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CHAPTER 1

INTRODUCTION

In this chapter, we first present the motivation of our wohlert present the challenges, the
contributions and the current state of the art of the codperaontrol, learning and sensing

in MSNs.

1.1 Motivation

Mobile sensor networks (MSNs) [3], one type of sensor neta/¢d, 5, 6, 7], have been
studied by many researchers in recent years. A typical mgkihsor is a mobile robot with
various sensors such as camera, sonar or laser for sensintpaigation. Mobile sensor
networks have several advantages over stationary senwaorike, such as the adaptation
to environmental changes and reconfigurability for betéeisgng performance. Therefore
mobile sensor networks can be applied in many applicatiocisiding cooperative detec-
tion of toxic chemicals in contaminated environments [818];, environment exploring,
monitoring and coverage [11, 12, 13]; performing searchrasdue operation after disas-
ters [14, 15]; target tracking [16, 17, 18] and protectioeoflangered species [19].

A main issue for multiple mobile sensors move together i$ tinase sensors have to
avoid collision among them, which requires the use of caafper control methods [20,
21, 22, 23, 24]. One of these methods is flocking control [28f know that flocking
or schooling is a phenomenon that a number of mobile agente tegether and interact
with each other while ensuring no collision, velocity maig)) and flock centering [25].
In the nature, schools of fish (see Figuré&)] birds, ants, and bees, etc. demonstrate the

phenomenon of flocking [26]. The problem of flocking has beeied for many years.
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Figure 1.1: (a) Schooling of fish. (b) A predator and a schddiish (source: www.

inmagine.com).

It has attracted many researchers in physics [27, 28], mathes [29], biology [30], and

especially in control science in recent years [31, 32, 3332335, 36, 37, 38, 39, 40].
There are several interesting features established byttwkof fish or flock of birds.

These features can inspire us to design cooperative cple@ohing and sensing algorithms

for MSNs.

e Fish school and bird flock can track a target (source of foffatjently while avoid-
ing obstacles. This inspires us to design a cooperativeaoalgorithm that can

allow mobile sensors to track a target better in clutteradrenments.

e Each individual fish or bird communicates/interacts wismieighbors within its lim-
ited sensing range in order to move in the same directionsaseighbors, remain
close to its neighbor, and avoid collision with its neighbf@5]. Based on only these
local communications/interactions, the fish school or fiodk can still achieve a
global goal. For example, in some cases only some individuae the knowledge
about the location of a food source and migration route, thetfish school or bird
flock can still find the food source and track the migratiortecefficiently [41, 42].
Inspired by this natural ability we would like to design a pecative control algo-

rithm that can allow mobile sensors to track a target whey amery small subset of



them know the information of the target while maintaining tretwork connectivity.

Fish school and bird flock also have ability to change theie sif the formation in
order to adapt to the environments. This motivates us taydesn adaptive control
algorithm for an MSN that can automatically adjust its seterink/recover) in order
to adapt to the complex environments while maintaining teevork connectivity

and similar topology.

Fish school and bird flock can track multiple food sourcemyéts) simultaneously.
This ability encourages us to design a splitting/mergiggathm that can allow an
MSN to track multiple moving targets simultaneously andcedfitly in a dynamic

fashion.

Each individual fish or bird may not sense the position andaig} of its neighbors
accurately, but it can still move with its neighbors and neiimthe cohesion with
them. This feature inspires us to design flocking controbatjms that can allow
mobile sensors to work in noisy environments while maintejrthe cohesion to the

network.

Fish schooling and bird flocking together can help the irdiiai to avoid predators
because many moving individuals create a sensory overtodté predator’s visual
channel [43, 44, 45] (see Figure 1.1b). This motivates usegigth a cooperative
learning algorithm that can allow an MSN to learn to avoidehemy (predator) in a

distributed fashion while maintaining the network connatst and similar topology.

Finally, each individual fish or bird only interacts locallyut as a whole the fish
school or bird flock can agree on the same velocity (velocayaming ability) through
distributed consensus. Understanding this feature cgnusallesign cooperative and
active sensing algorithms for an MSN which can allow eaclsgeto find an agree-

ment among observations of itself and its neighbors by iegadonsensus.



1.2 Challenges

Development of cooperative control, learning and sensiggraghms in a distributed fash-
ion for MSNss is very challenging. These algorithms have t@édormed at each sensor
node using only local information, while as a whole they bxtdollective intelligence and
achieve a global goal. In a resource-constrained multifaggstem, the communication
range and sensing range of each agent are small comparedgiaé¢hof the environments.
Hence, agents cannot accomplish the mission without dadlekign of cooperative con-
trol, learning and sensing algorithms. Here are severdlesiges in designing cooperative

control, learning and sensing algorithms for MSNs.

e Cooperative Control in MSNs:

First, designing flocking control algorithms which maimtéihe target tracking per-
formance in cluttered environments is a challenging taskhése environments, the
agents usually get stuck behind the obstacles and sometanesot follow the target

[23], [17], [34], [35], [46], therefore causing poor traoki performance.

Second, designing a distributed flocking control algorithirich can still perform
well in terms of better tracking performance and connetstimaintenance when
only few agents have information of the target is a difficattk. Flocking control al-
gorithms [23] can allow agents to move together withoutismlh and track a target.
However, they are designed under the assumption that ailtsapave the informa-
tion of the target. Set al. [34, 35, 46] relaxed this assumption, however the network

connectivity is not maintained.

Third, designing an adaptive flocking control algorithmttten adapt to the complex
environments, for example passing through a narrow spaca@mbstacles, while
maintaining connectivity, tracking performance and samfbrmation is a challeng-
ing task. Existing works [47, 48] do not consider contrajlihe size of the network,

hence the connectivity and topology are not maintained.



Fourth, tracking multiple targets simultaneously in a dw@fashion in a MSN is
difficult, since this requires that some sensors should §olim the existing for-
mation(s) to track new targets while ensuring the leastidisince to other sensors.
This raises the question of which sensors should split fleerekisting formation and
how they should split. In addition, when some targets disapghe sensors which
are tracking these targets should rejoin (merge with) thetiey groups that are still

tracking targets.

Fifth, designing distributed flocking control algorithmsr fMSNs which can still
perform well when the measurements are corrupted by noiserischallenging.
Existing works [37, 38, 23, 34, 35, 46] do not consider th&iesin their flocking

control algorithms.

Cooperative Learning in MSNs:

Designing an intelligent MSN which can provide ability taata to avoid enemy
(predator) while maintaining the network topology and aextivity is difficult, since
this is a distributed decision making problem where eaclhviddal has a number
of options (safe places) to choose from when the predatgrsaap Often in these
decisions there is a benefit for consensus, where all indisichoose the same safe
place. However, the existing consensus methods [40, 4515&2, 53, 54, 55, 56]
require a connected network in which all robots can comnaiaiwith each other.
This may not be valid in real environments because some sahaiy not connect
to the network during the escape. In that case the conselgusttams will fail.
Therefore, there is a need to reach consensus even wherbtite cannot connect to

the network at sometimes.

Cooperative Sensing in MSNs:

Designing a distributed sensor fusion algorithm for MSNghvéin emphasis on the

task of environment estimation and mapping is an open pnofsdénce it requires a



combination of cooperative sensing, cooperative motiartroy and complete cov-
erage path planning while using only local information. $fixig works in the area
of cooperative sensing using MSNs [57, 58, 59, 60, 61, 111 8Pfocus on target(s)
tracking, environment exploring, sampling, modeling, @ogerage. The problem
of environmental estimation and mapping based on multiageoperative and dis-

tributed sensing is still an open research.

1.3 Contributions

This work contributes to the research of MSNs by developoaperative control, learning
and sensing in a distributed fashion to realize coordinatetion control and intelligent

situational awareness. Here are the main contributionsiofvork:

e Cooperative Control:

We propose a novel approach to the problem of flocking cowfral MSN to track
and observe a moving target. Flocking algorithms that cairsthe center of mass
of positions and velocities of all mobile sensors in eactugr(single-CoM) or the
center of mass of position and velocity of each sensor ameitghbors (Multi-CoM)
are developed. The main benefit of both algorithms is to mhkecenter of mass
(CoM) of each group track the target in the obstacle spacé mhakes the mobile

sensors surround the target closely.

We study the flocking control in the case of a small subset foirimed agents. In
nature, only few agents in a group have the information otainget, such as knowl-
edge about the location of a food source, or the migratioteradowever, they can
still flock together in a group based on local informationsdimed by this natural
phenomenon, we propose a flocking control algorithm to doatd the motion of
multiple agents. Based on our algorithm, all agents can fametwork, maintain

connectivity and track the target even only very few of theraw the information of



the target.

To deal with changing environments, for example in the casenthe mobile sensor
networks have to pass through a narrow space among obstaelpsopose an adap-
tive flocking control algorithm in which each agent (sensiam cooperatively learn
the network’s parameters to decide the size of network incemtealized fashion so

that the connectivity, formation and tracking performaoar be improved.

In the scenario of multiple dynamic target tracking, to sdllee problem of sensor

splitting/merging, a seed growing graph partition (SGABpathm is proposed.

In noisy environments, a flocking control algorithm is prepd to coordinate the
activities of multiple agents through noisy measuremeBtssed on our algorithm,
all agents can form a network and maintain connectivitysTsiof great advantage
for agents to exchange information. We show that even witkynmeasurements
the flocks can achieve cohesion and follow the moving tardéte stability and

scalability of our algorithm are also investigated.

Cooperative Learning:

We propose a hybrid system that integrates reinforcemantileg and flocking con-
trol in order to create adaptive and intelligent multi-rokgstems. We study two
problems in multi-robot concurrent learning of coopematbehaviors: (1) how to
generate efficient combination of high level behaviorsddite states and actions)
and low level behaviors (continuous states and actiongntdti-robot cooperation;
(2) how to conduct concurrent learning in a distributed fash To evaluate our
theoretical framework, we apply it to enable multi-robotwarks to learn avoiding
predators while maintaining network topology and conmwgti We also investigate

the stability and scalability of our algorithm.



e Cooperative Sensing:

We propose a novel method for multiple mobile sensor noddsitid a map of a
scalar field through noisy measurements. Our method censishree parts. First,
we develop a distributed sensor fusion algorithm integggtivo different distributed
consensus filters to achieve cooperative sensing amongrseodes. Second, we
use the distributed flocking control algorithm to drive tleater of the mobile sensor
formation to track the desired paths. Third, we build a pddnping strategy to
obtain a complete coverage of the field. Additionally, weeext our cooperative

sensing method to active sensing in order to improve tharsgperformance.

1.4 Literature Review

In this section, we review existing literature related towork, which includes cooperative

control, multi-agent learning, and cooperative sensing.

1.4.1 Cooperative Control

Cooperative control in multi-robot systems has been r@ogigrowing attention in re-
cent years [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], andpjptications include multi-
target tracking [63, 64], multi-vehicle formation cont[6b, 66, 67, 68], optimization based
control [69, 70], cooperative control with limited commaations [71, 72], graph-rigidity
based control [74, 75, 76], and data gathering using mobiears [73]. In this subsection
we review the existing works in the area of cooperative @mthich includes flocking
control, adaptive flocking control, multiple targets tramkin both stationary sensor net-

works and mobile sensor networks.

Flocking Control

Flocking control has been studied by many researchers émtgears [77, 78, 64, 79, 80].

Wang and Gu [40] presented a survey of recent research achénts of robot flocking.



Their paper gave an overview of the related basic knowledggaph theory, potential
function, network communication and system stability ggigl In [23], a theoretical
framework for design and analysis of distributed flockingoaithms was proposed. These
algorithms solved the flocking control in the absence anderee of obstacles. The static
and dynamic virtual leaders were used as a navigationabexdfor all mobile agents.
An extension of the flocking control algorithms in [23], floclg of agents with a virtual
leader in the case of a minority of informed agents and in #se ©f varying velocity of
the virtual leader, was presented in [34, 35, 46]. Shi andgNa6] investigated the dy-
namic properties of mobile agents for the case where the sfdhe virtual leader is time
varying and the topology of the neighboring relations bemvagents is dynamic was pro-
posed. Andersost al. [31] demonstrated a new technique for generating the rainsd
group animations of flocks in which users can impose comgg@n agents’ positions at
any time in the animation, or control the entire group to ntieetshape constraints. Tanner
et al. [37, 38] studied the stability properties of a system oftipié mobile agents with
double integrator dynamics in the case of fixed and dynanmiologies. In addition, the
experimental implementation of flocking algorithms proga [37] and [38] on wheeled
mobile robots was presented in [39]. Gervasi and PrencipesiBidied the distributed co-
ordination and control of a set of asynchronous, anonymoesyoryless mobile vehicles
in the case of no communication among the vehicles. In pdatictheir paper analyzed the
problem of flocking in a certain pattern and following a desited leader vehicle, while
maintaining the pattern. Olfati-Saber [17] developed arithisted flocking algorithm for
mobile sensor networks to track a moving target. In his papeextension of a distributed
Kalman filtering algorithm was used for the sensors to egérnize target’s position. In
[32], a scalable multi-vehicle platform was developed tmdastrate a cooperative control
algorithm in mobile sensor networks. Their flocking aldgomitwas implemented with five

TXT-1 monster truck robots.



Adaptive Flocking Control

Adaptive flocking control, an extension of flocking contiehs also gained attention from
researchers in recent years. Folino and Spezzano [81]nteesa parallel clustering algo-
rithm based on the use of swarm intelligence techniquesr algorithm is a combination
of a smart exploratory strategy based on a flock of birds andrsity-based cluster al-
gorithm to discover clusters of arbitrary shape and sizepatial data. Yanget al. [47]
proposed an adaptive flocking control algorithm to avoidisiolh among robots them-
selves and between robots and obstacles. However, theirtalg did not consider the
problem of formation, connectivity and tracking perforrnan Lee and Chong [48] pro-
posed a decentralized approach for adaptive flocking ofrewaf mobile robots to nav-
igate autonomously in complex environments populated wiitstacles. The problem of
splitting/merging mobile robots in the network accordinghie environment conditions is
addressed in their paper. In their work, the problem of adinig the size of the network

was not considered.

Multiple Targets Tracking

Multiple targets tracking in mobile sensor networks hagred adequate attention in the
last decade. Junet al. [82] introduced a region-based approach to address th#gmno
of multiple targets tracking using a network of communiegtrobots and stationary sen-
sors. A coarse deployment controller distributes robotssacregions using a topological
map, and a target-following controller maximizes the numidfetracked targets within a
region. Chunget al. [57] proposed a gradient search based decentralizedtalgdor the
problem of active sensing using multiple cooperative senedes for distributed sensing
to estimate the state of dynamic targets. Tang and OzguB¢in@estigated the motion
planning for a limited number of mobile sensor agents in afrenment with multiple dy-
namic targets. The motion planning problem is formulatedrasptimization problem to

minimize the average time duration between two consecotigervations of each target.
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Jung and Sukhatme [63] proposed an algorithm based onnigeide densities of robots
and targets as properties of the environment in which theyearbedded to improve the
target tracking performance. Kamadhal. [3] studied the problem of motion planning and
sensor assignment in a mobile sensor network for trackingpteitargets. The triangula-
tion based tracking where two sensors merge their measuatsrmeestimate the position
of a target is considered. Kolling and Carpin [84] presetédstributed control algorithm
for multiple targets surveillance by multiple robots. Thaigorithm utilizes information
from sensors and communication to predict the minimum tigfere a robot loses a target.
Sensor network partitioning, a fundamental techniquedossr networks dealing with
multiple targets tracking, has been studied by many resessc The methods for net-
work partitioning can be divided into centralized and dexadized. For centralized graph
partition, there are several algorithms such as the decsitipo scheme to partition a
given graph into compactly connected two terminal subgsd@h], a graph clustering
method based on the minimum cuts within a graph [86] , a newlgcal adaptation of
the k-medoids algorithm [87] and the Girvan-Newman metl&&].[For distributed graph
partition, Derbel and Mosbah [89] proposed a linear timérithsted algorithm for decom-
posing a graph into a disjointed set of clusters. In [90, @debelset al. presented a
neighborhood-based strategy, a border switch strategyaamxchange target strategy for
the partitioning of large sets of agents into multiple greuperbelet al. [92] proposed ef-
ficient deterministic and randomized distributed alganigifor decomposing a graph into a
disjointed set of connected clusters with small radius aadmter-cluster edges. Bettstetter
[93] gave equations for the cluster density and clusterraséiBemogeneously distributed
nodes running the distributed mobile adaptive clusteriggréghm. Virrankoski and Sav-
vides [94] proposed a topology adaptive spatial cluste(iASC) for sensor networks.
Durresi and Paruchuri [95] presented an adaptive clugtgnotocol for sensor network.
This approach is based on the covering problem that aimsvatiog an area with mini-

mum possible circular disk assuming ideal conditions. Mahkd Singh [96] presented a
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distributed algorithm called ELink based on a quad-tre@d®aosition and a level by level
expansion using sentinel sets. Belghetral. [97] proposed a novel distributed clustering
algorithm for ah-hoc networks. Their algorithm is based @yachronized and layered

process.

Summary of Cooperative Control

In general, for cooperative control based on flocking cdntn@st works focus on the con-
figuration and topology of flocks. For single target trackibaged on the flocking control,
the literatures solve the problem of estimating the tasgstiate by using the distributed
Kalman filter, or solve the problem of target tracking whileanority of agents in the net-
work have the knowledge of the target. Their algorithms wodtl in free space, but in
the obstacle space they have some limitations such as lzkéhiggoerformance, low speed
and connectivity loss. To our best knowledge, for adaptaekihg control most of existing
works focused on the coordination, formation and splitimgrging problems in both fixed
and switching topologies. For multiple targets trackidgéleviewed literatures solve the
tracking problem in both stationary and mobile sensor nekenvithout paying attention to
the network formation such aslattice. The problem of graph partitioning focuses on both
centralized and decentralized methods, and most of theongazse the network based on
the density of node’s distribution. This means that the sfaibgraphs after decomposing
are not predetermined. There are several open problemspecative control based on

flocking control such as:

e How to utilize the a minority of informed agents to lead theoléhnetwork to track

the target while maintaining the connectivity.

e How to control the size of the network in a decentralized atapéive fashion in com-
plex or changing environment while maintaining connetyjtracking performance

and similar formation.
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e How to partition the MSN to track multiple moving target waihinimizing the total

energy consumption and time consumption.

e How to design a flocking control algorithm to maintain the esilon among agents

while the measurements are corrupted by noise.

1.4.2 Cooperative Learning in MSNs

Through cooperative learning agents in a MSN attempt via theeractions to jointly
solve tasks or to maximize utility [98]. Cooperative leaugnihas been studied by many
researchers in recent years. The overview of cooperatwailey including reinforcement
learning, evolutionary computation, game theory, comghstems, agent modeling, and
robotics can be found in [98, 99]. Reinforcement learninge of the most powerful ma-
chine learning techniques, has been developed for mdtitreystems that allow robots
to learn cooperation [100, 101, 99, 102]. Reinforcementieg techniques for solving
cooperative problems in teams of homogeneous robots suttte ggoblem of maintain-
ing a formation of mobile robots are studied in [103]. Co@pee reinforcement learning
associating VQQL (Vector Quantization to Q Learning) iseleped and applied for multi-
robot observation of multiple moving targets [104, 105, ]10h their work, they solved
two problems. The first one focuses on defining the reinfoesgmsignal for each robot
in a cooperative team to achieve a global goal. The secondsomerking with large do-
mains, where the amount of data can be large and differergdh moment of a learning
step. As a result, their work achieved successful cooperahaviours, but the learned
behaviors are still discrete, and the learning space Idastije. Other work on cooperative
multi-robot reinforcement learning [102] tried to redube tearning space by using a hy-
brid state space that integrates a neural perception maddl@ progressive rescheduling
algorithm. Their algorithm can on-line execute and leamoulygh experience to adapt to
environmental uncertainties and enhance performance.el#awtheir work still relies on

discrete and finite state/action spaces.
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To our best knowledge most of existing works in the area opeoative reinforcement
learning assumes discrete and finite state/action spdeaefdre, it is difficult to directly
apply reinforcement learning to most real world applicasiohat inherently involve with
continuous and infinite space. Furthermore, even if thestzn be discretized, the learned
behaviors are still discrete. In addition, the switchinglisftrete behaviors usually causes
the control of the robots to become non-smooth, which is sinalele in most applications.
The open question isan we combine reinforcement learning and flocking contrareate
a general framework for intelligent robot systems that ciava (1) to generate efficient
combination of high level behaviors (discrete states arttbas) and low level behaviors
(continuous states and actions) for multi-robot coopenati(2) and to conduct concurrent

learning in a distributed fashion?

1.4.3 Cooperative Sensing in MSNs

Cooperative sensing in MSNs has recently attracted resefara control engineering [11,
12, 13], and it can be utilized in target tracking, and enwinental mapping, monitoring,
exploration and coverage.

Cooperative sensing networks have been developed [106,3dpr environmental
sampling and exploring. In [106], underwater vehicles aployed to measure tempera-
ture, currents, and other distributed oceanographic Egi&e vehicles communicate via
an acoustic local area network and coordinate their motioresponse to local sensing
information and to evolving environments. This mobile sensetwork has the ability to
sample the environment adaptively in space and time. Bytiigerg evolving temperature
and current gradients with higher accuracy and resoluhan turrent static sensors, this
technology could lead to the development and validatiomgiroved oceanographic mod-
els. In [60], a class of underwater vehicles are used to wlstaampling coverage over a
large area. A cooperative control method is proposed torebwehicles to generate pat-

terns on closed smooth curves. To further improve the ca@bpersensing performance,
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both the cooperative motion control and the cooperativesiagrare integrated based on
cooperative Kalman filter [13] to control the shape of thessemode formation in order to
minimize error in the estimates.

Other significant works in cooperative sensing developorgehvironmental estima-
tion, coverage and modeling can be found in [59, 11, 12, 6@2pperative sensing based
on the gradient descent algorithms to obtain the optimadiage is developed in [59]. For
dynamic environment coverage, a control strategy baseth@uliscrete Kalman filter is
developed [11]. The approach relies on using the Kalman fitteestimate the field and
on the filter's prediction step to plan the vehicles’ next més maximize the quality of
the field estimate. In [62], an optimal filtering approach &o@vfusing local sensor data
into a global model of the environment is developed. Thegrapch is based on the use of
average consensus filters to distributedly fuse the semsdaythrough the communication
network. Along with the consensus filters, the control lavesdeveloped for mobile sen-
sors to move to maximize their sensory information relatoveurrent uncertainties in the
model.

Additionally, cooperative sensing for estimating the estat dynamic targets can be
found in [57, 58]. The localization and tracking tasks of dgmc targets are addressed in
[58]. In their work, the mobility of sensing agents is utdiz to improve this quality of
sensing. However, their gradient controller for coopgeasiensing is designed in central-
ized way. The extension to make the control algorithm in [@8}ributedly is proposed
in [61], and both formation control and cooperative sensirgjintegrated to improve the
sensing performance.

Overall, all of the existing works in the area of cooperaseasing using MSNs fo-
cus on target(s) tracking, environment exploring, sangplmodeling, and coverag&he
problem of environmental estimation and mapping based diti-agent cooperative and

distributed sensing is still open research.

15



1.5 Organization of This Dissertation

The rest of this dissertation is organized as follows. Ingéa2 we first present the poten-
tial field based moving target tracking algorithm for a sengiobile sensor and then extend
it to multiple mobile sensors coordination based on flocldngtrol. Chapter 3 describes
the flocking control algorithm with a minority of informed awgts; the adaptive flocking
control algorithm for single target tracking and obseryiagd the algorithm for dynamic
multiple targets tracking and observing, respectivelyafithr 4 presents the flocking con-
trol algorithms in noisy environments. Chapter 5 presentylarid system of flocking
control and reinforcement learning for cooperative predavoidance. Chapter 6 presents
the cooperative sensing algorithm based on distributedasmus filters and flocking con-
trol, then extends to cooperative and active sensing akgoriConclusions and future work

are given in Chapter 7. The flowchart of the organization efdissertation is illustrated in

Figure 1.2.
Chapter 1
Introduction
Chapter 2
Flocking Control
v v v v
Chapter 3 Chapter 4
Cooperative Control Cooperative Control Chapter 5 Chapter 6
Based Flocking in Based Flocking in c tive L . Cooperative and
Noise-Free Noisy Environments ooperative Learning A t'p S V .
Environments clive sensing
A 4 A4 4

Chapter 7

Conclusion and Future Work

Figure 1.2: The organization of the dissertation.
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CHAPTER 2

FLOCKING CONTROL FOR DYNAMIC TARGET TRACKING

In this chapter, we first present a potential field approaclafsingle mobile sensor node
to track a moving target. This establishes the backgrouideopotential field method that
is extended to multiple mobile sensor nodes. Then, we ptéiserflocking control back-
ground which establishes three basic flocking rules: nastofl among agents, velocity
matching among agents, and flocking centering. We extenéxisting flocking control
to more constraints such &ngle-CoM(Center of Mass) oMulti-CoM to allow MSNs to
track a target better in cluttered environments. In addjtsability analysis and simulation
results with a comparison among the flocking control with@oM (No-CoM), Single-CoM
andMulti-CoM, respectively, are given.

This chapter is organized as follows. Section 2.1 presepttential field approach for
one mobile sensor node to track a moving target. Sectionr2septs flocking control for

MSNSs to track a moving target. Finally, Section 2.3 conchuttes chapter.

2.1 Single Mobile Sensor Node and Dynamic Target Tracking

2.1.1 Problem formulation

We consider a mobile sensor tracking a target which moveswoalimensional environ-

ment. The dynamic equation of the mobile sensor is descabddllows:

Or = Pr

Pr = Ur.

2.1)

Figure 21 shows a mobile sensor tracking a moving target with natataefined as
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follows.

Moving Target

Mobile Sensor

World Coordinate

Figure 2.1: A mobile sensor tracks a moving target.

o € R%,pr € R%,6, € R! are position, velocity, and heading of the mobile sensor at
timet, respectivelygm: € R%, pmt € R?, 8¢ € R are position, velocity, and heading of the
moving target at time, respectivelyqt,$ are the relative position from the mobile sensor
to the moving target and the angleaf, respectively.

Assumption 1. We have the following assumption: The mobile sensor is gupdpvith
sensors such as cameras, sonars or laser sensors and thatedsdgorithms to estimate
the trajectory (position and velocity) of the moving target

Let g = %, yrt]T be the relative position between a mobile sensor and a moving
target, then the relative velocity between them can be ssprkas the derivative of relative

positiong,. Hence the relative velocity vector g = gt = X, yrt]T, wherex;; andyjt
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are computed as follows:

Xt = coS Omt) — cog®
Xt = || Pmtl|cOSBmt) — [ pr [|cOs(6r) (2.2)

Yit = || Pmt/|Sin(@me) — [| pr [ in(®r),

where||.|| is the Euclidean distance.

The tracking task is to makixyt || approach to zero as soon as possible. This means
thatgr = gmt andpr = pmt.
2.1.2 Potential field approach

To solve the problem of moving target tracking, we use themital field approach which

consists of an attractive potential function defined aofed [107, 108, 109]:

Va = 0.5A10 Gt (2.3)

hereAq is a positive scale factor for the attractive potential fieldction.
In target tracking, we want the mobile sensor to follow a ¢ardgience, we only need

the attractive potential field for the total potential fielldog .
V =V, = 0.5010}.q1t. (2.4)
The velocityp; of the mobile sensor is computed as
Pr =0 = g,V = A1t (2.5)

Equation (25) is with respect to the stationary target( = 0) (conventional potential
field method). While for a moving targepf: # 0) we compute the velocity, of the
mobile sensor as follows [107]:

Pr = Pmt+ A10t. (2.6)

Equation (26) is equivalent to the following equations [107]:

Ipr [[Sin(8r — ¢) = || Pmt/|Sin(Bme — ¢), (2.7)
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Ipell = (Il Pmel |2+ 271 |Gt |[]] Prntl | OBt — &) + A3 e [|2) /2. (2.8)

Assumption 2. The velocity of the moving target is limited by its maximunlogty
Pmt -

From this assumption we have:

el = min([| P&, (|| pmel| + 2\ are ]| Pt
x COS(Omt — §) -+ A2||qrt |2)H/2). (2.9)

By dividing both sides of Equation (2) with || p; || and takingarcsinwe obtain the heading

or direction of the mobile sensor as

||pmt||Sin(emt—¢>)‘

2.10
ol (2.10)

Or = ¢ +arcsin(

The velocity of the mobile sensor in a two dimensional spaaabtained as Equation
(2.112).
pr = (|| prllcos(®r), ||pr[sin(:)]". (2.11)
Theorem 1. Equation (26) allows the mobile sensoqy; pr) to track a moving target
(Gmt, Pmt)-

Proof:

We choose a Lyapunov function as follows:
L =Va = 0.5\ 10} gt = 0.5A1|are [|%. (2.12)

This function is positive definite, and the derivativeLak given by

oL . oL

Qtzﬁ

L= — , 2.13
T r Prt ( )

where the relative velocity between the mobile sensor aadntbwving target is designed as

prt = —g, Va = —Uq, L. Hence, Equation (23) is rewritten as follows:

. oL 1
L= _EDQHL = —Mllan)l® = —2 zM 0 I?=~2MVa <. (2.14)
X
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Since the Lyapunov functiobh is considered the same as the attractive potential field

functionV,, Equation (214) is rewritten as follows:
Va= —2A1Va. (2.15)
Solving this equation we get the solution as follows:
Va = Va(0)e~ 2! (2.16)

hereV,(0) is the value 0¥, att = 0. This solution shows that, and||qyt || converge to zero
with the converging ratg;, or the position and velocity of the mobile sensor asympadiy

converges to those of the moving target after a certain timeQ).

2.1.3 Simulation results

In this section we test our theoretical results with a cactilajectory of the moving target.
Parameters used in this simulation are specified as follows:

Parameters of circle trajectorgin; = [210— 70cogt), 80+ 70sin(t)]T.

Parameters of moving targgtin: = [3, 3], pj*= [55, 55|7, andBm; = 5 —t.

Initial parameters of the mobile sensgf(0) = [0, O], p(0) = [0, O], and6; (0) = T,
and other parameterd; =9,0<t <5.

Figure 22 represents the result of one mobile sensor tracking tigettanoving in a
circular trajectory. At the beginning, the position of thensor is far from the target, but
after certain time the sensor can catch up the moving tamgttteen continue to track
the target. This confirms the theory stated in Theorem 1. rEi@B shows the tracking
performance (position error between the mobile sensor ladibving target). As can be
seen in this figure, after 33 iterations the mobile sens@k&a@a moving target very well

with very small error.
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2.2 Flocking Control for Single Target Tracking and Observing

In this section we will extend the potential field approacimiatiple mobile sensor nodes
(agents) based on flocking control. The artificial poteritéddl is created to generate a pair-
wise attractive/repulsive force to control agents to fortatace formation while tracking
the target. However, with this type of traditional flockingntrol [23], there are still some
problems in cluttered environments where the agents ysgetstuck behind the obstacles
and sometimes can not follow the target [23]. To handle thoblem we present new ap-
proaches to flocking control of multi-agent systems to ti@okoving target while avoiding
obstacles. The main motivation of these approaches is te thekCoM (Center of Mass)
of the network track the moving target better in clutteredrmments where the traditional
flocking control algorithms [23], [17], [34], [35], [46] h&poor tracking performance. In
our methods all mobile agents can surround the target glase¢he obstacle space. This
will allow the network to observe and recognize the targetevaccurately. Specifically,
in our Single-CoMalgorithm, the center of mass of positions and velocitieallofnobile
agents in the network is controlled to track a moving tardéiis algorithm works well in
small networks, but it has limited scalability in large netks. In contrast with th&ingle-
CoM algorithm, we proposed another flocking control algoritratied Multi-CoM where
the center of mass of positions and velocities of each agttal neighborhood, respec-
tively is controlled to track a moving target. This algontlallows agents to perform better

in large networks in a distributed fashion.

2.2.1 Flocking control background

To describe a dynamic topology of flocks or swarms we considmamic grapli(3, E)
consisting of a vertex sét = {1,2...,n} and an edge s& C {(i,j):i,j€9,i# j}. In
this topology each vertex denotes one member of the flock,eactl edge denotes the

communication link between two members.
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Letq, pi € R™ (m= 2,3) be the position and velocity of noilerespectively. We know
that during the motion of sensors, the relative distance/det them may change, hence
the neighbors of each sensor also change. Therefore, weefiae d set of neighborhood

of sensoi at timet as follows:

Ni(t) = {j €8 dj—Gll <1 9 = {1,2,...n},i £} (2.17)

Here,r is an interaction range (radius of the neighborhood cineléhe case of two
dimensionsm = 2, or radius of the neighborhood sphere in the case of thraerdions,
m=3), and||.|| is the Euclidean distance.

In this chapter we considarsensors moving in amdimensional Euclidean space. We
address the motion control problem for a group of sensois tg objective of dynamic
target(s) tracking. We assume that each sensor has a lawsggleacommunication range to
allow it to communicate with others and a large enough sgnsinge to allow it to sense
the target. We also assume that each sensor is equippedomiéin sr laser sensor that
allows it to estimate the position and velocity of the target

The dynamic equation of each sensor is described as follows:
(2.18)

The geometry of a flock is modeled by aattice [23] that has the following condition:
i —qjll =d,j €N (2.19)

hered is a positive constant indicating the distance betweenose@sd its neighboy.

The configuration which approximately satisfies the condi(219) is called a quasi
a-lattice, i.e.(]|gi — qj|| — d)? < &, with & << d.

To construct a collective potential (discuss later) thatifferentiable at singular con-
figuration @i = q;), the set of algebraic constrains is rewritten in terngefnorm (defined
in (2.24)) as follows:

laj —Gillo=d% j €N (2.20)
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In [23], Olfati-Saber proposed his control law for flockin§raultiple mobile agents

with obstacle avoidance. This algorithm consists of thmamonents as follows:
u= o4+ P+ £ (2.21)

The first component of Equation.@L) f* which consists of a gradient-based compo-
nent and a consensus component (more details about thepewents see [73], [50], [51])
is used to regulate the gradient of potentials (impulsiva&ttactive forces) and the velocity
among sensors.

ff=ci > @u(llaj—dllo)nij+cz > aj(a)(pj—pi) (2.22)
jeN® jeNe

where each term in (22) is computed as follows [23]:

The set ofa neighbors at timeis

Nia<t) = {J S qu _qu <r 3= {1,2,...,”}, I# J} (223)

Theo—norm||.

o, of avector is a maR™ — R, defined as

2o = <Ty/1+€ll2l2~ 1] (2.24)

hereg is the positive constant.
The action functionp, (z) vanishing for allz > ry with rq = ||r||s is used to construct
a smooth pairwise attractive/repulsive potential funttifiy (z) = [ @« (s)ds This action

function@y(2) is defined as follows:
@ (2) = Pn(z/ra)@(z— da) (2.25)
where@(z) is the uneven sigmoidal function
¢®(z) = 0.5[(a+b)o1(z+c)+ (a—b)] (2.26)

hereoi(z) = z/v1+ 7%, and parameters @ a < b, c = |a— b|/v/4ab to guarantee
@(0) = 0, and constraintdy = ||d||s with d = r /k for k being the scaling factor (in the

simulations in this dissertatidn= 1.2).
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The bump functiomn(z) with h € (0,1)

1, ze [0,h)
Pn(2) =< 0.5[1+cogm(&h))), ze[h,]] (2.27)
0, otherwise

The vector along the line connectingandg; is defined as

nij :(qi_Qi)/\/1+5||Qi_Qi||2 (2.28)
The adjacency matri#; (q) is defined as

pn(lloj —aillo/ra), if J#i
aij(q) = (2.29)
0, if j=i
The second component of Equationa2) fi[3 is used to control the mobile sensors to
avoid obstacles,
= Y @ltix—allo)fixtS ¥ bixa(Pix—p) (2.30)
keNiB keNiB

where the set g8 neighbors (virtual neighbors) of sensat timet with k obstacles is
N-B(t)—{kes Gk—gl <19 ={1,2,...k 2.31
i - B- Qi k q|||_r, [3_{ 3Ly eeny } ( . )

herer’ is selected to be less thanin our simulations’ = 0.6r. dg is a set of obstacles.
Gi k. Pi k are the position and velocity of sensqrojecting on the obstacle respectively.

Similar to vectom;; defined in Equation (28), vectomy is defined as

Ak = (Gijc— )/ 1/ 1+ lldk— G2 (2.32)
The adjacency matrilg «(q) is defined as
bi k() = pn(|Gix —Gillo/dp) (2.33)
wheredg = [’ [|o.
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The repulsive action function @ neighbors is defined as

03(2) = pn(z/dg)(01(z—dg) — 1). (2.34)

Now we want to show more details on how to find Buteighbors ¢k, i k) generated
by eacha agent. Firstly, we have the following assumption regardimegobstacles.

Assumption 3. Obstacles are the convex regiond=¥i with boundaries being smooth
manifolds.

Based on this assumption, we can choose obstacles to besc{talo dimensionan
= 2) or spheres (three dimensioms,= 3) with radiusRy at centeryx. We project each
sensor to obstacles and find out which shadow of that sensobstacles satisfies the
condition||Gi k— gi|| < r', and the obtained results qfi are neighbors of sensorEquation
(2.35) illustrates the projection method to find the positiond gelocities of3 neighbors
generated by sensar

Gk = Mg+ (1 - WYk Pik=HPP (2.35)

wherep = Ry/|| —yk||. P =1 —axay is the projection matrix witlay = (0 —yk/|ai — yl|)
and an unit matrix or identity matrikx

Example 1.In this case, we have three obstadlags O, andO3 as shown in Figure.a.
After projectinga-sensor on all obstacles, we see that only two shadosm€ighbors)
on the obstacle®; andO; satisfying the condition (23). The obstacl®s is out of active
ranger', hence there is no shadow ofsensor on it. Consequently, we found out two
B-neighborgGi 1, Pi.1) and(Gi 2, fi2) of a-sensoi.

The third component of (21) fiy is a distributed navigational feedback.

Y = —cloa (i —ay) — c(pi — py) (2.36)

whereo1 (g —ay) = (g —ay)/4/1+ |lgi —ayl|?, and they - sensor(qy, py) is the virtual

leader (more information of virtual leader, see [110]) dedias follows
Gy = Py
py = fy(ay, py)

(2.37)
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Obstacle O;

Obstacle O3

A n om ~ . Obstacle O,
/gy, Py |B-neighbor?,

’

Figure 2.4: The projection method for finding the positiond &elocities of3- neighbors

of eacha - sensor.

The constants of three components used i@¥Pare chosen af < ¢! < c?, andc) =

2,/cy. Herecy are positive constants foin = 1,2 andv = a, B3, .

2.2.2 Algorithm description

In this section, we will extend the above described flockilggathm with obstacle avoid-
ance [23]. Two problems, nam&ingle-CoMandMulti-CoM, respectively, will be inves-
tigated. In theSingle-CoMproblem, the CoM of positions and velocities of all sensers i
controlled to track the moving target. In this case, eacls@eneed to know the positions
and velocity of all other sensors, or it requires the glolaldedge of the whole network.
To address the scalability problem tkikeilti-CoM (CoM of positions and velocities of each
sensor’s local neighborhood, respectively) problem idistly where each sensor only need
to know the positions and velocity of its neighbors.

In the following algorithms we assume if one of the sensoth@metwork can estimate
the position and velocity of the target, it will broadcasstbbtained information to all other

nodes. Consequently all sensors in the network can get thel&dge of target.
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Single-CoM tracking

Firstly, based on Olfati-Saber’s flocking algorithm we d@san algorithm with a dynamic
y-agent. In this scenario, the dynamytagent is considered as the moving target.
u = cf Y @llaj—allo)nj+cz Y aj(@)(p—pi)
jeNg jeNZ

+6; Y ep(llGik—Gillo)hik+S5 T bik(a)(Pik—pi)
keNiB keNiB

—T"(Gi — Omt) — €3 (Pi — Prmt) (2.38)

here the paifgmt, pmt) is the position and velocity of the moving target, respedyivand
c™, cI* are positive constants, aeg' = 2, /c".

By observing the control protocol &3), we see that the CoM is difficult to reach
the target in the presence of obstacles. This creates theuttif for sensors to track and
observe the target. Therefore this protocol should be eei@mith more constraint on the
CoM as follows:

u = £8P 4 fmt (2.39)

where f™ is a tracking feedback applied to sensbly a moving target with position and

velocity (Qmt, Pmt), respectively.

fM = (g — gme) — C3(Pi — Pmt)

—c™(@— gmet) — S3"(P— Pmt) (2.40)

where the paifq, p) is the center of mass (CoM) of positions and velocities ofafisors,

respectively, as defined in.@1).

DMLY
len o
n2i—1 b

TheSingle-CoMracking is illustrated in Figure 2.5 (a). The CoM of the winaktwork

q
p

(2.41)

(red dot) is created to track the target.
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(a) (b)

Figure 2.5: (a) A mobile sensor network with a single CoM ¢nCoM), (b) A mobile

sensor network with multiple CoMs (Multi-CoM).

Consequently, the extended control protocoBf is explicitly specified as follows:

u = ¢ > @llaj—allom+cg > aj@)(p—pi)

jeN? jeN”
+6; Y ep(llGik—Gillo)hik+S5 T bik(@)(Pik—pi)
keNiB keNiB

—c™(gi — gmt) — 3" (pi — Pmt)

—C3%(q— dmt) — (P — Pmt) (2.42)

herec3®, ¢3¢ are positive constants.

In control protocol (242), each mobile sensor at each timeeed to know the posi-
tion and velocity of all other sensors for computing the Calvipj. This means that this
protocol is limited by the number of sensors, or the scatghd limited because at each
timet all other sensors have to send their positions to sengdence the communication
problem is a big challenge and need to be considered whemmapiting this protocol in

real sensor networks.

Multi-CoM tracking

To make the algorithm scalable we implement a distributexkitay algorithm calledviulti-
CoM tracking in which the CoM of each sensor’s local neighborthisacontrolled to track

the target. Thulti-CoM tracking is illustrated in Figure 2.5 (b). In this figure eawcbbile
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sensor creates its own CoM, as a result multiple CoMs ardextess a virtual network to

track a taeget. Th®lulti-CoM tracking algorithm is presented as follows.

u = ¢ > @llaj—allom+cg > aj@)(p—pi)

JeENT jeNZ
+6; Y ep(llGik—Gillo)hik+S T bik(@)(Pik—pi)
keNP keNP

~c1"(Gi — Gmi) — S5 (Pi — Pm)
—C1 (Aneugiy) — &) — €2 (Pineugiy) — P (2.43)

here (1'%, ¢3*) are the positive constants, and the p@jf e, Piyne)) is defined as

(2.44).
0 INFU{i}|
Aineudit) = NeoT S Yicy G
INTU(i}]
PNEU(i}) = |N{*L1J{i}\ 2i=1 P

(2.44)

here|N U {i}| is the number of agents in ageistiocal neighborhood including agent
i itself.

In control protocol (243), each mobile sensor only need local knowledge, or it mean
that each sensor only requires the position and velocitydeuge of itself and its neigh-
bors. Ina-lattice configuration [23] the maximum number of each seaswighbors is 6.

Therefore this protocol can scale up to lager mobile sensovarks.

2.2.3 Stability analysis

In this sub-section we will analyze the stability of our algfums, flocking control with
Single-CoMandMulti-CoM, respectively, in free space, and we will explain why thekra
ing performance in the presence of CoM constraint is beltiam tvithout CoM constraint
in obstacle space.

Theorem 2.In free space, by controlling the CoM based on the contralboa (242),
the CoM of positions and velocities of all sensors in the ekwvill exponentially con-
verge to the target. In addition, the formation of all molstnsors will maintain in the

process of the moving target tracking.
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Proof:
In free space, this means t@lgeNp ®(]/Gik—dillo) = 0. Hence we can rewrite control
1

protocol (242) with ignoring constants; (for vn = 1,2 andv = a, f3) as follows:

u = — % OgWa(llaj—dlle)+ Y aj(a)(p;—pi)
jeN? jeNg
—c7"(Gh — Gmt) — C2" (P — Pmy).
—C3(0— Amt) — C5°(P— Pmy)- (2.45)
whereWy(z) = fdza @ (S)dsis the pairwise attractive/repulsive potential functiénom

(2.45), we can compute the average of the controllieas follows:

g 10
I=n2u = ﬁi;(—jEZNFinMIqJ'—quo)+jEZNiaaj(Q)(pj—pi)>
—(ef"+ 1A= am) — (3" + ) (P— Prm)- (2.46)

Obviously, we see that the paibg,a(q)) is symmetric. Hence we can rewrite4B) as:
U = —(c"+c9 (@~ ami) — (5" + ) (P~ pmi) (2.47)
Equation (247) implies that
a="p
P=—(c"+c39 (@~ am) — (5" + 39 (P— Pmy).

(2.48)

The solution of (248) indicates that the position and velocity of the CoM wipenen-
tially converge to those of the target.

The formation or collision-free and velocity matching arganobile sensors will be
maintained in the free space tracking because the gradés®ed term and the consensus
term are considered in this situation.

For theMulti-CoM flocking control algorithm, we have the following statemfartthe
stability properties.

In cluttered environments, consider a systenmahobile agents, that have dynamics
(2.18) and are controlled by thdulti-CoM flocking algorithm (243). Then based on our

observations which are shown in the simulation results edsat:
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1. The CoM of positions and velocities of all agents in thevoek will exponentially
converge to the target in the free space.

2. The error between the CoM’s position and the target’stjposis reduced in the
obstacle space.

The results of thulti-CoM flocking algorithm are similar to th8ingle-CoMflocking
algorithm. However, the benefit of tidulti-CoM flocking algorithm is that each agent is

controlled locally instead of globally as in ti&ngle-CoMflocking algorithm.

2.2.4 Simulation results

In this section we test our theoretical results in simutatiath different trajectories of the
moving target. First of all we test the case where target moth a sine wave trajectory.
Parameters used in this simulation are specified as follows:

- Parameters of flocking: number of sensors = 120; the irptsitions of sensors are
randomly distributed in a box with a size of [0 90]x[0 90]; timitial velocities of sensors
are set to zero. Parameters- b = 5; the interaction range= 1.2d = 9; € = 0.1 for the
g-norm; h = 0.2 for the bump functiong (2)); h = 0.9 for the bump functiongg(2)).

- Parameters of target movement: The target moves in thengiae trajectoryqm; =
[50+ 35t, 295— 35sin(t)]" with 0 <t < 8.5, andpmt = (qmt(t) — Ame(t — 1)) /A¢ with A =
0.002.

Second we test the case where the target moves in a cir@ettvaj]. Parameters used
in this simulation are specified as follows:

- Parameters of flocking: parameters used in this case argathe with those in the
sine trajectory case.

- Parameters of target movement: The target moves in a tiggketory:gm = [310—
16Qcogt), 255+ 160sin(t)]" with 0 <t < 5, andpmt = (Omt(t) — Ame(t — 1)) /4.

To compare three algorithniNo-CoM(2.38), Single-CoM(2.42) andMulti-CoM (2.43)

we use the same initial state (position and velocity) of neobeénsors. Figures@repre-
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Figure 2.6: Snapshots of the mobile sensor network when th@lensensors are at the
initial positions, forming a network, avoiding obstaclesd at the ending positions, re-
spectively. (a, b, c¢) the mobile sensor network is trackimg target moving in the sine
wave trajectory, and (a’, b’, ¢’) the mobile sensor netwakracking the target moving
in the circle trajectory using flocking control algorithmghvNo-CoM (2.38), Single-CoM
(2.42) andMulti-CoM (2.43), respectively.
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Figure 2.7: Position errors between the CoM’s positionstaednoving target in the sine
wave trajectory (a, b, ¢) and the circle trajectory (a’, b), using flocking control algo-

rithms withNo-CoM (2.38), Single-CoM(2.42) andMulti-CoM (2.43), respectively.

sents the snapshots of mobile agents tracking the targahmowthe sine wave and circle
trajectories using three algorithmdp-CoM Single-CoMand Multi-CoM, respectively.
Figures 27 represents the error between the CoM'’s positions and thettéracking per-
formance) in the sine wave and circle trajectories usinggtagorithmsNo-CoM Single-
CoM and Multi-CoM, respectively. We see that the results of tracking perfocaan
Figure 27 (b, b’, c, ¢’) for both trajectories of the target usi8mgle-CoMandMulti-CoM
algorithms, respectively, are better than that in Figure(a, a’) usingNo-CoMalgorithm.

In addition, we can see the snapshots of mobile robots avpinlistacle taken at the same
time, butin Figures B (b, b’, ¢, ¢’) more agents (sensors) passed through thewmapace
between two obstacles than that in Figure8 @, a’). This means that the CoM in the
algorithmsSingle-CoMandMulti-CoM (Figures 27 b, b’, c, ¢’) is closer to the target than

that in theNo-CoMalgorithm (Figures Z a, a).
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2.3 Summary

This chapter first studied the problem of single moving tangeking using a mobile robot
based on the artificial potential field approach. The sinmutatesults were collected to
show the effectiveness of the proposed approach. Thenapipisoach is extended to tar-
get tracking in mobile sensor networks based on flockingrobniVe designed a flocking
control algorithm withSingle-CoMandMulti-CoM to enable mobile sensors to track and
observe the moving target more effectively while maintagriheir formation and no colli-
sion among them. We prove that the CoM of positions and vidscof all mobile sensors
exponentially converges to the target. By controlling tleCexplicitly, the mobile sensor
network can track and observe the moving target better. bans that all mobile sensors
in the network can surround the target closely which witbalthem to see the target easily
for recognition purpose. In addition, flocking control witto-CoM flocking control with
Single-CoM and flocking control witiMulti-CoM are compared. Several simulations are

conducted with different target trajectories to demonstoar theoretical results.
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CHAPTER 3

COOPERATIVE CONTROL BASED FLOCKING FOR MSNs IN NOISE-FREE
ENVIRONMENTS

In this chapter we study the cooperative control for MSNsarse-free environments in
which each mobile sensor node can sense the location andtyadbitself and its neigh-
bors precisely. Three cooperative control algorithms aop@sed. The first one is the
flocking control algorithm for MSNSs to track a target in theseaof a small subset of in-
formed agents while maintaining the network connectivitye second one is the adaptive
flocking control for MSNs to track a moving target in complexeonments where the
MSNs have to change the size of their formation to adapt toetheronment in order
to maintain the network connectivity and similar topologhhe last one is the multiple
dynamic target tracking algorithm which is designed for MS3dltrack multi-target simul-
taneously.

This chapter is organized as follows. Section 3.1 presémtsiecentralized flocking
control with a minority of informed agents. Section 3.2 mm&s the adaptive flocking
control for MSNs to track a moving target. Section 3.3 démsimulti-target tracking

algorithm for MSNs. Finally, Section 3.4 concludes thisufies

3.1 Decentralized Flocking Control with a Minority of Infor med Agents

In this section we study the flocking control in the case of alssubset of informed
agents. In nature, only few agents in the group have infaomaif the target, such as
knowledge about the location of a food source, or of a migratoute, but they can still

flock together in a group to find the source of food (targetleasn local information.
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Inspired by this natural phenomenon, a flocking control algm is designed to coordinate
the motion of multiple agents. Based on our algorithm, a#rag can form a network,
maintain connectivity and track the target even only a feenag know the information of

the target.

3.1.1 Introduction

Early work on flocking control includes [37, 38, 23]. Tanredral. [37], [38] studied
flocking control of a system of multiple mobile agents withubte integrator dynamics in
the case of fixed and dynamic topologies. In [23], the thezaktramework for design and
analysis of distributed flocking algorithm was proposedisEstablished a foundation for
flocking control design for a group of agents. As an exteneidhe flocking algorithm in
[23], flocking control of agents with a virtual leader in these of a minority of informed
agents and varying velocity of virtual leader was preseint¢di6]. However, in their work
the network can not maintain its connectivity because sogenta may fall out of the
network.

In this section we study how to utilize a minority of informadents to lead the whole
network to track the target while maintaining the connetivihe main differences with
the above related work are:

1. We adopt a target navigation term in order to reduce tlyeltracking force at the
initial tracking time so that the connectivity is maintaihe

2. We use a damping force term to reduce the tracking ovetshoo

Overall, we propose a new flocking control algorithm thab\aB the flock to preserve
connectivity, avoid collision, and track the target with@wershooting. We demonstrate
that by applying our algorithm the agents can flock togetmel maintain connectivity
better compared to existing flocking control algorithms.

Most of existing flocking control algorithms [37, 38, 23] atesigned under the as-

sumption that all agents need information of the positiash\alocity of the target in order
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to flock together. However, in reality this assumption is vadtd. It can be seen in many
cases that only very few agents have information of the taige to their limited sensing
range. For example, in fish schools and bird flocks, only sogemts have knowledge
about the location of a food source, or of a migration route gR]. Motivated by these
observations we will study how to design a distributed flagkcontrol algorithm which

can still maintain good tracking performance and connégtwhen only few agents have

information of the target.

3.1.2 Decentralized Flocking Control with a Minority of Inf ormed Agents (MIA)

In this subsection, we design a distributed flocking coraitgbrithm for multi-agent sys-
tems in the case that only a few agents are informed with ttsitipo and velocity of
the target. We call these agents as informed agents. Letfuedé as a subset of in-
formed agents anly, as a subset of uninformed agents with<< Ny;. Hence we have
Ni UNy; = N, hereN is the set of all agents (uninformed and informed agents).

Paper [46] proposed the following flocking control algomitibased on the algorithm
(2.38):

U = @ (1|9 —Gillo)ri; + > aij(a)(pj — pi)

JEN JEN;

—Cy (G —a)li — Co(pi — Pl (3.1)
here ifl; = 1 the agent has information (position and velocity) of the target. Qthise
li = 0 agent does not have information of the target.

We implemented the algorithm @ in which we let some agents closest to the target
have the information (position and velocity) of the targéhe result is shown in Figure
3.1.

In this figure we clearly see that the network is broken, arlg the agents which have
information of the target can track the target. Additiopalve find that the target tracking

performance has big overshoot. In order to solve these twbl@ms we introduce two
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Figure 3.1: Snapshots of the agents when applying the flgadantrol algorithm (3L). We
select 6 out of 50 agents which are closest to the target te tivinformation (position

and velocity) of the target.

terms. The first term is a navigation term, and the secondssaelamping force term. The
main purpose of the navigation term is to maintain the cotivigcamong agents, and the

purpose of the damping force term is to reduce the trackimgstoot.

Navigation Term

The navigation term allows the agents to stay together. Tdie idea behind this term is
that if we let the informed agents keep strong cohesion tofarmed agents at the initial
time of the target tracking process, the connectivity camaetained. In order to do this,
we have to reduce the initial momentum of the attractiveddocthe target for the informed
agents. This means that we should have small attractive frthe initial time when the
distance between the informed agent and the target is lad8gsed on this analysis we
design the navigation term as shown in Algorithm 1. In thigoathm the constank;

chosen between 0.9 and 1 is to ensure that a small attraotiwe iis applied at the initial
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time of the target tracking process. The weights;—2 and—; Ks
J 9P I 0 -0l 2" O —aw)

so that the attractive force is small enough at the initiakti and then it becomes bigger

are designed

when the distancgg () — g (t)|| decreases.

Algorithm 1: Design of the Navigation Term

for each informed agent j, ¢ N, do

if 16" (t) — a(t)]| > Kal|q"" (0) — () | then
Ko inf
fi = (d" — )
j f
qu() a(t)]
Ks inf
(p; —pt)
) —a@)
here, 09 < K; < 1,K, > 0 andKz > 0,
else
ft=—ci(d" —a) — (P — )
end
end

Damping Force Term

Since only the informed agenl have the information of the target, the damping force
can be only applied to these agents. The idea behind thisidgrfgrce is to reduce the
tracking overshoot when the informed agents are close ttatiget. That is, the damping
force for the informed agents is only effective if the distarietween the informed agent
and the target is less than a certain threshold. This thig¢ghdesigned based on the active
ranger. This means that when the target is inside the active rantjeedhformed agenj

the damping forcefdam is applied, otherW|seEOlarn 0. In order to do that the constaitj

is used(0 < K4 < 1). When the damping forcéjoIallrn is applied, the informed agetwill

reduce its speed gradually to approach the target. Heretaitking overshoot is reduced.
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Algorithm 2: Design of the Damping Force Term

for each informed agent j, ¢ N, do

if o™ (t) — cu(t)]| < Kar then
fjdam: —Kdampijnf
here, 0< K4 < 1 andKyam> O,
else
dam _
f] am_o
end
end

Overall, the damping force is designed in Algorithm 2.
Finally the whole decentralized flocking control algoritisrproposed in Algorithm 3.
In this algorithm we have two options of the initial netwongiguration, and both options

are to allow the network of agents to be connected at the bgjn
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Algorithm 3: Decentralized Flocking Control Algorithm with a MIA

Input : Position and velocity of each agewg,(p;); Position and velocity of the
target @, pt) for the informed agents\().

Output: Control law for each agemnj

Initialization phase: -Option 1. Deploy the agents to form a connected network;
-Option 2. All agents are programmed based on flocking algorithr@gPto go to
the rendezvous point so that they can form a connected networ
Implementation phase:
for each agent do

| Compute:ff =3 jen @u(lldj —Gillo)nij + 3 jen; ij () (Pj — Pi)-
end

for each informed agent j, ¢ N, do

it [l (t) — a(t)]] > Kallg™" (0) — ax (0) | then

—q) — (P — )
end

if [|"" (t) — e (t)]| < Kar then
‘ fOlam —K arnp'J”f,(O < K4 < 1 andKgam> 0).

else
| fdam—o.

end

end

for each uninformed agent k,&kNy, do
| fdam=o, ff =0.

end

Update the control law for each agent = f& + f4am4 f.
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3.1.3 Experimental and Simulation Results

In this section we test our proposed flocking control Algunt3 and compare it with the
existing flocking control algorithm (2) in the case of a minority of informed agents. First
we test our algorithm with 7 real robots. Then to show theatifeness and the scalability
of our algorithm we test it with 50 robots in simulation. Inckitbn, we show a metric to

evaluate the network connectivity of our algorithm and tkisteng algorithm.

Experimental Setup

In this experiment we use 7 Rovio robots [111] that have odir@etional motion capa-
bility. Basically, these robots can freely move in 6 diren8. The dynamic model of the
Rovio robot can be approximated by Equat{@il8). However, the accuracy of the local-
ization of the Rovio robot is low, and the robot does not hawesensing device to sense
the pose (position and velocity) of its neighbors or the atists. Hence we use a VICON
motion capture system [1] in our lab (Figur&Bthat includes 12 cameras to track objects.
This tracking system can give the location and velocity aheaoving object with over 95

percent of accuracy.

@‘/ Infrared Cameras (1-12) ’\
W Rigid body of 7 Rovio Robots @
‘;

Figure 3.2: Motion Capture System from VICON [1] in the eXxpental setup.

We use the following parameters:
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- Parameters of flockina = b = 5; d = 600mn1 the scaling factok. = 1.2; the active
ranger = kc.d; € = 0.1 for theo norm; h = 0.2 for the bump functiong (z)); h= 0.9 for
the other bump functiongg(2)).

- Parameters of the target: The target location {©2500mn] for the experiment. The

velocity vectorp; = [5, 5].

Simulation Setup

In the simulation 50 agents are randomly distributed in tiease area of 12& 120 size,
and we use the following parameters:

- Parameters of flocking: the constaats: b =5 for the sigmoidal functiong(z)); the
distance among agemds= 16 units; the scaling factdg = 1.2; the active range = k; x d;
€ = 0.1 for theo norm; h = 0.2 for the bump functiong; (2)); h = 0.9 for the other bump
function (@s(2)).

- Parameters of the target: The target location i#480, 450. The velocity vector

Pt =[5, 5.

Network Connectivity Evaluation

To evaluate the the network connectivity maintenance,iiesknow that the link (connec-
tivity) between nodé and nodej is maintained if the distance @ ||g; — ;|| < r. Other-
wise this link is considered broken. For graph connectpdatglynamic graptG(3,E) is
connected at timeif there exists a path between any two vertices. An examplgaph
connectivity is shown in Figure.3.

Based on the above analysis, to analyze the connectivitheohetwork we define a

connectivity matriXcij (t)] as follows:

1, if jeN(t),i#]
O, if J&Ni(t),i#]

[cij (1)] =
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Figure 3.3: If one or two of the links (1,2), (3,4), (5,6) ioken the graph connectivity is

still remained, but if all of that links is broken the grapmeectivity is lost.

andcjj = 0. Since the rank of Laplacian of a connected graph [@3]t)] of ordern is at
most f— 1) orrank([cij(t)]) < (n—1), the relative connectivity of a network at tinhés
defined asC(t) = r]Tllrank( [cij (t)]). If 0 < C(t) < 1 the network is broken, and@(t) = 1
the network is connected. Based on this metric we can ewathatnetwork connectivity
in our proposed flocking control Algorithm 3 and the existfifagking control algorithm

(3.1).

Experimental Results

Initially, the seven Rovio robots are randomly deployedhsd they can form a connected
network (see Option 1 in Algorithm 3). Then, two robots whaie closest to the target
are selected to be the informed agents (the two robots wittecas facing up as shown in
shapshot (d) in Figure.B). We obtained the results of our flocking control AlgoritBmm
Figures 34, 35 and 36. Specially, Figure 3 (a, b, ¢) show the snapshots of simulation
results for seven robots, and Figur® &d, e, f) show the snapshots of experiment results
for seven robots. In Figure @ we compare the trajectories of three out of seven robots in
both simulation and experiment, and we see that the expetah&ajectories have small
difference with the ones in simulation since the motion @f tbbots is limited to only six
directions. In addition, Figure.8 shows the connectivity result, and we clearly see that the

seven robots can flock together even only two of them knowrtfegmation of the target.
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Figure 3.4: Connectivity evaluation in experiment of 7 Rowwbots when applying our
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Figure 3.5: Snapshots of 7 Rovio robots flocking togethernvéaeplying our proposed

flocking control algorithm 3.
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Simulation Results

In simulation, we test our proposed Algorithm 3 with fifty wib which are randomly
deployed so that they do not form a connected network ifyitialThen, these robots are
programed based on the flocking algorithn8@) to go to the rendezvous point (see Option
2 in Algorithm 3). This step is to make sure that the fifty rabfairm a connected network
at the rendezvous point. After that we let two robots (blugesgs) which are closest to the
target know the position and velocity of the target. By obsey Figure 37 we can see that
the two informed robots can drag all 48 other robots (purpéngles) to flock together.
The connectivity for the proposed Algorithm 3 and the althon (31) is shown in Figure
3.9, and from this figure we can see that the connectivity is taaiad for Algorithm 3
while it is broken when applying algorithm (3. The tracking overshoot is evaluated in
Figure 38, and we see that without the damping force term the trackuggshoot is big,

and the network oscillates around the target.

500

- Targeﬂ
1. Blue Squares: Informed agents —‘ ;”
450 - 2. Purple Trianges: Non-informed agents
|57 e TR | <
S
400 - g
/1
350 ’
. Two informed agents 7
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> o
250+ Initial positions ‘ H’
~ — .  — — — 1
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L e—
K
>
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Figure 3.7: Snapshots of 50 robots flocking together (sitrarawith two of them knowing

the information of the target.
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3.2 Adaptive Flocking Control for Moving Target Tracking

In this section, an adaptive flocking control algorithm isideed to allow an MSN to deal
with complex environments while maintaining connectivitgcking performance and sim-
ilar formation. The stability analysis of the adaptive floxkcontrol is provided. In addi-
tion, simulations and experiments are conducted to contparadaptive flocking control

and regular flocking control.

3.2.1 Problem Formulation

In reality, a mobile sensor network has to deal with changimgpmplex environments. For
example the agents have to pass through a narrow space afstagles. In that situation
the existing flocking control algorithms have some limitas such as:

1. Formation of the network is totally changed.

2. Connectivity is lost because of the fragmentation phesram.

3. Low speed or getting stuck causes poor tracking perfocean

Therefore designing an adaptive flocking control algoritbrdeal with these problems
is a challenging task. In this section, we present a novelaga to flocking control of
a mobile sensor network to track a moving target with chaggnvironments. In this
approach, each agent cooperatively and adaptively lebensdtwork’s parameters to de-
cide its’s size in a decentralized fashion so that the cannggtracking performance and
formation can be improved when avoiding obstacles. Theorem maintaining the con-
nectivity and similar formation is that when the networkisks to deal with changing
environments the neighborhood of each agent can be maedtairhis allows the network
to keep the same topology that reduces the complexity ofabatiring the tracking pro-
cess. Computer simulations are conducted to prove ourdtieakresults.

The problem is how to cooperatively control the size of thiswek which forms aruo-

lattice configuration in an adaptive fashion while mainitagnthe network’s connectivity,
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Figure 3.10: Illustration of the adaptive flocking control.

tracking performance and similar formation in the presesfagbstacles. Here, the similar
formation is understood as the neighbors of each agent iwliode tracking process are

kept. One example of such flocking control is illustrated iguFe 3.10.

3.2.2 Adaptive Flocking Control

To control the size of the network, we need to control the $aigebraic constraints in

Equation (2.20), which means that if we want the size of thevokk to be smaller to pass
the narrow space thatf' should be smaller. This raises the question of how smallitee s
of network should be reduced and how to control the size incamtealized and dynamic
fashion.

To control the constraird® one possible method is based on the knowledge of obstacle
obtained by any agent in the network, which will broadcasewa d” to all other agents,
then the network will shrink into small size to pass throulgh harrow space between the
obstacles. However, it is difficult for a single agent to fetire obstacles due to its limited
sensing range. Therefore, one agentis not able to know tbkwhvironment to determine

the size of the network. To overcome this problem we propbsesécond method based
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on the repulsive forcezkeNiB @ (|/Gix —adille), which is generated by tHe-agent projected
on the obstacles. If any agent of the network gets this regsrce it will shrink its own
d?. If this repulsive force is big (agent is close to obstagded8 will be further reduced.
Then, in order to maintain the neighbors (topology) thevactange of each agent is re-
designed. To create the agreement on the relative distamcaciive range among agents
in a decentralized way, a consensus or a local average updateproposed. Furthermore,
to maintain the connectivity each agent is designed withdaptive weight of attractive
force from the target and an adaptive weight of interactanod from its neighbors so that
the network reduces or recovers the size gradually. Thhaisagent has weak connection
to the network it should have big weight of attraction forodhe target and small weight
of interaction force from its neighbors.

Firstly, we control the set of algebraic constraints as ind&ipn (3.2)
19 —Gillo =d*, j €N (3.2)
and let each agent have its odf, which is designed as in Equation (3.3)

do, if 3 Gk dille)=0
di(X _ C | keN! ) (3.3)
5_pmlarator s T T Bldic—Gillo) 7 0.

herec, is the positive constant.

From Equation (3.3) we see that if the repulsive force gdaedr&om the obstacles
ZkeNF ®(/|Gik —aillo) =0 or NiB € 0 (empty set) then the agent will keep its origiml.
When the agent senses the obstacles it reduces itsidwand how smaltl® depends on
the repulsive force that the agent gets from obstacles.

In order to control the size of network each sensor need itsrfvthat relates tal” as

(edd+1)2—1

follows: r* = ||kd||¢ with ||d||g = d® ord = .

. Explicitly, r' is computed as in

Equation (3.4).

o i Yyenp ®lGik—aillo) =0

o (3.4)
%\/kzed 11 it 3, e li—cille) #0
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Similar to computing, r; which also relates tof' is computed as

, if ik — Gillo) =0
- r It Yyene WGk —aillo) (35)

VHEE+ D21, if 5, w6k aile) #0

It should be pointed out that the active ranrges different from the physical commu-
nication (sensing) range. Namely, the active range is thga@hat each agent decides its
neighbors to talk with, but the physical communication &gythe range defined by the
RF module. This implies that even a robot can communicate alltother robots in the
network, it will only talk (interact) with robots in its as# range. That is why we want to
control the active range of each robot in order to reduce ¢imencunication and maintain
the similar formation when the network shrinks into smadiees.

To achieve agreement @k, r andr; among agents in the connected network we use

the following update law based on local averaged®yrr? andr;:

Ui
do = u{ }|z] {}|da
INC Ui
= u{}|21 1{}| ] (3.6)
|N°U{'}\
M = oy I

here|N® U {i}| is the number of agents in agerd local neighborhood including agent
itself.

In addition, to better maintain the network connectivitgleagent should have an adap-
tive weight of attractive force from the target and intei@cforce from its neighbors as dis-
cussed before. Firstly, in the control protocol3@), the first two terms are used to control
the formation (velocity matching, collision avoidance argwobots). The third and fourth
terms are used to allow robots to avoid obstacles, and theelas is used for target track-
ing. If the last term is absent the control will lead to thewmk fragmentation [23]. The
coefficients of the interaction forcés], c9), ( cpf, cg) and attractive forcéc™, cI*) which

deliver desired swarm-like behaviour are used to adjusiiight of interaction forces and

attractive force. Namely, the paic{, c3) is used to adjust the attractive/repulsive forces
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among agentand its actual neighborsi{agent), and the pa(lcE, cg) is used to adjust the

repulsive forces among agenand its virtual neighbors{agent) that is generated from
agenti when it see the obstacles, and the faff*, cJ*) is used to adjust the attractive
forces between agentand its target. The biggeéc!™, c3") the faster convergence to the
target. However if c™, c3%) is too big the center of mass (CoM) as defined in Equation
(2.41) oscillates around the target, and the formation bikok is not guaranteed. In ad-
dition, in order to guarantee that no agent hit obstacle ttie(p?, cg) is selected to be
bigger than the other two pair&S, c3) and(c]", cI"). Finally we have the relationship
among these pairs a&{ , < ¢’ < C?,z)-

From the above analysis of choosing the coefficients of ttexaetion forces and at-
tractive force we see that these adaptive weights allow ¢tvwark to reduce and recover
the size gradually. This also allows the network to mainthm connectivity during the
obstacle avoidance. We will let each sensor have its owntweigghe interaction forces as
in Equation (3.7) and attractive force as in Equation (3&)ep in mind that in the-lattice
configuration if the sensor has less than 3 neighbors it isidered as having a weak con-
nection to the network. This means that this sensor is ondhael of network, or far from
the target hence it should have bigger weight of attractived from its target and smaller
weight of interaction forces from its neighbors to get ctasethe target. This design also
has the benefit for the whole network to track the target fat®m this analysis{ , and

cT, of each agent are designed as follows:

i) cf, if INYI>3 3.7
Cll - ' .
cf, if |N%<3

herec‘f/ <cf, (i) =2/cf(i),andi=1,2,....n.

mt(-) C1mt7 if |Nia| > 3 (3 8)
Cl 1) = , .
c, if IN%<3

herecrlnt/ >, (i) = 2,/c(i), andi = 1,2, ...,n.
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Hence, the neighbor set of sensat timet (Ni’“ (t)), the new adjacency matr;(q)

and the new action functiopy (z) are defined as follows:

NOW) ={jed:|laj—al <r, & ={1,2,...,n}, j #i} (3.9)
a;j(q): ph(||qj_qi||0/ri )7 if J7é| (3.10)

0, if j=i
@ (/|9 — gillo) = pn(aj — aills/ra)@(]|gj — aillo — d). (3.11)

Finally, the adaptive flocking control law for dynamic targracking is as follows,

i o= () S @ulla—allo)n

jeN©@
+c5() Y aj(a)(pi—p)
jeN®
+¢; Y op(llGik—Gillo) ikt S bik(@)(Pik—pi)
keNiB keNiB
—c1™ (i) (g — Gmt) — S53"()) (Pi — Prm)- (3.12)

3.2.3 Stability Analysis

By applying the control protocol (32), the CoM (defined in Equation (2.41)) of positions
and velocities of all mobile sensors in the network will erpaotially converge to the target
in both free space and obstacle space. In addition, the f@mar no collision and velocity
matching among mobile sensors will maintain in the procé#iseomoving target tracking.

Let us consider two cases of adaptive flocking control in §g&ce and obstacle space,
respectively.

Case 1 (Free space)n free space, this means thg;eNiB ®(]/Gik—dillc) = 0. Hence
we can rewrite the control protocol.(®) with ignoring constants‘r’] (forvn=1,2 and

v = a,3) as follows:

i = — 5 OgWa(llaj—dille)+ > aj(@)(pj—pi)
jeN? jeN®
—c™ (g — Ame) — S5 (Pi — Pmt) (3.13)
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whereWy(z) = f(fa @ (S)dsis the pairwise attractive/repulsive potential functiénom

(3.13), we can compute the center of mass of controluaasg follows:
1
n

n

A 1
= 52,7 2 Haballlgi—aillo
i;u n;( jezNi“ qWa (|l —dillo)

+ > aij(a)(p;—pi))
jeN?

—cM™(@— gme) — S3(P— Prmt)- (3.14)

U=

Obviously, we see that the paib4,a(q)) are symmetric. Hence we can rewritel) as:

0 = —c(d—dm) —3"(P— Pmo)- (3.15)
Equation (315) implies that
q="p
P=—cI"(@—Omt) — 3" (P~ Pmo)-
The solution of (3L6) indicates that the position and velocity of the CoM exgrurally

(3.16)

converge to those of target.

The formation or collision-free and velocity matching arganobile sensors are kept
in the free space tracking because the gradient-based taintha consensus term are
considered in this situation (more details please see.[23])

Case 2 (Obstacle space]) is designed to be reduced when each agent senses the ob-
stacles. Therefore, when the sensor network has to pasgtintbe narrow space between
two obstacles it will shrink the size gradually, and when tieéwork already passed this
narrow space it grows back to the original size graduallyis Teduces the impact of the
obstacle on the network hence the speed of agents can beamaahor the CoM keeps
tracking the target. Also, the connectivity and similamf@tion can be maintained in this

scenario.

3.2.4 Simulation and Experiment Results

The parameters used in the simulation and experiment ofidyetze flocking are specified

as follows:

57



- Parameters of flocking in simulation: we use 50 mobile sensdes which are ran-
domly distributed in the box of 100x100 size. Other paramsedeea = b = 5; the active
ranger = 8.5; the desired distanak= 7; € = 0.1 for theo-norm; h = 0.2 for the bump
functions @ (2), @, (2)); h = 0.9 for the bump functiongk(2)).

Parameters of target movement for simulation: The targetasion the line trajectory:
ot = [100+13a, t]T.

- Parameters of flocking in experiment:

a=b=05;d=1100nm the scaling factok; = 1.2; the active range= k. xd; e=0.1
for thea-norm;h = 0.2 for the bump functionsp (2), @, (2)); h= 0.9 for the bump function
(@3(2)-

Parameters of target movement for experiment: The virtarget moves in the line
trajectory:q = [230+t, —3000+ 13Q]".

- Experimental setup: In this experiment we use 7 Rovio bt 1] that have omni-
directional motion capability. Basically, these robota @é@ely move in 6 directions. The
dynamic model of the Rovio robot can be approximated by Equ#®.18). However, the
localization accuracy of the Rovio robot is low, and the toboes not has any sensing
device to sense the pose (position and velocity) of its reghor the obstacles. Hence
we use a VICON motion capture system setup [1] in our lab (fe@@1) that includes 12
infrared cameras to track moving objects. This trackingesyscan provide the location
and velocity of each moving object with high accuracy.

Figures 312 represents the results of moving target (red/dark liraeking in the line
trajectory using the existing flocking control algorithm38). Figure 313 represents the
results of moving target tracking in the line trajectoryngsthe adaptive flocking control
algorithm (312). Figure 314 shows the results of velocity matching among agents)a, a’
connectivity (b, b’) and error positions between the CoMafildarker line) and the target
(tracking performance) (c, c¢’) of both flocking control atgbms (312) and (238), respec-

tively. To compare these algorithms we use the same inta&d §position and velocity) of
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W Rigid body of 2 obstacles W

Rigid body of 7 Rovio Robots
Figure 3.11: Experimental setup for adaptive flocking caintr

mobile agents. By comparing these figures we see that by iagglye adaptive flocking
control algorithm (3L2) the connectivity, similar formation and tracking pen@nce are
maintained when the network passes through the narrow edween two obstacles (two
red/dark circles) while the existing flocking control alglm (2.38) could not handle these
problems. In Figures.23 when the network enters the small gap between two obstacle
its size is shrunk gradually in order to pass this space, themetwork size grows back
gradually when it passed. Therefore the connectivity amilar formation are maintained.
Figure 315 shows the snapshots (a to f) of the experiment result foovidRobots
using our adaptive flocking algorithm.@®). The results look similar with the simulation
resultin Figure 3L3. Figure 316 (Left) shows the trajectories of 7 robots in simulatiard a

Figure 316 (Right) compares the trajectories of 7 robots in both atimn and experiment.
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respectively. These results is obtained by using algor{th38).
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3.3 Multiple Dynamic Targets Tracking

In many surveillance applications MSNs have to deal withdyreamic situation of targets
appearing and disappearing in the field. In this section vet iddress the problem of
sensor network partitioning and then discuss multiple dyinaargets tracking through

sensor splitting and merging.

3.3.1 Sensor Network Partitioning

To deal with a new emerging target, the sensor network shautioimatically decompose
into equal sub-groups and then each sub-group will be asgigmtrack one target. For
example, considéyl targets existing at timeandM sensor group&Gs1, Gy, ..., Gy ) which
are tracking these targets (each group has abpMt sensors). If thgM + 1)th target
appears therﬂ,l”ﬂ sensors should split off frorv existing groups to form a new group
to track the new target. On the other hand to deal with a disappy target, the sensors
which are tracking this target should split and merge witheRisting groups.

As discussed in Chapter 2, the mobile sensor network canrmdared as a dynamic
graph (dynamic topology). Hence we can apply some grapiitipamg algorithms to de-
compose the graph into sub-graphs (sub-groups). Howeware £xisting methods for
graph partitioning are centralized methods, which meaas ¢lach sensor need global
knowledge of the whole network’s state to split from the retw There are also some
distributed graph partitioning or distributed graph chlustg methods, but they are usually
based on the density of node’s distribution (&#erature review section Hence the size
of sub-groups is not predetermined, or the number of senseexch sub-group is different.

Based the above analysis, this section proposes a seechgrgvaiph partition (SGGP)
algorithm to decide which sensor in the network should tramk targets. The main idea of
this algorithm is based on seed growing. This means that tielesensor which is closest

to the new target will initiate the growth of the sensors iatoew group by broadcasting
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the message to its sons in a recursive fashion until the nuoflsensors in the subgroup
is equal to a predetermined threshoffs). By growing the number of sensors in each
generation from the seed sensor (the sensor closest to théarget), the formation of
each sub-group is maintained during splitting. This leadsinimized total energy and
time consumption.

Assume all mobile sensors already formed a network witludattice configuration
(see Figure 37). In this configuration if the sensor has 5 or 6 neighbors {se maximum
number of neighbors in this configuration) this sensor walibside the network. If the
sensor has less than or equal to 4 neighbors it will be on théebof the network. This
sensor is called a border sensor. Based on this fact, the S®GRthm is summarized as
follows:

Step 1. Each sensor checks to find how many neighbors it has and deidas a
border sensor.

Step 2. Each border sensor computes the distance to the new taidjébravards this
distance information to the other border sensors, andwesdhe distances from other
border sensors.

Step 3.Each border sensor compares its distance with the receistzohdes from other
border sensors and finds the sensor with smallest distabeestet as the Seed Sensor (SS).

Step 4.The SS counts its sons and broadcasts the predetermineuf Hiwenew group
to its sons. If the size of the new group is less than the peedted size the sons will
continue passing the message to their sons. This procesgdated until the size of the
new group is equal to the predetermined size.

Remark 2. In the SGGP algorithm, the number of sons of sems®defined as:
S| =[Ni| - [F| - |DB| (3.17)

here|S|, |INi|, |Fi| and|DB;| are the number of sons, neighbors, fathers and direct broth-
ers of sensai, respectively. For example in Figurel3, SS is the father of sensors 2, 3 and

4. Sensor 3 is the direct brother of sensor 2, hence the s@enebr 2 are only sensors 5
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and 6. Sensor 2 can know sensor 3 being its direct brotheubedts father (SS) sends a
message DB} to tell which sensor is its direct brother. In addition, twonoore sensors
can have the same son, but if a sensor has the prifdfi}yto count this same son first the
remaining sensors will not count this son again. For an exawifthis situation, sensors 2
and 3 have the same son, sensor 5, but because of its smadlensor 2 receives a message
consisting of{ P} from its father (SS) hence it has priority to count sensor Bsason first
then it sends the counting numbeény) to its direct brother sensor 3.

Figure 317 shows the message exchange when applying the SGGP lahgorithe
slashed green arrows represent the counting nunaddrwhich is sent after counting, and
the solid red arrows represent the message exchange. lscégmnsrio assuming that we
have 30 sensors (n=30), and they already formed a netwokkamiattice configuration.
This sensor network is tracking the current target. Whennatagget appears, by applying
the SGGP algorithm 15 sensoR4 = n/2) split from the network to track the new target

with the total distance of all n/2 sensors to the new targigtdominimized.
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3.3.2 Multiple Dynamic Targets Tracking

In the multiple targets scenario, we assume that each senistegrated with the flocking
control algorithms withNo-CoM (3.18) and Multi-CoM (3.19), respectively, which deal

with each different targeitimy , Pmg ) With | = 1,2,...,M described as below.

U = ¢ y eulllaj—dllo)mj+cz 3 aij(a)(pj—pi)

jeNg jeN”
+6; Y op(llGik—Gillo)hik+S5 T bik(@)(Pik—pi)
keNiB keNiB
—c1" (G — Oy ) — 5" (i — Prmg)- (3.18)

U = ¢f y eulllaj—dillo)mij+cz 3 aj(@)(pj—pi)

jeN? jeN”
+6; Y op(llGik—Gillo) ik T bik(@)(Pik—pi)
keNP keNP

—c1™(Gi — Amy ) — S5 (Pi — Pmy)

—C1 (T neugiy) — mi) — € (Pneugiy) — Pmg)- (3.19)

As discussed in Chapter 2, the dynamic taf@gs;, pmg ) in (3.18) or (3.19) is exactly
the navigation term that makes the flocks (mobile sensorsjenmgether. Without this
term the sensor network leads to fragmentation. This mdweaisftsensor is assigned to
track another target it only need switch to another navigetierm. This also means that if
the new target appears one by one the sensors which areeseligcthe SGGP algorithm
will switch to another navigation term (another target).

On the other hand in the merging case, three sensor subgaraipacking three targets.
If one of these targets disappears then this subgroup withm@ose into two equal parts
and each one will merge into one of remaining subgroups ti tilae existing targets by

switching to the another navigation term.
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3.3.3 Experimental Tests
SGGP Algorithm and Flocking Control (with No-CoM)

In this sub-section we will test the SGGP algorithm and flogktontrol (withNo-CoM)
(3.18) in two different cases of sensor splitting and merging. Patars used in this sim-
ulation are specified as follows:

Casel.Two targets appear one by one and no target disappears.

- Parameters of flocking: Number of sensors = 120 (randonslyiduted in the square
area with the size of 90x90). Positions of obstacles
yi= [220 300; 220 360; 250 120; 250]60Radii of obstacle®=[16; 16; 16; 16], and the
communication range= 1.2xd with d = 7.5; ¢ = 0.1 for thec-norm.

- Parameters of target movement: The targets move in thewswme trajectory: For
the target 1gm, = [50+ 35t, 295 35sin(t)]" with 0 <t < 8.5, and for the target 2,
Oms, = [85+ 35, 55— 35sin(t)]T with 1.26 < t < 8.5, andA; = 0.002 is the step size.

In this case, the SGGP algorithm will be compared with a Ram&election (RS)
algorithm. In the RS algorithm when the new target appearslfaoh the sensors in the
network which are tracking the existing target are selecadomly to track the new target.

Case2.Two targets appear one by one and one target disappears.

- Parameters of flocking: these parameters are the samehgitbase 1.

- Parameters of target movement: Parameters are set upntigeasain Case 1, but the
target 1 is set to run in the interval time<0t < 125, and the target 2 appears at time
t = 1.26 (at iteration 840) and disappears at tirse8.4 (at iteration 4200).

Figure 318 (a) displays the result of tracking of Case 1 where theetargppear one
by one and move in a sine wave trajectory. Firstly, the whobeig of 120 mobile sensors
form ana-lattice configuration and track target 1. Then, at itera8d0 target 2 appears
and the network decides which sensors will split and track tdwrget. By applying the

SGGP algorithm, the sensor network automatically decoegodo 2 equal sub-groups
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(60 sensors in each sub-group). The second sub-group whidbgest to target 2 tracks
target 2, and the first sub-group keep tracking target 1. Th&F algorithm allows two
sub-groups to maintain their formation when they split.Ureg318(b) represents the error
between the average of positions in the whole network ageétdar(from iteration 1 to 839),
and the error between the average of positions in sub-gramtarget 1 (from iteration
840 to the end). Figure.B8(c) represents the error between the average of positions
sub-group 2 and target 2. We see that at iteration 840, thageef positions of sensors
slightly changes because at this time the average sengasions in sub-group 1 will
replace that of the whole network. In this figure we see tharatking errors are very
small in free space. This means that all sensors in the what¥eank or in each sub-group
can surround the target closely to observe it easily. Howievthe presence of obstacles,
the errors are significant because the repulsive forcesrgteigefrom obstacles push the
sensors away from them.

Figures 319 shows the results of tracking in Case 2 where the targptsaajone by one
and then one disappears. When target 2 appears at iterdliah@& results are similar with
Figures 318. When target 2 disappears at iteration 4200 sub-groupiéhwis tracking
this target will rejoin to sub-group 1 and continue to traatget 1. The tracking result of
the whole group after merging is good with small trackingoefretween the average of
sensors’s positions and target 1 in the free space as shdvigre 319 (b) (from iteration

4200 to the end).

Comparison Between the SGGP Algorithm and the RS Algorithm

In this subsection we will compare two algorithms, SGGP ai&] iR term of tracking

time, formation time, and total distance of all sensors rhesub-group to its target. These

comparisons also imply the time consumption and power gapsion in each sub-group.
Similar to Figures 3.8, Figures 20 also shows the results of tracking to Case 1 where

the targets appear one by one and move in the sine wave tngjeldowever, the difference
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Figure 3.18: (a)- Snapshots of the mobile sensor networktheemobile sensors are at the
initial positions, forming a network at tinte= 1.26, and decomposing into two sub-groups,
respectively to track the targets moving in the sine wa\edtaries, (b)- Error between the
average of sensors’s positions in the whole network and theng target 1 (iteration 1 to
839), and between average of sensors’s positions in sulpdr@and the moving target 1
(iteration 839 to the end), (c)- Error between the averagen$ors’s positions in sub-group
2 and the moving target 2. This result is obtained by usingltuking controlNo-CoM
(3.18) and SGGP algorithm
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Figure 3.19: (a)- Snapshots of the mobile sensor networknwhe mobile sensors are
at the initial positions, when the mobile sensors form a petvat timet = 1.26, when
the mobile sensors decompose into two sub-groups, and witesub-groups merge, (b)-
Error between the average of sensors’s positions in theenteiivork and the moving target
1 (iteration 1 to 839, and iteration 4200 to the end), and betwthe average of sensors’s
positions in sub-group 1 and the moving target 1 (iteratid®® 4200), (c)- Error between
the average of sensors’s positions in sub-group 2 and thengnéarget 2. This result is

obtained by using the flocking control wittho-CoM (3.18) and SGGP algorithm.
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here is that when target 2 appears a half of the sensors irntthle wetwork are split to track
this target by using the RS algorithm. With this algorithnotsub-groups do not maintain
their formation, and all sensors in each sub-group needioeitme to reform a network.
This is the main drawback of this algorithm, and some datacallected to compare the

SGGP and the RS algorithms which is shown in Table 3

Table 3.1: Comparison between two algorithms (SGGP and RS).

Algorithms | Dy (units) tr () tr ()
RS (Gy) 1184.7 | 1.000801| 8.345623
RS (Gy) 14194 | 11.770489 11.125117

SGGRG;) 1185.6 | 1.203569 0.0

SGGRGy) | 13126 | 9.007456 0.0

Parameters in the Tablel3are computed as follows:

Dy is the total travel distance between all sensors in the esmkpgand its target, and
it is computed when the network is decomposed into sub-gréoipvhen the average of
positions of sensors in each sub-group reaches the tahgetgtevaluated based on the
same condition as used to comptitdoelow).

tt is the tracking time which is computed based on the condiﬂig& zinf'l Oi— 0yl <
O, =1,2; hereng, is number of sensors in each sub-gré&ipandG;, respectively, and
O is a given threshold.

tr is the formation time representing the time that it costsralbile sensors to form a
network. This formation time is computed based on the falhgncondition:

Var(lgi —qill) = &7 2 (lai —ajll - n_(lEIZ(i,j)ea o — ;)2 < ©3 with i,j =1,2,...,
ng;; | =1,2; here© is a given threshold, and# .

In the RS algorithm, the values @, tt, andtg are obtained based on the average
value of 50 running times.

Comparison between the RS and the SGGP algorithms: The roaxiof the track-
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Figure 3.20: (a)- Snapshots of the mobile sensor networkwthreemobile sensors are at the
initial positions, forming a network at tinte= 1.26, and decomposing into two sub-groups,
respectively to track the targets moving in the sine wa\edtaries, (b)- Error between the
average of sensors’s positions in the whole network and g target 1 (iteration 1
to 839), and between average of sensors’s positions in suipd and the moving target
1 (iteration 840 to the end), (c)- Error between the averdgensors’s positions in sub-
group 2 and the moving target 2. This result is obtained biygudie flocking control with
No-CoM(3.18) and RS algorithm.
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ing time and formation time in SGGP algorithidg5 .= maxtr, tr)g, + maxtr,tr)e, =
10.211(s) while in RS algorithmt3&* = 20.1161(s), or tJg5pis 49.28 % less thatRe™
The total distance in SGGP algorithb;;p= D" + D2 = 143116(units) while in RS

algorithmDkL = 153787(units), or D55 gpis 7% shorter thabk

SGGP Algorithm and Flocking Control (with Multi-CoM)

In this sub-section we will test the SGGP algorithm and flogksontrol (withMulti-CoM)
(3.19) in two different cases of sensor splitting and merging. Patars used in this sim-
ulation are specified as follows:

Casel.Two targets appear one by one and no target disappears.

- Parameters of flocking: Number of sensors = 60 (randomlyibiged in the box with
the size of 50x50). Positions of obstacigs [190 720; 150 330;200 106; 200]10Radii
of obstacleR¢= [ 16; 16; 16; 16], and other parametexrs= b = 5; the communication
ranger = 7.8 with d = 6.5; € = 0.1 for theo-norm;h = 0.2 for the bump functiong (2));

h = 0.9 for the bump functiongi(2)).

- Parameters of target movement: The targets move in thengine trajectory: For the
target 1,gmy = [50+ 35, 295— 35sin(t)]T with 0 <t < 6, andpmy = (Gmi, (t) — Gme (t —
1))/, and for the target 2y, = [85+ 35, 55— 35sin(t)]" with 1.26 <t < 6, andpm, =
(G () — G (€ — 1)) /2.

In this case, the SGGP algorithm will be compared with thed®am Selection (RS)
algorithm where the sensors are selected randomly to teaigkts.

Case2.Two targets appear one by one and one target disappears.

- Parameters of flocking: these parameters are the samehgitbase 1.

- Parameters of target movement: Parameters are set upntigevgth the Case 1, but
the target 1 is set to run in the interval time<t < 7.5, and the target 2 appears at time
t =1.26 and disappears at time- 4.95.

Figure 321 represents the result of tracking of Case 1 where thettsaagg@ear one by
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one and move in the sine wave trajectory. Firstly, the whoteig of 60 mobile sensors
form the network witho-lattice configuration and track the target 1. Then, at timel.26
the target 2 appears and the network should decide whicloseiils split and track this
target. By applying the SGGP algorithm, the sensor netwatkraatically decomposes
into 2 equal sub-groups (30 sensors in each sub-group). d¢end sub-group which is
closest to the target 2 will go to track this target, and thst 8ub-group keep tracking the
target 1. The SGGP algorithm allows two sub-groups maiirtgitheir formation when
they split from the network to track targets. Figur@3represents the errors between the
CoM of positions and target. Here Figur3(b) is the error between the CoM of positions
of the whole network and target 1 (from iteration 1 to 839)] #re error between the CoM
of positions of sub-groupl and target 1. Figur@23a) is the zoom in of Figure.32(b) at
iterations from 1 to 100 for ease to see. We see that atttim.26 or iteration = 840, the
CoM slightly changes because at this time the CoM of subqgdowill be replaced that
of the whole network. Here Figure22(d) is the error between the CoM of positions of
sub-group 2 and target 2. Figure2(c) is the zoom in of Figure.32(d) at iteration from
1to 100. In this figure we see that all the errors are very sl means that all sensors
in the whole network or in each sub-group can surround tlgetarlosely.  Similar with
Figures 321 and 322, Figures 23 and 324 also represent the results of tracking of the
case 1 where the targets appear one by one and move in theaiadrajectory. However,
the difference here is that when target 2 appears each senberwhole network is split
to track this target by using the RS algorithm. With this aitpon two sub-group do not
maintain their formation, and all sensor in each sub-graegdrthe certain time to form a
network.

Figures 325 and 326 also represent the results of tracking of Case 2 wheratbets
appear one by one and one then disappears. When target 2sappéme(t = 1.26) the
results are similar with Figures2L and 322. When target 2 disappears at tifbe= 4.95)

sub-group 2 which are tracking this target will rejoin to sgrioup 1 and continue to track
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Figure 3.21: Snapshots of the mobile sensor network whemttgle sensors are at the
initial positions, forming a network at tinte= 1.26, and decomposing into two sub-groups,
respectively to track the targets moving in the sine wa\edtaries. This result is obtained

by using theMulti-CoM flocking control and SGGP algorithms.
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Figure 3.22: (a, c) are closer look of (b, d) at iterationsrfrd to 100. (b) Position errors
between the CoM of the whole network and target 1 (from itenat to 839), and between
the CoM of the sub-group 1 and target 1 (from iteration 84Me&oend). (d) Position errors

between the CoM of the sub-group 2 and target 2. This reswbiained by using the
Multi-CoM flocking control and SGGP algorithms.
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Figure 3.23: Snapshots of the mobile sensor network whemttgle sensors are at the

initial positions, forming a network at tinte= 1.26, and decomposing into two sub-groups,

respectively to track the targets moving in the sine wa\edtaries. This result is obtained

by using theMulti-CoM flocking control and RS algorithms.
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Figure 3.24: (a, c) are closer look of (b, d) at iterationsrfrb to 100. (b) Position errors
between the CoM of the whole network and target 1 (from itenat to 839), and between
the CoM of the sub-group 1 and target 1 (from iteration 84Me&oend). (d) Position errors
between the CoM of the sub-group 2 and target 2. This resabiained by using the

Multi-CoM flocking control and RS algorithms.
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target 1. The result of the whole group after merging is godti wmall error between
CoM and target 1 as shown in Figur€8 (from iteration 3301 to 5001, or= [4.95,7.5]).

In all the above simulation results, all sensors keep tloemétion (excepting in the case
of the RS algorithm) and no collision occurs among them windleking the moving target,
and all sensors avoid obstacles successfully in a narroeespa

In summary, we see that the SGGP algorithm combining the ifigckontrol with
Multi-CoM is better than the SGGP algorithm combining the flocking @mwith No-
CoM in terms of the tracking performance. Namely, in the SGGBralgm with No-CoM
the CoM could not converge to the target in the obstacle satehis was not the case in

the SGGP algorithm witMulti-CoM.
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Figure 3.25: Snapshots of the mobile sensor network whemthtgle sensors are at the
initial positions, when the mobile sensors form a netwotkaét = 1.26, when the mobile
sensors decompose into two sub-groups, and when two suipsggroerge. This result is

obtained by using th®ulti-CoM flocking control and SGGP algorithms.
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Figure 3.26: (a, c) are closer look of (b, d) at iterationsrfrd to 100. (b) Position errors

between the CoM of the whole network and target 1 (from itenat to 839, and 3301 to

the end), between the CoM of the sub-group 1 and target 1 (tevation 840 to 3300). (d)

Position errors between the CoM of the sub-group 2 and t&rgehis result is obtained by

using theMulti-CoM flocking control and SGGP algorithms.
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3.4 Summary

In this chapter, we considered the behavior of a group oftagenen only a subset of them
have the information of the target. We proposed a decenti@fiocking control algorithm
to deal with the network partition and reduce the overshbtbtetracking. Our algorithm is
based on considering the effect of the target tracking terdhdamping term. As a result,
the network connectivity preservation is improved, thershieot is eliminated, and the
collision avoidance among agents is guaranteed. Both ationland experimental results
are collected to demonstrate the effectiveness of our gexptiocking control.

We studied the approach to flocking control of a mobile sengtwork to track and
observe a moving target in changing environments. We dedigm adaptive flocking
control algorithm that can cooperatively learn the netvigoparameters in a decentralized
fashion to change the size of the network in order to mairtammectivity, formation and
tracking performance when passing through obstacles.ditiad, to see the benefit of the
adaptive flocking algorithm we compared it with the normatkiog control algorithm, and
we found that the connectivity, similar formation and triackperformance in the adaptive
flocking control algorithm are better than those in the @xgstlocking control algorithm.
The simulations and experiments on real Rovio robots vdrdig theoretical results.

We developed an approach to flocking control of a mobile semstvork to track and
observe multiple dynamic targets. The SGGP algorithm ip@sed to solve the problem
of splitting/merging the sensor agents. To see the bendahi®algorithm we compared it
with a random selection (RS) algorithm, and the results asengsing. The maximum of
the convergent distance and formation time in the SGGP ithgoiis faster than that in the
RS algorithm. In addition, the distance in the SGGP algorith shorter than that in the
RS algorithm. Several experimental tests were done withdifferent cases of splitting

and merging sensor agents to demonstrate our theoretszdlse
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CHAPTER 4

COOPERATIVE CONTROL BASED FLOCKING FOR MSNs IN NOISY
ENVIRONMENTS

In this chapter in order to deal with noisy measurements w@gse two flocking con-
trol algorithms,Multi-CoM-Shrinkand Multi-CoM-Cohesion Based on these algorithms,
all agents can form a network and maintain connectivitynevégh noisy measurements.
We also investigate the stability and scalability of ourasithms. Simulation results are
conducted to demonstrate the effectiveness of the promigedthms.

This chapter is organized as follows. Section 4.1 gives tbévation and problem
formulation of flocking control in noisy environments. Seat4.2 presents our flocking
control algorithmsMulti-CoM-Shrinkand Multi-CoM-Cohesion for tracking a moving
target in noisy environments. Section 4.3 shows the mamlteesn stability analysis of
flocking control in noisy environments. Section 4.4 demiaist the experimental results.

Finally, Section 4.5 concludes this chapter.

4.1 Introduction

In real flocking control environments, noise handling isaan important issue since the
noise usually causes broken network or connectivity logss problem exists in most of
the previous work on flocking control [112, 23, 46, 17]. Nayehost of flocking control

algorithms [112, 23, 46, 17] work under the following asstioms:

e Each agent can sense its own position and velocity predjgétiyout noises).
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e Each agent can obtain its neighbor’s position and veloddysensing or communi-

cation precisely.

e Each agent can sense the target position and velocity phgcis

However, in reality these assumptions are not valid becseisging errors always exist.
Motivated by these observations we will study how to desiigtrithuted flocking control
algorithms which can still perform well when the measuretsane affected by noises.

In this chapter we propose two new flocking control algoristimdeal with more realis-
tic environments. To make the flocking control more applieabreal applications we con-
sider the effect of position and velocity measurement srabithe agent itself, the agent’s
neighbors and the target. None of the flocking control atgors in the above related work
considers this noise issue. We propose two flocking conkgorihms,Multi-CoM-Shrink
and Multi-CoM-Cohesionwhich are based on the extensions of khelti-CoM flocking
control algorithm in the previous chapters. Our algoritheiew the flocks to preserve
connectivity, avoid collision, and follow the target in $ugoisy environments. We demon-
strate that by applying our algorithms the agents can floggttzer in the presence of noise

with better performances such as connectivity and track@réprmance.

4.2 Flocking Control Algorithm in Noisy Environments

In this section we are going to design two algorithms in nasyironments. The first one
is the Multi-CoM-Shrinkflocking control algorithm. The main idea of this algorithm i
to shrink the size of the network in oder to keep the conniégtiihe second one is the
Multi-CoM-Cohesiorflocking control algorithm, and its main idea is based on th&pn
and velocity cohesion feedbacks to create the strong coméstween the agent and the

network. Both algorithms are based on Melti-CoM flocking control algorithm presented
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in our previous chapter. THdulti-CoM flocking control algorithm is shown below

U = ¢f > @ullldj—aillo)nj+cz  aj(@)(pj—pi)
jENS jeN?

—C (0 — ) — S (pi — pr) — C1(T — &) — S (P — o), (4.1)

here c'1 and c'2 are positive constantsg; and p; are the local average of position and

velocity, respectively for each agerdefined as:

N"U{}I

G = U{}|Z] 1 (4.2)
NAU{i

Pi= 5{}@‘1 1{}|

In this control algorithm, the first two terms are used to ooirthe formation @-lattice
configuration) and to allow agents to avoid collision [23hefterms—c} (g — o) — ¢, (pi —
pr) and—c'l(qi —G) — c'z(r)i — pt) allow each agent and its neighbors to closely follow the

target.

4.2.1 Multi-CoM-Shrink Algorithm

Assume that the estimates of the position and velocity ohtagare: ¢ = g + siq and
Bi = pi +€},, whereel, ande!, are the position and velocity measurement errors, resgégti
Then we have:

G—Gi=0q—0+ed; Pi— Pj = pi — pj +£4, heregy] = e‘q—eé ande}) = eip—efo.

Similarly, the estimates of the position and velocity of tamget are:q"= ¢ + stq and
Pt = pt+ €, whereeg, ande}, are the position and velocity measurement errors, resedyti
Then we have:

Gi — G =0 — e + €5 Pi — P = pi — P+ €, hereel = &, — g}, andel, = €}, — €.

If all noises are bounded, one possible method to maintaimexctivity in noisy en-
vironments is to shrink the size of the network. We assumtattreanoises‘q satisfies
||s | <rwas shown in Figure 4.1.

Let us denotel, = ||y — || to be the actual distance between agemtd agenf. Then
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~~~~~~ Noise radius ry,

Active range r

Figure 4.1: Agent 2 is considered as a neighbor of agent lusedhe estimated distance

da is less than the active range

to maintain the connectivity and no collision among agerdésweed
O<da<r. (4.3)
DenotedAa to be the estimate of the actual distadgethen we have
da = [|G; — G| < [lc — | + lled I (4.4)
Since||e}|| < rw we havelled || < 2rw, and we obtain
i — i1l — 20w < da < [l — ]| + 21w (4.5)
With ||gi — g || = da We have
da— 2rw < da < da+ 21w, (4.6)

or,

da— 2rw < da < da+ 2ry. (4.7)

Since the control algorithm (2.38) guarantees tﬁatonverges to the desired distartte
Then from (4.7) we obtain

d—2ry <dy<d+2ry. (4.8)
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From (4.3) and (4.8) we should have

d—2ry,>0
(4.9)
d+2ry <r.
Hence from (4.9) we obtaid to be
2rp <d<r—2ry. (4.10)

Equation (4.10) shows that we need to design the distamgthin the range2ry, r — 2ry/]

to maintain connectivity and no collision among agents. Ewmv if we selecd to be
smaller tharr — 2r,, then each agent will have more neighbors than necessaryeler
choosed =r — 2ry,.

Now, from (2.24) we obtainl’,, as

1
=l dllo = S [/ 1+ &(r — 2r)? ~ 1 (4.11)
From (2.25) we obtain a new action functiff*(||4; — Gills) as follows:

@165 = Gillo) = Pn(llG; — Gillo/ra) @([|8j — Gillo — dhew)- (4.12)

From (4.2) we have the local average of position and veldoiteach agent, ; andp,

with noise computed as

1 INF Ui }I
%= T 2o (4.13)
_ 1 INP Ui }I
b= WeUny 2j=1  Pis
From (2.28) and (2.29) we obtaim andaIJ (q) as
A = (@~ G)/\/1+e]d G2 (4.14)
A Pn(l|Gj —Gllo/ra), if j#i
aij(q) = (4.15)
0, it =i,
Now, we propose Multi-CoM-Shrinkalgorithm withdd,,, as
U = Z o (1165 — Gillo)ij + 2 > aj(a)(p;—pi)
JeN“ jeN®
~Ch(Gi — G) — Sh(Bi — Pr) — G (G — &) — (B — Pr). (4.16)



4.2.2 Multi-CoM-Cohesion Algorithm

In this subsection we describe tMulti-CoM-Cohesioralgorithm. The main idea of the
Multi-CoM-Cohesionalgorithm is that each agent should have a strong cohesitimeto
network so that the connectivity is maintained. In order ¢totkat we introduce local
position and velocity cohesion feedbacks to each agent.

Before presenting the algorithm, we have the following dedfins:

di = g —7q; is the relative distance between nadmnd its local average of position;

Vi = pi — P Is the relative velocity between nodand its local average of velocity;

However, because agensenses its own position and velocity with noise, hence the
estimatesl; andvj are also corrupted by noisgl(¢l) as:

di =6 — T = g+, — (T +&,) = dy +¢| 4.17)
Ui =Pi— B = pi+&— (P +Ep) =Vil +€,

hereey = & — &, With & = ety 5N o ek,

q
TR 1 <INeUGiy
ande, = &, — &, With €, = oy Siy - &pe

Based on the above definitions, we design a distributed figckontrol law,Multi-

CoM-Cohesion in noisy environments as:

N N

uo = cf 3 eu(lldj—Gillo)fj+c5 Y &j(a)(p— M)

jeN? jeN
—Cposdii — el
(G — &) — (P — Br) — (G — G) — (P — Pr), (4.18)

heredA”, Vi are the estimates af; andvj, respectively, an@pos andc,e are positive
constants. The termscposdA" and —c,eVy are called local position and velocity cohesion
feedbacks, respectively. The role of these negative fexdhia to maintain position and
velocity cohesions. This means that each agent tries tocitag to the local average of
position and minimize the velocity mismatch between it®eay and the local average of

velocity in noisy environments.
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In this algorithm, to make it simpler in the stability anak/provided later we dropped
the obstacle avoidance term. However, in real applicatitmallow each agent to avoid
both static and dynamic obstacles we only need to add thedemmponent (30) to the
control algorithm (418). In general, this component does not affect the praggedf the

global stability of the whole system.

4.3 Stability Analysis

Before analyzing the stability of the flocking control alglom, Multi-CoM-Cohesionwe
build the error dynamic model of the flocking system in noisyisonments in the next

subsection.

Error Dynamic Model
To study the stability properties, we have the error dynarafthe system given as follows:

i = Vi (4.19)
Vig=U—+5",uj=u-0, i=12..n
hereu =150, u;.
We have following definitions:
dig = g — Qs the relative distance between nadmd its global average of position;
Vig = pi — P is the relative velocity between nodand its global average of velocity;
Then we have the following relations:

INFU{i}|
di = q—0g =0dg+q— qj
U 2,
L INeugy L N
LA T TP R b R VT TP

Then similar tod; , v is obtained as follows:

1 INeugi)
Vi =Vig— ———— Vig- (4.21)
I VPR
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The estimates of the local average of position and velooégpectively in (4.13) is

rewritten as

) L N |
) NU@y
ﬁi =Pi— Vig + W gl ng —|—§Ip, (423)

Now, we can rewrite the control law (4.18) with consideridgl({7), (4.22) and (4.23):

u = cf Y @G —Gllo)fij+cz Y &;(a)(p;—h)

JEN? jeN®
| 1 INeuy 1 INeugy
+<C1 - CPOS)<dig |N0( U {|}| Z ng CVe) (V|g |N0( U {|}| Z ng

=
—(C&+C'1>(qi—qt)—(02+02>(pi—pt> CposEly — CveEy — C1Eq — CoE),

—(c+ el — (& + el (4.24)

The average of control law for composite system is

n

U = @ (1IGj — Gill o) ] +2 aij (a) (B — pi)]
Z\ JeN“ Z\ jeN“

o & 1 N |
+ g — -
2% Ny 2, Y
| n INFU{i}|
C5 — Cve 1
+HEZ—)Y (v Vi
( n )|;< g — NO(U{}| JZ Jg
¢ +ch, & c,+C, N

—(+ ) i;(qa —a) — (2—2) i;(pi — )

n

1 . S y . .
- _Zl[cposs'd + Cuekl, + CLEY + CoE + (G + O el + (o + Cy)el]  (4.25)
i=
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Substitutay; in (4.24) anddin (4.25) into (4.19) we obtain:

i R CG n .
Vg = ¢ » (GG ——Z — Gillo)fij]
JGNI" ]GNO‘
L B o
+¢z Y (@) P —Pi) - Z[ S &j(a)(pj— )]
JENS i=1 jeN®
cl—c 'N"i{}ld ¢, cve N‘E{HV
“neoqiy! 4 Y Uneugy) 2 Vi
' INFU{i }
C1 —Cpos 1
( n )|;< g — NGU{I}‘ ]Z Jg
_<C|2—cVe n 1 INFU{i}|

n )i;(\/ig_ ‘NiaU{iH gl ng)

—(Cpos— Cll)dig — (Cve— Clz)Vig —(ci+ Cll)dig —(h+ Clz)Vig

| =i t { it t | it
—cposed Cuekl, — clsq czs'p —(ci+ cl)s'q —(c+ cz)s'p

10 . . r r . .
1 2. [Oposu  Ovey + G Fp + (6 +er)eq (G + )ep)
i=

= _(Ctl + Cpos)dig - (Ctz + Cve)Vig + @ +Qi(V)+ G,

where
a O PTIR
= ¢ ) @G —Gillo)fij——> [ @ulllG—Gillo)f]
jeN” i=1 jeN?
a R G < 5
+C2 alJ(Q)(pJ_pl)_FZl[ aij (@)(p; —p)l;
jeN? i=1 jeN®
d oo INULY C| G |N“u{}|
Q(V) = (2 d; vj
I( ) (|NiO(U{I}|) jZl 19— NGU{IH Z 19
| n INEU{i}|
. Cl—Cpos i l
T4 T N 2
[ n \NGU{H
C, — Cve 1
—(=— Vi Vij
TN oy 2, v
1N . . r r . .
G = 2 [Chosat vty + oy + Gy (G a)eq + (G + C)ep)

- [Cposgid + CVeE{/ + Cllglq + C|2§ip + (Ctl -+ Cll)si(; + (CtZ + C|2)8ilg]

91

(4.26)



here, we defin¥; = [dig Vig]T andV = [V1, Va, ..., Vi T.

Rewrite (4.26) in state space representation

dig 0o | dig 0
= + (®i+Qi(V)+8), (4.27)
hereky = (¢} + Cpos), ko = (¢, + Cve), andl is anmx midentity matrix.

Then we can rewrite (27) as

. 0 I 0
Vi = Vi+ (@i +Qi(V)+ ) (4.28)
kil —kol I
I
Let the matrixA = , then we have the characteristic equation as:
kil  —kol
det Al —A) = A2+ koA +k)"=0. (4.29)

Sincek; > 0, ky > 0, and ifk, < 21/k; then all roots of the characteristic equation (4.29)

have negative real partRgA;) < 0).

Stability Analysis of the Multi-CoM-Cohesion algorithm

In this subsection we will analyze the stability of the flawicontrol algorithmMulti-
CoM-Cohesionin noisy environments based on the Lyapunov approach.

We assume that the errors of sensing position and velocwy livzear relationship with
the magnitude of the state of the error system. That is becaus agents are far away
from each other, the sensing errors will usually increasendd, we have

()] < chg IM (D] + g,
eV (t)]] < e MO +Ceyyy T=1,2,...50.

(4.30)

We also assume that the noiz:{qband sig, on the target tracking terms (negative feed-
backs) are bounded as
leg(t)[] < coq

||8'E,(t)|| <Cp i=12,..,n,

(4.31)
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and the nois&., and Eip on the estimates of local average of position and velocigy ar

g
bounded as
gt <t
CCEC w32
JEL)] <Thp T=1,2,...n
INO u{.}\ N“u{}l
hereCoq = [ty Zict  Ceq @NACp = iy s Chpy

Theorem 3.Consider a system afmobile agents with dynamics.(8) and controlled

by (4.18), and all noise are bounded by3@), (431) and (432) . Let

1 (Cpost1)?+cfe CpostCle—1., 1
Cpv = +4/( )t =,
2CposCve 2CposCve Chos

and if

- - 1
Cposcled1 + CveCIeVl < o
pv

and the parameters are such that

m ZC%V[\/ (€1 — Cpos)® + (€ — Cve)? — 1 (CposChg, + CueCeyy )]
=1 (1 — & ) [1 - C%)V(Cposcledl + CVeCievl)]

here 0< g < 1 for Vi, then the trajectories of (28) are bounded.
Proof:
To study the stability of the error dynamicsZ8), one possible choice is to choose the

Lyapunov function for each agent as
Li(Vi) = VTPV, (4.33)

hereP = PT is a 2n x 2m positive-definite matrix® > 0). Then, the Lyapunov function

for the composite system is

n
= ZviTPv..
i=

From (433) we have

Li(Vi) =VTPVi + Vi PV, (4.34)
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Then, substitut®; in (4.28) into (434) we obtain

Li(Vi) = Vi" (PA+ATPI + 2V PB(®i+Qi(V) + i)

= —VTCVi+2VTPB(d; 4 Qi (V) + &),

0
hereB = ,andC = —(PA +AP).
|

The remaining part of this proof is to shdw(V;) < 0. The detailed proof df;(V;) < 0

is similar to that in the reference [113].

4.4 Experimental Results

In this section we are going to test our proposed algorithedsptive flocking control

(3.12), Multi-CoM-Shrink(4.16), andMulti-CoM-Cohesion(4.18). Then we compare our
algorithms with the existing one @8), calledNo-CoMflocking control algorithm, in terms
of network connectivity, formation and tracking perforrean First we discuss how to

evaluate the connectivity of the network in the next subsact

4.4.1 Parameter Setup

The parameters used in this simulation are specified assllo

- Parameters of flocking: we use 50 agents which are randoistiytaited in the square
area of 120 x 120 size; and other parameteeareh = 5; the active range=19;¢ =0.1
for the o-norm; h = 0.2 for the bump functionsgf®"(z), @«(2)); h = 0.9 for the bump
function (@(2)). The desired distance for the flocking control algorithie;CoM (2.38)
andMulti-CoM-Cohesiond = 16. For theMulti-CoM-Shrinkflocking control algorithm,
rw=34, henced=r—-2r,=19-2x3.4=122.

- Parameters of target movement:

Case 1: The target moves in a sine wave trajectgry: [50-+50t, 295— 50sin(t)]"

with0<t <6.
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Figure 4.2: Snapshots of agents when they are randomlykditad (a, e, i), and when they
form a network and track a target (red/dark line) moving in& svave trajectory (b, c, d;
f, g, h; ], k, ), where (a, b, c, d) are for tido-CoMflocking control algorithm (238), (e,

f, g, h) are for theMulti-CoM-Shrinkflocking control algorithm, and (i, j, k, 1) are for the

Multi-CoM-Cohesiorflocking control algorithm.

Case 2: The target moves in a circle trajectagy:= [310— 16Qcogt), 255+ 160sin(t)]"
with 0 <t < 4.

- The noise used in the simulation is Gaussian with zero medmaariance of 1.

Figures 42 and 43 show the results of of the moving target (red/dark linegkiag
in the sine wave and circle trajectories, respectively iisyenvironments for three algo-
rithms,No-CoM (2.38), Multi-CoM-ShrinkandMulti-CoM-Cohesion Especially, Figures
4.2(a, b, c, d) and 8(a, b, c, d) are for th&lo-CoM algorithm (238). Figures £(e, f,
g, h) and 43(e, f, g, h) are for the proposed flocking control algorithtualti-CoM-Shrink
Figures 42(i, j, k, 1) and 43(i, |, k, I) are for the proposed flocking control algorithm
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Figure 4.3: Snapshots of agents when they are randomlylditstd (a, e, i), and when they
form a network and track a target (red/dark line) moving irrale trajectory (b, c, d; f,
g, h; j, k, 1), where (a, b, ¢, d) are for tiéo-CoM flocking control algorithm (238), (e,
f, g, h) are for theMulti-CoM-Shrinkflocking control algorithm, and (i, j, k, 1) are for the

Multi-CoM-Cohesiorflocking control algorithm.
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Figure 4.4: The tracking performance results (error betvthe CoM and target positions):

(a) is for theNo-CoM flocking control algorithm (288), (b) is for theMulti-CoM-Shrink

flocking control algorithm, and (c) is for thdulti-CoM-Cohesiorflocking control algo-

rithm. The connectivity is evaluated by tigt) value: (d) is for theNo-CoM flocking

control algorithm (238), (e) is for theMulti-CoM-Shrinkflocking control algorithm, and

(f) is for the Multi-CoM-Cohesiorflocking control algorithm.
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Multi-CoM-Cohesion

To compare our proposed flocking control algorithrivklti-CoM-Shrinkand Multi-
CoM-Cohesionwith the existing flocking algorithmNo-CoM (2.38), we use the same
initial state (position and velocity) of the mobile agerfggure 44 shows the results of the
tracking performance and the connectivity, respectivigyc) are for théo-CoMflocking
control algorithm (238), (b, d) are for théVulti-CoM-Shrinkflocking control algorithm,
and (e, f) are for théulti-CoM-Cohesiorflocking control algorithm. Comparing the re-

sults in these figures we clearly see that:

e For theNo-CoM flocking control algorithm (&88): The tracking performance has
big errors, and it makes the target out of the center of thear&t In addition, the

connectivity is lost, or the network is broke@(f) < 1).

e For theMulti-CoM-Cohesiorflocking control algorithm: The tracking performance
has small errors. In addition, the agents can quickly fornetavark (only five itera-

tions) and then maintain connectivii@({) = 1).

e FortheMulti-CoM-Shrinkflocking control algorithm: The tracking performance also
has small errors, and the connectivity is maintained afktaterations. However, the
size of the network is smaller than that of thiellti-CoM-Cohesiorflocking control
algorithm, and each agent has more neighbors because eauttraes to reduce the

distance to its neighbor in order to keep connection to them.

4.5 Summary

In this chapter, we considered the problem of controllingaug of mobile agents to track
a target in noisy environments. Two flocking control algamits, Multi-CoM-Shrinkand
Multi-CoM-Cohesionare proposed. In thdulti-CoM-Shrinkalgorithm our approach is to
shrink the size of the network by reducing the distance anagsnts. In théulti-CoM-

Cohesioralgorithm our approach integrates local position and \gl@ohesion feedbacks
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in oder to deal with the noise. The stability of tMulti-CoM-Cohesioralgorithm is in-
vestigated based on the Lyapunov approach. Also, the nketwmnectivity preservation is
improved, and collision avoidance among agents is guagdnteboth cluttered and noisy

environments.
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CHAPTER 5

COOPERATIVE LEARNING OF PREDATOR AVOIDANCE IN MSNs

In this chapter we propose a hybrid system that integrateforeement learning and flock-
ing control in order to create adaptive and intelligent MSN¢e study two problems in
multiple mobile sensors concurrent learning of coopeeatehaviors: (1) how to generate
efficient combination of high level behaviors (discretdetsand actions) and low level be-
haviors (continuous states and actions) for multiple neobénsors cooperation; (2) how
to conduct concurrent learning in a distributed fashion.eValuate our theoretic frame-
work, we apply it to enable MSNSs to learn avoiding predatond@vmaintaining network
topology and connectivity. We also investigate the stgbdnd scalability of our algo-
rithm. The simulations and experiments are performed toahetnate the effectiveness of
the proposed hybrid system.

This chapter is organized as follows. Section 5.1 preséetsitroduction of this chap-
ter. Section 5.2 presents a general framework to enableecatiye learning. Section 5.3
presents the model of multiple mobile sensors learning hed proposes a cooperative
learning algorithm. Section 5.4 analyzes the convergehdteeoproposed learning algo-
rithm. Section 5.5 shows the simulation and experimentitgsginally, conclusion of this

chapter is given in Section 5.6.

5.1 Introduction

MSNs have great potentials in many military applicationshsais reconnaissance, surveil-
lance and minefield clearance, etc. [114]. When an MSN arégeg to conduct such

tasks, the enemy force may react and employ predators tckatta MSN. When such
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attack occurs, the MSN may break up. In this scenario, the MBduld have the abil-
ity to avoid the enemy or predator. It is desirable that theNM&n avoid predator while
maintaining the network topology and connectivity. Fromlbgy we know that there
is an effective anti-predator function in animal aggregadi [43, 44, 45], where the fish
schools and bird flocks move together to create a sensorioadenn the predator’s visual
channel (see Figure.l in Chapter 1). This chapter focuses on the distributedsdeti
making problem where each individual has a number of opt{eat places) to choose
from when the predators appear. Often in these decisiome thea benefit for consen-
sus, where all individuals choose the same safe place. Howiwe consensus methods
[40, 49, 50, 51, 52, 53, 54, 55, 56] require a connected nétimarhich all mobile sensors
can communicate with each other. This may not be valid in eealronments because
some mobile sensors may not connect to the network duringdbape. In that case the
consensus algorithms will fail. Therefore, in this chapter are interested in the prob-
lem of reaching consensus even when the mobile sensorstocaomuect to the network
sometimes, but they can still make right decisions throeginning from experience. Our
method is based on a novel combination of flocking contro] §1@l reinforcement learning
[100, 99].

Flocking control for multiple mobile agents studied in [38, 112, 23] and our previous
work [78, 64] was inspired by the natural phenomena of birdkfland fish school [25].
Basically, flocking control law is designed based on thresdidocking rules proposed by
Reynolds in [25]: flock centering (agents try to stay closedarby flock-mates), collision
avoidance (agents try to avoid collision with nearby flochtes), and velocity matching
(agents try to match their velocity with nearby flock-mates)

In recent years, machine learning techniques such as rearfeent learning have been
developed for MSNs that allow mobile sensors to learn caapmer [100, 99, 101]. How-
ever, traditional reinforcement learning assumes disceetd finite state/action spaces;

therefore, it is difficult to directly apply reinforcememtarning to most real world applica-
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tions that inherently involve with continuous space. Fenthore, even if the states can be
discretized, the learned behaviors are still discrete.dutiteon, the switching of discrete
behaviors usually causes the control of the mobile senediedome non-smooth, which
is undesirable in most applications. To tackle these isa@¥&ral methods have been pro-
posed to make the reinforcement learning work in continswsronments. The common
approach is to use a function approximator to learn a valoetion, and there are several
examples of successful applications [115, 116, 117, 118)]. 1t this chapter, instead of
following such a common approach we try to combine reinforest learning and flocking

control to create a hybrid system. Our new framework alldvesgroposed system to:

e generate efficient combination of high level behaviorsqdite states and actions)
and low level behaviors (continuous states and actionanidtiple mobile sensors

cooperation.

e coordinate the concurrent learning process in a distrébfghion.

5.2 General Framework of Hybrid System in Multiple Mobile Sensors Domain

In this section, we build a general framework of cooperalagning in multiple mobile

sensors cooperation. In this framework our goals are to:
¢ allow the mobile sensors to learn with continuous statesaatidns.

e coordinate the concurrent learning process to generatiiee @ control policy in a

distributed fashion.

With regard to the limitation of discrete and finite space,ps@pose a hybrid system
of reinforcement learning in discrete space and flockingtrodier in continuous space
as shown in Figure 3. This control architecture has two main parts, the reggorent

learning module (high level) and the flocking controller rated(low level).
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Figure 5.1: The hybrid system for reinforcement learning #iocking control in multiple

mobile sensors domain.
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The flocking controlle2.38), which works in a continuous space, is the network con-
troller that controls all mobile sensors to move togethehaut collision and track a sta-

tionary or moving target. In general, the target p;) is defined as follows

& = Pt
P = fi(o, pr)

(5.1)

In this chapter we only consider a stationary target (a fixaidtpor safe place). Theg
and p; are considered to be constant vectors. When the predatetastdd, several safe
places ¢, ., ...y, N € Z) are generated by the prey. These safe places are generated
based on the moving direction of the predator to maximizesgeaping probability. For
example, these safe places can be located at four corngéesedat the moving trajectory
of the predator.

The flocking controller also allows the mobile sensors toicitbe predators based
on a repulsive force generated from an artificial potentedtifinduced by the predators.
However, this repulsive force usually breaks up the netwdHerefore, we need combine
both flocking control and reinforcement learning so thayttemn avoid the predators while
maintaining network formation (topology) and connectivit

The reinforcement learning module, which works in discisiace, is the key to the
controller. The goal is to agree on one of the safe placeshioflocking controller. By
retrieving the states (after they are discretized) anddivards, the reinforcement learning
module finds the appropriate safe place so that the netwpkdgy and connectivity can
be maintained.

Our framework is valid in real situations when the predatmstinuously attack the
prey network, and the prey can learn this behavior of thegioed in order to agree on
the same decision. Since all mobile sensors in a cooperativEple mobile sensors sys-
tem can influence each other, it is important to ensure tleaattions are selected by the

individual mobile sensors result in effective decisionstfe whole group.
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5.3 Modeling and Cooperative Learning Algorithm

In this section we build a model of multiple mobile sensoesthéng to avoid predator and

then develop the cooperative learning algorithm.

5.3.1 Model of Multiple Mobile Sensors Learning

s
'*‘ ** " Safe Place

The network
learns to avoid : i .
predators : orm a connected

network

Floclung Initial

Q- -
* Qf A Sute Place
& ¥

Figure 5.2: lllustration of the safe places to choose.

The multiple mobile sensors learning problem can be ilatstt in Figure 2. In this
figure, the mobile sensors learn to make the same decisitati{ske same safe place to
go) so that the network will not break up, and the network togpand connectivity can be
maintained. Based on the moving direction of the preddbersafe places are real-timely
generated by the network of prey. If the prey reaches themates, and the predators

keep attacking, then other safe places will be generateden to continuously avoid the

predators.

We model the predators as follows:
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e The predators try to go into the center of the network. Thisaveor of the predators

is usually adopted in existing works [120, 121].
e The velocity of the predators is faster than that of the preglfile sensor).

Usually these behaviors of the predators will cause the petwork to break up. As a
result, the prey will not flock together. This is one of thes@as that the prey have to
learn in a cooperative fashion so that they can agree on the safe place to escape the

predators [43]. Therefore, we model the prey (mobile sex)sas follows:

¢ All mobile sensors flock together in free space and fornadattice formation [23]

based on the distributed flocking control algorith2i38).

e If the predators come into the detection rarige), the mobile sensor (prey) can
sense the location of the predators. The mobile sensoresthl and select one of

the safe places to go (see Figure 5.3).

e If the predators come into the risk ar@ ), the mobile sensor will move away based
on the repulsive force via the functio‘ﬁS defined in Equation (2.30). Here, we can

setR; equal tor’ as defined in Section IL.

5.3.2 Cooperative Learning Algorithm

In this subsection we define the state, action and rewardthemdpresent an independent
reinforcement learning algorithm. Finally, we develop aperative reinforcement learning

algorithm based on Q-learning.

State, Action and Reward

Let the current state, action and reward of mobile senbess;, a;, ri, respectively, and the
next state and action of mobile senste s, &, respectively. At each moment, we have a

partially observable environment. This means that not albile sensors are able to see the
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Figure 5.3: lllustration of the predator and prey detectimges.R; is the active range of
the mobile sensor (preyR; is the predator detection range, aRglis the prey detection

range.

predators, and each mobile sensor only communicates witieighbors to exchange local
information. We have the following models for the statejacand reward.

The statewe assume that when the learning starts (all mobile seffisatsed together
and formed aru-lattice formation) the state is initialized. For each melsensoii, the
state is defined as the number of the predatgiia the detection rang®,, and the number
of neighboring mobile sensofBI®| in its active range, s = [n,, [N%|]T. For example, if
one predator is in the detection range and six neighboringilmeensors are in the active
range of mobile sensathen the state for mobile sensas [1,6]T. If only six neighboring
mobile sensors are in the active range, and no predator iseimétection range of the
mobile sensor then the state for mobile sensds [0,6]". If the mobile sensairperforms

the action, i.e., selecting one safe place, it will keep mgwintil the state changes to

a different states # 5. The maximum number of states depends on the number of the

mobile sensors and predators. Hence, we have the maximurbanwhstates or the state

list (S) of mobile sensor in the case of a single predator to be

S=[Ln-1",[0,n—1",[1,n—-2",[0,n—2]",....[1,0]",[0,0]. (5.2)
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Figure 5.4: Four safe places are generated based on thegrdixéation of the predator.

Overall, the maximum number of states of mobile semsoithe case of one predator
equals to 2. Since all mobile sensors want to maintain the connectidhdametwork, they
want to avoid the statg4,0]” and[0,0]".

The action We assume that the predators can come from any directidndifferent
paths. However, when they detect the prey they try to conwethre center of the prey
network. Therefore, the desired action of the prey (molglessrs) is to go to one of four
safe places to escape. If we encode 4 safe places as numBef 4, we have the action
list for each mobile sensadk = [1, 2, 3, 4]. When the predators enter the risk area, the
mobile sensor will generate the repulsive force to move dvwaayg them. Additional actions
can be introduced if needed. The illustration of this scenarshown in Figure 3. The
action, selecting one of the safe places, is generated Reh#orcement Learning module.
Then, this action is implemented in the flocking controller.

The reinforcement rewardhe reinforcement reward signal changes in the experisnent
depending on the input data that is receivedottattice configuration (hexagonal lattice
configuration), a mobile sensor inside the network has sghters, and the mobile sensor
on the border of the network has one to five neighbors. Ourgagrjis to maintain this

network configuration, hence we define the reward agN{fi < 6 thenr; = |N?|, else
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ri = 6 (keep an hexagonal lattice configuration). This rewarchdafn basically implies
that the maximum reward for each agent is six which corredpon the hexagonal lattice

configuration of the network.

Independent Learning

For comparison purpose, we implement an independent tegailgorithm in which the
mobile sensors ignore the actions and rewards of other malihsors, and learn their
strategies independently. Each mobile sensor stores atategoan individual tabl€);, as

follows:
Qi(s,a) < Qi(s,a) +afri +ymax, _yQi(§.A) ~ Qi(s,a)) (5.3)

herea is a learning rate, anglis a discounting factor, ar@ is a next action list of current

action listA.

Cooperative Learning

We propose a cooperative learning algorithm which has twases. The first phase is
Q value update, and the second one is action selection. Ifirfigophase we let each
mobile sensor calculate its own Q value based on its ownrast&e and its neighbor’s
actions/states. In the second phase, in order to make timerlg&onverge faster we develop
a majority action following (MAF) algorithm for the final don selectionQ Value Update:

In this phase, our goal is to allow each mobile sensor to agdeethe information of
its neighbors via the Q value. Therefore each mobile senzmates its Q value based on
the following equation.

IN|

Qi(s,a) <= Qi(s,a) + ) Qj(sj,a) (5.4)
j=1

j
here,Qi(s, &) is computed based on Equation (5.3), 48| is the number of neighbors
of mobile sensor i. This idea of Q value update is illustrateligure 5.5.

Action Selection Strategy:
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Figure 5.5: Q value update based on the mobile sensor'snéstide and its neighboring

actions/states.

Usually the next action selection in reinforcement leagngbased on the maximu@
value [100, 99], or the Boltzmann action selection strafég@g]. Since each mobile sensor
makes its decision only based on the maxim@Qmaalue, the convergence of the learning
is usually slow. Therefore we need make the preys to agrebeosame action as fast as
possible. We first let each prey select the next action baseldeomaximunQ value. The
final action for each mobile sensor is decided using the ntgjaction following strategy,
which is shown in Algorithm 4. In this algorithm, Step 3 cahdach prey select its action
as the one that most of its neighbors follow. In this way thepavative learning can

converge faster. Overall, the cooperative learning allgoris shown in Algorithm 5.

110



Algorithm 4: Majority Action Following (MAF) Algorithm

for each mobile sensordo
Step 1.Selects the next action based on the maxin@uualue,

magea Qi (S, A), whereQj(s;, &) is computed via Equatiof®.4).
Step 2.Asks/observes its neighbor’s decisions.
Step 3.Selects the action that most mobile sensors in the inclusgighborhood
set{i UN?} follow.
if the number of mobile sensors in the §8f' } selecting the same action are the
samethen

Roboti will keep its own decision;

else
| Goes back tétep 3.

5.4 Convergence Analysis of Cooperative Learning Algoritm

In this section, we show the convergence of our proposederatipe learning Algorithm

5. First, we can rewrite Equatid®.3) iteratively:
Q" (s, a) = Qff(s.a) +alrj +YQ(5, &) — Q(s:,a) (5.5)

herek is the time step, an@¥(s, a;) = ma>g{eAi/Q{<(s1’,A§). Let IN® U {i}| be the number
of mobile sensors in mobile sensr local neighborhood including mobile sensatself.

Then from(5.4) and(5.5) we have the sum of Q values in each local{dét U {i}} as

INFU{i}| ™ INFUi}| ) ’
Z QjJr (sj,aj) = Z afri +yQj (s, a;) — Qj(sj, aj)]
=1 =1
INTU{i}] y
+ 5 Qi(sa)). (5.6)
=1

Since each mobile sensoupdates its final); at time stepk based orQF(s—,ai) =

z‘j'\flu{i}‘ Q‘f(sj,aj) we have the differencAQ;(s,a) for each mobile sensor between the
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Algorithm 5: Cooperative Learning in a Distributed Fashion

Set parameters andy.
Build the state lis{S) and action lis{A;) for each mobile sensor
for each episoddo

for each mobile sensordo
Initialization phase:

- Initializes the matrixQ;

- Finds initial statds) that corresponds to the one in the state(i&} as
defined in Equation5.2).

- Randomly selects one actida;) in the action listA;).

Update phase(after mobile sensdrdoes the selected action):

- Updates the next stats,).

- Selects the next actiof& ) based on the maximu@; value.

- Computes the rewand.

- Computeg); value:
Qs.a) < Qi(s.a)+alri+ymax yQi(s,A) - Q(s,a)

- UpdateQ; based on its neighbors:
IN%|
Qi(s,a) < Qi(s,a) + ngj(Sjaaﬁ
here,|N?| is the number of neighbors of mobile sensor i.
- Sets the next state as the current state.
Action implementation phase:

- Final action is selected based on Majority Action Follogvilgorithm

(Algorithm 1).
end

end
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time stepgk+ 1) andk as

AQi(s,a) = QTH(s,a)—Qi(s,a)
N N}
— z Q(sj,a)) - Z Q4(sj, )
\N."U{}I
= o 5 [r+wi(s;a) —Qf(s.a)] (5.7)
=1

We can expand Equatiq®.7) to n mobile sensors into space representation as follow:
AQ(s,a) = aR(s,a) + HQ(s, &) —aQ(s,a) (5.8)

hereAQ(s,a) = [AQ1(s1,a1),AQ2(S2,82), -.,AQn(Sh, an)]" with s=[s1,%,...,s]" and

a=[ag,ap,...,an .

|N1|+1 INS|+1

Q(sa)=[y;2 "Qj(sjay), Y5 ~Qjlsj,aj)
A '“Qj(sj,aj)] -

Q(s,a) = 37 Qi(s. &), 314 Qs a)
SR Qy (s )T,

withs =[s;,S,,...,s0|" anda = [a}, &, ...,an] .

R =[50 (s, 314 ri(si,a), o S0 sy, )T
-ay ay ... ay-

o ay ay ... ay
Lay ay .. ay

- nxn
Since the next actiom; is selected according tmax,ca Qi(s,A), and the final action

is selected based on the MAF, we can rewrite Equation (5:8) as

AQ(s,a) = aR(s,a) + HF(s) —aQ(s,a) (5.9)
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N{ [+-1 NS [+-1 NS [+1 .
hereF(s) =[5 Fi(8), 315 T Fi(9), o S T (9)]T with Fj(S) = mave,ea, Q) (51, Ay).

Theorem 4. Consider a system af mobile sensors, that have dynamics (2.18) and are
controlled by the control law (2.38). Based on Algorithm Bl @nstate differential equation
(5.9) the vectonQ(s,a) will converge to a zero vector.

Proof:

Since after sufficient iterations, each learning mobilessemvill select the action that
holds the biggedD value we havé-(s) = Q(s,a). From this point we can rewrite Equation
(5.9) as

AQ(s,a) = (H—al)Q(s,a) + aR(s,a) = BQ(s,a) + aR(s,a) (5.10)

herel h«n is an identity matrix, an® = (H —al) .
If the time step is small enough we can write Equatibr10) into a continuous fashion

as:

Q(s,a) =BQ(s,a) +aR(s,a) (5.11)
Now, we can consider Equatidib.11) as a standard feedback control systen=
AX+ Bu) [123, 124]. Namely, the model of the systenQss, a), and the control input is
a, andR is the output signal of the controller. Therefore we canlgase that if all of
the roots of the characteristic equation of the differémtipuation(5.11) have negative real
parts then the proposed systéfll) is stable, or the vectakQ(s,a) will converge to a
zero vector.

We have the characteristic equation:

det(Al —-B) =0 (5.12)
here
| A—a(y—1) —ay —ay ]
N —ay A—a(y—=1) .. —ay
—ay —ay e A—0(y—1)

- = nxn
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From Equation5.12) we can obtain:

A+o)"—n(A+a)"tay=0 (5.13)
or,

A+ (A +a) —nay] =0 (5.14)
Solve Equatior{5.14) we obtain the roots ad;y = A2 =...= A1 =—a. Since < a < 1
we have—1 <A1 =Ax2=...=Ap_1 <0, and\y = a(ny— 1). We can easily sek, < O if

we select < y < 1.

We can ensure that all the roots of the characteristic eguafithe differential equation
(5.11) have negative real parts if we select@ < 1 and O< y < % Hence we can conclude
that the proposed syste(b.11) is stable, or the vectakQ(s,a) will converge to a zero

vector. This finishes our proof.

5.5 Simulation and Experiment Results

In this section we test our cooperative learning algorittng@rithm 5) combined with the
distributed flocking control algorithm (28) in both simulation and experiment. We com-
pare the proposed cooperative learning algorithm withnldependent learning algorithm

(5.3) in term of connectivity, topology, convergence, actand reward.

5.5.1 Simulation Results

In this simulation we use 15 mobile sensors (prey), and $ast{4 safe places to escape
predator). This results in'ad = 107374182441 billion) possible joint actions.

In each learning episode we randomly setup initial deplayihef the prey; locations
of obstacles; as well as trajectories and initial locatiohthe predator. The learning task
is to find out one of four optimal joint actions. The parametef flocking control are as
follows: the desired distance among the pdey 16; the scaling factok. = 1.2; the active

ranger = ke x d = 19.2; the constang = 0.1 for thea-norm.

115



400 T T T T T T 450

350+ ‘ ' > 1 400t p ,
300l | 350+ N
300 B
250+ q
250+ B
200+ q
200F , \,/*/’ -
150 | 0 1
150 B
1001 > , ; —
100+ i R
501 5ol i
0 ! | L ! ! ! 0 L . . . . ;
-100 50 0 50 100 150 200 250 50 0 50 100 150 200 250 300
a) b)
500 . . . . , , . . ! 500 ; : ; :
4501 1
400
400} g r\
350(- B
300}
e
- @ | &5
200(- 1 .
100}
150 R 1 .
100-
0
50|
0 . . . . . . . . . 100 . . . . . .
0 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 700
c) d)
500 . . . . 500 : . : : : T T
400} | 400}
3000 | 300 . Z '%
200} | % | 200}
® ? ® >
L | 100}
100 e
P\’
0 0
-100 . . . . . . -100 . . : | . : :
0 100 200 300 200 500 600 700 0 100 200 300 400 500 600 700 800

e) f)

Figure 5.6: Snapshots of our proposed cooperative leaalgaithm in the first episode.
Four red/darker dots as shown in snapshots (d, e, f) are &darpdaces. The empty red

circle is the predator. The filled red circles are the obstacl
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Figure 5.7: Snapshots of our proposed cooperative learaiggrithm in the second
episode. Four red/darker dots as shown in snapshots (& fpar safe places. The empty

red circle is the predator. The filled red circles are the atist.
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Figure 5.8: Snapshots of the proposed cooperative leaatgaogithm in the third episode.
Four red/darker dots as shown in snapshots (e, f) are thesédarplaces. The empty red

circle is the predator. The filled red circles are the obstacl
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Figure 5.9: Snapshots of the proposed cooperative leaatgagithm in the fourth episode.
Four red/darker dots as shown in snapshots (e, f) are thesédarplaces. The empty red

circle is the predator. The filled red circles are the obstacl

Figure 56 shows the result of the first training episode. Since at tis¢ time the
mobile sensors do not have any experience, they failed teagr the same action. Hence,
the network is broken.

In the second episode shown in Figuré,8he learning result is better since more than
50 percent of the mobile sensors agree on the same safe plgoe tn the third episode
the learning converges and all the mobile sensors choosmthe action (see Figures).
Therefore the connectivity is maintained. In the fourthe(f&gure 59) and fifth episodes
(see Figure 3.0), even when we change the trajectory of the predator amtbtfation of

the obstacles, the learning results still hold.

5.5.2 Experiment Results

In real experiments we use eight Rovio robots [111] that hawai-directional motion
capability as shown in Figure.BL. In this figure, seven Rovio robots are used as preys,

and one Rovio robotis used as a predator. To distinguishotiithr prey robots the predator
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Figure 5.10: Snapshots of the proposed cooperative lepatgorithm in the fifth episode.
Four red/darker dots as shown in snapshots (c, d) are thes&deiplaces. The empty red

circle is the predator. The filled red circles are the obstacl
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Figure 5.11: Seven Rovio prey mobile sensors and one Roeitgpor robot (marked with

a yellow cup) are used in the experiment.

robot is marked by a yellow cup mounted on it. Basically, éhexbots can freely move in
six directions. The dynamic model of the Rovio robot can bgrexmated by Equation
(2.18). However, the accuracy of the localization of the Rovio tabdow, and the robot
does not have any sensing device to sense the pose (positimelkcity) of its neighbors,
predator and obstacles. Hence we use a VICON motion capysters [1] in our lab

(Figure 512) that has 12 infrared cameras to track moving objectss acking system
can give the location and velocity of each moving object witth accuracy.

Figure 513 shows the experimental result of the first training epsdsimilar to the
simulation results, since in the first episode the robotsatchave any experience of the
behavior of the predator, they failed to agree on the san@adtience, the network is bro-
ken. In the third episode as shown in Figur&%bthe learning converges and all the robots
choose the same action (same safe place). Therefore tHedgg@md the connectivity are

maintained.
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Figure 5.12: Infrared cameras tracking system for expeartaisetup of multi-robot coop-

erative learning.
5.5.3 Performance Evaluation

In this subsection we evaluate the connectivity, topolagyvergence, and reward per-
formance of our proposed cooperative learning algorittin@n tcompare with those of the

independent learning algorithm.

Connectivity Evaluation

From the result in Figure.5 we can see that for the cooperative learning algorithm the
connectivity of the network is maintained after 3 trainingsedes while for the indepen-
dent learning algorithm the connectivity is not maintaieedn after 100 training episodes.
This means that the robots do not agree on the same actiore thaitin Figure 5.5d
(zoom in at 4th episode of Figurel®b) the connectivity is only lost from iteration 1 to
320 because the prey have to avoid the obstacles. After &2@uiterations the predator
appears, and the preys can avoid the predator and mainggotinectivity based on the
proposed cooperative learning algorithm. In contrastctivenectivity is lost using the in-
dependent learning algorithm as shown in Figuebé andc. Here Figure 8l5a is zoom

in at 100th episode of Figure Bec.
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Figure 5.13: The trajectories of 7 Rovio robots and one porda the first learning
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obstacles.
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Topology Evaluation

To evaluate the topology maintenance, we define a medstoenonitor the change of the
number of neighbors for each robot. The topology of the netugevaluated based on the
following algorithm.

We see that ifT = 0 the topology of the network does not change, and if O the
topology of the network changes. From the result in Figufid 5ve can see that for our
proposed cooperative learning algorithm the topology efrtetwork does not change after
3 training episodes while for the independent learningrédlgm the topology changes in all
training episodes. Note that in Figurelb (right) the topology is only changed when the

prey have to avoid the obstacles, and it is maintained whandle avoiding the predator.
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for each mobile sensordo

if [IN®| changeghen
| Topology:Ti = abg(|N” (k)| — [N?(k—1)|) (kis time step or iteration)

else if[N“| does not change, but indices|bf® | changethen
| Topology:T; = number of index changes

else
| Topology:Ti=0

| For the whole network :Topologyt = 3, T,
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Figure 5.16: Topology evaluation for the independent legrralgorithm (left) and our

proposed cooperative learning algorithm (right).
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Figure 5.18: Global reward evaluation for the independesgutiing algorithm (left) and our

proposed cooperative learning algorithm (right).

Convergence of Q values Evaluation

The convergence of the proposed system is evaluated basib@ awverage values of the

AQ(s,a). According Theorem 4 if the average®f(s, a) goes to zero the proposed system

is stable, otherwise it is not stable. From the result in Fedgal7 we can see that for our

proposed cooperative learning algorithm the averagkQ@fs, a) goes to zero after 2000

iterations while for the independent learning algorithraes not converge to zero.
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Reward Evaluation

The global reward is computed &= S ;r;. From the result in Figure.58 with our
proposed cooperative learning algorithm we can obtain amax global reward with a
value of 62 after about 2000 iterations, but with the indejegr learning algorithm the

global reward does not converge to a stable value.

5.6 Summary

We proposed a hybrid system that integrates flocking coatrdlreinforcement learning to
allow mobile sensors to behave intelligently in continuspace. Reinforcement learning
is developed based on cooperative Q learning and MajorityoAd-ollowing algorithm
(MAF). We evaluated the proposed hybrid system in the caseulfiple mobile sensors
learning to avoid predator. We showed that the proposedearatipe Q learning allows
the network to find out the effective joint action more quickhan the independent Q
learning. This also allows the network to maintain its tagyl and connectivity while
avoiding the predator. Both simulation and experimentltesue collected to demonstrate

the effectiveness of our proposed system.
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CHAPTER 6

COOPERATIVE AND ACTIVE SENSING FOR MSNs BASED ON DISTRIBUTE D
CONSENSUS

In this chapter, autonomous mobile sensor networks aregeplto measure a scalar field
and build its map. We develop a novel method for multiple febensor nodes to build
this map using noisy measurements. Our method consistsesf ffarts. First, we develop
a distributed sensor fusion algorithm by integrating twifedent distributed consensus
filters to achieve cooperative sensing among sensor nogesn8, we use the distributed
flocking control algorithm to drive the center of the mobinsor formation to track the
desired paths. Third, we build a path planning strategy tainka complete coverage of
the field. Simulation results are conducted to demonstrat@@posed method.

This chapter is organized as follows. Section 6.1 preséetsitroduction of this chap-
ter. Section 6.2 presents the models of the scalar field anohdasurement of each sensor
node, as well as the problem formulation. Section 6.3 pitsse distributed consensus
filters and the distributed sensor fusion algorithm for diaidy a map of the unknown scalar
field. Section 6.4 describes the path planning strategydorpdete coverage of the scalar
field. Section 6.5 presents cooperative and active senkjngthms for improving the con-
fidence performance. Section 6.6 shows simulation redkiltslly, Section 6.7 concludes

this chapter.

6.1 Introduction

Measuring and exploring an unknown field of interest haveaettd much attention of

environmental scientists and control engineers [11, 59180125, 12]. They have numer-
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(a) (b)

Figure 6.1: (a) Evacuation: Ships and rig workers evacuaeoil spill area as Tropi-
cal Storm Bonnie approaches the region (Photo by Mario Taet#y Images). (b) The
estimated field of chlorophyll generated by the harmful Blj@aoms observation system
[2] by the National Oceanic and Atmospheric Administratiti®©AA), (Photo courtesy of
NOAA).

ous applications including environmental monitoring [&fd oil spill and toxic-chemical
plume tracing [9, 10] (see Figure 6.1). Because the scaldrifeften distributed across
a large area, we need many sensors to cover the field if thersesie mounted at fixed
locations. MSNs in which sensors can move together and t&aasunements along their
motion trajectories are ideal candidates for such missions

In order to create the map of the scalar field, one of the inapdresearch problems in
MSNSs is to achieve cooperative sensing among sensors inrdodied fashion. Develop-
ment of a novel cooperative sensing algorithm based onlalistd estimation and control
algorithms for MSNs is very challenging. The estimation aadtrol have to be performed
in each sensor node using only local information, while ahale/they exhibit collective
intelligence and achieve a global goal. In a resource-caim&d multi-agent system, the
communication range and sensing range of each agent arecemadared to the size of
a surveillance region. Hence, agents cannot accomplismission without an effective
flocking control and path planning strategy.

In this chapter, the problems of cooperative sensing angerative motion control
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are addressed. Our work has three parts. First, we develagtridbdted sensor fusion
algorithm by integrating two different distributed consas filters to achieve cooperative
sensing among sensor nodes. In this algorithm, each senderabtains measurements
from itself and its neighboring sensor nodes within its camioation range. Each mobile
sensor node will then iteratively update the estimate ofsitedar field. Second, we use
a distributed flocking control algorithm to drive the centéthe mobile sensor formation
to track the desired paths. Third, we build a path planninatesgy to obtain a complete
coverage of the field. From this cooperative sensing framlewe extend to active sensing

in order to achieve better sensing performance.

6.2 Scalar Field and Measurement Modeling and Problem Stataent

6.2.1 Model of the Scalar Field

We model the scalar field of interest as
F=00", (6.1)
here® = [01,02, ...,6k], and® = [@1, @, ..., ¢k |. We can rewrite Equation (6.1) as
F - ée,-cp,-, 62)
hereg; is a function representing a density distribution, &jds the weight of the
density distribution of the functiog;.

We can model the functio@; as a multiple variate Gaussian distribution (other distri-

bution functions such as Poisson, Student, Cauchy disiwiig ..., can also be used):
¢ = !
' /det(C))(2m)?2

here [ui qu,] is the mean of the distribution of functiapy, andCj is covariance matrix

e%(x—ui)cfl(y—%j/)T,j €1[1,2,...K].

(positive definite) and it is represented by:

in2 O

o o

Cj: ( ) j X
c?o)‘(cr‘ (ay)?
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Wherec? is a correlation factor.

6.2.2 Measurement Model

We partition the scalar fiel& into a grid ofC cells. Each sensarmakes an observation
(measurement) of the scalar field at delfk € {1,2,...,C}) at time stept based on the

following equation
m(t) = OF (1) [FX(t) +nf ()], (6.3)

herenk(t) is the Gaussian noise with zero mean and variaffe) at time stept. We
assume thatl is uncorrelated noise which satisfies
ok VK if s=t
Cov(ni(s),ni(t)) = _
0, otherwise
hereCovis the covarianceOX(t) is the observability of sensor nodat cellk at time step

t, and it is defined as

i . _ K s
ok ) b i a0 -al <y 64

0, otherwise
hereg; € R? is the position of sensor nodegf € R? is the location of celk at its center.
This definition tells us that if celtis inside the sensing rangé, of sensor nodéthen cell
k can be measured or observed. Otherwise the observabitigyds Note that? can be the
same for all sensorg; =r5 = ... =r; =r®) or different.
Each mobile sensor node makes an measurement &tamilesponding to its position.
We assume that the variangg(t) is related to the distance between the sensor hadd

the location of the measurement according to:

(1) oK [[12 .
) R I e -d < 65)
0, otherwise

herec, is the small positive constant between 0 and 1. The reasartroflucingc, is to

avoid the varianc®X(t) being zero when the distange;(t) — gf|| equals to zero.

132



6.2.3 Problem Formulation

Given the measurements of sensor nodad its neighbors at each cell of the scalar field
F as modeled in Equation (6.3) (see Figur2)6our goal is to build the map for the scalar

field F modeled by Equation (6.1).

Communication Lin

1<'<7’\

Cell k

Neighbor of
sensor node i

/ Nelghbor of
sensor node i

Sensor node i

Figure 6.2: Illustration of the measurement model usingtiplel mobile sensor nodes.

6.3 Distributed Sensor Fusion Algorithm

6.3.1 Overall Approach

In this section we present a distributed sensor fusion #tgorto allow each sensor node
to find out an estimate of the value at each cell of the scalarlfgesed on its own measure-
ment and its neighbor's measurements. Our algorithm hagphases. First, each sensor
node finds an estimate of the value of the scalar fielt each cell at time stetp Second,
each sensor node finds a final estimate of the value of ther$edthF at each cell during
its movement. To achieve it, we develop two consensus filtfEhe consensus filter 1 is
to find out an estimate of the value of the fid¢ldat each cell at time stefp Since each
mobile sensor node makes its own measurement at each cilleastept with its own
weight (confidence), the consensus filter 2 is used to find w@gaeement among these

confidences.
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At each time step each mobile sensor node needs to find an estimate of the vialue o
each cell based on consensus filter 1, and find an overall emaidof this estimate based
on consensus filter 2. This process can be callegpiadial estimate phaséhen, during
the movement of each sensor node, it will have multiple spatstimates of each cell
associated with their own confidences. Hence, these spatiatates are fused iteratively
through the weighted average protocol, and this processeaalled théemporal estimate
phase To summarize:

(1) Spatial estimate phase:

¢ Building a weighted average consensus filter (consensesIilto find out an agree-

ment of the estimates among the sensor nodes at each tinte step

¢ Building an average consensus filter (consensus filter 2ptbdut an agreement of
the weights (confidences) of the measurements among thersedes at each time

stept,
(2) Temporal estimate phase:

¢ Building a weighted average protocol to iteratively upddie spatial estimates for

sensor nodeduring its movement.

6.3.2 Distributed Consensus Filters
Consensus Filter 1

Distributed consensus [52, 53, 50, 51, 56, 55] is an impbdamputational tool to achieve
cooperative sensing. We consider distributed lineartitama of the following form
X+ =wi (X + 3 wif()x(), (6.6)
JENi(t)
herel is iteration index. The initial condition for the state izgn asx‘(l = 0) = mk(t).
The weightw (1), is the self weight or vertex weight of each sensor to Iceﬂzlndvvi‘j- ()is

the edge weight between sensand sensoj. These weights will be discussed more later.
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Our problem here is to estimate the value of the fiel@t each celk at each time
stept. Since each sensor node makes the observation dt atlime steg based on its
own confidence (weight), the consensus should convergeetavéiighted average of all
observations (measurements) at &dlom all sensor nodes in the network. This weighted

average is the estimate of the value at ket time steft, and it is computed as:

Ek(t> _ zpzlwii (t)m<t)

6.7
3 it g Wi (t) 67
If Equation (6.6) converges we ha# = EX = ... = EX = EX. Therefore, our goal is to let
limy . (X(1) —EX(t)) — 0 (6.8)
We can write Equatiof6.8) in the matrix form
limy _oox¥(1) = EX(t)1 (6.9)
herex(1) = p(1), X5(1), .., x5(D)]fq, andl=[1, 1,..., 1]T,;.
We can also write Equatiof6.6) in the matrix form
XK(1 4+ 1) = wi()xK(1) (6.10)
with initial conditionxX(0) = mX(t), andmX(t) = [mk(t), m(t), ..., mEO)]%. ;-
To make Equatiori6.6) converge tcEX(t) we need
. K 1, .1

In order to achieve this we need to ensure that the sum of ajjhtseincluding the vertex

and edge weights at each node equals to 1, or
Wi+ 5 wi()=1 (6.12)
JeNi(t)

To satisfy this, we have the following designs of weight.
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Weight Design 1:

From Equation(6.12) the vertex weight at nodes obtained as

wi()=1-5 w(), (6.13)
JeNi(t)
here,wk (1) is defined as
Ky cy o
w (1) = O VD #1,J €Ni(t), (6.14)

here,c¥ is a constant. If both sensor nodesdj do not observe cek (OK(t) = O'J‘(t) =0)
then to avoid dividing by zero the edge weigbﬁ(l) is set to zero.

Therefore we have the following form of weight design

cy Lo oo
VO VD if i) eN(t),

W) =9 15 gk (), i i= ], (6.15)
0, otherwise

Now we need to finay’ to satisfy Equatiori6.12). We know that

. . (1) gK|[12 )
min(VK(t)) = mm(%) = % if lai(t) - o]l = 0. Hence we have

2 if

SYA r's = r$ = rS,
min(V¥(t)) +min(vEt) = { o (6.16)
(fév)z + (rCSV)Z, otherwise
i j
To satisfy Equatiori6.12) we need
CW
0< W (t)<1=0< 1 <1
je%(t) ! je%(t)vik(t) +VE()
or,
V() +VE(D)
w I J
O<cy < —|Ni(t)| ) (6.17)

here|Ni(t)| is the number of neighbors of sensor nada timet, and from(6.16) and

(6.17) we can seleaty’ as

W 2Cy S __ __ ¢S

0<C < fiNwr == (6.18)
1 Cv Cv H

0<cY< O ((f?)z + (rf)2>v otherwise



Weight Design 2:

From Equation(6.12) by assigning the same value to all edge weights we obtain:

_ 1w
wi (1) = N (6.19)
here,wk(1) is defined as
wi (1) = % (6.20)

wherec' is a constant. If sensor nodldoes not observe ceil(OX(t) = 0) then the vertex
weightwk (1) is set to zero.

Therefore we have the following weight design

W
)

W? If |:],
W)= bl i i A1 ieN), (6.21)
0, otherwise

Now we discuss how to select the constafit In order to satisfy Equatio(6.12) we

need the following condition:

cy
0< VKD <1 (6.22)
|
Sincemin(VK(t)) = (r% when||gi(t) — || = 0, we have:
W
0< -2 <1;»0<cg<(r—iv)2. (6.23)
(r9)? i
Finally, the consensus filter 1 (CF1) is summarized as
CF1 : X(+1)=wk(¥M)+ T wh ()
JENi(t)
( w . . . .
\ZIWEVIJ@7 if i#],]eN(t),
W) =9 1 Siengwk (), if =],
| O, otherwise
or,
( W . . .
\%, if i=j,
W) =9 LemO it i eN), (6.24)
\ 0, otherwise
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Consensus Filter 2

Since each sensor node has its own confidence of the measu@fities value of the scalar
field at each cell at each time stewe need to find an agreement among the confidences of
sensor nodes. The consensus algorithm 2 is introduced tthignolverall confidence from
each time step. This overall confidence is the estimated weighit(t), of the weighted
average protocol as shown in Equation (6.39).

Lety¥(I = 0) be the confidence of the measurement of the value of the sieathat cell
k at each time stepfor sensor nodé ory¥(I = 0) = wk(t). Lety¥(l = 0) be the confidence
of the measurement of the value of the scalar field atlcatl each time stepfor sensor
nodej with j € Ni(t), ory‘j‘(l =0) = W'J-‘J- (t). Then, we have the following consensus filter

Y +1) = Wiy + gmwfj (), (6.25)
JeN

In this consensus filter, we use the Metropolis weight [53] as

N oTNEy 1 # T EN),
Wi =1 1-Fjenow (), if i=], (6.26)

0, otherwise
6.3.3 Convergence Analysis

In this subsection we analyze the convergence of the Consdiikser 1.

First, let us define the weight matrix for the whole network as

Wy W -,
Wy W, ... W,
Y . (6.27)

Based on ouwVeight Design 1 and 2 the matrixwX has the following properties:
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(P1) vk =0if j ¢ Ni.

(P2) All elements, fiv, i = 1,...,n and je N;, of the matrixw* satisfy0 < wk < 1.
(P3) Sum of all elements in each row of the maivfxequals to 1.

With the definition of the weight matriwX, we can expand Equation (6.6)ranobile

sensors into space representation as follows

X(1 4+ 1) = wixK(1), (6.28)
or we have
XK1 4+ 1) —xK(1) = wh=1]xK(1), (6.29)
herel is the identity matrix.
AXK = [wk—1]xK(1), (6.30)

hereAxK = xX(1 +1) —x¥(1). We can also rewrite Equation (6.30) into a continuous tashi
XK = AkxK, (6.31)

hereAK = wk—1.

Theorem 5. Given any connected network, and by applying the Consernkas Fas
defined in Equation (6.6) associated with iheight Design 1 or 2 as defined in Equations
(6.15) and (6.21), respectively, the system (6.31) is statiAxK converges to zero.

Proof: The system (6.31) is a linear time-invariant system or @omoous system.
Therefore to show this system stable we need to show thabmstis a Hurwitz matrix,
or all of the roots of the characteristic equation have riegatal parts [123, 124, 126].

Given a matrixB = [bjj]nxn Of the autonomous syster= Bx we have the following
theorem:

Theorem 6(Liao et. al[126]): If the following conditions

(C1)hi <0(i=1,2,...,n) and detB) +# 0; and

(C2) there exist constants s 0 (i = 1, 2,...,n) such that

cjbjj +Zir]:17i¢j lcil|bij| <0,(j=1,2,...,n)
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are satisfied, then B is a Hurwitz matrix.

First let us write matrixA in details as

Wi — 1w - W,
Wi Wap — 1 W,

Al=lagl=| : (6.32)
| why Wy Wi -1 ]

Based on Theorem 6 we can check our mafx We clear see that the conditi@! is
easily satisfied because all diagonal elemw‘iftsf the matrixwX satisfy 0< <1 (see
propertyP2 of the matrixwX). Therefore we obtain that all diagonal elements of the atr
AKX satisfya; = wk —1 < 0.

For the conditionC2, since the sum of all elements in each row of the matrfx
equals to one (see propet®B of the matrixwX), we can easily find the constargsto
letcjajj + 3iLq ;. lcil[aj| < 0. Therefore we can conclude thdt is a Hurwitz matrix, or
the proposed system (6.31) is stable.

As one example we can show thlt is a Hurwitz matrix by showing the roots of the
characteristic equatiof6.33) in the case of X 2 dimension of the matrif\ + 1)1 — wkX.

We have the following characteristic equation for the gys{é.31) as:

detAl —A) = detAl —w*+1) = det((A + )| —w*) =0 (6.33)
here
Atl-wly, —wh o
W AW, L W,
A1) —wk= o ' . (6.34)
v W AW,




For the case of & 2 dimension of the matrixA + 1)| —wX we have
det(A+ 1)1 =W ) = N2+ A(2—wi; —Whp) + 1 — iy — W5, + W, W5, — ;Wi {6-3B)

From the the properti?3 of the matrixw* we havent, = 1 —wk; andw, = 1—w¥,. Plug
thesewX, andw, into Equation (6.35) we obtain

det(A+ 1)1 —w*) = AA + (2—wE; —wh,)] = 0. (6.36)

Equation (6.36) has two roodg = 0, and\, = —2+Wwk; +wk, < 0 since 0< w; < 1

and 0< W, < 1. This finishes the proof for Theorem 5.

6.3.4 Distributed Fusion Algorithm

From the consensus filters 1 and 2 we would like to design ailalistd sensor fusion
algorithm to allow each sensor node to on-line estimate #haavof the scalar field at each
cell based on its own measurement and its neighbor’'s measuts. The overall design
of such a distributed sensor fusion algorithm is shown iruF@g 3. In this algorithm, we
have two phases running at the same time. In the spatial&stiphase, the measurements
of each sensor node and its neighbors at ket time stegt are inputs of the consensus
filter 1. Then, the output of this consensus is the estimatae¥alue of the scalar field
F at cellk at time stefd. In the temporal estimate phase, the confidences (weightisgo
measurements of each sensor node and its neighbors kitdiine step are inputs of the
consensus filter 2. Then, the output of this consensus isstimaae of the confidence of
the measurement of the scalar field at &k time stef. During the movement of sensor
nodes , each sensor obtain several spatial estimates oéline at cellk associated with
its own confidence, hence the final estimate is iterativelyatgd based on these spatial
estimates via the weighted average protocol. The detainf@ament this algorithm is

shown in Algorithm 6.
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Algorithm 6: Distributed Sensor Fusion Algorithm

Input: the Weightvv!?(t), and the measurement of sensor noded its neighbors to
cellk, m¥(t) andn(t)

Output: the final estimate of the cefl Ek(l 1)

for each time stepdo

for each sensor nodedo
Stepl Make a measurement (observatiomt) to cellk if ||g;(t) — k|| < r?

Sensor nodeobtains the measurements of defrom its neighbors and itself

for each iteration ldo
Sensor noderuns the consensus.@ with vvh (1) is defined in(6.15) or

(6.22)
XE(1=0) = mE(t); X< (1 + 1) = Wi (DX(1) + 3 jen (e We (DXE(1)

Sensor noderuns the consensus.@b) withw‘i‘j (1) is defined in(6.26)

V(1= 0) = wif (1) (1 + 1) = Wi (DYK() + X ey W (DY ()

Step2 Obtain the estimate of cellafter running the consensus

Let . be a time step that both consensus filters converge, thenwee ha
EX(t) = X(le); W () = y(le)

Step3 Update process to find the final estimate of the value of thkasc

field at cellk: - Update weight (confidence):

WE(t) = WK(t — 1) + WKt — 2) + ...+ WK(0) (6.37)

- Update the final estimate based on the weighted averagecpiot

Ef(t=0)=Eft=0)=x) (6.38)
B (o) — W (= DESE— 1) + WHOEK 6.39)
| Wi (t—1) + WK (t)
end
end
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Figure 6.3: Framework of distributed sensor fusion alfgponibbased two different consen-

sus filters.
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6.4 Path Planning Strategy

In this section we present the path planning strategy torerteat the MSN can cover the
entire scalar field.
The flocking control algorithm used to control the center e mobile sensor node

formation to track the desired paths is presented as

U = fia+fit

=ci > @(laj—dgllo)nj+c3 > aj@(pj—p)
JENi(t) JENi(t)

—ci (g — ) — H(pi — pr)

—C1" (@ wyugiy) — ) — (P yugi) — P)- (6.40)

Based on the flocking control algorithm (6.40), all mobiles& nodes can form a
lattice formation as shown in Figure 2.6 in Chapter 2, anccdrger of mass (CoM) of the
network as defined in Equation (2.41) can track the leaglepy) successfully as shown in
Figure 2.7 in Chapter 2. Since the network can track the leadellow the network to
cover the entire scalar field we only need to design the patheofeader so that the field
is fully covered. We assume that the leader knows the totalb@u of sensor nodes in the
network. Then based on the distance between sensor ndffieshe leader can compute
the size of the network. Then, our multi-robot path planningblem becomes a single
robot path planning problem. There are some typical typesation planning for a mobile
robot to have complete coverage of the field of interest ssdbhoastrophedrormotion
or wall-following motion [127]. In this chapter we plan thealder motion using a typical

boustrophedromotion [127]. The result of the path planning is shown in Feg6.4.
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Figure 6.4: Seven mobile sensor nodes flock together and towecalar field (the filled
square: 12x 12). The motion path (red color) is generated by the leadwt,the CoM
(black/darker color) of the network tracks the leader witia$i overshoots at sharp change

points of the path.
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Confidence (Weight)

Low confidence cells

Figure 6.5: The confidence at each cell of the scalar field

6.5 Cooperative and Active Sensing

6.5.1 Introduction

In this section we aim to extend our cooperative sensing dvamnk to cooperative and
active sensing in which the mobile sensors have the abditgdjust their movements to
adapt to the environments so that they can improve the gppsifiormance in a distributed
fashion.

The mission of measuring and exploring an unknown field falding its map requires
cooperative and active sensing among mobile sensor nodemaiy scalar field map-
ping applications such as temperature field mapping, seandhrescue, there is a need
to achieve a certain level of confidence regarding the estisnat each location. As we
can see from Figure 6.5, using the normal cooperative sgadgorithm, some cells have
very low confidence. This means that we may miss importaotmétion at these loca-
tions (cells). For example, in search and rescue operat®htSN may miss the objects
at the locations where the confidence of the estimate is rifitisnt. This motivates us

to develop novel active sensing algorithms which can itegboth sensing ability and

146



motion control to adapt to the environments in order to imprthe sensing performance.
Each mobile sensor node needs to cooperate with its neigttadjust its configurations
such as its relative location to the neighbors. By this washeagent can actively build

the confidence map of the environments. In addition, thenesibn and control have to be
performed on-line in order to adapt to the changes of theenmients.

Active sensing in MSNs has recently attracted many reseesch control engineering
[128, 129, 130, 57, 58, 131, 61, 132, 133]. The early work amtdchnique can be found
in [57, 58] where the active sensing algorithm for MSNs taoneate the state of dynamic
targets is proposed. The localization and tracking tasldyonamic targets are addressed.
To achieve active sensing, the mobility of sensing agenislized to improve the sensing
performance. However, the gradient controller for actiessng is designed in a central-
ized way. To relax this limitation, a distributed gradiewintroller is proposed in [61].
This controller is designed by constructing a dynamic aye@nsensus estimator and us-
ing a one-hop neighbor for communication so that both foilwnatontrol and cooperative
sensing are integrated in order to improve the sensing peéioce.

Besides the developed active sensing algorithms for tagiehation, the active sens-
ing algorithms for source seeking and radiation mappinghmen developed [134, 135,
136, 137, 132, 133]. The problem of source seeking is firstesdad in [134], and then it
is thoroughly studied in [135, 136, 137] for the case wheedigradient information of
the measured quantity is unavailable. Specifically, PamgFamrell [135] address chemi-
cal plume source localization by constructing a sourcdilibed map based on Bayesian
inference methods. Mesquigh. al[136] introduce source seeking behavior without direct
gradient information by mimicking E. Coli bacteria. Mayhew al[137] propose a hybrid
control strategy to locate a radiation source utilizingygaldiation intensity measurements.
Additionally, active sensing for radiation mapping is deyed in [132, 133]. The control
algorithm takes into account sensing performance as wdlaamics of the observed pro-

cess therefore it can steer mobile sensors to locationsawhey maximize the information
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content of the measurement data. However, in their work dinfidence of estimates is not
addressed.

Overall, to our best knowledge the existing works in the areactive sensing using
MSNs mostly focus on target(s) tracking [128, 130, 57, 58, 6&nsor placement [131],
source seeking [134, 135, 137, 136] and radiation mappiBg,[133]. The problem of
scalar field estimation and mapping based on multi-agetrtlalised active sensing has not
been investigated yet.

Our goal is to develop a cooperative and active sensing ihigorfor MSNs so that
each sensor only interacts with its neighbors and usesthédbservation to automatically
adjust the configuration of the MSNs such as relative looadiimong sensors, orientation
and focal length of the sensors (camera), etc. to adapt terthieonments and improve
the sensing performance. To achieve this goal the contrsileuld be designed via the
real-time feedback of the sensing performance. By this waycontroller can steer the
mobile sensor to move to the expected locations of the fietdder to improve the sensing
quality. For simplicity, in this work we only focus on adjusgj the relative location among
sensors. Specifically, our problem focuses on how to cotiteomovement of the mobile
sensors to increase the confidence level on the estimates.

The cooperative and active sensing framework is depict&dguare 6.6. In this figure,
the controller designed via the real-time feedback of th&#idence of estimates controls
the mobile sensors to first form a quasi lattice network aed thove the MSN to expected
locations in order to achieve better sensing performance.

To realize the controller, we have two approaches: Dist&wmetroller and Potential

Controller.

6.5.2 Distance Controller

In this section, we consider to increase the confidence lefvektimates over the lower

bound. We design the distance controller to control thesizke network. The main idea
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Figure 6.6: Framework of active sensing via confidence faekib

Distance Controller (U;)
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Current Confidence

of Estimates

Figure 6.7: Diagram of active sensing based on the distaomtteatler via confidence feed-

back

of designing this controller (see Figure 6.7) is to shrink tietwork’s size if any covered
cell of the scalar field has its confidence lower than the ddsine, and recover to the
original size of the network if all covered cells have su#fiti confidence. This approach
Is quite straight forward since shrinking the size of thenaek brings the mobile sensors
closer to the low confidence cells, hence it can increasedahidence level of these cells.
The distance controller is designed based on the flockingralter and the inter-node
distance adjuster. Here the flocking controller was preskintprevious chapters, therefore
we only present the design of the inter-node distance adjust
Let Wy be a desired confidence of the estimates of all cells in tharsfiald, soWy is

a vector of Ix C dimension. Here again C is a total number of cells in the fi€lten, we
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Figure 6.8: lllustration of confidence feedback for loweubd only.

can writeWy = [v_vé,v_vﬁ, ...,V_Vg].

In previous section we defineW!‘(t) being a current accumulated confidence of the
estimates of mobile sensoat cellk. Therefore we have the accumulated confidence of
all cells in the field adV(t) = [v_vl,v_vz,...,v_vc]. Note that if cellk is not covered by any
sensor, the confidend@* = 0.

Let Aw(t) =Wy —W(t) be a difference between the current confidence and the desire
one (see Figure 6.8). We can wrlig (t) as a vector formaAy (t) = [A%, (1), 45,(1), ..., A (1)].

Based on this feedbackyy(t), we can design a distance controller in order to control the

size of the network to obtain a better performance of the denfie as shown in Algorithm

7.
In Algorithm (7),KC® is designed so that"®" > 0. In order to do this we let
Ke M d
— )>0—K < T
M Z o ke Ay (1)
c _ d . -
Therefore we can sele®® = FS TR herec is a positive constant. We can

see that Algorithm 7 can generate the appropriate distasrcthé input of the flocking

controller.
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Algorithm 7: Design of the Internode Distance Adjuster

if A%, (t) > Othen

new KC i k
M is the number of covered cells at timeshich have a confidence less than the

desired one.
else

dnew: d

end

Potential Controller (U;)

Desired Potential Controller

Confidence of + ) q i) Enhanced with L 5 Mobile Sensor Scalar Field
Estimates

Attractive Force

Current Confidence

of Estimates

Figure 6.9: Diagram of cooperative and active sensing basgeithe potential controller

enhanced with attractive force via confidence feedback.

6.5.3 Potential Controller

In this section we design another controller called po&tntroller to control the move-
ment of mobile sensors in oder to increase the confidencé ¢évbe estimates. The
structure of cooperative and active sensing scheme is shofigure 6.9. The main idea
of this design is to create a virtual attractive force at tekksadhat have lower confidence
than the lower bound (see Figure 6.8). In order to implema@stitlea we design the po-
tential controller consisting of flocking controller witkl@itional attractive force, so that it

can drive a mobile sensor to move closer to the cells that lsaveonfidence.

151



Figure 6.10: lllustration of creating virtual attractiverées in the cells which have the

confidence level lower than the lower bound.

Design of Attractive Force

In this subsection, we introduce the attractive force teonthe Potential Controller to
achieve similar goal as the Distance Controller. The attra¢orce will steer the mobile
sensors to the cells which have low confidence. In order thidpfirst letgX be the location
of the cell that has confidence lower than the lower bound,@O\(t), hereOk(t) is the
subset of cells covered by mobile sensat timet, which have confidence lower than the
lower bound.Ok(t) C OF(t), hereOF(t) is the set of cells covered by mobile sensat

timet, and it is defined as
OF(t) = {ke 9o ok —aill <rf.90={1,2,....k}}. (6.41)

For these cells we will create the virtual attractive foroattract the mobile sensor to
move closer to them in oder to get higher confidence of thenastis at these cells. This
idea is illustrated in Figure 6.10.

At each timet, the mobile sensarmay have several cells which have confidence lower
than the desired one. In order to steer the mobile sensortmthese low confidence cells,
the virtual attractive force are generated at these céltbelcell has lower confidence the

bigger attractive force is generated. To express the dethilhe attractive force design,
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first let V_Vé be a lower bound of the desired confidence of the estimatedl oélés in
the scalar field, anWé is a vector of 1x C dimension. LetAy,(t) = V_Vé —W(t) be the
difference between the current confidence and the lowerd(see Figure 6.1105 (t) =
(AL, (1),A%,(1),...,AG(t)]. Based on this feedbachky, (t), we can design an attractive force

as shown in Algorithm 8.

Algorithm 8: Design of Attractive Force

if O-(t) # 0 or A, (t) > 0then
fot = — Z C2" @art (]| — i) FYt
keOr (1)

att __ D (1) k L : "
G = CailﬂAW(t))z,AW(t) € Oy (1), herec, is a positive constant.

f_att -0
P =

end

Kk
In Algorithm 8, C& = ¢ — Sl controls the amplitude of the attractive force.
) V) P
Namely, if cellk has low confidence ok, (t) is large, the the amplitude of the attractive
force is big in order to attract the mobile sensor to go toaladisis cell.

The attractive force functiopy (||gk — o ||) is designed as:

K_ g K_qg
19— Gilloy  N%e—Gilo_ \ ory).

Qatt (|| oK — Gil|o) = pn( :
¢ e rs 1+ |k —aill2

here,r5 = ||r%||s (r®is sensing range as defined before), and the bump furmt(cﬂﬂg—;g%)
with h € (0,1) is defined as [23]

(

oK —aillo
" 1, H S H c [O,h)
lac—aillo, lok-alo |, -
ph(T) ~— Y 0.5[14 cogm( fsfh NI, HqcrgChHo e [h1] (6.42)
0, otherwise
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The vector along the line connectinfy (k € O-(t)) andg; is defined as:

N3 = (ol — )/ /14 ll s — 12,k € OH). (6.43)

here,¢ is small positive constant.

The formation controller is used to control the network tori@ quasi lattice formation,
and it is designed based on a pairwise attractive/repufsiee as discussed in previous
chapter. This formation controller [23] is restated asdok

f*=cf 5 @laj—agillo)nj+cz > aj(@)(pj—pi- (6.44)
jeNi(t) jeNi(t)

The leader tracking controller is used to control each neadeinsor to track the virtual
leader which generates the path for path planning purpgseeasnted in the Path Planning

section (Section 6.4). This controller is presented as

fl = —ci(gi—a) — co(pi— pr) (6.45)

herec} andc, are positive constant, arggl and p; are position and velocity of the virtual
leader, respectively.
Finally, we propose the whole control algorithm for the cexgtive and active sensing

including the attractive force term only as follows:

u = fiatt+ fia+ fit

= Z Cﬁtt(Patt(qué—quo)nﬁE
Or (1)

ke
+cf > @(llaj—dillo)nj+cz Y aj(@)(p—pi)
jeNi(t) jeNi(t)
—ci(ai — o) — SH(pi — ) (6.46)

6.5.4 Quasi Uniformity of Confidence

Based on the attractive force design in the previous secti@nconfidence level can be

increased, however some cells may have too high confidengis. iS unnecessary since
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Figure 6.11: lllustration of confidence feedback for quasfarmity of the confidence.

The upper bound and lower bound are used to create a quasinrof the confidence.

this needs more measurements, and causes more energy @tiosunTherefore, it is
desirable if we can maintain a bound of the confidence pedan®, or we call a quasi
uniform confidence (see Figure 6.11). Hence, we introduapalsive force term to the
Potential Controller in order to steer the mobile sensorsdwe away from the cells which
have too high confidence. The structure of cooperative ativeasensing scheme is shown
in Figure 6.12. The main idea of this design is to create ai@irattractive force at the
cells that have lower confidence than the lower bound as showhe previous section,
and a repulsive force at the cells that have higher confidérae the upper bound (see
Figure 6.11). In order to implement this idea we design themtoal controller consisting
of flocking controller with additional attractive and repive forces, so that it can drive a
mobile sensor to move closer to the cells that have low condéieland move away from the
cells that have high confidence.

Let g be the location of the cell that has confidence higher thampiper bound (see
Figure 6.11). For these cells we will create the virtual tspe force to steer the mobile
sensors to move away. This idea is illustrated in Figure.6Th@ repulsive force is created

based on thé®P controller as shown in Algorithm 9.
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Figure 6.12: Diagram of cooperative and active sensingdasethe potential controller

enhanced with attractive and repulsive forces via confiddaeedback.
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Figure 6.13: lllustration of creating virtual repulsiverdes in the cells which have the

confidence level higher than the upper bound.
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To express the details of the repulsive force design, fitsz? be a upper bound of
the desired confidence of the estimates of all cells in thiasteald, anoWE| is a vector of
1 x C dimension. Let\(t) :V_Vg —W(t) be the difference between the current confidence
and the upper bound (see Figure 6.14,(t) = [A%,(1),A3,(1),...,A% (1)]. Based on this

feedback Al (1), we can design a repulsive force as shown in Algorithm 9.

Algorithm 9: Design of Repulsive Force

if OF(t) # 0or A%, (t) < Othen

freP — > Cic Prep(l1oc — aillo)niy’
keOl ()

k
C P = cr% A%, (1) € A (1), herec is a positive constance.

firep —0

end

In Algorithm 9, 0H (t) is the subset of cells covered by mobile serisatitimet, which
have confidence higher than the upper bound. Obvio@lyt) c OF(t). C;°P is used to
control the amplitude of the repulsive force. Namely, if éghas high confidence, m{}\,(t)
is large, the the amplitude of the repulsive force is big ihesrto push the mobile sensor to
move away from this cell further.

The repulsive force functiogrep(||ok — gil|s) is designed as [23]:

||q('§—qi||o)( o8 —gills — 5
L Vi+(lok—dillo—r5)?

The bump functiorph(w) is defined as (6.42), but it is now applied for the high

fa

confidence cells dk € O (t). The vector along the line connectigf (k € O (t)) andg;

—1),ke O (1).

@rep([| 9K — Gillo) = ph(

is defined as:

MeP = (dk— )/ /1 +ellck— qif}2, ke OF (t). (6.47)
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Finally, we propose the whole control algorithm for the cexgtive and active sensing

including both attractive and repulsive force terms afed:

u = firep+ fiatt+ in( + fit
= Clr(ep(Prep(HCIE —Gi ||0)nir:3kp
keO' (1)
+ C2"@att (|| — i | o) %}
keOL (1)

+cf Y eulllaj —aillo)nj+c3 > aj(a)(pj—pi)
JeNI(t) JENI(t)

—ci(ai — ) — SH(pi — ) (6.48)
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6.6 Simulation Results

In this section we test the Consensus Filters 1 and 2, theawrsdistributed sensor fusion

algorithm to build the map of the scalar field.

6.6.1 Tests of Consensus Filter 1 and 2

In this subsection we test the Consensus Filter 1 and 2.

The Consensus Filter 1 is tested for the case of a singlekcelll. We randomly
generate a connected network of 10 nodes as shown in Figldéah The cell is located
at the center of the network (the read square in Figutd(@)). The ground truth of the
measurement at this location is 50. In this case the locafitme measurementis inside the
sensing range of all nodes, hence all nodes can make its oasuranent to this location.

Each node makes a measurement as
mt =Fl4nl.

hereF! = 50, andn! is the Gaussian nois#y(0,V;1), with Vi1 = %, cy = 0.01,
$=r5=..=r5,=1.6,andq= % 51 q. Theinitial condition for running the Consensus
Filter 1 isx}(I = 0) = m.

The results of the convergence of the Consensus Filter kiassd with two differ-
ent weights Weight Design Hefined in Equation (6.15) andleight Design 2efined in
Equation (6.21), respectively, are presented in Figurd.6ld Figure 6.14(a) to compare
the speed of the convergence &f({) — E!) among nodes we generate a connected net-
work with 10 nodes in which we let the node 4 have only 4 neigblhile other nodes
have more than or equal to 7 neighbors. Observing Figure(l.1) we can see that
(<t —EY), i =1,2,...,10, converge to zero after 300 iterations Weight Design Jand
5 iterations folWeight Design 2Therefore, it is better to us#&eight Design Zince it can

converge faster. We can also see that node 4 converges stamehe other nodes because

it has less neighbors. Additionally, to clearly see the engence, we show the result of
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Figure 6.14: (a). 10 nodes estimate the value at lkc€flink square). (b, c) Result of
convergence of 10 nodes, and agreement of 10 nodes wherirappfgight Design 1In
(6.15). (d, e) Result of convergence of 10 nodes, and agreementraddés when applying

Weight Design 2n (6.21).

the agreement among nodes in Figure 6.14(c, e).

For testing the Consensus Filter 2, we let each sensor meake/it measurement as
m =Fl4nt

hereF! = 50, andn! is the Gaussian noisd|(0,1). The initial condition for running the
Consensus Filter 2 ig (I = 0) = m.

The results of the convergence of the Consensus Filter 2 25)6vith the Metropolis
weight, (6.26), are presented in Figure 6.15. Namely, EE@ut5(b) shows the convergence
of (yi(1) — 4519 y}(0)), and we can see that they converge to zero after 40 iteation
Figure 6.15(c) shows the agreement among 10 nodes, and wseeathat all nodes in
the network can agree on the same average vqlfygﬂflyil(O)). We also see that node 1

which has less neighbors than others converges slower.
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agreement of 10 nodes when applying the Consensus Filte@26) with Metropolis

weight (6.26).

Figure 6.16: (a) the original map of the scalar fi€ld(b) the built map of the scalar field
F using Algorithm 6.

6.6.2 Simulation Results of Cooperative Sensing

We model the environment (scalar fidhd as multiple variate Gaussian distributions. We
set® = [30 10 8 2(, and use four multiple variate Gaussian distributidfs<4), and each

one is represented as:

o — L gheeacy-27
det(Cy) (212
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2.25 02999

hereC; = , with ¢? = 0.1333.
0.2999 225
1 1w 1C-L(y—45)T
W= e2(x 1)C, " (y-4.5) 7
det(Cyp)(2m)2
1.25 01666 _
hereC, = , with ¢9 = .
0.1666 125
1 1 1/, T
e2(x+2)C37(y-3) ,

® = aelCy) (22

hereCz = Cp, andc3 = c9.

1 ed (-G, y+4)T
det(C4)(2m)2

(p4:

Y

hereC4 = Cz, andc) = c3.

The fieldF has a sizaxy=12x 12, and itis partitioned into 25 25= 625 cells. The
result of the built map of the scalar field is shown in FiguE66.The snapshots of multiple
sensor nodes forming a flock and building the map of the unkrsmalar field are shown in
Figure 6.17. The errors between the built and original mapse and three dimensions are
shown in Figure 6.18, 6.19, respectively. Three algorithihgorithm 1 with the weighted
average update protocol, Algorithm 1 with the normal averagdate protocol, and the
centralized fusion algorithm, are compared. We see thatrthp error in Algorithm 1
with the weighted average update protocol is similar to the wsing the centralized fusion
algorithm, but slightly smaller than the one using Algomitii with the normal average
update protocol. The confidence map which is built based @summation of the weights

at each cell of the fiel& is shown in Figure 6.20.
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Figure 6.17: The snapshots of building the map of the scalrfi using Algorithm 6 and
flocking control algorithm (6.40).
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Figure 6.18: The error between the built and original mapsficcells in one dimension.
(a) for Algorithm 1 with the normal average update protocbl); for centralized fusion

algorithm; (c) for Algorithm 1 with the weighted average apel protocol.

Figure 6.19: The error between the built and original mapsliacells in three dimensions.
(a) for Algorithm 6 with the normal average update protocol) for centralized fusion

algorithm; (c) for Algorithm 6 with the weighted average apel protocol.
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Figure 6.20: The confidence at each cell of the scalar keld
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6.6.3 Simulation Results of Cooperative Sensing and the Flking Control with a

Minority of Informed Agents

In this subsection we use the proposed distributed sensmmfi\lgorithm 6, and the pro-
posed flocking control algorithm with a minority of informadents, Algorithm 3 in Chap-
ter 3, to build the map of a scalar field.

In this flocking control algorithm, only a few sensor nodesselst to the virtual leader
know its position and velocity. However, based on our altponi all mobile sensor nodes
can flock together and form a network of lattice formationr @acking control algorithm
allows the mobile sensor network to maintain the conndgti@nd reduce the tracking
overshoot.

To evaluate the tracking performance the center of mass jGdNhformed agents

(sensors) is defined as

~inf _ 1<n AiNf
qa =s2i=1Gi
inf

_ (6.49)
P =53
To model the environment (scalar fidtg four multiple variate Gaussian distributions

(K =4) with © = [20 50 35 40, and each one is represented as:

o= 1 a2,
det(Cy) (212
225 02999 | _
hereC, = , with the correlation factoe§ = 0.1333.
0.2999 225
= 50110, -5
0= exs e,
det(Cy) (212
1.25 01666 .
hereC, = , and the correlation fact@ = c).
0.1666 125
1 3 (x—4.3)C3 (y-3.5)7
% = ez : : ,
det(Cz)(2m)?
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hereCz = C,, and the correlation fact@ = c3.

o = 1 gaciyaT,
det(Cy) (22

hereC4 = Cg, and with the correlation factaf) = c3.

The fieldF has a size of 11 x 10, and it is partitioned into into 483 cells. The result
of the built map of the scalar field is shown in Figure 6.24. Bhapshots of multiple
sensor nodes forming a flock and building the map of the unkngsalar field are shown
in Figure 6.22. In this figure, we can see that only two molelesers (blue squares) have
information (position and velocity) of the virtual leadey,(p;), but they can drag the whole
network to track the virtual leader while maintaining théwark connectivity. The errors
between the built and original maps in one and three dimassice shown in Figure 6.23
(a, b), respectively. The final confidence of the estimatael eell of the field- is shown
in Figure 6.23 (c). The confidence map represents the agcafdlee estimate of the field.
The higher confidence, the better accuracy of the estim&te c&lls near the border of the
field have measurements compared with the ones inside the Tibkrefore, these border
cells have lower accuracy (see Figure 6.23 (c)) correspgngith more error (see Figure
6.23 (a, b)) than other cells.

Figure 6.25 shows the tracking error between the positiothefvirtual leader d;)
and the average of the position of the two informed agentsaf{q"f)). We can see that
the tracking performance has a small off-set distance letwiee virtual leader and the
informed agents. At the sharp turning points of the path efuintual leader, the tracking

performance has bigger error.
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Figure 6.21: Seven mobile sensor nodes flock together aret toe scalar field (the filled
square: 12x 12). The motion path (red color) is generated by the leadwt,the CoM
(black/darker color) of the network tracks the leader wittai overshoots at sharp turning

points of the path.
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Figure 6.22: Snapshots of multiple mobile sensors flockoggther and building the map
of the scalar field. In these snapshots, only two mobile ssn&tue squares) have infor-
mation of the virtual leader. The white line is the trajegtof the center of of position of

two informed mobile sensors.

x 10

Error between the true and estimated maps
I - T - T = )
Error between the true and estimated maps

) 0 100 200 300 400 500
Cell Index
(a)

Figure 6.23: (a)- The error between the built and true mapalfeells in one dimension;
(b)- The error between the built and true maps for all cellthiree dimensions; (c)- The

three dimensional confidence map.
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Figure 6.24: (a) The original map of the scalar fiEld(b) The built map of the scalar field
F using Algorithm 1.
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Figure 6.25: Tracking error between the position of thewaleader ¢;) and the average

of the position of the two informed agentméariq"’)).
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6.6.4 Simulation Results of Active Sensing

In this subsection, we test our cooperative and active sgrdgorithms and compare them
with the normal cooperative sensing algorithm in terms efgbnsing performance.

As before we model the environment (scalar fiEl[das multiple variate Gaussian dis-
tributions. We se® = [20 50 35 40, and use four multiple variate Gaussian distributions

(K =4), and each one is represented as:

o= L deaciy-2T,
det(Cy)(2m)?
225 02999 | _
hereCy = , With the correlation factoc‘f =0.1333.
0.2999 225
1 L 1C My 5)T
(pz = ez 2 : ,
det(Cy)(2m)?
1.25 01666 _
hereC, = , and the correlation fact@ = c.
0.1666 125
1 3«43y (y-35)T
%3 = e204 o,
det(Cg) (212

hereCz = C,, and the correlation fact@ = c3.

1 e3(x=3C; H(y+3)T
det(C4)(2m)2

(p4:

Y

hereC4 = Cz, and with the correlation factaf) = cJ.

We set the lower bound of the confidence level 5:010°, and the higher bound of
the confidence level is.9 x 1C°.

The fieldF has a size of 1& 9, and it is partitioned into 110 cells. The snapshots of
multiple sensor nodes forming a flock and building the maphefunknown scalar field
are shown in Figure 6.26. The errors between the built arginal maps in one and three

dimensions are shown in Figure 6.27 (a, b), respectiveturei 6.27 (a) indicates the map
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Figure 6.26: Snapshots of building the map of the scalar kalding Algorithm 6 and the

cooperative and active sensing algorithm (6.48).
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Figure 6.27: (a)- The error between the built and true mapsfiocells in one dimen-
sion; (b)- The error between the built and true maps for dlé@e three dimensions using

Algorithm 6 and the cooperative and active sensing algori$.48).
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Figure 6.28: Confidence over the cells in 3 dimensions: (aaétive sensing with Poten-
tial Controller using attractive force only, Algorithm 4&) ; (b) for active sensing with

Potential Controller using both attractive and repulsigorithm (6.48).
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error corresponding to the index of the cell, while Figur276(b) indicates the map error
corresponding to the location of the cell.

The confidence maps in three dimensions of the active seafgogthm with the Po-
tential Controller are shown in Figure 6.28. This three disienal confidence map in-
dicates the confidence of the estimate at each cell corrdgppmith its location in the
scalar field. We can see that the Potential Controller usotg httractive and repulsive
forces (see Figure 6.28 (b)) performs better than that ofgusinly the attractive force since
the confidence level is increased, and the quasi unifornfitiiedconfidence performance
is achieved.

For more details, the final confidence of the estimate in ongedsion at each cell
of the field F is also shown in Figure 6.29. In this figure we compared fouthwds
together. Namely, Figure 6.29 (a) shows the confidence ahabcooperative sensing,
where Algorithm 6 and the flocking control algorithm (6.40¢ aised. Figure 6.29 (b)
shows the confidence of active sensing with the DistancerGigert where Algorithm 6
and the flocking control algorithm with the distance coréoln Algorithm 7 are used.
Figure 6.29 (c) shows the confidence of active sensing wélPtitential Controller, where
Algorithm 6 and the cooperative and active sensing algori{®.46) are used. Figure 6.29
(d) shows the confidence of active sensing with Potentiati©ter, where Algorithm 6 and
the cooperative and active sensing algorithm (6.48) ard.uBeom these results, we can
see that by using both attractive and repulsive force ctietsave have better uniformity of
the confidence performance. This indicates that all the o¢lthe scalar field are observed
with a certain level of confidence.

To see how the mobile sensors adjust their movement in oadebtiain better con-
fidence performance, we show the distance between the msdnkor 1 and one of its
neighbors in Figure 6.30 (d). We see that this distance iagihg over time, or the mo-
bile sensor tries to move closer to the low confidence cellsand stay away from the

high confidence cells. This creates the better uniformithefconfidence (see Figure 6.29
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(d)). To see the advantages of the active sensing algoritbroompare it to three other
algorithms, normal cooperative sensing, active sensirly thie Distance Controller, and
active sensing with the Potential Controller integratimiyattractive force. Based on this
comparison, we see that for the normal cooperative sensater-nodes distance does
not change (see Figure 6.30 (a)) therefore the confidencs ggood (Figure 6.29 (a)), and
some cells have very low confidence. For the active sensitigtive Distance Controller
and the Potential Controller using only attractive forcey(iFe 6.30 (b, c)), the results are
better than that of the normal cooperative sensing alguariiince the mobile sensors try to
adjust their movement to achieve maximal confidence at eglthHHowever, the uniformity
is not good as shown in (Figure 6.29 (b, c)).

To see the advantages of the active sensing we compare ithveithormal sensing in
term of mapping error. As shown in Figure 6.31 we see thatttox between the original
map and the built map in one dimension over cells is small EBgare 6.31 (b)) when
applying the active sensing and big when applying the noseaking (see Figure 6.31
(&)

In Figure 6.32, we can see that the higher confidence comesgo the smaller error,
and the lower confidence may lead to the bigger error. Moreispaly, at cells 10th,
92th and 100th the confidences are smallest (see Figure®)3Rérefore at these cells the
errors between the original map and the built map are biggestFigure 6.32 (b)).

To see the effectiveness of the quasi uniformity of the cemfioe, we collect the total
number of measurements at each cell as shown in Figure 6.88awsee that for the co-
operative and active sensing algorithm using the Pote@oaltroller with attractive force
only, some cells have very high number of measurements. i3 hisnecessary because it
may cause more power consumption to estimate the value s tetls. For the cooper-
ative and active sensing algorithm using the Potential @tat with both attractive and
repulsive forces, we can reduce the number of measuremethtsse cells corresponding

to the one using attractive force only.
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Figure 6.31: Error between the original map and the built magme dimension over cells:

(a) for the normal sensing; (b) for the active sensing.
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Figure 6.32: (a) Confidence over cells; (b) Error betweenaitiginal map and the built

map in one dimension over cells.
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Figure 6.33: (a) For Potential Controller with attractieede only; (b) For Potential Con-
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6.7 Summary

This chapter presented cooperative and active sensingtalgs for mobile sensor net-
works to build the map of an unknown scalar field. The propakstiibuted sensor fusion
algorithm consists of two different distributed consensitisrs which can find an agree-
ment on the estimates and an agreement on the confidenceg aemmsor nodes. Each
sensor node cooperates with neighboring sensors to estthmavalue of the field at each
cell. The final estimates of the values of the scalar field adated on-line based on the
weighted average protocol. For the active sensing, the Imgbnsors can automatically
adjust their movement to achieve quasi uniform confidensgeEmental results are col-
lected to demonstrate the proposed algorithms.

In our measurement or observation model defined in Equai&) (ve model the vari-
ance of noise based on the normalization of the distancedegtthe location of the sensor
and the measurement location (cell location). To avoid ma'amce\/ik(t) to be equal to
zero when the distandg (t) — ¢|| is equal to zero, we introduced a small consiant
However, there are other possibilities to model the ungegtaf observation which should
depend on what kind of sensing device is used. Additionaly,can see that the confi-
dence of the estimate as defined in Equation (6.37) is basdldeoaccumulated weight,
orV_V:((t) € [0 ). Therefore, it could be desirable if other measure of confidecan be

explored to ensure that the confidence is normalized betaeenand one.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This dissertation develops cooperative control, lear@ngd sensing algorithms in a dis-
tributed fashion for MSNs to realize coordinated motionteoln intelligent learning and
sensing situational awareness.

For single target tracking, thgingle-CoMandMulti-CoM flocking control algorithms
are proposed to make the CoM of the sensor network convertipe tiarget. This enables
the mobile sensors to track and observe the target mordieéfiyovhile maintaining their
formation in the obstacle space. The comparison among tlaeeng control algorithms
(No-CoM Single-CoMandMulti-CoM) shows that the tracking performance in the flock-
ing control withSingle-CoMandMulti-CoM is better than that in the flocking control with
No-CoM

To deal with the situation where only very few agents havertfegmation of the target,
the decentralized flocking control algorithm which utizeminority of informed agents is
proposed to lead the whole network to track the target whdentaining the connectivity.

To deal with changing environments the adaptive flockingradalgorithm is proposed
in which each agent can cooperatively learn the network'ampaters in a decentralized
fashion to change the size of network in order to maintaimeotivity, tracking perfor-
mance and similar formation when passing through a narr@aespmong obstacles. To
see the benefit of the adaptive flocking algorithm we compéngdh the regular flocking
control algorithm, and we found that the connectivity, fatian and tracking performance

in the adaptive flocking control algorithm are better thawsthin the regular flocking con-
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trol algorithm.

For multiple dynamic target tracking, the SGGP algorithnpiieposed to solve the
problem of splitting/merging the sensor agents from thevaek. Also, to demonstrate the
benefit of this algorithm we compare it with the RS algorittamd the results show that the
SGGP algorithm outperforms the RS algorithm.

In noisy environments, a flocking control algorithm is prepd to coordinate the activi-
ties of multiple agents through noisy measurements. Basedioalgorithm, all agents can
form a network and maintain connectivity. We show that evéh woisy measurements
the flocks can achieve cohesion and follow the moving taffee. stability and scalability
of our algorithm are also investigated.

To create adaptive and intelligent MSNs we propose a hylgates that integrates re-
inforcement learning and flocking control. Two problems ialtirrobot concurrent learn-
ing of cooperative behaviors are studied. The first problemaw to generate efficient
combination of high level behaviors (discrete states anids) and low level behaviors
(continuous states and actions) for multi-robot cooperatand the second one is how to
conduct concurrent learning in a distributed fashion. Assalt, the proposed hybrid sys-
tem can allow MSNSs to learn avoiding predators while maimtey network topology and
connectivity. The stability and scalability of the propdsystem are given.

Additionally, we propose a novel method for multiple moksknsor nodes to build a
map of a scalar field through noisy measurements. Our metbosists of three parts.
First, we develop a distributed sensor fusion algorithragnating two different distributed
consensus filters to achieve cooperative sensing amongrsemdes. Second, we use the
distributed flocking control algorithm to drive the centdrtioe mobile sensor formation
to track the desired paths generated. Third, we build a patimpg strategy to obtain a
complete coverage of the field. We also extended our coapessnsing to active sensing
in which the mobile sensors have the ability to adjust the?wvements to adapt to the

environments in order to improve the confidence of the eséma
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Our work lays the foundation for developing intelligent mootcontrol and situational

awareness for MSNs which can be used in many applications.

7.2 Future work

There are several potential directions that can extend ttk in this dissertation.

First, we can extend our cooperative and active sensingighronulti-agent learning.
We have realized the cooperative and active sensing wherereabile sensor can auto-
matically adjust its relative location through the confidefeedback. However, it is better
if each mobile sensor can learn the full sensor network cardigpn so that better sensing
performance can be achieved. More specifically, each meeilsor has to learn (i) how to
find the optimal configuration of MSNs, and (ii) how to make idems for next actions in
order to maximize information gain and obtain the uniformfodence of estimates. In our
cooperative sensing algorithm in Chapter 6, we assumehtbdieid of view (FoV) of each
agent is 360 degree. However it may not be valid since mangoserave limited FoV.
One example of the coverage for multiple mobile sensorshmitibled FoV is shown in Fig-
ure 7.1. Therefore we can extend our cooperative sensirfgetedenario of limited FoV.
Through the reinforcement learning, at each moment eaosean select the right action
in order to obtain maximum coverage and the certain confi@eet of the estimation.

Second, we can implement our cooperative and active seakjogthms on real mo-
bile sensor networks. We can use our new developed platfofm®bile robots as shown
in Figure 7.2. These mobile robots are WiFi enabled, haw®€R with an CPU: Intel
Atom Z530, 1.6Ghz, LAN: Gigabit Ethernet, WLAN: 802.11g, tBceiver. These robots
are also equipped with a variety of sensors including lessge finder URG-Hokuyo [138]
with 240 degree of scanning range, fish-eyes camera Q24 Wig9B60 degree of viewing
range, and webcam. In addition, more sensors such as telumgesansor, sonar, ultrasonic
sensor and magnetic sensor can be readily added to the Wbdtas already successfully

developed a software of fully autonomous robot localizaaod object tracking based on
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Figure 7.1: lllustration of coverage with limited sensiagge.
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Fit PC2

Fish-eye camera

(Q24)

Figure 7.2: A mobile sensor network test bed.

the laser sensor and fish-eye Q24. This mobile sensing plaifoan ideal experimental
setup for test and evaluation of the cooperative and actéwsisg associated with dis-

tributed learning and coordination control algorithmsN¥®BNs.
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