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PREFACE 

This thesis considers the application of a multi-processor computer system, 

using cooperating multi-algorithms, with an improved "noise-signal subspace" 

algorithm for direction-of-arrival estimation in a multi-source environment. The 

main driving factors are that the eigenstructure analysis computational burden 

and the subspace searches for linear combinations of steering vectors in typical 

eigenanalysis algorithms are impractical in real-time situations for large 

antenna arrays on a serial computer. 

Applying a multi-instruction stream, multi-data stream organized computer 

with P processors is shown to reduce the processing time of large antenna 

array systems to approach an order of P Jess than that on the serial processor. 

Greatly reducing the computation time, the typical N-cubed eigen~nalysis 

has been replaced with an iterative N-squared procedure that has a more 

favorable structure for parallelization and eliminates the requirement for the 

complete eigensystem identification. In certain operations, using an iterative 

acceleration technique of cooperation between multi-algorithms within multi

processors, the time required may be yet significantly lower. 

Finally, the development of a new peaking functional has allowed both the 

maximum signal and the minimum noise eigenvector components to present 

integrated information related to the direction-of-arrival. The new functional 

improves the multiple signal arrival resolution capabilities and requires less 

computational effort. 

The result is a multi-processor, multi-algorithmically accelerated, super 
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resolution, passive array, real-time direction-of-arrival capability for large 

antenna systems. 
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CHAPTER I 

INTRODUCTION 

The problem of locating the correct bearings of incoming signals with a 

passive antenna array has been the topic for many years by many authors. 

Physical applications are found in the diverse areas of sonar, seismology, 

radar, and radio-astronomy to name a few. As is well known, direction finding 

is analogous to frequency spectrum estimation except that the signals are 

functions of samples in a space aperture rather than in a time aperture. The 

sought after quantity in direction finding is the wavenumber which can be 

converted to a signal bearing knowing the antenna geometry (Marple, 1987). 

The application of eigenvector decomposition to this array signal processing 

problem is a more recent advancement and it has been shown to enhance the 

direction of arrival resolution capabilities compared to classical beamforming 

methods (Schmidt, 1981 , Speiser, 1987). The resolution improvement is 

attained at the expense of a rather large computational burden (Johnson, 

1982). These algorithms use the special eigenstructure of the sample signal 

covariance matrix computed from the output of the array receivers. Many 

algorithms have been developed for estimating the direction-of-arrival (DOA) of 

multiple wavefronts using signal and noise subspace methods including 

Schmidt (1981 ), Owsley (1981 ), and Johnson and Degraaf (1982). 

A combination of a need for greater stand-off range for the passive receivers, 

the existence of more ambient noise sources, and quieter operation of the 
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targets, has led passive systems toward longer arrays or multiple arrays among 

other improvements (Marple, 1987). However, the computational burden 

referred to above increases with the cube of the number of antenna elements. 

Therefore as the number of antenna elements increase, the eigenvector super 

resolution techniques quickly become batch mode operations, no longer 

applicable to the on-line or real-time situations. 

Although a review of the DOA problem and a detailed look at one widely 

used procedure will be presented, the aim of this research is not to provide an 

exhaustive survey of the previous work, nor is it to introduce a radically new 

DOA estimator. Rather, it is to present a significant advancement arrived at by 

the integration of several eigenanalysis DOA methods and parallel processing. 

The first component of the advancement is in the form of a high speed serial 

algorithm that greatly lowers the heavy computational eigenstructure analysis 

burden as well as the other computations involved. Then, further decreasing 

the computer time used, a combination of parallelization, and an enhanced 

parallelization technique is shown to obtain the objective of super resolution, 

multi-signal, direction finding in real-time using large passive antenna arrays. 

The concept of developing a fast algorithm is usually thought of as providing 

a computational procedure that resolves the solution in a shorter time by 

reducing the number of operations. This can also be accomplished by applying 

several concurrently operating processors to the problem. Most often these 

efforts result in replacing that which is conceptually clear and traditional with 

what is computationally efficient (Blahut, 1985). This research shows that an 

additional speedup gain can be reached when a set of different algorithms are 

combined into a single concurrent system that results in a new parallel 

procedure. The new parallel procedure can be faster than the fastest serial 

algorithm out of the set converted to a parallel algorithm. This is possible when 
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different data situations cause different and unpredictable responses within the 

algorithms. This is accomplished through a synergistic-like action between the 

different algorithms being employed simultaneously and communicating the 

solution progress between algorithms. 

Although improved speed to reach on-line performance is the primary 

driving factor, the gain in speed by substituting algorithms and parallelization is 

meant to be accomplished without the significant loss of accuracy compared to 

similar methods. Bias and variance are always basic tradeoffs in spectral 

estimation and are likewise considerations in DOA problems. 

The genesis for the new serial and parallel procedures developed here lies 

with a DOA algorithm called MUltiple Signal Characterization or MUSIC 

{Schmidt, 1981). A. 0. Schmidt discovered that the elements of the minimum 

eigenvector of the array cross spectral matrix were shown to be interpretable as 

coefficients of a polynomial whose roots provide the source directions 

(Schmidt, 1981 ). His work and Pisarenko's harmonic retrieval method for the 

time series version of the same problem lays the groundwork for this research 

{Pisarenko, 1973). Similar work using the maximum eigenvectors was a critical 

inclusion to this research's ultimate algorithm {Reddi, 1979, Cadzow, 1988). 

The resulting new algorithm has been finalized into a multi-processor, 

multi-algorithmic procedure. This algorithm provides an improved solution, in 

near real-time for even very large antenna arrays. 

Direction Finding Problem 

The basic problem of determining directions-of-arrival of multiple incoming 

signals from a set of noisy observations requires the solution to a set of 

overdetermined system of equations that can be represented as a vector-matrix 



relationship shown as Equation ( 1-1 ) . 

~=Af+W 
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(1-1) 

Here ~ is a column vector (notation will have vectors underlined, using lower 

case letters, and matrices boldfaced, using the upper case) that represents the 

collection of output vectors of observed data that is generated by the 

intersection of the receive antenna array geometry (referred to as the array 

manifold) and the bearings of the incoming plane waves. The objective is to 

solve the set of linear equations to determine the M different DOA bearings. 

Naturally, imperfect knowledge of the array manifold will affect the follow on 

estimation. There are other algorithmic procedures being developed to correct 

problems associated with sensor positioning errors, however the calibration of 

the array will be assumed as a result of accurate measurement and storage of 

the data to analytically overcome this problem (Seymour, 1987). 

At any instant, the sth snapshot vector (out of S samples per antenna) would 

be defined as: 

(1-2) 

where N is the number of antennas, and "r' denotes transposition. The vector, 

f, is the noise free input signal-in-space vector composed of the multiple 

incoming signals. The elements of the input signal component, !. are generated 

at the sources. The entries of the matrix A describe the relationship of the 

phase shifts due to the geometry between the antenna system and the various 

directions-of-arrival of the received signals. Included is another column vector, 

w, which represents the total additive noise. The noise is assumed to be 

uncorrelated with the incoming signals and uncorrelated between antennas. 

As a preamble to direction finding, Equation ( 1-1) will be established using a 

colinear equally spaced antenna array consisting of N omnidirectional receiver 

elements with M (M<N) plane waves arriving from M distinct directions. Each of 
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theM plane waves is assumed to have the same carrier frequency, fc, and to be 

defined narrowband and incoherent. It is possible to consider the broadband 

frequency problem as several non-overlapping narrowband problems, and 

then apply narrowband subspace processing to each band (Wax, 1985). There 

are newer broadband approaches currently being developed based on 

eigenstructure procedures that show promise of advancements related to this 

problem (Buckley, 1988, Shaw, 1987). Limiting the scope of this study, this 

research will only consider the narrowband problem. 

Shown in Figure 1 is the mth signal (of theM signals), assumed to be 

coming into the array at a direction defined by vector -Ym which is the vector 

wavenumber for that mth plane wave. The figure shows an element at the 

center of the array, but this is not a physical requirement for an actual system. 

When N is even, there will not be a real sensor element at this location, 

however this will not be important to the final equations. The received signal 

value of the mth wave differing by the phase shift between antenna elements 

can be expressed as the output at the nth (out of N total) element adjusted to 

the center of the array in phase and amplitude as follows (Haykin, 1985): 

where: 

s(n,m,t)= Am cos[21t fct + 21t(n-(N+ 1 )/2)ym· ~ + <Xm] 

n = 1 ,2, ... ,N the number of elements in the array 
m = 1 ,2, ... ,M the number of arriving plane waves 
fc = the carrier frequency of the plane waves 
t = time 
Ym = the vector wave number of the mth arriving wave 
~ = unit vector along the line of the array 
Am= Amplitude of the signal s(n,m,t) 

(1-3) 

<Xm = Phase of the signal s(n,m,t) measured at the center of the array 

The dot product of a unit vector along the antenna array axis and the vector 

defining the arrival direction of the plane wave, represented above by Ym • ~. 

can be expressed in terms of the distance between the array elements, d, the 
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vertical axis 

sensor element 

-v -m 

ARRIVING WAVE 

em = azimuth angle of arrival of the mth plane wave 

d = spacing between elements 

z = unit vector along the line of the array 

-y_ m = vector wave number of the mth arriving wave 

Figure 1. Determination of Azimuth Angle Using a Linear Array 



arrival angle 9m, and wavelength, 'A, of the arriving wave. The incoming wave 

is assumed to be propagating at a constant speed, C, here assumed to be the 

speed of light, hence the dot product is represented as:. 

7 

Ym· ~=(ellA.) sin 9m (1-4) 

Next, the electrical phase angle, q,, between elements along the array is 

defined as a function of the incoming angle, em 1 by: 

q,m = (27tdi'A) sin 9m. (1-5) 

Using a colinear array as Figure 1 depicts, allows a direction-of-arrival 

ambiguity to exist. Any arriving wave making an angle 9m with the axis of the 

array coinciding with the same cone angle around the axis, will have an 

identical electrical phase shift, q,m· The ambiguity does not exist if the array is 

planer and a three dimensional pointing vector as a function of azimuth and 

elevation is substituted in the mathematical development above. 

It is also possible to separate the arriving angles into unique azimuth and 

elevation angles if the antenna configuration is a simple crossed array. This 

requires solving for each antenna branch's angle-of-arrival and use of the 

geometry involved to establish a pointing vector toward the direction-of-arrival. 

Figure 2 illustrates this procedure with a crossed array (Kaplan , 1987). The 

azimuth and the elevation are determined by estimating the angle-of-arrival for 

each array arm, and then the three dimensional pointing vector DOA is 

computed from the intersection of the cone angles. 

The straight three dimensional approach causes the largest number of 

computations because it requires an azimuth sweep for every elevation angle 

investigated. The intersecting cone angle approach is much faster, but an 

ambiguity cab occur when multiple wavefront arrivals exist. 

Being careful to point out any loss of generality, the simplified geometry of 

Figure 1, rather than Figure 2, or a planar array, will be used for development of 



ARRIVING WAVE 

a =cone angle E-WARM 

f3 = cone angle N-S ARM 

a = azimuth angle 

4> = elevation angle 

9 = ARCTAN ( COS 13 I COS a ) 

2 2 1/2 
cl> = ARCCOS ( COS a + COS J3 ) 

/ 
North 

E-WARM 

DOA in terms 
of azimuth and 
elevation angles 

Figure 2. Determination of Azimuth and Elevation Using a Crossed Array 
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the DOA capability. It should be noted, however, that in Chapter IX the above 

cone angle procedures outlined for Figure 2 are used to determine both the 

azimuth and elevation for the DOA in a crossed array example. 

9 

Continuing the colinear signal model formulation, let am be the complex 

amplitude of the signal, s(n,m,t), measured at the center of the colinear array 

where n equals (N+ 1 )/2. As stated earlier, if N is an odd number of elements, 

then this will not be a real sensor location. If N is an even number of elements, 

the center of the array will not be at an actual sensor location, but this will be 

seen to not be important to the final equations. In any event, using phasor 

representation yields a simplified form of the signal variable independent of the 

time, as: 

s(n,m) = fm exp [ j (n-(N+ 1 )/2) <I>m] 

where, fm=Amexp ( j <Xm)· 

(1-6) 

The narrowband noise, a narrowband filtered version of the white noise at 

the input to the antennas, can be represented in a similar manner where the 

amplitude, 8, would be Rayleigh distributed and the phase, p, would be 

uniformly distributed over the range (0, 27t). 

w(n,t) = Bn cos(27tfct+Pn> 

The noise can also be represented independent of time with the phasor 

simplification to yield , 

w(n)=Bn expGJ3n), 

a complex valued random variable that typically has a zero mean and is 

Gaussian distributed. 

(1-7) 

(1-8) 

To expand the problem to include the multiple signal arrivals, Equation (1-6) 

is summed over the set of M plane waves (along with the added noise) to 

describe the observed signal at one typical antenna element, n. Figure 3 

illustrates the final expression of Equation ( 1-1) in an expanded matrix form to 
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represent the N antenna element outputs for the set of M arriving plane waves. 

The symbol kn = n-(N+ 1 )/2 is used as a function of antenna position to simplify 

the expression further. The s subscript in Figure 3 is a reminder that the vector 

.2S. is actually a set of S observations of independent measurements which will 

allow temporal averaging to improve the signal to noise ratio (SNR). 

During the processing interval, the matrix A is assumed to be stationary 

(which accounts for A not having the s subscript), which in turn requires that the 

directions-of-arrival to not change significantly during the taking of the S 

snapshots (which affects the length of time for sampling). The noise and the 

signal-in-space vector are expected to vary unpredictably over the sample 

period and are considered stochastic processes because of their behavior. 

The target of DOA eigenanalysis is the spatial correlation matrix also called 

the covariance matrix of the observed vector .2S. which is defined as, 

(1-9) 

where the superscript "H" denotes complex conjugate transpose, and E{ •} 

represents the expectation operation (Haykin, 1985). Of course, only a finite 

number of snapshot samples are ever available, so an estimate of R which will 

be called the sample covariance matrix is computed, as the average of the 

outer products of the S different .2S. snapshot vectors. 

Rx= _1_ L~s!sH] 
s s 

(1-10) 

Thus, given the S samples from which the estimate Rx can be computed, the 

problem is to determine each of the directions-of-arrival, em, of the M waves. 

These directions will be seen to be related to the eigenstructure of Ax, the 

eigenvalues and their associated eigenvectors of Rx· 

Achieving high resolution for this problem has been addressed with many 

techniques, but the signal subspace and noise subspace procedures have 
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been found to be the best unbiased asymtotically error free approaches (Reddi, 

1979, Schmidt, 1981, Johnson, 1982, Cadzow, 1988, Kumaresan, 1988). 

However, simultaneously with the improvement in resolution a new kind of 

burden arose. This burden is the large number of computations required to 

resolve the waves (Schmidt, 1981 ). Parallelization of the algorithm on a 

modern parallel processor is one way suggested to speedup the solution 

(Reddi, 1979, Speiser, 1985). This step was an objective in the initial goal of 

this research. However, it was concluded that because of the multiple N-cubed 

order of computations that are required, additional serial algorithmic 

advancements would be necessary to reach real-time speeds except for small 

antenna arrays. The particular serial advancements obtained will be unfolded 

in later chapters, however, and the next introductory topic will be to introduce 

the basic capabilities of parallel processing. 

General Parallel Processing 

Recently with the development of microcomputer based parallel architecture 

such an Intel Scientific Computers' IPSC/2, it has become possible to place 

what is equivalent to supercomputing power in locations normally limited to 

minicomputer capacities (Intel Corporation, 1986). The IPSC/2 configuration 

has multiple processors in the hardware configuration of a hypercube where 

each processor is directly connected to log2 P other processors through an 

internodal communications network. Here and throughout, P represents the 

number of processors in the parallel system. Figure 4 shows the nodal 

connectivity of concurrent hardware nodal configuration of a hypercube of 32 

nodes. This organization is defined as being a cube of dimension 5 (where 

25=32 nodes). Computers of this kind and other parallel organizations can 



DIMENSION = 5 

NUMBER OF NODES = 32 

EACH NODE IS PHYSICALLY INTERCONNECTED TO ITS 

FIVE NEAREST NEIGHBORS 

Figure 4. Hypercube Node lnterconnectivity 
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operate on a problem in the parallel mode and show a dramatic speedup of the 

solution if the problem is appropriate and the solution is optimally programmed 

(Asbury , 1985). Details on traditional organizations and definitions of parallel 

processing parameters will be covered in Chapter Ill. 

At this point, it can be recognized from the discussion that the solution for the 

equation in Figure 3 requires linear algebra investigation techniques that 

demand large numbers of simple independent computations. These can be 

dealt with as parallel primitives for concurrent solution speedup as suggested 

by the many authors of the DOA procedures (Bond, 1987). The objective here 

is to actually implement the procedures on a modern parallel processor. 

It is important to note that this research goes a step further and reaches an 

additional level of speedup using multiple algorithms that are concurrently 

operating and cooperating within a single parallel computer. It will be seen that 

this second level of speedup is only available within specially organized 

parallel computers. 

Dissertation Summary 

This dissertation considers the application of a multi-processor computer 

system, using cooperating multi-algorithms, to develop a signal-noise 

subspace method of direction-of-arrival estimation in a multi-source 

environment. 

The main driving factors are that the computations associated with the 

formulation of the sample covariance matrix, the eigenstructure analysis 

burden, and the subspace searches for linear combinations of steering v~ctors 

can be impractical in real-time situations for large antenna arrays on a serial 

computer. 
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One level of improvement is obtained by applying a parallel processor with P 

processors which can reduce the processing time of large array systems to 

approach an order of P less than that on the serial processor, provided P does 

not exceed certain limits compared to the size of the array. 

Also greatly reducing the computational time, the typical N-cubed order 

eigenanalysis solution has been replaced with an iterative N-squared order 

procedure that also has a more favorable structure for parallelization. In this 

operation, using the acceleration technique of cooperation between 

multi-algorithms within multi-processors, the time required is again significantly 

lowered, allowing real-time solutions to be achieved on rather large antenna 

arrays. 

The final level of development is in a new DOA function which integrates 

both the maximum signal and the minimum noise eigenvector components into 

a single estimator. The new function, which is faster to compute than other high 

resolution peaking functions, also enhances the closely spaced multiple signal 

resolution capability and increases the peakness of the output without affecting 

bias. It simultaneously lowers incorrect harmonic DOA bearing dominance due 

to sidelobe effects. 

The organization of the remaining chapters is as follows. The specifics of 

eigenanalysis based DOA techniques are presented in Chapter II pointing out 

the four tasks that make up the heavy computational burdens, highlighting the 

parallel processing opportunities, and analyzing the MUSIC DOA method. 

Chapter Ill is a discussion of parallel processing considerations including 

organization, parallel performance parameters, techniques and the modeling 

procedures that are followed. First level parallel processing is discussed 

showing capabilities and limitations. A new parallel technique considered in 

this dissertation to be at the second, and higher, level of parallelization called 



cooperative multi-algorithmic acceleration is laid out in Chapter Ill for later 

chapter implementation. 
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The next four chapters are based on the four tasks identified in Chapter II 

and the parallel procedures edified in Chapter Ill. The parallel processing 

techniques and new approaches are combined with new algorithms to reach 

the goal stated in this chapter. It will be seen that as each chapter progresses, 

new serial and parallel algorithms are born out of the objective of real-time 

performance. 

In these four chapters, each task will be mathematically approximated to 

assist in designing the algorithms and predicting the performance of the new 

algorithms when implemented in a multi-processor configuration. The DOA 

timing data resulting from computer simulation driven experiments is provided 

as a table at the end of each chapter. Comparisons can be made of each of the 

new parallel algorithms in terms of computation speed under controlled 

conditions. Timing considerations are the primary focus in these chapters. 

Chapter VIII presents an ensemble model to assist in investigating final 

overall parallel timing optimization considerations. The overall timing table is 

compared to the overall mathematical model at this point to measure the 

agreement between the actual and predicted. 

Chapter IX provides the performance of the estimator outputs of the 

developed parallel DOA procedure. This is partially accomplished by the same 

computer driven simulation procedures used for the timing data. Further, 

however, data obtained from an actual radio experiment has been included to 

collaborate the simulations. 

Chapter X completes the dissertation with a summary and recommended 

areas of future research. 
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Contributions 

There are many new results reported. 

1) There is an improved algorithm swiftness in the serial mode, which is 

derived from utilizing a mixture of unique approaches. This is a result of an 

integration of the mathematical techniques available and is noteworthy in itself. 

2) There is dramatic speedup performance which is a result of applying the 

first level of parallelization required new models and analysis procedures to be 

employed within the new hypercube parallel computer organization. 

3) The multi-algorithmic acceleration procedure found in the dissertation is 

in concept and application a revision and a verifiable demonstration of an 

advancement beyond the previous constraints related to traditional parallel 

conversions of serial algorithms. 

4) Although the signal subspace approach has been maturing for years, the 

closely spaced multiple signal resolution capability of the innovative high 

speed algorithm developed in this research shows very little estimator 

performance penalty compared to others presently available. 

5) There is a unique procedure developed to estimate the number of 

arriving wavefronts based on the speed of convergence of the power method 

eigendecomposition while operating in a multi-algorithmic mode. 

6) The integration of all of these elements have resulted in the outgrowth of 

a DOA algorithm that has super resolution capability, orders of magnitude 

speed improvement, and an eigenanalysis DOA technique that enters the 

physical real world with on-line solutions. 



CHAPTER II 

EIGENANAL YSIS-BASED DIRECTION FINDING 

There are a number of DOA array processing algorithms proposed in the 

literature that use the eigenstructure of the array spatial covariance matrix. 

DOA techniques are also valuable in digital spectrum analyzers for identifying 

sinusoids that are present, although they are not true power spectrum density 

estimators (Marple, 1987). The eigenvalue/eigenvector(EV/EV) based methods 

have considerable value due to their super resolution unbiased estimation 

capacities. This class of estimators developed by Pisarenko (1973), Reddi 

(1979), Schmidt (1981), Wax, Shan and Kailath (1982), and others make use of 

the eigenvectors associated with the eigenvalues of the spatial covariance 

matrix. The smallest eigenvalues are called the noise eigenvalues, and the 

largest eigenvalues are called the signal eigenvalues. The eigenvectors 

associated with the eigenvalues are a basis for either the noise subspace or 

the signal subspace respectively. Separation of the noise eigenvalues from the 

signal eigenvalues is one of the most difficult parts of the DOA EV/EV problem. 

The subspace separation is critical because it can be shown that the noise 

eigenvectors are orthogonal to the signal vectors, and is a basic element in the 

MUSIC approach (Kriel, 1988). 

The conventional algorithms for DOA using the Fourier, maximum-likelihood, 

or linear predictive methods, although simpler in concept usually have poorer 

resolution given the same aperture size. This makes them less appropriate for 
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use when signals from closely spaced multiple sources are arriving at the 

receive antenna array (Reddi, 1979, Kriel, 1988). This is especially true in low 

SNR environments such as passive sonar (Johnson, 1982). 
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Results similar to the conventional algorithms can be obtained when using a 

DOA solution applying only the eigenvectors associated with the largest 

eigenvalues (Reddi, 1979, Johnson, 1982). This is similar to the beamforming 

approach that maximizes the signal correlation. 

As was stated earlier, the improved resolution above does not come without 

a significant additional burden. Hence, elimination or reduction of the burden 

of extended processing time necessary to resolve the eigendecomposition 

DOA calculations is the motivation for the development of a multi-processor, 

multi-algorithmic accelerated procedure. The computation of the sample 

covariance matrix, its eigenvalue and eigenvector decomposition, and the large 

numbers of dot products required to compute what is referred to as the DOA 

spectra, are the bottlenecks in the real-time implementation of these high 

performance direction finders (Schmidt, 1981 ). As an initial solution to this 

problem, the bottlenecks can be assaulted with parallel techniques (Reilly, 

1987). It will be found, however, to attain real-time DOA with large arrays, 

additional serial algorithmic advancements are necessary. 

First an understanding of the eigenvalue techniques needs to be addressed. 

As a basis for later chapter developments the MUSIC algorithm will be the 

target procedure to generally illustrate the eigenanalysis techniques. 

MUSIC Direction-of-Arrival 

The following discussion will pin-point exactly where the large numbers of 

computations are required in an actual implementation of the MUSIC algorithm. 
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Typical solutions will be considered and improvements will be suggested. 

The equation that defines the emitter localization problem is Equation ( 1-1). 

The A matrix, ~. f, and '!i. vectors were defined in Chapter I. This development 

will consider an equally spaced colinear omnidirectional antenna array as was 

illustrated as Figure 1 in Chapter I. The implimentation of the later chapters is 

also accomplished on a similar array. 

In his 1981 dissertation R. 0. Schmidt summarized the steps for the MUSIC 

algorithm to arrive at the angle of arrival for the large N, or the data "rich" case, 

with the following four steps: 

Step 1 : Collect Data to Compute Eigenstructure, E. 

Step 2: Estimate Number of Signals, M 

Step 3: Estimate Signal Subspace to Derive the Noise Subspace. 

Step 4: Estimate Intersections of Signal Subspace with Array Manifold. 

The analysis that follows will break down these steps into four tasks whose 

operations are the major computational burdens of the algorithm. 

The first step of MUSIC, and other EV/EV methods, is to compute the spatial 

covariance matrix estimate, Rx, from the signal samples and then decompose it 

into its eigenstructure. The covariance matrix is defined as: 

( 2-1) 

As stated earlier, in practice what is actually available is the averaged value 

over the S (S equals the number of snapshots) N by N (N equals the number of 

antennas) matrices between each snapshot of sample data. Hence Rx, the 

sample covariance matrix, will only be approximately equal to R, the spatial 

covariance matrix. 

s 
Rx = (1/S) X xH = (1/S) 1: ~i ~iH ""R 

i=1 

(2-2) 
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The added noise has been assumed to be independent of the incoming 

signals and independent between antennas. It is also assumed to have a zero 

mean, which yields, 

R =E{~H}= AE{f tH}AH+E{w wH} = Rs + Rw. (2-3) 

Hence, the estimated covariance matrix, Rx, will be approximately equal to 

the sum of Rs and A..Rb where Rw = A..Rb. This can be rewritten as a 

generalized eigenvalue problem between the matrix pair (Rx, Rb) , and since 

Rs must be singular, being dimension N but rank M (M being the number of 

arriving waves) that is less than N, it follows that I(Rx- A..Rb)l approximates IRsl , 

which is approximately equal to 0. 

Equation (2-4) is true for all of theN generalized eigenvalues, A;. for the 

matrix pair (Rx, Rb)· 

(2-4) 

Many eigenstructure methods require the additive sensor noise to be 

spatially white, i.e., equal power and uncorrelated between sensors. The 

problem of nonwhite noise that has a known covariance can be attacked by 

solving the generalized eigenvalue problem (Paulraj, 1986). Note that Rb=l, 

an identity matrix of rank N, when the noise is considered spatially white. 

MUSIC assumes uncorrelated noise sources but also assumes a Gaussian 

distribution. Hence an estimate of Rb must be available to solve the problem in 

accordance with the above steps. 

In the case of an unknown noise field, if the sensor noise is assumed white 

incorrectly the degradation of the estimate will occur such as bias, lower 

resolution, etc. (Martin, 1984). Generally, however reasonable solutions can be 

found assuming spatially white noise situation. It is clear that this is more 

significant in the low SNR situations, however highly colored noise will also 

effect estimates. These problems are of varying concern depending on the 



problem at hand. Assuming the ability to estimate the noise environment in 

some manner exists, allows progression to the MUSIC solution of the 

generalized eigenvalue problem. Hence, there must exist nontrivial solutions 

such that the associated eigenvectors and eigenvalues are a solution to 
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Rx ~n :::::A,R~n ; n = 1, 2, ... , N. (2-5) 

The term eigenset will be used to reference the paired eigenvalue and its 

associated eigenvector, A, and ~n respectively. Normally an eigensystem 

refers to all of the eigensets of a matrix. If the An found above is the minimum of 

the generalized eigenvalues, then the equation for Rx is, 

Rx ::::: Rs +Amin Rb · (2-6) 

Since the matrix Rs is singular and has N-M eigenvalues that are equal to 

zero, Amin must also have the same algebraic multiplicity, N-M (Schmidt, 

1981). This requires that if there are five antennas and four incoming plane 

waves, the algebraic multiplicity for the zero eigenvalues of Rs and the 

algebraic multiplicity of Amin would both be one. If one wave was arriving then 

the algebraic multiplicity of the minimum eigenvalue would be four. The 

number of arriving wavefronts can be approximated by using an estimate of the 

algebraic multiplicity derived during the eigenanalysis (Schmidt, 1981). The 

number of signals resolvable is a function of the number of elements, the SNR, 

the number of samples, etc.(Bresler, 1986). 

Because the actual minimum eigenvalues are only approximately equal to 

each other, and not actually equal to zero, it is not a trivial effort to determine 

the correct number of waves even after all of the eigenvalues approximations 

have been extracted in the eigenanalysis procedure. Schmidt ( 1981) suggests 

a x2-based likelihood ratio test to determine the number of arriving wavefronts. 

Marple (1987) recommends the Akaike Information Criterion (AIC) as modified 

by Wax and Kailath (1985). Both of these methods requires the complete set of 
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eigenvalues to complete the calculation which leads to the estimate of M. Of 

course, both of these procedures are only estimates, so there is no guarantee 

that either method will produce an accurate count in a given situation. Some 

researchers have simply assumed the actual number of arriving waves as 

being a known quantity. They then focus on other considerations of the DOA 

estimation problem (Johnson, 1982, Reilly, 1987, Kriel, 1988). 

Whatever method chosen, the number of arriving wavefronts is necessary 

information for accurate operation of the MUSIC procedure, and is the second 

step listed above. If too large an estimate forM is made, then extra peaks will 

be produced where no incoming signals actually exist. Likewise, if too small of 

an estimate is made, then arriving waves will be missed. This is effectively 

saying that, the estimate of the number of incoming wavefronts will normally be 

approached in the solution, correct or not (Johnson, 1982, Kriel, 1988). 

An alternative method of estimating the number of arriving waves which 

does not require the complete eigensystem of the sample covariance matrix 

has been developed in this research and this contribution will be discussed in 

Chapter V. For the present, it is sufficient to assume that a value for M, the 

correct number of arriving signals, has been estimated using the MUSIC 

x2-based recommended method requiring the eigensystem decomposition. 

Then it follows that: 

Rs = AE{! tH}AH, see Equation (2-3). And from Equation (2-5) it further follows, 

AE{f fH}AH ~n = (A.n- "-min)R~n. (2-7) 

Thus AE{f tH}AH ~ = Q for the minimum eigenvectors associated with "-min· 

But since A and E{f fH} are of full rank by definition, it is clear that: 

AH~n = Q, (2-8) 

for the eigenvector(s) associated with "-min· 

The "noise subspace" eigenvectors are the eigenvectors associated in 



Equation (2-8), and the "signal subspace" eigenvectors are those that are 

remaining. The noise subspace eigenvectors are orthogonal to the signal 

subspace eigenvectors (Kriel, 1988). This results in the estimate of the signal 

nullspace (which can be considered the orthogonal complement to the signal 

subspace) as E = ~M+ 1 , ~M+2 , ...• ~N], and completes MUSIC step three. 
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MUSIC and other eigenvalue estimators use this information later to directly 

estimate the DOA. The solutions found, see Equation (2-5), to the generalized 

eigenvalue problem, see Equation (2-4), is one of the larger computational 

burdens in the MUSIC algorithm. The eigensystem decomposition usually 

requires an N-cubed order of computations. 

In step 4 of the MUSIC algorithm, the noise subspace basis vectors are used 

by forming a function composed of the intersection with the array manifold, A, 

and matrix E = ~+ 1 , ~M+2 , ...• ~Nl· Since the em values in the .a( e) 

elements are unknown, it is required to sweep e through all possible arrival 

directions. The function f(e), Equation (2-9) below, is sometimes called the 

peaking function of MUSIC because it will peak at the incoming angles em· 

f(e) = (2-9) 

In review, the matrix E = ~M+ 1 , ~M+2 , ...• ~Nl is formed from all of the 

noise eigenvectors (remember there are an estimated N-M of these). The .a( e) 

vector is a single column of the A matrix developed from the geometry of the 

array matrix (the stored array manifold) stated in terms of the arriving angle, e. 

The estimation of the azimuth angles for the directions of incoming plane waves 

will be where Equation (2-9) peaks sharply as e is swept from -rrl2 to rrl2 

radians when using a colinear array as in Figure 1. In theory, without noise and 

round off error, f(e) will equal infinity for values of e that corresponds to the 
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actual directions-of-arrival of the incoming waves (e = e1, e2, ... , eM)· In 

practice due to the noise, limited sample size and finite computer word length, 

the function has a very large magnitude relative to those ei choices that are not 

close to a correct DOA. 

This research recognized two important modifications that can be made to 

this function, Equation (2-9). They both improve on the speed of computation of 

the DOA process. They cannot be found by inspection, and will be generated 

as a result of the eigenanalysis in Chapter V and the intersection of the array 

manifold in Chapter VI. 

Parallel Processing Opportunities 

As can readily be observed, there are several areas that have the possibility 

of improvement by applying parallel algorithms to the solution. The specific 

computational burdens of MUSIC and other similar EV/EV procedures are 

divided among the following four operations: 

Task 1 : computing the sample covariance matrix, 

Task 2: the eigenstructure analysis, 

Task 3: forming the DOA spectra via the vector dot products, and 

Task 4: locating the peaks in the DOA spectra (Schmidt, 1981). 

Each of these tasks will be analyzed in detail in Chapters IV, V, VI, and VII, 

respectively. At this point a quick look will help size the problem as it has been 

approached with MUSIC. 

The first operation is to compute the outer products to estimate the 

covariance matrix. This roughly requires the order of SN2 calculations. As S 

approaches N this is essentially an N-cubed order calculation, after which it 

becomes a multiple N-cubed order task. 
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In the second operation, MUSIC requires the entire set of eigenvalues to be 

evaluated to estimate M, the number of incoming signals. The more arriving 

signals, and the lower the SNR, the harder it is to differentiate between the 

noise subspace and the.signal subspace. With few arriving signals, larger 

numbers of noise eigenvectors need to be resolved. Using traditional complete 

eigendecomposition will require extensive time for this operation which is 

typically of order N-cubed (Tufts, 1986). 

The third operation of MUSIC is a function of the number of incoming waves 

and requires (N-M) times the N-order dot product for the computations for each 

angle (or portion of an angle) investigated. For small M, and assuming at least 

one tenth of a degree resolution for the angle, this function will also be of the 

order of multiple N-cubed computations. 

The last operation is the search through the computed DOA spectra looking 

for the peaks. Knowledge of the number of arriving waves from the second task 

determines the number of peaks sought in this operation. This search will also 

be a function of the total number of azimuth bearings in the search, the 

resolution of the search, and the number of signals expected to be arriving. It is 

not a function of S or N, but can be a large time consumer when the brute force 

method is used for noncolinear antenna arrays (Speiser, 1985). For small 

values of S and N the time for the first two tasks diminish and this as well as the 

third operation represents a fixed time cost base on the number of bearings 

investigated. 

Although this study is a two dimensional azimuth-only direction finding 

procedure, when a three dimensional vector is used as a result of other than a 

colinear array geometry, then each bearing of azimuth must be completed for 

each angle of elevation investigated. This would have the effect of increasing 

the search time significantly causing this task, and the last one to have an 



increase in the computer time used. 

The mathematical simplicity of these dominating tasks and the opportunity 

for multi-algorithmic application in the eigenstructure analysis, makes MUSIC 

or EV /EV variations of it, top candidates for a parallel processor applications. 
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Although all actual computer times will be presented, and they can be 

placed against any criterion desired, for simple reference, the goal of real-time, 

or on-line, processing for this problem will now be defined. Often relative 

values of improvement are used to establish what is meant by real-time 

performance (Bromley, 1985). That is, if the speedup improvement is of the 

order 10N, where N is the primary dimension of the system, then this might be 

referred to as being real-time (Reilly, 1985). An improved definition of real-time 

performance can be based on input, control and response. In this environment, 

real-time is as long as the result is available to a continuing problem for a 

particular set of input values while those inputs can be affected (Morris, 1977). 

But of course this might allow a delay ranging from microseconds to hours, and 

still be labeled real-time. 

Keeping these ideas in mind, but desiring to be a little more specific, an 

absolute time value has been selected to define real-time performance in this 

research. Somewhat arbitrarily, but within practical reason, if the output is 

obtained in two seconds or less, then the goal of real-time processing will be 

considered to have been met. Any time of two seconds to ten seconds will be 

defined as being near real-time. These definitions are not provided to diminish 

results that show above ten of seconds of processing time as opposed to many 

tens of minutes or even an hour or more required in previous serial DOA 

systems. These kinds of results simply fall out of the real-time and near 

real-time definitions provided above, but will certainly be sought after and 

considered valuable. 
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Clearly real-time processing is dependent on the application. Situations can 

easily be constructed when two seconds is not a reasonable solution time or 

when two hours is more than fast enough. These times have been chosen 

considering normal applications in the sonar and radar arenas. Constraints do 

result with the establishment of these two windows, as they provide a threshold 

for desired performance. The limits that these definitions place on the problem 

size can be more clearly understood when a function analysis is placed against 

a typical time line. 

Figure 5 compares the impact of X, Xlog(X+1), x2, and x3 functions against 

a time line (in a log scale) for increasing values of X. It can be seen, that with X 

at 712, computer time required using a .1 megaflop machine exceeds 1 hour in 

the x3 function case. Hence, even a single X-cubed factor makes it virtually 

impossible to improve an algorithm to real-time by applying only 16 processors 

in a straight forward parallelization as X increases to above 150. 

It has already been pointed out that this problem has a large number of 

multiple N-cubed factors, without even considering the timing effects of the 

actual coding implementation. To further extend this problem, the solution 

requires the use of complex mathematical representations causing even larger 

numbers of computations. This implies that straight parallelization of multiple 

loops in these DOA algorithms could not be successful except for small array 

sizes. It will be discovered in the next chapter that when the message passing 

parameters in a concurrent solution are also a function of X, it is typically not 

possible to apply hundreds of parallel processors when the problem factor, 

vector length or matrix size for example, is also only into the hundreds. This 

limit will be called reaching the first level parallelization threshold. In fact, the 

order of tens of processors will be found to provide the optimum speedup 

parameters for this size problem. Sixteen processors are the maximum level 
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typically applied in this research. 

Hence, the only way to reach a real-time processing goal without resorting to 

supercomputering speeds, is to reduce the algorithms to N-squared order 

procedures. Then, with the application of tens of processors, the computer time 

will become less than two seconds, even for large arrays. Of course, very large 

arrays can still be processed if memory limitations do not constrain the 

processing capabilities, and dramatic time savings can be obtained. 

Figure 5 also shows that problems with functions of order Xlog(X+ 1) and X 

will yield real-time speedup without resorting to parallel processing speedup 

modifications. The actual time improvment using parallel processing in these 

cases could not be justified unless the size of X extends past ten thousand. 

A better understanding of the limitations and advantages of parallel 

processing improvement will be addressed in the following chapter along with 

the measures of parallel performance and parallel computer organization. 



CHAPTER Ill 

PARALLEL PROCESSING 

Solutions to problems that require manipulation of large data matrices and 

vectors such as the computation of the sample covariance matrix and the 

eigensystem decomposition as discussed in Chapter II, or any problem that has 

nonunique solutions, such as array signal processing analysis, can reasonably 

be expected to be resolved in less time with parallel processing (Huang, 1980). 

In applications where iterative solutions are applied, parallel processing with 

multiple algorithms can often provide an additional reduction in processing 

time. With these kinds of large problems it is often possible to save significant 

computer time with the application of a parallel processor system. 

This chapter examines the parallel implementation techniques and parallel 

algorithmic modifications to reach this research's goal, a multi-processor, 

multi-algorithmic accelerated, high resolution DOA real-time estimator. 

The beginning of any parallel procedure lies with the problem being solved. 

The previous serial results, .if any, are an extremely important consideration. 

Even though the parallel algorithm may require an entirely new parallel 

solution development, research of these previous serial solutions is done to 

uncover the types of parallel opportunities such as matrix-vector multiplications 

and vector or matrix manipulations that exist within the many completed works. 

Parallel mathematical primitives can be developed based on the parallel 

architecture of the parallel processor being applied and the problem being 

31 



solved. This will guide the parallel design to the best algorithm for parallel 

implementation. As the approach is expanded, and new and old methods are 

judiciously considered, a new-born optimized parallel algorithm results. 

Attention should be called to the fact that the most efficient serial program 

may not have much in common with the most efficient parallel algorithm. In 

efforts of serial optimization, the serial algorithms frequently take on a very 

special strictly serial nature that does not yield as much improvement through 

parallelization. The use of singular value decomposition (SVD) in the serial 

eigenvalue program for MUSIC is usually considered the optimized serial 

method (Luk, 1987). It would be wrong to immediately extend this answer to a 

parallel beamforming algorithm without attempting a fresh parallel approach. 
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In the case of this research, even though the initial focus was on the MUSIC 

DOA solution, what follows is a new serial algorithm, a new parallel algorithm 

including new a parallel approach, and what must be considered a different 

and improved solution to the multiple signal DOA problem. 

Chapter II listed the four tasks that comprise the computational efforts in 

typical eigenanalysis solutions. It was stated that other than being of multiple 

N-cubed order, these tasks have the ideal setup for development into an 

efficient concurrent solution. Chapter IV will begin the specific task analysis 

and alteration of these tasks. This chapter, however, will first detail some 

parallel computer organizations, discuss the parallel performance parameters, 

develop the advanced parallel feature of multi-algorithmic acceleration, and 

present the mathematical model to be followed. 

Parallel Computer Organization 

Practical parallel processor hardware falls into two major categories. As 
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depicted in Figure 6, parallel processors are usually either single-instruction 

stream multiple-data stream (SIMD), or multiple-instruction stream multiple-data 

stream (MIMD) (Flynn, 1972). The SIMD machine has multiple processors 

operating with the same instruction stream upon multiple sets of data. The most 

common SIMD implementations are systolic algorithms on systolic array 

hardware as found in special-purpose applications such as image processing. 

Systolic array systems operate concurrently and sychronously on the data 

using a parallel arrangement of pipelined processors to yield very high speed 

parallel solutions. One big benefit of this structure is that the final systolic 

design applications readily lend themselves to VLSI hardware implementation 

(Bond, 1987). 

The MIMD organizational structure has an advantage over SIMD in that it 

can emulate the systolic array system (or many other architectures} for 

prototyping or in actual operation, but unlike SIMD machines, MIMD machines 

can also operate simultaneously with entirely different algorithms at each 

processor using entirely different data sets. This is the origin of the advanced 

MIMD parallel computing power associated with multi-algorithmic acceleration 

which is discussed at the end of this chapter. 

Within the category of MIMD structure, two primary methods of passing data 

between processors have evolved. The processors either share memory 

connected by a common hardware memory bus, requiring some method of 

memory access arbitration, or they send explicit messages over a 

communications network between the processors, requiring a method of 

message routing (Karp, 1987). 

Timing data favors shared memory methods because of the narrow 

communication bandwidth's available for message passing compared to the 

latest high speed memory access times. Additional significant time delays 
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occur in many message passing systems because store and forward message 

routing techniques are often used between the cascaded connections of 

processors. Of course, the shared memory organization is not unbounded and 

it has some unique disadvantages compared to the message processing 

organization. Limits on expand ability of the bus structure to access memory, 

increasing conflicts on memory and bus arbitration, and software timing 

difficulties are some of the shared memory computer organization basic 

weaknesses (Flynn, 1966). 

The Intel iPSC/2, a message passing hypercube organized computer, has 

narrowed the timing gap with it's new node to node communication technique 

by using what is called a Direct Connect Module that allows internodal 

messages to be sent virtually from any node to any other node at a data rate of 

2.8 MBytes per second. 

Figure 4 shown earlier is actually the physical nodal connectivity of the 

iPSC/2 MIMD hardware. Research was completed in the configuration of a 

hypercube using only 16 nodes. This organization would be defined as a cube 

of dimension 4 (where 24=16 nodes). Prior to current routing schemes, 

computers organized this way caused algorithms being produced to include 

very careful analysis to assure minimum routing conflicts over the limited 

interconnectivity. However, the Intel computer's newest message routing and 

message switching hardware scheme makes it appear as if it were an 

ensemble of fully interconnected processors (Intel, 1987). 

Even with these recent advances, transit time of node to node messages is 

still a major parallel software design concern. The ratio of calculation time to 

communication time for the nodes is a driving factor in maintaining or reaching 

optimum speed, hence it greatly affects parallel computer performance and 

speedup parameters (Grunwald, 1986). 
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Compared to a serial machine however, whichever parallel configuration 

used, when the nature of the problem is as stated above, dramatic speedup can 

usually be achieved at a much lower cost (Ratter, 1985). 

Parallel Computing Performance Parameters 

The reference of saving "significant computer time" in this chapter's 

introductory remarks was an intentional highlight relating to a weakness in the 

current measure of parallel speedup performance. Logically, speedup is 

simply the time required on a serial computer compared to the time required on 

the parallel computer. However, the term speedup normally refers only to a 

ratio of these two numbers (Schendel, 1984). Because it is then unitless, It 

overlooks the absolute amount of time saved or used by the parallel processor. 

To overcome this problem, two parameters, Sp= speedup ratio and S0 = 

speedup differential, are defined below as functions of parallel performance, 

and the term S=speedup will generally be used as meaning both. The symbol 

S has already been used as the number of samples, but no confusion should 

arise from these quite distinct assignments. 

The following example is provided to see the impact of having only a single 

speedup definition. Suppose an optimised serial algorithm takes .001 seconds 

to solve a problem. Then, with the application of a parallel computer with 128 

processors, assume that the parallel system can solve the problem in only 

.00001 seconds. This would yield a speedup ratio of 1 00. 

Speedup Ratio, Sp= serial time/parallel time 

.001 sec. I .00001 sec. = 1 00 (3-1) 

Reporting an overall speedup of 1 00 has the ring of a very good result. On 

the other hand, reporting the total speedup differential improvement of .00099 



seconds will take some tall justification to be called a valid parallel processor 

application. 

Speedup Differential, S0=serial time- parallel time 
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.001 sec. - .00001 sec. = .00099 sec. (3-2) 

Here it is important to chose a problem that consumes impacting amounts of 

computer time before the expense of a parallel processor can be justified. 

The other end of this problem would be to report a speedup differential 

improvement of 1 0 minutes, but not pointing out that the speedup ratio is 1.1 

and it takes 1 00 minutes of computing time to achieve the improvement. This 

time, the problem seems to warrant application due to the large computer time 

used, but the parallel improvement is probably not one that is reasonable to 

consider a parallel processor application. 

This situation is analogous to trying to use only an absolute error value or 

only a relative error value in approximation problems to measure success. In 

that regard, any parallel improvement will be described by both of the speedup 

measures defined above to provide realistic and practical dimensions of the 

improvement. 

Another performance measure is parallel system efficiency. The traditional 

definition of percent efficiency, or simply efficiency, has the speedup ratio 

divided by the number of processors, times 100 (Fox, 1 987). This method 

assumes the best, or 100 percent improvement, occurs when the speedup ratio 

equals to the number of processors. Another way of looking at this definition is 

that the best that is expected with P processors, is to reduce the time to 1/Pth 

the serial time. The example above with 128 processors and a speedup of 100, 

yielded a parallel processing efficiency of about 78 percent. 

Efficiency, E = (Sp/P) * 100 % 

100 * 100 (speedup ratio) I 128 (number of processors) ::78% (3-3) 



An efficiency curve can be provided for a particular algorithm. The curve 

would plot the efficiency versus the number of processors applied to the 

problem. Efficiency is often mostly a result of the nature of the problem. 

Because of that, a strongly serial problem would not yield good efficiency 

performance even when small numbers of processors are applied. On the 

other hand, a highly parallel problem would very closely approach one 

hundred percent even with the crudest parallel design (Asbury, 1985). The 

efforts to provide data for efficiency have not been expended because with a 

simple observation of the speedup ratio data, efficiency can be quickly and 

accurately extracted. The closer the speedup ratio obtained comes to the 

number of processors applied, the closer the system will be to the ideal 100 

percent efficiency. 
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Efficiency, being dependent only on the speedup ratio can also be 

misleading. This is the case when a very high efficiency can be attained, yet a 

less efficient parallel algorithm exists, that has much better speedup differential 

times. Obviously the best application would be the one that has the fastest 

solution, even if the efficiency and speedup ratio values are worse. Certain 

conditions cause the first operation developed in Chapter IV to present this 

exact event, and this situation will be further highlighted there. 

Also, the fact that the system is running fifty to seventy percent efficient is not 

necessarily significant. This is not saying that efficiency is a useless parameter, 

it is just that the computing power lost is normally not available for other uses. 

Therefore, knowing that an inefficiency exists may not be a real world concern. 

Comparing the speedup curves and efficiency against an increasing number 

of processors usually shows efficiency curves that have a peak at a less than 

absolute maximum speedup value. At that point, adding more processors may 

still improve the speedup parameters, but the efficiency begins to drop. Further 
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after that point, continuing to add processors, a point will be reached where 

adding more processors will degrade the resulting speedup parameters 

causing speeddown. This effect is called exceeding the parallelization 

threshold, and can be defined in terms of the speedup ratio as "that point at 

which adding more processors to a parallel solution yields a decrease in the 

speedup ratio". An equally correct definition using the speedup differential 

parameter would be stated as "that point at which adding more processors to a 

parallel solution yields a decrease in the speedup differential". 

This situation is most often due to the increased communication delays 

compared to the decrease in computing time used by each processor as a 

result of adding the extra processors (Bond, 1987). In a later example, the 

parallelization threshold will clearly be exceeded, causing a speeddown. This 

problem also occurs in the implementation of the second task using small 

arrays. Chapter V contains the data and explains some of these results. 

The speedup ratio is a direct function of the percentage of time each 

processor is used to do concurrent calculations. The overall time used for the 

algorithm is a function of the number of calculations being done concurrently, 

the amount of time spent running strictly serial code, and the amount of time 

spent communicating between processors. From this it can now be concluded 

as was stated earlier, that best parallel performance occurs when the ratio of 

the time spent doing concurrent calculations to the time spent in communication 

and within the serial mode is maximized. 

First Level Multi-Processing Speedup 

As was already discussed, parallel speedup is normally accomplished in the 

area of partitioning the matrix vector manipulations by spreading out the basic 



inner loop multiplications and summations among the many processors 

allowing their concurrent computation. Timing improvement of this kind will be 

referred to as first level (parallel or multi-processing) speedup. 
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The following analogy illustrates the effects of the first level of parallelization 

speedup. This level is analogous to taking P processors and assigning the total 

group to directly sum (no mathematical short cuts) all of the integer numbers 

from 1 to X. A straight forward and logical approach would be to split the total 

X-1 adds into P, (X/P) -1 concurrent adds by each processor, to obtain P partial 

sums. 

As a side note, notice that certain restrictions between the relationship of P 

and X needs to be maintained to assure the (X/P) term is always an integer. 

That is, in this example, it would not be possible to compute other than an 

integer number of calculations. When other than an integer results from the 

splitting process, this indicates that it is not possible to equally distribute the 

particular problem among the P processors. In this case, a subset of 

processors equal to the remainder in the division would require one addditional 

calculation compared to the other processors. In most cases, each processor's 

calculation workload will normally be into the millions, therefore this is normally 

not a negligible workload balancing problem. 

Further, given the equal splitting situation, this case can be totaly ignored. In 

fact, throughout this work unless stated otherwise,it will be assumed that the 

input data can be uniformly split between the processors applied and no 

generality of the solution will be lost. 

Continuing with the example, at least one supervisor level would need to 

exist,. however this level could also do a portion of the sums between 

supervisory activities. The P partial sums would require log2(P) more adds. 

Since dimension of the cube squared equals log2(P), then the number of 
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messages required is the same as the dimension of the cube applied. Figure 7 

illustrates the partial sum combination method that results in the log2(P) 

additional sums to be required. Additionally then, each partial sum takes some 

finite amount time to be transmitted between nodes. The ratio of the minimum 

message communication time to a single compute time will be denoted, ll· 

Hence, !llog2(p) is the transmission time of the partial sums between nodes to 

reach the final answer. The speedup ratio parameter is represented by: 

(X-1) (3-4) 
( (X/P)-1 )+(!l+ 1 )log2 (P) 

and the speedup differential parameter (reflecting the serial time saved) would 

be 

S0 = (X-1) - ( ( (X/P)-1 )+(!l+ 1 )log2(P) ) 

multiplied by the time required for one floating point operation. 

(3-5) 

The quantity ((X/P)-1 )+(!l+ 1 )log2(P) multiplied times the time for a single flop 

represents the computer time used in the parallel mode for different values of P 

and X. Using a constant value of 50 for ll· .00001 seconds for the time for a 

single calculation, Figures 8, 9, and 1 0 provide the speedup ratio, the speedup 

differential curve, and the computer time used (CTU) for this summation 

example problem. These curves are for values of X equal to 32; 1024; 32,768; 

and 1 ,048,576. The number of processors, P, ranges from 1 for a serial 

computer, to 31 for a dimension 5 hypercube less one node. 

For larger and larger X, the speedup ratio, Equation (3-4), asymtotically 

approaches the value of P, making a straight line. Figure 8 indicates that with a 

very large X, the job can be completed in almost (but never equal to, of course) 

1/Pth of the time it takes on a single serial processor. 

For smaller values of X an important effect occurs. It can be seen that for 

X=32 speedup is always less than one, hence speeddown always occurs when 
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trying to apply parallel processing to a problem of this small size. Even for an X 

as large as 1024, when 7 processors are applied, the problem conditions 

exceed the parallelization threshold and the time consumed is larger than it 

took with only 6 processors. 

For larger X values the threshold effect does not occur when using only a 

maximum P of 31 processors. However, a parallelization threshold exists for all 

values of X and can always be exceeded given enough processors. This 

clearly shows that there are always conditions that using more processors is 

not the correct decision. 

The situation contributing to the problem in this example is that the message 

processing delays incurred when additional processors are included, are 

longer than the time saved by the computational improvement of adding more 

processors. Additional serial processing will further contribute to this problem, 

however it is not modeled in this particular example. 

The computer time saved through parallelization is equal to the speedup 

differential, Figure 9. The computer time used (CTU) for varying values of Pis 

given as Figure 10. The CTU plot is extremely valuable considering visibility of 

the absolute time change in performance due to parallelization of the problem. 

First, because it is always positive, a log scale for time can be used allowing a 

greater dynamic range of values when plotted. Second, when P is swept from 

one to the maximum value of processors applied, the value for one processor is 

simply the serial CTU. With direct speedup differential curves as the plots or 

data tables, with one processor this value is equal to zero indicating no time 

being saved. 

Figures 9 and 1 0 also provide insight into what adding more processors 

means in terms of absolute time savings. It is shown that each doubling of the 

number of processors applied, can only save at best, an additionai1/Pth of the 
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total time a serial computer requires. In other words, with four processors the 

most time that can be saved is 75 percent of the serial time. With eight 

processors at most 87.5 percent can be saved, so the improvement by adding 

four more processors was only half of the 25 percent that was left, or one eighth 

of the total serial time. Now, adding eight more processors, for a total of 16, can 

only save at the very most an additional six and one quarter percent, or 1/16 of 

the total serial time. This gain of 1 /P percent for doubling the processors is not 

a function of this particular example, it is in fact the ideal that can be expected 

with perfect parallel processing. 

Once again, since these figures are for the near ideal case, they illustrate the 

greatest first level speedup benefit that can be expected by simply adding more 

processors to a task. Of course, if the algorithm is written for an SIMD 

computer, then assuming the process does not speeddown due to exceeding 

the parallelization threshold, any gain is some gain. However, as will be 

shown, there is a more efficient simultaneous application of the extra computing 

power available when using a MIMD computer organization. 

All three plots or the associated data tables are not necessary, because the 

same information can be easily obtained from any two. All later experiments 

will furnish tables with the speedup ratio, Sp, and the computer time used, CTU, 

allowing efficiency, E, and speedup differential, SB, to be extracted by a simple 

observation whenever they are needed. 

Before leaving this first example, there are a few key assumptions that were 

used that need to be stated that greatly affect this simple model. 

It was assumed in the example that all the processors work at the same 

pace. If one or more of the processors has a capacity for greater speed, then 

this special ability should be exploited, further increasing the complexity of the 

workload balance, but necessary to keep all of the processors productive. 
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It was also assumed that because the processors are equal in computing 

speed, the workload balance was evenly distributed as long as it is possible to 

give an equal number of integers to each processor. Distributing the workload 

evenly may not be this simple of a matter. Even in this case where the adders 

(processors) were assumed identical and the number of integers are equally 

distributed, it could still be much quicker to add the integer numbers 1 and 2, 

then to add the integers 138,982,648,937 and 138,982,648,938. If this were 

the case, then the workload should be distributed to the nodes according to the 

number of digits in the integers, rather than the number of integers. 

Next, it was assumed that the extra computations and manipulations 

necessary in the actual implemented code could be accomplished at a lower 

order compared to the original problem, hence inclusion of their effect can 

generally be neglected for larger problems. 

Lastly, and more significantly, a constant time has been modeled to send the 

partial sums between processors. The data (messages) will clearly take some 

amount of time to pass between nodes. In many cases it can often become a 

major factor in the total time used when large N by N matrices need to be 

transported between nodes instead of a single data word. 

Although this example was very basic and the assumptions somewhat 

fundamental, it was presented because it embodies some of the ideas and 

problems of the traditional parallelization efforts. It also provides quick insight 

into the parallel processing problems of speedup, load balancing, and 

efficiency. 

This first level of speedup is roughly equivalent to using vector boards for 

matrix methods on serial computers and has proved worth-while. It is also a 

level of parallel processing that can now be partially accomplished by taking 

standard serial programs and compiling them with a parallel compiler for some 
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special purpose machines (Egan, 1988). In this case, only computational loops 

of the program would automatically be selected by the compiler for first level 

parallelization. This would limit the speedup performance possible, but 

improvement could be attained quite easily by the user. Much greater gains 

can be obtained with parallel algorithms designed for parallel processors. 

The advantages the MIMD organization has over the SIMD organization is 

not used at this first level of parallel conversion. This is because a common 

approach is to cause each of the processors to run the identical algorithms, and 

only use different input data. This would caues the MIMD organization to 

perform basically the same as the SIMD organized computer. Instead of being 

called an MIMD implementation, it could be relabled an MIMD/single-program 

multiple-data (SPMD) approach. 

Much work has been accomplished by using the MIMD machine in the SIMD 

and the MIMD/SPMD modes. This is because sequential algorithms have a 

developed base of many years of experience, hence their understanding is 

much greater than the directing and coordination involved in parallel computers 

(Denning, 1985). The problem is not that these modes are totally undesired, it is 

that often the extra-ordinary capacity of simultaneously running entirely different 

algorithms on the same or different data is completely ignored by the parallel 

algorithm software designer. This is often due to concerns of algorithm 

complexity, timing, portability and clarity of algorithms rather than lack of 

application (McBryan, 1987). 

Cooperative Multi-Algorithmic Acceleration 

This research is designed to reach the next higher level of speedup using 

the MIMD capabilities when several different algorithmic approaches, approach 



variations, or different data are available for the same problem. With this 

method different algorithms are given a variety of starting points and can 

exchange information on a cooperative basis. This can shorten the problem 

solution time by allowing the algorithms to use the improved information to 

accelerate their individual positions interactively. 
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It will be helpful to describe the proposed procedure with a simple example 

as before. Now let the processors, still P of them, have a difficult problem. Let 

this problem have a nonlinear solution, and let different procedures exist to 

reach an estimated solution. Although the procedures may be different, they 

often have some common primitives and functions for they are solving the same 

basic problem. This could be related to the real situation of having many 

different methods available to solve eigenvalue problems, but vector-matrix and 

matrix-matrix primitives appear in most techniques. This commonality will be 

used as the first level parallelization improvement when possible. 

Nexr, also assume these high level problem solvers can help each other as 

they progress by communicating interim results. This could be information 

about real or false paths determined, speed of algorithm convergence, residual 

error size, and other determined parameters. 

If this problem has three known algorithms as solution procedures, then 

three sets of the processors would be used for each solution at the first level 

parallel improvement of work. Three processors would be controlling the 

operations as supervisors of the three different algorithms, causing interchange 

of data and interaction between the solutions. It is possible that this would 

mean a slow down from the highest speedup compared to a single parallel 

algorithm using all P processors at the first level. But as was shown earlier, this 

is not always a significant degradation, nor necessarily a slowdown at all. 

There can be improvement shown at both the first and second levels of 
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speedup when the optimum number of processors are applied. 

It can be shown at this point that due to multi-algorithmic procedures, a 

weakness in the standard measure of parallel processing efficiency also exists. 

That definition assumed, the best that could ever be expected to be reached 

with P processors being applied, would be a speedup ratio of P, yielding 1 00 

percent efficiency. 

To demonstrate this weakness, consider a serial iterative algorithm that 

takes X seconds to solve a problem. Breaking down the work further, might 

show that it actually takes I times T seconds, where I represents the number of 

iterations required, and Tis the time for one iteration. Applying a parallel 

processor at the first level by partitioning the problem into P elements, each 

taking 1 IPth of the time T, would yield an efficiency of 

IT =Xsec. 

I (TIP) = X/P sec. 

((X I (X/P) ) IP ) 100 = 100 percent. (3-7) 

This is the best case possible obviously ignoring some of the real world 

problems allowing the process to reach the ideal 100 percent efficiency. 

Starting with the same assumptions, let the total iterations that are needed 

be cut from I to 114 during the computations due to information from two 

cooperating multi-algorithms ( each running simultaneously on half of the 

processors). Then the time used, assuming the first level speedup procedure 

was still being applied but was half as effective because of the distributing of 

the processors (being the worst case that could result) : 

IT= X sec. 

(I 14) (TIPI2) = IT I (2P) = X I (2P) sec. 

which would yield: 

(( X I (X I 2P )) IP) 100 = 200 percent. (3-8) 



Comparing times used between the two parallel systems, it is seen that the 

process using multi-algorithmic acceleration takes one half of the amount that 

was required for the first level parallel process, both using a total of P 

processors. This capability may exist for the entire problem, or may be 

obtained in only one portion of the algorithm as the solution progresses to 

completion. The second operation, discussed in Chapter V, holds this kind of 

iterative leverage multi-processor improvement. 
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Building a general mathematical model to predict the outcome of a solution 

using multi-algorithmic acceleration is more difficult than first level parallel 

modeling. As can be seen from the above scenario, the procedure is sensitive 

to the problem being solved, and the level of cooperative interaction possible. 

It could be an iterative algorithm beginning with a set of orthogonal vector 

guesses, exchanging convergence information. The best initial guess finishing 

first, and those behind but converging to the same point would be stopped by 

communication of interim data. It could also be a set of different algorithms that 

solve a problem from greatly different points of view. The greatest speedup 

obtained being a function of the data involved, the starting procedures, the 

optimum match of one particular algorithm to the data, the interaction and 

quality of the interim information, etc. 

The number of processors assigned to the different computational efforts, 

and those assigned to the different algorithms, would be determined statistically 

or dynamically depending on the parameters of the given problem, the state of 

progress toward the solution, and the efficiency and speedup attainable at the 

first level of parallelization. 

Stability and accuracy can also conceivably be improved, because yet other 

available processors can be assigned to controlling the converging processes 

and refining preliminary answers using substitution techniques along with 



searching the maximuni and minimum bounds. This would add yet another 

dimension to multi-algorithmic acceleration procedure. 
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The objective here is not to only find the quickest serial and perhaps the 

most accurate solution in accordance with established parameters. Granted, 

because of the dynamic interaction of all of the cooperating processors, there is 

a greatly improved probability of it being discovered. But further, a unique 

solution that has an a priori undetermined path, can accelerate convergence 

beyond traditional efficiency measures. 

This kind of software package demands a MIMD machine because of the 

requirement to split the computer into different parallel systems going into 

different directions, but with cooperation between the multiple algorithms. This 

approach is relatively complex and must be specifically adapted to each 

particular problem. This does not rule out the generality of the multi-algorithmic 

procedure. In fact, multi-algorithmic capabilities, non-cooperating and 

cooperating, may be close to the functioning of future designs of parallel 

processing machines (Ipsen, 1985). 

This approach was included in the parallelization of the new DOA algorithm. 

The eigenanalysis of the sample covariance matrix shows an extremely 

valuable multi-algorithmic acceleration speedup activity. It will further be seen 

that a unique parallel approach at estimating the number of incoming waves 

has been obtained through a multi-algorithmic application. Since this is the 

material of Chapter V, it will be put aside for a time to continue on with the last 

section of this chapter. 

Mathematical Model 

The method followed in each task was to first analyze the problem and apply 



the theory to resolve the problem in the fastest possible way. Mathematical 

models were constructed which predict the amount of parallel speedup 

possible, given the problem constraints. This requires a serial model, then a 

parallel model to be formulated. Finally, given reasonable performance was 

predicted, parallel code was developed to implement the theoretical models to 

show by example what was developed in theory. 
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The experimental data obtained in this work has shown that a reasonably 

accurate guidelines can be made by analyzing the algorithms by counting 

multiplications, summations, and comparisons and treating each of them as if 

they take about the same average time. The total number will be used to 

mathematically model the number of floating point operations necessary to 

solve the problem. Additional values that represent the message transfers and 

excessive serial code necessary will be included into the estimate for the 

overall computer time used. This procedure is valuable in comparing 

theoretical speedup ratios and speedup differentials in search of the optimum 

number of processors to apply. It gives an early indication if parallelization is a 

reasonable objective for the problem at hand. No attempt is made to include 

the additional number of instructions necessary to actually implement the 

algorithm. It is assumed that no additional order increase will result during the 

actual implementation. 

For a large computational problem, the total number of computations is 

directly related to the overall computer time used. As in the earlier modeling, it 

will be assumed that the processors are all equal in their computing speed. 

However, additional parameters will be included for time used in message 

transit and any strictly serial coded portions if the order exceeds N. 

To have realistic speedup differential values for algorithmic decisions, the 

model will be using 5. 7 microseconds as the time for an average single floating 



55 

point operation. This implies a single processor capacity of approximately 

0.175 megaflops for single precision real data type computations. This is faster 

than the time used in the earlier examples, but it is a result of the experimental 

data achieved with the research parallel processor and implemented 

algorithms. When 16 processors are applied this yields a total of a 3 megaflop 

computing capacity. Note that this is well below stated clocking speeds, or the 

typically advertised computing rates because it is an actual average 

performance value of these specific algorithms. To truly benchmark this 

performance against another computer, these same programs would need to 

be transported to it and the run times compared. 

Therefore, this flop time is only made available to make relative conclusions 

in this study and is not to be considered an accurate representation of absolute 

times outside of the model assumptions. This time will obviously vary between 

different computers, and even between different computations on the same 

computer. This data is provided to yield a reasonable value to deal with during 

this modeling process. Since each operation has actually been implemented, 

the actual resulting time values will be included as performance tables and can 

be found at the end of each chapter. 

A numerical value to represent the average communications delay for a 

minimum length message, J.L, has been estimated at 50 flops. This value for J.L 

resulted from actual experiments that were run upon the IPSC/2 parallel 

computer. It is an average that includes multi-hop and single hop 

communication requirements and message setup time. This indicates that it 

takes 50 times more computer time to send a message than to compute one 

floating point operation. Since message length is also a factor, a multiplier 

coefficient of log2(1ength) will be used when length in computer words is known 

to vary greatly above the minimum value. Using data from the Intel Corporation 
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and timing experiments on the research computer, this value is a reasonable 

approximation (Intel, 1987). 

Finally, most of the values used will be complex numbers. Rather than 

dealing with FORTRAN complex math types, the well known relationship 

between the two by two matrix of complex numbers, and the four by four matrix 

of real numbers will be applied (Parlett, 1980). 

Hence, a two by two Hermitian matrix can be used directly in terms of real 

values for computation as follows: 

[
(a1 + jb1) (a2 + jb2)1 
(a2 - jb2) (a3 + jb~ , where b1 and b3 =0.0 , 

can be written as: 

a1 -b1 a2 - b2 
b1 a1 b2 a2 
a2 b2 a3 -b3 
-b2 a2 b3 a3 , where b1 and b3 =0.0. 

This means that for a dimension X of the problem when complex numbers 

are involved, a 2X dimensioned real data matrix will be actually be used. The 

impact of this is that over four times the number of computations are necessary 

compared to a strictly real number case. 

This choice of complex representation was made because it has the effect of 

improving the first level parallelization effort by improving the ratio of calculation 

to communication while improving the speed and computer portability of the 

final procedures. It also causes true symmetric matrices to occur instead of 

Hermitian matrices as seen above and therefore requires less direct 

computations by the algorithms taking advantage of the element symmetry. 

Using the FORTRAN complex number types does not allow this advantage, 

because the compiler always generates at least four floating point multiplies 



and two floating point adds, and uses two temporary variables for each 

complex multiply completed (Intel, 1987). 
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Each of the four tasks outlined in Chapter II take a varying amount of time of 

the overall algorithm. As the task times are decreased due to parallelization, it 

should not be forgotten that the improvement of one portion of the overall 

algorithm by a speedup ratio of Sp, does not improve the overall algorithm by a 

speedup ratio of Sp. To see this, if the paralleled serial portion originally took 

one fourth of the total serial time, then the improvement of a 128 speedup ratio 

for that section would yield a overall speedup ratio approximately 1.33 

Sp =1 00/((25/128)+75)::1.33 (3-9) 

If instead only a speedup ratio of 16 was achieved in that same section, then 

the overall speedup ratio improvement would be approximately 1.31. 

Sp =100/((25/16)+75)::1.31 (3-10) 

To reach the first level speedup ratio of 128 will take at least 128 processors, 

and as was seen earlier, it will always be more because almost all problems 

require some finite amount of serial processing and some communication 

between nodes. 

On the other hand, reaching a speedup ratio of 16, only requires 16 or more 

processors, which would leave almost 112 of the processors for other tasks. 

Hence, this could be the better option depending on the speedup differential 

and efficiency obtained versus other workload possibilities. This fact can have 

significant bearing on how many parallel processors are used at any particular 

task at any particular time in the solution. 

Granted, in an SIMD computer organization, no other algorithmic tasks can 

be performed simultaneously, so this is not a design issue. In the MIMD 

organization however, this is another factor that explains where processors for 

a multi-algorithmic solution can be expected to come from without causing a 



significant degradation in first level speedup while obtaining multi-algorithmic 

acceleration. 

58 

In the following chapters, speedup ratio and computer time used tables will 

be provided for each task as the task is analyzed and modeled. As previously 

stated, the actual implementation performance data will be provided rather than 

the model numbers. Estimates and simulations will be based on 32, 64, and 

160 samples per antenna except when the sample size is not a variable. All 

data will be run over a range of 1 ,2,4,8, and 16 processors. Data for N equal to 

16, 64, 96, and 160 antenna elements will be provided for each task, with the 

separation between antenna elements one half of a wavelength of the arriving 

wave unless stated otherwise. Sixteen antennas will be representing small 

sized antenna arrays, and the other three will represent medium to large 

antenna arrays. Whenever it is appropriate, multiple signal arrivals will be 

included to analyze their effects on the speedup parameters. 

It should be understood that considerable research energy is expended in 

reducing the task's computational order, and to then parallelize the resulting 

algorithm. The implementation of the FORTRAN code is not to be considered 

the best or the only way to implement the algorithms, nor even the optimum 

computer language to implement the process. This portion of the research 

effort was provided to present a demonstrable output of real world estimation 

performance and bear out the theory derived. 

The procedures were timed over a wide range of antenna sizes, 16 to 160, 

and allowed a similar range of samples per antenna, 32 to 160. Hence, this 

implementation can be considered to be a compromise design for variable 

input data rather than tailored to one particular system description. Although it 

may not be optimal, the implementation is accurate and true numerical 

representation of the capabilties attained by applying the theory and 



developments of this research. Further, It is at an order level that is 

representative of the dramatic improvement possible. Any additional time 

saved due to simply enhancing the code, will be significantly less than the 

improvements already gained by creating the new procedures and the 

parallelization efforts of this dissertation. 
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With these parameters, assumptions, and values established, Chapter IV will 

begin the process of parallel analysis and DOA algorithm design. Task 2, that 

of computing the estimate of the sample covariance matrix will be the first 

design topic. 



CHAPTER IV 

SPATIAL SAMPLE COVARIANCE MATRIX 

Following the order of the four operations of the MUSIC solution provided 

earlier in Chapter II, the first task to be evaluated for parallel speedup is the 

computation of the estimate of the expected value of the spatial covariance 

matrix, previously labeled the sample covariance matrix. It is computed from 

the sample data vectors, ~s = [xs(1 )xs(2) • • • xs(N)]T, where s = 1, 2, ... , S, 

taken from theN antennas in accordance with Equation (1-10). 

Parallelization of this task includes some parallel solution characteristics 

similar to the summation example problem that was presented in Chapter Ill. 

The expansion of the requirement to compute, transport, and sum the N by N 

matrices instead of integers has proved to be quite measurable. 

Serial Sample Covariance Matrix Computation 

Taking the serial case first, with N antennas, there are N2 elements that must 

be computed for each N by N matrix term, from each of the S sample vectors. 

Because each element vaiue is a complex number, the calculation requires two 

multiplies and one sum to compute each element of the S different matrices. 

Further, and still because the matrices are complex, the matrix's dimension 

represented in the computer is actually 2N by 2N. Hence, in actual application 

there are 4N2 elements per matrix, which requires a total of 

12SN2 flops (4-1) 
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to compute every element for each of the S sample covariance matrices before 

it is possible to average them. This is a very large number of computations as 

Nand S exceed 150, and it turns out that the order of this operation is seen to 

be twelve times an N-cubed order. Improvement in reducing the number of 

N-cubed computations of this task will show a dramatic improvement in the time 

used in this operation and overall. 

The first reduction can be obtained by observing that the actual sample 

covariance matrix is Hermitian, but because of the choice of representation of 

the complex numbers using real elements in the expanded form, the matrix has 

a true symmetric representation instead of having complex conjugate 

symmetry. Hence, taking the matrix symmetry into account, only 2N2 plus N 

element values actually need to be computed. 

Further, real number representation of the complex elements also causes 

half of the matrix elements computed to be copies (or complemented copies) so 

their values do not need to be computed, but can be equated into position. This 

lowers the total number of elements needed to be directly computed to N2+N. 

This yields a total computational savings of 3N2-N flops for each and every 

sample matrix computed. Figure 11 illustrates the savings associated with 

using the symmetries for a single matrix with anN equal to 4. 

It is obvious that there is an additional cost in computer time required to 

transfer the computed data into their proper positions, but these transfers will be 

a function of the faster computer instruction time, not the floating point operation 

time. Much more significant is that there will only need to be 3N2-N total 

transfers necessary. This is because these transfers can be completed after all 

of the computations and summations of all of the sample matrices are 

completed. Hence, the number of transfers are not a function of the number of 

samples, S. Normally, Sis very large compared toN, and often exceeds it 
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~ = computed tit= complemented Q = equated 

eo 

eo eo eo ~ 
N =4: 

THERE ARE N2+ N COMPUTATIONS= 20 ---• ....._ __ .oro.. 

. THERE ARE rf- N TRANSFERS = 12 __ ___... 

AND 2N2COMPLEX TRANSFERS= 32 --PIIt' e OR 0 

Figure 11 . Matrix and Complex Term Symmetry 



greatly, so there can be a large time savings expected in this computational 

adjustment. This causes no trade off in accuracy or precision, hence this is a 

highly desirable improved serial method. 
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Taking advantage of the symmetry that exists, the computation of all of the S 

matrices equals: 

3S(N2+ N)+cr(3N2-N) flops. (4-2) 

where cr represents the ratio of instruction speed to a single floating point 

operation. Each of these matrices must be added, element by element. This 

would require an additional 

(S-1)(N2+ N) flops. (4-3) 

The averaging process has the final 2N by 2N matrix divided by the number 

of samples, S, which would require N2+N flops because it would be done just 

before the symmetric values are copied into place. However, the next task is to 

locate the eigenvectors as was defined in Chapter II. Since eigenvectors and 

eigenvalues are only found to scalar multiples, it is not necessary to complete 

the (N2+N) divides in order to compute the eigenvectors (Parlett, 1980). This 

will simply result in each eigenvalue being multiplied by S. The eigenvalues 

could be adjusted with N divisions if the actual eigenvalues are required. 

Further, not dividing by S during the process is seen to provide a slight 

computational improvement over completing the divisions. This is because 

even though the values are always subject to round off to the computer register 

length employed, no additional irrational numbers need to be approximated at 

this point as the result of a division by the number of samples, S, that is other 

than a power of two. 

The final total number of flops required to serially compute the sample 

covariance matrix from the S samples for N antennas is: 

(4S-1)(N2 + N)+cr(3N2+N) flops. (4-4a) 



For large Sand N, which is the target of this research, Equation (4-4a) can 

be approximated as, 
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flops, (4-4b) 

which will be used in the speedup ratio and speedup differential parameters to 

be modeled later. With this serial task optimized for symmetry, the next step is 

to resolve this same task for parallel computation. 

Parallel Sample Covariance Matrix Computation 

The first observation for parallel computation of this task is that the 

operations are computationally independent between samples. Further, the 

number of samples is usually high, especially in the low SNR case, so S is at 

least greater than the number of processors. Generally, the lower the SNR 

expected, the larger the S that is needed. Hence the multi-splitting of this 

operation for the parallel algorithm could be selected between the different S 

samples for each node. 

One weakness with this approach is that it requires the partial matrix sums 

completed at each node to be communicated between nodes for completion of 

the matrix summation. When summed at a single node, this communication 

takes an equivalence of an additional J.Liog2(N2)1og2(P) flops of time delay, 

where J.l corresponds to the time for a single minimum size message. Then a 

distribution of the final multi-split matrix to each of the nodes will be necessary 

in preparation for the next task. This communication can be modeled as 

J.Liog2(N2/P)Iog2(P) additional flops. 

Figure 12 illustrates the computations and data flow used in this parallel 

approach. Notice that the matrix and complex symmetry can be taken 

advantage of with this parallel approach, however it requires a strictly serial 
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Figure 12. Parallel Split by Samples, Data and Message Flow 



activity of transferring the matrix values in place before the split matrix is 

distributed to the nodes. 
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A second observation shows that it would also be possible to split the 

operation by computing the partial multi-split sample covariance matrix at each 

node. Each node would need all the samples to do this, but no additional 

communication of the matrix would be necessary to do the final summing, and 

no distribution communication of the partial matrices from a central node would 

be necessary after the matrix is computed. This would be an independent "in 

place" operation and has potential to provide savings over the communications 

required in the first procedure suggested. This situation is sometimes called a 

perfectly parallel approach indicating total computational independence and no 

communication requirements, and it can show 100 percent efficiency with 

speedup ratio numbers equal to the number of processors applied. Figure 13 

is a block diagram that illustrates the data flow and computations when 

following the second approach. 

The disadvantage with the second approach is that even though it shows a 

savings in communication over the first procedure, it can not take advantage of 

the symmetry of the matrix seen earlier in Figure 11. This causes 3S(N2-N)/P 

additional concurrent computations to be made compared to the first method. 

Figure 14 is a computed graph for variable values of N and P and a fixed S 

equal to 40 samples per antenna. The two family of curves are comparing the 

extra computations required in the second procedure to the time consumed in 

mesages and the strictly serial additions required in the first procedure. 

It can be seen that for very small N, and small S, the second procedure 

would be preferred due to its smaller computational burden increase compared 

to saving communication time. In fact, when the samples are less then P, or 

even as low as one, as in an adaptive approach that computes the DOA 
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recursively or adaptively updating with each sample, the second approach 

would be the required procedure for a parallel implementation (Reddy, 1982, 

Fuhrman, 1987). 

As the values of N, and S increase, the savings of the computations by 

employing the matrix symmetry will be significantly greater than the time 

required for message transportation and equating the final numbers into 

position. Figure 14 shows some cross over points between the two methods. 
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Another consideration between these two methods is the storage space 

required in the nodes' memories. The first procedure needs SNIP snapshot 

samples to be stored at each node, and then a matrix of size 2N2 must be held 

at the supervisory node, at least temporarily. The second method requires all 

the samples at each node, 2SN elements, but only needs 2N2fp words of 

storage space for the matrix. It is seen that the memory storage requirement is 

dependent on the relationship between the·S and N values, with neither being 

seen as a dominant factor when they are approximately equal. As S increases 

beyond N the first method would once again become the preferred choice, and 

when S is very small, the second method would be the better choice. 

Future task analysis will keep this decision in context, but since the first 

method is considerably faster for all but very small S and N, it will be 

considered the preferred choice. Only the first method will be modeled in 

parallel to be compared to the serial solution. This is the situation referred to in 

Chapter II where parallel efficiency and speedup ratio parameters are not the 

most accurate indicators as to the optimum parallel choice. The speedup 

differential shows that the CTU is lower by following the first choice. 

The parallel time in this task needed to compute the S matrix elements using 

P processors would be 

( 3S/P)(N2 + N) flops. (4-5) 



The partial summing of each of the sample matrices can be accomplished at 

each node, then as the partial sums are forwarded they require an additional 

log2 P, N2+N sums, and log2 P messages each taking J.Liog2(N2) amount of 

time. The distribution of the multi-split matrix for the next task will take log2P 

J.Liog2(N2/P) equivalent flops. This activity will require 

( (S/P)-1 )(N2+N)+ (N2+N)Iog2(P)+ 
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J.Liog2(N2)1og2(P)+ J.Liog2(N2/P)Iog2(P) flops. (4-6) 

The averaging divisions are still not required as in the serial case. Leaving a 

parallel total up to this point as, 

(3S/P)(N2+N)+ ( (S/P)-1 )(N2+N)+ (N2+N)Iog2(P)+ 

J.Liog2(N2)1og2(P)+ J.Liog2(N2/P)Iog2(P) flops . (4-7) 

The noncomputational strictly serial portion of the code for Task 1 is 

negligible compared to the paralleled computational tasks, so it is set to zero. 

However the transfers associated with the symmetry of the matrix is a strictly 

serial activity that must be completed at the supervisor node, and requires 

flops. (4-8) 

The complex symmetry associated with the representation of the complex 

field can be done in parallel at each node after the multi-split matrix is 

distributed and is equivalent to 

flops (4-9) 

The total time, in flops, for the parallel process of computing the estimate of 

the sample covariance matrix, Rx, from the S sample snapshots using the N 

antennas applying P processors would be: 

(3S/P)(N2+N)+ ( (S/P)-1 )(N2+N)+ (N2+N)Iog2(P)+ J.Liog2(N2)1og2(P)+ 

flops. (4-10a) 

As with equation (4-4b), approximation yields a simpler and yet reasonable 

value which will provide an accurate picture of this operation with large Nand 
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S. Hence, 

(4-1 Ob) 

will be substituted for Equation (4-1 Oa). The first term represents the parallel 

speedup improvement with P processors, and the second term shows the 

processing time degradation due to the message handling and additional serial 

computations .. 

Equations ( 4-11) and ( 4-12) below model the speedup ratio and speedup 

differential respectively using Equations (4-4b) and (4-10b) for the computation 

of the sample covariance matrix: 

Sp : 4SN2 flops (4-11) 

4SN2;p + (N2+ 1 OON)Iog2(P) 

flops (4-12) 

Notice that the approximation and actual equation from the parallel models, 

equal the approximation and actual equation respectively, from the serial 

models, if the number of processors, P, equals one. 

Sample Covariance Matrix Computation Results 

Table 1 is the data showing the CTUs (rather than speedup differential) in 

seconds and speedup ratios, Sp, resulting from computing the sample 

covariance matrix for varying values of S, N, and P. Table 1 is found as the last 

page of this chapter. This placement allows for easier reference to the results 

which is preceded by the discussion. Each set of results obtained will likewise 

follow the disscusions and be the last pages of the future chapters when 

applicable. It can be seen that the first level parallel improvement of task is 

close to P when P is 2 for all values of N and S used. As N increases, causing 



more calculations per message, the parallel efficiency is improved for the 

higher values of P. For larger 8 values the data also shows better efficiency 

and the speedup ratio will more closely approximate the value of P. 
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The table indicates that this first task of conversion to a parallel algorithm 

provides reasonable efficiency for values of N above 64. The values of N less 

than 16 show a much larger amount of wasted computer power. 

Providing additional practical information about this task are the CTU values. 

What is obtained is significant in the decision making process. The serial time 

is when P equals one, and the various other P values show the speedup 

improvement (or loss) as a result of increasing the number of processors, P. 

Hence, Table 1 reports that the serial process for Task 1 takes at the lowest 

end, 0.211 seconds using an N value of 16 and 8=32, and at the highest end, 

94.90 seconds when N=160 with 8=160. It is significant to remember that this 

serial task is performed in a somewhat traditional way, except perhaps taking 

advantage of the symmetry. Hence, the computer time savings here are 

associated with the application of the parallel processor to the problem at the 

first level and not with a major modification of the serial procedure. 

The greatest improvement in speedup differential is found in the largest 

parameter case with 87.95 seconds out of 94.90 seconds of processing time 

being saved. For an array size of 16 receive elements, the smallest simulated, 

and 160 samples, the absolute time saved ranges from one half of a second to 

almost the entire serial time, which is slightly over one second. Of course, 

once again this CTU data depends on the average flop time for the research 

computer. A computer having a flop time different than this value will result in a 

different amount of time that can be saved. However, the general shape of the 

curve and conclusions will remain valid as long as not too great a change in 

flop time occurs. 
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One concludes then, that the first task shows good parallel improvement at 

the first level of parallelization using the larger values of N, and S, and smaller 

to medium P values of the range implimented. 

There seems to be reasonable evidence that there is parallel computer 

power available for multi-algorithmic processing with smaller antenna arrays. 

However, because of the nature of this operation's computation, deterministic 

multiplications and sums, there is no advanced algorithmic opportunity 

recognized to accelerate the solution by applying cooperative multi-algorithmic 

techniques. Therefore, when computing the sample covariance matrix in the 

parallel mode, maximum available processors should be applied at the first 

level of parallelization. For N less than 16, and using a low sample size, it is 

highly probable that the parallelization threshold would be reached and a 

slowdown situation would occur. This is also possible when applying more 

than 16 processors to the problem even with larger arrays. 

In the next task, the eigenanalysis of the computed matrix, it will be seen that 

there is parallel algorithmic opportunity at the first level of parallelization, and 

due to the nonlinear nature of the eigenanalysis solution, there is also parallel 

improvement opportunity at the cooperative multi-algorithmic level. 



TABLE 1 

COMPUTATION OF THE SAMPLE 
COVARIANCE MATRIX 

32 SAMPLES FROM EACH ANTENNA 

Number of Number of Antennas 
Nodes 16 64 96 160 

CTU Sp CTU Sp CTU Sp CTU Sp 

1 0.211 1.00 3.23 1.00 7.23 1.00 20.61 1.00 
2 0.118 1.79 1.70 1.90 3.79 1.91 10.46 1.97 
4 0.072 2.93 0.95 3.40 2.09 3.45 5.71 3.61 
8 0.051 4.14 0.58 5.57 1.26 5.74 3.40 6.06 

16 0.041 5.15 0.41 7.88 0.87 8.31 2.31 8.92 

64 SAMPLES FROM EACH ANTENNA 

Number of Number of Antennas 
Nodes 16 64 96 160 

1 
2 
4 
8 

16 

Number of 
Nodes 

1 
2 
4 
8 

16 

CTU Sp CTU Sp CTU Sp CTU Sp 

0.408 1.00 6.22 1.00 13.94 1.00 38.89 1.00 
0.216 1.89 3.19 1.95 7.14 1.95 19.74 1.97 
0.122 3.34 1.69 3.67 3.76 3.70 10.35 3.76 
0.075 5.44 0.95 6.52 2.01 6.65 5.72 6.80 
0.054 7.55 0.59 10.47 1.29 10.82 3.47 11.21 

160 SAMPLES FROM EACH ANTENNA 

Number of Antennas 
16 64 96 160 

CTU Sp CTU Sp CTU Sp CTU Sp 

1.005 1.00 15.19 1.00 34.06 1.00 94.90 1.00 
0.510 1.97 7.69 1.98 17.20 1.98 47.57 1.99 
0.269 3.74 3.94 3.86 8.79 3.87 24.28 3.91 
0.149 6.74 2.05 7.32 4.61 7.39 12.68 7.48 
0.090 11.17 1.15 13.15 2.54 13.36 6.95 13.65 

Note: CTU is in seconds,~ is the speedup ratio 
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CHAPTERV 

EIGENSTRUCTURE DECOMPOSITION 

It was shown earlier that by using what is equivalent to the average 

orthogonality of the entire set of noise eigenvectors within the MUSIC peaking 

function, Equation (2-9), it was possible to compute a discrete amplitude plot 

containing peaks which represent the bearings, or the DOAs of the incoming 

wavefronts. 

The eigendecomposition of the sample covariance matrix to extract the 

eigensystem is usually considered a major computational burden in MUSIC 

because of the N-cubed eigenanalysis procedures typically required. 

A significant reduction in this workload is accomplished within this research 

when using large passive antenna arrays because the eigenanalysis is 

reduced to finding only the maximum eigenvector and minimum eigenvector. 

Chapter VI provides insight into the creation of a functional which uses only 

these two eigenvectors in the estimation process. 

This chapter assumes the two eigenvector estimation approach as valid, and 

is therefore only concerned about how to most rapidly get these two unknown 

eigenvectors from the sample covariance matrix. For few eigenvectors the most 

efficient method is an N-squared order iterative algorithm known as the power 

method. It will be seen that a multi-algorithmic acceleration procedure can be 

applied to speed convergence process and also provide an estimate of the 

number of arriving waves. 
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Power Method 

A straight forward step by step description of the actual process of the power 

method begins with a N by N matrix, A, and an arbitrary guess at the maximum 

eigenvector, !1· The guess, or starting vector, can be anything except the trivial 

case of all zeros, but a reasonable first choice is usually all ones. If a better 

guess of the maximum eigenvector is known, it will advance the convergence 

process, but this is not necessary to have convergence for a symmetrix matrix 

as is found in this case (Conte, 1980). 

The first step is to calculate A!1 to yield a vector called 3£1 (A!1 = 3£1 ). 

The second step is to find I Yi I max• the maximum entry in magnitude of the 

computed vector, 3£1· 

The third step is to normalize the vector 3£1 by dividing all the elements by 

IYilmax . This gives 

A~1 = l!1 = 1'12~2 • (5-12) 

where 112 is the signed element that was used to normalize 3£1. 

The fourth step is to test the new value, 112 , (or vector, ~2 ) and see if it is 

sufficiently close to the previous value, 111, (or vector, ~1 ). Each iteration brings 

the new value closer to the maximum eigenvalue (or maximum eigenvector) 

which can be seen by the convergence to the eigenvalue and its associated 

eigenvector. The tolerance used in this work is .01 percent. This was used 

considering the analog to digital conversion of the samples and typical receiver 

output capabilities. Convergence is completed when the iterates are within .01 

percent. of each other. 

If another iteration is needed the new matrix-vector product, 

(5-13) 

is formed to yield ~2 equal to 113~3 where 113 is the signed element used to 
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normalize ~2 , and ~ is the normalized vector as was done in the last iteration. 

The process continues untii'Tli!li converges to the dominant eigenset A.max~· 

The iterations can be stopped when !li of the last iteration is sufficiently close to 

!li+ 1 of the next iteration, or if Tli is sufficiently close to Tli+ 1 (Conte, 1980). 

The power method is an iterative process and the time required for 

convergence, is highly dependent on the ratio of the magnitude of the next 

largest eigenvalue to the magnitude of the largest eigenvalue, and the 

closeness of the starting vector to the maximum eigenvector. The greater the 

separation of these two eigenvalues, and the closer the starting vector, the 

faster the convergence is completed. It is true that convergence can be slow in 

some cases, but acceleration techniques exist that maintain the N-squared 

order of the calculation. In any case, convergence is guaranteed for a 

symmetric matrix (Parlett, 1980). 

Later in this chapter the power method implementation will be analyzed 

again when deriving the mathematical model for the number of calculations that 

are expected. This will provide a further description of the algorithm which is 

sufficient for those familiar with the method. For others, there are many texts 

that provide detailed looks at the power method of eigendecomposition 

(Wilkinson, 1965, Anton, 1977, Conte, 1980). 

A key to using the power method for the parallel procedure can be seen in 

that the computational routines that make up the working part of the power 

method are matrix-vector multiplications. These computations are iterative in 

nature, and have an intrinsic make-up more favorable for the first level of 

parallelization then many other decomposition methods. 

The familiar procedures based on the Jacobi method, for example, are 

successive sequences of plane rotations in an effort to transform the matrix to 

diagonal form. The nonparallel nature of this procedure exists because the 
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requirement to have the results of the last modified matrix elements before the 

next set of elements can begin computation. This does not allow the matrix to 

be split and operated on in an effective concurrent manner. 

Recent work with parallelization of the Jacobi method has beared this out by 

showing that even when using specialized one-sided Jacobi procedures for 

solving eigenproblems on parallel architectures, the time will be near 50 

seconds using 16 processors for a real matrix of order 64 (Eberlein, 1987}. It 

can be seen that following this procedure, this one task would then far exceed 

the real-time and near real-time goals as established earlier. 

Generalized Eigenvalue Problem 

It was shown in Chapter II that MUSIC requires the solution to the 

generalized eigenvalue problem between the matrix pair (Ax, Rb} when the 

noise sample covariance matrix is assumed to be known and not spatially 

white. It was assumed in the MUSIC development that an estimate of the noise 

characteristics of Rb can be obtained a priori for the MUSIC implementation, 

and it was assumed to have a Gaussian distribution in the MUSIC procedure 

(Schmidt, 1981). This is not a realistic situation for in virtually all practical 

applications, such information is never available a priori (Cadzow, 1988). 

However, reasonable research success has been obtained by using this 

assumption about knowing the noise characteristics. 

Here, the matrix Rb-1 also needs to be estimated a priori, in this case 

referring to before calculation of the generalized eigenset solution. Based on 

the Rb estimate already obtained, an estimate of Rb -1 could be made available 

by completing an inverse and storing the multi-split results in a mapped array 

awaiting computation. This is in contrast to trying to compute this matrix on-line. 



Having an estimate of Rb -1 available is necessary to allow the generalized 

eigenvalue problem solution to be of order N-squared. 
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When it is needed to solve between the matrix pair (Rx,Rb), rather than 

assuming spatially white noise, where Rb =I, then some modification to the 

power method needs to be created. This is because the power method is only 

appropriate for conventional or standard eigenvalue problems. 

Remember that Rx is the result of the first operation in Chapter IV. Also, now 

instead of assuming only the Rb matrix is known, this procedure assumes that 

an estimate Rb -1 is available. Hence, with these estimates at hand, the 

generalized eigenvalue problem can be changed from , 

(5-14) 

to 

(5-15) 

Of course, the matrix-matrix multiplication indicated in Equation (5-15) is still 

an N-cubed order function. But the computation never needs to be made 

directly. Instead, the Rx~ computation can be completed to yield a new column 

vector, say y_. Then Rb-tY. can be computed. Both of these computations are 

matrix vector computations, hence one additional N-squared order computation 

is necessary for each iteration. Again, this procedure can be used to improve 

the estimate when the maximum eigenvector is being computed using the 

power method knowing or estimating the matrices Rb and Rb -1 . 

A shift of origin is necessary to converge to the minimum eigenset instead of 

the maximum eigenset when applying the power method. This DOA procedure 

will eventually need to do both, that is, resolve the maximum and the minimum 

eigensets. Shifting the origin of the eigenvalue set is accomplished by 

subtracting an amout equal to the desired shift from each element of the 

diagonal of the matrix under decomposition. This causes an equal shift in each 
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eigenvalue, but no change to the associated eigenvector (Wilkinson, 1965). In 

order to shift the origin when the noise is considered to not be spatially white, 

but known as it is above, the following procedure needs to be employed that is 

different from the spatially white case. 

Starting with the same generalized eigenvalue problem Equation (5-14), the 

same first step as above once again results in Equation (5-15). Then an 

appropriate shift scalar multiplier, 't, is used to compute a new shifted matrix 

(Rb -1 Rx-'tl )~ ="-mi~ . (5-16) 

where I is the identity matrix of appropriate size. The new eigenvalues of the 

matrix Rb-1Rx-tl will be shifted from the matrix Rb -1 Rx by an amount equal to 

-'t, but there will be no change to the associated eigenvector values. 

This is the same shifting procedure as would be done in the standard 

eigenvalue problem, except of course, that the computation of Rb -1 Rx was 

never done directly, hence the subtraction cannot be completed directly. 

Selection of an appropriate 't to find the minimum eigenvalue is a trivial 

problem, and will be dealt with in the next section of this chapter. There also 

exists an optimum shift, 'topt• which causes fastest convergence, but this has no 

bearing on the method at this point. However, finding 'topt is certainly not a 

trivial problem. The optimum choice for the shift is not necessary in the present 

development, and is only introduced here because of its significance later in 

this chapter. In this case, given 't, Equation (5-16) is premultiplied by Rb to 

yield 

But that equals, 

which, in turn, yields 

(5-17) 

(5-18) 

(5-19) 



81 

Therefore, in order to cause the appropriate origin shift to locate the 

minimum eigenvector, or noise direction vector, when the sample noise 

covariance matrix is colored, the first step is to multiply the scalar shift, 't, by the 

sample noise covariance matrix. This matrix, 'tRb, is then subtracted from the 

sample covariance matrix, Rx· Both of these operations are N-squared order 

computations. This resulting matrix then replaces Rx in Equation (5-14), and 

the solution again progresses as described above in the original generalized 

eigenvalue problem. 

Optimum Scalar Shift 

The discussions above indicated that a scalar shift value, 't, exists that 

causes the minimum eigenvalue to become the maximum eigenvalue so that 

the power method could extract the minimum eigenset. It will also be seen that 

not only does a shift of the matrix to get the minimum eigenvalue exist, but also 

there is an optimum shift, 'toptmin• that increases convergence rate to the 

minimum eigenvalue solution. Likewise, there is an optimum multiplier scalar 

shift value, 'toptmax• that causes greater speed of convergence when 

converging to the maximum direction vector. 

The general result for the existence of an optimum shift for a power method 

and the corresponding improvement in convergence is well known, and is 

defined for the set of eigenvalues associated with the eigensystem of a matrix 

(Gourlay, 1973). Given a system of eigenvalues that satisfy the relationship, 

ll..1l>ll..2l> ... >II..MI>II..M+ 11> ... >II..N-11 >II..N I, depending on the choice of 't, the 

dominant eigenvalue will be 1..1-'t, or A.N -'t. Given the above order, when 'l is 

equal to 0.0 then 1..1 will be the absolute maximum eigenvalue, and the power 

method will converge to 1..1 and its associated eigenvector. If the value of 'l is 
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chosen as A-1 , then 1"-N - A.11 will become the absolute maximum eigenvalue 

and the power method applied to this shifted matrix will converge to 1"-N - "-1l 

and the eigenvector associated with "-N· It should be apparent that, in the first 

case, the maximum signal eigenvector is found, and in the second case the 

minimum noise eigenvector is located. 

The rate of convergence will depend on the ratio I(A.2)/(A.1 )I for the maximum 

and 1("-N-1)/ (A.N)I when searching for the minimum (Gourlay, 1973). 

The smaller the ratio the faster the convergence, the closer the ratio is to 

one, the slower the convergence. When a shift, 't, is applied as is discussed 

above for the generalized eigenvalue problem or for the normal eigenvalue 

problem, the rate of convergence of the power method will then depend on ratio 

of the shifted eigenvalues, I(A.2--t)/(A.1--t)l and 1("-N-1--t)/(A.N--t)l. 

For two suitable values of 't, called 'toptmax and 'toptmin• each of the ratios 

can be minimized thereby causing the fastest convergence possible for the 

particular matrix and eigensets. The correct value of shift in each case can be 

determined from the following two equations. The first is to determine the shift 

for the maximum direction vector and the second provides the minimum 

direction vector (Wilkinson, 1968): 

'toptmax = ( 1/2) (A.2 + "-N) 

'toptmin = ( 1/2) (A.1 + "-N-1 ) 

(5-20) 

(5-21) 

Of course, the problem now is to determine the values of "-2 , "-1, "-N ,and 

"-N-1 so as to provide the 'topt before the iterations begin, not after the 

eigenanalysis is complete. Hence a method to make an estimate of 'toptmax 

and 'toptmin needs to be determined that does not require completion of the 

actual eigenanalysis itself. 

It should be very clear that there is no deterministic procedure which can be 

applied to solve this problem in general. However, there are some special 
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cases which occur, and these are extremely important because the values of 

the optimum shifts for these can be estimated very accurately with very little 

computation thereby causing rapid convergence. Further, there is a method 

that showed some success in this research for the rest of the possibilities, and it 

has been incorporated into the parallel algorithm as a multi-algorithmic 

accelerated procedure. 

Fortunately, the minimum optimum shift value was found to be related to the 

actual number of arriving waves, M, which is another unknown at this point that 

is needed before the solution to the DOA problem is complete. Remember that 

the MUSIC estimate of the number of incoming wavefronts required the 

extraction of the entire set of eigenvalues to determine M. Of course, all of the 

eigenvalues are not available in this approach so a new procedure is needed. 

The procedure developed will become clearer as this chapter progresses and 

is part of the contribution of this work. 

In search of the optimum shifts, it should first be noted that the matrix Rx was 

developed from a finite set of samples in accordance with Equation (2-2}, 

hence it must be a positive semi-definite or a positive definite matrix. This 

indicates that its eigenvalues are nonnegative. Hence the following order of 

the eigenvalues must be true: A.1 >A2>· .. >AM>AM+ 1 ~. . . ~ AN-1 ~ AN ~ 0. 

Note that the smaller N-M eigenvalues may be zero, or may equal each other. 

Also, the sum of the eigenvalues of a matrix is equal to the sum of the 

diagonal elements, that is, trace=A-1 +A2+· .. +AM+ AM+ 1 + ... +AN-1 +AN· 

Therefore, it can be concluded that each individual eigenvalue must be Jess 

than or equal to the trace. Computation of the trace, the sum of the diagonals of 

the sample covariance matrix, is a simple N order function and can be 

completed in negligible time compared to the higher order functions. 

Given the above, it will be shown that the trace of the sample covariance 



matrix can be used to develop reasonable approximations for both 'toptmax 

and 'toptmin· There are separate cases to consider for each situation 

depending on the number of arriving wavefronts. 

Maximum Eigenvalue Optimum .s.bif1 
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When only a single arriving wave is present, then this is the special case of 

approximating a rank one sample covariance matrix. In this situation the 

maximum eigenvalue is quickly converged to because the single signal 

eigenvalue is widely separated from the many, N-M, smaller noise eigenvalues. 

In fact, in this case the power method will always converge in just two iterations 

when the SNR is high because the noise eigenvalues will be close to zero. 

To see this, consider the origin of the matrix Rx = ~~H. The first step in the 

power method is to take any vector,~1 , that is not equal to zero, and compute 

)l2=Rx )l1= ~ (~H)l1)· lf~2=Q, then )l1 is an eigenvector belonging to the 

eigenvalue 0. Otherwise )l2 is an eigenvector belonging to eigenvalue (~H~). 

This is because,Rx )l2 = Rx ~ (~H)l1 ) = ~ (~H ~ )(~H)l1 ) = ~(~H)l1 ) (~H ~ ), hence, 

Rx )l2 = )l2 (~H~). (5-22) 

In actual implementation, the algorithm can not finish yet having only the 

initial eigenvector guess to compare against. So the second iteration is 

needed to be completed which computes )ls=Rx )(2. Now, comparing the 

normalized values of ~2 and Ys· it will be discovered that (~H~) is the 

eigenvalue and the values of ~2 and Y3 are essentially within the tolerance of 

the precision used. Hence, for the maximum eigenvalue with one arriving 

wave, 'toptmax = 0.0, or no shift is the optimum shift. 

In the second case, with two arriving waves, it is seen from Equation (5-20) 

that the optimum shift will be half of the sum of the smaller signal eigenvalue, 
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1..2, and the smallest noise eigenvalue, A.N. For large SNR cases A.N is close to 

zero relative to 1..2. With the trace available, being the sum of both signal 

eigenvalues plus all of the noise eigenvalues, an estimate of the appropriate 

shift can be derived. It is necessary to know the distribution of the eigenvalues 

to get the exact optimum shift. If a choice of the distribution is estimated 

reasonably well and a shift made on that choice, then a faster convergence rate 

can be obtained, if not the fastest. 

An ad hoc distribution choice based on simulation experiments with uniform 

colinear array situations with two arriving wavefronts is that the dominant 

eigenvalue is approximately twice size of the other signal eigenvlaue. Using 

this distribution yields a maximum optimum shift when locating the maximum 

eigenvalue that is approximately one sixth of the trace. This will be close to the 

maximum eigenvector optimum shift defined by Equation (5-20). 

In the third case, three or more arriving waves, the same distribution 

assumption is extended by using an equally spaced linear distribution of the 

eigenvalues to yield the estimated locations of each of the next smaller 

eigenvalues. This is nothing more than an arithmetic progression with the 

common difference being M-1 times maximum eigenvalue. The values of the 

same two largest eigenvalues are needed as in the case above, with the 

situation now being that the trace value is increased by the replacement of 

noise eigenvalues with the larger, but decreasing in magnitude, signal 

eigenvalues. The optimum shift for these cases is a smaller and smaller portion 

of the trace as the number of signals increase. 

Based on simulations, it appears that approximately one tenth of the trace 

could be selected as the shift amount in most cases and convergence would 

still be rapid. This is due to the large separation of the largest noise eigenvalue 

and the signal eigenvalue in the first case is normally very fast, hence they 



would not be affected much by the shift. In the poor SNR circumstance, 

convergence could even be faster than without the shift, because the noise 

eigenvalue will be nearly as large as the smallest signal eigenvalues. 
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In actual practice, it was found that there was not a dramatic improvement in 

the number of iterations saved. That is, the loss asssociated with extra 

iterations in the low noise cases, the more predominant situation, was worse 

than the improvement obtained in the higher noise cases. Also a consistent 

correlation between the different number of arriving waves and the correct shift 

was not established. The differences between the convergence improvements 

associated with the different possible shifts were too slight to be a reliable 

indicators as to the number of arriving wavefronts or even a reasonable 

approach to accelerate convergence. 

Hence, for the particular nature of the sample covariance matrix, and the 

assumed eigenvalue distribution, it was most advantages in all multiple arrival 

cases to not shift the matrix before iterations begin. 

Minimum Eigenvalue Optimum ~ 

Contrary to the maximum eigenvalue situation, the optimum shift for the 

minimum eigenvalue case is more dependent on the input data. It has clearer 

separation between situations, and it also provides very accurate information 

about the number of arriving waves. Three cases are considered again. 

With a single arriving wave the optimum shift is simply the maximum 

eigenvalue. This could be a result of the maximum eigenvalue search above, 

however it is a faster scheme to approximate the shift and begin simultaneous 

iterations on another subset of nodes of the parallel computer. 

The trace, already available, will be close to the maximum eigenvalue with a 
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single incoming wave, differing only by the sum of the noise eigenvalues. The 

noise eigenvalues are nearly equal and close to zero relative to the signal 

eigenvalue except in the poor SNR situations. Hence, if iterations for the 

smallest eigenvalue begins with shift equal to the amount of the trace, and a 

single arriving wave is present, then the convergence will be rapid, two to three 

iterations, and the noise direction vector will be resolved. Notice with this shift, 

in the single arrival situation, the shifted matrix will still approximate a rank one 

matrix as discussed earlier. This would not be as clear if the noise eigenvalues 

are widely separated in value. The shifted matrix would have several different 

eigenvalues and would have a higher effective rank. This occurs in the very 

poor SNR case, and causes some difficulty in this procedure. 

When there is more than one arriving wave, then the trace value is larger 

than the optimum shift causing the iteration convergence rate to be at a 

suboptimal level which leads to the second case. 

In the second case, i.e., for two arriving waves, Equation (5-21) shows that 

the sum of the two signal eigenvalues divided by two would be the optimum 

shift. The trace is exactly equal to the sum of the two signal eigenvalues plus 

all of the noise eigenvalues. When the noise eigenvalues are close to zero a 

very good estimate for the optimum shift for the minimum eigenvalue with two 

arriving waves could then be obtained by simply dividing the trace by two. 

Empirical results showed that rapid convergence occurs with this shift amount 

when two arriving wavefronts are present. 

What can be seen, as it is developing, is that the divisor for the shift amount 

that yields the fastest convergence is related to the number of arriving waves. 

In the first two cases, the minimum eigenvalue optimum shifts are very accurate 

indicators and require no assumption about the eigenvalue distribution. The 

last case, three or more arriving waves, has very good experimental results with 



simulations, but is not as accurate an indicator as the first two cases were 

because an eigenvalue distribution once again needs to be assumed. 
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To estimate 'toptmin for the third case, i.e., for three or more arriving waves, it 

is required to be able to reasonably approximate the distribution of the signal 

eigenvalues. Some work has been completed in determining the exact 

eigenvalue distribution for incoherent Gaussian covariance matrices. As this 

work has not resolved the issue, heuristic considerations were considered. 

Arithmetic and geometric progression methods were compared with the 

arithmetic progression being favored for a uniform spacing (Martin, 1988). 

In agreement, the work accomplished in this research favors the ad hoc 

choice chosen in the maximum eigenvalue search of an equally distributed 

linear set, or an arithmetic progression with a common difference of M-1 times 

the maximum eigenvalue. This has proven to be accurate in experimental data 

derived from a uniform colinear array. Following this guideline, the optimum 

shift for three or more arriving waves can be determined from Figure 15. 

Here, as earlier, the divisor for the trace is the estimate to the number of 

arriving wavefronts. This same table would apply in this work if the number of 

arriving waves are know a priori. In this case only the required shift would be 

accomplished and rapid convergence would be achieved. 

Experiments have shown that the more arriving waves and poorer the SNR, 

the less accurate the estimate becomes. Of course this is also true for the 

methods that attempt to determine the number of arriving waves by analysing 

the set of extracted eigenvalues as discussed in Chapter II. Because the 

method is based on a particular distribution, it does limit the algorithm to 

colinear arrays when the number of arriving waves is unknown. However, it 

may be possible to achieve similar results for any given array structure by 

operating on subsets of the array that are colinear. There are several factors 
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max signal min noise 

eigenvalue eigenvalue 

one arriving wave t II 
v 0.0 

two arriving waves t t II 
v V/2 0.0 

three arriving waves t t t ~ v 2V/3 V/3 0.0 

four arriving waves t t t t ~ v 3V/4 V/2 V/4 0.0 

five arriving waves t t t t t ~ v 4V/5 3V/5 2V/5 V/5 0.0 

One arriving wave optimum shift = V =Trace 

Two arriving waves optimum shift =(V+V/2)/2 = Trace/2 

Three arriving waves optimum shift =(V+V/3)/2=(V+2V/3+V/3)/3 = Trace/3 

Four arriving waves optimum shift=(V+V/4)/2=(V+3V/4+V/2+V/4)/4= Trace/ 

Five and more arriving waves optimum shift= Trace/number of waves 

Figure 15. Determination of Optimum Shift for Eigenvalue Convergence 
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that limit the minimum number of iterations required for convergence which 

also limits the number of directions that are resolvable. These factors include 

the algebraic limit of the solution accuracy applied, the aperture width, the 

number of samples taken, the period of sample time, the true stationary nature 

of the sources, and the SNR of the situation among others. 

As stated, if the number of arriving wavefronts is known, this would dictate 

the optimum shift value for the minimum eigenvalue search, which would cause 

the fast convergence. In this situation, this task would be completed in a 

straight forward manner. However, when the number of sources is unknown, 

the usual case, the serial approach using this technique is computationally 

extended over the parallel program. There are at least two basic approaches 

possible. 

First, iterations could be completed for an estimate of one arriving wave 

before changing to the next estimate of two arriving wavefronts. That is, it 

would be required to build a shifted matrix based on one arriving wave, and 

continue iterations until the solution is within tolerance, or some threshold 

exceeded. The threshold selection is no simple task, as the minimum number 

of iterations required is dependent on the set of unknowns that developed the 

sample covariance originally. In any case, the next step would be to compute a 

new shifted matrix based on two arriving waves and once again complete 

iterations as before. It would be necessary to compare the number of iterations 

resulting for each estimate as the sequence climbs to more and more arriving 

waves. When the minimum number of iterations is determined, this would 

relate to the number of arriving waves as described above. The eigenvector 

resolved at that point would be the most accurate noise direction vector 

obtained. 

A second approach would be possible if the computer memory capacity is 
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very large. It would be possible to shift an entire set of matrices, each shift 

based on a different estimate of the number of arriving wavefronts. Then each 

iteration each matrix would complete one cycle of the power method. The first 

matrix to converge would stop the process. This would sidestep the difficult 

threshold issue, and also require each shifted matrix to complete only slighly 

more than the minimum number of iterations, rather than the selected iteration 

threshold or the number for actual convergence depending on which came first 

compared to the other serial technique. However, for large antenna arrays, this 

method would significantly limit the number of possible arriving wavefronts that 

could be investigated because each shifted matrix would need to be 

continuously held throughout all computations in this serial procedure. 

On the other hand, with the number of wavefronts still unknown, the parallel 

version that has multiple algorithms running concurrently has an unusual 

advantage during this task. This is because several different activities can be 

occurring simultaneously. The parallel computer is split into subsets of nodes 

operating concurrently at the first level of parallelization. The first subset of 

nodes will be assigned to locate the maximum eigenvector using no shift, as 

was recommended above. Next, there will need to be multiple node subsets 

concurrently using different shifts, derived from the Figure 15, searching for the 

minimum eigenset. 

This splitting of the parallel computer into subsets could reduce the first level 

parallelization speedup parameters allowing fewer processors to be available 

for first level speedup. However, it will be found in the analysis of the later part 

of this chapter that the eigendecomposition first level parallelization shows the 

least efficiency of the four parallelized operations of the DOA problem. Also, 

since this task is a low multiple N-squared order, very little time is used in this 

operation as long as the number of iterations can be kept low. After four 
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processors are applied at the first level of parallelization for N as high as one 

hundred, very little additional computer time can be saved by adding more 

processors at the first level of parallelization. Hence sixteen processors can be 

most effectively be applied by simultaneously splitting the work into four or even 

eight separate algorithms with each using one of the shifts derived in Figure 15. 

The shift that turns out to be optimum, will cause most rapid convergence to 

the desired eigenset, hence allowing termination of the processes. Clearly this 

provides an estimate for the number of arriving waves. If desired, additional 

processors could be added at this point allowing larger numbers of concurrent 

searches depending on the expected resolution of the particular system. 

One additional feature is seen when too small of a shift amount is chosen 

due to significant over estimation of the number of arriving waves. In these 

cases, the iterations will converge to the maximum eigenvalue instead of the 

minimum eigenvalue, which will be immediately obvious by a sign change in 

the resulting eigenvalue. This is an additional computational bound that can be 

detected quite rapidly and places a limit on number of iterations in these cases. 

This provides a method to constrain the process on estimations of the higher 

numbers of arriving wavefronts, concentrating more processors at the first level 

of multi-processing on the lower number estimates of arriving waves when 

necessary. 

Of course, the estimate of the number of arriving waves is necessary for use 

in the last operation, searching for the peaks, and this way an estimate can be 

obtained without extracting the entire eigensystem, anN-cubed order 

procedure. It also accelerates convergence providing the needed eigenvector 

in minimum time. For large arrays there is a significant savings in computer 

time used. 

Figure 16 is the result of the number of iterations required considering nine 
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possible shifts for each of the sample covariance matrices using the values 

suggested in Figure 15. The boxed number of iterations is the minimum 

number of iterations that occurred each time. It can be seen that the estimated 

number of arriving wavefronts and the correct number correspond to the lowest 

number of iterations. 

Figure 17 is a simplified flow diagram that shows the basic parallel events 

that occur concurrently during this operation. The specific data illustrated for 

this chart was extracted from Figure 16, the two source example. It can be seen 

that after three iterations, labled I =3, the node set, 8- 11, would stop operation. 

The executive node of this set would then stop all of the other nodes that are 

also looking for the minimum eigenset. Of course, they are searching for the 

same minimum eigenset, but have a different estimate of M. Since nodes 0 

through 3 were assigned the maximum eigenset search, they may or may not 

be complete depending on the particular situation. In this example it was true. 

All nodes recieve the estimate of M, the number of arriving wavefronts, and the 

maximum and minimum eigenvectors. 

Not shown, but also important, were some examples where the wavefronts 

were too coherent and appeared as a single wavefront. In these cases the 

estimate of the number of wavefronts from this procedure also indicated one 

less source than was actually present. 

In aliasing situations, where the antenna separation is greater than one half 

of a wavelength causing extra peaks, the estimate of M was found to be 

unaffected by the existence of the alias peaks. 

It is now appropriate to analyze the power method to establish the 

mathematical model of its serial and parallel computational components. This 

provides an estimate of the parallel speedup possible and prepares for the 

parallel algorithm development and implementation. 
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Lowest number of iterations for convergence are boxed. They occur when 
the estimated number of arrivals equals to the actual number of arrivals. 
Convergence was completed when iterates were within .01 percent. 

Figure 16. Results in Determining the Number of Arriving Waves 
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Computed Sample Covariance Matrix to All Four Node Sets 

I I I I 
0-3 4-7 8- 11 12- 15 
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maximum minimum minimum minimum 
eigenvector eigenvector eigenvector eigenvector 

M=1 M=2 M-3 
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after 1=3 
stop signal this set of stop signa 

Lhis set of stop stop stop at 1=3 nodes is at 1=3 nodes may .... - finished 
.. ... ..... .. .. .. 

stop p p 

,, , , , 
All nodes communicate the maximum and m1mmum eigenvectors 

as well as the estimated number of arriving waves, M=2 

All nodes go to the next operation, to compute the DOA spectrum 

Figure 17. Simplified Flowchart of Multi-Algorithmic Acceleration 
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Power Method, Serial Instruction Count 

Assuming a 2Nx2N matrix and I iterations, a straight forward analysis of the 

serial power method algorithm has shown that there are four computational 

steps in each iteration. Remember that N represents the number of antennas, 

however, since the elements of the sample covariance matrix are complex, the 

dimension N is multiplied by two. 

The first step of the power method was the matrix-vector multiplication. This 

requires a total of 4N2 multiplications and 4N2 adds. Since these are 

computed within the same loop, register usage improves the performance over 

other sections so the average number of flops used will be represented as 

5N2 flops. (5-23) 

The second step is the search of the computed vector for its maximum 

element. This step requires 2N-1 compares which will be equated to 

2N-1 flops. (5-24) 

The third major step requires the vector to be normalized by the maximum 

element located in step two. This would require 2N divisions, or 

2N flops. (5-25) 

In the final step the new vector must be compared to the previous vector, 

element by element, to determine if the convergence constraint has been 

satisfied. Instead, the alternative procedure of comparing the eigenvalues is 

used which will reduce computations required, especially in large arrays. 

Since the largest vector element is the maximum eigenvalue estimate, only one 

compare needs to be made, i.e., 

1 flop. (5-26) 

If the new value is not close enough in accordance with the tolerance used, 
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then more iterations are required, or else the program ends with the maximum 

eigenset as the output. 

A single shift in the matrix is expected in every minimum eigenvalue case. 

The shift amount is subtracted from the diagonal of the sample covariance 

matrix. The time consumed in computations for the normal eigenvalue problem 

shift will be just from the diagonal and equal to 2N additions. 

Making the generalized eigenvalue solution shift requires the full noise 

covariance matrix estimate times the shift, to be subtracted from the sample 

covariance matrix. Therefore it requires 4N2 multiplications and 4N2 additions 

to shift the origin of the matrix before the decomposition begins. The shifts are 

not a function of the number of iterations, so they only occur once before 

beginning the iterations. As a compromise in the implimentation of these 

procedures, the second procedure was followed in all cases, being multiplied 

by zeros in the off diagonal cases for spatially withe noise. 

There are also extra serial events, such as storing the resulting N 

dimensioned vectors, that occur. In these cases, a relativly significant amount 

of serial code is done when the iterations are very low. A simplified value for 

the serial model is provided that yields 

I (5N2+4N)+ 16N2 flops , (5-27) 

corresponding to I iterations using the power method . 

Power Method, Parallel Instruction Count 

The parallel power method using the first level of parallel speedup will take 

the same four steps, however the matrix will be split among the number of 

processors. The basic operation is a vector-matrix multiplication procedure. 

Each processor will compute its N/P element section of the new vector (again 
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assuming NIP is an integer which causes no loss in generality) by computing a 

vector-partial/matrix product. With P the number of processors being used in 

the parallel algorithm, then the first step requiring the vector-partial/matrix 

multiplication can be reduced to 

5N2;p flops. 

The P nodes would each require the entire vector, but only 2N/P rows or 

columns of the sample covariance matrix. 

(5-28) 

The second step, the search for the maximum element of the vector which is 

the estimate of the eigenvalue, can also be reduced in parallel by searching the 

computed segments of the new vector at each node concurrently. This requires 

(N/P)-1 flops. (5-29) 

This partial search will have to be followed by additional comparisons of the P 

distributed maximum elements to complete the localization of the maximum 

eigenvalue estimate. 

The third step, normalizing the vector by its maximum element, cannot be 

performed at each node at this point because the overall maximum element will 

not have been determined from step two until the data arrives at the executive 

node and the determination between the set of P maximum elements is 

complete. The normalization will need to be accomplished in serial because 

the entire vector is needed at each node, hence no parallel savings can be 

obtained on this 2N-ordered computatlion . 
• 

The fourth step, comparing the present value to the last value, will require a 

single compare at the executive node. At this point, all of the participating 

nodes have sent their segment of the eigenvector from the computation of the 

vector-partial/matrix product, and their results of the partial searches for the 

maximum element to the executive node. 

In summary, one node must act as an executive node for this process as well 
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as taking an equal share of the calculations. The executive node assembles 

the partial vectors computed at the other nodes into a complete vector. It 

compares the maximum elements for the largest single element which requires 

P-1 compares, and one more compare is required to check for convergence. 

If the procedure has converged to the eigenvalue, it sends the current vector 

normalized by the eigenvalue, to the next operation, the third task that was 

defined in Chapter II. Otherwise, another iteration is required and the new 

vector is communicated to each of its working nodes. The nodes begin another 

iteration because they already have their required columns of the matrix. 

Node zero, is used to monitor the overall activity ofthe multi-algorithms and 

when convergence from a node set with the optimum shift looking for the 

minimum is successful the data will be transmitted to this node. It is not 

necessary to have any of the executive nodes described, including node zero, 

to be in a wait state except for the instant after iteration, hence all nodes can be 

totally involved in the computations with negligible serial efforts. 

Collecting all of the computations and comparisons above totals as follows: 

5N2fp computations of the matrix-vector computation, 

( 4N/P)-1 compares to search for the largest vector at each node, 

P-1 compares of the completed P partial compares, 

1 check for convergence, 

2N divides to normalize the vector 

These all sum to 

((4N2+4N)/P)+P+ 1 +2N flops (5-30) 

This is the total number of flops dedicated to the parallel computation during 

each iteration. Also an origin shift costing N/P flops, being split up among the P 

nodes, must be added to the parallel model. It is not a function of I, the number 

of iterations so it only is required once. 
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Because an MIMD message passing computer organization requires a 

message to be passed each time the nodes exchange data, log2P messages 

from the working nodes to the executive nodes are necessary to pass the 

computed partial values of the vector. Also one message from the executive 

node is needed to be distributed to each of its working nodes to begin the next 

iteration. Again, exact time required for the messages depends on their length 

and system interaction, so a single message time is represented by J.1 as the 

computer time used (in flops). Because the message is a function of the vector 

size, a factor of log2N needs to be multiplied times the established value of J.l· 

There still exist strictly serial noncomputational instructions that are required 

to be run, which are included in the computational load as was done earlier. 

This time needs to be accounted for at this level of approximation because the 

low number of computations completed when the iterations are only a few 

because of the acceleration procedures applied. 

Finally, the total number of flops for the parallel algorithm for an NxN matrix 

taking I iterations can be estimated as: 

I ( (5N2+4N) /P)+ 16N2fp+ I (2J.1Iog2(P) log2(N )) flops (5-31) 

Notice again for Task two, that Equation (5-31 ), the parallel model, equals 

Equation (5-27a), the serial model, if the number of processors, P, equals 1. 

Eigenstructure Decomposition Results 

Table 2, the last page of this chapter, reports the speedup ratio and CTU 

using exactly two, twenty, and two hundred iterations to resolve the eigenset. 

This table was developed by allowing the estimator to run to the specified 

number of iterations using the given input set and processor situations. 

Comparisons between serial and parallel times is based on only the first level 



of parallelization when considering the same number of iterations. The 

improvement possible when using multi-algorithmic acceleration as described 

earlier is not directly seen in the table. This is because it requires comparing 

different iterations needed against an unknown serial algorithm. 
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Due to the inefficiency in the computation versus communication workloads for 

small N, and the earlier stated serial computation activities, it is seen that 

increasing the number of processors actually decreases the speedup ratio for 

arrays of only sixteen elements. Here the parallelization threshold is exceeded. 

In agreement with the speedup ratio, the CTU data shows that time is lost for 

values of N and P for small arrays, and a drop in improvement occurs with P 

greater than 4 for arrays of 16 antennas and high iterations. This indicates that 

when the number of antennas is small, this task of the parallel algorithm should 

use smaller numbers of processors for best efficiency and best speedup. This 

is what was mentioned earlier, and what has made the multi-algorithmic even 

more effective in this task. With large arrays and large numbers of iterations, 

the speedup differential improvement is quite small for increasing above eight 

processors, however a much larger decrease in time is seen when the number 

of iterations is reduced due to accelerated convergence. 

This completes the first level analysis of the power method. The actual result 

gives the highest speedup ratio of about 13.47 with 16 processors, using a very 

large N of 160. In terms of speedup differential, this provided a savings of 

almost 132.98 seconds out of 143.64 seconds of the serial computer time used. 

Notice however, when this same size array is reduced to just a few iterations 

and only two processors, the time is less than one fifth this best time achieved 

with high iterations and 16 nodes. The point being, that it is more significant 

time wise to reduce the number iterations required by splitting the problem and 

processors multi-algorithmically, than to apply the parallel processor in only a 
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first level parallelization effort. This is obviously the case in the smaller to 

medium size arrays because of the poorer speedup parameters that exist. In 

fact, an array of only 16 antenna elements reaches the parallelization threshold 

at only 4 processors and the speedup parameter is so low that it does not 

reasonably justify more than 2 processors. 

It can be seen that this is also true for large arrays as long as the optimum 

scalar shift can be located and the lower number of iterations can be obtained. 

Further of course, the number of arriving wavefronts can be determined by 

using the multi-algorithmic procedure. 

Actual DOA applications occur with all size arrays, so the large speedup 

improvements in this task indicates the higher end of possible real world gain. 

Smaller speedup ratios, and computer time savings associated with smaller 

antenna arrays still show worth-while improvement when it is considered that 

only a few processors will be applied. It is obvious that this is one point that 

tailoring the parallel system to the array would enhance the real system times 

over the compromise "same applies to all" type prototype implementation 

developed for this study. 

As was stated earlier, the large savings attributed to reducing this procedure 

to an N-squared function by using the power method, and then using only the 

maximum and minimum eigenvectors, did not allow super high first level 

parallel improvement numbers for the speedup ratio and speedup differential to 

be obtained. The serial times are very very short relative to traditional SVD 

serial approaches using large values of N. The overall serial, parallel and 

multi-algorithmic parallel improvement of this chapter, however, allowed this 

research to reach the goal of a real-time DOA processor. 



Number of 
Nodes 

1 
2 
4 
8 

16 

Number of 
Nodes 

TABLE 2 

EIGEN-DECOMPOSITION OF THE SAMPLE 
COVARIANCE MATRIX 

TWO ITERATIONS 

Number of Antennas 
16 64 96 

CTU Sp CTU Sp CTU Sp 

0.040 1.00 0.616 1.00 1.37 1.00 
0.024 1.67 0.312 1.97 0.70 1.96 
0.024 1.67 0.168 3.67 0.35 3.91 
0.024 1.67 0.088 7.00 0.19 7.21 
0.024 1.67 0.064 9.62 0.11 12.45 

20 ITERATIONS 

Number of Antennas 
16 64 96 

160 
CTU Sp 

3.82 1.00 
1.92 1.99 
0.98 3.90 
0.49 7.80 
0.27 14.15 

160 
CTU Sp CTU Sp CTU Sp CTU Sp 

1 
2 
4 
8 

16 

Number of 
Nodes 

0.176 1.00 2.63 1.00 5.94 1.00 
0.120 1.47 1.36 1.93 3.01 1.97 
0.112 1.57 0.74 3.55 1.54 3.86 
0.112 1.57 0.44 5.98 . 0.86 6.91 
0.136 1.29 0.32 8.22 0.54 11.00 

16 
CTU Sp 

200 ITERATIONS 

Number of Antennas 
64 96 

CTU Sp CTU Sp 

16.52 1.00 
8.30 1.99 
4.22 3.91 
2.18 7.58 
1.22 13.54 

160 
CTU Sp 

1 1.504 1.00 22.90 1.00 51.69 1.00 143.64 1.00 
2 1.056 1.42 11.78 1.94 26.14 1.97 72.18 1.99 
4 0.976 1.54 6.38 3.59 13.50 3.83 36.69 3.91 
8 1.080 1.39 3.86 5.93 7.52 6.87 19.04 7.54 

16 1.264 1.19 2.84 8.06 4.73 10.93 10.66 13.47 

Note: CTU is in seconds,~ is the speedup ratio 
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CHAPTER VI 

ARRAY MANIFOLD INTERSECTION 

The third task required to be converted to a parallel algorithm is computation 

of the DOA function amplitude plot. This plot is computed by completing the 

inner products of the discovered noise eigenvectors, with the stored array 

manifold vectors which are based on the antenna array geometry. This is done 

in MUSIC by sweeping its peaking function, Equation (2-9), through all of the 

investigated values of possible incoming bearings using the entire set of 

estimated noise eigenvectors extracted from the sample covariance matrix. 

The function peaks where the DOA information contained in the eigenvector 

and the array manifold vector intersect. This task is highly computational 

intensive especially when only a few wavefronts are arriving. In these cases, 

since M is small, there are more N order dot products required for each angle 

investigated than in the large M case. 

There was a dramatic computational reduction obtained in the previous 

chapter when it was assumed that only two vectors, those associated with the 

maximum and minimum eigenvalues, needed to be extracted from the sample 

covariance matrix. This chapter begins by validating that result, and provides 

the new two-eigenvector peaking function to be used in the parallel algorithm. 

Once again, as was found in Chapter V, a significant time savings will be 

gained over other EV/EV procedures using the two-eigenvector function. 

In Chapter II it was noted that in the special situation when the number of 
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arriving signals is one less than the number of antennas, the smallest 

eigenvalue has an algebraic multiplicity of one, thus it has a distinct single 

eigenvector. This requires finding only the minimum eigenvector. In this case 

the MUSIC algorithm reduces to the same data as Pisarenko's harmonic 

retrieval method (Pisarenko, 1973, Schmidt, 1981). This fact indicates that in at 

least one case, it is correct to design an eigendecomposition algorithm based 

on the power method which finds one eigenset of a matrix at a time, through an 

iterative procedure (Conte, 1980). 

Of course the smallest eigenset, not the largest, is needed for Pisarenko's 

method or when the noise subspace approach is being followed as in MUSIC. 

However, it has been discussed that with the simple modification of shifting the 

origin, the minimum (or noise eigenset) can easily be located while still 

maintaining the N-squared order of computation (Conte, 1980). 

If the special case above can be generalized or enhanced, it may be 

possible to eliminate the need to have the set of eigenvectors E = [f!M+ 1 , 

~+2 , ...• ~N] for the intersection computation with the array manifold. That is, 

in each case since a single eigenvector, ~min• in the noise subspace exists that 

is orthogonal to the signal subspace, then the peaking function could possibly 

be reduced to using just this vector. Further, it would then be possible and 

efficient to apply the power method to find this single eigenset. This would 

result in replacing the MUSIC peaking function, Equation (2-9), for operation 

three with the following: 

m (9) = 1 (6-1) 

.aH(e) ~min ~minH .a(9) 

This would, in turn, reduce the number of dot products compared to MUSIC 

across N-M eigenvectors to only one eigenvector. This effectively reduces the 

order of computations from N-cubed to N-squared. It was stated that the 



function will eventually use two vectors, not one, but first the conditions which 

allow a single minimum noise direction vector to exist in Rx will be detailed. 

Direction Eigenvectors . 

Solving the eigenstructure problem for the single eigenvector ~min• where 

§min is the noise direction vector of the eigenset related to the smallest 

eigenvalue of the noise subspace, can be done as an iterative task using the 

power method. The discovered vector will be shown to lie in the subspace 

spanned by the set of eigenvectors i§.M+ 1 , ~M+2 , ...• ~N1· 
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First it is necessary to establish the independence of the generalized set of 

eigenvectors, all associated with the same eigenvalue Amin· It has been seen 

that in this problem, with an appropriate shift to the matrix, the minimum 

eigenvalue can become the maximum eigenvalue. Hence, any of the following 

that is developed for the maximum eigenvalue also directly applies to this 

minimum eigenvalue problem. 

The eigenvalue, A.min• will have multiplicity (N-M) established in Chapter II. 

The defining equations for the set of vectors ~M+ 1 , §M+2 , ...• ~N] all 

associated with Am in , where ~M+ 1 is a unique eigenvector and the rest are 

generalized eigenvectors all associated with the same eigenvalue A.min are: 

Rx ~M+ 1 =Am in Rb ~M+ 1 • ~M+ 1 ~Q or (Rx-RbA.min) ~M+ 1 = Q_ (6-2) 

Rx ~M+2 =Amin Rb §M+2 + R~M+ 1 or (Rx-RbAmin) ~M+2= ~M+ 1 (6-3) 

Rx ~M+3 =Amin Rb ~M+3 + R~M+1 or (Rx-RbA.min) ~M+3= ~M+2 (6-4) 

Rx ~N =Amin Rb ~N+ R~N-1 or (Rx-RbA.min) ~N= ~N-1 (6-5] 

From the Equations (6-2) and (6-3), (Rx-RbA.min)2 ~M+2= 

(Rx-RbA.min)~M+ 1 = Q . Multiplying Equation (6-4) by (Rx-RbAmin)2 gives 
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(Rx-RbA.min)3 ~M+3= (Rx-RbA.min) 2~M+2= Q . In general, it can be seen that 

(Rx-RbAmin)P !itM+p= Q_, and (Rx-RbA.min)P-1 ~P= §M+ 1 . Since 

(Rx-RbAmin)N= (Rx-RbA.min)N-p (Rx-RbA.min)P' (Rx-RbA.min)N ~+p=Q for 

P=1 ,2, ... , N-M, it shows that all of these vectors belong to the null space of 

(Rx-RbAmin)N (Brogan, 1985). 

Further, it can easily be shown that these vectors will be linearly 

independent. This is a classical result, but repeated here to bring it into the 

context of the minimum eigenvector set which makes up the noise subspace. 

Let, 

a1 ~M+ 1 +a2~M+2+ ... +aN-M§N=Q · 

It can be shown that this implies that each ai = 0, which shows linear 

independence. 

(6-6) 

The first step is to multiply Equation (6-6) by (Rx-RbA.min)N-1. This gives 

aN-M(Rx-RbA.min)N-1 ~N = Q. But from above (Rx-RbAmin)N-1 §N = ~M+ 1 -::F Q, 

so for this case aN-M must be zero. It follows from this fact that if Equation (6-6) 

was multiplied by (Rx-RbA.min)N-1, then likewise aN-M-1 = Q. Continuing this 

process over all i from 1 toM is 1: ai!itM+i = Q, then ai=O fori= 1,2, ... ,M. Hence, 

the set of generalized eigenvectors ~M+ 1 , ~M+2 , ...• ~Nl is linearly 

independent (Brogan, 1985). 

If there are a number of independent eigenvectors corresponding to a 

repeated dominant eigenvalue (minimum, made dominant in this case), this 

does not affect convergence of the power method and the iterates tend to some 

vector lying in the subspace spanned by the eigenvectors (Wilkinson, 1968). 

This eigenvector will be a linear combination of the eigenvector set and 

corresponds to the multiple maximum eigenvalue (Gourlay, 1973). 

This is analogous to the work of Kumaresan and Tufts (1983) where they 

developed a polynomial D(z) whose zeros fall near the noiseless locations in a 



moderate SNR situation. They resolve a single vector g in terms of the noise 

subspace eigenvectors, whose values are the coefficients of the polynomial. 

Their method of resolution of this single vector does not eliminate are greatly 

reduce the computational burden, and they indicate that the resulting 

procedure is essentially the same as that of Reddi's (1979). 
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Here, with the noise mean assumed near to zero, the larger the number of 

samples, the closer the smallest eigenvalues become. There will be a distinct 

eigenvector and N-M-1 independent generalized eigenvectors. It is possible to 

locate the absolutely smallest eigenvalue and its associated eigenvector using 

the power method. The eigenvector resulting will be the minimum noise 

direction vector, ~min , necessary for application in Equation (6-1). 

The problem with using a single noise direction vector is that it is greatly 

affected by the noise, and additional peaks appear that are not actual angles of 

arrival. Figure 18 is an example of such a situation. It is the plot derived by 

using 16 antennas with .SA. spacing and three arriving waves at 25, 30, and 35 

degrees with a 1 0 dB SNR. The three directions are indicated at their correct 

values by peaks, but because there are many other peaks that have higher 

amplitudes, the actual wavefronts can not be identified. Hence, in this case, 

these spurious peaks make it impossible to extract the three actual arriving 

wavefronts. 

This problem was discovered by Schmidt and is why his algorithm MUSIC 

uses all of the noise eigenvectors which effectively averages out the unwanted 

extra peaks. It is also related to the problem of the MUSIC algorithm generating 

the number of peaks estimated, correct or not. The problem for this research is 

that EV/EV techniques on this operation and in the last operation require an 

excess number of computations to extract the eigensystem. 

This dilemma is uniquely resolved by additionally solving for and applying in 
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a new two-vector peaking function the maximum signal direction vector. This is 

one of the contributions of this research. 

Considerable work in direction finding has also centered on the set of 

maximum eigenvectors, the signal eigenvectors. A study by Reddi (1979) 

showed the maximum eigenvectors could be applied in a relation as the 

principal polynomial function where the roots caused the function to vanish at 

the angular locations coinciding with the DOA. He recognized the high 

resolution difficulty when closely spaced signals coalesced into one source. 

He further recognized increasing the power levels of the sources or the 

aperture by increasing number of elements resulted in more sources being 

resolved. The maximum eigenvalues were shown however to also provide an 

unbiased estimate and that it was very accurate without spurious peaks. This 

was essentially a signal subspace complement to the MUSIC algorithm using 

all of the signal eigenvectors. 

The maximum signal vector can be located beginning with the identical 

inputs as the minimum noise vector as described in Chapter V. In fact, as 

described there, it is accomplished simultaneously using a multi-algorithmic 

approach by splitting the parallel processor among tasks. 

Simplifying Reddi's approach, in a Pisarenko-like effort, this research 

applies only this single largest eigenvalue's eigenvector, called ~max here, in a 

function which relates the intersection of the maximum eigenvector of the 

sample covariance matrix and the swept array manifold. This function will peak 

when the estimated direction of an incoming wave coincides with the correct 

bearing which is contained in the sample data. This peaking function uses the 

same A matrix elements as in Equation (6-1), and is as follows: 

g( e)= (.9H(e) ~max 52max H .9(9))2. (6-6) 

A typical output for this function is very smooth and resembles the classical 



beamforming methods which require large apertures compared to the noise 

eigenvector methods to provide similar resolution capabilities. 

Figure 19 is an example of the the outputs using the same inputs as were 

used for Figure 18. It can be seen that for the range of values that the actual 

signals are arriving, approximately 20 degrees to 40 degrees, a peak spread 

from an amplitude of 1 to above 1 0,000 exists, with the peak at 30 degrees. 

There is a considerable amount of sidelobe activity from the antenna array, 

however, and the levels of output for almost all of the sidelobes are less than 

one in this example. Hence, the three arriving signals coalesced into a single 

peak centering at 30 degrees and either a greater aperture or improved SNR 

would be necessary to resolve the three arriving wavefronts. 
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The function g(e) computed with the maximum direction vector is a squared 

value to enhance the emphasis on the detected arriving waves, amplitude 

greater than one, and at the same time de-emphasize the unwanted sidelobe 

activity, which effectively further filters unwanted peaks. 

At this point, it can be seen that a proper combination of these two 

eigenvector outputs will provide an enhanced DOA estimation. It will be better 

than either alone. Equation (6-7) combines the information in the two functions 

using the same array manifold vector input and both the maximum and 

minimum eigenvectors. Hence, the final DOA function derived is as follows: 

(aH(e) ~max ~max H a( e) )2 (6-7) 
s(e) = g( e ) m(e) = 

In summary, Equation (6-7) is computed for each azimuth bearing or portion 

of angle to be investigated. Where peaks in this discrete plot of values appear, 

can be interpreted as the possible DOAs. The peaks occur because the DOA 

function, Equation (6-7), peaks sharply for the zeros, or near zeros in the 
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denominator due to the orthogonalities of the single mininium eigenvector, 

imin• and the array manifold components, g,(e). However, the new DOA 

function is also conditioned by the effects associated with the single maximum 

eigenvector, ~max, and the array manifold components, .a(e). 

The final plot, Figure 20, shows the results using Equation (6-7) to compute 

the possible DOAs using the same simulated wavefronts as Figures 18 and 19. 

Here, there is no longer ambiguity between the extra peaks due to with the 

minimum eigenvalue component, and also, there is no coalescing of the closely 

spaced wavefronts due to the maximum eigenvector component. Therefore, 

this new combined two-eigenvector function yields the best features of each by 

using both ends of the eigensystem. This unique min-max vector approach has 

the effect of finding the maximum SNR events and relates them to the DOAs. 

An anologus function is used in beamforming when working with adaptive array 

systems, except that it requires an eigenstructure decomposition of the sample 

covariance matrix and knowledge of the noise matrix (Monzingo, 1980). 

Using the DOA function, Equation (6-7), for implementation, the number of 

computations will be resolved to investigate the speed of computation. 

Serial Array Manifold Intersection Instruction Count 

Each dot product is a N order function. Again, because complex values are 

used, 4N products and 2N sums are required for the denominator, and a similar 

number for the numerator. Hence, 

12N flops (6-8) 

are necessary for each portion of an angle investigated. The computation of 

the function g(e) results in a scalar that needs to be squared, and then 

multiplied by the computed value of m(e), another scalar. These individual 
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computations will be neglected compared to the multiple N ordered 

computations of the dot products. Using D as the number of angles, or portions 

of angles investigated, the final equation to approximate the serial 

computations will be, 

D12N flops. 

As before, with the serial model complete, the parallel model will be 

developed. 

Parallel Array Manifold Intersection Instruction Count 

(6-9) 

Each of the computations in the function of Equation (6-7) are independent 

of the arriving angle, em, or the number of arriving signals, M, with the total 

number of computations depending only on the resolution needed to discover 

the DOA peaks, and N. The computational independence of these operations 

indicates that the serial time can be reasonably expected to be reduced by the 

order of the number of processors applied. There is no time needed for the 

internodal communications of the input because it was modeled to be left in 

place in the last chapter. The combining of the information will be left until the 

next operation is completed, the search for the peaks, so no time is used in this 

operation for internodal communications. 

In parallel then, still using P processors, the solution will split the 

investigation of the possible DOA bearings between the P processors taking: 

(12DN/P) flops, (6-10) 

to compute the required inner products searching for orthogonality and peaking 

conditions of the eigenvector and array vectors for each value of investigated 

DOA. The value of D will normally be a minimum of 1800 for an azimuth search 

corresponding to one tenth of degree resolution for a single elevation. In this 



case, there is negligible noncomputational strictly serial processing and no 

value was included in the model. 

Array Manifold Intersection Results 
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Table 3 is based on a value of 1800 for D, representing one tenth degree 

resolution in azimuth. Division of the computations is among the investigated 

elevation angles, sweeping the function in each node its partial range of the 

values of D. The data for only a single arriving wave has been presented since 

the computations are not a function of the number of arriving waves. 

It should be noted that an additional time delay due to the last operation of 

locating the DOA is included in Table 3 data. The last operation is integrated 

into this table time wise because the investigation of the computed values for 

peaks is accomplished as each of the values are calculated. This makes it 

unnecessary to store the resulting data saving storage space. Also, making the 

comparison as it is computed is a more effective approach because it 

eliminates the requirement to later search and read the all of the computed 

data. The next chapter discusses Task 4 activity in detail, but the additional 

portion of computations are of order D with a single arriving wavefront and is 

negligible time wise compared to the computational burden of this task even 

with the smallest N used in these experiments. 

Table 3 data also includes the internodal communications time resulting 

from the last operation, however it to is very small and does not impact the 

results in a measurable way. 

The CTU data shows significant amount of time decrease as a result of 

adding processors. This indicates the worth-whileness of using parallel 

processing on this operation (and the next). This is not surprising because the 
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message processing load is very small and the large number of computations 

in both operations are independent. The parallel efficiency of over 91 percent 

using 160 antennas and 16 nodes was the highest obtained value for any of 

the other operations. The greatest time saving occurs at the largest value of 

160 antennas and 16 nodes, saving 20.13 seconds out of 21.16 seconds of 

serial computer time used. 

The mathematical simplicity and mathematical directness of this task, makes 

it not vulnerable to a multi-algorithmic attack. But actually, non-cooperating 

multi-data procedures are used for these computations, because the 

processors are using different data sets for the different sweeps. No further 

speedup has been obtained by communication betweem these algorithms. 



Number of 
Nodes 

1 
2 
4 
8 

TABLE 3 

COMPUTATION OF DOA AMPLITUDE PLOT 
AND BEARING LOCALIZATION 

ONE ARRIVING WAVE 

Number of Antennas 
16 64 96 160 

CTU Sp CTU Sp CTU Sp CTU 

2.104 1.00 8.58 1.00 12.93 1.00 21.61 
1.056 1.99 4.30 1.99 6.47 1.99 10.83 
0.552 3.81 2.19 3.92 3.29 3.93 5.48 
0.288 7.31 1.11 7.73 1.66 7.79 2.75 

Sp 

1.00 
1.99 
3.94 
7.86 

16 0.16013.15 0.60 14.30 0.90 14.37 1.48 14.60 

Note: CTU is in seconds, ~is the speedup ratio 
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CHAPTER VII 

DOA INVESTIGATION 

The final task is searching the discrete plot that resulted from computations 

in Chapter VI for the peaks which represent possible DOA bearings. As stated 

earlier these computations are completed when each of the plot element values 

are computed from Equation (6-7). Although integrated into that step, It will still 

be valuable to provide an analysis of the serial and parallel models to estimate 

the amount of time expended during this task. 

Serial Instruction Count for DOA Investigation 

The number of computations in the serial search for a single arriving wave 

using D possible arrival bearings is simply, 

D-1 (flops) (7-1) 

for the compares looking for the single largest value. 

For M multiple wavefront arrivals, the estimated number of arriving waves 

from Chapter V will determine how many sorts and the number of maximum 

peak locations that will be necessary to be located. Knowing the number of 

arriving signals was required because of the peaking nature of the noise 

eigenvector portion of the estimator function. Extra peaks will exist at lower 

levels often not to far from the magnitude of the actual peak values. The 

estimation method forM developed earlier is necessary in this operation to rule 

out the additional peaks as possible signal sources. 
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Considering the highest number of computations necessary, will show M 

compares for each peak that exists in the computed plot. There will be 

approximately one peak for each half wavelength separation set used, however 

most of their values will be very low compared to the actual magnitude values 

of real peaks due to the function using the two-eigenvectors. Hence assuming 

a reasonable threshold can be set, the DOA search requires little more than M 

sorts, M times, as the function is swept through D possible bearings. This yields 

a serial total of, 

DM2 (flops). 

If M were large then additional sort procedures could be applied which 

would reduce the M2 term. In actual practice, M is much lower then N, and 

rarely exceeds ten, hence this is a very small component in this problem. 

The next step is to make the parallel mathematical model analysis of this 

operation, before going on into the overall model development. 

Parallel Instruction Count for DOA Investigation 

(7-2) 

The parallel version of this task begins within each of the processors as the 

computations are being made. The comparisons of the largest peaks found (if 

any) are made within the P processors against the threshold used. There was 

no need to distribute the data to these nodes because it is being used as it is 

being computed in the last operation. After Task 3 is completed on each node, 

and each node has investigatd its data for peaks, there will be a finallog2(P) 

messages and at most Mlog2(P) comparisons of the distributed data as it is 

reassembled and analyzed at the executive node to find the M maximum peak 

values indicating the M different DOA estimations. These messages between 

the P processors each take a minimum of J.l flops of time. Compared to the 



121 

serial search, the parallel algorithm yields: 

DM2/P+ (J.L+M )log2P (flops) . (7-3) 

Searching for the peaks is not dependent on the value of N , the number of 

antennas, or S, the number of samples per antenna. The value for M is usually 

very small compared toN, although it may theoretically be N-1 for N 

independent antennas. This limit is not possible using large arrays with the 

system implemented, and the largest number of arriving wavefronts simulated 

was 10. 

No additional time in this operation was measured between a single 

wavefront sweep or the 1 0 wavefront sweep using 64 antennas and 16 nodes, 

hence no data was tabulated for this operation for variable M. At the smaller 

end, the times between 1 or 1 0 wavefronts will be relatively larger compared to 

the last operation, but still not of a measureable concern. In any case, the time 

consumed for this operation is very small and the results were included in 

Table 3 as stated in Chapter VI. 

This operation takes relatively the least amount of time of the four tasks, 

especially when S and N are large values, However, for a three dimensional 

search using other than a colinear array as described in Chapter one, a ten 

degree elevation search (also with one tenth of a degree resolution) would 

immediately increase this computation level one hundred fold. As more 

degrees of elevation, or finer resolution in both directions are required, then 

more time would be expended in this task. But this increase will also apply to 

the previous task which is a function of D times N. Therefore, this task can 

never dominate the overall process except for very small N and S where the 

times are already in the real-time arena. 

Increasing D will improve the computation to communication ratio, and 

would improve the speedup ratio for all values of P. Since all of the 
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computations are done in place, and only the estimated M DOA values are 

needed to be forwarded in the final internodal messages, it is seen that this task 

also closely approximates a perfectly parallel process. It can therefore be 

expected to improve by nearly the order of P when put into the parallel form. 

The exceptional sharpness (high resolution) of the peaks is the major 

contributor to the problem of not being able to pick up information about the 

location of the peaks earlier than when the computation is within a few degrees 

of the estimated bearing. In fact, the more precise the eigenvector and the 

better the signal to noise ratio, the finer the investigation must be extended to 

discover the peak. Also, since the function peak height is not directly correlated 

with the power in the signal, and only roughly to the SNR between arriving 

signals, it is not possible to predict the magnitude height of the peak to assist in 

its localization. 



CHAPTER VIII 

OVERALL SPEEDUP ANALYSIS 

All four tasks have been analyzed and new serial and parallel algorithms 

have been accomplished for each task. Timing models and the individual 

operation results were provided within each chapter. It was seen that each 

operation has its own optimum value for number of processors that should be 

applied depending on the values the following parameters: 

N, the number of antennas, 

S, the number of samples, 

I, the number of iterations required, 

D, the number of investigated angles, and 

M, the number of arriving waves. 

Thus, even when considering only first level parallel speedup procedures, it 

is important to balance the efficiency and speedup parameters to select 

optimum number of processors to apply at each stage when using the smaller 

numbers represented by these parameters. As the parameters reached rather 

large values, it was seen that combining first level speedup with cooperative 

multi-algorithmic speedup in the eigendecomposition still required an informed 

choice of the number of processors to be assigned to reach the optimum overall 

speedup value. 

The following model will be a unified combination of the previous four 

chapters' individual operation mathematical models. Actual overall results will 
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also be presented to make comparisons and reach some overall conclusions 

as to the overall speed performance of the parallel DOA estimator that is based 

on only the maximum and minimum eigenvectors. 

The actual results will be limited to two iterations in the parallel mode 

because a single arriving wave is used. This same two iteration maximum is 

applied to the serial simulations. However note that this would be incorrect in 

the cases where more than one arriving wavefront is expected. However, since 

the actual number of iterations is highly system and data dependent, the 

improvement in reduction of iterations can not be quantified between the serial 

and parallel procedures. 

Therefore, even though the maximum times in the parallel modes are 

accurately represented, it should be understood that the serial times obtained 

may be significantly lower than actual values if the iterations were not artificially 

terminated for comparison purposes. 

This affects only one component of the overall model, the eigenstructure 

decomposition. However, in the worse cases for the serial mode, it could 

represent a large variation in the serial time. This would provide a much larger 

speedup ratio parameter which could cause the overall parallel performance to 

exceed 100 percent efficiency. However, because the CTU for the parallel 

cases are reasonably represented by this limiting iteration assumption, the lack 

of worst case serial performance will not be addressed. 

There is also a shortage of published data to compare the parallel computer 

times obtained in this research, and the times obtained in the conventional 

EV/EV system research. However, some indicators of performance have 

already been stated, and it should be sufficient to point out that the reduced 

order of the operations obtained will result in approximately an improvement in 

the order of (NP). 
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Overall Model 

As a first order approximation to an overall model, the eight speedup ratio 

and differential equations of the earlier chapters are combined in this section 

into two equations. The equations combined to compute the expected overall 

speedup parameters are Equations (4-4b), (4-1 Ob), (5-27), (5-31 ), (6-9), (6-1 0), 

(7-2), and (7-3). 

Equation (8-1) is the computed overall serial model based on the summation 

of Equations (4-4b), (5-27b), (6-9), and (7-2). 

{4SN2}+{1 (5N2+4N)+16N2)}+{12DN}+{DM2} (flops) (8-1) 

Equation (8-2) is the computed overall parallel model based on the 

summation of Equations (4-10b), (5-31), (6-10), and (7-3). 

{ 4SN2/P+Iog2P( 400+N2) }+{I ( 5N2+4N)+ 16N2) )/P+2f.llog2(P)Iog2(N) }+ 

{(12DN/P)}+{DM2/P+((M+f.l)log2P)} (flops) (8-2) 

The overall speedup ratio is Equation (8-2) divided by Equation (8-1). 

The overall speedup differential is Equation (8-1) minus Equation (8-2) times 

the time for one flop. Equation (8-2) times the time for one flop is equivalent to 

the CTU 

Overall Results 

Table 4, located as the last page of this chapter, provides the actual 

measured times resulting from the computer simulations. It is essentially the 

combination of the first three tables. The data represents the single arriving 

wavefront case with D equal to 1800, representing one tenth of a degree 

bearing resolution from -1t/2 to Tt/2 radians. The table data also includes time 

for only two iterations, because of the improved estimation situation associated 
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with a single arriving wavefront. Additional columns and tables could be 

formulated for other variations, but this sdingle table is sufficient to demonstrate 

the overall system performance obtained. 

Depending on the size of the antenna array, the on-line or real-time 

capability begins at 96 antennas with 32 samples and 16 nodes, 64 antennas 

with 64 samples and 16 nodes, or with 64 antennas with 160 samples and 16 

nodes. 

In terms of near real-time performance, it is seen that using 16 nodes 

reduces every expertiment time recorded to an overall CTU less than 1 0 

seconds. The longest time with 160 samples and 160 antennas has a CTU of 

8. 71 seconds on 16 nodes. In comparing the improvement against the 

N-squared serial algorithm, it is seen that the serial run time slightly exceeds 

two minutes. This is a speedup differential of 13.81. 

Of course these results apply to the improved serial algorithm developed 

within this research. CTU times for the N-cubed based EV /EV algorithms could 

be expected to exceed an hour or more of computer time with this size of an 

antenna array. From the analysis completed earlier, and considing the times 

published for processing of antenna arrays up to 16 elements, leads one to the 

conclusion that the times reported here are among the fastest possible on 

anything other than a supercomputer facility. 

When 160 antennas were used, it was not possible to reach on-line times 

with 16 nodes. Extending the work to 32 nodes, or even 64 nodes, should 

achieve real-time performance with 160 antennas. A reasonable method to 

approximate the times of the extended dimensioned computer can be made by 

using the overall mathematical model developed. After a considerable number 

of experimental measurements, the most accurate flop time to use considering 

theimplemented code and this research machine is 5.7 x 10 -6 seconds. Using 
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this value gives reasonable approximations to the table values in the modeled 

equations, thus allowing extrapolation of the timing data to higher dimensioned 

cubes. 

The improvement in computing times seen in this and the previous chapters 

are well within the goals established for this research. However, it has not yet 

been seen as to how well the estimator performs in a variety of DOA estimation 

situations. The next chapter is provided to demonstrate the performance of the 

two-eigenvector estimator function in other than speedup considerations. 
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TABLE 4 

OVERALL DIRECTION-OF-ARRIVAL DATA 

32 SAMPLES FROM EACH ANTENNA 

Number of Number of Antennas 
Nodes 16 64 96 160 

CTU Sp CTU Sp CTU Sp CTU Sp 

1 2.355 1.00 12.42 1.00 21.54 1.00 46.04 1.00 
2 1.198 1.97 6.31 1.97 10.96 1.96 23.21 1.98 
4 0.648 3.63 3.31 3.75 5.73 3.76 12.17 3.78 
8 0.363 6.49 1.78 6.98 3.12 6.90 6.64 6.92 

16 0.225 10.47 1.07 11.61 1.88 11.46 4.06 11.34 

64 SAMPLES FROM EACH ANTENNA 

Number of Number of Antennas 
Nodes 16 64 96 160 

CTU Sp CTU Sp CTU Sp CTU Sp 

1 2.552 1.00 15.42 1.00 28.25 1.00 64.32 1.00 
2 1.304 1.96 7.81 1.97 14.31 1.97 32.50 1.98 
4 0.706 3.61 4.05 3.81 7.41 3.81 16.81 3.83 
8 0.387 6.59 2.15 7.17 3.95 7.15 8.98 7.16 

16 0.238 10.72 1.27 12.14 2.30 12.28 5.23 12.30 

160 SAMPLES FROM EACH ANTENNA 

Number of Number of Antennas 
Nodes 16 64 96 160 

CTU Sp CTU Sp CTU Sp CTU Sp 

1 3.149 1.00 24.39 1.00 48.37 1.00 120.33 1.00 
2 1.590 1.98 12.30 1.98 24.37 1.98 60.33 1.99 
4 0.845 3.73 6.31 3.86 12.43 3.89 30.75 3.91 
8 0.453 6.95 3.28 7.44 6.46 7.49 15.94 7.55 

16 0.274 11.49 1.82 13.40 3.55 13.62 8.71 13.81 

Note: CTU is in seconds,~ is the speedup ratio 



CHAPTER IX 

ESTIMATOR EMPIRICAL RESULTS 

This chapter presents the experimental data resulting from application of the 

developed theoretical procedures. All computer simulations were completed 

on the Intel Hypercube iPSC/2 parallel processor using 16 nodes of the 32 that 

are available on the research machine. Some experimental work was done in 

the 32 node configuration, however the data is not included in the results 

because of hardware constraints and some system modifications that did not 

allow appropriate testing throughout the research period. The new procedures 

described in the chapters of this dissertation were coded in the FORTRAN 

computer language. The greatly improved timing output from the earlier 

chapters resulted in new functions that had several changes from traditional 

estimator functions. Therefore, this chapter provides three empirical methods to 

prove out the new two-eigenvector DOA estimator's performance. 

The first method is to make a comparison against other DOA estimator 

simulations. Output data was compared to some previously published studies 

which provided enough information so that experiments using the new 

estimator could be completed under similar circumstances. 

The computer simulation driver for these experiments is a FORTRAN 

program that allows the required inputs to be provided for each individual 

experiment. The simulated noise samples added to the simulated source 

signals were derived from a group of independent Gaussian noise generators. 
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The second method within this chapter are several experiments based on 

real radio data. The data was extracted from the Sampled Aperture Receiving 

Array (SARA) system which operated a high frequency transmitter located in 

San Antonio, Texas communicating to a crossed array antenna in Ottawa, 

Canada (Martin, 1988). The real radio results were provided to verify the 

performance of the computer simulation procedures as well as the new 

estimator itself. Both of these items are addressed in this set of experiments. 

Finally, a third set of experiments were run to demonstrate the accuracy of 

the estimator under varying conditions independent of any other studies. They 

show in a controlled environment, the two-vector estimator's performance. 

Comparisons to Published Results 

A linear array was used in all cases for this DOA estimator. In some 

cases, the simulator for this system could not identically repeat the reference 

experiment because of an excessive number of samples, unique antenna 

geometries, varied or unknown correlation between sources, etc. In these 

situations, the reference experiment's setup is indicated by being placed in 

parenthesis and the values used in the new experiments are stated first, without 

parenthesis. When nothing is in parenthesis, the same setup was possible. 

The most frequent variation was due to the fact that the simulator's 

incoherent signal outputs actually provide data only for each source 

individually, rather than all sources at every sample. Additional antennas, 

placed within the reference's original aperture are used, thus keeping the total 

samples taken from each source the same between experiments. 

Each experiment will be preceded with a listing and a discussion to 

detail the particular experiment set up, provide reference and page number, 
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generally state the previous results as provided by the original author, and then 

briefly describe the results of this experiment. A figure of the function amplitude 

output for each experiment follows the discussion to graphically reproduce the 

results obtained in this research. The actual numerical estimates of the DOAs 

estimated are also provided, as these values are the actual system outputs. 

The resolution of the DOA in all of these experiments is one tenth of a degree. 

DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

Experiment Number 1 

-44 degrees at 25 dB, 30 degrees at 1 0 dB 

0 

6 (3) 

.2A.(A/3 to center equilateral triangular array) 

100 

-44.0, 30.1, Figure 21 

Schmidt, 1981 :page 15 

The MUSIC algorithm results revealed that there is little or no bias error and 

that there was no ambiguity problem in the example. 

Similar performance can be seen with the two-vector estimator. 

Experiment Number 2 

DOA 18 degrees at 30 dB, 22 degrees at 30 dB 

Correlation 0 

Number of antennas 16 (8) 

lnterelement spacing 

Number of samples 

Output 

Reference 

.251.. (.51..) 

1 00 (1 0 runs with overlay applied) 

18.0, 22.0, Figure 22 

Bronez, 1983 : page 130 

The reference method worked well at the high SNR. 

The new method also works well at high SNR. 
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Experiment Number 3 

DOA 

Correlation 

18 degrees at 1 0 dB, 22 degrees at 1 0 dB 

0 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

8 

.25~ (.SA.) 

50 (25, 1 0 runs with overlay applied) 

18.2, 21.4, Figure 23 

Bronez, 1983 : page 130 

The reference method suffered from inaccuracy at low SNR with few 

snapshots. 

The method of this research was more accurate with only slight inaccuracy. 

Experiment Number 4 

DOA 18 degrees at 1 0 dB, 22 degrees at 1 0 dB 

Correlation 0 

Number of antennas 80 (8) 

lnterelement spacing 

Number of samples 

Output 

Reference 

.25A. (.SA.) 

1 00 (500, 1 0 runs with overlay applied) 

17.9, 21.8, Figure 24 

Bronez, 1983 : page 130 

The reference method showed resolution between the signals possible 

even with low SNR, given enough snapshots. 

Similar results were obtained but higher more distinct peaks were achieved 

using only the minimum and maximum eigenvectors. 
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Experiment Number 5 

OOA 

Correlation 

18 degrees at 1 0 dB, 22 degrees at 1 0 dB 

0 

Number of antennas 8 

lnterelement spacing .2511. (.511.) 

Number of samples 50, 7 runs with overlay (25, 10 runs) 

Output average values 18.0, 22.5, Figure 25 

Reference Bronez, 1983 : page 130 

The reference method showed resolution between the signals possible. 

Again, similar results were obtained but higher more distinct peaks were 

achieved using the minimum and maximum eigenvectors. This figure has 7 

independent runs overlayed to show consistency and the average of the 

outputs is listed above. 

DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

Experiment Number 6 

0 degrees at 0 dB 

0 

10 

.511. 

50 

0.2, Figure 26 

Johnson, 1982 : page 641 

The reference method showed accurate and fine resolution possible even 

with very low SNR, given enough snapshots. 

The minimum and maximum eigenvectors gave similar results. A high peak 

was achieved, however the maximum eigenvector had all of the information. 
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DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

Experiment Number 7 

0 degrees at 0 dB 

0 

50 (1 0) 

.1A. (.5A.) 

100 (500) 

2.5, Figure 27 

Johnson, 1982 : page 641 

Increased number of samples improved the energy in the peak for the 

reference method. 

The new method provided less accurate results but has a higher peak . 
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The maximum eigenvector has correct DOA information but was slightly biased 

off by the minimum eigenvector component. 

DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

Experiment Number 8 

5 degrees at 0 dB, -5 degrees at 0 dB 

0 

16 (8) 

.25A. (.5A.) 

100 

-5.0, 4.7, Figure 28 

Johnson, 1982 : page 641 

The reference method showed excellent accuracy even with very low SNR. 

Equal or slightly better results using the dissertation method, with a much 

higher peak amplitude. 
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DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

Experiment Number 9 

3 degrees at 0 dB, -3 degrees at 0 dB 

0 

16 {8) 

.251.. (.SA.) 

100 

-3.0, 2.9, Figure 29 

Johnson, 1982 : page 643 
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The reference method lowered accuracy bringing angles closer together. 

Better results were obtained using the proposed method, with higher peak 

amplitudes and a deeper amplitude dip separating the two sources. 

DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Ot.Jtput 

Reference 

Experiment Number 10 

-30 degrees at -15 dB, -22 degrees at -18dB, 

-15 degrees at 15 dB 

0 

48 {8) 

.0841.. (.SA.) 

150 (300) 

-27.2,-15.0, Figure 30 

Paulraj, 1986 : page 13 

The reference method showed higher accuracy and resolution was distinct . 

The two eigenvector method showed the weaker results in this experiment, 

missing the -22 degree peak completely. The extremely low SNR caused the 

-30 and -22 degree sources to coalesce into a single wavefront. 
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DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Experiment Number 11 

-60 degrees at 5 dB, -5 degrees at 6 dB, 

20 degrees at 4 dB, 45 degrees at 2 dB 

0, .6 (stated to .be correlated) 

48 (6) 

0.0375A. (.5A.) 

160 (500) 

-59.8, -5.1, 20.1, 45.1, Figure 31, 

-53.7, -8.5, 19.7, 49.6, Figure 32 

Reference Williams, 1986 : page 429 
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The reference method showed very high accuracy and resolution was very 

distinct. This is an improved spatial smoothing technique, which works well 

with coherent signals. 

The four wavefronts are also identified using the two vector procedure 

however there is some inaccuracy. The low SNRs used in the experiment a 

problem, however using the highly correlated signals caused most of the 

inaccuracy in this procedure. The results were as good as or better as the 

reference's MUSIC and conventional spatially smoothed methods. Two 

separate runs were accomplished. The first using incoherent sources, Figure 

31, and the second using a .6 correlated pair of sources Figure 32. 
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Experiment Number 12 

DOA 

Correlation 

20 degrees at 20 dB, 30 degrees at 20 dB 

1 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

20 (10) 

.2SA. (.SA.) 

100 

26.0,34.0, Figure 33 

Williams, 1988 : page 429 

Once again high accuracy was reported for the reference method. 

The two eigenvector method showed good results. The strong SNR used in 

the experiment kept the two sources from coalescing into a single wave even 

when simulated to be totally coherent, but some inaccuracy resulted. 

DOA 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

Reference 

Experiment Number 13 

20 degrees at 20 dB, 30 degrees at 20 dB 

0 (1) 

20 (10) 

.2SA. (.SA.) 

100 

20.0, 30.0, Figure 34 

Williams, 1988 : page 429 

This is the same as experiment 12, except this simulation used an 

uncorrelated pair of signals. 

The two-vector method showed excellent results. The strong SNR allows 

the two waves to form very accurate, distinct peaks at high energy levels. 
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Results Using Actual Radio Data 

Following this discussion are figures which are the results obtained by 

using real radio data extracted from the Sampled Aperture Receiving Array 

(SARA) system. This data was from a 1977 DOA experimental session on an 

antenna array that operated between San Antonio, Texas and Ottawa, Canada. 

The geometry of the antenna array is a Mills Cross Configuration with a total of 

62 antenna elements. The sampled data used here was for only 16 of these 

elements. The physical arrangement of the "experinental array" was eight 

vertical monopole antenna elements in a horizontal plane running almost 

NW-SE, and eight similar elements running nearly NE-SW. A total of 155 

samples were available from each antenna element. This set of data has been 

used by others including (Alsup, 1984, Kaplan, 1987, and Martin, 1988). 

Figure 35 is a skeletal drawing of the situation with applicable dimensions 

and a repeat of the geometric and mathematical relationships from Figure 2. 

For convenience, the arms are labeled in accordance with their directional 

orientation with the individual antenna elements numbered from 1 to 16. 

A difference between this study's model and the actual array existed in that 

the arms' element separations were not totally equally spaced. The closest 

center two elements of both arms have a spacing, 53.34021 meters, which is 

different than all of the outer elements, 30.48012 meters. In order to work 

around this problem, co linear subarrays had to be considered in the analysis. 

The correct value for azimuth between Ottawa and San Antonio is 6. 70 

degrees West off the endfire of the SWarm as depicted in the figure. Because 

of multi-hop propagation nature of the HF band, two possible elevation angles 

were estimated to be present. The lower DOA elevation angle was estimated to 

be a single-hop arrival at 3.46 degrees. The next possible elevation angle was 
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p = cone angle N-S ARM 
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Figure 35. Determination of Azimuth and Elevation For SARA Radio Data 
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estimated for the two-hop situation to be at 15.43 degrees. Dominant marrivals 

in the experiment were determined to be the one-hop and two-hop F2 modes. 

The SARA data was used to validate the simulation procedures, and of 

course, also validate the two-vector estimator performance. It should be noted 

that the SARA data was previously determined to not actually be error free due 

to measurement or calibration considerations (Alsup, 1984, Kaplan, 1987, and 

Martin, 1988); Efforts to resolve the phase errors through "grooming" of the 

data usually resulted in a phase multiplier applied to the last eight antenna 

outputs in the above studies. It was also determined that since the multi-hop 

receive situation was occurring, subsets of the samples were grouped, or 

isolated, to allow only the single-hop arrival data to affect the analysis. 

None of these correcting efforts were applied to the SARA radio data in this 

DOA estimation attempt. Rather, in this case, the approach was to simply take 

all of the samples for each of the antennas unaltered, as if no knowledge of 

these problems existed, and analyse the output. 

As mentioned above, the nonlinear nature of the array, the different spacing 

for the center elements, did not allow all eight elements to be processed 

concurrently as a colinear array. Instead, it was required to split each arm of 

the array into three segments, the two outer arms using four antenna elements 

each, and then the inner segment using the two center antenna elements. 

After each of the segment results were obtained, the multiple cone angle 

estimates were averaged to arrive at the single result for each cone angle. 

Then these two angles were used to compute the elevation and azimuth 

angles, or a three dimensional DOA. 

Figures 36 through 41 are six plots that resulted from the data processed, 

and are labeled according to the applicable arm segment of the antenna array. 

The estimate arrived at for the azimuth using the average of the values 
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Figure 36. SARA Data, Plot of s(9) vs DOA Bearing for NW Arm 
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obtained is 6. 77 degrees. This is very close to the correct value of 6. 7 degrees 

and is considered close enough to be a reasonable validation for the estimator. 

The estimate for the elevation angle using the average of the values was 

11.63 degrees. This value is near the two hop value estimate of 15.43 degrees, 

but obviously this was not as close as the first case. This inaccuracy points out 

that either some problem with the estimator or the data must exist. 

To further extend the comparison, and also hopefully improve the elevation 

accuracy, groupings of two antennas were processed separately as antenna 

pairs. This was expected to eliminate some calibration problems by localizing 

the data to compare phase shift only between the nearest neighbor elements. 

This procedure resulted in seven values of angle of arrivals for each arm of the 

antenna array. These different angles-of-arrival estimates were averaged to 

yield a single cone angle value for each arm as was done above. Applying the 

mathematics of Figure 35 resolved azimuth and elevation from the cone angles. 

It turned out that this straight forward averaging procedure did result in an 

improved elevation estimate. In this case, the new azimuth estimate remained 

very close at 6.63 degrees, and the elevation estimate improved to become 

14.84 degrees, or about 0.6 of a degree off from the estimate provided in the 

refere~ces for the two hop DOA. Without grooming the data, valid indications of 

the single hop elevation were not obtained. Taking into account the stated 

calibration problems of the original study, these values of azimuth and 

elevation are sufficiently close to further validate this research's estimator. 

The last consideration with the SARA data is that because the shorter 

antenna separation was approximately 1.5 times the receive wavelength, 

aliasing occured. The aliasing can be seen in the figures as extra peaks 

harmonically related to the actual arriving wavefront. This made it necessary to 

find some way to rule out the false aliased peaks from the real peaks. A 
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procedure was followed which allows the extra peaks to be identified by using 

the nonlinear separation of the center elements. Their greater span is 2.64 

wavelengths, instead of the 1.5 wavelength distance of the other elements. 

The aliased outputs for these antennas occur at different locations when these 

two pairs of elements were processed as can be seen in Figures 38 and 41. 

Since the different spacing has no effect on the actual DOA, it is possible to 

locate the real· arriving wave with a comparison of the output data of the two 

situations. Figures 42 and 43 were generated by combining in an overlay 

fashion, Figures 36 and 38 and Figures 39 and 41, respectively. This identifies 

which of the arriving signals are from the original source and which are the 

false peaks due to the extended antenna separation. 

To validate the computer simulator capabilities, two plots were generated 

by using the parameters of the SARA experiment configuration as the simulated 

inputs. Figures 44 and 45 are two examples of simulating the inputs used in 

the real radio experiments, Figures 39 and 41, respectively. 

Nearly the same plot including the aliased signals resulted, confirming the 

computer simulator model accuracy. Since Figure 39, the real data, and Figure 

44, the simulated data, use four antennas, the plot differences are greater than 

they are between Figures 41 and 45 which use only two antennas. This is 

because the antenna array for the simulator does not include any measurement 

error between antenna elements, or does not have any calibration problems. 

Clearly, the more antenna elements, the greater the real data is affected by 

these kinds of errors and would cause differences in the ideal model. 

Considering the differences between the simulation process and the real 

radio situation and the known difficulties with the real data, it is reasonable to 

conclude that the computer simulator is reasonably confirmed as an accurate 

representation of real radio data and noise. 
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Figure 42. SARA Data, Overlay Plot for NW Arm and NW/SE 
Arm, Center Two Elements 
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Simulation Results 

The last set of experiments are simulations based on the same set of 

conditions as the first set of experiments, however these experiments are not 

comparisons to any known previous results. 
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This set is provided to examine the range of the estimator output as larger 

numbersof inputs and antennas are applied. They are driven by the same 

computer simulator in every case. Constants that are found between all of the 

following experiments are that the antenna array is always a linear set of 

omnidirectional sensors and only Gaussian noise sources are used. 

Each of the experimental setups will be described in the same manner as 

was accomplished in the earlier set. Likewise, a brief discussion, a figure of the 

plotted output, and the specific estimated output DOA values will be given. 

Because of the greatly improved speed of this procedure, larger arrays can 

be used in this section than is normally seen in reference DOA experiments. 

The actual times for the resulting runs are not included in the data, however 

they do not differ significantly from the values established in the earlier 

chapters. Again, the primary focus in this chapter is how well the two-vector 

estimator empirically performs in terms of resolution and accuracy. 
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Correlation 
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Output 
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Experiment Number 14 

Two separate plots are provided, each with 

9 overlays of the separate runs starting at 

0 degrees, and every 10 degrees to 90, all 

at 27 dB and -6 dB. 

NA, single wavefronts 

64 

.SA. 

32 per source 

0.0, 10.1' 20.0, 30.0, 39.7' 50.0, 60.2, 70.2, 

78.1, 90.0, Figure 46 

2.8, 1 0.8, 20.2, 30.1' 39.6, 49.8, 60.9, 70.3, 

79.6, 85.5, Figure 47 

This experiment was to demonstrate the single arriving wavefront estimator 

output across a wide range of inputs varying the input amplitudes, and using a 

lower number of samples. Only the positive half of the DOA range is presented 

because the negative half was found to be essentially a mirrored performance 

scale of the positive half. Each run was done with a single arriving wavefront to 

measure the performance without the interaction of other arriving signals. Each 

run was then overlayed into a single figure representing all of the different runs. 

This test indicates generally excellent overall performance without showing 

any obvious bias and demonstrating good accuracy. There is a weakness near 

zero degrees with low SNR, which is receiving directly broadside to the 

antenna array. The overlay procedure in this figure shows what appears to be 

a very noisy floor. What is important is the clear DOA peaks which can be 

identified in the output without ambiguity. 
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Figure 4 7. Experiment Number 14, Plot of s( e) vs DOA Bearing 
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Experiment Number 15 

DOA 22 and 24 degrees at 27, 17, 7, 0, and -7 dB 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

0 

32 

.51.. 

32 per source 

22.1, 24.0, Figure 48 

22.1, 24.0, Figure 49 

22.3, 24.1 , Figure 50 

22.6, 24.6, Figure 51 

23.0, Figure 52 

It is seen in this data that at first as the signal strength lowers, the resolution 

is maintained but accuracy begins to lower. Eventually the two signals 

combine to a single signal at exactly the average between the two actual DOAs. 

The signal peak values relatively correspond, in that the higher SNR 

sources have higher peak values. Although this is not normally true with all 

EV/EV estimators, there is obviously some corellation in this case. 

The two-vector estimator correctly output that two waves were present 

except in the -7 dB case, where the output indicated only one wavefront. Of 

course, in the this case the two signals had coalesced into a single wave, 

hence the procedure to determine the number of arriving signals was accurate 

within the capacity of the estimator to resolve the signals. 
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Correlation 
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Output 
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Experiment Number 16 

-39.2 degrees at 1 0 dB, -5.7 degrees at 1 0 dB 

0.0 degrees at 10 dB, 25.5 degrees at 10 dB, 

76.6 degrees at 1 0 dB 

0 

128 

.5A. 

32 per source 

-39.1, -5.7, -0.6, 25.5, 76.2, Figure 53 

All five signals are clearly identified, four with very high accuracy with the 

zero degrees showing higher but reasonable error. No bias is present. 

In this case all five peaks are very distinct, and have a significantly greater 

magnitude than the surrounding values. The two-vector estimator correctly 

identified the number of .arriving waves. 

Experiment Number 17 

DOA -67.8, -51.7, -23.6, -5.5, 44.6, 60.5, 89.8 degrees 

Correlation 

Number of antennas 

lnterelement spacing 

Number of samples 

Output 

all at 20 dB 

0 

16, 64, 128 

0.5A., 0.125A., 0.0625A. 

20 per source per antenna 

-67.7, -51.7, -23.5, -5.5, 44.7, 45.9, 60.4, 83.3 

Figure 54 

-68.2, -51.4, -23.6, -5.5, 42.5, 44.9, 60.5, 86.5 

Figure 55 

-68.1' -51.6, -23.6, -5.5, 42.6, 44.0, 60.5, 88.6 

Figure 56 
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This experiment includes seven sources spread across the 180 degree 

range used with a linear array. The first case uses 16 antennas spaced at .5A. 

and 20 samples per antenna. The next case quadruples the number of 

antennas but keeps the aperture the same by quartering the interelement 

spacing. The third case doubled the antennas and halved the spacing. 

As could be expected the additional samples improve the estimate 

accuracy and increased the hight of the peak. In particular, the peaks of the 

sources nearer to zero degrees were increased the most where some of the 

outer signal's peaks were decreased in value. 

There was a splitting for the source at 44.6 degrees and two peaks were 

formed where only one should have appeared. This peak splitting does not 

occur often, but when it does it is usually has less than one degree separation, 

which is less than the resolution possible considering the antenna aperture. 

This split boarders on the resolution capability, hence they can be considered a 

single arriving wave, allowing the next largest peak to be added to the DOA set. 

The correct value was determined for the number of arriving waves. It 

should be noted that when two wavefronts are as close as the split 44.6 degree 

reading indicates, then only a single wavefront would have been indicated by 

the number of arriving estimation procedure. 

Many other experiments are indicated from those above. The real-time 

performance of the estimator allows very fast experimentation procedures to be 

established. It appears possible to adjust the procedures to enhance the 

estimate as discussed above. Some improvement would be gained, by simply 

tailoring the antenna array system, the procedures, and the implemented 

algorithms to each other. 
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CHAPTER X 

SUMMARY AND AREAS FOR FUTURE RESEARCH 

Real-time passive bearing determination from large antenna arrays is an 

extremely important research area in communications, sonar, and seismic 

applications. The high resolution eigenvalue techniques such as MUSIC 

perform well in the batch mode of operation, but contribute little to on-line work. 

There has been activity in modifying MUSIC and other high resolution 

algorithms to reduce the computational burdens and yet maintain the high 

resolution estimation capability. The approach in this dissertation was to apply 

a MIMD parallel processor against an improved two-eigenvector DOA 

procedure using the multi-algorithmic mode to accelerate convergence 

allowing dramatic decrease in the time required for computations. Thus an 

equivalent output is seen to be obtained, but with a significant reduction in 

processing time. 

This work has successfully shown that the nature of the eigenstructure based 

algorithms are excellent candidates to use both the first level of parallelization 

and the advanced multi-algorithmic parallel techniques in the solution. The 

specific improvement in speedup allowing the new parallel algorithm to reach 

real-time processing speeds is a worth-while accomplishment in its own right. 

The demonstration of the improved MIMD parallel processing technique of 

multi-algorithmic acceleration is also a contribution in that it provides a faster 

solution of the problem then simply trying to apply more and more processors 
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against multiple loops found traditional serial procedures. It also creates a 

unique approach for the solution to resolve the number of arriving wavefronts. 

The capabilities of the developed estimator peaking function was a direct 

result of the efforts to minimize computations to improve speed performance 

and it has been shown to provide highly satisfactory outputs in most situations. 

Several areas for possible future research areas can be suggested from the 

work completed here. 

Direct improvements have already been suggested possible in speed and 

estimator capability by tailoring the estimator for direct application to a specific 

DOA system. This is possible by bypassing many of the compromises that were 

necessary in the prototype "one size fits all" implementation. 

The method of allocation of processors for the first level parallelization and 

the multi-algorithmic procedure was essentially a static procedure in this study. 

There is room for improvement once a tailored system is developed to 

determine a dynamically responding workload method which would more 

effectively apply the parallel computer. 

This work was done with a Gaussian noise model, but treated as if spatially 

white so that Rb was an identity matrix. When the noise distribution, Rb, is 

known, improvements in the estimate can be obtained by developing improved 

methods to estimate Rb -1 . This work would be especially beneficial in different 

environments if applied to different types of noise situations. 

Advanced study relating the eigenvalue distribution, their DOAs, and the 

antenna array geometry would be a reasonable research direction to allow this 

procedure to be extended into other than colinear arrays where the number of 

arriving wavefronts is unknown. 

The work could be expanded into a planar array or any three dimensional 

geometry that follows the same basic procedures. 
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Further advances may be possible in other areas because of the on-line 

performance that is available. These include the study of relationships of 

incoming signals in rapidly varying signal-to-noise situations, a moving source 

relation to range estimation, and variation in the types of noise during sampling. 

Another possibility of future research is associated with the cancellation of 

the incoming signals using a modified version of the developed two-vector 

estimator. Experiments have shown the possible existence of the capability to 

separate the signal from noise in a highly colored (directional) noise 

environment. Although not pursued here, there were some indications that it 

would be possible to cancel or mask a signal or directional noise when desired 

with a recusive adjustment to the input data. 

In sonar applications varying propagation speed of the signal as an input 

parameter along with temperature and medium density variations might allow 

additional information to be obtained about the environment when known 

control signals are present. 

There were indications that this DOA system can respond to jammer 

interference, or that it could provide a base for building a parallel adaptive 

recursive system that processes and updates by sample interval. 

There seems to be no reason that this method could not be equally improved 

by applying some of the preprocessing decorrelation procedures to the sample 

covariance.matrix to improve signal detection for coherent signals. Likewise, 

advances in broadband analysis which is also a computationally burdened 

preprocessing procedure may find extension of this work valuable and natural. 

Given an on-line system, there is a significant potential in the character of 

these areas to yield several improvements in the above research areas. The 

problems are complex, but considering the many areas of application, the 

solutions will have very broad physical application with their finalization. 
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APPENDIX A 

HOST FORTRAN COMPUTER PROGRAM 

This appendix provides the FORTRAN-386 Computer program that is the 

host program for the parallel processor. The main functions of the host program 

are to accept the user inputs to create the simulated situations, accept an input 

that was the result of another simulated or real situation, prepare the data for 

node processing, and output the results from the nodes. Except for some 

longer lables used, the coded portion is in FORTRAN-77. The FORTRAN-386 

implements the ANSI FORTRAN-77 (Full Language) Standard, ANSI 

X3.9-1978. It also implements all of the extensions to FORTRAN-77 

documented in the Berkeley 4.2BSO 177 documentation and many of the 

undocumented extensions in the 4.2BSO f77 implementation. The iPSC/2 

Green Hills FORTRAN Language Reference Manual should be consulted if 

computer language questions arise while reading the implemented code. 

The actual computations of the OOA estimate is accomplished in the node 

program in Appendix Band the host program is considered an off-line process 

that feeds the parallel program. The host program loads the node programs 

and any input data necessary, and provides all of the user input and output 

interaction. 

The following description of the code is to provide a simple guide through 

the process. The reader must be very familiar with the problem being solved 

and the language used. 
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A MAIN program is used which is a collection of subprogram CALLs. Each 

subprogram will be briefly described in the order that they appear in MAIN. 

SETPID is a unique parallel processor function that sets the process ID of 

the program in the host so that communication from the nodes can be received. 

INITIAL is a initializing subprogram that specifies the cube size to be used, 

establishes values for the random number generator seeds, and determines if 

data is to be simulated here or input from a simulated or real situation. 

INSIG requires the user to provide the number of sources, and the simulated 

signal source parameters. The parameters include DOA, power level, initial 

phase and wavelength of each signals to be simulated. For a real data 

situation only the wavelength is required. 

INANT accepts a description of the antenna array. This possible inputs are 

the separation between elements, and the number of elements. 

INNOISE requests the user to identify the noise generators and power level 

for each antenna whose outputs will be combined with the simulated source 

signal. Possible noise generators available are Gaussian, uniform, Rayleigh, 

Laplacian, and impulse distributions. 

GENOISMTX creates the simulated noise samples defined by INNOISE. 

SAMP combines the information from INSIG, INANT, and the output from 

GENOISMTX to create the simulated antenna samples for the experiment. 

ESNOISE builds another noise matrix which uses the same distribution as 

the simulated choice in INNOISE above, but uses different seeds. This is used 

when the generalized eigenvalue problem is solved. 

NOEXPECT completes the estimation process of the noise to build the matrix 

Rb as described in the MUSIC algorithm. 

INVERT creates Rb-1 when this procedure is necessary. 

CREATEFILE builds an output file that contains all of the input information. 



EIGPOWER interacts with the nodes to solve the power method problem. 

OUT sends the results to the user. 
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At this point another experiment can be run again using the same 

parameters, using new samples from the same situation altering the number of 

samples, or stop. 



PROGRAM HOST 
c 
C*** BEGIN SIMULATION GENERATION PROGRAM. ELSE READ REAL DATA 
c 

c 

c 

c 

> 
) 

> 
> 
> 
> 
> 
) 

) 

c 

IMPLICIT NONE 

INTEGER I , ..1 , K, L 

INTEGER ISEED1,1SEED2,SIM 

REAL SIZE,ANMSIG,NMAT,NMSMP,~VLTH, 
AS I GPAR ( 1 59 , 6) , 
SEP,ATVEC!160,5l,ANOMTX!320,320), 
ARS6VECC320,2), 
SMPVEC!320,320J,S, 
ESMPMTX!320,320l,VEC!320,2l,MTX!320,320), 
EINOMTXC320,320l,ENOMTX!320,320J, 
AENOMTX<320,320l,AIENOMTXC320,320l, 
EIG,EIGVECC320,2), 
OUTMSG ( 1834 l 

C MAIN HOST PROGRAM FOR T~O-EIGENVECTOR METHOD DOA 
c 

CALL SETPIDC lOOJ 
c 

CALL INITIAL(SIZE,ISEEDt,ISEED2,SIMl 
c 

CALL I NS I G ( ~VL TH , ANMS I G , AS I GPAR , ::; I M l 
c 

CALL INANT<SEP,ATVEC,NMAT,SIMl 
c 

CALL INNOISECNMAT,ATVEC,SIMJ 
c 
200 CALL GENO I SMTX ( NMAT, NMSMP, ATVEC, ANOMTX, I SEED·t , S I M l 
c 

CALL SAMP!NMAT,NMSMP,ANOMTX,SMPVEC,SEP,ANMSIG,ASIGPAR,SIMJ 
c 

CALL ESNOISE<NMAT,NMSMP,ATVEC,ANOMTX,ISEED2,SIMJ 
c 

CALL NOEXPECT!NMAT,NMSMP,ANOMTX,AENOMTX,SIMJ 
c 

CALL INVERT<NMAT,AENOMTX,AIENOMTX,SIMJ 
c 
C CALL CREATEFILE!NMAT,NMSMP,ATVEC,ANOMTX,AENOMTX,AIENOMTX, 
C > SMPVEC,SEP,ARSGVEC,SIMJ 
c 
C AT THIS POINT ALL INPUT DATA AND ALL SIMULATED SAMPLES 
C OF THE SIGNALS AND NOISE HAVE BEEN COMPUTED. FROM THIS 
C POINT, THE TIMING OF THE SOLUTION CAN BE COMPARED ~ITH 
C THE PERFORMANCE OF OTHER TECNIQUES. IF ACTUAL DATA IS 
C AVAIALBLE THIS IS THE POINT IT ~OULO BE MADE AVAILABLE 
C TO MUSICPOWER AS 'SMPVEC'. 
c 
100 CALL EIGPOWER<SIZE,~VLTH,SEP,NMSMP,SMPVEC,AIENOMTX, 

> AENOMTX,NMAT,OUTMSG,SIMl 
c 

CALL OUTCOUTMSG> 
c 

195 



2020 

c 

PRINT*, 'REPEAT WITH SAME<Ol, DIFFC1), STOPC2)' 
READ*, I 
IFCI.EQ.OlGO TO 100 
IF Cl .EQ.2>GOTO 2020 
PRINT *•'CHANGE SEED, NO<O>, YES<•> ?' 
READ *•K 
IF<K.NE.OliSEEOlaK 

SIM•1 
GO TO 200 
CLOSE<2l 
CLOSE( 1 > 
CLOSE( 15l 
END 

1~6 

C***********************SUBROUTINE INITIAL***************************** 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

100 
c 
1000 

ggg 

SUBROUTINE IMITIAL(SIZE,ISEED1,1SEED2,SIMl 

IMPLICIT NONE 
I NTEGER I , .J , K , L 

INTEGER I SEED 1 , I SEED2, S I t'1 

REAL S I ZE 1 , S I ZE 

PRINT *•'SIMULATION BY THIS PROGRAM<ll OR' 
PRINT *•'DATA FILE TO BE.READ' 
READ *,SIM 

IF (SIM.EQ.Ol THEM 

OPEM(3,MAME•'input.raal' ,STATUS•'OLO' ,ERR=999l 

OPEN(4,MAME•'input.imag!,STATUSa'OLO' ,ERR~999l 

END IF 

OPEN ( 1 ,NAME•' in. d&t' ,STATUS• 'NEW' l 

OPENC2,MAME•'out.dat' ,STATUS•'NEW'l 

OPEN(15,NAME•'run.dat',STATUS•'NEW'l 

SIZE1•1 
ISEED1•129:57 
PRINT *•'CHANGE SEED, MO<Ol, YES<*l ?' 
READ *•I 
lFCI .NE.OliSEEDI•I 
ISEED2•133:57 
PRINT *•'WHAT CUBE SIZE Ct-',SIZE1,'l DO YOU WISH' 
READ .,SIZE 
WRITE C1,100lSIZE 
FORMAT(' SIZE OF CUBE BEING USED •',F3.0/l 

RETURN 
PRINT *•'INPUT FILE MoT AVAILABLE, USING SIMULATION' 
SIM•t 
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GOTO 1000 
c 

END 
c 
C***********************SUBROUTINE INSIG******************************* 
c 

c 

c 

c 

c 

SUBROUTINE INSIG(IoiVLTH,ANMSIG,ASIGPAR,SIMl 

IMPLICIT NONE 

INTEGER I ,J,K,L,SIM 

REAL ANMSIG,ASIGPARt159,6l,TDOA,TST,TPH,IoiVLTH 

IF tSIM.EQ.OlTHEN 
PRINT *• 'THIS IS NOT A SIMULATION, REAL DATA BEING USED.' 
PRINT * 
PRINT *• 'YOU MUST PROVIDE THE I<IAVELENGTH IN METERS.' 
READ *•'-'VLTH 
I<IRITE<2,5000ll ,loiVLTH 
I<IRITE(1,5000li,I<IVLTH 
ASIGPAR(I,4lai<IVLTH 
GOTO 6000 

END IF 
PRINT* 
PRINT *•'INPUT THE SIGNAL<Sl CHARACTERISTICS AT THIS POINT.' 
PRINT * 
PRINT *•'HOW MANY SOURCES WILL THERE BE ?' 
READ *,ANMSIG 
I<IRITE<2,1000lANMSIG 
I<IRITE<1,1000lANMSIG 

1000 FORMAT(' ACTUAL NUMER OF SIGNALS• ',F3.0/l 
PRINT *•'FOR EACH SIGNAL INPUT THE' 

2000 

3000 

4000 

DO 10 la~,ANMSIG 

PRINT •• ,' DIRECTION OF ARRIVAL FOR SIGNAL ',1, 
> IN DEGREES ?<-90 TO +90 OFF NORMAL TO ARRAY!' 

> 

) 

READ :tr,TOOA 
I<IRITE<2,2000li,TDOA 
I<IRITE(1,2000)1,TDDA 
FORMATt'DIRECTION OF ARRIVAL FOR SIGNAL' ,13,' IS ',F6.2, 

' DEGREES'/) 
TDOA•TDOA*.01?45329252 
ASIGPAR<I,1l•TDOA 
PRINT *•' SIGNAL ',1 ,'IN DB RELATIVE TO NOISE POWER' 
READ *•TST 
TST•<2.0*10.0**<TST/10.0ll~*·5 

WRITE<2,3000li,TST 
I<IRITE<1,3000ll ,TST 
FORMAT<'SIGNAL STRENGTH FOR SIGNAL',I3,' IS' ,F&.2, 

' MICROWATTS'/l 
ASIGPAR<I ,2l•TST 
PRINT *•' INITIAL PHASE FOR SIGNAL',!,' IN OEGREES<0-360)' 
READ *, TPH 
I<IRITE<2,4000li,TPH 
I<IRITE<1,4000ll ,TPH 
FORMATt'INITIAL PHASE FOR SIGNAL',I3,' IS ',F6.2, 

> ' DEGREES'/) 
TPH•TPH*.01?45329252 



5000 

10 

c 
6000 
c 

c 

ASIGPAR<I ,3J•TPH 
PRINT *•' ~AVELENGTH OF SIGNAL ',1 ,' IN METERS' 
READ *•~VLTH 

~RITE<2,~000)1 ,~VLTH 

~RITE<1,5000)1,~VLTH 

FORMAT<'~AVELENGTH OF SIGNAL',I3,' IS ',F6.2,' METERS'/) 
ASIGPAR(I ,4>-~VLTH 

CONTINUE 
PRINT* 
PRINT *•' THAT COMPLETES THE INPUT SIGNAL PARAMETERS.' 
PRINT * 

RETURN 

END 
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C***********************SUBROUTINE INANT******************************* 
c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

SUBROUTINE INANT <SEP,ATVEC,NMAT,SIM) 

IMPLICIT NONE 

INTEGER I,J,K,L,SIM 

REAL SEP,ATVEC<160,5l,NMAT 

PRINT *•' A DESCRIPTION OF THE ANTENNA ARRAY IS NEEDED.' 
PRINT *• ' ANTENNA ARRAY 1N LINEAR EQUALLY SPACED' 
PRINT *• ' IDENTICAL RECEIVER ELEMENTS' 
PRINT *• ' HOW MANY ANTENNA ELEMENTS DO YOU ~ISH ?' 
READ *,NMAT 

PRINT *•' ~HAT IS THE SEPARATION OF ANTENNAS IN METERS?' 
READ *•SEP 

PRINT *•' THAT COMPLETES THE ANTENNA ARRAY OISCRIPTION.' 
PRINT * 

RETURN 
END 

C***********************SUBROUTINE INNOISE****************************** 
c 

c 

c 

c 

c 
c 

SUBROUTINE INNOISE<NMAT,ATVEC,SIM> . 
IMPLICIT NONE 

INTEGER K,SIM 

REAL ATVEC<160,5J,NMAT,L,M,J,I,TEMP 

IFtSIM.EQ.OJ RETURN 
PRINT *• 'EACH ANTENNA/RECEIVER WILL HAVE ITS O~N' 
PRINT *• 'NOISE GENERATORS. INPUT THE NUMBER OF' 
PRINT *• 'NOISE S~RCES, AND THE DISTRIBUTION OF' 
PRINT *• 'EACH NOISE SOURCE.' 
PRINT * 



c 

c 

PRINT *• 'IF EACH ANTENNA THE SAME RMS LEVEL AND' 
PRINT *• 'DISTRIBUTION THEN TYPE !11 ELSE <Ol' 
PRINT * 

READ *•K 

DO 1 0 I .. 1 , NMAT 
PRINT *•'ANTENNA AT POSITION ',I 
PRINT *•'HOW MANY NOISE SOURCES' 
READ *•L 
DO 10 M•1 ,L 

PRINT *I 'TYPE OF NOISE GENERATOR NUMBER 
PRINT *• 'GAUSSIAN ( 1 ) • 
PRINT *,'UNIFORM ( 2) • 
PRINT *• 'RAYLEIGH <a>, 
PRINT *,'I MPUSE (4) • 

PRINT *• 'BURST ( :s) • 
READ *·J 

' ,M 

PRINT *•'WHAT IS THE RMS NOISE POWER IN MICROWATTS ?' 
READ *,TEMP 
IF CK.EQ. 1) THEN 

DO :S K•1 ,NMAT 
ATVEC<K,J)aTEMP 

CONTINUE 
GOTO 20 

END IF 
ATVEC!I ,Jl•TEMP 

10 CONTINUE 
c 
20 PRINT *•'THAT COMPLETES THE NOISE SOURCES DESCRIPTIONS.' 
c 
1000 
c 

c 

RETURN 

END 
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C***********************SUBROUTINE GENOISMTX*************************** 
c 

SUBROUTINE GENOISMTXCNMAT,NMSMP,ATVEC,ANOMTX,ISEED,SIMl 
c 
C THIS PROGRAM GENERATES A UNIFORM NOISE SEQUENCE WITH VALUES IN THE 
C RANGE OF 0 TO 1 WITH ZERO MEAN. USING THIS UNIFORM DISTRIBUTION A 
C GUASSIAN NOISE WITH ZERO MEAN AND VARIANCE a 1 
c 

c 

c 

c 

c 

c 

c 

IMPLICIT NONE 

INTRINSIC LOG10,ABS,SQRT,FLOAT,TAN 

EXTERNAL SPRANC2,SPRANC 

LOGICAL ACCEPT 

INTEGER J,SIM,K,I ,ISEEC2,1SEEC,RECOROS,HIT,NUMOFHITS,L 

REAL SPRANC2,SPRANC,SUM,SUM2,RANC,VARIANCE,UNIFORM, 
> SCALE,MEAN,MAXAMP,MAXAMPINPUT,PI, 
> POWERS,POWERN,SIGNOFUNIFORM,PERCENT, 
> NMAT,NMSMP,ATVECC160,SJ, ANOMTX<320,320) 



c 

c 

IF<SIM.EQ.OlTHEN 
PRINT *•'HOW MANY SAMPLES ARE THERE PER ANTENNA?' 

ELSE 
PRINT *•'HOW MANY SAMPLES DO YOU WISH TO SIMULATE?' 

END IF 
READ *•NMSMP 

IF(SIM.EQ.Ol RETURN 

200 

C ISEEO IS THE INITIAL VALUE <SEEOl FOR THE RANDOM NUMBER GENERATOR AND 
C SIMPLY MUST BE ANY POSITIVE NONZERO INTEGER 
c 

c 

PI ,. 22.0/7.0 
lSEED2 a 11:3~7 

POWERS. -0.0 
POWERN 0.0 
MEAN .. 0.0 
MAXAMPINPUT - 0.0 
MAXAMP 0.0 
NUMQF:HITS .. :3.0 
PERCENT -0.03 
HIT 0 
VARIANCE - 1 . 0 
L 0 
DO 1 1•1 ,NMAT*2 

00 1 J•1 ,NMSMP*2 
ANOMTXC I, J l•O. 0 

CONTINUE 
DO 10 I•1,NMAT*2,2 

L•L+1 
DO 10 K a 1,NMSMP*2,2 

SUM • 0.0 
SUM2 0.0 

C IF UNIFORM NOISE 
IF ( ATVEC<L,2l.NE. 0 l THEN 

ANOMTXCI ,Kl •ATVEC<L,2>* SQRT<12.0*VARIANCEl 
>*<SPRANO<ISEEOl-O.Sl 

ANOMTXCI,K+1l •ATVECCL,2>* SQRTC12.0*VARIANCE> 
>*<SPRAN02<1SEE02l-O.S> 

ANOMTXC 1+1,K>·-ANOMT)(( I ,K+1 l 
ANOMTXC 1+1,K+1 laANCMTX( I ,Kl 

END IF 
C IF GAUSS NOISE 

c 

IF ( ATVEC<L,1l .NE. 0 l THEN 
OOJ-1,12 

UNIFOR~ • SPRANOCISEEOl 
SUM•SUM+SQRT<VARIANCE>*<UNIFORM - 0.5> 

ENOOO 
ANOMTX< I,Kl •ATVEC<L, 11* SUf'1 
SUM • 0 

00 J - 1 # 12 
UNIFORM • SPRAN02CISEED2> 
SUM • SUM + SQRTCVARIANCEI*< UNIFORM - O.Sl 
ENDOO 
AN01TXCI,K+1l •ATVEC<l.,1l* SUM 
ANOMTXCI+1,Kl•-ANOMTX<I,K+1l 
AHO'ITX< 1+1,K+1 l•ANOMTXC I ,Kl 



ENOIF 
C IF RAYLEIGH NOISE 
C RAYLEIGH a TRANSFORMATION OF SQRT ( X1~2 + X2~2 l 
C X1 AND X2 ELEMENTS OF GAUSIAN DIST. C0,1l 

IF C ATVECCL,3l.NE. 0 l THEN 
DO ..J a 1, 12 
UNIFORM a SPRANDCISEEDl 
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SUM • SUM + SQRTCVARIANCEl*< UNIFORM- 0.5> 
ENOOO 

c 

DO ..J a 1, 12 
UNIFORM a SPRAN02CISEED2l 
SUM2 a SUM2 + SQRTCVARIANCEl*< UNIFORM - 0.5) 
ENOOO 
ANOMTXCI ,Kla SUM2/9.0 + 0.5 

ANOMTXCI ,Kl a ATVEC<L,3l*SQRTC SUM2**2 + SUM**2 l 
ANOMTXCI+1,K+1laANOMTXCI,Kl 

ANOMTXCI,K+1laANOMTXCI ,Kl 
ANOMTXCI+1,Kla-ANOMTXCI,K+1l 

ENOIF 
C IF l~placi~n NOISE 

) 

) 

c 

c 

IF C ATVECCL,5l.NE. 0 l THEN 

END IF 

UNIFORM • <SPRAND<ISEEDl-0.5> 
SIGNOFUNIFORM • ABSCUNIFORMl/UNIFORM 
ANOMTXCI ,Kl • SIGNOFUNIFORM * SQRT<2.0l * 
LOG10C1.0- 2.0*ABSCUNIFORMl l*ATVECCL,5l 
UNIFORM • <SPRAN02CISEED2l-0.5l 
SIGNOFUNIFORM a ABSCUNIFORMl/UNIFORM 
ANOMTXCI ,K+1l ~ SIGNOFUNIFORM * SQRT<2.0l * 
LOG10(1.0 - 2.0*ABSCUNIFORMl l*ATVECCL,5l 

ANOMTXC 1+1 ,Kl•-ANOMTXC I ,K+1) 
ANOMTXCI+1,K+1laANOMTXCI ,K> 

C IF IMPULSE NOISE: PERCENT HITS PERCENT PROBABILITY OF AN IMPULSE 
C ASSUMING A UNIFORM DISTRIBUTION 

c 
10 
c 
1000 
c 

c 

IF ( ATVECCL,4l.NE. 0 l THEN 
ANOMTX<I ,Kl aSQRTC12.0*VARIANCEl*<SPRANDCISEEDl-0.5> 

IF < ANOMTX < I , K l . GE . - t . 7:3 
.AND. ANOMTXCI,Kl .LE. <-1.7:3 + 2*1.73*PERCENTl 

2 .AND. HIT .LE. NUMOFHITS l THEN 

END IF 

CONTINUE 

RETURN 

END 

END IF 

ANOMTXCI ,Kl aANOMTX<I ,Kl+ATVEC<L,4l 
ANOMTXC 1+1 ,K+1 l:aANOMTX< I ,Kl 
HIT • HIT + 1 

C***********************FUNCTION SPRAND******************************** 
c 



C FUNCTION TO CALCULATE A RANDOM NUMBER BETWEEN 0 AND 1 
c 

c 

c 

c 

c 

FUNCTION SPRAND<ISEEDl 

ISEED ~ <2045 * ISEEDl + 1 
ISEED"" ISEED- (ISEED/104:35761*104:3576 
SPRAND • FLOAT<ISEED + 11/1049577.0 

RETURN 

END 
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C***********************FUNCTION SPRAND2******************************* 
c 
C FUNCTION TO CALCULATE A RANDOM NUMBER BETWEEN 0 AND 1 
c 

c 

c 

c 

c 

FUNCTION SPRAND2!1SEED21 

ISEED2 a !2045 * ISEED21 + 1 
ISEED2 • ISEED2 - (ISEED2/10495761*104957~ 

SPRAND2 • FLOAT!ISEED2 + 11/1049577.0 

RETURN 

END 

C***********************SUBROUTINE SAMP******************************** 
c 

c 

c 

c 

SUBROUTINE SAMP<NMAT,NMSMP,ANOMTX,SMPVEC,SEP,ANMSIG,ASIGPAR,SIMl 

) 

> 
) 

IMPLICIT NONE 

EXTERNAL SPRAND2,SPRAND 

INTEGER I,~.L,SIM,STARTA,STARTS,ISEED 

REAL SPRAND,ANMSIG,ASIGPAR!159,6),PI ,ALPH<1591,MAMP!159>, 
SEP,NSEP,AMP,THETA,ALPHA,A,AR,AI ,BR,BI ,K,WVLTH,CYCL, 
NMAT,NMSMP,ARSGVEC<920,21,SMPVEC!920,920l,corel, 
ANOMTX!320,3201,REALDAT(256,16l,IMAGDAT!256,16l 

C THIS ROUTINE COMPUTES THE SAMPLES OF THE SIGNAL PLUS NOISE 
C FOR· EACH ANTENNA. THE RESULTS ARE RETURNED IN SMPMTX. 
c 

1000 

100 

200 

I SEED•1212S 
FORMAT ( 1 6F 1 5 . 5 l 
IF !SIM.EQ.O) THEN 

DO 100 I•1,NMSMP 
READ<9,10001<REALDAT(I,Kl,K•1,16> 

CONTINUE 
CLOSE<3l 
DO 200 l•l,NMSMP 

READ<4,1000l ( IMAGDAT< I ,Kl ,K•1 ,161 
CONTINUE 
CLOSE14l 
K•O 
PRINT *•'WHICH SAMPLE SHOULD BE FIRST ?' 
READ .,STARTS 



c 

9901 

c 

> 

DOS 1~1,NMAT*2,2 

PRINT *•'WHICH ANTENNA SHOULD BE SAMPLED?' 
READ *•STARTA 
K•STARTA 
L:aO 
DOS J•1,NMSMP*2,2 

L•L+STARTS 
SMPVEC<I ,JlaREALDAT<L,Kl 
SMPVEC<I+I,Jl•IMAGDAT(L,Kl 
SMPVEC < I , J+ t la-SMPVEC < I+ 1 , J l 
SMPVEC<I+1,J+I>•SMPVEC<I ,J) 

CONTINUE 
ELSE 

print *;'CORELLATION BETWEEN SIGNALS?, 1 TO 0' 
READ *,COREL 
CYCL•O.O 
P I •3 . 14 1 S926!54 

DO 30 L•1,NMSMP*2,2 
CYCL•CYCL+1 
DO 3301 la1,ANMSIG 

IF (I .EQ.CYCLlTHEN 
MAMP< I l 1 .414213!5 

ELSE 
MAMP( I l cor•l*1.414219!5 

END IF 
ALPHlllaSPRANO<ISEEDl/10.0 
CONTINUE 

IF (CYCL.EQ.ANMSIGlCYCL•O.O 

l<.aO 
DO 20 I•1,NMAT*2,2 

t<.-t<.+ 1 
ARSGVEC< 1 , t >-o 
ARSGVEC< I ,2 laO 
DO 20 J•1,ANMSIG 

THETA•ASIGPAR<J,1l 
AMP•ASIGPAR<J,2l 
ALPHAaASIGPAR(J,9l 
WVLTHmASIGPAR<J,4l 
A•((((J<.-<<NMAT+t.Ol/2.0ll*PI*2.0*SEPl/WVLTHl 

*SIN<THETAl l 
AR•COS<Al 
AI•SIN<A> 
BR•<AMP*MAMP(Jll*COS<ALPHA+ALPH<Jll 
BI•(AMP*MAMP<Jll*SIN<ALPHA+ALPH<J>> 
ARSGVEC<I ,ll:aARSGVEC<I ,ll+<AR*BR-AI*Bil 
ARSGVECCI,2l•ARSGVEC<I ,2)-(AR*BI+AI*BR> 
ARSGVECCI+1,1l•-ARSGVEC<I,2l 
ARSGVEC<I+1,2l•ARSGVEC<I ,11 

20 CONTINUE 
DO 10 la1,NMAT*2 

SMPVEC<I ,Ll•ARSGVEC<I,1l+ANOMTX<I ,Ll 
SMPVEC<I,L+Il•ARSGVEC<I ,2l+ANOMTX<I ,L+tl 

10 CONTINUE 
90 CONTINUE 

END IF 
c 

20 3 
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RETURN 
c 

ENO 
c 
C***********************SUBROUTINE INVERT***************************** 
c 

c 

c 

c 

c 

1010 

c 

c 

SUBROUTINE INVERT <NMAT,B,C,SIMl 

IMPLICIT NONE 

INTEGER I ,J,K,L,SIM 

REAL N,AC320,320l,BC320,320l,C(320,320l,NMAT 

IF(SIM.EQ.OlTHEN 
00 1010 I•1,NMAT*2 

C(l,ll•1.0 
CONTINUE 
RETURN 

ENOIF 

00 777 1•1, N 
00 777 J•1 ,N 

A ( I , .J l •B ( I , .J l 
777 CONTINUE 
c 
C ** MAKE C IDENTITY MATRIX FOR INVERTING 
c 

500 
c 
c ** 
c ** 

00 500 1•1 ,N 
CCI,Il•1.0 

OIVIOE EACH ROW BY THE FIRST ELEMENT 
ONLY NEEO TO OIVIOE C IN LOWER TRIANGLE 

C ** OIVIOE FROM RIGHT TO LEFT FOR A SO FIRST 
C ** ELEMENT OOES NOT GO TO ONE BEFORE USE 
c 

00 10 L•O,N-1 
c 

00 20 I•1+L,N 
c 
C ** CHECK TO SEE IF ALREADY ONE, IF SO NO OIVIOE 
C ** IS NECESSARY FOR THAT ROW, ALSO IF AREAOY ZERO 
c 

c 

c 

c 
200 
c 

c 
201 
c 
20 

IF (A ( I , L+ 1 l . EQ. 1 l GOTO 20 

IF(A(I ,L+1l.EQ.Ol GOTO 20 

00 200 ..1•1, I 

C(l ,.Jl•C(I ,Jl/ACI,L+1l 

oo 201 .... o,N-1 

A( I ,N-Jl•A( I ,N-Jl/A( I ,L+1 l 

Ca-ITINUE 



c 
C ** YOU NOW HAVE THE FIRST COLUMN AS ALL Cli'IES, THE 
C ** NEXT STEP IS TO SUBTRACT THE TOP ROW FROM THE 
C ** ROW BELOW IN TOP TO BOTTOM, LEFT TO RIGHT ORDER. 
c 

c 

c 

c 
300 
c 

c 
301 
c 
30 
c 
10 
c 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c 

c 

c 
90 
c 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c ** 
c 

c 

c 

c 
60 
c 

eo 
c 

c 

c 

DO 30 l:o2+L,N 

IF (A ( I , I +L) . EQ . 0 l GOTO 30 

DO 300 .J,. I , I 

C( I ,.I laC( I ,Jl-C<L+1 ,J) 

DO 301 .Ja2+L,N 

A ( I I J) -A ( I 'J) -A ( L+ I I J) 

COI'ITINUE 

COI'ITINUE 

AT THIS POINT THE A MATRIX THAT IS LEFT 
IS UPPER TRIANGULAR AND THE C MATRIX IS LOWER 

TRIANGULAR. THIS IS A LU DECOMPOSITION 
OF THE ORINGINAL A MATRIX. THE ONES WERE NOT 
SUBTRACTED AND MUST BE SET TO ZERO BEFORE 
THE NEXT STEP IS BEGUN. 

oo 90 1 ... 2,N 

DO 90 Jal, I 

A( I ,JlaO 

AT THIS POINT THE A MATRIX IS JUST AN UPPER TRIANGULAR 
MATRIX THAT HOLDS THE MULTIPLIER FOR THE C MATRIX. THE 
PROCEDURE APPLIED HERE IS TO MULT AND SUBTRACT TO REDUCE 
THE A MATRIX TO THE ROW REDUCED ECHELON FORM, LEAVING THE 
C MATRIX AS THE INVERTED A MATRIX. ON~Y THE LOWER HALF IS 
ACTUALLY COMPUTED, THE UPPER HALF WILL BE COPIED INTO THE 
UPPER HALF TO SAVE COMPUTATIONS IN LARGE MATRICES. 

DO 60 L:aO,N-1 

DO eo I al , N- 1 -L 

DO 60 J•1 I I 

C<l ,JlaC(I ,Jl-C(N-L,Jl*A<I,N-Ll 

oo eo 1-1 ,N-1 
DO eo ..I• I+ 1 ,N 

C< I ,Jl•C<.J,I l 

RETURN 

END 

205 



206 

C***********************SUBROUTINE CREATEFILE*************************** 
c 

c 

c 

c 

c 

SUBROUTINE CREATEFILEtNMAT,NMSMP,ATVEC,ANOMTX,AENOMTX,AIENOMTX, 
> SMPVEC,SEP,ARSGVEC,SIMl 

IMPLICIT NONE 

INTEGER I ,J,K,L,SIM 

REAL NMAT,NMSMP,ANOMTXt320,320l,AENOMTXC320,320l, 
> AIENOMTX<320,320l ,SMPVEC(320,320l ,ATVEC< 160,51, 
> SEP,ARSGVECt320,2l 

~RITE<2,1001lNMAT,NMSMP,SEP 

WRITE(1,1001lNMAT,NMSMP,SEP 
1001 FORMAT<X,'NUMBER OF ANT• ',F3.0,/' NUMBER OF SAMPLES•',F4.0, 

> /'SEPARATION BETWEEN ELEMENTS• ',F8.5,' METERS') 
c 

l.oiRITE<1,1012l 
DO .10 1•1 ,NMAT*2 

DO 10 J•1 ,NMAT*2 
l.oiRITEt1,1002li,J,AENOMTX(I ,Jl,AIENOMTX<I ,Jl 

10 CONTINUE 
c 
1012 
1002 
c 

1013 
1003 

1113 

20 
c 

30 
1004 
1014 
c 

40 
1005 
1015 
c 

c 

c 

FORMAT ( / ' ' , ' J ' , ' AENOMTX ( I , J l ' , ' A I ENOMTX ( I , J l ' / l 
FORMAT<I4, 14,2X,F10.7,4X,F10.7l 

l.oiR I TE ( 1 , 1 0 1 Sr l 
FORMAT(/' SAMPLE. ','ANOMTX<I ,Jl VALUE'/) 
FORMAT<I4,2X,E17.7l 
DO 20 la1,NMAT*2,2 

l.oiR I TE C 1 , 1 1 13 l I / 2+ 1 
FORMAT<'ANTENNA NUMBER ',131 

DO 20 J•1,NMSMP*2,2 
l.oiR I TE < 1 , 1 003 l J, ANOMTX < I , J l 
~RITEC1,1003lJ+1,-ANOMTX<I,J+1l 

CONTINUE 

WRITE (1,1014> 
DO 30 1•1 ,NMAT 

DO 30 J•1, 5 
l.oiRITE(1,1004li,J,ATVEC<I ,Jl 

COI'HINUE 
FORMATCI4,14,3X,F10.5l 
FORMAT(/' I ',• J 

l.oiR I TE ( 1 , 1 0 1 5 > 
DO 40 1 .. 1 ,NMAT*2 

DO 40 .J•1 ,2 

ATVEC < I , J l '/ > 

l.oiRITE(1,100Sli,.J,ARSGVEC(I ,Jl 
CONTINUE 
FORMATti4,14,3X,F10.3l 
FORMAT(/' I ',' .J 'ARSGVECCI,Jl'/) 

RETURN 

END 
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C***********************SUBROUTINE NOEXPECT****************************** 
c 

SUBROUTINE NOEXPECT<NMAT,NMSMP,SMPVEC,ESMPMTX,SIMl 
c 

IMPLICIT NONE 
c 

INTEGER I ,J,K,L,SIM 
c 

REAL NMAT, SMPVEC ( 320,320 l , ESMPMTX ( 320,320 l , VEC ( :320, 2 l , 
> NMSMP,MTX<320,320l,NORM,NORM2 

c 
C THIS ROUTINE CONVERTS THE NOISE SAMPLE MATRIX INTO NMATXNMAT 
C MATRIX THAT REPRESENTS THE EXPECTED VALUE 
C OF THE SAMPLES ALLOWING A USED IN THE GENERALIZED EIG PROCESS TO 
C IMPROVE THE ESTIMATE. 
c 

1010 

c 

20 
c 

c 

IF(SIM.EQ.OlTHEN 
DO 1010 la1,NMAT*2 

ESMPMTX<I, I >•1.0 
CONTINUE 
RETURN 

END IF 

DO 10 Ja1,NMSMP*2,2 
DO 20 la1,NMAT*2 

VEC(I,1l•SMPVEC<I ,Jl 
VEC(I ,2laSMPVEC(I ,J+1l 

CONTINUE 

CALL VCCNJMP(NMAT,VEC,MTXJ 

DO 1 0 K,.1 , NMAT*2 
DO 10 L•K,NMAT*2 

ESMPMTX<L,Kl•ESMPMTX<L,Kl+MTX<L,Kl 
10 CONTINUE 
c 

45 
c 

50 
c 

eo 
c 

c 

c 

DO 45 I•1,NMAT*2 
DO 45 J•l , NMAT*2 

ESMPMTX<I ,JJ,.ESMPMTX<J,Il 
CONTINUE 

DO 50 la1,NMAT*2,2 
NORMaNORM+ESMPMTX<I ,IJ 

CONTINUE 

,NORM•NMAT /NORM 
DO eo I•1,NMAT*2 

DO 60 J•1,NMAT*2 
ESMPMTX ( I , J J aESMPMTX < I , J l *NORI'I 

CONTINUE 

RETURN 

END 

C***********************SUBROUTINE VECNORM****************************** 
c 

SUBROUTINE VECNORMlNMAT,VEC,NORM2l 
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c 
IMPLICIT NONE 

c 
INTEGER I ,.J,K,L 

c 
REAL NMAT,VEC(320,2l,NORM2 

c 
NORM2 .. 0.0 

c 
00 10 1 .. 1,NMAT*2 

NORM2=NORM2+VEC<I ,1l**2+VEC<I ,2>**2 
10 CONTINUE 
c 

RETURN 
c 

END 
c 
C***********************SUBROUTINE VCCN.JMP****************************** 
c 

SUBROUTINE VCCN.JMPCNMAT,VEC,MTXJ 
c 

IMPLICIT NONE 
c 

I NTEGER I , .J , 1<. , L 
c 

REAL NMAT,VECC320,2l,MTXC320,320l 
c 

00 10 .J•1,NMAT*2 
DO 10 I•.J,NMAT*2 

MTXCI ,.JJ,.VECCI ,1l*VECC~,1l+VEC<I ,2l*VECC~,2J 
10 CONTINUE 
c 

RETURN 
c 

END 
c 
C**********************SUBROUTINE ESNOISE************************** 
c 

SUBROUTINE ESNOISECNMAT,NMSMP,ATVEC,AN01'1TX,ISEED2,S1Ml 
c 

IMPLICIT NONE 
c 

INTEGER I .~,t<.,L,SIM,ISEED2 
c 

REAL ATVECC160,5J,ANOMTXC320,320l,NMAT,NMSMP,A 
c 
C Tt~IS ROUTINE ESTIMATES THE NOISE WITHOUT APRIORI INFORMATION. IT 
C PROVIDES AN INVERTED CORRELATION MATRIX OF THE ESTIMATE AS EINOMTX 
C AS THE OUTPUT FOR USE IN THE SOLUTION OF THE GENERALIZED EIGENVALUE 
C PROBLEM. 
c 

c 

c 

PRINT *•'USE PERFECTLY CORELCOJ, ESTIMATED< 1l, OR ACTUALC2l' 

READ *•A 

IFCA.EQ. 2lTHEN 
SIM•1 
RETURN 



c 

c 

c 
C*** 
c 

c 

c 

c 
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END IF 
I F (A . EQ . 1 HHEN 

SIM•l 
CALL GENO I ::>MTX ( NMAT I NMSMP I ATVEC I ANOMTX I I SEED2 Is I M) 
RETURN 

END IF 
IF<A.EQ.OJTHEN 

SIM=-0 
END IF 

RETURN 

END 

ALL NODE ~ORK FROM HERE ***** THIS IS PARALLEL DCA ************ 

SUBROUTINE EIGPOWER(NOOES,~VLTH,SEP,NMSMP,SMPVEC,EINOMTX, 
> ENOMTX,NMAT,OUTMSG,SIMl 

> 
> 
> 
) 

) 

> 

IMPLICIT NONE 

REAL BIS20,320l,C<320,320l,X(320,3201,Y(320l, 
EV,VCK,MAX(320l,S,TOL,D,EIGVEC(320,2),ESMPMTX<320,3201, 
V,N,SKP,MYA,TIMES,NCPN,EINOMTX<S20,3201,NMAT,GEN, 
ENOMTX<S20,320l,SIZE<10J,SIZE1,EIGENSYS<325l,NODES, 
PARAMSG<102400J,SECDMSG(102400l,THROMSG(102400l,STARTMSG, 
SMPVEC(320,320l,NMSMP,SP,~LTH,SEP,WVLTH,PSZ,ZPZ, 

OUTMSG(1934l,DOA,MAXAMP,ANGLE,START,INC,TIME1,1ZE 

INTEGER K,L,I,J,R,StM, 
> SMS, EMS, TMS, MS, TSEC, SEC, MIN, ALLNODES, 
> CUBETYPE,PARAMTYPE,INITTYPE,EIGTYPE,SECDTYPE,THROTYPE, 
> CUBESIZE,PARAMSIZE,INITSIZE,EIGSIZE,OUTSIZE,OUTTYPE, 
> ROOT, HOSTl, HOSTPID,ROOTNODE,APPLPIO,STARTTYPE, 
> WORKNOOES,MYNOD,PID,NEW,NUM 

C MESSAGE AREAS DEFINED 
c 
c 
c 

c 
c 
c 

PlAKE EXPLICIT THE STRUCTURE ClF E I GENSYS: 

EQUIVALENCE (EIGENSYS(ll, EVJ 
EQUIVALENCE <EIGENSYS<21, SKPl 
EQUIVALENCE ( E I GENSYS ( 3) I MYAJ 
EQUIVALENCE ( E I GENSYS ( 5) I TIME11 
EQUIVALENCE (EIGENSYS(6J, y ( 1 ) ) 

MAKE EXPLICIT THE STRUCTURE ClF SIZE: 

EQUIVALENCE (SIZE<1l, TIMES) 
EQUIVALENCE (SIZE(2), Nl 
EQUIVALENCE <SIZE<Sl, TCLl 
EQUIVALENCE <SIZE (4) I SP) 
EQUIVALENCE <SIZE1:5l, GENl 
EQUIVALENCE <S 1 ZE<e >, ~LTHl 

EQUIVALENCE <SIZE(?) I Sl 
EQUIVALENCE <S I ZE(S) I PSZl 
EQUIVALENCE <~I ZE<9), IZEl 
EQUIVALENCE (SIZE< 10), ZPZ> 



c 
c 
c 

c 
c 
c 

c 

c 

c 

1000 

MAKE EXPLICT THE STRUCTURE OF PARAMSG 

EQUIVALENCE !PARAMSG(1l, X<1,1ll 

MAKE EXPLICT THE EQUIVALENCE OF B,C AND SECD AND THRDMSG 

EQUIVALENCE (:5ECDMSG! 1 l, B( 1, t l l 
EQUIVALENCE <THRDMSG!1l, C!1,1l) 

DATA CUBETYPE /0/,PARAMTYPE /1/,INITTYPE /5/,EIGTYPE /30/, 
> SECDTYPE/2/,THRDTYPE/3/,0UTTYPE/35/,STARTTYPE/100/, 
> CUBESIZE/40/ ,PARAMSIZE /409600/,0UTSIZE/7336/, 
> ROOT /-32768/,ROOTNODE /0/, HOSTPID /100/, APPLPID /0/, 
> ALLNOOES /-1/ 

PRINT *•'MAX EST!1l, TRACE EST!2l, MIN EST (3l' 
READ *,I 
IF (I .EQ.2l THEN 
CALL LOAD ('node',-1,0) 
ELSE 
IF (I.EQ.3) THEN 

CALL LOAD ('minaig',-1,0) 
ELSE 
CALL LOAD ('max•ig' ,-1,0) 
END IF 
END IF 
PRINT *•'LOADING THE NODES 

GEN•REAL<SIM) 
IZEa2**NOOES 
SP•SEP 
pr i n t * , 'WHAT WAVELENGTH DO YOU W I SH TO DETECT '? ' , WVL TH 
READ *,WVLTH 
WLTH,.WVLTH 
SIZE1aiZE 
S•INT!2*NMSMP/IZEl 
N•2*NMAT 
EIGSIZEaiNT<4*!N+Sll 
PRINT *•' ESTIMATE NUMBER OF SIGNALS' 
READ *,TIMES 
PRINT *• 'WHAT TOL?' 

.REAO *,TOL 

R•M00!2*NMSMP,IZEl 
ZPZ•320*S*4+4*R*320 
CALL FLUSHMSG<-t,-1,-1) 
DO 1000 1•1 ,N 

00 1000 Ja1 ,N 
8<1 ,J>•EINOMTX(I ,Jl 
C<l ,JlaENOMTX(I,Jl 

CONTINUE 
00 3333 I • 1 , N 

3333 
C SEND 
c 

00 3333 J•1,NMSMP*2 
X< I .~l•SMPVEC<I,Jl 

CCIIITINUE 
SIZE TO USE INTO CUBE 
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IZE .. NODES 
CALL CSENDCCUBETYPE,SIZE, CUBESIZE,ALLNOOES,APPLPIDl 

c 
C ::>END PARAMETERS I NTO CUBE 
c 

c 
CLOSE ( 1 l 

IZE-2**NODES 
PARAMSIZE•INT<PSZ> 
NCPN-INTCN/IZE> 
INITSIZE .. INT<4*<NCPN*320ll 

DO 66 I•1,1ZE-1 
J•CCI-1l*<S*320l+1l 
KaCII-1l*<NCPN*320>+1l 
CALL CSENDCPARAMTYPE,PARAMSG(Jl,PARAMSIZE,I ,APPLPIDl 
CALL CSENDtSECDTYPE,SECDMSGCKl,INITSIZE,I ,APPLPIDl 
CALL CSEND<THRDTYPE,THROMSG<Kl,INITSIZE,I ,APPLPIO> 

66 CONTINUE 
c 

c 

c 
c 
c 
c 

c 

c 

PARAMSIZE .. INTCZPZl 
K•<S*<IZE-11*320>+1 
CALL CSEND<PARAMTYPE,PARAMSGCKl,PARAMSIZE,O,APPLPIDl 
R•MOO<N, IZEl 
IN ITS I ZE•I NT ( 4* I NCPN*:320 l +4*R*320 l 
K•CNCPN*CIZE-11*320!+1 
CALL CSENDtSECDTYPE,SECOMSGCKl,INITSIZE,O,APPLPIDl 
CALL CSENDCTHRDTYPE,THRDMSGCK>,INITSIZE,O,APPLPIO> 

PRINT *•'NODES LOADED READY TO START, TYPE t1l' 
READ *•STARTMSG 
CALL CSENDISTARTTYPE,STARTMSG,4,-1,0l 

RECEIVE FINAL EGENSET VALUES FROM CUBE, AND THE TIME, 
IN MILLISECONDS lAS -'SKP' > 

PRINT *•'HOST WAITING TO RECEIVE EIGENSET VALUES FROM CUBE' 

CALL CRECVCEIGTYPE, EIGENSYS, EIGSIZEl 

print*,'EIGENVALUE•' ,EV 
WRITEC2,400J EV 

400 FORMAT (/' EIGENVALUE•' ,F25.7/l 
c 

PRINT *•'ACTUAL ITERATIONS•',EIGENSYSC4l,MYA 
WRITE<2,510lEIGENSYSC4J,MYA 

!510 FORMATC/'ACTUAL ITERATIONS•' ,F4.0,' and ',,F4.0/l 
c 

WRITEC2,!500l 
!500 FORMAT(/' ASSOCIATED EIGENVECTOR•',F2!5.7/l 

DO 20 J•1 ,N 
WRITE<2,600) J,YCJ> 

600 FORMAT<' )((',I !5,' >•' ,F20. 71 
20 CONTINUE 
c 

TMS •NINTCTIME1 > 
MS • MOOCTMS, 10001 
TSEC • CTMS - MS> / 1000 
SEC • MOOCTSEC, 601 
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c 

c 

c 

c 

c 

c 

MIN a <TSEC - SEC> / 60 

WRITE<6, 111> MIN, SEC, MS 

WRITE <2,1111 MIN,SEC, MS 

TMS ,.NINT<SKP> 
MS a MOOCTMS, 1000) 
TSEC ~ CTMS - MS) / 1000 
SEC - MOOCTSEC, 601 
MIN a <TSEC - SEC> / 60 

WRITEC6, 111) MIN, SEC, MS 

WRITE <2,111) MIN,SEC, MS 

1 1 1 FORMAT ( ' ELAPSED TIME ,.. • , I 2 , ' MIN. • , I 2 , • . • , I :3. :3, • SEC. ' ) 
c 

c 

c 

1913 
123 
c 
c 
c 
c 
c 

CALL CRECVCOUTTYPE,OUTMSG,OUTSIZEl 

TMS aNINT<OUTMSGC1912ll 
MS a MOD<TMS, 1000) 
TSEC a CTMS - MSl / 1000 
SEC • MOOCTSEC, 60l 
MIN • CTSEC - SEC) / 60 
WRITE (2,1111 MIN,SEC, MS 
WRITEC6, 1111 MIN, SEC, MS 

DO 1913 1•1913,1922 
WRITEC2,123>0UTMSG<I+11l,OUTMSGCil 
WRITE<6,123lOUTMSGCI+11l,OUTMSG<I l 

CONTINUE 
FORMAT(' DOA•',F9.2,'MAGNITUDEa',F20.5l 

CL~AN OUT UNRECEIVED MESSAGES 
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C********END OF NODE PARALLEL PROCESSING **** ONLY OUTPUT LEFT********* 
c 

RETURN 
c 

END 
c 
C***********************SUBROUTINE OUT********************************* 
c 
c 

SUBROUTINE OUTCOUTMSG> 
c 

IMPLICIT NONE 
c 

I NTEGER I , J , K , L 
c 

REAL OUTMSGC1934l,ANGLE 
c 
C OUTPUTS THE VALUES OF THE ESITMATED DIRECTIONS OF ARRIVAL, 
c 

ANGLE•-90.1 



DO 200 1•1 • 1 eo 1 
ANGLE•ANGLE+. 1 

.J•NINTC10*ANGLEl 
IF ( (MOO ( J, 10) . EQ. 0) . OR. ( OUTMSG ( I l . GT. 1000 l lTHEN 
IF<tANGLE.GT.99.9l.OR.(ANGLE.LT.-89.9llOUTMSGCI)a1.0 
IFCOUTMSGCil.LT .. 00001lOUTMSGtll•.00001 
WRITE ( 15, 100lANGLE,OUTMSGt ll 

ENOIF 
200 CONTINUE 
100 FORMAT tF10.2,F20.5l 
c 

CALL KILLCUBEt-1,-1) 
c 

RETURN 
c 

END 
c 
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APPENDIX B 

NODE FORTRAN COMPUTER PROGRAM 

This appendix provides the FORTRAN-386 computer programs that are the 

node programs. The primary functions of the node program are to compute the 

four tasks identified in the thesis necessary for the DOA solution. The data is 

input to the nodes from the host program EIGPOWER and the data of the 

solution is returned to EIGPOWER for output to the user. Node zero has the 

additional task of executive node, as well as sharing the lower level work of 

computation of the operations. The other nodes also have different 

requirements during the processing, but the same program is used in each with 

the differences being based on the node number. 

Since the four operations are clearly marked in the programs as well as 

having a reasonable set of comments, this discussion will not address the 

processing that is the implementation of the thesis in any detail. Only a short 

functional overview will be presented. 

As there are four tasks, there are four working parts to the node program. 

Node zero acts as the executive, but is also used as a computational node. 

The workload is evenly distributed for a static workload balance situation. 

The first operation computes the sample covariance matrix from the 

snapshots of data. The wrapping and unwrapping referred to in the comments 

allows for shorter message traffic between nodes. 

The second operation is the parallel power method for the 
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eigen-decomposition. The results desired are the maximum and minimum 

eigenvectors. This is also the section where the minimum number of iterations 

are related to the number of arriving wavefronts. Although it can be automated, 

it is manually completed in this version of the code. This version will accept an 

estimate of the number of arriving waves, and then shift the matrix based on 

that estimate. The reverse process is necessary as described in the 

dissertation when the number of arriving waves are unknown. 

The third and fourth operations are combined as was discussed in the 

dissertation. It is a straight forward computation of the DOA amplitudes based 

on sweeping theta through 180/P degrees in one tenth of a degree increments. 

The next discussion will briefly describe some the unique parallel processor 

iPSC/2 FORTRAN-386 routines that are contained in the node programs. This 

information was extracted from the preliminary iPSC/2 Green Hills FORTRAN 

Language Reference Manual and is provided only for general reference and 

understanding to the code in this appendix. 

MYHOST returns the node id of the caller's host machine for use in send and 

receive subroutine calls. 

MYPID returns the process id of the calling process. This is the process id 

that was supplied from the host when the process was loaded. 

MYNODE returns the node id of the calling process. 

MYCLOCK routine provides a simple mechanism to measure time intervals. 

CRECV initiates the receipt of a message. The CRECV call waits for a 

message whose TYPE matches the TYPE specified. When the message is 

received, it is stored in the buffer specified, and the calling process resumes 

execution. The CRECV subroutine is synchronous, causing the calling process 

to be blocked until the desired message is received. 

CSEND is used to send a message to a node or host process. The 
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completion of the CSEND does not imply that the message was received by the 

destination process, only that the message was sent and that the buffer is 

available for reuse. CSEND is synchronous, causing the calling process to be 

blocked until the send operation is complete. 



c 

c 

c 

> 
> 
> 
> 
> 
> 
) 

> 
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PROGRAM nodE 

IMPLICIT NCI'IE 

EXTERNAL MYHOST,MYPID,MYNODE,MCLOCK 

REAL AC320,3201,BC320,3201,CC320,3201,XDC320,3201,ASC1024001, 
XC3201,Y2C3201,YC3201,Z(320,3201,MAXC61,MYC3201,0ADOA<111, 
TS,S,TCL,V,TEV,EV,VCK,TMYA,AMAXAMP,MAXAMP,ADOA<111,DOAC111, 
N,MYA,MYB,SKP,TIMES,D,TSKP 1NXTEV,NXTS 1NCOL,XDSC102400l 1 
RALV,RAL,AATVAL<teOI21,EIGVEC(320,211TIME11MAXVECC320,211 
PLOT< 1 a 1 o 1 , P 1 I ALPHA • L I T I T 1 I wvL TH • NMAT I NSEP I SEP I AG I GEN , PK , 
PEAK( 1810) ISSTART ,START ,FINISH I INC INUMIANGLE INMSI G ;DOWN, 
VALt~VAL21K2 1 ~2,L1,L2 1 M 1 PSZ 1 ZPZ,IZE 1 000A(111 1 0START, 

OMAXAMP 1 ~3.~4 

C MESSAGE AREAS DEFINED 
c 

c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 

REAL SIZE< 101 ,EIGENSVSC32~1, ITERMSGC3251 ,PARAMSGC 1024001 ,plug, 
> SECDMSG<1024001,THRDMSG<1024001,SECOND 1 NMSP~OUTMSG(1834>, 

> COVMSGC102400l,COVUPMSGC1024001 1STARTMSG,OOUTMSG<1S34l 

INTEGER I .~~K 1 ALLNOOES 1 R,NCPN,EXT,FCOVTVPE,FCOVSIZE,VSIZE, 

> CUBETVPE 1PARAMTVPE,INITTVPE,ITERTYPE 1EIGTVPEIOUTTVPE, 
> CUBES I ZE 1 PARAMS I ZE, I NITS I ZE 1 I TERSI ZE,EIGSI ZE10UTSI ZE 1 

> COVTVPE,COVSIZE 1ROOT 1 HOST, HOSTPID, ROOTNOOE,APPLPID, 
> MVNOO, PID 1STARTTIME,DIM,DEST,SECDTVPEITHRDTVPE,VTVPE, 
> STARTTYPE1SCOVSIZE 

MAKE EXPLICIT THE STRUCTURE CF SIZE: 

EQUIVALENCE (SIZE ( 1 ) I NMSIGI 
EQUIVALENCE <SIZEC21, Nl 
EQUIVALENCE <SIZEtSI, plug! 
EQUIVALENCE <SIZE<41 I SEP> 
EQUIVALENCE <SIZEC~J, GENI 
EQUIVALENCE CSIZE(6J, WVLTHI 
EQUIVALENCE CSIZEC71 I NMSPI 
EQUIVALENCE <SIZE<SI, PSZI 
EQUIVALENCE (SIZE(g) I IZEI 
EQUIVALENCE <SIZE<101, ZPZ> 

MAKE EXPLICIT THE STRUCTURE OF PARAMSG 

EQUIVALENCE <PARAMSG<tl, Z<t,tll 

MAKE EXPLICIT THE EQUIV OF COV,SEC,THRD,COVUPMSG 

EQUIVALENCE CCOVMSG<tl, A<t,tll 
EQUIVALENCE CSECOMSGC 1) I B( 1 I 1)) 
EQUIVALENCE <THROMSG<1l, C<1,1ll 
EQUIVALENCE <COVUPMSGC1>, X0(1,111 

C MAKE EXPLICIT THE STRUCTURE OF EIGENSVS: 
c 

EQUIVALENCE <EIGENSVS<1l, EVI 
EQUIVALENCE <EIGENSVS<21, SKPI 
EQUIVALENCE < E I GENS'I'S ( 3 I , Tl'tYA I 



c 

EQUIVALENCE <EIGENSYS(4) 1 RALl 
EQUIVALENCE <EIGENSYS(6l 1 Y<1ll 

C MAKE EXPLICIT THE STRUCTURE OF ITERMSG: 
c 

c 
c 
c 

c 

c 

c 

c 

c 

EQUIVALENCE ( I TERMSG ( 1 ) I NXTEVl 
EQUIVALENCE ( I TERMSG ( 2 ) I NXTS> 
EQUIVALENCE ( I TERMSG ( 3 ) I NCOLl 
EQUIVALENCE ( ITERMSG(4) I SECOND> 
EQUIVALENCE ( I TERMSG ( :5} I $) 
EQUIVALENCE ( ITERMSG(6) I X ( 1 l > 

MAKE EXPLICIT THE STRUCTURE OF ITERMSG 

EQUIVALENCE (OlJTMSGt1l, PLOT ( 1 l l 
EQUIVALENCE < OUTMSG < 1 e 1 2 1 I START) 
EQUIVALENCE < OUTMSG < 1 a 1 :a l , OOA ( 1 l l 
EQUIVALENCE <OUTMSG( 1824) I AOOA< 1 l l 

EQUIVALENCE <OOUTMSG(1l 1 PEAKC1l) 
EQUIVALENCE <OOUTMSG(1812l, OSTARTl 
EQUIVALENCE <OOUTMSG<1913l, 000A(1ll 
EQUIVALENCE (00UTMSG(1924l, OA00A(1ll 

EQUIVALENCE <X0$(1), X0(1,1ll 
EQUIVALENCE <AS<1) 1 A(1,1l) 

DATA CUBETYPE /0/,PARAMTYPE /1/ 11NITTYPE /S/,OUTTYPE/3:5/, 
> CUBESIZE/40/ ,SECOTYPE/2/ITHROTYPE/3/,YSIZE/1290/1 
> ITERTYPE /15/,EIGTYPE /20/,COVTYPE/2:5/,0UTSIZE/7336/, 
> ROOT /-32769/,ALLNODES /-1/ 1COVSIZE/103040/,FCOVTYPE/40/I 
> ROOTNODE /0/, HOSTPIO /100/, APPLPIO /0/ 1STARTTYPE/100/ 

DATA X/320* 1 . 0/ 

HOST MYHOST C ) 

PIO • MYPIOC l 
MYNOO MY NODE ( ) 
NXTEV • 1. 0 
SECOND• 0.0 
Ts-o 

C GET THE SIZE OF THE CUBE TO PUT TO WORK ON PROBLEM 
c 

c 
CALL CRECV(CUBETYPE, SIZE, CUBESIZEl 

NMSIG•NINT<NMS1Gl+1 
TIMES•200.0 
Nt'IAT •IV" 2 . 0 
SCOVSIZE•NMAT**2+NMAT 
COVSIZE•SCOVSIZE*4 
YSIZE•N*4 
OIM•IZE 
IZE•2**1ZE 
NCPN-INTtN/IZEl 
I•INT<NJ 
.J•INTC IZE> 
EXT•MOO ( I I .J, 
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c 

ITERSIZE•I4*1N+S>l 
EIGSIZE•I4*1N+5ll 
TSKP•O 
SKPaO 

C NODES LABLEO 0 TO 31 
IF <MYNOO.GE. IZEl GOTO 100 

c 
IF (MYNOO.GT.Ol GOTO gg 

c 
C*************************************************************** 
C THIS IS THE NODE 0 PROGRAM ONLY 
C*************************************************************** 
c 

c 

c 
PARAMSIZEaZPZ 
CALL CRECVIPARAMTYPE,PARAMSGI1l,PARAMSIZE> 

c 

c 
CALL CRECV<SECOTYPE, SECOMSG ( 1 ) I INITSIZEl 

c 
CALL CRECVITHROTYPE, THROMSG I 1 l , INITSIZEl 

c 
CALL CRECV<STARTTYPE,STARTMSG,4l 

c 
c START THE CLOCK 
c 

STARTTIME•MCLOCK() 
c 
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C******* 
c 

TASK ONE *** TASK ONE *** TASK ONE ****************** 

C THIS ROUTINE CONVERTS THE SAMPLE MATRIX INTO A NXN 
C MATRIX THAT ESTIMATES THE EXPECTED VALUE 
C OF THE SAMPLES ALLOWING A TEMORAL AVERAGING PROCESS TO 
C IMPROVE THE SIGNAL TO NOISE RATIO 
c 

CO 3410 ~-1,NMSP,4 
...12-~+1 

..13•..12+1 
~4-~:9+1 

co 341 0 K•t IN. 2 
CO 3-410 L•K,N 

VAL1•Z<K,.Jl*Z<L,.Jl+Z<K,..J3l*ZIL,..J9> 
VAL2•Z<K,..J2l*ZIL,.J2l+Z<K,J4l*Z<L,.J4) 
A<K,Ll•AIK,Ll+VAL1+VAL2 

3410 CONTINUE 
C ~RAPPING UP TO RECEIVE AND ADD TO MATRICES COMPUTED HERE 

K•O 
INC•I2$320+2l 
START•-INC+1 
FINISH•N*S20 
DO 9342 .J•1,NMAT 

START•START+INC 
DO 9842 I•START,FINISH,320 



9:342 

5895 

KaK+t 
AS ( K l =AS ( I ) 

CONTINUE 
DO :5995 Ja 1 , 0 I M 

CALL CRECV<COVTYPE,COVUPMSG<tl,COVSIZE) 
00 599:5 la1,SCOVSIZE 
AS< I >•AS< I >+XDS< I> 

COOTINUE 
C UNWRAPPING PROCEDURE TO UNSTRING VARIABLE 

L2a:320*N-1.+2+N 

:3:3:3:3 
c 

:3440 
c 

S450 
c 

6799 

c 

:355:3 
c 

:34:30 
c 
c 

K•SCOVSIZE+l 
DO :3:3:3:3 l•l,NMAT 

L2•L2-2 
LsL2 
DO :3:3:3:3 J• 1 , 2* I 

K•K-1 
LaL-:320 
AS(LlaASlKl 

CONTINUE 

CO :3440 Ka:3,N-1,a 
K2aK+1 
DO :3440 L•1,K-2,2 

L2•L+1 
A<K,L),..A(L,K> 
A (IC,, L2 >a-A< L, 1<.2) 

CONTINUE 

DO :34 50 I • 1 , D I 1'1 
FCOVSIZEa:320*NCPN*4*<2**lDIM-I ll 
L•<NCPN*<2**<DIM-I>l*:320>+1-<NCPN*:320) 
OEST•<2**<DIM-Ill 
CALL CSEND<FCOVTYPE,COVMSG<L>,FCOVSIZE,DEST,O) 
C01'4TINUE 

DO 6799 lat,N,2 
TS•TS+A<I ,I> 

CONTINUE 
TS•TS/CNMSIG-1) 

L• < NCPN ) * < I ZE- 1 > 
DO :355:3 l•t,N 

K•L 
DO :355:3 J•t,NCPN+EXT 

K•K+1 
A< I ,Jl•A< I ,Kl 

CONTINUE 

DO :34:30 Ka1,N-t,a 
K2•K+1 
DO :34:30 L•t,NCPN+EXT-t,a 

L2•L+1 
A<K2,L>•-A<K,L2) 
AtK2,L2>•A(K,L) 

CONTINUE 

220 

C********** TASK 2 *** TASK 2 *** TASK 2 ****************** 



c 
C ROUTINE EIGPOWER TAKES THE A MATRIX, WHICH MAY BE SHIFTED 
C AND OUTPUTS THE ESTIMATED 
C EIGENVECTOR, AND EIGENVALUE. 
c 

c 

c 
9201 

810 

1976 

799 

976 

2330 

986 

c 

0 .. o.o 
SKP •0.0 
TSKP,..O.O 

TIME1oaMCLOCK<l-STARTTIME 

DO 1 09 L• 1 , T I MES 
IF<<S.NE.O.Ol.ANO.<D.EQ.O.OllTHEN 

oo a 1 o .... 1 • N 

0•1 

00 910 I•1,NCPN+EXT 
A ( .J, I lsA < .J, I l -S*C ( .J, I l 

CONTINUE 

END IF 
IFCGEN.EQ.O.OlTHEN 

K•O 
DO 1976 I•MYA,MVB 

V< I >•O 
K•K+1 

ELSE 

DO 1976 .1•1, N 
V ( I i aY ( I ) +X ( .J l *A ( .J, K l 

CONTINUE 

KaO 
00 789 1•1 ,N 

V2< I >•0 
CONTINUE 

00 976 I•MVA,MVB 
K•K+1 
00 876 .1•1, N 

Y2(J)aV2tll+X<.J>*A<.J,J() 
CONTINUE 
IF tOIM.GT.O.OlTHEN 
DO 2990 J•1,01M 

VTVPE•2**<J-1) 
CALL CRECV<VTVPE,MV,VSIZE> 
00 2330 I•1,N 

Y2( I >•Y2t I >+MY( I l 
CONTINUE 
CALL CSENO t99,V2,VSIZE,-1,APPLPIOl 
ENOl~ 

K•O 
00 996 laMVA,MVB 

Vt I laO. 0 
K•K+1 
DO 886 .1•1 ,N 

V< I l•V< I l+V2C.Il*B<.J,Kl 
CONTINUE 

END IF 

C LOOK FOR LARGEST VALUE TO NORMALIZE VECTOR. THIS WILL 
C BE THE ESTIMATE FOR THE EIGENVALUE. 
c 
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830 
c 

X<MVAl•V<MVAl 
TEV•X<MVAl 
DO 830 ~·MVA+1, MYB 

X!Jl•V<Jl 
IF<ABSCTEVl.LT.ABS<X<~lllTEVsX(~) 

CONTINUE 

C***************************************************** 
c 

c 

c 

88 
c 

1 1 
c 

c 
2201 
c 

DO :38 ~- 1 , D I M 

EIGTVPE•2**<~-1l 

CALL CRECV!EIGTYPE,EIGENSVS,EIGSIZE> 

IF<ABS!TEVl.LT.ABS!EVll TEV•EV 
DO 88 I•TMVA,TMYA+<<2**<~-1ll*NCPNl-1 

X< I l•V (I l 

DO 11 ~-1 IN 
X!J) .. X(~l/TEV 

C~TINUE 

TOL•ABSCTEV*.0001> 
IF!ABS!NXTEV-TEVl.GT.TOLlTSKP•1 
NXTEV•TEV 
IF!!TSKP.EQ.Ol.or.!l.•q.plugll GOTO 12S 

IF!OIM.GT.OlCALL CSENO!ITERTVPE,ITERMSG,ITERSIZE,-1,0) 

IF<SECOND.EQ.11THEN 
DO 641 1•1 ,N 

X!ll•1.0 
641 CONTINUE 

SECCI'IO•O.O 
TSKP•O.O 
GOTO 8201 
END IF 
IF!SECCI'IO.EQ.2lTHEN 
GOTO 4004 
END IF 
TSKP•O.O 

108 CCI'ITINUE 
c 
125 IF!S.EQ.O)THEN 

s-Ts 
TIME$•200.0 
K-o.o 
DO 5234, 1•1 ,NMAT 

K•K+2 
MAXVEC!I ,1l•X<K-1) 
MAXVEC!I ,2l•X<Kl 

CCI'ITINUE 
&lft&X&nlp•L-1 . 0 
SECCI'I0•1 
TSKP•O 
earo 2201 
END IF 
IF!SECONO.EQ.O)THEN 
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4004 
127 

1234 

SECOND•2 
GOTO 2201 
END IF 
DO 127 J•1 ,N 

Y ( J hoX( J) 
SKPaMCLOCK<I-TIME1-starttime 
TMYA•I-1.0 
r&la&m<lfoX&mp 
EV•NXTEV 
EIGENSYS(~IaTIMEl 

K•O.O 
DO 1 234 • I - 1 I NMAT 

K•K+2 
EIGVEC( I I 1 l•Y<K-1) 
E 1 GVEC < 1 I 2 > -v < K > 

CONTINUE 
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c 
C*********** 
c 

TASK THREE AND FOUR *** TASK THREE AND FOUR ********** 

C TAKES THE EIGENVECTOR AND MINIMUM EIGENVALUE AND SOLVES 
C THE FUCTION FOR PEAKS VIA THE TWO EIGENVECTOR ESTIMATOR 
c 

1010 

20 

so 
c 

) 

) 

) 

) 

DOWN•1. 0 
AMAXAMP•1000.0 
Pl•3. 141~926:54 
FINISH•1.~70796327 

INC•.00174~329252 

NUM•INT<1SOO.O/IZEI 
START•NUM*<IZE-11*1NC-FINISH 
LaNINT<START/INCI+900 
PEAK<LI•1000000000000000.0 
DO 910 TaSTART 1FINISH1INC 

L1aL 
T1aT-INC 
L•L+1 
L2•L+1 
PLOT(Ll•O.O 
PLOT<L21a0.0 
PEAK<LI•O.O 
PEAK<L21•0.0 
NSEP•SEP 
DO 20 1•1 1NMAT 

AG•<CC<I-<<NMAT+1.01/2.011*PI*2*NSEPI/WVLTHI*SINCTI> 
AATVALCI,li•COS<AGI 
AATVALCI,21•SINCAGI 

CONTINUE 
DO 30 1•1 ,NMAT 

PLOT<L>•PLOT<LI+<MAXVECCI,1l*AATVAL<I ,1> 
+MAXVECCI ,21*AATVAL<I,211 

PLOT<L2l•PLOT<L21+<MAXVEC<I,11*AATVALCI ,2> 
-MAXVEC<I,2l*AATVAL(I ,111 

PEAKCLI•PEAK<L>+<EJGVECCJ,11*AATVAL<I 1 11 
+EIGVEC<I,21*AATVAL(I,2ll 

PEAK<L2l•PEAK<L21+<EIGVECC1,1l*AATVALCI,2> 
-EIGVECl1,21*AATVALCI ,111 

CONTINUE 



6910 

> CPEAKCLl*peakCil+p•akCI2l*PEAK<L2ll 
IF<PEAKCLl.GT.AMAXAMPlTHEN 

IFCPEAKCLl .GT.PEAKCL1llTHEN 
OOWN•-1. 0 
GOTO 910 

els• 
IF COO.JN .GT. 0. OlGOTO 910 

00 6910 PK•NMSIG,1,-1 

END IF 
•ndif 

IF CPEAKCL1l.LT.OOOACPKllTHEN 
GOTO 6910 

ELSE 
OOOACPK+1l•OOOACPK> 
OAOOACPK+1laOAOOACPKl 
OOOA<PK>•PEAK<L1l 
OAOOACPKl•T1 

END IF 
CONTINUE 
00t.JN•1. 0 

910 CONTINUE 
c 

c 

c 

8910 

:388 

:3899 

c 

00 :388 .J• 1 , 0 I t'l 

OUTTYPE•2**<.J-1J 
CALL CRECVCOUTTYPE,OUTMSG,OUTSIZE> 

00 8910 PK•1,NMSIG 
00 8910 K•NMSIG,1,-1 

CONTINUE 

IF <OOA<PKl.LT.OOOACKll GOTO 8910 
OOOA<K+1l•OOOACKl 
OAOOACK+1l•OA00A(Kl 
OOOACKl•OOACPKl 
OAOOACKlaAOOACPKl 

00:388 I•START,START+<<2**<.J-1ll*NUMl-1 
PEAK ( I l•PLOT C I l 

CONTINUE 
00 :3899 I -1 I 1 0 
OAOOACil•OAOOACI)/.01?4~:3292~2 

CONTINUE 
OUTTYPE•3S 

C********. STOP THE TIMER ALL t.JORK DONE *********************** 
c 

c 
c 

OSTART•MCLOCKCl-SKP-time1-atarttlma 
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C********END OF NODE PARALLEL PROCESSING **** ONLY OUTPUT LEFT********* 
c 

CALL CSENDC30,EIGENSYS, EIGSIZE, HOST, HOSTPIDl 
c 

CALL CSENDCOUTTYPE,OOUTMSG,OUTSIZE,HOST,HOSTPIDl 
c 

CALL FLUSHMSGC-1,-1,0) 
c 

STOP 
C********************************************************************** 



C THIS SECTION IS FOR ALL WORKING NODES. 
C THIS SECTION TAKES THE SHIFT,S, AND SUBTRACTCS IT FROM THE 
C DIAGONAL OF THE MATRIX THE STEERING IS DONE WHEN SaEV 
C INDICATES THIS ACTION ,ELSESHIFT IS ZERO, EXIT. 
c 
99 INITSIZE•4*<NCPN*320) 

c 

PARAMSIZE=-PSZ 
CALL CRECV<PARAMTYPE,PARAMSG<1>,PARAMSIZE> 
CALL CRECV<SECDTYPE, SECDMSG<1l, INITSIZEl 
CALL CRECVCTHRDTYPE, THROMSG(l), INITSIZE> 
CALL CRECV<STARTTYPE, STARTMSG, 41 
s ... o.o 
TSKP=-0.0 
SKP ,.0.0 
D mO.O 

MYB•<MYNOOl*NCPN 
MYA•MY8+1-NCPN 
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c 
C******* 
c 

TASK ONE _ *** TASK ONE *** TASK ONE ****************** 

C THIS ROUTINE CONVERTS THE SAMPLE MATRIX INTO A NXN 
C MATRIX THAT ESTIMATES THE EXPECTED VALUE 
C OF THE SAMPLES ALLOWING A TEMORAL AVERAGING PROCESS TO 
C IMPROVE THE SIGNAL TO NOISE RATIO 
c 

23410 
c 

00 23410 ~-1,NMSP,4 
~2-~+1 

~3-~2+1 

~4-~3+1 

DO 2:3410 K•1,N,2 
DO 23410 L•K,N 

VAL1•Z<K,~>*Z<L,~>+Z<K,~3l*Z<L,~3) 

VAL2•Z<K,~2l*Z<L,~2l+Z<K,~4l*Z<L,~4l 

XO(K,~>•XO(K,L>+VAL1+VAL2 

CONTINUE 

C WRAPPING UP TO RECEIVE AND ADO TO MATRICES COMPUTED HERE 
K•O 

29342 
c 

23:588 
23412 

FIN I SH•N*:320 
INC•2*320+2 

START•-INC+1 
00 29342 ~-1,NMAT 

START•START+INC 
DO 29342 I•START,FINISH,320 

K•K+1 
XQS(Kl•XOS( I l 

CONTINUE 

DO 23:588 1•1,DIM 
IF ((M00(MYN00,2**1ll.NE.OlGOTO 2342 
CALL CRECV<COVTYPE,COVMSG(1l,COVSIZE> 
00 23588 K•1,SCOVSIZE 

XDS<Kl•XDS<Kl+AS<Kl 
CONTINUE 
DEST•MYN00-<2**<1-1ll 

• 
CALL CSEND<CDVTYPE,COVUPMS8<1l, COVSIZE, DEST, PIC) 

c 



23431 
23441 

2333 
c 

K•DIM 
DO 2343 1 I • 1 , D I M 

KaK-1. 0 
IF <MOO<MYN00,2**Kl.EQ.OlGOTO 23441 

CONTINUE 
FCOVSIZE•NCPN*<320*4l*2**K 
CALL CRECV<FCOVTYPE,COVMSG<1l,FCOVSIZE> 
DO 2333 I • 1 , K 

FCQVSlZE•NCPN*<320*4l*2**<K-I) 
DESTaMYN00+2**<K-I l 
La<320*NCPN*<2**<K-I lll+1 
CALL CSEND<FCOVTYPE,COVMSG(Ll,FCOVSIZE,DEST,Ol 

CONTINUE 

DO 343 K•1 ,N-1 .~ 
K2•K+1 
DO 343 Lal,NCPN-1,2 

L2sL+1 
ACK2,Ll•-A<K,L2l 
ACK2,L2laA(K,Ll 

343 CONTINUE 
c 
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C********** 
c 

TASK 2 *** TASK 2 *** TASK 2 ****************** 

c 
c 

ROUTINE EIGPOWER TAKES THE A MATRIX, WHICH MAY BE SHIFTED 
AND OUTPUTS THE ESTIMATED 

C EIGENVECTOR, AND EIGENVALUE. 
c 

201 

10 

5197& 

7& 
c 

TIMES•TIMES+1 
TIMES•TIMES-1 
IF <TIMES.LT.O.OlGOTO 1000 

IF<<S.NE.O.Ol.AND.<D.EQ.O.OllTHEN 
DO 10 .J•1 ,N 

DO 10 1•1 ,NCPN 
A< .J, 1 l•A ( ..1, 1 l -s•c < .J, I l 

CONTINUE 
Dsl 

END IF 
SKPaO.O 
IF<GEN.EQ.O.OlTHEN 

K•O 
DO 5187& I•MYA,MYB 

Y (I l,.Q. 0 

K•K+1 
DO 5 1876 .J• 1 I N 

Y(llaY(I)~X(.Jl*A<.J,Kl 

CONTINUE 
ELSE 

K•O 
DO 545& 1•1 ,N 

Y2<1l•O.O 
CONTINUE 
DO 7& I•MYA,MYB 

K•K+1 
DO 76 .Jal, N 

Y2<1l•Y2Cil+X<.J>*A<.J,Kl 
CONTINUE 



2532 
2533 

c 

88 

c 

00 2532 ..J,. 1 , 0 I M 
IF <<MOO!MYN00 12**..Jll.NE.OlGOTO 2533 

YTYPEaMYNOD+2**<..J-1) 
CALL CRECV<YTYPE 1MY 1YSIZEl 
00 2532 I a1 , N 

Y2 ( I h•Y2 ( I l+MY ( I l 
CONTINUE 
OEST~MYN00-2**<..J-1l 

CALL CSENO!MYNOOIY2,YSIZE~DESTI PIC> 
CALL CRECV!99,Y2,YSIZEl 

KaO 
00 88 I•MYA1MYB 

Y ( I ) aO. 0 
KaK+1 
co ae ..,_,IN 

CONTINUE 
END IF 

Y< I >•Y< I >+Y2(..Jl*B<..J 1IO 

C LOOK FOR LARGEST VALUE TO NORMALIZE VECTOR. THIS WILL 
C BE THE ESTIMATE FOR THE EIGENVALUE. 
c 

1130 
41 

c 
42 
c 

3234 

EVaY!MYA> 
DO 1130 ..J•MYA+1 1MYB 

IF<ABS<EVl.LT.ABS<Y<..JlllEV•Y<..J> 
CONTINUE 

DO :588 la1 101M 
IF <<M00(MYN00 12**1ll.EQ.0) GOTO 597 

OEST•MYN00-<2**<1-1ll 
TMYA•MYA 
EIGTYPE•MYNOO 

CALL-CSENO<EIGTYPE 1EIGENSYS, EIGSIZE, OEST1 PIC) 

CALL CRECV<ITERTYPE, ITERMSG, ITERSIZEl 
IF <SECONO.EQ.1JTHEN 

TIMES-200.0 
K•O.O 
DO 3234 I ..,_ 1 I NMAT 

K•K+2 
MAXVEC(..J,1laXCK-1l 
MAXVECC..J,2l•X!K) 

CONTINUE 
DO 184 1 .... 1 IN 

)((..J >•1. 0 
1841 CONT I NUE 

c 
:587 

511 

END IF 
IF <SECONO.EQ.2>GOTO 1000 

GOTO 201 

DO 511 ..J•MYAIMYA+<NCPN*2**<1-1ll-1 
X!..Jl•Y<..J> 

CONTINUE 
TSKP•SKP 
NXTEV•EV 
EIGTYPE•MYNOD+2**<1-1) 
CALL CRECV!EIGTYPE,EIGENSYS,EIGSIZEJ 
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c 

c 

c 

TSKP•TSKP+SKP 

IF (ABS<NXTEVl.GT.ABSIEVll EVsNXTEV 

DO 581 KaMYA,TMYA-1 
Y(IO•X<K l 

58 1 CONT I NUE 
SKP:aTSKP 

See CONTINUE 
STOP 

c 
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c 
C*********** TASK THREE AND FOUR *** TASK THREE AND FOUR ********** 
c 
C TAKES THE MAX EIGENVECTOR AND MINIMUM EIGENVECTOR AND SOLVES 
C THE FUCTION FOR PEAKS VIA T~R TWO-EIGENVAVECTOR ESTEMATOR 
c 
1000 

91234 

91010 

9 

920 

) 

) 

K•O 
DO 91234, 1•1 ,NMAT 

K•K+2 
EIGVEC<I,1lsX<K-1l 
EIGVECCI,2l•X<Kl 

CONTINUE 
DOWN•1. 0 
MAXAMP•1000.0 
P I •3. 141 592654 
FINISH•1.570796327 
INC ... 001745329252 

NUM•INT< 1800.0/IZEl 
START•<MYN00-1.0l*NUM*INC-FINISH 
FINISH•START+<NUM+1>*1NC 
L•NINTCSTART/INCl+900 
PLOT<Ll•1000000000000.0 
DO 9 T•te13,1e34 

OUTMSG<Tl•O.O 
CONTINUE 
DO 9910 T•START,FINISH,INC 

L1•L 
T1•T-INC 
L•L+l 
L2:aL+1 
PLOT<Ll•O.O 
PLOTCL2l•O.O 
PEAK<LJ•O.O 
PEAK<L2l~O.O 

NSEP•SEP 
DO 920 1•1 ,NMAT 

AG•<<<<I-<<NMAT+1.0l/2.0l>*PI*2*NSEPl/WVLTHl*SIN<T>> 
AATVAL<I ,tlsCOS<AGl 
AATVALCI,2l•SIN<AG> 

CONTINUE 
DO 930 1•1 ,NMAT 

PLOTCLJ•PLOTCLJ+CMAXVECCI ,1l*AATVAL<I ,1) 
+MAXVEC\1 ,2J*AATVALCI,2lJ 

PLOTCL2l•PLOT<L2J+<MAXVECCI,1l*AATVAL(I,2J 
-MAXVEC<I,2l*AATVAL<I,1lJ 

PEAKCLJ•PEAKCLJ+CEIGVECCI ,1J*AATVAL(I,1J 



930 
c 

29910 

9910 
c 

741 

742 
c 

c 
7587 

7511 

2751 

.. 
c 

> 

> 

> 

18910 
c 

+EIGVECCI ,2l*AATVALCI ,2>> 
PEAKCL2laPEAKCL2l+CEIGVECCI ,ll*AATVALCI ,21 

-EIGVECCI ,2l*AATVALCI ,1)) 
COI'ITII'IUE 

PLOTCLl•C CPLOTCL>*plot( ll+plotC.12>*PLOTCL2l >**2l/ 
CPEAKCL>*peak<l>+peakCI2l*PEAKCL2)) 

IFCPLOTCLl.GT.MAXAMPlTHEI'I 
IFCPLOT<L>.GT.PLOTCLlllTHEI'I 

Do.ll'la-1. 0 
GOTO 9910 

ELSE 
IF <DOWI'I.GT.O.Ol GOTO 9910 

DO 29910 PK•I'IMSIG,1,-1 

ELSE 

IF CPLOTCL1l.LT.DOA<PKllTHEI'4 
GOTO 29910 

OOACPK+1laDOACPKl 
AOOACPK+t >•ADOACPKl. 
DCA C PK > •PLOT ( L 1 l 
AOOACPKl•T1 

EI'IDIF 
COI'ITII'IUE 

DOWI'4•1. 0 
EI'IOIF 
EI'IOIF 

COI'ITII'IUE 

SSTART•I'411'4TCSTART/11'4Cl+901 
DO 7588 1•1 ,DIM 

IF CCMOOCMYI'400,2**1ll.EQ.Ol GOTO 7587 
DEST•MYI'IOD-<2**<1-1l> 
START•SSTART 
OUTTYPE•MYI'IOO 

CALL CSEI'IOCOUTTYPE,OUTMSG,OUTSIZE, OEST, PIO> 

STOP 

00 7511 J•SSTART,SSTART+CI'IUM*2**<1-1ll 
PEAKC..Jl•PLOTC..J> 

COI'ITII'IUE 
DO 2751 ..1•1813,1834 

PEAKC..Jl•PLOTCJ> 
CONTINUE 
OUTTYPE•MYI'IOO+l2**<1-1ll 
CALL CRECVCOUTTYPE,OUTMSG,OUTSIZE> 

00 18910 PK•I,NMSIG 
00 18910 K•I'IMSIG,1,-1 

IF COOACPKl.LT.OOOACKllGOTO 18910 
OOOA<K+ 1 >•OOOACK l 

COI'ITINUE 

OADOAC K+1 l•OAOOAC K l 
OOOACKl•OOACPKl 
OAOOA C K l •ADOA C PK l 

00 1588 J•START,START+CC2**CI-1ll*NUMl-1 
PEAKC.Jl•PLOTC.Jl 

229 



1588 

5678 

4352 
7588 
c 

CONTINUE 
00 5678 ~-SSTART,START+CC2**<1-1))*NUM) 

PLOT<.J>•PEAK(J) 
CONTINUE 
00 4352 ~a1813,1834 

PLOT(J)aPEAK<.J> 
CONTINUE 
CONTINUE 

230 

C********ENO OF NODE PARALLEL PROCESSING **** ONLY OUTPUT LEFT********* 
c 

STOP 
c 
C******************** STOP STOP 
c 

STOP ********************** 

C THIS IS A NODE IDLE CONDITION TO RECEIVE MSG AND NOT STOP CUBE 
c 
100 CALL CRECV(ITERTYPE,ITERMSG,ITERSIZEJ 

IFCSECOND.EQ.2lTHEN 

c 

PRINT *•'STOPPED NODEa' ,MYNOD 
STOP 
END IF 
GOTO 100 

ENO 
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