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PREFACE 

The objective of this work was to develop an integrated capability to design molecules 

with desired properties. An automated robust genetic algorithm (GA) module has been 

developed to facilitate the rapid design of new molecules. The generated molecules were 

scored for the relevant thermophysical properties using non-linear quantitative structure-

property relationship (QSPR) models. The descriptor reduction and model development 

for the QSPR models were implemented using evolutionary algorithms (EA) and 

artificial neural networks (ANNs). QSPR models for octanol-water partition coefficients 

(Kow), melting points (MP), normal boiling points (NBP), Gibbs energy of formation, 

universal quasi-chemical (UNIQUAC) model parameters, and infinite-dilution activity 

coefficients of cyclohexane and benzene in various organic solvents were developed in 

this work. To validate the current design methodology, new chemical penetration 

enhancers (CPEs) for transdermal insulin delivery and new solvents for extractive 

distillation of the cyclohexane + benzene system were designed. 

In general, the use of non-linear QSPR models developed in this work provided 

predictions better than or as good as existing literature models. In particular, the current 

models for NBP, Gibbs energy of formation, UNIQUAC model parameters, and infinite-

dilution activity coefficients have lower errors on external test sets than the literature 

models. The current models for MP and Kow are comparable with the best models in the 

literature. The GA-based design framework implemented in this work successfully
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 identified new CPEs for transdermal delivery of insulin, with permeability values 

comparable to the best CPEs in the literature. Also, new solvents for extractive 

distillation of cyclohexane/benzene with selectivities two to four times that of the existing 

solvents were identified. These two case studies validate the ability of the current design 

framework to identify new molecules with desired target properties. 
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CHAPTER 1 
 

INTRODUCTION  

1.1. Rationale 

The demand for newly designed molecules that enhance existing processes and satisfy 

more stringent operating requirements in technology has been increasing. However, the 

rational design of molecules with desired properties challenges engineers attempting to 

meet the needs of various industries, including pharmaceuticals, polymers, 

petrochemicals, and construction [1-4]. The traditional approach of identifying molecules 

with desired properties involves testing thousands of molecules for their chemical and 

physical properties, which is an expensive and laborious undertaking. Hence, rational 

design techniques, such as computer-aided molecular design (CAMD), have found wide 

application in recent years [4, 5]. CAMD methods have been employed successfully in a 

wide range of applications, including solvent design/selection [6], design of chloro-fluro-

carbon (CFC) substitutes, alternative process fluids design, polymer design [1], drug 

design [7], and design for novel molecules with superior properties [3]. A typical CAMD 

algorithm utilizes two key components, (a) a search method for generating candidate 

molecules, and (b) models to predict the pertinent physiochemical properties of the 

generated candidate molecules. Search methods involve mathematical programming, 

heuristic search approaches or evolutionary approaches. Evolutionary approaches are fast
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becoming the preferred search algorithms because of their ease of application. However, 

in most studies, the search space is limited to a certain family of molecular functional 

groups. This leads to a reduction in computational time at the cost of failing to discover 

better molecules that may be present outside the search space. Therefore, there is a need 

for developing generalized molecular search algorithms for CAMD.  

Property predictions for the generated molecules are usually done using group- 

contribution methods, equation-of-state approaches, and quantitative structure-property 

relationship (QSPR) models. The present state of CAMD is heavily reliant on fragment-

based QSPR models for property predictions. This leads to inaccurate predictions when 

the generated structures have fragments that are not included in the training phase of the 

models. Models based on molecular descriptors that provide complete 3-dimensional 

(3D) information of molecules do not suffer from this disadvantage and can be used to 

predict properties for structures with fragments that have not been included in the training 

phase. In addition, majority of the QSPR efforts in the literature are based on linear 

models, which can fail when a strong nonlinear relationship exists between the target 

property and molecular structure. However, techniques for building reliable nonlinear 

QSPR models using only relevant molecular descriptors are not well established in the 

literature and require further development. Specifically, our analyses indicate that: (a) 

nonlinear QSPR models based on 3D molecular information will outperform linear 

fragment-based models, and (b) generalized evolutionary search techniques for CAMD 

that employ nonlinear 3D QSPR models for property prediction lead to better design of 

molecules. 
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Accurate QSPR models are important not only for property predictions in CAMD but 

also for any process design in general, where reliable a priori  property predictions are 

sought to avoid experimentation. As such, the present work places equal emphasis on 

building accurate non-linear QSPR models and developing a generalized CAMD 

framework, which incorporates non-linear QSPR models based on 3D molecular 

descriptors as the prediction platform. Therefore, the focus of the present work is to: (a) 

improve the existing QSPR methodology by developing accurate non-linear models 

based on 3D molecular information, and (b) develop a generalized CAMD methodology 

for designing molecules with desired properties. To exemplify the efficacy of the 

proposed methodology, relevant properties such as octanol-water partition coefficient 

(Kow), boiling point, melting point, infinite-dilution activity coefficients, and solvent 

selectivities are modeled using 3D non-linear QSPR, after which new chemical 

penetration enhancers (CPEs) for improved transdermal insulin permeability and new 

solvents for extractive distillation are designed using the CAMD framework.  

1.2. Goals and Objectives 

The two primary goals of this work are to develop robust non-linear 3D QSPR property 

models and generalized CAMD methodologies for designing new molecules targeted for 

specific applications. Figure 1.1 describes the overall strategy of the present work, which 

is carried out in four stages. In the first stage, QSPR models are built using evolutionary 

algorithms and artificial neural networks (ANNs) to address the major limitations of the 

existing methods. The second stage involves the application of these improved QSPR 

methods for predicting Kow, infinite-dilution activity coefficients, boiling points, melting 

points and solvent selectivities. The third stage focuses on improving the computer-aided 
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molecular design (CAMD) methodology. In the fourth stage, the improved CAMD that 

incorporates predictions from the third stage are applied for the design of new chemical 

penetration enhancers (CPEs) for enhancement of insulin permeation through skin and 

also for designing new solvents for extractive distillation.  

Following are the specific objectives undertaken to achieve the goals of this research: 

1. Improve our existing QSPR methodology by developing evolutionary algorithms for 

selecting the best descriptors for non-linear modeling from a large set of initial 

descriptors. 

2. Apply the improved QSPR methodology to develop a priori predictive 

thermophysical property models, including Kow, infinite-dilution activity coefficients, 

boiling points, melting points and solvent selectivities. 

3. Improve our existing CAMD methodology by (a) generalizing the genetic algorithms 

for creating new molecules, and (b) automating the different steps involved in CAMD 

to minimize user supervision. 

4. Incorporate the relevant non-linear QSPR models and apply the improved CAMD 

methodology to discover new CPEs for insulin and new extractive distillation 

solvents of interest in the energy sector. 

The methods advanced in this dissertation have produced a robust general framework for 

designing new molecules and an improved framework for building accurate models for 

thermophysical properties. In addition, applications of these improved frameworks have 

facilitated the design of improved CPEs for insulin, which could contribute to major 

advancements toward developing transdermal patches for insulin delivery. Similarly, 
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molecular design of new solvents for extractive distillation will be greatly beneficial in 

reducing the separation cost of difficult-to-separate mixtures.  

1.3. Organization of the Dissertation 

This dissertation is organized in the “manuscript style,” and divided into eight stand-

alone chapters. Chapter 2 describes in detail the QSPR methodology employed in this 

work to develop the various models for the molecular properties. Chapters 3 to 8 are 

concerned with the specific details of the development of QSPR models for various 

thermophysical properties significant for designing new CPEs and extractive distillation 

solvents. Since the basic modeling methodology is the same for the various models, some 

sections are repetitive in these chapters. The final chapter describes the CAMD algorithm 

used in the current work, and it also exemplifies the algorithm for designing new CPEs 

and new solvents for extractive distillation. For reasons of intellectual property, the 

names of potential candidate molecules are not disclosed in this dissertation. 
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QSPR methodology 

� 3D molecular descriptors 

� Non-linear models 

� Evolutionary algorithm based 

descriptor reduction 

� Artificial neural network-

based non-linear modeling 

 

CAMD methodology 

� Genetic algorithm based 

molecular search 

� Unrestricted molecular 

search space 

� 3D non-linear QSPR model 

based prediction platform 

� Completely automated 

 

QSPR property modeling 

� Kow  

� Activity coefficients 

� Normal boiling points 

� Melting points 

� Solvent selectivity 

 

 

CAMD applications 

� CPE design for insulin 

permeation 

� Solvent design for extractive 

distillation of 

cyclohexane/benzene system 

 

Figure 1.1: The overall strategy for this dissertation 
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CHAPTER 2 
 

QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (QSPR)  

MODELING METHODOLOGY 

2.1. Introduction 

Recent advances in computational technology have created new opportunities for virtual 

synthesis and evaluation of compounds, which reduce the burden of time and resources 

associated with traditional experimentation. Computer-aided molecular design (CAMD) 

is the general term used to describe the process of virtual design of new molecules 

possessing specific, desired molecular properties. A successful CAMD process needs an 

accurate prediction platform to compute the relevant thermophysical properties of the 

generated candidate molecules. Although theory-based models would be preferred, 

currently, theoretical models are not available for most properties and investigators are 

forced to rely on empirical or semi-empirical models. A well-known semi-empirical 

approach for predicting molecular properties is quantitative structure-property 

relationship (QSPR) modeling, which asserts that quantifiable relationships exist between 

the thermophysical properties and molecular structure of a substance. When the same 

techniques are used in predicting activities of biological compounds, the models are 

usually referred to as quantitative structure-activity relationship (QSAR) models. This is 

not a strict naming convention, and a QSPR model in the 



9 
 

current work refers to any model relating a property to the molecular structure. 

The molecular structure of any compound is characterized in terms of certain variables 

called molecular descriptors, which are usually calculated using quantum-mechanical 

methods based in theory. In mathematical terms, a QSPR model for any property P is of 

the following form: 

P � ��molecular descriptors� (2.1) 

where, f denotes a linear or non-linear mathematical function (model) used to express the 

property in terms of molecular descriptors. Initially, molecules with known property 

values are used to optimize the QSPR models, and then these optimized models are used 

to predict the properties of unknown molecules.  

Before outlining the details of QSPR modeling, a brief historical background of various 

QSPR methodologies will be presented. QSPR techniques have appeared in the literature 

for over a century. They have facilitated the prediction of thermophysical properties of a 

molecule based solely on information from its chemical structure [1-3]. Although 

successful structure-property relationships do not completely eliminate chemical 

synthesis or experimental validation, a significant reduction in the number of molecules 

requiring synthesis and validation can be realized. The early major advancements in 

QSPR-related research were pioneered by Hansch and Fujita [4, 5], who correlated 

biological activities with hydrophobic, steric and electronic properties of molecular 

structure, and by Free and Wilson [6], who developed the group-contribution approach to 

property prediction. After 1980, the availability of inexpensive computational power led 

to an explosion in the number of QSPR studies, and numerous models have been 

proposed in the literature to predict varied and often complex thermophysical properties 
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of molecules including normal boiling points, solvent polarity scales, melting points, and 

refractive indices [4, 7-13]. A thorough review of the history, major areas of applications 

and software related to QSPR is provided by Katritzky et al. [14].  

2.2. Overview of QSPR Methodology  

As shown in Figure 2.1, a typical QSPR model development has the following basic 

steps:  

1. Database development involves collecting representative experimental data of 

assessed quality and assembling a relevant database.  The quality of the data is 

assessed to establish the experimental uncertainties associated with the data 

considered. 

2. Structure generation involves the development of the 2-dimensional and 3-

dimensional representations of the molecular structures. If 3-dimensional descriptors 

are needed, then optimization for the lowest conformational energy of the molecules 

is performed. 

3. Molecular descriptor calculation is undertaken for the molecules in the database 

using relevant software like CODESSA [15] or DRAGON [16]. 

4. Descriptor reduction is the step where the most significant descriptors from the large 

set of available molecular descriptors are identified. 

5. Model development is the step where the most significant descriptors are correlated 

with a molecular property using linear or non-linear modeling tools. 

6. Model validation entails evaluation of the predictive performance of the final model. 

Typically, the descriptor reduction and model development steps are carried out 

simultaneously, since information feedback from the model development step is provided 
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to the descriptor reduction step. In fact, these two steps constitute an iterative process that 

is terminated when certain stopping criteria are met. The model validation and model 

development steps can also behave in a similar fashion. 

Although all QSPR development steps are important, the two critical steps have a major 

influence on the performance of a QSPR model:  descriptor reduction (DR), where the 

significant structural descriptors are determined, and model development (MD), where 

the modeling approach is selected. Several approaches have been proposed in the 

literature for QSPR model development. While the basic steps in QSPR development 

remain the same, differing techniques are applied for the described steps, (1) – (6). In 

following sections, a brief overview of these approaches will be provided, along with a 

description of the techniques used in the current work. 

2.3. Database Development  

The performance of empirical techniques such as QSPR modeling is heavily dependent 

on the quality and characterization of data available for use in the training stages. Ideally, 

the data should include molecules that are similar to the molecules for which the model is 

intended to be used. For example, to develop a model to predict the octanol-water 

partition coefficients of drug-like molecules, the training data should ideally include a 

wide range of drug-like molecules. However, all the models in the current work are 

developed to be generally applicable to all types of molecules, and so care is taken to 

ensure that the employed training databases are as diverse as possible. In addition, to 

ensure accurate QSPR models, only the highest possible quality experimental data with 

low uncertainties were used for model building in this work, and the sources of the data 
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and uncertainties in the data are provided in future chapters of this dissertation, where 

ever applicable. 

2.4. Structure Generation and Optimization 

QSPR models utilize molecular representations ranging from the simplest 1-dimensional 

(1D) descriptors, which account for gross molecular properties like molecular weight, 

number of atoms and  meting point, to complex 4-dimensional (4D) representations [17, 

18], where multiple conformers of a single molecule are considered. The most common 

molecular representations in QSPR modeling are the 2- and 3-dimenisonal (2D and 3D, 

respectively) representations. A 2D representation of a molecule encodes the topology 

and connectivity information and has been used successfully in a wide variety of QSPR 

models [4-6]. Since a single molecule always has a unique 2D representation, developing 

3D QSPR models is inherently more difficult due to the large number of 3D 

representations based on the number and type of constituent atoms (e.g., Figures 2.2 and 

2.3 represent the 2D and 3D structures of salicylic acid). Therefore, finding the “actual” 

3D representation, as defined by the lowest conformational energy of a molecule, is 

essential before inclusion in the QSPR model.  

Finding the minimum energy conformation from a large number of possible 

conformations is a combinatorial optimization problem. Semi-empirical methods such as 

AM1 [19, 20], PM3 [21, 22] and PM6 [23, 24] have been used widely to calculate the 

minimum energy of a given conformation. These semi-empirical methods are based on 

the Hartree-Fock formalism (used for determining the ground-state wave function and 

ground-state energy of a molecule); however, they involve several approximations and 

some of these parameters are obtained from empirical data. The semi-empirical methods 
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are employed in computational chemistry to determine the wave-functions and energies 

of large molecules, for which the full Hartree-Fock treatment would be computationally 

impractical. In a recent article, Rinnan et al. [25] compared different methods of energy 

minimization and concluded that the final QSPR models are not influenced significantly 

by the choice of the energy minimization method, provided the lowest energy conformer 

has been found a priori. However, the majority of QSPR articles in the literature only 

apply the energy minimization techniques to a randomly chosen 3D conformer of a 

molecule. This can potentially lead to inaccurate or sub-optimal models. Therefore, in the 

current work, molecular-structure optimization was performed, which resulted in a global 

search for the minimum-energy 3D conformation.  

While different software packages may be used, structure generation requires a series of 

steps common to all QSPR models, where initially the 2D structure is drawn based on 

either names or the simplified molecular input line entry specification (SMILES) and 

subsequently an optimal 3D structure is identified. In the current work, ChemBioDraw 

Ultra 11.0 [26] was used to generate 2D structures for the molecules in the data set and 

stored as cdx files. The conformers with the least energy were found by implementing 

OpenBabel’s [27, 28] genetic algorithm (GA) based conformer search which uses the 

MMFF94 forcefield [29]. The GA for conformer search can be tailored for accuracy 

versus computational time by varying four different options that include number of 

structural conformers or parents in each generation, number of child conformers 

generated per each parent, mutability parameter for determining the frequency of 

mutation operations and the number of unchanged generations after which the algorithm 

is stopped. For further information, the readers are referred to the OpenBabel 
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documentation on conformer searching [30]. In the current work, 30 parent conformers 

and 5 child conformers were chosen, the mutability parameter was set to 5 and the 

number of constant generations was set at 25. The optimized molecules were saved in 

mdl format for subsequent generation of descriptors.  

2.5. Descriptor Calculation 

The variables used to describe the molecules present in the QSPR database are called 

molecular descriptors. The accuracy of the final QSPR model depends partly on the 

accuracy with which these descriptors are calculated. Several types of descriptors can be 

calculated depending on the representation used for the molecule. As described in the 

previous section, QSPR models employ generally the following two types of molecular 

descriptors: (a) 2D descriptors that provide connectivity information concerning the 

atoms in the molecule, and (b) 3D descriptors that are calculated from the 3-dimensional 

spatial positioning of atoms of the molecule.  

ADAPT software [31, 32] was an early version of an automated program for 

QSAR/QSPR modeling. ADAPT calculates the following types of descriptors: fragment 

type, sub-structure type, environment type (providing interconnection information 

between sub-structures), molecular connectivity type (providing information about the 

amount of branching in the molecule), and geometric type (describing the shape of the 

molecule). Some of the earliest commonly used descriptors were linear free energy 

constants such as the Hammett σ constant (measure of the electronic effects of the 

aromatic substituent), Taft polar constants (σ*) (measure of the electronic effects of the 

polar substituent), Hansch π (measure of the hydrophobicity of the substituent) and Taft 

steric constant Es (measure of substituent steric effects) [33]. Usage of these descriptors 
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for developing QSAR models is referred to as the Hansch approach. However, the above 

models are based on simple linear and additive models and are applicable only to co-

generic series of molecules where only the substituents are altered [34]. Also, the above 

constants are not available for every substituent and therefore are not applicable for a 

wide range of molecules. An alternative approach to Hansch methodology was proposed 

by Free and Wilson, who assume that for molecules in a co-generic series, the activity is 

determined by mutually independent contributions from the substituents in the molecule 

[6]. There are also hybrid approaches that combine the above two methodologies. 

Other common descriptors include topological indices (TIs) that provide molecular 

connectivity information. The advantage of these descriptors is their relatively short 

computational time since 3D molecular information is not required. Many TIs with 

varying advantages and disadvantages have been proposed in the literature. Wiener’s 

index [35, 36] is the earliest of these indices. Balaban [37] presented a basic review on 

the most widely used TIs prior to 1988 and establish six criteria for a good TI. However, 

TIs are based only on 2D information of the molecule and therefore cannot be used to 

represent the spatial conformation of the atoms. In recent years, information content 

indices based on Shannon information theory have been developed, which can also be 

considered as TIs [38]. Molecular volume has also been used widely in the early years of 

QSPR history [39].  

Cartier and Rivail [39] were among the earliest researchers to include theoretical 

quantum chemical descriptors calculated using semi-empirical methods in their QSPR 

models. Quantum chemistry facilitates a more accurate calculation of the electronic 

effects than the empirical methods [39]. These effects can be calculated theoretically 
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from the geometry-optimized 3D structure of the molecules. Some of the common 

quantum chemical descriptors are energies of HOMO and LUMO (εHOMO, εLUMO), net 

atomic charge of atom A (QA), molecular polarizability (α) and molecular dipole moment 

(µ); however, these calculations are based on wave-function theories and involve 

approximations that limit their applicability to structurally related molecules [40]. Some 

of the most commonly used routines for calculating the quantum chemistry descriptors 

are ab initio models like the Hamiltonian and the Hatree-Fock-method, semi-empirical 

methods like the extended Hϋckel theory, complete neglect of differential overlap 

(CNDO), intermediate neglect of differential overlap (INDO), Austin model 1 (AM1) and 

parametric model 3 (PM3). Typically, for ab initio calculations, the calculation time 

required is proportional to a high power of the number of electrons in the molecule [40] 

and therefore, these calculations are computationally expensive. The semi-empirical 

methods, however, are based on molecular orbital (MO) calculations coupled with 

experimental data on atoms, which allows for faster calculations than the ab initio 

methods.  

One of the widely used software for developing a QSPR model is Comprehensive 

Descriptors for Structural and Statistical Analysis (CODESSA) [15], which was 

developed by Katritzky et al. [14, 38] as a non-empirical tool for calculating various 

descriptors such as constitutional, topological, geometrical, electrostatic, thermodynamic, 

quantum-chemical, molecular orbital (MO)-related and charged partial surface areas 

(CPSA) descriptors. When implemented, CODESSA does not require experimental data 

and the descriptors are calculated based entirely on the chemical structure of the 

molecules. This program has been applied successfully for correlating a large number of 
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physical properties such as boiling points, melting points, and solubility of gases in 

liquids [40]. In the current work, all QSPR models have been built using descriptors 

generated by DRAGON 6 [16] software developed by Talete SRL. DRAGON 6 is 

capable of generating over 4800 descriptors categorized into 0D, 1D, 2D and 3D 

descriptors. For a detailed list of descriptors calculated by DRAGON, the reader is 

referred to the DRAGON website [16]. Several successful QSPR models based on 

DRAGON descriptors have been published in the literature [41-43]. Table 2.1 lists some 

examples of 2D and 3D descriptors calculated using DRAGON. 

2.6. Descriptor Reduction and Model Development 

In the current work, around 4800 molecular descriptors may be generated for a given 

molecule using DRAGON; however, most of these descriptors have negligible influence 

on a desired property of the molecule and, thus, they must be eliminated systematically to 

arrive at a tractable set of the most significant descriptors. Reduction or pruning of the 

descriptor set is a key step in QSPR model development. Various methods exist for 

descriptor reduction, which include the following: linear orthogonalization [1], principal 

component analysis (PCA) [44-50], partial least squares (PLS) [51, 52], genetic 

algorithms (GAs) [53], forward propagating neural networks [54], back propagation 

neural networks [55], self-organizing maps [53, 56, 57], fuzzy ARTMAP neural networks 

[58], decision trees [59], logistic regression [60], support vector machines [61, 62], 

simulated annealing [63], particle swarms [64], ant colony algorithms [65], and various 

hybrid combinations of the above methods. While each method has its own advantages 

and limitations and most are efficient methods for pruning a large dataset, they have not 

been applied widely in conjunction with non-linear QSPR modeling.  
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Recently, Golla et al. [66, 67] expanded the descriptor set for each molecule by 

introducing non-linear transformations to all the descriptors. The descriptors were 

evaluated for significance, and the most significant descriptor is retained and removed 

from the descriptor pool. The evaluation is repeated and a set of significant descriptors is 

identified in a sequential fashion. This process of sequential analysis (SA) allows the 

determination of correlation of the transformed (non-linear) descriptors with the property 

of interest. An additional benefit of SA is the provision of a rudimentary cause-and-effect 

type analysis of the descriptor set. The extended dataset can then be used for initial 

pruning. In this way, the chances of discarding any descriptors that show a non-linear 

relationship with the property being considered is reduced, if not totally eliminated.  

As shown in Table 2.2, the resulting permutations of DR and MD lead to four general 

modeling types. To date, the DR methods in the literature are largely linear, and the 

majority of QSPR models reported are also linear (Type I); however, more recent work 

has employed non-linear QSPR models (Type II). Several QSPR model development 

efforts in the literature [1, 68, 69] have shown that the relationship between molecular 

structure and thermo-physical properties is often non-linear. Therefore, use of linear 

algorithms for descriptor reduction or model development fails to capture the subtle (and 

even not-so-subtle) relationships between the chemical structure and thermo-physical 

properties. Further, the inclusion of SA in the DR strategy still results in Type III models 

that often lead to sub-optimal solutions.  

The approach in this work for descriptor reduction involves a hybrid strategy, which 

results in a Type IV model. Specifically, a hybrid niche algorithm that combines 

evolutionary programming (EP) and differential evolution (DE) was used as a wrapper 
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around artificial neural networks (ANNs) to search for the best descriptor subsets from a 

large number of molecular descriptors (Desc_Sz). The method begins with an initial 

population of single hidden-layered ANNs (individuals) that have been divided into four 

different niches. Niches, in the context of this work, are mutually exclusive sub-

populations in the original population, which are not allowed to exchange genetic 

material. Niches are helpful in maintaining genetic diversity in the population [70, 71]. 

The ANNs in the initial population are assigned random descriptor subsets as inputs. 

These ANNs then undergo (a) single-point mutation on the descriptor subsets, (b) 

modified differential evolution (MDE) operations on the descriptor subsets, (c) retraining 

with different initial weights, and (d) change in the number of hidden neurons, over 

successive generations. The ANNs that can predict accurately the target property are 

favored over inaccurate ANNs to remain in the population. Therefore, ANNs in the later 

generations are, on average, closer to the global minimum of the objective function. The 

subsequent discussion will be a brief introduction to EP, DE and ANNs, followed by 

details on the actual descriptor reduction algorithm employed in the current study. 

2.6.1. Evolutionary Programming (EP): Evolutionary programming is a stochastic 

optimization algorithm first developed by Lawrence J. Fogel in 1960 [72]. Similar to 

other stochastic algorithms, EP is well suited for combinatorial optimization problems 

where the fitness surface can have multiple local minima. Further, EP can be coded 

efficiently using real-valued genetic representation of the problem space and, therefore, 

has an advantage over GAs, which can be coded only using binary genetic representation. 

The basic EP algorithm has the following three steps that are repeated in each generation 

until some convergence criterion is met: 
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1. Randomly generate an initial population of a fixed size, N. Usually, the population 

size is heuristically determined based on the number of independent variables that 

describe the fitness surface. 

2. Generate children from the parent population using a mutation operation that is 

chosen from a distribution of possible mutations that range from the most to least 

severe. Severity of a mutation operation is measured by the amount of functional 

change between the parent and the offspring.  

3. Evaluate the fitness of the child population and select the best individuals from both 

the parent and child population. The selection is usually done by stochastic 

tournament, where N individuals are retained for the next generation. 

EP has been applied successfully for a diverse range of optimization problems like power 

system optimization [73], prediction of the effects of genetic modifications [74] and 

prediction of protein-ligand structures [75]. One of the first applications of EP to QSPR 

modeling was by Luke in 1994 [76], who compared his methodology with existing QSPR 

techniques for several commonly used QSPR data sets. Another EP based algorithm is 

the Mutation and Selection Uncover Model (MUSEUM) [77], which uses only mutation 

to generate offspring from parents and was shown to be much faster than other regression 

models. To the author’s knowledge, apart from the two references cited above, no other 

application of EP to QSPR/QSAR modeling appears in the literature despite its 

advantages over other evolutionary algorithms. 

2.6.2. Differential Evolution (DE): DE is another simple stochastic optimization 

algorithm similar to GA and was proposed by Price and Storn [78] in 1994. The major 

difference between GA and DE is that the former uses probability distribution for 
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selection of parents; while in the latter trial vectors are generated. This makes the DE 

algorithm self-organizing by reducing the number of parameters that need to be pre-set 

by the user. The basic DE algorithm for minimization has the following steps: 

1. Randomly generate an initial population of a fixed size, N. Usually, the population 

size is heuristically determined based on the dimensionality of the fitness surface 

denoted as n. 

2. Perform the following for successive generations until some stopping criterion is met: 

For each vector x in the population, the following steps are conducted: 

a. Choose three different individuals a, b and c that are different from x. 

b. Pick a random integer R between 1 to n.  

c. Generate a trial vector y ={y1, y2, …yi, …yn}  by  iterating over each i from 

1 to n 

� Generate a uniformly distributed random number r between 0 and 

1. 

� If i=R or if r < CR (cross-over number), then yi = ai + F*(bi - ci), 

else yi = xi, where F is the mutation factor. 

d. If the trial vector y has lower objective function than the original vector x, 

then replace x with y. 

DE has been successfully applied to various optimization problems such as heat 

exchanger network synthesis [79], reservoir system optimization [80], design of 

temperature profiles for fermentation processes [81] and image pixel clustering [82]. 

Despite its popularity in other optimization fields, DE has been applied to few QSPR 

studies to date, which include prediction of atomic charges by Ouyang et al. [83] and 
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predicting skin permeability of insulin in the presence of chemical penetration enhancers 

by the Oklahoma State University group [84].  

2.6.3. Artificial Neural Networks (ANNs): Artificial neural networks are inspired by the 

brain and the interconnections among neurons, which form a complex network where 

electrical and other types of signals are exchanged to facilitate functioning of the brain. 

Although, much of neuronal function in the brain is still unclear, researchers have been 

able to develop ANNs as limited and simplified models for recreating intelligence 

artificially. Although the concept of ANNs is well established, the development of the 

back-propagation learning algorithm by Rumelhart et al. [85] in 1986 led to an explosion 

in the number of applications of ANNs. In the literature, neural networks have been 

employed as a non-linear modeling tool for function approximation/regression analysis, 

time-series forecasting, robotics and data processing. Different types of ANNs exist 

based on architecture, but in view of the current work, only feed-forward ANNs are 

relevant and any future reference to ANNs in the current work refers to feed-forward 

ANNs. Figure 2.4 is a neural interpretation diagram (NID) of a sample feed-forward 

ANN with 6 inputs, 2 hidden neurons in a single hidden layer and one output (Insulin 

permeability Kp) [84]. A NID is a diagram representing the neural network structure 

along with the weights between the different neurons and can be used to interpret the 

relationships between the output variable and the various input variables to the network. 

Using this approach, the connections between the neurons will be represented by lines 

whose thickness depends upon the magnitude of the weight between the corresponding 

neurons. The thickness of the lines connecting two neurons is proportional to the 

magnitude of the connection weight between them. Also, to differentiate between the 
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direction of contribution of input variables to the output of a neuron, blue lines and black 

lines will be used for negatively-contributing and positively-contributing inputs, 

respectively. A NID therefore, provides qualitative information about the magnitude and 

the direction of the effect of each input on the output. For a detailed discussion on NIDs 

and their interpretation, the readers are referred to Olden and Jackson [86]. 

In a feed-forward ANN, information travels only in the forward direction from the input 

nodes to the output nodes. The different layers are connected using weights and biases 

which represent the strength of the signal between the different nodes, and these are 

updated during the learning phase of the algorithm to minimize the error between the 

network outputs and the network targets.  

An important aspect of ANNs is the architecture or design, which consists of the 

selection of number of inputs, number of hidden layers and the number of neurons in 

each hidden layer. In the current work, the number of inputs to an ANN is chosen such 

that the ratio of the number of data points to the number of inputs is at least ten. For most 

applications, using only one hidden layer is adequate; however, choosing the right 

number of neurons in this hidden layer may not be straight-forward. Choosing too few 

hidden neurons might lead to an ANN that lacks flexibility to encapsulate the complexity 

of the data and choosing too many may lead to over-fitting and poor generalization. No 

theoretical basis exists for choosing the number of hidden neurons and most researchers 

use trial and error for selection of the architecture leading to the best performance. In the 

current work, the number of hidden layers is fixed at one, and the minimum number of 

hidden neurons is two. This number is increased by one for randomly selected ANNs in 

the population of ANNs, and the better performing ANNs are retained for the next 
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generation/iteration. In addition, for each ANN, the ratio of the number of training data to 

the number of adjustable weights and biases was ensured to be always greater than two 

[87]. This was done as a precaution against over-fitting to the training data. 

Once, the network architecture has been specified, an ANN is trained on known data 

before its use as a predictive tool. The most popular learning algorithm for feed-forward 

ANNs is the back-propagation algorithm proposed by Rumelhart et al. [85], which 

consists of a forward propagation step and a weight-update step that is repeated until the 

network performance is satisfactory. The network weights and biases can be updated 

using several algorithms, but the most popular are the gradient-descent and Levenberg-

Marquardt algorithms [88]. However, these algorithms do not guarantee attainment of the 

global minimum; thus, multiple initializations of the program are often necessary. Iyer 

and Rhinehart [89] have proposed a multiple initialization method to increase the 

probability of locating the global minimum. This method is built into the descriptor 

reduction algorithm used in the current work.  

Another important issue associated with ANN training is over-fitting, which results in 

poor predictive capability. Although several methods for avoiding over-fitting an ANN 

exist, over-fitting is avoided in the current work by using an internal validation set (V), 

with an early-stopping method [90, 91]. The validation error normally decreases during 

the initial phase of training, as does the training set error; however, when the network 

begins to over-fit the data, the error in the validation set typically begins to rise. When the 

validation error increases for a specified number of iterations, the training is stopped, and 

the weights and biases at the minimum validation error are retained. Although the early-

stopping algorithm is easy to understand and implement, choosing the right training and 
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internal validation sets is not straightforward. In addition to the training (T) and V sets, 

an internal test (IT) set is generally used in selecting the best ANNs during the descriptor 

search algorithm. The error on the IT set was used an additional indication of the 

generalization ability of the individual ANNs. Since, all three data sets (T, V, and IT) are 

involved in the ANN selection process, the predictive performance of the final ANN 

model can only be estimated using an external test set that contains data not present in 

any of the aforementioned three data sets.  

Ideally, the training set should be representative of the entire data set, and each data point 

in the validation and internal test sets should correspond to at least one training data 

point. Several methods exist in the literature for allocation of the data such as random 

division [92, 93], self-organizing maps (SOMs) [94, 95], Kennard-Stone design [96] and 

the sphere-exclusion algorithm [97]. In the current work, SOMs are used to divide the 

data sets optimally prior to the ANN training. The SOM MATLAB toolbox from the 

Laboratory of Information and Computer Science in the Helsinki University of 

Technology [98] is used for training the SOMs. SOMs are used to identify clusters of 

data in the input space, and from each cluster at least one data point is added to the 

training set. If a cluster has more than one data point, then random selection is used to 

divide the data in each cluster into the various subsets of T, V and IT. If the data in each 

cluster cannot be equally divided among the three subsets, preference is given for 

addition of data points to the training, validation or internal test sets in that order. This 

process ensures that the training set has the largest number of data points, followed by the 

validation and internal test sets, respectively. The number of map-units (which are 

analogous to neurons in feed-forward ANNS) in SOM training was adjusted to ensure 
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that the number of training set data points is in the range of 65-70% of the entire data set 

(excluding the external set). Ideally, the training of each ANN is preceded by SOM 

training using the same inputs for both ANN and SOM; however, SOM training is 

computationally expensive and therefore, in this work, SOMs were trained once for every 

iteration of the algorithm for each niche. Here, a niche is a group of individuals that are 

allowed to exchange genetic material among themselves through DE operations. 

Individuals belonging to different niches are never allowed to take part in the same DE 

operation. In each iteration of the evolutionary algorithm, the most commonly-occurring 

inputs in a niche are used as inputs for the SOMs. Although only one SOM is trained for 

each niche, the random selection of data from each cluster is carried out separately for 

each individual in the niche. This ensures slightly different data sets for each individual.  

During training of the ANNs in the current work, the inputs and targets (the experimental 

values of the property that need to be modeled) are normalized to have zero mean and 

unity standard deviation, which ensures that exceptionally large-valued descriptors or 

targets do not bias the network. The Nguyen-Widrow algorithm is used to initialize 

weights and biases, which are updated using the Levenberg-Marquardt optimization 

technique.  

2.6.4. Genetic Representation: A good genetic representation of the solution domain is 

an important step in developing an efficient evolutionary algorithm. Binary 

representation is most widely used due to the direct encoding technique for most 

problems and the applicability for crossover dependent evolutionary algorithms like GA 

and DE [99]. Real-valued representations on the other hand are better suited for 

algorithms like EP that are dependent upon mutation as the major evolutionary operator. 
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In the current work, the solution space is comprised of single hidden layer ANNs with all 

possible molecular descriptor subsets of a fixed model size (ND) as inputs, which are 

determined by the user at the start of the program. The number of hidden neurons (NH) in 

these ANNs lies between a minimum of two and a maximum that is usually fixed at three 

times the value of ND. Therefore, an individual chromosome in the solution space is 

represented as a string of real numbers (genes) where each number (gene) corresponds to 

a particular descriptor. An example of three sample chromosomes with 100 original 

descriptors (Desc_sz) and a model size (ND) of five is shown in Table 2.3. Each 

chromosome is made up of five genes, where each gene represents a descriptor that is 

used as an input variable to an associated ANN, which is subsequently trained to predict 

the target property.  

Binary representation of the chromosomes entails large memory requirements, and also 

the algorithm takes longer to converge to a global minimum when compared with real-

valued representations. The above considerations are the reason for using real-valued 

chromosomes in the current work.  

2.6.5. The Objective Function: Another major aspect of an evolutionary algorithm is the 

choice of a suitable objective function. In the current work, a wrapper-based Type IV (see 

Table 2.1) modeling approach is used for simultaneous descriptor reduction and non-

linear model development using ANNs. The objective function used for an individual 

ANN is the minimization of the root-mean-squared error (RMSE) of the predicted 

property for the training set data. The minimization of RMSE on the training set is 

achieved by adjusting the weights using the back-propagation algorithm and the 

minimization is stopped once the error on the internal validation set increases for six 
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successive iterations of the back-propagation algorithm. In addition, because of the 

wrapper type approach of the current work, there is a second tier of optimization 

associated with the evolutionary algorithm for selecting the best ANN (that has already 

been optimized) from a large number of possible ANNs. In general, the objective 

function for the second tier of optimization in a wrapper-based descriptor reduction 

approach must be selected such that it is a good estimate of the performance of the 

underlying linear or non-linear models. The objective functions chosen for linear QSPR 

models typically maximize statistical measures such as the correlation coefficient (R2) 

[100], adjusted R2, q2 [101] and Akaike information content [102].  For non-linear 

models, the root-mean- squared error (RMSE) [103, 104] and absolute average deviation 

(AAD) [105] are used. In the current work, the entire data set excluding the external test 

set data was split into training (T), internal validation (V) and internal test sets (IT). The 

RMSE values between the predicted and target values were calculated for each of these 

subsets. The following objective function (F) was then computed based on these RMSE 

values: 

F � RMSE� � RMSE� � RMSE�� (2.2) 

With proper selection of an objective function, one can apply an algorithm to search for 

the set of descriptors resulting in an ANN that produces a minimum objective function 

value.  

 2.6.6. The Algorithm: The flow chart for the algorithm is given in Figure 2.5. Before 

execution of the algorithm, the following parameters are set by the user: (a) Desired 

number of descriptors in the model (ND), (b) Population size (Pop_sz),which is usually 

set at 400, (c) Number of niches (N_Niche), which is usually set equal to the ratio of 
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Pop_sz and 100 to ensure that each niche has 100 individuals, (d) Percentage of 

population that undergoes MDE operations (MDE_p), which is usually set at 0.1, (e) 

Percentage of population that undergoes retraining (Ret_p), which is usually set at 0.3, 

and (f) Percentage of population that undergoes change in the number of hidden neurons 

(Arc_p), which is usually set at 0.5.  

The algorithm has an initialization process that executes once. The individual ANNs in a 

parent population denoted as ‘D’ are initialized with random descriptor subsets of size 

ND. The jth gene in the ith individual is represented as D(i,j). The number of hidden 

neurons for each ANN is initialized to a value of 2. The ANNs are then trained using a 

back-propagation (Levenberg-Marquardt) algorithm resulting in network weights that 

minimize the RMSET value. To avoid over-fitting the ANNs to the training data, early-

stopping on the internal validation set is used. Specifically, training is stopped when 

RMSEV increases for six successive training iterations. The objective function F for the 

i th individual in population ‘D’ is denoted as F{D(i)}. Population ‘D’ then undergoes the 

following five operations in a single iteration of the algorithm. 

1. Single-point mutation: A randomly selected gene in each individual’s chromosome is 

mutated/changed to a random descriptor number. The random descriptor number is 

chosen so that no two genes (descriptor numbers) in a chromosome are the same. The 

mutated individuals make up a new child population denoted as ‘E’. 

2. Modified differential evolution: N (=Pop_size*MDE_p) number of individuals are 

randomly selected from population ‘D’. Modified differential evolution (MDE) 

operations are carried out on these individual chromosomes to result in a new mutated 

population ‘M’. First, a mutated population, defined as TM, is generated by 
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combining the genes from three different individuals in population ‘D’. This 

operation is similar to the mutation operation in the traditional DE algorithm. Next, 

the mutated population ‘TM’ and the parent population ‘D’ are recombined using the 

recombination operation of the traditional DE algorithm. The recombined population 

is denoted as population ‘M’. The ANNs in ‘M’ undergo training and the f{M(i)} 

values are calculated for all individuals.  The objective function values of the new 

ANNs are compared with the objective function values of the corresponding ANNs in 

population ‘D’. If f{M(i)} is lower than f{D(i)}, then M(i) is considered fitter than 

D(i), and therefore, M(i) replaces D(i) in population ’D’. This is denoted as 

‘individual competition.’ The pseudo-code for the MDE operations and selection is 

shown in Figure 2.6. 

3. Retraining: N (=Pop_size*Ret_p) number of ANNs are selected randomly from 

population ‘D’ for retraining using different initial weights. The retrained ANNs 

make up a new population denoted as ‘R’. The corresponding individuals in 

populations ‘D’ and ‘R’ undergo individual competition and population ‘D’ is 

updated using the fitter individuals.   

4. Architectural change: N (=Pop_size*Ret_p) number of individuals are selected 

randomly from population ‘D’. The number of hidden neurons (NH) in half of these 

individuals is increased by 1 and for the rest of the individuals the NH value is 

decreased by 1. If NH for any individual falls below the specified minimum value of 

2, then the NH value is adjusted to the minimum value of 2 for that particular ANN. 

The resulting new population after the architectural changes is denoted as ‘A.’ The 

ANNs in ‘A’ undergo training and the f{A(i)} values are calculated for all 
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individuals. Again, corresponding individuals in populations ‘A’ and ‘D’ enter 

individual competition, and population ‘D’ is updated with fitter individuals. 

5. Rank-based selection: At the end of these four operations, the individual ANNs in the 

populations ‘D’ and ‘E’ are pooled together and subjected to rank-based selection 

[106]. In rank-based selection, each individual is ranked based on the number of 

individuals in the population that ‘dominate’ (an individual with lower objective 

function value dominates an individual with higher objective function value). The 

best ranked N (=Pop_sz) number of individuals make up the new population ‘D,’ 

which again undergoes the previous four operations in the next iteration. The 

algorithm is stopped when the change in the mean of the internal test set error, i.e. 

mean (RMSEIT) for each niche is less than 1% for 100 iterations of the algorithm.  

2.6.7. Creating Ensembles: ANNs are known to be highly unstable, and their predictive 

performance is dependent heavily on the training data and the training parameters. 

Therefore, a single outlier in the training data might have disastrous implications on the 

generalization ability of the model. To prevent this, aggregation or ensemble formation of 

ANNs is used, where the predictions of different ANNs are averaged to result in the final 

predictions [107, 108]. The ANNs in the ensemble can differ with respect to (a) the 

training data, (b) weights between the different nodes, (c) the number of hidden layers 

and neurons, and finally (d) the input descriptors. For the current work, specific details 

concerning ensemble construction are presented below. 

Once the algorithm has met the stopping criteria, the descriptors that occur at least 10 

times in each niche are identified. These descriptors are termed elite descriptors. Three 

individuals in each niche that have the most number of elite descriptors are identified. 
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Non-elite descriptors in these selected individuals are deleted. Each such modified 

individual from every niche is retrained using a different number of hidden neurons (NH) 

varied from 2 to 2*ND. The ‘best 100’ ANNs in terms of their objective function value 

are identified and recorded. This process of retraining using a different number of hidden 

neurons is carried out for several iterations using different initial weights. If the ANNs 

identified during an iteration have lower f values than any of the ANNs in the ‘best 100’ 

list, then these fitter ANNs replace the unfit individuals in the ‘best 100’ list. Following 

each iteration, the ‘best 100’ list is updated. The algorithm is stopped if the ‘best 100’ list 

stays the same for 100 successive iterations. Of these 100 best ANNs, the 20 networks 

that have the lowest ‘sum of weights and biases’ values are combined using a simple 

averaging technique to create an ensemble. Three such ensembles are created in every 

niche. The predictions from the ensembles from all niches are then averaged to result in 

the final predictions. 

2.7. Conclusions 

Since their inception, QSPR modeling techniques have improved significantly and have 

now become one of the important tools in the virtual design paradigm. The purpose of the 

current chapter was to introduce the various steps involved in developing a QSPR model, 

specifically, database development, molecular descriptor calculation, descriptor 

reduction, and model development. However, selecting the most relevant feature subset 

from the large set of all possible molecular descriptors is still a difficult task, particularly 

in the case of wrapper-based techniques where, descriptor reduction and modeling of the 

target property are carried out simultaneously. In the current chapter, a novel hybrid 

algorithm that combines evolutionary programming (EP) and differential evolution DE 
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techniques is proposed as a solution for the feature selection problem. The current 

algorithm employs ANNs as the mapping tool between the molecular descriptors and the 

target property. To further improve the generalization capability of the model, ensembles 

of ANNs are created where the final predictions are the simple averages of the 

predictions by the individual networks.  
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Figure 2.1: QSPR methodology 
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Figure 2.2: 2D representation of salicylic 
acid 

Figure 2.3: 3D representation of salicylic 
acid 

 

 

 

Figure 2.4: Neural interpretation diagram (NID) of a sample ANN 
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Figure 2.5: Flowchart for the EP + DE algorithm used in the current work 
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Figure 2.6: Pseudo code for modified differential evolution (MDE) operations 

 

For i=1 to N 

Select a, b, c ∈ {1, 2,.., Pop_sz} such that a ≠ b ≠ c 

For j=1 to ND (Mutation operation) 

Generate rand, a random number between 0 & 1 

 If (rand ≤ 0.25), then TM(i,j) = D(a,j) 

 If (0.25 < rand ≤ 0.5), then TM(i,j) = D(b,j) 

If (0.5 < rand ≤ 0.75), then TM(i,j) = D(c,j) 

If (0.75 < rand ≤ 1), then TM(i,j) is randomly selected from 

{0,1,2,…,Desc_sz) 

For j=1 to ND (Recombination operation) 

Generate rand, a random number between 0 & 1 

 If (rand ≤ CR), then M(i,j) = TM(i,j) 

 If (rand > CR), then M(i,j) = D(i,j) 

If f{M(i)} < f{D(i)} 

 D(i) = M(i) 
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Table 2.1: Examples of 2D and 3D descriptors calculated by DRAGON 

2D Descriptors Kier flexibility 
index 

Molecular walk 
count of order 1 

Randic ID 
number 

Balaban X 
index 

3D Descriptors 
Radial 

distribution 
functions 

3D Morse 
descriptors 

Randic-type R 
matrix 

connectivity 

Total 
symmetry 

index 

 

 

 

 

Table 2.2: Types of QSPR models based on the linearity or non-linearity of the 
underlying descriptor reduction and model development methods 

 Descriptor Reduction QSPR Model 
Type I Linear Linear 
Type II Linear Non-linear 
Type III Modified non-linear Non-linear 
Type IV Non-linear Non-linear 
 

 

 

 

Table 2.3: Three sample chromosomes of size five, chosen from a set of 100 
descriptors   

Chromosome # Descriptor 
1 

Descriptor 
2 

Descriptor 
3 

Descriptor 
4 

Descriptor 
5 

Chromosome 1 23 45 54 3 98 

Chromosome 2 23 49 22 9 67 

Chromosome 3 34 44 1 7 100 
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CHAPTER 3 
 

A NON-LINEAR QSPR MODEL FOR OCTANOL-WATER PARTITION 

COEFFICIENT 

3.1. Introduction 

The octanol-water partition coefficient (Kow or log Kow) is used to denote the lipophilicity 

of a molecule. It is a thermophysical property that expresses the ratio of concentrations of 

a compound in coexisting phases comprised of octanol and water. Leo et al. [1] were the 

first authors to review comprehensively the octanol-water partition system and its 

applications. Although lipophilicity has many uses, its importance in the field of drug 

delivery is paramount. Several researchers have studied the effects of lipophilicity on the 

biological activity of drugs [2-6] and on their transport properties [7-9]. Their findings 

and many other studies indicate the importance of lipophilicity in the evaluation of new 

drugs or prodrugs [10]. 

The experimental procedures for measuring the Kow values are detailed by Sangster [11]; 

however, only a relatively small percentage of existing commercial chemicals have been 

tested experimentally for their Kow values [10]. This is particularly so for highly 

hydrophobic compounds with Kow values > 106. The low solubility of these compounds 

in the aqueous-rich phase renders Kow measurements difficult to undertake, and therefore, 

few values exist at this range. Further, Kow experiments are, in general, time and labor 

intensive, and they are impractical to carry out for the large number of potential drugs 
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identified in the developmental stages of drug discovery. As such, a need exists for 

reliable predictive models to determine accurately, Kow values without the need for 

experimentation. Therefore, this work focuses on the following objectives: 

1. Develop an accurate non-linear QSPR model to predict the Kow values using a 

database made up of diverse set of compounds. 

2. Compare the current modeling approach with existing modeling approaches in the 

literature, on common external set data. This would further establish the efficacy of 

the modeling approach used in the work. 

3.2. State of the Art in Predicting Kow Values  

Although rudimentary predictive models for Kow were established nearly half a century 

ago, advances in computational capabilities has led to the more recent development of a 

diverse variety of models. An article by Mannhold et al. [12] lists and compares the state-

of-the-art models available currently for Kow. These models for Kow can be broadly 

classified as:  

1. Fragment-based methods that divide the molecule into various fragments (either at 

the molecular or atomic level), and then sum the contributions of these individual 

fragments to provide the final value. Examples include KowWIN based on the 

algorithms developed by Meylan and Howard [10], CLOGP [13], and Ghose-Crippen 

models [14-16].  

2. Molecular-property based methods that utilize characteristics of the entire molecule to 

predict for Kow. These characteristics are usually referred to as molecular descriptors 

and are normally calculated from the three-dimensional structure of the molecule or 

from the topology of the molecule. Common examples of this model classification are 
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QLOGP based on the algorithm by Bodor and Buchwald [17], GBLOGP by Totrov 

[18], and ALOGPS [12, 19-21].  

Fragment-based methods have been highly successful in developing accurate models for 

Kow. After comparing the performance of currently available methods on three different 

datasets, Mannhold et al. [12] ranked the best methods, which included fragment-based 

methods like AB/LogP [22], CLOGP [13] and KowWIN [10]. The fragment-based 

methods rely solely on the two-dimensional structure of the molecules; as such, 

thousands of molecules typically generated in a virtual molecule design system can be 

processed in a relatively short period of time. A disadvantage of the fragment-based 

methods is the lack of parameter values when a structure cannot be decomposed to sub-

structures for which the fragment values are available [23]. Additionally, these methods 

cannot be used to attach any physical significance to the structural factors affecting the 

value of the partition coefficient.  

The molecular descriptor based methods do not need additional correction factors and 

provide better physical insight into the factors affecting the partition coefficient. 

However, finding the optimal three-dimensional structure of the molecule is a time 

consuming task, which limits the ability of these methods to handle large numbers of 

molecules in a reasonable amount of time. Most molecular-property based methods do 

not use all available molecular descriptors, but limit themselves instead to a small subset 

of descriptors, which have already been proven to be effective like E-state indices [24, 

25] by ALOGPS [19, 20] and VLOGP [26], topological descriptors by TLOGP [27] and 

molecular size and H-bonding descriptors by QLOGP [17]. As a result, these models 
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provide little insight in the identification of specific molecular properties that affect the 

partition coefficient.  

In this work, we propose a non-linear quantitative structure-property relationship (QSPR) 

model for predicting the octanol-water partition coefficient. The basic premise of a QSPR 

methodology asserts that a thermophysical property to some degree is a function of its 

structural attributes [28]. QSPR models have been able to predict successfully a number 

of thermophysical properties such as normal boiling point [29-31], melting point [32-34], 

refractive index [35, 36] and glass transition temperature [37]. All the molecular-property 

based models for Kow discussed previously represent different types of QSPR models, 

where a variety of structural descriptors are employed, including constitutional, 

topological, geometrical, electrostatic, quantum-chemical and/or thermodynamic 

descriptors.  

Our model utilizes all the descriptors (including three-dimensional descriptors) of the 

molecule generated using CODESSA PRO [38]. Nearly 800 descriptors belonging to 

various classes like constitutional, topological, geometrical, electrostatic, quantum-

chemical and thermodynamic were generated for each molecule. Using a wrapper-based 

algorithm, we determined that 50 descriptors resulted in an accurate model for the 

partition coefficient; nevertheless, the pruning of descriptors from 800 to 50 is not a 

trivial task, particularly in non-linear QSPR modeling. A recent review article by Dudek 

et al. [39] summarizes the different types of descriptor pruning techniques in use. In 

general, these methods fall into two categories: 
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1. Filter-based methods: These methods are implemented before the mapping of the 

structural attributes to the property of interest. Some examples include methods based 

on mutual information [40]. 

2. Wrapper-based methods: In these methods, the selection of best descriptors is 

undertaken along with the mapping or the learning step. The error in the mapped 

model is used as the judging criterion for the selection process. Some common 

examples include sequential forward selection, sequential backward elimination, 

genetic algorithms (GA), simulated annealing (SA) and ant colony optimization. 

The filter-based methods are quite fast but may not result in the selection of the best 

subset of descriptors. A more reliable descriptor subset selection procedure is observed 

with wrapper-based methods, but these methods are slow in the final stages of the 

algorithm. This is particularly true of the stochastic methods such as GA, SA and ant 

colony optimization. In this work, we propose a novel wrapper-based algorithm for the 

selection of the best subset of descriptors using an evolutionary algorithm called 

differential evolution (DE) [41], which uses artificial neural networks as the non-linear 

mapping functions. DE has been proven to be as effective as or better than GA and also is 

easier to implement [42, 43]. 

3.3. QSPR Methodology 

The development of a QSPR model involves the following series of steps: (a) data set 

generation, (b) descriptor calculation, (c) descriptor reduction and model development, 

and (d) model validation. These elements are described below. 

3.3.1. Data Set Generation: Experimental octanol-water partition coefficient (log Kow) 

values were taken from the PhysProp database [44] by Syracuse Research. This database 
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had experimental log Kow values listed for 13,553 compounds. Of these, 350 were not 

included in the modeling effort because they are either metal containing compounds, 

inorganics (compounds without a carbon atom), or isomers of another molecule. Also, for 

33 compounds, ChemBioDraw Ultra 11.0 (ChemBioOffice 2008 suite) [45] was unable 

to generate two-dimensional (2D) structures from the molecule names in the PhysProp 

database [44], thus they were excluded. As such, a total of 13,170 molecules were 

selected for further analysis. However, only 11,308 molecules could be optimized for 

their most favorable (lowest energy) three-dimensional conformation using our 

automated procedure. While characterization of this large database is beyond the scope of 

this work, Hansch et al. [46] have stated that the Log Kow values can be experimentally 

determined to an average deviation of ±0.05 for most solutes. For solutes that have a Log 

Kow value lower than -3 and greater than 6, as well as solutes that are relatively 

insensitive to gas chromatography, the average deviation expected is ±0.1.  

3.3.2. Descriptor Calculation: Descriptor calculation requires a series of steps common 

to all QSPR models. In the current work, ChemBioDraw Ultra 11.0 [45] was used to 

generate two-dimensional (2D) structures for the molecules in the data set and stored as 

.cdx files. These 2D structures were then used to generate three-dimensional (3D) 

structures. Each 2D structure can be translated into a large number of 3D conformations; 

however, only the conformation with the lowest conformational energy is considered 

representative of the natural state of the molecule. When considering the multiple minima 

of the total-energy curve, finding this 3D conformation is not a trivial task. Chem3D Pro 

11.0 (CambridgeSoft 2008 suite) [45] is a commercial software used commonly to 

minimize the total-energy of a 3D conformation; however, the software is not guaranteed 
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to find the global minimum energy conformation. Therefore, an optimization using 

several initial 3D conformations will have an improved chance of locating the global 

minimum. This process is not integrated into Chem3D Pro 11.0 and requires the 3D 

structure to be manually reinitialized to a different starting conformation each time before 

optimization. This operation not only places an increased time and effort burden on the 

user, but it is not a reliable method of locating the global minimum. To alleviate this 

problem, we have used an automated strategy for identifying the 3D conformation with 

the least total energy. Chem3D Pro 11.0 was used as the optimizing engine, but it was 

controlled using its Component Object Model (COM) interface with Microsoft Visual 

Studio 8 (2005) as the back-end. The 3D structures were further optimized using 

AMPAC 6.0 [47], and the final optimized structures were provided to CODESSA PRO 

[38] for descriptor calculation. CODESSA PRO has the capability to generate over 800 

descriptors; however, due to structural complexity, this number may be lower for a 

particular structure and for such structures the missing descriptors were assigned a zero 

value. 

3.3.3. Descriptor Reduction and Model Development: The current approach in 

descriptor reduction involves a hybrid strategy, which results in a non-linear wrapper 

based model, where descriptor reduction and model development happen simultaneously. 

Specifically, an evolutionary algorithm called differential evolution (DE) was used as a 

wrapper around artificial neural networks (ANNs) to search for the best descriptor 

subsets from a large number of molecular descriptors whose size is denoted as Desc_Sz. 

The method begins with an initial population of single or doubles hidden layered ANNs 

(individuals). The ANNs in the initial population are assigned random descriptor subsets 
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as inputs. These ANNs then undergo mutation and cross-over operations over successive 

generations. In each generation, the ANNs that can accurately predict the target property 

are favored over inaccurate ANNs to remain in the population. Therefore, ANNs in the 

later generations are, on average, closer to the global minimum of the objective function. 

The subsequent discussion will be a brief introduction to DE and ANNs followed by 

details on the actual descriptor reduction algorithm employed in the current study 

Differential Evolution (DE): DE is another simple stochastic optimization algorithm 

similar to GA and was proposed by Price and Storn [41] in 1994. The major difference 

between GA and DE is that the former uses probability distribution for selection of 

parents, while in the latter trail vectors are generated. This makes the DE algorithm self-

organizing by reducing the number of parameters that need to be pre-set by the user. The 

basic DE algorithm for minimization has the following steps: 

1. Randomly generate an initial population of a fixed size, N. Usually the population 

size is heuristically determined based on the dimensionality of the fitness surface 

denoted as n. 

2. Do the following for successive generations until some stopping criterion is met: 

For each vector x in the population the following steps are conducted: 

a. Choose three different individuals a, b and c that are different from x. 

b. Pick a random integer R between 1 to n.  

c. Generate a trial vector y ={y1, y2, …yi, …yn}  by  iterating over each i from 

1 to n 

� Generate a uniformly distributed random number r between 0 

and 1. 
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� If i=R or if r < CR (cross-over number), then yi = ai + F*(bi - ci), 

else yi = xi, where F is the mutation factor. 

d. If the trail vector y has lower objective function than the original vector x, 

then replace x with y. 

DE has been successfully applied to various optimization problems such as heat 

exchanger network synthesis [48], reservoir system optimization [49], design of 

temperature profiles for fermentation processes [50] and image pixel clustering [51]. 

Despite its popularity in other optimization fields, DE has been applied to few QSPR 

studies to date, which include prediction of atomic charges by Ouyang et al. [52] and 

insulin skin permeability in the presence of chemical penetration enhancers by the 

Oklahoma State University group [53].  

Artificial Neural Networks (ANNs): Artificial neural networks are inspired by the brain 

and the interconnections between neurons, which form a complex network where 

electrical and other types of signals are exchanged to facilitate functioning of the brain. 

Although, much of neuronal function in the brain is still unclear, researchers have been 

able to develop ANNs as limited and simplified models for recreating intelligence 

artificially. Different types of ANNs exist based on architecture, but in view of the 

current work, only feed-forward ANNs are relevant and any future reference to ANNs in 

the current work refers to feed-forward ANNs. 

In a feed-forward ANN, information travels only in the forward direction from the input 

nodes to the output nodes. The different layers are connected using weights and biases 

which represent the strength of the signal between the different nodes, and these are 
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updated during the learning phase of the algorithm to minimize the error between the 

network outputs and the network targets.  

An important aspect of ANNs is the architecture or design, which consists of number of 

inputs, number of hidden layers and the number of neurons in each hidden layer. In the 

current work, the number of inputs to an ANN is chosen such that the ratio of data points 

to the number of inputs is at least ten. For most applications, using just one hidden layer 

is adequate; however, choosing the right number of neurons in this hidden layer may not 

be straightforward. Choosing too few hidden neurons might lead to an ANN that is not 

flexible enough to encapsulate the complexity of the data and choosing too many may 

lead to over-fitting and poor generalization. There is no theoretical basis for choosing the 

number of hidden neurons and hidden layers, and most researchers use trial and error for 

selection of the architecture leading to the best performance. Since a two hidden-layer 

network is capable of reasonable approximation of any non-linear function, the maximum 

number of hidden layers in the current work was limited to two [54]. In addition, for each 

ANN, the ratio of the number of training data to the number of adjustable weights and 

biases was ensured to be always greater than two [55]. This was done as a precaution 

against over-fitting to the training data. 

Once, the network architecture has been specified, an ANN is trained on known data 

before use as a predictive tool. The most popular learning algorithm for feed-forward 

ANNs is the back-propagation algorithm proposed by Rumelhart et al. [56], which 

consists of a forward propagation step and a weight update step that are repeated until the 

network performance is satisfactory. The network weights and biases can be updated 

using several algorithms, but the most popular are the gradient-descent and Levenberg-
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Marquardt algorithms [57]. However, these algorithms do not guarantee location of the 

global minimum; thus, multiple initializations of the program are often necessary. Iyer 

and Rhinehart [58] have proposed a multiple initialization method to increase the 

probability of locating the global minimum. This method is built into the descriptor 

reduction algorithm used in the current work.  

Another important issue associated with ANN training is over-fitting, which results in 

poor predictive capability. Although several methods for avoiding over-fitting exist, in 

the current work over-fitting is avoided by application of a training set (T) and an internal 

validation set (V) with an early-stopping method [59, 60]. The validation error normally 

decreases during the initial phase of training, as does the training set error; however, 

when the network begins to over-fit the data, the error in the validation set typically 

begins to rise. When the validation error increases for a specified number of iterations, 

the training is stopped, and the weights and biases at the minimum validation error are 

retained. Although the early-stopping algorithm is easy to understand and implement, 

choosing the right training and internal validation sets is not straightforward. Ideally, the 

training set should be representative of the entire data set, and each datum in the 

validation set should correspond to at least one training datum. Several methods exist in 

the literature for allocation of the data such as random division [61, 62], self-organizing 

maps (SOMs) [63, 64], Kennard-Stone design [65] and sphere exclusion algorithm [66]. 

In the current work, the random sphere exclusion algorithm [67] with a specified 

dissimilarity level of was used to divide the data into training and validation sets. The 

dissimilarity level was chosen to divide the training and validation sets in the range 70-

80% and 20-30% of the data samples, respectively. 
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During training of the ANNs in the current work, the inputs and targets (the experimental 

values of the property that need to be modeled), are normalized to have zero mean and 

unity standard deviation, which ensures that exceptionally large-valued descriptors or 

targets do not bias the network. The Nguyen-Widrow algorithm is used to initialize 

weights and biases, which are updated using the Levenberg-Marquardt optimization 

technique.  

Genetic Representation: A good genetic representation of the solution domain is an 

important step in developing an efficient evolutionary algorithm. Binary representation is 

most widely used due to the direct encoding technique for most problems and the 

applicability for crossover dependent evolutionary algorithms like GA and DE [68]. Real-

valued representations on the other hand are better suited for algorithms like evolutionary 

programming (EP) that are dependent upon mutation as the major evolutionary operator. 

In the current work, the solution space is comprised of single hidden layer ANNs with all 

possible molecular descriptor subsets of a fixed size, ND, as inputs, which are determined 

by the user at the start of the program. The number of hidden neurons, NH, in these 

ANNs lies between a minimum of two and a maximum usually fixed at three times the 

value of ND. An individual chromosome in the solution space is represented as a string of 

real numbers (genes) where each number (gene) corresponds to a particular descriptor. 

An example of three sample chromosomes with 100 original descriptors (Desc_Sz = 100) 

and a model size, ND equal to 5, is shown in Table 3.1. Each chromosome is made up of 

five genes, where each gene represents a descriptor that is used as an input variable to an 

associated ANN, which is subsequently trained to predict the target property.  

Binary representation of the chromosomes entails large memory requirements, and the 
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algorithm requires longer convergence times to reach a global minimum when compared 

with real-valued representations. The above considerations provide the basis for using 

real-valued chromosomes in the current work.  

The Objective Function: Another major aspect of an evolutionary algorithm is the choice 

of a suitable objective function. In the current work, a wrapper-based modeling approach 

is used for simultaneous descriptor reduction and non-linear model development using 

ANNs. The objective function used for an individual ANN is the minimization of the 

root-mean-squared error (RMSE) of the predicted property for the training set data. The 

minimization of RMSE on the training set is achieved by adjusting the weights using the 

back-propagation algorithm and the minimization is stopped once the error on the internal 

validation set increases for six successive iterations of the back-propagation algorithm. In 

addition, because of the wrapper type approach of the current work, there is a second tier 

of optimization associated with the evolutionary algorithm for selecting the best ANN 

(that has already been optimized) from a large number of possible ANNs. In general, the 

objective function for the second tier of optimization in a wrapper-based descriptor 

reduction approach must be selected such that a good estimate of the performance of the 

underlying linear or non-liner models is achieved. The objective functions chosen for 

linear QSPR models typically maximize statistical measures such as the correlation 

coefficient (R2) [69], adjusted R2 and q2 [70], and Akaike information content [71]. For 

non-linear models, the root-mean- squared error (RMSE) [72, 73] and absolute average 

deviation (AAD) [74] are used. In the current work, the training set RMSE was used as 

the objective function, F: 
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F � RMSE� (3.1) 

With proper selection of an objective function, an algorithm can be applied which 

searches for the set of descriptors resulting in an ANN that results in a minimum value of 

the objective function.  

The Algorithm: The flow chart for the algorithm is given in Figure 3.1. Before execution 

of the algorithm, the following parameters are set by the user: (a) desired number of 

descriptors in the model, ND, (b) population size, Pop_Sz, which is usually set at 400, (c) 

mutation factor, F, is set at 0.75, and (d) crossover factor, CR, is set at 0.8. The algorithm 

has an initialization process that happens once. The individual ANNs in a parent 

population denoted as ‘D’ are initialized with random descriptor subsets of size ND. The 

j th gene in the ith individual is represented as D(i,j). The number of hidden layers and the 

number of hidden neurons for each ANN is randomly initialized. The ANNs are then 

trained using a back-propagation, with Levenberg-Marquardt weight updating algorithm, 

resulting in network weights that minimize the RMSET value. To avoid over-fitting the 

ANNs to the training data, early-stopping on the internal validation set is used. 

Specifically, training is stopped when RMSEV decreases for six successive training 

iterations. The objective function F for the ith individual in population ‘D’ is denoted as 

F{D(i)}. Population ‘D’ then undergoes the DE operations in a single iteration of the 

algorithm. Specifically, mutated population ‘TM’ is generated by combining the genes 

from three different individuals in population ‘D’. This operation is similar to the 

mutation operation in the traditional DE algorithm. Next, the mutated population ‘TM’ 

and the parent population ‘D’ are recombined using the recombination operation of the 

traditional DE algorithm. The recombined population is denoted as population ‘M’. The 
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ANNs in ‘M’ undergo training and the f{M(i)} values are calculated for all individuals.  

The objective function values of the new ANNs are compared with the objective function 

values of the corresponding ANNs in population ‘D’. If f{M(i)} is lower than f{D(i)}, 

then M(i) is considered fitter than D(i), and therefore, M(i) replaces D(i) in population 

’D’. This is denoted as ‘individual competition.’  

Creating Ensembles for Final Predictions: ANNs are known to be highly unstable, and 

their predictive performance is dependent heavily on the training data and the training 

parameters. Therefore, a single outlier in the training data might have disastrous 

implications on the generalization ability of the model. To prevent this, aggregation or 

ensembling of ANNs is used, where the predictions of different ANNs are averaged to 

result in the final predictions [75, 76]. The ANNs in the ensemble can differ with respect 

to (a) the training data, (b) weights between the different nodes, (c) the number of hidden 

layers and neurons, and finally (d) based on the input descriptors. In the current work, an 

ensemble of neural networks was created using networks with the same architecture and 

inputs as the best network in the final DE population, but differing in the values of the 

weights between the different layers.  

External Validation: In a recent article, Tropsha et al. [55] emphasized the need to 

validate QSPR models using external data sets. Also, Mannhold et al. [12] have recently 

compared the various Kow models in the literature using an external public database by 

Avdeef [77], which consisted of 266 molecules in total. Of these, 214 molecules were 

similar to the molecules in the PhysProp database [44] and were classified as star set 

molecules. The remaining 43 molecules were classified as non-star set molecules. Since 

these molecules were not reported in the PhysProp dataset [44], they can be used as an 
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external validation set for comparing our model with other models in the literature. The 

performance of the current model on this new dataset would indicate the generalization 

capability of the final model. 

3.4. Results 

Thirty, 40, 50 and 60 descriptors were evaluated as inputs to the ANNs. The RMSE 

values on the training set generally increased with increase in number of descriptors, but 

no significant difference was observed between the models developed using 50 and 60 

descriptors. Therefore, for simplicity, 50 descriptor models were used in the current 

study. From the DE algorithm, 50-33-35-1 neural network architecture was found to 

result in the least RMSE for the training set data. Neural networks with the same input 

data and architecture as the best network identified using the DE + NN algorithm were 

trained with different random initial weights. Of the networks generated, the five 

networks resulting in the least RMSE values in the training set were chosen, and their 

weights were recorded. The final predictions are calculated as a simple average of the 

individual predictions by these five networks. The addition of further networks did not 

improve significantly the overall RMSE of the training set.  

The RMSE values for the training set and validation set data for the five networks and the 

resultant average network are shown in Table 3.2. In subsequent discussions, the 

prediction results are from the ensemble network, which is the average of the predictions 

by the five best networks. Comparisons of the experimental and predicted Kow values for 

the training and validation sets are shown in Figure 3.2 and Figure 3.3, respectively. The 

correlation coefficients (R2) between the experimental and predicted values for the 

training and the validation sets are 0.96 and 0.88, respectively. The ensemble RMSE 



66 
 

values for training and validation sets are 0.28 and 0.38, respectively, while the ensemble 

MAE values for the training and validation sets are 0.20 and 0.34, respectively. A 

histogram of the residuals (no figure shown) was plotted, and the distribution of the 

residuals around zero was found to be similar to a normal distribution for both the 

training set and validation set data. The model predictions from this work for the star and 

the non-star sets from the Avdeef test set are shown in Figures 3.4 and 3.5. The RMSE 

for the star-set molecules and the non-star set molecules were calculated to be 0.57 and 

1.01, respectively. A comparison of the performance of the current model on the Avdeef 

set with those of the best models in the literature (as reported by Mannhold et al.[12]) is 

provided in Table 3.3. The best set of descriptors identified in the current work is shown 

in Table 3.4.  

3.5. Discussion 

The best network ensemble identified is a combination of two layered networks with fifty 

input descriptors each. This ensemble was able to account for 96% and 88% of the 

variation in the training (Figure 3.2) and validation (Figure 3.3) sets, respectively. The 

statistics presented in Table 3.2 justify the use of a neural network ensemble as compared 

to individual networks. Network 1 in the ensemble had the lowest RMSE value of 0.329 

for the training set, which is nearly 21% higher than the corresponding RMSE value of 

the entire ensemble (Table 3.2). The different networks in the ensemble had differing 

weights, which produces varying predictions in different regions of the input space. This 

further supports the advantage of ensemble networks over an individual network.  

The DE + NN approach employed in the current work has been successful in identifying 

the best descriptors describing the octanol-water partitioning ability of molecules. This is 
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evident from the performance of the model on the external validation set (Table 3.3) 

where the RMSE of the star-set was 0.57 and that of the non-star set was 1.01. Our model 

performs better than 28 of the 34 Kow models tested by Mannhold et al. [12] listed in 

Table 3.3. Of the six models that outperform the current model, four models were 

developed using fragment-based approaches, which cannot be applied to molecules with 

unknown fragments. ALOGPS [12, 19, 20] and S+LogP [78] are the only molecular 

descriptor-based methods that perform better than the current model. The ALOGPS [12, 

19, 20] model was developed using the DIPPR database and 75 E-state indices as inputs. 

The marginally better performance of the ALOGPS model could be attributed to the 

larger number of input descriptors when compared to the current model, which only 

employs 50 descriptors. S+LogP [78] was developed using 217 input descriptors and was 

trained using the same database from which the star-set molecules were extracted. 

Therefore, the better predictions by the S+LogP model could be due to the inclusion of 

the same or similar molecules in the training set. Also to note, this external validation 

data set is limited in its size and therefore cannot truly be used to test the generalization 

ability of the current model. Mannhold et al. [12] had also tested the 34 models using a 

Pfizer proprietary dataset of aroud 96,000 compounds. After careful analysis of the 

performance of the different models, Mannhold et al. [12] reported that, the molecular 

descriptor-based methods consistently outperform the fragment-based methods, with 

ALOGPS and S+LogP being the best methods. Testing on such large external data sets 

could clearly establish the generalization ability of the models built using the approach 

described herein. Also, the current model was built using only descriptors generated by 

CODESSA [38]. Other descriptors such as functional-group descriptors and WHIM 
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descriptors (molecular descriptors obtained as statistical indices of the atoms projected 

onto the 3 principal components obtained from weighted covariance matrices of the 

atomic coordinates) available in DRAGON [79] could be employed in the future to 

further improve the model. The model in the current work is purely empirical and is 

therefore limited in the ability to generalize to systems beyond its applicability domain. 

To remedy this limitation, a theory-based Kow model could be built that utilizes QSPR 

generalized activity coefficient models to predict the solubility of solute molecules in 

each of the two phases of the octanol-water system.  

Table 3.4 lists the best set of descriptors for the final ensembles, the majority of which 

are quantum-chemical descriptors related to the presence of hetero-atoms in the molecule. 

These descriptors account for the electronegative effects of the hetero-atoms present in 

the molecule. These descriptors were found to be important in other Kow models in the 

literature as well. Specifically, the MLOGP model by Moriguchi et al. [80] is developed 

using 11 descriptors, the majority of which describe the presence or the electronegative 

effects of hetero-atoms in the molecule. Also, these Moriguchi [80] descriptors, with the 

addition of descriptors that account for the charge and polarizability of the molecule, are 

an important part of the S+LogP model [78].  

3.6. Conclusions 

1. A hybrid algorithm that combines differential evolution algorithms (DE) and artificial 

neural networks (ANNs) provides an accurate predictive model for octanol-water 

partition coefficient that compares favorably with viable literature models.  

2. An ensemble of neural networks that differ in the values of the weights between 

layers provides improved predictive generalizations compared to a single network and 
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yielded predictions with an R2 of 0.98 and 0.96 for the training and validation sets of 

a database involving 11,308 molecules. 

3. The RMSE on the external test set for the current model was 0.57 on star set 

molecules and 1.01 on non-star set molecules. These results compare favorably with 

the other molecular-descriptor-based method such as ALOGPS [12, 19-21]. The 

current model performs worse than a few fragment-based methods in the literature; 

however, unlike the fragment-based methods, the current model can be applied to 

molecules with unknown fragments.   

4. The resulting model from this work can be used to predict a priori the octanol-water 

partition coefficient of new molecules. 
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Figure 3.1: Flowchart for the differential evolution algorithm 

Start

Remove insignificant (R2<0.1) and highly

correlated (R
2
>0.99) descriptors

Generate randomly the initial population (D) 

comprised of n models

Using the descriptors and the network architecture in each model 

of (D), train a neural network with backpropagation and calculate 

the fitness (In_obji) of each model.

Is current gen < maximum

number of generations?

Generate a mutated population (M) using the mutation rule:

Mi,j = Da,j + F*(Db,j - Dc,j)

where F = 0.5

Generate a target population (T) using the crossover rules:

Ti,j = Mi,j if rand<CR

Ti,j = Di,j if rand = CR

where CR = 0.75

Using the descriptors and the network architecture in each model 

of T, train a neural network with Bayesian regularization and 

calculate the fitness (Tr_obji) of each model.

Select the better of corresponding models in populations, D and T

Di,j = Ti,j if Tr_obji<In_obji
Di,j = Di,j if Tr_obji=In_obji

Record the 

best model

No
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Figure 3.2: Comparison between the experimental and predicted values of 
Log Kow in the training set 
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Figure 3.3: Comparison between the experimental and predicted values of  

Log Kow in the validation set 
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Figure 3.4: Comparison between the experimental and predicted 

values of Log Kow for the star set compounds in the external 
validation set 
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Figure 3.5: Comparison between the experimental and predicted values 
of Log Kow for the non-star set compounds in the external validation set 
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Table 3.1: Three sample chromosomes of size five, chosen from a set of 100 
descriptors 

Chromosome # Input 
Descriptor 

1 

Input 
Descriptor 

2 

Input 
Descriptor 

3 

Input 
Descriptor 

4 

Input 
Descriptor 

5 

Chromosome 1 23 45 54 3 98 

Chromosome 2 23 49 22 9 67 

Chromosome 3 34 44 1 7 100 

 

 

 

 

 

 

 

 

 

Table 3.2: Training and validation set root-mean-squared error (RMSE) values for 
the five best networks and the ensemble  

 

 Network 
1 

Network 
2 

Network 
3 

Network 
4 

Network 
5 

Ensemble 

Training 
RMSE 

0.329 0.343 0.345 0.348 0.350 0.279 

Validation 
RMSE 

0.447 0.450 0.446 0.452 0.462 0.380 
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Table 3.3: A comparison of the ensemble predictions with available literature 
models on the Avdeef test set as determined by Mannhold et al. [12] 

 

Method Star Set (223 molecules) Non-Star set (43 molecules) 

RMSE % of Molecules within 
Error Range 

RMSE % of Molecules within 
Error Range 

< 0.5 0.5-1 > 1 < 0.5 0.5-1 > 1 

AB/LogP 0.41 84 12 4 1.00 42 23 35 

S+logP 0.45 76 22 3 0.87 40 35 26 

ACD/LogP 0.50 75 17 7 1.00 44 33 23 

CLOGP 0.52 74 20 6 0.91 47 28 26 

VLOGP OPS 0.52 64 21 7 1.07 47 28 26 

ALOGPS 0.53 71 23 6 0.82 33 28 26 

This work 0.57 71 21 8 1.01 37 35 28 

MiLogP 0.57 69 22 9 0.86 49 30 21 

XLOGP3 0.62 60 30 10 0.89 47 23 30 

KowWIN 0.64 68 21 11 1.05 40 30 30 

CSLogP 0.65 66 22 12 0.93 58 19 23 

ALOGP 0.69 60 25 16 0.92 28 40 33 

MolLogP 0.69 61 25 14 0.93 40 35 26 

ALOGP98 0.70 61 26 13 1.00 30 37 33 

OsirisP 0.71 59 26 16 0.94 42 26 33 

VLOGP 0.72 65 22 14 1.13 40 28 33 

TLOGP 0.74 67 16 13 1.12 30 37 30 

ABSOLV 0.75 53 30 17 1.02 49 28 23 

QikProp 0.77 53 30 17 1.24 40 26 35 

QuantlogP 0.80 47 30 22 1.17 35 26 40 
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Table 3.3 (cont’d): A comparison of the ensemble predictions with available 
literature models on the Avdeef test set as determined by Mannhold et al. [12] 

Method Star Set (223 molecules) Non-Star set (43 molecules) 

RMSE % of Molecules within 
Error Range 

RMSE % of Molecules within 
Error Range 

< 0.5 0.5-1 > 1 < 0.5 0.5-1 > 1 
SLIPPER-
2002 

0.80 62 22 15 1.16 35 23 42 

COSMOFrag 0.84 48 26 19 1.23 26 40 33 

XLOGP2 0.87 57 22 20 1.16 35 23 42 

QLOGP 0.96 48 26 25 1.42 21 26 53 

VEGA 1.04 47 27 26 1.24 28 30 42 

CLIP 1.05 41 25 30 1.54 33 9 49 

LSER 1.07 44 26 30 1.26 35 16 49 

MLOGP 
(Sim+) 

1.26 38 30 33 1.56 26 28 47 

NC+NHET 1.35 29 26 45 1.71 19 16 65 

SPARC 1.36 45 22 32 1.70 28 21 49 

MLOGP 
(Dragon) 

1.52 39 26 35 2.45 23 30 47 

LSER UFZ 1.60 36 23 41 2.79 19 12 67 

AAM 1.62 22 24 53 2.10 19 28 53 

HINT 1.8 34 22 44 2.72 30 5 65 

GBLOGP 1.98 32 26 42 1.75 19 16 65 
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Table 3.4: The list of the best set of descriptors identified in this work 

No Name of the Descriptor Type of Descriptor 

1 Number of I  atoms Constitutional 

2 Randic index (order 3) Topological 

3 Number of N atoms Constitutional 

4 Relative number of F atoms Constitutional 

5 HACA-1 [Zefirov's PC] Electrostatic 

6 Min electroph. react. index for a Br atom Quantum-chemical 

7 
Average Complementary Information content 
(order 1) 

Topological 

8 Number of N atoms Constitutional 

9 Complementary Information content (order 1) Topological 

10 Relative number of I atoms Constitutional 

11 Number of O atoms Constitutional 

12 Max net atomic charge for a H atom Electrostatic 

13 Number of atoms Constitutional 

14 Max bond order of a C atom Quantum-chemical 

15 Relative number of N atoms Constitutional 

16 Number of O atoms Constitutional 

17 Min resonance energy for a Br-C bond Quantum-chemical 

18 Information content (order 2) Topological 

19 min(#HA, #HD) [Quantum-Chemical PC] Quantum-chemical 

20 Vib heat capacity (300K) Thermodynamic 
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Table 3.4 (cont’d): The list of the best set descriptors identified in this work 

No Name of the Descriptor Type of Descriptor 

21 Avg bond order of a O atom Quantum-chemical 

22 Min e-n attraction for a C-S bond Quantum-chemical 

23 
Max partial charge for a N  atom [Zefirov's 
PC] 

Electrostatic 

24 Max nucleoph. react. index for a O atom Quantum-chemical 

25 Max e-n attraction for a H-N bond Quantum-chemical 

26 count of H-donors sites [Zefirov's PC] Electrostatic 

27 Translational entropy (300K) / # of atoms Thermodynamic 

28 (1/6)X GAMMA polarizability (DIP) Quantum-chemical 

29 Min e-n attraction for a Cl-N bond Quantum-chemical 

30 
DPSA-3 Difference in CPSAs (PPSA3-
PNSA3) [Zefirov's PC] 

Electrostatic 

31 Min n-n repulsion for a Br-C bond Quantum-chemical 

32 Min electroph. react. index for a N atom Quantum-chemical 

33 Max n-n repulsion for a H-N bond Quantum-chemical 

34 Kier shape index (order 2) Topological 

35 Max e-n attraction for a C-S bond Quantum-chemical 

36 Max total interaction for a H-O bond Quantum-chemical 

37 Exch. eng. + e-e rep. for a C-H bond Quantum-chemical 

38 Min e-e repulsion for a S atom Quantum-chemical 

39 Max atomic state energy for a F atom Quantum-chemical 

40 Max total interaction for a F-P bond Quantum-chemical 
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Table 3.4 (cont’d): The list of the best set descriptors identified in this work 

No Name of the Descriptor Type of Descriptor 

41 Min e-n attraction for a C-Cl bond Quantum-chemical 

42 Max resonance energy for a N-O bond Quantum-chemical 

43 Max e-n attraction for a H-P bond Quantum-chemical 

44 Exch. eng. + e-e rep. for a N-N bond Quantum-chemical 

45 Max e-n attraction for a N atom Quantum-chemical 

46 Min e-n attraction for a O-Si bond Quantum-chemical 

47 Max e-n attraction for a O atom Quantum-chemical 

48 Min n-n repulsion for a C-P bond Quantum-chemical 

49 Max total interaction for a F-P bond Quantum-chemical 

50 Min e-n attraction for a H-S bond Quantum-chemical 
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CHAPTER 4 
 

A NON-LINEAR QSPR MODEL FOR MELTING POINT TEMPERATURE 

4.1. Introduction 

Melting point (MP) is the temperature at which the solid and liquid phases of a substance 

co-exist in equilibrium. These temperatures are invariably reported at atmospheric 

pressure. MP is an important property for identifying compounds and for analyzing 

purity. In addition, MP is used for predicting aqueous solubilities [1], boiling points [2] 

and eutectic compositions [3]. Aqueous solubility has enormous practical significance in 

the pharmaceutical industry for predicting the bioavailability and toxicity potential of 

drugs.  

The solid structural form of any compound is held together by molecular interactions 

such as ionic, polar, dispersion and hydrogen bonding, which are enthalpic forces, and by 

positional, expansion, rotational and conformation flexibilities, which are entropic forces 

[4]. Melting occurs when the thermal agitation inside the solids overcomes these 

enthalpic and entropic forces. Thermodynamically, at the melting point Tm, the Gibbs 

free energy of phase transition becomes zero, which is expressed as:
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∆G � ∆H " T ∆S � 0 (4.1) 

T � ∆H ∆S  
(4.2) 

where, ∆Hm reflects the enthalpic forces and ∆Sm reflects the entropic forces. Melting of 

a substance occurs when the Gibbs free energy of the liquid state of the substance 

becomes lower than its solid state. 

Inorganic compounds generally have high melting points due to the strong electrostatic 

forces between the constituent ions. The strongest intermolecular force generally 

exhibited by organic compounds is intermolecular hydrogen bonding, which is relatively 

weaker than electrostatic forces. Therefore, organic molecules will melt at lower 

temperatures than inorganic compounds [5]. For large molecules, however, induced 

dipole interactions become significant and can impact the crystal structure [6]. Further, 

molecular motion, categorized into oscillations or thermal librations, reorientations, and 

phase transitions, can also influence the structure of the crystal and affect the melting 

point [7]. All atoms in a molecule undergo oscillations, which become significant at 

higher temperatures. Some groups of atoms in a molecule or sometimes the whole 

molecule can undergo rotations or translations even at temperatures far below their 

melting points. If these reorientation motions become too easy or too frequent, the crystal 

structure becomes plastic or pre-liquid-like [7]. Some substances exhibit polymorphism 

where the compound can crystallize in many different crystal forms and, due to the 

polymorphism, these substances do not necessarily have only one clearly defined melting 

point [6]. These phase transformations are usually difficult to observe and the stability of 

each phase is not understood clearly. Brown and Brown [8] provide a good discussion on 
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the thermodynamic aspects of melting and the effects of structural symmetry and 

flexibility on melting. 

The models available in the literature for predicting the MP values are discussed in the 

next section. The majority of these models are developed using limited data, and hence, 

their general applicability is limited. In the current work, efforts have been made to 

develop QSPR models with much wider applicability using a much larger database of MP 

values. This work focuses on the following objectives: 

1. Develop an accurate non-linear QSPR model to predict the MP values using a 

database made up a diverse set of compounds. 

2. Compare the current modeling approach with existing modeling approaches in the 

literature on common external set data. This would further establish the efficacy of 

the modeling approach used in the work. 

4.2. State of the Art in Melting Point Prediction 

Despite the relative ease of measuring accurately melting point temperatures, modeling of 

MP has historically been one of the more difficult properties to model. This is due largely 

to the effect of secondary structural effects such as intermolecular hydrogen bonding and 

polymorphism, as discussed above. Hughes et al. [9] compared the predictive accuracies 

of models for octanol-water partition coefficients (Log Kow), MP and aqueous solubility 

and reported that MP models are significantly less reliable than either Log Kow or 

solubility models. Bergström et al. [10] and others [6, 11] have suggested that this lack of 

accuracy is due to the inability of the currently available molecular descriptors to 

describe the crystal structure of various compounds.  
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The earliest model for melting point prediction was developed by Mills in 1884 [12], 

after which the majority of MP models have been based on either group-contribution 

methods (GCM) or quantitative structure-property relationship (QSPR) methods. 

Katritzky et al. [5] provide a good review of the different approaches for melting point 

modeling prior to 2001. In GCM approaches, any molecular property is assumed to be the 

sum of contributions from predefined groups of atoms in that molecule. Joback and Reid 

[13] developed one of the earliest GCM approaches for prediction of melting points and 

boiling points along with other physical properties. Later Constantinou and Gani [14] 

developed a GCM approach based on UNIversal Functional Activity Coefficients 

(UNIFAC) groups that lead to better correlations than a simple GCM approach by 

considering second order group interactions. Wang et al. [15] have improved the GCM 

approach by taking into account position group contributions along with first and second 

order group contributions. The average deviation of prediction for their model was 14.5 

K as opposed to 29.3 K and 27.8 K for the models by Joback and Reid [13], and 

Constantinou and Gani [14], respectively. Simamora and Yalkowsky [16] have used 

group contributions along with rotational symmetry (which is a non-additive and non-

constituent molecular property) to develop a model with a standard deviation of 37.5 K 

for 1690 compounds. Yalkowsky and coworkers [17-20] have estimated melting points 

from the ratio of enthalpy and entropy of melting. Enthalpy of melting was estimated 

using GCM approaches [20], while entropy of melting was estimated using two sets of 

parameters. The first parameter set [17, 20] included molecular symmetry, σ (indicates 

the number of identical images that can be produce by rigid rotation of the molecule) and 

molecular flexibility, τ (empirically derived from the number of twist angles present in 
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the molecule). The second parameter set [19] was eccentricity, ε (accounts for entropy of 

expansion) and spirality, µ (accounts for entropy of configuration). The models 

developed using only the molecular symmetry and flexibility numbers were able to 

predict the entropy of melting with an average error of 21% for 376 compounds [17]. 

When this model was coupled with the GCM model for enthalpy of melting, the resulting 

absolute average errors in melting point for a test set of 120 compounds was 36 K [18]. 

Also, the models for entropy of melting based on eccentricity and spirality were able to 

reduce the average absolute error on the melting points for a test set of 106 compounds 

by 52% (from 90 K to 43 K) [19]. The GCM approaches suffer from major disadvantages 

such as their inability to (a) model structures containing undefined functional groups, and 

(b) account for the interaction between different functional groups and for their spatial 

arrangement.  

In QSPR approaches, the entire molecule is parameterized using molecular descriptors 

that are calculated using molecular mechanics or quantum mechanical methods. 

Bergström et al. [10] have built a QSPR model based only on the 2D and 3D molecular 

descriptors that were able to account for 63% of the variation in melting point data. This 

same data set was employed by Deeb et al. [21] to develop an improved model using 

genetic algorithms (GAs) and artificial neural networks (ANNs). This model could 

account for 70% of the variation in the melting point data and had a prediction root-mean 

squared error (RMSE) of 36 K. Modarresi et al. [4] have used the Bergström et al. [10] 

training dataset along with stepwise regression and genetic algorithms for descriptor 

selection. Their final model was comparable to the Bergström et al. [10] model in its 

accuracy. Karthikeyan [6] put together a large melting point database of 4,173 
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compounds, which is, to date, the most diverse database used for melting point 

prediction. Further, the author employed the 277 drug-like molecules used by Bergström 

et al. [10] as an external test set to gauge the predictive performance of the models. 

Principal component analysis (PCA), along with ANNs, was used for descriptor 

reduction and model development. The resulting model had a mean absolute error (MAE) 

of 32.6 K. Several other researchers have utilized the Karthikeyan [6] data set with 

differing techniques for descriptor selection and model development such as k nearest 

neighbor regression with genetic parameter optimization [22], ensembles of extreme 

learning machines [23], and artificial ant colony algorithms [24]. The RMSE on the 

internal test set for these models range from 45-49 K.  

Recently, Godavarthy et al. [25] have developed a QSPR model for melting point 

prediction using symmetry descriptors. They report an RMSE value of 13 K on a training 

set of over 1200 molecules; however, the calculation of symmetry numbers has been 

performed manually in this work, as the rules used to evaluate the symmetry numbers 

cannot be translated into programming languages. This places a severe limitation on the 

applicability of this model, particularly in automated evaluation of the properties of new 

molecules. Apart from the general models mentioned above, there are other models in the 

literature that are applicable only to restricted classes of compounds such as alkanes [26], 

aldehydes [27], ketones [27], amines [27], substituted benzenes [28], and polychlorinated 

biphenyls [29]. These models will not be discussed further, since the objective of the 

current study is to develop a generalized melting point model that can be applied to a 

diverse structural range of compounds. 
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4.3. QSPR Methodology 

The development of a QSPR model involves the following series of steps: (a) data set 

generation, (b) descriptor calculation, (c) descriptor reduction and model training, and (d) 

model validation. These elements are described below. 

4.3.1. Data Set Generation: Experimental melting point values of 4,173 organic 

compounds, ranging from 287-665.5 K were taken from the article by Karthikeyan [6]. 

To date, this is the most comprehensive open-literature database available for MP values. 

From this database, we have removed compounds that are salts, as well as compounds 

that are stereo-isomers of other structures in the database. This pruning of the 

Karthikeyan database resulted in 3,878 melting point data. Additionally, we have 

included 952 melting point values from other sources [14, 16, 30-33] to further enrich the 

diversity of the database. The resulting OSU database is comprised of 4,830 melting 

point data; however, 43 of these molecules could not be optimized structurally for the 

most favorable (lowest energy) three-dimensional conformation using our automated 

procedure. The melting points of the resulting 4,787 molecules range from 74-662.15K. 

(Figure 4.1 provides the distribution of MP data). The molecular weights of these 

compounds vary from 16.05 g/mol to 786.04 g/mol, and the octanol-water partition 

coefficient Kow (calculated by the DRAGON [34] software using the Ghose-Crippen 

ALOGP model) varies from -8.7 and 15. Details on the database characterization are 

given in Table 4.1. This principal dataset was used for training the model. Further, the 

molecules in the database are also characterized based on their drug-likeness as 

calculated using DRAGON [35] (Table 4.1). A score of 0 implies that the molecule has 
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no characteristics of a drug, while a score of 1 implies the molecule has all the 

characteristics of being a drug.  

In addition to the principal dataset, another set of 277 compounds was used for external 

validation. This dataset is the same as the external test set used by Karthikeyan [6] and 

was originally composed by Bergström et al. [10]. The purpose of this dataset is to 

provide a reliable estimation of the generalization capability and predictive capability of 

the final model. 

4.3.2. Descriptor Calculation: See section 2.5. 

4.3.3. Descriptor Reduction and Model Development: See section 2.6. 

External Validation: In a recent article, Tropsha et al. [36] emphasized the need to 

validate QSPR models using external data sets. In the current work, a dataset of 277 

molecules as identified by Karthikeyan [6] was used as the external validation set. The 

performance of the current model on this new dataset would indicate the generalization 

and predictive capability of the final model. 

4.4. Results 

10-descriptor, 15-descriptor, and 20-descriptor-models were tested, but no significant 

difference was observed among the models. Therefore, for the sake of simplicity, 10- 

descriptor models were used in the final models in the current study. Using less than 10 

descriptors resulted in a significant increase in the training RMSE values for databases 

made up of more than 150 data points. Figure 4.2 is a comparison between the 

experimental and predicted melting point values for the data in the principal dataset. As 

can be expected from the distribution of melting point data (Figure 4.1), the deviation 
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between the predictions and the experimental values is the lowest for compounds with 

melting points in the range 300-600 K, and the deviation becomes progressively higher 

beyond this interval. The correlation coefficient (R2) between the experimental and 

predicted values is 0.86. The prediction residual errors are plotted in Figure 4.3, which 

demonstrates that the residuals are distributed normally except at temperatures beyond 

550 K where the residuals show a distinctive downward bias. Further, the RMSE and the 

MAE values for the principal dataset predictions are 39.5 K and 30.2 K, respectively. The 

RMSE values for the individual ensembles range from 40.0 K to 41.6 K. The descriptors 

used for creating the eight different ensembles are shown in Table 4.2. Note that the 

neural networks in the ensembles are allowed to have a maximum of 10 elite inputs, but 

most frequently have a lower number. The descriptors F01[C-N], GATS1e, RBN, and Hy 

are common to all the ensembles, while the descriptors CIC3, NdssC, nDB, ATSC1i, and 

IC4 also occur frequently. The types and physical meaning of these commonly occurring 

descriptors are extracted from the DRAGON [33] help file and provided in Table 4.3.  

The comparison between the experimental and the predicted melting points for the 

external test set is provided in Figure 4.4, where the calculated R2 value is 0.43, 

signifying considerable differences between the calculated and the experimental values. 

The RMSE and MAE values for the external set predictions are 42.5 K and 33.9 K, 

respectively, which are only slightly higher than the corresponding values for the 

principal dataset. The corresponding RMSE values for the individual ensembles range 

from 41.8-45.0 K. 
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4.5. Discussion 

For his model, Karthikeyan [6] reports MAE values of 37.6 K and 39.8 K for the training 

and internal validation sets, respectively; however, the MAE for the current model over 

the much larger principal dataset is 30.2 K, which is significantly lower. These error 

levels are considerably higher than the typical experimental error of 1-2 K reported for 

organic compounds, which suggest that the MP temperatures are hard to correlate with 

the existing molecular descriptors. Table 4.4 compares the prediction set error in this 

work with the errors calculated for other models in the literature that have used the same 

prediction set. Except for the linear model by Bergström et al. [10], the remaining 

models, which are all non-linear in nature, have statistically similar RMSE values for the 

prediction set. The important difference, however, is the number of descriptors used in 

the final model; this model employed 27 different molecular descriptors across eight 

ensembles, whereas the model by Karthikeyan [6] is made up of 26 principal components 

comprising more than 100 different molecular descriptors and, therefore, is more 

complex. An interesting aspect of the melting point ensembles created in the present 

work is the narrow difference in RMSE values between the best performing ensemble 

and the worst performing ensemble. The best performing ensemble had an RMSE of 41.8 

K as opposed to 45 K for the worst predicting ensemble. Consequently, the difference 

between the average ensemble and the best ensemble is minimal. This could be attributed 

to the lack of molecular descriptors that can encode accurately the intermolecular 

interactions or the crystal structure of the molecule.   

Also of significance is the observation that the current model generally over-predicts for 

compounds that melt at lower than 425 K and under-predicts for temperatures higher than 
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425 K. This is the reason for the downward bias observed in the residuals for MP values 

higher than 550 K in Figure 4.3. This is a trend also observed by Karthikeyan [6], Nigsch 

et al. [22] and Bhat et al. [23] and could be explained, in part, by the lower numbers of 

high- and low-melting molecules in the database employed in the current work.  

Table 4.2 lists the most common descriptors across the eight different ensembles, which 

surprisingly are all 2D descriptors or constitutional descriptors independent of the 3D 

conformation of the molecule. Karthikeyan [6], in his article reports a similar trend in that 

the 2D descriptors performed better than 3D descriptors in prediction of melting point 

temperatures. The physical meanings of some descriptors in Table 4.3 are difficult to 

interpret, such as the 2D autocorrelation descriptors and the topological information 

indices; however, the common occurrence of these descriptors in the final model implies 

that the melting point is correlated with the 2D shape of the molecule and presence of 

electronegative groups in the molecule. Other common descriptors are easier to 

understand, like F01[C-N] which represents the number of C-N bonds in the molecule, 

Hy which represents the hydrophilicity and nDB which represents the number of double 

bonds in the molecule. Hydrophobicity or hydrophilicity, electronegativities, and partial 

charges have been found to be important molecular descriptors in Karthikeyan’s model 

[6] as well. An interesting descriptor in Table 4.3 is RBN which represents the number of 

bonds in the molecule that can be freely rotated around them. This descriptor is 

theoretically similar to the molecular symmetry number (σ) proposed by Yalkowsky and 

coworkers [17, 19, 20] to model the entropy of melting.  
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4.6. Conclusions 

1. A non-linear QSPR model for melting point temperature was developed using 

wrapper-based descriptor pruning techniques. 

2. The RMSE on the external test set for the current model was 42.5 K, which compares 

favorably with the value of 41.4 K for Karthikeyan’s model [6]; however, the number 

of descriptors used in the current work is 27 as compared to more than 100 

descriptors used by Karthikeyan. 

3. According to the current work, the 2-dimensional shape of the molecule, 

hydrophilicity of the molecule, and the presence of electronegative charges in the 

molecule have an effect on the melting point temperature. Further, the number of 

rotatable bonds in the molecule is important in determining the MP temperature. 

4.  Like other literature models for predicting MP temperatures, the current model has 

relatively high prediction errors due to the lack of descriptors that can encode 

effectively the intermolecular forces and crystal structure information. 

5. The resulting models from this work can be used to predict a priori the melting point 

temperatures of new molecules with reasonable accuracy. 
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Figure 4.1:  Distribution of the melting points in the principal data set 

 

 

 

 

 



 

Figure 4.2:  Comparison between the experimental and predicted melting point 
temperatures for the principal dataset. 

Figure 4.3:  Residual error plot of the model predictions on the principal dataset
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Figure 4.2:  Comparison between the experimental and predicted melting point 
temperatures for the principal dataset. The broken line represents perfect 

predictions 

Figure 4.3:  Residual error plot of the model predictions on the principal dataset

 

Figure 4.2:  Comparison between the experimental and predicted melting point 
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Figure 4.3:  Residual error plot of the model predictions on the principal dataset 



 

 

 

 

 

Figure 4.4:  Comparison between the experimental and predicted melting point 
temperatures for the external test dataset. The broken line 
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Figure 4.4:  Comparison between the experimental and predicted melting point 
temperatures for the external test dataset. The broken line 

represents perfect predictions 

 

Figure 4.4:  Comparison between the experimental and predicted melting point 
temperatures for the external test dataset. The broken line  
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Table 4.1:  Characteristics of the principal dataset made up of 4,787 molecules 

Molecular Property  Minimum  Maximum  Mean 
Standard 

Deviation 

Melting point (K)  74 662.15 398.8 101.9 

Molecular weight (g/mol) 16.05 786.04 279.4 117.7 

Octanol-water partition 

coefficient (Log Kow) 
-8.7 15.0 2.6 2.3 

DRAGON drug like score (0-1) 0.26 1.0 0.82 0.11 
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Table 4.2:  List of the descriptors used in the final eight ensembles 

Descriptor 
# 

Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

1 F01[C-N] F01[C-N] F01[C-N] F01[C-N] F01[C-N] F01[C-N] F01[C-N] F01[C-N] 

2 GATS1e GATS1e GATS1e GATS1e GATS1e GATS1e GATS1e GATS1e 

3 RBN RBN RBN RBN RBN RBN RBN RBN 

4 Hy Hy Hy Hy Hy Hy Hy Hy 

5 CIC3 NdssC NdssC NdssC CIC3 CIC3 CIC3 CIC3 

6 nDB C-040 SP02 SpPos_B (p) nDB nDB Mor11e C-040 

7 nHAcc IC4 IC4 IC4 RFD 
P_VSA_Log

P_4 
VR3_Dz (Z) RDF015m 

8 SM3_Dt ATSC1i ATSC1i ZM1Per SM2_B (p) SM2_B (p) ATSC1i SM3_Dt 

9 IAC SpAbs_B(p) EE_B(e) --- WiA_G/D WiA_G/D 
P_VSA_Log

P_4 
ARR 

10 --- --- --- --- 
P_VSA_Log

P_4 
--- --- --- 
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Table 4.3:  Physical meaning of the commonly occurring descriptors in the 
ensembles 

Descriptor 
Descriptor 
Type Physical Meaning 

F01[C-N] 2D atom pairs Number of Carbon-Nitrogen (C-N) bonds in the molecule. 

GATS1e 
2D 
autocorrelation 

Geary coefficient, calculated from molecular graph by 
summing the products of atomic Sanderson 
electronegativities of the terminal atoms of all the paths of 
unit path length. Geary coefficient is a distance-type 
function varying from zero to infinite. Strong spatial 
autocorrelation produces small values of this index. 

RBN 
Constitutional 
indices 

Number of bonds which allow free rotation around 
themselves. These are defined as any single bond, not in a 
ring, bound to a nonterminal heavy atom. Excluded from 
the count are amide C–N bonds because of their high 
rotational energy barrier 

Hy 
Molecular 
property 

A hydrophilicity descriptor defined by Todeschini et al. 
[82] based on the number of hydrophilic groups (-OH, -
SH, -NH), the number of carbon atoms and the number of 
atoms excluding hydrogen. 

IC4 
Topological 
information 
index 

A topological information index calculated for an H-
included molecular graph and based on neighbor degrees 
and edge multiplicity. It is calculated by partitioning graph 
vertices into equivalence classes; the topological 
equivalence of two vertices is that the corresponding 
neighborhoods of the 4th order are the same. The vertex 
neighborhood can be thought of as an open sphere 
comprising all the vertices in the graph, such that their 
distance from the considered vertex is less than 4. 

CIC3 
Topological 
information 
index 

The Complementary Information Content (CIC3) 
measures the deviation of the information content IC3 
from its maximum value, which corresponds to the vertex 
partition into equivalence classes containing one element 
each. 

NdssC 
Atom-type E-
state indices 

Number of atoms of type dssC 

nDB 
Constitutional 
descriptor 

Number of double bonds in the molecule 
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Table 4.3 (cont’d):  Physical meaning of the commonly occurring descriptors in the 
ensembles 

Descriptor 
Descriptor 
Type Physical Meaning 

ATSC1i 
2D 
autocorrelation 

Centered Broto-Moreau correlation, calculated from 
molecular graph by summing the products of ionization 
potentials of the terminal atoms of all the paths of unit 
path length. 

 

 

 

 

 

 

Table 4.4:  Comparison of the current model with literature models on the basis of 
predictions for 277 drug-like molecules 

Researchers Model Type 
No. of Descriptors 
Used in the Model 

RMSE 
(K) 

MAE 
(K) 

This work 
Stochastic optimization 
and ANNs 

27 descriptors 
across eight 
ensembles 

42.5 33.9 

Karthikeyan [6] 
Principal component 
analysis (PCA) and 
ANNs 

26 principal 
components made 
up of more than 
100 descriptors 

41.4 32.6 

Bergström et al. 
[10] 

Partial least squares 
(PLS) 

121 descriptors 49.8 --- 

Nigsch et al. [22] 
Genetic algorithms and 
k-nearest neighbor (k-
NN) 

146 descriptors 
across 15 nearest 
neighbors 

42.2 --- 
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CHAPTER 5 
 

A NON-LINEAR QSPR MODEL FOR GIBBS ENERGY OF FORMATION  

5.1. Introduction 

A frequent problem encountered by chemists is the inability to determine if a particular 

compound can be synthesized using certain reaction principles. Further, in virtual design 

paradigms, whether a designed compound can exist at a specified temperature and 

pressure is often in question. The solution to these problems is based on an understanding 

of the thermodynamic potentials of the reactants and products involved in the compound 

synthesis. These thermodynamic potentials are the driving forces for all natural processes 

to their equilibrium states [1]. Free energy, which is usually expressed as the Helmholtz 

function, A, or the Gibbs function, G, is a measure of the thermodynamic potential, and 

consequently, is an important property in thermodynamics [2]. The Helmholtz function is 

generally applied to a system with constant number of particles, temperature, and volume 

(constant NVT), whereas the Gibbs function is generally applicable to a system with 

constant number of particles, temperature and pressure (constant NPT). Since most 

experiments are carried out at constant temperature and pressure, the 



113 
 

Gibbs function, also known as the free enthalpy, is the commonly used form to represent 

the free energy [2]. 

Consider the formation of a compound P from its constituent elements R1 and R2.  

n&R& � n'R' ( P (5.1) 

where, n1 and n2 are the number of moles of R1 and R2, respectively. 

At a given temperature, the equilibrium constant of this equation can be written as 

follows: 

K* � �P��R&�+, . �R'�+. (5.2) 

where, Kf is the equilibrium constant for the formation reaction. Thermodynamically, this 

equilibrium constant is related to the change in Gibbs free energy (∆Gf) in the following 

manner: 

∆G* � "R / T / ln �K*� (5.3) 

where, R is the molar gas constant and T is the temperature. 

According to Equation 5.2, the equilibrium for the reaction (Equation 5.1) will be shifted 

to the right if Kf is greater than 1, and shifted to the left if Kf is less than 1. Considering 

the relation between Kf and ∆Gf from Equation 5.3, a negative value of ∆Gf implies the 

reaction is shifted to the right, and a positive value of ∆Gf implies the reaction is shifted 

to the left. In other words, a compound is stable if the value of ∆Gf at that particular 

temperature is negative. In addition, for a reaction system involving products and 
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reactants, the Gibbs free energy of the reaction is equal to the sum of the free energies of 

formation of the reactants subtracted from the free energies of formation of the products. 

For example, consider a reaction where C and D react to form the products F and G as 

shown: 

C � D ( F � G (5.4) 

The free energy of the above reaction is written as: 

∆G2345678+ � ∆G*9 � ∆G*: " ∆G*; " ∆G*< (5.5) 

This free energy of the reaction ∆Greaction can then be used to estimate the equilibrium of 

the reaction shown in Expression 5.4. 

The preceding discussion illustrates the importance of the Gibbs free energy of formation 

for estimating the stability of a compound relative to its elements, and for estimating the 

position of equilibrium for a given reaction. However, experimental determination of the 

free energy is difficult, particularly for systems with multiple minimum energy 

configurations separated by low-energy barriers [2]. Further, the component properties 

such as entropy and chemical potential are difficult to measure. Also, other popular 

computational techniques such as molecular dynamics (MD) and Monte Carlo (MC) 

simulations are impractically expensive to carryout for pure systems [3].  

Therefore, a need exists for models that can reliably predict the Gibbs energy of 

formation values for a wide range of compounds. The models available in the literature 

for predicting the Gibbs energy of formation are discussed in the next section. The 

majority of these models are developed using limited data, and hence, their general 
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applicability is limited. In the current work, efforts have been made to develop QSPR 

models with much wider applicability using a much larger database of Gibbs energy of 

formation values. This work focuses on the following objectives: 

1. Develop an accurate non-linear QSPR model to predict the Gibbs energy of formation 

using a database made up of diverse set of compounds. 

2. Validate the current modeling approach by employing an external test set of 

compounds that has not been used to develop the model. 

3. Compare the current modeling approach with existing modeling approaches in the 

literature, on common training and external set data. This would further establish the 

efficacy of the modeling approach used in the work. 

5.2. State of the Art in Predicting the Gibbs Energy of Formation 

The earliest work involving Gibbs energy of formation modeling was carried out by van 

Krevelen and Chermin [1], who used the group-contribution (GCM) approach to estimate 

the Gibbs energy with a mean average error (MAE) of 3.1 kcal/mol on the entire training 

data (data that has been used for model development) set. Joback [4] developed an 

improved GCM approach and reported a MAE of 1.01 kcal/mol on a training data set of 

328 compounds. Constantinou and Gani [5] have further improved the GCM approach by 

including second-order group contributions, and they report a MAE value of 0.78 

kcal/mol for their model on the training data.  Mavrovouniotis [6] has used an analogous 

GCM method to model the energy of formation of biochemical compounds in aqueous 

solutions. More recently, Ivanciuc et al. [7] have employed information-theory along with 

quantitative structure-property relationship (QSPR) modeling techniques, to develop a 

model for predicting the free energy of alkanes between C6 and C10. Wang et al. [8] have 
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used a relatively more diverse set of 180 small to medium sized organic molecules (with 

less than 10 carbon atoms) and employed the density functional theory (DFT) with neural 

network corrections to model the Gibbs free energy. Their best neural network had a 

root-mean-squared error (RMSE) of 3.1 kcal/mol on an external test set of 30 molecules. 

In another recent work, Yan [9] developed a QSPR model for free energy based only on 

the 2-dimensional (2D) descriptors of the molecules, and it employed the same set of 

compounds as Wang et al. [8], except for three compounds that were deemed 

incompatible with their descriptor generation software. Yan’s model [9] was built using 

Kohonen’s self-organizing neural networks and produced a mean absolute error (MAE) 

of 11.2 kcal/mol for an external test set (data that has not been used for model 

development) made up of 27 molecules. 

5.3. QSPR Methodology 

The development of a QSPR model involves the following series of steps: (a) data set 

generation, (b) descriptor calculation, (c) descriptor reduction and model training, and (d) 

model validation. These elements are described below. 

5.3.1. Data Set Generation: Experimental Gibbs energy of formation, ∆Gf, values at 

298K for 1,126 organic compounds were taken from the chemical properties handbook 

by Yaws [10]. Of these compounds, the structures for four molecules could not be found 

and the descriptors for 14 other molecules could not be calculated using the DRAGON 

[11] software. Therefore, the final database used for modeling is composed of 1,108 

molecules. To date, this is the most comprehensive database available for ∆Gf values. 

The ∆Gf values of the molecules in the final OSU database lie in the range -1970 kJ/mol 

to 665 kJ/mol (Figure 5.1 provides the distribution of ∆Gf data). The molecular weights 
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of these compounds vary from 16.05 g/mol to 446.74 g/mol, and the octanol-water 

partition coefficient Kow (calculated using the Ghose-Crippen ALOGP model in 

DRAGON [11] ) varies between -2.9 and 9.8. Additionally, the molecules are 

characterized based on their drug-likeness as calculated using DRAGON [11]. A score of 

0 implies that the molecule has no characteristics of a drug, while a score of 1 implies the 

molecule has all the characteristics of being a drug. Further details on the database 

characterization are given in Table 5.1.  

In addition to the above data sets, additional ∆Gf data of 180 diverse organic compounds 

were extracted from the article by Yan [9], which were originally taken from the 

Chemical Properties Handbook [10]. Henceforth in this work, this data will be referred to 

as the Yan’s database to differentiate it from the OSU data set. To validate the current 

modeling approach, Yan’s data were used to develop a QSPR model to predict the ∆Gf 

values and the resulting model was compared with the prediction results by Yan.[9]. To 

ensure a fair comparison, the same training and external test data employed by Yan were 

used in the current work.  

5.3.2. Descriptor Calculation: See Section 2.5 

5.3.3. Descriptor Reduction and Model Development: See Section 2.6 

External Validation: In a recent article, Tropsha et al. [12] emphasized the need to 

validate QSPR models using external data sets. Therefore, another model was built by 

separating some data from the original database and allocating it to an external test set.  

However, the data cannot be randomly separated, as the external set might not be 

representative of the training set. Therefore, a self-organizing map (SOM) network was 

created using the best descriptors identified in the first ensemble, which was developed 



118 
 

using the entire database. This SOM was used to identify clusters in the data and partition 

the data into T, IV and IT sets as explained in Section 5.3.3. The number of map units in 

this SOM was varied until the percentage of data points in the IT set is at least 15% of the 

size of the entire final data set of 1108 molecules. This IT set was then set aside as an 

external test set and the remaining data was used for developing another model de novo, 

by repeating the search for the best descriptors, best network architecture and network 

weights. In the current work, 177 molecules were identified as an external test set using 

this procedure, and the remaining 931 data points were again divided into T, IV and IT 

sets and subjected to the descriptor search algorithm as discussed in Section 5.3.3. For 

clarity, in this work, the model created using all 1108 data points for training will be 

referred to as Model 1 and the model created using just the 931 data points as Model 2. 

Model 1 will be used in the computer-aided molecular design (CAMD) algorithms 

because of its larger training set size, and Model 2 will be used to assess approximately 

the generalization capability of Model 1, as advocated by Tropsha et al. [12]. 

5.4. Results 

5.4.1 Model 1: Ten-descriptor, 20-descriptor and 30-descriptor models were tested; the 

20-descriptor models had lower training set errors than the 10-descriptor models, but no 

significant difference was observed between the 20-descriptor and 30-descriptor models. 

Therefore, for the sake of simplicity, 20-descriptor models were used in the final models 

in the current study. Going lower than 10 descriptors resulted in a significant increase in 

the training RMSE values for databases made up of more than 150 data points. Therefore, 

twenty was chosen as the minimum number of input descriptors. Figure 5.2 is a 

comparison between the experimental and predicted ∆Gf values for Model 1. The 
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correlation coefficient (R2) between the experimental and predicted values is 0.99. The 

prediction residual errors in kJ/mol are plotted in Figure 5.3 which clearly demonstrates, 

that the residuals are almost symmetrically distributed around the horizontal axis, as 

should be expected from an unbiased model. A histogram of the residuals (no figure 

shown) was plotted, where the distribution of the residuals around zero was found to be 

similar to a normal distribution. In addition, the RMSE and the MAE values for the 

training data set predictions are 17.4 kJ/mol and 9.7 kJ/mol, respectively. The RMSE 

values for the individual ensembles range from 18.3 kJ/mol to 20.6 kJ/mol. The results 

from the overall ensemble are slightly better than the results for the individual ensembles, 

which validates the use of ensembles with different descriptors as inputs.  

The different descriptors used for creating the eight different ensembles are shown in 

Table 5.2. Note that the neural networks in the ensembles are allowed to have a 

maximum of 20 elite inputs, but most frequently they end up having a slightly lower 

number of elite descriptors as inputs, after the insignificant descriptors have been 

removed as described in Section 5.3.3. The descriptors nN, Ho_D/Dt, MAXDN, 

P_VSA_v_3, P_VSA_p_3, SdO and SM1_Dz (Z) are the most common across the 

ensembles. The types and physical meanings of these commonly occurring descriptors, as 

extracted from the DRAGON [11] help file, are provided in Table 5.3.  

5.4.2. Model 2: For Model 2, 20-descriptor inputs were chosen for model development. 

Figure 5.4 is a comparison between the experimental and predicted ∆Gf values for the 

training data of 931 compounds. The correlation coefficient (R2) between the 

experimental and predicted training data is 0.99. The prediction residual errors on this 

data are near-symmetrically distributed around the horizontal axis (no figure shown). The 
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RMSE and MAE values for the training set data are 21.4 kJ/mol and 11.4 kJ/mol, 

respectively. Figure 5.5 compares the experimental and predicted ∆Gf values of the 

external test set of 177 compounds. The RMSE and MAE values for the external test set 

are calculated to be 32.4 kJ/mol and 16.4 kJ/mol, respectively. 

The descriptors used for creating the eight different ensembles for Model 2 are tabulated 

in Table 5.4. The descriptors nN, nHet, MAXDN, C-024, ON0V, P_VSA_p_3, and 

SM15_EA (dm) are the most common across the ensembles. The types and physical 

meanings of these commonly occurring descriptors, as extracted from the DRAGON [11] 

help file, are provided in Table 5.5.  

5.4.3. Model for Yan’s Database: Ten descriptor-models were developed in the current 

work to correlate the molecules in the Yan’s database [9]. One molecule could not be 

optimized for its 3D structure, and therefore was left out of the modeling process. For the 

current model, the RMSE and MAE values are calculated to be 21.5 kJ/mol and 16.6 

kJ/mol, respectively for the training set comprising 152 compounds. For the external test 

set comprising 27 compounds, the RMSE and MAE values are calculated to be 29.2 

kJ/mol and 21.1 kJ/mol, respectively. A comparison between the experimental and 

predicted ∆Gf values for the external data of 27 compounds is provided in Figure 5.6. The 

correlation coefficient (R2) between the experimental and predicted external test data is 

calculated to be 0.98.  

The errors for all models developed in the current work are tabulated in Table 5.6. 
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5.5. Discussion 

The RMSE value for the Model 1 training set is approximately 25% lower than the 

corresponding value for Model 2. This difference can be attributed to the larger training 

set size for Model 1, which allows for better training across the different classes of 

compounds. Due to the larger training data set, Model 1 would be expected to perform 

similarly to Model 2 on unseen data (external data set). Therefore, the predictive 

performance of Model 2 on an external test set can be used as an approximation for 

determining the generalization capability of Model 1. Few works exist in the open 

literature relating to the prediction of Gibbs energy of formation, and to the best 

knowledge of the author, the models by Wang et al. [8] and Yan [9] are the only 

generalized Gibbs energy of formation models in the literature, where an external test set 

has been used to assess the predictive capability. These models are compared with the 

current model in Table 5.7. Wang et al. [8] have reported a RMSE value of 3.1 kcal/mol 

(13.0 kJ/mol) on an external test set of 30 molecules, using a model that was trained on a 

data set of 150 molecules. Using 177 compounds from the same database as Wang et al. 

[8], Yan [9] reported a MAE value of 11.2 kcal/mol (46.9 kJ/mol) for an external test set 

comprising 27 molecules.  

Also, the compounds that exhibit the largest deviations in the various models were further 

examined manually to identify any correlation between their higher errors and the 

presence/absence of certain functional groups. The majority of the molecules that had 

high deviations contain at least one oxygen atom. Table 5.8 lists the 5 compounds in the 

external set, for which the Model 2 predictions and the experimental values of ∆Gf differ 

by more than 100 kJ/mol. The first molecule is a geometric isomer and the high error can 
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be attributed to the lack of sufficient number of geometric isomers in the training data. 

The last molecule is an inorganic compound, and the high prediction error in this case 

may be due to the lack of sufficient number of inorganics in the training set. The 

functional groups of the other three molecules, however, are represented sufficiently in 

the training set, and any reason for the high error is unclear.  

Table 5.3 lists the most common descriptors for the eight different ensembles for Model 

1. Surprisingly, these descriptors are 2D descriptors or constitutional descriptors 

independent of the 3D conformation of the molecule. Due to the black-box nature of the 

artificial neural networks (ANNs), a quantitative assessment of the significance of the 

different descriptors on the Gibbs energy is not possible. However, approximate 

qualitative interpretations can be made based on the type of descriptors. For example, the 

presence of the 2D matrix-based descriptors, Ho_D/Dt and SM1_Dz (Z) indicates a 

correlation between ∆Gf and the shape of the molecule. In addition, the presence of the 

descriptors, MAXDN, P_VSA_p3, and SdO indicates that the charge distribution around 

the molecule also has an effect on the ∆Gf values. The number of nitrogen atoms, denoted 

by the descriptor nN also has an effect on the Gibbs energy values. As expected, some of 

the common descriptors for Model 2 (listed in Table 5.5) are identical to the common 

descriptors for Model 1. For example, the descriptors nN, MAXDN, P_VSA_p3 are 

common across both Model 1 and Model 2. The other descriptors in Model 2, though not 

exactly identical to Model 1 descriptors, are drawn from the same sub-category of 

descriptors as in Model 1, and describe the shape of the molecule. This suggests a strong 

correlation between the shape and Gibbs energy of formation for a molecule. In addition, 
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the common descriptors observed in the current work are similar to the 2D descriptors 

such as σ charge and lone-pair electronegativity, employed by Yan [9]. 

To compare the efficacy of the current modeling approach, the Yan’s data set [9] had 

been employed to develop a QSPR model. The results from this model are provided in 

Table 5.9, along with the results by Wang et al.[8], using the same training and external 

test set data. The current model performs significantly better on both the training data and 

the external set data, which indicates better generalization capability of the current model, 

when compared with the model by Yan [9]. The same data, but different training and 

external test set partitions were employed by Wang et al. [8] in their DFT correction 

approach of modeling the ∆Gf values. The considerably lower error for the model by 

Wang et al. [8] could be due to fact that all these molecules are small molecules (with 

lower than 10 carbon atoms) and the Gibbs energy of formation values are calculated 

using the density-functional theory, and not by the standard molecular-descriptor 

approach. Although, the systematic deviations in the density-functional theory 

calculations for small molecules (with lower than 10 carbon atoms) can be accurately 

corrected using multi-linear regression or neural networks, the deviations from the 

experimental values for medium to large sized molecules is significantly large and 

alternative strategies of modeling are usually preferred [8]. The current QSPR model 

does not suffer from this disadvantage and can be applied to molecules of any size, which 

makes it ideal for predicting the Gibbs energies of formation values for new molecules 

identified during the virtual design process.  
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5.6. Conclusions 

1. A non-linear QSPR model for ∆Gf at 298K was developed using wrapper-based 

descriptor pruning techniques. 

2. Two models were developed. Model 1 was built using ∆Gf values for 1,108 

compounds, and all this data was used for model development, and Model 2 was built 

by employing ∆Gf values of 931 compounds from the original database of 1,108 

compounds with 177 compounds reserved as an external test set.  

3. The RMSE values on the training sets for Model 1 and Model 2 are 17.4 kJ/mol and 

21.4 kJ/mol, respectively. The RMSE value for Model 2 on the external test set is 

32.4 kJ/mol. 

4. According to the current work, the 2-dimensional shape of the molecule and the 

distribution of electronegative charges in the molecule significantly affect the Gibbs 

energy of formation values.  

5. The current model developed using the Yan’s data set performs significantly better 

than the model by Yan [9] on an external test set of 27 compounds. The MAE value 

on the external test set for the model by Yan is 47 kJ/mol as compared to a MAE 

value of 21 kJ/mol from the current model.  

6. The resulting models from this work can be used to accurately predict a priori the 

Gibbs energy of formation of new molecules and thereby their stability. 
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Figure 5.1:  Distribution of the ∆Gf values in the final data set
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Figure 5.2:  Comparison between the experimental and predicted 
Model 1. 

Figure 5.3:  Residual error plot of the Model 1 predictions
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Figure 5.2:  Comparison between the experimental and predicted ∆
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Figure 5.2:  Comparison between the experimental and predicted ∆Gf values for 
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Figure 5.4:  Comparison between the experimental and predicted 
training data in Model 2. 
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Figure 5.4:  Comparison between the experimental and predicted ∆G
training data in Model 2. The broken line represents
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Figure 5.5:  Comparison between the experimental and predicted 
external test set in Model 2. 
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Figure 5.5:  Comparison between the experimental and predicted ∆G
external test set in Model 2. The broken line represents perfect predictions
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Figure 5.6:  Comparison between the 
external test set on the Yan’s database. 
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Figure 5.6:  Comparison between the experimental and predicted ∆G
external test set on the Yan’s database. The broken line represents perfect 

predictions 
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Table 5.1:  Characteristics of the final OSU data set 

Molecular Property Minimum  Maximum Mean Standard 

Deviation 

∆Gf (kJ/mol) -1970.0 665.0 -47.2 268.1 

Molecular weight (g/mol) 16.05 446.74 129.3 55.5 

Octanol-water partition 

coefficient(Log Kow) 

-8.7 15.0 2.6 2.1 

DRAGON drug like score (0-1) 0.49 1.0 0.78 0.1 

 

 



131 
 

Table 5.2:  List of the descriptors used in the final eight ensembles for Model 1 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

1 nN nN nN nN nN nN nN nN 

2 SAdon TDB03u Ho_D/Dt Ho_D/Dt Ho_D/Dt Ho_D/Dt Ho_D/Dt Ho_D/Dt 

3 ZM1V ZM1V 
Eta_betaS_

A 
Eta_betaS_

A 
X% X% Eta_beta Eta_beta 

4 MAXDN MAXDN EE_H2 EE_H2 MAXDN MAXDN nBO nBO 

5 P1m B01[O-O] EE_B(s) EE_B(s) EE_B(s) 
VR2_B 

(m) 
EE_Dz 

(m) 
EE_Dz 

(m) 

6 P_VSA_v_3 P_VSA_v_3 SRW02 SRW02 P_VSA_v_3 P_VSA_v_3 Chi0_EA Chi0_EA 

7 P_VSA_v_2 P_VSA_v_2 P_VSA_p_3 P_VSA_p_3 nCar 
Hypertens-

80 
P_VSA_p_3 P_VSA_p_3 

8 
SM6_Dz 

(m) 
SM6_Dz 

(m) 
SM1_Dz 

(Z) 
SM1_Dz 

(Z) 
SM3_D SM3_D 

SM1_Dz 
(Z) 

SM1_Dz 
(Z) 

9 B01[O-O] BBI 
SM6_B 

(p) 
SM6_B 

(p) 
SM4_B(e) SM4_B(e) L1v Dz 

10 SpMaxA_Dt 
SpDiam_Dz

(p) 
SpDiam_EA

(dm) 
SpDiam_EA

(dm) 
ON0 ON0 nCbH nCbH 

 



132 
 

Table 5.2 (cont’d):  List of the descriptors used in the final eight ensembles for Model 1 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

11 
SpMaxA_D

z(i) 
Eta_F 

SpMAD_Dz
(p) 

SM1_Dz 
(p) 

nHAcc nHAcc 
SpMaxA_D

z(i) 
SpMaxA_D

z(i) 

12 
SpPosLog_

B(p) 
SAdon 

SpAD_AEA
(ed) 

SpAD_AEA
(ed) 

Eta_B 
P_VSA_MR

_2 
SpPosA_Dz

(v) 
SpPosA_Dz

(v) 

13 SdO SdO SaaCH SaaCH SdO SdO NdO NdO 

14 
VR3_Dz 

(Z) 
VR3_Dz 

(Z) 
ATS2s ATS2s ATS1p ATS1p ATS1s ATS1s 

15 SCBO SCBO TIC4 TIC4 S1K 
P_VSA_m_

4 
X1Mad X1Mad 

16 RDF010p RDF010p Mor22e Mor22e 
P_VSA_m_

4 
nCar nF nF 

17 MPC04 nRNHR 
SM1_Dz 

(p) 
HATS3m 

P_VSA_MR
_2 

nROR SpAD_RG SpAD_RG 

18 DLS_02 L1m Mor20e Mor20e nROR S1K nRNHR LPRS 

19 nBM nBM HATS3m --- nC nC LPRS nRNHR 

20 --- --- 
CATS2D_0

1_LL 
--- EE_A --- Dz --- 
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Table 5.3:  Physical meaning of the commonly occurring descriptors in the 
ensembles for Model 1 

Descriptor 
Descriptor 
Type Physical Meaning 

nN 
Constitutional 
descriptor 

Number of nitrogen atoms in the molecule. 

Ho_D/Dt 
2D matrix 
based 
descriptor 

Hosoya-like index, which is a topological index, 
calculated by applying a logarithmic function to the 
distance/detour matrix. 

MAXDN 
Topological 
Indices 

Maximal electrotopological negative variation [13], 
which is an E-state index calculated as the maximum 
negative value of ∆Ii in the molecule. ∆Ii is the 
intrinsic state of the ith atom. 

P_VSA_v_3 
P_VSA 
descriptor 

The amount of van der Waals surface area of the 
molecule that has a value of van der Waals volume 
between 1 and 1.3 [14]. 

P_VSA_p_3 
P_VSA 
descriptor 

The amount of van der Waals surface area of the 
molecule that has a value of polarizability between 1 
and 2 [14]. 

SdO E-state indices 
Sum of the electrotopological state values of all ‘=O’ 
atom types in the molecule [15]. 

SM1_Dz (Z) 
2D matrix 
based 
descriptor 

The spectral moment of order 1 from Barysz matrix 
weighted by atomic number [16]. 
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Table 5.4:  List of the descriptors used in the final eight ensembles for Model 2 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

1 nN nN nN nN nN nN nN nN 

2 nHet nHet nHet nHet nHet nHet nHet nHet 

3 MAXDN MAXDN MAXDN MAXDN MAXDN MAXDN MAXDN MAXDN 

4 C-024 C-024 C-024 C-024 C-024 C-024 C-024 C-024 

5 ON0V ON0V ON0V ON0V ON0V ON0V ON0V ON0V 

6 P_VSA_v_3 P_VSA_v_3 P_VSA_p_3 P_VSA_p_3 P_VSA_p_3 P_VSA_p_3 P_VSA_p_3 P_VSA_p_3 

7 
SM15_EA(d

m) 
SM15_EA(d

m) 
F01[O-O] F01[O-O] 

SM15_EA(d
m) 

SM14_EA(d
m) 

SM15_EA(d
m) 

SM15_EA(d
m) 

8 RDF010s RDF010s RDF010s RDF010s RDF015m RDF015m RDF015m RDF015m 

9 
SpDiam_B(i

) 
SpDiam_B(i

) 
SpDiam_B(i

) 
SpDiam_B(i

) 
SpDiam_G/

D 
SpDiam_G/

D 
SpDiam_G/

D 
SpDiam_G/

D 

10 
SpAbs_B 

(v) 
SpAbs_B 

(v) 
SpAbs_B 

(v) 
SpAbs_B 

(v) 
SM5_B (p) SM5_B (p) SM5_B (p) SpPos_H2 
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Table 5.4 (cont’d):  List of the descriptors used in the final eight ensembles for Model 2 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

11 
SpMaxA_B(

m) 
SpMaxA_B(

m) 
SpMaxA_B(

m) 
SpMaxA_B(

m) 
SpPosLog_

L 
SpPosLog_

L 
SpPosLog_

L 
SpPosLog_

L 

12 SM3_RG SM3_RG SM3_Dz (i) SM3_Dz (i) HyWi_B (i) HyWi_B (i) HyWi_B (i) HyWi_B (i) 

13 SpAD_Dz(i) SpAD_Dz(i) 
P_VSA_m_

4 
P_VSA_m_

4 
SM14_EA(d

m) 
SpAD_Dz(i) P_VSA_p_1 P_VSA_p_1 

14 VR1_H2 
Eta_betaP_

A 
CATS2D_0

3_LL 
CATS2D_0

3_LL 
Eta_betaP Eta_betaP 

Eig14_EA(e
d) 

Eig14_EA(e
d) 

15 ATSC2p ATSC2p Mor01u Mor01u MLOGP MLOGP 
Chi0_AEA(

bo) 
Chi0_AEA(

bo) 

16 Gu Gu VR2_B(e) VR2_B(e) ALOGP ALOGP nBM nBM 

17 ATSC4p VR1_H2 QXXm QXXm nX nX nX nX 

18 SM2_L --- RDF020i RDF020i N% --- SpPos_H2 --- 

19 Mor11s Mor11s Mor11s --- GGI8 GGI8 GGI8 GGI8 

20 --- --- --- --- --- --- 
SpMAD_Dz

(p) 
SpMAD_Dz

(p) 
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Table 5.5:  Physical meaning of the commonly occurring descriptors in the 
ensembles for Model 2 

Descriptor 
Descriptor 
Type Physical Meaning 

nN 
Constitutional 
descriptor 

Number of Nitrogen atoms in the molecule. 

nHet 
Constitutional 
descriptor 

Number of heteroatoms in the molecule 

MAXDN 
Topological 
Indices 

Maximal electrotopological negative variation [13], 
which is an E-state index calculated as the 
maximum negative value of ∆Ii in the molecule. ∆Ii 
is the intrinsic state of the ith atom. 

C-024 
Atom centered 
fragments 

Number of carbon atoms of the type R—CH—R 

ON0V 
Topological 
indices 

The overall modified Zagreb index of order 0 by 
valence vertex degrees [17]. 

P_VSA_p_3 
P_VSA 
descriptor 

The amount of van der Waals surface area of the 
molecule that has a value of polarizability between 1 
and 2 [14]. 

SM15_EA(dm) 
Edge adjacency 
indices 

The spectral moment of order 15 from edge 
adjacency matrix weighted by dipole moment [18]. 
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Table 5.6:  The errors for all models developed in this work 

Model 

Training Set External Test Set 

RMSE 
(kJ/mol) 

MAE 
(kJ/mol) R2 

RMSE 
(kJ/mol) 

MAE 
(kJ/mol) R2 

Model 1  17.4 9.7 0.99 --- --- --- 

Model 2  21.4 11.4 0.99 32.4 16.4 0.98 

Model for 
Yan data 

21.5 16.6 0.99 29.2 21.1 0.98 

 

 

 

 

 

 

Table 5.7:  Comparison of the current model with literature models on the basis of 
predictions on external test set molecules 

Researchers Type of model 
No. of molecules 
in the external 

test set 

RMSE 
(kJ/mol) 

This work 
Stochastic optimization and 
ANNs 

177 32.4 

Wang et al. [8] 
Density-functional theory 
and ANNs 

30 13.7 

Yan [9] 
Pair-wise correlation analysis 
and ANNs 

47 46.9 
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Table 5.8:  List of molecules in the external test set for Model 2 that had an absolute 
error of more than 100 kJ/mol  

Name Structure Experimental 
∆Gf (kJ/mol) 

Predicted     
∆Gf 

(kJ/mol) 

1,4-
dichloro-

cis-2-
butene 

 

108.5 11.3 

Dicumyl 
peroxide 

 

 

242.0 64.7 

Di-n-
butylamine 

 
-130.0 -7.6 

Methyl 
nitrite  

1.0 -232.5 

Carbon di-
oxide  -394.4 -274.6 
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Table 5.9:  Comparison of the current model with literature models on the Yan data 
set 

Researchers Model Type Training 
Set MAE 

Number of 
Molecules in 

External Test Set 

External Test 
Set MAE 

This work  
Stochastic 
optimization and 
ANNs 

16.6 45 21.1 

Yan [9] 

Pair-wise 
correlation 
analysis and 
ANNs 

48.1 27 46.9 

Wang et al. [8]* 

Density-
functional theory 
correction using 
ANNs 

13.4  30 13.0 

* The external test set used in the referenced work is different from the one employed by the other models 
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CHAPTER 6 

 

A NON-LINEAR QSPR MODEL FOR NORMAL BOILING POINT TEMPERATURE 

6.1. Introduction 

Boiling point is an important thermophysical property that is defined as the temperature 

at which the liquid and vapor phases of a pure substance co-exist in equilibrium. If 

measured at atmospheric pressure, the boiling point is referred to as the normal boiling 

point temperature (henceforth called NBP). Boiling point is one of the properties 

typically investigated first [1], when identifying new compounds. Apart from estimating 

the volatility of a compound, NBP information can also be used along with flash point 

data, to assess the flammability of the compound. Further, the NBP is also used widely to 

predict other physical properties including critical temperature [2], enthalpies of 

vaporization [3, 4], flash points [5] and gas chromatographic retention indices [4].  

In most extractive distillation process, the solvents used are expensive and are, therefore, 

recovered and recycled.  The NBP of a solvent often determines the process layout. When 

a solvent with a low-boiling point is used, the solvent is usually recovered along with one 

of the solutes from the condenser stream; however, the use of a high-boiling point solvent 

requires recovery from the re-boiler. Therefore, the boiling point is often the first 

property measured for a new solvent.  
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Normal boiling points are easy to determine experimentally; however, when a chemical is 

unavailable, hazardous to handle or yet to be synthesized, a reliable procedure to estimate 

its boiling point is required. In fact, the rapid growth of combinatorial chemistry provides 

large numbers of prospective new molecules, which then need to be synthesized and 

tested; thus, providing the opportunity and impetus for the development of an accurate 

predictive model for NBP predictions.  

The models available in the literature for predicting the NBP values are discussed in the 

next section. The majority of these models are developed using limited data, and hence, 

their general applicability is limited. In the current work, efforts have been made to 

develop QSPR models with much wider applicability using a much larger database of 

NBP values. This work focuses on the following objectives: 

1. Develop an accurate non-linear QSPR model to predict the NBP values using a 

database made up of diverse set of compounds. 

2. Validate the current modeling approach by employing an external test set of 

compounds that has not been used to develop the model. 

3. Compare the current modeling approach with existing approaches in the literature, on 

common training and external set data. This would further establish the efficacy of 

the modeling approach used in the work. 

6.2. State of the Art in Predicting Normal Boiling Point Temperatures 

According to Katritzky [6], the boiling point of a compound is determined by the 

intermolecular forces in the liquid state, and by the difference in the molecular internal 
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partition function between the vapor and liquid phases. Therefore, the boiling point 

temperature of a compound should be predictable from its chemical structure. 

Accordingly, many models have been developed to correlate the NBP values with the 

molecular structure of the compounds. One of the first reported efforts was by Walker 

[7], who attempted to correlate the boiling point with the number of carbon atoms and 

molecular weight. Horvath [8], Nendza [9], Lyman et al. [10], and Katritzky et al. [6] 

have summarized the early work (until the 1990’s) on boiling point prediction. The 

majority of the early prediction approaches were based on group-contribution methods 

(GCM), where any molecular property is assumed to be a sum of contributions from 

predefined groups of atoms in that molecule. Joback and Reid [11] developed one of the 

earliest GCM approaches for prediction of melting points and boiling points along with 

other physical properties. They reported a mean absolute error (MAE) of 12.9 K for a 

database of 438 compounds. Later, Constantinou and Gani [12] developed a GCM 

approach based on UNIversal Functional Activity Coefficients (UNIFAC) groups that 

lead to better correlations than a simple GCM approach by considering second-order 

group interactions. They report a MAE value of 5.4 K on their training data (data that has 

been used for model development) of 392 compounds, extracted from the Design 

Institute for Physical Properties Research (DIPPR) database [13]. Stein and Brown [14] 

have improved the Joback and Reid [11] approach, primarily by increasing the number of 

functional groups. They employed a training set database of 4426 compounds and an 

external test (data that has not been used for model development) set of 6584 compounds. 

Their model produced MAE values of 15.5 K and 20.4 K for the training and test sets, 
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respectively; however, the majority of their experimental data were measured at pressures 

lower than 1 atm, and these data were then extrapolated to atmospheric pressure using a 

vapor pressure equation.  

Despite their popularity, GCM approaches suffer from major disadvantages such as their 

inability to model structures containing undefined functional groups and to account for 

the interaction between different functional groups and for their spatial arrangement. An 

alternative to the GCM approach is the quantitative structure-property relationship 

(QSPR) method, where the entire molecule is parameterized using molecular descriptors 

calculated through molecular mechanics or quantum mechanical methods. Using a data 

set of about 150 compounds, Sola and coworkers [15] demonstrated that the QSPR 

approach to modeling the NBP values is more accurate than the best available GCM 

approach. The pioneering work in predicting boiling points using QSPR techniques was 

carried out by Wiener [16], who introduced the path number (Wiener index), which is 

defined as the sum of the distances between any two carbon atoms in the molecule. Using 

this descriptor, Wiener [16] was able to calculate the boiling points of 94 paraffins within 

a deviation of one degree Celsius. Other early contributions include the topological 

indices developed by Randic [17], and Kier and Hall [18] which have been employed 

successfully to model the boiling points of alkanes and amines. More recently, a plethora 

of QSPR models for boiling point prediction have appeared in the literature, with the 

majority of the developed models dealing with a specific class of compounds such as 

alkanes [19-24]. Dearden [25] provides a detailed review of these methods and also tests 

them using an external test set of 100 organic molecules. Dearden [25] notes that almost 
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all the models have standard errors in single figures and employ graph theoretical 

descriptors, also known as topological descriptors; these descriptors are helpful in 

describing the branching in molecules.  

Dearden [25] also reviews some of the generalized QSPR models that are based on a 

diverse set of compounds, such as the models based on the Comprehensive Descriptors 

for Structural and Statistical Analysis (CODESSA) [26] and ADAPT [24] software. One 

of the most accurate generalized models for NBP prediction was developed by Hall and 

coworkers, who employ E-state indices [27, 28] and report a MAE value of 3.93 K for a 

training set of 298 compounds, and a MAE value of 3.86 K for an external test set of 30 

compounds. Katritzky et al. [29] developed a generalized QSPR model using 584 diverse 

organic compounds for training and 28 additional compounds (mostly fluorinated and 

chlorinated compounds) as an external test set. They report a root-mean-squared error 

(RMSE) value of 14.6 K for the training set and a RMSE value of 9.7 K on the test set, 

which is comparable to the estimated experimental RMSE of 11.4 K for the entire data 

set. Chalk and coworkers [30] developed a generalized model for predicting NBP values 

based on semi-empirical molecular orbital (MO) descriptors, using a large training data 

set of 6000 compounds and a representative external test set of 629 compounds. 

However, the experimental errors for this data were not available and therefore, the 

quality of the resulting model is questionable. They report standard deviations of 16.5 K 

and 19.0 K for the training and test sets, respectively.  

Despite the availability of sufficient experimental NBP data, the majority of generalized 

QSPR models in the literature are trained using fewer than 300 compounds. The only 
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comprehensive model using a reasonably sized data set was developed by Katritzky et al. 

[29], but their model was not tested sufficiently using an external test set. In this work, 

we augmented the data provided by Katritzky et al. [29] with additional data from DIPPR 

[13] to develop generalized NBP models and tested these models for their predictive 

ability using an external test set.  

6.3. QSPR Methodology 

The development of a QSPR model involves the following series of steps: (a) data set 

generation, (b) descriptor calculation, (c) descriptor reduction and model training, and (d) 

model validation. These elements are described below. 

6.3.1. Data Set Generation: Experimental NBP values were extracted from the DIPPR 

database. The DIPPR database provides an estimated maximum error for each datum, and 

only data that have an estimated error of less than 5% were used for training the models 

in the current work. In total, the DIPPR database has 1,317 NBP values with estimated 

maximum errors less than 5%. Of these, 101 compounds are either inorganics or salts and 

were removed from the database. The pruned DIPPR database was combined with the 

database employed by Katritzky and coworkers [31]. Katritzky’s database [29] is made 

up of data from DIPPR, the CRC handbook of chemistry and physics [32], and the 

Aldrich catalog of fine chemicals [33]. The experimental uncertainties for the specialty 

fine chemicals are not given but are expected to be higher than 10%. After removing 

duplicates, the combined database has values for 1,321 compounds; however, the final 

OSU-NBP database used for modeling is made up of 1,320 NBP values, after removing 
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phosphoric acid ester, which could not be optimized structurally for the most favorable 

(lowest energy) three-dimensional conformation using our automated procedure (see 

Section 6.2.2).  

The OSU-NBP database is one of the most comprehensive databases available for NBP 

values in the open literature. The NBP values of the molecules in this database are in the 

range of 111.66 K to 716.15 K.  Figure 6.1 provides the distribution of NBP values in the 

OSU-NBP database. The molecular weights of these compounds vary from 16.05 g/mol 

to 607.44 g/mol, and the octanol-water partition coefficient, Kow, (calculated by the 

DRAGON [34] software using the Ghose-Crippen ALOGP model) varies between -2.3 

and 12.9. In addition, the molecules are characterized based on their drug-likeness as 

calculated using DRAGON [34], where score of 0 implies that the molecule has no 

characteristics of a drug, while a score of 1 implies the molecule has all the 

characteristics of being a drug. Further details on the database characterization are 

provided in Table 6.1.  

In addition to the above data sets, NBP data of 394 diverse organic compounds were 

extracted from the article by Ghavami et al. [35]. This data contains 52 alcohols, 22 

amines, 69 alkanes, 156 mono-alkenes, 9 ethers, 69 alkyl benzenes, and 17 alkyl halides. 

Henceforth in this work, this data will be referred to as the Ghavami’s database to 

differentiate it from the OSU-NBP data set. To validate the current modeling approach, 

Ghavami’s data were used to develop a QSPR model to predict the NBP values and the 

resulting model was compared with the prediction results by Ghavami and coworkers 
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[35]. To ensure a fair comparison, the same training and external test data employed by 

Ghavami et al. [35] were used in the current work.  

6.3.2. Descriptor Calculation: See Section 2.5 

6.3.3. Descriptor Reduction and Model Development: See section 2.6  

External Validation: In a recent article, Tropsha et al. [36]  emphasized the need to 

validate QSPR models using external data sets. Therefore, another model was built by 

separating some data from the original OSU-NBP database and allocating it to an 

external test set.  However, the data cannot be randomly separated, as the external set 

might not be representative of the training set. Therefore, a self-organizing map (SOM) 

network was created using the best descriptors identified in the first ensemble, which was 

developed using the entire database. This SOM was used to identify clusters in the data 

and partition the data into T, IV and IT sets as explained in Section 6.3.3. The number of 

map units in this SOM was varied until the percentage of data points in the IT set is at 

least 15% of the size of the entire OSU_NBP data set of 1320 molecules. This IT set was 

then set aside as an external test set and the remaining data was used for developing 

another model de novo, by repeating the search for the best descriptors, best network 

architecture and network weights. In the current work, 203 molecules were identified as 

an external test set using this procedure, and the remaining 1,117 data points were again 

divided into T, IV and IT sets and subjected to the descriptor search algorithm as 

discussed in Section 6.3.3. For clarity in this work, the model created using all 1,320 data 

points in the OSU-NBP database for model development will be referred to as Model 1 



150 
 

 

 

and the model created using just the 1,116 data points as Model 2. Model 1 will be used 

in the computer-aided molecular design (CAMD) algorithms because of its larger training 

set size, and Model 2 will be used to assess the generalization capability of Model 1, as 

advocated by Tropsha et al. [36]. 

6.4. Results  

6.4.1 Model 1: 10-descriptor, 15-descriptor, and 20-descriptor-models were tested, but 

no significant difference was observed between the models. Therefore, for the sake of 

simplicity, 10-descriptor models were used in the final models in the current study. Going 

lower than 10 descriptors resulted in a significant increase in the training RMSE values 

for databases made up of more than 150 data points. Therefore, ten was chosen as the 

minimum number of input descriptors. Figure 6.2 is a comparison between the 

experimental and predicted NBP values for Model 1. The correlation coefficient (R2) 

between the experimental and predicted values is 0.97. The prediction residual errors in 

K are plotted in Figure 6.3 for Model 1, which clearly demonstrates that the residuals are 

almost symmetrically distributed around the horizontal axis, as should be expected from 

an unbiased model. A histogram of the residuals (not shown) was plotted, where the 

distribution of the residuals around zero was found to be similar to a normal distribution. 

The RMSE, MAE, and the average absolute percentage deviation (%AAD) values for the 

training data set predictions are 14.4 K, 9.3 K, and 2.3%, respectively, and the RMSE 

values for the individual ensembles range from 14.7 K to 16.8 K. The results from the 

overall ensemble are slightly better than the results for the individual ensembles, which 

validates the use of ensembles with different descriptors as inputs.  
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The different descriptors used for creating the eight different ensembles are shown in 

Table 6.2. Note that the neural networks in the ensembles are allowed to have a 

maximum of 10 elite inputs, but most ensembles frequently have a lower number of elite 

descriptors as inputs, after the insignificant descriptors have been removed as described 

in Section 6.3.3. The descriptors AMR, P_VSA_p_2, piID, TIC0, and SpPosLog_G are 

the most common to all the ensembles. The types and physical meanings of these 

commonly occurring descriptors, as extracted from the DRAGON [34] help file, are 

provided in Table 6.3.  

6.4.2. Model 2: For Model 2, 10-descriptor models were chosen as the final models. 

Figure 6.4 is a comparison between the experimental and predicted NBP values of the 

training data of 1,117 compounds. The correlation coefficient (R2) between the 

experimental and predicted training data is 0.98. The prediction residual errors on this 

data are near-symmetrically distributed around the horizontal axis (no Figure shown). 

The RMSE, MAE, and %AAD values for the training set data are 13.1 K, 8.6 K, and 

2.1%, respectively. Figure 6.5 compares the 204 experimental and predicted NBP values 

of the external test. The RMSE, MAE, and %AAD values for the external test set are 

calculated to be 17.8 K, 10.2 K, and 2.6%, respectively. 

The descriptors used for creating the eight different ensembles for Model 2 are tabulated 

in Table 6.4. The descriptors AMR, P_VSA_p_2, GATS1s, nHM, and Eta_sh_p are the 

most common across all the ensembles. The types and physical meanings of these 

commonly occurring descriptors, extracted from the DRAGON [34] help file are 

provided in Table 6.5.  
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6.4.3. Model for Ghavami’s Database: Ghavami et al. [35] had 10 topological 

descriptors to develop their model, and so to ensure a fair comparison, 10 descriptor-

models were developed in the current work as well. For the current model, the RMSE and 

MAE values are calculated to be 1.8 K and 1.3 K, respectively for the training set 

comprising 354 compounds. For the external test set comprising 40 compounds, the 

RMSE and MAE values are calculated to be 2.1 K and 1.5 K, respectively. A comparison 

between the experimental and predicted NBP values for the external data of 40 

compounds is provided in Figure 6.6. The correlation coefficient (R2) between the 

experimental and predicted external test data is calculated to be nearly 1.0.  

The errors for all models developed in the current work are tabulated in Table 6.6. 

6.5. Discussion 

The RMSE values for the training set of both Model 1 and Model 2 are almost equal. Due 

to the larger training set, Model 1 would be expected to perform similarly to Model 2 on 

unseen data (external dataset). Therefore, the predictive performance of Model 2 on an 

external test set can be used as an approximation for determining the generalization 

capability of Model 1. The %AAD value for the external test set is within the maximum 

experimental uncertainty (5%) in the data used for modeling.  

Few recent works in the open literature employ an external test set comprised of diverse 

molecules to test the predictive capability of a developed NBP model. To the best 

knowledge of the author, the models by Stein and Brown [14], and Chalk et al. [30] are 

the only models that are developed using a diverse set of organic molecules, and they are 
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also assessed for their predictive capability using an external data set (Table 6.7). Stein 

and Brown [14] employ experimental boiling point data measured at sub-atmospheric 

pressures, which are then extrapolated to atmospheric pressure using a vapor pressure 

equation. They report a RMSE value of 20.4 K on an external test set of about 6,500 

molecules, using a GCM approach. Chalk et al. [30] employ quantum mechanics and 

artificial neural networks (ANNs) to develop their QSPR models and they report RMSE 

and MAE values of 19 K and 13 K, respectively, on an external test set of 629 molecules, 

using a model that had been trained on a data set of 6000 molecules. Model 2 from the 

current work resulted in RMSE and MAE values of 17.8 K and 10.2 K respectively, for 

an external set of 203 compounds. These results are better than the results reported by 

Chalk et al. [30] for their external test set. Also, the compounds that exhibit the largest 

deviations in the various models were further examined manually to identify any 

correlation between their higher errors and the presence/absence of certain functional 

groups. However, no particular trends were observed between the functional groups 

present in the molecule and the prediction error for the molecule. The higher errors for 

some molecules could be due to the high experimental uncertainty in the data for those 

molecules.  

Most of the descriptors in Table 6.2 are 2D descriptors or constitutional descriptors and 

are independent of the 3D conformation of the molecule. Table 6.3 lists the most 

common descriptors for the eight different ensembles for Model 1. Due to the black-box 

nature of the ANNs, a quantitative assessment of the significance of the different 

descriptors on the NBP values is not possible; however, approximate qualitative 
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interpretations can be made based on the type of descriptors. For example, AMR, which 

denotes the molar refractivity calculated according to the Ghose-Crippen model [37], 

occurs in all eight ensembles and therefore, must be correlated with NBP. Egolf and Jurs 

[38] have also reported a correlation between NBP and molar refractivity, and they 

attribute molar refractivity to be a measure of the polarizability of the molecule, which 

consequently describes the ability of a molecule to form bonds with neighboring 

molecules in the liquid state. The descriptor P_VSA_p_2, which also describes the 

polarizability of a molecule, was found to be occurring frequently across the ensemble. 

Additional commonly occurring descriptors in the ensembles are piID and TIC0, which 

describe the degree of unsaturation (presence of multiple bonds) present in the molecule 

and the molecular complexity, respectively. In addition, Table 6.2 contains some 2D-

matrix based descriptors that describe the 2-dimensional shape of the molecule. 

As expected, some of the common descriptors for Model 2 (listed in Table 6.5) are 

identical to the common descriptors for Model 1. For example, the descriptors AMR and 

P_VSA_p2 are common across both Model 1 and Model 2. The other descriptors in 

Model 2, though not exactly identical to Model 1 descriptors, are drawn from the same 

sub-category of descriptors as in Model 1. A few descriptors in both Models 1 and 2 are 

either 2D matrix-based descriptors or other descriptors that describe the shape of the 

molecule. This suggests some correlation between the shape and NBP values of a 

molecule. 

To compare the efficacy of the current modeling approach, the Ghavami’s data set had 

been employed to develop a QSPR model. The results from this model are provided in 
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Table 6.8, along with the results by Ghavami et al. [35], using the same training and 

external test set data. The current model performs significantly better on both the training 

data and the external set data, which indicates better generalization capability of the 

current model. The poor performance of the model by Ghavami et al. [35] could be due to 

the absence of 3D molecular descriptors in their modeling, which proves the efficacy of 

3D QSPR modeling when compared to 2D QSPR modeling.  

6.6. Conclusions 

1. In the current work, a non-linear QSPR model for the normal boiling point prediction 

was developed using wrapper-based descriptor pruning techniques. 

2. Two models were developed in the current work: Model 1 was built using NBP 

values for 1,320 compounds, where all data was used for model development, and 

Model 2 was developed using just 1,116 compounds from the OSU-NBP database, 

while the remaining 204 compounds were employed as an external test set.  

3. The RMSE values on the training sets for Model 1 and Model 2 are 14.7 K and 13.1 

K, respectively. The RMSE value for Model 2 on the external test set is 17.8 K. The 

models by Stein and Brown [14], and Chalk et al. [30] are the only works in the 

literature for predicting the NBP values for a wide range of molecular classes using 

an unbiased external test set. The predictive accuracy of Model 2 from this work, on 

an external test set of 204 compounds is better than the accuracy of the models by 

Stein and Brown [14], and Chalk et al. [30] (Table 6.8). 

4. According to the descriptors identified by the current work, the polarizability and the 

2-dimensional shape of the molecule significantly affect the NBP values.  
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5. The current model developed using the Ghavami data set performs significantly better 

than the model by Ghavami and co-workers [35] on an external test set of 40 

compounds. The RMSE value on the external test set for the model by Ghavami et al. 

[35] is 6.8 K as opposed to RMSE value of 2.1 K from the current model.  

6. The resulting models from this work can be used to accurately predict a priori the 

NBP values of organic compounds. 



 

 

 

Figure 6.1:  Distribution of the normal boiling 

 

Figure 6.2:  Comparison between the experimental and predicted NBP 
temperatures for Model 1. 
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Figure 6.1:  Distribution of the normal boiling points in the OSU-

Figure 6.2:  Comparison between the experimental and predicted NBP 
temperatures for Model 1. The broken line represents perfect predictions

 

NBP data set 

 
Figure 6.2:  Comparison between the experimental and predicted NBP 

The broken line represents perfect predictions 



 

 

 

Figure 6.3:  Residual error plot for Model 1 predictions

Figure 6.4:  Comparison between the experimental and predicted NBP 
temperatures for the training set in Model 2. 
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Figure 6.3:  Residual error plot for Model 1 predictions
 

Figure 6.4:  Comparison between the experimental and predicted NBP 
temperatures for the training set in Model 2. The broken line 

represents perfect predictions 
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Figure 6.4:  Comparison between the experimental and predicted NBP 

The broken line  



 

 

 

 

 

 

 

 

 

Figure 6.5:  Comparison between the experimental and predicted NBP 
temperatures for the external test set in Model 2. 
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Figure 6.5:  Comparison between the experimental and predicted NBP 
temperatures for the external test set in Model 2. The broken line

represents perfect predictions 

 

Figure 6.5:  Comparison between the experimental and predicted NBP 
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Figure 6.6:  Comparison between the experimental and predicted NBP 
temperatures for the external test set compounds in the Ghavami database 

 The broken line represents perfect predictions
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Figure 6.6:  Comparison between the experimental and predicted NBP 
temperatures for the external test set compounds in the Ghavami database 

The broken line represents perfect predictions 

 
Figure 6.6:  Comparison between the experimental and predicted NBP 

temperatures for the external test set compounds in the Ghavami database [35]. 
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Table 6.1:  Characteristics of the final data set of 1,320 molecules 

Molecular Property Minimum Maximum Mean Standard 

Deviation 

NBP (K) 111.7 716.2 422.5 88.7 

Molecular weight (g/mol) 16.0 607.4 127.6 54.9 

Octanol-water partition 
coefficient(Log Kow) 

-2.3 12.9 2.2 1.7 

DRAGON drug like score 
(0-1) 

0.49 1.0 0.80 0.10 
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Table 6.2:  List of the descriptors used in the final eight ensembles for Model 1 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

1 AMR AMR AMR AMR AMR AMR AMR AMR 

2 P_VSA_p_2 P_VSA_p_2 P_VSA_v_2 P_VSA_v_2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 

3 piID piID AAC AAC X2 X2 piID piID 

4 Ho_B (s) Ho_B (s) SM6_Dt SM6_Dt TIC0 TIC0 TIC0 TIC0 

5 H% H% NssO NssO SpPosLog_
G 

--- SpPosLog_
G 

SpPosLog_
G 

6 SM08_EA 
(dm) 

SM08_EA 
(dm) 

SpPosA_A SpPosA_A N-072 N-072 SpPosLog_
D 

SpPosLog_
D 

7 VE2_L VE2_L VR3_Dz 
(m) 

VR3_Dz 
(m) 

SpAbs_Dz 
(p) 

SpAbs_Dz 
(p) 

Ho_Dz(p) Ho_Dz(p) 

8 piPC02 SM02_AEA 
(ed) 

SM4_RG SM4_RG Mp Mp Chi0_EA Chi0_EA 

9 RDF010u RDF010u SpMAD_R
G 

--- SpMAD_Dt SpMAD_Dt --- --- 
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Table 6.3:  Physical meaning of the commonly occurring descriptors in the 
ensembles for Model 1 

Descriptor Descriptor Type Physical Meaning 

AMR 
Molecular 
property 

Ghose-Crippen molar refractivity 

P_VSA_p_2 
P_VSA like 
descriptor 

The amount of van der Waals surface area of the 
molecule that has a value of polarizability between 
0.4 and 1 [39] 

piID 
Walk and path 
count 

The total number of weighted paths obtained by 
summing the weights of all paths of any length (from 
0 to the maximum path length) in the graph. The 
weight of each path is calculated by multiplying the 
conventional bond order of all the edges of the path 
[40] 

TIC0 
Information 
index 

Calculated as nAT times IC0, nAT being the total 
number of molecule atoms, and IC0 being the mean 
information content of order 0 [41] 

SpPosLog_G 
3D matrix based 
descriptor 

Logarithmic spectral positive sum from geometrical 
matrix (a square matrix of Euclidian distances for 
each pair of atoms in the molecule). 

 

 

 

 

 

 



164 
 

 

 

Table 6.4:  List of the descriptors used in the final eight ensembles for Model 2 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

1 AMR AMR AMR AMR AMR AMR AMR AMR 

2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 P_VSA_p_2 

3 GATS1s GATS1s GATS1s GATS1s GATS1s GATS1s ChiA_RG ChiA_RG 

4 RBF RBF nHM nHM F01[C-O] F01[C-O] nHM nHM 

5 Eta_sh_p Eta_sh_p EE_D/Dt EE_D/Dt SM6_D/Dt SM6_D/Dt Eta_sh_p Eta_sh_p 

6 SM1_Dz (p) SM3_RG nRCONHR nRCONHR Ho_Dz (i) Ho_Dz (i) VR1_G/D VR1_G/D 

7 SM1_Dz (Z) SM1_Dz (Z) Mv Mv Eta_betaS_
A 

Eta_epsi_A R2u --- 

8 TDB01s TDB01s BLTA96 --- XMOD --- IDM IDM 

9 --- --- --- --- --- --- SM02_AEA
(bo) 

SM02_AEA
(bo) 
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Table 6.5:  Physical meaning of the commonly occurring descriptors in the 
ensembles for Model 2 

Descriptor Descriptor Type Physical Meaning 

AMR Molecular 
property 

Ghose-Crippen molar refractivity 

P_VSA_p_2 P_VSA like 
descriptor 

The amount of van der Waals surface area of the 
molecule that has a value of polarizability between 
0.4 and 1 [39] 

GATS1s 2D 
autocorrelation 

Geary coefficient, calculated from molecular graph by 
summing the products of intrinsic states of the 
terminal atoms of all the paths of unit path length. 
Geary coefficient is a distance-type function varying 
from zero to infinite. Strong spatial autocorrelation 
produces small values of this index [42] 

nHM Constitutional 
index 

Number of heavy atoms 

Eta_sh_p ETA index Eta p shape index 

 

 

Table 6.6:  The errors for all models developed in this work 

Model 

Training Set External Test Set 

RMSE 
(K) 

MAE (K) R2 
RMSE 

(K) 
MAE (K) R2 

Model 1  14.4 9.3 0.97 --- --- --- 

Model 2  13.1 8.6 0.98 17.8 10.2 0.96 

Model for 
Ghavami 
data 

1.8 1.3 1.00 2.1 1.5 ∼1.00 
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Table 6.7:  Comparison of the current OSU-NBP model with literature models, on 
the basis of external test set predictions   

Researchers Model Type 
Number of 

Molecules in 
External Test Set 

RMSE (K)  

This work 
(Model 2) 

Stochastic optimization and 
ANNs 

204 17.8 

Chalk et al. [30] Quantum mechanics and ANNs 629 19.0 

Stein and Brown 
[14]# 

Group-contribution method 
(GCM)  

6584 20.4 

# Majority of the boiling point data, were measured at pressures less than 1 atm., and then 
extrapolated to atmospheric pressure  

 

 

 

 

 

Table 6.8:  Comparison of the current model with the model by Ghavami et al. [35] 
on the Ghavami database 

Researchers Model Type 
Training Set 
RMSE (K) 

External Test Set 
RMSE (K)  

This work  
Stochastic optimization 
and ANNs 

1.8 2.1 

Ghavami et al. 
[35] 

Principal components 
and ANNs  

6.1 6.8 
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CHAPTER 7 
 

GENERALIZING THE UNIVERSAL QUASI-CHEMICAL (UNIQUAC) MODEL 

PARAMETERS USING A NON-LINEAR QSPR MODEL 

7.1. Introduction 

A thorough understanding of chemical phase behavior properties is essential for 

designing and optimizing chemical and separation processes. Phase equilibria properties 

such as compositions and partition coefficients are typically measured in laboratory 

experiments, which require a substantial investment of money and time. The alternative is 

to predict phase equilibria properties using generalized thermodynamic models. 

Vapor-liquid phase equilibria properties are typically determined within one of two 

computational frameworks. The first is the (φ/φ) approach, where fugacity coefficients 

(φ) for the vapor and liquid phases are calculated using equation-of-state (EOS) models. 

The second framework involves the split approach (φ/γ), where different models are used 

to predict the deviation functions, φ and γ of each component in each phase. Fugacity 

coefficients and activity coefficients (γ) are used as non-ideal behavior correction factors 

to the component ideal fugacities in the vapor phase and liquid phase, respectively. 

Fugacity coefficients are determined using various EOS models, and activity coefficients 
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are calculated using excess Gibbs energy (G=>>>>) models; however, both EOS models and 

G=>>>> models have limited capabilities for a priori predictions. 

7.2. State of the Art in Activity Coefficient Modeling 

A number of activity coefficient models for predicting vapor-liquid equilibria (VLE) 

have been proposed by various researchers [1-5], and these models  can be classified as 

follows: (a) empirical and theory-based activity coefficient models such as Margules, 

Redlich-Kister and van Laar, regular solution, Wilson, non-random two liquid (NRTL) 

model, and the universal quasi-chemical (UNIQUAC) model [3]; and (b) predictive 

group-contribution models, such as universal functional activity coefficient (UNIFAC) 

and analytical solution of groups (ASOG) [2, 6]. Wilson first proposed an equation for 

excess Gibbs energy (?@>>>>) using the “local composition” concept that is based on the 

hypothesis that the local concentration around a molecule is different from the bulk 

concentration. Although the Wilson model performed better than other empirical models, 

the equation cannot be used to predict liquid-liquid equilibria (LLE) properties. Renon 

and Prausnitz [1] proposed the NRTL model based on Wilson’s local composition 

concept [7] and Scott’s two-liquid solution theory [8]. The NRTL model has three 

adjustable parameters that can be generalized to multicomponent mixtures using only the 

binary mixture parameters. One of the model parameters can be set a priori, which 

creates effectively a two parameter model.  

Another popular activity coefficient model is the universal quasi-chemical (UNIQUAC) 

model. Abrams and Prausnitz [3] derived the UNIQUAC equation for nonrandom 

mixtures containing molecules of different sizes [9]. The basis of the UNIQUAC model 

is that the excess Gibbs energy is the sum of the combinatorial and residual effects. The 
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combinatorial portion attempts to describe the dominant entropic effects and the residual 

portion accounts for the intermolecular forces of the system. The combinatorial portion 

can be determined using composition, size and shape of the components. The residual 

portion requires two adjustable binary parameters to account for intermolecular forces. 

The UNIQUAC model is applicable to a wide range of liquid mixtures that contain polar 

and nonpolar fluids. Although the UNIQUAC model requires only two adjustable 

parameters, this equation is more complex than the NRTL model. In addition, the 

UNIQUAC model is not always as precise for some systems where more than two 

adjustable binary parameters are needed [9]. Similar to the NRTL model, attempts to 

generalize the UNIQUAC model parameters have been limited [10].  

Many of the activity coefficient models in literature are not generalized models and, as 

such, they cannot be applied for a priori prediction of VLE behaviors. Until recently, the 

preferred approach for a priori predictions of activity coefficients was the use of group- 

contribution models. These models are based on functional group interactions, such as 

UNIFAC and ASOG [2, 6]. Since the number of functional groups is much smaller than 

the number of compounds, a large number of mixtures can be generalized using a smaller 

number of functional group interactions [6]. The ASOG model estimates activity 

coefficients by summing the effects of molecular weight and functional group 

interactions. In the UNIFAC model, activity coefficients are determined based on the 

UNIQUAC model formulation, where combinatorial and residual effects are summed to 

determine the activity coefficients. The combinatorial portion from the UNIQUAC model 

is used directly, whereas the residual portion is calculated by considering the interaction 

of the functional groups present in the molecules. While successful for many systems, the 
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UNIFAC model suffers from some limitations, including an inability to account for the 

effects of neighboring molecules [11]. Further, the models are applicable only for 

mixtures consisting of compounds for which functional groups are contained in the 

UNIFAC data matrix. If the functional groups of interest are not present in the data 

matrix of UNIFAC, experimental data are required to determine the interaction 

parameters. Another limitation is the inability to define effectively the functional groups 

of some chemical species. A detailed review of other available generalized activity 

coefficient models can be found elsewhere [12, 13].  

Recently, we sought an alternative methodology for providing generalized activity 

coefficient models that is more effective than group contributions [12]. Specifically, we 

used the quantitative structure-property relationship (QSPR) modeling approach to 

generalize the model parameters of the NRTL and UNIQUAC activity coefficient models 

and provide a priori VLE property predictions. The current research is an improvement 

on the previously reported work. In the earlier study, 332 binary systems that are 

encountered commonly in refinery processes were used to develop two independent 

QSPR models to predict the two adjustable parameters in the NRTL equation [11]. 

However, having two separate models could result in different model parameter values 

for a specific binary system, depending on the order of components involved. To make 

the model internally consistent, a single QSPR model for both parameters is required. 

Moreover, employing a more representative VLE database that goes beyond the needs of 

refinery processes would produce a more applicable generalized model. Therefore, the 

objectives of the current work are twofold: (a) to expand the existing database to include 
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compounds comprised of a wider range of functional groups, and (b) to develop a single 

QPSR model for the two UNIQUAC model parameters.  

Two case studies were conducted to investigate the predictive capabilities of the proposed 

QSPR-UNIQUAC activity coefficient model using (a) binary systems from the previous 

database [13] where systems in refining processes were the focus, and (b) compounds 

that are formed in the refining process of pyrolysis oil using bi-phasic reaction processes. 

The latter was of particular interest because of the growing interest in bi-phasic reaction 

processes to upgrade pyrolysis oil as well as the diversity of the molecular species 

encountered in these processes.  

7.3. UNIQUAC Activity Coefficient Model Theory 

The basis of UNIQUAC is that the excess Gibbs energy is a sum of the combinatorial and 

residual terms: 

 E E E
comb residg g g= +  (7.1)  

This can be extended to multi-component systems; however, for illustrative purposes the 

pertinent equations are given for a binary system: 

 
E
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 (7.2)  

and 
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E
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g
q x ln q x ln

RT
= − θ + θ τ − θ + θ τ  (7.3)  

where, gE is the excess Gibbs energy, gE
comb and gEresid are the combinatorial and residual 

terms of the excess Gibbs energy, respectively, τ is an empirical binary interaction 
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parameter that is experimentally determined, R is the universal gas constant, T is the 

mixture temperature, x denotes the mole fraction of a component, φ is the component area 

fraction, θ denotes the component volume fraction, and q and r denote the van der Waals 

surface area and volume of a component, respectively. A single numerical subscript 

indicates that the property is calculated for either component 1 or 2 of the binary mixture, 

while τ12 and τ21 are the interaction parameters between the two molecules, which are 

determined using Equation 7.5 [3] below. 

The area fraction (1φ ) and volume fraction (1θ ) in Equation 7.3 are defined as: 

 1 1
1

1 1 2 2

x r

x r x r
φ =

+               

1 1
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1 1 2 2

x q

x q x q
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+
 (7.4)  

where, x, q, and r, are as defined previously. 

The values of the van der Waals surface area and volume are obtained from the Bondi 

group contribution method [13]. 
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The parameters a12 and a21 are regressed from the available experimental data, and if 

experimental data do not exist, modeling of phase equilibria for those systems using 

UNIQUAC is not possible. Hence, the need exists for developing reliable predictive 

models to estimate UNIQUAC parameters. 

7.4. QSPR Methodology  

The development of a QSPR model for activity coefficients in the current work involves 

the following series of steps: (a) data set generation, (b) data regression to evaluate the 
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best set of coefficients, (c) molecular descriptor calculation, (d) descriptor reduction and 

model training on the best coefficients, and (e) model validation. These different 

elements are described in greater detail below. 

7.4.1. Database Development: The predictive capability of a QSPR model depends 

strongly on the accuracy of the experimental data used in the model development process. 

The VLE data used in this work were collected from several sources. Binary systems 

with sufficient representation of different functional groups have been included in the 

database. The experimental VLE data points in each system were distributed evenly over 

the entire concentration range of 0 (pure component 2) to 1 (pure component 1).  The 

general database and the two specialized databases are described in greater detail below.    

General Database (Binary Systems): A low-pressure binary VLE database consisting of 

186 systems totaling 4,716 data points was extracted from the Oklahoma State University 

(OSU) database. The database is comprised of systems of aliphatic and aromatic 

hydrocarbons, water, alcohols, ethers, sulphides and nitrile compounds. A second 

database, comprised of 390 binary VLE systems totaling 12,010 data points was taken 

from the DECHEMA VLE database. In total, the database compiled in this work consists 

of a total of 578 binary systems formed from various combinations of 145 different 

compounds. As such, a total of over 16,500 vapor-liquid equilibrium data points were 

assembled in the final database (OSU database II).  

The compounds present in the OSU database II were classified in a similar manner as the 

UNIFAC functional group classification approach [2]. The database is composed of 

compounds belonging to 31 chemical classes. Figure 7.1 illustrates the data distribution 

of the binary systems in the OSU database II based on chemical class.  
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Refining Systems Database: This sub-set database, which was adopted from the previous 

study by Ravindranath et al. [13], consists of binary systems that are commonly 

encountered in refining processes. In this database, 332 binary systems comprising 

various combinations of 92 compounds are considered. These compounds contain 28 of 

the 31 chemical classes that are represented in the database. Over 9,700 VLE data at 

different temperatures were assembled in this database, and a detailed database 

assessment can be found in the previously published article [11].  

Bi-phasic Database (Compounds Formed in Bi-phasic Reactions): Bi-phasic catalytic 

reaction is a promising technique that can be applied to the pyrolysis oil refining process. 

This methodology employs nanoparticle catalysts to selectively catalyze the target 

reactions in the oil and aqueous phases either individually or simultaneously [14]. 

Pyrolysis oil is an amalgam of different organic compounds such as acids, esters, 

alcohols, aldehydes, oxygenates, sugars, furans, phenols, guaiacols and syringols [15]. To 

be used as a transportation biofuel, pyrolysis oil needs to be upgraded, which includes 

increasing the caloric value of the refining process product by reducing the oxygen 

content and improving storage stability by reducing the levels of reactive compounds 

such as aldehydes [16]. To characterize these target reactions, knowledge of the phase 

behavior or the activity coefficients of the compounds in the pyrolysis oil is important.  

The bi-phasic database consists of eight compounds that are formed in bi-phasic catalytic 

reactions. These compounds are comprised of 6 of the 31 chemical classes that are 

represented in the OSU database II. These chemical classes include alcohols, aldehydes, 

alkanes, furfural, ketones and water. The bi-phasic database is composed of 127 binary 

systems formed by different combinations of these compounds and approximately 2800 
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data points. In Figure 7.1, the data shaded in grey are systems consisting of the 

compounds that are formed in bi-phasic reactions. The figure also shows the number of 

available binary systems of this sub-set.  

7.4.2. Model Parameter Regressions: To determine the optimum values of the two 

adjustable parameters a12 and a21 in the UNIQUAC equation, a regression analysis using 

an equal-fugacity equilibrium framework with mass balance constraints was performed to 

estimate the interaction parameters in Equation 7.5.  

The vapor-liquid phase equilibrium criteria of a multicomponent closed system at given 

temperature and pressure are:  

Niff l
i

v
i ,...,1==

∧∧

 (7.6) 

lv TT =   

lv PP =  

where, �AB is fugacity of component C in the mixture, T is the temperature, P is the 

pressure, and the superscripts, v and l, indicate the vapor and liquid phases, respectively. 

In the regression analysis, a split approach was employed to express the component 

fugacities: 

iiiiii xfPy λγφ 0=  (7.7) 

where, DB is the liquid mole fraction, EB is the vapor mole fraction, φB is the vapor 

fugacity, FB is the liquid activity coefficient, �B° is the liquid fugacity at saturation, and iλ  

is the Poynting factor. In this study, the bubble-point iteration function was employed:  



181 
 

   1
11

==∑∑
==

n

i
ii

n

i
i xKy   (7.8) 

where, n is the number of components, K is the equilibrium constant for component C, x is 

the component mole fractions in the liquid phase and y is the component mole fractions 

in the liquid vapor phase. 

The parameter regression analysis was performed using an objective function, F, which is 

expressed for a binary system as the sum of squares of the relative errors in pressure and 

the activity coefficients of the two components, as follows: 
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where, n is the number of data points, the superscripts, Exp and Calc, refer to 

experimental and calculated values, respectively, and the subscripts, 1 and 2, refer to the 

binary components.  

In addition to pressure and activity coefficients, the quality of the predictions is assessed 

using temperature and equilibrium constants of each binary system. The equilibrium 

constant, K, for component C is defined as the ratio of vapor to liquid mole fraction, or:  
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7.4.3. Descriptor Calculation: The descriptors were calculated for each compound in the 

database using the method described in Section 2.5. The descriptor set for each binary 

system is prepared by combining all the descriptors of the individual compounds in the 

system. Therefore, the first half of the descriptor set belongs to the solute (component 1) 
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and the second half of the descriptor set belongs to the solvent (component 2) in a binary 

system. 

7.4.4. Descriptor Reduction and Model Development: See Section 2.6. 

External Validation: In a recent article, Tropsha et al. [17] emphasized the need to 

validate QSPR models using external data sets. In the current work, some data were set 

aside as an external validation set. The performance of the current model on this data set 

would indicate the generalization capability of the final model. To create this external 

data set, three different approaches were implemented: 

1. A self-organizing map (SOM) clustering technique as described in Section 2.6 was 

used to divide the data (1,156 parameters for 578 systems) into 4 different sets 

(training, validation, internal test, and external test sets). Using this approach, 

performing system-specific predictions is not possible because the parameters a12 

and a21 of a specific system might lie in different data sets.  

2. The entire data set was also divided into four sub-sets (training, validation, internal 

test, and external test sets) based on the functional groups of the components present 

in the binary systems. The data were divided such that all the four data sets have 

adequate representation from the 31 functional groups shown in Figure 7.1. The 

proportion of data used for the different data sets as follows: 50% for the training set, 

15% for the internal validation set, 10% for the internal test set and the remaining 

25% for the external test set. 

3. In the final approach, the training, validation, and internal test sets were chosen 

using the SOM clustering technique. The external test set, however, was selected 
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based on the functional groups of the components present in the binary systems. The 

external test set was used to evaluate the predictive capability of the model.  

7.4.5. Case Studies: To meet the objectives of this work, four case studies were 

constructed to investigate QSPR model parameterization of the UNIQUAC parameters. 

In all these case studies, the ideal gas (IG) model was used to predict fugacity coefficients 

in the vapor phase, since all systems considered in this work are at low pressures. The 

four case studies are outlined as follows:  

Case 1:  Ideal Solution model: The ideal solution model was used to predict the phase-

equilibria properties.  

Case 2:  UNIQUAC model: The UNIQUAC model was used to predict the activity 

coefficients. The UNIQUAC model parameters were regressed directly from 

the experimental data.  

Case 2Q: UNIQUAC-QSPR model: The UNIQUAC model was used to predict the 

activity coefficients based on interaction parameters provided by the newly 

developed generalized QSPR parameter model. 

Case 3U: UNIFAC model: The UNIFAC model [2] was used to predict the activity 

coefficients of each component. The UNIFAC interaction parameters reported 

by Gmehling et al. [2] were used in this case study. This case study allows a 

direct comparison between the current modeling approach and the best models 

reported in the literature. 

Cases 1 was conducted to evaluate the correlative capabilities of the UNIQUAC model, 

whereas Cases 1, 2Q and 3U are focused on assessing the a priori predictive capabilities 
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of the ideal solution, the generalized model (UNIQUAC /QSPR) and the UNIFAC model, 

respectively.   

For the first case, the ideal solution model was used to predict T, P, K1 and K2 for the 

entire database of 578 binary systems. In Case 2, the two UNIQUAC model parameters, 

a12 and a21, shown in Equation 7.11 were regressed and used directly to predict T, P, K1 

and K2.   
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Property predictions using the regressed UNIQUAC parameters resulted in the minimum 

error possible for the considered systems in Case 2. Therefore, the model parameters 

found in the regression analysis were used as target values in the development of the 

QSPR models. The property prediction errors using the regressed parameters were taken 

as a benchmark to judge the performance of the QSPR model. 

Figure 7.2 shows the correlation between the two regressed UNIQUAC parameters in 

Case 2. The figure indicates that there is some level of correlation between the two 

parameters. The parameter correlation may hinder the accuracy of the QSPR models and 

the capability to provide reliable predictions from the structure of the components. A 

sequential parameter regression approach was applied in an effort to reduce the 

correlation of the model parameters. In this approach, one parameter was fixed at the 

generalized value while the other parameter was regressed. This procedure was 

performed multiple times until the effect of the correlation on the model development 

was minimized. A flowchart for the model development process employed in the current 

work is provided in Figure 7.3. 
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7.5. Results 

Four VLE properties (T, P, K1 and K2) were used to analyze the predictions or the 

representations (Case 2) of the various models used in Cases 1, 2, 2Q and 3U. The 

models used in each case were evaluated by comparing the property prediction errors, as 

described by root-mean-squared error (RMSE), bias and percentage absolute average 

deviation (AAD).    

Table 7.1 presents the property prediction errors for the ideal solution (Case 1) and 

UNIQUAC (Case 2) models. The ideal solution model has overall AAD values of 12.4%, 

1.3%, 13.2% and 21.6% for T, P, K1, and K2 predictions, respectively. The UNIQUAC 

(Case 2) model with regressed parameters shows lower overall AAD values of 2.5%, 

0.2%, 3.5% and 6.2% for T, P, K1 and K2 predictions, respectively. Case 2 establishes the 

best achievable level of prediction errors using the UNQUAC model. The model 

parameters (a12 and a21) that were obtained by regression in Case 2 were then used as 

targets in the QSPR model development for Case 2Q. Our goal was to develop a QSPR 

model which would be capable of predicting T, P, K1 and K2 within twice the AAD value 

of the data regression in Case 2.   

QSPR models were developed by applying the three data division approaches discussed 

in Section 7.4.5. The models that were developed using these approaches had similar 

prediction capabilities. Since there were no significant prediction improvements, we have 

presented only the results found using the second approach, in which the data were 

divided into four sets with each containing binaries with comparable functional groups. 

The QSPR model development process was initiated by dividing the 578 binary systems 

into four sets; 285 for training, 89 for validation, 65 for internal testing, and 139 for 
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external testing. Regressed parameters from Case 2 were used as targets for developing 

the QSPR models. Models with 10, 20, 30 and 40 input descriptors were developed. The 

models with 30 and 40 descriptors had lower training RMSE values than the 10- and 20-

descriptor models. For sake of simplicity, 30-descriptor models were further examined in 

the current work since the 40-desciptor models did not provide a statistically significant 

reduction in the training RMSE values when compared with the 30-descriptor models. 

The final model was chosen after nine iterations of sequential regression process, where 

the parameters a12 and a21 were regressed alternatively. The final ensemble model 

consisted of 20 different networks, each having the same descriptors as inputs but with 

different network architecture and weights.  

Figures 7.4 and 7.5 compare the regressed UNIQUAC model parameters from Case 2, 

with the predicted model parameters from the UNIQUAC-QSPR (Case 2Q) model, for all 

data excluding the external test set. The plots indicate that the QSPR predictions are in 

good agreement with the regressed model parameters. Similarly, Figures 7.6 and 7.7 

compare the regressed UNIQUAC model parameters from Case 2, with the predicted 

model parameters from the UNIQUAC-QSPR (Case 2Q) model, for the external test set. 

The generalization capability of the QSPR model was further analyzed by predicting T, 

P, K1 and K2 properties using the predicted model parameters. Table 7.2 shows the 

property prediction errors obtained using the UNIQUAC-QSPR predicted parameters 

(Case 2Q) for the training, validation, internal test and external test sets. The AAD values 

for the VLE predictions in all data sets were approximately twice the AAD values 

calculated in the UNIQUAC regression analysis (Case 2). The QSPR predicted 

parameters resulted in training set AAD values of 6.4%, 0.6%, 7.2% and 11.8% for T, P, 
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K1, and K2 property predictions, respectively. The validation and training set prediction 

errors were comparable, which demonstrates sufficient network training without over 

fitting. As expected, the generalized model results in slightly higher prediction errors for 

systems in the internal and external test sets. The AAD values for the external test set 

were 8.6%, 0.7%, 8.2% and 14.2% for T, P, K1, and K2 predictions, respectively. The 29 

elite descriptors (discussed in Section 2.6) that are used as inputs for the ANNs in the 

final ensemble model are listed in Table 7.3. Component numbers are used to denote 

whether the particular descriptor belongs to the first component or the second component 

in the binary system. Also, sample VLE plots for three systems are provided in Figures 

7.8-7.10. For each of these systems, the experimental mole fractions in the liquid and 

vapor phases are compared with the model predictions from this study.  

Further, the results from the Case 2Q predictions were compared to the predictions by the 

modified UNIFAC model [2] (Case 3U). The UNIFAC model could not be applied to 28 

systems, due to the lack of parameters. Table 7.4 shows the overall prediction errors 

found using the generalized parameters (Case 2Q) and UNIFAC (Case 3U). Table 7.5 

shows the property prediction errors for systems with compounds that are typically 

encountered in refining, and Table 7.6 shows the property prediction errors for systems 

with compounds that are typically formed in bi-phasic reactions. The table lists VLE 

prediction errors found using the regressed parameters in Case 1 and generalized 

parameters in Case 2Q for eight chemicals. 

7.6. Discussion 

As expected, accounting for the non-ideal behavior through the UNIQUAC model (Case 

2) resulted in significant error reductions (up to 4 times in the property predictions) when 
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compared to the ideal solution model (Table 7.1). For the generalized UNIQUAC-QSPR 

(Case 2Q) model, the errors in property prediction for the external test set are about 1.1 - 

1.3 times the corresponding errors in the training set, which is satisfactory (Table 7.2). 

Also to note, the UNIQUAC-QSPR model typically had higher errors for systems 

consisting of sulfide, chloro-alkane and amine functional groups. These higher prediction 

errors can be attributed to the lack of adequate representative structures in the training 

set.  

A closer examination of Figures 7.4-7.7 suggests that the model leads to inaccurate 

predictions for parameter a21, when compared to predictions for parameter a12, as evident 

from the flat prediction curve for values close to zero in Figure 7.5. This could be due to 

the order of regression employed in this work, where parameter a12 was regressed 

initially, followed by the regression of parameter a21. To prove this, another iteration of 

regression was performed on parameter a21, while fixing the values of parameter a12 at the 

QSPR prediction values from the previous iteration. This led to better predictions for 

parameter a21, but decreased the accuracy of the predictions for parameter a12 (no figure 

shown). The predictions for T, P, K1, and K2, however, did not significantly change 

during this additional iteration, which highlights the effects of parameter correlation, 

where each parameter (a12 or a21) can have a range of optimum values of the other 

parameter with similar prediction results. To illustrate this assertion, five different binary 

systems from the flat prediction region in Figure 7.5 were selected, and a sensitivity 

analysis was performed by varying the a12 value systematically, and optimizing for the a21 

parameters, while simultaneously recording the AAD values for pressure predictions. For 

the systems studied, a wide range of parameter values was identified that led to only a 
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25% increase in the AAD value on the pressure predictions. Figure 7.11 illustrates this 

for one binary system, where a12 values in the range -250 to 550 and a21 values in the 

range -320 to 380 lead to statistically similar AAD values in the pressure predictions. 

This suggests that for some systems, optimizing just one parameter, either a12 or a21 is 

sufficient to result in good predictions, as long as the other parameter is within a certain 

range. This also explains the poor agreement between the regressed and predicted a21 

values for the systems in the external test set (Figure 7.7) 

Table 7.3 lists the 29 elite descriptors that are used as inputs to the ANNs in the final 

ensemble model. Due to the nature of the ANNs, a quantitative assessment of the 

significance of these descriptors is not possible. However, the number of descriptors 

associated with the solute and the solvent molecules in Table 7.3 are almost the same. Of 

the 29 best input descriptors, four are molecular representation of structures based on 

electron diffraction (3D-MoRSE) descriptors [18]. These descriptors are used to describe 

the 3-dimensional (3D) structure of any molecule using a fixed number of variables. Also 

common are the GEometry, Topology, and Atom-Weights AssemblY (GETAWAY) 

descriptors, which according to Consonni and coworkers encode both the geometrical 

information given by the influence molecular matrix and the topological information 

provided by the molecular graph, weighted by the chemical information encoded in 

selected atomic weightings [19]. These descriptors contain information concerning the 

3D structure of the molecule. In addition, the best descriptor list also has three binary 

fingerprint descriptors that describe the presence of carbon-carbon and oxygen-oxygen 

bonds at certain topological distances in the molecule.  
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Figure 7.12 shows the correlation of the regressed parameter values that are used as target 

values in the final QSPR model (9th iteration model). The plot reveals that the correlation 

between the two parameters was significantly reduced in the final regression analysis. 

This shows that the sequential regression technique was successful in reducing the 

correlation of the model parameters. The RMSE values between the regressed and the 

predicted parameter values from QSPR were 218 and 219 for the a12 and a21 model 

parameters respectively. After nine iterations of sequential regression analysis, the RMSE 

values decreased to 62 and 133 for a12 and a21 model parameters respectively. As 

expected, the reduction in the correlation of the regressed parameters was accompanied 

by reduction in the RMSE values between the regressed and the predicted parameter 

values from the QSPR models.  

Table 7.4 shows the comparison between predictions from the generalized QSPR model 

with predictions from the modified UNIFAC model (Case 3U). As can be seen from 

Table 7.4, the overall results of the QSPR model are better compared to the UNIFAC 

group-contribution method. The AAD values of UNIFAC are 19.7%, 1.7%, 20.4% and 

28.4% for T, P, K1 and K2 predictions, respectively. The current QSPR model resulted in 

approximately three times lower errors than that of UNIFAC predictions, which indicates 

that a QSPR modeling approach is effective in generalizing UNIQUAC model 

parameters for a prior property prediction. This could be attributed partially to the ability 

of the descriptors in the QSPR model to describe the 3D structures of the solute and the 

solvent; whereas, the UNIFAC model is based only on the 2D structural information and 

may be deficient in describing completely the solute-solvent interactions. 
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Table 7.5 shows the property prediction errors for systems that are commonly 

encountered in refining processes. The table provides VLE prediction errors using the 

regressed parameters in Case 2, and generalized parameters in Case 2Q, for the 332 

binary systems. The property predictions using generalized parameters were 

approximately twice the regression results. Comparable overall prediction errors were 

found from the previously reported results by Ravindranath et al. [11], who employed 

two different QSPR models to predict for the two UNIQUAC model parameters. Some of 

the descriptors used in our newly developed model were reported as significant 

descriptors in the previous work [11] as well. These include descriptors such as atomic 

charge for N, O, C atoms, electro negativity and C - C bond related descriptors.  

Finally, Table 7.6 shows the property prediction errors for systems with compounds that 

are typically formed in bi-phasic reactions. The property predictions using generalized 

parameters were approximately two times that of the regression results. Lower prediction 

errors were observed for systems with propionaldehyde and 2-propanol in both Case 2 

and Case 2Q; however, systems consisting of water and furfural gave higher errors in 

both Case 2 and 2Q. This can be attributed to a higher degree of non-ideality of the 

components and/or the lower quality of the data for systems with similar compounds.       

7.7. Conclusions 

1. In the current work, a non-linear QSPR model was developed to generalize 

successfully the UNIQUAC model parameters using an extensive database of 578 

binary systems. As compared to previous works, where two different QSPR models 

were employed to predict for the two UNIQUAC parameters, the current work 

successfully employed just one QSPR model. 
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2. This work demonstrated an effective approach for the reduction of the correlation of 

model parameters using a sequential regression technique.  

3. The prediction AAD values on an external test set of 139 binary systems were 8.6%, 

0.7%, 8.2% and 14.2% for T, P, K1, and K2 predictions, respectively. Our QSPR 

model resulted in a priori predictions with errors approximately twice the errors 

obtained regressing experimental data. 

4. According to the current work, 3D descriptors of the species involved have a 

significant effect on the UNIQUAC parameter values. This could be the reason for 

the higher accuracy of the current QSPR model compared to the existing UNIFAC 

group-contribution method. 

5. The generalized UNIQUAC model was used to predict the equilibrium properties for 

127 binary systems comprised of compounds typically formed in bi-phasic catalytic 

reactions. The AAD values for these systems were calculated to be 9.2%, 0.8%, 

8.1%, and 15.9% for T, P, K1, and K2 predictions, respectively. This case study 

illustrates that the QSPR-generalized UNIQUAC model can be employed to predict 

the activity coefficients for binary systems with reasonable accuracy, even when no 

experimental data are available.  
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Figure 7.1: Database matrix of the compounds in the OSU database II along with 
the 31 functional groups represented 

1 Alcohol 13
2 Aldehyde
3 Alkane 24 5 15
4 Alkene 10 1 11 3
5 Alkyne 6 3 2 6 1
6 Am ide 6 3 1
7 Am ine 5 4 4
8 Arom atic Brom o 1
9 Arom atic Floro 2 2 1

10 Benzene Derivative 6 4 14 1 5 1 3 4
11 Brom oalkane 1
12 Carboxylate 2 6
13 Chloroalkane 6 6 7 8 4 2
14 Chloroalkene 1 1 8 1
15 Chlorobenzene 3 5 1 2 1 2
16 Epoxide 2
17 Ester 1 1
18 Ether 13 2 18 6 4 2 3 5 1 9 3 3
19 Furfural 1 3 1 2 4 1 1
20 H2S 1
21 Iodoalkane 1 2 1 4 1
22 Ketone 3 4 20 4 1 7 6 9 1 3 2 2 1 4
23 Nitrile 5 4 2 2 4 6 3 2 1 1 1
24 Nitrite 1
25 Nitro Com pound 3 1 5 1 5 2 2 2 2 2
26 Pyridine Derivative 4 1 1 2 1 1 2
27 Sulfide 4 4 1 1 2 5 2 1 1 1 1 1 1
28 Thiol 1 2 1 1 1 1 4
29 Thiophene 1 1 1 1 1 1
30 Toluene Derivative 3 5 4 1 3 1 1 2 3 1 5 1 5 1 2 2 2
31 Water 8 1 1 8 1 2 2 1 3 1
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Number of available binary systems 
consisting of chemicals with functional 
groups of X and Y 

Number of available binary systems 
consisting of chemicals with functional 
groups formed in bi-phasic reactions  

No VLE data available  
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Figure 7.2: Correlation between the regressed UNIQUAC (Case 2) model 
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Figure 7.2: Correlation between the regressed UNIQUAC (Case 2) model 
parameters 

 
Figure 7.2: Correlation between the regressed UNIQUAC (Case 2) model 



 

Figure 7.3: Schematic of the model development process employed in this 
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7.3: Schematic of the model development process employed in this 
work 

 

7.3: Schematic of the model development process employed in this 



 

Figure 7.4: Comparison of the UNIQUAC
(Case 2Q) predicted a

broken line repre
 

Figure 7.5: Comparison of the UNIQUAC
(Case 2Q) predicted a

broken line represents perfect predictions
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Figure 7.4: Comparison of the UNIQUAC-regressed (Case 2) and UNIQUAC
(Case 2Q) predicted a12 values for all data excluding the external test set. The 

broken line represents perfect predictions 

Figure 7.5: Comparison of the UNIQUAC-regressed (Case 2) and UNIQUAC
(Case 2Q) predicted a21 values for all data excluding the external test set. The 

broken line represents perfect predictions 
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values for all data excluding the external test set. The 
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Figure 7.6: Comparison 
(Case 2Q) predicted a12

 

Figure 7.7: Comparison of the UNIQUAC
(Case 2Q) predicted a21
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Figure 7.6: Comparison of the UNIQUAC-regressed (Case 2) and UNIQUAC

12 values for the external test set. The broken line represents 
perfect predictions 

Figure 7.7: Comparison of the UNIQUAC-regressed (Case 2) and UNIQUAC
21 values for the external test set. The broken line represents 

perfect predictions 
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Figure 7.8: Equilibrium phase compositions for cyclohexane (1) + chlorobenzene (2) 
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Figure 7.8: Equilibrium phase compositions for cyclohexane (1) + chlorobenzene (2) 
at  T = 348.15 K 

 

Figure 7.8: Equilibrium phase compositions for cyclohexane (1) + chlorobenzene (2) 



 

 

 

 

 

 

 

 

 

 

Figure 7.9: Equilibrium phase compositions for hexane (1) + benzene (2) at 
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Figure 7.9: Equilibrium phase compositions for hexane (1) + benzene (2) at 
P = 1.0133 bar 

 
Figure 7.9: Equilibrium phase compositions for hexane (1) + benzene (2) at  



 

 

 

 

Figure 7.10: Equilibrium phase compositions for ethanol (1) + toluene (2) at 
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Figure 7.10: Equilibrium phase compositions for ethanol (1) + toluene (2) at 
T= 348.15 K 

 

Figure 7.10: Equilibrium phase compositions for ethanol (1) + toluene (2) at  



 

Figure 7.11: The effect of varying a
 

 

 

Figure 7.12: Correlation between the regressed UNIQUAC model parameters after 
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Figure 7.11: The effect of varying a12 and a21 on the quality of pressure predictions

Figure 7.12: Correlation between the regressed UNIQUAC model parameters after 
nine iterations 

 
on the quality of pressure predictions 

 
Figure 7.12: Correlation between the regressed UNIQUAC model parameters after 
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Table 7.1: VLE predictions using ideal solution (Case 1) and UNIQUAC (Case 2) 
models 

Case # Model (V/L) Parameters Property RMSE Bias %AAD 

1 Ideal Solution None 

P (bar) 0.60 -0.10 12.4 

T (K) 8.60 3.80 1.3 

K1 5.30 -0.70 13.2 

K2 0.90 -0.20 21.6 

2 IG/UNIQUAC 
Regressed 

a12 & a21 

P (bar) 0.17 0.00 2.5 

T (K) 2.13 0.24 0.2 

K1 3.51 -0.24 3.5 

K2 0.25 -0.02 6.2 
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Table 7.2: VLE prediction errors for the UNIQUAC-QSPR (Case 2Q) model 

Data Set # of systems Property # of Pts. RMSE Bias %AAD 

Training 

Set 

285 P (bar) 8451 0.29 0.01 6.4 

T (K) 8479 3.93 0.42 0.6 

K1 5018 0.97 -0.05 7.2 

K2 5016 0.53 -0.05 11.8 

Validation 

Set 

89 P (bar) 2977 0.12 -0.01 6.6 

T (K) 2995 3.98 0.47 0.6 

K1 1866 0.51 -0.03 6.8 

K2 1864 1.02 -0.07 10.4 

Internal 

Test Set  

65 P (bar) 1701 0.14 0.01 8.0 

T (K) 1701 3.76 0.02 0.6 

K1 897 9.12 -1.25 6.5 

K2 897 0.47 -0.02 14.3 

External 

Test Set 

139 P (bar) 3547 0.30 -0.03 8.6 

T (K) 3551 4.27 0.17 0.7 

K1 2174 5.33 -0.47 8.2 

K2 2174 0.43 0.00 14.2 
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Table 7.3:  List of the descriptors used in the final ensemble for the UNIQUAC-QSPR (Case 2Q) model 

No. Descriptor Complete Name of Descriptor Component 

No. 

Type of 

Descriptor 
1 RDF035v 

Radial Distribution Function - 3.5 / weighted by atomic van der 
Waals volumes 

1 RDF descriptors 

2 Mor31u 3D-MoRSE - signal 31 / un-weighted 1 
3D-MoRSE 
descriptors 

3 Mor18v 3D-MoRSE - signal 18 / weighted by atomic van der Waals volumes 1 
3D-MoRSE 
descriptors 

4 G3u 3st component symmetry directional WHIM index / unweighted 1 
WHIM 
descriptors 

5 WA Mean Wiener index 1 
Topological 
descriptors 

6 R6e 
R autocorrelation of lag 6 / weighted by atomic Sanderson 
electronegativities 

1 
GETAWAY 
descriptors 

7 F01[C-C] Frequency of C - C at topological distance 01 1 
2D frequency 
fingerprints 

8 P1u 1st component shape directional WHIM index / unweighted 1 
WHIM 
descriptors 

9 Mor28v 3D-MoRSE - signal 28 / weighted by atomic van der Waals volumes 1 
3D-MoRSE 
descriptors 

10 TPSA(NO) Topological polar surface area using N,O polar contributions 1 
Molecular 
properties 

11 EPS1 Edge connectivity index of order 1 1 
Edge adjacency 
indices 

12 nCIR Number of circuits 1 
Constitutional 
descriptors 

13 DISPp d COMMA2 value / weighted by atomic polarizabilities 1 
Geometrical 
descriptors 

14 
MWC07 Molecular walk count of order 07 1 

Walk and path 
counts 
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Table 7.3 (cont’d):  List of the descriptors used in the final ensemble for the UNIQUAC-QSPR (Case 2Q) model 

No. Descriptor Complete Name of Descriptor Component No. Type of Descriptor 

15 F03[O-O] Frequency of O - O at topological distance 03 2 
2D frequency 
fingerprints 

16 X1v Valence connectivity index chi-1 2 Connectivity indices 

17 nN Number of Nitrogen atoms 2 
Constitutional 
descriptors 

18 B06[C-C] Presence/absence of C - C at topological distance 06 2 2D binary fingerprints 

19 ATS7p 
Broto-Moreau autocorrelation of a topological 
structure - lag 7 / weighted by atomic 
polarizabilities 

2 2D autocorrelations 

20 GATS3v 
Geary autocorrelation - lag 3 / weighted by atomic 
van der Waals volumes 

2 2D autocorrelations 

21 Mor24e 
3D-MoRSE - signal 24 / weighted by atomic 
Sanderson electronegativities 

2 
3D-MoRSE 
descriptors 

22 HATS0m 
Leverage-weighted autocorrelation of lag 0 / 
weighted by atomic masses 

2 
GETAWAY 
descriptors 

23 MPC04 Molecular path count of order 04 2 Walk and path counts 

24 HATS3e 
Leverage-weighted autocorrelation of lag 3 / 
weighted by atomic Sanderson electronegativities 

2 
GETAWAY 
descriptors 

25 H-051 H attached to alpha-C 2 
Atom-centered 
fragments 

26 BLI Kier benzene-likeliness index 2 
Topological 
descriptors 

27 nROH Number of hydroxyl groups 2 
Functional group 
counts 

28 HATS2e 
Leverage-weighted autocorrelation of lag 2 / 
weighted by atomic Sanderson electronegativities 

2 
GETAWAY 
descriptors 
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Table 7.3 (cont’d):  List of the descriptors used in the final ensemble for the UNIQUAC-QSPR (Case 2Q) model 

No. Descriptor Complete Name of Descriptor Component No. Type of Descriptor 

29 Jhetv 
Balaban-type index from van der Waals weighted 
distance matrix 

2 
Topological 
descriptors 

 

 



207 
 

 

 

 

 

 

 

 

 

 

Table 7.4: Cases 2Q and 3U - a priori VLE prediction comparison  

Case # Model (V/L) 
# of 

systems Property RMSE Bias %AAD 

2Q IG/UNIQAUC 578 

P (bar) 0.24 0.00 7.0 

T (K) 4.00 0.34 0.6 

K1 1.53 -0.15 7.3 

K2 0.36 -0.02 12.3 

              

3U 

IG/UNIFAC (Due to lack 
of interaction model 
parameters 28 systems 
from 578 systems were not 
considered)  

550 

P (bar) 4.70 0.20 19.7 

T (K) 12.20 -0.80 1.7 

K₁ 4.90 0.10 20.4 

K₂ 4.20 0.20 28.4 
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Table 7.5: Case 2 and 2Q – VLE property predictions for systems that are 
commonly encountered in refining processes 

Case # Model (V/L) Parameters 
# of 
syste
ms 

Property RMSE Bias %AAD  

2 IG/UNIQUAC 

a12 Regressed 

332 

P (bar) 0.26 0.01 2.4 

T (K) 1.92 0.20 0.2 

a21 Regressed 
K1 0.85 -0.01 3.4 

K2 0.24 -0.01 6.1 

                       

2Q IG/UNIQUAC 

a12 QSPR 

332 

P (bar) 0.31 -0.01 6.4 

T (K) 3.69 0.24 0.6 

a21 QSPR 
K1 0.50 -0.01 7.5 

K2 0.30 -0.02 11.9 
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Table 7.6: Case 2Q – VLE property predictions for systems with compounds that 
are formed in bi-phasic reactions  

 

 

Compound  

 

 

# 
of 
sys 

 

 

# of 
pts 

%AAD 

Case 2 (Regression)   Case 2Q 
(UNIQUAC/QSPR)  

P 
(bar)  

T 
(K)  

K₁₁₁₁ K₂₂₂₂  P 
(bar) 

T 
(K)  

K₁₁₁₁ K₂₂₂₂ 

n-octane 14 313 2.5 0.2 2.1 3.5  8.8 0.7 5.9 14.7 

1-Propanol 16 315 3.5 0.3 3.6 9.2  6.8 0.5 8.4 13.8 

2-propanol 5 105 1.6 0.1 3.7 3.8  5.8 0.4 8.8 8.2 

Acetone 36 977 2.7 0.2 4.0 7.6  7.1 0.6 8.0 14.0 

Benzaldehyde 3 70 3.5 0.3 5.1 10.6  5.9 0.4 2.4 15.6 

Propionaldehyde 9 177 1.0 0.1 2.6 4.2  4.4 0.4 7.0 8.0 

Furfural 16 262 5.4 0.6 3.1 14.1  15.2 2.1 4.9 28.0 

Water 28 629 4.9 0.4 6.9 12.4  13.7 0.9 13.5 19.8 

Total  127 2848 3.4 0.3 4.0 8.6  9.2 0.8 8.1 15.9 
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CHAPTER 8 

 

A NON-LINEAR QSPR MODEL FOR THE INFINITE-DILUTION ACTIVITY 

COEFFICIENTS OF CYCLOHEXANE AND BENZENE  

IN VARIOUS SOLVENTS 

8.1. Introduction 

Solvents play an important role in many chemical reactions and separation processes. The 

design of solvents for specific applications requires an understanding of the interactions 

between the solute and the solvent at the molecular level. For ideal solutions, the mean 

strength of the interactions between all the molecules (including solute-solvent 

interactions) is the same, and therefore, the mixture properties can be described using just 

the concentrations of the individual species. For non-ideal solutions, the solute-solvent 

interactions are different from the solute-solute, or the solvent-solvent interactions. These 

interactions can be described quantitatively using dimensionless quantities called activity 

coefficients, which are denoted using the Greek symbol gamma (γ). To be specific, the 

activity coefficient, γi, describes the non-ideality for a species ‘i’ in a mixture. When the 

solute mole fraction, xi, approaches zero, the activity coefficient is referred to as the 

infinite-dilution activity coefficient, and is denoted as γi
∞: 

γ7K � limLMNO�γ7�  (8.1) 
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Infinite-dilution activity coefficient values are of great importance because they describe 

only the solute-solvent molecular interactions, without the complication of the solute-

solute interactions. The magnitude of the γ
∞ value provides insight into the molecular 

forces that exist between the solute and the solvent molecules. From a practical 

viewpoint, γ∞ can be used to design separation equipment, to predict phase equilibria 

properties and to determine the fate of chemicals in the environment [1].  

The experimental determination of γ
∞ values is time-consuming and expensive. Further, 

these experimental techniques are difficult for sparingly soluble solutes, and experimental 

values typically do not exist for novel molecules that are designed in silico in the 

chemical and pharmaceutical industries. Therefore, a need exists for predictive models 

that can compute γ
∞ values accurately based on molecular structures of the solute and the 

solvent molecules.  

8.2. State of the Art in Predicting γ∞ Values  

Since values of γ∞ can encompass a range of several orders of magnitude, logarithmic 

transformations such as log γ
∞ or ln γ∞ are much easier to model, when compared to the 

original γ∞ values.  In activity coefficient literature, the most common practice is to model 

the ln γ∞ values and therefore, the same practice is employed in this work.  Several 

predictive models for ln γ∞ exist in the literature and are based on group-contribution 

methods (GCM). The universal functional activity coefficient (UNIFAC) approach by 

Fredenslund and coworkers [2] is one of the earliest predictive models for ln γ∞, where 

for typical binary systems a deviation of 20% between experimental and predicted values 

is reported. Many modifications of the original UNIFAC method have been proposed 

such as Modified UNIFAC (Dortmund) [3, 4] and Modified UNIFAC (Lyngby) [5]. 
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Voutsas and Tassios [6] compared various methods of calculating the ln γ
∞ values and 

reported that the modified UNIFAC methods give better results than the original 

UNIFAC for athermal alkane/alkane asymmetric mixtures.  Another GCM based model 

is the analytical solutions of groups (ASOG) model by Tochigi and coworkers [7]. 

Despite their popularity, GCM methods suffer from disadvantages, such as their inability 

to model structures containing undefined functional groups and to account for the 

interaction between different functional groups and their spatial arrangement. For polar 

systems in particular, the UNIFAC approach leads to significantly inaccurate predictions 

[8]. Alternate strategies such as the linear solvation energy relationship (LSER) [9] 

models have been found to be more accurate. The LSER method is reported to have an 

average absolute deviation of 0.294 units for ln γ
∞ values of 336 organics in water [9]. 

Molecular simulation methods are the other major class of prediction models for ln γ∞. 

These methods are usually based on potential energy functions derived from pure-fluid 

properties such as heats of vaporization, and therefore theoretically, are easier to 

implement due to the availability of the data, when compared to GCM approaches, which 

are based on binary mixture thermodynamic data. Lazaridis and Paulaitis [10] developed 

a free energy perturbation method with Monte Carlo simulations, for predicting ln γ∞ 

values for chlorinated organic compounds in water. However, the deviation between the 

experimental and predicted values was found to be unacceptable even for simple solutes. 

Moreover, the method was expensive computationally to employ, even for moderately 

sized solutes. The conductor-like screening model for real solvents (COSMO-RS) is a 

relatively new promising simulation methodology for calculating the γ∞ values. The 

COSMO-RS theory describes the interactions in a fluid in terms of local contact 



215 
 

interactions of molecular surfaces [11]. Putnam et al. [12] have tested the COSMO-RS 

model and report that the model predicts reasonably for aqueous binary systems, but 

predicts poorly for some non-aqueous systems. 

An attractive alternative to the previous modeling methods is the quantitative structure-

property relationship (QSPR) approach, where the target molecular property is expressed 

in terms of the structural aspects of the molecule. Mackay and Shiu [13] developed one of 

the earliest QSPR correlations for ln γ
∞, where a correlation between ln γ

∞ values of 

polynuclear aromatic hydrocarbons in water with the number of carbon atoms was 

discovered. This model, developed for a specific class of compounds in a single solvent, 

resulted in better predictions than the more general universal quasi chemical 

(UNIQUAC) and UNIFAC models. In a similar study, Medir and Giralt [14] developed a 

correlation between ln γ
∞ values and molecular connectivity descriptors for aromatic and 

aliphatic hydrocarbons in water. While more limited in application, their model provided 

better predictions than both the UNIQUAC and the UNIFAC models. Neely et al. [15] 

had developed a neural network based QSPR model for predicting γ
∞ values of 

hydrocarbon-water binary systems. Their model had an AAD value of 6% on the training 

data, but had poor predictive performance on extended temperatures. In a similar work, 

Mitchell and Jurs [16] developed a QSPR model for a large number of organics in water 

using the automated data analysis and pattern recognition toolkit (ADAPT). They 

reported a prediction set (in this case, data that have not been used for model 

development) error of 0.43 units for ln γ
∞ values, which is better than corresponding 

predictions from UNIFAC models. Rani and Dutt [17] performed a similar study 

consisting of 351 training data (the data used to develop the model) to predict 92 ln γ∞ 
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values for one halocarbon in water, 17 organics in one hydrofluoroparaffin, and one 

organic in five hydrofluoroparaffins with a  reported average absolute deviation (AAD) 

of 11.8% on the basis of ln γ
∞ values. In a recent work, Giralt and coworkers [8] used 

Kohonen self-organizing maps (SOMs), along with fuzzy-ARTMAP neural classifiers to 

develop QSPR models that had an average absolute error of 0.52 (6.6%) natural log units 

for a prediction set of 45 organics in water. Schult [18] developed a modified UNIFAC 

model to predict the ln γ
∞ values of 20 solutes in n-methyl-2-pyrrolidone and hexadecane. 

They report AAD values of 8% and 11% for solutes in n-methyl-2-pyrrolidone and 

hexadecane, respectively. 

This brief review of the existing literature highlights the facts that the majority of the 

models deal with aqueous systems, and the generalized UNIQUAC and UNIFAC models 

cannot provide reliable predictions when quality experimental data do not exist for the 

specific solutes and solvents. Further, QSPR techniques have proven to be effective when 

dealing with a limited class of compounds. This provides the impetus for the current 

work, where specific QSPR models were built to predict the ln γ
∞ values for benzene and 

cyclohexane, separately, in the presence of a varied class of solvent compounds. 

Specifically, this work focuses on the following objectives: 

1. Develop an accurate non-linear QSPR model to predict the ln γ
∞ values for benzene 

and cyclohexane using a database made up of diverse set of solvents. 

2. Validate the current modeling approach by employing an external test set of 

compounds that has not been used to develop the model. 

3. Compare the current modeling approach with existing approaches in the literature, 

on common training and external set data. This would further establish the efficacy 
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of the modeling approach used in the work. Specifically, ln γ
∞ values for 325 

organics in water were extracted from the literature and were used to develop QSPR 

models.  

8.3. QSPR Methodology 

The development of a QSPR model involves the following series of steps: (a) data set 

generation, (b) descriptor calculation, (c) descriptor reduction and model development, 

and (d) model validation. These elements are described below. 

8.3.1. Data Set Generation: Experimental γ∞ values at 20°- 40°C were extracted from 

the DECHEMA chemistry data series [19, 20] for binary systems with cyclohexane and 

benzene as solutes. The γ
∞ values have been assumed to be temperature-independent in 

this narrow temperature range, which is a reasonable assumption considering the 

experimental uncertainty associated with the data. To support the assumption, plots of ln 

γ
∞ versus temperature are provided in Figures 8.1 and 8.2, for benzene and cyclohexane, 

respectively. These plots suggest that the uncertainties in experimental data are 

considerable for ln γ∞ values close to zero, and for the systems considered, the variation 

of ln γ∞ values with temperature is minimal within the 20°- 40°C range. In all, 175 and 

192 unique solvent γ∞ values were extracted from the literature, for cyclohexane and 

benzene, respectively. Approximately 80% of this data was within the 25°- 30°C 

temperature range. The DECHEMA chemistry data series [19, 20] does not provide 

estimates for the experimental uncertainties of the data, and therefore the quality of the 

data used in the current work cannot be assessed.  

Cyclohexane: The ln γ∞ values of the molecules in the final database for cyclohexane lie 

in the range of -0.65 to 5.7 natural log units (Figure 8.3 provides the distribution of ln γ∞ 
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data). The molecular weights of these compounds vary from 32.05 g/mol to 426.76 

g/mol, and the octanol-water partition coefficient, log Kow, (calculated using the Ghose-

Crippen ALOGP model in DRAGON [21]) varies between -1.7 and 11.3. Further details 

on the database characterization are provided in Table 8.1.  

Benzene: The ln γ∞ values of the molecules in the final database for benzene lie in the 

range of -0.76 to 3.6 natural log units (Figure 8.4 provides the distribution of ln γ∞ data). 

The molecular weights of these compounds also vary from 32.05 g/mol to 426.76 g/mol, 

and the log Kow values (calculated using the Ghose-Crippen ALOGP model in DRAGON 

[21]) vary between -1.7 and 11.3. Further details on the database characterization are 

given in Table 8.2.   

In addition to the above data sets, additional ln γ
∞ data of 325 organics in water were 

extracted from literature [8, 16]. This data was originally compiled by Sherman et al. [9], 

and has been used to develop models to predict the ln γ
∞ values of organics in water, by 

Sherman et al. [9], Mitchell and Jurs [16], and more recently by Giralt et al. [8]. 

Henceforth in this work, this data will be referred to as the aqueous database to 

differentiate it from the cyclohexane and benzene data sets. Giralt et al. [8] report that 

their model performs better than the models by Sherman et al. [9], and Mitchell and Jurs 

[16] on this aqueous data set. To validate the current modeling approach, the same 

aqueous data were used to develop a QSPR model to predict the ln γ
∞ values and the 

resulting model was compared with the prediction results by Giralt et al. [8]. To ensure a 

fair comparison, the same training and external test data employed by Giralt et al. [8] 

were used in the current work.  

8.3.2. Descriptor Calculation: See Section 2.5. 
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8.3.3. Descriptor Reduction and Model Development: See Section 2.6. 

External Validation: In a recent article, Tropsha et al. [22] emphasized the need to 

validate QSPR models using external data sets. Therefore, another model was built by 

separating some benzene and cyclohexane data from the original database and allocating 

them to an external test set; however, the data cannot be randomly separated, as the 

external set might not be representative of the training set. Therefore, a SOM network 

was created using the best descriptors identified in the first ensemble, which was 

developed using the entire database. This SOM was used to identify clusters in the data 

and facilitate the partitioning of data into T, IV and IT sets as explained in Section 8.3.3. 

The number of map units in this SOM was varied until the percentage of data points in 

the IT set is 15% of the size of the entire final data set. This IT set was then set aside as 

an external test set and the remaining data was used for developing another model de 

novo, by repeating the search for the best descriptors, best network architecture and 

network weights. In the current work, 15% of the molecules were identified as an 

external test set using this procedure, and the remaining 85% data points were again 

divided into T, IV and IT sets and subjected to the descriptor search algorithm as 

discussed in Section 8.3.3. For clarity, the model created using all data points for model 

development will be referred to as Model 1 and the model developed using just 85% of 

the data points as Model 2. Model 1 will be used in the computer-aided molecular design 

(CAMD) algorithms because of its larger training set size, and Model 2 will be used to 

assess the generalization capability of Model 1, as advocated by Tropsha et al. [22]. 
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8.4. Results 

8.4.1. Model 1 for Cyclohexane: Ten-descriptor, 15-descriptor, and 20-descriptor-

models were tested, but no significant difference was observed between the models. 

Therefore, for the sake of simplicity, 10 descriptors were used in the final models. Using 

less than 10 descriptors resulted in a significant increase in the training RMSE values for 

databases comprised of more than 150 data points, which provides additional support for 

the choice of ten input descriptors. Figure 8.5 shows the comparison between the 

experimental and predicted ln γ
∞ values for Model 1. The correlation coefficient (R2) 

between the experimental and predicted values is 0.94. The prediction residual errors in 

natural log units are plotted in Figure 8.6, which demonstrates clearly that the residuals 

are almost symmetrically distributed around the horizontal axis, as expected from an 

unbiased model. A histogram of the residuals (not shown) was plotted, and the 

distribution of the residuals around zero was found to be similar to a normal distribution. 

Additionally, the RMSE and the mean average error (MAE) values for the training data 

set predictions are 0.29 natural log units and 0.22 natural log units, respectively. The 

RMSE values for the individual ensembles range from 0.30 natural log units to 0.36 

natural log units. The results from the overall ensemble are better than the results for the 

individual ensembles, which validates the use of ensembles with different descriptors as 

inputs.  

The different descriptors used for creating the eight different ensembles are shown in 

Table 8.3. Note that the neural networks in the ensembles are allowed to have a 

maximum of 10 elite inputs, but frequently the individual networks will have a slightly 

lower number of elite descriptors as inputs after the insignificant descriptors have been 
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removed, as described in Section 8.3.3. The descriptors R1s, ALOGP, Chi0_EA (dm), 

HyWi _B (m) and SpPosLog_Dz (Z) are the most common across the ensembles. The 

types and physical meanings of these commonly occurring descriptors, as extracted from 

the DRAGON [21] help file, are provided in Table 8.4.  

8.4.2. Model 2 for Cyclohexane: For Model 2, 10-descriptor models were chosen. 

Figure 8.7 provides a comparison between the experimental and predicted ln γ
∞ values 

for the external test data set of 28 compounds. The correlation coefficient (R2) between 

the experimental and predicted external test data is 0.83. The prediction residual errors on 

this data are near-symmetrically distributed around the horizontal axis (no figure shown). 

The RMSE and MAE values for the training set data of 147 compounds are 0.32 and 0.23 

natural log units, respectively. The RMSE and MAE values for the external test set are 

calculated to be 0.48 and 0.39 natural log units, respectively. 

8.4.3. Model 1 for Benzene: Similar to the models for cyclohexane, ten-descriptor, 15-

descriptor, and 20-descriptor-models were tested, but no significant difference was 

observed between the models. Therefore, for the sake of simplicity, 10 descriptor models 

were used in the final models in the current study. Figure 8.8 shows a comparison 

between the experimental and predicted ln γ
∞ values for Model 1 for benzene. The 

correlation coefficient (R2) between the experimental and predicted values is 0.93. The 

prediction residual errors in natural log units are plotted in Figure 8.9, which 

demonstrates clearly that the residuals are almost symmetrically distributed around the 

horizontal axis, as expected from an unbiased model. A histogram of the residuals (not 

shown) was plotted, and the distribution of the residuals around zero was found to be 

similar to a normal distribution. Additionally, the RMSE and the MAE values for the 
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training data set predictions are 0.19 and 0.14 natural log units, respectively. The RMSE 

values for the individual ensembles range from 0.19-0.24 natural log units.  

The different descriptors used for creating the eight different ensembles are shown in 

Table 8.5. The descriptors MLOGP, SAdon, and Sp_Abs_B (e) are the most common 

across the ensembles. The types and physical meanings of these commonly occurring 

descriptors, as extracted from the DRAGON [21] help file, are provided in Table 8.6.  

8.4.4. Model 2 for Benzene: For Model 2, 10 descriptor-models were chosen. A 

comparison between the experimental and predicted ln γ
∞ values for the external test data 

of 30 compounds is provided in Figure 8.10. The RMSE and MAE values for the training 

set data of 162 compounds are 0.19 and 0.15 natural log units, respectively. The RMSE 

and MAE values for the external test set are calculated to be 0.45 and 0.29 natural log 

units, respectively. The correlation coefficient (R2) between the experimental and 

predicted external test data is 0.66. The prediction residual errors on this data are near-

symmetrically distributed around the horizontal axis (no figure shown).  

8.4.5. Model for Aqueous Data: Giralt et al. [8] had employed 12 descriptors in their 

model, and so to ensure a fair comparison, 10 descriptor-models were developed in the 

current work. For the current model, the RMSE and MAE values are calculated to be 0.38 

and 0.28 natural log units, respectively for the training set comprising 280 compounds. 

For the external test set comprising 45 compounds, the RMSE and MAE values are 

calculated to be 0.67 and 0.35 natural log units, respectively. A comparison between the 

experimental and predicted ln γ
∞ values for the external data of 45 compounds is 

provided in Figure 8.11. The correlation coefficient (R2) between the experimental and 

predicted external test data is calculated to be 0.96.  
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The errors for all models developed in the current work are tabulated in Table 8.7. 

8.5. Discussion 

The Model 2 MAE values for the cyclohexane and benzene external test sets are within 

two times the corresponding training set MAE values, which indicate normal predictive 

performance, based on comparison with other models in the literature that employ neural 

networks to model physico-chemical properties [23, 24]. Due to the larger training data 

set, Model 1 for both cyclohexane and benzene would be expected to perform similar to 

or better than Model 2 on unseen data (external data set). Therefore, the predictive 

performance of Model 2 on an external test set can be used as an approximation for 

determining the generalization capability of Model 1 for both cyclohexane and benzene.  

The residual plots (Figures 8.6 and 8.9) of Model 1 for both cyclohexane and benzene 

exhibit over-prediction for lower values of ln γ
∞ and under-prediction for higher values of 

ln γ∞. Similar trends were observed in Model 2 for both cyclohexane and benzene. This 

could be explained, in part, by the lower numbers of molecules with extreme ln γ∞ values 

in the databases employed in the current work. Further, the compounds that exhibit the 

largest deviations in the various models were examined manually to identify any 

correlation between their higher errors and the molecular structure, as typified by the 

presence/absence of certain functional groups. This examination did not reveal any 

particular trends between the functional groups present in the molecule and the prediction 

error for the molecule. The higher errors for some molecules could be due to the higher 

experimental uncertainty in the data for those molecules.   

The prediction results from Model 2 for cyclohexane and benzene are comparable to the 

existing QSPR models in the literature. In particular, the current model compares 
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favorably to a recent model developed by Giralt and coworkers [8], which had a MAE 

value of 0.52 natural log units for an external test set of 45 organics in water, and the 

model by Mitchell and Jurs [16], which had a MAE value of 0.33 for an external test set 

comprising 25 organics in water. 

The largest contributor to the prediction error in the current work could be due to the use 

of experimental data which is a compilation of all available literature data without 

consideration of the associated experimental uncertainties. To accumulate sufficient data 

for a reasonably generalized QSPR model, all data within the temperature range of 20°- 

40°C have been considered in the current work. The γ
∞ values have been assumed to be 

temperature-independent in this narrow temperature range, which is a reasonable 

assumption considering the experimental uncertainty associated with the data. 

Tables 8.4 and 8.6 list the most common descriptors for the eight different ensembles for 

cyclohexane and benzene, respectively. Due to the black-box nature of the artificial 

neural networks (ANNs), a quantitative assessment of the relative contribution of the 

different descriptors to the calculated γ
∞ values is not possible; however, approximate 

qualitative interpretations can be made based on the type of descriptors. For example, the 

presence of the octanol-water partition coefficient in both the cyclohexane and benzene 

models indicates a strong correlation between the γ
∞ values and the octanol-water 

partition coefficient values. This relationship is not surprising considering the theoretical 

mutual dependence between the two properties [1, 25].  In addition, the presence of the 

2D-matrix based descriptors for both cyclohexane and benzene suggests a strong 

correlation between molecular shape and γ
∞ values. Also, for the cyclohexane model, 

topological and 3D geometrical structures of the solvent affect the γ
∞ values. 
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To compare the efficacy of the current modeling approach, the aqueous data set had been 

employed to develop a QSPR model. The results from this model are provided in Table 

8.8, along with the results by Giralt et al. [8], using the same training and external test set 

data. Although, the model by Giralt et al. [8] has a significantly lower training set MAE, 

the current model performs better on the external set data, which indicates better 

generalization capability on new molecules unseen by the model. Mitchell and Jurs [16] 

also employed the same aqueous database to develop their QSPR model, but an external 

test set of only 25 molecules was used to validate their model. They report an MAE value 

of 0.33 for their external test set. A direct comparison between the model by Mitchell and 

Jurs [16] and the model from the current work is not possible due to the differences in the 

training and test sets employed. However, despite the larger external test set employed in 

the current work, the difference between the MAE values on the external test set between 

this model and the model by Mitchell and Jurs [16] is insignificant. 

8.6. Conclusions 

1. Separate non-linear QSPR models for ln γ
∞ values in the temperature range of 20°- 

40°C were developed, using wrapper-based descriptor pruning techniques, for 

systems containing cyclohexane and benzene as solutes in a variety of solvents. 

2. Two models each were developed for cyclohexane and benzene, as follows: Model 1 

was created using ln γ
∞ values for all available data in the model development; 

Model 2 was developed by employing ln γ
∞ values of 85% of data from the original 

database, with 15% of the compounds reserved as an external test set.  
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3. For cyclohexane, the RMSE values of the training sets for Model 1 and Model 2 are 

0.29 and 0.32 natural log units, respectively. The RMSE value for Model 2 of the 

external test set is 0.48 natural log units. 

4. For benzene, the RMSE values of the training sets for Model 1 and Model 2 are 0.19 

and 0.19 natural log units, respectively. The RMSE value for Model 2 of the external 

test set is 0.45 natural log units. 

5. According to the descriptors identified in the current work, the octanol-water 

partition coefficient and the 2-dimensional shape of the molecule have significant 

effect on the γ∞ values for both cyclohexane and benzene systems. 

6. The current model developed using the aqueous data set performs significantly better 

than the model by Giralt and coworkers [8] on an external test set of 45 compounds. 

The MAE value on the external test set for the model by Giralt et al. [8] is 0.52 as 

compared to a MAE value of 0.35 from the current model.  

7. The resulting models from this work can be used to predict a priori the infinite-

dilution activity coefficients of cyclohexane or benzene binary systems.  



 

Figure 8.1:  Variation in the 

 

 

Figure 8.2:  Variation in the ln 
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Figure 8.1:  Variation in the ln γ∞ values with temperature, for benzene in three 
different solvents 

Figure 8.2:  Variation in the ln γ∞ values with temperature, for cyclohexane in three 
different solvents 
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Figure 8.3:  Distribution of the ln 

 

 

Figure 8.4:  Distribution of the ln 
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Figure 8.3:  Distribution of the ln γ∞ values in the final cyclohexane data set

Figure 8.4:  Distribution of the ln γ∞ values in the final benzene data set

values in the final cyclohexane data set 

values in the final benzene data set 



 

Figure 8.5:  Comparison between the experimental and predicted 
Model 1 for cyclohexane. 

 
 

Figure 8.6:  Residual error plot of the Model 1 predictions for cyclohexane
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Figure 8.5:  Comparison between the experimental and predicted ln 
Model 1 for cyclohexane. The broken line represents perfect predictions

Figure 8.6:  Residual error plot of the Model 1 predictions for cyclohexane
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Figure 8.6:  Residual error plot of the Model 1 predictions for cyclohexane 



 

Figure 8.7:  Comparison between the experimental and predicted 
the external set data in Model 2 for cyclohexane. 

 

Figure 8.8:  Comparison between the experimental and predicted 
Model 1 for benzene. 
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Figure 8.7:  Comparison between the experimental and predicted ln 
the external set data in Model 2 for cyclohexane. The broken line 

represents perfect predictions 

Figure 8.8:  Comparison between the experimental and predicted ln 
Model 1 for benzene. The broken line represents perfect predictions
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Figure 8.9:  Residual error plot of the Model 1 

Figure 8.10:  Comparison between the experimental and predicted 
the external test set in Model 2 for benzene. 
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Figure 8.9:  Residual error plot of the Model 1 predictions for benzene
 

Figure 8.10:  Comparison between the experimental and predicted ln 
the external test set in Model 2 for benzene. The broken line 

represents perfect predictions 
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Figure 8.11:  Comparison between the experimental and predicted 
the external test set in the aqueous database. 
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Figure 8.11:  Comparison between the experimental and predicted ln 
the external test set in the aqueous database. The broken line

represents perfect predictions 
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Table 8.1:  Characteristics of the final cyclohexane data set made up of 175 solvent 
data 

Molecular Property Minimum  Maximum Mean 
Standard 
Deviation 

Ln (γ
∞) -0.65 5.70 1.80 1.1 

Molecular weight (g/mol) 32.05 426.76 133.28 62.8 

Octanol-water partition coeff. (Log 
Kow) 

-1.7 11.3 1.5 2.1 

 

 

 

 

 

Table 8.2:  Characteristics of the final benzene data set made up of 192 solvent data 

Molecular Property Minimum  Maximum Mean 
Standard 
Deviation 

Ln (γ
∞) -0.76 3.60 0.50 0.7 

Molecular weight (g/mol) 32.05 426.76 137.75 68.4 

Octanol-water partition coeff.  

(Log Kow) 
-1.7 11.3 1.6 2.2 
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Table 8.3:  List of the descriptors used in the final eight ensembles in Model 1 for cyclohexane 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

1 R1s R1s R1s R1s R1s R1s R1s R1s 

2 ALOGP ALOGP ALOGP ALOGP ALOGP ALOGP ALOGP ALOGP 

3 MATS2s MATS1s 
Chi0_EA 

(dm) 

Chi0_EA 

(dm) 

Chi0_EA 

(dm) 

Chi0_EA 

(dm) 

Chi0_EA 

(dm) 

Chi0_EA 

(dm) 

4 
SM07_EA(b

o) 
SM07_EA(b

o) 

HyWi_B 

(m) 

HyWi_B 

(m) 

HyWi_B 

(m) 

HyWi_B 

(m) 

HyWi_B 

(m) 

HyWi_B 

(m) 

5 EE_B(m) EE_B(m) G (N..N) G (N..N) 
CATS2D_04

_NL 
CATS2D_04

_NL 
T (N..N) T (N..N) 

6 
SpMAD_B 

(s) 
SpMAD_B 

(s) 
SM09_EA 

(bo) 
SM09_EA 

(bo) 
ALOGP2 ALOGP2 NsOH NsOH 

7 ZM1Kup ZM1Kup ATSC6m ATSC6m HOMA AVS_D/ Dt VR1_X VR1_X 

8 SpMax_Dt 
SpPosLog_D

z (Z) 
SM3_Dz (i) SM3_Dz (i) RDF130e RDF130e 

SpPosLog_D
z (Z) 

SpPosLog_D
z (m) 

9 Eig01_EA(ri) GATS1m VE3_G/D QZZm 
Eig12_AEA(

ed) 
Eig12_AEA(

ed) 
Eta_epsi Eta_epsi 

10 --- --- --- --- AVS_D/ Dt --- VR3_D --- 



235 
 

 

 

 

 

 

Table 8.4:  Physical meaning of the commonly occurring descriptors across the 
ensembles in Model 1 for cyclohexane 

Descriptor Descriptor Type Physical Meaning 

R1s 
GETAWAY 
descriptor 

Influence/distance matrix R, 
autocorrelation of lag 1 / weighted by 
I-state [26] 

ALOGP Molecular property 
Ghose-Crippen octanol-water partition 
coefficient 

Chi0_EA 

(dm) 
Edge-adjacency index 

Connectivity-like index of order 0 
from edge adjacency matrix weighted 
by dipole moment. The edge 
adjacency matrix is derived from the 
H-depleted molecular graph and 
encodes the connectivity between 
graph edges. The entries of the matrix 
equal one if the considered bonds are 
adjacent and zero otherwise. 

HyWi_B 

(m) 
2D-matrix based 
descriptor 

Hyper-Wiener-like index (log 
function) from Burden matrix 
weighted by mass 

SpPosLog_Dz (Z) 
2D-matrix based 
descriptor 

Logarithmic spectral positive sum 
from Barysz matrix weighted by 
atomic number 2D [27] 
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Table 8.5:  List of the descriptors used in the final eight ensembles in Model 1 for benzene 

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8 

1 HATS4i HATS4i VR1_L VR1_L VR1_H2 VR1_H2 Chi_Dz (m) Chi_Dz (m) 

2 MLOGP MLOGP MLOGP MLOGP H-048 H-048 
P_VSA_Log

P_6 
P_VSA_Log

P_6 

3 SAdon SAdon R7e R7e SAdon SAdon SAacc SAacc 

4 P_VSA_m_1 P_VSA_m_1 SpPos_B (e) SpPos_B (e) SpAbs_B (e) SpAbs_B (e) 
SpPosLog_B 

(e) 
SpPosLog_B 

(e) 

5 
SM08_EA 

(ed) 
SM08_EA 

(ed) 
SsOH SsOH J_B(i) J_B (i) piPC10 

CATS2D_02
_AL 

6 TDB04i TDB04i VR3_B (v) 
SpPosLog_D

t 
SpAD_B (e) SpPos_Dz(Z) Mor14u Mor14u 

7 AVS_B (s) AVS_B (s) 
SpMin6_Bh 

(e) 
AVS_B (p) ATSC1m ATSC1m C-009 C-009 

8 VE3_Dz (v) --- HyWi_Dz(v) AVS_Dz (v) BLTD48 BLTD48 NdO NdO 

9 --- --- 
Chi0_AEA 

(dm) 
--- ON0V ATSC2p --- --- 
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Table 8.6:  Physical meaning of the commonly occurring descriptors across the 
ensembles in Model 1 for benzene 

Descriptor Descriptor Type Physical Meaning 

MLOGP Molecular property 
Moriguchi octanol-water partition 
coefficient 

SAdon Molecular property 
Surface area of donor atoms from 
P_VSA-like descriptors 

Sp_Abs_B (e) 2D-matrix based descriptor 
Graph energy from Burden matrix 
weighted by Sanderson 
electronegativity 

 

 

Table 8.7:  The errors for all models developed in this work 

Model 
Training Set External Test Set 

RMSE MAE R2 RMSE MAE R2 

Model 1 for 
cylcohexane 

0.29 0.22 0.94 --- --- --- 

Model 2 for 
cylcohexane 

0.32 0.23 0.93 0.48 0.39 0.83 

Model 1 for 
benzene 

0.19 0.14 0.93 --- --- --- 

Model 2 for 
benzene 

0.19 0.15 0.93 0.45 0.29 0.83 

Model for 
aqueous data 

0.38 0.28 0.99 0.67 0.35 0.96 
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Table 8.8:  Comparison of the current model with literature models on the aqueous 
data set 

Researchers Model Type 
Training 
Set MAE 

Number of 
Molecules in 

External Test Set 

External Test 
Set MAE 

This work  
Stochastic 
optimization and 
ANNs 

0.28 45 0.35 

Giralt et al. [8]  
Neural classifiers 
and self-
organizing maps  

0.02 45 0.52 

Mitchell and 
Jurs* [16] 

ADAPT and 
neural networks 

0.28  25 0.33 

* The external test set used in the referenced work is different from the one employed by the other models 
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CHAPTER 9 

 

COMPUTER-AIDED MOLECULAR DESIGN (CAMD):  

METHODOLOGY AND APPLICATIONS 

9.1. Introduction 

The demand for newly designed molecules that enhance existing processes and satisfy 

more stringent operating requirements in technology has been increasing.  However, the 

rational design of molecules with desired properties poses a significant challenge to 

engineers attempting to meet the needs of various industries, including pharmaceuticals, 

polymers, petrochemicals and construction [1-3]. The traditional approach of identifying 

molecules with desired properties involves testing thousands of molecules for their 

chemical and physical properties, which is an expensive and laborious undertaking. 

Hence, rational design techniques, such as computer-aided molecular design (CAMD), 

have found wide application in recent years [4, 5]. CAMD methods have been employed 

successfully to identify novel molecules with superior properties for a wide range of 

applications, including solvent design/selection [6] and design of chloro-fluro-carbon 

substitutes, alternative process fluids, polymers [2] and drugs [7]. In pharmaceutical 

industries, CAMD is used to discover novel drugs for targeted applications, while 

meeting health constraints, such as minimal side effects and toxicity.
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In contrast to traditional methodologies, CAMD methods expedite the design process by 

predicting the behavior of potential molecules using reliable property models. CAMD

involves the design of new molecules based on a specified set of desired properties and 

can be classified as (a) forward CAMD, which involves computation of chemical, 

physical and biological properties from the molecular structure, and (b) inverse CAMD, 

which involves generation of a molecular structure with the desired properties [8, 9].  

A typical CAMD design algorithm utilizes two key components: (a) a method for 

generating candidate molecules, and (b) accurate models to predict the pertinent 

physicochemical properties of the newly generated molecules. Property predictions for 

the generated molecules are usually completed using group-contribution methods, 

equation-of-state approaches and quantitative structure-property relationship (QSPR) 

models. Figure 9.1 presents a simplified view of the various stages involved in CAMD.  

9.2. State of the Art in CAMD 

In general, CAMD techniques can be divided into the following categories: knowledge-

based generation and test methods [10, 11], mathematical optimization methods [12, 13] 

and combinatorial optimization methods [6, 14, 15]. Knowledge-based methods utilize 

expert rules that guide the design process; however, many non-linear structure property 

relationships are not easily simplified to rules. Mathematical optimization methods utilize 

mixed-integer, non-linear programming (MINLP) approaches and are computationally 

expensive to perform and have a high probability of being trapped in local minima (sub-

optimal molecular structures) for a highly non-linear system of equations. Recently, 

combinatorial approaches that involve stochastic optimization methods such as simulated 

annealing and genetic algorithms have been applied successfully to CAMD. These 
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methods have several advantages which makes them widely applicable, such as ease of 

applicability and independent implementation with respect to the property prediction 

portion of the algorithm. However, they are highly dependent on the parameters used for 

the various mutation operations. Inverse QSPR methods for generating new structures 

have also been implemented [16]. These methods involve the use of specific descriptor 

types leading to accurate property prediction, as well as allowing for molecules to be 

designed based on these same descriptors; however, the design of feasible molecules 

using these specific descriptors is usually difficult [17]. Another disadvantage of this 

method is the inability to account for 3-dimensional (3D) molecular descriptors, which in 

most cases lead to better predictions than 2-dimensional (2D) descriptors alone for many 

physical properties. Further, limitations are usually placed on the types of descriptors that 

can be used in this approach such as the monotonically increasing or decreasing 

descriptors employed by Miyao et al. [18] in their inverse-QSPR approach.  

The majority of applications of CAMD employ connectivity indices or fragment-based 

QSPRs, which decrease the execution time for the algorithm but are not as accurate as the 

3D descriptor-based QSPRs for many important molecular properties. The performance 

of CAMD techniques, however, relies heavily on the accuracy of the underlying 

predictive models. Korichi et al. [19] have used 2D and 3D descriptors for computational 

design of aromatic molecules and reported that 3D descriptors perform better than 2D 

descriptors in their design framework. Further, in most studies, the search space is limited 

to a certain family of molecular functional groups. This leads to a reduction in 

computational time at the cost of failing to discover better molecules that may be present 



245 
 

outside the search space. Therefore, there is a need to develop generalized molecular 

search algorithms for CAMD.  

In summary, the CAMD literature suggests that a need exists for a highly accurate but 

reasonably fast algorithm that searches for globally-optimal structures of molecules 

satisfying a certain set of molecular property constraints. Further, this algorithm should 

be capable of handling non-linear constraints and be generally applicable for a wide 

range of molecular design problems. In addition, an algorithm that can be fully automated 

would be much more efficient, and it would also help in reducing the errors associated 

with human involvement. 

9.3. CAMD Methodology 

A genetic algorithm (GA) based approach was used in the current work to identify the 

optimal molecular structures that satisfy specific molecular design constraints. The basic 

premise of the GA approach relates to the theory of natural selection, as famously 

proposed by Charles Darwin [20], which asserts that individuals that respond better to 

environmental stresses or changes in a given population have a better chance of 

transferring their genetic material to future generations. Over a large number of 

generations, this process leads to elimination of the weaker individuals and proliferation 

of the stronger individuals in a specific population. In biological evolution, the two 

aspects of change through reproduction from the parents to the offspring and the selective 

survival of the offspring are sufficient to produce generations of individuals that are 

progressively better suited to the existing environment.  

The same concepts of natural selection can be extended to CAMD, where the molecules 

represent individuals, and the selection pressure is applied using an objective function 
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and design constraints. The fitness of the molecules is assessed in terms of a specified 

objective function and the number of design constraint violations. The reproduction of 

individuals is simulated using crossover and mutation operations, and natural selection is 

simulated using various selection procedures such as tournament selection and roulette 

wheel selection. The overview of the GA-based CAMD algorithm employed in the 

current work is provided in Figure 9.2. The details of the algorithm are presented in the 

following sections. 

9.3.1 Problem Formulation: According to Achenie et al. [21], the basic CAMD problem 

can be defined as:  “Given a set of building blocks and a specified set of target properties, 

determine the molecule or molecular structure that matches these properties.” Therefore, 

identifying the desired target properties of the chemical compounds to be designed is the 

first step in CAMD processes. A knowledge-based system is required to identify target 

properties, as well as their corresponding property values. A typical CAMD problem 

would need the following information: 

1. The desired application of the designed molecules 

2. The relevant operating conditions of the process 

3. The design criteria based on molecular descriptors or properties 

4. A property prediction method to predict the relevant molecular properties 

5. A quantitative measure of the fitness of the generated molecules.  

The CAMD problem is then to design molecules that have the optimal value of a 

particular fitness function, and at the same time adhere to specific design criteria. In 

mathematical form, this can be expressed as: 
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minP F�x>�
Subject to:g�x>� � 0h�x>� W 0

 (9.1) 

where, F is the fitness function that is dependent upon the vector of molecular properties 

denoted as x i. The design criteria, operating conditions and logical constraints are 

represented using g and h, respectively. The above formulation can be used to treat both 

linear and non-linear objective functions and constraints and allows for analytical or 

numerical techniques of evaluation. 

9.3.2 Fitness Function and Constraint Handling: The fitness function is a key 

component of a GA, and the value of this function determines the probability of the 

individuals in the population to participate in the reproductive operations such as 

crossover and mutation. There are many different variations of fitness functions in the 

literature which are tailored to specific CAMD problems. Due to the stochastic nature of 

the GA-based CAMD algorithm, the fitness function does not have to be a well-

characterized equation with calculable derivatives; however, the fitness function does 

need to act as a relevant guideline that can help distinguish between two molecules in a 

population [22]. Therefore, the fitness function should be a function of the desired target 

property values, the individual molecular property values, the user-specified tolerance 

level based on the confidence in property prediction methods, and some user-specified 

tuning parameters to set penalties for molecules whose properties deviate from the target 

property values. In general, the choice of fitness function is based on the user’s prior 

knowledge of the important design criteria for the specific problem. Although many 
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forms of fitness functions can be used with GAs, the majority of the CAMD algorithms in 

the literature employ a function that varies continuously between 0 and 1. Molecules with 

a fitness function value close to 0 are considered closer to the optimal molecular structure 

than molecules whose fitness values are closer to 1. Venkatasubramanian et al. [1, 5] 

were the first to use a Gaussian-like function to calculate the fitness value in a CAMD 

algorithm. When designing for target properties with both lower and upper bounds, the 

fitness function proposed by Venkatasubramanian et al. [1, 5] had the following 

Gaussian-like form: 

F �  exp X"α Z[ �P7 " P\]��P7, 4L " P7, 7+ �
+

7_&
` a (9.2) 

where, Pi is the ith property value, Pi,max, Pi,min and P i are the maximum, minimum and 

average values of the ith property, respectively, and α is the fitness decay factor. 

When designing for target properties with only a lower bound or an upper bound, the 

following sigmoidal form of the fitness function is commonly used:  

F7 � 1
1 � exp c"α dP7 " P7,2P7,24+e3 f g " 0.5 

(9.3) 

where, Fi is the contribution of the ith property to the overall fitness F, Pi is the ith property 

value, Pi,r is the lower or upper bound on the ith property and Pi,range is the overall possible 

range of the ith property, which is used to normalize the contribution of each property 

toward the fitness function. The 0.5 term in Equation 9.3 ensures, that the Fi value is zero 

when the property value Pi is equal to the lower or upper bound value Pi,r. This value is a 
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matter of convenience, and the use of any other value would not affect the shape of the 

fitness function, but it would shift the fitness function higher or lower with respect to a 

base line value. 

The magnitude of the decay factor, α, determines how strictly an individual molecule is 

penalized for not meeting the desired property values. A large value of the decay factor 

would mean that small deviations from the target value are penalized heavily leading to 

small fitness values; whereas a small decay factor would be more lenient, and large 

deviations from the desired property values would lead to moderate fitness scores. The 

decay factor plays a significant role in influencing the selection pressure of the algorithm. 

For instance, in the case of a large decay factor, small differences in the deviations from 

target values between two molecules are amplified leading to widely different fitness 

scores. In the extreme case, this may lead to premature convergence of the GA to a 

population of similar and suboptimal solutions. When a small decay factor is used, the 

fitness function is more forgiving, and the GA may accept solutions with large deviations 

from a desired target which would lead to an increase in the diversity of the sampled 

solutions. The disadvantage in this case would be the additional computational time 

required for algorithm convergence. 

The fitness function must also account for the various design constraints associated with 

the problem. One approach is to devise a molecular generation scheme, which generates 

only those molecules that satisfy all constraints. In other words, the constraints are 

handled in the crossover and mutation stages, instead of in the selection stage of the GA 

algorithm. This approach may work for simple constraints but is impossible to implement 

for constraints based on complex molecular properties. Another method of constraint 
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satisfaction in GA is to reject individuals that violate constraints, i.e., the infeasible 

individuals. Infeasible individuals can appear as the result of the genetic operators, but 

these individuals are not admitted to the new generation. This method may work when 

the feasible region of the search space for molecules is reasonably large; however, when 

this feasible search region is small, rejection of infeasible individuals may lead to the loss 

of important genetic information that might be useful when coupled with genetic 

information from other individuals in future generations. Another common technique for 

handling constraints is to penalize the infeasible molecules [23]. Venkatasubramanian et 

al. [23] used the following fitness function, Ftotal, in their work for a minimization 

problem: 

F6864i � F � δ [ k7
l

7_&
 (9.4) 

where, F is the fitness function associated with the molecular property that needs to be 

optimized, P is the total number of design constraints, δ is the penalty coefficient and  i 

is the penalty weight associated with the ith penalty term. 

The magnitude of the penalties in Equation 9.4 depends on the extent of constraint 

violation. The selection of molecules for crossover or mutation is based on the total 

fitness, which is the weighted sum of fitness and penalty. The infeasible individuals 

participate in the genetic process, as they are still considered capable of delivering useful 

offspring; however, a careful adjustment of the penalty weights is required. If the penalty 

weights are too low, infeasible individuals could be preferred to slightly less fit but much 

more feasible individuals, or application of high penalty weights may result in the loss of 
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useful genetic information, and the process may converge to feasible but sub-optimal 

individuals.  

Another method of property constraint handling is the inclusion of constraints in the 

fitness function, where a property constraint is treated as an additional contribution to the 

fitness function (Equation 9.3). However, this method is only suitable when the 

constraints are simple inequalities, leading to lower or upper bounds in a particular 

molecular property value. Since all constraints encountered in the current work belong to 

this category, the sigmoidal form of the fitness function shown in Equation 9.3 is used to 

account for both the actual fitness function and the constraints. For example, consider the 

design of molecules having a normal boiling point (NBP) of less than 400 K. The fitness 

values calculated using Equation 9.3 are plotted as a function of NBP values in Figure 9.3 

for four different fitness decay values. For values of α close to one, there is a better 

distinction in fitness values between molecules having slightly different NBP values; 

however, this would lead to longer computational times for the GA to reach convergence. 

At higher values, convergence can be achieved faster, but there is not enough distinction 

between molecules, including even those that have NBP values separated by 500 K. A 

middle value of 5 for α is a compromise between premature convergence and long 

computational times and is used in this work.  

Although Equation 9.3 is suited perfectly to represent the minimization or maximization 

of property values, the handling of inequality constraints in property values requires a 

small modification. According to Figure 9.3, among molecules that satisfy the NBP 

constraint, those molecules with NBP values close to zero are preferred over molecules 

with NBP values slightly lower than 400 K. From a design perspective, however, 
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molecules with NBP close to zero might not offer any practical advantage over molecules 

whose NBP values are closer to 400 K. In such circumstances, using Equation 9.3 as 

written, would drive the GA algorithm to search for molecules with NBP values close to 

zero and would lead to a loss of diversity in the population. To avoid this, the following 

modification has been made to Equation 9.3 in the current work: 

F7 � 1
1 � exp c"α dP7 " P7,2P7,24+e3 f g " 0.5

F7 � mF7      if F7 o 00      if F7 W 0 p
 (9.5) 

The above modification would lead to an equal probability of selection for all molecules 

that satisfy a particular inequality constraint. Of course, this modification is only 

applicable when there is no design advantage for molecules that have relatively lower or 

higher property values, as long as these values are within the constrained property range. 

For cases where there is a design advantage for lower or higher values within the 

constrained range, Equation 9.3 in its original form is applied.  

The total fitness function in the current work is now calculated by summing the weighted 

fitness functions for each property constraint:  

F6864i � [ k7F7
+

7_&
 (9.6) 

where,  i is the weight term associated with the ith constraint, Fi is the fitness 

contribution of the ith constraint and n is the total number of constraints in the problem.  
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The weights for each constraint are decided by the user based on experience and specific 

requirements. 

9.3.3 Genetic Representation: When designing a GA, choosing a representation scheme 

is an important step. Genetic algorithms traditionally operate using bit string encoding of 

the chromosomes in the population. Employing a bit string representation for GA-based 

CAMD algorithms would involve constructing large binary matrices for all possible 

functional groups or atomic fragments in the molecules. Dealing with these matrices 

would quickly become impractical even for moderately sized molecules [1]. A practical 

alternative is to use the representations used commonly by chemists, where molecular 

and atomic fragments are represented using symbols. For CAMD, one can imagine a 

number of such molecular representation schemes, ranging from simple strings (line 

notation) to more complicated 3D structures. Despite using the same underlying 

principles of inheritance and evolution, the results obtained with different schemes can 

vary widely. These differences are due to the representation scheme along with the 

recombination operators limiting the exploration of the search space to certain regions. 

The 3D representations are most commonly used in protein-docking search algorithms, 

where the 3D structures of the protein and ligand are significant factors. In the current 

work, the property prediction QSPR models are based on 3D molecular descriptors, and 

theoretically, the CAMD algorithm must also be based on a 3D representation of the 

molecules. However, dealing with the higher level 3D representation of the molecules is 

far from simple, and could prove computationally cumbersome even for medium-sized 

molecules. Therefore, a lower level representation scheme based on line notations is used 

in this work.  
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Line notations are a popular method for representing chemical formulas. The simplified 

molecular input line entry system (SMILES) is the most popular line notation, which is 

based on rules derived from molecular graph theory. The SMILES notation allows 

rigorous structure specification by use of natural grammar and is well suited for high-

speed machine processing. SMILES have four basic rules which apply to 98% of the 

molecules typically encountered in solvent design [24].  

Rule 1:  Atom Specifications (see Table 9.1) 

a. Use ordinary atomic symbols C, N, O, S, F, Cl, and Br.   

b. Suppress hydrogen except on pyrrole nitrogen where it is [nH]. 

c. Other atoms and any charges are placed in brackets; e.g. [N+].  

d.  Use lower case for sp2-hybridized atoms and upper case for all other atoms. 

Rule 2:  Bond Specifications (see Table 9.2) 

a. Bonds are always assumed to be single bonds unless specified otherwise 

(example: ethane, represented as CC). 

b. Double bonds are represented by an equal symbol (example: acetaldehyde, 

represented as O=CC). 

c. Triple bonds are represented by a pound symbol (example: hydrogen cyanide, 

represented as C#N). 

Rule 3: Branching Specification (see Table 9.3) 

a. A branched group is placed in parentheses (example: isobutyric acid, represented 

as O=C(O)C(C)C). 
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b. Branches can be stacked (example: fluroform, represented as C(F)(F)F) or nested 

(example: 4-heptanoic acid, represented as CCCC(C(=O)O)CCC).  

c. No predefined limit to how deep branching may be nested.  

d. Most implementations, however, define such a limit, typically between 10 and 50. 

Rule 4: Ring Specification 

a. Ring closure is specified by appending matching digits to the joined atoms. 

b. Pick one bond in each ring numbering them in any order. Break the numbered 

bonds, appending the bond number to the atoms on the ends of the bonds. This 

leaves an acyclic structure which can always be specified using the rules for 

specifying atoms and branching (Figure 9.4). 

c. There are usually many different, but equally valid descriptions of the same 

structure (see Figure 9.5). 

d. A single atom may have more than one ring closure. 

e. A ring closure digit can be reused (see Figure 9.6). 

 A molecule always has a unique SMILES structure but can have multiple 3D 

conformations of which one conformation will possess the lowest conformational energy. 

In this work, an automated algorithm that searches for this minimum energy 

conformation starting from the line notation of the molecule was developed and 

combined with the CAMD algorithm. This conformational energy search algorithm 

ensures a one-to-one mapping between the lower level line notations (which allows for 

easy crossover and mutation operations) and the higher level 3D representation (which is 

essential for molecular property predictions).  
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9.3.4 Initial Population: In creating an initial population, two decisions need to be made:   

the size and the source of the initial population. The size of the population for GAs is 

usually proportional to the number of adjustable parameters for the specific molecular 

design of interest. While a larger population would increase the required computational 

power and ensure globally optimum solutions, a smaller population would require lower 

computational power and could lead to sub-optimal solutions. The size of the initial 

population is governed largely by the type of attachments used for new structure 

generation. If molecular fragments or functional groups are used instead of atomic 

fragments, then a larger population size would be needed to ensure global optimal 

solutions. When functional groups are used, the algorithm has a tendency to polarize the 

results, which means that if a molecule generated in the initial generation shows high 

fitness value, then the probability of such a molecule being involved in future 

reproduction operations is high. This process results in the generation of molecules that 

are similar to the high fitness molecule, and consequently molecules with low fitness that 

could potentially lead to a better candidate molecule after a few generations are 

eliminated. The selection of the initial population should reflect a wide range of structural 

diversity, while considering the design constraints. The initial population can arise from 

random structures, which satisfy some minimal fitness criteria, or from the results of 

other calculations or studies. Similar to choosing the population size, there is no single 

best method for generating initial populations for different applications of CAMD. Of 

note, GAs with initial populations that are fitter but not sufficiently diverse would most 

probably yield inferior final solutions.  
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9.3.5 Genetic Operators: In each generation, individuals from the current population are 

selected and processed using genetic operators to create a new population. The selected 

individuals are referred to as the mating pool individuals. In GAs, several types of genetic 

operators such as crossover, mutation, elitism and reproduction are used. Crossover and 

mutation operators must be carefully designed since their choice contributes highly to the 

performance and convergence speed of the GA. In this work, elitism, crossover and 

mutation are employed as operators and are described in greater detail below. 

Elitism: A part of the new population of structures can be created by simply copying, 

without change, selected individuals from the present population. This gives a possibility 

of survival for already developed fit solutions. In the current work, the best two 

individual molecules from each generation are allowed to pass over to the next generation 

without any modifications to their structures. 

Crossover: Crossover is a mechanism that promotes interbreeding of molecules. The 

genetic material of the parents is combined to form new molecules that retain some 

characteristics of the parent molecules. The first step of the crossover operation is 

identification of structural fragments which are suitable for crossover. Two types of 

crossover are possible. They are (a) single-point crossover, where the fragment in the 

terminal position is cut and connected to the similar terminal position from another 

molecule,  and (b) multipoint-crossover which involves the excision of an internal portion 

of a molecule and insertion into a molecule with a similar region removed. A 

diagrammatic representation of one-point and two-point crossover is presented in Figures 

9.7 and 9.8, respectively. Both methods begin with the random selection of crossover 
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type, followed by the selection of a random pair of distinct parents from the previous 

generation.  

In later phases of evolution, adaptively changing the crossover rate might be beneficial 

(higher crossover rates in early phases and a lower rate at the end of the genetic 

algorithm), to keep the fitter individuals intact. Sometimes, using several different types 

of crossover at different stages of evolution might be beneficial. This so-called 

“knowledge-augmented” crossover operation constructs offspring from the parents by 

making use of domain knowledge related to a given problem. 

In the current work, the molecules can only undergo only the simple one-point and two-

point crossover operations; each of these operations occurs with a probability of 0.25 for 

a pair of selected molecules. 

Mutation: In CAMD algorithms, mutation is an important operator, which performs local 

search around a molecular structure. The mutation operator has to be implemented 

carefully when dealing with chemical systems, due to the constraints imposed by the 

valency rules and the requirement to keep all the atoms in a molecule connected. The 

mutation operator applied is usually selected at random. In the current work, eight 

different mutation operations are performed (Table 9.4). These operators are similar to 

those used by Lameijer et al. [25]. The probability of a mutation operation for a selected 

molecule is 0.5, and the different mutation operations have uniform probabilities of being 

selected. Further, for mutations that involve adding or inserting a new atom into the 

molecule, the probabilities of the new atom being a certain type are tabulated in Tables 

9.5 and 9.6. In addition, the mutation operation is not carried out if the selected molecule 

does not meet the requirements for the particular mutation operation. For example, if a 
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molecule without any rings is considered for the ‘break-ring’ mutation operation, the 

operation is not performed, and the algorithm returns to selecting another molecule and 

another genetic operator.  

The different mutation operations are described briefly as follows: 

1. Add Atom: An atom in the molecule whose implicit valence is not satisfied is picked 

randomly, and one of the ‘new’ atoms from Table 9.5 is bonded to it using a single 

bond. The second column in the table lists the probabilities of selection for the 

corresponding ‘new’ atoms. 

2. Insert Atom: An atom in the molecule whose implicit valence is not satisfied is picked 

randomly, and one of the ‘new’ atoms from Table 9.6 is bonded to it using a single 

bond. The second column in the table lists the probabilities of selection for the 

corresponding ‘new’ atoms. The current algorithm cannot insert atoms in a ring. 

3. Delete Atom: An atom in the molecule that is bonded to only one other non-hydrogen 

atom (through a single bond) in the molecule is deleted. 

4. Uninsert Atom: An atom in the molecule that is bonded to exactly two other non-

hydrogen atoms in the molecule is deleted. A single bond is now created between the 

two neighboring non-hydrogen atoms. 

5. Increase Bond-Order: Two neighboring atoms in a molecule, whose implicit valence 

is not satisfied, are selected and an additional bond is created between them (a single 

bond is updated to a double bond, and a double bond is updated to a triple bond). 

6. Decrease Bond-Order: Two neighboring atoms in a molecule, whose implicit valence 

is not satisfied, are selected and the bond-order is decreased by one (a double bond is 

updated to a single bond, and a triple bond is updated to a double bond). Create Ring: 
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Similar to increase bond-order operation, but operates between two unconnected 

atoms in the molecule. A single bond is created between two randomly selected 

unconnected atoms. 

7. Break Ring: A single bond in the molecule that is inside a ring is chosen and deleted. 

9.3.6 Selection: In each generation of a GA, some individuals are selected to the mating 

pool, where these individuals exchange genetic material and produce offspring that 

comprise the next generation population. A “good” mating pool of individuals can be 

ensured by employing an effective selection strategy, which enforces a high selective 

pressure leading to the selection of the best individuals in the population and 

consequently, to faster convergence of the algorithm. However, while a high selection 

pressure may lead to premature convergence to sub-optimal solutions, low selection 

pressure leads to an increase in population diversity, but slower convergence. Therefore, 

an effective selection strategy must strike a balance between convergence speed and 

diversity.  

Selection strategies commonly include proportionate-based selection and ordinal-based 

selection [26]. In proportionate-based selection, the individuals are selected based on 

their fitness values when compared to other individuals in the population. Examples 

include proportionate selection [27] and stochastic universal sampling [28]. In ordinal-

based selection, the individuals are selected based on their relative fitness ranking with 

respect to other individuals and not on the basis of their absolute fitness values. Common 

examples of ordinal-based selection strategies are tournament selection [29] and linear 

ranking [28]. Ordinal-based strategies are usually preferred over proportionate-based 
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strategies for many reasons, including stochastic sampling errors and scaling problems 

associated with the latter methods [26].  

Tournament selection was chosen as the selection strategy in the current work, because of 

its advantages over proportionate-based selection and simplicity of implementation. In 

tournament selection, a specified number of parents, known as the tournament size, are 

chosen in each generation and are allowed to enter a competition. The winner is decided 

based on the fitness values of the individuals. The process is repeated until the desired 

number of offspring molecules has been generated. This method is useful if the 

population has some individuals with high fitness, and it biases the selection toward the 

above-average individuals while at the same time not allowing the super-fit individuals to 

dominate the search. This differs from other selection schemes in that the selection 

probability is fairly static; therefore, no update of selection probabilities is required. 

Binary tournament selection, where only two individuals compete in each tournament, 

was implemented in the current algorithm.  

9.3.7. Property Prediction: A typical CAMD algorithm utilizes two key components, 

which are a search method for generating candidate molecules, and models to predict the 

pertinent physiochemical properties of the generated candidate molecules. Property 

predictions for the generated molecules are usually done using group-contribution 

methods, equation-of-state approaches and QSPR models. The present state of CAMD is 

heavily reliant on fragment-based QSPR models for property predictions. This leads to 

inaccurate predictions when the generated structures have fragments that are not included 

in the training phase of the models. Models based on complete 3D information of 

molecules do not suffer from this problem and can be used to predict properties for 
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unknown structures with reasonable accuracy. Further, a majority of the QSPR efforts in 

the literature are based on linear models, which can fail when a strong non-linear 

relationship exists between the target property and molecular structure. In this work, a 

novel non-linear QSPR modeling methodology was developed and applied to predict the 

various molecular properties for the CAMD algorithm. 

9.4. Applications 

9.4.1. Chemical Penetration Enhancers for Transdermal Delivery of Insulin: 

Traditional insulin delivery techniques, such as intravenous administration, are often 

associated with problems relating to over- and under-dosing, interactions with the harsh 

gastro-intestinal environment and/or the production of toxic by-products through 

metabolism in the liver. Recently, transdermal drug delivery (TDD) has gained popularity 

due to its ability to overcome most of the above problems with conventional delivery 

techniques.  

Human skin is considered to be one of the most efficient natural polymers and serves as a 

barrier to the transport of chemicals both in and out of the human body [30, 31]. Each of 

the different layers of the skin offers a varying resistance to permeation [32, 33], and for 

large hydrophilic molecules like insulin, this resistance is significantly higher. Several 

physical and chemical alternatives are currently being investigated for possible 

improvement of TDD of insulin [34] and other drugs. However, the economic viability 

and technical feasibility of using chemicals as penetration enhancers (CPEs) makes them 

the most attractive option [35].  

Problem Formulation: Only a few knowledge systems that discuss problem formulation 

for novel drug design exist. Lipinski’s ‘rule of 5’ is one such expert system that predicts 
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the solubility and permeability of the drug molecules based on four target properties [36], 

which are the molecular weight, count of hydrogen bond donors, count of hydrogen bond 

acceptors and octanol/water partition coefficient (log Kow). Since our target is the 

identification of novel potential CPEs, extensive knowledge of the properties of the CPEs 

and their corresponding functionalities is needed. The target molecules should be able to 

enhance the permeation of a selected drug through the skin without causing any harmful 

side-effects. After thorough analysis of the currently available CPEs and their properties, 

Golla et al. [37] [38] have identified the following property constraints as significant for 

transdermal drug delivery. This is a subjective list based on knowledge acquired from the 

open literature and our previous experience with CPEs:  

1. Molecular weight: Molecules with low molecular weights easily penetrate the skin 

due to their small size. Hence, an upper limit of 500 was imposed on the molecular 

weight of potential CPEs [36, 39-41].  

2. Octanol/water partition coefficient (Kow): Drugs with very low or high partition 

coefficient fail to reach systemic circulation [36, 40, 41]. Several ranges of log Kow 

values have been proposed in the literature for effective permeation enhancement. In 

this work, molecules with log Kow values in the range of 1-3 were accepted and 

considered to indicate good permeation enhancement [39]. 

3. Melting point: Molecules with high melting points, due to their low solubility both in 

water and fat, are ineffective in transdermal drug delivery (TDD) [40], and only 

molecules with melting points less than 200°C were considered as good CPEs [39]. 

4. Skin sensitization: The CPE should not cause any skin irritation or sensitization upon 

application [39]. All the newly generated molecules are scored using three 
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independent skin sensitization QSPR models, based on the Federal Institute for 

Health Protection of Consumers and Veterinary Medicine (BgVV) database, the 

guinea pig maximization test (GPMT) database and the local lymph node assay 

(LLNA) database.  

5. Number of hydrogen donor groups: The sum of the hydrogen atoms linked to oxygen 

and nitrogen atoms in the molecule determines the total number of hydrogen-bond 

donor groups in a molecule. The permeability across the lipid bi-layer has been 

identified to be significantly lower for drugs with an excessive number of these 

groups [36, 39]. Hence, a hydrogen-bond donor number upper limit of five was 

specified for acceptance of a molecule as a CPE. 

6. Number of hydrogen acceptor groups: The total number of nitrogen, oxygen and 

fluorine atoms in the molecule (excluding nitrogen atoms with a formal positive 

charge, higher oxidation states and pyrrolyl forms) determines the total number of 

hydrogen-bond acceptor groups in a molecule. Presence of too many acceptor groups 

has been identified as a hindrance to the permeability across the lipid bi-layer [36]; 

therefore, an upper limit of 10 was used for the hydrogen-bond acceptor number. 

In addition to the above constraints, two more constraints are imposed on the current 

design algorithm, based on experimental measurements of the reduction in skin resistance 

and the enhancement of insulin permeation in the presence of more than 100 different 

compounds: 

7. Combined number of hydrogen donors and acceptors: All the compounds that have 

been proven experimentally to enhance the permeation of insulin had at least one 

hydrogen-bond donor or acceptor group. The hydrogen bonding capacity of some 
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compounds is known to temporarily disrupt the structure of the skin and thereby 

enhance the permeation of the drug molecules [42, 43]. Therefore, the potential CPEs 

are constrained to have a minimum of one hydrogen donor or acceptor.  

8. Permeability coefficient of the CPE: The CPEs that enhanced insulin permeation had 

a permeability coefficient (Log Kp) of greater than -2.5. This suggests that the higher 

permeability allows the CPEs to permeate into the inner layers of the skin easily, 

which is essential for the CPEs to ultimately disrupt the internal structure of the skin 

through hydrogen bonding. Therefore, only those CPEs with a permeability 

coefficient (Log Kp) greater than -2.5 were preferred.  

In addition to the above constraints, the potential CPE has to be a stable molecule at room 

temperature and atmospheric pressure; thus, the following constraint was added to the 

design algorithm to account for thermodynamic stability, where Gibbs energy of 

formation was included to quantify the stability of the designed molecules: 

9. Standard Gibbs free energy of formation: The standard Gibbs free energy of 

formation for any molecule has to be lower than zero for stability at room temperature 

and pressure. The lower the Gibbs free energy, the more stable the molecule is 

relative to its elements. Therefore, only compounds with negative Gibbs free energy 

in reference to their elements were preferred in the algorithm.  

Initial Population: In earlier CPE design work, Golla et al. [37, 38] compiled an 

Oklahoma State University (OSU) CPE database composed of over 400 CPE molecules 

from diverse chemical classes such as fatty alcohols, fatty acids, fatty acid esters, fatty 

alcohol ethers, alkanones, sulfoxides, biologics, enzymes, amines, amides, complexing 

agents, macrocyclics, classical surfactants, pyrrolidones, ionic compounds, solvents and 
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azone-related compounds. One hundred CPEs from this list were randomly selected and 

used as the initial population in the current design algorithm. 

Property Constraints and Fitness Function: The property constraints that need to be 

satisfied for a compound to be an insulin CPE were described previously. Table 9.7 lists 

the property constraints and the fitness function weights used in the CPE design 

algorithm, along with the mean average error (MAE) associated with the QSPR models 

for property prediction when applicable. Some of these properties were calculated using 

DRAGON [44] software, while other properties were estimated using QSPR models 

developed by the Molecular Design Group at OSU. The constraints were adjusted to 

account for the model prediction uncertainties when applicable. The fitness contribution 

of each constraint is calculated using Equation 9.5 and varies between 0 and 0.5, where a 

value of 0 implies that the constraint has been satisfied. This fitness contribution of each 

constraint is then multiplied by the particular fitness weight for that constraint, and the 

resulting values for all constraints are summed to give the total fitness function value, as 

shown in Equation 9.6. For the CPE design case, a penalty of magnitude 5 was further 

added to the total fitness function if the molecule has no hydrogen-bond donors or 

acceptors. Therefore, the total fitness function was now modified as follows: 
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where,  i is the weight term associated with the ith constraint, Fi is the fitness 

contribution of the ith constraint, n is the total number of constraints in the problem and 



267 
 

nHDon and nHAcc denote the number of hydrogen-bond donors and acceptors in the 

molecule, respectively.   

Results: A total of 62 iterations of the design algorithm were completed, during which 

6,200 molecules were generated. The molecular properties listed in Table 9.7 were 

computed for these molecules, and only 627 of the original 6,200 molecules satisfied the 

constraints listed in Table 9.7. A self-organizing map was developed to identify clusters 

among the best 627 molecules based on functional group descriptors calculated using 

DRAGON [45]. Five major clusters composed of at least 15 molecules were identified. 

Table 9.8 lists the structure of an example compound from each cluster accompanied with 

the relevant molecular properties. 

The results from the current CAMD approach for designing CPEs can be compared with 

the results obtained by Golla et al. [38]. Specifically, the predicted Kp values of the 

majority of the CPEs identified in this work are comparable to the compounds that were 

identified by Golla et al. [38] and Godavarthy et al. [14], and were experimentally  tested 

at OSU to be good enhancers. However, the current CAMD approach has several 

advantages over the methodology adopted by Golla et al. [38] and Godavarthy et al. [14]. 

First, the QSPR models employed in the current approach are more accurate, and second, 

the entire CAMD algorithm has been automated to minimize human intervention, and 

therefore the implementation of a large number of generations was possible. The design 

approaches by Golla et al. [38] and Godavarthy et al. [14] were not automated and 

therefore, the execution of the algorithm was limited to less than ten generations. Also, 

the inclusion of the Gibbs free energy of formation models in the current design 
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algorithm ensures that only stable molecules are identified by the algorithm. Such 

stability models were not included in the previous work by our group [14, 38]. 

9.4.2. Solvents for Extractive Distillation of Cyclohexane and Benzene: In 

conventional distillation, chemical mixtures are separated into constituent components to 

yield products with greater commercial value. However, mixtures frequently contain 

molecular species that are similar in their physical properties and behavior ("close-

boiling" mixtures), which makes their separation by conventional distillation extremely 

difficult and cost-prohibitive. One well-established method to deal with such situations is 

to use extractive distillation (ED), where an additional component (or components) is 

introduced to alter the behavior of the mixture in such a way that the original components 

become easier to separate. The ability of a given component or solvent to improve the 

separability of the components in the original mixture depends on the molecular 

interactions between the original species and the solvent added. From a process view 

point, the technical and economic feasibility of ED is, to a large degree, decided by the 

solvent used. In addition, some of the economic benefits and motivations for designing 

new solvents are as follows, where the statistics are projections from Phillips Petroleum 

[46, 47]:  

1. A successful new solvent can provide multi-million dollars of annual sales  

2. Efficiencies of current processes can be increased 

3. Capital costs for new processes can be decreased 

4. Recovery of specialty chemicals is profitable (~$40/gallon for these chemicals 

compared to ~$1.98/gallon for gasoline)  
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5. The replacement of a currently used solvent in an existing petrochemical process with 

an improved solvent could result in substantial operating cost savings.  

In this work, the solvent design methodology is exemplified using the 

cyclohexane/benzene system. The methodology, after some minor changes, can be 

extended to the design of solvents for any system. 

Problem Formulation: The design of solvents for extractive distillation involves 

consideration of various properties, among which three are of major significance [48]: 

1. Selectivity: The manner in which an extractive solvent affects the separability of 

close-boiling substances may be explained in terms of its relative volatility. The 

relative volatility, αij of a mixture represents a measure of the ease with which two 

chemicals (species i and j, species i being the more volatile species) may be 

separated:  

α7v � �y/x�7�y/x�v (9.8) 

where, y and x are the mole fractions of the component in the vapor and liquid 

phases, respectively. The higher the value of αij, the easier the substances are to 

separate by distillation. The value of αij can be expressed in thermodynamic terms as 

follows: 

α7v � yp7° pv°z {yγ7 γv⁄ { (9.9) 

where, p° is the vapor pressure and γ is the activity coefficient. For typical close-

boiling species, both the vapor pressures and the activity coefficients of the two 
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components are very similar, leading to a relative volatility near unity and, thus, a 

difficult separation. However, by introducing a suitable solvent, which has a higher 

affinity for one component, the activity coefficient ratio (γi / γj) can be changed 

significantly and separation of the components becomes easier. The ratio of the 

activity coefficients at infinite dilution (selectivity) of species i and j is given by 

S7v � γ7K γvK}  (9.10) 

Here, γ7K is the infinite-dilution activity coefficient (IDAC) of a species i, which is 

defined as 

γ7K � limLMNO γ7 (9.11) 

Equation 9.11 may be written in a similar manner for species j. A higher selectivity 

leads to a larger relative volatility, a smaller reflux ratio and lower capital costs in a 

distillation column [49]. For these reasons, the solvent with the highest selectivity is 

always considered the most promising candidate for a given separation process [50]. 

In this work, a lower limit of 4 was imposed on the selectivity, and molecules with 

selectivity lower than this value were considered unfit.  

2. Normal boiling point: The normal boiling point (NBP) of the solvent must be 

significantly higher than the mixture components to avoid possible formation of a 

solute-solvent azeotrope and to ensure easy recovery of the solvent. A minimum 

difference of 25-50 K is usually desired [11]. Therefore, a solvent for the cyclohexane 
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(NBP = 354 K)/benzene (NBP=353 K) system must have a NBP value of at least 380 

K (107°C).   

3. Melting point: Melting point (MP) of the solvent is significant in order to avoid any 

crystallization problems at ambient temperature. The general tendency in industry has 

been to use solvents that are liquids at room temperature. Therefore, the potential 

solvents must have a MP value lower than 300 K (27°C). 

In addition to the above constraints, a potential solvent has to be a stable molecule at 

room temperature and atmospheric pressure. The following constraint was added to the 

design algorithm to account for thermodynamic stability: 

4. Standard Gibbs free energy of formation: The standard Gibbs free energy of 

formation for any molecule has to be lower than zero for it to be stable at room 

temperature and pressure. The lower the Gibbs free energy, the more stable the 

molecule is relative to its elements. 

Further, to avoid the identification of complex molecules that might be difficult to 

synthesize, a limit is placed on the maximum molecular weight of the solvent. 

5. Molecular weight: Solvent molecules with molecular weight lower than 150 g/mol 

are preferred. This number was chosen after carefully analyzing the reported solvent 

molecules in the literature. 

Other considerations such as cost, safety, availability and environmental toxicity of 

candidate solvents are also important, but they have not been considered in this work. As 

an alternative, these constraints could be imposed on the final population of the best 

structures identified by the design algorithm, to further narrow the number of potential 

solvents. 
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Initial Population: Solvent molecules for which the γ∞
 values of cyclohexane or benzene 

are available from the DECHEMA chemistry data series were extracted. A hundred 

molecules from this extracted database were selected randomly and used as the initial 

population for the solvent design algorithm. The initial database was made up of diverse 

chemical classes such as fatty alcohols, fatty acids, fatty acid esters, fatty alcohol ethers, 

alkanones, sulfoxides, amines, amides, pyrrolidones, pyridines, classical surfactants, 

chlorides, bromides, nitriles, and azone-related compounds.  

Property Constraints and Fitness Function: The property constraints selected for the 

design of a suitable cyclohexane/benzene solvent were described previously. Table 9.9 

lists the property constraints and the fitness function weights used in the solvent design 

algorithm accompanied with the mean average error (MAE) associated with the QSPR 

models for property prediction when applicable. Some of these properties were calculated 

using DRAGON [44] software, while other properties were estimated using QSPR 

models developed by the Molecular Design Group at OSU. The constraints were adjusted 

to account for the model prediction uncertainties when applicable. The fitness 

contribution of each constraint is calculated using Equation 9.5, and varies between 0 and 

0.5, where a value of 0 implies that the constraint has been satisfied. The fitness 

contribution of each constraint is then multiplied by the particular fitness weight for that 

constraint, and the resulting values for all constraints are summed to provide the total 

fitness function value as shown in Equation 9.6. All constraints are in the form of 

Equation 9.5, except for the selectivity constraint, which is in the form of Equation 9.3. 

Therefore, molecules that have the highest selectivity values are preferred over other 

molecules that have slightly lower selectivity values but still meet the selectivity 
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constraint. This sometimes leads to the generation of molecules that have very high 

selectivity values but are unstable (positive Gibbs energy of formation values). To avoid 

this, a higher weight was given to the Gibbs energy of formation in the solvent design 

case in comparison to the CPE design case.  

Results: A total of 63 iterations of the design algorithm were completed, during which 

6,300 molecules were generated. The molecular properties listed in Table 9.9 were 

computed for these molecules, and only 407 of the original 6,300 molecules satisfied all 

the constraints listed in Table 9.9. A self-organizing map was developed to identify 

clusters among the best 407 molecules based on functional group descriptors calculated 

using DRAGON [45]. Five major clusters composed of at least 40 molecules were 

identified, and Table 9.10 lists the structure of an example compound from each cluster 

along with the relevant molecular properties. 

The results from the current CAMD approach for designing solvents can be compared 

with previous results obtained by our group. In his dissertation work, Godavarthy [6] 

limited his design methodology to search only for nitrogen- and sulphur-containing 

compounds, based on experimental knowledge. In the current CAMD methodology, such 

restrictions were not placed; nevertheless, the majority of the potential solvents that were 

identified are nitrogen- and sulphur-containing compounds. This proves the ability of the 

current CAMD approach to identify the best solvents, starting from random chemical 

structures. Also, the predicted selectivity values of the majority of the solvents identified 

in this work are 2 to 4 times better than the best solvents identified earlier [6]. Further, 

the current CAMD approach has several additional advantages. First, the QSPR models 

employed in the current work are more accurate and were developed using larger data 
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sets. Second, the entire CAMD algorithm has been automated to minimize human 

intervention, and therefore the implementation of a large number of generations was 

possible. In fact, the current automated approach allowed for significantly greater number 

of generations during the execution of the algorithm. Third, the inclusion of the Gibbs 

free energy of formation models in the current design algorithm ensures that only stable 

molecules are identified by the algorithm. Such stability models were not included n the 

earlier work [6]. 

9.4.3. Additional Selection Criteria: At the end of the design algorithm, hundreds of 

potential candidate molecules that have similar fitness function values are identified. 

However, validating all these molecules experimentally is impractical. Instead, additional 

criteria such as ease of synthesis, cost of manufacturing, safety, and toxicity should be 

imposed on the initial list of potential candidate molecules to select the best candidates 

for immediate attention. 

9.4.4. Experimental Validation: As a final validation, the best candidate molecules 

should be experimentally tested for their efficacy. The potential CPEs must be tested in 

vitro for reduction in skin resistance [51] and enhancement of insulin permeation [52]. 

Also, the toxicity potential of the CPEs must be experimentally determined in vitro. The 

CPEs that perform well in the in vitro experiments must then be put through in vivo 

experimentation using mouse/rat models. 

Similarly, the best candidate solvent molecules are experimentally validated. Specifically, 

infinite-dilution activity coefficient measurements must be conducted to validate the 

selectivity of the solvent molecules. This should be followed up by process-simulation 

studies to estimate the cost and other process parameters associated with the utilization of 
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the solvent molecules in the separation process. The final steps of validation must include 

lab-scale and pilot scale studies of the envisioned separation process. 

9.5. Conclusions 

1. A robust algorithm combining genetic algorithms and QSPR techniques was 

developed for the design of novel molecules with desired properties. 

2. The current algorithm is the only completely automated design tool in the literature 

that is based on accurate 3-dimensional structure-property relationship models. The 

algorithm was applied to two separate case studies: identification of new CPEs for 

enhancing insulin transdermal delivery and identification of solvents for the 

extractive distillation of cyclohexane /benzene mixtures.  

3. A total of 627 molecules that meet all the specifications of a good insulin CPE have 

been identified. The identified molecules are categorized into five different clusters 

based on their functional groups. 

4. A total of 407 molecules that meet all the specifications of a good 

cyclohexane/benzene solvent have been identified. The identified molecules are 

categorized into five different clusters based on their functional groups. 

5. Further, the algorithm in this work is generalized and so could be adapted to any 

design problem, where there exists a need for new molecules. 
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Figure 9.1:  The various stages in CAMD 
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Figure 9.2:  Flow-diagram for the design algorithm used in this work 
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Figure 9.3:  The influence of fitness decay on the fitness values 
calculated using Equation 9.3  
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Table 9.1: Atomic specifications for SMILES 

 

 

 

 

 

 

Table 9.2: Bond specifications for SMILES 

 

 

 

 

 

 

Table 9.3: Branching specifications for SMILES 

Chemical Name SMILES Structure 

Methane C CH4 

Pyridine n1ccccc1 
N
 

Pyrrole c1c[nH]cc1 
N
H  

Chemical Name SMILES Structure 

Ethane CC H3C CH3  

Acetaldehyde CC=O 
CH3

C

O

H

 
Hydrogen 
Cyanide 

C#N N  

Benzene c1:c:c:c:c:c1 
 

Chemical Name SMILES Structure 

Iso Butyric Acid CC(C)C(=O)O 

O

OH

 

Fluroform C(F)(F)F 

F

F

F

 

Heptanoic Acid CCCC(C(=O)O)CCC 

O

HO  
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Table 9.4: The different mutation operations used in this work 

Mutation 
Operator 

Initial Structure  Final Structure  
Initial 
SMILES  

Final 
SMILES  

Add 
Atom 

  

c1ccccc1 
c1c(O)cccc
1 

Insert 
Atom   

CCCCC CCCCNC 

Delete 
Atom 

  

c1c(O)cccc
1 

c1ccccc1 

Uninsert 
Atom 

 
 

C1CCNCC
1 

C1CCCC1 

Increase 
Bond-
Order 

  

C1CCCC1 
C1CCC=C
1 

Decrease 
Bond-
Order 

  

C1CCC=C
1 

C1CCCC1 

Create 
Ring  

 

CCCCC C1CCCC1 

Break 
Ring 

 
 C1CCCC1 CCCCC 
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Table 9.5: The different atoms that can be added to 
 a molecule, with the probability of selection  

   Atom Probability of Selection 

B 0.01 

Br  0.04 

C 0.36 

Cl 0.05 

N 0.15 

O 0.20 

P 0.075 

S 0.075 

F 0.04 

I  0.01 

 
 
 
 
 
 

Table 9.6: The different atoms that can be inserted  
in a molecule, with the probability of selection  

Atom Probability of Selection 

B 0.01 

C 0.39 

N 0.2 

O 0.2 

P 0.1 

S 0.1 
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Table 9.7: The different property constraints and fitness weights used in the 
CPE design algorithm and, when applicable, the mean average error (MAE) 

values for QSPR models used to predict the property values  

Property Constraint 
Calculated 

using 
DRAGON 

 MAE  
Fitness 
Weight 

Molecular weight 
(MW)  

MW < 500 
g/mol 

Yes N/A 10 

Octanol-water 
partition coeff. (Log 
Kow) 

0.5 < Log Kow 
< 3.5 

Yes  0.5 10 

Melting Point (MP)  MP < 250°C No 34°C 15 

Federal Institute for 
Health Protection of 
Consumers and 
Veterinary Medicine 
(BgVV) 
 

BgVV < 0.5 No 0.45 10 

Guinea pig 
maximization test 
(GPMT)  

GPMT < 0.33 No 0.30 10 

Local lymph node 
assay (LLNA) 

LLNA < 0.25 No 0.25 10 

Number of hydrogen 
donors (nHDon) 

nHDon < 5 Yes N/A 5 

Number of hydrogen 
acceptors (nHAcc) 

nHAcc < 10 Yes N/A 5 

Skin permeability 
coefficient  (Log Kp) 

Log Kp > -3 No 0.5 10 

Gibbs free energy of 
formation (∆Gf) 

∆Gf < -20 
kJ/mol 

No 16 kJ/mol 15 
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Table 9.8: The properties of an example CPE from each cluster 

Cluste
r # 

Log 
(KP

) 

BgV
V 

GPM
T 

LLN
A 

Lo
g 

K ow 

MW 
(g/mol

) 

nHDo
n 

nHAc
c 

∆Gf 
(KJ/mol

) 

MP 
(°C
) 

1 -1.4 0.4 0.2 0.2 3.4 144 1 1 -115 -67 

2 -1.5 0.4 0.1 0.2 2.4 148 1 2 -307 -20 

3 -1.5 0.4 0.2 0.2 3.2 158 1 2 -312 -18 

4 -1.7 0.5 0.2 0.2 3.0 156 1 1 -42 -6.0 

5 -1.8 0.3 0.2 0.2 3.2 158 1 1 -118 -8.0 
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Table 9.9: The different property constraints and fitness weights used in the 
solvent design algorithm, and when applicable, the mean average error (MAE) 

values for QSPR models used to predict the property values  

Property Constraint 
Calculated 

using 
DRAGON 

 MAE  
Fitness 
Weight 

Selectivity (S) S > 5 No 0.9 25 

Normal boiling point 
(NBP) 

NBP > 135°C No 28°C 15 

Melting point (MP) MP < -14°C No 34°C 15 

Gibbs free energy of 
formation (∆Gf) 

∆Gf < -20 
kJ/mol 

No 16 kJ/mol 35 

Molecular weight 
(MW) 

MW < 150 
g/mol 

Yes N/A 10 

 

Table 9.10: The properties of an example solvent from each cluster 

Cluster # Selectivity NBP (°C) MP (°C) ∆Gf 
(KJ/mol) 

MW 
(g/mol) 

1 38 235 -31 -292 137.22 

2 26 271 -21 -317 112.01 

3 15 245 -27 -376 148.25 

4 24 159 -30 -233 76.05 

5 46 200 -41 -291 137.13 



286 
 

REFERENCES  

1. Venkatasubramanian, V., K. Chan, and J.M. Caruthers, Computer-Aided 
Molecular Design Using Genetic Algorithms. Computers and Chemical 
Engineering, 1994. 18(9): p. 833–844. 

2. Sundaram, A. and V. Venkatasubramanian, Parametric Sensitivity and Search-
Space Characterization Studies of Genetic Algorithms for Computer-Aided 
Polymer Design. Journal of Chemical Information and Computer Science, 1998. 
38(6): p. 1177-1191. 

3. Devillers, J., Genetic Algorithms in Molecular Modeling. 1996: Academic press. 

4. Harper, P.M., et al., Computer-Aided Molecular Design with Combined 
Molecular Modeling and Group Contribution. Fluid Phase Equilibria, 1999. 158: 
p. 337-347. 

5. Venkatasubramanian, V., K. Chan, and J.M. Caruthers, Evolutionary Design of 
Molecules with Desired Properties Using the Genetic Algorithm. Journal of 
Chemical Information and Computer Science, 1995. 35: p. 188-195. 

6. Godavarthy, S.S., Design of Improved Solvents for Extractive Distillation. Ph.D. 
Dissertation, School of Chemical Engineering. 2004, Oklahoma State University: 
Stillwater, Oklahoma. 

7. Li, J., CAMD in Modern Drug Discovery. Drug Discovery Today, 1996. 1(8): p. 
311-312. 

8. Nachbar, R.B., Molecular Evolution: A Hierarchical Representation for Chemical 
Topology and Its Automated Manipulation. Proc. of the Third Annual Genetic 
Programming Conference, 1998: p. 246-253. 

9. Leardi, R., Genetic Algorithms in Chemometrics and Chemistry: A Review. 
Journal of Chemometrics, 2001. 15(7): p. 559-569. 

10. Brignole, E.A., S. Bottini, and R. Gani, A Strategy for the Design and Selection of 
Solvents for Separation Processes. Fluid Phase Equilibria, 1986. 29: p. 125-132. 



287 
 

11. Pretel, E.J., et al., Computer-Aided Molecular Design of Solvents for Separation 
Processes. AIChE Journal, 1994. 40(8): p. 1349-1360. 

12. Churi, N. and L.E.K. Achenie, Novel Mathematical Programming Model for 
Computer Aided Molecular Design. Industrial & Engineering Chemistry 
Research, 1996. 35(10): p. 3788-3794. 

13. Ostrovsky, G.M., L.E.K. Achenie, and M. Sinha, On the Solution of Mixed-
Integer Nonlinear Programming Models for Computer Aided Molecular Design. 
Computers & Chemistry, 2002. 26(6): p. 645-660. 

14. Godavarthy, S.S., et al., Design of Improved Permeation Enhancers for 
Transdermal Drug Delivery. Journal of Pharmaceutical Sciences, 2010. 99(1): p. 
563-563. 

15. Song, J. and H.H. Song, Computer-Aided Molecular Design of Environmentally 
Friendly Solvents for Separation Processes. Chemical Engineering & 
Technology, 2008. 31(2): p. 177-187. 

16. Brown, W.M., et al., Designing Novel Polymers with Targeted Properties Using 
the Signature Molecular Descriptor. Journal of Chemical Information and 
Modeling, 2006. 46(2): p. 826-835. 

17. Wong, W. and F. Burkowski, A Constructive Approach for Discovering New 
Drug Leads: Using a Kernel Methodology for the Inverse-QSAR Problem. Journal 
of Cheminformatics, 2009. 1(1): p. 4. 

18. Miyao, T., M. Arakawa, and K. Funatsu, Exhaustive Structure Generation for 
Inverse-QSPR/QSAR. Molecular Informatics, 2010. 29(1-2): p. 111-125. 

19. Korichi, M., et al., Computer-Aided Aroma Design. II. Quantitative Structure-
Odour Relationship. Chemical Engineering and Processing: Process 
Intensification, 2008. 47(11): p. 1912-1925. 

20. Darwin, C., The Origin of Species. Br Med J, 1958. 1(5086): p. 1527-8. 

21. Achenie, L.E.K., R. Gani, and V. Venkatasubramanian, Computer Aided 
Molecular Design: Theory and Practice. 2003: Elsevier. 



288 
 

22. Douguet, D., E. Thoreau, and G. Grassy, A Genetic Algorithm for the Automated 
Generation of Small Organic Molecules: Drug Design Using an Evolutionary 
Algorithm. Journal of Computer-Aided Molecular Design, 2000. 14(5): p. 449-
466. 

23. Venkatasubramanian, V., K. Chan, and J. Caruthers, Evolutionary Design of 
Molecules with Desired Properties Using the Genetic Algorithm. J Chem Inf 
Comput Sci, 1995. 35: p. 188 - 195. 

24. Weininger, D., SMILES, a Chemical Language and Information System. 1. 
Introduction to Methodology and Encoding Rules. Journal of Chemical 
Information and Computer Sciences, 1988. 28(1): p. 31-36. 

25. Lameijer, E.-W., et al., The Molecule Evoluator. An Interactive Evolutionary 
Algorithm for the Design of Drug-Like Molecules. Journal of Chemical 
Information and Modeling, 2006. 46(2): p. 545-552. 

26. Miller, B.L. and D.E. Goldberg, Genetic Algorithms, Selection Schemes, and the 
Varying Effects of Noise. Evolutionary Computation, 1996. 4(2): p. 113-131. 

27. Holland, J.H., Adaptation in Natural and Artificial Systems: An Introductory 
Analysis with Applications to Biology, Control, and Artificial Intelligence. 1992: 
MIT Press. 

28. Baker, J.E., Reducing Bias and Inefficiency in the Selection Algorithm, in 
Proceedings of the Second International Conference on Genetic Algorithms on 
Genetic algorithms and their application. 1987, L. Erlbaum Associates Inc.: 
Cambridge, Massachusetts, United States. p. 14-21. 

29. Goldberg, D.E., Zen and the Art of Genetic Algorithms. International Conference 
on {G}enetic {A}lgorithms '89, 1989: p. 80-85. 

30. Monteiro-Riviere, N.A., A Anatomical Factors Affecting Barrier Function. 
Marzulli and Maibach's Dermatotoxicology, 2008. 

31. Monteiro-Riviere, N.A., Comparative Anatomy, Physiology, and Biochemistry of 
Mammalian Skin. Dermal and Ocular Toxicology: Fundamentals and Methods, 
1991: p. 3–71. 



289 
 

32. Elias, P.M., Epidermal Lipids, Barrier Function, and Desquamation. Journal of 
Investigative Dermatology, 1983. 80: p. 44-49. 

33. Chang, S.K. and J.E. Riviere, Percutaneous Absorption of Parathion in Vitro in 
Porcine Skin: Effects of Dose, Temperature, Humidity, and Perfusate 
Composition on Absorptive Flux. Toxicological Sciences, 1991. 17(3): p. 494-
504. 

34. Rao, V.U. and A.N. Misra, Enhancement of Iontophoretic Permeation of Insulin 
across Human Cadaver Skin. Pharmazie, 1994. 49(7): p. 538-9. 

35. Guy, R.H., Current Status and Future Prospects of Transdermal Drug Delivery. 
Pharmaceutical Research, 1996. 13(12): p. 1765-1769. 

36. Lipinski, C.A., et al., Experimental and Computational Approaches to Estimate 
Solubility and Permeability in Drug Discovery and Development Settings. Adv 
Drug Deliv Rev, 2001. 46(1-3): p. 3-26. 

37. Golla, S., Virtual Design of Chemical Penetration Enhancers. M.S. Vol. 
Oklahoma State University. 2008, Oklahoma State University: United States -- 
Oklahoma. 

38. Golla, S., et al., Virtual Design of Chemical Penetration Enhancers for 
Transdermal Drug Delivery. Chemical Biology & Drug Design, 2011 (Accepted). 

39. Finnin, B.C. and T.M. Morgan, Transdermal Penetration Enhancers: 
Applications, Limitations, and Potential. Journal of Pharmaceutical Sciences, 
1999. 88(10): p. 955-958. 

40. Kumar, R. and A. Philip, Modified Transdermal Technologies: Breaking the 
Barriers of Drug Permeation Via the Skin. Tropical Journal of Pharmaceutical 
Research, 2007. 6(1): p. 633-644. 

41. Brown, L. and R. Langer, Transdermal Delivery of Drugs. Annual Review of 
Medicine, 1988. 39(1): p. 221-229. 

42. Barry, B.W., Mode of Action of Penetration Enhancers in Human Skin. Journal of 
Controlled Release, 1987. 6(1): p. 85-97. 



290 
 

43. Hadgraft, J., et al., Mechanisms of Action of Skin Penetration 
Enhancers/Retarders: Azone and Analogues. International Journal of 
Pharmaceutics, 1996. 141(1-2): p. 17-25. 

44. SRL, T. Dragon for Windows and Linux.   [cited 2010; Available from: 
http://www.talete.mi.it/help/dragon_help/index.html. 

45. Dragon Professional 6. 2010, Talete SRL. 

46. Gasem, K.A., et al., Annual Progress Report: Improved Solvents for Extractive 
Distillation: Infinite-Dilution Activity Coefficient Measurements. 1999, Phillips 
Petroleum Company and the State of Oklahoma. 

47. Schult, C.J., Design of Solvents for Extractive Distillation. PhD. Thesis. 2000, 
Oklahoma State University, Stillwater, Oklahoma. 

48. van Dyk, B. and I. Nieuwoudt, Design of Solvents for Extractive Distillation. 
Industrial & Engineering Chemistry Research, 2000. 39(5): p. 1423-1429. 

49. Momoh, S.O., Assessing the Accuracy of Selectivity as a Basis for Solvent 
Screening in Extractive Distillation Processes. Separation Science and 
Technology, 1991. 26(5): p. 729-742. 

50. Chen, B., et al., Application of CAMD in Separating Hydrocarbons by Extractive 
Distillation. AIChE Journal, 2005. 51(12): p. 3114-3121. 

51. Rachakonda, V., et al., Screening of Chemical Penetration Enhancers for 
Transdermal Drug Delivery Using Electrical Resistance of Skin. Pharmaceutical 
Research, 2008. 25(11): p. 2697-2704. 

52. Yerramsetty, K.M., et al., Effect of Different Enhancers on the Transdermal 
Permeation of Insulin Analog. International Journal of Pharmaceutics, 2010. 
398(1-2): p. 83-92. 

 



VITA 
 

Krishna M. Yerramsetty 
 

Candidate for the Degree of 
 

Doctor of Philosophy 
 
Thesis:    QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP MODELING 

& COMPUTER-AIDED MOLECULAR DESIGN: IMPROVEMENTS & 
APPLICATIONS 

 
 
Major Field:  Chemical Engineering 
 
 
Biographical: 
 

Education: 

Completed the requirements for Bachelor of Engineering (Honors) Degree in 

Chemical Engineering at Birla Institute of Technology and Science, Pilani, 

India in 2005. 

Completed the requirements for Doctor of Philosophy in Chemical Engineering 

at Oklahoma State University, Stillwater, Oklahoma in May, 2012. 

 

Experience:  

Employed by the School of Chemical Engineering, Oklahoma State University 

as a graduate research assistant from January, 2007 to December, 2011 

 

Professional Memberships:   

American Institute of Chemical Engineers 

 
 
 

 
 



 
ADVISER’S APPROVAL:   Dr. Khaled A. M. Gasem 
 
 
 

 

Name: Krishna M. Yerramsetty                                                Date of Degree: May, 2012 
 
Institution: Oklahoma State University                      Location: Stillwater, Oklahoma 
 
Title of Study: QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP    

MODELING & COMPUTER-AIDED MOLECULAR DESIGN:  
IMPROVEMENTS & APPLICATIONS 

 
Pages in Study: 290                            Candidate for the Degree of Doctor of Philosophy 

Major Field: Chemical Engineering 
 
Scope and Method of Study:  The objective of this work was to develop an integrated 
capability to design molecules with desired properties. An automated robust genetic 
algorithm (GA) module has been developed to facilitate the rapid design of new 
molecules. The generated molecules were scored for the relevant thermophysical 
properties using non-linear quantitative structure-property-relationship (QSPR) models. 
The descriptor reduction and model development for the QSPR models were 
implemented using evolutionary algorithms (EA) and artificial neural networks (ANNs). 
QSPR models for octanol-water partition coefficients (Kow), melting points (MP), normal 
boiling points (NBP), Gibbs energy of formation, universal quasi-chemical (UNIQUAC) 
model parameters, and infinite-dilution activity coefficients of cyclohexane and benzene 
in various organic solvents were developed in this work. To validate the current design 
methodology, new chemical penetration enhancers (CPEs) for transdermal insulin 
delivery and new solvents for extractive distillation of the cyclohexane + benzene system 
were designed. 
 
Findings and Conclusions:  A robust general framework for designing new molecules and 
an improved framework for building accurate models for thermophysical properties have 
been developed. In general, the use of non-linear QSPR models developed in this work 
provided predictions better than or as good as existing literature models. In particular, the 
current models for NBP, Gibbs energy of formation, UNIQUAC model parameters, and 
infinite-dilution activity coefficients have lower errors on external test sets than the 
literature models. The current models for MP and Kow are comparable with the best 
models in the literature. The GA-based design framework implemented in this work 
successfully identified new CPEs for transdermal delivery of insulin, with permeability 
values comparable to the best CPEs in the literature. Also, new solvents for extractive 
distillation of cyclohexane/benzene with selectivities two to four times that of the existing 
solvents were identified. These two case studies validate the ability of the current design 
framework to identify new molecules with desired target properties. 
 


