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Chapter 1

Introduction

1.1 Motivation

During the past few years the interest in developing new control algorithms and

control tools for cooperative mobile robots has been constantly increasing. This is

due to the desire of substituting men with mobile robots in hazardous environments

both in the civilian and military domains.

It is clear that a team of mobile robots can accomplish several tasks in a more

efficient way, some examples could be mine sweeping, search and rescue and environ-

mental monitoring. Having a team, instead of a single agent, will permit differenti-

ation of skills among the agents. In this way, it would be possible to have several

smaller agents equipped with different sensors or actuators instead of a single multi

equipped agent. Groups of smaller differentiate agents would have advantages in the

mobility point of view. In fact, it is easier for a small agent to move in a hostile

environment. Advantages will also come in the reliability point of view, for example,

if an agent with a specific skill fails it may be substituted from another agent in the

team with the same skill, ensuring the accomplishment of the task.

On the other hand, the presence of multiple unmanned agents brings up problems
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regarding the interaction among them. It is desired, in fact, that they cooperate,

exploiting their different capabilities to accomplish the common task, while avoiding

to interfere within each other. All teammates are both a necessity, because they

compensate for lack of skill, and a possible threat because their presence can lead to

a collision or in general limit the range of maneuvers.

It is obvious, then, that there must be a coordinating algorithm able to deal with

all these issues. The algorithm also needs to have others properties, like scalability

over the number of robots (it is desirable to use the same algorithm for small and

large groups) and the computation power requested. Since resources are limited, like

limited amount of power supplies, communication distance and so on, it is necessary

to design a control scheme that takes into account these constraints and gives an

optimal solution.

(a) Geese flying in the V formation. (b) School of fish.

Figure 1.1: Example of cooperation in nature.

One of the first attempts to address the coordination problem was by borrowing

from nature. There are several examples in nature of entities working together to

accomplish a task in a more efficient way. For example, geese fly in the characteristic V

formation because this formation minimizes the energy required to fly, or fishes move

together as a school such that they appear bigger to possible predators, see Fig. 1.1.
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By studying animal behavior, simple coordination rules have been proposed to solve

the coordination problem [23]. Those rules apply to each agent and are based only

on the local sensing information and they do not require any kind of communication.

For these reasons, they are easy, and computationally inexpensive. They also scale

really well on the number of agents because even though the number of agents in the

team is increasing the only possible interaction that can happen is among agents in

the sensing range, see Fig. 1.2. The application of the rules derived from nature lead

to what is usually defined flocking. Flocking is an interesting emergent behavior that

has been and it is widely studied to prove stability and convergence properties [23].

Unfortunately, flocking is not enough in most cases and more complex cooperation

techniques are required. Moreover, flocking does not contain any optimization criteria.

Agent sensing range

(a) Team with few agents (b) Team with many agents

Figure 1.2: When the number of agent increases the number of sensed agent does not
increase too much.

A possible alternative to address the coordination problem is by enforcing some

kind of formation. Several control algorithms for formation control can be found in

the literature and this is a current topic. Although formation control has most of

the proprieties of simplicity, scalability and optimality, this approach is not flexible

enough when the task becomes complex.
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Unavailable space

Figure 1.3: The space of the possible position available for the agent is made non-
convex due to the presence of other agent.

The method used to address the cooperation problem in this work is the model

predictive control algorithm (MPC) or receding horizon control (RHC). This chosen

algorithm will be explained in more details in the next chapters. This algorithm con-

tains the properties needed to solve the problem. In fact, the MPC is based on an

optimization problem, so the control input will fulfill the optimality criteria. More-

over, since the control law is computed on-line it will be possible to consider dynamic

changes in the environment. It also allows to include in the problem constraints on

the inputs and the state variables. The problem of having a flexible algorithm, even

thought the task gets complicated, is not solved yet. In fact, the use of classical con-

vex optimization does not easily allow modeling the tasks when they involve logical

statements or implications. An easy example is collision avoidance among team-

mates. This is a basic requirement for any cooperative algorithm. To avoid collisions

each agent needs to stay away from the areas where others agent are, see Fig. 1.3.

This makes the space of possible positions of each agent a non-convex set. For these

reasons, convex optimization cannot be used.
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For the mentioned reasons it has been decided to use, instead of classical convex

optimization, mixed integer linear optimization (MILP). MILP offers a series of tools

to model logical statements, as for example AND and OR, or implication statements,

like IF-THEN or IF-THEN-ELSE. Moreover, the use of discrete variables makes pos-

sible to model a wide range of interesting problems.

1.2 Contributions

Mixed integer linear programming has been widely used for off-line trajectory plan-

ning for the flexibility it offers in modeling several different problems. Lately, the

MILP has been used for the underlaying optimization problem in the MPC algo-

rithms. The problem that has to be faced is the time constraint MPC brings out. In

fact, when the MPC technique is used, the optimization problem needs to be solved

as fast as possible. On the other hand, the MILP is an NP-hard optimization problem

and so the solution time may grow exponentially.

The first attempt we made to solve the cooperative control problem was by using

the MPC algorithm in which the underlying problem was formulated as an MILP.

The problem with this approach is that it does not scale well on the number of robots

in the team and on the complexity of the environment and of the task. This is due

to the fact that the MILP becomes too hard to be solved efficiently.

The main contribution brought to this work is a different approach to the coop-

eration problem. Instead of formulating a single global flat problem to represent the

cooperation problem, a hierarchy structure is introduced. In particular, two levels

are defined. The higher-level makes decisions about tasks related to the whole for-

mation, and is actually the one taking into account all the cooperating tasks. The
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lower-level offers services related to the single agent. At this level will be taken into

account problems like collision avoidance, obstacle avoidance, and all other tasks not

requiring an explicit cooperation among agents.

Using this new structure, instead of solving a single more complicated problem,

several easier problems will be solved. This will reduce the time needed to solve the

optimization problem making the MPC/MILP implementable even when the number

of agents increase and the environment and the tasks get complicated. The cost

associated with the reduced computational time is the loss of global optimality. In

fact, the solution obtained with this hierarchical approach may be worse than the one

it would be obtained solving the single global problem.

1.3 Thesis outline

This thesis is organized in the following way. In chapter two, a literature review about

coordination control is given. In this chapter all the mathematical tools that will be

used in the analysis are also introduced. In particular, basic concepts about model

predictive control algorithm and mixed integer linear programming will be covered.

In chapter three, the problem is formulated. In this chapter an overview of the

task required from the team is given. The model of the robots and the environment

in which they are supposed to move is also described. The chapter ends with a formal

definition of hierarchical and decentralized optimization.

In chapter four, the model predictive control based on the global optimization

problem is described. After defining the open-loop optimization problem, a brief

description of the simulator used to test the algorithm is given. At the end of the

chapter, the simulations obtained are reported and a discussion about the applicability
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of the algorithm when the size of the team or the complexity of the environment

increase is done.

Chapter five is dedicated to the hierarchical/decentralized approach. The first

part of the chapter is dedicated to the formulation of the higher and lower level

optimization problems. Some heuristics to improve the performance of the algorithm

are also presented. Then, it is given a brief explanation of the simulator used to test

the algorithm. The chapter is concluded with the simulation result and a comparison

between the performance in term of optimality and computational time of the two

algorithms presented.

The last chapter is dedicated to some conclusions and future work.
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Chapter 2

Related work

In this chapter, after a review about the possible strategies for the coordination of

team of mobile unmanned robots, the control theory and the mathematical tools used

to design the proposed cooperative control algorithm will be presented and discussed.

2.1 Coordination control: literature review

It is necessary to deal with a coordination control problem any time there is more

than one agent cooperating to accomplish a common task. There are several tasks in

the technological world that have to be made or can be made better with multiple

agents. Example are the search and rescue tasks or the perimeter surveillance. There

are also many systems that are the composition of different subsystems dynamically

connected and that work together to accomplish a common task. Some examples of

these systems are a network for energy distribution or a manufacturing system.

The main objective of a multi-robot system is accomplishing a common goal by

exploiting the capabilities of each member of the team.

There are at least two possible ways to solve the coordination problem :

• The behavioral approach: this means starting studying the general behavior of
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the formation and then going down approaching step by step the behavior of the

single agent. One of the basic works in computer science about the formation

control is the one from Reynolds [23]. In this paper, he suggested a protocol,

made of three easy rules, to describe the behavior of flocks, herds and schools.

All the work is based on these rules, without the use of equations.

• The system theory approach: the problem is faced bottom-up. In other words,

firstly it is studied the control of the single agent and then how the agents can

collaborate with each other, trying to formally demonstrate the properties of

stability and feasibility.

Our attention will be focused on the latter approach.

The kind of systems we will consider are those composed of agents spatially dis-

tributed and dynamically separated. For example, a team of mobile robots, the agents

are dynamically independent but coupled by the common goal and the constraints on

the state. Continuing with the example of the mobile robot, it is clear that each robot

has its own dynamic that is not affected by the dynamics of the others robots and

can be independently actuated. However the behavior of the robot will be decided

based on the state of the others robots either to accomplish the common task or to

avoid possible collisions or meet constraints due to communication problems.

One possible approach is to solve this control problem is in a centralized manner.

This means to define a model for the system that takes into account each detail of

the team, define the cost function that represent the problem, and finally solve the

problem finding all the control actions. The control problem posed in this way can

became very difficult even when the size of the system is small. In addition, it has

to be considered that these kinds of problems occur in real time. This means that

the control problem has to be solved while the system is working, so the solution
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of the problem has to be found in the shortest time possible. Even exploiting the

capacity of recent computers, this approach is almost unfeasible. For this reason it

is necessary to define a modular approach to make the problem easier so that it can

became computationally acceptable.

To reach this objective there are plenty of strategies, which may be divided into

two categories. One possibility is to approach the problem in a decentralized fashion.

This means that, instead of solving a central problem that involves each agent, a

problem is solved for each agent taking into account only the state of its neighbors.

In this way, the size of the problem is reduced and is easier to solve. The challenge

with this approach is how to define the local cost function, how the state of neighbor

agents may affect the state of the one considered, and how to prove global stability,

feasibility, and optimality. A second possible way is using a hierarchical approach.

In this case, different layers are defined, starting from the highest one that considers

a simplified model going to the lowest one that has a detailed model of the system.

The advantage with this technique is that each layer makes decisions only about a

restricted set of variables, because some are given by the highest level and others are

left for the lower level.

The literature about coordination control of robot teams is quite large. Several

different approaches have been tried to address the problem. For instance, there are

some researchers that have based their work on the rules proposed by Reynolds [23].

An interesting example can be found in the work of Saber and Murray [27]. In this

paper the authors present a theoretical framework for representing a dynamic graph.

This tool has been exploited to generate a model that includes all the three roles

of Reynold’s model. Interesting split and rejoin behavior can be obtained using this

framework.
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Another work based on the Reynolds’ ideas is the one from Jadbabaie et al.

([19],[30]). In a first paper they give a proof of the stability of formation driven by

the Reynolds’ protocol. In a successive paper the author suggests a control approach

that mixes properties from graph theory, classical non linear theory, and potential field

theory that allows to prove stability property for the system in presence of switching

in the interconnection topology. Similar results are obtained by Tanner [20], but con-

sidering a nonholonomic model for the robot. More interesting approaches are those

considering graph theory and optimization.

A possible way to control a robot’s formation is defining a control graph ([7], [8],

[9]). The control graph consists of a triple (g, r,H) where g is the trajectory of the

reference that could be one of the robots in the formation or a virtual robot, r is a

vector of shape variables that describe the position of a robot respect the reference,

and H is a graph that describes the behavior of the robots in the formation. This

approach is in the middle between a centralized approach and a decentralized one, in

fact there is a central agent that defines the control graph and then there are local

controllers (leader follower) that guarantee the convergence to desired formation.

Different works in the literature are based on the control graph. Two examples are

the work from Das et al. [6] and the one from Fierro et al. [16]. They develop a set

of simple control strategies like the leader follower, the three robot shape control or

the leader-obstacle control using the input-output feedback linearization, and based

on these controls they suggest a coordination protocol to switch from one controller

to another. The controllers based on the control graph have the problem that the

graph H is assigned based on some heuristics and so it is not guaranteed to be an

optimal choice.

Other works address the problem using optimization techniques. Two categories

12



can be highlighted: centralized approach and decentralized approach.

Even if the centralized approach could be too expensive in term of computation

power required, there are several works in the literature that use this approach. Fur-

thermore, the centralized control could be considered the basic step in solving the

decentralized problem.

One of the most interesting works is the one from Dunbar and Murray [10]. In

this paper the authors apply the model predictive control to the problem of formation

control (MPC). The basic idea of the MPC is to define a cost function that measures

the performance of the system on an interval T called prediction interval and then

minimize this cost function constrained by the system’s dynamic equations and other

eventual constraints. By solving the minimization problem we obtain the optimal

input to the system for all the prediction intervals. To have a closed-loop control

only the first sample of the solution is used, then the problem is solved again with

the new values of the state’s variables. In another paper Saber, Dunbar and Murray

[26] propose a systematic way to define the cost function for the MPC using a cost

graph.

A similar approach has been used from Wesselowski and Fierro [32]. In their

work the authors use a dual mode MPC for the formation control. The dual MPC

differs from the standard MPC in the way that the MPC drives the system into a

terminal set instead in the equilibrium point. When the system is in the terminal set

the control is switched to a local control that drives the system to the equilibrium

state. In their paper the authors use the input output feedback linearization as a

local controller.

Several researchers have tried to find a decentralized approach to formation control

in order to reduce the complexity of the problem. Unfortunately, when a decentralized
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approach is used others issues arise. In fact, with the decentralized MPC the property

of stability and feasibility are lost. To recover these properties, the literature proposes

several strategies. Dunbar and Murray [11] propose a decentralized approach in which

each agent defines and solves its own control problem and then transmit the solution

to all its neighbors. The constraint requires that the open loop trajectory obtained

at the sampling time k differs less than a certain constant from the one obtained at

sampling time k-1. In this way, under certain conditions they prove the stability of

the decentralized control.

Another possible solution has been formulated from Shim et al. [28]. They suggest

a formulation of the distributed MPC that is mixed with a potential field approach.

The problem of dividing a decoupled system in several subsystems to apply a

decentralized MPC control has been treated also by Keviczky, Borrelli and Balas

[21].

The problem of coordination control has been faced into centralized way also

using mixed integer linear programming (MILP). This approach allows conversion

of logical rules in a mixed integer linear constraints. Having the possibility to use

logical statements makes easier to model some formation behavior or tasks. In the

paper of Bemporad and Morari [3] it is possible to find an extensive description

about how to convert logical constraints into mixed integer linear programming and

how to combine them with the model predictive control algorithm. The literature

about the coordination problem using MILP is quite rich. A general idea about how

mixed integer linear programming can be used in a control loop can be found in

[25]. In that paper the authors, after giving a general overview about the structure

of the algorithm, give some properties and insights about the modeling and solution

techniques for MILP optimization problems. An example of the use of MILP for
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cooperative problem can be found in [22]. In this paper the problem considered is

coordinating a group of agents to accomplish a time dependant task. Instead, in

[18], the authors try to consider the non-linear nature of UAV using the differential

flatness property to model the non-linear system in a mixed integer linear formulation.

Different kinds of tasks can be coded using MILP. For example, in [1] the problem

of coordinating a team of aerial vehicles in an hostile environment is considered.

The central problem is how to schedule the task for each UAV such that the risk of

failure for the whole formation is minimal. Using MILP inside a model predictive

control algorithm requires that a solution for the MILP problem has to be found

quickly. For this reason, several works aim to propose different techniques to reduce

the solution time. To achieve this goal, two main approaches are possible. The first

is by improving the solver algorithm. Some examples pointing in this direction can

be found in [29, 13]. In the first one the authors proposed a genetic algorithm for

the solution of the MILP problem, while in the second the branch and bound search

is specialized on the cooperative problem. The second possible way to reduce the

solution time is by simplifying the model by using some alternative approach. An

example can be found in [4], in which the author suggested a way to approximate the

MILP problem into a simply linear programming problem that can be solved much

faster. Another possible approach is the one suggested in [14]. In this work the author

presents a way to sample the system based on an unequal distribution. In this way

it is possible to have the optimal number of samples and with a higher concentration

where it is most needed. In [24] a decentralized approach is suggested. An order

among the agents is defined, then a local problem is solved starting from the first one

going to the last one. At each stage the local problem is formulated based on the

solutions of the previous stages.
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In this work to address the computational problem associated with MILP, it will be

presented a structure obtained from a combination of a hierarchical and decentralized

approaches.

2.2 Optimization

2.2.1 Model predictive control

Model predictive control (MPC) or receding horizon control (RHC) is a control al-

gorithm in which the control input is obtained by solving, at each sampling time, an

on-line finite horizon open-loop optimal control problem, using the current state of

the plant as initial state. The solution of the optimization problems gives a sequence

of control inputs for all the control horizon but only the first element of the sequence

is applied to the plant. The reason that made MPC popular, specially in the process

control field, is its ability to deal with constraints. Every control problem has to

consider constraints, in fact, actuators can give limited forces, safety limits on state

must be respected, but at the same time to obtain the best efficiency it is desirable

to work close to those limits. Classical control algorithms do not take into account

those constraints and often ad hoc methods are used to overcome this problem. Model

predictive control, instead, is the perfect tool to combine optimality and feasibility of

the control effort.

Consider the system described by the difference equation

x(k + 1) = f(x(k), u(k))

y(k) = h(x(k))

(2.1)
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where the state x and the input u must satisfy

x(k) ∈ X

u(k) ∈ U

(2.2)

where X ⊂ R
n and U ⊂ R

m. The general control problem is to drive in the optimal

way the state of the system to the origin while satisfying state and input constraints.

The cost function that measures the optimality of the solution is

J(x,u, k) =

k+N−1
∑

i=k

c(x(i), u(i)) + C(x(k + N)) (2.3)

where u = {u(k), u(k + 1), . . . , u(k + N − 1)}, N is called the receding or control

horizon, c is the cost that penalize the trajectory and the input and C is the final

cost associated with the final state of the system. Under the assumption that f(·)

and c(·) are time invariant the cost function is time invariant in the sense that the

solution of the optimization problem with the system in the state x at the time k is

the same as the solution of the optimization problem from the state x at the time

0 (uo(x, k) = uo(x, 0)), which means, that the solution of the optimization problem

depends only on the state x of the system.

The general open-loop optimization problem can be defined as

PN (x) : Jo
N(x) = min

u
{JN(x,u)|u ∈ U} (2.4)

where, now,

J(x) =

N−1
∑

i=0

c(x(i), u(i)) + C(x(N)) (2.5)

and U is the set of admissible control inputs that satisfies all the constraints. The
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model predictive control law is then

κN (x) := uo(0, x) (2.6)

The MPC algorithm can be summarized as reported in Algorithm 1.

Algorithm 1 Model Predictive Control algorithm

1: for all Sampling time k do

2: Sample the state of system to obtain x(k)
3: x = x(k)
4: Solve the on-line open-loop optimization problem PN(x)
5: Apply the control law κN(x) := uo(0, x)
6: end for

The early versions of the MPC did not guarantee stability, and for this reason

several modifications have been proposed during the years to achieve this goal. It

has been demonstrated in [31] that the original MPC model guarantee stability for

unconstrained linear systems and constrained stable systems, but for these systems

there is an ample literature of well defined optimal control techniques. A first mod-

ification that ensured stability for time-varying, nonlinear, constrained discrete time

systems was proposed by [17], where, to obtain stability a terminal equality constraint

is added. This means the constraint

x(N) = 0 (2.7)

is added in the problem PN (x). This modification ensures stability but it brings up

a feasibility problem. In fact, it is possible that there is no feasible solution able to

guide the system to the origin if the horizon N is not long enough. From another

point of view it can be stated that with this modification the region of attraction for

the controller is the subset XN ⊂ R
n of points from which a feasible solution exists.
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Another possible modification is the dual-mode MPC. In this version a final con-

strain set is added to the problem PN(x)

x(N) ∈ Xf (2.8)

with 0 ∈ Xf . When the system enters the final set the controller is switched to a

local controller that is in charge of driving the system to the origin. The final set

can be as big as the region of attraction of the local controller, and the bigger the

final set the bigger is the set of points XN for which a feasible solution can be found.

With this approach the attraction region of the controller can be made bigger. In the

next sections it will be supposed that the control horizon is long enough such that a

feasible solution always exists.

2.2.2 Mixed integer linear programming

There is a wide range of practical problems that can be modeled with discrete and

continuous variables and linear constraints. It is clear the need for discrete variables

in all optimization problems regarding discrete goods. For example, in the problem

of optimizing the number of cars produced by a plant, an integer solution is desir-

able because a fractional solution would not make sense. Although this may seem

the obvious application for discrete optimization, when there are problems involving

discrete goods it is usual to neglect the integer constraint solving a classical linear

programming (LP) problem and then rounding the continuous solution obtained from

the LP problem.

Discrete optimization shows all its power and flexibility when decision variables

are used. Decision variables are discrete variables that can take only the value zero
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or one, and they are usually related to the logical TRUE (or yes) and FALSE (or no).

For example, if a new plant needs to be built in one among several possible locations,

a discrete optimization problem can be modeled using decision variables. In this case

there will be a decision variable δi for every location that will be one if the new plant

is assigned to location i and it will be zero if the plant is not assigned to that location.

Another useful kind of discrete variables are the indicator variables. These vari-

ables, like the decision variables, can take only the value zero or one, and they are

usually used to indicate the state of certain continuous variable. For example, sup-

pose it is necessary to know if f(x) ≤ 0, an indicator variable δ will be used such that

f(x) ≤ 0 implies δ = 1.

Now it will be shown how to convert logical statement involving decision and

indicator variables into mixed integer linear constraints.

Decision variables are always associated with a statement. For example “f(x) ≤ 0”

or “the i-th task is scheduled in the j-th machine”. It is common practice to represent

statements with literals, Xi, that has a truth value of either “T” (True) or “F” (False).

Statements can be combined using logical operators and boolean algebra. Suppose

there are two statements represented with the two literal X1 and X2 and suppose

that two decision variables δ1 and δ2 are associated to these literals such that δi = 1

if the statement Xi is T and zero viceversa. For example, if in modeling a certain

problem it is desired that at least one between the statements is true (a logical OR)

the constraint

δ1 + δ2 ≥ 0 (2.9)

it is clear, that if both the statement are F both the decision variables are zero, but

this would violate the constraint, then to satisfy the constraint at least one between

δ1 and δ2 must be one. A list of the conversion of the most common logical operator
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is reported below

X1 AND X2 is equivalent to δ1 = 1, δ2 = 1

NOT(X1) is equivalent to δ1 = 0

X1 → X2 is equivalent to δ1 − δ2 ≤ 0

X1 ↔ X2 is equivalent to δ1 − δ2 = 0

X1 ⊕ X2 is equivalent to δ1 + δ2 = 1

(2.10)

These logical operators can be combined to model complex logical statements. For

example, suppose in a plant it is necessary to open the valve V if the temperature

T is high or the pressure p is high. Then, there will be a literal X1 associated with

the statement “valve V open”, a literal X2 associated with “temperature high”, and

a literal X3 associated with “pressure high”. The statement it is desired to convert

in a constraint is

X2 OR X3 → X3 (2.11)

this logical statement can be translated in the linear constraint

δ1 + δ2 − 2δ3 ≤ 0 (2.12)

in fact, if δ1 = 1 (the temperature is high) the only way to satisfy the constraint is

by having δ3 = 1 (the valve is open), and in the same way if δ2 = 1 or both are 1 the

only way to satisfy the constraint is by having δ3 = 1. On the other hand, if both δ1

and δ2 are zero the constraint is satisfied by δ3 = 0 (the valve is not open).

An important tool in mixed integer linear programming is the big M technique.

This technique allows to connect indicator variables to the continuous variables. The
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basic building block for this technique is the translation of the implication

x > 0 → δ = 1 (2.13)

that means x > 0 implies δ = 1. The implication in (2.13) can be converted into the

following mixed integer linear constraint

x − Mδ ≤ 0 (2.14)

where M is a big positive number. To verify the validity of the constraint in (2.14)

it is useful to rewrite the inequality in the following way

x ≤ Mδ (2.15)

in this second form it is easy to see that if x > 0, the only way to satisfy the constraint

is by having δ = 1, that it is what the implication in (2.13) required, while if x ≤ 0

the constraint is satisfied for every value of δ. Another important implication is the

reverse implication respect the one in (2.13), that is

δ = 1 → x > 0 (2.16)

however the implication in (2.16), it must be slightly modified to be converted into a

mixed integer linear constraint. The modified implication is

δ = 1 → x ≥ ǫ (2.17)

where ǫ is the smallest number for which x is considered to be not zero (it is usually the
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machine precision). The implication in (2.17) is translated in the following constraint

x − ǫδ ≥ 0 (2.18)

in this case, it can be easily seen as if δ = 1 the constraint in (2.18) force x to be

greater equal then ǫ that is what requested in (2.17), while if δ = 0 no constraint is

forced on x (note that it is supposed the linear problem is in standard for so all the

continuous variables are greater equal then zero).

It is also useful to know how to translate the following kind of implications

δ = 1 →
∑

j

ajxj ≤ b (2.19)

In a similar way it was done before the implication can be translated in the following

linear constraint
∑

j

ajxj ≤ b + M(1 − δ) (2.20)

where, as before, M is an upper bound on the expression
∑

j ajxj − b. From (2.20), it

is possible to see as, when δ = 1, the constraint enforce
∑

j ajxj ≤ b. Instead, when

δ = 0 the constraint is reduced to
∑

j ajxj ≤ M + b that is satisfied for all possible

values of xj .

The last basic implication needed for modeling MILP problem is the reversed

implication respect the one in (2.19), that is

∑

j

ajxj ≤ b → δ = 1 (2.21)
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that is equivalent to

δ = 0 →
∑

j

ajxj > b (2.22)

the mixed integer linear constraint that translates the implication is

∑

j

ajxj > b + mδ (2.23)

where m is a lower bound on the expression
∑

j ajxj − b. It can be seen that if δ

is equal to zero the constraint ensure
∑

j ajxj > b while, if δ = 1 the constraint

∑

j ajxj > b + m is automatically satisfied by the definition of m. A problem occurs

with the constraint in (2.23). In fact, for the theorem of existence of the optimum the

feasible region must be limited and close, but the constraint in (2.23) would define an

open set. For this reason the starting implication must be modified in the following

δ = 0 →
∑

j

ajxj ≥ b + ǫ (2.24)

where ǫ is chosen as in (2.17). The modified version of the constraint is

∑

j

ajxj ≥ b + ǫ + (m − ǫ)δ (2.25)

In a similar way a linear constraint can be written for the “≥” case, so the impli-

cations

∑

j

ajxj ≥ b → δ = 1

δ = 1 →
∑

j

ajxj ≥ b

(2.26)

24



are respectively converted in the constraints

∑

j

ajxj ≤ b + +m(1 − δ)

∑

j

ajxj ≤ b − ǫ + (M + ǫ)δ

(2.27)

Combining all the previous implications a wide range of logical statements and

conditions can be modeled in a mixed integer linear problem. For example, suppose

it is desired to model the following implication

∑

j

ajxj = b → δ = 1 (2.28)

but this is equivalent to ask that δ = 1 if both the inequalities “≥” and “≤” are hold

simultaneously. It is necessary, then, to use two auxiliary indicator variables δ′ and

δ′′, one for each of the inequality and then require that δ = 1 if δ′ = 1 AND δ′′ = 1.

This is obtained with the set of equations

∑

j

ajxj ≥ b + ǫ + (m − ǫ)δ′

∑

j

ajxj ≤ b − ǫ + (M + ǫ)δ′′

δ′ + δ′′ − δ ≤ 1

(2.29)

the first two constraints in (2.29) would drive the indicator variables δ′ and δ′′ to one

if the related inequality is satisfied. The last equation drive δ to one if both δ′ and

δ′′ are one.

Another interesting example of the use of the big M technique is the conversion
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in linear constraints of the following non linear expression

y = δf(x) (2.30)

where δ is a binary variable and f(x) is a linear function. The expression is converted

into linear constraints using the following set of equations

y ≤ Mδ

y ≥ mδ

y ≤ f(x) − m(1 − δ)

y ≥ f(x) − M(1 − δ)

(2.31)

where, as before, M and m are respectively the upper and lower bounds on the

function f(x). It can be verified that if δ = 0 the first two equations force y to zero,

while the second two are satisfied for every value of y. Instead, if δ = 1, the first two

equation are satisfied for every value of y, while the combination of the second two

force y to be equal to f(x).

All the logical operators among decision variables and the implications to relate the

indicator and the continuous variables will be used in the next chapters to model the

cooperative problem. To better understand why the complexity of a MILP problem

is exponentially increasing with the number of binary variables a brief overview of

the solution techniques for mixed integer linear programming will be presented in the

next subsection.
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2.2.3 Solving mixed integer linear programming model

While it is possible to efficiently solve linear programming model using the simplex

algorithm, no algorithm has shown to be efficient in solving mixed integer linear

programming, in particular MILP belongs to the class of NP-hard problem. All the

proposed algorithms to solve MILP model relay on solving the LP problem obtained

by neglecting the integrality constraint. Among them, the most commonly used

algorithms are the branch and cut algorithm and the branch and bound algorithm.

Most of the commercial solvers use a combination of these two algorithms to efficiently

solve medium-large sized problems.

The idea behind the branch and cut algorithm is to solve the LP problem obtained

by dropping the integrality requirement, and, if the solution obtained is an integer

feasible solution the solution of the LP problem is also the solution of the MILP

model. If not, a new constraint, called cutting plane, is added such that the previous

LP optimal solution is cut but all the integer feasible solutions are hold in the LP

feasible region. The branch and cut has shown good performances over a wide range

of problem especially because for certain problem ad-hoc cutting plane can be used.

When a problem does not show any particular structure, the branch and bound

algorithm is preferred over the branch and cut.

As for the branch and cut algorithm, the starting point for the branch and bound

is the solution of the LP model P0 obtained by neglecting the integrality constraint.

Note that the solution of the relaxed version represents an upper bound on the integer

solution. If the LP optimum is integer feasible (all the integer variable are integer)

the LP optimum is the optimum for MILP. If the solution is not integer feasible one

of the discrete variables δi that is not integer in the solution is chosen and two new

problems are formulated one P1 with the additional constraint δi = 0 and the other
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one P2 with the constraint δi = 1. The process of choosing a variable and add the

related constraints is called the branching phase. Note that, when a constraint is

added the solution get worst than the original problem. After the branching phase,

the problem P1 and P2 are added to the stuck of the open problems P = {P1, P2}. The

first problem in P is taken and solved. If the solution is integer feasible the branch is

closed, and the solution and the value of the solution are saved. If the solution is not

integer feasible another branching phase is taken, and the two problems generated

are added on the top of P. The branching proceeds until an integer feasible solution

is found. The branching phase will generate a search tree, as the one reported in

Fig. 2.1. An integer feasible solution is a lower bound on the integer optimal solution.

For this reason all the branches that lead to problems with solution worse than the

best integer feasible solution can be closed and removed from the P. This phase is

called bounding phase. The branching and bounding phase are repeated until the

stack P is empty. Once P is empty, the best integer feasible solution is the MILP

optimum.

The branch and bound algorithm is reported in Alg. 2.

An example is reported to clarify the algorithm. Suppose to have a minimization

problem

min
y

∑

ciyi

s.t.

Ay ≤ b

(2.32)

with yi binary variables. At the first step solving the LP problem P0 a non integer

solution is found with a value of 10 (see Fig. 2.1 as reference). To generate the

problem P1 and P2 the variable y1 is chosen. At the next step the problem P2 is
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Algorithm 2 Branch and Bound algorithm

1: P = {P0}
2: opt = ∞
3: while P 6= ∅ do

4: Take off the first problem P in the stack P

5: Find the solution x′ whose value is f ′

6: if x′ is integer feasible then

7: if f ′ is better than opt then

8: opt = f ′

9: remove all the problems in P that lead to a leaf with optimal solution
worst than opt (bounding phase)

10: end if

11: else

12: Choose a branching variable δ
13: Generate the two new problem P i and P ii having respectively the constraints

δ = 0 and δ = 1
14: AddP i and P ii at the top of the stack P = {P i, P ii}

⋃

P

15: end if

16: end while

0

5 6

3 4

1 2
y2=0

y1=1

y2=1y2=0
y2=1

y3=0 y3=1

12

10

11

11.3 13

12.312.5

13.5 147 8

y1=0

Figure 2.1: Search tree generated from the Branch and Bound algorithm.
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chosen and solved. The solution is non-integer with value of 11. The next branching

phase is made over the variable y2 so that the problem P3 and P4 are generated. The

next problem solved is P3. Its solution is non-integer with value 11.3. The branching

phase generates problem P5 and P6. Solving P5 brings to the first integer feasible

solution with value 12.5. The actual solution is saved. When problem P6 is solved

another integer feasible solution is found with value 12.3 that is a better solution

respect the previous one, so the saved solution is updated. At this point all the

branches generated from P3 are visited, then the problem P4 is solved. Its solution is

not integer and its value is 13. Since all the branches that will be generated from P4

will have value higher then 13, there is no sense in proceeding the branching phase

and the branch can be closed. Going back to problem P1, its solution gives a non

integer solution of value 12. In this case the branch cannot be closed since the upper

bound represented from the linear solution is not higher then the actual solution. Two

new problems are generating by branching the variable y2. Solving the two problems

brings to non-integer solution with values 13.5 and 14 that both are higher than the

actual feasible solution and then they can be both closed. Since there are no more

branches to visit, the algorithm ends and the optimum is 12.3.

It is easy to see that the number of possible linear problems that could be necessary

to solve increases exponentially with the number of binary variables. That is the

reason why, when the number of binary variables increases, the computation time

required to solve the problem may blow up. The second part of the thesis will be

presenting a method to keep the number of binary variables in each MILP problem

low.
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Chapter 3

Problem formulation

This chapter introduces the coordination problem. First, the task that the team is

required to accomplish is introduced. Then, the model considered for the mobil robot

is presented. In the third section, the environment in which the team is supposed

to operate is described. Finally, an introduction about the concepts of hierarchical,

distributed and decentralized optimization are given.

3.1 The coordination problem

This work will focus on the problem of coordinating a team of mobile robots work-

ing together to accomplish a common task. Since the central point of the thesis is

not modeling tasks using MILP but in presenting a different structure to state the

problem, it will consider as common task the assignment problem. In particular it is

supposed to have a set of targets NT that must be reached by the robots NR. It is

also required that each robot is assigned to a single target and each target has one

assigned robot. These two requirements imply that NR = NT .

It is also required that during the accomplishment of the task the team members

avoid collision with each other and avoid the obstacles present in the environment.

32



θ

O

Figure 3.1: Robot’s set of coordinates

3.2 Robot’s model

The control algorithm developed is intended to be used on a car like platform. In

particular the test bed available in the Marhes laboratory is a team of ten 1/10

scale monster trucks. The platform is used as a mobile sensor.

The model used to describe a car like robot is the unicycle model

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(3.1)

where x and y are the coordinates of the origin of a system of coordinates fixed to

the robot with respect to a global system of coordinates and θ is the orientation of

the system of coordinates of the robot with respect to the global one. Finally, v and

ω are respectively the linear and angular velocity of the robot in the global set of

coordinates. A drawing of the robot with the associated set of coordinates is shown

in Fig. 3.1.
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To be able to pose the coordination problem as a mixed integer linear programming

problem it is necessary to have a linear model for the robot. For this reason, as

extensively done in the literature, it is supposed there is a lower-level controller in

charge of the nonlinear behaviors of the robot and that makes the robot to behave as

a double integrator with a dumping factor. The model considered for the robots will

be

ẍ = −bẋ + ux

ÿ = −bẏ + uy.

(3.2)

To formulate the mixed integer linear programming problem it is also necessary to

have a discrete system so the sampled version of the previous model will be consid-

ered. The discrete model is obtained considering the following approximation for the

derivative:

ẍ ≃
ẋ(k + 1) − ẋ(k)

∆T
= −bẋ(k) + ux(k)

ẋ ≃
x(k + 1) − x(k)

∆T
= ẋ(k)

considering the same approximation for the y component and substituting ẋ and ẏ

with respectively vx and vy the equation can be rewritten as

x(k + 1) = x(k) + ∆Tvx(k)

vx(k + 1) = (1 − b∆T )vx(k) + ux(k)

y(k + 1) = y(k) + ∆Tvy(k)

vy(k + 1) = (1 − b∆T )vy(k) + uy(k)
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that in matrix form becomes
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In a more compact way, this can be written as

X(k + 1) = A X(k) + B U(k) (3.3)

with the obvious meaning of the symbols. This is the model considered in the rest of

the thesis. It is supposed that the robot has constraints on the maximum acceleration

and on the maximum velocity in particular:

ux|y ≤ UMAX vx|y ≤ VMAX . (3.4)

Some considerations about the choice of the sampling period ∆T are in order.

As for all sampled systems, it is desirable to have the shortest sampling period so

that the sampled model is as close as possible to the continuous one. Having a

short sampling period would improve the process of avoiding obstacles and collisions.

In fact, since between two samples no control action can be made to repair for an

unexpected situation, the shorter is the sampling period the sooner the repairing

action can be taken. On the other hand, since a model predictive control algorithm

is used some others aspects need to be considered in the choice. First of all, to make

the optimization problem feasible the control horizon must to be held long enough.

Holding the same control horizon and reducing the sampling periods would bring
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more samples in each optimization problem. More samples imply more variables and

then a more complex optimization problem that would require more time to be solved.

At the same time, it is required that the optimization problem is solved in the time

between two sampling instants. It should be obvious, then, that the sampling period

can be reduced as far as the resulting optimization problem can still be solved in no

more than a ∆T .

3.3 Environment

The robots move in an environment populated with obstacles or unsafe zones that

can be described by a convex linear set, that means they can be represented by set

of linear inequalities of the form

OX ≤ r X =







x

y






(3.5)

where O is an R×2 matrix with R the number of linear constraints needed to define the

obstacle. Even though it may seem restrictive the use of this obstacle representation,

it is possible to describe a wide range of different situations. For example, it is possible

to model linear nonconvex obstacles by composing convex sets or nonlinear obstacles

using a linear approximation of the nonlinear obstacle. Examples are reported in

Fig. 3.2.

Since the robot is considered to be a point mass, all the obstacles must be enlarged

to consider the actual dimensions of the robot.

The obstacles must also be enlarged due to the discretization. In fact obstacle

avoidance will be guaranteed only at the sampling time, so it would be possible to
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3

Trajectory collision free in the discrete time but

with collision in the continuous time

After the enlargemen t the continuous

trajectory is collision free too

(a) (b) (c)

Figure 3.2: Obstacle representations: (a) A convex linear obstacle enlarged to consider
the robot’s dimensions; (b) A nonconvex linear obstacle obtained by composition
of convex linear sets; (c) A nonconvex nonlinear obstacle represented using linear
approximation and composition of convex linear sets.

have a trajectory that is collision free at the sampling time but that would end up in a

collision during the time between the samplings. This is most likely to happen in the

vicinity of a corner of an obstacle as shown in Fig. 3.2(a). The enlargement depends

on the maximum possible distance Dpp between two points a robot can travel between

samplings. Dpp is function of the maximum velocity of the robots Vmax, and of the

sampling period ∆T , in particular Dpp = Vmax∆T . Once the obstacle is enlarged, the

following implication needs to be true

∀x1, x2 ∈ ∂Oe such that ||x1 − x2|| ≤ Dpp,

x = λx1 + (1 − λ)x2, λ ∈ [0, 1], x 6∈ O

(3.6)

where Oe is the convex set describing the enlarged obstacle, ∂Oe is its boundary, while

O is the convex set describing the original obstacle. As discussed before a shorter

sampling period would imply a smaller enlargement and so a better performance.
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3.4 Hierarchical control

Complex systems are often described by a wide number of variables that could either

be continuous or discrete. In these situations it is often hard to solve an optimization

problem taking into account all the decision variables. For this reason complex sys-

tem are often split in hierarchical levels such that each level take decision only on a

restricted set of variables, neglecting part of the decision variables and receiving the

value of the others from the higher level in the hierarchy. An example of this hierarchi-

cal approach can be found in the manufacturing system control. In this case, several

decisions need to be taken like for example the kind of products ordered, the quantity

of products, the path that each piece needs to follow inside the manufacturing system,

the scheduling on each machine and the management of the stock. It is clear that all

this decision variables are somehow related and to find the global optimal solution for

the production problem they should be considered in one big optimization problem.

However, formulating the problem in this way would produce many problems. For

example, the dimension of the formulation will become too big, and the time required

to solve to problem too long. This makes the problem not solvable in a single stage.

Instead of solving one single problem the decision variables are divided in different

layer following some criteria. In the case of the manufacturing system is the rate of

change of the input that affects the division of the decision variables. The hierarchical

approach offers the possibility of obtaining smaller problems that can be easily solved

and often the solution obtained it is not far from the optimal one.

In a more formal way, supposing to have an optimization problem that involves a
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set of variables X = {x1, x2, . . . , xn}:

min J(x1, . . . , xn)

s.t.

f(x1, . . . , xn) = 0

g(x1, . . . , xn) ≤ 0

(3.7)

After defining a hierarchical criteria the set of variables is divided in several subsets:

X1 = {x11, x12, . . . , x1n}, . . . , Xm = {xm1, xm2, . . . , xmn}

Every subset defines a layer of the hierarchy, at each layer an optimization problem

is defined and the others variables explicitly not considered in the problem are either

neglected or considered constant and equal to the value found solving higher level

problems. The optimization problem at each level is constrained by the constraints

that involve only variables of that level. Some of the constraints may involve variables

of higher levels, so it may be necessary, to satisfy the constraints, to include in the

problem variables already considered at an higher level. The optimization problem

in a general level could be formulated as follows:

min Ji(xi1, . . . , xin, x
H
1 , . . . , xH

k )

s.t

f(xi1, . . . , xin, x
H
1 , . . . , xH

k ) = 0

g(xi1, . . . , xin, x
H
1 , . . . , xH

k ) ≤ 0

{xH
1 , . . . , xH

k } ⊂ {X1, . . . , Xi−1}

(3.8)
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Input and state Constraints.

Figure 3.3: An example of hierarchical control

where xH
i are the variables of the higher level that need to be reconsidered in the

problem to meet the constraints neglected at the higher levels. It is clear that the set

of variables xH
i is as smaller as the hierarchy criteria used to divide the original set

of variable is coherent with the constraints in the problem.

Applying this concept to the coordination control it is possible to generate a

hierarchy dividing the variables into two groups: one group with the variables related

to task involving the whole formation, like for example the target assignment or

keeping a formation, and the second group of variable related to task involving the

single robot, like the obstacle or collision avoidance. Fig. 3.3 indicates the scheme of

the controller for the higher level solving the target assignment problem and the lower

level solving the single robot tasks (collision/obstacle avoidance). In this case, the

higher level takes decision only on the assignment neglecting the obstacle and collision

avoidance. The lower level takes the variable τij obtained from the higher level and

solves an optimization problem taking into account obstacle and collision avoidance
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Figure 3.4: An example of hierarchical control

among the members of the formation. Notice that all the state variables and the

input variables need to be recomputed to meet the obstacle and collision avoidance

constraints that were neglected in the higher level. The convenience of such approach

is that the binary variables in original problem are divided in two separate problems

such that the computational power required to solve the two combined problems is

less than the computational power originally required.

It has to be noted that when a hierarchical approach is used the global optimality

of the solution is lost for having a groups of easier solvable problems. The same

problem can be addressed using the scheme in Fig. 3.4. In this second case there is a

complete division among the decision variable so that the set of variables xH
i is empty.

For this second approach becomes crucial the choice of the cost associated with the

target assignment. An easy solution can be the distance between the robot and the

target, while another, more complex but that could bring to a better optimum, is by

using as a cost for τij the total input effort it would be required to bring the robot i
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to the target j. All these parameters make the problem easier or harder to solve but

at the same time they bring the solution closer or farther from the global optimum.

3.5 Distributed and decentralized control

When the optimization problem involves different autonomous systems a possible way

to simplify is to define one optimization problem for each system. Instead of solving

a big problem that takes into account all the systems, several smaller problems are

solved. For each system a subset of the agents, called neighbors is defined. The

optimization problem will take into account only the neighbor systems so that the

optimization problem is smaller, moreover the variables regarding the neighbors are

considered constant. That means only decisions on the local system are taken in the

optimization problem.

In a more formal way, suppose to have the following optimization problem involv-

ing n different agents:

min J(x11, . . . x1n1
, . . . , xn1, . . . , xnnn

)

s.t.

f(x11, . . . x1n1
, . . . , xn1, . . . , xnnn

) = 0;

g(x11, . . . x1n1
, . . . , xn1, . . . , xnnn

) ≤ 0;

(3.9)

and supposing that the i-th agent as the neighbors described by the following set of

variable N = {xN
1 , . . . ,xN

p } where xN
i is the vector containing the state variable of

the i-th neighbor of the agent is taken into account. The optimization problem for

42



the local agent will be:

min J(xi1, . . . xini
)

s.t.

f(xi1, . . . xin1
, x̃N

1 , . . . , x̃N
p ) = 0;

g(xi1, . . . xin1
, x̃N

1 , . . . , x̃N
p ) ≤ 0;

(3.10)

where x̃N
i can be either an estimation of the state of the i-th neighbor or it can be

sensed or communicated.

x1, . . . , xi−2 x1, . . . , xi−1 x1, . . . , xi x1, . . . , xi+1
i-1 i i+1

(a) Distributed

x̃j x̃k

j i k

(b) Decentralized

Figure 3.5: Interaction among agents in distributed and decentralized control.

Depending on how the value for the x̃N
i is fixed there are two possible different

scenarios: distributed control or decentralized control. If the local agent solves its

optimization problem and then communicates the solution to the others the control
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algorithm is said to be distributed. Otherwise, if each agent simply senses or estimates

the state of the neighbors then the control algorithm is said to be decentralized. The

two algorithms require a different kind of synchronization among the agents. In case

of distributed control it is necessary to define an order among the systems in order

to obtain synchronization. In this way, the first agent could solve the optimization

problem ignoring the others agents, then, once the optimization problem is solved it

can communicate his solution to the second agent such that it can use the information

in its optimization problem, and so on. Following this approach a chain is built in

which each agent solves an optimization problem knowing the solution of all the

agents that precede it in the chain. In the case of decentralized control instead, all

the optimization problems are started at the same moment and the information about

the neighbors variables are either sensed or estimated. In Fig. 3.5 is shown how the

generic agent interact with its neighbors. In Fig. 3.5(a) is shown the communication

chain among consecutive agents, while in Fig. 3.5(b) is shown the sensing among the

agents.

1
2
3

n

Agent number

ts t

(a) Distributed

1
2
3

n

Agent number

tts
(b) Decentralized

Figure 3.6: Time comparison between the distributed and decentralized controller
algorithm.

In both cases the global optimality is lost, but on the other hand the time required

to solve the small problem is reduced compared to the time required for solving the
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global problem. The difference between the two approaches, as shown in Fig 3.6, is

that in the distributed approach before solving the i − th problem it is necessary to

wait that all the previous i − 1 problem are solved. Instead, for the decentralized

control, all the problem are solved at the same time. When the optimization problem

is used in an online application it is clear that the optimization needs to end in the

time constraint imposed by the sampling time. It is then clear that based on the

problem the distributed approach could be not applicable. On the other side, the

distributed approach could give better results in terms of the optimal value because

the optimization problem are based on the true values for the state variables for

the preceding agents while in the decentralized approach the state variables are only

sensed or estimated. In both cases there could be problem of feasibility. In fact, in the

distributed case a decision taken at some point in the chain ignoring the subsequent

agent could make the problem for the following agents unfeasible. Instead, in the

decentralized case, if the actual value for a variable is far away from the sensed or

estimated value, feasible problem can arise. To avoid these situations more attention

have to be placed on the constraints. A common drawback is that more conservative

constraints bring the solution farther from the global one.

In the case of coordination control, for the distributed control algorithm there will

be the first robot solving its optimization problem while ignoring the others robots,

then it will communicate the solution to the second robot. The second robot will solve

the optimization knowing where the first robot will be. Then it will transmit its and

the first robot’s solution to the third robot an so on down the chain. It is clear how

proceeding down in the chain it is possible that some infeasibility problem may arise.

In fact some robots may get blocked due to the decision taken from the previous one.

In the same way in the decentralized algorithm, each robot solves its own optimization
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problem sensing some information about its neighbor, and estimating others. If the

sensed or estimated value is wrong it could cause an infeasibility problem.

A combination of hierarchical and decentralized optimization will be used to ad-

dress the cooperative problem.
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Chapter 4

Centralized control

4.1 Introduction

In this chapter the centralized approach to coordination control problem is presented.

In this first formulation the open-loop optimization problem solved in the MPC al-

gorithm takes into account all the constraints related to the coordination control in

a single problem. This formulation is presented as a basic step to the hierarchical

decentralized approach and for motivating the necessity for a different control algo-

rithm.

4.2 Open-loop optimization problem

The coordination problem that will be solved consists of finding the control input for

a formation of robot that has the task of reaching a set of targets while minimizing

the input effort and avoiding obstacles and collisions among the member of the team.

Firstly, a logical formulation of the problem will be presented and then it will be

shown how, using the big M technique, these constraints can be translated in mixed

integer linear programming constraints.
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The minimization problem that will be solved can be summarized as follow

min

(T−1)
∑

k=0

(NR)
∑

i=0

|ux
i (k)| + |uy

i (k)|

subject to:

1. Dynamic equation constraint;

2. Obstacle avoidance constraint;

3. Collision avoidance constraint;

4. Target assignment constraint.

Among these constraints only the dynamic equations are already in linear form

X(k + 1) = A X(k) + B U(k) ∀k = 0, . . . , T − 1 (4.1)

for all the others it will be necessary to express them in a linear way. It is also

necessary to write the cost function in a linear fashion. In the following subsections

it will be shown how to treat each of the constraints, putting them in a mixed integer

linear form.

4.2.1 The absolute value

The absolute value it is not a linear function so it cannot be included in a linear

programming problem, but it is a composition of linear functions so it is possible to

formulate the problem in a linear way using auxiliary variables.
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Let define the auxiliary variable zx
i as follows

zxj
(k) ≥ uxj

(k)

zxj
(k) ≥ −uxj

(k)

(4.2)

the two inequalities in (4.2) model the absolute value of ux
i . In fact, as it possible to see

in Fig. 4.1, the constraints (4.2) force zxj
in the region R and when the minimization

over the sum of the zxj
is done, it is guaranteed that the value obtained for zxj

is on

the region’s R boundary, that is by construction the absolute value of uxj
. The cost

function will then become

min

(T−1)
∑

k=0

(NR)
∑

i=0

zx
i (k) + zy

i (k)�������������������������










zxj

R

uxj

z x j

≥
u x j

z
x
j ≥

−
u
x
j

Figure 4.1: Admissible zone for zxj
due to constraints (4.2)

50



4.2.2 Obstacle avoidance

If an obstacle has a convex shape and its borders are linear, all the points inside

the obstacle could be represented as the set of points that satisfy a set of linear

inequalities, in a general form this could be written as:

O







x

y






≤ r (4.3)

where O is a 2× P matrix and r is a P × 1 vector with P the number of constraints

necessary to define the obstacle.����
X

Y
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x>xax<xa

x<xb x>xb

y>ya

y>yb

y<ya

y<yb

Figure 4.2: Obstacle’s representation

Suppose to have an obstacle like the one shown in Fig. 4.2. The matrix describing

the obstacle would be





















1 0

−1 0

0 1

0 −1



























x

y






≤





















xa

−xb

ya

−yb





















A binary auxiliary variable ωk
pi is associated with each constraint that defines the
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obstacle at every sampling time k such that the binary variable is one when the

constraint is satisfied by the position of the robot (x(k), y(k)). All the points inside

the obstacle are characterized by having all the P constraints that characterize the

obstacle satisfied. In contrast, the points outside the obstacle are characterized by

having at least one of the constraints violated. Then, considering the i-th robot at

the k-th sample time, it is possible to write

op1xi(k) + op2yi(k) ≤ rp ⇒ ωk
pi = 1 (4.4a)

P
∑

p=1

ωk
pj ≤ P − 1 (4.4b)

Equation (4.4a) drives the binary auxiliary variable ωk
pi to 1 if the p-th constraint that

describes the obstacle is satisfied by the position coordinates of the robot i at time k.

The robot is inside the obstacle if all the P constraints that describe the obstacle are

satisfied. The constraint in (4.4b) imposes that the coordinates of the robot violate

at least one of the constraints that describe the obstacle. This ensures that the robot

stays outside the obstacle. It is clearly necessary to have the same set of equations

for all the obstacles, all the robots, and for all the sampling instants.

The implications in (4.4a) are translated in mixed integer linear inequalities using

the big M technique, they can be written as:

op1xi(k) + op2yi(k) − rp ≥ ǫ + (m − ǫ)ωk
pi (4.5)

while the inequalities in (4.4b) are already in linear form.
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4.2.3 Collision avoidance

Collision avoidance could be seen as a special case of obstacle avoidance, in fact the

others robots in the team can be seen as obstacles to be avoided. To implement the

collision avoidance a safety zone around the robot is defined and the constraint that

no robot can enter in the safety zone is added. In Fig. 4.3 it is reported a draw of

the safety zone around the robot.

X

Y

xj(k) xj(k)+sdxj(k)-sd

yj(k)-sd

yj(k)

yj(k)+sd

Figure 4.3: Robot’s safe zone

If we select the j-th robot, its safe zone can be represented by the following set of

inequalities

x ≥ xj(k) − sd

x ≤ xj(k) + sd

y ≥ yj(k) − sd

y ≤ yj(k) + sd

that could be written in the following matrix form

CA







x

y






≤ CA







xj(k)

yj(k)






+ sd (4.6)
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where

CA =





















−1 0

1 0

0 −1

0 1





















sd =





















sd

sd

sd

sd





















In the same way it has been done for the obstacle avoidance, there will be an aux-

iliary binary variable τp
ij(k) for each inequalities that define the safety zone and the

variable will be one if the inequality is satisfied. The collision avoidance will be ob-

tained enforcing that the sum of the auxiliary variables τp
ij(k) is less then 3 (number

of constraints that define the safety zone minus one). More formally the collision

avoidance is model with the following implication:

CA







xi(k) − xj(k)

yi(k) − yj(k)






≤ sd ⇒ τp

ij(k) = 1

4
∑

p=1

τp
ij(k) ≤ 3

(4.7)

where (xi(k), yi(k)) and (xj(k), yj(k)) are the position of robot i and j at time k, τp
ij

is an auxiliary binary variable which is 1, if the p-th inequality in the first equation

in (4.7) is satisfied. The implications in (4.7) are converted in the same way shown

for the obstacle avoidance. Note that imposing these constraint is equal to requesting

that the distance between two robots is at least sd in the x or y coordinate.

4.2.4 Target assignment

The target assignment consists of assigning one robot to one of the possible targets.

The auxiliary variable γij is one if the robot i is assigned to the target j. It is clear
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that every robot has to be assigned to one target and each target needs to be assigned

to one robot. From these two observations it is possible to write the first two sets of

equations
NR
∑

j=1

γjl = 1 ∀l = 1, . . . , NT (4.8)

NT
∑

l=1

γjl = 1 ∀j = 1, . . . , NR (4.9)

where NR and NT are the number of robots and the number of targets.

It is now necessary to have an implication that drives the robot to the coordinates

of the target that has the auxiliary variable equal to one. The implication can be

written in the following way

γjl = 1 ⇒ Xj(T ) − Xt
l = 0 (4.10)

where Xj(T ) are the coordinates of the robot j at the end of the control horizon and

X t
l are the coordinates of the target l. The conversion of the implication in (4.10) is

not straight forward as the one seen before. First of all, the equation is a vectorial

equation, so it is necessary to split its x and y components. The new implications

can be written in the following way

γjl = 1 ⇒ xj(T ) − xt
l = 0

γjl = 1 ⇒ yj(T ) − yt
l = 0

(4.11)

To transform the first two implications in (4.11) it is necessary to add other auxiliary

variables because there is no way to use the big M technique for implication that

have the equality constraint. For this reason the implications needs to be divided in
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two implications. The implications for the x component are

γjl = 1 ⇒ xj(T ) − xt
l ≥ 0

γjl = 1 ⇒ xj(T ) − xt
l ≤ 0 (4.12)

A similar set of implications need to be written for the y component. At this point

all the implications can be translated using the big M technique. The resulting set

of inequalities are respectively

xj(T ) − xt
l ≥ m(1 − γjl)

xj(T ) − xt
l ≤ M(1 − γjl)

(4.13)

A similar set of inequalities for the y component needs to be enforced as well

yj(T ) − yt
l ≥ m(1 − γjl)

yj(T ) − yt
l ≤ M(1 − γjl)

(4.14)

4.2.5 The complete optimization problem

Putting together all the constraints, the optimization problem that will be solved is

min

(T−1)
∑

k=0

(NR)
∑

i=1

zx
i (k) + zy

i (k) (4.15a)

subject to the dynamic equations of the system

Xi(k + 1) = Ai Xi(k) + Bi Ui(k) ∀k = 0, . . . , T − 1; i = 1, . . . , NR (4.15b)
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the equations that define z
x|y
i

z
x|y
i (k) ≥ u

x|y
i (k)

z
x|y
i (k) ≥ −u

x|y
i (k) ∀k = 0, . . . , T − 1; i = 1, . . . , NR

(4.15c)

the obstacle avoidance constraints

op1xi(k) + op2yi(k) − rp ≥ ǫ + (m − ǫ)ωk
pi

P
∑

p=1

ωk
pi ≤ P − 1 ∀k = 0, . . . , T − 1; i = 1, . . . , NR

(4.15d)

the collision avoidance constraints

cap1(xi(k) − xj(k)) + cap2(yi(k) − yj(k)) − sd ≥ ǫ + (m − ǫ)τk
pij

4
∑

p=1

τk
pij ≤ 3 ∀k = 0, . . . , T − 1; i = 1, . . . , NR; j = i + 1, . . . , NR

(4.15e)

the target assignment constraints

NR
∑

j=1

γjl = 1 ∀l = 1, . . . , NT

NT
∑

l=1

γjl = 1 ∀j = 1, . . . , NR

xi(T ) − xt
l ≥ m(1 − γjl)

xi(T ) − xt
l ≤ M(1 − γjl)

yi(T ) − yt
l ≥ m(1 − γjl)

yi(T ) − yt
l ≤ M(1 − γjl) ∀i = 1, . . . , NR; l = 1, . . . , NT

(4.15f)
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and the bound on the input amplitude and on the velocity

u
x|y
i (k) ≤ UMAX v

x|y
i (k) ≤ VMAX ∀i = 1, . . . , NR (4.15g)

The problem as formulated requires 4NRT continuous variables to describe the

stare each robot during the all control horizon, 2NRT variables for the input for each

robot for each instant in the control horizon. The auxiliary variables z
x|y
i will require

other 2NRT . For the obstacle avoidance NRT
∑NO

i+1 Pi binary variable are needed,

and for collision avoidance 4T
∑NR

i=1 i binary variable are requested. Finally, for the

target assignment more NRNT are used.

On the other hand, from the point of view of the number of constraints present

in the problem, the dynamic equations require 4NRT , the definition of z
x|y
i need

2NRT constraints, the obstacles avoidance requires NRT
∑NO

i+1(Pi + 1), the collision

avoidance brings 5T
∑NR

i=1 i constraints, the target assignment gives 4NRT +NR +NT

constraints, and finally the bounds on the input and velocity require the last 4NRT

constraints.

This analysis should give an idea of the dimensions of the optimization problem.

In fact, already for small teams and easy environment (few obstacles) the number of

variables and constraints can total thousands, making the time required to solve the

optimization problem too extended. This is the principal motivation that has forced

us to investigate the development of a different approach.

4.3 Implementation

To test the centralized algorithm a simulator has been developed. The simulator

can be divided in three sections, the Matlab part, the interface Matlab/CPLEX and
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CPLEX. The Matlab section is in charge of the simulation of the system and, more-

over, the translation of the problem into the form

min f = c′X

s.t.

A1X = b1

A2X ≤ b2

. (4.16)

When the problem is defined, the number of team members and the number of obsta-

cles is known. This can be used to compute the number of variables and constraints

in the problem, which are equivalent respectively to the number of columns and rows

of the matrices A1 and A2. The interface initially generate the two matrices just with

zeros. The next step is to define the order of the optimization variable in the vector

X. Based on that order, the matrices A1 and A2 have to be populated inserting the

right values in the right position to represent the constraints defined in the problem.

For example, defining the vector X as

X = [x1(1), vx
1 (1), y(1), vy

1(1), ux
1(0), uy

1(0), . . .

x1(T ), vx
1 (T ), y(T ), vy

1(T ), ux
1(T − 1), uy

1(T − 1), . . .].

(4.17)

Now let us consider the constraints





















x1(2)

vx
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vy
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that written in the standard form are

I4×4





















x1(2)

vx
1 (2)

y1(2)

vy
1(2)





















− A





















x1(1)

vx
1 (1)

y1(1)

vy
1(1)





















− B







ux
1(1)

uy
1(1)






= 04×1,

which in terms of the vector X can be written as

[−A 04×2 I4×4 − B 04×1 . . . 04×1]X = 04×1 (4.18)

the equation in (4.18) represent 4 rows of the matrix A1 and the correspondent 4 rows

of the vector b1. A similar procedure is done for all the constraints in the problem.

All this process is done by the first Matlab interface.

Once the problem is formulated as in (4.16) the Matlab interface for CPLEX [2]

can be called. The interface take charge of all the procedures necessary to open the

CPLEX environment populate the problem, start the optimization and retrieve the

results. Based on the result given from CPLEX the status is updated and a new

problem is formulated, and so on. A scheme of the algorithm is reported in Fig. 4.4.

4.4 Simulation results

To verify the algorithm several simulations have been run.

In Fig. 4.5 an example with three robots that try to reach three targets while

avoiding three obstacles is presented.

Due to the complexity of the global optimization problem, the computational

time required to solve each problem grows very fast and even for small team and
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Figure 4.4: Algorithm scheme for the centralized controller.
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Figure 4.5: Three robots moving towards given targets while avoiding obstacles.
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# of robots
2 3 4 5 6

# of obstacles
1 0.125 0.484 3.938 18.31 290.1
2 0.281 0.891 7.953 27.61 566.2
3 0.406 2.016 20.05 203.9 1433

Table 4.1: Mean time to solve one optimization problem in the global formulation,
function of the number of robots and the number of obstacles

easy environment like the one reported in Fig. 4.5 it may becomes difficult to meet

the time constraint on the solution of the optimization problem imposed from the

sampling time of the MPC algorithm. In Tab. 4.1 are reported the average time

required to solve one single optimization problem in function of the number of robots

and the numbers of obstacles. The problems refer to an environment such as that

described in Fig. 4.5 with obstacles or robots added or deleted. It can be seen as

moving at the bottom right side of the table, that correspond to larger team and more

complex environment, the time required to solve the optimization problem becomes

unacceptable. In particular considering a sampling time of 1 second the MPC could

be implemented only at most for a formation of three robot moving in an environment

with two obstacles. Obviously, this result is not satisfactory, because an algorithm

able to deal with more complex situations is required. That is the motivation to

investigate a different structures to address the coordination control, the structure

presented in the next chapter aims to improve the scalability of the global algorithm

such that the MPC algorithm with the underneath MILP optimization problem could

be used for big formation moving in complex environment.

4.4.1 Alternative scenarios

To show the flexibility of the combination of the model predictive control some dif-

ferent scenarios will be presented. The first example comes from the idea of applying

62



2 4 6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

X

Y

obstacle

moving
threats

target
zone

Figure 4.6: Three robots moving towards a target region while avoiding obstacles and
moving threats.

the MPC/MILP to the RoboFlag [12]. The RoboFlag is a game in which two teams

aim to steal the opponent’s flag and bring it back to its own home zone. A robot

trying to reach the flag can be tagged by opponents, in which case it must go back

to the home zone before it can start aiming for the flag again. Part of the game con-

sists, then, in trying to reach a zone defended by opponents avoiding them. Fig. 4.6

indicates the result of a simulation in which three robots are aiming to reach a zone

defended by some moving obstacles. In the simulation it is supposed that the de-

fenders rotate around the defended zone at constant angular speed. The result was

obtained by some slight modification of the formulation presented. In particular the

target assignment is substituted with a final constraint that impose to robots to be
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in the defended zone, and the moving obstacles as treated as normal obstacle with

the difference that the matrices Ot and the vectors rt in (4.3) are known function of

the time. As it can be seen in Fig. 4.7, robots are able to avoid the moving threats

and successfully reach the target zone.
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Figure 4.7: Robots are able to avoid moving obstacles and reach the goal zone.

Another interesting example is the case of moving targets. This can be thought as

using the target assignment to keep a formation. Since the the optimization problem

in the MPC is formulated again at every sampling time it is easy to introduce moving
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Figure 4.8: Moving targets.

targets to represent the desired movement of the formation. In Fig. 4.8 an example

with three robots trying to reach a triangle shape formation is reported. An extension

of the pervious example is obtaining by considering an environment with obstacles

like the one in Fig. 4.9. It is interesting to see how, at the beginning, the team is

trying to converge in the formation with the blue robot in the top position the red in

the center position and the green in the bottom position, after avoiding the obstacle to

optimize the team performance the MPC algorithm finds a new assignment with the

green robot in the top position and the blue in the bottom. Note also the deviation

of the red robot to avoid the green. For this example some observations are in order.

It can be seen as there are some sampling times in which the desired target is inside

the obstacle. Clearly, there can not be a feasible solution that guarantees at the same
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Figure 4.9: Moving targets with obstacles and dynamic reassignment.

time the satisfaction of obstacle avoidance and the final constraints since the target

is inside the obstacle. For this reason the previous formulation must be corrected.

In order to ensure the existence of a solution, the target assignment must be made

a soft constraint. Soft constraints are a very useful tool for model predictive control

algorithms. The soft constraints, contrarily to hard constraints that must be always

satisfied by the solution, are constraints that can be violated by the solution but this

violation comes with a penalty in the cost function.

In particular to make the target assignment a soft constraint, in the equations

(4.15f) the equations that force to have each robot assigned to a target and each
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target assigned to a robot must be modified in the following way

NR
∑

j=1

τjl + ζl = 1 l = 1, . . . , NT

NT
∑

l=1

τjl + ξj = 1 j = 1, . . . , NR

(4.19)

where ζl and ξj are auxiliary continuous variables, and the cost function must become

min
T

∑

k=1

NR
∑

j=1

[zx
j (k) + zy

j (k)] + W1

NT
∑

i=1

ζi + W2

NR
∑

j=1

ξj (4.20)

where W1 and W2 are the cost penalty associated with the violation of the assignment

constraint. To minimize the cost function the solver would try to keep the auxiliary

variable zero, such that nothing is changed from the previous formulation. In case

no feasible solution with a valid assignment is possible, the presence of the auxiliary

variable allows to have a robot assigned to no target. Suppose no assignment is

possible for the robot j then all the variables τjl will be zero and the auxiliary variable

ξj will become 1, causing a penalty W2 in the cost function.

These examples were reported to show the flexibility of the MPC/MILP combi-

nation in representing different kind of tasks/scenarios a property that has not been

found in others approaches. In the next chapter will be described a new structure

for the coordination problem that will add at the model flexibility offered from the

MILP the scalability over the team size and the environment complexity that is at

this point missing.
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Chapter 5

Hierarchical decentralized control

The previous chapter has presented the coordination control problem in a global flat

fashion. In other words it was formulated, and solved, a single problem including

all the available information about the environment and the agents comprising the

team. Solving this problem finds the best possible solution but, as shown before,

this approach does not scale well on the number of agents in the team and on the

complexity of the environment (number of obstacles). In fact, the formulation pro-

posed has a number of binary variables that grows fast with the number of robots and

obstacles and, as it is well known, the computation time required to solve a mixed

integer linear problem grows exponentially with the number of binary variables. To

obtain an algorithm that could be used for big formations and complex environments,

it is necessary to divide the problem into several smaller problems in order to keep

the number of binary variables in each problem from getting too large. In this way

the global optimality of the solution is lost, but instead, a good and fast solution can

be found.
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5.1 Introduction

The multi-vehicle cooperative problem is divided both in a hierarchical way and a

decentralized way. Because it is desired to accomplish tasks related to the whole

team, a higher-level controller that knows the states of all the agents in the team is

still present. The higher-level controller, considering the state of all the agents, makes

decisions related to the whole team, for example the target assignment or keeping a

formation, while will leave tasks that are related to each single robot to the lower-level

controller, such as obstacle and collision avoidance. Instead of planning an off-line

trajectory, the higher-level controller periodically reformulates and resolves the opti-

mization problem to compensate for the unconsidered elements in the environment.

In this way, if a robot, after avoiding an obstacle using the lower level controller, is

closer to a different target from the one originally assigned, it is possible that the

robot could be reassigned to this new target if this reassignment is more convenient

for the formation.

On the other hand, decentralization is applied on the lower-level services. Every

robot would solve its own optimization problem to find a safe trajectory. The op-

timization problem will consider only the closest obstacles and teammates. In fact,

when a robot is navigating, the real danger comes only from the close obstacles and

teammates, since all the others are out of the reachable space.

Considering only the closest dangers brings several advantages. First of all, be-

cause the number of binary variable is related to the number of obstacles and team-

mates considered, reducing the number of threats considered in the optimization

problem would reduce these variables, making the problem easier to solve. Second,

a sensing device (like an omnidirectional camera [5]) can be used instead of com-

munication among teammates to estimate their state. Although, as a drawback the
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Figure 5.1: The difference in the trajectories in the case of complete knowledge and
partial knowledge is one of the reasons the solution found with the decentralized
method is worse than the one found with the global optimization.

solution obtained using a limited range of sense will be worse than the one found

using complete knowledge, see Fig. 5.1.

In the following sections the higher-level and lower-level control problems are

formalized. Then, some heuristics for improving the performance are introduced.

The final part of the chapter is dedicated to an overview of the simulator and some

simulation results.

5.2 Hierarchical decentralized algorithm

A schematic diagram of the algorithm is reported in Fig. 5.2. Both the levels are

based on a model predictive control type of algorithm, with the difference that the

higher-level controller has a slower sampling time. Roughly speaking, the higher-

level controller solves the open-loop optimization problem to find the best assignment

robot/target for all the robots in the formation. The task of the lower-level controller

is to drive the robot to the assigned target while avoiding collisions with obstacles

and teammates.
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Figure 5.2: Control algorithm scheme.

5.2.1 Higher-level optimization problem

The higher-level model predictive control is in charge to find the best assignment

robot/target based on the current status of the team. Thus, the higher-level control

sends the assigned target to each robot.

The open-loop optimization problem solved by the higher-level MPC is formulated

in the following way

min

(T−1)
∑

k=0

(NR)
∑

i=1

zx
i (k) + zy

i (k) (5.1a)

subject to:

z
x|y
i (k) ≥ u

x|y
i (k)

z
x|y
i (k) ≥ −u

x|y
i (k) ∀k = 0, . . . , T − 1; i = 1, . . . , NR

(5.1b)

Xi(k + 1) = AiXi(k) + BiUi(k) Xi(k) =





















xi(k)

yi(k)

vx
i (k)

vy
i (k)





















Ui(k) =







ux
i (k)

uy
i (k)







∀i = 1, . . . , NR; k = 1, . . . , T ;

(5.1c)

NR
∑

i=1

γij = 1 ∀j = 1, . . . , NT (5.1d)

72



NT
∑

j=1

γij = 1 ∀i = 1, . . . , NR (5.1e)

xi(T ) − xt
l ≥ m(1 − γjl)

xi(T ) − xt
l ≤ M(1 − γjl)

yi(T ) − yt
l ≥ m(1 − γjl)

yi(T ) − yt
l ≤ M(1 − γjl) ∀i = 1, . . . , NR; l = 1, . . . , NT

(5.1f)

u
x|y
i (k) ≤ UMAX v

x|y
i (k) ≤ VMAX ∀i = 1, . . . , NR; ∀k = 1, . . . , T (5.1g)

where the variable γij is a binary variable that is one if the i-th robot is assigned to

the j-th target and zero otherwise. As for the global case, equations (5.1b) define

the variables z
x|y
i (k) such that they are the absolute value of the variables u

x|y
i (k).

Equations (5.1d) ensure that each target is assigned to one robot. Equations (5.1e)

ensure that one target is assigned to each robot. Equations (5.1f) force the position

of the i-th to be equal to the position of the j-th target if γij = 1. At the same time

these equations act as a final set constraint and so, they also ensure stability.

This problem would then have 2NRT continuous variables and 4NRT constraints

to represent the absolute value of u
x|y
i (5.1b), 6NRT continuous variables and 4NRT

constraint due to the dynamic equations (5.1c), and finally NRNT binary variables

and NT (5.1d) NR (5.1e) and NRNT (5.1f) constraints for the target assignment. Since

the problem so defined involves fewer binary variables, it will be easier to solve as

shown in the simulation results.

5.2.2 Lower-level optimization problem

The lower-level optimization problem is in charge for finding the control inputs to

drive the robot to the assigned target with a collision free trajectory.
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Algorithm 3 Higher-level algorithm

1: for all Sampling time TH
s do

2: Receive the state of each agent in the formation Xi(k)
3: Solve the optimization problem PH(X(k)) with X(k) the state of the whole

formation at k-th sampling time
4: Send to each agent the assigned target
5: end for

The optimization problem for the robot i can be formulated as

PL
i = min

(T−1)
∑

k=0

zx
i (k) + zy

i (k) (5.2a)

subject to the equations that define z
x|y
i (k)

z
x|y
i (k) ≥ u

x|y
i (k)

z
x|y
i (k) ≥ −u

x|y
i (k) ∀k = 0, . . . , T − 1;

(5.2b)

the dynamic equations of the robot

Xi(k + 1) = AiXi(k) + BiUi(k) Xi(k) =





















xi(k)

yi(k)

vx
i (k)

vy
i (k)





















Ui(k) =







ux
i (k)

uy
i (k)







∀k = 0, . . . , T − 1;

(5.2c)

the constraints for the obstacle avoidance

op1xi(k) + op2yi(k) − rp ≥ ǫ + (m − ǫ)ωk
pi

P
∑

p=1

ωk
pi ≤ P − 1 ∀k = 0, . . . , T − 1

(5.2d)
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the collision avoidance constraints

cap1(xi(k) − x̂j(k)) + cap2(yi(k) − ŷj(k)) − sd ≥ ǫ + (m − ǫ)τk
pij

4
∑

p=1

τk
pij ≤ 3 ∀k = 0, . . . , T − 1; j = 1, . . . , NN

(5.2e)

where NN is the number of neighbors.

The terminal set constraints

xi(T ) = xT
j , yi(T ) = yT

j
(5.2f)

and the bounds on the states and inputs

u
x|y
i (k) ≤ UMAX v

x|y
i (k) ≤ VMAX ∀k = 1, . . . , T. (5.2g)

Note that the constraints in (5.2d) cannot be written in the same way as it was written

for the global case. In fact in the global case, the variables xj(k) and yj(k) were part

of the optimization problem, instead in this case there is no knowledge about these

variables. For this reason an estimation is used in place of the true value. Several

ways are possible to obtain the estimation. One could be by direct communication,

in this case every robot have to broadcast its plan to all the neighbors. This solution

would require a complex structure for the synchronization among the teammates. A

second way is by using a sensing device, like an omnidirectional camera. It is then

supposed that each robot has the ability to sense the position and the velocity of its

neighbor teammates. Using this knowledge, the estimation on xj(k) and yj(k) is made

supposing that the other teammates will not change their velocity. The estimation
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will be then

x̂j(k) = xj(0) + kvxj(0) (5.3)

where the same estimation is made on the y direction. Since most likely the robot j

would change its velocity to ensure a collision free solution, all the reachable points

from robot j will be made unaccessible to robot i. This is equivalent to enlarge the

safety zone around the robot j to sd = VmaxT
L
s , where TL

s is the lower-level sampling

time. This is a very conservative approach but it is necessary to ensure collision

avoidance.

The algorithm executed by the lower-level controller is described in Algorithm 4.

Algorithm 4 Lower-level algorithm

1: for all Sampling time TL
s do

2: Sample the state of the agent to obtain Xi(k)
3: Build the set of local constraints CL

i , and local variables X L
i

4: Solve the optimization problem PL
i (X(k))

5: Apply the first input from the input sequence obtained from the solution of the
optimization problem

6: end for

The variables and constraints needed in the problem are: 2T continuous variables

and 4T constraints for the definition of z
x|y
i (k) (5.2b); 6T continuous variables and 4T

constraints for the dynamic equations (5.2c);
∑No

i PiT binary variables and
∑No

i (Pi+

1)T constraints due to the obstacle avoidance (5.2d), note that No is the number of

obstacles considered; 4TNN binary variables and 5TNN constraints for the collision

avoidance (5.2e). The dimension of the problem is much smaller than the global one,

and the number of binary variables depends on the number of obstacles considered

No and the number of neighbors NN . Next section will described how some heuristic

can be used to define the optimization problem in a more efficient way.
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5.3 Heuristic for defining the lower-level

optimization problem

The optimization problem PL
i is defined through the set of its optimization variables

X L
i and the set of constraints CL

i . The main objective is to reduce the size of the two

sets as much as possible in order to reduce the computation time required to solve

the problem. At the same time, it is desirable to keep the solution collision free and

as close as possible to the global optimum.

Among all the variables and constraints in the problem, there is a subset of vari-

ables X n
i ⊂ X L

i and constraints Cn
i ⊂ CL

i that are necessary. These are the variables

and the constraints due to the definition of z
x|y
i (k) (5.2b), the dynamic equations of

the robot (5.2c) and the bounds on the state variables and on the inputs (5.1g).

On the other hand, some decisions can be taken on the sets of variables and

constraints related to the obstacles and collisions avoidance. Let us define the set of

variables and constraints needed to include an obstacle Ot respectively

X o
t and Co

t (5.4)

In the same way, the variables and constraints for including the robot Rj will be

called

X r
j and Cr

j (5.5)

One way to build the two sets X L
i and CL

i is by including all the obstacles and all
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the robots. This means the two sets are given by

X L
i = X n

i

No
⋃

t=1

X o
t

NR
⋃

j=1

Cr
j

CL
i = Cn

i

No
⋃

t=1

Co
t

NR
⋃

j=1

Cr
j .

(5.6)

Note that, this is equivalent to have complete knowledge of the environment and

the state of all the robots in the team. Even though, the optimization problem

defined in this way would have a solution close to the global optimum, it also has

several drawbacks. First of all, the two sets X L
i and CL

i are the largest possible and,

therefore, the solution to the problem would require much time. Moreover, it is not

always possible to have complete knowledge of the environment where the robots are

going to operate in. At the same time, this solution would require the knowledge

about position and velocity of all the members in the team. This requirement would

need communication among teammates but this communication may be undesirable.

An alternative is to consider in the sets X L
i and CL

i only the robots and the

obstacles that can be sensed, see Fig 5.3. Following this idea the variables and the

constraints for the obstacle Ot will be included if

X o
t ∈ X L

i ; Co
t ∈ CL

i ⇔ min
(x,y)∈Ot

d([xi(k), yi(k)], [x, y]) ≤ dsensed. (5.7)

In the same way the variables and the constraints for the collision avoidance with the

robot Rj will be included if

X r
j ∈ X L

i ; Cr
j ∈ CL

i ⇔ d([xi(k), yi(k)], [xj(k), yj(k)]) ≤ dsensed. (5.8)

An assumption on the sensed range is in order. To guarantee the existence of a
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Sensing zone

Robot

Figure 5.3: The blue robot can sense only the obstacles and the robots inside its
sensing zone (in red), everything outside this zone is unknown (in gray).

collision free trajectory, the sensing range must be large enough to allow the robot

to stop before hitting the obstacles, once the obstacle is sensed and while moving at

the maximum speed. This means that in the time ts required to the robot to stop

VMAX − tsUMAX = 0

ts =
VMAX

UMAX

(5.9)

the distance covered x should be less the dsensed

x = VMAXts − UMAX

t2s
2

≤ dsensed

x =
1

2

V 2
MAX

UMAX

≤ dsensed

(5.10)

Using this heuristic the number of obstacles and teammates considered in each
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Sensing range

max x

(a) The sensing range is not big enough to guarantee obstacle avoidance.

Sensing range

Vmax x

(b) The robot can stop before hitting the obstacle.

Figure 5.4: Two situations in which depending on the sensing range the collision can
be avoided or not. Note x is the minimum distance required to stop the robot while
moving at the maximum speed.

80



Dangerous

obstacle
Sensing zone

Dangerous

teammate

Figure 5.5: For the green robot only the red obstacle and robot represent a possible
collision.

lower-level optimization problem are clearly reduced. Since the neglected obstacles

and teammates are far, there is no risk of collision.

The result obtained with this first heuristic can be further improved. In fact,

even though obstacles or teammates are in the sensing range they could not represent

a risk. Let us consider for example a robot j in the robot i sensing zone, if j is

behind i and moving in the opposite direction it is not a threat for i. In the same

way, if and obstacle is in the i sensing range but it is behind the robot, with the

robot moving away from the obstacle, there is no need to include the obstacle in the

optimization problem. See Fig. 5.5. Considering the actual velocity and the bound

on the acceleration, it is possible to build the cone of possible points in which every

robot could be in the next sampling times, before actually computing the input from

the optimization problem. The cone can be used as an estimation of where the robot

will be in the next sampling time. The idea is then to use this cone to decide which

robot and which obstacle are effectively dangerous and need to be included in the
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optimization problem.

Given the velocity of the i-th robot at the k-th sampling time (Vx(k), Vy(k)) the

maximum variation possible in the sampling time is ±UmaxTs for each component.

The following four vectors can be obtained

v1 =







Vx + UmaxTs

Vy + UmaxTs






v2 =







Vx + UmaxTs

Vy − UmaxTs







v3 =







Vx − UmaxTs

Vy + UmaxTs






v4 =







Vx − UmaxTs

Vy − UmaxTs







(5.11)

Among these, two of them vi and vj can be obtained as cone combination of the other

two vk and vp, the latter two will be taken to generate the cone that will be used as

estimation of the future position of the robot. More specifically the cone is defined

as

Ci = {(x, y) ∈ R
2 : (x, y) = λkvk + λpvp λk, λp ≥ 0} (5.12)

Once the cone C is obtained the intersection between the cone and the obstacle Ot

can be taken

Io = Ot

⋂

Ci (5.13)

if the intersection is empty the obstacle is not on the way then it can be omitted.

If it is not empty, the obstacle will be included if the distance between the closest

intersection point and the position of the robot i is less than a threshold t. This can

82



be summarized in the following implication

Co
t ∈ CL

i andX o
t ∈ X L

i

m

Io 6= ∅
∧

min
(x,y)∈Io

d([xi(k), yi(k)], [x, y]) ≤ t

(5.14)

In a similar way to decide if the robot j must to be included in the optimization

problem of the robot i the intersection Ir between the cone Ci and Cj is computed

Ir = Ci

⋂

Cj (5.15)

if the intersection is empty the robot j is not on the way then it can be omitted. If it is

not empty, the robot will be included if the distance between the closest intersection

point and the position of the robot i is less then a threshold t. In summary

Cr
j ∈ CL

i andX r
j ∈ X L

i

m

Ir 6= ∅
∧

min
(x,y)∈Ir

d([xi(k), yi(k)], [x, y]) ≤ t

(5.16)

In Fig. 5.6 is reported an example about the use of the cones.

5.4 Implementation

To implement the algorithm in real time, it would be necessary to have one solver

for the higher-level controller and one solver for each lower-level controller. To verify

the algorithm, a Matlab simulator has been developed. Since we had only one solver

available the solution of the optimization problem is done sequentially instead of
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Figure 5.6: Among the sensed obstacles and teammates by the red robot only a subset
has non empty intersection with its cone. Note that the red dots are the closer point
of the intersections.

synchronously. In particular, firstly, the higher-level optimization problem is solved

based on the initial condition of the team. Then based on the solution obtained

from the higher-level, the lower-level problem are formulated and solved for all the

robot. To recover the synchronization the inputs obtained by solving the lower-level

problem are applied at the same time once all the problem are solved. The lower-level

optimization is solved TH
s /TL

s times (TH
s and TL

s are chosen such that the division is

an integer number). Then the higher-level optimization problem is formulated again

based on the new state of the team. The simulator works following the Algorithm 5.

Going into the details of the Algorithm 5, after sampling the state of the team,

the function high level problem is called. The function takes as input the position

of the target and the state of the team and gives back the optimal assignment. The
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Algorithm 5 Simulator algorithm

1: for all Sampling time t do

2: Sample the state of the team to obtain X(t)
3: Build the problem PH(X(t))
4: Find the optimal assignment
5: for k = 1 to TH

s /TL
s do

6: for i = 1 to NR do

7: Determine the robots and the obstacles in the sensing range of Ri

8: Find the dangerous teammates in the sensing zone
9: Find the dangerous obstacles in the sensing zone

10: Build the problem PL
i (X(t + kT L

s ))

11: Find and store the solution of the optimization problem u
x|y
i (t + kT L

s )
12: end for

13: Apply the input Ux|y(t + kT L
s ) to all the robots

14: end for

15: end for

function is in charge of translating the constraints in the standard form

min f = c′X

s.t.

A1X = b1

A2X ≤ b2

(5.17)

after the conversion the function will call CPLEX through the interface, and it will

return the optimum assignment.

In the inner loop of the simulation, for each robot, a function that emulates

the sensor will be called. This function is in charge of determining which robots

among the team and obstacles are in the sensing range. To distinguish which robots

and obstacles represent a possible collision the functions neighbors on the way and

obstacles on the way are called. These two functions use the heuristic presented in the

last section to reduce the number of robots and obstacles included in the optimization

problem. The two functions follow the procedure described in the previous section,
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in particular they will build the cone Ci and find the intersection with the cone of

the others robots Cj and obstacles Ot.

Once the problem is defined the function lower level problem is called to perform

the translation in the standard form (5.17), and to call CPLEX.

5.5 Simulation results

To test the algorithm some simulations have been run.

In Fig. 5.7 is reported a simulation with six robots moving to reach six targets

in an environment with several obstacles. Several aspects can be pointed out from

the simulation. Obstacles with different shapes are included, and also a non-convex

obstacle obtained from the combination of two convex obstacles is considered. Note

also the trajectory of the yellow robot, it initially moves straight toward the target

since it has no knowledge of the presence of the obstacle. When the obstacle is sensed

it deviates from the trajectory to avoid the obstacle and then it moves back to reach

the target when the obstacle has been passed.

This example could not be simulated with the centralized algorithm due to the

high number of variables needed, it is instead easily handled from the hierarchi-

cal/decentralized algorithm. To have a quantitative comparison the algorithm is run

over the same problem used to obtain Tab. 4.1. Running the same examples with the

hierarchical decentralized algorithm the Tab. 5.1.

From the table it is possible to see how the time required to solve the problem

does not increase too much when moving in the bottom right part of the table that

correspond to the hardest problems. In particular it can be noted that all the scenar-

ios in the table could be implemented with a sampling time of 0.5 s. Comparing the
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Figure 5.7: Six robots going to six targets while avoiding obstacles.

# of robots
2 3 4 5 6

# of obstacles
1 .011 .011 .021 .025 .028
2 .023 .027 .027 .028 .028
3 .024 .028 .032 .032 .036

Table 5.1: Mean time to solve one optimization problem in the hierarchi-
cal/decentralized formulation, function of the number of robots and the number of
obstacles.
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# of robots
2 3 4 5

global 402.1 575.4 768.4 992.2
Hierarchical/decentralized 881 1415 1804 2318

Table 5.2: Comparison between the cost of the global solution and the cost of the
hierarchical/decentralized solution.

scenario with six robots and three obstacles in the centralized case 1433 s and the hier-

archical/decentralized case 0.36 s it is possible to have an idea about the improvement

in term of computational time required to solve the problem.

As stated before, the improvement in the required computational time comes with

a deterioration of the solution, in the sense that the solution obtained with the hi-

erarchical/decentralized algorithm will give a solution that is not as good as the one

given from the centralized algorithm. In Table 5.2 is reported the comparison of the

cost of the solution for the centralized and the hierarchical/decentralized algorithm.

The environment considered is the one indicated in Fig. 4.5. As expected, the cen-

tralized algorithm is constantly better than the hierarchical/decentralized one. The

solution obtained with the hierarchical/decentralizde algorithm is about 2.2-2.5 times

the centralized solution that could be considered a satisfactory result.

The simulation in Fig.5.8 is reported to show the scalability of the algorithm over

big team and complex environment. In the simulation 31 robots and 10 obstacles are

considered.
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Figure 5.8: 31 robots going to 31 targets while navigating in a complex environment.
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Chapter 6

Conclusion and future work

6.1 Conclusion

The problem of coordinating a team of mobile unmanned vehicles cooperating to

accomplish a common task has been considered. In designing the control algorithm

for the coordination of the team, the goal was to obtain an algorithm which would

deal with both small and large groups. The algorithm must show flexibility such that

it can be used for complex environments and tasks. Finally, last but not least it must

give an optimal solution. Several algorithms addressing this problem can be found in

the literature, but they do not seem to satisfy all the requirements. For example the

ones scaling well on the number of members in the team may not show flexibility over

the task that can be modeled or they may not consider optimization and so on. This

work aimed to propose a control algorithm that satisfies all the properties mentioned

before.

After reviewing the literature of the works on the cooperative control, it seemed

that model predictive control (MPC) was the most promising control technique be-

cause its algorithm is based on the solution of an open-loop optimal control problem.

Moreover and thanks to the on-line implementation, the model predictive control

91



offers a framework that addresses dynamic changes in the environment and in the

constraints. These characteristics make model predictive control the basic building

block for the analysis. However, model predictive control algorithms based on clas-

sical convex optimization techniques showed themselves not flexible enough to adapt

to different kind of tasks and environments, since the requirement of having convex

constraints was quite restrictive. Motivated by the need of having a more efficient

tool, the attention was directed to mixed integer linear programming (MILP).

Mixed integer linear programming provides a broad set of tools for modeling non-

convex constraints. In fact, it offers the possibility of including in the problem decision

variables that can be associated to logical statements. Then, decision variables can

be combined to model complex logical structures. Mixed integer linear programming

also permits to define discrete variables to monitor the state of continuous variables.

And finally, it gives a way to model some classes of non-linear functions.

The first attempt to address the coordination of multi-vehicle systems, then, was

done by using a mixed integer linear program as the underneath optimal open-loop

problem in the model predictive control algorithm. Even though, the approach was

promising due to the combination of the properties of the MPC and MILP, the al-

gorithm showed poor performance already for quite small teams and simple environ-

ments. The problem was in the NP-hard nature of the MILP problem. In fact, the

computational time required to solve the MILP problem grows exponentially with the

number of binary variables, and this number quickly becomes large when modeling

a large team or complex environment. Then, although the algorithm showed some

good properties, it didn’t scale as adequately as required.

The desire to exploit the properties from the MPC and the MILP pushed us to

look in a different structure that could improve the scalability of the algorithm. The
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basic idea was to divide the services regarding the whole team, like the cooperation

tasks, from the ones regarding the single member, for example the obstacle avoidance.

Applying this concept, we proposed a hierarchical/decentralized structure. When a

problem is too complicated to be solved in a single step it is a common practice to use

a hierarchical approach and/or a decentralized approach. This causes us to divide

the original problem into smaller problems that are easier to solve. The cost that

must be paid in using these techniques is in terms of the value of the solution. In

fact, the solution obtained using the hierarchical and decentralized model is usually

worse than the one found solving the original problem.

Applying these concepts to the algorithm initially proposed, brought us to a new

algorithm that keeps the original properties shown from the MPC and MILP adding

at the same time good scalability over the size of the team and the complexity of

the tasks and environments, while keeping the cost of the solution reasonably close

to the one obtained solving the global problem. In conclusion it can be claimed that

the proposed algorithm satisfies all the properties we were seeking for the solution

of the problem of coordinating a team of mobile robots cooperating to accomplish a

common task.

6.2 Future work

To improve the performance of the algorithm two methods are possible. The fist one

is by improving the model. It is always possible to find smarter models that reduce

the number of variables and constraints, and, at the same time present a solution that

is closer to the global optimum. The second way is by improving the solver trying to

reducing the computational time such that more complex problems could be solved
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quickly.

We are also planning to develop a graphical user interface to allow a user to

define the mission objective using high-level instructions. In this way the simulator

can become a tool to test the high-level algorithm without entering too much into the

details of the translation of the mission in terms of mixed integer linear programming.

Part of the future work will be trying to implement the algorithm on a real testbed

under development in the Marhes laboratory. In order to make this vision a reality

it will be necessary to build all the communication architecture between the central

station and the agents. It will also be necessary to find a way to guarantee the

synchronization among the agents. In addition to the informational architecture,

more work will be necessary to develop the sensors needed to estimate the position

of each robot which must be transmitted to the central station. At the same time

each robot must be able to estimate the position of its neighbors and their velocity

[15]. Due to the presence of delay, uncertainties and noise from sensors, it may be

necessary to adjust the model to better fit these situations that were not considered

in this work.

94



Bibliography

[1] M. Alighanbari and J. P. How. Cooperative task assignment of unmanned aerial

vehicles in adversarial environments. In Proc. American Control Conference,

pages 4661–4666, Portland, Oregon, June 8-10 2005.

[2] M. Baotic. Matlab interface to CPLEX. Available from

http://control.ee.ethz.ch/ hybrid/cplexint.php.

[3] A. Bemporad and M. Morari. Control of system integrating logic, dynamics, and

constraint. Automatica, 35:407–427, 1999.

[4] G. C. Chasparis and J. S. Shamma. Linear-programming-based multi-vehicle

path planning with adversaries. In Proc. American Control Conference, pages

1072–1077, Portland, Oregon, June 8-10 2005.

[5] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Tay-

lor. A vision-based formation control framework. IEEE Trans. on Robotics and

Automation, 18(5):813–825, October 2002.

[6] A. K. Das, R. Fierro, V. Kumar, J.P. Ostrowski, J. Spletzer, and C.J. Taylor. A

vision-based formation control frameworks. IEEE Transactions on robotics and

automation, 18(5):813–825, October 2002.

[7] J.P. Desai. A graph theoretic approach for modelling mobile robot team forma-

tion. Journal of robotic system, 19(11):511–525, 2002.

95



[8] J.P. Desai, V. Kumar, and J.P. Ostrowski. Control of change in formation for a

team of mobile robots. In Proceeding of the 1999 IEEE international conference

on robotics and automation, volume 2, pages 1556–1561, Detroid, Michigan, May

10-15 1999.

[9] J.P. Desai, V. Kumar, and J.P. Ostrowski. Modelling and control of formations

of nonholonomic mobile robots. IEEE Transactions on robotics and automation,

17(6):905–908, December 2001.

[10] W.B. Dunbar and R.M. Murray. Model predictive control of coordinated multi-

vehicle formations. In Proceeding of the 41th IEEE conference on decision and

control, volume 4, pages 4631–4636, Las Vegas, Nevada, USA, December 10-13

2002.

[11] W.B. Dunbar and R.M. Murray. Receding horizon control of multiple vehicle

formations: a distributed implementation. In Proc. IEEE Conf. on Decision

and Control, volume 2, pages 1995–2002, Atlantis, Paradise Island, Bahamas,

December 14-17 2004.

[12] M. G. Earl and R. D’Andrea. Modeling and control of a multi-agent system

using mixed integer linear programming. In Proc. IEEE Conf. on Decision and

Control, volume 1, pages 107–111, Las Vegas, NV, December 10-13 2002.

[13] M. G. Earl and R. D’andrea. A decomposition approach to multi-

vehicle cooperative control. Technical report, Department of Mechani-

cal and Aerospace Engineering Cornell University, 2004. Available at

http://control.mae.cornell.edu/earl/.

96



[14] M. G. Earl and R. D’andrea. Iterative milp methods for vehicle control prob-

lems. In Proc. IEEE Conf. on Decision and Control, volume 4, pages 4369–4374,

Atlantis, Paradise Island, Bahamas, December 14-17 2004.

[15] D. Cruz C. Flesher B. Perteet J. McClintock R. Fierro. An experimental testbed

for swarming and cooperative robotic networks. Submitted to 2006 IEEE Inter-

national Conference on Robotic and Automation.

[16] R. Fierro, A. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of formations

of robots. In Proc. IEEE Int. Conf. Robot. Automat., pages 157–162, Seoul,

Korea, May 2001.

[17] S. S. Keerthi E.G. Gilbert. Optimal, infinite horizon feedback law for a general

class of constrained discrete system: Stability and moving-horizon approxima-

tions. Journal of Optimization Theory and Application, 57:265–293, 1988.

[18] Y. Hao, A. Davari, and A. Manesh. Differential flatness-based trajectory planning

for multiple unmanned aerial vehicle using mixed-integer linear programming. In

Proc. American Control Conference, pages 104–109, Portland, Oregon, June 8-10

2005.

[19] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6):988 – 1001, June 2003.

[20] H. G. Tanner A. Jadbabaie and G. J. Pappas. Flocking in teams of nonholo-

nomic agents, volume 309, pages 229–239. Springer, lecture notes in control and

information science edition, 2004.

97



[21] T. Keviczky, F. Borrelli, and G. J. Balas. A study on decentralized reciding

horizon control for decoupled system. volume 6, pages 4921–4926, Boston, Mas-

sachusset, June 30 - July 2 2004.

[22] D. B. Kingston and C. J. Schumacher. Time-dependent cooperative assignment.

In Proc. American Control Conference, pages 4084–4089, Portland, Oregon, June

8-10 2005.

[23] C.W. Reynolds. Flocks, herds, and schools: a distributed behaivor model. Com-

puter graphics, 21(4):25–34, July 1987.

[24] A. Richards and J. P. How. A decentralized algorithm for robust constrained

model predictive control. In Proc. American Control Conference, pages 4261–

4266, Boston, Massachusetts, June 30-July 2 2004.

[25] A. Richards and J. P. How. Mixed-integer programming for control. In Proc.

American Control Conference, pages 2676–2683, Portland, Oregon, June 8-10

2005.

[26] R. O. Saber, W. B. Dunbar, and R. M. Murray. Cooperative control of multi-

vehicle systems using cost graphs and optimization. In Proc. American Control

Conference, volume 3, pages 2217–2222, Denver, Colorado, June 4-6 2003.

[27] R. O. Saber and R. M. Murray. Floking with obstacle avoidance: cooperation

with limited communication in mobile networks. In Proc. IEEE Conf. on De-

cision and Control, volume 2, pages 2022–2028, Maui, Hawaii, December 9-12

2003.

98



[28] D. H. Shim, H. J. Kim, and S. Sastry. Decentralized nonlinear model predictive

control of multiple flying robots. In Proc. IEEE Conf. on Decision and Control,

volume 4, pages 3621–3626, Maui, Hawaii, December 9-12 2003.

[29] T. Shima, S. J. Rasmussen, and A.G. Sparks. Uav cooperative multiple task

assignment using genetic algorithms. In Proc. American Control Conference,

pages 2989–2994, Portland, Oregon, June 8-10 2005.

[30] H. Tanner, A. Jadbabaie, and G.J. Pappas. Flocking in fixed and switching

networks. Submitted to IEEE Transactions on Automatic Control, April 2005.

[31] R. R. Bitmead M. Gevers V. Wertz. Adaptive optimal control - The thinking

man’s GPC. Prentice-Hall, Englewood Cliffs, NJ, 1990.

[32] K. Wesselowski and R. Fierro. A dual-mode model predictive controller for robot

formations. In Proc. IEEE Conf. on Decision and Control, pages 3615–3620,

Maui, Hawaii, December 9-12 2003.

99



VITA

Carlo Branca

Candidate for the Degree of

Master of Science

Thesis: A HIERARCHICAL OPTIMIZATION APPROACH FOR COOPERATIVE
VEHICLE NETWORKS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Campobasso, Italy, on May 25th, 1978, son of Michele
and Maria Branca.

Education: Graduated from Istituto Tecnico Industriale G. Marconi, Cam-
pobasso, Italy, in July 1996; received a laurea degree in Computer Engi-
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