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CHAPTER 1 

SENSORS 

 

 The basic components of any sensor system are the recognition element, the 

transducer, and the detector.  Other possible components include data analysis hardware 

and software.  The recognition element interacts directly with the analyte to be detected.  

This interaction should be as specific as possible.  Any ambiguities in the interaction 

between the recognition element and the analyte are referred as potential interferents.  An 

interferent is any compound that results in a false positive or false negative from the 

system or changes the degree of responsiveness of the system to the intended analyte.  

The transducer converts the interaction of the analyte with the recognition element into a 

signal measurable by the detector.  The detector may be sensitive to almost any physical 

parameter: impedance, current, potential, mass, viscosity, temperature, intensity or phase 

of electromagnetic radiation. 

 Sensors can be divided into categories based on the transducer used and further 

subdivided based on recognition element and analyte to be detected.  The major types of 

transduction are optical, electrochemical, acoustic, and thermometric.  Optical techniques 

include using absorbance (most often in the UV, visible, and infrared regions), 

fluorescence, luminescence, polarization, and refractive index (commonly by surface 

plasmon resonance, SPR).  Electrochemical sensors may be amperometric, 

potentiometric, or conductimetric.  Amperometric detection is based on the current 

generated at fixed potential when a compound is oxidized or reduced at the electrode.  

Potentiometric detection is based on the change in potential resulting from accumulation 
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of charge on the sample electrode at zero (or fixed) current as compared to a reference 

electrode.  Conductimetric detection is based on the change in conductance of a medium 

between two electrodes.  This may result from selective binding to one electrode or from 

a change in the concentration of an analyte due to a catalyzed reaction.  Finally, acoustic 

sensors include those based on piezoelectric transducers such as the quartz crystal 

microbalance and surface acoustic wave devices (SAWs).  A piezoelectric device is 

brought into resonance by an external alternating field.  A change in the mass of the 

crystal due to interaction with an analyte changes the frequency of oscillation.  A SAW 

monitors wave velocity and attenuation of the surface, changes in these parameters 

indicate an analyte interaction.  An excellent review of sensor basics as well as all of 

these transduction mechanisms is given in Enzyme and Microbial Biosensors [1]. 

 

1.1  BIOSENSORS 

 Though there has been some discussion about the definition, a biosensor is a 

sensor system that incorporates a bioelement (enzyme, antibody, or microorganism) as 

the recognition element.  In an enzyme based sensor, the binding specificity of the 

enzyme for its substrate or an inhibitor is utilized.  The signal transduction may be by any 

of the above mentioned methods, but the product of the enzymatic reaction is the most 

commonly detected compound (Figure 1.1). 

 An enzyme is a protein that catalyses a chemical reaction.  An analyte (substrate) 

is recognized like a key to a lock.  The analyte is bound to the enzyme, the reaction is 

catalyzed, and a new compound (product) is released.  The product can be detected 

optical techniques if it absorbs light or fluoresces (etc).  The product may be detected due 
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to interaction with another analyte whose optical characteristics change as a result of the 

interaction.  The product may be detected amperometrically by oxidation or reduction.  If 

the catalyzed reaction also produces H2O2 or consumes oxygen, this can be detected 

amperometrically.  If ions are produced (Cl-, Na+, etc) or the pH of the medium is 

changed due to the reaction, this can be detected by potentiometric techniques. 

 Often, detection of the substrate of an enzyme is not the actual goal since 

enzymes are frequently used for detection of their inhibitors.  An inhibitor is a molecule 

that binds an enzyme influencing the rate of the catalyzed reaction or the binding of 

substrate molecules.  For acoustic devices the application is obvious.  The inhibitor is 

bound by the enzyme, while other compounds will not be held on the surface.  Binding of 

the inhibitor changes the characteristics of the surface.  In the case of optical and 

electrochemical detection methods, the application of enzymes traditionally involves two 

steps.  First, the rate of change in product concentration is measured for fixed enzyme 

and initial substrate concentrations.  Second, once this background rate is known, the rate 

of change in product concentration is measured for the same enzyme and initial substrate 

concentrations in the presence of the inhibitor.  The difference in the two rates can be 

used to quantify the inhibitor present in the case of a known inhibitor.  If the inhibitor is 

unknown, it is often necessary to observe its effect on different enzyme concentrations or 

on an array of different enzymes in order to identify it.  In some cases other methods are 

necessary for absolute identification.  This point is important; these measurements require 

time and are subject to fluctuations if the enzymatic activity fluctuates for reasons not 

related to the inhibitor (changes in pH, temperature, etc).  The measurements also require 
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addition of substrate material, a feature not desirable when designing a field use unit.  

Table 1.1 lists several of the enzyme based detection systems found in the literature.   

 

1.2  DESCRIBED SYSTEMS 

In this document a novel type of optical enzyme based sensor is described.  

Unlike the traditional enzyme based systems, the system does not rely on a measurement 

of the enzymatic rate in the absence/presence of inhibitor.  Instead it utilizes 

measurement of the binding of the inhibitor (or substrate) to the enzyme using a 

porphyrin as a colorimetric indicator.  This novel technique has been applied to several 

enzymes for a variety of applications.  Acetylcholinesterase (AChE) and 

butyrylcholinesterase (BChE) are used for the quantification of cholinesterase inhibitors 

including pesticides and some drugs.  A system for the determination of glucose is 

described using glucose oxidase.  Carbonic anhydrase is used in a system for 

determination of CO2 and inhibitors of the enzyme.  Organophosphorous hydrolase 

(OPH) is used for detection of organophosphate compounds including several pesticides.  

In addition to the enzyme based sensors described in Chapters 5 through 9, there are three 

systems described using porphyrins for both the recognition element and the transducer.  

These systems comprise Chapters 10 through 12 and demonstrate the flexibility of the 

porphyrins for application in detection protocols. 

The systems using AChE, BChE, and OPH as recognition elements share a 

common goal.  The surfaces were designed for the detection of organophosphate 

compounds such as pesticides and nerve agents that threaten the health of first responders 

and military personnel.  The system was designed in the hope that it could be made 
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compact and inexpensive allowing it to be used by a wide range of persons.  The 

detection of cyanide has similar applications; cyanide can be used as a chemical warfare 

agent and it is a waste product of some industrial processes.   

 The motivation for detection of bacterial endospore components comes from 

recent concerns over anthrax spores discovered by the U.S. Postal System.  Currently 

available detection protocols are unreliable and/or time consuming.  A system capable of 

giving a unique spectrophotometric signature upon interaction with the endospore could 

save the lives of anyone responding to an “unknown white powder” situation. 

 Carbonic anhydrase was originally studied as a model for OPH as they are both 

zinc metalloenzymes.  It was hoped that through the use of carbonic anhydrase (which is 

cheaply and easily obtained) the possibilities for porphyrin indicators for use in the OPH 

system could be limited to one or two.  An enzyme base system has also been developed 

using carbonic anhydrase for the detection of gaseous CO2.  CO2 levels exceeding 2,500 

ppm in buildings can have adverse effects on health including burning eyes, headaches 

and tiredness.  There is interest in monitoring CO2 levels in buildings, on board shuttle 

missions, on the International Space Station and for environmental applications. 

 The detection of glucose has application both for testing of blood samples 

(diabetics) and for testing of glucose levels in foods.  There is a great deal of discussion 

about the reason for the high incidence of obesity in the United States.  Recent studies 

have implicated the consumption of foods with a high glycemic index.  Methods for 

determination of glucose as well as carbohydrate content of foods are desired.  Further 

applications exist in quality control for packaged foods. 
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ENZYME BASED DETECTION PROTOCOLS 

 
 
Enzyme Analyte LOD Technique Detected 

Product/ 
Addend 

Reference 

diisopropyl 
fluorophosphate 

20 µM

paraoxon ---

OPAA 

demeton-S ---

potentiometric - 
pH-FET 

pH [2] 

paraoxon 20 nMOPH 
methyl parathion 20 nM

amperometric p-nitrophenol [3] 

paraoxon 90 nMOPH 
Methyl parathion 90 nM

amperometric p-nitrophenol [4] 

Parathion 
hydrolase 

parathion 500 nM amperometric p-nitrophenol [5] 

OPH paraoxon/parathion --- absorbance p-nitrophenol [6] 
OPH paraoxon --- absorbance p-nitrophenol [7] 

paraoxon 
dichlorvos 
diazinon 

OPH 

parathion 

~10 µM Amperometric/p
otentiometric 

p-nitrophenol/ 
pH / F- 

[8] 

paraoxon OPH 
parathion 

~1 µM amperometric p-nitrophenol [9] 

OPH diisopropyl 
fluorophosphate 

25 µM potentiometric F- [10] 

OPH paraoxon 1 µM potentiometric - 
pH-FET 

pH [11] 

paraoxon 
ethyl parathion 
methyl parathion 

OPH 

diazinon 

~2 µM potentiometric pH [12] 

paraoxon 8 µM
ethyl parathion 12 µM
methyl parathion 20 µM
dursban 10 µM
fensulfothion 40 µM
crotxyphos 50 µM
diazinon 15 µM
mevinphos 15 µM
dichlorvos 25 µM

OPH 

coumaphos 8 µM

fluorescence pH [13] 

 
 
 
 
Table 1.1 Detection protocols using enzymes as the recognition element. 



    7

ENZYME BASED DETECTION PROTOCOLS 

 
Enzyme Analyte LOD Technique Detected 

Product/ 
Addend 

Reference 

cholesterol 
esterase/cholesterol 
oxidase 

cholesterol in 
serum 

--- amperometric H2O2 [14] 

cholesterol 
esterase/cholesterol 
oxidase/peroxidase 

cholesterol 50  mg/dl optical H2O2 [15] 

cholesterol 
esterase/cholesterol 
oxidase/peroxidase 

cholesterol --- amperometric H2O2 [16] 

cholesterol 
esterase/cholesterol 
oxidase 

cholesterol 5.1 mM

cholesterol 
esterase/cholesterol 
oxidase/peroxidase 

cholesterol 0.5 mM

optical  H2O2 [17] 

cholesterol 
esterase/cholesterol 
oxidase 

cholesterol in 
fish plasma 

15 mg/dl amperometric  O2 [18] 

cholesterol 
esterase/cholesterol 
oxidase/peroxidase 

cholesterol in 
serum 

--- chemiluminescence H2O2 [19] 

cholesterol 
esterase/cholesterol 
oxidase/HRP 

cholesterol in 
whole blood 

--- amperometric H2O2 [20] 

cholesterol 
esterase/cholesterol 
oxidase/catalase 

cholesterol in 
serum or bile 

--- thermistor --- [21] 

cholesterol 
esterase/cholesterol 
oxidase 

cholesterol in 
serum 

--- amperometric/cyclic 
voltammetry 

H2O2 [22] 

choleserol 
oxidase/peroxidase 

cholesterol 1 µM optical  H2O2 [23] 

cholesterol oxidase cholesterol 50 mM fluorescence O2 [24] 
Cholesterol oxidase cholesterol 2 mM Amperometric H2O2 [25] 
cholesterol oxidase cholesterol 1.5 mM amperometric H2O2 [26] 
Cholesterol oxidase cholesterol --- potentiometric H2O2 [27] 
Cholesterol 
oxidase/esterase w/ 
peroxidase 

cholesterol in 
foods 

0.1 mg/ml absorbance at 500 nm electron 
transfer 

[28] 

cholesterol oxidase/HRP free 
cholesterol 

40 µM amperometric/potentiom
etric 

electron 
transfer 

[29] 

Cholesterol Oxidase cholesterol --- amperometric H2O2 [30] 
Cholesterol oxidase Cholesterol 600 pmol Chemiluminescence H2O2 [31] 
choleserol oxidase cholesterol 25 µM amperometric O2 or H2O2 [32] 
 
 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/Addend 

Reference 

ACHE ACH-Cl 0.07 mM Conductometric --- [33] 
BCHE BCH-Cl 0.05 mM Conductometric --- [33] 
ChE and BChE butyrylcholine 50 µM amperometric H2O2 [34] 
BCHE pesticides --- potentiometric pH change [35] 
Choline oxidase choline 4 µM potentiometric Electron transfer [36] 
ACHE and 
choline oxidase 

choline/acetylcholine 2 µM amperometric H2O2 [37] 

trichlorofon 150 nM
coumaphos 5 nM
methiocarb 800 nM

ACHE/BCHE 

aldicarb 200 nM

potentiometric pH change [38] 

ACHE and 
choline oxidase 

aldicarb 12 ppb amperometric O2 [39] 

ACHE and 
choline oxidase 

choline/acetylcholine 1.2/2.7 nM

choline oxidase choline 10 pmol

amperometric H2O2 [40] 

BCHE butyrylthiocholine 
iodide 

--- amperometric Thiol [41] 

pesticides 
2,4-
dichlorophenoxyacetic 
zolone 
thiodan 
trichlorometaphos 

BCHE 

glyphosate 

--- amperometric O2 [42] 

paraoxon 1.8 ppb
Propoxur 21 ppb
Carbofuran  10 ppb
triazophos 390 ppb
oxydemeton-methyl 890 ppb

ACHE (electric 
eel) 

diazinon 1300 ppb
paraoxon 2.3 ppb
Propoxur 30 ppb
Carbofuran  14 ppb
triazophos 450 ppb
oxydemeton-methyl 1000 ppb

ACHE (bovine) 

diazinon 2100 ppb
paraoxon 6.8 ppb
Propoxur 40 ppb
Carbofuran  17 ppb
triazophos 770 ppb

ACHE (human) 

oxydemeton-methyl 4000 ppb
paraoxon 7.5 ppb
Propoxur 150 ppb
Carbofuran  210 ppb
triazophos 1000 ppb

BCHE (horse) 

oxydemeton-methyl 17 ppm

Optical abs.  Thiocholine [43] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/ 
Addend 

Reference 

dichlorvos 500 nM
fenthion 100 nM

ACHE 

diazinon 800 nM

amperometric thiocholine [44] 

Choline oxidase choline 100 nM amperometric H2O2 [45] 
acetylcholine 2.5 fMACHE and choline 

oxidase choline 2.3 fM
GOD glucose ---

Amperometric/ 
Potentiometric - cyclic 
voltammetry 

H2O2 [46] 

choline 30 fM AChE and choline 
oxidase acetylcholine 1.2 pM

chemiluminescence H2O2 [47] 

BCHE 2,4-dichlorophenoxyacetic 
acid 

5 pM amperometric O2 [48] 

ACHE and choline 
oxidase 

acetylcholine 10 µM amperometric H2O2 [49] 

BCHE and choline 
oxidase  

butyrylcholine 2 µM amperometric O2 [50] 

ACHE, choline 
oxidase, and HRP 

acetylcholine 35 µM amperometric H2O2 [51] 

ACHE and choline 
oxidase 

paraoxon 200 ppt amperometric O2 [52] 

paraoxon 10 nM
carbofuran 10 nM
aldicarb 1 µM

ACHE, BCHE, 
choline oxidase 

monocrotofos 1 µM

amperometric H2O2 [53] 

ACHE and choline 
oxidase 

paraoxon 10 nM amperometric H2O2 [54] 

carbofuran 1 ppb
eserine 10 ppt

ACHE and choline 
oxidase 

dichlorvos 1.3 ppt

amperometric H2O2 [55] 

acetylcholine 
Acetylthiocholine 
Thicholine 

ACHE and choline 
oxidase 

Choline 

--- amperometric H2O2 [56] 

paraoxon 1.7 nM
dichlorvos 1.5 nM

ACHE 

chlorpyrifos 60 pM

amperometric Electron transfer [57] 

ACHE paraoxon 2 nM amperometric Electron transfer [58] 
carbofuran ---
carbomyl 13 nM
benomyl ---

ACHE 

parathion 4 nM

amperometric/cyclic 
voltammetry 

4-aminophenyl [59] 

Malathion 300 µM
paraoxon 300 µM
parathion 200 µM 

ACHE, BCHE, 
choline oxidase 

bisfluorophosphate 300 µM

amperometric O2 [60] 

ACHE thiocholine ---- amperometric Electron transfer [61] 
physotigmine  
Neostigmine 
Pyridostigmine 

BCHE and choline 
oxidase  

edrophonium 

50 µM amperometric H2O2 [62] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/ 
Addend 

Reference 

BCHE paraoxon 20 ppb amperometric/ 
potentiometric 

choline [63] 

trichlorfon 350 nMBCHE 
coumaphos 150 nM

amperometric thiocholine [64] 

BCHE diazinon 80 µM amperometric thiocholine [65] 
BCHE paraoxon 9 nM amperometric thiocholine [66] 
BCHE inhibitors/activators --- amperometric/cyclic 

voltammetry 
thiocholine [67] 

ACHE/BCHE OP pesticides --- amperometric thiocholine [68] 
butoxycarboxime 1 µM
trichlorfon 0.5 µM
dimethoate 0.5 µM
fluoride 10 µM

choline oxidase 

chinidine 0.25 µM

amperometric H2O2 [69] 

BCHE gentamicin 1 ppb amperometric Thiocholine [70] 
Parathion 
Fenthion 
Fenitrothion 
Chlorpyrifuos 
Diazinon 
dichlofenthion 
parathion-methyl 
bromophos-ethyl 

ACHE 

bromophos-methyl  

~ 2 pM potentiometric PH [71] 

ACHE Acetylcholine --- potentiometric PH [72] 
ACHE Paraoxon 1.3 µM optical  Thiocholine [73] 

Methamidophos 500 ppbACHE 
Carbofuran 100 ppb

optical  Thiocholine [74] 

ACHE paraoxon 50 nM optical  Thiocholine [75] 
paraoxon 50 nMACHE 

carbofuran 500 nM

optical/potentiometric Choline/ 
electron transfer 

[76] 

ACHE paraoxon 500 nM optical PH [77] 
ACHE and choline 
oxidase 

acetyl choline and choline --- Amperometric/potentiome
tric 

Choline [78] 

ACHE dimethyl 2,2-dichlorovinyl 1ng amperometric Electron transfer [79] 
carbaryl 
carbofuran 
aldicarb 
bendiocarb 
methomyl 
mercaptodimethur 
isoprocarb 
dioxocarb 

ACHE 

propoxur 

~1 µM potentiometric pH [80] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/ 
Addend 

Reference 

ACHE, Choline 
oxidase, catalase, 
and HRP 

acetylcholine 20 nM amperometric electron 
transfer 

[81] 

paraoxon 50 nMACHE 
carbaryl 100 nM

acoustic (QCM) indigo pigment [82] 

ACHE/BCHE paraoxon 2 ppm thermal  [83] 
carbaryl 8 ppmBCHE 
dichlorvos 30 ppb

optical pH [84] 

BCHE diisopropyl 
fluorophosphate 

10 ppt acoustic  [85] 

diazinon 35 ppb
ethyl parathion 3.9 ppm
mevinphos 1.4 ppm
heptenophos 650 ppb

BCHE 

fenitrothion 21 ppm

potentiometric pH [86] 

BCHE trichlorfon 2 uM potentiometric - ISFET pH [87] 
1 uM potentiometric butyric acid BCHE dimethylphosphoric acid 

800 nM optical oxidized 
indophenol 

[88] 

diisopropyl 
fluorophosphate 

5 nM

tacrine 50 nM

Cholinesterase 

proserine 2 uM

optical  thiocholine [89] 

BCHE butyrylthiocholine 40 uM potentiometric - FET pH [90] 
naled 12 ppmBCHE 
methidation 57 ppm

fluorescence indophenol [91] 

BCHE/Urease butyrylcholine/urea --- acoustic (SH-SAW) pH [92] 

ACHE acetylthiocholine 
 

--- thiocholine 

OPH paraoxon ---

optical 

p-nitrophenol 

[93] 

GOD  glucose 
ACHE and choline 
oxidase 

acetylcholine 
--- chemiluminescence H2O2 [94] 

paraoxon 28 nM
carbaryl 2 nM
carbofuran 2.2 nM

ACHE 

chlorfenvinphos ---
paraoxon 2.8 nM
carbaryl --- nM
carbofuran 22 nM

BCHE 

chlorfenvinphos 3.6 nM

amperometric thiocholine [95] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 
Enzyme Analyte LOD Technique Detected 

Product/ 
Addend 

Reference 

ACHE Choline 
BCHE Butyrylcholine 
Choline oxidase Acetylcholine 

--- amperometric H2O2 [96] 

paraoxon 10 nM
dichlorvos 10 nM

ACHE/BCHE 

malathion 100 nM

amperometric Thiocholine [97] 

Parathion  
Fonofos 
Monocrotofor 
Aldicarb 
Paraoxon 

ACHE 

Carbofuran 

--- amperometric Thiocholine [98] 

ACHE and choline 
oxidase 

Acetylcholine 100 µM amperometric H2O2 [99] 

paraoxon 1.5 ppbACHE/BCHE 
heptenophos 8.4 ppb

amperometric Thiocholine [100] 

paraoxon 32 ppt
propoxur 7 ppb
triazophos 90 ppb
carbofuran 3.8 ppb

ACHE (eel) 

oxydementon-methyl 200 ppb
paraoxon 46 ppt
propoxur 7.9 ppb
triazophos 150 ppb
carbofuran 5.1 ppb

ACHE (bovine) 

oxydementon-methyl 250 ppb
paraoxon 1.4 ppb
propoxur 11 ppb
triazophos 270 ppb
carbofuran 5.5 ppb

ACHE (human) 

oxydementon-methyl 1ppm
paraoxon 1.6 ppb
propoxur 28 ppb
triazophos 730 ppb
carbofuran 60 ppb
oxydementon-methyl 9.7 ppm
chlorpyrifos-methyl 6 nM

BCHE (horse) 

coumaphos 60 nM

amperometric Thiocholine [101] 

choline oxidase choline 
ACHE and choline 
oxidase 

acetylcholine 
--- amperometric H2O2 [102] 

trichlorfon 500 nM
chlorpyrifos-methyl 6 nM

ACHE 

coumaphos 60 nM
trichlorfon 700 nM
chlorpyrifos-methyl 20 nM

BCHE 

coumaphos 30 nM

amperometric Thiocholine [103] 

Choline oxidase choline 40 nM chemiluminescence H2O2 [104] 
choline oxidase and 
HRP 

acetylcholine 10 fmol Amperometric H2O2 [105] 

Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 
Enzyme Analyte LOD Technique Detected 

Product/Add
end 

Reference 

Glutamate Oxidase glutamate 0.1 µM Optical abs.  ammonia [106] 
Aldose dehydrogenase xylose/glucose --- Amperometric electron 

transfer 
[107] 

Glucose oxidase glucose 200 µM Amperometric H2O2 [108] 
GOD 0.17 mM
GOD/catalase 

glucose 
0.07 mM

Conductometric --- [33] 

acetaminophen 100 nMGOD 
norepinephrine 300 nM

Potentiometric - cyclic 
voltammetry 

--- [109] 

GOD glucose in oily food --- Amperometric - flow 
injection 

H2O2 [110] 

Lactate oxidase lactate 0.05 mM amperometric O2 [111] 
GOD glucose 0.05 mM amperometric/ 

potentiometric 
O2 

Lactate oxidase lactate 0.1 mM  H2O2 

[112] 

GOD glucose 1mM amperometric Electron 
transfer 

[113] 

GOD glucose 1mM amperometric H2O2 [114] 
GOD glucose --- Optical abs.  H2O2 [115] 
Glutamate Oxidase monosodium 

glutamate 
50 nM amperometric/ 

potentiometric 
H2O2 [116] 

lactate dehydrogenase lactate 100 µM amperometric Latctate [117] 
lactate dehydrogenase lactate 0.5 mM Optical abs.  NADH [118] 
GOD glucose 2 mM potentiometric Electron 

transfer 
[119] 

GOD glucose 10 µM amperometric/ 
potentiometric 

H2O2 [120] 

GOD glucose 39 µM acoustic (piezoelectric) Gluconic acid [121] 
Glutamate oxidase and 
HRP 

glutamate in rat brain 100 µM potentiometric H2O2 [122] 

GOD glucose --- amperometric H2O2 [123] 
GOD glucose --- amperometric H2O2 [124] 
GOD and HRP glucose 33 mM amperometric H2O2 [125] 
GOD glucose 21 µM amperometric H2O2 [126] 
b-galactosidase and GOD 
and HRP 

lactose in milk 10 mM amperometric H2O2 [127] 

GOD and peroxidase glucose 10 nM acoustic (SPR) H2O2 [128] 
Galactose Oxidase galactose --- amperometric H2O2 [30] 
Urease and Glutamate 
dehydrogenase 

urea --- amperometric Electron 
transfer 

[129] 

GOD glucose 
glutamate oxidase monosodium 

glutamate 

200 µM potentiometric H2O2 [130] 

GOD glucose --- potentiometric Electron 
transfer 

[131] 

Mutarotase and GOD sucrose 0.01 mM amperometric H2O2 [132] 
Mutarotase and glucose 
oxidase and HRP 

sucrose and glucose --- amperometric Electron 
transfer 

[133] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/Add
end 

Reference 

GOD glucose 100 nM amperometric H2O2 [134] 
aminotransferase and 
glutamate oxidase and 
peroxidase 

l-aspartate 5 µM chemiluminescence H2O2 [135] 

mutarotase and GOD glucose 
invertase, mutarotase, 
and GOD 

sucrose 
--- potentiometric H2O2 [136] 

GOD glucose 1 mM Potentiometric - cyclic 
voltammetry 

Electron 
transfer 

[137] 

GOD and catalase glucose --- sulfonamide hydrogel 
swelling 

pH    [138] 

uric acid 1mM GOD and uricase and 
HRP glucose 50 µM

chemiluminescence H2O2 [139] 

glutamate, uricase, and 
peroxidase 

l-glutamate in serum 10 nM chemiluminescence H2O2 [140] 

l-glutamate 136 µMglutamate, uricase, 
lysine oxidase and 
peroxidase l-lysine 105 µM

chemiluminescence H2O2 [141] 

GOD glucose 1 mM Potentiometric - cyclic 
voltammetry 

H2O2 [142] 

GOD  glucose  2 M 
l-lactate oxidase l-lactate 1 M

amperometric H2O2 [143] 

GOD glucose --- amperometric H2O2 [144] 
Glucose oxidase glucose 5 mg/dm3 amperometric H2O2 [145] 
GOD glucose in serum 20 µM amperometric Electron 

transfer 
[146] 

lactate dehydrogenase 
and lactate oxidase 

lactate 100 µM Potentiometric - cyclic 
voltammetry 

Electron 
transfer 

[147] 

GOD glucose --- amperometric H2O2 [148] 
GOD glucose 40 µM Potentiometric - cyclic 

voltammetry 
Electron 
transfer 

[149] 

GOD glucose --- amperometric H2O2 [150] 
GOD  glucose --- amperometric H2O2 [151] 
GOD glucose 100 µM chemiluminescence H2O2 [152] 
GOD and HRP glucose --- fluorescence H2O2 [153] 
glucose oxidase glucose 150 pmol

60 pmollactate oxidase lactate 
30 pmol

chemiluminescence H2O2 [154] 

glucose oxidase glucose 60 pmol chemiluminescence H2O2 [31] 
glucose oxidase glucose 200 µM chemiluminescence H2O2 [155] 
lactate oxidase lactic acid in yogart 10 mM chemiluminescence H2O2 [156] 

glucose in serum 60 µM glucose oxidase and 
lactate oxidase Lactate in serum 100 µM

amperometric H2O2 [157] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/Add
end 

Reference 

GOD glucose --- Amperometric  O2 [158] 
GOD glucose 300 µM Amperometric/ 

potentiometric 
H2O2 [159] 

GOD glucose 1mM Amperometric H2O2 [160] 
GOD glucose 1 mM Amperometric H2O2 [161] 
GOD glucose 50 µM Amperometric Electron 

transfer 
[162] 

GOD and HRP glucose --- Fluorescence pH change [163] 
GOD and glucose 
dehydrogenase 

gluocse 20 fM Amperometric electron 
transfer 

[164] 

GOD and HRP glucose 10 nM Amperometric/ 
Potentiometric 

electron 
transfer 

[165] 

GOD hemoglobin-A1c 7.8 nM Amperometric H2O2 [166] 
GOD glucose --- Acoustic  [167] 
GOD glucose 80 µM Amperometric Electron 

transfer 
[168] 

glactose oxidase and 
peroxidase 

dihydroxyacetone 800 nM Amperometric electron 
transfer 

[169] 

GOD glucose --- Optical abs.  pH change [170] 
lactate oxidase and HRP lactate in milk 5 nM Amperometric electron 

transfer 
[171] 

GOD gluocse in wine 1 µM Amperometric H2O2 [172] 
GOD glucose 50 µM Amperometric H2O2 [173] 
GOD glucose 1 µM Chemiluminescence H2O2 [174] 
GOD glucose 10 µM Amperometric H2O2 [175] 
GOD glucose 200 µM Fluorescence pH change [176] 
a-chymotrypsin and 
alcohol oxidase 

aspartame 56 µM Amperometric O2 [177] 

GOD glucose 10 µM Amperometric H2O2 [178] 

glucose 1 µM GOD and xanthine 
oxidase hypoxanthine 200 nM

Amperometric H2O2 [179] 

GOD glucose  5 µM Amperometric H2O2 [180] 
glutamate oxidase, 
glutamate dehydrogenase, 
and saccharopine 
dehdyrogenase 

glutamate 500 nM Amperometric  H2O2 [181] 

Glucose 100 µMGOD and lactate oxidase 
lactate 200 µM

Amperometric H2O2 [47] 

GOD glucose 30 mg/dl Potentiometric - ENFET Electron 
transfer 

[182] 

GOD glucose 10 µM Chemiluminescence H2O2 [183] 
glutamate oxidase glutamate 7 nM Potentiometric NH3+ [106] 
aldose dehydrogenase xylose and glucose --- Amperometric Electron 

transfer 
[107] 

glucose  3 mM alcohol dehdrogenase, 
GOD ethanol 2 mM

Amperometric NADH [184] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/ 
Addend 

Reference 

Norepinephrine 300 nMGOD 
Acetaminophen 100 nM

Potentiometric - cyclic 
voltammetry 

quinones [109] 

carboxylesterase and 
alcohol oxidase 

Aspartame 50 nM amperometric O2 [185] 

Glucose 
Methyl propionate 

lipases, GOD, proteases, 
HRP 

Amino acid 
derivatives 

--- optical abs. H2O2 [186] 

GOD and glucose 
dehydrogenase 

Glucose --- amperometric Electron 
transfer 

[99] 

GOD Glucose --- amperometric H2O2 [102] 
GOD Glucose 800 µM amperometric H2O2 [187] 
GOD Glucose 1.5 mM Optical abs.  H2O2 [188] 
glucose dehydrogenase, 
GOD, cytochrome b562 

Glucose 100  µM Potentiometric - cyclic 
voltammetry 

Electron 
transfer 

[189] 

GOD glucose  10µM potentiometric H2O2 [190] 
GOD Glucose 1 mM amperometric H2O2 [161] 
GOD Glucose 50 µM amperometric Electron 

transfer 
[162] 

Glucose 1 µM GOD and xanthine 
oxidase Hypoxanthine 200 nM

amperometric H2O2 [179] 

HRP and glucose-6-
phosphate 
dehydrogenase 

glucose-6-phosphate --- optical abs. NADH [191] 

lactate oxidase and HRP lactate in milk 5 nM amperometric Electron 
transfer 

[171] 

glycolate oxidase and 
catylase 

gycolic acid in 
cometics, coffee, and 
urine 

<200 µM amperometric O2/H2O2 [192] 
 

Myrosinase and GOD Glucosinolates 4 µM amperometric H2O2 [193] 
Urease and catalase Urea 
GOD and catalase Glucose  
BCHE and catalase Butyrylcholine 
ACHE and catalase Acetylcholine 

50 to 100 µM conductivity  [33] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/ 
Addend 

Reference 

Alchol 
dehydrogenase 

ethanol 80 µM amperometric/ 
potentiometric 

Electron 
transfer 

[194] 

Alcohol 
dehydrogenase 

ethanol 1mM Amperometric NADH [184] 

Alchol 
oxidase/catalase 

n-butanol --- amperometric O2 [195] 

alcohol oxidase ethanol 0.1 amperometric/ 
potentiometric 

H2O2 [112] 

methanol 3.7 mM
ethanol 3 mM
n-butanol 6.2 mM

Alchol oxidase 

benzyl alcohol 5.2 mM

amperometric Electron 
transfer 

[196] 

alcohol oxidase ethanol 150 ug/dm3 amperometric H2O2 [145] 
ethanol 
methanol 
1-propanol 

alchol oxidase 

1-butanol 

10 µM amperometric H2O2 [197] 

alcohol oxidase and 
HRP 

methanol 0.002% Optical abs.  Aldehydes [198] 

alcohol oxidase and 
HRP 

ethanol 0.0001% Optical abs.  Quinoimine [199] 

horseradish 
peroxidase 

H2O2 250 nM amperometric Electron 
transfer 

[120] 

tobacco 
peroxidase/HRP 

H2O2 --- potentiometric Electron 
transfer 

[200] 

peroxides 
t-butyl 
hydroperoxide 

100 µM

t-butyl peracetate 100 µM
2-butanone peroxide 25 µM

horseradish 
peroxidase 

cumene 
hydroperoxide 

100 µM

amperometric Electron 
transfer 

[201] 

horseradish 
peroxidase 

hydrogen peroxide 90 µM amperometric Electron 
transfer 

[202] 

horseradish 
peroxidase 

peroxides 280 nM chemiluminescence H2O2 [203] 

chlorophenols peroxidase 
4-chloro-3-
methylphenol 

10 nM
chemiluminescence H2O2 [154] 

horseradish 
peroxidase 

hydrogen peroxide chemiluminescence H2O2 [204] 

peroxidase phenol --- amperometric electron 
transfer 

[205] 

HRP H2O2 1 µM amperometric electron 
transfer 

[206] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected 
Product/ 
Addend 

Reference 

Aldehyde 
dehydrogenase 

3,4 
dihydroxybenzaldehyde

5µM Amperometric NADH [207] 

aldehyde 
dehydrogenase 

maneb 50 ppb Amperometric NADH [98] 

carboxypeptidase A c-terminal amino acids --- optical abs. quinone [208] 
superoxide dismutase super oxide --- Amperometric H2O2 [209] 
Superoxide dismutase superoxide nM range Amperometric O2/H2O2 [168] 
Urease urea 0.1 mM Conductometric  [33] 
urate 
oxidase/peroxidase 

uric acid in urine 0.1 µM Amperometric O2 [210] 

Hg 50 nMurease 
Cd, Zn, Pb, Ni, Co, Mn, 
Fe, Cr, Ag, Cu 

1 µM
Potentiometric pH change [211] 

Urease urea 500 nM Potentiometric NH3+ [212] 
creatininase, 
creatinase, and 
sarcosine oxidase 

creatinine 60 µg/dl Amperometric H2O2 [213] 

creatininase, 
creatinase, and 
sarcosine oxidase 

creatinine 800 nM Amperometric H2O2 [214] 

creatininase and 
creatinase and 
sacrosine oxidase 

creatinine 5 µM Amperometric H2O2 [215] 

xanthine oxidase and 
cytochrome c 

superoxide dismutase 2 units/ml Amperometric/ 
potentiometric 

Super oxide [216] 

xanthine oxidase, 
HRP, polyphenol 
oxidase, GOD 

nitric oxide --- Amperometric Electron 
transfer 

[217] 

Xanthine oxidase hypoxanthine 1.5 µM Amperometric H2O2 [218] 
inosine-5'-
monophosphate 
inosine 

xanthine oxidase and 
nucleoside 
phosphorylase 

hypoxanthine 

--- Amperometric H2O2 [219] 

xylitol oxidase xylitol --- Amperometric O2 [220] 
pyruvate H2O2 
oxaloacetic acid CO2 

Pyruvate oxidase, 
oxaloacetate 
decarboxylase, and 
citrate lyase citric acid 

--- Amperometric 

CH3COOH 

[221] 

pyruvate oxidase phosphate 5 µM Amperometric H2O2 [222] 
pyruvate oxidase, 
pyruvate kinase, and 
urea amidolase 

urea 5 µM Amperometric O2 [223] 

pyruvate oxidase pyruvate 50 µM Amperometric H2O2 [224] 
pyruvate oxidase alanine amino 

transferase 
10 nM Amperometric H2O2 [225] 

oxalate oxidase oxalate 2.5 µM Potentiometric H2O2 [226] 
oxalate oxidase oxalate 8 mM Amperometric CO2/pH [227] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 

Enzyme Analyte LOD Technique Detected Product/ 
Addend 

Reference 

polyphenol oxidase 
(tyrosinase) 

p-cresol Optical abs.  quinone  [228] 

polyphenol oxidase 
(tyrosinase) 

Dopamine 500 pM potentiometric H2O2 [229] 

polyphenol oxidase 
(tyrosinase) 

Dopamine 500 pM potentiometric H2O2 [230] 

Phenol 1.7 nM
4-cresol 1.7 nM
2-cresol 760 nM

polyphenol oxidase 
(tyrosinase) 

4-chlorophenol 1.1 nM

amperometric O2 [231] 

polyphenol oxidase Dopamine 200 µM amperometric Leucodopaminechrome [232] 
polyphenol oxidase 
(tyrosinase) 

phenolic compounds in 
red wine 

--- Optical abs.  Quinone product [233] 

tyrosinase 3,4-
dihydroxyphenylalanine 

50 µM reflectance Electron transfer [234] 

l-amino acid oxidase Tryptophan --- amperometric H2O2 [235] 
D-amino acid 
oxidase 

D-alanine 1.1 µM chemiluminescence H2O2 [236] 

amino acid oxidase Leucine 0.08 mM amperometric/ 
potentiometric 

H2O2 [112] 

amino acid oxidase amino acids 1 µM amperometric H2O2 [237] 
Cytochrome c super oxide potentiometric Electron transfer [238] 
Cytochrome c and 
xanthine oxidase 
and ascorbate 
oxidase 

Superoxide dismutase 50 ng/ml potentiometric Super oxide [239] 

monamine oxidase Flluoxetine 100 µM amperometric H2O2 [240] 
Monoamine oxidase Benzydamine 50 µΜ potentiometric H2O2 [241] 
catalase ethanol in beer samples 0.05 mM amperometric O2 [242] 
ascorbate oxidase ascorbic acid 5 µM chemiluminescence H2O2 [243] 

3-hydroxybutyrate 40 nM 3-hydroxybutyrate 
dehydrogenase, 
glucose 
dehydrogenase, 
NADH oxidase, and 
peroxidase 

Glucose 100 nM

chemiluminescence H2O2 [244] 

phosphate-binding 
protein 

Phosphate 100 µM potentiometric  [245] 

2,4,6-trinitrotoluene  Nitroreductase 
2,4-dinitrotoluene 

2 µM amperometric  [246] 

putrescine oxidase Putrescine 50 nM Hg amperometric H2O2 [247] 
sulfite oxidase sodium sulfite 500 µM amperometric/ 

potentiometric 
H2O2 [271] 

 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED DETECTION PROTOCOLS 

 
 
 
 

Enzyme Analyte LOD Technique Detected 
Product/ 
Addend 

Reference 

Adenosine triphosphate  
Adenosine diphosphate 
Adenosine 
monophosphate 
inosine monophosphate 
Inosine 

alkaline phosphatase 
and adenosine 
deaminase 

Hypoxanthine 

 Amperometric O2 [249] 

myo-inositol 
dehydrogenase 

myo-inositol 1 mM Fluorescence NAD [250] 

protease and amino 
acid oxidase 

Protein < 0.5 mg/ml Amperometric H2O2 [251] 

ornithine carbamyl 
transferase and 
pyruvate oxidase 

ornithine 50 µM Amperometric O2 [252] 

histimine oxidase 
and peroxidase 

histimine 100 nM Chemiluminescence H2O2 [253] 

lysine oxidase Lysine 25 µM Potentiometric NH3+ [254] 
Phosphates 500 nMmaltose 

phosphorylase, 
mutarotase, GOD Orthophosphates 

Amperometric H2O2 [255] 

gycerokinase and 
glycerol-3-
phosphate oxidase 

Glycerol 7 mM Chemiluminescence H2O2 [256] 

liver esterase and 
alcohol 
dehydrogenase 

Fluoride 800 nM Absorbance NADH [257] 

fatty acids  
a-linolenic acid 4.8 µM

lipoxygenase 

linolenic acid 7.7 µM

Amperometric O2 [258] 

1 uM Absorbance Phenol neuropathy target 
esterase 

phenyl valerate 
800 nM Amperometric O2 

[259] 

heroine ester, 
morphine 
dehydrogenase, and 
luciferase 

Heroin 250 pmol Luminescence NADH [260] 

sulfomethuron methyl acetolactate 
synthase thifensulfuron methyl 

--- Optical FAD [98] 

 
 
 
 
Table 1.1 Detection protocols using enzymes as the recognition element. 
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ENZYME BASED BIOSENSOR 

 

 
 
 
 
 

FIGURE 1.1 Enzyme based biosensors for the detection of substrate (A) or inhibitors 

(B) of the enzyme recognition element. 

 

A 
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Product 
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CHAPTER 2 

THEORY 

 

2.1  MOLECULAR COMPLEXES 

A molecular complex is a noncovalently bound composite of substrate and ligand 

with a specific stoichiometry formed in an equilibrium process that is much more rapid 

than the rate of the measurement processes.  Throughout this section substrate (S) refers 

to the interactant whose properties (physical or chemical) are experimentally observed 

and ligand (L) refers to the interactant whose concentration is the independent variable.  

Complex formation is recognized and investigated through changes in the observed 

property of the substrate as a function of ligand concentration.  Stoichiometric ratios will 

be noted substrate:ligand so that 1:2 denotes SL2 and 2:1 denotes S2L.  The equilibrium 

constant K11 indicates the stability of the 1:1 complex SL, and so on. 

 

2.1.1  FORCES 

 Binding constants allow one to understand the forces responsible for complex 

formation.  In a two component system (S and L) the attractive noncovalent forces 

between the components are of three types:  electrostatic, induction, and dispersion 

forces.  Electrostatic interactions include the interactions between the multipole moments 

of the molecules including charge, dipole, and quadrupole.  Interaction involving dipole 

moments and/or quadrupole moments are orientation dependent.  Charge-charge 

interactions are dependent only on the magnitude of the charges and the intermolecular 

distances.  The induction (polarization) forces result from the induced charge in a 
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molecule resulting from the moment in an adjacent polar molecule.  Dispersion force 

(also known as the London force) results from the instantaneous dipole moment possible 

even in spherical nonpolar molecules.  Assuming there is an instantaneous dipole 

moment is present in S, this dipole moment induces a moment in L that interacts with the 

moment in S.  This force is also referred to as the van der Waals force.  As two molecules 

approach they are subject to long range attractive forces while repulsion results at small 

intermolecular distances (electron-electron repulsion). 

 In a chemical sense, interaction forces consist of electron-electron exchange, 

internuclear repulsive forces, short-range covalent bonding, and long-range noncovalent 

attraction.  These types of interaction are related to the basic forces described in the 

previous paragraph.  Of particular interest from these categories of interactions are 

charge-transfer and hydrogen bonding.  The concept of charge-transfer describes the 

formation of a complex which has a new electronic absorption band observed in neither 

the substrate nor the ligand (may also be referred to as an electron donor-acceptor 

complex).  In this type of interaction non-localized covalent bonding is possible.  This 

means that charge transfer can occur between delocalized orbitals such as in aromatic 

compounds [261].  Hydrogen bonding occurs between F, O, or N and a hydrogen atom 

bound to one of these.  It is a strong intermolecular dipole-dipole interaction [262]. 

 It must be noted that the solvent is not a continuous medium but a molecular 

system and it is subject to the same intermolecular forces as the solutes.  The following 

illustrates the necessary changes needed in order to form the SL molecular complex (M 

represents a molecule of the solvent). 

SM LM SL MM+ ⇔ + Eq. 2.1.1 
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If the solvent-solute or solvent-solvent interactions are not strong, then SL complexes 

will dominate.  If solvent-solvent and solvent-solute interactions are extensive, SL 

complexation will be inhibited.  When MM interactions are very strong (as in polar 

solvents, especially water), the hydrophobic effect is observed, that is nonpolar solutes to 

aggregate in aqueous solution.  Note that this implies that the stability of a SL complex is 

different depending on the solvent used.  

 

2.1.2  ASSOCIATION CONSTANT. 

 The quantity Kmn is the binding, stability, formation, or association constant for 

the complex SmLn. The association constant has units of inverse molarity (M-1).  The 

inverse of this constant is referred to as the dissociation or instability constant.  In the 

case where m or n is greater than 1, either the substrate m or the ligand n has more than 

one binding site.  The simplest stoichiometry is the 1:1 SL complex with the association 

constant given by ([S] indicates the equilibrium molar concentration of S): 

If we assume a more likely stoichiometry with three possibilities: SL, SL2, and S2L, the 

following relations describe the formation of the complexes: 

and the binding constants are: 

K
SL

S L11 =
[ ]

[ ][ ]
Eq. 2.1.2 

Eq. 2.1.4 

S L SL+ ⇔ Eq. 2.1.3 

SL L SL+ ⇔ 2

S SL S L+ ⇔ 2 Eq. 2.1.5 

K
SL

SL L12
2=

[ ]
[ ][ ]

Eq. 2.1.6 

K
S L

S SL21
2=

[ ]
[ ][ ]

Eq. 2.1.7 
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The association constant for any complex can be developed in this way so that S3L2 

would be produced from S2L and SL, etc.  It is also possible to write an overall binding 

constant for the formation of higher order complexes  [263]: 

 

2.1.3  STOICHIOMETRY. 

Before binding constants can be evaluated, it is necessary to know the 

stoichiometric coefficients m and n.  Several techniques exist for evaluation of these 

coefficients including measurement of complex molecular weight, observation of 

isosbestic points, continuous variation method, mole ratio method, interpretation of 

solubility phase diagrams, and, perhaps the most useful method, the fitting of data to 

assumed models [263-264].  In the data presented in the following chapters this final 

method has been used.  However, a brief description of the other methods follows. 

In the mole ratio method total substrate concentration is held constant while the 

ligand concentration that is varied.  Discontinuities or abrupt changes in slope of the plot 

of the measured property of the system against the ration LT/ST yield information on the 

stoichiometric ratio [265].  In an ideal system, each addition of m moles of S and n moles 

of L results in exactly one mole of SmLn, so the concentration of the complex increases 

until LT/ST = n/m after which all of the substrate will be reacted and more complex can 

not form.  Unfortunately, in a real system the stability constant decreases so dissociation 

increases.  The result is a rounded inflection point in the curve necessitating extrapolation 

in order to determine the exact point at which the discontinuity occurs.   

mS nL S Lm n+ ⇔ Eq. 2.1.8 

βmn
m n
m n

S L
S L

=
[ ]

[ ] [ ] Eq. 2.1.9 
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The ratio n/m can also be determined using the method of continuous variations 

[264] where the sum of the ligand and substrate concentrations is held constant while the 

ratio is varied.  This method is frequently employed using absorbance spectroscopy data.  

Here the ratio LT/(LT+ST) that gives the largest complex absorbance is used to calculate 

n/m [n/m = XM/(1-XM)].  Here again the method is more effective for strong association 

constants that yield sharper slope changes.  This method generally assumes that only one 

type of complex is formed which may not be the case. 

Solubility phase diagrams make use of the concept that the solubility of a 

substance depends on the solvent composition, though interpretation of the results can be 

difficult [266].  The basic premise is that formation of SL complexes increases the 

solubility of S.  Measurements are carried out with several samples containing equal 

concentrations of substrate significantly higher than the normal solubility and a fixed 

volume of solvent containing varying concentrations of the ligand.  The samples are 

brought to equilibrium, often requiring 1 to 2 days of shaking at constant temperature.  

The solution part of the sample is then analyzed, often by absorbance spectroscopy, for 

substrate content.  For n = 1 a linear plot of ST versus LT will be observed, however a 

linear plot does not guarantee n = 1.  When the slope of a linear plot is greater than 1, 

there is at least one complex for which m is greater than 1; however, a slope of less than 1 

does not insure that only a 1:1 complex is formed.  A diagram that curves upward from 

linearity (concave-up) indicates complexes with n>1, and a diagram that curves 

downward from linearity (concave-down) indicates self-association effects.  A plateau in 

the diagram can indicate that the ligand concentration has reached its saturation level or 

that the SnLm complex has reached its saturation limit. 
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Some authors claim that neither the presence nor absence of any isosbestic point 

in a solubility phase diagram is evidence of the number of states in a system [261,263].  

In general, however, a system for which the overlaid spectra of different concentrations 

of the two states involved all intersect at a single (isosbestic) point is considered to be 

1:1.  This assumes that spectral characteristics are unaffected by changes in the solvent 

composition, etc.  In general, isosbestic point analysis is combined with other data on the 

system to obtain an analysis appropriate to the different types of collected data. 

 

2.1.4  BINDING ISOTHERM. 

Beer’s Law relates the absorbance (A) of a sample to the concentration ([S] and 

extinction coefficient (ε) of the analyte and the path length (d) of the measurement.  

Beer’s Law can be stated as follows (where ε is from the log base 10 form of the equation 

rather than the exponential form.  This will be the standard throughout this document.): 

If all species S, L, and SL in a 1:1 complex obey Beer’s Law the expressions for the 

association constants for a complex can be derived as follows:   

For a substrate with extinction coefficient εS at total concentration [ST] (assuming 

a unit path length) the absorbance of the solution is: 

For a sample containing a ligand of total concentration [LT] and extinction coefficient εL 

with the same total substrate concentration the absorbance can be written: 

A S d= ε[ ] Eq. 2.1.10 

A SS T0 =ε [ ] Eq. 2.1.11 
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Here ε11 is the extinction coefficient of the complex SL.  Note that the mass balances on 

[S] and [L] are:  

so Eq. 2.1.12 can be rewritten: 

If we define ∆ε11 as follows: 

and take the spectrum against a reference containing [LT] or verify that the ligand has no 

absorbance in the region of interest, we can rewrite Eq. 2.1.15: 

Now we can write the change in absorbance (∆A) using Eqs. 2.1.11 and 2.1.17: 

Recall that the stability constant for the 1:1 complex is defined as: 

so that the change in absorbance is: 

An important point to note here is that this equation indicates the dependence of the 

change in absorbance not only on the ligand concentration but also on the substrate 

A S L SLL S L= + +ε ε ε[ ] [ ] [ ]11 Eq. 2.1.12 

[ ] [ ] [ ]L L SLT= −

[ ] [ ] [ ]S S SLT= − Eq. 2.1.13 

Eq. 2.1.14 

A S SL L SL SLL S T L T= − + − +ε ε ε([ ] [ ]) ([ ] [ ]) [ ]11
Eq. 2.1.15 

∆ε ε ε ε11 11= − −S L Eq. 2.1.16 

A S SLS T= +ε ε[ ] [ ]∆ 11 Eq. 2.1.17 

∆ ∆ ∆A A A S SL S SLS T S T= − = + − =0 11 11ε ε ε ε[ ] [ ] [ ] [ ] Eq. 2.1.18 

K
SL

S L11 =
[ ]

[ ][ ]
Eq. 2.1.19 

∆ ∆A K S L= 11 11ε [ ][ ] Eq. 2.1.20 
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concentration [264].  The implication of this point for detection protocols will be 

demonstrated in a later chapter. 

 If we again use the mass balance for [S] and the expression for K11, we find that 

[S] can be excluded from Eq. 2.1.20: 

So that the change in absorbance becomes: 

One other important relation to note is that between the total ligand concentration and the 

free ligand concentration ([L]).  Using Eq. 2.1.21 and the mass balance on [L] from Eq. 

2.1.14, we can write: 

Because we are considering the very simple 1:1 binding, the free ligand concentration can 

be eliminated and it is now possible to solve for the desired parameters by measuring ∆A 

over a range of know total ligand concentrations.  Eq. 2.1.22 is one form of the binding 

isotherm.  The 1:1 binding isotherm is useful because it directly applies to several real 

systems and several systems can be treated as deviations from this case.  It is typical to 

test this model against any data before adopting a more complicated approach [263]. 

 There are several methods for relating the total ligand concentration to the free 

ligand concentration, which is necessary before the parameters ∆ε11 and K11 can be 

evaluated.  For cases in which [LT]>>[ST] or when the binding coefficient can be 

assumed to be small, it is appropriate to choose [L]=[LT] [266].  In other cases an 

[ ]
[ ]
[ ]

S
S

K L
T=

+11 1
Eq. 2.1.21 

∆
∆

A
K S L

K L
T=

+
11 11

111
ε [ ][ ]

[ ]
Eq. 2.1.22 

[ ] [ ]
[ ]

[ ]
L L

S K L
K LT

T= +
+

11

11 1 Eq. 2.1.23 
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iterative solution may be necessary where the first assumption is based on an estimate of 

K11 which is used to calculate [L] from Eq. 2.1.23.  The parameters ∆ε11 and K11 are then 

solved for using the binding isotherm (Eq. 2.1.22, process described below).  The process 

is repeated until the parameters converge.  For the following discussions, we have 

assumed [L]=[LT].   

 

2.1.5  PRESENTATION AND INTERPRETATION OF DATA. 

A direct plot of ∆A versus [L] is shown in Figure 2.1 (A) (also referred to as the 

binding curve).  {Note: here we have set all binding isotherm parameters to 1, so that 

∆A=[L]/(1+[L].}  This curve is half of one branch of a rectangular hyperbola (vertex 

corresponds to the origin).  In this type of plot it is difficult to determine the asymptotic 

limit of ∆A, so it is desirable to plot the data differently.  There are several methods that 

will lead to linear plots of the data.   

The semi-log plot of ∆A versus [L] is known as the Bjerrum formation function 

(Figure 2.1 B).  The advantage is that data covering several orders of magnitude can be 

presented.  There is still difficulty in determining the maximal change in absorbance 

(∆Amax), but the inflection point in the curve is ∆Amax/2.   

An A. V. Hill plot is a log-log presentation of the binding isotherm written in a 

different form: 

Figure 2.1 C is a plot of Log [∆A/(∆Amax – ∆A)] versus Log [L].  At the point ∆A = 

∆Amax,  ∆A/(∆Amax – ∆A) = 1 (Log 1 = 0) allowing the K11 value to be determined.  The 

[ ]
[ ] [ ]

[ ] ( )L
A

S K K A
Log

A
S A

Log L Log K
T T

=
−

⇒
−

⎛
⎝
⎜

⎞
⎠
⎟ = −

∆
∆

∆
∆11 11

11
Eq. 2.1.24 
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slope of this plot should be linear over the entire substrate range if there is no 

complicated behavior involved such as cooperative binding.  The slope of this line also 

gives an indication of the number of independent binding sites [263,267].   

 For chemical binding, there are three non-logarithmic plot forms, x-reciprocal 

(Scatchard plot), y-reciprocal (Hanes-Woolf plot), and double reciprocal, that give linear 

representations of the hyperbola [263, 267-268].  The forms of the equations are as 

follows (respectively): 

The x-reciprocal plot has the disadvantage that the independent variable (generally 

contains the greatest degree of error) appears on both axes (Figure 2.1 D).  The advantage 

of this form is that it gives a closed y-axis.  The slope of the line in this form gives –K11 

with y-intercept = [ST]K11∆ε11 and x-intercept = [ST]∆ε11.  So that the parameters K11 and 

∆ε11 can be calculated as follows: 

The y-reciprocal plot maintains the spacing of the points along the x-axis and has the 

independent variable appearing only on the y-axis (Figure 2.1 E).  Here the x-intercept is 

equal to –(K11)-1 with y-intercept = ([ST]K11∆ε11)-1 and slope = ([ST]∆ε11)-1, allowing the 

parameters K11 and ∆ε11 to be calculated as follows: 

1 1 1

11 11 11∆ ∆ ∆A S K L ST T
= +

[ ] [ ] [ ]ε ε

Eq. 2.1.25 
[ ] [ ]

[ ] [ ]
L
A

L
S K ST T∆ ∆ ∆

= +
ε ε11 11 11

1

Eq. 2.1.26 ∆
∆ ∆

A
L

AK S KT[ ]
[ ]= − +11 11 11ε

Eq. 2.1.27 

K slope11 = − Eq. 2.1.28 

∆ε11 =
−x intercept

[ ]ST
Eq. 2.1.29 
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The most widely used version of the three is the Lineweaver-Burk or double-reciprocal 

plot.  Here the dependent and independent variables appear on independent axes (Figure 

2.1 F).  The difficulty with this form is that it maximizes the error by giving the least 

accurately measured data (smallest data values) the most statistical weight.  Since it is the 

most intuitive presentation of the data, it is commonly used by statistically weighting the 

data to correct this problem [262-263, 267-268].  The x-intercept gives –K11 with slope = 

([ST]K11∆ε11)-1 and y-intercept = ([ST]∆ε11)-1, allowing K11 and ∆ε11 to be calculated by 

the following: 

 

2.1.6  CONCENTRATION RANGE. 

It is not possible to determine if a function is a rectangular hyperbola when only 

narrow ranges of dependent variable are investigated.  The question of the extent of 

investigation necessary has been addressed by several groups.  One study points out that 

the investigation must be taken at least to the strongly curved portion of the direct 

binding curve in order to verify that there exists a chemical equilibrium [269].  This 

insures a nonlinear relationship between analytical response and ligand concentration and 

that the concentration of complex is approximately equal to that of the free substrate 

K
slope11 =

−y intercept

∆ε11
1

=
−y intercept[ ]ST

Eq. 2.1.32 

Eq. 2.1.33 

K
slope

11 =
−y intercept

∆ε11
1

=
[ ]S slopeT

Eq. 2.1.30 

Eq. 2.1.31 
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when there is an excess of ligand.  If we consider the simplest form of the binding 

isotherm,  

the point at which definite curvature sets in (f11 = 0.1) is given by [L] = 0.1/K11.  The 

range of ligand concentrations should extend beyond this point for reliable parameter 

calculation. 

Calculations of the relative error in K11 (assuming negligible error in ligand 

concentration) determine of the appropriate ligand range to use [270-273].  This analysis 

points out that there is no information in the points f11 = 0 or 1 and that the error in K11 

can be minimized by working in the area f11 = 0.2 to 0.8, the error sharply increasing at 

the extremes of the f11 range.  Yet another model based on geometrical criterion indicates 

that 60% of the f11 range should be covered by experiment to achieve reliable results 

[263].  This range may be difficult in cases of weak association constants, poor ligand 

solubility, or medium effects.   
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2.2  ENZYMES 

 Enzymes mediate (catalyze) reactions such as hydrolysis, polymerization, 

oxidation, and reduction to name a few.  We will discuss some enzymes in detail in later 

chapters.  Here the goal is to generalize the concepts discussed for chemical complexes 

for application to enzyme kinetics allowing determination of reaction rates and binding 

affinities.   

 

2.2.1  MICHAELIS – MENTEN EQUATION 

There are two basic reaction steps for formation of a product from a substrate by an 

enzyme (E = enzyme, S = substrate, P = product, ES = enzyme-substrate complex): 

Here k1, k-1, and k2 are the reaction rates, so that the general rate of this reaction is: 

Now the rate of production of [ES] depends on all three reactions so: 

 Two assumptions are necessary to proceed:  (1) assumption of equilibrium and (2) 

assumption of steady state.  If k-1>>k2 the first step of the equation achieves an 

equilibrium and the dissociation constant of the first reaction can be written: 
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Under this assumption Eq. 2.2.3 can be integrated.  The ES complex here is referred to as 

the Michaelis complex.  This assumption was proposed by Michaelis and Menten in 1913 

[274].  If the substrate is in vast excess of the enzyme, [ES] remains nearly constant until 

the substrate is nearly consumed.  That is, the rate of formation of ES must equal its rate 

of consumption.  The steady-state assumption proposed by Briggs and Haldane in 1925 

states that the concentration of the ES complex does not change in time [275].  As in the 

case of the chemical discussion, [E] and [ES] are not directly measurable, so they need to 

be related to the total enzyme concentration: 

Now, combining Eq. 2.2.3 with the steady-state assumption and the conservation 

equation (Eq. 2.2.5) we find: 

or 

where KM is the Michaelis constant: 

 Now we can express the initial velocity of the reaction in terms of the measurable 

variables: 

This initial velocity is generally experimentally measured as the rate measured before 

consumption of 10% of the substrate (ie, when concentrations are known to a reasonable 

approximation)(Figure 2.2).  The use of the initial rate rather than the overall rate 
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eliminates the need to consider factors such as the reversibility of the reaction, inhibition 

of the reaction by product, and progressive inactivation of the enzyme.  This rate is 

measured as the change in the observed parameter over time (such as absorbance) and is  

converted to a change in substrate concentration per time using, for example, the 

extinction coefficient of the measured product (optical technique).   

The maximal velocity (Vmax = k2[E]T) of a reaction occurs when the enzyme is 

totally saturated by substrate, that is, it is fully in the ES form ([ES] = [E]T) allowing us 

to rewrite Eq. 2.2.9: 

This is the basic equation of enzyme kinetics referred to as the Michaelis-Menten 

equation.  Notice that this form is one half of one branch of a rectangular hyperbola, 

similar to that discussed for molecular complex formation (Figure 2.3 A). 

The Michaelis constant (KM) is the substrate concentration at which v0 is half of 

Vmax.  An enzyme with a small KM will achieve maximum efficiency at low substrate 

concentrations.  It should be noted that KM may depend on temperature and pH with the 

degree of dependence varying between enzymes and substrates.  KM also gives an 

indication of the affinity of the enzyme for the substrate provided the condition k2<k-1 

holds [267]. 

2.2.2 ANALYSIS OF KINETIC DATA 

Because the plot of v0 versus [S] is half-hyperbolic, we can use the techniques 

discussed earlier in Chapter 2 for presentation and analysis of the data.  The maximal 
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enzymatic rate (Vmax) is approached asymptotically making it difficult to assess from 

direct plots (Figure 2.3 A).  Even for very high concentrations of [S], measuring v0 will 

result in underestimation of the actual Vmax ([S] = 10KM yields v0 = 0.91Vmax).  The 

Lineweaver-Burk plot (double reciprocal; Figure 2.1) is the most commonly used form 

for evaluation of enzymatic data.  This plot can also give information on kinetic data 

when there is more than one substrate present. 

The Michaelis-Menten equation can be rewritten as follows: 

so a plot of 1/v0 versus 1/[S] has slope equal to KM/Vmax and y-intercept equal to 1/Vmax 

(note that this also indicates x-intercept equal to -1/KM; Figure 2.3 B).  The disadvantages 

to this type of plot are that the data points may be crowded to the low end of the x-axis 

and measurements at low values of substrate concentration lead to large errors in the 1/v0 

values distorting KM and Vmax values.  Often data is analyzed using non-linear regression 

techniques to avoid these problems, however, the Lineweaver-Burk plot is still a valuable 

presentation tool [267-268]. 

 

2.2.3 INHIBITON OF ENZYMES 

A molecule that binds an enzyme decreasing the rate of the catalyzed reaction or 

the binding of the substrate is an inhibitor.  An inhibitor can act through several 

mechanisms:  competitive inhibition, uncompetitive inhibition, or mixed inhibition 

(nomenclature from Segel [267]).  Competitive inhibition involves the binding of the 

inhibitor in such a way that it competes directly with the binding of the substrate.  

Typically, this type of inhibitor resembles the substrate and binds specifically to the 
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active site.  Uncompetitive inhibition involves the binding of the inhibitor to the enzyme 

resulting in distortion of the active site and loss of catalytic activity.  This binding of 

inhibitor typically takes place only after conformational changes occur upon binding of 

the substrate.  If the inhibitor-enzyme complex is formed before substrate binding, there 

is no effect on substrate affinity.  Mixed inhibition involves the binding of inhibitor to 

both enzyme and enzyme-substrate complex.  A mixed inhibitor can bind either the active 

site or another site on the enzyme.     

 

2.2.3A  COMPETITIVE INHIBITION 

The model for competitive inhibition is show by the reaction scheme: 

where I indicates inhibitor, EI indicates enzyme-inhibitor complex, and KI  is the 

dissociation constant for the EI complex.  If this inhibitor is reversible, KI can be written: 
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The point is that the competitive inhibitor functions by reducing the effective 

concentration of the enzyme in the reaction, so that the rate of catalysis slows [267].  

Again we need to express v0 in terms of measurable quantities. 

 If we again make the steady-state assumption that the concentration of ES doesn’t 

change in time, we can restate Eq. 2.2.6 to give the enzyme concentration in terms of [S] 

and [ES]: 

Using Eqs. 2.2.16 and 2.2.14, we can write the concentration of the enzyme-inhibitor 

complex ([EI]) as a function of [I], [S], and [ES]: 

Now, if we used Eqs. 2.2.16 and 2.2.17 together with the mass balance from Eq. 2.2.15 

and solve for [ES]: 

Using this equation with Eq. 2.2.9 we can now write the Michaelis-Mention equation for 

an enzyme in the presence of a competitive inhibitor. 

Where Vmax is as in Eq. 2.2.10 and α is defined as: 
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The parameter α depends on both the concentration of the inhibitor and the dissociation 

constant of the enzyme-inhibitor complex.  Note that in Eq. 2.2.19 when v0 = Vmax/2, the 

value of [S] is αKM.  Another interesting point is that for any α as [S] approaches 

infinity, v0 approaches Vmax.  Increasing the substrate concentration shifts the equilibrium 

toward the ES complex, so there is direct competition between the substrate and inhibitor 

for the enzyme binding site [268].   

 Again one can note that Eq. 2.2.19 is half-hyperbolic, so if we rewrite the 

expression for v0 in the double reciprocal form the curve will be linear. 

This line will have a slope equal to αKM/Vmax, an x-intercept of –1/αKM, and a y-

intercept of 1/Vmax.  If we compare these results to those for Eq. 2.2.12, we see that while 

the y-intercept has not changed both the x-intercept and the slope have.  These are the 

characteristics used to identify a competitive inhibitor (Figure 2.4 A).  The activity of the 

enzyme shows no change in maximum enzymatic velocity (Vmax) in the presence/absence 

of a competitive inhibitor but shows a change in the substrate concentration needed to 

achieve half of the maximal enzymatic velocity (KM).  This is observed on the 

Lineweaver-Burk plot as curves that intersect at the y-axis.  The KI for a given inhibitor 

can be determined from the expression for α (Eq. 2.2.20) and the experimentally 

determined x-intercept [267]. 

 In some cases a molecule may bind irreversibly to the active site of the enzyme.  

Such inhibitors are referred to as inactivators and this is a case of competitive inhibition 

as the substrate and inhibitor are competing for the active site.  The concentration of 

active enzyme is truly reduced in the presence of an inactivator and the resulting plot of 
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the data is not the same as that of the reversible competitive inhibitor.  The question of 

how to identify this type of inhibition will be addressed later in this discussion. 

 

2.2.3B  UNCOMPETITIVE INHIBITION 

 The following reaction scheme illustrates the mechanism for uncompetitive 

inhibition [268]. 

The dissociation constant for the inhibitor under this mechanism is written: 

By a derivation similar to the preceding case, the Michaelis-Menten equation can be 

written: 

Here α' is of the form of the previously defined α: 
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For this equation as [S] increases, the value of v0 approaches Vmax/α'.  This indicates that 

the effects of an uncompetitive inhibitor are not reversed by substrate saturation.  Also of 

interest is the fact that for small [S] (<<KM) the effect of the inhibitor becomes negligible.  

This behavior is opposite to that of a competitive inhibitor.  In double reciprocal form, 

the curve for each inhibitor concentration is again linear with slope equal to KM/Vmax, y-

intercept equal to α'/Vmax, and x-intercept equal to -α'/KM (Figure 2.4 B).  So, in the 

presence of an uncompetitive inhibitor, the x- and y-intercepts (that is, KM and Vmax) of 

the Lineweaver-Burk plot of enzymatic activity are changed while the slope of the line is 

unchanged. 

 The mechanism of uncompetitive inhibition requires the interference of the 

inhibitor with the catalytic function of the enzyme while leaving the substrate binding 

affinity unchanged.  This type of inhibition is important for multi-substrate enzymes and 

small inhibitors such as protons and metal ions [267]. 

 

2.2.3C  MIXED INHIBITION 

Mixed inhibition (including noncompetitive inhibition) occurs when both the enzyme and 

the enzyme-substrate complex can bind the inhibitor.  It can be illustrated as follows: 
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Notice that the two different types of inhibitor binding have unique dissociation constants 

(defined previously) [268].  The Michaelis-Menten equation for mixed inhibition can be 

written as follows: 

It is apparent from this equation where the name mixed inhibition originated.  The 

denominator has the factor α operating on KM as in competitive inhibition and the factor 

α' acting on [S] as in uncompetitive inhibition.  The implication is that a mixed inhibitor 

will act at both high and low concentration.  The Lineweaver-Burk plot of enzyme 

activity at different inhibitor concentrations will give a group of lines with slope 

αKM/Vmax, y-intercept equal to α'/Vmax, and x-intercept equal to –α'/αKM (Figure 2.4 C).  

A special case of mixed inhibition referred to as noncompetitive inhibition occurs if KI = 

KI'; α = α' and the lines of varying inhibitor concentration will intersect on the x-axis 

(Figure 2.4).  This case is rarely encountered in practice [267].  A closer look at the 

equation indicates that the family of lines generated here will always intersect to the left 

of the y-axis at the point [267]: 

 

2.2.3D  INACTIVATION 

 Inhibition of an enzyme by an inactivator is often mistaken for mixed inhibition.  

The inactivator effectively reduces the presence of free enzyme.  This appears as a 

change in both KM and Vmax.  The two types of inhibition can be distinguished by 

generating a plot of Vmax versus enzyme concentration ([E]T) (Figure 2.4 D).  A 
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reversible mixed inhibitor will intersect the y-axis at [E]T equal zero as will the control 

with no inhibitor.  An inactivator will result in a curve that intersects the y-axis at a 

negative value [267]. 
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FIGURE 2.1 All graphs are generated based on a binding isotherm of the form  
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ENZYME ASSAY 
 
 

 
 
 
 
 
 

FIGURE 2.2 For fixed enzyme concentration, the initial rate for enzyme catalysis 

depends on the substrate concentration.  The initial rate should be 

measured before more than 10-20% of the substrate has been consumed. 
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INITIAL VELOCITY PLOT 
 
 
 

 
 
 
 
 

FIGURE 2.3 A. The plot of initial velocity versus substrate concentration is half-

hyperbolic.  B.  The Lineweaver-Burk (double reciprocal) plot of the same 

data is linear allowing determination of the reaction parameters. 

1/[S]

1/
v 0

1/Vmax

slope = KM/Vmax

-1/KM

[S]

v 0

Vmax

0.5 Vmax

KM 4KM 8KM



    48

TYPES OF INHIBITION 
 
 

 
 
 
 

 

FIGURE 2.4 Lineweaver-Burk Plots showing different types of inhibition, competitive, 

uncompetitive, and mixed and a plot of Vmax versus [E]T illustrating the 

difference between inactivation and reversible mixed inhibition. 
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CHAPTER 3

PORPHYRINS

3.1 WHAT ARE PORPHYRINS

The name porphyrin has its origin in ancient Greece with the word porphura

meaning purple.  The color purple has been used throughout history to distinguish royalty

or nobility.  Porphyrin is the name given to a family of intensely colored molecules all

sharing a macrocycle of twenty carbon atoms and four nitrogen atoms (Figure 3.1).  The

macrocycle is four pyrrole rings joined by methine bridges.  The porphyrin is a nearly flat

molecule (x-ray crystallographic data), though it maybe distorted by certain ligand

binding or by various substituent groups bound to the periphery [276].

The macrocycle follows Hückel’s rule of aromaticity with 22 π-electrons.  The

ring is very stable tolerating temperatures up to 250° C [277] and highly acidic conditions

(concentrated sulfuric acid) [276].  Strong bases can deprotonate the nitrogen atoms of

the porphyrin resulting in a dianion or acids such as trifluoroacetic acid can be used to

protonate the pyrrolenine nitrogen atoms.  The central cavity of the porphyrin can bind

metals such as Fe, Zn, Cu, Ni, Mg, Ag, Au, and Co, though binding of small atoms (Ni

for example) may cause distortion of the planar conformation.  The metal can be removed

from the porphyrin by acidification in most cases [278].

The high degree of conjugation in the porphyrin ring results in several absorbance

bands.  A very intense band is observed around 400 nm with an extinction coefficient

often exceeding 500 mM-1·cm-1 (solvent and porphyrin dependent).  This band is referred

to as the Soret band.  In addition to the Soret band, there are several weaker absorbance
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bands (generally five) in the region from 450 nm to 700 nm, the Q-bands.  Porphyrins

are, in general, intensely fluorescent with emission bands in the region between 600 and

750 nm.  The absorbance and fluorescence spectra of porphyrins are sensitive to binding

of a metal in the central ring position, addition of substituent groups to the macrocycle,

solvent conditions, and the presence of other analytes.  These effects will be discussed in

detail below.

A wide range of natural and synthetic porphyrins are available.  Naturally

occurring porphyrins include heme found in hemoglobin, myoglobin, and some

peroxidases; heme c from cytochrome c; and chlorophyll used in photosynthesis (Figure

3.2).  In all of these cases, the protein structure surrounding the porphyrin alters the

characteristics of the porphyrin making it suitable for the given function.  In hemoglobin

and myoglobin the iron metalloporphyrin is responsible for the reversible binding of

oxygen allowing transport or storage.  The combination of the protein environment with

the porphyrin ligand changes the redox potential of the iron so that the oxidation state is

not irreversibly changed upon oxygen binding.  Typically, in the presence of water and

air, Fe(II) would be oxidized to Fe(III).  Changing the protein environment changes the

properties of the iron ligand, such that in cytochrome c, electron transfer takes place as

the iron cycles between the 2+ and 3+ oxidation states.  In chlorophyll, groups of

porphyrins (2-300 molecules) work together as an antenna to collect large quantities of

photons that produce excited electrons used as the energy source for carbohydrate

production.  Some other naturally occurring porphyrin systems are peroxidases, catalases,

and cytochromes (such as P-450 and b) [279].
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There are two nomenclature schemes for the porphyrins, Fischer and IUPAC

[276, 280].  For simple porphyrins the Fischer scheme is straightforward, however, when

two or more substituent groups are involved, it becomes unwieldy.  As seen in Figure 3.1,

each of the pyrrol rings was given a letter, each bridging (meso) carbon was labeled α−δ,

and each of the β carbons is numbered 1-8.  Under this system, a porphyrin with a phenyl

ring at each of the bridging carbons is referred to as α,β,γ,δ-mesotetrakisphenylporphyrin

while protoporphyrin IX (heme structure without iron) is 2,4-divinyl-1,3,5,8-tetramethyl

porphyrin-6,7-dipropionic acid (Figure 3.3).  The IUPAC system of nomenclature was

introduced in 1979.  This system numbers all of the carbon and nitrogen atoms in the

macrocycle.  As in other IUPAC systems, carbon number 1 is determined based on the

substituent groups present.  Under this system protoporphyrin IX becomes 8,13-diethyl-

3,7,12,17-tetramethylporphyrin-2,18-dipropionic acid and α,β,γ,δ-

mesotetrakisphenylporphyrin becomes 5,10,15,20-tetraphenylporphyrin (Figure 3.3).

Porphyrin names given in this document are based on the names given in the Frontier

Scientific catalog (Logan, UT) as this was the source for all porphyrins used.  These

names are based on the Fischer system, though the meso labels (α,β,γ,δ) are often

dropped.

3.2  PORPHYRIN ABSORBANCE SPECTRA

The porphyrin absorbance spectrum is sensitive to the environment of the

porphyrin.  Changes in acidity, hydrophobicity, ion content, etc can result in increased or

decreased absorbance intensity at any or all of the bands as well as changes in the exact

wavelength position of any or all of the bands.  Examples of these effects are given in



   52

Figure 3.4.  The porphyrin used in all traces is iron meso tetra(4-sulfonatophenyl)

porphyrin (Fe-TPPS) at 0.8 µM.  In Frame A, the absorbance spectrum of Fe-TPPS is

shown in 50 mM pH 7 NaPi and in 50 mM pH 7 NaPi with 50% ethanol, methanol, and

DMSO.  There are changes in absorbance apparent not only in the Soret region but also

in the Q-band region [264].  Fe-TPPS is freely soluble in water and in several organic

solvents such as DMSO.  Fe-TPPS is also soluble in ethanol, though the solubility in

methanol is somewhat less than that in water.  The three traces shown in Frame B

demonstrate the pH sensitivity of Fe-TPPS showing the blue shift of the Soret upon

acidification of the medium [264].  The Q-bands are also effected by the change in pH in

a similar manner.  Frame C shows the effects of ion concentration on the absorbance

spectrum of Fe-TPPS.  The red shift of the Soret is indicative of porphyrin stacking as is

the loss in intensity of the Q-bands [264].

The addition of different substituent groups also effects the absorbance spectrum

of the porphyrin [281].  This can be seen when the spectrum of chlorophyll a is compared

to chlorophyll b.  Chlorophyll a has strong absorbance peaks at 420 and 660 nm while

chlorophyll b has strong absorbance peaks at 450 and 620 nm.  This change in the

absorbance spectrum results from changing a substituent on a b-carbon from a methyl

group (CH3) to an aldehyde group (CHO) [262].  Figure 3.5 demonstrates this showing

the difference in the absorbance spectra of meso tetra(4-carboxyphenyl) porphyrin

(CTPP4) and meso tetra(4-boronic acid) porphyrin (TPPB); structures of the porphyrins

are also given.  Both porphyrins have phenyl rings with acidic substituents bound to the

number 4 carbon.  The spectra are very different with extinction coefficients of 725 mM-1

(414 nm) and 380 mM-1 (417 nm) (one centimeter path lengths) for CTPP4 and TPPB
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absorbance peaks, respectively.  The Soret of TPPB is broadened as compared to CTPP4

and the positions of the Q-bands are shifted.  Binding of a metal by the porphyrin ring

also causes changes in the absorbance characteristics [282].  Figure 3.5 shows the

absorbance spectra of Cu-CTPP4 and CTPP4.  The Soret of CTPP4 is blue shifted upon

complexation with copper and the Q-bands shift both in position and in number from four

to two.  The extinction coefficient of Cu-CTPP4 (540 mM-1 for a one centimeter path

length) is also less than that of CTPP4.

3.3  LIGAND INTERACTIONS

The great sensitivity of the porphyrin absorbance spectrum to its environment is

not limited to solvent effects but extends to the presence of other solutes in a given

solvent.  Three papers are central to understanding porphyrin ligand interactions

Mauzerall 1965 [264], Shelnutt 1983 [283], Schneider and Wang 1994 [284].

Mauzerall’s paper from 1965 discusses the interaction of several organic compounds with

uroporphyrin (III).  The results of this study are fundamental to understanding porphyrin

ligand interactions.  The author discusses the formation of complexes of different

stoichiometry indicating the involvement of hydrophobic effects and π−π, ionic,

dispersion, dipole, and hydrogen bond interactions.  The cofacial binding of cyclic

compounds to the porphyrin macrocycle is determined to be the preferred binding

conformation (Figure 3.6).  Changes in porphyrin absorbance spectra as a result of

solvent reorganization are observed.  The formation of charge-transfer complexes

between porphyrin and ligand is mentioned and aggregation of porphyrins is shown to

quench fluorescence as well as distort the absorbance spectrum of the porphyrin.
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Mauzerall demonstrates that the change in the absorbance spectrum for even very similar

compounds is unique and that the magnitude of the change in absorbance upon binding of

a ligand is dependent upon the concentration of the porphyrin present [264].  This means

that even very similar compounds react with the porphyrin to yield a unique set of

spectral changes or “fingerprint” making compound recognition possible and that the

intensity of the change in absorbance can be used for quantification of the analyte.

A study by Shelnutt involved seventeen different aromatic ligands interacting

with copper or nickel uroporphyrin [283].  Using shifts in the Raman spectra of the

porphyrins, Shelnutt determined that the interaction of the aromatic ligands with the

porphyrins is co-facial even when the compound bears a nitrogen.  The nitrogen-metal

interaction does not dominate as was expected.  He also found evidence of a π−π charge-

transfer interaction between the porphyrin and a ligand.

A key study by Schneider and Wang on porphyrin-ligand interactions

demonstrates the specificity of changes in the porphyrin absorbance spectrum for several

closely related aromatic compounds as well as other structurally related molecules [284].

The study used three different meso tetra(4-x-phenyl) porphyrins one of which was used

as a free base, copper complexed, or zinc complexed.  The changes in the absorbance of

the Soret band were measured upon interaction with twenty three different ligands in

water.  The study shows that the association of the ligands with the porphyrins is

dependent on ionic interactions as well as π−π interactions while under these conditions

solvophobic factors do not contribute.  The authors go on to point out that the changes in

the absorbance spectrum, that is, the size of the wavelength shift is related to the
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association energy of the complex and that the complexes formed are between a single

porphyrin and a single ligand molecule.

The copper metalloporphyrin used in the study by Schneider and Wang showed

similar results to the free base porphyrin.  Copper (Cu2+) ions are know to form a planar

coordination with four nitrogen atoms.  There is little ring distortion upon binding of the

copper ion and ligand interactions resulted in changes in the absorbance spectra similar to

those observed with the free base porphyrin.  The zinc metalloporphyrin on the other had

showed smaller complex association energies and smaller wavelength shifts.  The zinc

ion is generally found in a five coordinate geometry: the four nitrogen atoms of the

porphyrin ring plus a water molecule or the nitrogen of a ligand are involved.  The

authors conclude that the interactions of the ligands with the central metal are not strong

enough to result in axial interaction; rather, the plane to plane stacking described by both

Mauzerall [264] and Shelnutt [283] is the strongly favored conformation.

Formation of metal-porphyrin complexes has been studied since the early 1940’s.

Banks and Bisque were the first group to attempt the use of changes in the spectral

characteristics of porphyrins for determination of metals [285].  The authors demonstrate

the complexes between a porphyrin and zinc, cadmium, magnesium, beryllium, iron,

yttrium, and rare earth alkali metals can be formed with each metal complex giving a

distinct absorbance spectrum.  In 1985 a paper was published on determination of copper,

lead, cadmium and zinc [286].  This paper as well as a paper from 1957 all point out that

attaining an equilibrium between porphyrin and metal requires more than 70 minutes.

Several groups have described methods decrease the time needed to reach equilibrium
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[278, 287-289] such as heating, use of an asymmetric porphyrin (greater ring flexibility),

and use of reducing agents to increase the rate of complex formation.

A further point in the literature is that the exchange of one metal for another,

especially in the case of large atoms like zinc, is much faster than the direct binding of

the atom.  Zinc is capable of binding several water molecules and the size of the atom

decreases steric hindrance allowing fairly tight binding.  This “water shell” is difficult to

disperse for porphyrin binding.  If a copper is bound in the porphyrin ring, the water

ligands can be shared between the copper and zinc atoms facilitating the metal exchange

[278, 287-289].

The papers discussed here do not begin to cover the extensive amount of

information available on porphyrin chemistry.  The Porphyrin Handbook is twelve

volumes covering a range of topics from synthesis to sensor applications.  The seven

volume set The Porphyrins deals with structure and synthesis, biochemistry, and physical

chemistry of porphyrins.  The information given here is that which directly pertains to the

topics to be covered in this document.

3.4  PORPHYRIN APPLICATIONS

Porphyrins have been used in a wide range of sensor applications.  Tables 3.1-3.7

give only a sample of the literature available on porphyrin interactions.  The interaction

of porphyrins with many compounds has been studied including, but not limited to:

metals (atoms) [278, 285, 287-291, 293-300, 302-63, 324-338, 340-352, 355, 357, 360-

364, 377], small molecules [297-298, 301, 305, 312, 314, 316, 318, 320, 323, 328, 330,

333, 337, 339-342, 349-356, 358-359, 364-371], amines [292, 364, 372-373], amino
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acids and amino acid derivatives [292, 299, 351, 374-376], alcohols [292], carbohydrates

[292, 377-379], quinones [283-284, 373], proteins [383-400], DNA [292, 401-403],

nucleobases and nucleic acids [404-405], surfactants [406-407], volatile organic

compounds [351, 365, 370, 373, 408-413], and a variety of other cyclic and/or aromatic

compounds [264, 293, 300, 283-284, 364-365, 372, 380-382].  The sensitivity of the

porphyrin spectrum makes porphyrins ideal for use as indicators in absorbance or

fluorescence spectroscopy.  The peripheral substituents of the porphyrins can be

modified, as can the centrally coordinated metal, to achieve binding specificity allowing

for their application in amperometric or potentiometric protocols or for use with

acoustical devices such as quartz crystal microbalances.

Some interesting work has been done using porphyrin arrays as electronic noses

or electronic tongues [414-421].  Electronic noses are used for detection of vapors and

electronic tongues are used for detection of compounds in solution.  One group has

demonstrated the identification and quantification of fourteen different volatile organic

compounds (VOCs) using an array of eleven metalloporphyrins.  They have also shown

that the system can be used to classify an unknown compound that is similar to others in

the library.  The system used for this demonstration consisted of an HP flat-bed scanner

as the spectrometer/light source and Adobe PhotoShop for data analysis [370, 379].

Several other protocols using porphyrin arrays employ quartz crystal microbalances [416,

418, 420].

Porphyrins have also been used in amperometric and potentiometric detection

protocols due to their ability to catalyze oxidation/reduction reactions [293, 414].

Generally a metalloporphyrin thin film is used.  Binding specificity and redox properties
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can be altered by modifications to the porphyrin side chain and incorporated metal.

These sensors have been employed for detection of compounds such as metal cations,

nitric oxide, salicylate and nitrite [293, 367, 422-423].

3.5 PROJECTS

The porphyrin macrocycle can be used for detection in two ways.  The most

common use is as described above in the optical techniques where the porphyrin is

involved in the recognition event and in signal transduction.  The following chapters

present a few detection protocols based on this use of the porphyrin.  The porphyrin can

also be used as only the recognition event for example in the quartz crystal microbalance

protocols or less commonly as only the transducer.  The other detection protocols

presented in the following chapters use the porphyrin as a transducer only for indication

of enzyme binding a compound.  Most of the detection protocols are based on changes in

the porphyrin absorbance spectra and our focus will be on the Soret region of the

spectrum because very large extinction coefficient in that region allows for detection of

small amounts of analyte.  Aside from the chapter on porphyrin determination of sugars

changes in the fluorescence spectra of the porphyrins are only briefly mentioned.
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ATOMS AND SMALL MOLECULES 

 

Platinum (Pt II) 293, 297-298, 328, 336-337, 348   Lanthanum (La III)307, 329, 330, 332, 355 Cerium (Ce)330 

Palladium (Pd II) 293, 298, 316, 319, 336, 348 molybdenum (Mo) 292, 322, 326, 337 N3- 365 

Nickel (Ni II) 292-294, 305, 314, 324, 341, 345 Lead (Pb II) 292, 294, 308, 313, 314, 334, 343,344 Samarium (Sm III) 364, 330, 332 

Cobalt (Co II or Co III)287-288, 290, 292-293, 299-

300, 312, 324, 326, 333, 340 
Bismuth (Bi III)303, 304, 330 Terbium (Tb III) 364, 331, 332 

Silver (Ag I or Ag II) 292-294, 308 Bromine (Br)  292, 304, 330, 365 Europium (Eu III) 364, 307, 310, 332, 355 

Gold (Au) 346, 348 Beryllium 285 Dysprosium (Dy III) 364, 332 

Copper (Cu II) 278, 287, 292-293, 308, 324, 342, 344, 

355, 360-361  
Potassium (K) 293, 308, 325 Holmium (Ho III) 364, 321, 332, 335 

Iron (Fe II or Fe III) 285, 292-293, 295, 308, 317-318 Yttrium (Y)307, 332, 335, 285, 364 Erbium (Er III) 364, 306, 307, 321, 331, 332 

Zinc (Zn II) 278, 285, 287-289, 291-293, 298, 322, 324, 

334, 345, 355, 362-363 
Tin (Sn II or Sn IV)345 Thulium (Tm III) 321, 332, 364 

Magnesium (Mg) 293, 292, 308, 285 Ruthenium (Ru) 292, 295 Ytterbium (Yb III) 364, 321, 332, 355 

Manganese (Mn II or Mn III)  287, 292, 295, 

314, 320, 324, 333, 392
Rhodium (Rh) 292,  357 ClO4

- 364 

Cadmium (Cd II) 293, 292, 294, 308, 311, 313, 334, 344, 

290, 288, 291, 360
Chromium (Cr)  292, 351 NO2 368, 367, 369, 365 

Lithium (Li) 293, 308, 338 Titanium (Ti) 292,315 Ozone (O3) 367 

Sodium (Na) 293, 308, 325 Gallium (Ga) 292, 295, 345 Ammonia 370, 371 

Barium (Ba) 293 Vanadium (V) 292, 350 Dichloromethane 366 

Iodine (I) 292, 304, 330, 349 Mercury (Hg II) 289, 292, 294, 308, 313, 334 SO3
2- 364, 359 

Chlorine (Cl) 292, 304, 317 Cyanide 293, 292, 342 Nitrite 293, 312, 318 

Indium (In III)295, 330, 345 Thiocyanate 292, 333, 352 Nitrate 312 

Gadolinum (Gd III)307, 310, 331, 332, 355 Carbon monoxide (CO) 292, 340 Nitric oxide (NO)314, 365 

Calcium (Ca II)348 Thiourea 292 Carbon Dioxide (CO2)354 

Osmium (Os IV)302 Nitric oxide (NO)293, 341 O2- 365 

Neodymium (Nd III)306, 307, 310, 321, 332, 364 Fluorene (F-) 364, 365, 338 Salicylate 293, 351 

Lutetium(Lu III)307, 309, 331, 332 Oxygen (O2) 364, 367, 297, 298, 316, 328, 340,97 Acetylsalicylate 293 

Praseodymium (Pr III)307, 330, 332 Selenium (Se2-) 365, 347 H2O2 
302, 337, 355, 358 

Zirconium (Zr)315 Singlet oxygen301, 339, 365 Sulfite (SO2)305, 359 

Arsenic (As)320 O2
2- 365 Nitrogen (N2)316 

Triiodide320, 349 NO3
- 365, 292, 304 Chlorine (Cl2)322, 353 

Antimony (Sb)330 N3
- 365 Ammonium iodide330 

 

 

TABLE 3.1     Selected studies on the interaction between porphyrins and atoms or small 

molecules. 
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AMINES 

 

 

 

N,N’-diimidazolylmethane 373 tert-butylamine 373 1,8-diaminooctane 373 
1-methyl-imidazole 373 azetidine 373 pyridine 373 
γ,γ’-dipyridylmethane 373 pyrrolidine 373 butylamine 373 

γ-picoline 373 1,2,3,4-tetrahydroisoquinoline 373 DABCO 373 
1,3-di(4-pyridyl)propane 373 diethylamine 373 Piperidine 373 
1,2-di(4-pyridyl)ethane 373 dipropylamine 373 Pyrazine 373 
di(4-pyridyl)-methane 373 Diisopropylamine 373 1,2-di(4- piperadinyl)ethane 373 
cis-1,2-di(4-pyridyl)ethene 373 isoquinoline 373 propylamine 373 
trans-1,2-di(4-pyridyl)ethene 373 3-pyrroline 373 butylamine 373 
3,3’-dipyridyl 373 1,2,4-triazole 373 cyclohexylamine 373 
4,4’-dipyridyl 373 1,6-diaminohexane 373 1-butylamine 372 
1,3-di(4-pyridyl)propane 373 1,8-diaminooctane 373 benzylamine 372 
1,2-di(4-pyridyl)ethane 373 1,10-diaminodecane 373 phenethylamine 372 
1,2-diaminoethane 373 1,12-diamino-dodecane 373 imidazole 373, 292 
1,4-diaminobutane 373 ethylenediamine 373 Acetoaminophen 364 
1,5-diaminopentane 373 1,7-diaminoheptane 373 1,6-diaminohexane 373 

 

 

 

 

TABLE 3.2     Studies on the interaction between porphyrins and amine compounds. 
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   AMINO ACIDS 

 

 

Glycine (Gly) 292 leucine tert-butyl ester 292 N-Boc-valinate 292 
Leucine (Leu) 292, 374 leucinol 292 N-acetyl-valinate 292 
Glutamic Acid (Glu) 292, 374 4-heptylamine 292 N-Cbz-norvalinate 292 
Arginine (Arg) 292, 391, 374 isoleucine methyl ester 292 N-Cbz-leucinate 292 
Phenylalanine (Phe) 292, 374, 375 proline methyl ester 292 N-Cbz-norleucinate 292 
Tryptophane (Trp) 292, 391, 374, 375 serine benzyl ester 292 N-Cbz-prolinate 292 
Valine (Val) 292, 391, 374 1-phenyl-ethylamine 292 N-Cbz-methionate 292 
Isoleucine (Ile) 292, 374 aminoethanol 292 N-Cbz-serinate 292 
Aspartic Acid (Asp) 292, 391, 374 L-DOPA-OMe 292 N-Cbz-phenylglcinate 292 
Tyrosine (Tyr)  292, 391, 374, 375 D-DOPA-OMe 292 N-(3,5-dinitrobenzoyl)-

phenylglycinate 292 
Valine methyl ester 292 3-amino-2,4-dimethylpentane 292 N-Cbz-phenylalaninate 292 
n-Pr2CHNH2 292 phenylglycine methyl ester 292 N-Cbz-tryptophanate 292 
glycine 292, 391, 374 cystein methyl ester 292 Poly(glutamic acid) 292 
methyl ester 292 methionine methyl ester 292 Histidine methyl ester 292 
alainine methyl ester 292 L-histidine benzyl ester 292 Histidine benzyl ester 292 
leucine methyl ester 292 L-lysine benzyl ester 292 Octyl α-glucopyranoside 292 
phenylalanine methyl ester 292 Leucine benzyl ester 292 (Glu)4Tyr 117 
tyrptophan methylester 292 N-Cbz-alaninate 292 (Glu)4Trp 117 
aspartic acid dimethylester 292 N-Cbz-N-methylalaninate 292 alanine 391, 374, 375 
glutamic acid dimethylester292 N-Cbz-valinate 292 serine 391, 374 
histidine 391, 374, 375 proline 374, 375 lysine 391, 374 
threonine 374 asparagine 374 methionine 391, 374, 375 
glutamine 374 cysteine 374, 375  

 

 

TABLE 3.3     Selected studies on the interaction between porphyrins and amino acids or 

amino acid derivatives. 
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   ALCOHOLS AND CARBOHYRATES 

Octyl-β-D-mannoside 292 1,3-cyclohexanediol 292 D-galctose 379 

Octyl-α-D-mannoside 292 octyl α-D-2O-methylmannoside 292 Methyl-α-D-glucoside 379 

Octyl-β-D-glucoside 292 octyl β-D-6O-acetylglucoside 292 Methyl-β-D-glucoside 379 

Octyl-α-D-glucoside 292 octyl β-D-6O-benzylglucoside 292 octyl-α-D-glucoside 379 

Octyl-α-L-glucoside 292 cyclohexanol 292 D-trehalose 379 

Octyl-β-D-galactoside 292 tetrahydropyrane 292 D-lactose 379 

Octyl-α-D-galactoside 292 2-hydroxymethyl tetrahydropyrane 292 Maltotrise 379 

Methanol 292 cyclohexanemethanol 292 Octyl-α-D-glucopyranoside 378 

1-propanol 292 cis-1,2-cyclohexanediol 292 Octyl-β-D-glucopyranoside 378 

MeO(Ch2)2OH 292 trans-2-hydroxymethylcyclohexanol 292 Methyl-β-D-glucopyranoside 378 

MeO(Ch2)2Ome 292 cis-2-hydroxymethylcyclohexanol 292 Methyl-α-D-glucopyranoside 378 

Diethyl ether 292 2-hydroxymethyltetrahydropyrane 292 D-galactose 378 

Tetrahydrofuran (THF) 292 dimethyl L-tartrate 292 α-D-glucose 378 

1,2-ethanediol 292 diethyl L-tartrate 292 D-fructose 378 

1,3-propanediol 292 diisopropyl L-tartrate 292 D-ribose 378 

1,4-butanediol 292 di-sec-butyl L-tartrate 292 D-trehalose 378 

1,5-pentandiol 292 di-tert-butyl L-tartrate 292 α-D-lactose 378 

1,8-octanediol 292 diethyl meso-tartrate 292 β-D-lactose 378 

1,2-propanediol 292 diethyl 2-hydroxysuccinate 292 maltotriose 378 

trans-1,2-cyclohexanediol 292 (2R,3)-dihydroxybutane 292 D-glucose 377 

 Maltotriose 377 Maltose 377 

 Maltotetraose 377  

 Maltopentaose 377  

 Maltohexaose 377  

 Maltoheptaose 377  

   

   

 

 

TABLE 3.4     Selected studies on the interaction between porphyrins and alcohols or 

carbohydrates. 
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   QUINONES AND CYCLIC COMPOUNDS 

Quinones pyrazine 284 1,3-benzenediol 380 
2,3,5,6-tetramethoxy-p-benzoquinone 373 2,6-dimethoxybenzoate 284 3,5-benzoic acid hexyl ester diol 380 
2,3-dimethoxy-p-benzoquinone 373 benzoic acid 284 4,4’-dipyridyl-1,1’-methyl 380 
p-benzoquinone 373 3,5-dimethylbenzoate 284 4,4’-dipyridyl-1,1’-ethanol 380 
2-methoxy-p-benzoquinone 373 1,2,3,4-tetrahydro-2-napthalene carboxylate 

284
butane dicarboxylic acid 284 

2,6-dimethoxy-benzoquinone 373 1,4-bezenedicarboxylic acid 284 ethene dicarboxylic acid 284 
2,3,6-trimethoxy-p-benzoquinone 373 p-nitrobenzoate 284 triethylenediamine 284 
2,3-dimethoxy-6-methyl-p-benzoquinone 

bi i 373
3,5-dinitrobenzoate 284 pyridine 284 

2,3,5,6-tetrafluoro-p-benzoquinone 373 cinnoline 284 α,α’-Dipyridyl 264 
2,3,5,6-tetrachloro-p-benzoquinone 373 1,2,4,5-benzentetracarboxylic acid 284 γ,γ’-Dipyridyl 264 
quinoline 284 2-napthalene sulfonic acid 284 γ,γ’-Dipyridyl 264 

1,5-disulfonatoanthraquinone 
284

 1,5-napthalene disulfonic acid 284 o-phenanthroline 264 
2,2’-diquinoline-4,4’-dicarboxylic acid 284 2,6-napthalene disulfonic acid 284 methyl viologen 264 
8-chloroquinoline 283 2,6-napthalene dicarboxylic acid 284 Phenol 364 
 1,1’-biphenyl-4,4’-dicarboxylic acid 284 Dopamine 364 
 o-phenanthroline 284 2-Hydroxybenzyhydroxamate 34 
Other cyclic compounds cinchophen 284 1,2-bis(4-pyridyl)ethane 365 
Acetaminophen 382 pyridine 380 1-methylpiperazine 372 
Guaïacol 382 4-pyridol 380 piperidine 372, 366 
1,4-dicarboxylate cyclohexane 284 3-pyridol 380 pyrrolidine 366 

4,4’-bipyrine 
283

 1,7-phenanthroline 283 4-dimethylamino pyridine 365 
5-nitro-1,10-phenanthroline 283 4,7-dimethyl-1,10-phenanthroline 283 Caffeine 264 
phenol 365 1-ethoxy imidazole 365 3-amino pyridine 365 
3-cyano pyridine 365 3-methyl pyridine 365 Berberine 381 
2-cyano pyridine 365 3-chloro pyridine 365 1,2-methyl imidazole 365 
pyrazole 365 3-pyridol 365 3,5-dichloropyridine 365 
quinine 365 3-methoxy pyridine 365 3-bromo pyridine 365 
2-methyl imidazole 365 3-ethoxy pyridine 365 3,4-methyl pyridine 365 
5,6-dimethyl-1,10-phenanthroline 283 1,10-phenanthroline-4,7-diol 283 2,6-lutidine 283 
5-phenyl-1,10-phenanthroline 283 4-amino pyridine 365 4-piperidol 365 

5-methyl-1,10-phenanthroline 
283

 4-cyano pyridine 365 4-methyl pyridine 365 
4-methyl-1,10-phenanthroline 283 4-methyl imidazole 365 4-phenyl pyridine 365 
5-chloro-1,10-phenanthroline 283 4,4’-dipyridine 365 4-phenyl imidazole 365 
1,10-phenanthroline-5,6-dione 283 3,5-lutidine 283 Tetramethylbenzidine 382 
1-methyl imidazole 365 Hexadecyltrimethylammonium bromide 264 1-(2-hydroxyethyl)pyridinium chloride 264 
4-methoxy pyridine 365 1-Hexadecylpyridinium bromide 264 Adenine 264 
4-ethoxy pyridine 365 Nicotinamide 264 pyrrole 365 
1-Carbamidomethyl-3-
carbamylpyridinium chloride 264 

1-Carbamidomethyl-pyridinium-3-
carboxylate betaine 264 

1-(2-Hydroxyethyl)-3-carbamylpyridinium 
chloride 264 

1-Carboxymethylpyridinium-3-
carboxylate,sodium 264 

(2-Hydroxyethyl)-trimethylammonium 
chloride 264 

4,7-phenanthroline 283 

 

 

TABLE 3.5     Selected studies on the interaction between porphyrins and quinones or 

other cyclic compounds. 
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   PROTEINS AND DNA 

 

 

 

Proteins Nucleobases and Nucleosides 
Telomerase 383 Adenine 404, 405 
Serum Albumin 384, 385 Cytosine 404, 405 
Cosynthetase 386 Thymine 404, 405 
HIV-1 Protease 387 Uracil 404 
Acetylcholinesterase 388-395 Adenosine 404 
Organophosphorus Hydrolase396 Cytidine 404 
Butyrylcholinesterase393, 395, 397 Uridine 404 
Glucose Oxidase398 Thymidine 404 
Carbonic Anhydrase399  
Antibodies 400  
  
DNA  
DNA 292, 401-402  
DNA major grove 403  

 

 

 

 

 

TABLE 3.6     Selected studies on the interaction between porphyrins and proteins, DNA, 

nucleosides, or nucleobases. 



    65

   VOLATILE ORGANICS AND SURFACTANTS 

 

 

Surfactants THF 370 CHCl3 351 
CTAC 407 Methylene chloride 370 P(OC2H5)3 351 
HPS 407 Chloroform 370 P(C4H9)3 351 
Triton X-100 407 Dipropylsulfide 370 C6H3SH 351 
Brij-35 407 Benzene 370 (C3H7)S 351 
Tween-60 406 Toluene 370, 408 benzene 351 
 Ethylbenzene 408 n-octylamine 351 
Volatile organics Cumene 408 Tributylphosphine 370 
Acetic acid 370 2-nitrotoluene 409 n-butylamine 351 
Propionic acid 370 4-nitrotoluene 409 Atrazine 410 
Hexanonic acid 370 2,4-dinitrotoluene 409 Ethene 412 
Dimethylformamide (DMF ) 370 2,4,6-trichlorophenol 409, 411 Propene 412 
Hexylamine 370 DMF 351 1-decene 412 
Dimethylsulfoxide (DMSO) 370 Ethanol 351 Peroxynitrite 413 
Ethanol 370 Pyridine 351, 373 trichloromethane 365 
Ethyl acetate 370 Hexylamine 351 bromomethane 365 
Acetone 370 Acetonitrile 351 chloropropane 365 
Propyl 365 tert-butanol 365 sulfonate 365 
hydroxyl 365 Acetone 351 butanol 365 
Hexanetiol 370 THF 351 ethanol 365 
Triethylposphine 370 CH2Cl2 351 methanol 365 
   

 

 

 

 

 

TABLE 3.7     Selected studies on the interaction between porphyrins and volatile organic 

compounds or surfactants. 
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NATURALLY OCCURING PORPHYRINS

FIGURE 3.2 Porphyrins in nature:  Heme b from hemoglobin and myoglobin, Heme c

from cytochrome c, and chlorophyll.
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FISCHER AND IUPAC NOMENCLATURE

FIGURE 3.3 These structures show how the Fischer and IUPAC names for

protoporphyrin IX and TPP [meso-tetraphenylporphyrin] are obtained.
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ABSORBANCE SPECTRA AND SOLVENT EFFECTS

FIGURE 3.4 (A)  The absorbance spectra of Fe-TPPS (0.8 µM) in 50 mM NaPi pH 7

(Trace 1), 50 mM NaPi pH 7 with 50% ethanol (Trace 2), 50 mM NaPi pH

7 with 50% methanol (Trace 3), and 50 mM NaPi pH 7  with 50% DMSO

(Trace 4).  (B)  The absorbance spectra of Fe-TPPS in 50 mM NaPi for pH

4.8 (Trace 1), pH 7.0 (Trace 2), and pH 9.2 (Trace 3).  (C)  The

absorbance spectra of Fe-TPPS in pH 7 NaPi at 50 mM (Trace 1) and 500

mM (Trace 2).  The Soret (I) and Q bands (II) are shown at different scales

for emphasis.
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ABSORBANCE SPECTRA AND STRUCTURAL EFFECTS

FIGURE 3.5 (A)  The absorbance spectra of CTPP4 (0.8 µM, Trace 1) and TPPB (0.8

µM, Trace 2) in 50 mM NaPi pH 7.  (B)  The absorbance spectra of

CTPP4 (0.8 µM, Trace 1) and Cu-CTPP4 (0.8 µM, Trace 2) in 50 mM pH

7 NaPi.  The Soret (I) and Q bands (II) are shown at different scales for

emphasis.
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Π−Π STACKING

FIGURE 3.6 The cofacial interaction between TPP and benzene.  Figure courtesy of Dr.

H. J. Harmon.
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CHAPTER 4 

IMMOBILIZATION 

 

4.1 BASIC CONSIDERATIONS:  PROTEINS 

There is no ideal method or support for immobilization of all proteins.  The 

choices are made by weighing the required features for a given application against the 

limitations and properties of a combination of immobilization method and support.  A 

soluble protein behaves in solution as any other analyte with freedom of movement.  

Immobilization restricts the motion of the protein, localizing a concentration.  There are 

five basic methods for immobilization of proteins:  adsorption, entrapment, 

encapsulation, cross-linking, and covalent binding.  The book Immobilization of 

Enzymes and Cells gives a thorough review of these methods [424].  Points to be 

considered when choosing a support and method are described in Table 4.1 [424].  The 

following paragraphs briefly describe each method and mention some of the 

advantages/disadvantages for each one.   

Adsorption is the simplest method involving reversible interactions between the 

support and the protein (Figure 4.1) [1].  The forces involved are typically electrostatic 

including van der Waals, ionic and hydrogen bonding, and hydrophobic/hydrophilic 

interactions.  These forces are weak but sufficient to hold the proteins for some 

applications.  The existing surface chemistry between the protein and the support is 

exploited, so no chemical modifications of the proteins are necessary.  This means there 

will be little damage to the protein.  Procedures generally involve mixing of the support 

and protein together under the proper pH, ionic strength, temperature, etc for some 
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incubation period.  This is followed by harvesting of the immobilized material and 

thorough washing to remove any unbound protein.  The primary disadvantage to this 

technique is dissociation of the protein from the support resulting from changes in pH, 

temperature, ionic strength or even substrate binding (Table 4.2) [424].  Interaction of 

contaminates, substrates, or products with the support may also result in dissociation or 

the protein.  One other issue is overloading of the support.  This can result in low 

catalytic activity as can the steric hindrance that occurs when the protein is too close to 

the support or to another protein. 

Immobilization by entrapment involves restriction of the movement of the 

enzymes while still free in solution.  This generally accomplished using a gel with a 

controlled lattice structure.  The structure must be tight enough to prevent the protein 

from passing yet loose enough to allow substrates and products to flow.  This is a barrier 

to mass transfer and so may cause changes in the reaction kinetics for an enzyme.  There 

are four major entrapment methods:  ionic gelation involving cross-linking of a polymer, 

temperature-induced gelation taking advantage of phase transitions in compounds such as 

gelatin, chemical/photochemical organic polymerization of a mixture of monomers, and 

precipitation from immiscible solvent occurring by phase separation.  The gelation 

methods often result in unstable, soft structures.  Since the organic solvents used in the 

precipitation method are often not tolerated by proteins, this method is limited to highly 

stable enzymes.   

Encapsulation, like entrapment, involves restricting the movement of proteins that 

are otherwise free in solution.  Semi-permeable membranes are used to prevent large 

proteins from passing the barrier while substrates and products pass freely.  The 
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difference here is that encapsulation involves surrounding a volume containing many 

enzyme while entrapment is a lattice structure with single (at most 2 or 3) proteins 

trapped in the gaps in the lattice.  Nylon and cellulose nitrate are commonly used 

materials for membranes.  Diffusion is still the main issue and may result in rupture of 

the membrane in cases of rapidly accumulating products and/or osmotic pressure.  This 

method is very useful for immobilization of enzyme combinations, however.   

Cross-linking is support free.  Proteins are joined to each other to form large 

three-dimensional structures.  Chemical cross-linking involves forming bonds between 

functional groups on the proteins using activators such as glutaraldehyde or toluene 

diisocyanate.  Other molecules may be used as spacers to prevent difficulties with steric 

hindrance including albumin and gelatin.  Many proteins are not tolerant of the activators 

limiting the applicability of this technique.  Cross-linking lacks the mechanical properties 

and often results in unstable structures, so it is rarely used alone.  Forming chemical 

bonds to the functional groups on a protein may modify the ability of an enzyme to 

function properly.  This can alter substrate binding, catalytic mechanism, or changes in 

enzymatic reaction rates. 

Covalent binding, similar to cross-linking, involves forming a covalent bond to a 

functional group on the surface of the protein.  In this case the bond is between the 

support and an amino acid functional group.  The most often used groups are the amino 

groups of lysine or arginine, the sulfydryl group of cysteine, the hydroxyl group of serine 

or threonine, and the carboxyl group of aspartic acid and glutamic acid.  Many supports 

are available for this type of immobilization.  The primary factor for maintenance of 

enzymatic activity appears to be hydrophilicity of the surface making surfaces such as 
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dextan and cellulose, which bear sugar residues are popular.  The sugar residues also 

provide hydroxyl groups that can be activated to form covalent bonds.  Porous silicate 

glasses are also a popular choice.  These glasses can be functionalized through silane 

linkages (described later).   

Covalent binding is usually achieved through isourea linkage, diazo linkage, 

peptide bond, or alkylation reactions.  The method must be chosen to accommodate the 

particular protein.  If a carboxylic acid is involved in the active site, it would be more 

effective to choose a diazo linkage or an alkylation of an amino group rather than a 

peptide bond to a carboxylic acid group.  There are generally two steps in the 

immobilization process:  activation of the functional groups of the support generally 

forming strong electrophilic groups (electron deficient) and  coupling of the enzyme to 

these groups via nucleophiles (electron donating) to form a covalent bond.  A wide 

variety of possibilities can be realized using different supports and chemically modified 

supports.   

 

4.2 DEVELOPMENT OF A METHOD 

The sensor systems to be addressed in this document are to be used in a variety of 

environments, that is, samples in solution, vapor phase, or even solid state.  To 

accommodate these situations, a covalent binding immobilization was chosen.  This 

guarantees a constant protein density for the measurements with no dissociation of the 

enzyme into the sample even in large liquid volumes.  The first enzyme addressed for 

immobilization was acetylcholinesterase (AChE, Type V-S from electric eel).  A wide 
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variety of protocols used by different groups for immobilization of AChE exist [424-

435].  

4.2.1  FIRST STEPS 

Catalysis in the AChE active site relies on a glutamic acid residue as well as 

serine and histidine residues, so an immobilization protocol taking advantage of amino-

bearing residues was investigated [436].  Different supports were investigated in the early 

stages:  ProbeOn™ Plus microscope slides and microwell plates, DNA-bind microwell 

plates,  and Xenobind™ microwell plates.  All of these have functionalized surfaces.  

Amino groups are bound to the microwell plates without requiring activation while the 

ProbeOn™ Plus slides do require activation.  The investigation of microwell plates was 

abandoned early in the project, so the discussion to follow will focus on the work with 

ProbeOn™ Plus microscope slides although the principles are still effective for microwell 

plates.  Silicate glass can be immersed in a solution of 3-aminoporpyltriethoxysilane in 

acetone to prepare the amino-functionalized glass surfaces (Figure 4.2, protocol from 

Pierce Biotechnology Rockford, IL [437]).  Following amino-functionalization 

ProbeOn™ Plus microscope slides are dipped into hydrochloric acid to protonate the 

amino groups.  This improves surface hydrophilicity enhancing surface-solution 

interactions during the immobilization process.   

Glutaraldehyde activation of amino groups is a common method used for covalent 

immobilization and cross-linking of proteins [9, 12, 438-441].  Figure 4.2 shows the 

alkylation of the surface amino group that takes place upon exposure to glutaraldehyde 

[442].  This reaction proceeds most favorably at pH 7.5 to pH 9.0.  Following activation 

of the surface amino groups, an enzyme, porphyrin, or other amino group bearing 
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molecule (or cell) can be allowed to react with the remaining aldehyde group (similar pH 

conditions, Figure 4.2).  This protocol was used for immobilization of AChE.  In 

addition, several blocking agents were used including:  Tris(hydroxymethyl)amino 

methane (TRIS, MW = 121), casein (6.4 kDa), gly-gly-gly (MW = 189), bovine serum 

albumin (BSA, 68 kDa), tricine (MW = 179), glycyl-glycine (MW = 132), lysine (MW = 

146), and ethylenediamine tetra-acetic acid (EDTA, MW = 292).  The blocking agents 

were used to bind any unreacted aldehyde groups remaining after binding of the enzyme 

to the surface.  They play an additional role in that they fill the gaps between the 

enzymes, increasing the stability of the resulting protein matrix.   

The success of the immobilization protocols is based on the enzymatic activity of 

the surface as determined by the Ellman method [443].  This protocol is described in 

detail in Chapter 5.  The slides resulting from this protocol, regardless of blocking agent, 

showed very low enzymatic activity (Protocol 1, see section 4.4).  The low enzyme 

activity was likely a consequence of the proximity of the enzyme to the surface, but could 

also indicate a very low enzyme density.  As mentioned earlier, if an enzyme is to close 

to the support steric hindrance can result and therefore changes in reaction rates may be 

observed.   

4.2.2  PAMAM DENDRIMERS 

A macromolecule discovered in the 1980’s by Dr. Tomalia at the Dow Chemical 

Company has been used in some immobilization protocols to both increase the number of 

available amino groups and provide a spacer between the enzyme and the support surface 

[444].  The macromolecules are referred to as dendrimers or “dense star” polymers 

because of their tree like branching structure (Figure 4.3).  Unlike many polymers, the 
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PAMAM dendrimers show uniform molecular structure and have narrow molecular 

weight distribution as well as specific size and shape characteristics.  The surface of the 

dendrimers also has a large number of terminal amino groups.  The PAMAM dendrimers 

are classified into generations based on the number of growth steps used to achieve the 

molecule.  Each subsequent growth step results in twice the number of surface amino 

groups and approximately double the molecular weight of the proceeding step.  Figure 

4.3 shows the structure of PAMAM dendrimer generation 2.  This polymer has molecular 

weight 3,260 with a diameter of 29 Å and 16 terminal amino groups.  The dendrimer used 

for the following protocol was PAMAM dendrimer generation 4 (MW = 14,220; D = 45 

Å, approx. 54 terminal amino groups).  In the following text, PAMAM refers to the 

generation 4 dendrimer. 

PAMAM can be immobilized to the glutaraldehyde activated amino-silicate glass 

in the same way as any other amino bearing molecule (Figure 4.4) except that the 

PAMAM will very likely bind several of the amino groups on the glass surface due to the 

high concentration of terminal amino groups on the dendrimer.  The surface that results 

will also have many more exposed amino groups than the original glass surface.  The 

unreacted aldehyde groups left on the surface of the slide can again be “blocked” with 

TRIS or one of the other blocking agents listed above.  This surface can again be 

activated with glutaraldehyde.  The activation of the dendrimer groups results in two 

possibilities for the terminal amino groups of the dendrimers:  active aldehyde groups are 

formed allowing binding of another layer of amino group bearing molecules and the 

terminal amino groups of adjacent dendrimers become linked via the five carbon chain of 

glutaraldehyde (GA).  Cross-linking of the dendrimer increases the stability of the first 
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layer and the enzyme (or porphyrin, etc) can be bound to the activated PAMAM.  AChE 

immobilized surfaces produced using this protocol (Protocol 2) showed significantly 

higher enzymatic activity than slides produced using Protocol 1.   

4.2.3  OPTIMIZATION OF THE PROTOCOL 

Different blocking agents were tested with this protocol (TRIS, casein, gly-gly-

gly, bovine serum albumin, tricine, glycyl-glycine, lysine, and ethylenediamine tetra-

acetic acid) both for optimizine enzymatic activity and for surface stability under 

different storage conditions.  Surfaces blocked using TRIS, casein, BSA, or a 

combination of casein and TRIS (steps 4 and 7, respectively) showed a higher degree of 

enzymatic activity than those blocked with the other molecules listed.  As a result, the 

other potential blocking agents were not considered after this point.  The surfaces were 

stored dry at room temperature, dry at 4°C, or in 50 mM pH 7 NaPi buffer at 4°C.  Slides 

produced using TRIS and/or casein as the blocking agent retained some or all of the 

enzymatic activity when stored at 4°C for up to 7 days while those produced using BSA 

did not retain enzymatic activity after storage.  The use of BSA as a blocking agent was 

abandoned at this point. 

The effect of pH on the immobilization protocol was investigated.  Protocol 2 was 

modified so that all steps took place at pH 5.5, 6, 7, 8, or 9.  Slides produced at pH 5.5 

and pH 6 showed little enzymatic activity; the Ellman reaction was allowed to proceed 

for 3 hours before a measurable color change occurred.  Slides produced at pH 7 and pH 

9 showed significantly higher enzymatic activity while slides produced at pH 8 showed 

double the activity of slides produced at pH 9.  It is likely that some protein unfolding 

occurred during the immobilization of the enzyme in pH 9 buffer, reducing the number of 
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active enzymes that were immobilized.  The reaction by which the aldehyde group of 

glutaraldehyde is replaced by the terminal nitrogen of the surface or the enzyme (etc) 

favors slightly alkaline conditions (above pH 7.5).  It was later discovered that the 

enzymatically active lifetime of the slides could be extended by TRIS blocking at pH 9 

while other steps were performed at pH 8. 

Because the slides were to be used with a porphyrin indicator, the interaction of 

the porphyrin to be used, monosulfonate tetraphenyl porphyrin (TPPS1), with the surfaces 

was investigated.  A series of slides was produced using TRIS, casein, or combination 

TRIS/casein blocking after completion of only a portion of the protocol (Protocol 2):  

complete slide, slide completed through step 6, slide completed through 4, slide 

completed through step 3.  TPPS1 (370 nM) was applied to the surface in 50 mM pH 7 

NaPi (50 % ethanol) and allowed to interact for 20 minutes.  The absorbance spectra of 

the sides indicated a very strong interaction of TPPS1 with casein.  The absorbance 

intensity for this interaction was much larger than that for the TPPS1-AChE interaction.  

For this reason, casein was eliminated as a possible blocking agent.  TRIS was used for 

all subsequent slide production since the interaction with TPPS1 is minimal. 

4.2.4  FINAL MODIFICATIONS 

 As described in Chapter 2, the interaction of a substrate with ligand depends on 

the concentration of both.  The implication for an enzyme based protocol is that a lower 

detection limit can be achieved with a greater enzyme density provided there are no 

factors such as overloading.  It was believed that by providing a greater number of 

activated amino groups on the surface of the slide it may be possible to achieve binding 

of a larger enzyme density.  To address this possibility, Protocol 2 was modified to 
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include the application of a second layer of PAMAM dendrimer to the slide surface 

(similar to Protocol 3 without steps 4 or 7, using concentrations from Protocol 2).  It was 

also noted that a more homogeneous immobilization could be achieved by placing 

samples on an orbital shaker during incubation and by using a 200 µl volume standing 

drop rather than 100 µl.   

 Slides produced using this protocol showed six greater enzymatic activity than 

those produced using Protocol 2 (Figure 4.5).  In addition, the TPPS1-AChE peak for the 

slides showed more than three times the absorbance intensity of slides produced from the 

previous protocols.  The addition of a third layer of PAMAM did not improve the 

intensity of the absorbance peak or the degree of enzymatic activity.  Storage stability 

studies indicated the need for TRIS blocking between and following the PAMAM steps.  

The effect of the concentrations of AChE, PAMAM, and GA were investigated and 

optimized to achieve Protocol 3.  This is the protocol used for immobilization of 

acetylcholinesterase, butyrylcholinesterase, glucose oxidase, organophosphorous 

hydrolase, and the lectins mentioned in later chapters.  Myoglobin was immobilized by 

the steps listed in Protocol 1 using concentrations in Protocol 3 (myoglobin concentration 

10 mg/ml). 

 

4.3  OTHER METHODS 

 Though the PAMAM protocol proved successful for many enzymes, carbonic 

anhydrase showed very low enzymatic activity (method of determination of enzymatic 

activity described in Chapter 8) when immobilized through Protocol 3.  Elimination of 

one of the PAMAM layers did not improve the activity of the surface.  Section 4.1 
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mentions that the covalent bond in an immobilization scheme should not be made to a 

residue involved in catalytic activity.  Catalysis in carbonic anhydrase (CA) relies on a 

threonine residue and a glutamic acid residue as well as histidine residues, so hydroxyl 

and carboxyl functional groups should not be used for immobilization, but binding to an 

amino group should not present any problem. 

 CA is much smaller than AChE having a molecular weight of about 26 kDa and 

an a surface area of 26,000 Å compared to 55 kDa and 51,000 Å.  Carbonic anhydrase 

has seven arginine residues and twenty three lysine residues while AChE has twenty four 

arginine residues and twenty-six lysine residues, so the two proteins have about the same 

number of amino groups per surface area.  Figures 4.6 and 4.7 show the distribution of 

the arginine and lysine residues for CA and AChE, respectively [445-446].  Though there 

is a slightly higher concentration of residues around the active site opening for CA, some 

enzymes should bind with their active sites accessible and others with the active site 

inaccessible.  This is likely similar to what happens in the case of AChE. 

 It is likely that the limited activity of CA when immobilized by the PAMAM 

protocol is due to its small size rather than the distribution of amino groups.  The large 

number of available binding sites on the surface could result in overloading of the surface 

and steric hindrance.  A modified protocol was used for immobilization of CA.  First CA 

was immobilized simply by activating the ProbeOn™ Plus slide surface as in step one of 

Protocol 3 and then applying carbonic anhydrase to the surface (0.3 mg/ml in 50 mM pH 

8 NaPi).  A slight increase in enzymatic activity was noted.  Steric hindrance was thought 

to be a possible problem, so a spacer was added to the surface (Protocol 4).  Arginine was 

added to the glutaraldehyde activate slide surface and the enzyme was bound to this 
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“tether” adding distance without increasing the number of functional groups.  This did 

not improve the enzymatic activity of the slides.   

 The arginine tether added a spacer with about eight bonds.  1,12 diaminododecane 

is a twelve carbon chain with a terminal amino group on each end (Figure 4.8).  Slides 

prepared using this tether showed activity slightly less than that of those prepared using 

the arginine tether.  The arginine tethered enzymes showed activity for only two weeks 

based on an assay of esterase activity using p-nitrophenol acetate.  LysLysLys was used 

to give a space of at least seven bonds and up to eighteen bonds from the surface 

(depending on the exact binding pattern).  Using LysLysLys doubled the activity of the 

slides as compared to the surface using an arginine tether.  The activity of the LysLysLys 

tethered enzymes dropped to 20% of the original activity within 2 months. 

 

4.4  IMMOBILIZATION PROTOCOLS 

Protocol 1 

1. React ProbeOn™ Plus surface with glutaraldehyde at 0.29 M (40 µl stock solution in 

100 µl 50 mM pH 8 NaPi) for 20 minutes.   

2. Rinse surface with PBS (25 mM sodium phosphate 2.5 M NaCl solution at pH 9) to 

terminate. 

3. React surface with AChE at 1 µM (100 µl 0.1 mg/ml in 100 µl 50 mM pH 8 NaPi) for 

2 hours.  Rinse with PBS to terminate. 

4. React surface with 2% BSA solution in 50 mM pH 7 NaPi or 1 M TRIS pH 9 (or 

other blocking agent, see text) for 1 hour.  Rinse excess away with deionized water. 
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Protocol 2 

1. React ProbeOn™ Plus surface with glutaraldehyde at 0.29 M (40 µl stock solution in 

100 µl 50 mM pH 8 NaPi) for 20 minutes.   

2. Rinse surface with PBS (25 mM sodium phosphate 2.5 M NaCl solution at pH 9) to 

terminate. 

3. React surface with PAMAM dendrimer generation 4 at 1.8 mM (2.5 µl stock solution 

in 100 µl 50 mM pH 8 NaPi) for 90 minutes.  Rinse with PBS to terminate. 

4. React surface with 2% BSA solution in 50 mM pH 7 NaPi or 1 M TRIS pH 9 (or 

other blocking agent, see text) for 1 hour.  Rinse with PBS to terminate. 

5. React surface with glutaraldehyde at 0.29 M for 20 minutes.  Rinse with PBS to 

terminate. 

6. React surface with AChE at 1 µM (100 µl 0.1 mg/ml in 100 µl 50 mM pH 8 NaPi) for 

2 hours.  Rinse with PBS to terminate. 

7. React surface with 2% BSA solution in 50 mM pH 7 NaPi or 1 M TRIS pH 9 (or 

other blocking agent, see text) for 1 hour.  Rinse excess away with deionized water. 

 

Protocol 3 

1. React ProbeOn™ Plus surface with glutaraldehyde at 0.17 M (40 µl stock solution in 

200 µl 50 mM pH 8 NaPi) for 25 minutes. 

2. Rinse surface with PBS (50 mM sodium phosphate 0.5 M NaCl solution at pH 7) to 

terminate. 

3. React surface with PAMAM dendrimer generation 4 at 6.4 mM (20 µl stock solution 

in 200 µl 50 mM pH 8 NaPi) for 90 minutes.  Rinse with PBS to terminate. 



    85

4. React surface with 1 M TRIS pH 9 for 20 minutes.  Rinse with PBS to terminate. 

5. React surface with glutaraldehyde at 0.17 M (40 µl stock solution in 200 µl 50 mM 

pH 8 NaPi) for 25 minutes.  Rinse with PBS to terminate. 

6. React surface with PAMAM dendrimer generation 4 at 6.4 mM (20 µl stock solution 

in 200 µl 50 mM pH 8 NaPi) for 90 minutes.  Rinse with PBS to terminate. 

7. React surface with 1 M TRIS pH 9 for 20 minutes.  Rinse with PBS to terminate. 

8. React surface with AChE at 200 nM (20 µl 0.1 mg/ml in 200 ml 50 mM pH 8 NaPi) 

for 90 minutes.  Rinse with PBS to terminate. 

8. React surface with 1 M TRIS pH 9 for 40 minutes.  Rinse excess away with 50 mM 

pH 7 NaPi. 

 

   

Protocol 4 

1. React ProbeOn™ Plus microscope slide surface with glutaraldehyde at 0.17 M (40 µl 

stock solution in 200 µl 50 mM pH 8 NaPi) for 25 minutes. 

2. Rinse surface with PBS (50 mM sodium phosphate 0.5 M NaCl solution at pH 7) to 

terminate. 

3. React surface with tether (in 200 µl 50 mM pH 8 NaPi) for 90 minutes.  Rinse with 

PBS to terminate.  [Tethers:  arginine at 900 µM, LysLysLys at 900 µM, and 1,12 

diaminododecane at 350 µM] 

4. React surface with 1 M TRIS pH 9 for 20 minutes.  Rinse with PBS to terminate. 

5. React surface with glutaraldehyde at 0.17 M (40 µl stock solution in 200 µl 50 mM 

pH 8 NaPi) for 25 minutes. 
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6. React surface with CA at 12 µM (30 µl 2 mg/ml in 200 ml 50 mM pH 8 NaPi) for 90 

minutes.  Rinse with PBS to terminate. 

7. React surface with 1 M TRIS pH 9 for 40 minutes.  Rinse excess away with 50 mM 

pH 7 NaPi. 

 

4.5  IMMOBILIZATION OF PORPHYRINS 

 Porphyrins can be immobilized in the same ways that proteins are: adsorption, 

entrapment, encapsulation, cross-linking, and covalent bonding.  Entrapment and 

encapsulation have the disadvantage that the proximity of the support and/or the other 

porphyrin molecules will distort the π-bond conformation of the porphyrin altering the 

absorbance and response characteristics of the indicator.  The other difficulty is the 

interference of the support with the measurement of absorbance or fluorescence 

characteristics of the porphyrins.  Some work using cross-linking of the porphyrins is 

directed being at the study of the effect on the spectra though it hasn’t yet been applied to 

detection technologies [379, 447-452].  The methods primarily used for immobilization 

of porphyrins are adsorption and covalent binding.  Porphyrins have been immobilized to 

a variety of surfaces including quartz, glass, cellulose, Sephadex, and polystyrene [453-

456].   

Adsorption is again the simplest and cheapest though the porphyrin surface may 

be dissociate from the support.  This method also distorts the absorbance/fluorescence 

characteristics and the characteristic response to analytes.  This alteration, reported by 

several groups [455], is a result of the proximity of the porphyrin to the support and the 

sensitivity of the porphyrin to its environment.  Several different porphyrins can be 
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immobilized to cellulose films and cellulose fibers by this method.  The interaction of 

each porphyrin with the surface is strong enough to tolerate pH changes across the range 

from pH 5.5 to 10.5, media with ionic strengths ranging from that of deionized water to 

that of 2.5 M NaCl, and solvents such as DMF and ethanol (up to 75%).  These 

immobilization protocols are given in section 4.6, Porphyrin Protocols 1 through 5.  The 

porphyrin structures used in the studies presented here are shown in Figure 4.9. 

The potential for modification of the substituent groups on the porphyrin makes 

the compounds ideal for formation covalently bound surfaces.  Three types of covalent 

bound surfaces were used during the projects described in the following chapters.  The 

Traut’s Reagent substituent in the 4 position of one phenyl ring of TPPT [meso-tetra (4-

carboxyphenyl) porphine monoethylene diamine coupled to Traut's reagent (2-

iminothiolane)] makes it possible to form a covalent bond to gold (Figure 4.9).  A gold 

evaporation technique was used to deposit gold onto the surface of standard microscope 

slides to varying degrees of reflectivity (provided by Dr. D. Peakheart, Physics 

Department, Oklahoma State University).  Bond formation was accomplished by 

incubating the gold surface with 500 nM TPPT (see Porphyrin Protocol 6). 

Covalent immobilization of TPPS-Si(OCH3)3  [meso tetra(4-sulfonatophenyl) 

porphyrin coupled to trimethoxysilane] to glass was accomplished similarly to the 

process for amino functionalization of glass (Figure 4.9).  The protocol used was a 

modification of several common protocols for covalent bonding of triethoxy or 

trimethoxy compounds to glass [438, 457-458].  Adjustments were made to 

accommodate the solubility of the porphyrin and to optimize the porphyrin density on the 

surface.  The protocol requires acidic conditions and uses a combination of methanol and 
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water to accommodate solubility and encourage dissociation of the methanol from the 

side chain (see Porphyrin Protocol 7). 

Covalent immobilization of NH2TPP [tetra(4-aminophenyl) porphyrin] to 

ProbeOn™ Plus microscope slides was accomplished in a manner similar to that of the 

myoglobin immobilization (Porphyrin Protocol 8).  The reactivity of the immobilized 

porphyrin to analytes was unexpectedly reduced when PAMAM layers were used.  Use 

of the PAMAM dendrimer would have made a higher porphyrin density possible but may 

have resulted in stacking effects or porphyrin-dendrimer interactions.  The binding of this 

porphyrin to the surface was not guaranteed to be via a single bond (Figure 4.9).  There 

could be up to four bonds between the porphyrin and the surface.  In order to maximize 

porphyrin density on the surface, that is, limit the number of bonds to each porphyrin to 

one or two, a very high concentration of porphyrin was used for the immobilization (2 

mM).   

Some work was also done on the cross-linking of NH2TPP both in solution and on 

the surface of the slide.  In solution, there were no visible absorbance characteristics to 

indicate that glutaraldehyde cross-linking had been achieved.  On the slide surface a 

repetition of steps 1 through 3 (Porphyrin Protocol 8) were used to create multiple layers 

of porphyrin.  After application of four layers of porphyrin to the surface, the 

fluorescence of the slide (excitation 380-500 nm, emission 550-800 nm) was completely 

quenched.  The absorbance intensity of the surface increased for each of the first three 

layers after which no further increase was noted for layers four through six.  

 

4.6  PORPHYRIN PROTOCOLS 
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Porphyrin Protocol 1:  TPPS on Cellulose Films 

1. Cut cellulose film (SPECTRA/POR® molecular porous membrane tubing; Spectrum 

Houston, TX) down one side and fold open (flatten).  Roll the film along the narrow 

direction to form a 2 inch cylinder (height).  Place this film into a test tube and allow 

the roll to become loose.  This allows space for the porphyrin solution between the 

cellulose layers. 

2. Soak cellulose film in a solution of 1 mM TPPS in water for a minimum of 8 hours        

at 4° C. 

3. Remove film from test tube, unroll, and lie flat to dry on clean surface (such as foil). 

4. When the film is dry, soak in large excess of 1 M NaCl preferably on the orbital 

shaker (for 18 inches of film this is at least 0.5 l NaCl) for a minimum of 4 hours. 

5. Remove film from salt solution and rinse with deionized water. 

6. Soak film in large excess of 50/50 ethanol/water solution for minimum of 0.5 hours. 

7. Rinse film with copious amounts of deionized water. 

8. Allow film to dry and store at room temperature.  Protect from dust and light. 

 

Porphyrin Protocol 2:  TPPT on Cellulose Films 

1. Cut cellulose film (SPECTRA/POR® molecular porous membrane tubing; Spectrum 

Houston, TX) down one side and fold open (flatten).  Roll the film along the narrow 

direction to form a 2 inch cylinder (height).  Place this film into a test tube and allow 

the roll to become loose.  This allows space for the porphyrin solution between the 

cellulose layers. 
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2. Soak cellulose film in a solution of 56 µM TPPT in 75% ethanol/H2O at room 

temperature for four hours. 

3. Remove film from porphyrin solution and soak in excess 1M NaCl overnight in the 

dark. 

4. Soak in 50% ethanol/water solution for 0.5 hours. 

5. Rinse with deionized water. 

6.  Allow to dry.  Store at room temperature.  Protect from light and dust. 

 

Porphyrin Protocol 3:  TPPS1 on Cellulose Fibers 

1. Fold cellulose tissue (Kimwipes® EX-L, Fisher Scientific, Pittsburgh, PA) 

lengthwise and roll along the narrow direction to form a 2 inch cylinder (height).  

Place this tissue into a test tube and allow the roll to become loose.  This allows space 

for the porphyrin solution between the cellulose layers. 

2. Soak tissue in 1 mM TPPS1 in N,N-dimethylformamide (DMF) for a minimum of 4 

hours at 4° C. 

3. Remove from tube and lie flat to dry. 

4. When the tissue is dry, soak in large excess of 1 M NaCl preferably on the orbital 

shaker (at least 250 ml NaCl for one tissue) for a minimum of 4 hours. 

5. Remove tissue from salt solution and rinse with deionized water. 

6. Soak tissue in large excess of 50/50 ethanol/water solution for minimum of 0.5 hours. 

7. Rinse tissue with copious amounts of deionized water. 

8. Allow tissue to dry and store at room temperature.  Protect from dust and light. 
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Porphyrin Protocol 4:  NH2TPP on Cellulose Fibers 

As described for Porphyrin Protocol 3 with the exception that the porphyrin solution is 1 

mM NH2TPP in ethanol. 

 

Porphyrin Protocol 5:  TPPB on Cellulose Fibers 

As described for Porphyrin Protocol 3 with the exception that the porphyrin solution is 1 

mM TPPB in H2O with NaOH at pH 10. 

 

Porphyrin Protocol 6:  TPPT on Gold Surface 

1. Apply 200 µl 500 nM TPPT in 75% ethanol/H2O to gold surface.  Spread evenly. 

2. Allow interaction for 2 hours before washing surface with copious amounts of 

deionized water.   

3. Rinse surface with excess 1 M NaCl. 

4. Rinse surface with excess 50/50% ethanol/water. 

5. Allow surface to dry.  Protect from dust and light.  Store at room temperature. 

 

Porphyrin Protocol 7:  TPPS-Si(OCH3)3 on Glass 

This protocol can be used for immobilization onto glass slides or other glass surfaces 

such as test tubes and fiber glass wool. 

1. Prepare surface by soaking in nitric acid for 20 minutes.  Rinse with deionized water 

repeatedly and allow to dry. 

2. Using 1 N HCl, 0.87 mM (1 mg/ml) TPPS-Si(OCH3)3 in water, and acetone free 

methanol, mix directly onto surface in the following ratio:  4 parts porphyrin, 3 parts 
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methanol, and 1 part HCl.  (For example on a glass slide mix 200 µl porphyrin, 150 

µl methanol, and 50 µl HCl.)  Distribute evenly over surface. 

3. Place in oven or on hot plate at approximately 50 to 70° C for 6 hours or overnight. 

4. Soak in large excess of 1 M NaCl preferably on the orbital shaker for a minimum of 2 

hours. 

5. Remove surface from salt solution and rinse with deionized water. 

6. Soak surface in excess of 50/50 ethanol/water solution for minimum of 0.5 hours. 

7. Rinse surface with copious amounts of deionized water. 

8. Allow tissue to dry and store at room temperature.  Protect from dust and light. 

 

Porphyrin Protocol 8:  NH2TPP on Amino-Silicate Glass 

This protocol can also be used for the immobilization of TPPS3-(CH2)10NH2. 

1. React ProbeOn™ Plus microscope slide surface with glutaraldehyde at 0.17 M (40 µl 

stock solution in 200 µl 50 mM pH 8 NaPi) for 25 minutes. 

2. Rinse surface with PBS (50 mM sodium phosphate 0.5 M NaCl solution at pH 7) to 

terminate reaction. 

3. React surface with 200 µl porphyrin for 90 minutes.  Rinse with PBS to terminate.  

[Porphyrins:  2 mM NH2TPP in DMF or 0.8 mM (1 mg/ml) TPPS3-(CH2)10NH2 in pH 

8 50 mM NaPi] 

4. Rinse surface with 50/50% ethanol/water several times followed by rinsing with 

water. 

5. Allow surface to dry and store at room temperature.  Protect from dust and light. 
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   IMMOBILIZATION CONSIDERATIONS 
 

 
PROPERTY POINTS FOR CONSIDERATION 

Physical Strength, surface area, form (sheets, fibers, etc), 
permeability, density  

Chemical Hydrophobicity, inertness, density of functional groups, 
regenerability 

Stability Storage, maintenance of enzyme activity, regeneration of 
enzyme activity, stability of support material 

Resistance Bacteria/fungal, chemical, pH, temperature, organic solvents, 
proteases 

Safety 
Biocompatibility, toxicity of reagents, health issues for 
process workers and end users, special considerations for use 
with food, pharmaceuticals, and medical applications 

Economic 
Availability and cost of support and reagents, degree of skill 
required, feasibility for scale up, environmental impact, 
effective working life, reusablility 

Reaction Enzyme loading, catalytic productivity, reaction kinetics, 
side reactions, multiple protein systems, diffusion limits 

 

 

 

 

 

 

 

 

TABLE 4.1     Desirable properties and points for consideration when choosing an 

immobilization support and method [424]. 
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   PROPERTIES TO BE CONSIDERED 
 

 
METHOD ADVANTAGES/DISAVANTAGES 

Little damage to proteins; simple, cheap, and quick; no 
chemical changes to support or protein; reversible allowing 
regeneration Adsorption Leakage of protein from support; nonspecific binding; 
overloading of support; steric hindrance by support;  
coimmobilization may be difficult or impossible 
Little damage to proteins; simple, cheap, and quick; no 
chemical changes to support or protein; no leakage of 
protein; easily controlled loading; no toxic reagents; 
simplified coimmobilization Encapsulation 

Membranes subject to rupture; requires stable proteins; not 
reversible; mass transfer issues 
No chemical changes to proteins; no leakage of protein 

Entrapment Requires stable proteins, often involves toxic cross-linking 
agents, not reversible, steric hindrance by support; mass 
transfer issues; coimmobilization is difficult 
No protein leakage; no mass transfer issues; 
coimmobilization easily achievable; increased stability  Cross-linking Toxic cross-linking reagents; steric hindrance; chemical 
changes to proteins   
No protein leakage; no mass transfer issues; 
coimmobilization possible; easily controlled loading; 
increased stability Covalent Binding 

Chemical changes to proteins; may or may not be reversible;  
 

 

 

 

TABLE 4.2     Comparison of different immobilization strategies.  Advantages versus 

disadvantages [1, 424]. 
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TYPES OF IMMOBILIZATION  
 
 

 
 

 

 

 

 

FIGURE 4.1 Schematic representations of the different types of immobilization [424]. 
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IMMOBILIZATION ONTO AMINO-FUNCTIONALIZED GLASS  
 
 
 

 

 

 

FIGURE 4.2 The steps involved in immobilization onto amino-silicate glass via 

glutaraldehyde linkage [437, 442].  
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PAMAM DENDRIMER  
 
 
 

 

 

 

 

 

 

 

 

FIGURE 4.3 PAMAM dendrimer generation 2.  Generation 4 has twice the number of 

functional groups and twice the molecular weight.  
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PAMAM DENDRIMER IMMOBILIZATION 

 
 

FIGURE 4.4 Amino-silicate glass slide with PAMAM dendrimer Generation 4 bound 

through glutaraldehyde activation.  Unreacted sites on glass are blocked 

with TRIS. 

TRIS 
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PAMAM DENDRIMER IMMOBILIZATION 
 
 

 
 

 

 

FIGURE 4.5 Amino-silicate glass slide with PAMAM dendrimer Generation 4 and 

AChE bound through glutaraldehyde activation.  Unreacted sites are 

blocked with TRIS.  Porphyrin is added as the final immobilization step.  

Approximate molecule diameters are given in angstroms (Å). 
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CARBONIC ANHYDRASE 
 
 

 

 

FIGURE 4.6 Arginine and lysine residues in carbonic anhydrase.  View A looks into 

the active site showing the zinc atom (*).  View B is a 90° rotation of 

View A around the z-axis.  View C is a 90° rotation of View B around the 

z-axis.  View D is a 90° rotation of C around the z-axis.  Lysine = white, 

arginine = pink, active site residues shown in blue [445]. 

*

A 

C 

B 

D 
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ACETYLCHOLINESTERASE 
 

 
 

 

FIGURE 4.7 Arginine and lysine residues in acetylcholinesterase.  View A looks into 

the active site.  View B is a 90° rotation of View A around the z-axis.  

View C is a 90° rotation of View B around the z-axis.  View D is a 90° 

rotation of C around the z-axis.  Lysine = white, arginine = pink, active 

site residues shown in blue [446].   

A 

C 

B 

D 
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OTHER IMMOBILIZATIONS 
 

 
 

FIGURE 4.8 Amino-silicate glass slide with activated lysine or 1,12 diaminododecane 

bound through glutaraldehyde activation.  Unreacted sites on the glass 

surface are blocked with TRIS. 
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PORPHYRIN STRUCTURES  

 
FIGURE 4.9 Molecular structures of several porphyrins mentioned in the text.  TPPS1 = 

monsulfonate tetraphenyl porphyrin, TPPS4 = meso tetra(4-

sulfonatophenyl)porphyrin, CTPP1 = meso-tri(4-sulfonato phenyl) 

mono(4-carboxy phenyl) porphyrin, CTPP4 = meso-tetra(4-

carboxyphenyl)porphine, NH2TPP = tetra(4-aminophenyl) porphyrin, 

TPPB = meso-tetra(4-boronic acid) porphyrin, TPPT = meso-tetra (4-

carboxyphenyl) porphine monoethylene diamine coupled to Traut's 

reagent (2-iminothiolane), TPPS-Si(OCH3)3  = meso tetra(4-

sulfonatophenyl)porphyrin coupled to trimethoxysilane, and TPPS3-

(CH2)10NH2 = meso-tri(4-sulfonatophenyl) mono(4-carboxyphenyl) 

porphyrin coupled to 1,10 diamino decane. 
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CHAPTER 5 

ACETYLCHOLINESTERASE 

 

5.1 THE TARGET 

The enzyme acetylcholinesterase (AChE, E.C. 3.1.1.7) terminates impulse 

transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine to 

acetate and choline.  Organophosphorous pesticides and nerve agents inhibit the activity 

of AChE resulting in constant impulse transmission and inducing symptoms ranging from 

increased salivation and headache to convulsion and suppressed breathing which can 

result in death [459].  First responders, military personnel, and other persons at risk for 

exposure to these compounds need an indicator that operates in real time and is reliable, 

cost effective, compact, portable, and sensitive.   

Present sensors of nerve agents that inhibit acetylcholinesterase are based 

primarily upon comparison of catalytic rates of acetylcholinesterase, other 

cholinesterases, or OPH at a given time to a baseline, background, or pre-exposure level 

[9, 12, 425-427, 429, 440-441, 460-477].  The measurement of catalytic rates may 

involve multiple steps including the addition or changing of one or more reagent 

solutions, a somewhat undesirable operating characteristic. 

Sensors can be broadly classified into two groups: detectors of specific agents 

(e.g., VX) [4, 12, 466, 478-480] and detectors of AChE inhibitors in general [12, 425-

427, 429, 466-467, 465, 472, 481-482].  There is a need for both types of sensor.  The 

central core technology of any sensor/detector is a system that transduces the presence of 
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the chemical into an optical, electronic, or other signal that can be processed either by eye 

or electronic circuitry. 

The presence of individual organic molecules strongly affects the 

spectrophotometric characteristics of porphyrins [264, 283-284].  Amino acids and small 

peptides [376, 400] alter the absorbance spectra of porphyrins, each molecule resulting in 

unique spectral characteristics.  Porphyrin-protein interactions also alter the spectra as 

shown by the interaction with serum albumin [385, 483-484] and other proteins [485].  In 

addition, porphyrins are enzyme inhibitors that have been shown to inhibit AChE activity 

[388-389].  They have been studied in this capacity as photoactivated insecticides [486] 

and for use in treating Alzheimer’s disease and myasthenia gravis [487-488].  Porphyrins 

have been shown to inhibit telomerase and Hepatitis C virus serine protease [383] while 

metalloporphyrins have been shown to be potent inhibitors of human immunodeficiency 

virus (HIV) type 1 and 2 reverse transcriptases [387].  Porphyrins have also been shown 

to bind to DNA [401, 403] and are used in photodynamic therapy [489]. 

 The following chapter outlines the development of a detection protocol for 

inhibitors of acetylcholinesterase based on reversible, competitive inhibition of the 

enzyme by a porphyrin which functions as a colorimetric indicator. 

 

5.2  MATERIALS AND METHODS 

Acetylcholinesterase (AChE, type V-S from electric eel), tetracaine HCl, procaine 

HCl, acetylcholine iodide (AChI), dithio-bis-nitrobenzoic acid (DTNB), glutaraldehyde, 

eserine salicylate salt (eserine), galanthamine hydrobromide, scopolamine hydrobromide, 

Triton X-100, and acetylthiocholine (ATC) were obtained from Sigma (St. Louis, MO).  
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Amino-terminated Starburst® (PAMAM) dendrimer (generation 4) was obtained from 

Aldrich (Milwaukee, WI).  Monosulfonate tetraphenyl porphine (TPPS1) was obtained 

from Frontier Scientific (Logan, UT) and used without further purification.  ProbeOn™ 

Plus microscope slides were obtained from Fisher Biotech (Pittsburgh, PA.).  Diazinon 

samples were obtained by stirring 2 g/L Ortho diazinon granules (Chevron Chemical 

Company, San Ramon, CA) in water for six hours followed by filtering of insoluble 

particles.  This solution was then considered to be 40 ppm based on the concentrations 

specified on the granule label. 

The activity of AChE was measured spectrophotometrically in 3 mL of 100 mM 

pH 8 phosphate buffer maintained at 25C according to the method of Ellman [447] with 

slight modifications:  (1) reaction rates were measured using a Gilford single beam 

spectrophotometer and (2) AChE was dissolved in 100 mM pH 7 phosphate buffer 

instead of gelatin and water.  To minimize contributions from the absorption of TPPS1 

(λmax = 405 nm), reaction rates were measured at 435 nm instead of 412 nm.  The 

absorbance of the yellow anion of 5-thio-2-nitro-benzoic acid, the reaction product, at 

435 nm is 76% of that at 412nm.  Although the absorbance of TPPS1 at 435 nm is 50% 

that at 412 nm, TPPS1 absorbance is constant during the assays (being displaced by the 

substrate); the 435 nm absorbance due to 120 nM TPPS1 is 0.043 A while the absorbance 

change of the assay mix is 0.043A.  Linear fitting for Figure 5.6 was preformed using 

PSI-Plot (V 6.0a) at a 99% confidence interval.  Percent inhibition vs. concentration plots 

were generated for each inhibitor by addition of x mL of inhibitor in 100 mM pH 8 NaPi 

to 3-x mL buffer.  Measurements were repeated in triplicate. 
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Absorbance spectra in solution of TPPS1 in the presence/absence of AChE, 

tetracaine, procaine, and AChI were recorded in 5 mM pH 8 sodium phosphate 

(Sorenson) buffer with a Cary 4E spectrophotometer at 0.02 nm resolution.  Difference 

spectra were obtained by subtraction of absolute spectra using Grams/32 (Galactic 

Industries, Salem, NH).  PeakFit version 4 (SPSS Science, Chicago, IL) was used for 

analysis of peak positions.  Final reagent concentrations are given in the text and figure 

captions.  

Acetylcholinesterase was immobilized on ProbeOn™ Plus microscope slides by 

the PAMAM protocol described in Chapter 4.  Briefly, microscope slides were activated 

glutaraldehyde followed by reaction with PAMAM generation 4 and TRIS blocking.  At 

this point in the procedure two options were tested.  For the first option, the slide is 

activated with glutaraldehyde and to interact with AChE followed by TRIS blocking.  For 

the second option, the slide is activated with glutaraldehyde followed by interaction with 

a second layer of PAMAM and TRIS blocking.  The slide is again activated with 

glutaraldehyde and to interact with AChE followed by TRIS blocking.  After the final 

blocking in both options, 740 µM TPPS1 was allowed to react with the enzyme surface 

and the non-bound excess removed by washing with 50 mM pH 7 sodium phosphate 

buffer.  The technique involving the use of two Starburst layers provides a greater 

number of immobilized enzymes.  This allows for a higher ratio of TPPS1 bound in the 

active site versus TPPS1 bound to the other compounds or sites on the slide surface.  The 

improved ratio results an increased absorbance for interaction peak between TPPS1 and 

AChE. 
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Reaction of the immobilized enzyme with other chemicals including TPPS1 is 

accomplished by placing 200 µl of the reagent in solution on the surface of the slide for 

the 3 minutes.  The solution is then blotted off the surface using a Kimwipe®.  In the 

case of TPPS1 the reaction time allowed was 30 minutes.  The interaction time for other 

reagents was varied from 6 seconds to 15 minutes.  While no further changes were 

observed after the six second exposure, 3 minute exposure time was used to assure 

completion of the reaction. 

Absorbance spectra of the slides were collected using a dual wavelength 

spectrophotometer (SDB - 3 Johnson Research Foundation, University of Pennsylvania, 

Philadelphia, PA) at 0.125 nm intervals (Figures 5.9 and 5.10).  The output light of the 

spectrophotometer was focused onto the round end of a 1/8” optical fiber bundle that 

terminates in a linear array (circular to linear bundle; Dolan-Jenner).  The microscope 

slide (n = 1.5151) is butted against the linear array such that the light enters the plane of 

the glass.  On the opposite side of the slide (1” distance), the slide butts against another 

linear to circular bundle to gather the light transmitted through and evanescently along 

the slide surface [490-492].  The circular end of the bundle is then placed for maximal 

illumination of the R928 photomultiplier of the SDB-3 unit (Figure 5.1).  Alternatively, 

absorbance spectra of IES before and after exposure to inhibitors were collected using an 

Ocean Optics USB-2000 spectrometer [392] with the output of a LED of maximum 

wavelength at 434 nm and 83 nm HBW as a light source.   

An enzyme that is not catalytically active may or may not bind inhibitors in the 

same way as a catalytically active enzyme, therefore the enzymatic activity of the 

immobilized AChE surfaces was monitored as an indication of viability.  For 
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determination of enzymatic activity of enzyme immobilized on slide surfaces, 240 µL of 

50 mM pH 7 sodium phosphate buffer (NaPi) containing 0.83 mM DTNB and 0.83 mM 

ATC were placed on the immobilized AChE surface.  After ten minutes, the solution was 

removed to a 1 mL cuvette containing 800 µL of 50 mM pH 7 NaPi buffer.  The 

absorbance spectrum was collected with a Cary 4E spectrophotometer at 0.02 nm 

resolution.  The absorbance of the samples at 412 nm was corrected for spontaneous 

acetylcholine hydrolysis.  Just after immobilization an AChE surface typically gives an 

absorbance intensity at 412 nm of about 2.0 A.  As the slide ages, some enzymatic 

activity is lost and as a result the absorbance intensity will be less than that of a fresh 

slide.  An absorbance intensity of 0.25 A or less indicates less active enzyme present on 

the surface than is necessary for application to the techniques used here for detection of 

inhibitors of AChE.         

Five different storage methods were investigated to achieve maximum responsive 

lifetime for the immobilized AChE surface:  1) ambient room conditions; 2) dry at 4°C; 

3) 1 M TRIS buffer pH 9 at 4°C; 4) 1 M TRIS buffer pH 6 at 4°C; and 5) under vacuum 

at room temperature.  Three storage conditions were also investigated for slides following 

exposure to TPPS1:  1) ambient room conditions; 2) dry at 4°C; and 3) under vacuum at 

room temperature.  Slides stored prior to exposure to TPPS1 were tested for AChE 

activity using the adapted Ellman method described above.  The lifetime of slides stored 

following exposure to TPPS1 was determined based on the change in the absorbance 

spectrum upon exposure to 0.50 ppm tetracaine. 

 

5.3  RESULTS 
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5.3.1  SPECTROPHOTOMETRIC CHANGES  

The absorbance spectrum of monosulfonate tetraphenyl porphyrin (TPPS1) is 

shown in Figure 5.2 (Trace 1).  Upon addition of AChE, the spectrum shows a shift to 

longer wavelengths (Figure 5.2, Trace 2) which is more clearly observed in the TPPS1 + 

AChE minus TPPS1 difference spectrum (Figure 5.2, Trace 3).  The difference spectrum, 

which shows the changes in the TPPS1 absorbance due to enzyme binding, displays a 

new absorption peak at 442 nm resulting from the TPPS1-AChE complex and a trough at 

402 nm resulting from a decrease in the amount of unbound TPPS1.  This spectral shift is 

independent of pH (7 to 11) and independent of salt concentration (2 mM to 100 mM).  

The intensity of the peak at 442 nm resulting from the TPPS1-AChE interaction is 

dependent on AChE concentration as shown in Figure 5.2.  The absorbance of the 442 

nm peak increases with increasing AChE concentration.  The Benesi-Hilderbrand plot of 

this data is linear with a slope of 0.97 µM/A and a y-intercept of 21.5 A-1.  The extinction 

coefficient of TPPS1 is 50 A/mM and the total porphyrin concentration used was 730 nM.  

Fitting of the data using 1:1 and 2:1 (P:E) stoichiometric ratios was attempted, but neither 

fit matched the data (refer to Chapter 2).  The interaction between porphyrin and enzyme 

is likely not limited to independent binding.    

The fluorescence spectra resulting from excitation of TPPS1 alone (50 mM pH 7 

NaPi) from 375 nm to 450 nm with emission measured from 600 nm to 750 nm are 

shown in Figure 5.3.  The peak fluorescence intensity occurs at 652 nm attaining a 

maximum when excited at 406 nm.  In addition, a fluorescence band is observed in the 

region between 690 and 740 nm with maximum intensity achieved also at 406 nm 
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excitation.  The peak emission intensity of this region is at 712 nm.  These peaks may be 

more prominent when viewed as a contour plot (Figure 5.3). 

 Acetylcholinesterase does not itself exhibit fluorescence when excited from 375 

nm to 450 nm (data not shown).  The half-band width for the TPPS1 fluorescence peak at 

652 nm is 20 nm, while for the TPPS1-AChE complex it is 18 nm (Figure 5.3).  The 

TPPS1-enzyme complex shows a shift in maximum emission (712 nm to 716 nm) and 

excitation wavelengths (406 nm to 413 nm) in the fluorescence bands in the region from 

690 nm to 740 nm.    

Figure 5.4 shows the fluorescence intensity for TPPS1 alone (Figure 5.4) and in 

the presence of AChE (Figure 5.4) at 652 nm emission for all excitation wavelengths 

with the results of peak fitting.  While addition of AChE does not affect the emission 

wavelength of TPPS1, a shift is observed in the maximum intensity excitation wavelength 

from 407 nm to 412 nm (Figure 5.4) as seen by the new shifted position of the major 

band in the peak fitting results.  The band in the region between 690 nm and 740 nm 

displays shifts in both peak emission and excitation wavelengths.  The peak emission 

intensity of these bands is shifted from 712 nm to 716 nm  (Figure 5.3).  The excitation 

wavelength at which maximum intensity occurs shifts from 406 nm to 413 nm as 

evidenced by the fitted curves in Figure 5.3.  The band constituting more than 85% of the 

total curve has a peak intensity which is shifted from 406 nm to 413 nm upon addition of 

AChE.  

 

5.3.2  INHIBITION OF ACHE ACTIVITY       
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The Lineweaver-Burk plot of AChE activity at different substrate concentrations 

in the absence and presence of 470 nM TPPS1 is shown in Figure 5.6.  The linear plots 

intersect on the Y-axis. The intersection of the lines on the Y-axis indicates that TPPS1 is 

a competitive inhibitor of AChE (Chapter 2).  The Km values for ATC are 87 and 141 µM 

in the absence and presence of 470 nM TPPS1 respectively.  These findings are consistent 

with the findings of Lee and co-workers [388-389], who suggest that porphyrins inhibit 

enzymes in either a mixed or a competitive manner.  That the value of Vmax is not 

changed and the Km value for ATC increases in the presence of inhibitor are classical 

indicators that TPPS1 is a competitive inhibitor.  If TPPS1 were a mixed inhibitor, both 

Km and Vmax values would be effected.  The Ki for TPPS1 is 760 nM as determined by Km 

versus [TPPS1] (data not shown), however, this is not necessarily the concentration which 

yields 50% inhibition [267].  At very high substrate concentration, the active site is 

occupied more frequently by substrate resulting in a change in Km but the Vmax at 

infinitely high substrate concentrations is not changed.  As we shall see, substrate not 

only competes for the active site but dislodges TPPS1 from the active site.  The 50% 

inhibition of AChE by TPPS1 occurs at 650 nM TPPS1 (data not shown).   

 

5.3.3  EFFECT OF SUBSTRATE/INHIBITOR 

The difference spectrum TPPS1 + AChE + AChI minus TPPS1, resulting from 

addition of AChI and AChE to TPPS1, shows the combined effect of substrate and 

enzyme on TPPS1 (Figure 5.7, Trace 1).  The difference spectrum displays a peak at 447 

nm and trough at 402 nm.  The TPPS1 + AChE + AChI minus TPPS1 + AChE difference 

spectrum (Figure 5.7, Trace 2), which shows the change in the TPPS1 bound to AChE 
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due to the addition of the substrate, displays a narrowed peak at 447 nm and a trough at 

402 nm.  The peak at 442 nm is characteristic of TPPS1 bound to AChE.  A peak at 447 

nm is characteristic of TPPS1 bound to AChI (Table 5.1).  The lack of an absorbance 

peak at 442 nm after addition of substrate to the TPPS1-AChE complex indicates total 

dissociation of the complex with formation of an AChI-TPPS1 complex.    

Figure 5.7 (Trace 3) reiterates this point.  When we subtract Trace 2 of Figure 5.7 

from Trace 1 of Figure 5.7, the resulting spectrum (Figure 5.7, Trace 3) shows the same 

spectral characteristics as TPPS1 + AChE minus TPPS1 (Figure 5.2, Trace 3).  Since 

Figure 5.7 (Trace 1) is the effect of substrate and enzyme on TPPS1 and Figure 5.7 (Trace 

3) is the change in the TPPS1 by the enzyme, the difference in the TPPS1 is likely 

attributable to the dissociation of the TPPS1-enzyme complex.  Thus, the presence of the 

447 nm peak and 442 nm trough (seen as a shoulder on the 402 nm trough) in the TPPS1 

+ AChE + AChI minus TPPS1 + AChE difference spectrum are due to the changes in the 

TPPS1 spectrum resulting from formation of TPPS1-AChI complex as well as 

dissociation of the TPPS1-enzyme complex.  The narrowed 447 nm peak in the TPPS1 + 

AChE + AChI minus TPPS1 + AChE difference spectrum is due to the loss of the 442 nm 

band.  As AChI displaces TPPS1 from the active site, the 442 nm band due to TPPS1 

binding AChE decreases in intensity.  Consistent with TPPS1 being a competitive 

inhibitor, TPPS1 is displaced at the active site by substrate.  

Tetracaine has been shown to be a competitive inhibitor of AChE [493-494] while 

procaine has not, suggesting that tetracaine binds to the active site while procaine binds 

elsewhere, likely at the peripheral site located adjacent to the active site [493].  In the 

presence of tetracaine, the TPPS1 + AChE + tetracaine minus TPPS1 difference spectrum 
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(Figure 5.8, Trace 1) displays a trough at 402 nm and peak at 445 nm.  The loss of the 

porphyrin-enzyme complex, represented by an absorbance band at 442 nm, is consistent 

with tetracaine displacing the TPPS1 from the enzyme active site.  

By comparison, the loss of the 442 nm peak is not observed when procaine (even 

at 2.0 mM, 550 ppm) is used in place of tetracaine (Figure 5.8, Trace 2).  The TPPS1 + 

AChE + procaine minus TPPS1 difference spectrum shows peaks at 442 nm and 429 nm 

and a trough at 402 nm. The interaction between TPPS1 and AChE is still present (442 

nm band) and we observe an interaction between TPPS1 and the procaine represented by 

the absorbance peak at 429 nm (Table 5.1).  The binding of an inhibitor at a site other 

than the active site, therefore, does not effect the TPPS1-enzyme interaction strongly 

enough to change the 442 nm absorbance characteristic.  

The absorbance spectrum of a typical AChE immobilized slide treated with 

TPPS1 is shown in Figure 5.9 (Trace 1); addition of acetylcholine iodide results in the 

spectrum shown in Figure 5.9 (Trace 2).  Figure 5.9 (Trace 3), the difference in the 

spectra of TPPS1 bound to immobilized AChE in the presence and absence of substrate, 

shows an absorbance peak centered at 446 nm.  The peak at 446 nm represents the TPPS1 

interaction with the immobilized enzyme.  The peak at 446 nm is not observed when 

TPPS1 is added to a slide which has been through the immobilization procedure skipping 

the step involving exposure to AChE (data not shown), while the 429 nm peak is 

observed.  Further, the spectral changes observed upon exposing the AChE-TPPS1 slide 

to AChI are only at 446 nm (Figure 2, Trace 3).  Thus we see a decrease only in the 446 

nm band when TPPS1 is removed from the active site of AChE by AChI.  The TPPS1 

bound to other components of the slide surface is not affected; therefore, the 429 nm band 
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is not affected.  The absence of a new absorbance band or an increase in the 429 nm band 

also indicates that TPPS1 removed from the active site is washed off the slide surface. 

As described previously [391], the addition of tetracaine to the TPPS1-AChE 

complex in solution results in the remove of the TPPS1 from the active site which is 

observed as a spectral change where the characteristic peak of AChE-TPPS1 interaction 

(442 nm in solution compared to 446 nm with immobilized AChE) decreases in intensity.  

Similar experiments were preformed with immobilized enzyme slides (IES).  Addition of 

tetracaine, a competitive inhibitor of AChE, as observed in solution, displaces TPPS1 

from the active site, resulting in a decrease in absorbance at 446 nm (the wavelength of 

the immobilized TPPS1-AChE complex).  As seen in Figure 5.10, a decrease in 

absorbance at 446 nm is seen in the presence of 3ppb (10 nM) tetracaine, in both the 

absolute (Trace 2) and the difference spectrum (Trace 3). 

   

5.3.4  INHIBITOR RESPONSE. 

 The detection of competitive inhibitors of AChE is accomplished by subtraction 

of the pre-exposure absorbance spectrum of the IES from the post-exposure absorbance 

spectrum IES following exposure to the inhibitor (IES + inhibitor minus IES).  The 

absorbance intensity of the porphyrin-enzyme interaction peak at 446 nm is reduced upon 

exposure of the IES to a competitive inhibitor of AChE.  The IES was tested for detection 

of the competitive inhibitors of AChE eserine [495], galanthamine [496], tetracaine 

[494], scopolamine, diazinon [497], and Triton X-100 [498].  For each of the inhibitors 

tested, the loss of 446 nm absorbance intensity is linearly dependent on the log of the 
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inhibitor concentration with a rate change occurring when the absorbance change reaches 

0.002 A. (Figure 5.11).   

The enzymatic activity in solution in the presence/absence of varying 

concentrations of inhibitors was measured by the Ellman method and the percent 

inhibition of AChE versus the inhibitor concentration was plotted (Figure 5.12).  Linear 

fitting of this data was used to determine the concentration required to achieve 50% 

inhibition (IC50) of the enzyme (Table 5.2).   

The change in absorbance at 446 nm of the IES upon exposure to 50 ppb of each 

inhibitor is linearly dependent on the IC50 of the inhibitor in question as shown in Figure 

5.13.  The lower the concentration required to achieve 50% inhibition of AChE the 

greater the change in absorbance of the IES upon exposure to the inhibitor.  This stands 

to reason as the percent inhibition will be less at fixed inhibitor concentration for higher 

IC50, so the competitive inhibition test accurately reflects the binding affinity of the 

inhibitors and the displacement of TPPS1. 

5.3.5  LIFETIME EXPERIMENTS 

 Figure 5.12 shows the absorbance at 412 nm after reaction with ATC and DTNB 

for a group of slides stored under vacuum prior to TPPS1 exposure.  After 73 days the 

slides display 80% of the original enzymatic activity.  Enzyme surfaces yielding greater 

than 0.25 A change at 412 nm for the Ellman assay respond as expected to tetracaine 

challenge (Table 5.3).  Immobilized AChE surfaces yielding an absorbance change at 412 

nm of less than 0.25 A for the Ellman assay responded to tetracaine challenge with a 

reduced absorbance change as compared to those shown in Table 5.3. 
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 Slides stored at room temperature with no special consideration show no change 

in Ellman absorbance (Figure 5.12) or tetracaine response over a period of 49 days.   

After 81 days of storage in pH 9 TRIS at 4°C, slides show 65% of original Ellman 

activity and response to tetracaine challenge is unchanged.  Slides stored at 4°C 

(atmospheric pressure, uncontrolled humidity) prior to TPPS1 exposure maintained 75% 

of enzymatic activity after 25 days and bound 50% less TPPS1 than slides stored under 

vacuum.  These slides did not respond to tetracaine challenge after 12 days of storage.  

Slides stored at 4°C in pH 6 TRIS retained less than 40% of original Ellman activity after 

16 days.    

 Slides bound with TPPS1 stored at 4°C both with and without pH 9 TRIS as well 

as slides stored under ambient conditions showed rapid decline in response to tetracaine 

challenge beginning after six days, and no response was observed after 10 days.    

However, when stored under vacuum, the slides show consistent response to tetracaine 

challenge for more than 47 days (Figure 5.14). 

 

5.4  DISCUSSION 

TPPS1 is found to be an effective reversible competitive inhibitor of AChE.  

Specific spectral changes at 402 nm and 442 nm occur in the TPPS1 absorbance spectrum 

when the porphyrin binds to AChE in solution.  The spectrum of the TPPS1-AChE 

complex in the 442 nm region is altered by addition of compounds which bind at the 

active site of AChE, such as AChI and tetracaine, but not those which bind elsewhere (eg, 

procaine). 
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The immobilized sensor surface just described relies on the specificity of 

interaction of a competitive inhibitor of AChE, i.e. one that, like the nerve gasses and 

other inhibitors including pharmaceuticals, binds the active site.  The covalently-

immobilized AChE surface contains a porphyrin which we have shown [391] binds at the 

active site as a competitive inhibitor.  The porphyrin exhibits a specific absorbance band 

at 446 nm when bound to the immobilized enzyme.  As we have shown, a displacement 

of the porphyrin from the active site by another competitive inhibitor (e.g. tetracaine) 

results in a decrease in absorbance at 446 nm.  This decrease in 446 nm absorbance is not 

observed when the non-competitive AChE inhibitor procaine is present.  We expect that 

the 446 nm absorbance decrease will be observed in the presence of CW agents such as 

VX, Sarin, Soman, and Tabun or organophosphates that also bind specifically at the 

active site [459].  In this aspect, the surface will respond only to those inhibitors that bind 

the active site of AChE.  As such, it is a broad spectrum sensor.  Since the AChE surface 

contains a bound porphyrin (or other colorimetric compounds whose absorbance, 

fluorescence, or other spectrophotometric properties change upon association/dissociation 

with the inhibitor binding site) reagent-containing solutions need not be used, simplifying 

the size and complexity of actual operation.  Only sample need be applied. 

Detection of absorbance spectra through the use of an evanescent wave has been 

used for applications ranging from detection of pH changes using indicators to vitamin C 

concentration in orange juice samples [490-492, 499-503]. While the optical detection 

spectrophotometer utilized in this study was a bench-mounted unit, the absorbance 

changes have been recorded using a CCD/diode array-based-spectrometer (Ocean 

Optics).  That the absorbance changes are observed at specific wavelengths also allows 
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for the use of small solid-state photodiodes fitted with bandpass filters at the appropriate 

wavelengths as the photodetector. 

Exposure of the immobilized AChE-TPPS1 complex to competitive inhibitors of 

AChE causes dissociation of TPPS1 from AChE and consequently a loss in absorbance 

intensity at 446 nm with linear dependence on the log of the inhibitor concentration.  A 

change in the slope of the absorbance change versus inhibitor concentration occurs at 

0.002 A for each inhibitor and, therefore, is likely the result of the immobilized IES and 

not the inhibitor in question.  The limits of detection commonly sought for nerve agents 

are approximately 5-15 micrograms per liter (5-15 ppb) [504].  Detection limits at 3:1 

S/N for the competitive inhibitors of AChE are 37 ppt for eserine, 50 ppt for 

galanthamine, 100 ppt for scopolamine, 45 ppt for diazinon, 250 ppt for tetracaine, 83 

ppb for Triton X-100.  The response of the IES to 50 ppb inhibitor exposure is linearly 

dependent on the effectiveness (IC50) of the inhibitors.  Based on this response the IES 

should give detection limits of 250 ppt or less for untested competitive inhibitors of 

AChE with an IC50 less than 100 µM making most pesticides and nerve agents easily 

within the detection limits at ppb levels.  Other inhibitors with IC50 greater than 100 µM 

this would be detected as well but only at higher concentrations. 

In order to extend the lifetime of the immobilized enzyme surface for up to 73 

days, a vacuum system can be used requiring approximately 20 minutes for exposure to 

TPPS1 before putting into service, after which it is viable for 6 days under ambient 

conditions.  It is possible that the extension of the enzymatic lifetime results from the 

removal of excess water from the surfaces.  This would further stabilize the 
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immobilization matrix preventing partial unfolding of the enzyme as well as inhibiting 

any reactions that may otherwise degrade the enzyme. 

We have shown that storage in vacuum preserves the lifetime of the immobilized 

enzyme-porphyrin surfaces for up to 49 days allowing for application without any 

preparation before use.  Porphyrins are well know catalysts.  Putting the enzyme-

porphyrin complex under vacuum may inhibit the processes catalyzed by the porphyrin, 

thereby protecting the enzyme.  This immobilized enzyme-porphyrin surface is effective 

as a detector for a variety of competitive inhibitors of acetylcholinesterase.  The IES are 

stable and require only the application of a sample to measure its presence in less than six 

seconds.   

Porphyrins have been used in sensor applications due to their sensitivity to 

chemicals in their environments.  Shifts in absorbance [284] and fluorescence spectra 

[264] tend to be unique for different chemicals including different proteins [485].  

Spectral shifts could be used as a “marker” for the presence of different proteins.  It may 

be possible to use porphyrins as a sensor for detection of proteinaceous bacterial 

exotoxins such as botulinum toxin and those found in Clostridium botulinum, 

Clostridium tetani, Clostridium perfringens, Escherichia coli, cholera, and plague 

(Yersinia pestis).  Though this possibility has not been addressed in this document, the 

use of porphyrin-enzyme combinations for other detection protocols will be. 
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   CHARACTERISTIC PEAK/TROUGH LOCATIONS 

 

 
 
 
 
 

Difference Spectrum Peak Trough 
TPPS1 + AChE minus TPPS1 442 nm 402 nm 
TPPS1 + AChE + AChI minus TPPS1 + AChE 447 nm 402 nm 
TPPS1 + AChE + AChI minus TPPS1 447nm 402 nm 
TPPS1 + AChI minus TPPS1 447 nm 402 nm 
TPPS1 + AChE + tetracaine minus TPPS1 445 nm 402 nm 
TPPS1 + tetracaine minus TPPS1 445 nm 402nm 
TPPS1 + AChE + procaine minus TPPS1 442 nm and 429 402 nm 
TPPS1 + procaine minus TPPS1 429 nm 402 nm 
 

 

 

 

 

 

 

 

 

TABLE 5.1     The peak and trough locations in the difference spectra of TPPS1 upon 

interaction with AChE, its substrate, and its inhibitors. 
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   IC50 AND SURFACE INTERACTION 

 

 
 
 

Inhibitor IC50 
(µM) 

IC50 
(ppb) 

∆ Absorbance 
(A) at 446 nm 50 

ppb exposure 

Limit of 
Detection 

(ppb) 
TPPS1 5 4600 --------- --------- 
Eserine salicylate 2.3 1000 0.0029 0.037 
Diazinon 4.7 1440 0.0028 0.045 
Galanthamine 6 2208 0.0028 0.050 
Scopolamine 63 27600 0.0021 0.100 
Tetracaine 100 30000 0.0017 0.250 
Triton X-100 172 111500 0.0006 83 

 

 

 

 

 

 

 

 

 

TABLE 5.2     Relationship between absorbance change at 446 nm of the IES to the 

association constant for each inhibitor. 
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   LIFETIME EXPERIMENTS 

 

 
 
 

Slide Age 
(days) 

Change in absorbance upon tetracaine 
challenge (0.5 ppm) 

Absorbance at 412 nm of 
DTNB (A) 

3 0.0021 1.7706 
16 0.0025 1.4610 
27 0.0023 1.6520 
51 0.0029 1.6096 
62 0.0021 0.8873 
71 0.0027 0.6200 

 

 

 

 

 

 

 

 

 

TABLE 5.3     Comparison of Ellman activity and response to tetracaine challenge for 

slides stored under vacuum. 
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EVANESCENT WAVE MEASUREMENT TECHNIQUE 

 

 
 

 

FIGURE 5.1  (A)  The experimental setup for slide measurements.  C = circular, L = 

linear optical fiber bundle [391].  (B)  Photo of experimental setup using 

Ocean Optics USB2000 spectrophotometer.

Top View 

A 

B 
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INTERACTION OF TPPS1 WITH ACHE

FIGURE 5.2 Absorbance spectra of TPPS1 in the absence/presence of AChE at pH 8.

(A) The subtraction of the absolute spectrum of 730 nM TPPS1 (Trace 1)

from the absolute spectrum of 730 nM TPPS1 + 30 nM AChE (Trace 2)

yields the difference spectrum TPPS1 + AChE minus TPPS1 (Trace 3).  (B)

The dependence of the intensity of the peak at 442 nm on AChE

concentration in the difference spectrum TPPS1 (730 nM) + AChE minus

TPPS1 [391]. 
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TPPS1 FLUORESCENCE SPECTRA

FIGURE 5.3  1. Fluorescence spectrum of TPPS1 [391].  (A)  The fluorescence spectrum

of 125 nM TPPS1 in 5 mM pH 7 sodium phosphate buffer.  (B)  The

contour plot of the fluorescence spectrum shown in Figure 1A.

2.  Fluorescence spectra of TPPS1 + AChE [391].  (A)  The fluorescence

spectrum of 125 nM TPPS1 + 30 nM AChE in 5 mM pH 7 sodium

phosphate buffer. (B)  The contour plot of the fluorescence spectrum

shown in Figure 2A.
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CHANGES IN THE TPPS1 EXCITATION SPECTRUM

FIGURE 5.4  (A)  Plot of the emission intensity at 652 nm for TPPS1 in the absence of

AChE as a function of excitation wavelength shown with results of PeakFit

(dashed line) [391].  The peak centered at 407 nm constitutes 85% of the

total area under the curve, while the peak 396 nm constitutes less than 1%

of the total area.  The peak at 376 nm constitutes approx. 14% of the total

area.  (B)  Plot of the emission intensity at 652 nm for TPPS1 in the

presence of AChE as a function of excitation wavelength shown with

results of PeakFit (dashed lines) [391]. The peak centered at 412 nm

constitutes 82% of the total area under the curve, while the peak 396 nm

constitutes less than 1% of the total area. The peak at 376 nm constitutes

approx. 17% of the total area.
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CHANGES IN THE TPPS1 EMISSION SPECTRUM

FIGURE 5.5  (A)  Plot of the emission intensity at 712 nm for TPPS1 in the absence of

AChE as a function of excitation wavelength [391].  Dashed lines represent

the results of peak fitting. The peak centered at 406 nm constitutes 90% of

the total area under the curve, while the peak 396 nm constitutes less than

2% of the total area.  The peak at 376 nm represents approx. 8% of the total

area.  (B)  Plot of the emission intensity at 716 nm for TPPS1 in the

presence of AChE as a function of excitation wavelength [391].  Dashed

lines represent the results of peak fitting. The peak centered at 413 nm

constitutes 85% of the total area under the curve, while the peak 396 nm

constitutes less than 6% of the total area.  The peak at 376 nm represents

9% of the total area.
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INHIBITION OF ACHE BY TPPS1

FIGURE 5.6  The Lineweaver-Burk plot of AChE activity at different ATC

concentrations [391].  In the absence of inhibitor (● ) Km = 87 µM. In the

presence of 470 nM TPPS1 (▲) Km = 141 µM.  Intersection of the curves

occurs at the Y-axis (Vmax = 12 µmol/min).  The lines show linear best fits

performed with 99% confidence interval (PSI-Plot).
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REVERSAL OF TPPS1-ACHE COMPLEX FORMATION

FIGURE 5.7  Spectral changes in the TPPS1-AChE complex upon addition of AChI

[391].  Trace 1: the difference spectrum of TPPS1 + AChE + AChI minus

TPPS1; Trace 2: the difference spectrum of TPPS1 (730 nM) + AChE (30

nM) + AChI (18 µM) minus TPPS1 + AChE, Trace 3: the double difference

spectrum of (TPPS1 + AChE + AChI minus TPPS1) minus (TPPS1 + AChE

+ AChI minus TPPS1 + AChE) yields TPPS1 + AChE minus TPPS1
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ADDITION OF INHIBITORS TO THE ACHE-TPPS1 COMPLEX

FIGURE 5.8  Trace 1:  The interaction of the TPPS1-AChE complex with tetracaine

[391]. The difference spectrum of TPPS1 (730 nM) + AChE  (30 nM) +

tetracaine (0.5 mM) minus TPPS1.  Trace 2:  The difference spectrum of

TPPS1 (730 nM) + AChE (30 nM) + procaine (2.0 mM) minus TPPS1 +

procaine.

40
2 

nm

42
9 

nm

44
5 

nm
44

2 
nm

(2)

(1)

Wavelength (nm)
350 400 450 500

0.05
 Abs.
Units



   132

INTERACTION OF ACHI WITH IES

FIGURE 5.9  The absorbance spectra of the immobilized TPPS1-AChE complex

before(Trace 1) and after exposure to AChI (Trace 2).  The difference

spectrum TPPS1 + AChE + AChI minus TPPS1 + AChE is shown in Trace

3 [392].
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INTERACTION OF TETRACAINE WITH IES

FIGURE 5.10 The absorbance spectra of the immobilized TPPS1-AChE complex

(Trace 1) and the effect of 3 ppb tetracaine exposure (Trace 2).  The

difference spectrum TPPS1 + AChE + tetracaine minus TPPS1 + AChE is

shown in Trace 3 [392].
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CONCENTRATION DEPENDENCE OF ABSORBANCE CHANGES

FIGURE 5.11 Loss in 446 nm absorbance intensity of immobilized TPPS1-enzyme slide

surface upon inhibitor exposure to:  (A) tetracaine, (B) eserine, (C)

galanthamine, (D) scopolamine, (E) Triton X-100, (F) diazinon [394].
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PERCENT INHIBITION CURVES

FIGURE 5.12 A.  Percent inhibition of AChE activity versus inhibitor concentration for

TPPS1 (▲), eserine (●), diazinon (♦ ), and galanthamine (■).

B.  Percent inhibition of AChE activity versus inhibitor concentration for

Triton X-100 (●), scopolamine (▲), and tetracaine (■) [394].
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RELATIONSHIP OF ABSORBANCE CHANGE TO IC50

FIGURE 5.13 The response of the surface depends on the effectiveness of the inhibitor

as shown by plotting the change in absorbance intensity upon exposure to

50 ppb inhibitor versus the IC50 (ppb) of the respective inhibitor [394].
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SURFACE LIFETIMES

FIGURE 5.14 (A)  Enzymatic activity of slide surfaces demonstrated as the OD of the

Ellman reagent at 412 nm for slides stored under vacuum at room

temperature (!!!!) and under ambient conditions (*).  (B)  TPPS1-AChE

surface response to 0.5 ppm (1.7 µM) tetracaine challenge after storage

under vacuum shown as loss in absorbance intensity at 446 nm [394].
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CHAPTER 6 

EXTENTION OF THE CHOLINESTERASE SYSTEM 

 

6.1 INTRODUCTION 

Butyrylcholinesterase (BChE), also known as serum cholinesterase, hydrolyzes 

butyrylcholine (BCh) at rates similar to those for the hydrolysis of acetylcholine (ACh) 

by acetylcholinesterase (AChE).  While AChE is known to terminate impulse 

transmission at cholinergic synapses, the biological role of BChE is poorly understood.  

There has been extensive comparison of the structure of horse serum BChE to that of 

Torpedo AChE (from electric eel).  The enzymes show 73% similarity and 53% sequence 

identity.  Both enzymes will hydrolyze ACh and BCh but at different rates and variations 

of the enzymes show differing affinities and degrees of inhibition by different OPs and 

other compounds [389, 459, 505-515]. 

Organophosphorous pesticides and nerve agents inhibit cholinesterases covalently 

bind to the active sites of cholinesterases resulting in irreversible inhibition of the 

enzymatic activity [459].  Other compounds including several drugs also inhibit the 

activity of cholinesterases by binding at the active sites, though this inhibition is typically 

reversible.  The similarity of the interaction allows for use of these drugs as simulants for 

more the more dangerous pesticides and nerve agents.   

Current methods of detection of these compounds use a comparison of the 

catalytic activity of immobilized enzymes before and after exposure to the inhibitor by 

monitoring the rate of production of one or more products of the enzyme-catalyzed 

reaction [466, 469-470, 516-519].  Changes in pH [517] or the oxidation current of 
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thiocholine [343, 516, 518], a hydrolysis product of acetylthiocholine and 

butyrylthiocholine, can be used to directly monitor the enzymatic activity of 

cholinesterases.  Coupling of the cholinesterase reaction with the activity of choline 

oxidase allows the activity of AChE or BChE to be measured through the production of 

H2O2 [465, 482].  Additionally, the cholinesterase activity can be monitored 

spectrophotometrically through the use of dithio-bis-nitrobenzoic acid (DTNB) which 

reacts with thiocholine giving an absorbance increase at 412 nm [427, 443].  This process 

typically requires mixing of reagents and measurement of each reaction rate requires time 

precluding a fast real-time detection method.   

In the previous chapter, we have shown that competitive inhibitors of 

acetylcholinesterase (AChE) can be detected spectrophotometrically by monitoring the 

changes in the absorbance spectrum of an immobilized enzyme-porphyrin complex [391-

392].  Specifically, exposure to a competitive inhibitor results in dissociation of 

monosulfonate tetraphenyl porphyrin (TPPS1), a reversible competitive inhibitor of 

AChE [392], from the enzyme causing a loss in absorbance of the characteristic peak for 

the AChE-TPPS1 complex at 446 nm.  Measurements of this type require only application 

of sample and can be completed in less than 6 seconds.  Here we will show that, using the 

same techniques, reversible competitive inhibition of butyrylcholinesterase by TPPS1 can 

be used to detect compounds that competitively inhibit BChE.  We will additionally show 

that the use of two or more enzymes can be used not only to reduce false 

positives/negatives but also to help in identification of a particular inhibitor. 
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6.2  MATERIALS AND METHODS 

Acetylcholinesterase (AChE, type V-S from electric eel, E.C. 3.1.1.7), 

butyrylcholinesterase (BChE, pseudocholinesterase from horse serum, E.C. 3.1.1.8), 

tetracaine HCl, eserine salicylate salt (eserine), galanthamine hydrobromide, scopolamine 

hydrobromide, amitriptyline, drofenine, Triton X-100, dithio-bis-nitrobenzoic acid 

(DTNB), acetylthiocholine (ATC) and butyrylthiocholine (BTC) were obtained from 

Sigma (St. Louis, MO).  Monosulfonate tetraphenyl porphyrin (TPPS1) was obtained 

from Frontier Scientific (Logan, UT) and used without further purification. 

Butyrylcholinesterase and acetylcholinesterase were immobilized onto 

ProbeOn™ Plus microscope slides (Fisher Biotech, Pittsburgh, PA) by the PAMAM 

process described previously (Chapter 4).  Combination BChE+AChE surfaces were 

generated by replacing the enzyme solution in the AChE immobilization procedure with a 

solution containing 39 units/mL of each enzyme.  Absorbance spectra of the immobilized 

enzyme surfaces (IES) before and after exposure to inhibitors were collected using an 

Ocean Optics USB-2000 spectrometer [392] with the output of a LED of maximum 

wavelength at 434 nm and 83 nm HBW as a light source.  The Ocean Optics spectra were 

collected as the average of 100 spectra collected with an integration time of 50 msec per 

spectrum.  Data presented on concentration dependence represents the average of three 

sets of measurements.  Spectral analysis was performed using Grams/32 (Galactic 

Industries, Salem, NH).  Spectra of immobilized enzyme surfaces shown here (e.g., 

Figure 6.7) have been corrected for the absorbance of TPPS1 bound non-specifically to 

slide surfaces that have completed the immobilization procedure in the absence of 

enzyme.  
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The activity of BChE using BTC as substrate was measured 

spectrophotometrically in 3 mL of 100 mM pH 8 phosphate buffer maintained at 25°C 

according to the method of Ellman [443] with BChE dissolved in 100 mM pH 7 

phosphate buffer instead of gelatin and water.  Linear fitting of the time-dependent 

absorbance increases was preformed using PSI-Plot (V 7.0b) at a 99% confidence 

interval.  IC50 values for each inhibitor were taken from percent inhibition vs. 

concentration plots generated by addition of x mL of inhibitor in 100 mM pH 8 NaPi to 

3-x mL buffer.  Measurements were repeated in triplicate. 

 

6.3  THE BCHE SYSTEM 

The Lineweaver-Burk plots of BChE activity at different substrate concentrations 

in the absence and presence of 7.3 µM TPPS1 are shown in Figure 6.1.  The intersection 

of the linear plots on the Y-axis indicates that TPPS1 is a competitive inhibitor of BChE.  

The Km values for BTC are 201 µM and 1180 µM in the absence and presence of TPPS1 

respectively.  Competitive inhibition of enzymes by porphyrins has been demonstrated 

previously [388-389, 391].   

The binding of TPPS1 to BChE in solution results in decreased TPPS1 absorbance 

at 398 nm and increased absorbance at 429 nm (Figure 6.2, Trace 1).  Addition of a 

competitive inhibitor of BChE [520] to the BChE-TPPS1 complex in solution results in a 

decrease in absorbance intensity at 429 nm and an increase at 398 nm.  The difference 

spectrum TPPS1 + BChE + drofenine minus TPPS1 (Figure 6.2, Trace 2) shows the effect 

of drofenine, a competitive inhibitor of BChE, on the absorbance spectrum of the BChE-

TPPS1 complex.  The peak/trough combination at 429 nm/398 nm observed in the TPPS1 
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+ BChE minus TPPS1 difference spectrum is no longer present.  As with AChE [391], 

this demonstrates reversibility of the competitive inhibition of BChE by TPPS1.  The new 

peak-tough combination at 433 nm and 403 nm are the characteristic wavelengths for 

interaction of drofenine with TPPS1 as indicated by the difference spectrum TPPS1 + 

drofenine minus TPPS1 (data not shown).     

 Figure 6.3 shows the absorbance spectrum for an immobilized BChE surface 

(IES) before and after exposure to 1 ppm (2.8 µM) drofenine (Traces 1 and 2, 

respectively).  In order to determine the location of the immobilized TPPS1-BChE 

interaction peak, a surface was made by the described immobilization procedure with the 

exception of the enzyme exposure step.  The absorbance spectrum of the enzyme-lacking 

surface was then subtracted from the absorbance spectrum of the IES.  The absorbance 

peak at 421 nm in the difference spectrum was then determined to be the result of the 

immobilized BChE-TPPS1 interaction.     

Upon exposure to competitive inhibitors of BChE, the IES absorbance spectrum 

shows a decrease in intensity at 421 nm, the characteristic peak for the TPPS1-BChE 

surface, indicating dissociation of TPPS1 from BChE (Figure 6.3, Traces 1 and 2).  No 

change in the absorbance spectrum of the IES was observed upon exposure to non-

competitive inhibitors.  For the immobilized BChE-TPPS1 no absorbance increase is 

observed upon exposure to inhibitor due to the removal of the newly dissociated TPPS1 

with the excess inhibitor solution by blotting (Figure 6.3, Trace 3).   

The BChE surface has been tested against the competitive inhibitors of BChE 

eserine [495], amitriptyline [521], drofenine [520], and Triton X-100 [498].  For each 

competitive inhibitor of BChE tested, the IES showed a decrease in absorbance at 421 nm 
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with a linear dependence on the log of the inhibitor concentration (Figure 6.4).  

Extrapolation of the data to 3:1 S/N indicates a theoretical detection limit of 40 ppb (62 

nM) for Triton X-100, 91 ppt (260 pM) for drofenine, 72 ppt (230 pM) for amitriptyline, 

and 50 ppt (121 pM) for eserine.   

The IC50 for each inhibitor of BChE was determined by the data shown in Figure 

6.5.  Table 6.1 shows the relationship between the IC50 for BChE of each inhibitor and 

the limits of detection.  The data show that the greater the affinity of the inhibitor for the 

enzyme the lower the detection limit achieved.  This is as expected.  For the same 

inhibitor concentration, an inhibitor with a lower IC50 will displace a greater amount of 

TPPS1 from the enzyme; thus a greater change in absorbance is observed leading to lower 

detection limits.   

 

6.4  THE TWO ENZYME SYSTEM 

The binding of TPPS1 to BChE in solution results in decreased TPPS1 absorbance 

at 398 nm and increased absorbance at 429 nm (Figure 6.6, Trace 1).  The TPPS1-AChE 

complex yields different interaction wavelength positions with the peak at 442 nm and 

trough at 402 nm in the TPPS1 + enzyme minus TPPS1 difference spectrum (Figure 6.6, 

Trace 2).  The addition of a competitive inhibitor for either enzyme to the porphyrin-

enzyme complex results in displacement of the porphyrin from the enzyme active site.  

This dissociation is observed as a loss in absorbance intensity at the wavelength of the 

characteristic peak of the porphyrin-enzyme complex as observed previously for AChE 

(Chapter 5). 
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 Figure 6.7 (A, Trace 1) shows the absorbance spectrum of the immobilized 

BChE-TPPS1 complex collected via the evanescent method.  As in the case of solution, 

the immobilized BChE-TPPS1 surfaces have peak positions different than those of the 

immobilized AChE-TPPS1 surfaces (Figure 6.7 (A), Trace 2).  Exposure of the BChE 

surface to competitive inhibitors of BChE results in decreased absorbance intensity at 421 

nm while exposure of the AChE surface to competitive inhibitors of AChE results in 

decreased absorbance intensity at 446 nm [392].  The absorbance spectra of AChE-BChE 

immobilized combination cholinesterase surfaces show the characteristic peaks of both 

the AChE and BChE immobilized porphyrin complexes (Figure 6.7 (A), Trace 3).   

The response of the mixed IES to competitive inhibitors of AChE alone, BChE 

alone, and both AChE and BChE was tested.  The mixed IES responds to amitriptyline, a 

competitive inhibitor of BChE, with a loss in absorbance intensity at 421 nm only and 

responds to tetracaine, a competitive inhibitor of AChE, with a loss in absorbance 

intensity at 446 nm only (Figure 6.7 (B), Traces 1 and 2).  Exposure of the mixed IES to 

eserine, a competitive inhibitor of AChE and BChE, showed a loss in absorbance 

intensity at both 421 nm and 446 nm (Figure 6.7 (B), Trace 3).   

Eserine and Triton X-100 are competitive inhibitors of AChE and BChE [280, 

291-292].  Figure 6.8 shows the linear dependence of the mixed IES response at each 

wavelength (421 nm and 446 nm) on the log of inhibitor concentration for eserine and 

Triton X-100.  Table 6.2 shows the LOD of the mixed IES for tetracaine [494], 

scopolamine [522], and galanthamine [496], competitive inhibitors of AChE and for 

amitriptyline [521] and drofenine [520], competitive inhibitors of BChE as well as for 

eserine [495] and Triton X-100 [498], competitive inhibitors of both AChE and BChE.  
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Limits of detection were calculated base on linear fittings similar to those shown in 

Figure 6.8 with the LOD fixed at a 3:1 signal to noise ratio. 

 

6.5  DISCUSSION 

TPPS1 is a reversible, competitive inhibitor of butyrylcholinesterase.  Formation of 

the TPPS1-BChE complex yields a characteristic peak at 429 nm in solution and 421 nm 

when immobilized.  The absorbance intensity of the characteristic peak both for the 

immobilized porphyrin-enzyme complex and the complex in solution is reduced upon 

addition of a competitive inhibitor of BChE.  The loss in absorbance intensity for the IES 

is linearly dependent on the log of the inhibitor concentration with detection limits 

dependent on the IC50 for each inhibitor as shown in Table 6.1. 

 The spectrophotometric detection of competitive inhibitors through the use of an 

immobilized AChE-porphyrin complex via evanescent wave absorbance measurements 

has been demonstrated [392].  Here we have shown that the technique can be expanded 

for application to another enzyme.  The technique could be applied to detection of 

inhibitors and/or substrates of any enzyme for which reversible competitive inhibition by 

a porphyrin or other compound with appropriate absorbance or fluorescence 

characteristics can be achieved.  Detection via this method is specific for the inhibitors of 

the enzyme used rather than hydrolysis products [479].   

 Butyrylcholinesterase and acetylcholinesterase variants show different sensitivity 

and specificity for different inhibitors [466, 511, 523-524].  Eserine and Triton X-100 are 

competitive inhibitors of both AChE and BChE.  The immobilized AChE and BChE 

complexes demonstrate limits of detection (LODs) of 37 ppt (89 pM) and 50 ppt (121 
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pM) respectively for eserine, while for Triton X-100 the LODs are 40 ppb (62 nM) and 

83 ppb (128 nM) for BChE and AChE, respectively.  The use of different enzymes will 

allow detection of differing ranges of inhibitors. 

The TPPS1 absorbance spectrum is sensitive to specific enzymes giving unique 

spectral changes even for very similar enzymes.  The absorbance spectrum of the 

immobilized AChE-TPPS1 complex has a characteristic peak at 446 nm while that of the 

immobilized BChE-TPPS1 complex is 421 nm.  The sensitivity of porphyrin absorbance 

spectra to different enzymes has been reported [485].  Variations in inhibitor affinities are 

reported to result from different charge distribution and hydrophobicity around the active 

site [525-529] and those differences likely affect the characteristic wavelength of the 

bound porphyrin.  Porphyrin absorbance spectra are sensitive to the environment of the 

porphyrin responding to changes in charge distribution, ionic strength, and pH and are 

sensitive to slight variations in aromatic ring constituents [264, 283-284].  Different 

enzymes yielding different characteristic peaks upon inhibition by TPPS1 (or similar 

compound) could be used to increase the specificity of this detection system.  An 

immobilized enzyme surface consisting of both AChE and BChE can be used to 

specifically identify the presence of inhibitors interacting with the active site of either 

AChE, BChE, or both AChE and BChE with limits of detection very similar to those of 

the individual enzyme surfaces as long as the porphyrin enzyme-complexes exhibit 

different interaction wavelengths.   

Because all inhibitors of AChE decrease the absorbance of the TPPS1-AChE 

complex at 446 nm it is not possible to distinguish between them using the multi-enzyme 

technique presented here.  Similarly, the technique does not allow for distinction between 
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different inhibitors of BChE, all of which decrease absorbance of the TPPS1-BChE 

complex at 421 nm; however, it may be possible to differentiate between inhibitors which 

inhibit both AChE and BChE on the basis of the ratio of the change in absorbance at 421 

nm and 446 nm.  Using the change in absorbance per decade on the log scale shown in 

Figure 6.8 (A), AChE shows a 0.001 A/decade change for eserine while BChE shows a 

0.0017 A/decade change.  (Here, the rate of change for AChE is that of concentrations 

above the inflection point at 18 ppb.)  The ratio of the AChE rate of change of absorbance 

to the BChE rate can be used to characterize the mixed IES giving 1:1.67 for eserine.  

Similarly, the ratio of the rates for Triton X-100 is 1:2.87, again using the AChE rate for 

concentrations above the inflection point.  Characterization of the mixed IES using this 

type of ratio might allow for distinction between the various inhibitors affecting both 

AChE and BChE.  A two enzyme system might not be able to distinguish components in 

mixture of inhibitors, although this might be possible with a larger group of enzymes.   

While the measurement technique presented here is novel, the use of immobilized 

enzyme surfaces containing multiple enzymes for detection of competitive inhibitors of 

cholinesterases has been well documented [468-470].  Recent research has shown that 

mutation of AChE can yield variants with greater binding affinity for specific inhibitors 

(organophosphates) [515, 530].  The multi-enzyme techniques used for discrimination of 

cholinesterase inhibitors typically involve immobilization of enzymes on separate 

electrodes and combining the information from two or more electrodes for identification 

of the sample.  Similarly, if we immobilize different AChE or BChE variants showing 

different binding affinities for various inhibitors on individual surfaces, the individual 

absorbance changes could possibly be used in concert for inhibitor discrimination without 
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the need for different porphyrin-enzyme interaction peaks.  It is likely that the porphyrin-

enzyme interaction peaks for the AChE variants will overlap as the enzymes vary by only 

a few amino acid residues.  

A rapid reagent-less method for low level detection of competitive inhibitors of 

AChE and BChE has been presented which allows for discrimination between three 

groups of inhibitors: those which inhibit AChE, those which inhibit BChE, and those 

which inhibit both.  While it is likely that one of the two methods described will allow for 

discrimination between inhibitors within the different groups, further research in this area 

is necessary. 
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   IC50 AND LOD VALUES FOR BCHE 

 

 
 

Inhibitor IC50 (mM) IC50 (ppb) LOD (ppb) 
TPPS1 5 4600 --------
Eserine 2.7 1173 0.05
Amitriptyline 11 3454 0.072
Drofenine 42 14868 0.091
Triton X-100 70 45360 40
 

 

 

 

 

 

 

 

 

TABLE 6.1     Limits of detection (LOD) and 50 % inhibition constants (IC50) for 

competitive inhibitors of butyrylcholinesterase [397]. 
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   LOD VALUES FOR MIXED IES 

 

 
 

Inhibitors of: Inhibitor LOD (ppb) Loss in Abs. 
Intensity at (nm) 

BChE Amitriptyline 0.072 421 
 Drofenine 0.091 421 
AChE Galanthamine 0.05 446 
 Scopolamine 0.1 446 
 Tetracaine 0.26 446 
Both Eserine salicylate 0.05 421/ 446 
 Triton X-100 81 421 / 446 
 

 

 

 

 

 

 

 

 

TABLE 6.2     The ICCS limits of detection for competitive inhibitors of 

butyrylcholinesterase and acetylcholinesterase [395]. 
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LINEWEAVER-BURK PLOT OF BCHE ACTIVITY 

 
 
 

 

 

 

 

 

 

 

 

FIGURE 6.1  The Lineweaver-Burk plots of BChE activity at different BTC 

concentrations in the absence (!) and presence of 7.3 µM TPPS1 (!).  

Intersection of the curves occurs at the Y-axis (Vmax = 10.4 µmol/min).  

The lines show linear best fits performed with 99% confidence interval 

[397].  
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BCHE/TPPS1 INTERACTIONS IN SOLUTION 

 
 
 

 

 

 

 

 

 

FIGURE 6.2  The response of the TPPS1 absorbance spectrum to BChE (1) is 

demonstrated by the difference spectrum 1µM TPPS1 + 30 nM BChE 

minus 1µM TPPS1 (Trace 1).  The difference spectrum 1µM TPPS1 + 30 

nM BChE + 1.7 µM drofenine minus 1µM TPPS1 shows the wavelengths 

for the TPPS1-drofenine interaction [397].  
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EXPOSURE OF THE IES TO AN INHIBITOR 

 
 
 

 

 

 

 

 

 

 

 

FIGURE 6.3  The absorbance spectrum of the immobilized TPPS1-BChE (1) shows a 

loss at 421 nm upon exposure to 1 ppm (2.8 µM) drofenine (2).  The 

change in absorbance is more easily observed in the difference spectrum  

TPPS1-BChE + drofenine minus TPPS1-BChE (3) [138].  
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CONCENTRATION DEPENDENCE OF ABSORBANCE CHANGE 

 
 

 
 

 

 

FIGURE 6.4  The concentration dependence of the loss in 421 nm absorbance intensity 

of immobilized TPPS1-BChE slide surface upon inhibitor exposure to:   

(A) eserine, (B) amitriptyline, (C) drofenine, (D) Triton X-100 [397].  
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PERCENT INHIBITION CURVES FOR BCHE 

 

 
 

 

FIGURE 6.5  The dependence on inhibitor concentration of the percent inhibition of 

BChE activity.  
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INTERACTION OF TPPS1 WITH CHOLINESTERASES 

 
 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.6  The difference spectra 1µM TPPS1 + 30 nM enzyme minus TPPS1 for 

BChE (1) and AChE (2) [395].  
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ABSORBANCE SPECTRA OF DIFFERENT IES 

 

FIGURE 6.7  A.  The absorbance spectra of the immobilized TPPS1-BChE (1) and 

immobilized TPPS1-AChE (2) complexes and the immobilized TPPS1-

BChE-AChE combination (3) were determined by subtraction of the 

absorbance spectrum of the enzyme-lacking slide from the individual 

absolute spectra of the three immobilized enzyme surfaces in order to 

isolate the porphyrin-enzyme interactions from the porphyrin interactions 

with the slide surface [395].   

B.  Difference spectra demonstrate the affect of different inhibitors on the 

ICCS.  All traces smoothed by 4 point binomial method using Grams/32. 

Trace 1.  ICCS + 0.5 ppm amitriptyline minus ICCS 

Trace 2.  ICCS + 3 ppm tetracaine minus ICCS 

Trace 3.  ICCS + 4 ppm eserine minus ICCS [395]
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CONCENTRATION DEPENDENCE FOR MIXED IES

FIGURE 6.8 A.  Loss in 421 nm (!) and 446 nm (") absorbance intensity of

immobilized TPPS1-BChE-AChE combination slide surface upon inhibitor

exposure to eserine [395].

B.  Loss in 421 nm (!) and 446 nm (") absorbance intensity of

immobilized TPPS1-BChE-AChE combination slide surface upon inhibitor

exposure to Triton X-100 [395].
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CHAPTER 7 

GLUCOSE OXIDASE 

 

7.1  STRUCTURE AND FUNCTION 

Glucose oxidase (GOD, E.C. 1.1.3.4) is an oxidoreductase which catalyses the 

oxidation of glucose to gluconic acid: 

GOD is highly selective for β-D-glucose showing greatly reduced activity for even very 

similar sugars.  The enzyme is highly stable showing activity over a broad pH range and 

it is easily immobilized.  The result of these characteristics is the wide range of 

applications of GOD:  determination of glucose in whole blood, food, and for agricultural 

applications; as a model system for development of new analytical approaches; and as a 

proposed cancer therapy [531].    

Glucose oxidase is used for the detection and quantification of glucose through 

amperometric, potentiometric, chemiluminometric, spectrophotometric, or fluorometric 

methods.  A thorough introduction to the application of these methods with glucose 

oxidase can be found in the review by Raba and Mottola [531].  Amperometric systems 

can be used for determination of H2O2 or O2 production while potentiometric methods 

can be used for determination of gluconic acid production via pH change.  Other methods 

use a coupled reaction and monitor the oxidation of an indicator compound.  These 

methods are sensitive to the presence of the easily oxidized molecules ascorbate, urate, 

and L-cysteine as well as others.  Sensitivity to these interferents has led to the 

development of methods to increase specificity including the use of coupled enzyme 

Glu e H O O gluconic acid H Ocos + + → +2 2 2 2 Eq. 7.1.1 
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systems and the use of selectively permeable polymer layers over the enzyme surface.  

Each of these solutions has problems.  The polymer layers may crack or peel allowing 

penetration of the interferents to the enzyme surface.  Using multiple enzymes (such as 

GOD with peroxidase) can also result in difficulty as each enzyme increases the 

complexity of the system and the immobilization procedure and each enzyme used 

eliminates only one interferent [439, 532].  

 In the following chapter, we will demonstrate the extension of the detection 

protocol discussed in Chapters 5 and 6 (the reversible, competitive inhibition of enzymes 

by porphyrins) to the enzyme glucose oxidase and we will show that this system can be 

applied for identification and quantification of glucose. 

 

7.2  MATERIALS AND METHODS 

Glucose oxidase (from Aspergillus niger, E.C. 1.1.3.4) and (D)-(+)-glucose were 

obtained from Sigma (St. Louis, MO).  Meso-tetra(4-carboxyphenyl)porphine (CTPP4) 

was obtained from Frontier Scientific (Logan, UT) and used as delivered.  Glucose 

oxidase was immobilized to PAMAM (generation 4, Aldrich - Milwaukee, WI) on 

ProbeOn™ Plus microscope slides (Fisher Biotech, Pittsburgh, PA) and porphyrin was 

incorporated into the surface as described previously (Chapter 4) [392].  Exposure of the 

immobilized CTPP4-GOD surface was accomplished by applying 200 µL of the desired 

concentration of glucose in 50 mM pH 7 sodium phosphate buffer to the surface followed 

by blotting away the excess solution.  Absorbance spectra of the immobilized enzyme-

porphyrin surfaces (IES) before and after exposure to glucose was collected using an 

Ocean Optics USB-2000 spectrometer with the output of a LED of maximum wavelength 
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at 434 nm and 83 nm HBW as a light source (Chapter 5) [392].  Spectral analysis was 

performed using Grams/32 (Galactic Industries, Salem, NH).    

 

7.3 RESULTS 

Meso-tetra(4-carboxyphenyl)porphine binds immobilized glucose oxidase giving an 

absorbance peak at 427 nm and a shoulder at 412 nm as shown in Figure 1 (Trace 1).  

Addition of glucose to the immobilized CTPP4-GOD complex results in a loss in 

absorbance at 427 nm as shown in the difference spectrum IES + glucose (Trace 2) minus 

IES (Trace 1) in Figure 1 (Trace 3).  A surface that has completed the immobilization 

procedure with the exception of the enzyme exposure step gives a spectrum similar to 

that of the enzyme containing spectrum with the exception of the 427 nm peak; the peak 

at 412 nm due to CTPP4 interaction with the surface persists. 

That addition of glucose to the CTPP4-GOD complex results in decreased 

intensity of the CTPP4-GOD interaction peak at 427 nm indicates dissociation of CTPP4 

from GOD as illustrated below.                          

The amount of CTPP4 bound to GOD decreases while the CTPP4 non-specifically bound 

to the surface remains the same.  An increase in 412 nm absorbance is not observed due 

to the removal of the newly dissociated CTPP4 with excess glucose solution upon blotting 

of the surface.   

The decrease in 427 nm absorbance is linearly dependent on the concentration of 

glucose to which the IES is exposed between 20 and 200 mg/dL (1.1 to 11.1mM) as seen 

in Figure 2.  The LOD for the surface at 3:1 S/N is 20 mg/dL.   

CTPP GOD GOD CTPP GOD Glu e CTPPGlu e
4 4 4+ ⎯ →⎯ − ⎯ →⎯⎯⎯ − +cos cos Eq. 7.3.1 

412 nm 427 nm 412 nm 



    162

 

7.4  DISCUSSION 

In order to be applicable for monitoring of glucose levels in whole blood samples 

by diabetic patients or in a clinical setting a system should operate in real time, be cost 

effective, and be interferent free.  The glucose detector presented here is capable of 

operation in less than six seconds (the time required to collect a spectrum).  The surface 

uses the specificity of the enzyme glucose oxidase so that only compounds interacting 

with glucose oxidase at the active site will affect the absorbance spectrum.  The system 

used here uses an Ocean Optics USB2000; however, the cost could be greatly reduced 

through the use of wavelength specific diodes for detection of absorbance intensity 

changes.   

 This system does not require a polymer layer to prevent interference by reducing 

agents such as ascorbate or urate since the measurement is based on the dissociation of 

CTPP4 from GOD as a direct result of the binding of glucose.  The only interferents for a 

system of this type are compounds that bind GOD in a manner similar to glucose.  

Further investigation is needed to verify the response of the surface to whole blood 

samples and the affect of sugars such as 2-deoxy-D-glucose which are known to be 

oxidized by glucose [531].     

The lifetime of this immobilized enzyme surfaces was not investigated beyond 35 

days, however, GOD is known to be a very stable enzyme and the lifetime of similarly 

immobilized acetylcholinesterase surfaces is greater than 55 days (Chapter 5)[394]. 
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IMMOBILIZED CTPP4-GOD SURFACE

FIGURE 4.1 The absorbance spectra of the immobilized CTPP4-GOD surface before

(1) and after (2) exposure to 50 mg/dL (2.3 mM) glucose.  The difference

spectrum (3) IES + glucose minus IES shows the loss in absorbance at 427

nm.  Trace 3 has been multiplied by 5 and smoothed by a 15% Fourier

method in Grams/32 [398].
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CONCENTRATION DEPENDENCE OF GLUCOSE RESPONSE

FIGURE 4.2 The change in absorbance at 427 nm in Figure 4.1 is linearly dependent on

glucose concentration from 20 mg/dL (1.1 mM) to 200 mg/dL (11.1 mM)

[398].
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CHAPTER 8

CARBONIC ANHYDRASE

8.1  STRUCTURE AND FUNCTION

Zinc performs structural, regulatory, catalytic, and noncatalytic functions in

metalloenzymes.  Catalytic zinc atoms are found in all enzyme classes and include

enzymes such as superoxide dismutase, RNA polymerase, carboxypeptidase, carbonic

anhydrase (CA), pyruvate carboxylase, and organophosphate hydrolase (OPH) [533].

Catalytic zinc is often found in a four or five coordinated geometry in the active site with

a water molecule or hydroxide ion in one ligand position.  The work by Galdes and

Vallee [534] suggests a two part mechanism for the role of zinc in catalysis.  They

indicate direct binding of the substrate to the metal without displacement of the metal-

bound water molecule allowing the zinc atom to both polarize the substrate and activate

the water molecule.  The metal then facilitates the proper orientation of the substrate and

the activated water to catalyze the reaction.

Carbonic anhydrase, a zinc metalloenzyme, catalyses the hydration of CO2 to form

H2CO3 which dissociates to bicarbonate and a proton.

This reaction will proceed in the absence of CA, however, the turn over rate for this

enzyme is extremely high.  In humans there are seven isoenzymes of carbonic anhydrase

(CA-I to CA-VII).  Apart from hemoglobin, CA constitutes the principle protein of

erythrocytes (red blood cells).  It is found in saliva, mitochondria, and the cytosol of

many cells.  CA can also be found locations such as in secretory tissues where they are

H CO HCO HCA
2 2 3+  → +− + Eq. 8.1.1
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involved in formation of ocular fluid, cerebrospinal fluid, and other secretions; the kidney

where they mediate 85% of renal bicarbonate reabsorption; and in the capillaries of

skeletal muscle, colon, reproductive tract, and cardiac muscle, as well as in lung tissue

where it exists as a membrane associated glycoprotein.  The physicological role of the

enzyme is associated with the rapid hydration of carbon dioxide released into body

tissues, dehydration of bicarbonate in the lungs, and transfer/accumulation of protons and

bicarbonate ions in secretory organs such as the stomach.

The zinc ion in CA is at the base of the 15 Å active site.  The zinc interacts with

three His residues as well as one water molecule to form a tetrahedral metal coordination

site.  The interaction of the water molecule with the zinc reduces the pKa of the water

significantly shifting the balance toward the hydroxide ion.  The hydroxide ion is the

catalytic nucleophile in the reaction.  Competitive inhibition of metalloenzyme activity,

that is, the binding at the active site of the enzyme by a compound other than the

substrate, is observed in the presence of compounds such as imidazole [535], D-cysteine,

penicillamine [536], 1,10-phenanthroline [537] and saccharin [538].

Porphyrins have been shown to competitively inhibit several enzymes including

acetylcholinesterase [389, 391], butyrylcholinesterase [397], glucose oxidase [398], and

heme oxygenase [539].  Here we will present data on the interactions of CA with several

porphyrins and the resulting inhibition of enzymatic activity.  We will also demonstrate

how the reversible competitive inhibition of CA by a porphyrin can be used to monitor

CO2 and inhibitor levels.

8.2  MATERIALS AND METHODS
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Carbonic anhydrase (CA, from bovine erythrocytes, E.C. 4.2.1.1), p-nitrophenol

acetate (p-NPA), LysLysLys, arginine, glutaraldehyde, penicillamine, D-cysteine, 1,10-

phenanthroline, saccharin, thiocyanate, p-nitrophenol acetate (p-NPA), 1,12-

diaminododecane and dipicolinic acid (DPA) were obtained from Sigma (St. Louis, MO)

and used without further purification.  Sodium phosphate (NaPi) buffer salts were

obtained from Fisher Scientific.  Monosulfonate tetraphenyl porphyrin (TPPS1), tetra(4-

aminophenyl) porphyrin (NH2TPP), meso-tri(4-sulfonato phenyl) mono(4-carboxy

phenyl) porphyrin (CTPP1), and meso-tetra(4-sulfonatophenyl)porphine (TPPS4) were

obtained from Frontier Scientific (Logan, UT) and used without further purification.

Carbon dioxide (1%, 10,000 ppm) and nitrogen (99.998%) were obtained from Scott

Specialty Gases (Plumsteadville, PA).  Amino-terminated Starburst® (PAMAM)

dendrimer (generation 4) and zinc acetate were obtained from Aldrich (Milwaukee, WI).

Copper sulfate was obtained from Baker (Phillipsburg, NJ).

Absorbance spectra of the porphyrins in the presence and absence of CA and the

various inhibitors of CA were recorded in 50 mM pH 7 sodium phosphate (Sorenson)

buffer with a Cary 4E spectrophotometer at 0.2 nm resolution.  Metal complex formation

was monitored similarly.  Difference spectra were obtained by subtraction of absolute

spectra using Grams/32 (Galactic Industries, Salem, NH).  Final reagent concentrations

are given in the text and figure captions.

Porphyrin metal complexes were formed by mixing the respective porphyrin and

copper sulfate (CuSO4) or zinc acetate (C4H6O4Zn) in solution in a one to one ratio at a

concentration no greater than 30 µM and incubating overnight at 50ºC.  When higher

concentrations of porphyrin are used, there is evidence of partial or no complex formation
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(Figure 8.1) likely due to complications caused by aggregation of the porphyrins.  The

metallo-porphyrins used here should have only one or two Q-bands whereas the non-

metallated versions have four Q-bands (as discussed earlier; Chapter 3).  This can be used

as an indicator of metal-complex formation.  The shift in the Soret region can also be

used to indicate complex formation, though overlap of the new and old peaks can make

this difficult.  In this case, peaks at 515, 553, 580, and 634 nm are observed in the TPPS4

spectrum while peaks at 539 and 576 nm are observed in the CuTPPS4 spectrum.

Thorslund and Lindskog [540] detail a method for spectrophotometric

determination of the esterase activity of CA.  CA will catalyze the hydrolysis of p-

nitrophenol acetate to p-nitrophenol and acetate.  At 348 nm, the ester p-nitrophenol

acetate has insignificant absorbance while p-nitrophenol has a millimolar extinction

coefficient of 5.54 mM-1·cm-1.  The enzymatic activity can be tracked by monitoring the

change in absorbance at this wavelength as the concentration of p-NP increases (here

using a Gilford single beam spectrophotometer).  A slight modification of the proposed

protocol was used.  First, a background rate was measured for the each run using a 1 cm

path length cuvette containing x ml 3mM p-NPA in 3% (v/v) acetone solution, (2.7 - x)

ml 3% (v/v) acetone solution, and 0.3 ml 0.5 M NaPi pH 8.  The reaction was initiated by

adding 10 µl 2 mg/ml carbonic anhydrase (9700 Units/ml) to the above indicated cuvette.

The initial velocity for the reaction was determined as described in Chapter 2 and it was

corrected using the background rate.  For determination of inhibition by the porphyrins,

porphyrin was added as part of the (2.7 – x) ml 3% acetone solution.  Linear fitting of the

double-reciprocal data for the enzyme in the presence/absence of inhibitors was

accomplished with PSI-Plot (V 7.0) at a 99.9% confidence interval.
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In order to monitor the activity of the immobilized enzymes, 230 ml of 130 mM

p-NPA in 100 mM pH 8 NaPi with 10% acetone is allowed to interact with the surface

for 3 minutes.  After this interaction period, 150 µl is pipetted from the surface of the

slide into 800 µl of water.  The absorbance of the solution is then measured with a Cary

4E spectrophotometer.  The enzymatic activity of the slide surface is based on the

absorbance at 412 nm compared to a background absorbance measurement.

Immobilization of carbonic anhydrase onto ProbeOn™ Plus (Fisher Biotech,

Pittsburgh, PA.) microscope slides was attempted by the double dendrimer layer method

described previously (Enzyme Protocol 3, Chapter 4)[392].  The result was a surface with

very little enzymatic activity.  It was found that a less tightly packed immobilization

matrix resulted in higher enzymatic activity, so carbonic anhydrase was immobilized by

the following procedure using one of three tethers (Protocol 4, Chapter 4).  Each of the

reaction steps was terminated by rinsing the slide surface with a 50 mM sodium

phosphate 1 M NaCl solution at pH 9 (PBS).  ProbeOn Plus™ Microscope slides were

activated with 0.17 M glutaraldehyde for 25 minutes followed by reaction with 0.9 mM

LysLysLys, 0.9 mM arginine, or 0.35 mM 1,12-diaminododecane in 50mM pH 7

phosphate buffer for 90 minutes.  The slide was again activated by glutaraldehyde for 25

minutes followed by reaction with 12 µM carbonic anhydrase for 90 minutes.  This step

was followed by interaction of the slide surface with 1M pH 9 TRIS to block all

unreacted sites.

Slides were stored at room temperature after vacuum packing in three layer food

saver bags using a FoodSaver (Vac360) from Tilia (San Francisco, CA).  The lifetime of

the immobilized enzyme surfaces based on the esterase activity as described above is less
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than three months.  If porphyrin is added to the surface of the slides, lifetimes based on

the proper response to addition of inhibitor are less than seven days when stored under

vacuum and less than 12 hours when stored under ambient conditions.

Absorbance spectra of immobilized enzyme-porphyrin complexes were collected

using an Ocean Optics USB-2000 spectrometer (Chapter 5, Figure 5.1)[392] with the

output of two LEDs (Mouser 430 nm - maximum wavelength at 434 nm and 83 nm

HBW; Digikey 380 nm – maximum wavelength at 388 nm and 17 nm HBW) as a light

source.  A pair of LEDs was used to cover a spectral range not possible with a single

LED.  Inhibitors of CA were applied as 200 µl drops of buffered solutions at the

indicated concentrations and allowed to interact for 30 seconds.  The excess solution was

then blotted away before collection of the post-exposure difference spectrum.  The

difference spectra presented are the pre-exposure spectrum subtracted from the post-

exposure spectrum.  Slides were exposed to gaseous CO2 as mixtures of 1% CO2 (10,000

ppm) and 99% N2.  Constant pressure flow valves were used to dilute the 1% CO2 to the

desired concentrations.  Absorbance spectra of the immobilized enzyme surfaces were

collected before and after mixtures were allowed to flow across them for 20 seconds at

0.5 liters per minute.

Zinc was removed from the active site of carbonic anhydrase using a dialysis

protocol outlined by Thompson and Jones [541].  The enzyme solution was dialyzed

using Spectra/Por® membrane tubing (Molecular weight cut-off 6,000 to 8,000).  The

tubing containing 2 mg/ml CA in 0.1 M pH 7 NaPi was placed in pH 5.4 50 mM sodium

acetate buffer containing 5 mM dipicolinic acid.  This solution was stirred at 4°C for 20

hrs.  The enzyme was reconcentrated and the DPA was removed from the sample using a
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Microcon YM-10 micro-centrifuge filter (MWCO 10,000) to reduce the sample volume

from 1.5 ml to approximately 0.2 ml.  This process was repeated three times using 0.1 M

pH 7 NaPi for the two subsequent dilutions.  Zinc was replaced by addition of 2:1 zinc

acetate to CA in 0.1 mM pH 7 sodium phosphate buffer followed by incubation overnight

at 4°C.  The work by Elbaum, et al. [542] and the work here demonstrate that CA readily

binds zinc in solution, so no special considerations are necessary.

8.3  RESULTS

8.3.1  INTERACTIONS IN SOLUTION

In order to use a porphyrin as a colorimetric indicator for binding of substrate or

inhibitor to an enzyme, the porphyrin must interact with the enzyme resulting in a

detectable change in the porphyrin absorbance spectrum.  With this in mind, the

interaction of several porphyrins with carbonic anhydrase was investigated.  The desired

characteristic is a strong, specific absorbance change.  The difference spectra porphyrin +

CA (25 W-A units, 112 nM) minus porphyrin show the changes in the absorbance spectra

of porphyrins upon interaction with carbonic anhydrase.  The troughs in these spectra

indicate the loss in absorbance intensity resulting from the decrease in concentration of

the free porphyrin in solution while the peaks are the increase in absorbance intensity

resulting from the formation of the porphyrin-CA complex.

Figure 8.2 shows the peak/trough pairs observed upon interaction of Cu2+-TPPS1

and TPPS1 with carbonic anhydrase.  There is a loss in absorbance intensity at 405 nm in

the Cu2+-TPPS1 + CA minus Cu2+-TPPS1 difference spectrum (Trace 1) with an increase

at 436 nm.  The peak/trough locations in the difference spectrum for TPPS1 (Trace 2) are
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unique at 429 nm and 400 nm respectively.  The wavelength shift upon interaction of a

porphyrin with an analyte has been shown to be proportional to the association constant

between the porphyrin and the molecule [284].  A shift of 31 nm for Cu2+-TPPS1 as

opposed 29 nm for TPPS1 indicates slightly greater affinity of the copper complexed

TPPS1 for CA.

Figure 8.3 shows the absorbance spectra for the pre- and post-CA addition for

NH2TPP and CuNH2TPP.  The Difference spectra NH2TPP + CA minus NH2TPP for

both the plain and copper complexed versions of NH2TPP are also shown.  Both

CuNH2TPP and NH2TPP give the peak/trough locations at 465 nm / 418 nm upon

interaction with CA, however the change in intensity is not the same for the interaction of

CA with NH2TPP as compared with CuNH2TPP.  Based a millimolar extinction

coefficient of 48 (1 cm path length), the loss in absorbance intensity at 418 nm for Cu2+-

NH2TPP is the result of the change in absorbance of 120 nM porphyrin while the change

at 418 nm for NH2TPP is the result of a change in absorbance of 39 nM porphyrin.  The

porphyrin concentration involved in an interaction gives an indication of the association

constant between the porphyrin and the analyte.  The involvement of 120 nM CuNH2TPP

in the interaction with CA indicates a 1:1 CA:porphyrin interaction.  Similarly, the

involvement of 39 nM NH2TPP in the interaction with CA indicates only one in every

two to three enzymes are interacting with a porphyrin indicating a greater association

between the copper porphyrin and CA.

The copper-complexed CTPP1 gives the same peak/trough (425 / 412 nm)

locations in the CTPP1 + CA minus CTPP1 difference spectrum as CTPP1 with a larger

change in absorbance intensity (Figure 8.4).  Upon formation of the copper complex, the
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CTPP1 absorbance spectrum becomes slightly broadened in the Soret region and the

millimolar extinction coefficient at 412 nm is reduced by 15% to 470 (1 cm path length).

The change in the absorbance intensity at 412 nm results from the interaction of CA with

26 nM and 13 nM porphyrin for Cu2+-CTPP1 and CTPP1 respectively.  The association

constant between copper-complexed CTPP1 and CA appears to be greater than that of

CTPP1 interacting at a rate of about one in four enzymes as compared to one in eight

enzymes.

The changes in the TPPS4 and CuTPPS4 absorbance spectra upon interaction with

CA are shown in Figure 8.5 along with the pre- and post CA addition absolute

absorbance spectra.  Both porphyrins show a loss in absorbance intensity at 412 nm.

Additionally, TPPS4 shows a peak in the difference spectrum at 422 nm.  The interactions

for both CuTPPS4  and TPPS4 with CA are weak.  This is emphasized by the shift in the

TPPS4 spectrum which is only 10 nm and by the very low absorbance intensities in the

difference spectra as compared to the overall porphyrin absorbance intensity (less than

1%).

Large changes in the Soret absorbance of TPPB occur upon copper complex

formation.  The FWHM is reduced from 28 nm to 7 nm while the extinction coefficient at

414 nm is increased by only 3%.  The interaction between TPPB/CuTPPB and carbonic

anhydrase was also investigated (Figure 8.6).  The interactions between CA and both

porphyrins are weak as evidenced by the low absorbance intensities in the difference

spectra.  In the TPPB difference spectrum there are two very broad features, a loss in

absorbance intensity at 403 nm with an increase in absorbance intensity at 424 nm.  In the
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CuTPPB difference spectrum the features are more narrow with a decrease in absorbance

intensity at 412 nm and an increase in absorbance intensity at 427 nm.

Lineweaver-Burk plots (Chapter 2) of carbonic anhydrase esterase activity in the

absence/presence of porphyrins are shown in Figure 8.7.  The y-intercept of each line is

the inverse of the maximal enzymatic rate (1/Vmax) while the x-intercepts are the inverse

of the concentration needed to achieve half of the maximal rate (-1/Km).  Competitive

inhibition of an enzyme results in a change in Km with no change in Vmax.  In the absence

of inhibitor, the value of Km was determined to be 80 mM with a Vmax of 1 µM/min.  In

the presence of 3 µM CuTPPS1 and 1.8 µM CuCTPP1 the value of Km is changed to 23

mM and 36 nM respectively with no change in the value of Vmax.  No inhibition of CA

activity was observed in the presence of non-metallated TPPS, CTPP4, NH2TPP, TPPS1,

or TPPB.  CTPP1 and CuTPPS4 inhibited the activity of CA, but in a noncompetitive

manner changing the value of Vmax with no change in the value of Km.  CuNH2TPP and

CuTPPB do not inhibit the activity of carbonic anhydrase.

Because CuTPPS1 and CuCTPP1 competitively inhibit the activity of CA, the rest

of this chapter will focus on these two porphyrins.  The reversibility of the CuTPPS1 and

CuCTPP1 inhibition of CA was determined spectrophotometrically by monitoring the

changes in the porphyrin absorbance spectrum upon addition of a another competitive

inhibitor to the porphyrin-CA complex.  Figure 8.8 (A) shows the difference spectrum

CuTPPS1 + CA + 1,10-phenanthroline minus CuTPPS1 (Trace 1) indicating the effect of

CA and the inhibitor on the absorbance spectrum of the porphyrin.  Also shown is the

difference spectrum CuTPPS1 + 1,10-phenanthroline minus TPPS1 (Trace 2) which

shows the effect of the 1,10-phenanthroline alone on the absorbance spectrum of the
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porphyrin.  The two traces are similar in peak/trough position, shape, and intensity.  The

peak/trough pair indicative of the interaction between the porphyrin and CA is no longer

present in the difference spectrum indicating dissociation of the porphyrin-CA complex.

Had 1,10-phenanthroline not resulted in dissociation of the porphyrin-enzyme complex,

the difference spectrum showing the interaction of the inhibitor and enzyme with the

porphyrin (Figure 8.8 A, Trace 1) would have been the sum of the individual interactions

of the enzyme and inhibitor with the porphyrin indicating no dissociation of the

porphyrin-enzyme complexes and only formation of additional porphyrin-inhibitor

complexes.

The identical effect is observed in the case of CuCTPP1 as shown in Figure 8.8

(B).  Similar experiments with D-cysteine and saccharin demonstrate the reversibility of

the inhibition of CA by the two porphyrins as well (data not shown).  The addition of

thiocyanate, an uncompetitive of CA [543], does not result in the loss of the peak/trough

pair observed upon interaction of CA with either CuTPPS1 (Figure 8.9) or CuCTPP1

(Figure 8.10).  The results of these experiments are summarized in Table 8.1.

The difference spectra porphyrin + enzyme minus porphyrin shown in Figure 8.11

are the result of the interaction of CuCTPP1 with carbonic anhydrase (Trace 1), zinc free

carbonic anhydrase (Trace 2), and carbonic anhydrase after zinc replacement (Trace 3).

In all three cases, there is a peak at 425 nm and a complex trough composed of a loss in

absorbance intensity at two wavelengths 412 nm and 401 nm.  The loss in absorbance

intensity at 401 nm is greater for addition of CA where some or all of the zinc is missing

while the loss in intensity at 412 nm is greater for addition of zinc containing CA.  It

appears that the trough at 412 nm is the result of the interaction of CuCTPP1 with the



   176

zinc-containing active site of CA and the trough at 401 nm results from interaction with

other areas of the protein.

The interaction between CuTPPS1 and zinc free carbonic anhydrase results in a

very slight loss in absorbance intensity at 418 nm with no corresponding increase in

absorbance intensity (Figure 8.12).  When zinc is replaced in the CA, the peak trough pair

expected for the interaction between CuTPPS1 and CA is recovered (Figure 8.12, Trace

3).  The change in the absorbance spectrum of CuNH2TPP upon interaction with CA is

the same regardless of the presence/absence of zinc in the active site (data not shown).

8.3.2  IMMOBILIZED ENZYME SURFACES

Figure 8.13 shows the absorbance spectrum of the immobilized CA surface after

exposure to CuTPPS1.  The results of peak fitting indicate that there are two peaks

involved in this spectrum at 427 and 454 nm.  Exposure of the surface to cysteine results

in changes at both of these peaks though not to the same degree.  There is an 11% loss in

absorbance intensity at 427 nm with a 45% loss in absorbance intensity at 454 nm.  The

use of the CA-CuTPPS1 surface was not pursued due to the very broad loss in intensity,

the shallow slope of the concentration dependence curve, and the lack of response to CO2

exposure.

The absorbance spectrum of the immobilized carbonic anhydrase surface after

exposure to CuCTPP1 is shown in Figure 8.14.  The absorbance spectrum between 375

and 500 nm can be fitted by three peaks at 404, 410, and 434 nm.  Exposure of the

immobilized porphyrin-enzyme surface to inhibitors of CA results in a loss in absorbance

at 404 nm.  This loss in absorbance shows a log-linear dependence on inhibitor
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concentration for saccharin, 1,10-phenanthroline, and cysteine (Figure 8.15) with the

slope of the concentration dependence varying depending on the inhibitor being used.

The ability of the immobilized carbonic anhydrase-CuCTPP1 surface to detect

gaseous CO2 was also investigated.  Exposure of the surface to CO2-N2 mixtures results

in a loss in absorbance intensity at 404 nm with an increase in absorbance intensity at 434

nm (Figure 8.16).  The dependence of this change in absorbance on concentration is

shown in Figure 8.16.  The expected half hyperbolic dependence on concentration is

observed.  The CO2 limit of detection for this system based on a 3:1 S/N level is 1,000

ppm.

8.4  DISCUSSION

While competitive inhibition of the enzyme by the porphyrin does not guarantee

binding of the zinc but may only block substrate access to the active site, the variation in

the porphyrin-enzyme interaction peaks when zinc is removed from the active site of CA

(Figures 8.11 and 8.12) strongly suggests and is consistent with the interaction of the

porphyrin with the coordinated zinc.  Data presented here indicate the copper complexed

porphyrins bind at the active site while metal-free porphyrins do not.  The ability of the

metalloporphyrin to bind zinc in place of its original metal is greater than the ability of

free porphyrin to bind zinc.  Typical addition of zinc to porphyrins does not occur readily

and is effected by refluxing the porphyrin with zinc.  The improved ability to bind zinc

may be the result of faster formation of metalloporphyrin species through metal

substitution as compared to metallation of a free porphyrin ring [289-291].  In addition, it

has been demonstrated that porphyrins with slightly deformed ring structures more

readily exchange metal ions than those with less flexible rings [288].  The structure of
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Cu2+- NH2TPP is highly symmetric while those of Cu2+-TPPS1 and Cu2+-CTPP1 have

fewer symmetries and therefore less rigid rings.  Thus both metal exchange factors and

ring flexibility influence the binding of the porphyrins to the zinc containing active site of

carbonic anhydrase.

The porphyrins TPPS1 and CTPP1 each have four phenyl rings as substituents

with one phenyl bearing a sulfonate or carboxy group in the para position both of which

are negatively charged at pH 7.  The combination of the hydrophobicity of the phenyl

rings together with the negative character of the substituents may also influence

porphyrin-enzyme interaction as the interaction; the interaction of an inhibitor with the

active site residues is an important factor in inhibitor binding.  CuTPPS1 and CuCTPP1

have been shown to be reversible competitive inhibitors of the enzyme carbonic

anhydrase while the positive charge bearing CuNH2-TPP does not inhibit the enzymatic

activity and the more water soluble CuTPPS4 does not bind at the active site of CA.

Preliminary results indicate that we will be able to use similar porphyrins to

inhibit other zinc metalloenzymes.  Organophosphorous hydrolase (OPH) is a zinc

containing metalloenzyme that upon binding of a copper metalloporphyrin alters the

absorbance spectrum of the porphyrin.  The absorbance spectrum of the OPH-porphyrin

complex is subsequently changed upon exposure to a competitive inhibitor of OPH

indicating that the binding of the porphyrin likely takes place at the OPH active site.

Based on the work presented here it seems likely that the porphyrin interacts with the

zinc containing active site of OPH.

  We have demonstrated the ability of copper metalloporphyrins to reversibly bind

the active site of the zinc metalloenzyme carbonic anhydrase.  Further, we have shown
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the application of this interaction with immobilized CA for detection of compounds that

bind at the active site of CA and for quantification of the CO2 content of gas samples

from 1,000 to 10,000 ppm (0.1 to 1%).  Typical outdoor CO2 levels are around 300 ppm

(0.03%).  Levels of CO2 from 2,500 to 5,000 ppm (0.25 to 0.5%) can cause symptoms

such as burning eyes, tiredness, and headaches.  Levels of CO2 in this range can result

from improper building ventilation or from the used of unvented fuel-burning space

heaters.  The American Society of Heating Refrigeration and Air Conditioning Engineers

(ASHRAE) standard 62-1989, Ventilation for Acceptable Indoor Air Quality indicates

that indoor CO2 levels should be below 1,000 ppm (0.1%).  CO2 levels of 100,000 ppm

(10%) can cause loss of consciousness while levels of 200,000 ppm (20%) can cause

respiratory paralysis.  These levels of CO2 can be encountered in caves by spelunkers.

There is also interest in monitoring CO2 levels in airplane cabins, on board shuttle

missions, and on the International Space Station as these are nearly closed systems.  CO2

levels are also of interest for some environmental monitoring situations such as the CO2

levels in a region following a violent lake turnover and the release of magmatic carbon

dioxide.
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   INTERACTION OF PORPHYRINS WITH CARBONIC ANHYDRASE 

 

 

    Inhibitors        

Porphyrin T P  PC-NH2  D-cys  1,10-P  Sacc  

 (nm) (nm)  PB RB PB RB PB RB PB RB 
Cu-TPPS No Interaction           

Cu-TPPS1 407  440   Yes No Yes No Yes Yes Red. No 

Cu-CTPP1 412  427   Yes No Yes Yes Yes Yes Yes Red. 

Cu-NH2TPP 418  465   Yes No Yes No Yes No Yes No 

Cu-TPPT 412  428   Yes No Red. No Yes Red. Yes No 

Cu-TPPB 412  427   Yes No Yes Yes Yes Yes Yes No 

            

TPPS 412  425   Indet. Indet. Yes No Yes Yes No No 

TPPS1 400  429   Yes No No No Yes Yes No No 

CTPP1 413  424   Yes Yes Yes Yes Yes Indet. Yes Yes 

NH2TPP 418  465   Yes No Yes No No No Yes No 

CTPP4 410  420   Indet. Indet. Yes Yes Yes Yes No No 

TPPT 412  428   No No Yes No No No Yes No 

TPPB 399  429   Yes Yes Yes Yes Yes Yes Yes No 

 

 

 

 

 

 

TABLE 8.1     Summary of the effects of inhibitors of carbonic anhydrase on the 

porphyrin-CA complexes.  Inhibitors:  PC-NH2 = penicillamine, D-cys = 

D-cysteine, 1,10-P = 1,10-phenanthroline, and Sacc = Saccharin.  Table 

Abbreiviations:  Indet. = indeterminate, Red. = reduces, P = peak, T = 

Trough, PB = prevents binding, and RB = reverses binding. 
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PORPHYRIN-METAL COMPLEX FORMATION 

 
 
 

 
 

 

FIGURE 8.1 All curves have been scaled to match at the Soret peak and a factor has 

been added to achieve the separation between the curves.  TPPS was 

incubated with CuSO4 (both analytes at the indicated concentration) 

overnight (minimum 24 hrs) at room temperature.  Spectra are measured 

in 50 mM NaPi at pH 7.  The difference spectrum is CuTPPS from the 30 

µM incubation minus TPPS. 
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CU-TPPS1 AND TPPS1 WITH CARBONIC ANHYDRASE 

 

 
 
 
 

 

 

 

FIGURE 8.2 The spectra labeled TPPS1 and Cu-TPPS1 show the absorbance spectrum 

of the porphyrins before and after addition of CA.  The (1) Cu-TPPS1 (3 

µM) + CA (112 nM) minus Cu-TPPS1 [399] and (2) TPPS1 (0.8 µM) + 

CA (112 nM) minus TPPS1 difference spectra show that the porphyrin 

interaction wavelengths differ between the two porphyrins. 
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NH2TPP AND CU-NH2TPP WITH CARBONIC ANHYDRASE  

 

 
 
 
 

 

FIGURE 8.3 The spectra labeled NH2TPP and Cu-NH2TPP show the absorbance 

spectrum of the porphyrins before and after addition of CA.  The (1) Cu-

NH2TPP (1.6 µM) + CA (112 nM) minus Cu-NH2TPP [399] and (2) 

NH2TPP (1.6 µM) + CA (112 nM) minus NH2TPP difference spectra show 

that the porphyrin interaction wavelengths do not differ between the two 

porphyrins but the strength of the interaction does. 
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CTPP1 AND CU-CTPP1 WITH CARBONIC ANHYDRASE  

 

 
 
 
 

 

FIGURE 8.4 The spectra labeled CTPP1 and Cu-CTPP1 show the absorbance spectrum 

of the porphyrins before and after addition of CA.  The (1) Cu-CTPP1 (1.6 

µM) + CA (112 nM) minus Cu-CTPP1 [399] and (2) CTPP1 (1.6 µM) + 

CA (112 nM) minus CTPP1 difference spectra show that the porphyrin 

interaction wavelengths do not differ between the two porphyrins but the 

strength of the interaction does. 
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TPPS4 AND CU-TPPS4 WITH CARBONIC ANHYDRASE  

 
 

 
 
 

 

FIGURE 8.5 The spectra labeled TPPS4 and Cu-TPPS4 show the absorbance spectrum 

of the porphyrins before and after addition of CA.  The (1) Cu-TPPS4 (1.6 

µM) + CA (112 nM) minus Cu-TPPS4 and (2) TPPS4 (1.6 µM) + CA (112 

nM) minus TPPS4 difference spectra show that while the troughs are at the 

same location in the difference spectra, the TPPS4 spectrum has a peak at 

422 nm that is not present in the Cu-TPPS4 spectrum. 
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TPPB AND CU-TPPB WITH CARBONIC ANHYDRASE  

 

 
 
 
 

 

FIGURE 8.6 The spectra labeled TPPB and Cu-TPPB show the absorbance spectrum of 

the porphyrins before and after addition of CA.  The (1) Cu-TPPB (1.6 

µM) + CA (112 nM) minus Cu-TPPB and (2) TPPB (1.6 µM) + CA (112 

nM) minus TPPB difference spectra show that the porphyrin interaction 

wavelengths differ between the two porphyrins as does the strength of the 

interaction. 

TPPB Cu-TPPB 

Wavelength (nm)
390 405 420 435

A
bs

or
ba

nc
e

0.00

0.03

0.06

0.09

Wavelength (nm)
390 405 420 435

A
bs

or
ba

nc
e

0.00

0.03

0.06

0.09

Wavelength (nm)
390 405 420 435

40
3 

nm

42
4 

nm

1

2

0.002 A

∆ 
A

bs
or

ba
nc

e 41
2 

nm

42
7 

nm



    187

LINEWEAVER-BURK PLOT OF CARBONIC ANHYDRASE ACTIVITY 

 
 
 
 
 

 

 

 

 

 

 

 

FIGURE 8.7 Enzymatic activity of carbonic anhydrase in the absence (!)/presence of 

3 µM Cu-TPPS1 (") and 1.8 µM Cu-CTPP1 (#) shows a Vmax of 170 

µM/min for p-NPA [399]. 
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REVERSAL OF PORPHYRIN BINDING BY COMPETITIVE INHIBITORS 

 
 

 
 
 

FIGURE 8.8 A.  The reversal of Cu-TPPS1 binding to CA demonstrated by the 

difference spectra Cu-TPPS1 (1.8 µM)+ CA (112 nM)+ 1,10-

phenanthroline (2 µM) minus Cu-TPPS1 (1) and Cu-TPPS1 (1.8 µM)+ 

1,10-phenanthroline (2 µM)  minus Cu-TPPS1 (2) [399]. 

 B.  The reversal of Cu-CTPP1 binding to CA demonstrated by the 

difference spectra Cu-CTPP1 (1.8 µM)+ CA + 1,10-phenanthroline (2 µM) 

minus Cu-CTPP1 (1) and Cu-CTPP1 (1.8 µM)+ 1,10-phenanthroline (2 

µM)  minus Cu-CTPP1 (2) [399]. 
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EFFECT OF UNCOMPETITIVE INHIBITORS 

 
 

 
 

 

FIGURE 8.9 A.  Cu-TPPS1 (1) with 3.3 µM sodium thiocyanate (2) a noncompetitive 

inhibitor of CA.  B.  Cu-TPPS1 (1) with 112 nM carbonic anhydrase (2) 

and 3.3 µM sodium thiocyanate (3).  C.  The difference spectra Cu-TPPS1 

(1.8 µM) + sodium thiocyanate (3.3 µM) minus Cu-TPPS1 (1); Cu-TPPS1 

(1.8 µM) + CA (112 nM) minus Cu-TPPS1 (2); and Cu-TPPS1 (1.8 µM) + 

CA (112 nM) + sodium thiocyanate minus Cu-TPPS1 (3). 

All samples are in 50 mM pH 7 NaPi.   
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EFFECT OF UNCOMPETITIVE INHIBITORS 

 
 

 
 

 

FIGURE 8.10 A.  Cu-CTPP1 (1) with 3.3 µM sodium thiocyanate (2) a noncompetitive 

inhibitor of CA.  B.  Cu-CTPP1 (1) with 112 nM carbonic anhydrase (2) 

and 3.3 µM sodium thiocyanate (3).  C.  The difference spectra Cu-CTPP1 

(1.8 µM) + sodium thiocyanate (3.3 µM) minus Cu-CTPP1 (1); Cu-CTPP1 

(1.8 µM) + CA (112 nM) minus Cu-CTPP1 (2); and Cu-CTPP1 (1.8 µM) + 

CA (112 nM) + sodium thiocyanate minus Cu-CTPP1 (3). 

All samples are in 50 mM pH 7 NaPi.   
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CU-CTPP1 INTERACTION WITH ZN-CONTAINING ACTIVE SITE 

 
 
 

 

 

 

 

FIGURE 8.11 The difference spectra Cu-CTPP1 + enzyme minus Cu-CTPP1 for (1) 

carbonic anhydrase, (2) zinc free carbonic anhydrase, (3) zinc replaced 

carbonic anhydrase. 

All samples are in 50 mM pH 7 NaPi [399].   
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CU-TPPS1 INTERACTION WITH ZN-CONTAINING ACTIVE SITE 

 

 
 

FIGURE 8.12 The difference spectra Cu-TPPS1 + enzyme minus Cu-TPPS1 for (1) 

carbonic anhydrase, (2) zinc free carbonic anhydrase, (3) zinc replaced 

carbonic anhydrase.  All samples are in 50 mM pH 7 NaPi.  The second 

figure shows Traces 2 and 3 on a more appropriate scale [399]. 
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CU-TPPS1 IES 

 
 

 
 

 

 

 

FIGURE 8.13 (A)  The absorbance spectrum of the immobilized CuTPPS1-CA complex 

before and after exposure to cysteine.  (B)  The difference spectrum 

CuTPPS1 + CA + cysteine (10 ppm) minus CuTPPS1 + CA for the 

immobilized CuTPPS1-CA complex. 
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EXPOSURE OF IES TO INHIBITORS IN SOLUTION 

 
 

 
 

 

 

FIGURE 8.14 (A)  The absorbance of the immobilized CA surface before (1) and after 

(2) exposure to cysteine shown with the results of peak fitting.  (B)  The 

difference spectra, IES + inhibitor minus IES, for  1 ppm 1,10-

phenanthroline (1), 3 ppm  cysteine (2), and 7 ppm saccharin (3) [399]. 
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CONCENTRATION DEPENDENCE OF ABSORBANCE CHANGES 

 

 

 
 

FIGURE 8.15 The dependence on concentration of the absorbance change at 404 nm 

upon exposure to:  saccharin (A), 1,10-phenanthroline (B), cysteine (C) 

[399]. 
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EXPOSURE OF IES TO CO2 AS A VAPOR 

 
 
 
 
 

FIGURE 8.16 A.  The difference spectrum CuCTPP1 + CA + CO2 (1%) minus CuCTPP1 

+ CA for the immobilized CuCTPP1-CA complex [399]. 

 B.  The concentration dependence of the absorbance change of the 

immobilized CuCTPP1-CA complex upon CO2 exposure [399]. 
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CHAPTER 9 

ORGANOPHOSPHORUS HYDROLASE 

 

9.1  STRUCTURE AND FUNCTION 

Organophosphorus compounds (OPs) are used as agricultural and domestic 

pesticides functioning as insecticides, fungicides, and herbicides.  This class of 

compounds also includes chemical warfare agents such as sarin and soman.  OPs inhibit 

the activity of cholinesterase in a nearly irreversible manner resulting in malfunction of 

nerve impulse transmission.  The result in humans can be illness or even death.  Exposure 

can result from occupational activities or can be a result of casual contact with 

contaminated air, food, or water.  The potential health consequences of exposure make a 

simple, inexpensive detector of OPs desirable.  Such a detector should be compact and 

light weight for portability and give a minimum of false positives/negatives with as little 

technical expertise as possible. 

Organophosphorus hydrolase (OPH, often referred to as phosphotriesterase, 

systematic name aryltriphosphate dialkylphosphohydrolase) is capable of hydrolyzing a 

wide variety of OPs including those with P-O, P-F, P-CN, and P-S phosphoryl bonds to 

the phosphorus center (Figures 9.1 and 9.2).  The protein active site contains two zinc 

atoms required for full catalytic activity [545].  The apo-enzyme can be activated by 

reconstitution with zinc (Zn2+), cobalt (Co2+), cadmium (Cd2+), nickel (Ni2+), or 

manganese (Mn2+).  Reconstitution with cobalt or cadmium results in a higher degree of 

enzymatic activity than that observed in the wild-type enzyme [546].  The enzymatic 

activity of OPH has been shown to be stable at temperatures up to 50° C [547]. 
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The use of this enzyme for degradation of OPs as a decontamination protocol has 

been discussed extensively [547-557].  The hydrolysis rates of OPs by OPH exceed those 

of chemical hydrolysis using 0.1 N NaOH at 4° C by factors of 40 to 2450 times.  OPH 

has also been used for detection of organophosphorus compounds both in microbial 

systems [472-473, 478] and as a purified enzyme [4, 10-12, 466, 480, 544, 558] using 

techniques such as optical, acoustic, potentiometric, and amperometric.  Detection limits 

as low as 90 nM paraoxon and 70 nM methyl parathion have been demonstrated at a 

response time on the order of 10 seconds [4] and a theoretical limit of detection of 16 nM 

paraoxon has been reported for a slightly longer response time of 45 seconds [558]. 

 

9.2  MATERIALS AND METHODS 

Monosulfonate tetraphenyl porphyrin (TPPS1) and meso-tri(4-sulfonato phenyl) 

mono(4-carboxy phenyl) porphyrin (C1TPP) were obtained from Frontier Scientific 

(Logan, UT).  Copper metalloporphyrins were obtained by placing the porphyrin in 

solution at a concentration less than 45 µM with cupric sulfate overnight at 4° C.  

Diazinon, paraoxon, coumaphos, and malathion were obtained from Sigma (St. Louis, 

MO). 

Organophosphorus hydrolase (OPH, EC 3.1.8.1) was obtained from the research 

group of Dr. A. Mulchandani using a protocol detailed by Omburo [546] using E. coli 

carrying plasmid pJK33.  Cells are grown for 35 to 38 hrs at 31°C in a medium consisting 

of tryptone, yeast extract, glycerol, and potassium phosphate buffer.  The cells were 

harvested by centrifugation and washed with water followed by resuspension in 50 mM 

HEPES buffer pH 8.5 containing 50 µM CoCl2 with a protease inhibitor.  The cells were 
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then lysed and the suspension was again centrifuged retaining the supernatant.  

Polyethyleneimine was added to 0.4% followed by ammonium sulfate fractionation.  The 

suspension was again centrifuged retaining the pellet.  The pellet was then passed through 

a Sephadex G-150 column followed by a DEAE-Sephadex column.  The protein was then 

concentrated by lyphilization, dialysed against the HEPES buffer and concentrated using 

a speed vac.  The final specific activity of the protein was determined to be 7250 IU/mg 

protein based on the rate of p-nitrophenol (pNP) production per minute per milligram 

protein based on hydrolysis of 1 mM paraoxon in pH 8.5 at 30°C.  The production of 

pNP can be monitored by the increase in absorbance at 412 nm (extinction coefficient 

16500 M-1 cm-1).  Purified enzyme was stored at less than 0°C. 

The enzymatic activity of OPH in solution was measured spectrophotometrically 

at 412 nm at 37°C by the protocol of Mulchandani, et al. [441].  First, a background 

reaction rate was measured using a cuvette containing 2.7 ml 50 mM HEPES buffer pH 

8.5 with 50 µM CoCl2, x µl 10 mM paraoxon in methanol, (100 - x) µl methanol, y µl 

porphyrin, and (100 - y) µl water.  After the background rate was measured, 20µl dilute 

OPH was added to the cuvette.  The absorbance changes resulting from increasing pNP 

concentration were measured over time (see Chapter 2) at 412 nm.   

OPH was immobilized to glass surfaces by the process described earlier for the 

cholinesterase systems (Chapters 4 and 5).  Briefly, the ProbeOn™ Plus slides were 

activated by glutaraldehyde followed by interaction with amino-terminated Starburst® 

PAMAM dendrimer (generation 4, Aldrich, Milwaukee, WI).  The remaining activated 

amino groups were blocked using TRIS.  The resulting surface was again activated by 

glutaraldehyde and the steps repeated, that is, interaction with PAMAM dendrimer and 
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blocking of residual groups with TRIS.  The surface coated now with two layers of 

PAMAM dendrimer was again activated with glutaraldehyde followed by exposure to the 

enzyme OPH (0.3 mg/ml) and blocking of remaining sites by TRIS.  Slides were stored at 

room temperature after vacuum packing in three layer food saver bags using a FoodSaver 

(Vac360) from Tilia (San Francisco, CA).  Binding of the porphyrin to the enzyme active 

site is accomplished by applying 0.5 mg/ml copper complexed meso-tri(4-sulfonato 

phenyl) mono(4-carboxy phenyl) porphyrin (Cu-CTPP1) or copper complexed 

monosulfonate tetraphenyl porphyrin (Cu-TPPS1)in 50 mM pH 7 sodium phosphate 

(Sorenson) buffer (NaPi) to the surface and allowing to interact for 15 minutes. 

The enzymatic activity of the surfaces was measured as follows:  5 µl 10 mM 

paraoxon in methanol and 195 µl 100 mM pH 7 NaPi buffer were applied to the surface 

and allowed to interact for 3 minutes.  A 1 ml cuvette was prepared containing 800 µl 

H2O and 150 µl of the reacted solution was added.  The spectrum of the resulting sample 

was measured using a Cary 4 at 2 nm resolution from 350 to 650 nm.  The activity was 

monitored by the intensity of the absorbance at 412 nm.   

The viability of the slides was also verified by challenging the immobilized 

porphyrin-enzyme complex with diazinon.  Porphyrin was applied to the surfaces less 

than three hours prior to surface response testing.  Response was determined by exposing 

the surface to 200µl 30 ppb diazinon in 50mM pH 7 NaPi for 3 minutes and measuring 

the resulting change in absorbance at 417 nm.  The absorbance spectra of the slides was 

measured by the evanescent wave technique described previously (Chapter 5) using an 

Ocean Optics USB2000 spectrophotometer with an LED light source (maximum 

wavelength 434 nm, 83 nm FWHM). 
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9.3  RESULTS 

 We investigated the interaction of several porphyrins with OPH in order to 

determine those that elicited a peak-trough pair in the difference spectrum porphyrin + 

enzyme minus porphyrin upon interaction with OPH.  Figure 9.3 shows the difference 

spectra porphyrin + OPH minus porphyrin for TPPS1, NH2TPP, CTPP1, and TPPS4.  

Though the absorbance spectra of TPPS1 and NH2TPP were strongly effected by the 

presence of OPH, no clear effect on the porphyrin-enzyme complex could be observed 

upon addition of diazinon.  Diazinon was chosen rather than paraoxon because the 

hydrolysis product does not absorb in the region of interest. 

 Experiments with carbonic anhydrase (Chapter 8) [399] indicated that copper 

metalloporphyrins would be more likely to interact with the active site of OPH.  Figure 

9.4 shows the interaction of Cu-NH2TPP with OPH as well as the effect of diazinon on 

the complex and the binding of Cu-NH2TPP to the OPH-diazinon complex.  Interaction 

of Cu-NH2TPP with diazinon does not result in a change in the absorbance spectrum.  

Results of peak fitting of the data are also presented for emphasis.  The data shows very 

little change in the absorbance spectrum of the porphyrin-enzyme complex upon addition 

of diazinon, however, binding of Cu-NH2TPP to the OPH-diazinon complex shows 

strongly different results from those of binding to OPH alone.  The indication is that the 

porphyrin binds to a site on the enzyme other than at the active site.  The large difference 

in the binding of the porphyrin to OPH alone and the binding to the OPH-diazinon 

complex is likely due to the change in conformation of the enzyme allowing the 
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porphyrin to bind to a different combination of residues.  In the case of Cu-NH2TPP, this 

binding is much stronger than that to OPH alone. 

 The difference spectrum CuTPPS1 + OPH minus CuTPPS1 shows the changes in 

the CuTPPS1 absorbance spectrum upon interaction with OPH with a peak at 422 nm and 

a trough at 400 nm (Figure 9.5, Trace 1).  The interaction of CuTPPS1 with diazinon 

results in a difference spectrum with a pair of troughs at 408 nm and 426 nm and no new 

peak (Figure 9.5, Trace 2).  The characteristics of the difference spectrum for the 

interaction of CuTPPS1 with OPH and diazinon (Figure 9.5, Trace 3) are different than 

the sum of the interactions with OPH (Trace 1) and diazinon (Trace 2) alone.  The 419 

nm peak observed in the OPH spectrum is no longer apparent, however, a peak at 417 nm 

observed for neither OPH nor diazinon is observed in this difference spectrum.  This 

indicates that diazinon does effect the binding of CuTPPS1 to OPH, but what effect it has 

it is not clear.  CuTPPS1 and CuC1TPP absorbance spectra showed stronger, more 

specific changes than other copper-porphyrin absorbance spectra. 

 Cu-CTPP4 and Cu-TPPS4 did not give a peak trough pairs upon interaction with 

OPH.  The interaction of Cu-CTPP1 with OPH is shown in Figure 9.6.  The interaction of 

Cu-CTPP1 with OPH (shown in Figure 9.6, Trace A) results in a shift in the absorbance 

spectrum of Cu-CTPP1 from 412 nm to 419 nm.  The interaction of diazinon with Cu-

CTPP1 results in a shift in absorbance from 406 to 413 nm (Figure 9.6, Trace D).  When 

the Cu-CTPP1-OPH complex is exposed to diazinon, there is a loss in absorbance 

intensity for the Cu-CTPP1-OPH complex at 403 nm with no corresponding increase in 

absorbance (Figure 9.6, Trace C).  The difference spectrum Cu-CTPP1 + OPH + diazinon 

minus Cu-CTPP1 shows the effect of OPH and diazinon on the spectrum (Figure 9.6, 
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Trace B).  The results of peak fitting this trace indicate that some of the Cu-CTPP1-OPH 

interaction remains.  This is apparent from the presence of trough at 419 and peak at 412 

nm as in the Cu-CTPP1 + OPH minus Cu-CTPP1 spectrum.  In the presence of diazinon 

these peaks have 80% of the intensity observed in the presence of OPH alone.  This 

generally indicates partial reversal of binding, however, the peak/trough pair appearing in 

this spectrum at 423 and 401 nm are not the characteristic peaks for the Cu-CTPP1-

diazinon interaction as would be expected.  If the porphyrin binds at an alosteric site on 

the enzyme rather than at the active site, the binding of a competitive inhibitor could 

cause a conformational change in the protein which would influence the spectral 

characteristics of the porphyrin.  The result would be peaks in the difference spectrum 

characteristic for neither the porphyrin-inhibitor interaction nor the porphyrin-OPH 

interaction, as observed here. 

Lineweaver-Burk plots of OPH activity in the absence/presence of porphyrin 

inhibitors are shown in Figure 9.7.  The linear plots of rate-1 versus substrate 

concentration-1 indicate that inhibition of OPH by Cu-CTPP1 and Cu-TPPS1 is mixed 

type inhibition.  Intersection of the two lines (absence/presence of porphyrin) at the y-

axis would indicate no change in maximal enzymatic rate (Vmax) and therefore 

competitive inhibition.  The substrate concentration needed to achieve half of Vmax (Km) 

for paraoxon under the above described conditions is 76 µM with a Vmax of 1 mM/min.  

In the presence of 250 nM Cu-CTPP1 both Km and Vmax are changed giving 359 µM and 

814 µM/min, respectively while in the presence of 150 nM Cu-TPPS1 Km = 124 µM and 

Vmax = 493 µM/min.  Cu-NH2TPP did not inhibit the activity of OPH. 
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OPH was immobilized to ProbeOn Plus microscope slides and allowed to interact 

with Cu-CTPP1.  The immobilized OPH-Cu-CTPP1 absorbance spectrum as measured by 

the evanescent technique is shown in Figure 9.8.  Peak fitting this spectrum indicates the 

involvement of two peaks at 412 nm and 430 nm.  Upon addition of paraoxon to the slide 

surface, a loss in intensity of the 412 nm peak is observed with no loss in intensity at the 

430 nm peak.  The implication is that the 412 nm peak is due to interaction of the 

porphyrin with the active site of the enzyme while the 430 nm peak results from 

nonspecific interaction with other areas of the enzyme or with other parts of the slide 

surface.   

The loss in intensity at 412 nm shows log-linear dependence on paraoxon 

concentration (Figure 9.9) with a 3:1 S/N detection limit of 7 ppt.  The interaction of 

other OPH substrates with the surface was also investigated.  All substrates showed the 

log-linear dependence on concentration with limits of detection at 800 ppt diazinon, 250 

ppt coumaphos, and 1.0 ppb malathion (Figures 9.9 and 9.10). 

The lifetime of the slide surfaces is an important issue to be considered when 

designing a system to be used outside of a laboratory environment.  Slides were stored 

under vacuum (as described above) prior to porphyrin exposure.  The enzymatic activity 

of the slides was monitored over a period of 232 days and the response of porphyrin-

enzyme complex to inhibitor exposure was monitored over a period of 100 days (Figure 

9.11).  No significant changes in enzymatic activity were observed using a paraoxon 

assay.  Substrate challenge of the CuC1TPP surfaces by 30 ppb diazinon in 50 mM pH 7 

NaPi yielded the expected loss in absorbance at 412 nm throughout the trials. 
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9.4  DISCUSSION 

 We have demonstrated the use of CuC1TPP as a colorimetric indicator for the 

binding of organophosphates to organophosphorus hydrolase.  A log-linear relationship 

exists between the absorbance change at 412 nm and concentration for diazinon, 

paraoxon, coumaphos, and malathion.  Unlike previously described work with other 

enzymes [393, 397-398], the inhibition of OPH by Cu-CTPP1 is not competitive rather it 

is mixed type inhibition.  Mixed-type inhibition involves the binding of inhibitor to two 

or more sites on the enzyme one of them being the active site.  Cu-TPPS1 also inhibits the 

activity of OPH in a mixed manner, however, the changes in absorbance upon substrate 

exposure for the Cu-TPPS1-OPH complex were much less intense than those of the Cu-

CTPP1-OPH complex resulting in higher limits of detection.  Our detection system will 

work for porphyrins binding at the active site of the enzyme regardless of whether they 

are competitive or mixed type inhibitors.  7 ppt (25 x 10-12 M) paraoxon can be detected 

with immobilized Cu-CTPP1-OPH complex exceeding the detection limits reported 

previously [4] for OPH based systems with a response time of less than 10 seconds.  The 

surface relies on the binding specificity of the enzyme responding only to the presence of 

those compounds that bind at the active site of OPH.   

The prototype system for evanescent absorbance spectrum measurements includes 

a sample holder, Ocean Optics USB2000 with lithium battery pack, diode light source, 

and Compaq Pocket PC for a total weight of less than one kilogram (Figure 9.12).  We 

have had limited success in developing a system employing small solid-state photodiodes 

fitted with bandpass filters for detection of absorbance changes.  A system of this type 
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would be less expensive, lighter weight, and more compact, desirable characteristics for a 

system to be used by first responders or military personnel.   

  We have described a broad spectrum detection protocol for the presence of 

organophosphates.  Identification of the specific compound involved is not possible using 

this system as described.  In the cases of organophosphates with hydrolysis products that 

absorb in the region between 400 and 500 nm (paraoxon, coumaphos), identification may 

be possible based on the absorbance spectrum.  For other organophosphate compounds, 

there are two possibilities for identification.  For the first possibility, a range of 

concentrations can be assayed to obtain a slope that can be compared to the slope of the 

absorbance change versus concentration for known compounds.  This requires much 

more time than a single measurement.  Second, a combination of enzymes with varying 

sensitivity to OPs can be used to achieve a system capable of identifying the particular 

OP involved.  Systems of this type have been described previously using OPH with 

acetylcholinesterase [466] or a combination of cholinesterases [395, 435, 470].  In a 

system of this type the different enzymes respond simultaneously, so that response time is 

not increased.  There has been some work on mutation of OPH to change the binding 

specificity for different substrates [559-561] and there are other enzymes that bind OPs 

including organophosphorus acid anhydrase.  Combinations of OPH as used here with 

other OP binding enzymes could be used in a system similar to the one described here 

allowing for identification of the detected analyte. 
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REACTION CATALYSED BY OPH

FIGURE 9.1 OPH catalyses the hydrolysis of the phosphoryl bond of OPs.  Hydrolysis

of paraoxon yields p-nitrophenol with an absorption peak at 412 nm (e =

16500 M-1 cm-1) [544].
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   ORGANOPHOSPHATES

FIGURE 9.2     Structures of some organophosphate compounds.
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INTERACTION OF OPH WITH PORPHYRINS IN SOLUTION 
 
 

 
 

 

 

 

 

 

FIGURE 9.3 The interaction of TPPS1 (Trace 1), NH2TPP (Trace 2), CTPP1 (Trace 3), 

and TPPS (Trace 4) with OPH shown as difference spectra, porphyrin + 

OPH minus porphyrin. 
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INTERACTION OF OPH WITH CU-NH2TPP IN SOLUTION 
 
 
 

 

 

 

FIGURE 9.4 The difference spectra Cu-NH2TPP + OPH minus Cu-NH2TPP (A),  Cu-

NH2TPP + OPH + Diazinon minus Cu-NH2TPP (B), and Diazinon + OPH 

+ Cu-NH2TPP  minus Cu-NH2TPP (C) are shown along with the results of 

peak fitting the spectra in Grams/32. 
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INTERACTION OF OPH WITH CU-TPPS1 IN SOLUTION 
 
 
 

 

 

 

 

 

 

 

 

FIGURE 9.5 The interaction of CuTPPS1 with OPH and diazinon:   

CuTPPS1 (1.0 µM) + OPH (3 µg, 7250 IU/mg) minus CuTPPS1 (Trace 1); 

CuTPPS1 (1.0 µM) + diazinon (65 nM) minus CuTPPS1 (Trace 2); 

CuTPPS1 (1.0 µM) + OPH (3 µg, 7250 IU/mg) + diazinon (65 nM) minus 

CuTPPS1 (Trace 3) [396]. 
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INTERACTION OF OPH WITH CU-CTPP1 IN SOLUTION 
 
 

 

 

 

FIGURE 9.6 The difference spectra Cu-CTPP1 (1.4 µM) + OPH (3 µg, 7250 IU/mg) 

minus Cu-CTPP1 (A),  Cu-CTPP1 + OPH + Diazinon minus Cu-CTPP1 

(B), Cu-CTPP1 (1.4 µM) + OPH (3 µg, 7250 IU/mg) + Diazinon (65 nM) 

minus Cu-CTPP1 + OPH (C), Cu-CTPP1 + Diazinon minus Cu-CTPP1 

(D), and Diazinon + OPH + Cu-CTPP1  minus Cu-CTPP1 (E) are shown 

along with the results of peak fitting the spectra in Grams/32 [396]. 
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LINEWEAVER-BURK PLOT OF OPH ACTIVITY 
 
 

 
FIGURE 9.7 A.  Lineweaver-Burk plot of organophosphorous hydrolase activity in the 

absence (KM = 76 µM, Vmax = 1 mM/min) /presence of 250 nM Cu-CTPP1 

(KM = 359 µM, Vmax = 814 µM/min). 

 B.  Lineweaver-Burk plot of organophosphorous hydrolase activity in the 

absence (KM = 76 µM, Vmax = 1 mM/min) /presence of 150 nM Cu-TPPS1 

(KM = 124 µM, Vmax = 493 µM/min) [396]. 
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OPH SLIDE RESPONSE TO ANALYTE EXPOSURE 
 
 
 

 
 

FIGURE 9.8 The change in absorbance of the immobilized CuCTPP1-OPH complex 

upon exposure to 5 ppb paraoxon shown here as the difference spectrum 

CuCTPP1-OPH + paraoxon minus CuCTPP1-OPH [396]. 
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CONCENTRATION DEPENDENCE OF OPH RESPONSE 
 
 

 

 

FIGURE 9.9 The concentration dependence of the change in absorbance at 414 nm of 

the immobilized Cu-CTPP1-OPH complex upon exposure to paraoxon (A) 

and diazinon (B).  All samples were buffered in 50 mM pH 7 NaPi [396]. 
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OTHER OPH SUBSTRATES 
 
 

 

 

FIGURE 9.10 The concentration dependence of the change in absorbance at 412 nm of 

the immobilized Cu-CTPP1-OPH complex upon exposure to coumaphos 

(A) and malathion (B).  All samples were buffered in 50 mM pH 7 NaPi 

[396]. 
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OPH SLIDE LIFETIMES 
 
 

 
 

 

FIGURE 9.11 A.  Activity of OPH slides over 232 days measured by paraoxon assay 

[396]. 

 B.  Activity of OPH slides over 100 days as measured by response to 

diazinon challenge [396]. 
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PORTABLE UNIT 
 
 
 

 

 

 

 

 

 

 

FIGURE 9.12 The portable experimental setup with USB2000 and PDA. 
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CHAPTER 10

DETECTION OF DIPICOLINIC ACID

10.1  BIOLOGICAL TARGETS

Dipicolinic acid (DPA) comprises from 5 – 15% of the total dry weight of

bacterial spores [562].  DPA is a useful but non-specific indicator of the presence of

bacterial spores such as Bacillus anthracis (anthrax) and Clostridium botulinum

(botulism)[562] as well as members of the genus Bacillus that are non-virulent since it is

a nearly universal component of Bacillus spores.  Recent threats of contamination in the

United States and the continuing danger to military personnel and civilians alike indicate

the need for a detector of biological agents that operates in real time and that can function

in a variety of environments.  Several methods for detection of bacterial spores have been

developed including PCR [563-564], immunofiltration assay [565-566], polymorphism

analysis [567], direct detection of DNA sequences [568], liquid chromatography [569],

FT-IR [570] and those which indicate bacterial spore presence by detection of DPA [571-

581].

One method currently employed for detection of DPA is to measure the increase

in terbium fluorescence when it binds DPA [566, 568, 569, 581].  In this method,

solutions of DPA or bacterial spores are mixed with terbium solutions followed by

separation of insoluble materials.  Emission and excitation spectra are recorded from 450

nm to 640 nm and 270 nm to 280 nm respectively.  The Tb fluorescence intensity

increases without a wavelength shift in the emission spectrum [565-566, 568-569, 581].

However, phosphate containing compounds quench the fluorescence of the Tb-DPA
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complex [569]; this problem can be solved by adding AlCl3 to the solution prior to

separation of insoluble particles [581] to remove phosphate from solution.

Porphyrins can be immobilized to a variety of surfaces including cellulose, polystyrene,

glass, and quartz [454-456].  Immobilized meso-tetra (4-sulfonatophenyl) porphine

(TPPS) has been shown to detect the presence of several analytes including napthalene,

ethanol, acetone, and formaldehyde [456].  Schneider and Wang [284] demonstrated that

several aromatic compounds such as pyridine and benzoic acid interact with different

porphyrins resulting in compound specific spectrophotometric shifts.  Here we report the

effect of dipicolinic acid on the visible spectrum of six water-soluble porphyrins and the

corresponding zinc and copper metalloporphyrins at different pH values in solution.  The

data indicate that the absorbance spectra of three porphyrins are sensitive to the presence

of low concentrations of DPA and could be useful in the detection of DPA.

10.2 MATERIALS AND METHODS

Monosulfonate tetraphenyl porphyrin (TPPS1), tetra(4-aminophenyl) porphyrin

(NH2TPP), meso-tetra(4-boronic acid) porphyrin (TPPB), meso-tri(4-sulfonato phenyl)

mono(4-carboxy phenyl) porphyrin (CTPP1), meso-tetra(4-sulfonatophenyl)porphine

(TPPS), meso-tetra(4-carboxyphenyl)porphine (CTPP4), and meso-tri(4-

sulfonatophenyl)mono(4-carboxyphenyl)porphine-cytosine amide (TPSC1) were obtained

from Frontier Scientific (Logan, UT) and used without further purification. Dipicolinic

acid (DPA) was obtained from Sigma (St. Louis, MO).  Picolinic acid and benzoic acid

were obtained from Aldrich (Milwaukee, WI).  Pyridine was obtained from Eastman

Kodak (Rochester, NY).  Porphyrin-copper and porphyrin-zinc complexes were formed
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by mixing the respective porphyrin and cupric sulfate or zinc acetate in solution in a one

to one ratio and allowing to incubate overnight at 4ºC.

Visible light absorbance spectra of each porphyrin in the presence/absence of

DPA, picolinic acid, benzoic acid, and pyridine were recorded at room temperature in 25

mM sodium phosphate (Sorenson) buffer (NaPi) at pH 5.5, 7, and 11 with a Cary 4E

spectrophotometer at 0.02 nm resolution.  Absorbance spectra of each porphyrin in the

absence/presence of DPA were recorded at room temperature in buffer solution made in

D2O instead of H2O and in 7 M urea at pH 7.  Difference spectra were obtained by

subtraction of absolute spectra using Grams/32 (Galactic Industries, Salem, NH).  The

peak positions indicated in the figures were determined using the 2nd derivative of the

spectra taken with Grams/32.  Linear fittings were preformed using PSI-Plot (V 6.0a) at a

99% confidence interval.  The concentration dependence curves shown in Figures 10.1,

10.2, and 10.4 are the result of 5 separate titrations while those in Figures 10.3, 10.5,

10.6, and 10.7 are the result of 3 titrations.  Extinction coefficients for the porphyrins

were determined experimentally by measurement of the absorbance of solutions of

different porphyrin concentrations.  Fluorescence spectra were recorded as described for

absorbance spectra with a SPEX Fluoromax 3 spectrofluorometer (JY-Horiba, Edison,

NJ) using 2.5 nm resolution for excitation wavelength and 1.0 nm resolution for emission

wavelength.

Covalent immobilization of NH2TPP to glass was accomplished at room

temperature on ProbeOn™ Plus microscope slides obtained from Fisher Biotech

(Pittsburgh, PA.).  Microscope slides were activated with glutaraldehyde rinsing with

PBS (50 mM pH 9 sodium phosphate buffer with 50 mM NaCl).  Slide surfaces were
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then allowed to interact with 1 mM NH2TPP in dimethyl formamide for 30 minutes

followed by rinsing with water and ethanol to remove any unbound porphyrin (Chapter

4).  The slide was exposed to DPA by placing 100µl of the appropriate concentration on

the surface of the slide.  After allowing 1 minute for interaction, the excess solution was

blotted away.  Measurements were collected as described previously (Chapter 5) using an

Ocean Optics USB-2000 spectrometer with the output of a LED with maximum

wavelength at 434 nm and 83 nm HBW.

Immobilization of porphyrins onto cellulose fibers (Kimwipes  EX-L, Fisher

Scientific, Pittsburgh, PA) was accomplished as described (Chapter 4).  Tissues were

saturated with 1 mg/ml porphyrin in H2O for TPPS, ethanol for NH2TPP, and DMF for

TPPS1.  Tubes were sealed and stored overnight followed by rinsing in 1M NaCl and

50% ethanol solutions and drying at room temperature.  Spectra of Kimwipe®-

immobilized porphyrins were recorded using a dual wavelength spectrophotometer (SDB

- 3 Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA) at 0.125

nm intervals in a 3 ml cuvette containing the indicated concentration of DPA.

10.3  RESULTS

10.3.1  NH2TPP

Figure 10.1 shows the difference spectra of tetra(4-aminophenyl) porphyrin

(NH2TPP) + DPA minus NH2TPP obtained by the subtraction of the absolute spectra of

1.8 µM NH2TPP from the spectra of 1.8 µM NH2TPP in the presence of 200 nM (33.5

ppb) DPA.  The trough at 423 nm results from a loss in absorbance by unbound NH2TPP,

while the peak at 470 nm indicates a new weak absorbance band resulting from formation
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of the DPA-NH2TPP complex.  The increase in absorbance at 470 nm in the difference

spectrum shows hyperbolic dependence on DPA concentration with absorbance changes

leveling off around 84 ppb (502 nM) as seen in Figure 10.1 at pH 11, 7, and 5.5.

Levels of DPA as low as 11 ppb (65 nM) in solution have been detected with

NH2TPP (Figure 10.1) with a signal to noise ratio of 5:1.  Extrapolation of data to a 3:1

S/N limit indicates a theoretical limit of detection of 7 ppb (41 nM).  The changes in the

NH2TPP spectrum described above upon addition of DPA are not seen in the presence of

7M urea or when D2O is substituted for H2O in the solution (data not shown), suggesting

that the interaction likely involves hydrogen bonding [405].

10.3.2  TPPS1

The difference spectra of 1.2 µM monosulfonate tetraphenyl porphyrin (TPPS1) +

107 nM DPA (18 ppb) minus TPPS1 at pH 11, 7, and 5.5 are shown in Figure 10.2.  The

peaks at 434 nm and 441 nm indicate new absorbance bands resulting from the formation

of TPPS1-DPA complex while the troughs at 403 and 416 nm indicate a decrease in the

amount of unbound TPPS1.  Figure 10.2 shows the hyperbolic dependence of the increase

in absorbance at 441 nm in the TPPS1 absorbance spectrums resulting from DPA

additions.  Absorption spectra collected using D2O or 7 M urea show only a 15%

reduction in 434 nm and 441 nm absorbance as compared to those collected in 25 mM

NaPi buffer, therefore, the interaction of DPA and TPPS1 likely does not involve

hydrogen bonding.

10.3.3  CTPP4

The exposure of meso-tetra(4-carboxyphenyl)porphine (CTPP4) to DPA resulted

in a loss in absorbance intensity at 403 nm and a new absorbance peak at 415 nm as seen



   224

in the difference spectra CTPP4 + DPA minus CTPP4 (Figure 10.3, Traces 1 and 2).  No

new peak was observed for the interaction between CTPP4 and DPA at pH 5.5.  The

increase in absorbance at 415 nm is hyperbolically dependent on DPA concentration

above the 50 ppb (270 nM) limit of detection for pH 7.  The new absorbance peaks of

CTPP4 are not seen in the presence of D2O or urea indicating the involvement of

hydrogen bonding in the interaction.

10.3.4  TPPS

The interaction of meso-tetra(4-sulfonatophenyl)porphine (TPPS) with DPA

produced a decrease in absorbance at 410 nm and a new peak at 419 nm at pH 7 (Figure

10.4, Trace 1);  a new peak from the interaction between TPPS and DPA was not

observed at pH 5.5 or at pH 11.  The increase in absorbance at 419 nm at pH 7 is

hyperbolically dependent on DPA concentration (Figure 10.4).  The DPA-TPPS

absorbance at 419 nm is only 15% as intense when absorption spectra are collected in

D2O or urea as compared to those collected in 25 mM NaPi, suggesting that DPA forms

hydrogen bonds with TPPS.

10.3.5 OTHER PORPHYRINS

Meso-tetra(4-boronic acid) porphyrin (TPPB), meso-tri(4-sulfonato phenyl)

mono(4-carboxy phenyl) porphyrin (CTPP1), and meso-tri(4-sulfonatophenyl)mono(4-

carboxyphenyl)porphine-cytosine amide (TPSC) were tested as possible candidate

molecules for detection of DPA as well.  The interaction of these porphyrins with DPA

did not result in new characteristic absorbance peaks; however, specific losses in

intensity much greater than those predicted by dilution of the sample by DPA addition

were observed at 412 nm for TPPB and TPSC and 414 nm for CTPP1.
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TPSC and CTPP1 interact with DPA, but only very poorly.  TPSC interacts with

DPA resulting in a loss at 412 nm (Figure 10.4, Trace 2) with no increase in absorbance

at another wavelength. The loss in absorbance at 412 nm is linear to 223 ppb DPA.

CTPP1 interacts with DPA resulting in a loss in absorbance at 414 nm (Figure 10.4, Trace

3) that is linearly dependent on DPA concentration to 32 ppb.  In the case of TPPB,

interaction with DPA resulted in a loss of absorbance at 412 nm (Figure 10.4, Trace 4).

The loss in absorbance at 412 nm upon interaction of TPPB with DPA was observed to

be linear for the three pH values investigated (5.5, 7, and 11).

DPA did not induce changes in the absorbance spectra of the copper complexes of

TPPS, TPPS1, and NH2TPP.  Cu-CTPP1 and Cu-TPPB responded to DPA in the same

manner as the corresponding metal-free porphyrins.  Zn-TPPS, Zn-CTPP1, and Zn-TPPB

did not respond to the presence of DPA while Zn-NH2TPP responded in the same manner

as the corresponding metal-free porphyrin.  The difference spectrum Zn-TPPS1 + DPA

minus Zn-TPPS1 resulted in a peak at 442 nm and a trough at 413 nm with the

dependence on DPA concentration the same as with the metal-free TPPS1.

The interaction of TPPS1, TPPS, CTPP4 and NH2TPP with pyridine, benzoic acid,

and picolinic acid was investigated because of the structural similarity of those

compounds to dipicolinic acid.  As shown in Table 10.1, the difference spectrum

(porphyrin + reagent minus porphyrin) of each porphyrin exhibits absorbance increases at

wavelengths different than those observed with DPA.

Fluorescence measurement of the DPA-porphyrin complexes are not presented

due to the lack of changes in the fluorescence spectra of NH2TPP and TPPS1 upon

exposure to DPA.
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10.3.6  IMMOBILIZED PORPHYRINS

Immobilization of NH2TPP onto glass results in a change in the absorbance

spectrum of the surface similar to the change in the absorbance of CTPP1 immobilized to

glass reported by Kibbey and Meyerhoff [555] and as noted for immobilization of TPPS

[456].  The difference spectrum NH2TPP + DPA minus NH2TPP for the immobilized

complex shows a loss in absorbance at 445 nm and an increase in absorbance at 498 nm

(Figure 10.5).  The increase in absorbance at 498 nm is hyperbolically dependent on

increasing DPA concentration; extrapolation of the data to 3:1 S/N limit indicates a

detection limit of 16 ppb (95 nM) (Figure 10.5).

The difference spectrum NH2TPP + DPA minus NH2TPP resulting from addition

of DPA to of NH2TPP immobilized onto cellulose fibers shows a loss in absorbance at

434 nm and an increase in absorbance at 468 nm (Figure 10.6).  The increase in 468 nm

absorbance shows hyperbolic dependence on DPA concentration with a limit of detection

of 14 ppb (84 nM) based on 3:1 S/N (Figure 10.6).  The difference spectrum resulting

from exposure of TPPS1 immobilized onto cellulose fibers to DPA shows a loss in

absorbance at 417 nm and an increase in absorbance at 434 nm (Figure 10.7).  The

increase in absorbance at 434 nm is hyperbolically dependent on DPA concentration; the

data indicate a limit of detection of 1.5 ppb (9 nM) at 3:1 S/N (Figure 10.7).  DPA

induced no changes in the absorbance spectrum of immobilized TPPS (data not shown).

10.4  DISCUSSION

The small absorbance changes observed could possibly be due to dilution of the

porphyrin-containing cuvette upon addition of DPA or the fact that very low levels of
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DPA are being detected.  That the former is not the case is shown by the fact that the

absorbance changes in Figure 10.4 are >15 fold higher than those due to the addition of

the volume of DPA solution.  The effect of dilution on the absorbance spectrum is

calculated by:

where ∆A is the loss in absorbance at the peak, A0 is the original peak intensity, Va is the

change in volume of the sample (the volume added)  and VT is the original sample

volume.  Further, a “dilution” effect would show only a “trough” in the DPA + porphyrin

minus porphyrin difference spectrum; an increase in absorbance at a different wavelength

would not be expected.  Thus, the absorbance changes presented in the Figures 10.1

through 10.4 are due to the porphyrin-DPA interaction and not due to dilution upon

adding DPA.

Each porphyrin exhibits a unique peak-trough combination in the porphyrin +

analyte minus porphyrin difference spectra for DPA, pyridine, picolinic acid, and benzoic

acid.  Schneider and Wang [284] demonstrate that the Soret wavelength shift of a

porphyrin upon exposure to an analyte is proportional to the free energy of association.

This indicates a strong affinity of NH2TPP for DPA or pyridine as compared to affinity to

picolinic acid and benzoic acid.

The hyperbolic dependence of the absorbance intensity changes on DPA

concentration is not unexpected (Chapter 2).  This data can be replotted several in ways

(semi-log, double reciprocal, x- or y- reciprocal) to yield a linear plot.  A double

reciprocal plot, which is the inverse of the change in absorbance versus the inverse of the

substrate concentration, is referred to as a Benesi-Hilderbrand plot.  The slope of the data

∆A A
V
V

a

T
=







0

Eq. 10.1



   228

in this form together with the Y-intercept can be used to obtain the interaction constant

between the porphyrin and DPA as well as the change in extinction coefficient upon

complex formation for a 1:1 interaction (or an interaction at n independent sites under

special conditions) as follows:

where b is the Y-intercept, m is the slope, St is the concentration of independent binding

sites, ε11 is the extinction coefficient for the substrate-ligand complex at the considered

wavelength, εS is the extinction coefficient for the free substrate at the considered

wavelength, ∆ε11 is the change in the extinction coefficient upon complex formation, and

K11 is the association constant.

The double reciprocal plot of the data shown on the interaction of TPPS with

DPA at pH 7 (Figure 10.4) gives a slope of 951 µM/A and a Y-intercept of 146 A-1.

Using this information and assuming a 2:1 DPA:TPPS interaction similar to that of

toluene stacking [582] we can determine ∆ε11 to be 4.9 A/mM.  This value indicates that

1.1 µM (200 ppb) DPA causes a change in the absorbance spectrum of 550 nM NH2TPP

under these conditions verifying the two to one interaction.  Table 10.2 shows the slope

and y-intercept for each set of data as well as the resulting K11 and ∆ε11.  In the case of

the immobilized porphyrins for which an extinction coefficient has not been calculated

and for which the total porphyrin concentration is unknown, ∆ε11 remains undetermined.

If the interaction of the porphyrins with DPA does not meet the conditions for this model,

K
b
m11 =

[ ]∆ε11
1

=
⋅S bt

∆ε ε ε11 11= − s

Eq. 10.2

Eq. 10.3

Eq. 10.4
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that is a single binding site or n independent binding sites, the number of parameters to be

determined increases based on the number of interactions involved.  The absorbance data

alone does not give enough information to determine parameters for this more

complicated type of interaction.

Detection of DPA by photoluminescence involving the use of lanthanide metals,

especially terbium (III), complexed with DPA [565-566, 568-569, 581] is successful with

detection limits as low as 2 nM (0.3 ppb)[568].  However, the presence of phosphate-

containing compounds results in false readings because of the high binding affinity of the

terbium for phosphate [569].

In the measurements described here, the detection of DPA occurs in the presence

of phosphate buffer and, therefore, does not require the use of AlCl3.  Measurements can

be completed quickly within the time to collect the spectrum (less than 45 sec).

Separation of the porphyrins from the spore samples should not be necessary if dual

wavelength spectroscopy or small amounts of spores are used to minimize light scattering

effects.  Some care is required with regard to measurement conditions as a result of the

sensitivity to pH of the porphyrin response characteristics.

Detection of DPA by immobilized porphyrins has been demonstrated (Figure 10.5

to 10.7) with detection limits as low as 1.5 ppb (9 nM).  Immobilization on cellulose

fibers is inexpensive and requires no specialized equipment.  However, the Kimwipes®

are highly scattering, requiring reflectance measurements or collection of absorbance

spectra by a dual wavelength instrument.  The ability of porphyrins to detect DPA in

intact and broken Bacillus spores is being investigated.  Should it prove viable, a
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porphyrin-tissue system used as a wipe test could provide a reagent-less and nearly

instantaneous method of identifying the presence of Bacillus spores.
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   INTERACTION WAVELENGTHS

Porphyrin Dipicolinic Acid Pyridine Picolinic Acid Benzoic Acid

TPPS1 Peak 433 nm / 441 nm 428 nm / 438 nm 429 nm / 437 nm 427 nm / 437 nm

Trough 403 nm / 416 nm 403 nm / 419 nm 403 nm / 418 nm 402 nm / 418 nm

NH2-TPP Peak 470 nm 467 nm 465 nm 461 nm

Trough 423 nm 421 nm 427 nm 418 nm

TPPS Peak 419 nm none none none

Trough 410 nm 410 nm none none

CTPP4 Peak 415 nm 421 nm none 415 nm

Trough 403 nm 410 nm none 398 nm

TABLE 10.1 Characteristic porphyrin absorbance wavelengths for the interaction with

DPA and three structurally similar compounds [583].
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   LINEAR FITTING PARAMETERS

Porphyrin Slope
(mM/A)

Y-intercept
(A-1)

[Porphyrin]
(µM)

n K11
(µM)-1

∆ε11
(A/mM)

NH2TPP (pH 7) 767 77 1.8 1 100 7.2

NH2TPP (pH 5.5) 650 51 1.8 1 78 11

NH2TPP (pH 11) 680 187 1.8 1 275 3.0

TPPS1 (pH 7) 101 44 1.2 1 436 19

TPPS1 (pH 5.5) 57 54 1.2 1 947 15

TPPS1 (pH 11) 97 34 1.2 1 351 25

CTPP4 (pH 7) 13407 470 1.0 2 35 2.1

TPPS (pH 7) 951 146 0.7 2 154 9.8

NH2TPP (on glass) 315 19 --- 1 60 ---

NH2TPP (on cellulose) 2326 108 --- 1 46 ---

TPPS1 (on cellulose) 84 36 --- 1 429 ---

TABLE 10.2 The linear fitting parameters from the Benesi-Hilderbrand plots of

concentration dependence and the resulting K11 and ∆ε11 values [583].
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NH2TPP IN SOLUTION

FIGURE 10.1 (A)  The difference spectra NH2-TPP (1.8 µM) + DPA (200 nM) minus

NH2-TPP shown for pH 11 (Trace 1), pH 7 (Trace 2), and pH 5.5 (Trace

3).  (B)  The concentration dependence of the peak at 470 nm in the

difference spectra shown in Figure 1A at pH 11 (♦ ), pH 7(▲), and pH 5.5

(• ) [583].
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TPPS1 IN SOLUTION

FIGURE 10.2 (A) The difference spectra TPPS1 (1.2 µM) + DPA (107 nM) minus

TPPS1 shown at pH 11 (Trace 1), pH 7 (Trace 2), and pH 5.5 (Trace 3).

(B)  The concentration dependence of the peak at 441 nm in the difference

spectra shown in Figure 2A at pH 11(♦ ), pH 7(▲), and pH 5.5 (• ) [583].
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CTPP4 IN SOLUTION

FIGURE 10.3 (A) The difference spectra CTPP4 (220 nM) + DPA (1 µM) minus

CTPP4 for pH 11 (Trace 1, scaled up by a factor of 4), pH 7 (Trace 2).

(B)  The concentration dependence of the peak at 415 nm in the difference

spectra shown in Figure 3A, Trace 2 [583].
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OTHER PORPHYRINS IN SOLUTION

FIGURE 10.4 (A)  The difference spectra resulting from the interaction of TPPS, TPSC,

CTPP1, and TPPB with DPA. Trace 1 shows the difference spectrum

TPPS (700 nM) + DPA (50 nM) minus TPPS.  Trace 2 shows the

difference spectrum TPSC (355 nM) + DPA (400 nM) minus TPSC at pH

5.5.  Trace 3 shows the difference spectrum CTPP1 (650 nM) + DPA (500

nM) minus CTPP1 at pH 7.  Trace 4 shows the difference spectrum TPPB

(1 µM) + DPA (750 nM) minus TPPB at pH 11 [583].  (B)  The

concentration dependence of the peak in the pH 7 difference spectrum for

TPPS shown in Figure 4A, Trace 1 [583].
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NH2TPP ON GLASS

FIGURE 10.5  (A)  The difference spectrum NH2-TPP + DPA (500 nM) minus NH2-

TPP, resulting from the interaction of NH2-TPP immobilized on glass with

DPA [583].  (B)  The concentration dependence of the peak in the

difference spectrum [583].
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NH2TPP ON CELLULOSE FIBERS

FIGURE 10.6  (A)  The difference spectrum NH2TPP + DPA (1 µM) minus NH2TPP,

resulting from the interaction of NH2TPP immobilized on cellulose fibers

with DPA [583].  (B)  The concentration dependence of the peak in the

difference spectrum [583].
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TPPS1 ON CELLULOSE FIBERS

FIGURE 10.7  (A)  The difference spectrum TPPS1 + DPA (1 µM) minus TPPS1,

resulting from the interaction of TPPS1 immobilized on cellulose fibers

with DPA [583].  (B)  The concentration dependence of the peak in the

difference spectrum [583].
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CHAPTER 11

PORPHYRIN DETERMINATION OF SUGARS

11.1  INTRODUCTION

Bacterial endospores are a very stable, dehydrated, heat-resistant, and non-

growing state of certain types of gram positive bacteria.  Bacterial endospores are a

source of infection and disease and their resistance to extreme environmental conditions,

disinfectants, and antibiotics makes them difficult to destroy.  Bacillus anthracis, an

endospore-forming bacterium, can be found in industrial waste from tanneries and water

processing plants.  B. anthracis can also be viewed as a biological threat agent due to the

possibility of broadcasting the dry spores and the difficulty in detection and enumeration

of the same.  Some other spore producing bacteria of interest as biothreat agents are

Clostridium tetani and Clostridium botulinum.

The surface of the bacterial endospores of some Clostridium and Bacillus species

is composed of an exosporium structure on the outside of the spore coat.  In B. cereus the

major component of the exosporium is protein with 18% lipid and 20% carbohydrate.

The exosporia of B. anthracis, B. thuringiensis, and B. cereus have been shown to

contain glycoproteins, though glycosylation of proteins in bacteria is rare and the

function is not yet clear [584-587].

Analysis of exosporium carbohydrate composition may be a likely method of

distinguishing different endospores.  A spore-specific carbohydrate, 3-O-methyl

rhamnose, has been reported in the exosporia of B. anthracis, B. cereus, and B.

thuringiensis [585-587].  This sugar is rare in nature, appearing almost exclusively in



   241

members of the Bacillus genus.  Other studies report rhamnose, galactose (and/or

galactosamine), fucose, and 2-O-methyl rhamnose as exosporium components.  The

carbohydrate composition of B. anthracis differs from that of B. cereus and B.

thuringiensis in that the former contains no fucose or 2-O-methyl rhamnose which are

known components of the latter two bacterial endospores [585].  It has been proposed

that the carbohydrate composition of the glycoproteins described in the three above

mentioned members of the Bacillus genus consist of the sugars rhamnose, 3-O-methyl

rhamnose, and galactosamine [584, 587-588].

 Porphyrins have been used as colorimetric indicators for the detection of a wide

range of compounds including sugars [292, 377-379] due to the specificity of the spectral

response even for very similar compounds [283-284, 293].  In previous work, we have

demonstrated the specificity of porphyrins for identification of the compound dipicolinic

acid, which comprises 5 - 15% of the dry weight of the spore, as a non-specific indicator

of bacterial endospore presence [585].  Here we will demonstrate the potential of

porphyrins both in solution and immobilized onto cellulose fibers to identify and quantify

rhamnose variants and other sugars using absorbance and fluorescence spectroscopy.

11.2  MATERIALS AND METHODS

Methyl α-L-rhamnopyranoside (MRP), L-rhamnose monohydrate (rhamnose), L(-

)-fucose, and D(+)-galactosamine HCl were obtained from Sigma (St. Louis, MO)

(Figure 11.1). Monosulfonate tetraphenyl porphyrin (TPPS1), tetra(4-aminophenyl)

porphyrin (NH2TPP), and meso-tetra(4-boronic acid) porphyrin (TPPB) were obtained

from Frontier Scientific (Logan, UT) and used without further purification (Figure 11.2).
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Visible light absorbance and fluorescence spectra of each porphyrin in solution in

the presence/absence of each of the sugars were measured to indicate which immobilized

porphyrins would be likely to interact with the sugars.  Absorbance spectra were recorded

at room temperature in 50 mM sodium phosphate (Sorenson) buffer (NaPi) at pH 7 with a

Cary 4E spectrophotometer at 0.02 nm resolution.  The difference spectra porphyrin +

sugar minus porphyrin were obtained by subtraction of absolute spectra using Grams/32

(Galactic Industries, Salem, NH).  Characteristic wavelengths cited in Tables 11.1 and

11.2 are the peak and trough positions from the difference spectra as determined using

the 2nd derivative of the spectrum as calculated using Grams/32.  The difference spectra

peak minus trough intensities were measured at varying concentrations.  The double

reciprocal plot of the concentration data was used for linear fittings at a 99% confidence

interval using PSI-Plot (V 7.0) [583].  The fittings were subsequently used to determine

the limits of detection as the concentration at which the absorbance change is three times

the noise level in the measurement.  Error bars are included to show the maximum and

minimum absorbance changes observed for exposure to a given concentration of sugar.

Fluorescence spectra of each porphyrin in solution in the presence/absence of

each sugar were recorded under the conditions described for absorbance spectra using a

SPEX Fluoromax 3 spectrofluorometer (JY-Horiba, Edison, NJ).  Wavelength resolution

was set at 3.0 nm for both excitation and emission.  Spectra were collected for excitation

wavelengths from 380 to 600 nm and for emission wavelengths from 600 to 800 nm.

Maximum fluorescence emission intensity is obtained for each porphyrin and porphyrin-

sugar complex at the excitation and emission wavelengths listed in Tables 11.1 and 11.2.



   243

Absorbance spectra of Kimwipe®-immobilized porphyrins were recorded using a

dual wavelength spectrophotometer (SDB - 3 Johnson Research Foundation, University

of Pennsylvania, Philadelphia, PA) at 0.125 nm intervals in a 3 ml cuvette containing the

indicated sugar concentrations in 50 mM pH 7 NaPi.  Spectral analysis is the same as

cited for the porphyrins in solution with characteristic wavelengths listed in Tables 11.1

and 11.2.  Fluorescence spectra were collected as described above with the excitation and

emission wavelengths for maximum emission intensities listed in Tables 11.1 and 11.2.

The fluorescence difference spectra shown are calculated by the point by point

subtraction of the emission spectra, porphyrin + sugar minus porphyrin, for a particular

excitation wavelength.  The emission spectra are normalized to the same emission

intensity at 693 nm before calculation of difference spectra.  The 693 nm wavelength is

used chosen because there is non-zero fluorescence emission for all of the porphyrins in

this region of the spectrum.  Scaling was used to compensate for the overall increase or

decrease in fluorescence emission intensity observed upon interaction of some of the

sugars with the porphyrins.  The scaling allowed a comparison of the changes at the

different wavelengths that would not have been seen due to the overall changes in

intensity (Figure 11.3).  The concept is to use ratios of the emission intensities at different

wavelengths as indicators of emission profile changes.

Immobilization of porphyrins onto cellulose fibers (Kimwipes  EX-L, Fisher

Scientific, Pittsburgh, PA) was performed at 4°C as described in Chapter 4 [583].

Briefly, tissues were placed in a test tube and saturated with 1 mg/ml porphyrin solution.

Tubes were sealed and stored overnight at room temperature followed by soaking of the
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tissues in NaCl and ethanol solutions to remove unbound porphyrin and drying at room

temperature.

11.3  TETRA(4-AMINOPHENYL) PORPHYRIN

Tetra(4-aminophenyl) porphyrin (NH2TPP) was chosen to identify sugars because

of the sensitivity and selectivity for aromatic compounds observed previously [585].

Each of the four phenyl rings of this porphyrin has an amino substituent (Figure 11.2).

We have demonstrated the interaction of this porphyrin both in solution and immobilized

to cellulose and glass surfaces with compounds such as dipicolinic acid and benzene

[585].  The characteristic wavelengths for each NH2TPP-sugar combination in solution

are unique indicating the potential of immobilized NH2TPP to discriminate between the

sugars (Figure 11.4).  Immobilization on cellulose tissue was chosen for possible

application as a “wipe test” for the presence of sugar.  Though the exact peak / trough

locations are unique for each sugar, the difference spectra resulting from exposure of the

NH2TPP tissues, excluding that for rhamnose, have broad overlapping features (Figure

11.5).  The dependence of the absorbance changes on sugar concentration is shown in

Figure 11.5.  The expected half-hyperbolic dependence on concentration is observed in

all cases with 3:1 signal to noise (S/N) detection limits at 13 ppb for MRP, 47 ppb for

rhamnose, 45 ppb for galactosamine, and 60 ppb for fucose [263, 583].

In addition to the sugar-specific changes in the absorbance spectrum, changes in

the NH2TPP fluorescence spectrum are observed upon exposure to the sugars.  Tables

11.1 and 11.2 shows the emission and excitation wavelengths for which maximum

emission intensity are observed for NH2TPP in the absence/presence of the sugars.
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Though the maximum excitation and emission wavelengths for NH2TPP and the sugar-

porphyrin complexes are similar, fluorescence characteristics vary between the sugars.

Figure 11.5 shows the changes in NH2TPP tissue fluorescence emission for 416 nm

excitation upon exposure to each of the sugars.  The presence of either galactosamine or

fucose causes an increase in NH2TPP emission intensity at 649 nm while exposure to

MRP or rhamnose results in a decrease in NH2TPP emission intensity at 669 nm.

11.4  MONOSULFONATE TETRAPHENYL PORPHYRIN

We have demonstrated the interaction of monosulfonate tetraphenyl porphyrin

(TPPS1) with aromatic compounds [583] and enzymes [391-392, 397].  TPPS1 has a

single sulfonate group at the para-position of one phenyl ring (Figure 11.2).  The three

phenyl groups increase the hydrophobicity and the sensitivity of the porphyrin to

aromatic compounds [583].  The interaction of TPPS1 with each of the sugars in solution

results in unique combinations of characteristic wavelengths and indicates detection

limits significantly lower than when NH2TPP is used (Tables 11.1 and 11.2, Figure 11.6).

Unlike the NH2TPP spectra, the characteristic wavelengths may include one or more

troughs as well as one or more peaks (Figures 11.6 and 11.7).  Upon exposure of the

TPPS1 tissue to MRP, there is a loss in absorbance intensity at 406, 417, and 432 nm and

an increase in absorbance intensity at 444 nm (Figure 11.7).  The features in the

difference spectrum are, as in the case of NH2TPP, broad and overlap in all cases.  The

concentration dependence for each sugar is half-hyperbolic (Figure 11.7).  The detection

limit at 3:1 S/N is 4 ppb for MRP, 80 ppb for rhamnose, 2 ppb for galactosamine, and 6

ppb for fucose.
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The changes in the fluorescence spectrum of immobilized TPPS1 at 416 nm

excitation were similar for all sugars tested.  Exposure to any of the sugars resulted in a

relative increase in TPPS1 emission intensity at 655 and 718 nm with a slight decrease

around 741 nm (Figure 11.7).  The only unique change in the TPPS1 tissue emission was

upon exposure to galactosamine where an overall increase in emission intensity as

opposed to no change in maximum emission intensity is observed.

11.5  MESO-TETRA(4-BORONIC ACID) PORPHYRIN

Boronic acids form cyclic esters with saccharides through a reversible reaction at

room temperature.  Porphyrins and fluorophores with a boronic acid substituent have

been used previously for spectrophotometric sugar detection [589-590].  Meso-tetra(4-

boronic acid) porphyrin (TPPB) has four boronic acid substituents at the para-positions

of the phenyl rings of the TPP molecule (Figure 11.2).  This porphyrin showed unique

characteristic interaction wavelengths for each sugar in solution with detection limits

neither as good as those of TPPS1 nor as poor as those of NH2TPP (Figure 11.8).  As in

the case of TPPS1, the TPPB difference spectra resulting from interaction with the sugars

may include one or more peaks and troughs (Figures 11.8 and 11.9).  The peak / trough

positions for the interaction of the TPPB tissue with each sugar are unique (Tables 11.1

and 11.2).  Additionally, the features in the difference spectra are easily distinguishable.

Exposure to rhamnose results in a small peak /trough pair at 438 / 426 nm whereas MRP

exposure results in a prominent peak / trough pair at 427 / 410 nm.  Each of these

changes is a bathochromic (red) shift where the absorbance intensities increase at longer

wavelengths.  Exposure of TPPB to galactosamine or to fucose results in a hypsochromic
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(blue) shift with characteristic wavelengths at 418 / 434 nm for galactosamine and 427 /

449 nm for fucose.  The features in the difference spectra are narrower than in the cases

of TPPS1 and NH2TPP.  The concentration dependence for each sugar gives the expected

half-hyperbolic relation with detection limits of 14 ppb for MPR, 35 ppb for rhamnose,

16 ppb for galactosamine, and 85 ppb for fucose (Figure 11.9).

The TPPB fluorescence difference spectra for galactosamine and fucose exposure

show similar, but distinguishable features (Figure 11.9).  The emission intensity at 647

and 707 nm decreases and increases at 672 nm with galactosamine whereas fucose elicits

a decrease at 654 and 707 nm and an increase at 680 nm.  Exposure of TPPB to MRP

results in an increase in 645 nm emission with a slight decrease in 683 nm emission

whereas exposure to rhamnose results in an increase in 650 nm emission and a decrease

683 nm emission.

11.6  DISCUSSION

We have demonstrated the potential for identification of sugars using three

immobilized porphyrin surfaces based on specific changes in absorbance and/or

fluorescence spectra upon interaction of the sugars with the surfaces.  Though both

NH2TPP and TPPS1 showed promising results in solution and will likely be effective for

use in detection of compounds such as those discussed in the previous Chapter [583], the

TPPB tissues give the most easily distinguishable changes in absorbance and

fluorescence spectra upon exposure to the sugars.  Detection limits as low as 10 ppb are

demonstrated here.  The exosporium of the bacterial endospore makes up about 2% of the

total dry weight of the spore [586].  Of this 2% approximately 20% consists of

carbohydrate, so extremely low levels of sugar detection are desired.
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If (i) the porphyrin-analyte complex is assumed to be 1:1; (ii) Beer’s Law is

followed by the porphyrin, analyte, and the porphyrin-analyte complex; and (iii) the

extinction coefficients of the free reagents at the wavelength under consideration are

significantly different from that of the porphyrin-analyte complex, we can derive the

relationship between the absorbance change (∆A) and the variables porphyrin

concentration ([P]), analyte concentration ([L]), and complex stability constant (K11) as

follows [263] (see also Chapter 2).  Beer’s Law states:

where A0 is the initial absorbance of the porphyrin, Pt is the total porphyrin concentration,

εP is the extinction coefficient at the wavelength under consideration, and b is the path

length for the measurement.  In the presence of analyte (total concentration Lt), the

absorbance of a solution containing the same total porphyrin concentration is:

Here εL and ε 11 are the extinction coefficients of the analyte and the complex,

respectively and [PL] is the concentration of the complex.  Since Pt = [P] +[PL] and Lt =

[L] + [PL], this can be rewritten as:

(Note that ∆ε11 = ε11 – εP – εL).  If the reference spectrum is taken against a ligand

spectrum at Lt or the ligand does not absorb in the considered region, this expression

becomes:

A bPP t0 = ε Eq. 11.1

A b P b L b PLL P L= + +ε ε ε[ ] [ ] [ ].11 Eq. 11.2

A bP bL b PLL P t L t= + +ε ε ε∆ 11 [ ] Eq. 11.3

A bP b PLP t= +ε ε∆ 11 [ ]. Eq. 11.4
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The stability constant for the 1:1 complex is:

and the total porphyrin concentration can be written as Pt = [P] + [PL], so the change in

absorbance can be written:

Note that the change in absorbance depends not only on the analyte concentration, but

also on the porphyrin concentration.  Though the exact relation will vary for more

complex interactions such as those which are not 1:1 or those involving cooperative

binding, the substrate and analyte concentrations can both affect the absorbance change.

We have mentioned a similar result observed with immobilized enzyme surfaces [392]

(Chapter 5).  Improved detection limits, therefore, may be obtained by increasing the

porphyrin density on the surface of the tissues.  This may involve changing to a different

type of cellulose surface and/or modifying the immobilization conditions.  The density

will need to be optimized to achieve the maximum number of porphyrins per area without

involving porphyrin-porphyrin stacking effects, which will alter the absorbance intensity

and typically the band positions as well [591-592].

Preliminary data has been collected using the tissues as wipes.  A solution of

rhamnose was dried onto a glass surface.  The absorbance and fluorescence (at 416 nm

excitation) spectra of a moistened TPPS1 tissue were recorded and the tissue was

subsequently used to wipe the glass surface.  The changes in the spectral characteristics

K
PL

P L11 =
[ ]

[ ][ ]
Eq. 11.5

∆ ∆ ∆A A A b PL K b P L= − = =0 11 11 11ε ε[ ] [ ][ ] Eq. 11.6
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were the same as reported for TPPS1 tissues in solution (Tables 11.1 and 11.2) with

troughs at 417 and 432 nm and a peak at 447 nm in the difference spectrum.

Preliminary work has also been done using intact and broken Bacillus

thuringensis spores in solution (Figure 11.10).  The changes in the porphyrin absorbance

spectra are more complex than those observed upon exposure to the simple sugars.

Figure 11.10 shows an absorbance difference spectrum with troughs at 397 and 403 nm

and peaks at 422 and 434 nm.  The changes in the fluorescence spectrum are very

complex.  This likely results from the interaction of the porphyrin not only with the

sugars, but also with the lipid and protein components of the exosporium in the case of

intact spores and with other spore components in the case of broken spores.  Experiments

with bacteria producing differing exosporia are necessary to determine the specificity of

the detection protocol, however, we are hopeful that the protocol will be useful.
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   SUMMARY OF INTERACTIONS:  MRP AND RHAMNOSE

Sugar None MRP Rhamnose

Porphyrin in

solution Ex
ci

ta
tio

n 
(n

m
)

Em
is

si
on

 (n
m

)

Tr
ou

gh
 (n

m
)

Pe
ak

 (n
m

)

Ex
ci

ta
tio

n 
(n

m
)

Em
is

si
on

 (n
m

)

LO
D

  (
pp

b)

Tr
ou

gh
 (n

m
)

Pe
ak

 (n
m

)

Ex
ci

ta
tio

n 
(n

m
)

Em
is

si
on

 (n
m

)

LO
D

  (
pp

b)

NH2TPP 432 679 416 472 422 684 12 430 481 422 679 6

TPPS1 411 654 405 447 406 655 0.2
405/

416
439 406 652 0.5

TPPB 411 650
404/

426
459 417 653 10 415 435 417 650 0.5

Immobilized

Porphyrins

NH2TPP 416 652 479 445 416 652 13 426 412 416 652 47

TPPS1 416 656

406/

417/

432

444 416 656 4
417/

432
447 416 653 80

TPPB 423 663 410 427 423 660 14 426 438 423 663 35

TABLE 11.1 The characteristic wavelengths, limits of detection, and maximum

fluorescence excitation and emission wavelengths for porphyrin-sugar

interactions.  Note: 405 / 416 indicates a complex trough involving two

peaks centered at 405 and 416 nm [593].
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   SUMMARY OF INTERACTIONS:  GALACTOSAMINE AND FUCOSE

Sugar None Galactosamine Fucose

Porphyrin in

solution Ex
ci

ta
tio

n 
(n

m
)

Em
is

si
on

 (n
m

)

Tr
ou

gh
 (n

m
)

Pe
ak

 (n
m

)

Ex
ci

ta
tio

n 
(n

m
)

Em
is

si
on

 (n
m

)

LO
D

  (
pp

b)

Tr
ou

gh
 (n

m
)

Pe
ak

 (n
m

)

Ex
ci

ta
tio

n 
(n

m
)

Em
is

si
on

 (n
m

)

LO
D

  (
pp

b)

NH2TPP 432 679 425 460 430 673 2 425 460 430 676 2

TPPS1 411 654 405 432 417 654 5
405/

416
432 417 654 2

TPPB 411 650 397 424 411 647 10 400 434 411 650 3

Immobilized

Porphyrins

NH2TPP 416 652 416 445 416 649 45 472 439 423 652 60

TPPS1 416 656 417
439/

447
416 656 2

417/

432
444 416 653 6

TPPB 423 663 434 418 423 663 16 449 427 423 663 85

TABLE 11.2 The characteristic wavelengths, limits of detection, and maximum

fluorescence excitation and emission wavelengths for porphyrin-sugar

interactions. Note: 405 / 416 indicates a complex trough involving two

peaks centered at 405 and 416 nm [593].
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SUGAR STRUCTURES

FIGURE 11.1 The structures of the sugars:   methyl α-L-rhamnopyranoside (MRP), L-

rhamnose, L(-)-fucose, and D(+)-galactosamine.
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PORPHYRIN STRUCTURES

FIGURE 11.2 The structures of the porphyrins used for sugar determination:

monosulfonate tetraphenyl porphyrin (TPPS1), tetra(4-aminophenyl)

porphyrin (NH2TPP), and meso-tetra(4-boronic acid) porphyrin (TPPB).
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SCALING OF FLUORESCENCE SPECTRA

FIGURE 11.3 Fluorescence excitation and emission spectra for TPPS1 in solution (50

mM pH 7 NaPi).  (A) Excitation spectra of TPPS1 in presence/absence of

MRP and rhamnose.  (B)  Traces in (A) scaled to match at 693 nm

emission.  (C)  Emission spectra of TPPS1 in presence/absence of MRP

and rhamnose.  (D)  Traces in (C) scaled to match at 693 nm emission.
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NH2TPP IN SOLUTION

FIGURE 11.4 (A) The difference spectra NH2TPP (1.8 µM) + Sugar minus

NH2TPP for MRP (50 ppb), rhamnose (50 ppb), fucose (27 ppb, scaled by

0.5), and galactosamine (35 ppb, scaled by 0.5).  (B)  The concentration

dependence of the absorbance change upon exposure of NH2TPP to MRP

(x), rhamnose (!), fucose ("), and galactosamine (#).
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IMMOBILIZED NH2TPP

FIGURE 11.5 (A) The absorbance difference spectra NH2TPP tissue + sugar minus

NH2TPP tissue in 50 mM pH 7 NaPi for MRP (Trace 1, 50 ppb),

rhamnose (Trace 2, 50 ppb), galactosamine (Trace 3, 125 ppb), and fucose

(Trace 4, 125 ppb) [343].  (B) The concentration dependence of the

change in absorbance of NH2TPP upon exposure to the sugars MRP (x),

rhamnose (▲), galactosamine (■), and fucose (●) [343].  (C) The

fluorescence difference spectra NH2TPP tissue + sugar (3 ppm, 16 µM)

minus NH2TPP tissue in 50 mM pH 7 NaPi for MRP (…), rhamnose (––),

galactosamine (-–-), and fucose (- -) at 416 nm excitation [343].
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TPPS1 IN SOLUTION

FIGURE 11.6 (A) The difference spectra TPPS1 (1.8 µM) + Sugar minus

TPPS1 for MRP (50 ppb), rhamnose (50 ppb), fucose (27 ppb), and

galactosamine (71 ppb).  (B)  The concentration dependence of the

absorbance change upon exposure of TPPS1 to MRP (x), rhamnose (!),

fucose ("), and galactosamine (#).
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IMMOBILIZED TPPS1

FIGURE 11.7 (A)  The absorbance difference spectra TPPS1 tissue + sugar (50 ppb)

minus TPPS1 tissue in 50 mM pH 7 NaPi for rhamnose (Trace 1), MRP

(Trace 2, scaled up by a factor of 2), galactosamine (Trace 3), and fucose

(Trace 4, scaled up by a factor of 2) [343].  (B)  The concentration

dependence of the change in absorbance of TPPS1 upon exposure to the

sugars MRP (x), rhamnose (▲), galactosamine (■), and fucose (●) [343].

(C)  The fluorescence difference spectra TPPS1 tissue + sugar (3 ppm, 16

µM) minus TPPS1 tissue in 50 mM pH 7 NaPi for MRP (…), rhamnose (–

–), galactosamine (-–-), and fucose (- -) at 416 nm excitation [343].
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TPPB IN SOLUTION

FIGURE 11.8 (A) The difference spectra TPPB (1.8 µM) + Sugar minus

TPPB for MRP (50 ppb), rhamnose (50 ppb), fucose (27 ppb), and

galactosamine (107 ppb).  (B)  The concentration dependence of the

absorbance change upon exposure of TPPB to MRP (x), rhamnose (!),

fucose ("), and galactosamine (#).
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IMMOBILIZED TPPB

FIGURE 11.9 (A) The absorbance difference spectra TPPB tissue + sugar (125 ppb)

minus TPPB tissue in 50 mM pH 7 NaPi for rhamnose (Trace 1), MRP

(Trace 2), galactosamine (Trace 3), and fucose (Trace 4) [343].  (B) The

concentration dependence of the change in absorbance of TPPB upon

exposure to the sugars MRP (x), rhamnose (▲), galactosamine (■), and

fucose (●) [343].  (C)  The fluorescence difference spectra TPPB tissue +

sugar (3 ppm, 16 µM) minus TPPB tissue in 50 mM pH 7 NaPi for MRP

(…), rhamnose (––), galactosamine (-–-), and fucose (- -) at 423 nm

excitation [343].
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BACILLUS THURINGENSIS SPORES

FIGURE 11.10 (A)  Fluorescence emission spectrum of TPPS1 (740 nM) at 411 nm

excitation in the absence (Trace 1)/ presence (Trace 2) of Bacillus

thuringensis spores (0.2 mg/ml) and the fluorescence spectrum of Bacillus

thuringensis spores alone (0.2 mg/ml) (50 mM NaPi pH 7).  (B)  The

absorbance spectra of TPPS1 (740 nM) in the absence (Trace 1)/ presence

(Trace 2) of Bacillus thuringensis spores (0.2 mg/ml) and the difference

spectrum TPPS1 + B. thuringensis minus TPPS1.  This data is for spores

that have been cracked by repeated freezing and thawing in aqueous

solution.
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CHAPTER 12

DETECTION OF CYANIDE

12.1  CYANIDE

 Cyanide is a commonly used chemical warfare (CW) agent and is used in a

variety of industrial processes, such as electroplating, coke production, and cleaning of

metallic parts.  Its toxicity poses a threat to the safety of emergency personnel and the

general public.  There is great need for a detector of such CW agents as well as other

toxic agents for use by first responders, emergency or military personnel, and chemical

workers.  A sensor that is agent-specific with a minimum of interferents and false

positive readings and that is rapid, sensitive, solid-state and will report in real time would

be ideal.  The search for devices with as many of these characteristics as possible is

ongoing.

Many cyanide sensors are in development or production and use various methods

of detection.  Current methods include electrochemical sensors as used by Drager® and

Enmet® and immobilized metal-complexed dyes [594].  Other companies such as RAE

Systems® employ photoinoization detectors.  Chemiluminescence sensors have been

used in cyanide detection [595]; chemiluminescence experiments involving enzymes

such as rhodanese, sulfite oxidase, and peroxidase have been performed by Ikebukuro

[596].  Metal anodes such as silver or gold have been used to amperometrically quantitate

cyanide in solution [597].  Oxygen electrodes have also been used extensively in the

determination of cyanide; Lee and Karube [598] have been able to detect 200 ppb

cyanide by inhibition of Pseudomonas fluorescens respiration using an oxygen electrode.
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Enzymes such as cytochrome oxidase and horseradish peroxidase have been used in

conjunction with electrodes extensively to detect and quantify cyanide [599-600].

Cyanide-specific electrodes have been explored as cyanide sensors as well [601] and are

capable detecting less than 0.1 ppm (6.026 µΜ) cyanide.  Spectroscopic [602] and

spectrofluorometric methods [594, 603-606] have been used for detection and

quantification of cyanide via light absorbing intermediates or reaction products.

Porphyrins are intensely colored biological molecules with absorbance spectra

that are sensitive to the presence of different reagents and different conditions such as pH

and ionic strength.  Metalloporphyrins may be useful in detection of cyanide due to the

affinity of cyanide for many metals such as rhodium, silver, gold, and copper.  Cyanide

has been shown to cause a shift in the Soret absorbance of a rhodium porphyrin from 417

nm in its absence to 427.5 nm in its presence with a detection limit of 7.84 ppm (160

µM)[604].  Porphyrins have been shown to be very sensitive to their environments and

are highly selective for different reagents with a specific reagent giving peaks at specific

wavelengths [264, 283-284].  Immobilization of porphyrins to a substrate such as a

cellulose membrane, quartz, or other substance [453-456] permits usage and storage for

extended periods.

Cyanide binds to hemoglobin, myoglobin, and cytochromes as well as other

metallo-proteins and inhibits mitochondrial energy production by binding to cytochrome

oxidase.  Myoglobin has a strong absorbance spectrum that is sensitive to the interaction

of ligands such as CN-, CO, and O2 with the heme.  In this chapter two systems are

reported for the detection of low levels of cyanide; first, copper porphyrin immobilized to

cellulose film rapidly detects low levels of NaCN in aqueous solution; and second,
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myoglobin immobilized to a glass surface can be used to detect the presence of 1.5 to

20ppb (31 nM and 408 nM respectively) NaCN in solution and the presence of HCN gas

in less than ten seconds.

12.2 MATERIALS AND METHODS

Granular sodium cyanide, cupric sulfate 5-hydrate (CuSO4 5H2O), and sodium

chloride were obtained from J.T. Baker Chemical Co. (Phillipsburg, NJ).

SPECTRA/POR  molecular porous membrane tubing was obtained from Spectrum

(Houston, TX).  Meso-tetra (4-carboxyphenyl) porphine monoethylene diamine coupled

to Traut's reagent (2-iminothiolane) here referred to as TPPT, was obtained from Frontier

Scientific (Logan, UT).  ProbeOn  Plus microscope slides were obtained from Fisher

Biotech (Pittsburgh, PA).  Myoglobin (Type III from horse heart, lyophilized powder)

and glutaraldehyde were obtained from Sigma (St. Louis, MO).  Cyanide gas (10 ppm

HCN in N2) was obtained from Drager (Pittsburgh, PA).

TPPT was bound to SPECTRA/POR® molecular-porous membrane tubing and

complexed with copper through the procedure described in Chapter 4.  Cellulose tubing

was soaked in 56 µM TPPT solution at room temperature for four hours.  The tubing was

placed in 1M NaCl overnight in the dark followed by soaking in 50% ethanol for 0.5

hours to remove any unbound porphyrin.  Deionized water was used to rinse the NaCl

and ethanol from the tubing.  At this point, copper was complexed to the membrane-

bound TPPT by soaking the films in a 5 mM solution of CuSO4 for four hours.

Deionized water was used to rinse the uncomplexed copper from the films.  These films

were dried and stored at room temperature protected from dust in the dark.
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Measurement of the films was accomplished by cutting strips to fit a standard 3

ml cuvette (0.9cm width).  The films were held against the front wall of the cuvette with

a custom made plastic clip.  Measurements were made in 3 ml pH 7 sodium phosphate

buffer (NaPi) 25 mM.  Absorption spectra were collected using a Cary 4E UV-Visible

spectrophotometer at 0.02 nm resolution in the presence/absence of NaCN.  A scaling

factor was determined for each data set by using the ratio of 0.065 A to the absorbance

intensity of the porphyrin film at 416 nm in order to compensate variations in porphyrin

density on the film surfaces.  Each of the traces in the data series was then multiplied by

this factor followed by calculation of difference spectra by subtraction of the scaled

absolute spectra using Grams/32 (Galactic Industries, Salem, NH).  The second derivative

of the difference spectra were taken using Grams/32 to determine peak positions.  Linear

fitting was performed using PSI-Plot.

Immobilization of myoglobin onto glass was accomplished at room temperature

on ProbeOn™ Plus microscope slides as described in Chapter 4.  The slides were

activated 0.17 M glutaraldehyde followed by rinsing with PBS.  Slide surfaces were then

allowed to interact with 10 mg/ml myoglobin in 50 mM pH 7 NaPi for 2 hours followed

by rinsing with NaCl and ethanol solutions and H2O to remove any unbound protein.  The

slide was exposed to NaCN in solution by placing 200µl of the appropriate concentration

on the surface of the slide.  The excess solution was immediately blotted away.  The slide

was exposed to HCN gas as a mixture of 10 ppm HCN and 99% N2.  Constant pressure

flow valves were used to dilute the 10 ppm Drager HCN to the desired concentrations.

Measurements were collected as described previously (Chapter 5) using an Ocean Optics
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USB2000 spectrophotometer with the output of a LED with maximum wavelength at 434

nm and 83 nm HBW.

12.3  TPPT

The absorbance spectrum of immobilized CuTPPT in the absence/presence of 4

ppb (82 nM) NaCN is shown in Figure 12.1 (Traces 1 and 2, respectively).  The CuTPPT

immobilized onto the cellulose membrane gives apparent absolute absorbance peaks at

416 nm in the absence of cyanide and 417 nm in the presence of cyanide.  The difference

spectrum CuTPPT + NaCN minus CuTPPT is shown in Figure 12.1 (Trace 3).  The

shallow trough located at 411 nm indicates a decrease in the ligand-free CuTPPT while

the 421 nm peak is a new absorption band that results from the formation of a CuTPPT-

NaCN complex.

The apparent shallowness of the trough in the CuTPPT + NaCN minus CuTPPT

difference spectrum is of some concern.  The results (Figure 12.1) of peak fitting the

absolute spectra shown in Figure 12.1 (Traces 1 and 2) indicate the involvement of three

peaks in the absorbance spectrum of CuTPPT.  All three of the peaks are changed upon

exposure to NaCN (Table 12.1).  The combination of the changes in the three peaks

causes the shallowness of the trough in the difference spectrum.

As seen in Figure 12.2, the absorbance increase at 421nm in the difference

spectrum shows a half hyperbolic dependence on NaCN concentration.  Extrapolation of

the data to a 3:1 signal:noise ratio indicates a detection limit of 0.7 ppb (14.3 nM).  The

changes in the absorbance spectrum level off around 75 ppb.
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12.4  MYOGLOBIN

The absolute absorbance spectrum of immobilized myoglobin is shown in Figure

12.3 with peak fitting results at a 99.98% confidence interval.  The Soret absorbance of

myoglobin in solution is located at 406 nm.  Upon immobilization, the absolute

absorbance spectrum of myoglobin is altered.  The peaks at 412, 448, and 476 nm shown

in Figure 12.3 contribute to the absolute absorbance spectrum of myoglobin when

immobilized onto glass, resulting in a broadened signal.  The effect of immobilization on

the absorbance spectrum of porphyrins has been previously documented [455].  Figure

12.3 shows the difference absorbance spectrum protein + NaCN minus protein for

immobilized myoglobin.  The heme-protein shows increased absorbance intensity at 400

nm and decreased absorbance intensity at 444 nm upon exposure to NaCN with an

additional absorbance increase at 495 nm.

 Figure 12.4 shows the concentration dependence of the change in the peak

absorbance intensity (444 nm) for myoglobin upon exposure to NaCN in solution.  The

response of the protein surface is linear to 20 ppb after which the changes in the

absorbance spectrum are greatly reduced suggesting saturation effects begin at 20 ppb.

As seen in Figure 12.5, reaction of the myoglobin surface to HCN gas is linearly

dependent on HCN concentration over the range of values tested.  Peak and trough

positions for the protein + HCN gas minus protein difference spectra are identical to

those for the myoglobin surface exposed to NaCN solution.
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12.5   DISCUSSION

Methods such as electrochemical sensors, cyanide activated metal-complexed

dyes, and optically sensitive molecules including porphyrins have been employed to

detect cyanide [594, 597, 601, 607].  Calcein, a polyanionic fluorescein derivative,

complexed to Cu2+ and bound to an Amberlite resin surface has been used to detect

cyanide in wastewater.  The copper-complexed calcein does not fluoresce while ligand-

free calcein does.  Addition of cyanide to the Cu2+-Calcein complex results in

fluorescence by removing the Cu2+ ligand [594].  However, any molecule that leads to the

removal of the metal bound to the indicator will produce the same fluorescence intensity

increase.  In contrast, our porphyrin system relies on cyanide ions to bind to but not

remove the copper bound to TPPT.

The method reported by Rao [597] employed silver electrodes in a silver dicyano

complex; cyanide concentrations were obtained by calculating midpoint potentials, which

is slow and requires many measurements.  Immobilized Saccharomyces cerevisiae was

used by Ikebukuro [608] to detect cyanide in river water.  This method required time for

the measurement of the respective rate before and after exposure to river water and the

active element had a lifetime of only nine days.

Metalloporphyrins such as rhodium(III)-tetrakis(4-sulfonatophenyl)porphyrin

(Rh-TPPS) have been used as cyanide scavengers [607].  Hambright [607] demonstrated

the effectiveness of cyanide detection using Rh-TPPS in solution indicating that the

reaction was first order with respect to cyanide concentration from 1.6 mM to 0.16 m M

(104 ppm and 10.4 ppm respectively), within the levels of detection desired by the

military (2 ppm; 41 µM) [504].  Detection of cyanide here using CuTPPT films exceeds
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current detection level requirements by 1000-fold with a limit of detection less than 2 ppb

(41 nM) and saturation of the surface at 75 ppb.  Additional advantages of film

immobilized CuTPPT are speed of detection (six seconds or less) as well as the ability of

the films to be stored for years and retain their reactivity (data not shown).  The CuTPPT

films do not respond to the presence of HCN gas at concentrations up to 10 ppm.  Early

investigation of peak-trough positions for the interaction of CuTPPT with other metal

binding compounds such as 1,10-phenanthroline and dipicolinic acid indicates highly

specific response from the porphyrin with each of these compounds giving a unique

signature from that of NaCN.  This specificity is as expected based on previous reports

[264, 283, 379].

Immobilized myoglobin surfaces demonstrate the ability to detect HCN gas from

1 ppm to 10 ppm.  The myoglobin surface shows detection limits in solution of 1.5 ppb

(31 nM) NaCN, with absorbance changes leveling off around 40 ppb (820 nM).  The

dynamic range of the surface is dependent on the amount of protein present.  Using a

variation of the described immobilization procedure, another set of surfaces gave

absorbance intensities of 0.05 A as compared to 0.25 A for the surfaces described here

and showed saturation points at 7 ppb.  Increasing the surface density of myoglobin will

increase the dynamic range of this sensor surface.

The minimization of false positives and negatives in a detection system is

essential.  The myoglobin system, showing absorbance increases at 400 nm and 495 nm

and a decrease at 444 nm, gives an additional measurement wavelength that yields greater

specificity for the detection system.  If the decrease and increase in absorbance do not

both appear or do not appear at the proper wavelengths, the signal is false and not due to
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the desired analyte.  Exposure of the immobilized myoglobin surface to CO gas results in

a loss in absorbance intensity at 408 nm with an increase in absorbance intensity at 442

nm.  The interaction of carbon monoxide with the slide surface can therefore be

distinguished from that of cyanide gas.  No change in absorbance was observed upon

exposure of the myoglobin surface to a stream of N2 gas.

Myoglobin slides have been used after storage for no more than 50 days thus far.

Further information on the slide lifetime as well as the response of the surface to different

conditions and the activity of possible interferents is needed before a system of this type

could be put into operation.
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   PEAK FITTING RESULTS FOR FIGURE 12.1

Peak
Position (nm)

Height (A) FWHM (nm) % Total
Area

CuTPPT 412 0.038 43 59
416 0.036 15 20
464 0.011 56 21

CuTPPT + NaCN 413 0.037 41 59
417 0.038 15 24
463 0.009 52 17

TABLE 12.1 The peak fitting results from Figure 12.1 help to explain the shallowness

of the trough in the porphyrin + cyanide minus porphyrin difference

spectrum [342].
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EXPOSURE OF TPPT TO CYANIDE

FIGURE 12.1 (A)  Absorbance spectra of CuTPPT covalently immobilized onto dialysis

tubing membrane in the absence (Trace 1) and presence (Trace 2) of

NaCN (4 ppb) (82 nm) at pH 7.  The difference spectrum CuTPPT +

NaCN minus CuTPPT is shown in Trace 3 (scaled up by a factor of 3)

[342].  (B)  GRAMS/32 peak fitting at a 99.98% confidence interval for

Traces 1 and 2 shown in Figure A demonstrates the involvement of three

curves in the CuTPPT absorbance spectrum [342].

41
1 

nm 42
1 

nm

1

2
3

0.03

400 425 450
Wavelength (nm)

400 425 450 475
Wavelength (nm)

1

2

A
bs

or
ba

nc
e

A

B



   274

CONCENTRATION DEPENDENCE OF ABSORANCE CHANGE

FIGURE 12.2 The change in absorbance intensity of immobilized CuTPPT at 421 nm as

shown in Figure 12.1 (Trace 3) demonstrates a hyperbolic dependence on

NaCN concentration [342].
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CYANIDE EXPOSURE OF MYOGLOBIN SURFACE

FIGURE 12.3 (A)  The absolute spectrum of myoglobin immobilized onto a glass

surface is shown with results of peak fit to demonstrate changes in

absorbance spectrum upon immobilization [342].  (B) The difference

spectrum myoglobin + NaCN minus myoglobin shows the result of

immobilized myoglobin exposure to 20 ppb NaCN [342].
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CYANIDE CONCENTRATION DEPENDENCE

FIGURE 12.4 The intensity of the peak at 444 nm (Figure 12.3) in the difference

spectrum myoglobin + NaCN minus myoglobin shows half hyperbolic

dependence on NaCN concentration [342].
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EXPOSURE OF MYOGLOBIN SURFACE TO HCN

FIGURE 12.5 The peak minus trough difference 444 nm and 400 nm from the difference

spectrum myoglobin + HCN gas minus myoglobin (data not shown)

shows linear dependence on concentration of HCN in the gas mixture

[342].
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CHAPTER 13 

FINAL STATEMENTS 

 

The work presented here has been directed at the development of sensor surfaces 

for the optical detection and quantification of the presence of analytes of interest.  All of 

the described surfaces have employed a porphyrin for signal transduction taking 

advantage of the strong absorbance characteristics of the porphyrin macrocycle and the 

high degree of sensitivity of these characteristics to changes in the environment of the 

porphyrin.   

Chapters 10, 11, and 12 detail methods for detection of analytes based on 

immobilized porphyrin surfaces with the porphyrin acting as both transduction and 

recognition element.  The data presented in these chapters demonstrates the high degree 

of sensitivity and specificity attainable through the use of the porphyrin surfaces for 

detection of compounds of interest ranging from sugars to volatile organic compounds.  

The porphyrins have been immobilized to cellulose films, cellulose tissues, and glass 

slides providing surfaces adaptable to a variety of different applications.   

Chapters 5 through 9 deal with application of porphyrins for signal transduction in 

a novel system based on the reversible inhibition of enzymes.  Six different enzyme 

based surfaces are discussed, all employing a glass microscope slide as the support 

surface though the immobilization techniques could be adapted to any amino-

functionalized surface such as activated nylon or cellulose.  The glass microscope slide is 

used as a planar waveguide allowing the absorbance spectrum of the immobilized 

porphyrin-enzyme surface to be collected by evanescent wave absorbance spectroscopy.  
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There are several advantages to this measurement technique.  The sample is not applied 

between the light source and the detector, so correction for the absorbance of the sample 

is not necessary.  The technique collects an absorbance spectrum with a 2.54 cm path 

length (1 inch) rather than a path length equal to the thickness of the coating allowing for 

a very thin layer (basically one enzyme thick) to be used while still obtaining a 

measurement with a good signal to noise ratio.  This also prevents the diffusion issues 

faced by multilayer surfaces.  The measurement that is obtained is effectively the average 

of the area covered by the longer path length as well as the broad linear fiber optic (1 

cm).  This averaging gives excellent reproducibility even when surfaces are produced in 

small groups.  The discrepancies between the different slides and different areas on a 

single slide become obvious when measurements are collected perpendicularly to the 

surface with an instrument such as the Cary 4E.   

Though the measurement protocol is not yet common, it is finding a great deal of 

popularity in new sensor applications.  The novel aspect of the detection protocols 

described in Chapters 5 through 9 is the reversible inhibition of the enzyme by a 

colorimetric agent that gives a unique absorbance spectrum signature depending on if it is 

bound to the enzyme or not.  To make the concept clear, the porphyrin interacts with the 

enzyme in the same place that the analyte (substrate or inhibitor) to be detected does.  

When the porphyrin-enzyme complex is exposed to the analyte, the porphyrin moves 

away from the enzyme and the analyte takes its place.  When the porphyrin-enzyme 

complex is intact, the porphyrin absorbance spectrum has characteristics different from 

those of the porphyrin when it is not bound to the enzyme.  The changes in the 

absorbance spectrum that occur upon dissociation of the porphyrin from the enzyme can 
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be used to indicate the presence of the analyte.  In addition, the degree of change, that is 

how many porphyrins dissociate from enzymes, is related to the concentration of the 

analyte, so the intensity of the absorbance changes can be used to indicate analyte 

concentration. 

The lack of diffusion considerations and the use of a direct event for indication of 

analyte presence and concentration allow this detection technique to be used in real time 

with time requirements imposed by the spectrophotometer and data handling.  The 

technique has also proven to be exceptionally sensitive with limits of detection for 

organophosphorus compounds below the current safe drinking water standards.  The 

detection of gaseous carbon dioxide and hydrogen cyanide has been demonstrated and 

presents a strong argument in favor of the ability of the other enzyme surfaces to detected 

analytes in vapor phase, though no guess at sensitivity can be made. 

The surfaces described in Chapters 5, 6, and 9 are designed for the detection of 

organophosphorus compounds including pesticides and nerve agents.  Though no data 

can be presented on detection of live agents such as sarin, the surfaces have not failed to 

respond to all inhibitor (substrate) challenges ranging from drugs for treatment of 

Alzheimer’s disease to organophosphorus pesticides.  Agent testing is planned for the 

surfaces, but time constraints prevent the inclusion of those results.     
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