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ABSTRACT 

In roll-to-roll processes, slip between a web and a roller may be considered a defect. 
Slip can cause scratches which can be detrimental to a product, if not catastrophic. As 
line speeds increase to meet demands for more product per unit of operating time, the 
likelihood of slip increases. Slip may be partial or total, or a combination of both. In this 
paper we consider total slip only, i.e. slip over the entire area of contact between a web 
and a roller. 

Whitworth [1] defined criteria for when full slip initiates, and developed a model for 
how slip affects the tension in the spans on either side of a roller where slip occurs. A 
Sliding Friction Driven Roller (SFDR) model is developed in this paper to account for the 
case where the web slides on the roller. The SFDR model uses the Whitworth criteria and 
span tension model. Both the Whitworth and SFDR models use the Capstan equation to 
determine if slip is occurring. With the Whitworth model, full adhesion of the web on the 
roller occurs until the torque which drives the roller, due to the tensions in the span on 
either side of the roller, reaches a critical level and slip initiates.  But, with the SFDR 
model the torque which drives the roller is due to sliding friction between the web and 
roller. 

The Euclid Web Line (EWL) in the Web Handling Research Center at Oklahoma 
State University was used to study slip both analytically and experimentally. A nonlinear 
dynamic model of the EWL was developed. Measured physical characteristics of the 
elements in the EWL were used in the analytical studies. Simulations for the case of a 
startup with an industrial ramp input in speed, showed that the Whitworth model is valid 
when the web and roller are moving at almost the same rotary speeds.  However, 
simulations showed that the SFDR model covers the total slip situation when the 
tangential velocity of the roller and web velocity are distinctly different.  

The simulations also showed that the torque due to bearing friction at a roller had to 
be equal to the torque due to the difference in tensions in the spans on either side of the 
roller in order for the initiation of slip to occur. Calculations using the measured bearing 
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friction on the roller of interest show that slip would not occur at speeds the EWL could 
attain. 

In the experimental studies, a parasitic torque was applied to a roller mounted on 
load cells to create a slip condition. Hanging weights were used to apply the parasitic 
torque. An encoder was mounted on this roller to measure rotary velocity of the roller. 
Results from the experimental studies showed that the Whitworth model was valid only 
when the parasitic torque was small. In contrast, experimental studies showed that the 
SFDR model was valid only when the parasitic torque was large. 

NOMENCLATURE 

𝛿𝛿 - Angle to the resultant force  
𝜃𝜃𝑖𝑖𝑖𝑖 - Angle on a roller to the incoming span 
𝜃𝜃𝑜𝑜𝑖𝑖 - Angle on a roller to the outgoing span 
𝜃𝜃𝑤𝑤𝑖𝑖 - Angle of wrap on a roller  
𝜇𝜇𝑖𝑖 - Coefficient of friction between web and roller 
𝜙𝜙 - Ratio of web properties across the roller 
𝐴𝐴 - Cross-sectional area of the web (width×thickness) 
𝐵𝐵𝑓𝑓𝑖𝑖  - Bearing friction  
𝐶𝐶𝑚𝑚𝑖𝑖 - Motor damping  
𝐶𝐶𝑝𝑝𝑖𝑖 - Dancer torsional damping constant 
𝐸𝐸  - Young’s Modulus 
𝑓𝑓𝑞𝑞𝑖𝑖 - Dancer input torque 
𝐺𝐺𝑅𝑅𝑖𝑖 - Gear Ratio between motor and shaft in contact with the web 

(number of shaft rotations per motor rotation) 
𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 - Indicator storing the direction of slip 
𝐽𝐽𝑚𝑚𝑖𝑖  - Motor Inertia 
𝐽𝐽𝑝𝑝𝑖𝑖 - Dancer arm inertia 
𝐽𝐽𝑠𝑠𝑖𝑖 - Inertia of the shaft in contact with the web 
𝐾𝐾𝑚𝑚𝑖𝑖 - Motor constant  
𝐾𝐾𝑝𝑝𝑖𝑖  - Dancer torsional spring constant 
𝐿𝐿𝑎𝑎𝑎𝑎𝑚𝑚 - Dancer arm length 
𝐿𝐿𝑖𝑖 - Free span length 
𝑙𝑙𝑐𝑐𝑐𝑐 - Dancer center of gravity location from pivot 
𝑚𝑚𝑝𝑝  - Dancer mass 
𝐼𝐼 - Index number (e.g., 𝐼𝐼 + 1,𝐼𝐼,𝐼𝐼 − 1,𝐼𝐼 − 2) 
𝑅𝑅𝑖𝑖 - Roller or roll radius 
𝑡𝑡𝑖𝑖 - Tension in the web span 
𝑡𝑡𝑖𝑖𝑠𝑠  - Slip tension  
𝑢𝑢𝑖𝑖 - Current Input to the motor 
𝑉𝑉𝑖𝑖,0 - Roller steady-state tangential velocities 
𝑣𝑣𝑖𝑖 - Roller tangential velocity 

INTRODUCTION 

Slip may be partial or total, or a combination of both. This paper considers total slip 
only, i.e. slip over the entire area of contact between a web and a roller.  Partial slip is an 
interface phenomena which is beyond the scope of this paper.  When total slip occurs, the 
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instantaneous speed of the web is different than the surface speed or tangential speed of 
the roller.  This idea is used later in this paper to develop a model for slip. 

The factors involved in the initiation of total slip between a web and a roller have 
been studied in the past by Brandenburg [2] who set up the notation and theory using 
continuum mechanics.  The region of contact is assumed to be divided into three regions 
– an entry region of slip, a region of adhesion, and an exit region of slip.  Like 
Brandenburg, Whitworth [1] divides the region of contact on the roller where slip may 
occur into three regions.  The roller where slip occurs is designated roller 𝐼𝐼, the incoming 
span as span 𝐼𝐼 − 1, and the outgoing span as span 𝐼𝐼.  The continuity equations for spans 
𝐼𝐼 − 1 and 𝐼𝐼 are combined with Hooke’s law, to develop an equation relating the tensions 
𝑇𝑇𝑖𝑖−1 and 𝑇𝑇𝑖𝑖 and velocities 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖+1.   From this equation, equations are developed for 
the region of adhesion and the region of slip.  It is assumed that there is a temporary loss 
of adhesion between the web and the roller 𝐼𝐼, but that adhesion is maintained on rollers 
𝐼𝐼 −  1 and 𝐼𝐼 +  1.  When slipping occurs, the derivatives 𝑑𝑑𝑇𝑇𝑖𝑖−1/𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑇𝑇𝑖𝑖/𝑑𝑑𝑡𝑡 are not 
defined.  However, from dynamic considerations, 𝑇𝑇𝑖𝑖−1 and 𝑇𝑇𝑖𝑖 must be continuous 
functions of time.  Using the Capstan equation leads to the following equations: 

 𝑇𝑇𝑖𝑖−1𝑠𝑠 = 
𝐿𝐿𝑛𝑛−1
𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑛𝑛−1𝑎𝑎𝑎𝑎 +𝐿𝐿𝑛𝑛

𝑒𝑒𝑒𝑒𝑒𝑒Tn𝑎𝑎𝑎𝑎

𝐿𝐿𝑛𝑛−1
𝑒𝑒𝑒𝑒𝑒𝑒 +𝐿𝐿𝑛𝑛

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜇𝜇𝑛𝑛𝜃𝜃𝑤𝑤𝑛𝑛
 {1} 

 𝑇𝑇𝑖𝑖𝑠𝑠 = 𝑇𝑇𝑖𝑖−1𝑠𝑠 𝑒𝑒𝜇𝜇𝑛𝑛𝜃𝜃𝑤𝑤𝑛𝑛  

where 𝐿𝐿𝑖𝑖−1
𝑒𝑒𝑓𝑓𝑓𝑓  and 𝐿𝐿𝑖𝑖

𝑒𝑒𝑓𝑓𝑓𝑓 are the effective lengths of the incoming and outgoing spans 
considering the roller is slipping, 𝑇𝑇𝑖𝑖−1𝑎𝑎𝑎𝑎 and 𝑇𝑇𝑖𝑖𝑎𝑎𝑎𝑎 are the incoming and outgoing span 
tensions assuming adhesion on roller 𝐼𝐼, 𝜇𝜇𝑖𝑖 is the coefficient of friction between web and 
roller, and 𝜃𝜃𝑤𝑤𝑖𝑖 is the wrap angle of the web on roller 𝐼𝐼.  Equation {1} will be used in a 
slightly modified form later in this paper. 

Ducotey and Good studied the effects of air entrainment on traction in [3].  No slip 
would be total traction while total slip would be no traction.  Knowing characteristics of 
the web and roller, they were able to predict when total slip would occur.  They 
developed a numerical method for the calculation of the coefficient of traction in [4].  In 
addition they studied the effects of web permeability and side leakage of air from 
between the web and roller on the thickness of the air film in [5]. They demonstrated that 
air film thickness is key to the prediction of total slip or loss of traction.   

Dwivedula and Pagilla [6] proposed an alternate method for modeling slip which 
they argued would be better than that those previously developed when developing 
tension control schemes for web processing systems.   Expressions were developed for an 
effective friction force and an effective normal force when the web is slipping over the 
entire region of contact between the web and roller.  It was necessary to define and 
employ a traction model.   A classical model of traction was selected, which included 
stiction, Coulomb friction, and viscous friction. The result is shown in Equation {2}. 

 𝑣𝑣𝑎𝑎,𝑖𝑖 = 𝑣𝑣𝑖𝑖 + 𝑡𝑡𝑖𝑖
𝑏𝑏
�1 − 𝑝𝑝�1 − 𝑒𝑒−𝜇𝜇𝑖𝑖𝜃𝜃𝑤𝑤𝑖𝑖� − 𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
� {2} 

where 𝑣𝑣𝑎𝑎,𝑖𝑖  is the velocity of the roller, 𝑣𝑣𝑖𝑖 is the velocity of the web, 𝑡𝑡𝑖𝑖 is the tension in 
the incoming span, 𝑡𝑡𝑖𝑖+1 is the tension in the outgoing span, 𝜃𝜃𝑤𝑤𝑖𝑖  is the wrap angle, µ𝑖𝑖 is 
the coefficient of friction of the web on the roller, and 𝑝𝑝 and 𝑏𝑏 are constants. 



4 

If the web is not slipping on the roller, 𝑣𝑣𝑎𝑎,𝑖𝑖 = 𝑣𝑣𝑖𝑖 .  But if the web is slipping on the 
roller, the velocity of the roller is generally less than that of web.  The reduction in 
velocity of the roller is dependent on the incoming and outgoing tensions, the wrap angle 
and the coefficient of friction. Equation {2} was combined with the dynamic equation for 
the incoming web span to show the effects of slip on tension.  Two conclusions were that 
when slipping occurs (i) there may be tension oscillations in the incoming and outgoing 
spans, and (ii) disturbances in the downstream span may propagate upstream.     

THE EUCLID WEB LINE 

The Euclid Web Line (EWL) is one of three major lines in the Web Handling 
Research Center at Oklahoma State University.  The EWL was used to study slip both 
analytically and experimentally.    Figure 1 is a photo of the EWL taken from the 
unwinding end. Figure 2 is a schematic diagram of the EWL.  The line has four primary 
control sections: a dancer-controlled unwind, the s-wrap, the process section between the 
s-wrap and the pull roll, and the rewind. The unwind section is the focus of this paper.  
The EWL has capacity for up to a 16 inch wide web and up to 50 lbf of tension.  Lateral 
guides are located on both the unwind and rewind ends to facilitate running the EWL 
forwards or backwards at web velocities up to 500 FPM.  The idlers on this line are 3 
inch diameter, steel sleeved rollers.  

 

Figure 1 – Photo of the Euclid Web Line.  The unwind section is in the foreground. 

 

Figure 2 – Schematic diagram of the Euclid Web Line 
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MODELING AND MEASUREMENTS 

Since the s-wrap section essentially isolates the unwind section from the process and 
rewind sections, the studies reported in this paper were limited to the unwind section.  
The unwind section contains one unwind roll, seven idlers, one dancer, and terminates at 
the lead s-wrap driven roller.  It has nine free spans.  The dynamic model used for 
simulating the unwind section is a coupled set of algebraic and differential equations.  It 
is made specific by the parameters used in the models.  For the simulations in this paper, 
the parameters have been measured, calculated from experiments, or found in 
documentation of the EWL and its components.   

Unwind Roll and Motor Model 
A physical model of the unwind roll and motor is shown in Figure 3.   

 

Figure 3 – Physical model of the unwind roll and motor (Adapted from [7]) 

The unwind roll and motor is modeled using a summation of moments about the spindle 
contacting the web.  The result shown below.  

 𝐽𝐽𝑖𝑖
𝑎𝑎𝑣𝑣𝑛𝑛
𝑎𝑎𝑡𝑡

= −�𝐵𝐵𝑓𝑓𝑖𝑖 + 𝐶𝐶𝑚𝑚𝑖𝑖�𝑣𝑣𝑖𝑖 + 𝑅𝑅𝑛𝑛𝐾𝐾𝑚𝑚𝑛𝑛𝑢𝑢𝑛𝑛
𝐺𝐺𝑅𝑅𝑛𝑛

+ 𝑅𝑅𝑖𝑖2𝑡𝑡𝑖𝑖 {3} 

where 𝑣𝑣𝑖𝑖 is the tangential speed of the unwind roll and the gear ratio, 𝐺𝐺𝑅𝑅𝑖𝑖, is defined as 
rotations of the shaft per rotation of the motor, and the inertia, 𝐽𝐽𝑖𝑖, includes the unwind 
roll inertia and the motor inertia reflected onto the shaft through the gear ratio. Referring 
to Figure 2, 𝐼𝐼 = 1.  The model, as shown, is linearized because it does not account for 
the unwind roll diameter decreasing as the line is operating.  The change to nonlinear is 
not difficult in this case because the radius involved becomes a state of the system and 
the inertia of the roll is calculated from that state.  

Rewind Motor Model 
The rewind motor also is modeled as a summation of moments about the spindle 

contacting the web.  Referring to Figure 2, 𝐼𝐼 = 25.  The result is 

 𝐽𝐽𝑖𝑖
𝑎𝑎𝑣𝑣𝑛𝑛
𝑎𝑎𝑡𝑡

= −�𝐵𝐵𝑓𝑓𝑖𝑖 + 𝐶𝐶𝑚𝑚𝑖𝑖�𝑣𝑣𝑖𝑖 + 𝑅𝑅𝑛𝑛𝐾𝐾𝑚𝑚𝑛𝑛𝑢𝑢𝑛𝑛
𝐺𝐺𝑅𝑅𝑛𝑛

− 𝑅𝑅𝑖𝑖2𝑡𝑡𝑖𝑖 {4} 

The Free Span Model 
A physical model of the free span is shown in Figure 4.  The free span of web is 

assumed in  
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Figure 4 - Physical model of the free span with control volume indicated. 

this paper to be linear-elastic, have constant cross sectional area, and undergo small 
strains.   With these assumptions, it is demonstrated in [8] and [9] that the following 
nonlinear differential equation results from a combination of the law of conservation of 
mass for the control volume, and the application of Hooke’s Law 

 𝐿𝐿𝑖𝑖
𝑎𝑎𝑡𝑡𝑛𝑛
𝑎𝑎𝑡𝑡

= 𝐸𝐸𝐴𝐴(𝑣𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖) + (𝑣𝑣𝑖𝑖𝑡𝑡𝑖𝑖−1 − 𝑣𝑣𝑖𝑖+1𝑡𝑡𝑖𝑖) {5} 

where 𝑡𝑡𝑖𝑖 is the tension in the span of interest, 𝑡𝑡𝑖𝑖−1 is the tension in the previous span 
(showing strain transport downstream), 𝑣𝑣𝑖𝑖 is the speed of the roller at the entering end of 
the span, and 𝑣𝑣𝑖𝑖+1 is the speed at the outgoing end of the span.  The differential Equation 
{5} is nonlinear because of the multiplication of roller speeds and span tensions. 

Idle Roller Model  
A physical model of an idle roller is shown in Figure 5.  The idle roller is modeled 

by taking a summation of moments about the idle roller’s shaft which include the bearing 
friction and the torques applied by the two span tensions as shown below: 

 
𝑎𝑎𝑣𝑣𝑛𝑛
𝑎𝑎𝑡𝑡

 = 1
𝐽𝐽𝑛𝑛
�−𝐵𝐵𝑓𝑓𝑖𝑖𝑣𝑣𝑖𝑖 + 𝑅𝑅𝑖𝑖2(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1)� {6} 

where 𝑣𝑣𝑖𝑖 is the tangential speed of the idler, 𝑡𝑡𝑖𝑖 is the downstream span tension, and 
𝑡𝑡𝑖𝑖−1is the upstream span tension.   

 

Figure 5 – Physical model of an idle roller 

S-Wrap Roller Model 
A physical model of an s-wrap roller is shown in Figure 6.  The s-wrap roller is 

modeled by  
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Figure 6 – Physical model of an s-wrap roller 

taking a summation of moments about the roller’s shaft, which include the bearing 
friction and the torques applied by the two span tensions, and the torque from the motor 
driving the s-wrap roll.    The summation of moments is  

 𝐽𝐽𝑖𝑖
𝑎𝑎𝑣𝑣𝑛𝑛
𝑎𝑎𝑡𝑡

= −�𝐵𝐵𝑓𝑓𝑖𝑖 + 𝐶𝐶𝑚𝑚𝑖𝑖�𝑣𝑣𝑖𝑖 + 𝑅𝑅𝑛𝑛𝐾𝐾𝑚𝑚𝑛𝑛𝑢𝑢𝑛𝑛
𝐺𝐺𝑅𝑅𝑛𝑛

+ 𝑅𝑅𝑖𝑖2(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) {7} 

where 𝐶𝐶𝑚𝑚𝑖𝑖 is the motor damping and 𝐾𝐾𝑚𝑚𝑖𝑖 is the motor torque constant.    

Dancer Model 
A physical model of the dancer system is shown in Figure 7.    

 

Figure 7 – Physical model of the dancer 

The dancer is modeled by taking a summation of moments about the pivot of the 
pendulum and using modified free span models for the upstream and downstream spans.  
The summation of moments is  

 
𝑎𝑎2𝛾𝛾
𝑎𝑎𝑡𝑡2

 = 1
𝐽𝐽𝑝𝑝𝑛𝑛

�
−𝐶𝐶𝑝𝑝𝑖𝑖�̇�𝛾 − 𝐾𝐾𝑝𝑝𝑖𝑖𝛾𝛾 + 𝑓𝑓𝑞𝑞𝑖𝑖 − 𝑡𝑡𝑖𝑖−1(Larm + Rn)

−𝑡𝑡𝑖𝑖(Larm − Rn) + 𝑚𝑚𝑝𝑝𝑔𝑔𝑙𝑙𝑐𝑐𝑐𝑐 sin(𝛾𝛾)  � {8} 

where 𝐿𝐿𝑎𝑎𝑎𝑎𝑚𝑚 − 𝑅𝑅𝑖𝑖 is the distance from the pivot to the point of contact of the dancer roller 
and the downstream span, 𝐿𝐿𝑎𝑎𝑎𝑎𝑚𝑚 + 𝑅𝑅𝑖𝑖 is the distance from the pivot to the point of contact 
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of the dancer roller and the upstream span, 𝐾𝐾𝑝𝑝𝑖𝑖 is the spring constant of the dancer and 
𝐶𝐶𝑝𝑝𝑖𝑖 is the damping in the pivot of the dancer arm and torque application system, 𝑚𝑚𝑝𝑝 is 
the mass of the pendulum dancer,  and 𝑔𝑔 is the gravity constant, and 𝑙𝑙𝑐𝑐𝑐𝑐 is the distance 
from the pivot to the center of gravity of the pendulum.  The upstream and downstream 
free span models are modified to account for the effect of variable span length due to the 
swing of the pendulum: 

 𝐿𝐿𝑖𝑖−1
𝑎𝑎𝑡𝑡𝑛𝑛−1
𝑎𝑎𝑡𝑡

= 𝐸𝐸𝐴𝐴(𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1) + (𝑣𝑣𝑖𝑖−1𝑡𝑡𝑖𝑖−2 − 𝑣𝑣𝑖𝑖𝑡𝑡𝑖𝑖−1) + (𝐸𝐸𝐴𝐴 − 𝑡𝑡𝑖𝑖−1) ⋅ �̇�𝐿𝑖𝑖−1 {9} 

and 𝐿𝐿𝑖𝑖
𝑎𝑎tn
𝑎𝑎𝑡𝑡

= 𝐸𝐸𝐴𝐴(𝑣𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖) + (𝑣𝑣𝑖𝑖𝑡𝑡𝑖𝑖−1 − 𝑣𝑣𝑖𝑖+1𝑡𝑡𝑖𝑖) + (𝐸𝐸𝐴𝐴 − 𝑡𝑡𝑖𝑖) ⋅ �̇�𝐿𝑖𝑖 {10} 

where these equations are indexed as if the dancer roller were 𝐼𝐼, and �̇�𝐿𝑖𝑖 is the time 
derivative of the 𝐼𝐼th span length.   Equations {9} and {10} are nonlinear, but can be 
linearized assuming small variations of all variables about a steady-state operating point, 
and by assuming that the pendulum angle 𝛾𝛾 is always sufficiently small such that sin 𝛾𝛾 ≈
𝛾𝛾.  

SLIP MODELS 

Whitworth developed an approach to estimate the tensions in the spans upstream and 
downstream of a roller where slipping, occurs and defined criteria for determining if slip 
is occurring or not [1].  The criteria utilize the Capstan equation: 

 � 𝑡𝑡𝑛𝑛
𝑡𝑡𝑛𝑛−1

� = 𝑒𝑒(−𝜇𝜇𝑛𝑛𝜃𝜃𝑤𝑤𝑛𝑛) {11} 

where 𝐼𝐼 designates the nth roller, 𝜇𝜇𝑖𝑖 is the coefficient of friction of the web on the roller, 
and 𝜃𝜃𝑤𝑤𝑖𝑖 is the wrap angle of the web on the roller.  Rearranging Equation {11} and 
recognizing that it can be represented as two inequalities, results in the two criteria 
defined by Whitworth. 

 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1𝑒𝑒(−𝜇𝜇𝑛𝑛𝜃𝜃𝑤𝑤𝑛𝑛) < 0 {12} 

 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1𝑒𝑒(𝜇𝜇𝑛𝑛𝜃𝜃𝑤𝑤𝑛𝑛) > 0 {13} 

Equation {12} indicates the case when the web speed is less than the roller speed and 
Equation {13} indicates the case when the web speed is greater than the roller speed.  
The upstream and downstream tensions for the case where there is slip are 𝑡𝑡𝑖𝑖−1𝑠𝑠  and 𝑡𝑡𝑖𝑖𝑠𝑠   
respectively.   A derivation involving the free span equations gives the results (modified 
versions of Equation {1}). 

 𝑡𝑡𝑖𝑖−1𝑠𝑠 = 𝑡𝑡𝑛𝑛−1𝐿𝐿𝑛𝑛−1+𝜙𝜙𝑡𝑡𝑛𝑛𝐿𝐿𝑛𝑛
𝐿𝐿𝑛𝑛−1+𝐿𝐿𝑛𝑛𝜙𝜙𝑒𝑒𝐼𝐼𝑛𝑛𝑎𝑎𝑛𝑛 𝜇𝜇𝑛𝑛𝜃𝜃𝑤𝑤𝑛𝑛

 {14} 

and 𝑡𝑡𝑖𝑖𝑠𝑠 = 𝑡𝑡𝑖𝑖−1𝑠𝑠 𝑒𝑒𝐼𝐼𝑖𝑖𝑎𝑎𝑛𝑛 𝜇𝜇𝑛𝑛𝜃𝜃𝑤𝑤𝑛𝑛 {15} 

where 𝜙𝜙 = 𝐸𝐸𝑛𝑛−1𝐴𝐴𝑛𝑛−1 
𝐸𝐸𝑛𝑛𝐴𝐴𝑛𝑛

 and is the ratio of web properties across the roller number 𝐼𝐼, 𝑡𝑡𝑖𝑖−1 is 
the tension in the incoming span assuming adhesion (which is replaced by 𝑡𝑡𝑖𝑖−1𝑠𝑠 if a slip 
condition is true),  𝐿𝐿𝑖𝑖−1 is the span length of the incoming span assuming adhesion 
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(instead of the 𝐿𝐿𝑖𝑖−1
𝑒𝑒𝑓𝑓𝑓𝑓  as shown in [10].  Whitworth assumes 𝐿𝐿𝑖𝑖−1

𝑒𝑒𝑓𝑓𝑓𝑓 ≈ 𝐿𝐿𝑖𝑖−1������, the average 
span length, which he assumes is 𝐿𝐿𝑖𝑖−1 in [1]), and 𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 is the slip indicator taking a 
value of −1, 0, or 1 based on Equations {12} and {13}.  If Equation {12} is true, then 
𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 = −1. If Equation {13} is true, then 𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 = 1.  If neither Equations {12} nor {13} 
are true, then 𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 = 0 [1].  Equations {14} and {15} are the results of strain matching 
the effective span length when the web is slipping to the strains determined when no slip 
condition is assumed to exist.  Whitworth’s model is a two-step process:  first simulate an 
instant in time of a web process assuming no slip, then use the criteria to check for slip 
and adjust the span tensions if slip exists.   

Ducotey and Good present a model in [3] and [4] that predicts a coefficient of 
traction between a web and a roller.  The coefficient of traction depends on the air film 
thickness between the web and roller and the surface roughness of both the roller and the 
web.  The model shows that the coefficient of traction virtually decreases to zero as the 
air film thickness increases.  Once the air film thickness is large enough so that the 
traction becomes sufficiently small, no appreciable input torque is supplied by the web to 
the roller.  In this case, a roller that is first spinning would spin down to a stop because of 
bearing friction alone.   

The Sliding Friction Driven Roller (SFDR) Model 
The Whitworth model is limited to the regime of slip where the change in span 

tension is affected by the additional length of the web in virtual contact with the roller.  
The Ducotey-Good model assumes an air film exits between the web and roller, which in 
the limit would allow for an effective disconnect of the web and roller.  But, both the web 
and the roller have surfaces with asperities (roughness).   Some level of adhesion due to 
contact between asperities is necessary if torque is to be transmitted from the web to the 
roller.  If the air film thickness exceeds the asperities, torque can only be transmitted due 
to the viscosity of the air.  This would be very small in a practical case. 

The authors of this paper assumed that if the roughness of either the web or roller is 
sufficient, and the normal force between the web and roller is sufficient, torque will be 
transmitted through sliding friction.  This assumption is the basis for the sliding friction 
driven roller (SFDR) model.  The effects of slip are passed to the roller through decreases 
in the tension difference across the roller.  A constant coefficient of friction between the 
web and roller and Whitworth’s tension model are used in the SFDR.  The result is a 
model for the roller during sliding as shown in the equations below (see Appendix for 
derivation of {16}): 

 𝐹𝐹𝑖𝑖 = −(−𝑡𝑡𝑖𝑖−1 
𝑠𝑠 sin𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖 

𝑠𝑠 sin𝜃𝜃𝑜𝑜𝑖𝑖) cos𝛿𝛿⁄  {16} 

 𝑎𝑎𝑣𝑣𝑛𝑛
𝑎𝑎𝑡𝑡

= 1
𝐽𝐽𝑛𝑛
�−𝐵𝐵𝑓𝑓𝑖𝑖𝑉𝑉𝑖𝑖  + 𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖𝐹𝐹𝑖𝑖𝜇𝜇𝑎𝑎𝑖𝑖𝑅𝑅𝑖𝑖2� {17} 

where 𝜃𝜃𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑜𝑜𝑖𝑖 are the incoming and outgoing span angles relative to the roller, 𝛿𝛿 is 
the angle to the resultant normal force which has to be determined based on geometry, 
𝜇𝜇𝑎𝑎𝑖𝑖 is the dynamic friction coefficient which is assumed to be equal to the static 
coefficient of friction, and 𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 is the slip indicator used in Equations {14} and {15}.  
The indicator 𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 indicates whether the sliding friction force is positive or negative on 
the roller.  Otherwise, the roller model used is Equation {6}.   

Some logic is needed to know when to switch between the sliding case and the non-
sliding case.  The Whitworth criteria are that logic.  Equations {12} and {13} are used to 
select which case is present and when to switch.  When the system or subsystem model is 
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being simulated, the Whitworth criteria are evaluated at every integration step.  If slip is 
indicated, the SFDR model is used to define the friction force resulting from sliding 
contact rather than the model in Equation {6}.   

Initial work on this project was accomplished using the MATLAB ode45 [11] 
integration routine with events defined for the switching of models.  On the surface this 
sounds reasonable.  But, the exactness with which MATLAB executes finding the time 
that the event occurs is problematic.  To circumvent this problem, a Runge-Kutta 4 
integration algorithm with fixed time steps was used when for simulations of the system 
model were performed.   

Observations from the Model 
One of the items of interest in looking at slip from a modeling perspective is when 

slip occurs.  The Whitworth criteria only indicates when slip occurs and not how much, 
for example, the roller velocity decreases. The steady-state condition is one of those 
times when the initiation of slip may be indicated, i.e., when the roller velocity derivative 
is zero. But, there are times where an upset in either speed or tension causes the velocity 
derivative to be zero.  It is this situation where slip can have its greatest impact.  If the 
time derivative in Equation {6}, is set to zero, the equation becomes 

 𝐵𝐵𝑓𝑓𝑖𝑖𝑣𝑣𝑖𝑖 = 𝑅𝑅𝑖𝑖2(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) {18} 

So bearing friction can cause slip to initiate.  Barring other disturbances, lower 
bearing friction means higher line speeds with no slip.  Solving Equation {18} for the 
speed of the roller and using estimated values for bearing friction, shows that the 
EWL would have to run in excess of 1200 FPM for slip to become a problem at the 
assumed tension levels.    

EXPERIMENTAL STUDIES 

Experiments were performed on the Euclid Web Line (EWL).  The experiments 
included idler speed tracking with a parasitic torque applied to the idler, evaluation of the 
coefficient of friction between the web and roller before and after the surface was treated, 
and idler bearing friction determination. 

Parasitic Torque 
The EWL can operate at line speeds up to 500 FPM.  Slip could not be detected at any 
speed up to and including 500 FPM.  A parasitic torque was applied to roller 9 (Figure 2) 
to cause slip at line speeds feasible for the Euclid line.  Figure 8 shows the experimental 
setup where a piece of cloth was draped over the roller and weights were suspended from 
the cloth to apply a known tension.  The difference between the tension meter reading 
and the hanging weights was assumed to be the force applied to the roller in addition to 
its normal bearing friction.  A wheel encoder was used to capture the speed of the roller 
during each run.  The encoder had very little bearing friction compared to the idler.   
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Figure 8 – Induced slip setup on Euclid Web Line caused slip to occur at attainable 
speeds. 

With the parasitic torque added to roller 9, the EWL was run through a start-up from 
0 to 400 FPM, held at 400 FPM for about 80 seconds and then shutdown.  The force 
meter was read after the line speed reached 400 FPM.  The hanging weight was recorded 
for each run and the roller speed was captured with the wheel encoder.  Traces of idler 
speed as indicated by the wheel encoder are shown in Figure 9.  Between 0 and 1.745 lbf 
hanging weight, no slip is evident in the idler speed. The parasitic torque causes slip at 
2.245 lbf.  Higher hanging weights cause the idler to attain lower quasi-steady-state 
speeds until at 2.569 lbf, the idler stops several times during the steady running at 400 
FPM.  With that much hanging weight, the idler did not reach 100 FPM before slowing 
down.  Hanging weights up to 3.379 lbf were applied, but above 2.569 lbf, the results 
were similar to that of the idler with 2.569 lbf hanging weight.   
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Figure 9 – Traces of the idler speed as indicated by the wheel encoder.  Slip initiates with 
a hanging weight of about 2.2 lbf and the idler comes to rest with a hanging weight of 

about 2.56 lbf.  

Determining Coefficient of Friction between Web and Roller 
Since the coefficient of friction of the web on the roller is important to the SFDR 

model, the surface finish of the idler was examined.  The roller was original equipment 
with the line and it had become rusty.  Also, the coefficient of friction is important to the 
SFDR model, so a  

Figure 10Figure 10

 

Figure 10 – The difference a rust free roller makes in coefficient of friction is 50%. 

coefficient of friction experiment was accomplished in accordance with the method 
described by R. J. Lynch [12].  The average coefficient of friction of the original roller 
was 0.24.  The post cleaning result was 0.12.  Figure 10 shows the before and after rust 
removal idler photos and the coefficient of friction test results.   
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Parasitic Torque Experiments – Post Rust Removal 
With the parasitic torque added to the rust free idler 9, the EWL was run through a start-
up from 0 to 400 FPM, held at 400 a FPM for about 80 seconds, and then shutdown.  The 
force meter was read after the line speed reached steady 400 FPM.  The hanging weight 
was recorded for each run and the roller speed was captured with the wheel encoder.  
Traces of idler speed as indicated by the wheel encoder are shown in Figure 11.  The idler 
speed indicates that slip initiated with only 1.419 lbf hanging weight instead of 2.245 lbf 
before rust removal.  The idler came to rest during the run with a hanging weight of only 
1.568 lbf instead of 2.569 lbf as before.  The results in Figure 9 and Figure 11 show that 
when the primary mechanism for providing torque to an idler is sliding friction, the better 
the surface finish the more likely slip will occur at that idler at lower line speeds. 

  

Figure 11 – Idler speed post rust removal with varying parasitic torques shows that slip 
initiates at about 1.4 lbf and the idler comes to rest during the run with about 1.56 lbf 

hanging weights. 

Bearing Friction Experiment 
The bearing friction of the idler was evaluated using a spin-down test as described in 

[12].  Two cases were considered - when the bearing was cold and then after running the 
line for 10 minutes. Figure 12 shows the “cold” and “warm” spin-down speed traces from 
the wheel encoder. Four runs were made for each case.  Different initial speeds were used 
in order to separate the traces so the general character could be seen.  The final speed for 
all traces in Figure 12 was 200 FPM.  Two types of models were considered to represent 
the spin down tests – a viscous friction based model and a Coulomb friction based model. 

A roller mounted on bearings which provide a resisting torque that is a simple 
function of rotary speed, can be modeled as a first order linear system as shown by the 
following equation, 
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 𝐼𝐼�̇�𝜔 + 𝑐𝑐𝜔𝜔 = 0 {19} 

where 𝐼𝐼 is the rotary inertia, 𝑐𝑐  is the rotary viscous coefficient, �̇�𝜔 is the rotary 
acceleration of the roller, and 𝜔𝜔 is the rotary speed of the roller.  The solution of this 
differential equation is  

𝜔𝜔 = 𝜔𝜔0 𝑒𝑒−(𝑐𝑐 𝐼𝐼⁄ )𝑡𝑡  

where  𝜔𝜔0 is the value of  𝜔𝜔 when 𝑡𝑡 = 0.   This solution is the decreasing exponential 
shown by the blue dot-dashed curves (“viscous frict.”) in Figure 12. 

All four experimental traces for each case in Figure 12 have an almost constant 
negative slope.  That is, the deceleration rate is nearly constant.   An appropriate model of 
this behavior is that rotary speed is a simple function of time, 𝜔𝜔 = −𝐾𝐾𝑡𝑡.   In this 
equation, 𝜔𝜔 is the rotary speed of the roller, 𝐾𝐾 is a constant, and 𝑡𝑡 is time.    This model 
represents the spin down data the best.   And, it is this behavior that suggests that the 
resisting torque in the spin down tests of the roller is due primarily to Coulomb friction 
rather than viscous friction in the bearings.  

 

Figure 12 – Spin-down test speed traces are used to calculate the viscous bearing friction.  
The viscous friction simulation does not track the experimental data well for either the 
“cold” or “warm” bearings.  A Coulomb friction model matches the deceleration rate 

reasonably well. 
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SIMULATION RESULTS 

The Sliding Friction Driven Roller (SFDR) model is used to simulate some of the 
runs from the experimental section.  The results drive the surface finish and the bearing 
friction studies discussed above. 

The SFDR Model with Parasitic Torque 
The conditions of the Parasitic Torque experiment were simulated using both the 

Whitworth model and the SFDR model.  The Whitworth model shows the limiting 
characteristic in Figure 13 when it (red line) drops about 50 FPM with 3.379 lbf 
simulated hanging weight while the experimental data shows that the idler was stopped 
with that level of hanging weight.  The SFDR model with 1.7 lbf hanging weight tracks 
up the ramp, but then shows slip as it settles in on the speed of the 2.245 lbf hanging 
weight experiment. These two weights bracket the beginning of slip in the experiment so 
the model showing slip is not terrible.  The black line in Figure 14 shows the SFDR 
model with 2.515 lbf hanging weight simulated and it hits the experimental speed after 
slipping.  The miss with 1.7 lbf hanging weight in the model causes the testing of the 
coefficient of friction between web and roller and the bearing friction study to define 
parameters. 

 

Figure 13 – To illustrate a limit in the Whitworth model, the blue line is experimental 
data with no slip, the green is with slip, and the red line is simulation data using only the 

Whitworth model and 3.379lbf hanging weight.  The Whitworth model only allowed 
about a 50FPM drop in speed while the experimental data for that hanging weight was 

stopped. 
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Figure 14 – SFDR model plotted against experimental data.  The hanging weight in the 
simulation seems to impact when slip initiates and what speed is finally attained.  At the 

lighter hanging weights, the SFDR model shows slip where there is not any, but as heavier 
hanging weights are applied, the SFDR does a good job of settling in on the slipping speed of the 

idler (see the black dotted line overlaying the red line). 

Surface Finish and Bearing Friction Impacts 
These experiments refined parameter values in the simulation models.  There was a 

little simulation in the bearing friction study to cross-check the evaluated bearing friction 
with the experimental data.  As Figure 12 showed with the dashed and dotted lines, the 
viscous model of friction does not follow the experimental data which lead to the creation 
of a Coulomb friction model for the Euclid Web Line’s bearing friction.   
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Figure 15 – The Whitworth model shows little variation in speed due to slip while the 
SFDR model predicts a 50 fpm decrease in speed with a 1.419 lbf parasitic torque 
applied.  The experimental data for this situation shows the idler speed dropping 

throughout the run. 

Applying the results of the coefficient of friction study and the bearing friction study 
to the simulations gives Figure 15.  On the left is the Whitworth model output for roller 9 
speed and  
spans 8 and 9 tensions with 1.419 lbf hanging weight applied.  The speed difference due 
to slip is unnoticeable.  On the right, the SFDR model with the same set of parameters 
and hanging weight shows a 50 FPM average decrease in speed.  For reference, see 
Figure 11 for what the EWL did with 1.419 lbf hanging weight.  It did not run at 400 
FPM, but it decreased more than 50FPM, too.   

 CONCLUSIONS 

This paper has shown the required differential equations for simulating the unwind 
section of the Euclid Web Line.   Two slip models are discussed, (i) Whitworth’s model 
and criteria and (ii) the Sliding Friction Driven Roller (SFDR) model.  An experiment 
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was conducted that involved adding a parasitic torque to a roller in order to create a slip 
condition while running the EWL at speeds that were achievable.  

Comparison of the simulations with results from the experimental studies showed 
that the Whitworth model was valid only when the parasitic torque was small.  In 
contrast, experimental studies showed that the SFDR model was valid only when the 
parasitic torque was large.   

The Whitworth model covers the initiation of slip while the SFDR model covers the 
slip situation where the roller speed is distinctly different than the web speed.  A model is 
needed to cover the entire spectrum.  Such a model is expected to be heavily dependent 
on the contact mechanics between the web and the roller.   
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APPENDIX 

The SFDR model requires a friction force to be applied at the periphery of the idle roller.    
Coulomb friction was assumed.   

 𝐹𝐹𝑓𝑓 = 𝜇𝜇𝑖𝑖𝐹𝐹𝑖𝑖 {20} 

A simple static force balance was applied to an idle roller to define an average 
resultant normal force for calculating the friction force.  The normal force is assumed to 
bisect the wrap angle of the roller giving 𝛿𝛿 =  𝜃𝜃𝑜𝑜𝑖𝑖 + 𝜃𝜃𝑤𝑤𝑖𝑖 2⁄ + 𝜋𝜋.   

 

Figure 16 – Force balance on a roller 

Then the summation of forces in the horizontal direction is  

 (−𝑡𝑡𝑖𝑖−1) sin𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖 sin𝜃𝜃𝑜𝑜𝑖𝑖 + 𝐹𝐹𝑖𝑖 cos 𝛿𝛿 = 0 {21} 

 𝐹𝐹𝑖𝑖 = −(−𝑡𝑡𝑖𝑖−1 sin𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖 sin𝜃𝜃𝑜𝑜𝑖𝑖) cos𝛿𝛿⁄  {22} 

The resultant force 𝐹𝐹𝑖𝑖 is assumed to be approximately the normal force on the roller 
due to the web.   
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