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CHAPTER 1

INTRODUCTION

In this chapter, we first present the motivation of our work, then present the challenges, the

contributions and the current state of the art of the cooperative control, learning and sensing

in MSNs.

1.1 Motivation

Mobile sensor networks (MSNs) [3], one type of sensor networks [4, 5, 6, 7], have been

studied by many researchers in recent years. A typical mobile sensor is a mobile robot with

various sensors such as camera, sonar or laser for sensing and navigation. Mobile sensor

networks have several advantages over stationary sensor networks, such as the adaptation

to environmental changes and reconfigurability for better sensing performance. Therefore

mobile sensor networks can be applied in many applications including cooperative detec-

tion of toxic chemicals in contaminated environments [8, 9,10]; environment exploring,

monitoring and coverage [11, 12, 13]; performing search andrescue operation after disas-

ters [14, 15]; target tracking [16, 17, 18] and protection ofendangered species [19].

A main issue for multiple mobile sensors move together is that these sensors have to

avoid collision among them, which requires the use of cooperative control methods [20,

21, 22, 23, 24]. One of these methods is flocking control [23].We know that flocking

or schooling is a phenomenon that a number of mobile agents move together and interact

with each other while ensuring no collision, velocity matching, and flock centering [25].

In the nature, schools of fish (see Figure 1.1), birds, ants, and bees, etc. demonstrate the

phenomenon of flocking [26]. The problem of flocking has been studied for many years.
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(a) (b)

Figure 1.1: (a) Schooling of fish. (b) A predator and a school of fish (source: www.

inmagine.com).

It has attracted many researchers in physics [27, 28], mathematics [29], biology [30], and

especially in control science in recent years [31, 32, 33, 23, 34, 35, 36, 37, 38, 39, 40].

There are several interesting features established by the school of fish or flock of birds.

These features can inspire us to design cooperative control, learning and sensing algorithms

for MSNs.

• Fish school and bird flock can track a target (source of food) efficiently while avoid-

ing obstacles. This inspires us to design a cooperative control algorithm that can

allow mobile sensors to track a target better in cluttered environments.

• Each individual fish or bird communicates/interacts with its neighbors within its lim-

ited sensing range in order to move in the same direction as its neighbors, remain

close to its neighbor, and avoid collision with its neighbors [25]. Based on only these

local communications/interactions, the fish school or birdflock can still achieve a

global goal. For example, in some cases only some individuals have the knowledge

about the location of a food source and migration route, but the fish school or bird

flock can still find the food source and track the migration route efficiently [41, 42].

Inspired by this natural ability we would like to design a cooperative control algo-

rithm that can allow mobile sensors to track a target when only a very small subset of
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them know the information of the target while maintaining the network connectivity.

• Fish school and bird flock also have ability to change their size of the formation in

order to adapt to the environments. This motivates us to design an adaptive control

algorithm for an MSN that can automatically adjust its size (shrink/recover) in order

to adapt to the complex environments while maintaining the network connectivity

and similar topology.

• Fish school and bird flock can track multiple food sources (targets) simultaneously.

This ability encourages us to design a splitting/merging algorithm that can allow an

MSN to track multiple moving targets simultaneously and efficiently in a dynamic

fashion.

• Each individual fish or bird may not sense the position and velocity of its neighbors

accurately, but it can still move with its neighbors and maintain the cohesion with

them. This feature inspires us to design flocking control algorithms that can allow

mobile sensors to work in noisy environments while maintaining the cohesion to the

network.

• Fish schooling and bird flocking together can help the individual to avoid predators

because many moving individuals create a sensory overload for the predator’s visual

channel [43, 44, 45] (see Figure 1.1b). This motivates us to design a cooperative

learning algorithm that can allow an MSN to learn to avoid theenemy (predator) in a

distributed fashion while maintaining the network connectivity and similar topology.

• Finally, each individual fish or bird only interacts locally, but as a whole the fish

school or bird flock can agree on the same velocity (velocity matching ability) through

distributed consensus. Understanding this feature can help us design cooperative and

active sensing algorithms for an MSN which can allow each sensor to find an agree-

ment among observations of itself and its neighbors by reaching consensus.
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1.2 Challenges

Development of cooperative control, learning and sensing algorithms in a distributed fash-

ion for MSNs is very challenging. These algorithms have to beperformed at each sensor

node using only local information, while as a whole they exhibit collective intelligence and

achieve a global goal. In a resource-constrained multi-agent system, the communication

range and sensing range of each agent are small compared to the size of the environments.

Hence, agents cannot accomplish the mission without careful design of cooperative con-

trol, learning and sensing algorithms. Here are several challenges in designing cooperative

control, learning and sensing algorithms for MSNs.

• Cooperative Control in MSNs:

First, designing flocking control algorithms which maintain the target tracking per-

formance in cluttered environments is a challenging task. In these environments, the

agents usually get stuck behind the obstacles and sometimescan not follow the target

[23], [17], [34], [35], [46], therefore causing poor tracking performance.

Second, designing a distributed flocking control algorithmwhich can still perform

well in terms of better tracking performance and connectivity maintenance when

only few agents have information of the target is a difficult task. Flocking control al-

gorithms [23] can allow agents to move together without collision and track a target.

However, they are designed under the assumption that all agents have the informa-

tion of the target. Suet al. [34, 35, 46] relaxed this assumption, however the network

connectivity is not maintained.

Third, designing an adaptive flocking control algorithm that can adapt to the complex

environments, for example passing through a narrow space among obstacles, while

maintaining connectivity, tracking performance and similar formation is a challeng-

ing task. Existing works [47, 48] do not consider controlling the size of the network,

hence the connectivity and topology are not maintained.
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Fourth, tracking multiple targets simultaneously in a dynamic fashion in a MSN is

difficult, since this requires that some sensors should split from the existing for-

mation(s) to track new targets while ensuring the least disturbance to other sensors.

This raises the question of which sensors should split from the existing formation and

how they should split. In addition, when some targets disappear the sensors which

are tracking these targets should rejoin (merge with) the existing groups that are still

tracking targets.

Fifth, designing distributed flocking control algorithms for MSNs which can still

perform well when the measurements are corrupted by noise isvery challenging.

Existing works [37, 38, 23, 34, 35, 46] do not consider this issue in their flocking

control algorithms.

• Cooperative Learning in MSNs:

Designing an intelligent MSN which can provide ability to learn to avoid enemy

(predator) while maintaining the network topology and connectivity is difficult, since

this is a distributed decision making problem where each individual has a number

of options (safe places) to choose from when the predators appear. Often in these

decisions there is a benefit for consensus, where all individuals choose the same safe

place. However, the existing consensus methods [40, 49, 50,51, 52, 53, 54, 55, 56]

require a connected network in which all robots can communicate with each other.

This may not be valid in real environments because some robots may not connect

to the network during the escape. In that case the consensus algorithms will fail.

Therefore, there is a need to reach consensus even when the robots cannot connect to

the network at sometimes.

• Cooperative Sensing in MSNs:

Designing a distributed sensor fusion algorithm for MSNs with an emphasis on the

task of environment estimation and mapping is an open problem, since it requires a
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combination of cooperative sensing, cooperative motion control, and complete cov-

erage path planning while using only local information. Existing works in the area

of cooperative sensing using MSNs [57, 58, 59, 60, 61, 11, 62,13] focus on target(s)

tracking, environment exploring, sampling, modeling, andcoverage. The problem

of environmental estimation and mapping based on multi-agent cooperative and dis-

tributed sensing is still an open research.

1.3 Contributions

This work contributes to the research of MSNs by developing cooperative control, learning

and sensing in a distributed fashion to realize coordinatedmotion control and intelligent

situational awareness. Here are the main contributions of our work:

• Cooperative Control:

We propose a novel approach to the problem of flocking controlof a MSN to track

and observe a moving target. Flocking algorithms that constrain the center of mass

of positions and velocities of all mobile sensors in each group (Single-CoM) or the

center of mass of position and velocity of each sensor and itsneighbors (Multi-CoM)

are developed. The main benefit of both algorithms is to make the center of mass

(CoM) of each group track the target in the obstacle space. This makes the mobile

sensors surround the target closely.

We study the flocking control in the case of a small subset of informed agents. In

nature, only few agents in a group have the information of thetarget, such as knowl-

edge about the location of a food source, or the migration route. However, they can

still flock together in a group based on local information. Inspired by this natural

phenomenon, we propose a flocking control algorithm to coordinate the motion of

multiple agents. Based on our algorithm, all agents can forma network, maintain

connectivity and track the target even only very few of them know the information of
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the target.

To deal with changing environments, for example in the case when the mobile sensor

networks have to pass through a narrow space among obstacles, we propose an adap-

tive flocking control algorithm in which each agent (sensor)can cooperatively learn

the network’s parameters to decide the size of network in a decentralized fashion so

that the connectivity, formation and tracking performancecan be improved.

In the scenario of multiple dynamic target tracking, to solve the problem of sensor

splitting/merging, a seed growing graph partition (SGGP) algorithm is proposed.

In noisy environments, a flocking control algorithm is proposed to coordinate the

activities of multiple agents through noisy measurements.Based on our algorithm,

all agents can form a network and maintain connectivity. This is of great advantage

for agents to exchange information. We show that even with noisy measurements

the flocks can achieve cohesion and follow the moving target.The stability and

scalability of our algorithm are also investigated.

• Cooperative Learning:

We propose a hybrid system that integrates reinforcement learning and flocking con-

trol in order to create adaptive and intelligent multi-robot systems. We study two

problems in multi-robot concurrent learning of cooperative behaviors: (1) how to

generate efficient combination of high level behaviors (discrete states and actions)

and low level behaviors (continuous states and actions) formulti-robot cooperation;

(2) how to conduct concurrent learning in a distributed fashion. To evaluate our

theoretical framework, we apply it to enable multi-robot networks to learn avoiding

predators while maintaining network topology and connectivity. We also investigate

the stability and scalability of our algorithm.
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• Cooperative Sensing:

We propose a novel method for multiple mobile sensor nodes tobuild a map of a

scalar field through noisy measurements. Our method consists of three parts. First,

we develop a distributed sensor fusion algorithm integrating two different distributed

consensus filters to achieve cooperative sensing among sensor nodes. Second, we

use the distributed flocking control algorithm to drive the center of the mobile sensor

formation to track the desired paths. Third, we build a path planning strategy to

obtain a complete coverage of the field. Additionally, we extend our cooperative

sensing method to active sensing in order to improve the sensing performance.

1.4 Literature Review

In this section, we review existing literature related to our work, which includes cooperative

control, multi-agent learning, and cooperative sensing.

1.4.1 Cooperative Control

Cooperative control in multi-robot systems has been receiving growing attention in re-

cent years [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], and its applications include multi-

target tracking [63, 64], multi-vehicle formation control[65, 66, 67, 68], optimization based

control [69, 70], cooperative control with limited communications [71, 72], graph-rigidity

based control [74, 75, 76], and data gathering using mobile sensors [73]. In this subsection

we review the existing works in the area of cooperative control which includes flocking

control, adaptive flocking control, multiple targets tracking in both stationary sensor net-

works and mobile sensor networks.

Flocking Control

Flocking control has been studied by many researchers in recent years [77, 78, 64, 79, 80].

Wang and Gu [40] presented a survey of recent research achievements of robot flocking.
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Their paper gave an overview of the related basic knowledge of graph theory, potential

function, network communication and system stability analysis. In [23], a theoretical

framework for design and analysis of distributed flocking algorithms was proposed. These

algorithms solved the flocking control in the absence and presence of obstacles. The static

and dynamic virtual leaders were used as a navigational feedback for all mobile agents.

An extension of the flocking control algorithms in [23], flocking of agents with a virtual

leader in the case of a minority of informed agents and in the case of varying velocity of

the virtual leader, was presented in [34, 35, 46]. Shi and Wang [36] investigated the dy-

namic properties of mobile agents for the case where the state of the virtual leader is time

varying and the topology of the neighboring relations between agents is dynamic was pro-

posed. Andersonet al. [31] demonstrated a new technique for generating the constrained

group animations of flocks in which users can impose constraints on agents’ positions at

any time in the animation, or control the entire group to meetthe shape constraints. Tanner

et al. [37, 38] studied the stability properties of a system of multiple mobile agents with

double integrator dynamics in the case of fixed and dynamic topologies. In addition, the

experimental implementation of flocking algorithms proposed in [37] and [38] on wheeled

mobile robots was presented in [39]. Gervasi and Prencipe [33] studied the distributed co-

ordination and control of a set of asynchronous, anonymous,memoryless mobile vehicles

in the case of no communication among the vehicles. In particular, their paper analyzed the

problem of flocking in a certain pattern and following a designated leader vehicle, while

maintaining the pattern. Olfati-Saber [17] developed a distributed flocking algorithm for

mobile sensor networks to track a moving target. In his paper, an extension of a distributed

Kalman filtering algorithm was used for the sensors to estimate the target’s position. In

[32], a scalable multi-vehicle platform was developed to demonstrate a cooperative control

algorithm in mobile sensor networks. Their flocking algorithm was implemented with five

TXT-1 monster truck robots.

9



Adaptive Flocking Control

Adaptive flocking control, an extension of flocking control,has also gained attention from

researchers in recent years. Folino and Spezzano [81] presented a parallel clustering algo-

rithm based on the use of swarm intelligence techniques. Their algorithm is a combination

of a smart exploratory strategy based on a flock of birds and a density-based cluster al-

gorithm to discover clusters of arbitrary shape and size in spatial data. Yanget al. [47]

proposed an adaptive flocking control algorithm to avoid collision among robots them-

selves and between robots and obstacles. However, their algorithm did not consider the

problem of formation, connectivity and tracking performance. Lee and Chong [48] pro-

posed a decentralized approach for adaptive flocking of swarms of mobile robots to nav-

igate autonomously in complex environments populated withobstacles. The problem of

splitting/merging mobile robots in the network according to the environment conditions is

addressed in their paper. In their work, the problem of controlling the size of the network

was not considered.

Multiple Targets Tracking

Multiple targets tracking in mobile sensor networks has received adequate attention in the

last decade. Junget al. [82] introduced a region-based approach to address the problem

of multiple targets tracking using a network of communicating robots and stationary sen-

sors. A coarse deployment controller distributes robots across regions using a topological

map, and a target-following controller maximizes the number of tracked targets within a

region. Chunget al. [57] proposed a gradient search based decentralized algorithm for the

problem of active sensing using multiple cooperative sensor nodes for distributed sensing

to estimate the state of dynamic targets. Tang and Ozguner [83] investigated the motion

planning for a limited number of mobile sensor agents in an environment with multiple dy-

namic targets. The motion planning problem is formulated asan optimization problem to

minimize the average time duration between two consecutiveobservations of each target.
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Jung and Sukhatme [63] proposed an algorithm based on treating the densities of robots

and targets as properties of the environment in which they are embedded to improve the

target tracking performance. Kamathet al. [3] studied the problem of motion planning and

sensor assignment in a mobile sensor network for tracking multiple targets. The triangula-

tion based tracking where two sensors merge their measurements to estimate the position

of a target is considered. Kolling and Carpin [84] presenteda distributed control algorithm

for multiple targets surveillance by multiple robots. Their algorithm utilizes information

from sensors and communication to predict the minimum time before a robot loses a target.

Sensor network partitioning, a fundamental technique for sensor networks dealing with

multiple targets tracking, has been studied by many researchers. The methods for net-

work partitioning can be divided into centralized and decentralized. For centralized graph

partition, there are several algorithms such as the decomposition scheme to partition a

given graph into compactly connected two terminal subgraphs [85], a graph clustering

method based on the minimum cuts within a graph [86] , a new graphical adaptation of

the k-medoids algorithm [87] and the Girvan-Newman method [88]. For distributed graph

partition, Derbel and Mosbah [89] proposed a linear time distributed algorithm for decom-

posing a graph into a disjointed set of clusters. In [90, 91],Goebelset al. presented a

neighborhood-based strategy, a border switch strategy, and an exchange target strategy for

the partitioning of large sets of agents into multiple groups. Derbelet al. [92] proposed ef-

ficient deterministic and randomized distributed algorithms for decomposing a graph into a

disjointed set of connected clusters with small radius and few inter-cluster edges. Bettstetter

[93] gave equations for the cluster density and cluster order of hemogeneously distributed

nodes running the distributed mobile adaptive clustering algorithm. Virrankoski and Sav-

vides [94] proposed a topology adaptive spatial clustering(TASC) for sensor networks.

Durresi and Paruchuri [95] presented an adaptive clustering protocol for sensor network.

This approach is based on the covering problem that aims at covering an area with mini-

mum possible circular disk assuming ideal conditions. Mekaand Singh [96] presented a
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distributed algorithm called ELink based on a quad-tree decomposition and a level by level

expansion using sentinel sets. Belghithet al. [97] proposed a novel distributed clustering

algorithm for ah-hoc networks. Their algorithm is based on asynchronized and layered

process.

Summary of Cooperative Control

In general, for cooperative control based on flocking control, most works focus on the con-

figuration and topology of flocks. For single target trackingbased on the flocking control,

the literatures solve the problem of estimating the target’s state by using the distributed

Kalman filter, or solve the problem of target tracking while aminority of agents in the net-

work have the knowledge of the target. Their algorithms workwell in free space, but in

the obstacle space they have some limitations such as bad tracking performance, low speed

and connectivity loss. To our best knowledge, for adaptive flocking control most of existing

works focused on the coordination, formation and splitting/merging problems in both fixed

and switching topologies. For multiple targets tracking all of reviewed literatures solve the

tracking problem in both stationary and mobile sensor networks without paying attention to

the network formation such asα-lattice. The problem of graph partitioning focuses on both

centralized and decentralized methods, and most of them decompose the network based on

the density of node’s distribution. This means that the sizeof subgraphs after decomposing

are not predetermined. There are several open problems in cooperative control based on

flocking control such as:

• How to utilize the a minority of informed agents to lead the whole network to track

the target while maintaining the connectivity.

• How to control the size of the network in a decentralized and adaptive fashion in com-

plex or changing environment while maintaining connectivity, tracking performance

and similar formation.
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• How to partition the MSN to track multiple moving target while minimizing the total

energy consumption and time consumption.

• How to design a flocking control algorithm to maintain the cohesion among agents

while the measurements are corrupted by noise.

1.4.2 Cooperative Learning in MSNs

Through cooperative learning agents in a MSN attempt via their interactions to jointly

solve tasks or to maximize utility [98]. Cooperative learning has been studied by many

researchers in recent years. The overview of cooperative learning including reinforcement

learning, evolutionary computation, game theory, complexsystems, agent modeling, and

robotics can be found in [98, 99]. Reinforcement learning, one of the most powerful ma-

chine learning techniques, has been developed for multi-robot systems that allow robots

to learn cooperation [100, 101, 99, 102]. Reinforcement learning techniques for solving

cooperative problems in teams of homogeneous robots such asthe problem of maintain-

ing a formation of mobile robots are studied in [103]. Cooperative reinforcement learning

associating VQQL (Vector Quantization to Q Learning) is developed and applied for multi-

robot observation of multiple moving targets [104, 105, 101]. In their work, they solved

two problems. The first one focuses on defining the reinforcement signal for each robot

in a cooperative team to achieve a global goal. The second oneis working with large do-

mains, where the amount of data can be large and different in each moment of a learning

step. As a result, their work achieved successful cooperative behaviours, but the learned

behaviors are still discrete, and the learning space is still large. Other work on cooperative

multi-robot reinforcement learning [102] tried to reduce the learning space by using a hy-

brid state space that integrates a neural perception moduleand a progressive rescheduling

algorithm. Their algorithm can on-line execute and learn through experience to adapt to

environmental uncertainties and enhance performance. However, their work still relies on

discrete and finite state/action spaces.
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To our best knowledge most of existing works in the area of cooperative reinforcement

learning assumes discrete and finite state/action spaces; therefore, it is difficult to directly

apply reinforcement learning to most real world applications that inherently involve with

continuous and infinite space. Furthermore, even if the states can be discretized, the learned

behaviors are still discrete. In addition, the switching ofdiscrete behaviors usually causes

the control of the robots to become non-smooth, which is undesirable in most applications.

The open question iscan we combine reinforcement learning and flocking control to create

a general framework for intelligent robot systems that can allow (1) to generate efficient

combination of high level behaviors (discrete states and actions) and low level behaviors

(continuous states and actions) for multi-robot cooperation; (2) and to conduct concurrent

learning in a distributed fashion?

1.4.3 Cooperative Sensing in MSNs

Cooperative sensing in MSNs has recently attracted researchers in control engineering [11,

12, 13], and it can be utilized in target tracking, and environmental mapping, monitoring,

exploration and coverage.

Cooperative sensing networks have been developed [106, 60,13] for environmental

sampling and exploring. In [106], underwater vehicles are deployed to measure tempera-

ture, currents, and other distributed oceanographic signals. The vehicles communicate via

an acoustic local area network and coordinate their motion in response to local sensing

information and to evolving environments. This mobile sensor network has the ability to

sample the environment adaptively in space and time. By identifying evolving temperature

and current gradients with higher accuracy and resolution than current static sensors, this

technology could lead to the development and validation of improved oceanographic mod-

els. In [60], a class of underwater vehicles are used to obtain a sampling coverage over a

large area. A cooperative control method is proposed to control vehicles to generate pat-

terns on closed smooth curves. To further improve the cooperative sensing performance,
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both the cooperative motion control and the cooperative sensing are integrated based on

cooperative Kalman filter [13] to control the shape of the sensor node formation in order to

minimize error in the estimates.

Other significant works in cooperative sensing developing for environmental estima-

tion, coverage and modeling can be found in [59, 11, 12, 62]. Cooperative sensing based

on the gradient descent algorithms to obtain the optimal coverage is developed in [59]. For

dynamic environment coverage, a control strategy based on the discrete Kalman filter is

developed [11]. The approach relies on using the Kalman filter to estimate the field and

on the filter’s prediction step to plan the vehicles’ next move to maximize the quality of

the field estimate. In [62], an optimal filtering approach toward fusing local sensor data

into a global model of the environment is developed. Their approach is based on the use of

average consensus filters to distributedly fuse the sensorydata through the communication

network. Along with the consensus filters, the control laws are developed for mobile sen-

sors to move to maximize their sensory information relativeto current uncertainties in the

model.

Additionally, cooperative sensing for estimating the state of dynamic targets can be

found in [57, 58]. The localization and tracking tasks of dynamic targets are addressed in

[58]. In their work, the mobility of sensing agents is utilized to improve this quality of

sensing. However, their gradient controller for cooperative sensing is designed in central-

ized way. The extension to make the control algorithm in [58]distributedly is proposed

in [61], and both formation control and cooperative sensingare integrated to improve the

sensing performance.

Overall, all of the existing works in the area of cooperativesensing using MSNs fo-

cus on target(s) tracking, environment exploring, sampling, modeling, and coverage.The

problem of environmental estimation and mapping based on multi-agent cooperative and

distributed sensing is still open research.
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1.5 Organization of This Dissertation

The rest of this dissertation is organized as follows. In Chapter 2 we first present the poten-

tial field based moving target tracking algorithm for a single mobile sensor and then extend

it to multiple mobile sensors coordination based on flockingcontrol. Chapter 3 describes

the flocking control algorithm with a minority of informed agents; the adaptive flocking

control algorithm for single target tracking and observing; and the algorithm for dynamic

multiple targets tracking and observing, respectively. Chapter 4 presents the flocking con-

trol algorithms in noisy environments. Chapter 5 presents ahybrid system of flocking

control and reinforcement learning for cooperative predator avoidance. Chapter 6 presents

the cooperative sensing algorithm based on distributed consensus filters and flocking con-

trol, then extends to cooperative and active sensing algorithm. Conclusions and future work

are given in Chapter 7. The flowchart of the organization of the dissertation is illustrated in

Figure 1.2.

Chapter 7 

Conclusion and Future Work 

Chapter 1 

Introduction 

Chapter 2 

Flocking Control 

Chapter 3 

Cooperative Control 
Based Flocking in 

Noise-Free 
Environments 

Chapter 4 

Cooperative Control 
Based Flocking in 

Noisy Environments 

 

Chapter 5 

Cooperative Learning 

 

Chapter 6 

Cooperative and 
Active Sensing 

Figure 1.2: The organization of the dissertation.
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CHAPTER 2

FLOCKING CONTROL FOR DYNAMIC TARGET TRACKING

In this chapter, we first present a potential field approach for a single mobile sensor node

to track a moving target. This establishes the background ofthe potential field method that

is extended to multiple mobile sensor nodes. Then, we present the flocking control back-

ground which establishes three basic flocking rules: no collision among agents, velocity

matching among agents, and flocking centering. We extend theexisting flocking control

to more constraints such asSingle-CoM(Center of Mass) orMulti-CoM to allow MSNs to

track a target better in cluttered environments. In addition, stability analysis and simulation

results with a comparison among the flocking control withoutCoM (No-CoM), Single-CoM

andMulti-CoM, respectively, are given.

This chapter is organized as follows. Section 2.1 presents apotential field approach for

one mobile sensor node to track a moving target. Section 2.2 presents flocking control for

MSNs to track a moving target. Finally, Section 2.3 concludes this chapter.

2.1 Single Mobile Sensor Node and Dynamic Target Tracking

2.1.1 Problem formulation

We consider a mobile sensor tracking a target which moves in atwo dimensional environ-

ment. The dynamic equation of the mobile sensor is describedas follows:










q̇r = pr

ṗr = ur .
(2.1)

Figure 2.1 shows a mobile sensor tracking a moving target with notations defined as
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follows.
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Figure 2.1: A mobile sensor tracks a moving target.

qr ∈ R2, pr ∈ R2,θr ∈ R1 are position, velocity, and heading of the mobile sensor at

time t, respectively.qmt ∈ R2, pmt ∈ R2,θmt ∈ R1 are position, velocity, and heading of the

moving target at timet, respectively.qrt ,ϕ are the relative position from the mobile sensor

to the moving target and the angle ofqrt , respectively.

Assumption 1.We have the following assumption: The mobile sensor is equipped with

sensors such as cameras, sonars or laser sensors and the associated algorithms to estimate

the trajectory (position and velocity) of the moving target.

Let qrt = [xrt , yrt ]
T be the relative position between a mobile sensor and a moving

target, then the relative velocity between them can be expressed as the derivative of relative

positionqrt . Hence the relative velocity vector isprt = q̇rt = [ẋrt , ẏrt ]
T , where ˙xrt andẏrt
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are computed as follows:










ẋrt = ‖pmt‖cos(θmt)−‖pr‖cos(θr)

ẏrt = ‖pmt‖sin(θmt)−‖pr‖sin(θr),
(2.2)

where‖.‖ is the Euclidean distance.

The tracking task is to make‖qrt‖ approach to zero as soon as possible. This means

thatqr = qmt andpr = pmt.

2.1.2 Potential field approach

To solve the problem of moving target tracking, we use the potential field approach which

consists of an attractive potential function defined as follows [107, 108, 109]:

Va = 0.5λ1qT
rt qrt , (2.3)

hereλ1 is a positive scale factor for the attractive potential fieldfunction.

In target tracking, we want the mobile sensor to follow a target. Hence, we only need

the attractive potential field for the total potential field of qrt .

V = Va = 0.5λ1qT
rt qrt . (2.4)

The velocitypr of the mobile sensor is computed as

pr = q̇r = ∇qrtV = λ1qrt . (2.5)

Equation (2.5) is with respect to the stationary target (pmt = 0) (conventional potential

field method). While for a moving target (pmt 6= 0) we compute the velocitypr of the

mobile sensor as follows [107]:

pr = pmt +λ1qrt . (2.6)

Equation (2.6) is equivalent to the following equations [107]:

‖pr‖sin(θr −ϕ) = ‖pmt‖sin(θmt−ϕ), (2.7)
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‖pr‖ = (‖pmt‖2+2λ1‖qrt‖‖pmt‖cos(θmt−ϕ)+λ2
1‖qrt‖2)1/2. (2.8)

Assumption 2. The velocity of the moving target is limited by its maximum velocity

pmax
mt .

From this assumption we have:

‖pr‖ = min(‖pmax
mt ‖,(‖pmt‖2 +2λ1‖qrt‖‖pmt‖

×cos(θmt−ϕ)+λ2
1‖qrt‖2)1/2). (2.9)

By dividing both sides of Equation (2.7) with ‖pr‖ and takingarcsinwe obtain the heading

or direction of the mobile sensor as

θr = ϕ+arcsin(
‖pmt‖sin(θmt−ϕ)

‖pr‖
). (2.10)

The velocity of the mobile sensor in a two dimensional space is obtained as Equation

(2.11).

pr = [‖pr‖cos(θr), ‖pr‖sin(θr)]
T . (2.11)

Theorem 1. Equation (2.6) allows the mobile sensor (qr , pr ) to track a moving target

(qmt, pmt).

Proof:

We choose a Lyapunov function as follows:

L = Va = 0.5λ1qT
rt qrt = 0.5λ1‖qrt‖2. (2.12)

This function is positive definite, and the derivative ofL is given by

L̇ =
∂L

∂qrt
q̇rt =

∂L
∂qrt

prt , (2.13)

where the relative velocity between the mobile sensor and the moving target is designed as

prt = −∇qrt Va = −∇qrt L. Hence, Equation (2.13) is rewritten as follows:

L̇ = − ∂L
∂qrt

∇qrt L = −λ2
1‖qrt‖2 = −2λ1

1
2

λ1‖qrt‖2 = −2λ1Va < 0. (2.14)
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Since the Lyapunov functionL is considered the same as the attractive potential field

functionVa, Equation (2.14) is rewritten as follows:

V̇a = −2λ1Va. (2.15)

Solving this equation we get the solution as follows:

Va = Va(0)e−2λ1t (2.16)

hereVa(0) is the value ofVa att = 0. This solution shows thatVa and‖qrt‖ converge to zero

with the converging rateλ1, or the position and velocity of the mobile sensor asymptotically

converges to those of the moving target after a certain time (t > 0).

2.1.3 Simulation results

In this section we test our theoretical results with a circular trajectory of the moving target.

Parameters used in this simulation are specified as follows:

Parameters of circle trajectory:qmt = [210−70cos(t), 80+70sin(t)]T.

Parameters of moving target:pmt = [3, 3]T , pmax
mt = [55, 55]T , andθmt =

π
2 − t.

Initial parameters of the mobile sensor:qr(0) = [0, 0]T , pr(0) = [0, 0]T , andθr(0) = π
2,

and other parameters:λ1 = 9, 0≤ t ≤ 5.

Figure 2.2 represents the result of one mobile sensor tracking the target moving in a

circular trajectory. At the beginning, the position of the sensor is far from the target, but

after certain time the sensor can catch up the moving target and then continue to track

the target. This confirms the theory stated in Theorem 1. Figure 2.3 shows the tracking

performance (position error between the mobile sensor and the moving target). As can be

seen in this figure, after 33 iterations the mobile sensor tracks a moving target very well

with very small error.
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Figure 2.2: The mobile sensor tracks the target moving in a circular trajectory.
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2.2 Flocking Control for Single Target Tracking and Observing

In this section we will extend the potential field approach tomultiple mobile sensor nodes

(agents) based on flocking control. The artificial potentialfield is created to generate a pair-

wise attractive/repulsive force to control agents to form alattice formation while tracking

the target. However, with this type of traditional flocking control [23], there are still some

problems in cluttered environments where the agents usually get stuck behind the obstacles

and sometimes can not follow the target [23]. To handle this problem we present new ap-

proaches to flocking control of multi-agent systems to tracka moving target while avoiding

obstacles. The main motivation of these approaches is to make the CoM (Center of Mass)

of the network track the moving target better in cluttered environments where the traditional

flocking control algorithms [23], [17], [34], [35], [46] have poor tracking performance. In

our methods all mobile agents can surround the target closely in the obstacle space. This

will allow the network to observe and recognize the target more accurately. Specifically,

in our Single-CoMalgorithm, the center of mass of positions and velocities ofall mobile

agents in the network is controlled to track a moving target.This algorithm works well in

small networks, but it has limited scalability in large networks. In contrast with theSingle-

CoM algorithm, we proposed another flocking control algorithm calledMulti-CoM where

the center of mass of positions and velocities of each agent’s local neighborhood, respec-

tively is controlled to track a moving target. This algorithm allows agents to perform better

in large networks in a distributed fashion.

2.2.1 Flocking control background

To describe a dynamic topology of flocks or swarms we considera dynamic graphG(ϑ,E)

consisting of a vertex setϑ = {1,2...,n} and an edge setE ⊆ {(i, j) : i, j ∈ ϑ, i 6= j}. In

this topology each vertex denotes one member of the flock, andeach edge denotes the

communication link between two members.
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Let qi , pi ∈ Rm (m= 2,3) be the position and velocity of nodei, respectively. We know

that during the motion of sensors, the relative distance between them may change, hence

the neighbors of each sensor also change. Therefore, we can define a set of neighborhood

of sensori at timet as follows:

Ni(t) =
{

j ∈ ϑ : ‖q j −qi‖ ≤ r, ϑ = {1,2, ...,n}, i 6= j
}

(2.17)

Here, r is an interaction range (radius of the neighborhood circle in the case of two

dimensions,m= 2, or radius of the neighborhood sphere in the case of three dimensions,

m= 3), and‖.‖ is the Euclidean distance.

In this chapter we considern sensors moving in anmdimensional Euclidean space. We

address the motion control problem for a group of sensors with the objective of dynamic

target(s) tracking. We assume that each sensor has a large enough communication range to

allow it to communicate with others and a large enough sensing range to allow it to sense

the target. We also assume that each sensor is equipped with sonar or laser sensor that

allows it to estimate the position and velocity of the target.

The dynamic equation of each sensor is described as follows:










q̇i = pi

ṗi = ui , i = 1,2, ...,n
(2.18)

The geometry of a flock is modeled by anα-lattice [23] that has the following condition:

‖qi −q j‖ = d, j ∈ Ni (2.19)

hered is a positive constant indicating the distance between sensor i and its neighborj.

The configuration which approximately satisfies the condition (2.19) is called a quasi

α-lattice, i.e.(‖qi −q j‖−d)2 < δ2, with δ << d.

To construct a collective potential (discuss later) that isdifferentiable at singular con-

figuration (qi = q j ), the set of algebraic constrains is rewritten in term ofσ - norm (defined

in (2.24)) as follows:

‖q j −qi‖σ = dα, j ∈ Ni (2.20)
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In [23], Olfati-Saber proposed his control law for flocking of multiple mobile agents

with obstacle avoidance. This algorithm consists of three components as follows:

ui = f α
i + f β

i + f γ
i (2.21)

The first component of Equation (2.21) f α
i which consists of a gradient-based compo-

nent and a consensus component (more details about these components see [73], [50], [51])

is used to regulate the gradient of potentials (impulsive orattractive forces) and the velocity

among sensors.

f α
i = cα

1 ∑
j∈Nα

i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi) (2.22)

where each term in (2.22) is computed as follows [23]:

The set ofα neighbors at timet is

Nα
i (t) =

{

j ∈ ϑ : ‖q j −qi‖ ≤ r, ϑ = {1,2, ...,n}, i 6= j
}

(2.23)

Theσ−norm, ‖.‖σ, of a vector is a mapRm =⇒ R+ defined as

‖z‖σ =
1
ε
[
√

1+ ε‖z‖2−1] (2.24)

hereε is the positive constant.

The action functionφα(z) vanishing for allz≥ rα with rα = ‖r‖σ is used to construct

a smooth pairwise attractive/repulsive potential function, ψα(z) =
∫ z

dα
φα(s)ds. This action

functionφα(z) is defined as follows:

φα(z) = ρh(z/rα)φ(z−dα) (2.25)

whereφ(z) is the uneven sigmoidal function

φ(z) = 0.5[(a+b)σ1(z+c)+(a−b)] (2.26)

hereσ1(z) = z/
√

1+z2, and parameters 0< a ≤ b, c = |a− b|/
√

4ab to guarantee

φ(0) = 0, and constraintsdα = ‖d‖σ with d = r/k for k being the scaling factor (in the

simulations in this dissertationk = 1.2).
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The bump functionρh(z) with h∈ (0,1)

ρh(z) =























1, z∈ [0,h)

0.5[1+cos(π( z−h
1−h))], z∈ [h,1]

0, otherwise.

(2.27)

The vector along the line connectingqi andq j is defined as

ni j = (q j −qi)/
√

1+ ε‖q j −qi‖2 (2.28)

The adjacency matrixai j (q) is defined as

ai j (q) =











ρh(‖q j −qi‖σ/rα), i f j 6= i

0, i f j = i
(2.29)

The second component of Equation (2.21) f β
i is used to control the mobile sensors to

avoid obstacles,

f β
i = cβ

1 ∑
k∈Nβ

i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi) (2.30)

where the set ofβ neighbors (virtual neighbors) of sensori at timet with k obstacles is

Nβ
i (t) =

{

k∈ ϑβ : ‖q̂i,k−qi‖ ≤ r
′
,ϑβ = {1,2, ...,k}

}

(2.31)

herer
′
is selected to be less thanr, in our simulationsr

′
= 0.6r. ϑβ is a set of obstacles.

q̂i,k, p̂i,k are the position and velocity of sensori projecting on the obstaclek, respectively.

Similar to vectorni j defined in Equation (2.28), vector ˆni,k is defined as

n̂i,k = (q̂i,k−qi)/
√

1+ ε‖q̂i,k−qi‖2. (2.32)

The adjacency matrixbi,k(q) is defined as

bi,k(q) = ρh(|q̂i,k−qi‖σ/dβ) (2.33)

wheredβ = ‖r
′‖σ.
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The repulsive action function ofβ neighbors is defined as

φβ(z) = ρh(z/dβ)(σ1(z−dβ)−1). (2.34)

Now we want to show more details on how to find outβ neighbors ( ˆqi,k, p̂i,k) generated

by eachα agent. Firstly, we have the following assumption regardingthe obstacles.

Assumption 3. Obstacles are the convex regions inRm with boundaries being smooth

manifolds.

Based on this assumption, we can choose obstacles to be circles (two dimensions,m

= 2) or spheres (three dimensions,m = 3) with radiusRk at centeryk. We project each

sensor to obstacles and find out which shadow of that sensor onobstacles satisfies the

condition‖q̂i,k−qi‖≤ r
′
, and the obtained results of ˆqi,k are neighbors of sensori. Equation

(2.35) illustrates the projection method to find the positions and velocities ofβ neighbors

generated by sensori.

q̂i,k = µqi +(1−µ)yk, p̂i,k = µPpi (2.35)

whereµ= Rk/‖qi −yk‖. P= I −akaT
k is the projection matrix withak = (qi −yk/‖qi −yk‖)

and an unit matrix or identity matrixI .

Example 1. In this case, we have three obstaclesO1, O2 andO3 as shown in Figure 2.4.

After projectingα-sensori on all obstacles, we see that only two shadows (β-neighbors)

on the obstaclesO1 andO2 satisfying the condition (2.23). The obstacleO3 is out of active

ranger
′
, hence there is no shadow ofα-sensori on it. Consequently, we found out two

β-neighbors(q̂i,1, p̂i,1) and(q̂i,2, p̂i,2) of α-sensori.

The third component of (2.21) f γ
i is a distributed navigational feedback.

f γ
i = −cγ

1σ1(qi −qγ)−cγ
2(pi − pγ) (2.36)

whereσ1(qi − qγ) = (qi − qγ)/
√

1+‖qi −qγ‖2, and theγ - sensor(qγ, pγ) is the virtual

leader (more information of virtual leader, see [110]) defined as follows










q̇γ = pγ

ṗγ = fγ(qγ, pγ)
(2.37)
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Figure 2.4: The projection method for finding the positions and velocities ofβ- neighbors

of eachα - sensor.

The constants of three components used in (2.21) are chosen ascα
1 < cγ

1 < cβ
1, andcν

2 =

2
√

cν
1. Herecν

η are positive constants for∀η = 1,2 andν = α,β,γ.

2.2.2 Algorithm description

In this section, we will extend the above described flocking algorithm with obstacle avoid-

ance [23]. Two problems, namedSingle-CoMandMulti-CoM, respectively, will be inves-

tigated. In theSingle-CoMproblem, the CoM of positions and velocities of all sensors is

controlled to track the moving target. In this case, each sensor need to know the positions

and velocity of all other sensors, or it requires the global knowledge of the whole network.

To address the scalability problem theMulti-CoM (CoM of positions and velocities of each

sensor’s local neighborhood, respectively) problem is studied, where each sensor only need

to know the positions and velocity of its neighbors.

In the following algorithms we assume if one of the sensors inthe network can estimate

the position and velocity of the target, it will broadcast this obtained information to all other

nodes. Consequently all sensors in the network can get the knowledge of target.
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Single-CoM tracking

Firstly, based on Olfati-Saber’s flocking algorithm we design an algorithm with a dynamic

γ-agent. In this scenario, the dynamicγ-agent is considered as the moving target.

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−cmt
1 (qi −qmt)−cmt

2 (pi − pmt) (2.38)

here the pair(qmt, pmt) is the position and velocity of the moving target, respectively, and

cmt
1 , cmt

2 are positive constants, andcmt
2 = 2

√

cmt
1 .

By observing the control protocol (2.38), we see that the CoM is difficult to reach

the target in the presence of obstacles. This creates the difficulty for sensors to track and

observe the target. Therefore this protocol should be extended with more constraint on the

CoM as follows:

ui = f α
i + f β

i + f mt (2.39)

where f mt is a tracking feedback applied to sensori by a moving target with position and

velocity (qmt, pmt), respectively.

f mt
i = −cmt

1 (qi −qmt)−cmt
2 (pi − pmt)

−cmt
1 (q−qmt)−cmt

2 (p− pmt) (2.40)

where the pair(q, p) is the center of mass (CoM) of positions and velocities of allsensors,

respectively, as defined in (2.41).










q = 1
n ∑n

i=1qi

p = 1
n ∑n

i=1 pi .
(2.41)

TheSingle-CoMtracking is illustrated in Figure 2.5 (a). The CoM of the whole network

(red dot) is created to track the target.
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Figure 2.5: (a) A mobile sensor network with a single CoM (Single-CoM), (b) A mobile

sensor network with multiple CoMs (Multi-CoM).

Consequently, the extended control protocol (2.39) is explicitly specified as follows:

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−cmt
1 (qi −qmt)−cmt

2 (pi − pmt)

−csc
1 (q−qmt)−csc

2 (p− pmt) (2.42)

herecsc
1 ,csc

2 are positive constants.

In control protocol (2.42), each mobile sensor at each timet need to know the posi-

tion and velocity of all other sensors for computing the CoM (q, p). This means that this

protocol is limited by the number of sensors, or the scalability is limited because at each

time t all other sensors have to send their positions to sensori. Hence the communication

problem is a big challenge and need to be considered when implementing this protocol in

real sensor networks.

Multi-CoM tracking

To make the algorithm scalable we implement a distributed flocking algorithm calledMulti-

CoM tracking in which the CoM of each sensor’s local neighborhood is controlled to track

the target. TheMulti-CoM tracking is illustrated in Figure 2.5 (b). In this figure eachmobile
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sensor creates its own CoM, as a result multiple CoMs are created as a virtual network to

track a taeget. TheMulti-CoM tracking algorithm is presented as follows.

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−cmt
1 (qi −qmt)−cmt

2 (pi − pmt)

−cmc
1 (q(Nα

i ∪{i})−qt)−cmc
2 (p(Nα

i ∪{i})− pt), (2.43)

here(cmc
1 , cmc

2 ) are the positive constants, and the pair(q(i+Nα
i ), p(i+Nα

i )) is defined as

(2.44).










q(Nα
i ∪{i}) = 1

|Nα
i ∪{i}| ∑

|Nα
i ∪{i}|

i=1 qi

p(Nα
i ∪{i}) = 1

|Nα
i ∪{i}| ∑

|Nα
i ∪{i}|

i=1 pi ,
(2.44)

here|Nα
i ∪{i}| is the number of agents in agenti’s local neighborhood including agent

i itself.

In control protocol (2.43), each mobile sensor only need local knowledge, or it means

that each sensor only requires the position and velocity knowledge of itself and its neigh-

bors. Inα-lattice configuration [23] the maximum number of each sensor’s neighbors is 6.

Therefore this protocol can scale up to lager mobile sensor networks.

2.2.3 Stability analysis

In this sub-section we will analyze the stability of our algorithms, flocking control with

Single-CoMandMulti-CoM, respectively, in free space, and we will explain why the track-

ing performance in the presence of CoM constraint is better than without CoM constraint

in obstacle space.

Theorem 2. In free space, by controlling the CoM based on the control protocol (2.42),

the CoM of positions and velocities of all sensors in the network will exponentially con-

verge to the target. In addition, the formation of all mobilesensors will maintain in the

process of the moving target tracking.
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Proof:

In free space, this means that∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) = 0. Hence we can rewrite control

protocol (2.42) with ignoring constantscν
η (for ∀η = 1,2 andν = α,β) as follows:

ui = − ∑
j∈Nα

i

∇qi ψα(‖q j −qi‖σ)+ ∑
j∈Nα

i

ai j (q)(p j − pi)

−cmt
1 (qi −qmt)−cmt

2 (pi − pmt).

−csc
1 (q−qmt)−csc

2 (p− pmt). (2.45)

whereψα(z) =
∫ z

dα
φα(s)dsis the pairwise attractive/repulsive potential function.From

(2.45), we can compute the average of the control lawu as follows:

u =
1
n

n

∑
i=1

ui =
1
n

n

∑
i=1

(− ∑
j∈Nα

i

∇qi ψα(‖q j −qi‖σ)+ ∑
j∈Nα

i

ai j (q)(p j − pi))

−(cmt
1 +csc

1 )(q−qmt)− (cmt
2 +csc

2 )(p− pmt). (2.46)

Obviously, we see that the pair (ψα,a(q)) is symmetric. Hence we can rewrite (2.46) as:

u = −(cmt
1 +csc

1 )(q−qmt)− (cmt
2 +csc

2 )(p− pmt) (2.47)

Equation (2.47) implies that










q̇ = p

ṗ = −(cmt
1 +csc

1 )(q−qmt)− (cmt
2 +csc

2 )(p− pmt).
(2.48)

The solution of (2.48) indicates that the position and velocity of the CoM will exponen-

tially converge to those of the target.

The formation or collision-free and velocity matching among mobile sensors will be

maintained in the free space tracking because the gradient-based term and the consensus

term are considered in this situation.

For theMulti-CoM flocking control algorithm, we have the following statementfor the

stability properties.

In cluttered environments, consider a system ofn mobile agents, that have dynamics

(2.18) and are controlled by theMulti-CoM flocking algorithm (2.43). Then based on our

observations which are shown in the simulation results we see that:
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1. The CoM of positions and velocities of all agents in the network will exponentially

converge to the target in the free space.

2. The error between the CoM’s position and the target’s position is reduced in the

obstacle space.

The results of theMulti-CoM flocking algorithm are similar to theSingle-CoMflocking

algorithm. However, the benefit of theMulti-CoM flocking algorithm is that each agent is

controlled locally instead of globally as in theSingle-CoMflocking algorithm.

2.2.4 Simulation results

In this section we test our theoretical results in simulation with different trajectories of the

moving target. First of all we test the case where target moves with a sine wave trajectory.

Parameters used in this simulation are specified as follows:

- Parameters of flocking: number of sensors = 120; the initialpositions of sensors are

randomly distributed in a box with a size of [0 90]x[0 90]; theinitial velocities of sensors

are set to zero. Parametersa = b = 5; the interaction ranger = 1.2d = 9; ε = 0.1 for the

σ-norm;h = 0.2 for the bump function (φα(z)); h = 0.9 for the bump function (φβ(z)).

- Parameters of target movement: The target moves in the sinewave trajectory:qmt =

[50+35t, 295−35sin(t)]T with 0≤ t ≤ 8.5, andpmt = (qmt(t)−qmt(t−1))/∆t with ∆t =

0.002.

Second we test the case where the target moves in a circle trajectory. Parameters used

in this simulation are specified as follows:

- Parameters of flocking: parameters used in this case are thesame with those in the

sine trajectory case.

- Parameters of target movement: The target moves in a circletrajectory:qmt = [310−

160cos(t), 255+160sin(t)]T with 0≤ t ≤ 5, andpmt = (qmt(t)−qmt(t −1))/∆t.

To compare three algorithmsNo-CoM(2.38),Single-CoM(2.42) andMulti-CoM (2.43)

we use the same initial state (position and velocity) of mobile sensors. Figures 2.6 repre-
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Figure 2.6: Snapshots of the mobile sensor network when the mobile sensors are at the

initial positions, forming a network, avoiding obstacles,and at the ending positions, re-

spectively. (a, b, c) the mobile sensor network is tracking the target moving in the sine

wave trajectory, and (a’, b’, c’) the mobile sensor network is tracking the target moving

in the circle trajectory using flocking control algorithms with No-CoM(2.38),Single-CoM

(2.42) andMulti-CoM (2.43), respectively.
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Figure 2.7: Position errors between the CoM’s positions andthe moving target in the sine

wave trajectory (a, b, c) and the circle trajectory (a’, b’, c’) using flocking control algo-

rithms withNo-CoM(2.38),Single-CoM(2.42) andMulti-CoM (2.43), respectively.

sents the snapshots of mobile agents tracking the target moving in the sine wave and circle

trajectories using three algorithms,No-CoM, Single-CoMand Multi-CoM, respectively.

Figures 2.7 represents the error between the CoM’s positions and the target (tracking per-

formance) in the sine wave and circle trajectories using three algorithms,No-CoM, Single-

CoM and Multi-CoM, respectively. We see that the results of tracking performance in

Figure 2.7 (b, b’, c, c’) for both trajectories of the target usingSingle-CoMandMulti-CoM

algorithms, respectively, are better than that in Figure 2.7 (a, a’) usingNo-CoMalgorithm.

In addition, we can see the snapshots of mobile robots avoiding obstacle taken at the same

time, but in Figures 2.6 (b, b’, c, c’) more agents (sensors) passed through the narrow space

between two obstacles than that in Figures 2.6 (a, a’). This means that the CoM in the

algorithmsSingle-CoMandMulti-CoM (Figures 2.7 b, b’, c, c’) is closer to the target than

that in theNo-CoMalgorithm (Figures 2.7 a, a’).
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2.3 Summary

This chapter first studied the problem of single moving target tracking using a mobile robot

based on the artificial potential field approach. The simulation results were collected to

show the effectiveness of the proposed approach. Then, thisapproach is extended to tar-

get tracking in mobile sensor networks based on flocking control. We designed a flocking

control algorithm withSingle-CoMandMulti-CoM to enable mobile sensors to track and

observe the moving target more effectively while maintaining their formation and no colli-

sion among them. We prove that the CoM of positions and velocities of all mobile sensors

exponentially converges to the target. By controlling the CoM explicitly, the mobile sensor

network can track and observe the moving target better. Thismeans that all mobile sensors

in the network can surround the target closely which will allow them to see the target easily

for recognition purpose. In addition, flocking control withNo-CoM, flocking control with

Single-CoM, and flocking control withMulti-CoM are compared. Several simulations are

conducted with different target trajectories to demonstrate our theoretical results.
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CHAPTER 3

COOPERATIVE CONTROL BASED FLOCKING FOR MSNs IN NOISE-FREE

ENVIRONMENTS

In this chapter we study the cooperative control for MSNs in noise-free environments in

which each mobile sensor node can sense the location and velocity of itself and its neigh-

bors precisely. Three cooperative control algorithms are proposed. The first one is the

flocking control algorithm for MSNs to track a target in the case of a small subset of in-

formed agents while maintaining the network connectivity.The second one is the adaptive

flocking control for MSNs to track a moving target in complex environments where the

MSNs have to change the size of their formation to adapt to theenvironment in order

to maintain the network connectivity and similar topology.The last one is the multiple

dynamic target tracking algorithm which is designed for MSNs to track multi-target simul-

taneously.

This chapter is organized as follows. Section 3.1 presents the decentralized flocking

control with a minority of informed agents. Section 3.2 presents the adaptive flocking

control for MSNs to track a moving target. Section 3.3 describes multi-target tracking

algorithm for MSNs. Finally, Section 3.4 concludes this chapter.

3.1 Decentralized Flocking Control with a Minority of Infor med Agents

In this section we study the flocking control in the case of a small subset of informed

agents. In nature, only few agents in the group have information of the target, such as

knowledge about the location of a food source, or of a migration route, but they can still

flock together in a group to find the source of food (target) based on local information.
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Inspired by this natural phenomenon, a flocking control algorithm is designed to coordinate

the motion of multiple agents. Based on our algorithm, all agents can form a network,

maintain connectivity and track the target even only a few agents know the information of

the target.

3.1.1 Introduction

Early work on flocking control includes [37, 38, 23]. Tanneret al. [37], [38] studied

flocking control of a system of multiple mobile agents with double integrator dynamics in

the case of fixed and dynamic topologies. In [23], the theoretical framework for design and

analysis of distributed flocking algorithm was proposed. This established a foundation for

flocking control design for a group of agents. As an extensionof the flocking algorithm in

[23], flocking control of agents with a virtual leader in the case of a minority of informed

agents and varying velocity of virtual leader was presentedin [46]. However, in their work

the network can not maintain its connectivity because some agents may fall out of the

network.

In this section we study how to utilize a minority of informedagents to lead the whole

network to track the target while maintaining the connectivity. The main differences with

the above related work are:

1. We adopt a target navigation term in order to reduce the large tracking force at the

initial tracking time so that the connectivity is maintained.

2. We use a damping force term to reduce the tracking overshoot.

Overall, we propose a new flocking control algorithm that allows the flock to preserve

connectivity, avoid collision, and track the target without overshooting. We demonstrate

that by applying our algorithm the agents can flock together and maintain connectivity

better compared to existing flocking control algorithms.

Most of existing flocking control algorithms [37, 38, 23] aredesigned under the as-

sumption that all agents need information of the position and velocity of the target in order
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to flock together. However, in reality this assumption is notvalid. It can be seen in many

cases that only very few agents have information of the target due to their limited sensing

range. For example, in fish schools and bird flocks, only some agents have knowledge

about the location of a food source, or of a migration route [41, 42]. Motivated by these

observations we will study how to design a distributed flocking control algorithm which

can still maintain good tracking performance and connectivity when only few agents have

information of the target.

3.1.2 Decentralized Flocking Control with a Minority of Inf ormed Agents (MIA)

In this subsection, we design a distributed flocking controlalgorithm for multi-agent sys-

tems in the case that only a few agents are informed with the position and velocity of

the target. We call these agents as informed agents. Let us define NI as a subset of in-

formed agents andNUI as a subset of uninformed agents withNI << NUI . Hence we have

NI ∪NUI = N, hereN is the set of all agents (uninformed and informed agents).

Paper [46] proposed the following flocking control algorithm based on the algorithm

(2.38):

ui = ∑
j∈Ni

φα(‖q j −qi‖σ)ni j + ∑
j∈Ni

ai j (q)(p j − pi)

−ct
1(qi −qt)Ii −ct

2(pi − pt)Ii. (3.1)

here if Ii = 1 the agenti has information (position and velocity) of the target. Otherwise

Ii = 0 agenti does not have information of the target.

We implemented the algorithm (3.1) in which we let some agents closest to the target

have the information (position and velocity) of the target.The result is shown in Figure

3.1.

In this figure we clearly see that the network is broken, and only the agents which have

information of the target can track the target. Additionally, we find that the target tracking

performance has big overshoot. In order to solve these two problems we introduce two
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Figure 3.1: Snapshots of the agents when applying the flocking control algorithm (3.1). We

select 6 out of 50 agents which are closest to the target to have the information (position

and velocity) of the target.

terms. The first term is a navigation term, and the second one is a damping force term. The

main purpose of the navigation term is to maintain the connectivity among agents, and the

purpose of the damping force term is to reduce the tracking overshoot.

Navigation Term

The navigation term allows the agents to stay together. The main idea behind this term is

that if we let the informed agents keep strong cohesion to uninformed agents at the initial

time of the target tracking process, the connectivity can bemaintained. In order to do this,

we have to reduce the initial momentum of the attractive force to the target for the informed

agents. This means that we should have small attractive force at the initial time when the

distance between the informed agent and the target is large.Based on this analysis we

design the navigation term as shown in Algorithm 1. In this algorithm the constantK1

chosen between 0.9 and 1 is to ensure that a small attractive force is applied at the initial
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time of the target tracking process. The weights, K2

‖qin f
i (t)−qt(t)‖

and K3

‖qin f
i (t)−qt(t)‖

are designed

so that the attractive force is small enough at the initial time, and then it becomes bigger

when the distance‖qin f
i (t)−qt(t)‖ decreases.

Algorithm 1: Design of the Navigation Term

for each informed agent j, j∈ NI do

if ‖qin f
i (t)−qt(t)‖ > K1‖qin f

i (0)−qt(0)‖ then

f t
j = − K2

‖qin f
i (t)−qt(t)‖

(qin f
j −qt)

− K3

‖qin f
i (t)−qt(t)‖

(pin f
j − pt)

here, 0.9 < K1 < 1, K2 > 0 andK3 > 0,

else

f t
i = −ct

1(q
in f
j −qt)−ct

2(pin f
j − pt)

end

end

Damping Force Term

Since only the informed agentsNI have the information of the target, the damping force

can be only applied to these agents. The idea behind this damping force is to reduce the

tracking overshoot when the informed agents are close to thetarget. That is, the damping

force for the informed agents is only effective if the distance between the informed agent

and the target is less than a certain threshold. This threshold is designed based on the active

ranger. This means that when the target is inside the active range ofthe informed agentj

the damping forcef dam
j is applied, otherwisef dam

j = 0. In order to do that the constantK4

is used(0 < K4 < 1). When the damping forcef dam
j is applied, the informed agentj will

reduce its speed gradually to approach the target. Hence, the tracking overshoot is reduced.
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Algorithm 2: Design of the Damping Force Term

for each informed agent j, j∈ NI do

if ‖qin f
i (t)−qt(t)‖ < K4r then

f dam
j = −Kdampin f

j

here, 0< K4 < 1 andKdam> 0,

else

f dam
j = 0

end

end

Overall, the damping force is designed in Algorithm 2.

Finally the whole decentralized flocking control algorithmis proposed in Algorithm 3.

In this algorithm we have two options of the initial network configuration, and both options

are to allow the network of agents to be connected at the beginning.
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Algorithm 3: Decentralized Flocking Control Algorithm with a MIA
Input : Position and velocity of each agent (qi , pi); Position and velocity of the

target (qt , pt ) for the informed agents (NI ).

Output : Control law for each agentui

Initialization phase: -Option 1. Deploy the agents to form a connected network;

-Option 2. All agents are programmed based on flocking algorithm (2.38) to go to

the rendezvous point so that they can form a connected network.

Implementation phase:

for each agent ido
Compute:f α

i = ∑ j∈Ni
φα(‖q j −qi‖σ)ni j +∑ j∈Ni

ai j (q)(p j − pi).

end

for each informed agent j, j∈ NI do

if ‖qin f
i (t)−qt(t)‖ > K1‖qin f

i (0)−qt(0)‖ then

f t
j = − K2

‖qin f
i (t)−qt(t)‖

(qin f
j −qt)−

K3

‖qin f
i (t)−qt(t)‖

(pin f
j − pt),

else

f t
i = −ct

1(q
in f
j −qt)−ct

2(pin f
j − pt).

end

if ‖qin f
i (t)−qt(t)‖ < K4r then

f dam
j = −Kdampin f

j ,(0 < K4 < 1 andKdam> 0).

else

f dam
j = 0.

end

end

for each uninformed agent k, k∈ NUI do

f dam
k = 0, f t

k = 0.

end

Update the control law for each agenti: ui = f α
i + f dam

i + f t
i .
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3.1.3 Experimental and Simulation Results

In this section we test our proposed flocking control Algorithm 3 and compare it with the

existing flocking control algorithm (3.1) in the case of a minority of informed agents. First

we test our algorithm with 7 real robots. Then to show the effectiveness and the scalability

of our algorithm we test it with 50 robots in simulation. In addition, we show a metric to

evaluate the network connectivity of our algorithm and the existing algorithm.

Experimental Setup

In this experiment we use 7 Rovio robots [111] that have omni-directional motion capa-

bility. Basically, these robots can freely move in 6 directions. The dynamic model of the

Rovio robot can be approximated by Equation(2.18). However, the accuracy of the local-

ization of the Rovio robot is low, and the robot does not have any sensing device to sense

the pose (position and velocity) of its neighbors or the obstacles. Hence we use a VICON

motion capture system [1] in our lab (Figure 3.2) that includes 12 cameras to track objects.

This tracking system can give the location and velocity of each moving object with over 95

percent of accuracy. �������� ������	 
���
������ ���� �� � ����� �����	

Figure 3.2: Motion Capture System from VICON [1] in the experimental setup.

We use the following parameters:
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- Parameters of flocking:a = b = 5; d = 600mm; the scaling factorkc = 1.2; the active

ranger = kc.d; ε = 0.1 for theσ norm;h = 0.2 for the bump function (φα(z)); h = 0.9 for

the other bump function (φβ(z)).

- Parameters of the target: The target location is at[0, 500mm] for the experiment. The

velocity vectorpt = [5, 5].

Simulation Setup

In the simulation 50 agents are randomly distributed in the square area of 120× 120 size,

and we use the following parameters:

- Parameters of flocking: the constantsa = b = 5 for the sigmoidal function (φ(z)); the

distance among agentsd = 16 units; the scaling factorkc = 1.2; the active ranger = kc∗d;

ε = 0.1 for theσ norm;h = 0.2 for the bump function (φα(z)); h = 0.9 for the other bump

function (φβ(z)).

- Parameters of the target: The target location is at[450, 450]. The velocity vector

pt = [5, 5].

Network Connectivity Evaluation

To evaluate the the network connectivity maintenance, firstwe know that the link (connec-

tivity) between nodei and nodej is maintained if the distance 0< ‖qi −q j‖ ≤ r. Other-

wise this link is considered broken. For graph connectivity, a dynamic graphG(ϑ,E) is

connected at timet if there exists a path between any two vertices. An example ofgraph

connectivity is shown in Figure 3.3.

Based on the above analysis, to analyze the connectivity of the network we define a

connectivity matrix[ci j (t)] as follows:

[ci j (t)] =











1, i f j ∈ Ni(t), i 6= j

0, i f j /∈ Ni(t), i 6= j

45



  
 
 
 
 
 
 
 
 
 
 
  

Figure 3.3: If one or two of the links (1,2), (3,4), (5,6) is broken the graph connectivity is

still remained, but if all of that links is broken the graph connectivity is lost.

andcii = 0. Since the rank of Laplacian of a connected graph [23][ci j (t)] of ordern is at

most (n−1) or rank([ci j (t)]) ≤ (n−1), the relative connectivity of a network at timet is

defined as:C(t) = 1
n−1rank([ci j (t)]). If 0 ≤C(t) < 1 the network is broken, and ifC(t) = 1

the network is connected. Based on this metric we can evaluate the network connectivity

in our proposed flocking control Algorithm 3 and the existingflocking control algorithm

(3.1).

Experimental Results

Initially, the seven Rovio robots are randomly deployed so that they can form a connected

network (see Option 1 in Algorithm 3). Then, two robots whichare closest to the target

are selected to be the informed agents (the two robots with cameras facing up as shown in

snapshot (d) in Figure 3.5). We obtained the results of our flocking control Algorithm3 in

Figures 3.4, 3.5 and 3.6. Specially, Figure 3.5 (a, b, c) show the snapshots of simulation

results for seven robots, and Figure 3.5 (d, e, f) show the snapshots of experiment results

for seven robots. In Figure 3.6 we compare the trajectories of three out of seven robots in

both simulation and experiment, and we see that the experimental trajectories have small

difference with the ones in simulation since the motion of the robots is limited to only six

directions. In addition, Figure 3.4 shows the connectivity result, and we clearly see that the

seven robots can flock together even only two of them know the information of the target.
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Figure 3.4: Connectivity evaluation in experiment of 7 Rovio robots when applying our

proposed flocking control algorithm 3.

-600 -400 -200 0 200 400 600 800

-1500

-1000

-500

0

500

Y
 (

P
O

S
)

X (POS)

���������	��
�

��	�


-100 0 100 200 300 400 500 600 700 800
-3300

-3200

-3100

-3000

-2900

-2800

-2700

-2600

-2500

-2400

X (POS)

Y
 (P

O
S

)

�
���������
��
-800 -600 -400 -200 0 200 400 600

-400

-200

0

200

400

600

800

1000

Y
 (

P
O

S
)

X (POS)

�������� !��"# " �!�"
$%&'()*+ ,-*%./ $%&'()*+ ,-*%./ .,(-*. 012 3114 $%&'()*+,-*%./ .,(-*. 012 3114

Figure 3.5: Snapshots of 7 Rovio robots flocking together when applying our proposed

flocking control algorithm 3.
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Figure 3.6: Trajectories of simulation and real robots whenapplying our proposed flocking

control algorithm 3.
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Simulation Results

In simulation, we test our proposed Algorithm 3 with fifty robots which are randomly

deployed so that they do not form a connected network initially. Then, these robots are

programed based on the flocking algorithm (2.38) to go to the rendezvous point (see Option

2 in Algorithm 3). This step is to make sure that the fifty robots form a connected network

at the rendezvous point. After that we let two robots (blue squares) which are closest to the

target know the position and velocity of the target. By observing Figure 3.7 we can see that

the two informed robots can drag all 48 other robots (purple triangles) to flock together.

The connectivity for the proposed Algorithm 3 and the algorithm (3.1) is shown in Figure

3.9, and from this figure we can see that the connectivity is maintained for Algorithm 3

while it is broken when applying algorithm (3.1). The tracking overshoot is evaluated in

Figure 3.8, and we see that without the damping force term the trackingovershoot is big,

and the network oscillates around the target.
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Figure 3.7: Snapshots of 50 robots flocking together (simulation) with two of them knowing

the information of the target.
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Figure 3.9: Connectivity evaluation in simulation of 50 robots. Solid line is for our pro-

posed algorithm 3, and dash line is for the existing algorithm (3.1)
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3.2 Adaptive Flocking Control for Moving Target Tracking

In this section, an adaptive flocking control algorithm is designed to allow an MSN to deal

with complex environments while maintaining connectivity, tracking performance and sim-

ilar formation. The stability analysis of the adaptive flocking control is provided. In addi-

tion, simulations and experiments are conducted to comparethe adaptive flocking control

and regular flocking control.

3.2.1 Problem Formulation

In reality, a mobile sensor network has to deal with changingor complex environments. For

example the agents have to pass through a narrow space among obstacles. In that situation

the existing flocking control algorithms have some limitations such as:

1. Formation of the network is totally changed.

2. Connectivity is lost because of the fragmentation phenomenon.

3. Low speed or getting stuck causes poor tracking performance.

Therefore designing an adaptive flocking control algorithmto deal with these problems

is a challenging task. In this section, we present a novel approach to flocking control of

a mobile sensor network to track a moving target with changing environments. In this

approach, each agent cooperatively and adaptively learns the network’s parameters to de-

cide its’s size in a decentralized fashion so that the connectivity, tracking performance and

formation can be improved when avoiding obstacles. The reason for maintaining the con-

nectivity and similar formation is that when the network shrinks to deal with changing

environments the neighborhood of each agent can be maintained. This allows the network

to keep the same topology that reduces the complexity of control during the tracking pro-

cess. Computer simulations are conducted to prove our theoretical results.

The problem is how to cooperatively control the size of the network which forms anα-

lattice configuration in an adaptive fashion while maintaining the network’s connectivity,
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Figure 3.10: Illustration of the adaptive flocking control.

tracking performance and similar formation in the presenceof obstacles. Here, the similar

formation is understood as the neighbors of each agent in thewhole tracking process are

kept. One example of such flocking control is illustrated in Figure 3.10.

3.2.2 Adaptive Flocking Control

To control the size of the network, we need to control the set of algebraic constraints in

Equation (2.20), which means that if we want the size of the network to be smaller to pass

the narrow space thendα should be smaller. This raises the question of how small the size

of network should be reduced and how to control the size in a decentralized and dynamic

fashion.

To control the constraintdα one possible method is based on the knowledge of obstacle

obtained by any agent in the network, which will broadcast a new dα to all other agents,

then the network will shrink into small size to pass through the narrow space between the

obstacles. However, it is difficult for a single agent to learn the obstacles due to its limited

sensing range. Therefore, one agent is not able to know the whole environment to determine

the size of the network. To overcome this problem we propose the second method based
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on the repulsive force,∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ), which is generated by theβ-agent projected

on the obstacles. If any agent of the network gets this repulsive force it will shrink its own

dα
i . If this repulsive force is big (agent is close to obstacle(s)) dα

i will be further reduced.

Then, in order to maintain the neighbors (topology) the active range of each agent is re-

designed. To create the agreement on the relative distance and active range among agents

in a decentralized way, a consensus or a local average updatelaw is proposed. Furthermore,

to maintain the connectivity each agent is designed with an adaptive weight of attractive

force from the target and an adaptive weight of interaction force from its neighbors so that

the network reduces or recovers the size gradually. That is if an agent has weak connection

to the network it should have big weight of attraction force to the target and small weight

of interaction force from its neighbors.

Firstly, we control the set of algebraic constraints as in Equation (3.2)

‖q j −qi‖σ = dα
i , j ∈ Ni (3.2)

and let each agent have its owndα
i , which is designed as in Equation (3.3)

dα
i =















dα, i f ∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) = 0

ca
∑

k∈N
β
i
|φβ(‖q̂i,k−qi‖σ)|+1, i f ∑k∈Nβ

i
φβ(‖q̂i,k−qi‖σ) 6= 0.

(3.3)

hereca is the positive constant.

From Equation (3.3) we see that if the repulsive force generated from the obstacles

∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) = 0 or Nβ
i ∈ /0 (empty set) then the agent will keep its originaldα.

When the agent senses the obstacles it reduces its owndα
i , and how smalldα

i depends on

the repulsive force that the agent gets from obstacles.

In order to control the size of network each sensor need its own rα
i that relates todα

i as

follows: rα
i = ‖kd‖σ with ‖d‖σ = dα

i or d =

√

(εdα
i +1)2−1

ε . Explicitly, rα
i is computed as in

Equation (3.4).

rα
i =











rα, i f ∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) = 0

1
ε [

√

k2 (εdα
i +1)2−1

ε +1−1], i f ∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) 6= 0.
(3.4)
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Similar to computingrα
i , r i which also relates torα

i is computed as

r i =











r, i f ∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) = 0
√

1
ε [(εrα

i +1)2−1], i f ∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) 6= 0.
(3.5)

It should be pointed out that the active ranger i is different from the physical commu-

nication (sensing) range. Namely, the active range is the range that each agent decides its

neighbors to talk with, but the physical communication range is the range defined by the

RF module. This implies that even a robot can communicate with all other robots in the

network, it will only talk (interact) with robots in its active range. That is why we want to

control the active range of each robot in order to reduce the communication and maintain

the similar formation when the network shrinks into smallersizes.

To achieve agreement ondα
i , rα

i andr i among agents in the connected network we use

the following update law based on local average fordα
i , rα

i andr i :























dα
i = 1

|Nα
i ∪{i}| ∑

|Nα
i ∪{i}|

j=1 dα
j

rα
i = 1

|Nα
i ∪{i}| ∑

|Nα
i ∪{i}|

j=1 rα
j

r i = 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
j=1 r j

(3.6)

here|Nα
i ∪{i}| is the number of agents in agenti’s local neighborhood including agenti

itself.

In addition, to better maintain the network connectivity each agent should have an adap-

tive weight of attractive force from the target and interaction force from its neighbors as dis-

cussed before. Firstly, in the control protocol (2.38), the first two terms are used to control

the formation (velocity matching, collision avoidance among robots). The third and fourth

terms are used to allow robots to avoid obstacles, and the last term is used for target track-

ing. If the last term is absent the control will lead to the network fragmentation [23]. The

coefficients of the interaction forces(cα
1 , cα

2), (cβ
1, cβ

2) and attractive force(cmt
1 , cmt

2 ) which

deliver desired swarm-like behaviour are used to adjust theweight of interaction forces and

attractive force. Namely, the pair(cα
1 , cα

2) is used to adjust the attractive/repulsive forces
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among agenti and its actual neighbors (α-agent), and the pair(cβ
1, cβ

2) is used to adjust the

repulsive forces among agenti and its virtual neighbors (β-agent) that is generated from

agenti when it see the obstacles, and the pair(cmt
1 , cmt

2 ) is used to adjust the attractive

forces between agenti and its target. The bigger(cmt
1 , cmt

2 ) the faster convergence to the

target. However if(cmt
1 , cmt

2 ) is too big the center of mass (CoM) as defined in Equation

(2.41) oscillates around the target, and the formation of network is not guaranteed. In ad-

dition, in order to guarantee that no agent hit obstacle the pair (cβ
1, cβ

2) is selected to be

bigger than the other two pairs,(cα
1 , cα

2) and(cmt
1 , cmt

2 ). Finally we have the relationship

among these pairs as:(cα
1,2 < cmt

1,2 < cβ
1,2).

From the above analysis of choosing the coefficients of the interaction forces and at-

tractive force we see that these adaptive weights allow the network to reduce and recover

the size gradually. This also allows the network to maintainthe connectivity during the

obstacle avoidance. We will let each sensor have its own weight of the interaction forces as

in Equation (3.7) and attractive force as in Equation (3.8).Keep in mind that in theα-lattice

configuration if the sensor has less than 3 neighbors it is considered as having a weak con-

nection to the network. This means that this sensor is on the border of network, or far from

the target hence it should have bigger weight of attractive force from its target and smaller

weight of interaction forces from its neighbors to get closer to the target. This design also

has the benefit for the whole network to track the target faster. From this analysiscα
1,2 and

cmt
1,2 of each agent are designed as follows:

cα
1(i) =











cα
1 , i f |Nα

i | ≥ 3

cα′

1 , i f |Nα
i | < 3

(3.7)

herecα′

1 < cα
1 , cα

2(i) = 2
√

cα
1(i), andi = 1,2, ...,n.

cmt
1 (i) =











cmt
1 , i f |Nα

i | ≥ 3

cmt
′

1 , i f |Nα
i | < 3

(3.8)

herecmt
′

1 > cmt
1 , cmt

2 (i) = 2
√

cmt
1 (i), andi = 1,2, ...,n.
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Hence, the neighbor set of sensori at timet (N
′α
i (t)), the new adjacency matrixai j (q)

and the new action functionφα(z) are defined as follows:

N
′α
i (t) =

{

j ∈ ϑ : ‖q j −qi‖ ≤ r i , ϑ = {1,2, ...,n}, j 6= i
}

(3.9)

a
′
i j (q) =











ρh(‖q j −qi‖σ/rα
i ), i f j 6= i

0, i f j = i
(3.10)

φ
′
α(‖q j −qi‖σ) = ρh(‖q j −qi‖σ/rα)φ(‖q j −qi‖σ −dα

i ). (3.11)

Finally, the adaptive flocking control law for dynamic target tracking is as follows,

ui = cα
1(i) ∑

j∈N
′α
i

φ
′
α(‖q j −qi‖σ)ni j

+cα
2(i) ∑

j∈N
′α
i

a
′
i j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−cmt
1 (i)(qi −qmt)−cmt

2 (i)(pi − pmt). (3.12)

3.2.3 Stability Analysis

By applying the control protocol (3.12), the CoM (defined in Equation (2.41)) of positions

and velocities of all mobile sensors in the network will exponentially converge to the target

in both free space and obstacle space. In addition, the formation or no collision and velocity

matching among mobile sensors will maintain in the process of the moving target tracking.

Let us consider two cases of adaptive flocking control in freespace and obstacle space,

respectively.

Case 1 (Free space): In free space, this means that∑k∈Nβ
i

φβ(‖q̂i,k−qi‖σ) = 0. Hence

we can rewrite the control protocol (3.12) with ignoring constantscν
η (for ∀η = 1,2 and

ν = α,β) as follows:

ui = − ∑
j∈Nα

i

∇qi ψα(‖q j −qi‖σ)+ ∑
j∈Nα

i

ai j (q)(p j − pi)

−cmt
1 (qi −qmt)−cmt

2 (pi − pmt) (3.13)
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whereψα(z) =
∫ z

dα
φα(s)dsis the pairwise attractive/repulsive potential function.From

(3.13), we can compute the center of mass of control lawu as follows:

u =
1
n

n

∑
i=1

ui =
1
n

n

∑
i=1

(− ∑
j∈Nα

i

∇qi ψα(‖q j −qi‖σ)

+ ∑
j∈Nα

i

ai j (q)(p j − pi))

−cmt
1 (q−qmt)−cmt

2 (p− pmt). (3.14)

Obviously, we see that the pair (ψα,a(q)) are symmetric. Hence we can rewrite (3.14) as:

u = −cmt
1 (q−qmt)−cmt

2 (p− pmt). (3.15)

Equation (3.15) implies that










q̇ = p

ṗ = −cmt
1 (q−qmt)−cmt

2 (p− pmt).
(3.16)

The solution of (3.16) indicates that the position and velocity of the CoM exponentially

converge to those of target.

The formation or collision-free and velocity matching among mobile sensors are kept

in the free space tracking because the gradient-based term and the consensus term are

considered in this situation (more details please see [23]).

Case 2 (Obstacle space): dα
i is designed to be reduced when each agent senses the ob-

stacles. Therefore, when the sensor network has to pass through the narrow space between

two obstacles it will shrink the size gradually, and when thenetwork already passed this

narrow space it grows back to the original size gradually. This reduces the impact of the

obstacle on the network hence the speed of agents can be maintained or the CoM keeps

tracking the target. Also, the connectivity and similar formation can be maintained in this

scenario.

3.2.4 Simulation and Experiment Results

The parameters used in the simulation and experiment of the adaptive flocking are specified

as follows:
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- Parameters of flocking in simulation: we use 50 mobile sensor nodes which are ran-

domly distributed in the box of 100x100 size. Other parameters area = b = 5; the active

ranger = 8.5; the desired distanced = 7; ε = 0.1 for theσ-norm; h = 0.2 for the bump

functions (φα(z), φ′
α(z)); h = 0.9 for the bump function (φβ(z)).

Parameters of target movement for simulation: The target moves in the line trajectory:

qt = [100+130t, t]T .

- Parameters of flocking in experiment:

a= b= 5; d = 1100mm; the scaling factorkc = 1.2; the active ranger = kc∗d; ε = 0.1

for theσ-norm;h = 0.2 for the bump functions (φα(z), φ′
α(z)); h = 0.9 for the bump function

(φβ(z)).

Parameters of target movement for experiment: The virtual target moves in the line

trajectory:qt = [230+ t, −3000+130t]T.

- Experimental setup: In this experiment we use 7 Rovio robots [111] that have omni-

directional motion capability. Basically, these robots can freely move in 6 directions. The

dynamic model of the Rovio robot can be approximated by Equation (2.18). However, the

localization accuracy of the Rovio robot is low, and the robot does not has any sensing

device to sense the pose (position and velocity) of its neighbors or the obstacles. Hence

we use a VICON motion capture system setup [1] in our lab (Figure 3.11) that includes 12

infrared cameras to track moving objects. This tracking system can provide the location

and velocity of each moving object with high accuracy.

Figures 3.12 represents the results of moving target (red/dark line) tracking in the line

trajectory using the existing flocking control algorithm (2.38). Figure 3.13 represents the

results of moving target tracking in the line trajectory using the adaptive flocking control

algorithm (3.12). Figure 3.14 shows the results of velocity matching among agents (a, a’),

connectivity (b, b’) and error positions between the CoM (black/darker line) and the target

(tracking performance) (c, c’) of both flocking control algorithms (3.12) and (2.38), respec-

tively. To compare these algorithms we use the same initial state (position and velocity) of
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Figure 3.11: Experimental setup for adaptive flocking control.

mobile agents. By comparing these figures we see that by applying the adaptive flocking

control algorithm (3.12) the connectivity, similar formation and tracking performance are

maintained when the network passes through the narrow spacebetween two obstacles (two

red/dark circles) while the existing flocking control algorithm (2.38) could not handle these

problems. In Figures 3.13 when the network enters the small gap between two obstacles

its size is shrunk gradually in order to pass this space, thenthe network size grows back

gradually when it passed. Therefore the connectivity and similar formation are maintained.

Figure 3.15 shows the snapshots (a to f) of the experiment result for 7 Rovio robots

using our adaptive flocking algorithm (3.12). The results look similar with the simulation

result in Figure 3.13. Figure 3.16 (Left) shows the trajectories of 7 robots in simulation, and

Figure 3.16 (Right) compares the trajectories of 7 robots in both simulation and experiment.
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Figure 3.12: Snapshots of the mobile sensor network (a) whenthe mobile sensors form

a network, (b) when the mobile sensors avoid obstacles, (c) when the mobile sensors get

stuck in the narrow space between two obstacles. (a’, b’, c’)are closer look of (a, b, c),

respectively. These results is obtained by using algorithm(2.38).

60



220 230 240 250 260 270

-20

-15

-10

-5

0

5

10

15

20

25

100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

325 330 335 340 345 350 355 360 365

-20

-15

-10

-5

0

5

10

15

20

385 390 395 400 405 410 415 420 425 430 435

-25

-20

-15

-10

-5

0

5

10

15

20

100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

250 300 350 400 450 500 550 600

-150

-100

-50

0

50

100

150

535 540 545 550 555 560 565 570 575

-15

-10

-5

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

365 370 375 380 385 390

-8

-6

-4

-2

0

2

4

6

8

10

12

100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

�� � ������	
��

��� � ������	
��
 ��� � ������	
��
 ��� � ������	
��
 ��� � ������	
��
 ��� � ������	
��
 �� � ������	
��
�� � ������	
��
 �� � ������	
��
 �� � ������	
��


Figure 3.13: Snapshots of the mobile agent network (a) when the mobile agents form a

network, (b, c) when the mobile agent network shrinks to avoid obstacles, (d) when the

mobile agents successfully passed through the narrow spacebetween two obstacles, (e)

when the mobile agents recover the original size. (a’, b’, c’, d’, e’) are closer look of (a,

b, c, d, e), respectively. These results are obtained by using our adaptive flocking control

algorithm (3.12).
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Figure 3.14: Velocity matching among agents, connectivity, and error of positions between

the CoM and the moving target in (a, b, c), respectively usingour adaptive flocking control

algorithm (3.12), (a’, b’, c’) using the algorithm (2.38).
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Figure 3.15: Snapshots of adaptive flocking control with 7 Rovio robots using our adaptive

flocking control algorithm (3.12). (a) 7 robots are randomly distributed. (b) 7 robots form

a lattice formation. (c) 7 robots begin to shrink the size of the network. (d) 7 robots pass

through the narrow space between 2 obstacles. (e) 7 robots begin to recover the size of the

network. (f) 7 robots completely recover the size of the network.
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Figure 3.16: Trajectories of 7 robots are obtained by using the adaptive flocking control

algorithm (3.12).
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3.3 Multiple Dynamic Targets Tracking

In many surveillance applications MSNs have to deal with thedynamic situation of targets

appearing and disappearing in the field. In this section we first address the problem of

sensor network partitioning and then discuss multiple dynamic targets tracking through

sensor splitting and merging.

3.3.1 Sensor Network Partitioning

To deal with a new emerging target, the sensor network shouldautomatically decompose

into equal sub-groups and then each sub-group will be assigned to track one target. For

example, considerM targets existing at timet andM sensor groups(G1,G2, ...,GM) which

are tracking these targets (each group has aboutn/M sensors). If the(M + 1)th target

appears then n
M+1 sensors should split off fromM existing groups to form a new group

to track the new target. On the other hand to deal with a disappearing target, the sensors

which are tracking this target should split and merge with the existing groups.

As discussed in Chapter 2, the mobile sensor network can be considered as a dynamic

graph (dynamic topology). Hence we can apply some graph partitioning algorithms to de-

compose the graph into sub-graphs (sub-groups). However, some existing methods for

graph partitioning are centralized methods, which means that each sensor need global

knowledge of the whole network’s state to split from the network. There are also some

distributed graph partitioning or distributed graph clustering methods, but they are usually

based on the density of node’s distribution (seeLiterature review section). Hence the size

of sub-groups is not predetermined, or the number of sensorsin each sub-group is different.

Based the above analysis, this section proposes a seed growing graph partition (SGGP)

algorithm to decide which sensor in the network should tracknew targets. The main idea of

this algorithm is based on seed growing. This means that the mobile sensor which is closest

to the new target will initiate the growth of the sensors intoa new group by broadcasting
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the message to its sons in a recursive fashion until the number of sensors in the subgroup

is equal to a predetermined threshold (ΘS). By growing the number of sensors in each

generation from the seed sensor (the sensor closest to the new target), the formation of

each sub-group is maintained during splitting. This leads to minimized total energy and

time consumption.

Assume all mobile sensors already formed a network with anα-lattice configuration

(see Figure 3.17). In this configuration if the sensor has 5 or 6 neighbors (6is the maximum

number of neighbors in this configuration) this sensor will be inside the network. If the

sensor has less than or equal to 4 neighbors it will be on the border of the network. This

sensor is called a border sensor. Based on this fact, the SGGPalgorithm is summarized as

follows:

Step 1. Each sensor checks to find how many neighbors it has and decides if it is a

border sensor.

Step 2. Each border sensor computes the distance to the new target and forwards this

distance information to the other border sensors, and receives the distances from other

border sensors.

Step 3.Each border sensor compares its distance with the received distances from other

border sensors and finds the sensor with smallest distance tobe set as the Seed Sensor (SS).

Step 4.The SS counts its sons and broadcasts the predetermined sizeof the new group

to its sons. If the size of the new group is less than the predetermined size the sons will

continue passing the message to their sons. This process is repeated until the size of the

new group is equal to the predetermined size.

Remark 2. In the SGGP algorithm, the number of sons of sensori is defined as:

|Si| = |Ni |− |Fi|− |DBi| (3.17)

here|Si|, |Ni |, |Fi| and|DBi | are the number of sons, neighbors, fathers and direct broth-

ers of sensori, respectively. For example in Figure 3.17, SS is the father of sensors 2, 3 and

4. Sensor 3 is the direct brother of sensor 2, hence the sons ofsensor 2 are only sensors 5
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Figure 3.17: Example of seed growing graph partition.

and 6. Sensor 2 can know sensor 3 being its direct brother because its father (SS) sends a

message{DB} to tell which sensor is its direct brother. In addition, two or more sensors

can have the same son, but if a sensor has the priority{P} to count this same son first the

remaining sensors will not count this son again. For an example of this situation, sensors 2

and 3 have the same son, sensor 5, but because of its smaller IDsensor 2 receives a message

consisting of{P} from its father (SS) hence it has priority to count sensor 5 asits son first

then it sends the counting number (CN) to its direct brother sensor 3.

Figure 3.17 shows the message exchange when applying the SGGP algorithm. The

slashed green arrows represent the counting number (CN) which is sent after counting, and

the solid red arrows represent the message exchange. In thisscenario assuming that we

have 30 sensors (n=30), and they already formed a network with α-lattice configuration.

This sensor network is tracking the current target. When a new target appears, by applying

the SGGP algorithm 15 sensors (ΘS = n/2) split from the network to track the new target

with the total distance of all n/2 sensors to the new target being minimized.
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3.3.2 Multiple Dynamic Targets Tracking

In the multiple targets scenario, we assume that each sensoris integrated with the flocking

control algorithms withNo-CoM (3.18) andMulti-CoM (3.19), respectively, which deal

with each different target(qmtl , pmtl ) with l = 1,2, ...,M described as below.

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−cmt
1 (qi −qmtl )−cmt

2 (pi − pmtl ). (3.18)

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

+cβ
1 ∑

k∈Nβ
i

φβ(‖q̂i,k−qi‖σ)n̂i,k +cβ
2 ∑

k∈Nβ
i

bi,k(q)(p̂i,k− pi)

−cmt
1 (qi −qmtl )−cmt

2 (pi − pmtl )

−cmc
1 (q(Nα

i ∪{i})−qmtl )−cmc
2 (p(Nα

i ∪{i})− pmtl ). (3.19)

As discussed in Chapter 2, the dynamic target(qmtl , pmtl ) in (3.18) or (3.19) is exactly

the navigation term that makes the flocks (mobile sensors) move together. Without this

term the sensor network leads to fragmentation. This means that if sensori is assigned to

track another target it only need switch to another navigation term. This also means that if

the new target appears one by one the sensors which are selected by the SGGP algorithm

will switch to another navigation term (another target).

On the other hand in the merging case, three sensor subgroupsare tracking three targets.

If one of these targets disappears then this subgroup will decompose into two equal parts

and each one will merge into one of remaining subgroups to track the existing targets by

switching to the another navigation term.

66



3.3.3 Experimental Tests

SGGP Algorithm and Flocking Control (with No-CoM)

In this sub-section we will test the SGGP algorithm and flocking control (withNo-CoM)

(3.18) in two different cases of sensor splitting and merging. Parameters used in this sim-

ulation are specified as follows:

Case1.Two targets appear one by one and no target disappears.

- Parameters of flocking: Number of sensors = 120 (randomly distributed in the square

area with the size of 90x90). Positions of obstacles

yk= [220 300; 220 360;250 120; 250 60]T ; Radii of obstaclesRk= [16; 16; 16; 16], and the

communication ranger = 1.2∗d with d = 7.5; ε = 0.1 for theσ-norm.

- Parameters of target movement: The targets move in the sinewave trajectory: For

the target 1,qmt1 = [50+ 35t, 295− 35sin(t)]T with 0 ≤ t ≤ 8.5, and for the target 2,

qmt2 = [85+35t, 55−35sin(t)]T with 1.26≤ t ≤ 8.5, and∆t = 0.002 is the step size.

In this case, the SGGP algorithm will be compared with a Random Selection (RS)

algorithm. In the RS algorithm when the new target appears a half of the sensors in the

network which are tracking the existing target are selectedrandomly to track the new target.

Case2.Two targets appear one by one and one target disappears.

- Parameters of flocking: these parameters are the same with the Case 1.

- Parameters of target movement: Parameters are set up the same as in Case 1, but the

target 1 is set to run in the interval time 0≤ t ≤ 12.5, and the target 2 appears at time

t = 1.26 (at iteration 840) and disappears at timet = 8.4 (at iteration 4200).

Figure 3.18 (a) displays the result of tracking of Case 1 where the targets appear one

by one and move in a sine wave trajectory. Firstly, the whole group of 120 mobile sensors

form anα-lattice configuration and track target 1. Then, at iteration 840 target 2 appears

and the network decides which sensors will split and track this target. By applying the

SGGP algorithm, the sensor network automatically decomposes into 2 equal sub-groups
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(60 sensors in each sub-group). The second sub-group which is closest to target 2 tracks

target 2, and the first sub-group keep tracking target 1. The SGGP algorithm allows two

sub-groups to maintain their formation when they split. Figure 3.18(b) represents the error

between the average of positions in the whole network and target 1 (from iteration 1 to 839),

and the error between the average of positions in sub-group 1and target 1 (from iteration

840 to the end). Figure 3.18(c) represents the error between the average of positionsin

sub-group 2 and target 2. We see that at iteration 840, the average of positions of sensors

slightly changes because at this time the average sensors’spositions in sub-group 1 will

replace that of the whole network. In this figure we see that all tracking errors are very

small in free space. This means that all sensors in the whole network or in each sub-group

can surround the target closely to observe it easily. However in the presence of obstacles,

the errors are significant because the repulsive forces generated from obstacles push the

sensors away from them.

Figures 3.19 shows the results of tracking in Case 2 where the targets appear one by one

and then one disappears. When target 2 appears at iteration 840 the results are similar with

Figures 3.18. When target 2 disappears at iteration 4200 sub-group 2 which is tracking

this target will rejoin to sub-group 1 and continue to track target 1. The tracking result of

the whole group after merging is good with small tracking error between the average of

sensors’s positions and target 1 in the free space as shown inFigure 3.19 (b) (from iteration

4200 to the end).

Comparison Between the SGGP Algorithm and the RS Algorithm

In this subsection we will compare two algorithms, SGGP and RS, in term of tracking

time, formation time, and total distance of all sensors in each sub-group to its target. These

comparisons also imply the time consumption and power consumption in each sub-group.

Similar to Figures 3.18, Figures 3.20 also shows the results of tracking to Case 1 where

the targets appear one by one and move in the sine wave trajectory. However, the difference
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Figure 3.18: (a)- Snapshots of the mobile sensor network when the mobile sensors are at the

initial positions, forming a network at timet = 1.26, and decomposing into two sub-groups,

respectively to track the targets moving in the sine wave trajectories, (b)- Error between the

average of sensors’s positions in the whole network and the moving target 1 (iteration 1 to

839), and between average of sensors’s positions in sub-group 1 and the moving target 1

(iteration 839 to the end), (c)- Error between the average ofsensors’s positions in sub-group

2 and the moving target 2. This result is obtained by using theflocking controlNo-CoM

(3.18) and SGGP algorithm
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Figure 3.19: (a)- Snapshots of the mobile sensor network when the mobile sensors are

at the initial positions, when the mobile sensors form a network at timet = 1.26, when

the mobile sensors decompose into two sub-groups, and when two sub-groups merge, (b)-

Error between the average of sensors’s positions in the whole network and the moving target

1 (iteration 1 to 839, and iteration 4200 to the end), and between the average of sensors’s

positions in sub-group 1 and the moving target 1 (iteration 840 to 4200), (c)- Error between

the average of sensors’s positions in sub-group 2 and the moving target 2. This result is

obtained by using the flocking control withNo-CoM(3.18) and SGGP algorithm.
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here is that when target 2 appears a half of the sensors in the whole network are split to track

this target by using the RS algorithm. With this algorithm two sub-groups do not maintain

their formation, and all sensors in each sub-group need certain time to reform a network.

This is the main drawback of this algorithm, and some data arecollected to compare the

SGGP and the RS algorithms which is shown in Table 3.1.

Table 3.1: Comparison between two algorithms (SGGP and RS).

Algorithms Dtt (units) tT (s) tF (s)

RS(G1) 1184.7 1.000801 8.345623

RS(G2) 14194 11.770489 11.125117

SGGP(G1) 1185.6 1.203569 0.0

SGGP(G2) 13126 9.007456 0.0

Parameters in the Table 3.1 are computed as follows:

Dtt is the total travel distance between all sensors in the each group and its target, and

it is computed when the network is decomposed into sub-groups to when the average of

positions of sensors in each sub-group reaches the target (this is evaluated based on the

same condition as used to computetT below).

tT is the tracking time which is computed based on the condition: ‖ 1
nGl

∑
nGl
i=1qi −qtl ‖ ≤

ΘT , l = 1,2; herenGl is number of sensors in each sub-groupG1 andG2, respectively, and

ΘT is a given threshold.

tF is the formation time representing the time that it costs allmobile sensors to form a

network. This formation time is computed based on the following condition:

Var(‖qi − q j‖) = 1
|El | ∑(‖qi −q j‖− 1

nGl
∑(i, j)∈El

‖qi −q j‖)2 ≤ Θ3 with i, j = 1,2, ...,

nGl ; l = 1,2; hereΘF is a given threshold, andi 6= j.

In the RS algorithm, the values ofDtt , tT , andtF are obtained based on the average

value of 50 running times.

Comparison between the RS and the SGGP algorithms: The maximum of the track-
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Figure 3.20: (a)- Snapshots of the mobile sensor network when the mobile sensors are at the

initial positions, forming a network at timet = 1.26, and decomposing into two sub-groups,

respectively to track the targets moving in the sine wave trajectories, (b)- Error between the

average of sensors’s positions in the whole network and the moving target 1 (iteration 1

to 839), and between average of sensors’s positions in sub-group 1 and the moving target

1 (iteration 840 to the end), (c)- Error between the average of sensors’s positions in sub-

group 2 and the moving target 2. This result is obtained by using the flocking control with

No-CoM(3.18) and RS algorithm.
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ing time and formation time in SGGP algorithmtmax
SGGP= max(tT , tF)G1 +max(tT , tF)G2 =

10.211(s) while in RS algorithmtmax
RS = 20.1161(s), or tmax

SGGP is 49.28 % less thantmax
RS .

The total distance in SGGP algorithmDt
SGGP= DG1

tt +DG2
tt = 14311.6(units) while in RS

algorithmDt
RS= 15378.7(units), or Dt

SGGPis 7% shorter thanDt
RS.

SGGP Algorithm and Flocking Control (with Multi-CoM)

In this sub-section we will test the SGGP algorithm and flocking control (withMulti-CoM)

(3.19) in two different cases of sensor splitting and merging. Parameters used in this sim-

ulation are specified as follows:

Case1.Two targets appear one by one and no target disappears.

- Parameters of flocking: Number of sensors = 60 (randomly distributed in the box with

the size of 50x50). Positions of obstaclesyk= [190 720; 150 330;200 106; 200 10]T ; Radii

of obstaclesRk= [ 16; 16; 16; 16], and other parametersa = b = 5; the communication

ranger = 7.8 with d = 6.5; ε = 0.1 for theσ-norm;h = 0.2 for the bump function (φα(z));

h = 0.9 for the bump function (φβ(z)).

- Parameters of target movement: The targets move in the sinewave trajectory: For the

target 1,qmt1 = [50+35t, 295−35sin(t)]T with 0≤ t ≤ 6, andpmt1 = (qmt1(t)−qmt1(t −

1))/∆t , and for the target 2,qmt2 = [85+35t, 55−35sin(t)]T with 1.26≤ t ≤ 6, andpmt2 =

(qmt2(t)−qmt2(t−1))/∆t.

In this case, the SGGP algorithm will be compared with the Random Selection (RS)

algorithm where the sensors are selected randomly to track targets.

Case2.Two targets appear one by one and one target disappears.

- Parameters of flocking: these parameters are the same with the Case 1.

- Parameters of target movement: Parameters are set up the same with the Case 1, but

the target 1 is set to run in the interval time 0≤ t ≤ 7.5, and the target 2 appears at time

t = 1.26 and disappears at timet = 4.95.

Figure 3.21 represents the result of tracking of Case 1 where the targets appear one by
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one and move in the sine wave trajectory. Firstly, the whole group of 60 mobile sensors

form the network withα-lattice configuration and track the target 1. Then, at timet = 1.26

the target 2 appears and the network should decide which sensor will split and track this

target. By applying the SGGP algorithm, the sensor network automatically decomposes

into 2 equal sub-groups (30 sensors in each sub-group). The second sub-group which is

closest to the target 2 will go to track this target, and the first sub-group keep tracking the

target 1. The SGGP algorithm allows two sub-groups maintaining their formation when

they split from the network to track targets. Figure 3.22 represents the errors between the

CoM of positions and target. Here Figure 3.22(b) is the error between the CoM of positions

of the whole network and target 1 (from iteration 1 to 839), and the error between the CoM

of positions of sub-group1 and target 1. Figure 3.22(a) is the zoom in of Figure 3.22(b) at

iterations from 1 to 100 for ease to see. We see that at timet = 1.26 or iteration = 840, the

CoM slightly changes because at this time the CoM of sub-group 1 will be replaced that

of the whole network. Here Figure 3.22(d) is the error between the CoM of positions of

sub-group 2 and target 2. Figure 3.22(c) is the zoom in of Figure 3.22(d) at iteration from

1 to 100. In this figure we see that all the errors are very small. This means that all sensors

in the whole network or in each sub-group can surround the target closely. Similar with

Figures 3.21 and 3.22, Figures 3.23 and 3.24 also represent the results of tracking of the

case 1 where the targets appear one by one and move in the sine wave trajectory. However,

the difference here is that when target 2 appears each sensorin the whole network is split

to track this target by using the RS algorithm. With this algorithm two sub-group do not

maintain their formation, and all sensor in each sub-group need the certain time to form a

network.

Figures 3.25 and 3.26 also represent the results of tracking of Case 2 where the targets

appear one by one and one then disappears. When target 2 appears at time(t = 1.26) the

results are similar with Figures 3.21 and 3.22. When target 2 disappears at time(t = 4.95)

sub-group 2 which are tracking this target will rejoin to sub-group 1 and continue to track
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by using theMulti-CoM flocking control and SGGP algorithms.
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       a)                                                            b)
                      

       c)                                                            d)
                      

Figure 3.22: (a, c) are closer look of (b, d) at iterations from 1 to 100. (b) Position errors

between the CoM of the whole network and target 1 (from iteration 1 to 839), and between

the CoM of the sub-group 1 and target 1 (from iteration 840 to the end). (d) Position errors

between the CoM of the sub-group 2 and target 2. This result isobtained by using the

Multi-CoM flocking control and SGGP algorithms.
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Figure 3.23: Snapshots of the mobile sensor network when themobile sensors are at the

initial positions, forming a network at timet = 1.26, and decomposing into two sub-groups,

respectively to track the targets moving in the sine wave trajectories. This result is obtained

by using theMulti-CoM flocking control and RS algorithms.
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Figure 3.24: (a, c) are closer look of (b, d) at iterations from 1 to 100. (b) Position errors

between the CoM of the whole network and target 1 (from iteration 1 to 839), and between

the CoM of the sub-group 1 and target 1 (from iteration 840 to the end). (d) Position errors

between the CoM of the sub-group 2 and target 2. This result isobtained by using the

Multi-CoM flocking control and RS algorithms.
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target 1. The result of the whole group after merging is good with small error between

CoM and target 1 as shown in Figure 3.26 (from iteration 3301 to 5001, ort ∈ [4.95,7.5]).

In all the above simulation results, all sensors keep their formation (excepting in the case

of the RS algorithm) and no collision occurs among them whiletracking the moving target,

and all sensors avoid obstacles successfully in a narrow space.

In summary, we see that the SGGP algorithm combining the flocking control with

Multi-CoM is better than the SGGP algorithm combining the flocking control with No-

CoM in terms of the tracking performance. Namely, in the SGGP algorithm with No-CoM

the CoM could not converge to the target in the obstacle space, but this was not the case in

the SGGP algorithm withMulti-CoM.
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Figure 3.25: Snapshots of the mobile sensor network when themobile sensors are at the

initial positions, when the mobile sensors form a network attimet = 1.26, when the mobile

sensors decompose into two sub-groups, and when two sub-groups merge. This result is

obtained by using theMulti-CoM flocking control and SGGP algorithms.
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Figure 3.26: (a, c) are closer look of (b, d) at iterations from 1 to 100. (b) Position errors

between the CoM of the whole network and target 1 (from iteration 1 to 839, and 3301 to

the end), between the CoM of the sub-group 1 and target 1 (fromiteration 840 to 3300). (d)

Position errors between the CoM of the sub-group 2 and target2. This result is obtained by

using theMulti-CoM flocking control and SGGP algorithms.
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3.4 Summary

In this chapter, we considered the behavior of a group of agents when only a subset of them

have the information of the target. We proposed a decentralized flocking control algorithm

to deal with the network partition and reduce the overshoot of the tracking. Our algorithm is

based on considering the effect of the target tracking term and damping term. As a result,

the network connectivity preservation is improved, the overshoot is eliminated, and the

collision avoidance among agents is guaranteed. Both simulation and experimental results

are collected to demonstrate the effectiveness of our proposed flocking control.

We studied the approach to flocking control of a mobile sensornetwork to track and

observe a moving target in changing environments. We designed an adaptive flocking

control algorithm that can cooperatively learn the network’s parameters in a decentralized

fashion to change the size of the network in order to maintainconnectivity, formation and

tracking performance when passing through obstacles. In addition, to see the benefit of the

adaptive flocking algorithm we compared it with the normal flocking control algorithm, and

we found that the connectivity, similar formation and tracking performance in the adaptive

flocking control algorithm are better than those in the existing flocking control algorithm.

The simulations and experiments on real Rovio robots verified our theoretical results.

We developed an approach to flocking control of a mobile sensor network to track and

observe multiple dynamic targets. The SGGP algorithm is proposed to solve the problem

of splitting/merging the sensor agents. To see the benefit ofthis algorithm we compared it

with a random selection (RS) algorithm, and the results are promising. The maximum of

the convergent distance and formation time in the SGGP algorithm is faster than that in the

RS algorithm. In addition, the distance in the SGGP algorithm is shorter than that in the

RS algorithm. Several experimental tests were done with twodifferent cases of splitting

and merging sensor agents to demonstrate our theoretical results.
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CHAPTER 4

COOPERATIVE CONTROL BASED FLOCKING FOR MSNs IN NOISY

ENVIRONMENTS

In this chapter in order to deal with noisy measurements we propose two flocking con-

trol algorithms,Multi-CoM-ShrinkandMulti-CoM-Cohesion. Based on these algorithms,

all agents can form a network and maintain connectivity, even with noisy measurements.

We also investigate the stability and scalability of our algorithms. Simulation results are

conducted to demonstrate the effectiveness of the proposedalgorithms.

This chapter is organized as follows. Section 4.1 gives the motivation and problem

formulation of flocking control in noisy environments. Section 4.2 presents our flocking

control algorithms,Multi-CoM-Shrinkand Multi-CoM-Cohesion, for tracking a moving

target in noisy environments. Section 4.3 shows the main results on stability analysis of

flocking control in noisy environments. Section 4.4 demonstrates the experimental results.

Finally, Section 4.5 concludes this chapter.

4.1 Introduction

In real flocking control environments, noise handling is always an important issue since the

noise usually causes broken network or connectivity loss. This problem exists in most of

the previous work on flocking control [112, 23, 46, 17]. Namely, most of flocking control

algorithms [112, 23, 46, 17] work under the following assumptions:

• Each agent can sense its own position and velocity precisely(without noises).
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• Each agent can obtain its neighbor’s position and velocity via sensing or communi-

cation precisely.

• Each agent can sense the target position and velocity precisely.

However, in reality these assumptions are not valid becausesensing errors always exist.

Motivated by these observations we will study how to design distributed flocking control

algorithms which can still perform well when the measurements are affected by noises.

In this chapter we propose two new flocking control algorithms to deal with more realis-

tic environments. To make the flocking control more applicable in real applications we con-

sider the effect of position and velocity measurement errors of the agent itself, the agent’s

neighbors and the target. None of the flocking control algorithms in the above related work

considers this noise issue. We propose two flocking control algorithms,Multi-CoM-Shrink

andMulti-CoM-Cohesion, which are based on the extensions of theMulti-CoM flocking

control algorithm in the previous chapters. Our algorithmsallow the flocks to preserve

connectivity, avoid collision, and follow the target in such noisy environments. We demon-

strate that by applying our algorithms the agents can flock together in the presence of noise

with better performances such as connectivity and trackingperformance.

4.2 Flocking Control Algorithm in Noisy Environments

In this section we are going to design two algorithms in noisyenvironments. The first one

is theMulti-CoM-Shrinkflocking control algorithm. The main idea of this algorithm is

to shrink the size of the network in oder to keep the connectivity. The second one is the

Multi-CoM-Cohesionflocking control algorithm, and its main idea is based on the position

and velocity cohesion feedbacks to create the strong cohesion between the agent and the

network. Both algorithms are based on theMulti-CoM flocking control algorithm presented
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in our previous chapter. TheMulti-CoM flocking control algorithm is shown below

ui = cα
1 ∑

j∈Nα
i

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Nα
i

ai j (q)(p j − pi)

−ct
1(qi −qt)−ct

2(pi − pt)−cl
1(qi −qt)−cl

2(pi − pt), (4.1)

herecl
1 and cl

2 are positive constants.qi and pi are the local average of position and

velocity, respectively for each agenti defined as:










qi = 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
j=1 q j

pi = 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
j=1 p j .

(4.2)

In this control algorithm, the first two terms are used to control the formation (α-lattice

configuration) and to allow agents to avoid collision [23]. The terms−ct
1(qi −qt)−ct

2(pi −

pt) and−cl
1(qi −qt)−cl

2(pi − pt) allow each agent and its neighbors to closely follow the

target.

4.2.1 Multi-CoM-Shrink Algorithm

Assume that the estimates of the position and velocity of agent i are: q̂i = qi + εi
q and

p̂i = pi +εi
p, whereεi

q andεi
p are the position and velocity measurement errors, respectively.

Then we have:

q̂i − q̂ j = qi −q j + εi j
q ; p̂i − p̂ j = pi − p j + εi j

p , hereεi j
q = εi

q− ε j
q andεi j

p = εi
p− ε j

p.

Similarly, the estimates of the position and velocity of thetarget are: ˆqt = qt + εt
q and

p̂t = pt +εt
p, whereεt

q andεt
p are the position and velocity measurement errors, respectively.

Then we have:

q̂i − q̂t = qi −qt + εit
q; p̂i − p̂t = pi − pt + εit

p, hereεit
q = εi

q− εt
q andεit

p = εi
p− εt

p.

If all noises are bounded, one possible method to maintain connectivity in noisy en-

vironments is to shrink the size of the network. We assume that the noiseεi
q satisfies

‖εi
q‖ ≤ rw as shown in Figure 4.1.

Let us denoteda = ‖qi −q j‖ to be the actual distance between agenti and agentj. Then
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Figure 4.1: Agent 2 is considered as a neighbor of agent 1 because the estimated distance

d̂a is less than the active ranger.

to maintain the connectivity and no collision among agents we need

0 < da ≤ r. (4.3)

Denoted̂a to be the estimate of the actual distanceda, then we have

d̂a = ‖q̂i − q̂ j‖ ≤ ‖qi −q j‖+‖εi j
q ‖. (4.4)

Since‖εi
q‖ ≤ rw we have‖εi j

q ‖ ≤ 2rw, and we obtain

‖qi −q j‖−2rw ≤ d̂a ≤ ‖qi −q j‖+2rw. (4.5)

With ‖qi −q j‖ = da we have

da−2rw ≤ d̂a ≤ da+2rw, (4.6)

or,

d̂a−2rw ≤ da ≤ d̂a+2rw. (4.7)

Since the control algorithm (2.38) guarantees thatd̂a converges to the desired distanced.

Then from (4.7) we obtain

d−2rw ≤ da ≤ d+2rw. (4.8)
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From (4.3) and (4.8) we should have










d−2rw > 0

d+2rw ≤ r.
(4.9)

Hence from (4.9) we obtaind to be

2rw < d ≤ r −2rw. (4.10)

Equation (4.10) shows that we need to design the distanced within the range(2rw, r−2rw]

to maintain connectivity and no collision among agents. However if we selectd to be

smaller thanr −2rw then each agent will have more neighbors than necessary. Hence, we

choosed = r −2rw.

Now, from (2.24) we obtaindα
new as

dα
new= ‖d‖σ =

1
ε
[
√

1+ ε(r −2rw)2−1]. (4.11)

From (2.25) we obtain a new action functionφnew
α (‖q̂ j − q̂i‖σ) as follows:

φnew
α (‖q̂ j − q̂i‖σ) = ρh(‖q̂ j − q̂i‖σ/rα)φ(‖q̂ j − q̂i‖σ −dα

new). (4.12)

From (4.2) we have the local average of position and velocityfor each agenti, q̂i and p̂i

with noise computed as










q̂i = 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
j=1 q̂ j

p̂i = 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
j=1 p̂ j ,

(4.13)

From (2.28) and (2.29) we obtain ˆni j andâi j (q) as

n̂i j = (q̂ j − q̂i)/
√

1+ ε‖q̂ j − q̂i‖2 (4.14)

âi j (q) =











ρh(‖q̂ j − q̂i‖σ/rα), i f j 6= i

0, i f j = i,
(4.15)

Now, we propose aMulti-CoM-Shrinkalgorithm withdα
new as

ui = cα
1 ∑

j∈Nα
i

φnew
α (‖q̂ j − q̂i‖σ)n̂i j +cα

2 ∑
j∈Nα

i

âi j (q)(p̂ j − p̂i)

−ct
1(q̂i − q̂t)−ct

2(p̂i − p̂t)−cl
1(q̂i − q̂t)−cl

2(p̂i − p̂t). (4.16)
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4.2.2 Multi-CoM-Cohesion Algorithm

In this subsection we describe theMulti-CoM-Cohesionalgorithm. The main idea of the

Multi-CoM-Cohesionalgorithm is that each agent should have a strong cohesion tothe

network so that the connectivity is maintained. In order to do that we introduce local

position and velocity cohesion feedbacks to each agent.

Before presenting the algorithm, we have the following definitions:

dil = qi −qi is the relative distance between nodei and its local average of position;

vil = pi − pi is the relative velocity between nodei and its local average of velocity;

However, because agenti senses its own position and velocity with noise, hence the

estimatesd̂il andv̂il are also corrupted by noise (εi
d,ε

i
v) as:











d̂il = q̂i − q̂i = qi + εi
q− (qi + εi

q) = dil + εi
d

v̂il = p̂i − p̂i = pi + εi
p− (pi + εi

p) = vil + εi
v,

(4.17)

hereεi
d = εi

q− εi
q with εi

q = 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
i=1 εi

q,

andεi
v = εi

p− εi
p with εi

p = 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
i=1 εi

p.

Based on the above definitions, we design a distributed flocking control law,Multi-

CoM-Cohesion, in noisy environments as:

ui = cα
1 ∑

j∈Nα
i

φα(‖q̂ j − q̂i‖σ)n̂i j +cα
2 ∑

j∈Nα
i

âi j (q)(p̂ j − p̂i)

−cposd̂il −cvev̂il

−ct
1(q̂i − q̂t)−ct

2(p̂i − p̂t)−cl
1(q̂i − q̂t)−cl

2(p̂i − p̂t), (4.18)

hered̂il , v̂il are the estimates ofdil andvil , respectively, andcpos andcve are positive

constants. The terms−cposd̂il and−cvev̂il are called local position and velocity cohesion

feedbacks, respectively. The role of these negative feedbacks is to maintain position and

velocity cohesions. This means that each agent tries to stayclose to the local average of

position and minimize the velocity mismatch between its velocity and the local average of

velocity in noisy environments.
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In this algorithm, to make it simpler in the stability analysis provided later we dropped

the obstacle avoidance term. However, in real applications, to allow each agent to avoid

both static and dynamic obstacles we only need to add the second component (2.30) to the

control algorithm (4.18). In general, this component does not affect the properties of the

global stability of the whole system.

4.3 Stability Analysis

Before analyzing the stability of the flocking control algorithm, Multi-CoM-Cohesion, we

build the error dynamic model of the flocking system in noisy environments in the next

subsection.

Error Dynamic Model

To study the stability properties, we have the error dynamics of the system given as follows:










ḋig = vig

v̇ig = ui − 1
n ∑n

j=1u j = ui −u, i = 1,2, ...,n.
(4.19)

hereu = 1
n ∑n

j=1u j .

We have following definitions:

dig = qi −q is the relative distance between nodei and its global average of position;

vig = pi − p is the relative velocity between nodei and its global average of velocity;

Then we have the following relations:

dil = qi −qi = dig +q− 1
|Nα

i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

q j

= dig +q− 1
|Nα

i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

(d jg +q) = dig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

d jg. (4.20)

Then similar todil , vil is obtained as follows:

vil = vig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

v jg. (4.21)
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The estimates of the local average of position and velocity,respectively in (4.13) is

rewritten as

q̂i = qi −dig +
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

d jg + εi
q. (4.22)

p̂i = pi −vig +
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

v jg + εi
p. (4.23)

Now, we can rewrite the control law (4.18) with considering (4.17), (4.22) and (4.23):

ui = cα
1 ∑

j∈Nα
i

φα(‖q̂ j − q̂i‖σ)n̂i j +cα
2 ∑

j∈Nα
i

âi j (q)(p̂ j − p̂i)

+(cl
1−cpos)(dig−

1
|Nα

i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

d jg)+(cl
2−cve)(vig−

1
|Nα

i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

v jg)

−(ct
1+cl

1)(qi −qt)− (ct
2+cl

2)(pi − pt)−cposεi
d−cveεi

v−cl
1εi

q−cl
2εi

p

−(ct
1+cl

1)ε
it
q − (ct

2+cl
2)ε

it
p (4.24)

The average of control law for composite system is

u =
cα

1

n

n

∑
i=1

[ ∑
j∈Nα

i

φα(‖q̂ j − q̂i‖σ)n̂i j ]+
cα

2

n

n

∑
i=1

[ ∑
j∈Nα

i

âi j (q)(p̂ j − p̂i)]

+(
cl

1−cpos

n
)

n

∑
i=1

(dig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

d jg)

+(
cl

2−cve

n
)

n

∑
i=1

(vig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

v jg)

−(
ct

1 +cl
1

n
)

n

∑
i=1

(qi −qt)− (
ct

2+cl
2

n
)

n

∑
i=1

(pi − pt)

−1
n

n

∑
i=1

[cposεi
d +cveεi

v +cl
1εi

q +cl
2εi

p+(ct
1 +cl

1)ε
it
q +(ct

2+cl
2)ε

it
p] (4.25)
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Substituteui in (4.24) andu in (4.25) into (4.19) we obtain:

v̇ig = cα
1 ∑

j∈Nα
i

φα(‖q̂ j − q̂i‖σ)n̂i j −
cα

1

n

n

∑
i=1

[ ∑
j∈Nα

i

φα(‖q̂ j − q̂i‖σ)n̂i j ]

+cα
2 ∑

j∈Nα
i

âi j (q)(p̂ j − p̂i)−
cα

2

n

n

∑
i=1

[ ∑
j∈Nα

i

âi j (q)(p̂ j − p̂i)]

−(
cl

1−cpos

|Nα
i ∪{i}|)

|Nα
i ∪{i}|

∑
j=1

d jg− (
cl

2−cve

|Nα
i ∪{i}|)

|Nα
i ∪{i}|

∑
j=1

v jg

−(
cl

1−cpos

n
)

n

∑
i=1

(dig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

d jg)

−(
cl

2−cve

n
)

n

∑
i=1

(vig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

v jg)

−(cpos−cl
1)dig− (cve−cl

2)vig− (ct
1 +cl

1)dig− (ct
2 +cl

2)vig

−cposεi
d−cveεi

v−cl
1εi

q−cl
2εi

p− (ct
1 +cl

1)ε
it
q − (ct

2+cl
2)ε

it
p

+
1
n

n

∑
i=1

[cposεi
d +cveεi

v +cl
1εi

q+cl
2εi

p+(ct
1+cl

1)ε
it
q +(ct

2 +cl
2)ε

it
p]

= −(ct
1 +cpos)dig− (ct

2+cve)vig +Φi +Ωi(V)+ζi , (4.26)

where

Φi = cα
1 ∑

j∈Nα
i

φα(‖q̂ j − q̂i‖σ)n̂i j −
cα

1

n

n

∑
i=1

[ ∑
j∈Nα

i

φα(‖q̂ j − q̂i‖σ)n̂i j ]

+cα
2 ∑

j∈Nα
i

âi j (q)(p̂ j − pi)−
cα

2

n

n

∑
i=1

[ ∑
j∈Nα

i

âi j (q)(p̂ j − pi)];

Ωi(V) = −(
cl

1−cpos

|Nα
i ∪{i}|)

|Nα
i ∪{i}|

∑
j=1

d jg− (
cl

2−cve

|Nα
i ∪{i}|)

|Nα
i ∪{i}|

∑
j=1

v jg

−(
cl

1−cpos

n
)

n

∑
i=1

(dig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

d jg)

−(
cl

2−cve

n
)

n

∑
i=1

(vig−
1

|Nα
i ∪{i}|

|Nα
i ∪{i}|

∑
j=1

v jg);

ζi =
1
n

n

∑
i=1

[cposεi
d +cveεi

v +cl
1εi

p+cl
2εi

p+(ct
1+cl

1)ε
it
q +(ct

2 +cl
2)ε

it
p]

−[cposεi
d +cveεi

v +cl
1εi

q +cl
2εi

p+(ct
1 +cl

1)ε
it
q +(ct

2+cl
2)ε

it
p]
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here, we defineVi = [dig vig]
T andV = [V1, V2, ..., Vn]

T .

Rewrite (4.26) in state space representation






ḋig

v̇ig






=







0 I

−k1I −k2I













dig

vig






+







0

I






(Φi +Ωi(V)+ζi), (4.27)

herek1 = (ct
1 +cpos), k2 = (ct

2 +cve), andI is anm x m identity matrix.

Then we can rewrite (4.27) as

V̇i =







0 I

−k1I −k2I






Vi +







0

I






(Φi +Ωi(V)+ζi) (4.28)

Let the matrixAi =







0 I

−k1I −k2I






, then we have the characteristic equation as:

det(λI −Ai) = (λ2+k2λ+k1)
m = 0. (4.29)

Sincek1 > 0, k2 > 0, and ifk2 < 2
√

k1 then all roots of the characteristic equation (4.29)

have negative real parts (Re(λi) < 0).

Stability Analysis of the Multi-CoM-Cohesion algorithm

In this subsection we will analyze the stability of the flocking control algorithm,Multi-

CoM-Cohesion, in noisy environments based on the Lyapunov approach.

We assume that the errors of sensing position and velocity have linear relationship with

the magnitude of the state of the error system. That is because two agents are far away

from each other, the sensing errors will usually increase. Hence, we have










‖εi
d(t)‖ ≤ ci

ed1
‖Vi(t)‖+ci

ed2

‖εi
v(t)‖ ≤ ci

ev1‖Vi(t)‖+ci
ev2, i = 1,2, ...,n.

(4.30)

We also assume that the noiseεit
q andεit

p on the target tracking terms (negative feed-

backs) are bounded as










‖εit
q(t)‖ ≤ ci

eq

‖εit
p(t)‖ ≤ ci

ep, i = 1,2, ...,n,
(4.31)
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and the noiseεi
q and εi

p on the estimates of local average of position and velocity are

bounded as










‖εi
q(t)‖ ≤ ci

eq

‖εi
p(t)‖ ≤ ci

ep, i = 1,2, ...,n.
(4.32)

hereci
eq = 1

|Nα
i ∪{i}| ∑

|Nα
i ∪{i}|

i=1 ci
eq, andci

ep= 1
|Nα

i ∪{i}| ∑
|Nα

i ∪{i}|
i=1 ci

ep.

Theorem 3.Consider a system ofn mobile agents with dynamics (2.18) and controlled

by (4.18), and all noise are bounded by (4.30), (4.31) and (4.32) . Let

c1
pv =

(cpos+1)2+c2
ve

2cposcve
+

√

(
cpos+c2

ve−1
2cposcve

)2+
1

c2
pos

,

and if

cposc
i
ed1

+cvec
i
ev1 ≤

1
c1

pv
,

and the parameters are such that

m

∑
j=1

2c1
pv[

√

(cl
1−cpos)2+(cl

2−cve)2− 1
n(cposci

ed1
+cveci

ev1)]

(1− εi)[1−c1
pv(cposci

ed1
+cveci

ev1)]
< 1,

here 0< εi < 1 for ∀i, then the trajectories of (4.28) are bounded.

Proof:

To study the stability of the error dynamics (4.28), one possible choice is to choose the

Lyapunov function for each agent as

Li(Vi) = VT
i PVi, (4.33)

hereP = PT is a 2m x 2m positive-definite matrix (P > 0). Then, the Lyapunov function

for the composite system is

L(V) =
n

∑
i=1

VT
i PVi .

From (4.33) we have

L̇i(Vi) = VT
i PV̇i +V̇T

i PVi. (4.34)
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Then, substitutėVi in (4.28) into (4.34) we obtain

L̇i(Vi) = VT
i (PAi +AT

i P)Vi +2VT
i PB(Φi +Ωi(V)+ζi)

= −VT
i CVi +2VT

i PB(Φi +Ωi(V)+ζi),

hereB =







0

I






, andC = −(PAi +AT

i P).

The remaining part of this proof is to shoẇLi(Vi) < 0. The detailed proof oḟLi(Vi) < 0

is similar to that in the reference [113].

4.4 Experimental Results

In this section we are going to test our proposed algorithms,adaptive flocking control

(3.12),Multi-CoM-Shrink(4.16), andMulti-CoM-Cohesion(4.18). Then we compare our

algorithms with the existing one (2.38), calledNo-CoMflocking control algorithm, in terms

of network connectivity, formation and tracking performance. First we discuss how to

evaluate the connectivity of the network in the next subsection.

4.4.1 Parameter Setup

The parameters used in this simulation are specified as follows:

- Parameters of flocking: we use 50 agents which are randomly distributed in the square

area of 120 x 120 size; and other parameter area = b = 5; the active ranger = 19; ε = 0.1

for the σ-norm; h = 0.2 for the bump functions (φnew
α (z),φα(z)); h = 0.9 for the bump

function (φβ(z)). The desired distance for the flocking control algorithms,No-CoM(2.38)

andMulti-CoM-Cohesion, d = 16. For theMulti-CoM-Shrinkflocking control algorithm,

rw = 3.4, henced = r −2rw = 19−2×3.4 = 12.2.

- Parameters of target movement:

Case 1: The target moves in a sine wave trajectory:qt = [50+ 50t, 295−50sin(t)]T

with 0≤ t ≤ 6.
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Figure 4.2: Snapshots of agents when they are randomly distributed (a, e, i), and when they

form a network and track a target (red/dark line) moving in a sine wave trajectory (b, c, d;

f, g, h; j, k, l), where (a, b, c, d) are for theNo-CoMflocking control algorithm (2.38), (e,

f, g, h) are for theMulti-CoM-Shrinkflocking control algorithm, and (i, j, k, l) are for the

Multi-CoM-Cohesionflocking control algorithm.

Case 2: The target moves in a circle trajectory:qt = [310−160cos(t), 255+160sin(t)]T

with 0≤ t ≤ 4.

- The noise used in the simulation is Gaussian with zero mean and a variance of 1.

Figures 4.2 and 4.3 show the results of of the moving target (red/dark line) tracking

in the sine wave and circle trajectories, respectively in noisy environments for three algo-

rithms,No-CoM(2.38),Multi-CoM-ShrinkandMulti-CoM-Cohesion. Especially, Figures

4.2(a, b, c, d) and 4.3(a, b, c, d) are for theNo-CoM algorithm (2.38). Figures 4.2(e, f,

g, h) and 4.3(e, f, g, h) are for the proposed flocking control algorithmMulti-CoM-Shrink.

Figures 4.2(i, j, k, l) and 4.3(i, j, k, l) are for the proposed flocking control algorithm
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Figure 4.3: Snapshots of agents when they are randomly distributed (a, e, i), and when they

form a network and track a target (red/dark line) moving in a circle trajectory (b, c, d; f,

g, h; j, k, l), where (a, b, c, d) are for theNo-CoMflocking control algorithm (2.38), (e,

f, g, h) are for theMulti-CoM-Shrinkflocking control algorithm, and (i, j, k, l) are for the

Multi-CoM-Cohesionflocking control algorithm.
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Figure 4.4: The tracking performance results (error between the CoM and target positions):

(a) is for theNo-CoMflocking control algorithm (2.38), (b) is for theMulti-CoM-Shrink

flocking control algorithm, and (c) is for theMulti-CoM-Cohesionflocking control algo-

rithm. The connectivity is evaluated by theC(t) value: (d) is for theNo-CoM flocking

control algorithm (2.38), (e) is for theMulti-CoM-Shrinkflocking control algorithm, and

(f) is for theMulti-CoM-Cohesionflocking control algorithm.
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Multi-CoM-Cohesion.

To compare our proposed flocking control algorithms,Multi-CoM-ShrinkandMulti-

CoM-Cohesionwith the existing flocking algorithm,No-CoM (2.38), we use the same

initial state (position and velocity) of the mobile agents.Figure 4.4 shows the results of the

tracking performance and the connectivity, respectively:(a, c) are for theNo-CoMflocking

control algorithm (2.38), (b, d) are for theMulti-CoM-Shrinkflocking control algorithm,

and (e, f) are for theMulti-CoM-Cohesionflocking control algorithm. Comparing the re-

sults in these figures we clearly see that:

• For theNo-CoM flocking control algorithm (2.38): The tracking performance has

big errors, and it makes the target out of the center of the network. In addition, the

connectivity is lost, or the network is broken (C(t) < 1).

• For theMulti-CoM-Cohesionflocking control algorithm: The tracking performance

has small errors. In addition, the agents can quickly form a network (only five itera-

tions) and then maintain connectivity (C(t) = 1).

• For theMulti-CoM-Shrinkflocking control algorithm: The tracking performance also

has small errors, and the connectivity is maintained after six iterations. However, the

size of the network is smaller than that of theMulti-CoM-Cohesionflocking control

algorithm, and each agent has more neighbors because each agent tries to reduce the

distance to its neighbor in order to keep connection to them.

4.5 Summary

In this chapter, we considered the problem of controlling a group of mobile agents to track

a target in noisy environments. Two flocking control algorithms,Multi-CoM-Shrinkand

Multi-CoM-Cohesion, are proposed. In theMulti-CoM-Shrinkalgorithm our approach is to

shrink the size of the network by reducing the distance amongagents. In theMulti-CoM-

Cohesionalgorithm our approach integrates local position and velocity cohesion feedbacks
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in oder to deal with the noise. The stability of theMulti-CoM-Cohesionalgorithm is in-

vestigated based on the Lyapunov approach. Also, the network connectivity preservation is

improved, and collision avoidance among agents is guaranteed in both cluttered and noisy

environments.
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CHAPTER 5

COOPERATIVE LEARNING OF PREDATOR AVOIDANCE IN MSNs

In this chapter we propose a hybrid system that integrates reinforcement learning and flock-

ing control in order to create adaptive and intelligent MSNs. We study two problems in

multiple mobile sensors concurrent learning of cooperative behaviors: (1) how to generate

efficient combination of high level behaviors (discrete states and actions) and low level be-

haviors (continuous states and actions) for multiple mobile sensors cooperation; (2) how

to conduct concurrent learning in a distributed fashion. Toevaluate our theoretic frame-

work, we apply it to enable MSNs to learn avoiding predators while maintaining network

topology and connectivity. We also investigate the stability and scalability of our algo-

rithm. The simulations and experiments are performed to demonstrate the effectiveness of

the proposed hybrid system.

This chapter is organized as follows. Section 5.1 presents the introduction of this chap-

ter. Section 5.2 presents a general framework to enable cooperative learning. Section 5.3

presents the model of multiple mobile sensors learning and then proposes a cooperative

learning algorithm. Section 5.4 analyzes the convergence of the proposed learning algo-

rithm. Section 5.5 shows the simulation and experiment results. Finally, conclusion of this

chapter is given in Section 5.6.

5.1 Introduction

MSNs have great potentials in many military applications such as reconnaissance, surveil-

lance and minefield clearance, etc. [114]. When an MSN are deployed to conduct such

tasks, the enemy force may react and employ predators to attack the MSN. When such
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attack occurs, the MSN may break up. In this scenario, the MSNshould have the abil-

ity to avoid the enemy or predator. It is desirable that the MSN can avoid predator while

maintaining the network topology and connectivity. From biology we know that there

is an effective anti-predator function in animal aggregations [43, 44, 45], where the fish

schools and bird flocks move together to create a sensory overload on the predator’s visual

channel (see Figure 1.1 in Chapter 1). This chapter focuses on the distributed decision

making problem where each individual has a number of options(safe places) to choose

from when the predators appear. Often in these decisions there is a benefit for consen-

sus, where all individuals choose the same safe place. However, the consensus methods

[40, 49, 50, 51, 52, 53, 54, 55, 56] require a connected network in which all mobile sensors

can communicate with each other. This may not be valid in realenvironments because

some mobile sensors may not connect to the network during theescape. In that case the

consensus algorithms will fail. Therefore, in this chapterwe are interested in the prob-

lem of reaching consensus even when the mobile sensors cannot connect to the network

sometimes, but they can still make right decisions through learning from experience. Our

method is based on a novel combination of flocking control [23] and reinforcement learning

[100, 99].

Flocking control for multiple mobile agents studied in [37,38, 112, 23] and our previous

work [78, 64] was inspired by the natural phenomena of bird flock and fish school [25].

Basically, flocking control law is designed based on three basic flocking rules proposed by

Reynolds in [25]: flock centering (agents try to stay close tonearby flock-mates), collision

avoidance (agents try to avoid collision with nearby flock-mates), and velocity matching

(agents try to match their velocity with nearby flock-mates).

In recent years, machine learning techniques such as reinforcement learning have been

developed for MSNs that allow mobile sensors to learn cooperation [100, 99, 101]. How-

ever, traditional reinforcement learning assumes discrete and finite state/action spaces;

therefore, it is difficult to directly apply reinforcement learning to most real world applica-

101



tions that inherently involve with continuous space. Furthermore, even if the states can be

discretized, the learned behaviors are still discrete. In addition, the switching of discrete

behaviors usually causes the control of the mobile sensors to become non-smooth, which

is undesirable in most applications. To tackle these issues, several methods have been pro-

posed to make the reinforcement learning work in continuousenvironments. The common

approach is to use a function approximator to learn a value function, and there are several

examples of successful applications [115, 116, 117, 118, 119]. In this chapter, instead of

following such a common approach we try to combine reinforcement learning and flocking

control to create a hybrid system. Our new framework allows the proposed system to:

• generate efficient combination of high level behaviors (discrete states and actions)

and low level behaviors (continuous states and actions) formultiple mobile sensors

cooperation.

• coordinate the concurrent learning process in a distributed fashion.

5.2 General Framework of Hybrid System in Multiple Mobile Sensors Domain

In this section, we build a general framework of cooperativelearning in multiple mobile

sensors cooperation. In this framework our goals are to:

• allow the mobile sensors to learn with continuous states andactions.

• coordinate the concurrent learning process to generate an efficient control policy in a

distributed fashion.

With regard to the limitation of discrete and finite space, wepropose a hybrid system

of reinforcement learning in discrete space and flocking controller in continuous space

as shown in Figure 5.1. This control architecture has two main parts, the reinforcement

learning module (high level) and the flocking controller module (low level).
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Figure 5.1: The hybrid system for reinforcement learning and flocking control in multiple

mobile sensors domain.
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The flocking controller(2.38), which works in a continuous space, is the network con-

troller that controls all mobile sensors to move together without collision and track a sta-

tionary or moving target. In general, the target(qt, pt) is defined as follows










q̇t = pt

ṗt = ft(qt , pt)
(5.1)

In this chapter we only consider a stationary target (a fixed point or safe place). Thenqt

and pt are considered to be constant vectors. When the predator is detected, several safe

places (qt1,qt2, ...,qtN,N ∈ Z) are generated by the prey. These safe places are generated

based on the moving direction of the predator to maximize theescaping probability. For

example, these safe places can be located at four corners centered at the moving trajectory

of the predator.

The flocking controller also allows the mobile sensors to avoid the predators based

on a repulsive force generated from an artificial potential field induced by the predators.

However, this repulsive force usually breaks up the network. Therefore, we need combine

both flocking control and reinforcement learning so that they can avoid the predators while

maintaining network formation (topology) and connectivity.

The reinforcement learning module, which works in discretespace, is the key to the

controller. The goal is to agree on one of the safe places for the flocking controller. By

retrieving the states (after they are discretized) and the rewards, the reinforcement learning

module finds the appropriate safe place so that the network topology and connectivity can

be maintained.

Our framework is valid in real situations when the predatorscontinuously attack the

prey network, and the prey can learn this behavior of the predators in order to agree on

the same decision. Since all mobile sensors in a cooperativemultiple mobile sensors sys-

tem can influence each other, it is important to ensure that the actions are selected by the

individual mobile sensors result in effective decisions for the whole group.
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5.3 Modeling and Cooperative Learning Algorithm

In this section we build a model of multiple mobile sensors learning to avoid predator and

then develop the cooperative learning algorithm.

5.3.1 Model of Multiple Mobile Sensors Learning

Figure 5.2: Illustration of the safe places to choose.

The multiple mobile sensors learning problem can be illustrated in Figure 5.2. In this

figure, the mobile sensors learn to make the same decision (select the same safe place to

go) so that the network will not break up, and the network topology and connectivity can be

maintained. Based on the moving direction of the predator, the safe places are real-timely

generated by the network of prey. If the prey reaches the safeplaces, and the predators

keep attacking, then other safe places will be generated in oder to continuously avoid the

predators.

We model the predators as follows:
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• The predators try to go into the center of the network. This behavior of the predators

is usually adopted in existing works [120, 121].

• The velocity of the predators is faster than that of the prey (mobile sensor).

Usually these behaviors of the predators will cause the preynetwork to break up. As a

result, the prey will not flock together. This is one of the reasons that the prey have to

learn in a cooperative fashion so that they can agree on the same safe place to escape the

predators [43]. Therefore, we model the prey (mobile sensors) as follows:

• All mobile sensors flock together in free space and form anα-lattice formation [23]

based on the distributed flocking control algorithm(2.38).

• If the predators come into the detection range(R2), the mobile sensor (prey) can

sense the location of the predators. The mobile sensor will learn and select one of

the safe places to go (see Figure 5.3).

• If the predators come into the risk area(R1), the mobile sensor will move away based

on the repulsive force via the functionf β
i defined in Equation (2.30). Here, we can

setR1 equal tor
′
as defined in Section II.

5.3.2 Cooperative Learning Algorithm

In this subsection we define the state, action and reward, andthen present an independent

reinforcement learning algorithm. Finally, we develop a cooperative reinforcement learning

algorithm based on Q-learning.

State, Action and Reward

Let the current state, action and reward of mobile sensori besi,ai , r i, respectively, and the

next state and action of mobile sensori bes,
i,a

,
i , respectively. At each moment, we have a

partially observable environment. This means that not all mobile sensors are able to see the
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Figure 5.3: Illustration of the predator and prey detectionranges.R1 is the active range of

the mobile sensor (prey),R2 is the predator detection range, andRp is the prey detection

range.

predators, and each mobile sensor only communicates with its neighbors to exchange local

information. We have the following models for the state, action and reward.

The state: we assume that when the learning starts (all mobile sensorsflocked together

and formed anα-lattice formation) the state is initialized. For each mobile sensori, the

state is defined as the number of the predatorsnp in the detection rangeR2, and the number

of neighboring mobile sensors|Nα
i | in its active ranger, si = [np, |Nα

i |]T . For example, if

one predator is in the detection range and six neighboring mobile sensors are in the active

range of mobile sensori then the state for mobile sensori is [1,6]T . If only six neighboring

mobile sensors are in the active range, and no predator is in the detection range of the

mobile sensori then the state for mobile sensori is [0,6]T . If the mobile sensori performs

the action, i.e., selecting one safe place, it will keep moving until the state changes to

a different state,s,
i 6= si. The maximum number of states depends on the number of the

mobile sensors and predators. Hence, we have the maximum number of states or the state

list (Si) of mobile sensori in the case of a single predator to be

Si = [1,n−1]T, [0,n−1]T , [1,n−2]T, [0,n−2]T, ..., [1,0]T, [0,0]T. (5.2)
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Figure 5.4: Four safe places are generated based on the moving direction of the predator.

Overall, the maximum number of states of mobile sensori in the case of one predator

equals to 2n. Since all mobile sensors want to maintain the connection tothe network, they

want to avoid the states[1,0]T and[0,0]T .

The action: We assume that the predators can come from any direction with different

paths. However, when they detect the prey they try to come into the center of the prey

network. Therefore, the desired action of the prey (mobile sensors) is to go to one of four

safe places to escape. If we encode 4 safe places as numbers 1,2, 3, 4, we have the action

list for each mobile sensorAi = [1, 2, 3, 4]. When the predators enter the risk area, the

mobile sensor will generate the repulsive force to move awayfrom them. Additional actions

can be introduced if needed. The illustration of this scenario is shown in Figure 5.4. The

action, selecting one of the safe places, is generated in theReinforcement Learning module.

Then, this action is implemented in the flocking controller.

The reinforcement reward: the reinforcement reward signal changes in the experiments,

depending on the input data that is received. Inα-lattice configuration (hexagonal lattice

configuration), a mobile sensor inside the network has six neighbors, and the mobile sensor

on the border of the network has one to five neighbors. Our purpose is to maintain this

network configuration, hence we define the reward as: if|Nα
i | < 6 thenr i = |Nα

i |, else
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r i = 6 (keep an hexagonal lattice configuration). This reward definition basically implies

that the maximum reward for each agent is six which corresponds to the hexagonal lattice

configuration of the network.

Independent Learning

For comparison purpose, we implement an independent learning algorithm in which the

mobile sensors ignore the actions and rewards of other mobile sensors, and learn their

strategies independently. Each mobile sensor stores and updates an individual table,Qi , as

follows:

Qi(si,ai) ⇐ Qi(si,ai)+α[r i + γmaxa,
i∈A

′
i
Qi(s

,
i,A

′
i)−Qi(si ,ai)] (5.3)

hereα is a learning rate, andγ is a discounting factor, andA
′
i is a next action list of current

action listAi.

Cooperative Learning

We propose a cooperative learning algorithm which has two phases. The first phase is

Q value update, and the second one is action selection. In thefirst phase we let each

mobile sensor calculate its own Q value based on its own action/state and its neighbor’s

actions/states. In the second phase, in order to make the learning converge faster we develop

a majority action following (MAF) algorithm for the final action selection.Q Value Update:

In this phase, our goal is to allow each mobile sensor to aggregate the information of

its neighbors via the Q value. Therefore each mobile sensor updates its Q value based on

the following equation.

Qi(si,ai) ⇐ Qi(si,ai)+
|Nα

i |

∑
j=1

Q j(sj ,a j) (5.4)

here,Qi(si,ai) is computed based on Equation (5.3), and|Nα
i | is the number of neighbors

of mobile sensor i. This idea of Q value update is illustratedin Figure 5.5.

Action Selection Strategy:
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Figure 5.5: Q value update based on the mobile sensor’s action/state and its neighboring

actions/states.

Usually the next action selection in reinforcement learning is based on the maximumQ

value [100, 99], or the Boltzmann action selection strategy[122]. Since each mobile sensor

makes its decision only based on the maximumQ value, the convergence of the learning

is usually slow. Therefore we need make the preys to agree on the same action as fast as

possible. We first let each prey select the next action based on the maximumQ value. The

final action for each mobile sensor is decided using the majority action following strategy,

which is shown in Algorithm 4. In this algorithm, Step 3 can let each prey select its action

as the one that most of its neighbors follow. In this way the cooperative learning can

converge faster. Overall, the cooperative learning algorithm is shown in Algorithm 5.
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Algorithm 4: Majority Action Following (MAF) Algorithm

for each mobile sensor ido
Step 1.Selects the next action based on the maximumQ value,

maxai∈Ai Qi(si,Ai), whereQi(si ,ai) is computed via Equation(5.4).

Step 2.Asks/observes its neighbor’s decisions.

Step 3.Selects the action that most mobile sensors in the inclusiveneighborhood

set{i ∪Nα
i } follow.

if the number of mobile sensors in the set{Nα
i } selecting the same action are the

samethen

Roboti will keep its own decision;

else
Goes back toStep 3.

5.4 Convergence Analysis of Cooperative Learning Algorithm

In this section, we show the convergence of our proposed cooperative learning Algorithm

5. First, we can rewrite Equation(5.3) iteratively:

Qk+1
i (si,ai) = Qk

i (si,ai)+α[r j + γQk
i (s

,
i ,a

,
i)−Qk

i (si ,ai)] (5.5)

herek is the time step, andQk
i (s

,
i,a

,
i) = maxa,

i∈A
′
i
Qk

i (s
,
i,A

′
i). Let |Nα

i ∪{i}| be the number

of mobile sensors in mobile sensori’s local neighborhood including mobile sensori itself.

Then from(5.4) and(5.5) we have the sum of Q values in each local set{Nα
i ∪{i}} as

|Nα
i ∪{i}|

∑
j=1

Qk+1
j (sj ,a j) =

|Nα
i ∪{i}|

∑
j=1

α[r i + γQk
j(s

,
j ,a

,
j)−Qk

j(sj ,a j)]

+
|Nα

i ∪{i}|

∑
j=1

Qk
j(sj ,a j). (5.6)

Since each mobile sensori updates its finalQi at time stepk based onQk
i (si ,ai) =

∑
|Nα

i ∪{i}|
j=1 Qk

j(sj ,a j) we have the difference∆Qi(si ,ai) for each mobile sensor between the
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Algorithm 5: Cooperative Learning in a Distributed Fashion
Set parametersα andγ.

Build the state list(Si) and action list(Ai) for each mobile sensor

for each episodedo

for each mobile sensor ido
Initialization phase:

- Initializes the matrixQi

- Finds initial state(si) that corresponds to the one in the state list(Si) as

defined in Equation(5.2).

- Randomly selects one action(ai) in the action list(Ai).

Update phase(after mobile sensori does the selected action):

- Updates the next state(s,
i).

- Selects the next action(a,
i) based on the maximumQi value.

- Computes the rewardr i.

- ComputesQi value:

Qi(si,ai) ⇐ Qi(si,ai)+α[r i + γmaxa,
i∈A

′
i
Qi(s

,
i,A

′
i)−Qi(si,ai)]

- UpdatesQi based on its neighbors:

Qi(si ,ai) ⇐ Qi(si,ai)+
|Nα

i |

∑
j=1

Q j(sj ,a j)

here,|Nα
i | is the number of neighbors of mobile sensor i.

- Sets the next state as the current state.

Action implementation phase:

- Final action is selected based on Majority Action Following Algorithm

(Algorithm 1).

end

end
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time steps(k+1) andk as

∆Qi(si ,ai) = Qk+1
i (si,ai)−Qk

i (si,ai)

=
|Nα

i ∪{i}|

∑
j=1

Qk+1
j (sj ,a j)−

|Nα
i ∪{i}|

∑
j=1

Qk
j(sj ,a j)

= α
|Nα

i ∪{i}|

∑
j=1

[r j + γQk
j(s

,
j ,a

,
j)−Qk

j(si,a j)]. (5.7)

We can expand Equation(5.7) to n mobile sensors into space representation as follow:

∆Q(s,a) = αR(s,a)+HQ(s,,a,)−αQ(s,a) (5.8)

here∆Q(s,a) = [∆Q1(s1,a1),∆Q2(s2,a2), ...,∆Qn(sn,an)]
T with s= [s1,s2, ...,sn]

T and

a = [a1,a2, ...,an]
T .

Q(s,a) = [∑
|Nα

1 |+1
j=1 Q j(sj ,a j),∑

|Nα
2 |+1

j=1 Q j(sj ,a j)

, ...,∑|Nα
n |+1

j=1 Q j(sj ,a j)]
T .

Q(s,,a,) = [∑
|Nα

1 |+1
j=1 Q j(s

,
j ,a

,
j),∑

|Nα
2 |+1

j=1 Q j(s
,
j ,a

,
j)

, ...,∑|Nα
n |+1

j=1 Q j(s
,
j ,a

,
j)]

T ,

with s, = [s,
1,s

,
2, ...,s

,
n]

T anda, = [a,
1,a

,
2, ...,a

,
n]

T .

R = [∑
|Nα

1 |+1
j=1 r j(sj ,a j),∑

|Nα
2 |+1

j=1 r j(sj ,a j), ...,∑
|Nα

n |+1
j=1 r j(sj ,a j)]

T .

H =



















αγ αγ ... αγ

αγ αγ ... αγ

... ... ... ...

αγ αγ ... αγ



















nxn

.

Since the next actiona,
i is selected according tomaxai∈Ai Qi(si,Ai), and the final action

is selected based on the MAF, we can rewrite Equation (5.8) as:

∆Q(s,a) = αR(s,a)+HF(s)−αQ(s,a) (5.9)
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hereF(s) = [∑
|Nα

1 |+1
j=1 Fj(s),∑

|Nα
2 |+1

j=1 Fj(s), ...,∑
|Nα

n |+1
j=1 Fj(s)]T with Fj(s) = maxa j∈A j Q j(sj ,A j).

Theorem 4.Consider a system ofn mobile sensors, that have dynamics (2.18) and are

controlled by the control law (2.38). Based on Algorithm 5 and a state differential equation

(5.9) the vector∆Q(s,a) will converge to a zero vector.

Proof:

Since after sufficient iterations, each learning mobile sensor will select the action that

holds the biggestQ value we haveF(s) = Q(s,a). From this point we can rewrite Equation

(5.9) as

∆Q(s,a) = (H−αI)Q(s,a)+αR(s,a) = BQ(s,a)+αR(s,a) (5.10)

hereIn×n is an identity matrix, andB = (H−αI) .

If the time step is small enough we can write Equation(5.10) into a continuous fashion

as:

Q̇(s,a) = BQ(s,a)+αR(s,a) (5.11)

Now, we can consider Equation(5.11) as a standard feedback control system (Ẋ =

AX+Bu) [123, 124]. Namely, the model of the system isQ(s,a), and the control input is

α, andR is the output signal of the controller. Therefore we can easily see that if all of

the roots of the characteristic equation of the differential equation(5.11) have negative real

parts then the proposed system(5.11) is stable, or the vector∆Q(s,a) will converge to a

zero vector.

We have the characteristic equation:

det(λI −B) = 0 (5.12)

here

λI −B =



















λ−α(γ−1) −αγ ... −αγ

−αγ λ−α(γ−1) ... −αγ

... ... ... ...

−αγ −αγ ... λ−α(γ−1)



















nxn
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From Equation(5.12) we can obtain:

(λ+α)n−n(λ+α)n−1αγ = 0 (5.13)

or,

(λ+α)n−1[(λ+α)−nαγ] = 0 (5.14)

Solve Equation(5.14) we obtain the roots as:λ1 = λ2 = ... = λn−1 =−α. Since 0< α < 1

we have−1 < λ1 = λ2 = ... = λn−1 < 0, andλn = α(nγ−1). We can easily seeλn < 0 if

we select 0< γ < 1
n.

We can ensure that all the roots of the characteristic equation of the differential equation

(5.11) have negative real parts if we select 0< α < 1 and 0< γ < 1
n. Hence we can conclude

that the proposed system(5.11) is stable, or the vector∆Q(s,a) will converge to a zero

vector. This finishes our proof.

5.5 Simulation and Experiment Results

In this section we test our cooperative learning algorithm (Algorithm 5) combined with the

distributed flocking control algorithm (2.38) in both simulation and experiment. We com-

pare the proposed cooperative learning algorithm with the independent learning algorithm

(5.3) in term of connectivity, topology, convergence, action and reward.

5.5.1 Simulation Results

In this simulation we use 15 mobile sensors (prey), and 4 actions (4 safe places to escape

predator). This results in 415 = 1073741824 (≈1 billion) possible joint actions.

In each learning episode we randomly setup initial deployments of the prey; locations

of obstacles; as well as trajectories and initial locationsof the predator. The learning task

is to find out one of four optimal joint actions. The parameters of flocking control are as

follows: the desired distance among the preyd = 16; the scaling factorkc = 1.2; the active

ranger = kc×d = 19.2; the constantε = 0.1 for theσ-norm.
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Figure 5.6: Snapshots of our proposed cooperative learningalgorithm in the first episode.

Four red/darker dots as shown in snapshots (d, e, f) are four safe places. The empty red

circle is the predator. The filled red circles are the obstacles.
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Figure 5.7: Snapshots of our proposed cooperative learningalgorithm in the second

episode. Four red/darker dots as shown in snapshots (e, f) are four safe places. The empty

red circle is the predator. The filled red circles are the obstacles.
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Figure 5.8: Snapshots of the proposed cooperative learningalgorithm in the third episode.

Four red/darker dots as shown in snapshots (e, f) are the foursafe places. The empty red

circle is the predator. The filled red circles are the obstacles.
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Figure 5.9: Snapshots of the proposed cooperative learningalgorithm in the fourth episode.

Four red/darker dots as shown in snapshots (e, f) are the foursafe places. The empty red

circle is the predator. The filled red circles are the obstacles.

Figure 5.6 shows the result of the first training episode. Since at the first time the

mobile sensors do not have any experience, they failed to agree on the same action. Hence,

the network is broken.

In the second episode shown in Figure 5.7, the learning result is better since more than

50 percent of the mobile sensors agree on the same safe place to go. In the third episode

the learning converges and all the mobile sensors choose thesame action (see Figure 5.8).

Therefore the connectivity is maintained. In the fourth (see Figure 5.9) and fifth episodes

(see Figure 5.10), even when we change the trajectory of the predator and the location of

the obstacles, the learning results still hold.

5.5.2 Experiment Results

In real experiments we use eight Rovio robots [111] that haveomni-directional motion

capability as shown in Figure 5.11. In this figure, seven Rovio robots are used as preys,

and one Rovio robot is used as a predator. To distinguish withother prey robots the predator
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Figure 5.10: Snapshots of the proposed cooperative learning algorithm in the fifth episode.

Four red/darker dots as shown in snapshots (c, d) are the foursafe places. The empty red

circle is the predator. The filled red circles are the obstacles.
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Figure 5.11: Seven Rovio prey mobile sensors and one Rovio predator robot (marked with

a yellow cup) are used in the experiment.

robot is marked by a yellow cup mounted on it. Basically, these robots can freely move in

six directions. The dynamic model of the Rovio robot can be approximated by Equation

(2.18). However, the accuracy of the localization of the Rovio robot is low, and the robot

does not have any sensing device to sense the pose (position and velocity) of its neighbors,

predator and obstacles. Hence we use a VICON motion capture system [1] in our lab

(Figure 5.12) that has 12 infrared cameras to track moving objects. This tracking system

can give the location and velocity of each moving object withhigh accuracy.

Figure 5.13 shows the experimental result of the first training episode. Similar to the

simulation results, since in the first episode the robots do not have any experience of the

behavior of the predator, they failed to agree on the same action. Hence, the network is bro-

ken. In the third episode as shown in Figure 5.14 the learning converges and all the robots

choose the same action (same safe place). Therefore the topology and the connectivity are

maintained.

121



�������� ������	 
���
�

����� ���� �� � ����� �����	
����� ���� �� 
 ��	�����	

Figure 5.12: Infrared cameras tracking system for experimental setup of multi-robot coop-

erative learning.

5.5.3 Performance Evaluation

In this subsection we evaluate the connectivity, topology,convergence, and reward per-

formance of our proposed cooperative learning algorithm, then compare with those of the

independent learning algorithm.

Connectivity Evaluation

From the result in Figure 5.15 we can see that for the cooperative learning algorithm the

connectivity of the network is maintained after 3 training episodes while for the indepen-

dent learning algorithm the connectivity is not maintainedeven after 100 training episodes.

This means that the robots do not agree on the same action. Note that in Figure 5.15d

(zoom in at 4th episode of Figure 5.15b) the connectivity is only lost from iteration 1 to

320 because the prey have to avoid the obstacles. After about320 iterations the predator

appears, and the preys can avoid the predator and maintain the connectivity based on the

proposed cooperative learning algorithm. In contrast, theconnectivity is lost using the in-

dependent learning algorithm as shown in Figure 5.15a andc. Here Figure 5.15a is zoom

in at 100th episode of Figure 5.15c.
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Figure 5.13: The trajectories of 7 Rovio robots and one predator in the first learning

episode. The green small squares are the safe places, and thefilled red squares are the

obstacles.
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Figure 5.14: The trajectories of 7 Rovio robots and one predator in the third learning

episode. The green small squares are the safe places, and thefilled red squares are the
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Figure 5.15: Connectivity evaluation for the independent learning algorithm (a, c) and our

proposed cooperative learning algorithm (b, d), here (c) isa zoom-in at 100th episode of

(a), and (d) is a zoom-in at 4th episode of (b)

Topology Evaluation

To evaluate the topology maintenance, we define a measureT to monitor the change of the

number of neighbors for each robot. The topology of the network is evaluated based on the

following algorithm.

We see that ifT = 0 the topology of the network does not change, and ifT > 0 the

topology of the network changes. From the result in Figure 5.16 we can see that for our

proposed cooperative learning algorithm the topology of the network does not change after

3 training episodes while for the independent learning algorithm the topology changes in all

training episodes. Note that in Figure 5.16 (right) the topology is only changed when the

prey have to avoid the obstacles, and it is maintained when they are avoiding the predator.
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for each mobile sensor ido

if |Nα
i | changesthen

Topology:Ti = abs(|Nα
i (k)|− |Nα

i (k−1)|) (k is time step or iteration)

else if|Nα
i | does not change, but indices of|Nα

i | changethen
Topology:Ti = number of index changes

else
Topology:Ti = 0

For the whole network :Topology:T = ∑n
i=1Ti
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Figure 5.16: Topology evaluation for the independent learning algorithm (left) and our

proposed cooperative learning algorithm (right).
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Figure 5.17: Convergence of Q values for the independent learning algorithm (left) and our

proposed cooperative learning algorithm (right).
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Figure 5.18: Global reward evaluation for the independent learning algorithm (left) and our

proposed cooperative learning algorithm (right).

Convergence of Q values Evaluation

The convergence of the proposed system is evaluated based onthe average values of the

∆Q(s,a). According Theorem 4 if the average of∆Q(s,a) goes to zero the proposed system

is stable, otherwise it is not stable. From the result in Figure 5.17 we can see that for our

proposed cooperative learning algorithm the average of∆Q(s,a) goes to zero after 2000

iterations while for the independent learning algorithm itdoes not converge to zero.
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Reward Evaluation

The global reward is computed asR = ∑n
i=1 r i . From the result in Figure 5.18 with our

proposed cooperative learning algorithm we can obtain a maximum global reward with a

value of 62 after about 2000 iterations, but with the independent learning algorithm the

global reward does not converge to a stable value.

5.6 Summary

We proposed a hybrid system that integrates flocking controland reinforcement learning to

allow mobile sensors to behave intelligently in continuousspace. Reinforcement learning

is developed based on cooperative Q learning and Majority Action Following algorithm

(MAF). We evaluated the proposed hybrid system in the case ofmultiple mobile sensors

learning to avoid predator. We showed that the proposed cooperative Q learning allows

the network to find out the effective joint action more quickly than the independent Q

learning. This also allows the network to maintain its topology and connectivity while

avoiding the predator. Both simulation and experiment results are collected to demonstrate

the effectiveness of our proposed system.
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CHAPTER 6

COOPERATIVE AND ACTIVE SENSING FOR MSNs BASED ON DISTRIBUTE D

CONSENSUS

In this chapter, autonomous mobile sensor networks are deployed to measure a scalar field

and build its map. We develop a novel method for multiple mobile sensor nodes to build

this map using noisy measurements. Our method consists of three parts. First, we develop

a distributed sensor fusion algorithm by integrating two different distributed consensus

filters to achieve cooperative sensing among sensor nodes. Second, we use the distributed

flocking control algorithm to drive the center of the mobile sensor formation to track the

desired paths. Third, we build a path planning strategy to obtain a complete coverage of

the field. Simulation results are conducted to demonstrate our proposed method.

This chapter is organized as follows. Section 6.1 presents the introduction of this chap-

ter. Section 6.2 presents the models of the scalar field and the measurement of each sensor

node, as well as the problem formulation. Section 6.3 presents the distributed consensus

filters and the distributed sensor fusion algorithm for building a map of the unknown scalar

field. Section 6.4 describes the path planning strategy for complete coverage of the scalar

field. Section 6.5 presents cooperative and active sensing algorithms for improving the con-

fidence performance. Section 6.6 shows simulation results.Finally, Section 6.7 concludes

this chapter.

6.1 Introduction

Measuring and exploring an unknown field of interest have attracted much attention of

environmental scientists and control engineers [11, 59, 60, 13, 125, 12]. They have numer-
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Figure 6.1: (a) Evacuation: Ships and rig workers evacuate the oil spill area as Tropi-

cal Storm Bonnie approaches the region (Photo by Mario Tama/Getty Images). (b) The

estimated field of chlorophyll generated by the harmful algal blooms observation system

[2] by the National Oceanic and Atmospheric Administration(NOAA), (Photo courtesy of

NOAA).

ous applications including environmental monitoring [8],and oil spill and toxic-chemical

plume tracing [9, 10] (see Figure 6.1). Because the scalar field is often distributed across

a large area, we need many sensors to cover the field if the sensors are mounted at fixed

locations. MSNs in which sensors can move together and take measurements along their

motion trajectories are ideal candidates for such missions.

In order to create the map of the scalar field, one of the important research problems in

MSNs is to achieve cooperative sensing among sensors in a distributed fashion. Develop-

ment of a novel cooperative sensing algorithm based on distributed estimation and control

algorithms for MSNs is very challenging. The estimation andcontrol have to be performed

in each sensor node using only local information, while as a whole they exhibit collective

intelligence and achieve a global goal. In a resource-constrained multi-agent system, the

communication range and sensing range of each agent are small compared to the size of

a surveillance region. Hence, agents cannot accomplish themission without an effective

flocking control and path planning strategy.

In this chapter, the problems of cooperative sensing and cooperative motion control
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are addressed. Our work has three parts. First, we develop a distributed sensor fusion

algorithm by integrating two different distributed consensus filters to achieve cooperative

sensing among sensor nodes. In this algorithm, each sensor node obtains measurements

from itself and its neighboring sensor nodes within its communication range. Each mobile

sensor node will then iteratively update the estimate of thescalar field. Second, we use

a distributed flocking control algorithm to drive the centerof the mobile sensor formation

to track the desired paths. Third, we build a path planning strategy to obtain a complete

coverage of the field. From this cooperative sensing framework we extend to active sensing

in order to achieve better sensing performance.

6.2 Scalar Field and Measurement Modeling and Problem Statement

6.2.1 Model of the Scalar Field

We model the scalar field of interest as

F = ΘΦT , (6.1)

hereΘ = [θ1,θ2, ...,θK], andΦ = [φ1,φ2, ...,φK]. We can rewrite Equation (6.1) as

F =
K

∑
j=1

θ jφ j , (6.2)

hereφ j is a function representing a density distribution, andθ j is the weight of the

density distribution of the functionφ j .

We can model the functionφ j as a multiple variate Gaussian distribution (other distri-

bution functions such as Poisson, Student, Cauchy distributions, ..., can also be used):

φ j =
1

√

det(Cj)(2π)2
e

1
2(x−µj

x)C
−1
j (y−µj

y)
T
, j ∈ [1,2, ...,K].

here [µj
x µj

y] is the mean of the distribution of functionφ j , andCj is covariance matrix

(positive definite) and it is represented by:

Cj =







(σ j
x)

2 co
j σ

j
xσ j

y

c0
j σ

j
xσ j

y (σ j
y)

2






,
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wherec0
j is a correlation factor.

6.2.2 Measurement Model

We partition the scalar fieldF into a grid ofC cells. Each sensori makes an observation

(measurement) of the scalar field at cellk (k ∈ {1,2, ...,C}) at time stept based on the

following equation

mk
i (t) = Ok

i (t)[F
k(t)+nk

i (t)], (6.3)

herenk
i (t) is the Gaussian noise with zero mean and varianceVk

i (t) at time stept. We

assume thatnk
i is uncorrelated noise which satisfies

Cov(nk
i (s),n

k
i (t)) =











Vk
i , i f s = t

0, otherwise,

hereCov is the covariance.Ok
i (t) is the observability of sensor nodei at cellk at time step

t, and it is defined as

Ok
i (t) =











1, i f ‖qi(t)−qk
c‖ ≤ rs

i

0, otherwise,
(6.4)

hereqi ∈ R2 is the position of sensor nodei; qk
c ∈ R2 is the location of cellk at its center.

This definition tells us that if cellk is inside the sensing range,rs
i , of sensor nodei then cell

k can be measured or observed. Otherwise the observability iszero. Note thatrs
i can be the

same for all sensors(rs
1 = rs

2 = ... = rs
n = rs) or different.

Each mobile sensor node makes an measurement at cellk corresponding to its position.

We assume that the varianceVk
i (t) is related to the distance between the sensor nodei and

the location of the measurement according to:

Vk
i (t) =











‖qi(t)−qk
c‖2+cv

(rs
i )

2 , i f ‖qi(t)−qk
c‖ ≤ rs

i

0, otherwise,
(6.5)

herecv is the small positive constant between 0 and 1. The reason of introducingcv is to

avoid the varianceVk
i (t) being zero when the distance‖qi(t)−qk

c‖ equals to zero.
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6.2.3 Problem Formulation

Given the measurements of sensor nodei and its neighbors at each cell of the scalar field

F as modeled in Equation (6.3) (see Figure 6.2), our goal is to build the map for the scalar

field F modeled by Equation (6.1).

������ ���� ���	
���� �
������ ���� �
Communication Link 

Cell k  ��	
���� �
������ ���� �
Figure 6.2: Illustration of the measurement model using multiple mobile sensor nodes.

6.3 Distributed Sensor Fusion Algorithm

6.3.1 Overall Approach

In this section we present a distributed sensor fusion algorithm to allow each sensor node

to find out an estimate of the value at each cell of the scalar field based on its own measure-

ment and its neighbor’s measurements. Our algorithm has twophases. First, each sensor

node finds an estimate of the value of the scalar fieldF at each cell at time stept. Second,

each sensor node finds a final estimate of the value of the scalar field F at each cell during

its movement. To achieve it, we develop two consensus filters. The consensus filter 1 is

to find out an estimate of the value of the fieldF at each cell at time stept. Since each

mobile sensor node makes its own measurement at each cell at time stept with its own

weight (confidence), the consensus filter 2 is used to find out an agreement among these

confidences.
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At each time stept each mobile sensor node needs to find an estimate of the value of

each cell based on consensus filter 1, and find an overall confidence of this estimate based

on consensus filter 2. This process can be called thespatial estimate phase. Then, during

the movement of each sensor node, it will have multiple spatial estimates of each cell

associated with their own confidences. Hence, these spatialestimates are fused iteratively

through the weighted average protocol, and this process canbe called thetemporal estimate

phase. To summarize:

(1) Spatial estimate phase:

• Building a weighted average consensus filter (consensus filter 1) to find out an agree-

ment of the estimates among the sensor nodes at each time stept,

• Building an average consensus filter (consensus filter 2) to find out an agreement of

the weights (confidences) of the measurements among the sensor nodes at each time

stept,

(2) Temporal estimate phase:

• Building a weighted average protocol to iteratively updatethe spatial estimates for

sensor nodei during its movement.

6.3.2 Distributed Consensus Filters

Consensus Filter 1

Distributed consensus [52, 53, 50, 51, 56, 55] is an important computational tool to achieve

cooperative sensing. We consider distributed linear iterations of the following form

xk
i (l +1) = wk

ii (l)x
k
i (l)+ ∑

j∈Ni(t)

wk
i j (l)x

k
j(l), (6.6)

herel is iteration index. The initial condition for the state is given asxk
i (l = 0) = mk

i (t).

The weight,wk
ii (l), is the self weight or vertex weight of each sensor to cellk, andwk

i j (l) is

the edge weight between sensori and sensorj. These weights will be discussed more later.
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Our problem here is to estimate the value of the fieldF at each cellk at each time

stept. Since each sensor node makes the observation at cellk at time stept based on its

own confidence (weight), the consensus should converge to the weighted average of all

observations (measurements) at cellk from all sensor nodes in the network. This weighted

average is the estimate of the value at cellk at time stept, and it is computed as:

Ek(t) =
∑n

i=1wii (t)mi(t)

∑n
i=1wii (t)

. (6.7)

If Equation (6.6) converges we haveEk
1 = Ek

2 = ... = Ek
n = Ek. Therefore, our goal is to let

liml→∞(xk
i (l)−Ek(t))→ 0 (6.8)

We can write Equation(6.8) in the matrix form

liml→∞xk(l) = Ek(t)1 (6.9)

herexk(l) = [xk
1(l), xk

2(l), ..., xk
n(l)]

T
n×1, and1 = [1, 1, ..., 1]Tn×1.

We can also write Equation(6.6) in the matrix form

xk(l +1) = wk(l)xk(l) (6.10)

with initial conditionxk(0) = mk(t), andmk(t) = [mk
1(t), mk

2(t), ..., mk
n(t)]

T
n×1.

To make Equation(6.6) converge toEk(t) we need

liml→∞wk(l +1) =
1
n

11T (6.11)

In order to achieve this we need to ensure that the sum of all weights including the vertex

and edge weights at each node equals to 1, or

wk
ii (l)+ ∑

j∈Ni(t)

wk
i j (l) = 1. (6.12)

To satisfy this, we have the following designs of weight.
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Weight Design 1:

From Equation(6.12) the vertex weight at nodei is obtained as

wk
ii (l) = 1− ∑

j∈Ni(t)

wk
i j (l). (6.13)

here,wk
i j (l) is defined as

wk
i j (l) =

cw
1

Vk
i (t)+Vk

j (t)
, i 6= j, j ∈ Ni(t), (6.14)

here,cw
1 is a constant. If both sensor nodesi and j do not observe cellk (Ok

i (t) = Ok
j(t) = 0)

then to avoid dividing by zero the edge weightwk
i j (l) is set to zero.

Therefore we have the following form of weight design

wk
i j (l) =























cw
1

Vk
i (t)+Vk

j (t)
, i f i 6= j, j ∈ Ni(t),

1−∑ j∈Ni(t) wk
i j (l), i f i = j,

0, otherwise.

(6.15)

Now we need to findcw
1 to satisfy Equation(6.12). We know that

min(Vk
i (t)) = min(‖qi(t)−qk

c‖2+cv

(rs
i )

2 ) = cv
(rs

i )
2 if ‖qi(t)−qk

c‖ = 0. Hence we have

min(Vk
i (t))+min(Vk

j (t)) =











2cv
(rs)2 , i f r s

i = rs
j = rs,

cv
(rs

i )
2 + cv

(rs
j )

2 , otherwise.
(6.16)

To satisfy Equation(6.12) we need

0 < ∑
j∈Ni(t)

wk
i j (t) < 1⇒ 0 < ∑

j∈Ni(t)

cw
1

Vk
i (t)+Vk

j (t)
< 1

or,

0 < cw
1 <

Vk
i (t)+Vk

j (t)

|Ni(t)|
, (6.17)

here|Ni(t)| is the number of neighbors of sensor nodei at time t, and from(6.16) and

(6.17) we can selectcw
1 as











0 < cw
1 < 2cv

(rs
i )

2|Ni(t)| , i f r s
i = rs

j = rs,

0 < cw
1 < 1

|Ni(t)|(
cv

(rs
i )

2 + cv
(rs

j )
2), otherwise.

(6.18)
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Weight Design 2:

From Equation(6.12) by assigning the same value to all edge weights we obtain:

wk
i j (l) =

1−wk
ii (l)

|Ni(t)|
. (6.19)

here,wk
ii (l) is defined as

wk
ii (l) =

cw
2

Vk
i (t)

, (6.20)

wherecw
2 is a constant. If sensor nodei does not observe cellk (Ok

i (t) = 0) then the vertex

weightwk
ii (l) is set to zero.

Therefore we have the following weight design

wk
i j (l) =























cw
2

Vk
i (t)

, i f i = j,

1−wk
ii (l)

|Ni(t)| , i f i 6= j, j ∈ Ni(t),

0, otherwise.

(6.21)

Now we discuss how to select the constantcw
2 . In order to satisfy Equation(6.12) we

need the following condition:

0 <
cw

2

Vk
i (t)

< 1. (6.22)

Sincemin(Vk
i (t)) = cv

(rs
i )

2 when‖qi(t)−qk
c‖ = 0, we have:

0 <
cw

2
cv

(rs
i )

2

< 1⇒ 0 < cw
2 <

cv

(rs
i )

2 . (6.23)

Finally, the consensus filter 1 (CF1) is summarized as

CF1 : xk
i (l +1) = wk

ii (l)x
k
i (l)+ ∑

j∈Ni(t)

wk
i j (l)x

k
j(l)

wk
i j (l) =























cw
1

Vk
i (t)+Vk

j (t)
, i f i 6= j, j ∈ Ni(t),

1−∑ j∈Ni(t) wk
i j (l), i f i = j,

0, otherwise.

or,

wk
i j (l) =























cw
2

Vk
i (t)

, i f i = j,

1−wk
ii (l)

|Ni(t)| , i f i 6= j, j ∈ Ni(t),

0, otherwise.

(6.24)
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Consensus Filter 2

Since each sensor node has its own confidence of the measurement of the value of the scalar

field at each cell at each time stept we need to find an agreement among the confidences of

sensor nodes. The consensus algorithm 2 is introduced to findthe overall confidence from

each time stept. This overall confidence is the estimated weight,Wk
i (t), of the weighted

average protocol as shown in Equation (6.39).

Let yk
i (l = 0) be the confidence of the measurement of the value of the scalarfield at cell

k at each time stept for sensor nodei, or yk
i (l = 0) = wk

ii (t). Letyk
j(l = 0) be the confidence

of the measurement of the value of the scalar field at cellk at each time stept for sensor

node j with j ∈ Ni(t), or yk
j(l = 0) = wk

j j (t). Then, we have the following consensus filter

yk
i (l +1) = wk

ii (l)y
k
i (l)+ ∑

j∈Ni(t)

wk
i j (l)y

k
j(l), (6.25)

In this consensus filter, we use the Metropolis weight [53] as

wk
i j (l) =























1
1+max(|Ni(t)|,|Nj(t)|) , i f i 6= j, j ∈ Ni(t),

1−∑ j∈Ni(t) wk
i j (l), i f i = j,

0, otherwise.

(6.26)

6.3.3 Convergence Analysis

In this subsection we analyze the convergence of the Consensus Filter 1.

First, let us define the weight matrix for the whole network as

wk =

































wk
11 wk

12 ... wk
1n

wk
21 wk

22 ... wk
2n

. . ... .

. . ... .

. . ... .

wk
n1 wk

n2 ... wk
nn

































n×n

. (6.27)

Based on ourWeight Design 1 and 2, the matrixwk has the following properties:
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(P1) wk
i j = 0 if j /∈ Ni .

(P2) All elements, wki j , i = 1, ...,n and j∈ Ni , of the matrixwk satisfy0 < wk
i j < 1.

(P3) Sum of all elements in each row of the matrixwk equals to 1.

With the definition of the weight matrixwk, we can expand Equation (6.6) ton mobile

sensors into space representation as follows

xk(l +1) = wkxk(l), (6.28)

or we have

xk(l +1)−xk(l) = [wk− I ]xk(l), (6.29)

hereI is the identity matrix.

∆xk = [wk− I ]xk(l), (6.30)

here∆xk = xk(l +1)−xk(l). We can also rewrite Equation (6.30) into a continuous fashion

ẋk = Akxk, (6.31)

hereAk = wk− I .

Theorem 5. Given any connected network, and by applying the Consensus Filter 1 as

defined in Equation (6.6) associated with theWeight Design 1 or 2 as defined in Equations

(6.15) and (6.21), respectively, the system (6.31) is stable, or∆xk converges to zero.

Proof: The system (6.31) is a linear time-invariant system or autonomous system.

Therefore to show this system stable we need to show that matrix Ak is a Hurwitz matrix,

or all of the roots of the characteristic equation have negative real parts [123, 124, 126].

Given a matrixB = [bi j ]n×n of the autonomous system ˙x = Bx we have the following

theorem:

Theorem 6(Liao et. al[126]): If the following conditions:

(C1) bii < 0 (i = 1,2, ...,n) and det(B) 6= 0; and

(C2) there exist constants ci > 0 (i = 1,2, ...,n) such that

c jb j j +∑n
i=1,i 6= j |ci||bi j | < 0, ( j = 1,2, ...,n)
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are satisfied, then B is a Hurwitz matrix.

First let us write matrixAk in details as

Ak = [ai j ] =

































wk
11−1 wk

12 ... wk
1n

wk
21 wk

22−1 ... wk
2n

. . ... .

. . ... .

. . ... .

wk
n1 wk

n2 ... wk
nn−1

































n×n

. (6.32)

Based on Theorem 6 we can check our matrixAk. We clear see that the conditionC1 is

easily satisfied because all diagonal elementswk
ii of the matrixwk satisfy 0< wk

ii < 1 (see

propertyP2 of the matrixwk). Therefore we obtain that all diagonal elements of the matrix

Ak satisfyaii = wk
ii −1 < 0.

For the conditionC2, since the sum of all elements in each row of the matrixwk

equals to one (see propertyP3 of the matrixwk), we can easily find the constantsci to

let c ja j j +∑n
i=1,i 6= j |ci||ai j | < 0. Therefore we can conclude thatAk is a Hurwitz matrix, or

the proposed system (6.31) is stable.

As one example we can show thatAk is a Hurwitz matrix by showing the roots of the

characteristic equation(6.33) in the case of 2×2 dimension of the matrix(λ+1)I −wk.

We have the following characteristic equation for the system (6.31) as:

det(λI −A) = det(λI −wk + I) = det((λ+1)I −wk) = 0 (6.33)

here

(λ+1)I −wk =

































λ+1−wk
11, −wk

12 ... −wk
1n

−wk
21, λ+1−wk

22 ... −wk
2n

. . ... .

. . ... .

. . ... .

−wk
n1, −wk

n2 ... λ+1−wk
nn

































. (6.34)
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For the case of 2×2 dimension of the matrix(λ+1)I −wk we have

det((λ+1)I −wk) = λ2+λ(2−wk
11−wk

22)+1−wk
11−wk

22+wk
11w

k
22−wk

21w
k
12 = 0(6.35)

From the the propertyP3 of the matrixwk we havewk
12 = 1−wk

11 andwk
21 = 1−wk

22. Plug

thesewk
12 andwk

21 into Equation (6.35) we obtain

det((λ+1)I −wk) = λ[λ+(2−wk
11−wk

22)] = 0. (6.36)

Equation (6.36) has two rootsλ1 = 0, andλ2 = −2+wk
11+wk

22 < 0 since 0< wk
11 < 1

and 0< wk
22 < 1. This finishes the proof for Theorem 5.

6.3.4 Distributed Fusion Algorithm

From the consensus filters 1 and 2 we would like to design a distributed sensor fusion

algorithm to allow each sensor node to on-line estimate the value of the scalar field at each

cell based on its own measurement and its neighbor’s measurements. The overall design

of such a distributed sensor fusion algorithm is shown in Figure 6.3. In this algorithm, we

have two phases running at the same time. In the spatial estimate phase, the measurements

of each sensor node and its neighbors at cellk at time stept are inputs of the consensus

filter 1. Then, the output of this consensus is the estimate ofthe value of the scalar field

F at cellk at time stept. In the temporal estimate phase, the confidences (weights) of the

measurements of each sensor node and its neighbors at cellk at time stept are inputs of the

consensus filter 2. Then, the output of this consensus is the estimate of the confidence of

the measurement of the scalar field at cellk at time stept. During the movement of sensor

nodes , each sensor obtain several spatial estimates of the value at cellk associated with

its own confidence, hence the final estimate is iteratively updated based on these spatial

estimates via the weighted average protocol. The detail to implement this algorithm is

shown in Algorithm 6.
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Algorithm 6: Distributed Sensor Fusion Algorithm

Input : the weightwk
ii (t), and the measurement of sensor nodei and its neighbors to

cell k, mk
i (t) andmk

j(t).

Output : the final estimate of the cellk, E
k
i (1 : tl)

for each time step tdo

for each sensor node ido

Step1: Make a measurement (observation)mk
i (t) to cell k if ‖qi(t)−qk

c‖ ≤ rs
i

Sensor nodei obtains the measurements of cellk from its neighbors and itself

for each iteration ldo

Sensor nodei runs the consensus (6.6) with wk
i j (l) is defined in(6.15) or

(6.21)

xk
i (l = 0) = mk

i (t); xk
i (l +1) = wk

ii (l)x
k
i (l)+∑ j∈Ni(t) wk

i j (l)x
k
j(l)

Sensor nodei runs the consensus (6.25) withwk
i j (l) is defined in(6.26)

yk
i (l = 0) = wk

ii (t); yk
i (l +1) = wk

ii (l)y
k
i (l)+∑ j∈Ni(t) wk

i j (l)y
k
j(l)

end

Step2: Obtain the estimate of cellk after running the consensus

Let lc be a time step that both consensus filters converge, then we have:

Ek
i (t) = xk

i (lc); Wk
i (t) = yk

i (lc)

Step3: Update process to find the final estimate of the value of the scalar

field at cellk: - Update weight (confidence):

W
k
i (t) = Wk

i (t −1)+Wk
i (t −2)+ ...+Wk

i (0) (6.37)

- Update the final estimate based on the weighted average protocol:

E
k
i (t = 0) = Ek

i (t = 0) = xk
i (lc) (6.38)

E
k
i (t) =

W
k
i (t−1)E

k
i (t −1)+Wk

i (t)Ek
i (t)

W
k
i (t−1)+Wk

i (t)
(6.39)

end

end
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Figure 6.3: Framework of distributed sensor fusion algorithm based two different consen-

sus filters.
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6.4 Path Planning Strategy

In this section we present the path planning strategy to ensure that the MSN can cover the

entire scalar field.

The flocking control algorithm used to control the center of the mobile sensor node

formation to track the desired paths is presented as

ui = f α
i + f t

i

= cα
1 ∑

j∈Ni(t)

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Ni(t)

ai j (q)(p j − pi)

−ct
1(qi −qt)−ct

2(pi − pt)

−cmc
1 (q(Ni(t)∪{i})−qt)−cmc

2 (p(Ni(t)∪{i})− pt). (6.40)

Based on the flocking control algorithm (6.40), all mobile sensor nodes can form a

lattice formation as shown in Figure 2.6 in Chapter 2, and thecenter of mass (CoM) of the

network as defined in Equation (2.41) can track the leader (qt , pt) successfully as shown in

Figure 2.7 in Chapter 2. Since the network can track the leader, to allow the network to

cover the entire scalar field we only need to design the path ofthe leader so that the field

is fully covered. We assume that the leader knows the total number of sensor nodes in the

network. Then based on the distance between sensor nodes (dα), the leader can compute

the size of the network. Then, our multi-robot path planningproblem becomes a single

robot path planning problem. There are some typical types ofmotion planning for a mobile

robot to have complete coverage of the field of interest such as boustrophedronmotion

or wall-following motion [127]. In this chapter we plan the leader motion using a typical

boustrophedronmotion [127]. The result of the path planning is shown in Figure 6.4.
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6.5 Cooperative and Active Sensing

6.5.1 Introduction

In this section we aim to extend our cooperative sensing framework to cooperative and

active sensing in which the mobile sensors have the ability to adjust their movements to

adapt to the environments so that they can improve the sensing performance in a distributed

fashion.

The mission of measuring and exploring an unknown field for building its map requires

cooperative and active sensing among mobile sensor nodes. In many scalar field map-

ping applications such as temperature field mapping, searchand rescue, there is a need

to achieve a certain level of confidence regarding the estimates at each location. As we

can see from Figure 6.5, using the normal cooperative sensing algorithm, some cells have

very low confidence. This means that we may miss important information at these loca-

tions (cells). For example, in search and rescue operation the MSN may miss the objects

at the locations where the confidence of the estimate is not sufficient. This motivates us

to develop novel active sensing algorithms which can integrate both sensing ability and
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motion control to adapt to the environments in order to improve the sensing performance.

Each mobile sensor node needs to cooperate with its neighbors to adjust its configurations

such as its relative location to the neighbors. By this way each agent can actively build

the confidence map of the environments. In addition, the estimation and control have to be

performed on-line in order to adapt to the changes of the environments.

Active sensing in MSNs has recently attracted many researchers in control engineering

[128, 129, 130, 57, 58, 131, 61, 132, 133]. The early work on this technique can be found

in [57, 58] where the active sensing algorithm for MSNs to estimate the state of dynamic

targets is proposed. The localization and tracking tasks ofdynamic targets are addressed.

To achieve active sensing, the mobility of sensing agents isutilized to improve the sensing

performance. However, the gradient controller for active sensing is designed in a central-

ized way. To relax this limitation, a distributed gradient controller is proposed in [61].

This controller is designed by constructing a dynamic average consensus estimator and us-

ing a one-hop neighbor for communication so that both formation control and cooperative

sensing are integrated in order to improve the sensing performance.

Besides the developed active sensing algorithms for targetestimation, the active sens-

ing algorithms for source seeking and radiation mapping have been developed [134, 135,

136, 137, 132, 133]. The problem of source seeking is first addressed in [134], and then it

is thoroughly studied in [135, 136, 137] for the case when direct gradient information of

the measured quantity is unavailable. Specifically, Pang and Farrell [135] address chemi-

cal plume source localization by constructing a source likelihood map based on Bayesian

inference methods. Mesquitaet. al [136] introduce source seeking behavior without direct

gradient information by mimicking E. Coli bacteria. Mayhewet. al [137] propose a hybrid

control strategy to locate a radiation source utilizing only radiation intensity measurements.

Additionally, active sensing for radiation mapping is developed in [132, 133]. The control

algorithm takes into account sensing performance as well asdynamics of the observed pro-

cess therefore it can steer mobile sensors to locations where they maximize the information
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content of the measurement data. However, in their work the confidence of estimates is not

addressed.

Overall, to our best knowledge the existing works in the areaof active sensing using

MSNs mostly focus on target(s) tracking [128, 130, 57, 58, 61], sensor placement [131],

source seeking [134, 135, 137, 136] and radiation mapping [132, 133]. The problem of

scalar field estimation and mapping based on multi-agent distributed active sensing has not

been investigated yet.

Our goal is to develop a cooperative and active sensing algorithm for MSNs so that

each sensor only interacts with its neighbors and uses the local observation to automatically

adjust the configuration of the MSNs such as relative location among sensors, orientation

and focal length of the sensors (camera), etc. to adapt to theenvironments and improve

the sensing performance. To achieve this goal the controller should be designed via the

real-time feedback of the sensing performance. By this way the controller can steer the

mobile sensor to move to the expected locations of the field inorder to improve the sensing

quality. For simplicity, in this work we only focus on adjusting the relative location among

sensors. Specifically, our problem focuses on how to controlthe movement of the mobile

sensors to increase the confidence level on the estimates.

The cooperative and active sensing framework is depicted inFigure 6.6. In this figure,

the controller designed via the real-time feedback of the confidence of estimates controls

the mobile sensors to first form a quasi lattice network and then move the MSN to expected

locations in order to achieve better sensing performance.

To realize the controller, we have two approaches: DistanceController and Potential

Controller.

6.5.2 Distance Controller

In this section, we consider to increase the confidence levelof estimates over the lower

bound. We design the distance controller to control the sizeof the network. The main idea
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Figure 6.7: Diagram of active sensing based on the distance controller via confidence feed-

back

of designing this controller (see Figure 6.7) is to shrink the network’s size if any covered

cell of the scalar field has its confidence lower than the desired one, and recover to the

original size of the network if all covered cells have sufficient confidence. This approach

is quite straight forward since shrinking the size of the network brings the mobile sensors

closer to the low confidence cells, hence it can increase the confidence level of these cells.

The distance controller is designed based on the flocking controller and the inter-node

distance adjuster. Here the flocking controller was presented in previous chapters, therefore

we only present the design of the inter-node distance adjuster.

Let Wd be a desired confidence of the estimates of all cells in the scalar field, soWd is

a vector of 1×C dimension. Here again C is a total number of cells in the field.Then, we
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Figure 6.8: Illustration of confidence feedback for lower bound only.

can writeWd = [W
1
d,W

2
d, ...,W

C
d ].

In previous section we definedW
k
i (t) being a current accumulated confidence of the

estimates of mobile sensori at cell k. Therefore we have the accumulated confidence of

all cells in the field asW(t) = [W
1
,W

2
, ...,W

C
]. Note that if cellk is not covered by any

sensor, the confidenceW
k
= 0.

Let ∆W(t) = Wd−W(t) be a difference between the current confidence and the desired

one (see Figure 6.8). We can write∆W(t) as a vector form:∆W(t) = [∆1
W(t),∆2

W(t), ...,∆C
W(t)].

Based on this feedback,∆W(t), we can design a distance controller in order to control the

size of the network to obtain a better performance of the confidence as shown in Algorithm

7.

In Algorithm (7),Kc is designed so thatdnew> 0. In order to do this we let

d− Kc

M

M

∑
k=1

∆k
W(t) > 0→ Kc <

d
1
M ∑M

k=1 ∆k
W(t)

.

Therefore we can selectKc = d
1
M ∑M

k=1∆k
W(t)+c

, herec is a positive constant. We can

see that Algorithm 7 can generate the appropriate distance for the input of the flocking

controller.
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Algorithm 7: Design of the Internode Distance Adjuster

if ∆k
W(t) > 0 then

dnew= d− Kc

M

M

∑
k=1

∆k
W(t)

M is the number of covered cells at timet which have a confidence less than the

desired one.

else

dnew= d

end
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Figure 6.9: Diagram of cooperative and active sensing basedon the potential controller

enhanced with attractive force via confidence feedback.

6.5.3 Potential Controller

In this section we design another controller called potential controller to control the move-

ment of mobile sensors in oder to increase the confidence level of the estimates. The

structure of cooperative and active sensing scheme is shownin Figure 6.9. The main idea

of this design is to create a virtual attractive force at the cells that have lower confidence

than the lower bound (see Figure 6.8). In order to implement this idea we design the po-

tential controller consisting of flocking controller with additional attractive force, so that it

can drive a mobile sensor to move closer to the cells that havelow confidence.
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Figure 6.10: Illustration of creating virtual attractive forces in the cells which have the

confidence level lower than the lower bound.

Design of Attractive Force

In this subsection, we introduce the attractive force term to the Potential Controller to

achieve similar goal as the Distance Controller. The attractive force will steer the mobile

sensors to the cells which have low confidence. In order to do this, first letqk
c be the location

of the cell that has confidence lower than the lower bound, ork∈ OL
i (t), hereOL

i (t) is the

subset of cells covered by mobile sensori at timet, which have confidence lower than the

lower bound.OL
i (t) ⊂ Oc

i (t), hereOc
i (t) is the set of cells covered by mobile sensori at

time t, and it is defined as

Oc
i (t) =

{

k∈ ϑO : ‖qk
c−qi‖ ≤ rs

i ,ϑO = {1,2, ...,k}
}

. (6.41)

For these cells we will create the virtual attractive force to attract the mobile sensor to

move closer to them in oder to get higher confidence of the estimates at these cells. This

idea is illustrated in Figure 6.10.

At each timet, the mobile sensori may have several cells which have confidence lower

than the desired one. In order to steer the mobile sensor to goto these low confidence cells,

the virtual attractive force are generated at these cells. If the cell has lower confidence the

bigger attractive force is generated. To express the details of the attractive force design,
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first let W
L
d be a lower bound of the desired confidence of the estimates of all cells in

the scalar field, andWL
d is a vector of 1×C dimension. Let∆L

W(t) = W
L
d −W(t) be the

difference between the current confidence and the lower bound (see Figure 6.11),∆L
W(t) =

[∆1
W(t),∆2

W(t), ...,∆C
W(t)]. Based on this feedback,∆L

W(t), we can design an attractive force

as shown in Algorithm 8.

Algorithm 8: Design of Attractive Force

if OL
i (t) 6= /0 or ∆k

W(t) > 0 then

f att
i = − ∑

k∈OL
i (t)

Catt
k φatt(‖qk

c−qi‖σ)natt
i,k

Catt
k = ca

∆k
W(t)√

1+(∆k
W(t))2

,∆k
W(t) ∈ ∆L

W(t), hereca is a positive constant.

else

f att
i = 0

end

In Algorithm 8, Catt
k = ca

∆k
W(t)√

1+(∆k
W(t))2

controls the amplitude of the attractive force.

Namely, if cellk has low confidence or∆k
W(t) is large, the the amplitude of the attractive

force is big in order to attract the mobile sensor to go to closer this cell.

The attractive force functionφatt(‖qk
c−qi‖σ) is designed as:

φatt(‖qk
c−qi‖σ) = ρh(

‖qk
c−qi‖σ

rs
α

)
‖qk

c−qi‖σ
√

1+‖qk
c−qi‖2

σ
,k∈ OL

i (t).

here,rs
α = ‖rs‖σ (rs is sensing range as defined before), and the bump functionρh(

‖qk
c−qi‖σ
rs
α

)

with h∈ (0,1) is defined as [23]

ρh(
‖qk

c−qi‖σ
rs

α
) =



























1,
‖qk

c−qi‖σ
rs
α

∈ [0,h)

0.5[1+cos(π(
‖qk

c−qi‖σ
rsα

−h

1−h ))],
‖qk

c−qi‖σ
rs
α

∈ [h,1]

0, otherwise.

(6.42)
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The vector along the line connectingqk
c (k∈ OL

i (t)) andqi is defined as:

natt
ik = (qk

c−qi)/
√

1+ ε‖qk
c−qi‖2,k∈ OL

i (t). (6.43)

here,ε is small positive constant.

The formation controller is used to control the network to form a quasi lattice formation,

and it is designed based on a pairwise attractive/repulsiveforce as discussed in previous

chapter. This formation controller [23] is restated as follows

f α
i = cα

1 ∑
j∈Ni(t)

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Ni(t)

ai j (q)(p j − pi). (6.44)

The leader tracking controller is used to control each mobile sensor to track the virtual

leader which generates the path for path planning purpose aspresented in the Path Planning

section (Section 6.4). This controller is presented as

f t
i = −ct

1(qi −qt)−ct
2(pi − pt) (6.45)

herect
1 andct

2 are positive constant, andqt andpt are position and velocity of the virtual

leader, respectively.

Finally, we propose the whole control algorithm for the cooperative and active sensing

including the attractive force term only as follows:

ui = f att
i + f α

i + f t
i

= ∑
k∈OL

i (t)

Catt
k φatt(‖qk

c−qi‖σ)natt
i,k

+cα
1 ∑

j∈Ni(t)

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Ni(t)

ai j (q)(p j − pi)

−ct
1(qi −qt)−ct

2(pi − pt) (6.46)

6.5.4 Quasi Uniformity of Confidence

Based on the attractive force design in the previous section, the confidence level can be

increased, however some cells may have too high confidence. This is unnecessary since
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Figure 6.11: Illustration of confidence feedback for quasi uniformity of the confidence.

The upper bound and lower bound are used to create a quasi uniform of the confidence.

this needs more measurements, and causes more energy consumption. Therefore, it is

desirable if we can maintain a bound of the confidence performance, or we call a quasi

uniform confidence (see Figure 6.11). Hence, we introduce a repulsive force term to the

Potential Controller in order to steer the mobile sensors tomove away from the cells which

have too high confidence. The structure of cooperative and active sensing scheme is shown

in Figure 6.12. The main idea of this design is to create a virtual attractive force at the

cells that have lower confidence than the lower bound as shownin the previous section,

and a repulsive force at the cells that have higher confidencethan the upper bound (see

Figure 6.11). In order to implement this idea we design the potential controller consisting

of flocking controller with additional attractive and repulsive forces, so that it can drive a

mobile sensor to move closer to the cells that have low confidence and move away from the

cells that have high confidence.

Let qk
c be the location of the cell that has confidence higher than theupper bound (see

Figure 6.11). For these cells we will create the virtual repulsive force to steer the mobile

sensors to move away. This idea is illustrated in Figure 6.13. The repulsive force is created

based on thef rep
i controller as shown in Algorithm 9.
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Figure 6.12: Diagram of cooperative and active sensing based on the potential controller

enhanced with attractive and repulsive forces via confidence feedback.
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Figure 6.13: Illustration of creating virtual repulsive forces in the cells which have the

confidence level higher than the upper bound.
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To express the details of the repulsive force design, first let W
H
d be a upper bound of

the desired confidence of the estimates of all cells in the scalar field, andWH
d is a vector of

1×C dimension. Let∆H
W(t) =W

H
d −W(t) be the difference between the current confidence

and the upper bound (see Figure 6.11),∆H
W(t) = [∆1

W(t),∆2
W(t), ...,∆C

W(t)]. Based on this

feedback,∆H
W(t), we can design a repulsive force as shown in Algorithm 9.

Algorithm 9: Design of Repulsive Force

if OH
i (t) 6= /0 or ∆k

W(t) < 0 then

f rep
i = ∑

k∈OH
i (t)

Crep
k φrep(‖qk

c−qi‖σ)nrep
i,k

Crep
k = cr

|∆k
W(t)|√

1+(∆k
W(t))2

,∆k
W(t) ∈ ∆H

W(t), herecr is a positive constance.

else

f rep
i = 0

end

In Algorithm 9,OH
i (t) is the subset of cells covered by mobile sensori at timet, which

have confidence higher than the upper bound. Obviously,OH
i (t) ⊂ Oc

i (t). Crep
k is used to

control the amplitude of the repulsive force. Namely, if cell k has high confidence, or∆k
W(t)

is large, the the amplitude of the repulsive force is big in order to push the mobile sensor to

move away from this cell further.

The repulsive force functionφrep(‖qk
c−qi‖σ) is designed as [23]:

φrep(‖qk
c−qi‖σ) = ρh(

‖qk
c−qi‖σ

rs
α

)(
‖qk

c−qi‖σ − rs
α

√

1+(‖qk
c−qi‖σ − rs

α)2
−1),k∈ OH

i (t).

The bump functionρh(
‖qk

c−qi‖σ
rs
α

) is defined as (6.42), but it is now applied for the high

confidence cells ork∈ OH
i (t). The vector along the line connectingqk

c (k∈ OH
i (t)) andqi

is defined as:

nrep
ik = (qk

c−qi)/
√

1+ ε‖qk
c−qi‖2,k∈ OH

i (t). (6.47)
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Finally, we propose the whole control algorithm for the cooperative and active sensing

including both attractive and repulsive force terms as follows:

ui = f rep
i + f att

i + f α
i + f t

i

= ∑
k∈OH

i (t)

Crep
k φrep(‖qk

c−qi‖σ)nrep
i,k

+ ∑
k∈OL

i (t)

Catt
k φatt(‖qk

c−qi‖σ)natt
i,k

+cα
1 ∑

j∈Ni(t)

φα(‖q j −qi‖σ)ni j +cα
2 ∑

j∈Ni(t)

ai j (q)(p j − pi)

−ct
1(qi −qt)−ct

2(pi − pt) (6.48)
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6.6 Simulation Results

In this section we test the Consensus Filters 1 and 2, then useour distributed sensor fusion

algorithm to build the map of the scalar field.

6.6.1 Tests of Consensus Filter 1 and 2

In this subsection we test the Consensus Filter 1 and 2.

The Consensus Filter 1 is tested for the case of a single cellk = 1. We randomly

generate a connected network of 10 nodes as shown in Figure 6.14(a). The cell is located

at the center of the network (the read square in Figure 6.14(a)). The ground truth of the

measurement at this location is 50. In this case the locationof the measurement is inside the

sensing range of all nodes, hence all nodes can make its own measurement to this location.

Each node makes a measurement as

m1
i = F1+n1

i .

hereF1 = 50, andn1
i is the Gaussian noise,N(0,V1

i ), with V1
i =

‖qi−q‖2+cv

(rs
i )

2 , cv = 0.01,

rs
1 = rs

2 = ...= rs
10= 1.6, andq= 1

10 ∑10
i=1qi . The initial condition for running the Consensus

Filter 1 isx1
i (l = 0) = m1

i .

The results of the convergence of the Consensus Filter 1 associated with two differ-

ent weights,Weight Design 1defined in Equation (6.15) andWeight Design 2defined in

Equation (6.21), respectively, are presented in Figure 6.14. In Figure 6.14(a) to compare

the speed of the convergence of (x1
i (l)−E1) among nodes we generate a connected net-

work with 10 nodes in which we let the node 4 have only 4 neighbors while other nodes

have more than or equal to 7 neighbors. Observing Figure 6.14(b, d) we can see that

(x1
i (l)−E1), i = 1,2, ...,10, converge to zero after 300 iterations forWeight Design 1and

5 iterations forWeight Design 2. Therefore, it is better to useWeight Design 2since it can

converge faster. We can also see that node 4 converges slowerthan the other nodes because

it has less neighbors. Additionally, to clearly see the convergence, we show the result of
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Figure 6.14: (a). 10 nodes estimate the value at cellk (pink square). (b, c) Result of

convergence of 10 nodes, and agreement of 10 nodes when applying Weight Design 1in

(6.15). (d, e) Result of convergence of 10 nodes, and agreement of 10nodes when applying

Weight Design 2in (6.21).

the agreement among nodes in Figure 6.14(c, e).

For testing the Consensus Filter 2, we let each sensor make its own measurement as

m1
i = F1+n1

i .

hereF1 = 50, andn1
i is the Gaussian noise,N(0,1). The initial condition for running the

Consensus Filter 2 isy1
i (l = 0) = m1

i .

The results of the convergence of the Consensus Filter 2 in (6.25) with the Metropolis

weight, (6.26), are presented in Figure 6.15. Namely, Figure 6.15(b) shows the convergence

of (y1
i (l)− 1

10 ∑10
i=1y1

i (0)), and we can see that they converge to zero after 40 iterations.

Figure 6.15(c) shows the agreement among 10 nodes, and we cansee that all nodes in

the network can agree on the same average value (1
10 ∑10

i=1y1
i (0)). We also see that node 1

which has less neighbors than others converges slower.
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agreement of 10 nodes when applying the Consensus Filter 2 in(6.25) with Metropolis

weight (6.26).
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Figure 6.16: (a) the original map of the scalar fieldF , (b) the built map of the scalar field

F using Algorithm 6.

6.6.2 Simulation Results of Cooperative Sensing

We model the environment (scalar fieldF) as multiple variate Gaussian distributions. We

setΘ = [30 10 8 20], and use four multiple variate Gaussian distributions (K = 4), and each

one is represented as:

φ1 =
1

√

det(C1)(2π)2
e

1
2(x−3)C−1

1 (y−2)T
,
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hereC1 =







2.25 0.2999

0.2999 2.25






, with c0

1 = 0.1333.

φ2 =
1

√

det(C2)(2π)2
e

1
2(x−1)C−1

2 (y−4.5)T
,

hereC2 =







1.25 0.1666

0.1666 1.25






, with c0

2 = c0
1.

φ3 =
1

√

det(C3)(2π)2
e

1
2(x+2)C−1

3 (y−3)T
,

hereC3 = C2, andc0
3 = c0

2.

φ4 =
1

√

det(C4)(2π)2
e

1
2(x−4)C−1

4 (y+4)T
,

hereC4 = C3, andc0
4 = c0

3.

The fieldF has a sizex×y = 12×12, and it is partitioned into 25×25= 625 cells. The

result of the built map of the scalar field is shown in Figure 6.16. The snapshots of multiple

sensor nodes forming a flock and building the map of the unknown scalar field are shown in

Figure 6.17. The errors between the built and original maps in one and three dimensions are

shown in Figure 6.18, 6.19, respectively. Three algorithms, Algorithm 1 with the weighted

average update protocol, Algorithm 1 with the normal average update protocol, and the

centralized fusion algorithm, are compared. We see that themap error in Algorithm 1

with the weighted average update protocol is similar to the one using the centralized fusion

algorithm, but slightly smaller than the one using Algorithm 1 with the normal average

update protocol. The confidence map which is built based on the summation of the weights

at each cell of the fieldF is shown in Figure 6.20.
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Figure 6.17: The snapshots of building the map of the scalar fieldF using Algorithm 6 and

flocking control algorithm (6.40).
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Figure 6.18: The error between the built and original maps for all cells in one dimension.

(a) for Algorithm 1 with the normal average update protocol;(b) for centralized fusion

algorithm; (c) for Algorithm 1 with the weighted average update protocol.
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Figure 6.19: The error between the built and original maps for all cells in three dimensions.

(a) for Algorithm 6 with the normal average update protocol;(b) for centralized fusion

algorithm; (c) for Algorithm 6 with the weighted average update protocol.
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Figure 6.20: The confidence at each cell of the scalar fieldF.
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6.6.3 Simulation Results of Cooperative Sensing and the Flocking Control with a

Minority of Informed Agents

In this subsection we use the proposed distributed sensor fusion Algorithm 6, and the pro-

posed flocking control algorithm with a minority of informedagents, Algorithm 3 in Chap-

ter 3, to build the map of a scalar field.

In this flocking control algorithm, only a few sensor nodes closest to the virtual leader

know its position and velocity. However, based on our algorithm, all mobile sensor nodes

can flock together and form a network of lattice formation. Our flocking control algorithm

allows the mobile sensor network to maintain the connectivity and reduce the tracking

overshoot.

To evaluate the tracking performance the center of mass (CoM) of informed agents

(sensors) is defined as










qin f = 1
n ∑n

i=1qin f
i

pin f = 1
n ∑n

i=1 pin f
i

(6.49)

To model the environment (scalar fieldF) four multiple variate Gaussian distributions

(K = 4) with Θ = [20 50 35 40], and each one is represented as:

φ1 =
1

√

det(C1)(2π)2
e

1
2(x−2)C−1

1 (y−2)T
,

hereC1 =







2.25 0.2999

0.2999 2.25






, with the correlation factorc0

1 = 0.1333.

φ2 =
1

√

det(C2)(2π)2
e

1
2(x−1)C−1

2 (y−.5)T
,

hereC2 =







1.25 0.1666

0.1666 1.25






, and the correlation factorc0

2 = c0
1.

φ3 =
1

√

det(C3)(2π)2
e

1
2(x−4.3)C−1

3 (y−3.5)T
,
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hereC3 = C2, and the correlation factorc0
3 = c0

2.

φ4 =
1

√

det(C4)(2π)2
e

1
2(x−3)C−1

4 (y+3)T
,

hereC4 = C3, and with the correlation factorc0
4 = c0

3.

The fieldF has a size of 11.1×10, and it is partitioned into into 483 cells. The result

of the built map of the scalar field is shown in Figure 6.24. Thesnapshots of multiple

sensor nodes forming a flock and building the map of the unknown scalar field are shown

in Figure 6.22. In this figure, we can see that only two mobile sensors (blue squares) have

information (position and velocity) of the virtual leader (qt , pt), but they can drag the whole

network to track the virtual leader while maintaining the network connectivity. The errors

between the built and original maps in one and three dimensions are shown in Figure 6.23

(a, b), respectively. The final confidence of the estimate at each cell of the fieldF is shown

in Figure 6.23 (c). The confidence map represents the accuracy of the estimate of the field.

The higher confidence, the better accuracy of the estimate. The cells near the border of the

field have measurements compared with the ones inside the field. Therefore, these border

cells have lower accuracy (see Figure 6.23 (c)) corresponding with more error (see Figure

6.23 (a, b)) than other cells.

Figure 6.25 shows the tracking error between the position ofthe virtual leader (qt)

and the average of the position of the two informed agents (mean(qin f )). We can see that

the tracking performance has a small off-set distance between the virtual leader and the

informed agents. At the sharp turning points of the path of the virtual leader, the tracking

performance has bigger error.
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Figure 6.22: Snapshots of multiple mobile sensors flocking together and building the map

of the scalar field. In these snapshots, only two mobile sensors (blue squares) have infor-

mation of the virtual leader. The white line is the trajectory of the center of of position of

two informed mobile sensors.

0
10

20
30

0

10

20

30
0

500

1000

1500

2000

XY

W
ei

gh
ts

0
10

20
30

0

10

20

30
-6

-4

-2

0

2

x 10
-5

XY

E
rr

or
 b

et
w

ee
n 

th
e 

tr
ue

 a
nd

 e
st

im
at

ed
 m

ap
s

0 100 200 300 400 500
-6

-5

-4

-3

-2

-1

0

1

2
x 10

-5

Number of Cells

E
rr

or
 b

et
w

ee
n 

th
e 

tr
ue

 a
nd

 e
st

im
at

ed
 m

ap
s

���� �����

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                   (b)                                                                                                     (c) 

Figure 6.23: (a)- The error between the built and true maps for all cells in one dimension;

(b)- The error between the built and true maps for all cells inthree dimensions; (c)- The

three dimensional confidence map.
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     (a)                                                                                                           (b)                                                                        

Figure 6.24: (a) The original map of the scalar fieldF; (b) The built map of the scalar field

F using Algorithm 1.
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Figure 6.25: Tracking error between the position of the virtual leader (qt) and the average

of the position of the two informed agents (mean(qin f )).
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6.6.4 Simulation Results of Active Sensing

In this subsection, we test our cooperative and active sensing algorithms and compare them

with the normal cooperative sensing algorithm in terms of the sensing performance.

As before we model the environment (scalar fieldF) as multiple variate Gaussian dis-

tributions. We setΘ = [20 50 35 40], and use four multiple variate Gaussian distributions

(K = 4), and each one is represented as:

φ1 =
1

√

det(C1)(2π)2
e

1
2(x−2)C−1

1 (y−2)T
,

hereC1 =







2.25 0.2999

0.2999 2.25






, with the correlation factorc0

1 = 0.1333.

φ2 =
1

√

det(C2)(2π)2
e

1
2(x−1)C−1

2 (y−.5)T
,

hereC2 =







1.25 0.1666

0.1666 1.25






, and the correlation factorc0

2 = c0
1.

φ3 =
1

√

det(C3)(2π)2
e

1
2(x−4.3)C−1

3 (y−3.5)T
,

hereC3 = C2, and the correlation factorc0
3 = c0

2.

φ4 =
1

√

det(C4)(2π)2
e

1
2(x−3)C−1

4 (y+3)T
,

hereC4 = C3, and with the correlation factorc0
4 = c0

3.

We set the lower bound of the confidence level is 0.5×105, and the higher bound of

the confidence level is 1.9×105.

The fieldF has a size of 10×9, and it is partitioned into 110 cells. The snapshots of

multiple sensor nodes forming a flock and building the map of the unknown scalar field

are shown in Figure 6.26. The errors between the built and original maps in one and three

dimensions are shown in Figure 6.27 (a, b), respectively. Figure 6.27 (a) indicates the map
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Figure 6.26: Snapshots of building the map of the scalar fieldF using Algorithm 6 and the

cooperative and active sensing algorithm (6.48).
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Figure 6.27: (a)- The error between the built and true maps for all cells in one dimen-

sion; (b)- The error between the built and true maps for all cells in three dimensions using

Algorithm 6 and the cooperative and active sensing algorithm (6.48).
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Figure 6.28: Confidence over the cells in 3 dimensions: (a) for active sensing with Poten-

tial Controller using attractive force only, Algorithm (6.46) ; (b) for active sensing with

Potential Controller using both attractive and repulsive,Algorithm (6.48).
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error corresponding to the index of the cell, while Figure 6.27 (b) indicates the map error

corresponding to the location of the cell.

The confidence maps in three dimensions of the active sensingalgorithm with the Po-

tential Controller are shown in Figure 6.28. This three dimensional confidence map in-

dicates the confidence of the estimate at each cell corresponding with its location in the

scalar field. We can see that the Potential Controller using both attractive and repulsive

forces (see Figure 6.28 (b)) performs better than that of using only the attractive force since

the confidence level is increased, and the quasi uniformity of the confidence performance

is achieved.

For more details, the final confidence of the estimate in one dimension at each cell

of the field F is also shown in Figure 6.29. In this figure we compared four methods

together. Namely, Figure 6.29 (a) shows the confidence of normal cooperative sensing,

where Algorithm 6 and the flocking control algorithm (6.40) are used. Figure 6.29 (b)

shows the confidence of active sensing with the Distance Controller, where Algorithm 6

and the flocking control algorithm with the distance controller in Algorithm 7 are used.

Figure 6.29 (c) shows the confidence of active sensing with the Potential Controller, where

Algorithm 6 and the cooperative and active sensing algorithm (6.46) are used. Figure 6.29

(d) shows the confidence of active sensing with Potential Controller, where Algorithm 6 and

the cooperative and active sensing algorithm (6.48) are used. From these results, we can

see that by using both attractive and repulsive force controllers we have better uniformity of

the confidence performance. This indicates that all the cells of the scalar field are observed

with a certain level of confidence.

To see how the mobile sensors adjust their movement in order to obtain better con-

fidence performance, we show the distance between the mobilesensor 1 and one of its

neighbors in Figure 6.30 (d). We see that this distance is changing over time, or the mo-

bile sensor tries to move closer to the low confidence cells and and stay away from the

high confidence cells. This creates the better uniformity ofthe confidence (see Figure 6.29
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Figure 6.29: Confidence over the cells in one dimension: (a) for normal cooperative sens-

ing; (b) for active sensing with Distance Controller; (c) for active sensing with Potential

Controller using only attractive force (6.46); (d) for active sensing with Potential Controller

using both attractive and repulsive forces (6.48).
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Figure 6.30: Distance between the mobile sensor 1 and its neighbor: (a) for normal coop-

erative sensing; (b) for active sensing with Distance Controller; (c) for active sensing with

Potential Controller using only attractive force (6.46); (d) for active sensing with Potential

Controller using both attractive and repulsive forces (6.48).
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(d)). To see the advantages of the active sensing algorithm we compare it to three other

algorithms, normal cooperative sensing, active sensing with the Distance Controller, and

active sensing with the Potential Controller integrating only attractive force. Based on this

comparison, we see that for the normal cooperative sensing the inter-nodes distance does

not change (see Figure 6.30 (a)) therefore the confidence is not good (Figure 6.29 (a)), and

some cells have very low confidence. For the active sensing with the Distance Controller

and the Potential Controller using only attractive force (Figure 6.30 (b, c)), the results are

better than that of the normal cooperative sensing algorithm, since the mobile sensors try to

adjust their movement to achieve maximal confidence at each cell. However, the uniformity

is not good as shown in (Figure 6.29 (b, c)).

To see the advantages of the active sensing we compare it withthe normal sensing in

term of mapping error. As shown in Figure 6.31 we see that the error between the original

map and the built map in one dimension over cells is small (seeFigure 6.31 (b)) when

applying the active sensing and big when applying the normalsensing (see Figure 6.31

(a)).

In Figure 6.32, we can see that the higher confidence corresponds to the smaller error,

and the lower confidence may lead to the bigger error. More specifically, at cells 10th,

92th and 100th the confidences are smallest (see Figure 6.32 (a)) therefore at these cells the

errors between the original map and the built map are biggest(see Figure 6.32 (b)).

To see the effectiveness of the quasi uniformity of the confidence, we collect the total

number of measurements at each cell as shown in Figure 6.33. We can see that for the co-

operative and active sensing algorithm using the PotentialController with attractive force

only, some cells have very high number of measurements. Thisis unnecessary because it

may cause more power consumption to estimate the value at these cells. For the cooper-

ative and active sensing algorithm using the Potential Controller with both attractive and

repulsive forces, we can reduce the number of measurements at these cells corresponding

to the one using attractive force only.
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Figure 6.31: Error between the original map and the built mapin one dimension over cells:

(a) for the normal sensing; (b) for the active sensing.
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Figure 6.32: (a) Confidence over cells; (b) Error between theoriginal map and the built

map in one dimension over cells.
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Figure 6.33: (a) For Potential Controller with attractive force only; (b) For Potential Con-

troller with both attractive and repulsive force.
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6.7 Summary

This chapter presented cooperative and active sensing algorithms for mobile sensor net-

works to build the map of an unknown scalar field. The proposeddistributed sensor fusion

algorithm consists of two different distributed consensusfilters which can find an agree-

ment on the estimates and an agreement on the confidences among sensor nodes. Each

sensor node cooperates with neighboring sensors to estimate the value of the field at each

cell. The final estimates of the values of the scalar field are updated on-line based on the

weighted average protocol. For the active sensing, the mobile sensors can automatically

adjust their movement to achieve quasi uniform confidence. Experimental results are col-

lected to demonstrate the proposed algorithms.

In our measurement or observation model defined in Equation (6.3) we model the vari-

ance of noise based on the normalization of the distance between the location of the sensor

and the measurement location (cell location). To avoid the varianceVk
i (t) to be equal to

zero when the distance‖qi(t)−qk
c‖ is equal to zero, we introduced a small constantcv.

However, there are other possibilities to model the uncertainty of observation which should

depend on what kind of sensing device is used. Additionally,we can see that the confi-

dence of the estimate as defined in Equation (6.37) is based onthe accumulated weight,

or W
k
i (t) ∈ [0 ∞). Therefore, it could be desirable if other measure of confidence can be

explored to ensure that the confidence is normalized betweenzero and one.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This dissertation develops cooperative control, learningand sensing algorithms in a dis-

tributed fashion for MSNs to realize coordinated motion control, intelligent learning and

sensing situational awareness.

For single target tracking, theSingle-CoMandMulti-CoM flocking control algorithms

are proposed to make the CoM of the sensor network converge tothe target. This enables

the mobile sensors to track and observe the target more effectively while maintaining their

formation in the obstacle space. The comparison among threeflocking control algorithms

(No-CoM, Single-CoMandMulti-CoM) shows that the tracking performance in the flock-

ing control withSingle-CoMandMulti-CoM is better than that in the flocking control with

No-CoM.

To deal with the situation where only very few agents have theinformation of the target,

the decentralized flocking control algorithm which utilizes a minority of informed agents is

proposed to lead the whole network to track the target while maintaining the connectivity.

To deal with changing environments the adaptive flocking control algorithm is proposed

in which each agent can cooperatively learn the network’s parameters in a decentralized

fashion to change the size of network in order to maintain connectivity, tracking perfor-

mance and similar formation when passing through a narrow space among obstacles. To

see the benefit of the adaptive flocking algorithm we comparedit with the regular flocking

control algorithm, and we found that the connectivity, formation and tracking performance

in the adaptive flocking control algorithm are better than those in the regular flocking con-
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trol algorithm.

For multiple dynamic target tracking, the SGGP algorithm isproposed to solve the

problem of splitting/merging the sensor agents from the network. Also, to demonstrate the

benefit of this algorithm we compare it with the RS algorithm,and the results show that the

SGGP algorithm outperforms the RS algorithm.

In noisy environments, a flocking control algorithm is proposed to coordinate the activi-

ties of multiple agents through noisy measurements. Based on our algorithm, all agents can

form a network and maintain connectivity. We show that even with noisy measurements

the flocks can achieve cohesion and follow the moving target.The stability and scalability

of our algorithm are also investigated.

To create adaptive and intelligent MSNs we propose a hybrid system that integrates re-

inforcement learning and flocking control. Two problems in multi-robot concurrent learn-

ing of cooperative behaviors are studied. The first problem is how to generate efficient

combination of high level behaviors (discrete states and actions) and low level behaviors

(continuous states and actions) for multi-robot cooperation; and the second one is how to

conduct concurrent learning in a distributed fashion. As a result, the proposed hybrid sys-

tem can allow MSNs to learn avoiding predators while maintaining network topology and

connectivity. The stability and scalability of the proposed system are given.

Additionally, we propose a novel method for multiple mobilesensor nodes to build a

map of a scalar field through noisy measurements. Our method consists of three parts.

First, we develop a distributed sensor fusion algorithm integrating two different distributed

consensus filters to achieve cooperative sensing among sensor nodes. Second, we use the

distributed flocking control algorithm to drive the center of the mobile sensor formation

to track the desired paths generated. Third, we build a path planning strategy to obtain a

complete coverage of the field. We also extended our cooperative sensing to active sensing

in which the mobile sensors have the ability to adjust their movements to adapt to the

environments in order to improve the confidence of the estimates.
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Our work lays the foundation for developing intelligent motion control and situational

awareness for MSNs which can be used in many applications.

7.2 Future work

There are several potential directions that can extend the work in this dissertation.

First, we can extend our cooperative and active sensing through multi-agent learning.

We have realized the cooperative and active sensing where each mobile sensor can auto-

matically adjust its relative location through the confidence feedback. However, it is better

if each mobile sensor can learn the full sensor network configuration so that better sensing

performance can be achieved. More specifically, each mobilesensor has to learn (i) how to

find the optimal configuration of MSNs, and (ii) how to make decisions for next actions in

order to maximize information gain and obtain the uniform confidence of estimates. In our

cooperative sensing algorithm in Chapter 6, we assume that the field of view (FoV) of each

agent is 360 degree. However it may not be valid since many sensors have limited FoV.

One example of the coverage for multiple mobile sensors withlimited FoV is shown in Fig-

ure 7.1. Therefore we can extend our cooperative sensing to the scenario of limited FoV.

Through the reinforcement learning, at each moment each sensor can select the right action

in order to obtain maximum coverage and the certain confidentlevel of the estimation.

Second, we can implement our cooperative and active sensingalgorithms on real mo-

bile sensor networks. We can use our new developed platformsof mobile robots as shown

in Figure 7.2. These mobile robots are WiFi enabled, have Fit-PC2 with an CPU: Intel

Atom Z530, 1.6Ghz, LAN: Gigabit Ethernet, WLAN: 802.11g, IRreceiver. These robots

are also equipped with a variety of sensors including laser range finder URG-Hokuyo [138]

with 240 degree of scanning range, fish-eyes camera Q24 [139]with 360 degree of viewing

range, and webcam. In addition, more sensors such as temperature sensor, sonar, ultrasonic

sensor and magnetic sensor can be readily added to the robot.We has already successfully

developed a software of fully autonomous robot localization and object tracking based on
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Figure 7.1: Illustration of coverage with limited sensing range.
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Figure 7.2: A mobile sensor network test bed.

the laser sensor and fish-eye Q24. This mobile sensing platform is an ideal experimental

setup for test and evaluation of the cooperative and active sensing associated with dis-

tributed learning and coordination control algorithms forMSNs.
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Abstract

Scope and Method of Study:

Mobile sensor networks (MSNs) have great potential in many applications including en-
vironment exploring and monitoring; search and rescue; cooperative detection of toxic
chemicals, etc. Motivated by the broad and important applications of MSNs and inspired
by the cooperative ability and the intelligence of fish schools and bird flocks, this disserta-
tion develops cooperative control, learning and sensing algorithms in a distributed fashion
for MSNs to realize coordinated motion control and intelligent situational awareness.

Findings and Conclusions:

The proposed algorithms can allow MSNs to track a moving target efficiently in cluttered
environments and even when only a very small subset of the sensor nodes know the infor-
mation of the target; adjust their size (shrink/recover) inorder to adapt to complex environ-
ments while maintaining the network connectivity and topology; form a lattice structure
and maintain the cohesion even when the measurements are corrupted by noise; track mul-
tiple moving targets simultaneously and efficiently in a dynamic fashion; learn to evade the
enemy (predators) in a distributed fashion while maintaining the network connectivity and
topology; estimate and build the map of a scalar field. We conducted several experiments
using both simulation and real mobile robots to show the effectiveness of the proposed al-
gorithms. We also extended our framework to cooperative andactive sensing in which the
mobile sensors have the ability to adjust their movements toadapt to the environments in
order to improve the sensing performance in a distributed fashion.
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