimal FP Comparator
Binary combined comp.

Figure 46. Delay estimates for comparator designs.

 98

Area Comparison

0

20000

40000

60000

80000

100000

120000

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

A
re

a
[u

m
^2

]

Combined Proposed
Combined Add/Sub based
Decimal FP Comparator
Binary combined comp.

Figure 47. Area estimates for comparator designs.

Power Comparison

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

D
yn

am
ic

 P
ow

er
 [m

W
]

Combined proposed
Combined Add/Sub based
Decimal FP Comparator
Binary combined comp.

Figure 48. Dynamic power consumption for comparator designs.

 99

As expected, the performance figures are generally improved as the technology utilized

progresses, from 180nm to 45nm.

The results suggest an efficient method for comparisons with a small area requirement,

improved speed and significant power reduction when weighed against comparators

based on the addition/subtraction hardware approach. The design is also comparable in

performance with the decimal only design making it an attractive solution since it can

handle binary, two’s complement and binary and decimal floating-point numbers.

7.3 Partial Product Reduction Schemes

In [19], the results presented for the partial product reduction using 9:2, 16:2 and 32:2

counter trees were determined using an area-delay model for CMOS based on logical

effort [51]. Delay is given in terms of FO4 units (delay of a 1x sized inverter driving four

1x inverters) and area in minimum area NAND gate units. This method however is

inaccurate and does not present the results of a real implementation. Furthermore, it

makes comparison of their design against new proposals difficult. This is the reason why

the Váquez - Antelo - Montuschi counter tress in [19], or VAM trees, were implemented

in Verilog and went through the same design flow process as the proposed compressor

trees to obtain accurate comparison results between the two architectures.

Figure 49 through 51 document the results for the proposed 8:2, 16:2 and 32:2 decimal

compressor trees compared to the counter based trees in terms of area, delay and

power. For small operand size inputs, the delay figures for both counter and compressor

style reduction trees are similar and do not provide a substantial benefit. As the operand

size increases, however, the compressor outperforms comparable counter trees in delay

but sometimes gains a small area overhead in comparison. It is important however to

 100

notice that the design proposed, shown in Figure 36 and Figure 38, is highly regular

when compared to the counter tree in Figure 34. This facilitates its implementation and

improves its performance but this characteristic can mainly be exploited through a

custom-layout implementation. Nevertheless a standard cell layout implementation as

developed provides an insight into the compressor trees performance although the

benefits of regularity are not fully exploited.

Delay comparison

0

1

2

3

4

5

6

7

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

D
el

ay
 [n

s]

Counter 9:2 VAM
Compressor 8:2, proposed
Counter 16:2 VAM
Compressor 16:2, proposed
Counter 32:2 VAM
Compressor 32:2, proposed

Figure 49. Delay estimates for compressor trees vs. counter trees designs.

 101

Area comparison

0

5000

10000

15000

20000

25000

30000

35000

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

A
re

a
[u

m
^2

]

Counter 9:2 VAM
Compressor 8:2, proposed
Counter 16:2 VAM
Compressor 16:2, proposed
Counter 32:2 VAM
Compressor 32:2, proposed

Figure 50. Area estimates for compressor trees vs. counter trees designs.

Power comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

D
yn

am
ic

 P
ow

er
 [m

W
]

Counter 9:2 VAM
Compressor 8:2, proposed
Counter 16:2 VAM
Compressor 16:2, proposed
Counter 32:2 VAM
Compressor 32:2, proposed

Figure 51. Dynamic power estimates for compressor trees vs. counter trees designs.

 102

7.4 Partial Product Generation Architectures

The radix-5 and radix-4 Vásquez-Antelo-Montuschi (VAM) architectures proposed in

[19], and shown in Figure 43, were implemented and its results given in the first two

entries of Figure 52 through 54. The implementations are based on a 16-digit operand

size, corresponding to decimal64 numbers (64-bit decimal floating-point). In the results

presented, each partial product generation scheme handles a single digit of the multiplier

operand, yi, (see Figure 43) times the 16 digits of the multiplicand, X in this case. For a

complete 16 digit multiplier, the partial product generation architecture would be

replicated 16 times to scan over all 16 digits of the multiplier operand yi, with i ∈ {0, 15}.

The proposed radix-5 design from Lang-Nannarelli in [20] (LN Radix-5) shows a

significant delay overhead when compared to the first two implementations. This occurs

mainly due to the radix-10 CSA adder included in the design, shown in Figure 42. To

provide a fair comparison to the previous schemes this adder is removed and, hence,

the partial product generator outputs 2 partial products per multiplier digit, in the same

manner as the VAM generators. This is shown in the third and fourth entries in the tables

where, without the radix-10 CSA the LN design presents attractive performance

estimates.

As stated in section 6.3, two hybrid versions were implemented combining elements of

both propositions: the radix-5 VAM using binary logic for the 2x and 5x modules instead

of the BCD recoding and the LN radix-5 replacing the doubling and quintupling modules

for their BCD recoding counterparts. Results for these two new designs are presented in

the last two entries of Figure 52 through 54 and demonstrate and attractive alternative

for decimal partial product generation.

 103

Delay Comparison

0

0.5

1

1.5

2

2.5

3

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

D
el

ay
 [n

s]

VAM Radix-4
VAM Radix-5
LN Radix-5
LN Radix-5 no Adder
VAM with binary HYBRID, proposed
LN with BCD recoding, proposed

Figure 52. Delay results, partial product generation architectures.

Area Comparison

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

A
re

a
[u

m
^2

]

VAM Radix-4
VAM Radix-5
LN Radix-5
LN Radix-5 no Adder
VAM with binary HYBRID, proposed
LN with BCD recoding, proposed

Figure 53. Area comparison for partial product generation architectures.

 104

Power Comparison

0

0.5

1

1.5

2

2.5

3

3.5

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

D
yn

am
ic

 P
ow

er
 [m

W
]

VAM Radix-4
VAM Radix-5
LN Radix-5
LN Radix-5 no Adder
VAM with binary HYBRID, proposed
LN with BCD recoding, proposed

Figure 54. Dynamic power comparison, partial product generation.

 105

8. CONCLUSIONS

The increasing importance of decimal arithmetic is evident from the current ongoing

research in this field and the efforts to establish the IEEE-754R standard draft for

floating-point arithmetic with specifications for the decimal case. Even more with IBM’s

new Power6 processor, the first of its kind to include decimal floating-point hardware,

[52][53].

Multiple designs for decimal arithmetic were presented throughout this work. The

comparator results suggest an efficient method for comparisons with a small area

requirement, improved speed and significant power reduction when weighed against

comparators based on the addition/subtraction hardware approach. The combined

comparator, capable of handling decimal and binary floating-point numbers, two’s

complement numbers and binary numbers also presents performance improvements

with a slight area overhead making it an attractive option for the comparison operation.

Table 13 and Table 14 present the results.

Table 13. Area and delay results for comparator designs.

Technology
Area Delay Area Delay Area Delay

[um^2] [ns] [um^2] [ns] [um^2] [ns]
Combined proposed 66033 3.21 10556 2.87 8525 1.25
Combined Adder/Subtractor based DW 95766 3.30 12271 3.16 9815 1.34
Decimal FP Comparator 57520 2.81 9253 2.65 7356 1.07
Binary, 2's, FP Comparator 14270 1.53 2020 1.17 1716 0.52

Design
FreePDK 45nmTSMC 180nm Cadence GPDK 90nm

 106

Table 14. Dynamic and Static power results for comparator designs.

An analytical study was developed for the design of a decimal division by recurrence

functional unit. Utilizing previous formalizations of finding a minimal digit set and

appropriate QDS unit, it was demonstrated that the design of such a unit is viable.

In decimal multiplication a previously proposed specialized recoding structure is studied

and integrated within a compressor tree allowing decimal reduction to occur efficiently.

Moreover, the decimal compressor trees proposed have structures which lend

themselves better to custom-level VLSI designs. Results in a submicron standard cell

library indicate high performance efficient designs. However, for low operand sizes,

decimal compressor trees perform similarly than previously proposed decimal counter

trees. Table 15 and Table 16 show the results summarized in Figure 49 to 51.

Table 15. Comparison results for proposed compressor trees vs. counter trees in [19].

Technology
Area Delay Area Delay Area Delay

[um^2] [ns] [um^2] [ns] [um^2] [ns]
Counter 9:2 VAM 12059 3.03 1888 2.46 1046 1.10
Compressor 8:2, proposed 11729 3.09 1873 2.50 1089 1.10
Counter 16:2 VAM 23832 4.61 3465 3.86 2196 1.62
Compressor 16:2, proposed 25030 4.38 3686 3.73 2209 1.57
Counter 32:2 VAM 32189 6.39 5222 5.51 4297 2.95
Compressor 32:2, proposed 32007 6.03 5702 5.63 4228 2.91

FreePDK 45nm

Design
TSMC 180nm Cadence GPDK 90nm

An interesting degrading outcome however of technology scaling is the increasing

importance that static power presents increasing by one or two orders of magnitude, as

shown in Table 14. This is due to the important effects present in deep sub-micron

Technology
Dynamic Static Dynamic Static Dynamic Static

[mW] [uW] [mW] [uW] [mW] [uW]
Combined proposed 127.8 0.12 6.36 42.44 10.27 33.83
Combined Adder/Subtractor based DW 182.8 0.18 7.86 52.64 12.43 42.25
Decimal FP Comparator 115.1 0.11 6.31 40.68 9.51 30.50
Binary, 2's, FP Comparator 22.3 0.03 1.01 8.21 1.71 6.42

Design
TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

 107

technologies that could be previously ignored like leakage current due to sub-threshold

conduction, gate oxide tunneling and Gate Induced Drain Leakage (GIDL).

Table 16. Dynamic and static power comparison results for proposed
compressor trees vs. counter trees in [19].

Technology
Dynamic Static Dynamic Static Dynamic Static

[mW] [uW] [mW] [uW] [mW] [uW]
Counter 9:2 VAM 0.738 0.024 0.045 11.9 0.223 6.2
Compressor 8:2, proposed 0.734 0.023 0.044 10.1 0.256 6.3
Counter 16:2 VAM 1.453 0.047 0.076 21.6 0.634 11.9
Compressor 16:2, proposed 1.540 0.050 0.079 22.3 0.767 12.3
Counter 32:2 VAM 0.085 0.064 0.424 25.1 0.038 21.6
Compressor 32:2, proposed 0.107 0.065 0.440 26.3 0.043 21.3

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Design

This work also presents comparisons for two recent approaches of decimal partial

product generation in terms of delay, area and power consumption. Two additional

hybrid architectures are developed and present attractive performance metrics versus

previous designs. Table 17 and Table 18 present the results of these implementations,

given in the last two entries, and contrast them with previous designs.

Table 17. Area and delay results for VAM [19], LN [20] architectures
and hybrid partial product generation architectures.

Technology
Area Delay Area Delay Area Delay

[um^2] [ns] [um^2] [ns] [um^2] [ns]
VAM Radix-4 33286 1.75 4482 1.56 4015 1.30
VAM Radix-5 20465 1.96 2813 1.31 2836 0.89
LN Radix-5 44108 2.64 5652 2.22 5047 1.17
LN Radix-5 no Adder 25453 1.91 3202 1.65 3178 0.82
VAM with binary HYBRID, proposed 23253 1.40 3019 1.52 2981 0.80
LN with BCD recoding, proposed 21400 1.49 2688 1.55 2972 0.70

FreePDK 45nm

Design
TSMC 180nm Cadence GPDK 90nm

 108

Table 18. Dynamic and static power consumption for partial
product generation architectures.

Future work beyond the scope of this dissertation can be focused in different areas

pertaining decimal arithmetic. One of these areas includes further research of complex

multiple generation (2x, 5x, etc.) to improve partial product generation. Digit recoding

can also be explored and the possibility of applying a Booth’s style algorithm to reduce

the number of partial products generated. Reduction and compressor trees can be

further explored through the use of recoding, with emphasis on the applicability of binary

techniques for Carry-Save addition to the decimal case. For division, on the other hand,

an implementation and analysis of a quotient digit by recurrence divider utilizing the

results of the study developed would produce further insight into its architecture. Another

area that could be researched is the decimal operation Fused Multiply Add (FMA) or f =

A x B + C utilizing the principles developed for partial product generation and reduction.

Finally, the implementation of an architecture study to combine both decimal and binary

arithmetic in one unit and assess the speedup and penalties from having such a

capability.

Technology
Dynamic Static Dynamic Static Dynamic Static

[mW] [uW] [mW] [uW] [mW] [uW]
VAM Radix-4 2.525 0.071 0.091 21.8 0.224 19.7
VAM Radix-5 1.542 0.043 0.053 17.0 0.159 14.5
LN Radix-5 3.278 0.086 0.125 27.8 0.264 23.1
LN Radix-5 no Adder 1.941 0.049 0.067 15.3 0.168 13.6
VAM with binary HYBRID, proposed 1.766 0.044 0.063 17.0 0.159 12.9
LN with BCD recoding, proposed 1.582 0.043 0.056 11.6 0.162 14.1

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Design

 109

BIBLIOGRAPHY

[1] Standards Committee of the IEEE Computer Society, IEEE Standard 754 for
Binary Floating Point Arithmetic. IEEE Press, August 1985.

[2] M.F. Cowlishaw, “Decimal floating-point: algorism for computers.” Proceedings of

the 16th IEEE Symposium on Computer Arithmetic, 2003.

[3] A. Tsang, M. Olschanowsky, “A study of dataBase 2 customer queries.” IBM

Technical Report TR 03.413, IBM Santa Teresa Laboratory, San Jose, CA, April
1991.

[4] IBM Corporation, General Decimal Arithmetic, 2004. Available at:

http://www2.hursley.ibm.com/decimal/

[5] European Commission, “The Introduction of the Euro and the Rounding of

Currency Amounts,” Brussels, 1998.

[6] European Commission, “Council Regulation (EC) No 1103/97 of 17 June 1997 on

certain provisions relating to the introduction of the euro,” Official Journal L 162,
pp. 1-3, 1997.

[7] IBM Press Release: IBM Unleashes World's Fastest Chip in Powerful New

Computer, May 21, 2007. Available at: http://www-
03.ibm.com/press/us/en/pressrelease/21580.wss

[8] Standards Committee of the IEEE Computer Society, Draft Standard for Floating

Point Arithmetic. IEEE, 2005. Available from: http://754r.ucbtest.org/drafts/
754r.pdf.

[9] M.F. Cowlishaw, “Decimal Arithmetic Encoding,” Strawman 4d. Draft version 0.96.

IBM UK laboratories, 2003.

[10] M.F. Cowlishaw, “Densely packed decimal encoding,” IEE Proceedings in

Computers and Digital Techniques, pp.102-104, 2002.

[11] Semiconductor Industry Association, “International technology roadmap for

semiconductors,” 2003.

[12] M.A. Erle, M.J. Schulte, “Decimal multiplication via carry-save addition,”

Proceedings of the IEEE International Conference on Application-Specific
Systems, Architectures and Processors ASAP, 2003.

 110

[13] R.D. Kenney, M.J. Schulte and M.A. Erle, “A high-frequency decimal multiplier,”
Proceedings of the IEEE International Conference on Computer Design, 2004.

[14] M.A. Erle, E.M. Schwarz and M.J. Schulte, “Decimal multiplication with efficient

partial product generation,” Proceedings of the 17th IEEE Symposium on
Computer Arithmetic (ARITH), 2005.

[15] M.S. Schmookler, A.W. Weinberger, “High speed decimal addition,” IEEE

Transactions on Computers, vol. C-20, pp. 862-867, Aug 1971.

[16] J. Thompson, N. Karra, M.J. Schulte, “A 64-bit decimal floating-point adder.”

Proceedings of the IEEE Computer Society Annual Symposium on VLSI Emerging
Trends in VLSI System Design, pp. 297-298, 2004.

[17] A. Svoboda, “Decimal adder with signed digit arithmetic,” IEEE Transactions on

Computers, March 1969.

[18] R.D. Kenney, M.J. Schulte, “High-speed multioperand decimal adders,” IEEE

Transactions on Computers, August 2005.

[19] A. Vasquez, E. Antelo and P. Montuschi, “A new family of high-performance

parallel decimal multipliers,” Proceedings of the 18th IEEE Symposium on
Computer Arithmetic, 2006.

[20] T. Lang, A. Nannarelli, “A radix-10 combinational multiplier,” Proceedings of the

40th Asilomar Conference on Signals, Systems and computers, pp. 313-317, 2006.

[21] A.W. Burks, H.H. Goldstine, J. von Neumann, “Preliminary discussion of the logical

design of an electronic computing instrument,” Inst. For Advanced Study,
Princeton, N. J., pp. 42, 1946.

[22] J. L. Hennessy, D.A. Patterson. Computer Architecture: a Quantitative Approach,

Morgan-Kaufmann Publishers, 2002.

[23] K.W. Glass, “Digital comparator circuit,” U.S. Patent 5,260,680, February 13, 1992.

D. Norris, “Comparator circuit,” U.S. Patent 5,534,844, April 3, 1995.

[24] F. Murabayashi, T. Hotta, S. Tanaka, T. Yamauchi, H. Yamada, T. Nakano, Y.

Kobayashi, and T. Bandoh, “3.3 V BiCMOS techniques for a 120-MHz RISC
microprocessor,” IEEE Journal of Solid-State Circuits, vol. 29, no. 3, pp. 298–302,
1994.

[25] E.S. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and B. Mohammad,

“A fully bypassed six-issue integer datapath and register file on the Itanium-2
microprocessor,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1433–
1440, 2002.

[26] J.E. Stine, M.J. Schulte, “A combined two’s complement and floating point

comparator.” Proceedings of the IEEE International Symposium on Circuits and
Systems, pp. 89- 92, May 2005.

 111

[27] D.L. Weaver, T. Germond, The Sparc Architecture Manual, Version 9. Prentice
Hall, inc., 2000.

[28] E. E. Swartzlander, Jr., Computer Arithmetic I. IEEE Press, 1990.

[29] M.D. Ercegovac, T. Lang. Digital Arithmetic, Morgan Kaufman, San Francisco,

2004, Chapter 8.4.

[30] A. Weinberger, “4:2 Carry-Save adder module,” IBM Technical Disclosure Bulletin,

vol. 23, 1981.

[31] R.K. Richards. Arithmetic Operations in Digital Computers, D. Van Nostrand

Company, Princeton, NJ, 1955.

[32] N.H. Weste, D. Harris. CMOS VLSI Design: A circuits and systems perspective, 3rd

Edition. Addison Wesley, Boston, 2005, Chapter 10.9.

[33] C.S. Wallace, “A Suggestion for a Fast Multiplier.” IEEE Transactions on Electronic

Computers, February 1964.

[34] G.W. Bewick, Fast Multiplication: Algorithms and Implementation, PhD.

Dissertation Stanford University, 1994.

[35] F. Y. Busaba, T. Slegel, S. Carlough, C. Krygowski, and J. G. Rell. The design of

the fixed point unit for the z990 microprocessor. In Proc. ACM Great Lakes 14th
Symposium on VLSI, pages 364–367, Apr. 2004.

[36] R. H. Larson. High-speed multiply using four input carrysave adder. IBM Tech.

Disclosure Bulletin, 16(7):2053–2054, Dec. 1973.

[37] T. Ohtsuki. Apparatus for decimal multiplication. U.S. Patent No. 4,677,583, June

1987.

[38] T. Ueda. Decimal multiplying assembly and multiply module. US Patent No.

5379245, Jan. 1995.

[39] K.P. Acken, M.J. Irwin, R.M. Owens, “Power comparisons for barrel shifters.”

Proceedings of the International Symposium on Low Power Electronics and
Design, pp. 209--212, 1996.

[40] P. Kornerup, “Revisiting SRT Quotient Digit Selection,” Proceedings of the 16th

IEEE Symposium on Computer Arithmetic, 2003.

[41] M.D. Ercegovac, T. Lang. Division and Square Root, Kluwer Academic Publishers,

Massachusetts, 1994.

[42] N. Ohkubo and M. Suzuki. “A 4.4 ns CMOS 54x54–bit multiplier using pass-

transistor multiplexer,” IEEE Journal of Solid State Circuits, 30(3):251–256, Mar.
1995.

 112

[43] E. Schwarz, R. M. Averill, and L. J. Sigal. “A radix-8 CMOS S/390 multiplier,”
Proceedings of the IEEE 13th Symposium on Computer Arithmetic, pages 2–9,
July 1997.

[44] A.D. Booth, “A signed binary multiplication technique,” Quarterly Journal of

Mechanics and Applied Mathematics, 4(2):236–240, 1951.

[45] O. L. MacSorley. “High-Speed Arithmetic in Binary Computers.” Proceedings of the

IRE, 49(1):67–91, Jan 1961.

[46] L. Dadda, “Some schemes for Parallel Multipliers,” Alta Frequenza, vol.34, pp. 349-

356, 1965.

[47] J.E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash, N. Illiev, N.

Jachimiec, “A Framework for High-Level Synthesis of System-on-Chip Designs,”
Proceedings of 2005 IEEE International Conference on Microelectronic Systems
Education, pp. 67-68, 2005.

[48] J.E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis, P.D. Franzon,

M. Bucher, S. Basavarajaiah, J. Oh, R. Jenkal, “FreePDK: An Open-Source
Variation-Aware Design Kit,” Proceedings of the 2007 IEEE International
Conference on Microelectronic Systems Education.

[49] E. L. Braun, Digital Computer Design, Logic Circuitry, Synthesis. New York, N.Y.:

Academic Press, 1963.

[50] DesignWare Building Block IP Quick Reference Guide. Synopsys, Inc., June 2004.

[51] I. Sutherland, R. F. Sproull, D. Harris. Logical Effort: Designing Fast CMOS

Circuits, Morgan Kaufmann, 1999.

[52] E. Schwarz, S. R. Carlough, “Power6 decimal divide,” Proceedings of the IEEE

International Conference on Application-Specific Systems, Architectures and
Processors ASAP, 2007.

[53] B. Stolt, Y. Mittlefehldt, S. Dubey, G. Mittal, M. Lee, J. Friedrich, E. Fluhr, “Design

and Implementation of the POWER6 Microprocessor,” IEEE Journal of Solid-State
Circuits, pg. 21-28, 2008.

[54] T.C. Chen, T. Ho, “Storage-efficient representation of decimal data,” CACM, 1975.

18, (1), pp. 49–52 (summarized at http://www2.hursley.ibm.com/decimal/chen-
ho.html).

 113

9. APPENDICES

9.1 APPENDIX A – DENSELY PACKED DECIMAL ENCODING

Densely Packed Decimal encoding or DPD is a lossless compression technique based

on the Chen-Ho binary encoding of decimal numbers [54]. It provides an efficient method

of encoding three BCD digits into 10-bits and back.

DPD encoding or compression of the three BCD digits depends on the size of each digit.

Numbers less than or equal to 7 (3-bits) are considered small and large if greater than 7

(4-bits). In this manner, a specific mapping is used in each situation: when all digits are

small, when left digit is small, when middle digit is large and so on. The following table

illustrates DPD compression where the three BCD digits are abcd, efgh and ijkm

respectively and the encoded 10-bits DPD pqr stu v wx y. The letter l is not used to

avoid confusion with the letter i and 1.

Table 19. DPD Encoding / Compression, taken from [10].

aei pqr stu v wx y Comments
000 bcd fgh 0 jk m All digits are small
001 bcd fgh 1 00 m Right digit is large (0-9 are unchanged)
010 bcd jkh 1 01 m Middle digit is large
100 jkd fgh 1 10 m Left digit is large
110 jkd 00h 1 11 m Right digit is small (left and middle are large)
101 fgd 01h 1 11 m Middle digit is small (left and right are large)
011 bcd 10h 1 11 m Left digit is small (middle and right are large)
111 00d 11h 1 11 m All digits are large; two bits are unused

 114

DPD decoding or expansion on the other hand converts the DPD 10-bits back to three

BCD digits. The digits vwxst are used as indicators and used with the mappings shown

in the next table:

Table 20. DPD Decoding / Expansion, taken from [10].

vwxst abcd efgh ijkm
0---- 0pqr 0stu 0wxy
100-- 0pqr 0stu 100y
101-- 0pqr 100u 0sty
110-- 100r 0stu 0pqy
11100 100r 100u 0pqy
11101 100r 0pqu 100y
11110 0pqr 100u 100y
11111 100r 100u 100y

For example, if the encoded bits pqr stu v wx y are 100 011 1 10 1 the indicator bits

vwxst are 11001 and these are matched in the fourth row of the table. Consequently the

three BCDs represented are given by the input bits mapped to output bits as: 1000 0011

0101, or 835.

As another example, if the encoded bits pqr stu v wx y are 011 101 1 11 1 then vwxst is

11110 which matches row 7 in the table. The BCD digits represented are then: 0011

1001 1001, or 399.

Boolean expressions can also be used instead of the direct mappings shown in the

previous tables for encoding and decoding. For encoding/compression these results in:

)()()(ieafiajabp ⋅⋅⋅+⋅⋅+⋅=

)()()(ieagiakacq ⋅⋅⋅+⋅⋅+⋅=
dr =

)())(())((ieieajiaefs ⋅+⋅⋅⋅+⋅⋅⋅=

)())(())((iaieakiaegt ⋅+⋅⋅⋅+⋅⋅⋅=
hu =

ieav ++=
) ()i (iejeaw ⋅⋅+⋅+=

 115

) ()i (iakaex ⋅⋅+⋅+=
my =

For decoding/expansion the Boolean expressions are:

))(()(tssxwva ⋅++⋅⋅=
))((tsxwvpb ⋅⋅++⋅=
))((tsxwvqc ⋅⋅++⋅=

rd =
)))(()((tsxwxwve +⋅⋅+⋅⋅=

)()))(((tsxwvpxvvsf ⋅⋅⋅⋅⋅+⋅+⋅=
)()))(((tsxwvqxvvtg ⋅⋅⋅⋅⋅+⋅+⋅=

uh =
)))(()((tsxwxwvi +⋅⋅+⋅⋅=

)))((()()(tsxwvpxwvsvwj ⋅+⋅⋅⋅+⋅⋅⋅+⋅=
)))((()()(tsxwvqxwvtvxk ⋅+⋅⋅⋅+⋅⋅⋅+⋅=

ym =

VITA

Ivan Dario Castellanos

Candidate for the Degree of

Doctor of Philosophy

Dissertation: ANALYSIS AND IMPLEMENTATION OF DECIMAL ARITHMETIC

HARDWARE IN NANOMETER CMOS TECHNOLOGY

Major Field: Electrical Engineering

Biographical:

Education: Received the Bachelor of Science degree in Electrical Engineering
from the University of Los Andes, Bogotá, Colombia in September
2001. Received the Master of Science degree in Electrical
Engineering from the Illinois Institute of Technology, Chicago,
Illinois in December 2004. Completed the requirements for the
Doctor of Philosophy in Electrical Engineering at Oklahoma State
University, Stillwater, Oklahoma in July 2008.

Experience: Employed by Oklahoma State University as a Research Assistant

at the VLSI Computer Architecture Research Group, 2005 to
present. Internship with Cadence Design Systems, San Jose, CA
during the year 2005. Employed by the Illinois Institute of
Technology as a Research Assistant at the VLSI Computer
Architecture and CAD Laboratory, 2003 to 2004.

ADVISER’S APPROVAL: JAMES E. STINE

Name: Ivan Dario Castellanos Date of Degree: July, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: ANALYSIS AND IMPLEMENTATION OF DECIMAL ARITHMETIC

HARDWARE IN NANOMETER CMOS TECHNOLOGY

Pages in Study: 115 Candidate for the Degree of Doctor of Philosophy
Major Field: Electrical Engineering

Scope and Method of Study: In today’s society, decimal arithmetic is growing

considerably in importance given its relevance in financial and commercial
applications. Decimal calculations on binary hardware significantly impact
performance mainly because most systems utilize software to emulate decimal
calculations. The introduction of dedicated decimal hardware on the other hand
promises the ability to improve performance by two or three orders of magnitude.
The founding blocks of binary arithmetic are studied and applied to the
development of decimal arithmetic hardware. New findings are contrasted with
existent implementations and validated through extensive simulation.

Findings and Conclusions: New architectures and a significant study of decimal

arithmetic was developed and implemented. The architectures proposed include
an IEEE-754 current revision draft compliant floating-point comparator, a study
on decimal division, partial product reduction schemes using decimal compressor
trees and a final implementation of a decimal multiplier using advanced
techniques for partial product generation. The results of each hardware
implementation in nanometer technologies are weighed against existent
propositions and show improvements upon area, delay, and power.

