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PREFACE

The objective of this work was to develop an integrated capabilitesgn molecules
with desired properties. An automated robust genetic algorithm (@#&ule has been
developed to facilitate the rapid design of new molecules. The ¢getermlecules were
scored for the relevant thermophysical properties using non-lijusantitative structure-
property relationship (QSPR) models. The descriptor reduction and medsEbpment
for the QSPR models were implemented using evolutionary algaritfied) and
artificial neural networks (ANNs). QSPR models for octanol-wptetition coefficients
(Kow), melting points (MP), normal boiling points (NBP), Gibbs energy ofné&iion,
universal quasi-chemical (UNIQUAC) model parameters, and iefohilution activity
coefficients of cyclohexane and benzene in various organic solvergsdeeeloped in
this work. To validate the current design methodology, new chemicaltratoe
enhancers (CPEs) for transdermal insulin delivery and new sol¥entextractive

distillation of the cyclohexane + benzene system were designed.

In general, the use of non-linear QSPR models developed in this pvoxkded
predictions better than or as good as existing literature mddepgrticular, the current
models for NBP, Gibbs energy of formation, UNIQUAC model pararsggand infinite-
dilution activity coefficients have lower errors on externat tets than the literature
models. The current models for MP angl,kare comparable with the best models in the

literature. The GA-based design framework implemented in tlusk veuccessfully



identified new CPEs for transdermal delivery of insulin, with pedoility values
comparable to the best CPEs in the literature. Also, new solventextractive
distillation of cyclohexane/benzene with selectivities two to four timdsfithe existing
solvents were identified. These two case studies validate tlity abthe current design

framework to identify new molecules with desired target properties.
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CHAPTER 1

INTRODUCTION
1.1. Rationale
The demand for newly designed molecules that enhance existingspes and satisfy
more stringent operating requirements in technology has been ing.edswever, the
rational design of molecules with desired properties challengeseeng attempting to
meet the needs of various industries, including pharmaceuticals, psJymer
petrochemicals, and construction [1-#he traditional approach of identifying molecules
with desired properties involves testing thousands of moleculesdor chemical and
physical properties, which is an expensive and laborious undertakergeHrational
design techniques, such as computer-aided molecular design (CAM2)fduad wide
application in recent years [4, 5]. CAMD methods have been empsueéssfully in a
wide range of applications, including solvent design/selection [8]gdef chloro-fluro-
carbon (CFC) substitutes, alternative process fluids design, polgestgn [1], drug
design [7], and design for novel molecules with superior propg¢&jes typical CAMD
algorithm utilizes two key components, (a) a search method forajamge candidate
molecules, and (b) models to predict the pertinent physiochemproglerties of the
generated candidate molecules. Search methods involve mathenpatigehmming,

heuristic search approaches or evolutionary approaches. Evolutippaoaehes are fast



becoming the preferred search algorithms because of theiokapeglication. However,
in most studies, the search space is limited to a certaityfammolecular functional
groups. This leads to a reduction in computational time at the céatiing to discover
better molecules that may be present outside the search spasfoiEehere is a need

for developing generalized molecular search algorithms for CAMD.

Property predictions for the generated molecules are usually dang gsoup-
contribution methods, equation-of-state approaches, and quantitative stprciperty
relationship (QSPR) models. The present state of CAMD is lyemaliint on fragment-
based QSPR models for property predictions. This leads to inacpuedietions when
the generated structures have fragments that are not includedtiaitieg phase of the
models. Models based on molecular descriptors that provide comptiteeBsional
(3D) information of molecules do not suffer from this disadvantagecandbe used to
predict properties for structures with fragments that have not been idctuttes training
phase. In addition, majority of the QSPR efforts in the literatuee based on linear
models, which can fail when a strong nonlinear relationship existsebetihe target
property and molecular structure. However, techniques for buildingoleslizonlinear
QSPR models using only relevant molecular descriptors are noestalblished in the
literature and require further development. Specifically, our aeslysdicate that: (a)
nonlinear QSPR models based on 3D molecular information will outperfioear
fragment-based models, and (b) generalized evolutionary sestuhiques for CAMD
that employ nonlinear 3D QSPR models for property prediction tiedwbtter design of

molecules.



Accurate QSPR models are important not only for property prediciio@AMD but
also for any process design in general, where relialpgori property predictions are
sought to avoid experimentation. As such, the present work placesesgphasis on
building accurate non-linear QSPR models and developing a general&stD C
framework, which incorporates non-linear QSPR models based on 3Bcuteol
descriptors as the prediction platform. Therefore, the focus girdsent work is to: (a)
improve the existing QSPR methodology by developing accurate non-inedels
based on 3D molecular information, and (b) develop a generalized CA&iBodology
for designing molecules with desired properties. To exemplify défficeacy of the
proposed methodology, relevant properties such as octanol-wateropactefficient
(Kow), boiling point, melting point, infinite-dilution activity coefficiesjt and solvent
selectivities are modeled using 3D non-linear QSPR, afterchwimew chemical
penetration enhancers (CPEs) for improved transdermal insulin gelitgeand new

solvents for extractive distillation are designed using the CAMD framewo

1.2. Goals and Objectives

The two primary goals of this work are to develop robust non-liBBaQSPR property

models and generalized CAMD methodologies for designing new madetaugeted for

specific applications. Figure 1.1 describes the overall stratetheqiresent work, which
is carried out in four stages. In the first stage, QSPR madelbuilt using evolutionary
algorithms and artificial neural networks (ANNs) to addresshhgr limitations of the

existing methods. The second stage involves the application of theseved QSPR

methods for predicting 4, infinite-dilution activity coefficients, boiling points, melting

points and solvent selectivities. The third stage focuses on imprthengpmputer-aided



molecular design (CAMD) methodology. In the fourth stage, the impr@AdD that
incorporates predictions from the third stage are applied for thgndesnew chemical
penetration enhancers (CPEs) for enhancement of insulin permeatiaghtskin and

also for designing new solvents for extractive distillation.
Following are the specific objectives undertaken to achieve the goals ddbach:

1. Improve our existing QSPR methodology by developing evolutionary algaritbm
selecting the best descriptors for non-linear modeling from ge laet of initial
descriptors.

2. Apply the improved QSPR methodology to devel@ priori predictive
thermophysical property models, including,Kinfinite-dilution activity coefficients,
boiling points, melting points and solvent selectivities.

3. Improve our existing CAMD methodology by (a) generalizing theege algorithms
for creating new molecules, and (b) automating the differeps steolved in CAMD
to minimize user supervision.

4. Incorporate the relevant non-linear QSPR models and apply the imp@AdidD
methodology to discover new CPEs for insulin and new extractive latistil
solvents of interest in the energy sector.

The methods advanced in this dissertation have produced a robust anesalork for

designing new molecules and an improved framework for buildingraecmodels for

thermophysical properties. In addition, applications of these imprivaeteworks have
facilitated the design of improved CPEs for insulin, which could cong&ibaitmajor

advancements toward developing transdermal patches for insulin rgeliienilarly,



molecular design of new solvents for extractive distillatioh @ greatly beneficial in

reducing the separation cost of difficult-to-separate mixtures.

1.3. Organization of the Dissertation

This dissertation is organized in the “manuscript style,” and dividéo eight stand-
alone chapters. Chapter 2 describes in detail the QSPR methodoiptpyed in this

work to develop the various models for the molecular properties. Cheptod 8 are

concerned with the specific details of the development of QSPR Isntmtevarious

thermophysical properties significant for designing new C&ttk extractive distillation
solvents. Since the basic modeling methodology is the same fearibes models, some
sections are repetitive in these chapters. The final chaseriloes the CAMD algorithm
used in the current work, and it also exemplifies the algorithnddsigning new CPEs
and new solvents for extractive distillation. For reasons of eutelal property, the

names of potential candidate molecules are not disclosed in this dissertation.
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CHAPTER 2

QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (QSPR)
MODELING METHODOLOGY
2.1. Introduction

Recent advances in computational technology have created new oppstiomitvirtual
synthesis and evaluation of compounds, which reduce the burden of timesauntes
associated with traditional experimentation. Computer-aided maledekign (CAMD)
is the general term used to describe the process of virtualndesigew molecules
possessing specific, desired molecular properties. A successfiDg#ocess needs an
accurate prediction platform to compute the relevant thermophysiopkrties of the
generated candidate molecules. Although theory-based models woupdetsgred,
currently, theoretical models are not available for most propeatiel investigators are
forced to rely on empirical or semi-empirical models. A well-knogemi-empirical
approach for predicting molecular properties is quantitative steiroperty
relationship (QSPR) modeling, which asserts that quantifiableoredaips exist between
the thermophysical properties and molecular structure of a substéfien the same
techniques are used in predicting activities of biological compounds, ddelsnare
usually referred to as quantitative structure-activity refethip (QSAR) models. This is

not a strict naming convention, and a QSPR model in the



current work refers to any model relating a property to the molecul&tiste.

The molecular structure of any compound is characterized in @riwertain variables
called molecular descriptors, which are usually calculated ugirggntum-mechanical
methods based in theory. In mathematical terms, a QSPR noodelyf property P is of

the following form:
P = f(molecular descriptors) (2.2)

where,f denotes a linear or non-linear mathematical function (model) asexptess the
property in terms of molecular descriptors. Initially, moleculegh known property
values are used to optimize the QSPR models, and then these aptimadels are used

to predict the properties of unknown molecules.

Before outlining the details of QSPR modeling, a brief histotbeakground of various
QSPR methodologies will be presented. QSPR techniques have appdaeetitanature
for over a century. They have facilitated the prediction of thermagddysroperties of a
molecule based solely on information from its chemical strucftir8]. Although
successful structure-property relationships do not completely naieni chemical
synthesis or experimental validation, a significant reduction imtimeber of molecules
requiring synthesis and validation can be realized. The earlgrnadivancements in
QSPR-related research were pioneered by Hansch and Fujitd, [4h& correlated
biological activities with hydrophobic, steric and electronic progsrtdf molecular
structure, and by Free and Wilson [6], who developed the group-contribppooeah to
property prediction. After 1980, the availability of inexpensive compurtatipower led
to an explosion in the number of QSPR studies, and numerous models have been

proposed in the literature to predict varied and often complex thegsiophproperties
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of molecules including normal boiling points, solvent polarity scale#fjngeoints, and
refractive indices [4, 7-13]. A thorough review of the history, majeas of applications

and software related to QSPR is provided by Katritzky et al. [14].
2.2. Overview of QSPR Methodology

As shown in Figure 2.1, a typical QSPR model development has the faldvaisic

steps:

1. Database development involves collecting representative experimental data of
assessed quality and assembling a relevant database. The glidhty data is
assessed to establish the experimental uncertainties assowidte the data
considered.

2. Structure generation involves the development of the 2-dimensional and 3-
dimensional representations of the molecular structures. If 3-diomahslescriptors
are needed, then optimization for the lowest conformational enerdpe oholecules
is performed.

3. Molecular descriptor calculation is undertaken for the molecules in the database
using relevant software like CODESSA [15] or DRAGON [16].

4. Descriptor reduction is the step where the most significant descriptors fromatige |
set of available molecular descriptors are identified.

5. Model development is the step where the most significant descriptors arelatade
with a molecular property using linear or non-linear modeling tools.

6. Model validation entails evaluation of the predictive performance of the final model.

Typically, the descriptor reduction and model development stepscanmged out

simultaneously, since information feedback from the model developtegnissprovided

10



to the descriptor reduction step. In fact, these two steps constititierative process that
is terminated when certain stopping criteria are met. The madielation and model

development steps can also behave in a similar fashion.

Although all QSPR development steps are important, the two cistieps have a major
influence on the performance of a QSPR model: descriptor reduEti®) (here the
significant structural descriptors are determined, and model devehdpiD), where
the modeling approach is selected. Several approaches have beeregropdhe
literature for QSPR model development. While the basic stepsSiPRQdevelopment
remain the same, differing techniques are applied for the desaibps, (1) — (6). In
following sections, a brief overview of these approaches wilprogided, along with a

description of the techniques used in the current work.
2.3.Database Development

The performance of empirical techniques such as QSPR modelmsgdy dependent
on the quality and characterization of data available for use imainéng stages. Ideally,
the data should include molecules that are similar to the moldoulesich the model is
intended to be used. For example, to develop a model to predict thelottder

partition coefficients of drug-like molecules, the training data shadgally include a
wide range of drug-like molecules. However, all the models inctireent work are
developed to be generally applicable to all types of molecules, anaresasctaken to
ensure that the employed training databases are as divepassiisle. In addition, to
ensure accurate QSPR models, only the highest possible qualitymexet data with

low uncertainties were used for model building in this work, and thesswf the data
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and uncertainties in the data are provided in future chapters of $sertdtion, where

ever applicable.
2.4. Structure Generation and Optimization

QSPR models utilize molecular representations ranging froraittip@est 1-dimensional
(1D) descriptors, which account for gross molecular properties lideamar weight,
number of atoms and meting point, to complex 4-dimensional (4D) repaBsesat[17,
18], where multiple conformers of a single molecule are consid@itee most common
molecular representations in QSPR modeling are the 2- and 3-donahi{2D and 3D,
respectively) representations. A 2D representation of a molenat&les the topology
and connectivity information and has been used successfully in a widey\arQSPR
models [4-6]. Since a single molecule always has a unique@Bsentation, developing
3D QSPR models is inherently more difficult due to the large bmwmof 3D
representations based on the number and type of constituent atonfSigargs 2.2 and
2.3 represent the 2D and 3D structures of salicylic acid). Theydiodeng the “actual”
3D representation, as defined by the lowest conformational emdrgymolecule, is

essential before inclusion in the QSPR model.

Finding the minimum energy conformation from a large number of Igessi
conformations is a combinatorial optimization problem. Semi-empimethods such as
AM1 [19, 20], PM3 [21, 22] and PM6 [23, 24] have been used widely to caldhlate
minimum energy of a given conformation. These semi-empirictéhade are based on
the Hartree-Fock formalism (used for determining the ground-state function and
ground-state energy of a molecule); however, they involve deappaoximations and

some of these parameters are obtained from empirical dataeifii@mpirical methods
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are employed in computational chemistry to determine the wavédnaand energies
of large molecules, for which the full Hartree-Fock treatmentldvbe computationally
impractical. In a recent article, Rinnan et[@b] compared different methods of energy
minimization and concluded that the final QSPR models are not icfdesignificantly
by the choice of the energy minimization method, provided the tosvesgy conformer
has been found priori. However, the majority of QSPR articles in the literatoindy
apply the energy minimization techniques to a randomly chosen 3D cwnf@f a
molecule. This can potentially lead to inaccurate or sub-optimdels. Therefore, in the
current work, molecular-structure optimization was performed, wheitesl in a global

search for the minimum-energy 3D conformation.

While different software packages may be used, structure gieneraquires a series of
steps common to all QSPR models, where initially the 2D steigsudrawn based on
either names or the simplified molecular input line entry spatibn (SMILES) and
subsequently an optimal 3D structure is identified. In the current v@r&mBioDraw
Ultra 11.0 [26] was used to generate 2D structures for the metesuthe data set and
stored as cdx files. The conformers with the least energy fwarel by implementing
OpenBabel’s [27, 28] genetic algorithm (GA) based conformer sesnath uses the
MMFF94 forcefield [29]. The GA for conformer search can be tadofor accuracy
versus computational time by varying four different options thatude number of
structural conformers or parents in each generation, number of cbitbrmers
generated per each parent, mutability parameter for deiegnithe frequency of
mutation operations and the number of unchanged generations after éheligdrithm

is stopped. For further information, the readers are referred toOienBabel
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documentation on conformer searching [30]. In the current work, 30 panefatrmers
and 5 child conformers were chosen, the mutability parametersetato 5 and the
number of constant generations was set at 25. The optimized moleareesaved in

md| format for subsequent generation of descriptors.
2.5. Descriptor Calculation

The variables used to describe the molecules present in the Q8&base are called
molecular descriptors. The accuracy of the final QSPR model depamtlg on the
accuracy with which these descriptors are calculated. Seaypea of descriptors can be
calculated depending on the representation used for the molecutesasbed in the
previous section, QSPR models employ generally the following tpestpf molecular
descriptors: (a) 2D descriptors that provide connectivity informatmmcearning the
atoms in the molecule, and (b) 3D descriptors that are caldutata the 3-dimensional

spatial positioning of atoms of the molecule.

ADAPT software [31, 32] was an early version of an automated agumogfor
QSAR/QSPR modeling. ADAPT calculates the following types stdptors: fragment
type, sub-structure type, environment type (providing interconnectionmafmn
between sub-structures), molecular connectivity type (providingnr&bon about the
amount of branching in the molecule), and geometric type (desctinenghape of the
molecule). Some of the earliest commonly used descriptors weyar Ifree energy
constants such as the Hammeticonstant (measure of the electronic effects of the
aromatic substituent), Taft polar constant®) (measure of the electronic effects of the
polar substituent), Hansath(measure of the hydrophobicity of the substituent) and Taft

steric constant Hmeasure of substituent steric effects) [33]. Usage of ttheseriptors
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for developing QSAR models is referred to as the Hansch approacleveigwhe above
models are based on simple linear and additive models and are lalppbody to co-

generic series of molecules where only the substituentstareda[34]. Also, the above
constants are not available for every substituent and thereforotugpplicable for a
wide range of molecules. An alternative approach to Hansch metigydehas proposed
by Free and Wilson, who assume that for molecules in a coigeeeies, the activity is
determined by mutually independent contributions from the substituerite mdlecule

[6]. There are also hybrid approaches that combine the above two methodologies.

Other common descriptors include topological indices (TIs) that prowidkecular
connectivity information. The advantage of these descriptors is rilatively short
computational time since 3D molecular information is not requiredayMES with
varying advantages and disadvantages have been proposed in the ditafaamer’s
index [35, 36] is the earliest of these indices. Balaban [37] meb@ basic review on
the most widely used Tls prior to 1988 and establish six cri@ria good TI. However,
TIs are based only on 2D information of the molecule and theretoreot be used to
represent the spatial conformation of the atoms. In recent ye&msmation content
indices based on Shannon information theory have been developed, whialsacde
considered as TlIs [38]. Molecular volume has also been used wideky @atly years of

QSPR history [39].

Cartier and Rivail [39] were among the earliest reseascherinclude theoretical
guantum chemical descriptors calculated using semi-empiricédoche in their QSPR
models. Quantum chemistry facilitates a more accurate ctdeulaf the electronic

effects than the empirical methods [39]. These effects caraloalated theoretically
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from the geometry-optimized 3D structure of the molecules. Somé&eofcdmmon
guantum chemical descriptors are energies of HOMO and LUMEME, eLumo), net
atomic charge of atom A (£, molecular polarizabilityo) and molecular dipole moment
(n); however, these calculations are based on wave-function themrgesinvolve
approximations that limit their applicability to structurallyated molecules [40]. Some
of the most commonly used routines for calculating the quantum chemesdcriptors
are ab initio models like the Hamiltonian and the Hatree-Fock-method, semreaipi
methods like the extendediekel theory, complete neglect of differential overlap
(CNDO), intermediate neglect of differential overlap (INDO), Austin had&M1) and
parametric model 3 (PM3). Typically, fab initio calculations, the calculation time
required is proportional to a high power of the number of electrotieimolecule [40]
and therefore, these calculations are computationally expensive. efieempirical
methods, however, are based on molecular orbital (MO) calculations dowtie
experimental data on atoms, which allows for faster calculatibas theab initio

methods.

One of the widely used software for developing a QSPR mod€&omprehensive
Descriptors for Structural and Statistical Analysis (COBEYP [15], which was
developed by Katritzky et al. [14, 38] as a non-empirical toolcdculating various
descriptors such as constitutional, topological, geometrical, elittcpshermodynamic,
guantum-chemical, molecular orbital (MO)-related and chargetapaurface areas
(CPSA) descriptors. When implemented, CODESSA does not requireragptal data
and the descriptors are calculated based entirely on the chestigature of the

molecules. This program has been applied successfully for corgetatarge number of
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physical properties such as boiling points, melting points, and sojubfligases in
liquids [40]. In the current work, all QSPR models have been buitigudescriptors
generated by DRAGON 6 [16] software developed by Talete IMRAGON 6 is
capable of generating over 4800 descriptors categorized into 0D20RDand 3D
descriptors. For a detailed list of descriptors calculated bA®BN, the reader is
referred to the DRAGON website [16]. Several successful Q8PRels based on
DRAGON descriptors have been published in the literature [41-43]. Pabliests some

examples of 2D and 3D descriptors calculated using DRAGON.

2.6. Descriptor Reduction and Model Development

In the current work, around 4800 molecular descriptors may be ¢ethdoa a given
molecule using DRAGON; however, most of these descriptors havigibéginfluence
on a desired property of the molecule and, thus, they must be elichgystematically to
arrive at a tractable set of the most significant descap®eduction or pruning of the
descriptor set is a key step in QSPR model development. Variolmdseeéxist for
descriptor reduction, which include the following: linear orthogonalizdtignprincipal
component analysis (PCA) [44-50], partial least squares (PB%$) $2], genetic
algorithms (GAs) [53], forward propagating neural networks [54]kbampagation
neural networks [55], self-organizing maps [53, 56, 57], fuzzy ARTMAP neural rlegtwor
[58], decision trees [59], logistic regression [60], support vectorhmes [61, 62],
simulated annealing [63], particle swarms [64], ant colony algositfG&], and various
hybrid combinations of the above methods. While each method has its ownagagant
and limitations and most are efficient methods for pruning a ldatgset, they have not

been applied widely in conjunction with non-linear QSPR modeling.
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Recently, Golla et al. [66, 67] expanded the descriptor set for saatbcule by
introducing non-linear transformations to all the descriptors. Theriggss were
evaluated for significance, and the most significant descriptoetéasned and removed
from the descriptor pool. The evaluation is repeated and a sendicsigt descriptors is
identified in a sequential fashion. This process of sequential andlya) allows the
determination of correlation of the transformed (non-linear) gescs with the property
of interest. An additional benefit of SA is the provision of a rtary cause-and-effect
type analysis of the descriptor set. The extended dataset carbehased for initial
pruning. In this way, the chances of discarding any descrigtatsshow a non-linear

relationship with the property being considered is reduced, if not totally eledinat

As shown in Table 2.2, the resulting permutations of DR and MD le&alutogeneral
modeling types. To date, the DR methods in the literature agelyalinear, and the
majority of QSPR models reported are also linear (Type |);elvewy more recent work
has employed non-linear QSPR models (Type Il). Several QS&deIndevelopment
efforts in the literature [1, 68, 69] have shown that the relatiortstiyween molecular
structure and thermo-physical properties is oft@em-linear. Therefore, use of linear
algorithms for descriptor reduction or model development fails to @ftersubtle (and
even not-so-subtle) relationships between the chemical structurehamdotphysical
properties. Further, the inclusion of SA in the DR strategyrssllilts in Type Ill models

that often lead to sub-optimal solutions.

The approach in this work for descriptor reduction involves a hybridegirawhich
results in a Type IV model. Specifically, a hybrid niche atbor that combines

evolutionary programming (EP) and differential evolution (DE) wssd as a wrapper
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around artificial neural networks (ANNSs) to search for the bestrgeor subsets from a
large number of molecular descriptors (Desc_Sz). The method begmsanvinitial
population of single hidden-layered ANNs (individuals) that have loeaded into four
different niches. Niches, in the context of this work, are mutuatiglusive sub-
populations in the original population, which are not allowed to exchangdigene
material. Niches are helpful in maintaining genetic diversityhie population [70, 71].
The ANNSs in the initial population are assigned random descriptor tsuasanputs.
These ANNs then undergo (a) single-point mutation on the descsptusets, (b)
modified differential evolution (MDE) operations on the descriptor 48pée) retraining
with different initial weights, and (d) change in the number of hiddemons, over
successive generations. The ANNs that can predict accurbeliatget property are
favored over inaccurate ANNSs to remain in the population. ThereddBls in the later
generations are, on average, closer to the global minimum objketive function. The
subsequent discussion will be a brief introduction to EP, DE and AifdNewed by

details on the actual descriptor reduction algorithm employed in the current stud

2.6.1. Evolutionary Programming (EP): Evolutionary programming is a stochastic
optimization algorithm first developed by Lawrence J. Fogel in 9@ Similar to
other stochastic algorithms, EP is well suited for combindtopéamization problems
where the fitness surface can have multiple local minima. &urtBP can be coded
efficiently using real-valued genetic representation of tledlpm space and, therefore,
has an advantage over GAs, which can be coded only using binary genesemégion.
The basic EP algorithm has the following three steps thatpseated in each generation

until some convergence criterion is met:
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1. Randomly generate an initial population of a fixed size, N. Usudléy/ pbpulation
size is heuristically determined based on the number of independeatilesirthat
describe the fitness surface.

2. Generate children from the parent population using a mutation operatioms tha
chosen from a distribution of possible mutations that range from dst¢ to least
severe. Severity of a mutation operation is measured by tberdnof functional
change between the parent and the offspring.

3. Evaluate the fitness of the child population and select the best indsvidoi both
the parent and child population. The selection is usually done by stachasti
tournament, where N individuals are retained for the next generation.

EP has been applied successfully for a diverse range of optonipasioblems like power
system optimization [73], prediction of the effects of genetadifications [74] and
prediction of protein-ligand structures [75]. One of the first apgtina of EP to QSPR
modeling was by Luke in 1994 [76], who compared his methodology withrexEPR
techniques for several commonly used QSPR data sets. Another &P dbgarithm is
the Mutation and Selection Uncover Model (MUSEUM) [77], which uses mi§ation

to generate offspring from parents and was shown to be muchtfesteother regression

models. To the author's knowledge, apart from the two referencésatitere, no other

application of EP to QSPR/QSAR modeling appears in the literadespite its

advantages over other evolutionary algorithms.

2.6.2. Differential Evolution (DE): DE is another simple stochastic optimization
algorithm similar to GA and was proposed by Price and Storn [789p%4. The major

difference between GA and DE is that the former uses prolyabligtribution for
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selection of parents; while in the latter trial vectors aregated. This makes the DE
algorithm self-organizing by reducing the number of parametetsdel to be pre-set

by the user. The basic DE algorithm for minimization has the following steps:

1. Randomly generate an initial population of a fixed size, N. Usudléy/ pbpulation
size is heuristically determined based on the dimensionality ofitthess surface
denoted as n.

2. Perform the following for successive generations until some stoppingaritemet:

For each vectax in the population, the following steps are conducted:

a. Choose three different individuadsb andc that are different from.
b. Pick a random integer R between 1 to n.
c. Generate a trial vectgr={y1, Yo, ...V, ...Yn} by iterating over each i from
lton
» Generate a uniformly distributed random number r between 0 and
1.
» If i=R or if r < CR (cross-over number), thenzya + F*(b - ¢),
else y= x;, where F is the mutation factor.
d. If the trial vectory has lower objective function than the original vector
then replace with y.
DE has been successfully applied to various optimization problems sudiesd
exchanger network synthesis [79], reservoir system optimizatioh [@&sign of
temperature profiles for fermentation processes [81] and image @ustering [82].
Despite its popularity in other optimization fields, DE has bggslied to few QSPR

studies to date, which include prediction of atomic charges by Quetal. [83] and
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predicting skin permeability of insulin in the presence of chenpieaktration enhancers

by the Oklahoma State University group [84].

2.6.3. Artificial Neural Networks (ANNS): Artificial neural networks are inspired by the
brain and the interconnections among neurons, which form a complex netwer& wh
electrical and other types of signals are exchanged to &eiltinctioning of the brain.
Although, much of neuronal function in the brain is still unclear, rebess have been
able to develop ANNs as limited and simplified models for reergaintelligence
artificially. Although the concept of ANNSs is well establidh¢he development of the
back-propagation learning algorithm by Rumelhart et al. [85] in 18860 an explosion
in the number of applications of ANNSs. In the literature, neural nésvbave been
employed as a non-linear modeling tool for function approximatiomssgn analysis,
time-series forecasting, robotics and data processing. Difféypes of ANNs exist
based on architecture, but in view of the current work, only feedaforANNs are
relevant and any future reference to ANNs in the current wosksdb feed-forward
ANNSs. Figure 2.4 is a neural interpretation diagram (NID) afample feed-forward
ANN with 6 inputs, 2 hidden neurons in a single hidden layer and one outgutirl
permeability k) [84]. A NID is a diagram representing the neural network strac
along with the weights between the different neurons and can beaigsa@rpret the
relationships between the output variable and the various input variakles network.
Using this approach, the connections between the neurons will be repdebg lines
whose thickness depends upon the magnitude of the weight between &spawiing
neurons. The thickness of the lines connecting two neurons is proportoribak t

magnitude of the connection weight between them. Also, to diffeteritietween the
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direction of contribution of input variables to the output of a neuron, bluedmg®lack
lines will be used for negatively-contributing and positively-contmgut inputs,
respectively. A NID therefore, provides qualitative information alblo@tmagnitude and
the direction of the effect of each input on the output. For a détdiscussion on NIDs

and their interpretation, the readers are referred to Olden and Jackson [86].

In a feed-forward ANN, information travels only in the forward clien from the input
nodes to the output nodes. The different layers are connected usgigsaeand biases
which represent the strength of the signal between the differens,nadé these are
updated during the learning phase of the algorithm to minimizertoe between the

network outputs and the network targets.

An important aspect of ANNs is the architecture or design, lwltiensists of the
selection of number of inputs, number of hidden layers and the number of ne@urons
each hidden layer. In the current work, the number of inputs to an ANhbsen such
that the ratio of the number of data points to the number of inpatdaast ten. For most
applications, using only one hidden layer is adequate; however, choosimighhe
number of neurons in this hidden layer may not be straight-forwdroogihg too few
hidden neurons might lead to an ANN that lacks flexibility to endagpes the complexity
of the data and choosing too many may lead to over-fitting and pooraizaton. No
theoretical basis exists for choosing the number of hidden neurons ahdcesezschers
use trial and error for selection of the architecture leadintbe best performance. In the
current work, the number of hidden layers is fixed at one, and the minmuorber of
hidden neurons is two. This number is increased by one for randomliedefddNs in

the population of ANNs, and the better performing ANNs are retaioedhe next
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generation/iteration. In addition, for each ANN, the ratio of the numbtaining data to
the number of adjustable weights and biases was ensured to lys gl@ater than two

[87]. This was done as a precaution against over-fitting to the training data.

Once, the network architecture has been specified, an ANN isdraime&nown data
before its use as a predictive tobhe most popular learning algorithm for feed-forward
ANNSs is the back-propagation algorithm proposed by Rumelhart. €i8%], which

consists of a forward propagation step and a weight-update step tbpeated until the
network performance is satisfactory. The network weights andsbezae be updated
using several algorithms, but the most popular are the gradiesgrdesnd Levenberg-
Marquardt algorithms [88]. However, these algorithms do not guaati@nment of the
global minimum; thus, multiple initializations of the program afeen necessary. lyer
and Rhinehart [89] have proposed a multiple initialization method to Berdae

probability of locating the global minimum. This method is built ithe descriptor

reduction algorithm used in the current work.

Another important issue associated with ANN training is ovangitwhich results in
poor predictive capability. Although several methods for avoiding ouerefian ANN
exist, over-fitting is avoided in the current work by using an makevalidation set (V),
with an early-stopping method [90, 91]. The validation error normallyedses during
the initial phase of training, as does the training set error; y@werhen the network
begins to over-fit the data, the error in the validation set typically begirsetdNhen the
validation error increases for a specified number of iteratibegraining is stopped, and
the weights and biases at the minimum validation error amseet Although the early-

stopping algorithm is easy to understand and implement, choosing hbhéraiging and
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internal validation sets is not straightforward. In addition to thmitrg (T) and V sets,
an internal test (IT) set is generally used in selectiegoest ANNs during the descriptor
search algorithm. The error on the IT set was used an additionahtiod of the
generalization ability of the individual ANNs. Since, all thretadsets (T, V, and IT) are
involved in the ANN selection process, the predictive performancheofimal ANN
model can only be estimated using an external test setdhtirts data not present in

any of the aforementioned three data sets.

Ideally, the training set should be representative of the aetdateeset, and each data point
in the validation and internal test sets should correspond to atdeastraining data
point. Several methods exist in the literature for allocation ofdta such as random
division [92, 93], self-organizing maps (SOMs) [94, 95], Kennard-Stongrd¢d6] and
the sphere-exclusion algorithm [97]. In the current work, SOMs a&é tesdivide the
data sets optimally prior to the ANN training. The SOM MATLA&lbox from the
Laboratory of Information and Computer Science in the Helsinki Usityerof
Technology [98] is used for training the SOMs. SOMs are used tafidehisters of
data in the input space, and from each cluster at least one dataspadded to the
training set. If a cluster has more than one data point, then raredeatian is used to
divide the data in each cluster into the various subsets of T, VTaridthe data in each
cluster cannot be equally divided among the three subsets, prefeseigoeen for
addition of data points to the training, validation or internal test isethat order. This
process ensures that the training set has the largest number of data pointsd folldie
validation and internal test sets, respectively. The number ofumégp-(which are

analogous to neurons in feed-forward ANNS) in SOM trainirag &djusted to ensure
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that the number of training set data points is in the range of 6597 @9 entire data set
(excluding the external set). Ideally, the training of each AiNbreceded by SOM
training using the same inputs for both ANN and SOM; however, S@Ming is
computationally expensive and therefore, in this work, SOMs werettaince for every
iteration of the algorithm for each niche. Here, a niche is a grbuplividuals that are
allowed to exchange genetic material among themselves thrBighoperations.
Individuals belonging to different niches are never allowed to pakein the same DE
operation. In each iteration of the evolutionary algorithm, the most comyroccurring
inputs in a niche are used as inputs for the SOMs. Although only olkeisStained for
each niche, the random selection of data from each clusterriedcaut separately for

each individual in the niche. This ensures slightly different data sets forreheidual.

During training of the ANNSs in the current work, the inputs and tarfiee experimental
values of the property that need to be modeled) are normalized tez&@venean and
unity standard deviation, which ensures that exceptionally largedalescriptors or
targets do not bias the network. The Nguyen-Widrow algorithm is teseditialize
weights and biases, which are updated using the Levenberg-Maraguuiization

technique.

2.6.4. Genetic RepresentationA good genetic representation of the solution domain is
an important step in developing an efficient evolutionary algorithmnargi
representation is most widely used due to the direct encoding qaehfor most
problems and the applicability for crossover dependent evolutionawyithlgs like GA
and DE [99]. Real-valued representations on the other hand are heatest for

algorithms like EP that are dependent upon mutation as the majatienaty operator.
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In the current work, the solution space is comprised of single hiddenAdNs with all
possible molecular descriptor subsets of a fixed model size @4Dpputs, which are
determined by the user at the start of the program. The number of hidden neurons (NH) i
these ANNSs lies between a minimum of two and a maximummghsesually fixed at three
times the value of ND. Therefore, an individual chromosome in the @olgpace is
represented as a string of real numbers (genes) where eactr rigem®) corresponds to

a particular descriptor. An example of three sample chromosontles1@0 original
descriptors (Desc_sz) and a model size (ND) of five is showmaine 2.3. Each
chromosome is made up of five genes, where each gene represesiyiptor that is
used as an input variable to an associated ANN, which is subsequainigyltto predict

the target property.

Binary representation of the chromosomes entails large merequyrements, and also
the algorithm takes longer to converge to a global minimum when cethpath real-
valued representations. The above considerations are the reasomipraaivalued

chromosomes in the current work.

2.6.5. The Objective Function:Another major aspect of an evolutionary algorithm is the
choice of a suitable objective function. In the current work, a wrapper-basedVr {gee
Table 2.1) modeling approach is used for simultaneous descriptor cedacti non-
linear model development using ANNs. The objective function usednfandividual
ANN is the minimization of the root-mean-squared error (RM®&E)the predicted
property for the training set data. The minimization of RMSE ontithi@ing set is
achieved by adjusting the weights using the back-propagation thlgo@and the

minimization is stopped once the error on the internal validatiomeetases for six
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successive iterations of the back-propagation algorithm. In additiamaube of the
wrapper type approach of the current work, there is a secondftieptimization
associated with the evolutionary algorithm for selecting thé AR® (that has already
been optimized) from a large number of possible ANNs. In generalplfective
function for the second tier of optimization in a wrapper-basedrigésc reduction
approach must be selected such that it is a good estimate petioemance of the
underlying linear or non-linear models. The objective functions chimsdmear QSPR
models typically maximize statistical measures such asdhelation coefficient (B
[100], adjusted B of [101] and Akaike information content [102]. For non-linear
models, the root-mean- squared error (RMSE) [103, 104] and absolutgedaviation
(AAD) [105] are used. In the current work, the entire data setiéixg) the external test
set data was split into training (T), internal validation (V) andrnal test sets (IT). The
RMSE values between the predicted and target values were tadctda each of these
subsets. The following objective functioR)(was then computed based on these RMSE

values:

F = RMSE; + RMSEy + RMSE;; (2.2)

With proper selection of an objective function, one can apply an algotalsearch for
the set of descriptors resulting in an ANN that produces a miniglyjettive function

value.

2.6.6. The Algorithm: The flow chart for the algorithm is given in Figure 2.5. Before
execution of the algorithm, the following parameters are sethéyuser: (a) Desired
number of descriptors in the model (ND), (b) Population size (Pop hsehws usually

set at 400, (c) Number of niches (N_Niche), which is usually setl ¢gube ratio of
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Pop_sz and 100 to ensure that each niche has 100 individuals, (d) Pera#ntage
population that undergoes MDE operations (MDE_p), which is usuallyts&tla(e)
Percentage of population that undergoes retraining (Ret_p), whicliallyuset at 0.3,
and (f) Percentage of population that undergoes change in the number of ieddens

(Arc_p), which is usually set at 0.5.

The algorithm has an initialization process that executes oncendiki@lual ANNs in a
parent population denoted as ‘D’ are initialized with random descriptiosets of size
ND. The [ gene in the individual is represented as D(i,j). The number of hidden
neurons for each ANN is initialized to a value of 2. The ANNstlaea trained using a
back-propagation (Levenberg-Marquardt) algorithm resulting in n&twaights that
minimize the RMSE value. To avoid over-fitting the ANNSs to the training data, early-
stopping on the internal validation set is used. Specificallinitiga is stopped when
RMSEy, increases for six successive training iterations. The obgefiinctionF for the

i individual in population ‘D’ is denoted &{D(i)}. Population ‘D’ then undergoes the

following five operations in a single iteration of the algorithm.

1. Single-point mutationA randomly selected gene in each individual’'s chromosome is
mutated/changed to a random descriptor number. The random descriptor mimber
chosen so that no two genes (descriptor numbers) in a chromosomesaméhd he
mutated individuals make up a new child population denoted as ‘E’.

2. Modified differential evolutionN (=Pop_size*MDE_p) number of individuals are
randomly selected from population ‘D’. Modified differential evolution Q&)
operations arearried out on these individual chromosomes to result in a new mutated

population ‘M’. First, a mutated population, defined as TM, is generated b
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combining the genes from three different individuals in population ‘D’.sThi
operation is similar to the mutation operation in the traditionalalRferithm. Next,
the mutated population “TM’ and the parent population ‘D’ are recombined trse
recombination operation of the traditional DE algorithm. The recombined pigoula
is denoted as population ‘M’. The ANNs in ‘M’ undergo training ahd {M(i)}
values are calculated for all individuals. The objective functi@oes of the new
ANNs are compared with the objective function values of the corresppAdNS in
population ‘D’. If f{M(i)} is lower than f{D(i)}, then M(i) is considered fitter than
D(i), and therefore, M(i) replaces D(i) in population 'D’. This denoted as
‘individual competition.” The pseudo-code for the MDE operations andtseieis
shown in Figure 2.6.

. Retraining: N (=Pop_size*Ret_p) number of ANNs are selected randomly from
population ‘D’ for retraining using different initial weights. Thetrained ANNs
make up a new population denoted as ‘R’. The corresponding individuals in
populations ‘D’ and ‘R’ undergo individual competition and population ‘D’ is
updated using the fitter individuals.

. Architectural change:N (=Pop_size*Ret_p) number of individuals are selected
randomly from population ‘D’. The number of hidden neurons (NH) in half oethes
individuals is increased by 1 and for the rest of the individualsNtHevalue is
decreased by 1. If NH for any individual falls below the spegdifninimum value of

2, then the NH value is adjusted to the minimum value of 2 for thatydar ANN.
The resulting new population after the architectural chargyeenoted as ‘A.” The

ANNs in ‘A’ undergo training and thd{A(i)} values are calculated for all
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individuals. Again, corresponding individuals in populations ‘A’ and ‘D’ enter
individual competition, and population ‘D’ is updated with fitter individuals.

5. Rank-based selectiodt the end of these four operations, the individual ANNSs in the
populations ‘D’ and ‘E’ are pooled together and subjected to rank-basectien
[106]. In rank-based selection, each individual is ranked based on the number of
individuals in the population that ‘dominate’ (an individual with lower olbyect
function value dominates an individual with higher objective function valueg. T
best ranked N (=Pop_sz) number of individuals make up the new population ‘D,
which again undergoes the previous four operations in the next iteraten. T
algorithm is stopped when the change in the mean of the intestaddt error, i.e.
mean(RMSEr) for each niche is less than 1% for 100 iterations of the algorithm.

2.6.7. Creating EnsemblesANNs are known to be highly unstable, and their predictive

performance is dependent heavily on the training data and the drgpaiameters.

Therefore, a single outlier in the training data might hdigastrous implications on the

generalization ability of the model. To prevent this, aggregatiemeemble formation of

ANNSs is used, where the predictions of different ANNs are geer#o result in the final

predictions [107, 108]. The ANNs in the ensemble can differ with respet) the

training data, (b) weights between the different nodes, (c) the nuoshibedden layers

and neurons, and finally (d) the input descriptors. For the current waegifis details

concerning ensemble construction are presented below.

Once the algorithm has met the stopping criteria, the descrightaroccur at least 10
times in each niche are identified. These descriptors aredegite descriptors. Three

individuals in each niche that have the most number of elite descrgp®islentified.

31



Non-elite descriptors in these selected individuals are deléach such modified
individual from every niche is retrained using a different numbérdifen neurons (NH)
varied from 2 to 2*ND. The ‘best 100’ ANNs in terms of their objex function value
are identified and recorded. This process of retraining usingaahffnumber of hidden
neurons is carried out for several iterations using differenaliniteights. If the ANNs
identified during an iteration have lowkvalues than any of the ANNs in the ‘best 100’
list, then these fitter ANNSs replace the unfit individuals in‘best 100’ list. Following
each iteration, the ‘best 100’ list is updated. The algorithstoigped if the ‘best 100’ list
stays the same for 100 successive iterations. Of these 10BNEst the 20 networks
that have the lowest ‘sum of weights and biases’ values are methhising a simple
averaging technique to create an ensemble. Three such enserabtesated in every
niche. The predictions from the ensembles from all niches are Wieeagad to result in

the final predictions.
2.7. Conclusions

Since their inception, QSPR modeling techniques have improved signifieaut have
now become one of the important tools in the virtual design paradigm. The purpose of the
current chapter was to introduce the various steps involved in develQ8§PR model,
specifically, database development, molecular descriptor catoulatdescriptor
reduction, and model development. However, selecting the most releainmefsubset
from the large set of all possible molecular descriptorslisadifficult task, particularly
in the case of wrapper-based techniques where, descriptor reductiorodelihg of the
target property are carried out simultaneously. In the current chapteovel hybrid

algorithm that combines evolutionary programming (EP) and diffedeevolution DE
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techniques is proposed as a solution for the feature selection probltemcufrent

algorithm employs ANNs as the mapping tool between the moledetariptors and the
target property. To further improve the generalization capalbithe model, ensembles
of ANNs are created where the final predictions are the singplerages of the

predictions by the individual networks.
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Figure 2.1: QSPR methodology
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Figure 2.2: 2D representation of salicylic Figure 2.3: 3D representation of salicylic
acid acid
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Figure 2.4: Neural interpretation diagram (NID) of a sample ANN
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Set Parameters
Ret_p, Arc_p, MDE_p, Pop_sz, N_Niche

Initialize the population ‘D’. Train neural networks
using descriptors and hidden neuron information for
each individual i in population ‘D’ to calculate the
objective function value f(D;)

h 4

Use self organizing maps (SOMs) based on the most
common descriptors in each niche
to create training (T), validation (V) and internal test
(IT) subsets

Create a child population ‘E’ using single point
mutation on the parent population ‘D’

\ 4

v

Select N (= Pop sz*MDE p) individuals from the
population ‘D’ and subject them to modified
mutation and crossover operations to result in a new
population ‘M’

v

\ 4

Train neural networks using descriptors and hidden Individual competition between
neuron information for each individual in population populations ‘D’ & ‘M’ to update Rank-based selection between individuals in each
‘M’ to calculate the objective function value f(M;) population ‘D’ niche of the populations ‘D’ and ‘E’. These best

Y

A4

I individuals make up the updated population ‘D’

. !

Select N (= Pop_sz*Ret p) individuals from the Individual competition between AN

population ‘D’ without any modifications. Denote populations ‘D’ & ‘R’ to update '
the new population as ‘R’ population ‘D’

\ 4

Stopping criterion met?

\ 4

Select N (= Pop_sz*Arc_p) individuals from the a.q o
. i R Individual competition between
population ‘D’ and randomly decrease or increase opulations ‘D’ & ‘A° to undate o ~
their number of hidden neurons. Denote the pop p ( Stop

newpopulation as ‘A’ population ‘D

Y

Figure 2.5: Flowchart for the EP + DE algorithm used in the current work
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Fori=1to N

Select a, b, € {1, 2,.., Pop_sz} such thatzab# c

For j=1 to ND (Mutation operation)

Generate rand, a random number between 0 & 1

If (rand< 0.25), then TM(i,j) = D(a,))

If (0.25 < ranck 0.5), then TM(i,j) = D(b,j)

If (0.5 <rand< 0.75), then TM(i,j) = D(c,))

If (0.75 < ranc< 1), then TM(i,j) is randomly selected from

{0,1,2,...,Desc_sz)

For j=1 to ND (Recombination operation)

Generate rand, a random number between 0 & 1

If (rand< CR), then M(i,j) = TM(i,})

If (rand > CR), then M(i,j) = D(i,j)

If f{M(i)} < f{D(i)}

D(i) = M()

Figure 2.6: Pseudo code for modified differential evolution (MDE) operabns
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Table 2.1: Examples of 2D and 3D descriptors calculated by DRAGON

2D Descriptors | Kier flexibility | Molecular walk Randic ID Balaban X
index count of order 1 number index
3D Descriptors _Radial 3D Morse Randic-type R Total
distribution : matrix symmetry
. descriptors - .
functions connectivity index

Table 2.2: Types of QSPR models based on the linearity or non-linearity of the
underlying descriptor reduction and model development methods

Descriptor Reduction QSPR Model
Type | Linear Linear
Type Il Linear Non-linear
Type Il Modified non-linear Non-linear
Type IV Non-linear Non-linear

Table 2.3: Three sample chromosomes of size five, chosen from a set of 100
descriptors

Chromosome # Descriptor Descriptor  Descriptor  Descriptor  Descriptor

1 2 3 4 S
Chromosome 1 23 45 54 3 98
Chromosome 2 23 49 22 9 67
Chromosome 3 34 44 1 7 100

38




REFERENCES

Godavarthy, S.S., R.L. Robinson Jr., and K.A.M. Gagenmimproved Structure-
Property Model for Predicting Melting-Point Temperaturdsdustrial and
Engineering Chemistry Research, 200814): p. 5117-5126.

Godavarthy, S.S., R.L. Robinson Jr., and K.A.M. GaSVRC-QSPR Model for
Predicting Saturated Vapor Pressures of Pure Fluiglkiid Phase Equilibria,
2006.246(1-2): p. 39-51.

Neely, B.J.,Aqueous Hydrocarbon Systems: Experimental Measurements and
Quantitative Structure-Property Relationship Modelingh.D. Dissertation,
School of Chemical Engineering. 2007, Oklahoma State Universitiweger,
Oklahoma.

Hansch, C. and T. Fujita;s-p Analysis. A Method for the Correlation of
Biological Activity and Chemical Structurdournal of the American Chemical
Society, 196486 p. 1616-1626.

Hansch, C. and T. Fujitay-o-7 Analysis. A Method for the Correlation of
Biological Activity and Chemical Structurdournal of the American Chemical
Society, 196486(8): p. 1616-1626.

Free, S.M. and J.W. WilsoA Mathematical Contribution to Structure-Activity
StudiesJournal of Medicinal Chemistry, 19644): p. 395-399.

Katritzky, A.R., V.S. Lobanov, and M. KarelsoNpormal Boiling Points for
Organic Compounds: Correlation and Prediction by a Quantitative Structure-
Property RelationshipJournal of Chemical Information and Computer Sciences,
1998.38: p. 28-41.

Katritzky, A.R., L. Mu, and M. KarelsonQSPR Treatment of the Unified
Nonspecific Solvent Polarity Scalelournal of Chemical Information and
Computer Sciences, 1997 p. 756-761.

Stanton, D.T., et alComputer-Assisted Prediction of Normal Boiling Points of
Pyrans and PyrrolesJournal of Chemical Information and Computer Sciences,
1992.32 p. 306-316.

39



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Wessel, M.D. and P.C. JuRediction of Normal Boiling Points for a Diverse
Set of Industrially Important Organic Compounds from Molecular Structure.
Journal of Chemical Information and Computer Sciences, 18395): p. 841-
850.

Karelson, M.Molecular Descriptors in QSAR/QSPRst ed. 2000, New York:
John Wiley & Sons.

Katritzky, A.R., et al.,Prediction of Melting Points for the Substituted
Benzenes: A QSPR Approachlournal of Chemical Information and Computer
Sciences, 199R7(5): p. 913-9109.

Katritzky, A.R., S. Sild, and M. Karelsoforrelation and Prediction of the
Refractive Indices of Polymers by QSBRurnal of Chemical Information and
Computer Sciences, 19983(6): p. 1171-1176.

Katritzky, A.R., et al.The Present Utility and Future Potential for Medicinal
Chemistry of QSAR/QSPR with Whole Molecule Descrip@iteminform, 2003.
34(18): p. no-no.

Semichem Inc., A.R. Katritzky, and M. Karels@omprehensive Descriptors for
Structural and Statistical Analysis (CODESSP)98: Shawnee, KS.

Dragon Professional 62010, Talete SRL.

Vedani, A., et al.Multiple-Conformation and Protonation-State Representation
in 4D-QSAR:] The Neurokinin-1 Receptor Systedournal of Medicinal
Chemistry, 200043(23): p. 4416-4427.

Streich, D., M. Neuburger-Zehnder, and A. Vedémiuced Fit—the Key for
Understanding LSD Activity? A 4D-QSAR Study on the 5-HT2A Receptor System
Quantitative Structure-Activity Relationships, 20Q8(6): p. 565-573.

Hashimoto, H., et alMolecular Structures of Carotenoids as Predicted by
MNDO-AM1 Molecular Orbital CalculationsJournal of Molecular Structure,
2002.604(2-3): p. 125-146.

40



20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Yatsenko, A.V. and K.A. Paseshnichenkim the Suitability of AM1 for the
Modeling of Molecules Containing Amino Groupdournal of Molecular
Structure: THEOCHEM, 19991921-3): p. 277-283.

Dos Santos, H.F. and W.B. De Almeit#djyDO/AM1/PM3 Quantum Mechanical
Semiempirical and Molecular Mechanics Barriers to Internal Rotation: A
Comparative StudyJournal of Molecular Structure: THEOCHEM, 199351-

3): p. 129-139.

Estrada, E., I. Perdomo-Lépez, and J.J. Torres-Labanitecular Modeling
(Mm2 and PM3) and Experimental (Nmr and Thermal Analysis) Studies on the
Inclusion Complex of Salbutamol amiCyclodextrin. The Journal of Organic
Chemistry, 200065(25): p. 8510-8517.

Alparone, A., V. Librando, and Z. Minniti/alidation of Semiempirical PM6
Method for the Prediction of Molecular Properties of PolycyclicorAatic

Hydrocarbons and Fullerene€hemical Physics Letters, 200860(1-3): p. 151-

154.

Correa, A., et alA Comparison of the Performance of the Semiempirical PM6
Method Versus DFT Methods in Ru-Catalyzed Olefin Metath@sisGreen
Metathesis Chemistyy. Dragutan, et al., Editors. 2010, Springer Netherlands. p.
281-292.

Rinnan, A., N. Christensen, and S. Engelsieny the Energy Evaluation Method
Used in the Geometry Optimization Step Affect the Quality of thee@udd
QSAR/QSPR Modeldournal of Computer-Aided Molecular Design, 20241):

p. 17-22.

Chembiooffice 11.2008, CambridgeSoft.

Guha, R., et al.The Blue Obelisk-Interoperability in Chemical Informatics.
Journal of Chemical Information and Modeling, 2006&3): p. 991-998.

The Open Babel Package, Version .2.3 2011; Available from:
http://openbabel.sourceforge.net/.

Halgren, T.A., Merck Molecular Force Field. |. Basis, Form, Scope,
Parameterization, and Performance of Mmff9dournal of Computational
Chemistry, 199617(5-6): p. 490-519.

41



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

The Open Babel Develope@bconformersearch Class Referenc2007 [cited
2011 July 26]; Available from: http://openbabel.org/dev-
api/classOpenBabel 1 10BConformerSearch.shtml.

Stuper, A.J. and P.C. Juddapt: A Computer System for Automated Data
Analysis Using Pattern Recognition Techniquisirnal of Chemical Information
and Computer Sciences, 1976(2): p. 99-105.

Rose, S.L. and P.C. Jur€omputer-Assisted Studies of Structure-Activity
Relationships of N-Nitroso Compounds Using Pattern Recognifioarnal of
Medicinal Chemistry, 1982X7): p. 769-776.

Greenberg, M.JDependence of Odor Intensity on the Hydrophobic Properties of
Molecules. A Quantitative Structure Odor Intensity Relationsgurnal of
Agricultural and Food Chemistry, 19781(2): p. 347-352.

Franke, R., S. Huebel, and W.J. Stret8hbstructural QSAR Approaches and
Topological Pharmacophore&nviron Health Perspect, 1988L: p. 239-55.

Wiener, H.Structural Determination of Paraffin Boiling Pointdournal of the
American Chemical Society, 19469(1): p. 17-20.

Wiener, H. Correlation of Heats of Isomerization, and Differences in Heats of
Vaporization of Isomers, among the Paraffin Hydrocarbodhsurnal of the
American Chemical Society, 19469(11): p. 2636-2638.

Balaban, A.,Topological Indices and Their Uses: A New Approach for the
Coding of AlkanesJournal of Molecular Structure: THEOCHEM, 198&%53-
4): p. 243-253.

Katritzky, A.R. and E.V. Gordeevalraditional Topological Indexes Vs
Electronic, Geometrical, and Combined Molecular Descriptors in QSARRQSP
ResearchJournal of Chemical Information and Computer Sciences, 133):

p. 835-857.

Cartier, A. and J.L. RivailElectronic Descriptors in Quantitative Structure--
Activity RelationshipsChemometrics and Intelligent Laboratory Systems, 1987.
1(4): p. 335-347.

42



40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Karelson, M., V.S. Lobanov, and A.R. KatritzKiantum-Chemical Descriptors
in QSAR/QSPR Studigshemical Reviews, 19966(3): p. 1027-1044.

Gharagheizi, F.QSPR Studies for Solubility Parameter by Means of Genetic
Algorithm-Based Multivariate Linear Regression and Generalized Reégness
Neural NetworkQSAR & Combinatorial Science, 20087(2): p. 165-170.

Goodarzi, M., T. Chen, and M.P. FreitQSPR Predictions of Heat of Fusion of
Organic Compounds Using Bayesian Regularized Artificial Neural Networks.
Chemometrics and Intelligent Laboratory Systems, 20042): p. 260-264.

Papa, E., S. Kovarich, and P. Gramatxayelopment, Validation and Inspection
of the Applicability Domain of QSPR Models for Physicochemical Presedi
Polybrominated Diphenyl EtherQSAR & Combinatorial Science, 20088(8):

p. 790-796.

Brown, S.D., et alChemometricsAnalytical Chemistry, 198860(12): p. 252-
273.

Brown, S.D. and R.S. Bear LhemometricsAnalytical Chemistry, 199062 p.
84R.

Brown, S.D., R.S. Bear Jr., and T.B. BlaGkemometricsAnalytical Chemistry,
1992.64(12): p. 22-49.

Brown, S.D., et alChemometricsAnalytical Chemistry, 199466(12): p. 315-
359.

Brown, S.D., et alChemometricsAnalytical Chemistry, 19968(12): p. 21-62.

Jolliffe, I.T.,Principal Component Analysi4986, Berlin: Springer.

Malinowski, E.R. and D.G. Howerffactor Analysis in Chemistryist ed. 1980,
New York: Wiley-Interscience.

Lindgren, F., et alinteractive Variable Selection (IVS) for PLS. Part 1: Theory
and AlgorithmsJournal of Chemometrics, 19®(5): p. 349-363.

43



52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

Wold, S., et al.Multi-Way Principal Components and PLS Analysisurnal of
Chemometrics, 19874(1): p. 41-56.

Bayram, E., et alGenetic Algorithms and Self-Organizing Maps: A Powerful
Combination for Modeling Complex QSAR and QSPR Problgimstnal of
Computer-Aided Molecular Design, 2008(7): p. 483-493.

Bishop, C.M., Neural Networks for Pattern Recognitiorf998, Oxford:
Clarendon Press.

Cibas, T., et alyariable Selection with Neural NetworKseural Computation,
1996.12: p. 223-248.

Kohonen, T.Self-Organising Mapsl995, Heidelberg: Springer-Verlag.

Kohonen, T.Comparison of SOM Point Densities Based on Different Criteria.
Neural Computation, 19991: p. 2081-2095.

Espinosa, G., et alA Fuzzy ARTMAP-Based Quantitative Structure-Property
Relationship (QSPR) for Predicting Physical Properties of Organic foamds.
Industrial and Engineering Chemistry Research, 200(1L2): p. 2757-2766.

DelLisle, R.K. and S.L. Dixorninduction of Decision Trees Via Evolutionary
Programming.Journal of Chemical Information and Computer Sciences, 2004.
44(3): p. 862-870.

Worth, A.P. and M.T.D. CroninThe Use of Discriminant Analysis, Logistic
Regression and Classification Tree Analysis in the Developmernasdification
Models for Human Health Effect3ournal of Molecular Structure: THEOCHEM,
2003.6221): p. 97-111.

Asar, A. and E. Basto8. Comparative Estimation of Machine Learning Methods
on QSAR Data Setsin SAS Conference Proceedings: SAS Users Group
International April 10-13, 2005 Philadelphia, Pennsylvania.

Burbidge, R., et alDrug Design by Machine Learning: Support Vector Machines
for Pharmaceutical Data Analysi€omputers & Chemistry, 20026(1): p. 5-14.

44



63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

de Vicente, J., J. Lanchares, and R. Hermilacement by Thermodynamic
Simulated Annealing?hysics Letters A, 2003175-6): p. 415-423.

Clerc, M. and J. KennedyThe Particle Swarm-Explosion, Stability, and
Convergence in a Multidimensional Complex Spa@eEE Transactions on
Evolutionary Computation, 2008(1): p. 58-73.

Dorigo, M., V. Maniezzo, and A. Coloriint System: Optimization by a Colony
of Cooperating AgentdEEE Transactions on Systems, Man and Cybernetics,
Part B, 199626(1): p. 29-41.

Golla, S., et al.Quantitative Structure-Property Relationship Modeling of Skin
Sensitization: A Quantitative Predictioff.oxicology in Vitro, 2009.23(3): p.
454-465.

Golla, S., et alQuantitative Structure-Property Relationships Modeling of Skin
Irritation. Toxicology in Vitro, 200923(1): p. 176-184.

Neely, B.J., et almproved Quantitative Structure Property Relationship Models
of Infinite-Dilution Activity Coefficients of Aqueous SystemsProceedings of
the Sixth International Petroleum Environmental Confere@004. Albuquerque,
NM.

Ravindranath, D., et aQSPR Generalization of Activity Coefficient Models for
Predicting Vapor-Liquid Equilibrium Behavior=luid Phase Equilibria, 2007.
257(1): p. 53-62.

Wei, L. and M. ZhadA Niche Hybrid Genetic Algorithm for Global Optimization
of Continuous Multimodal Function®pplied Mathematics and Computation,
2005.16Q(3): p. 649-661.

Horn, J., N. Nafpliotis, and D.E. GoldbeAy.Niched Pareto Genetic Algorithm
for Multiobjective Optimizationin Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the First IEEE
Conference on1994.

Fogel, L.J., Intelligence through Simulated Evolution : Forty Years of
Evolutionary Programmingl999, New York ; Chichester: Wiley. 162-174.

45



73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Sinha, N., R. Chakrabarti, and P.K. Chattopadhiag|utionary Programming
Techniques for Economic Load DispatcBvolutionary Computation, IEEE
Transactions on, 2003(1): p. 83-94.

Patil, K., et al.Evolutionary Programming as a Platform for in Silico Metabolic
Engineering BMC Bioinformatics, 20056(1): p. 308.

Gehlhaar, D.K., et alMolecular Recognition of the Inhibitor AG-1343 by HIV-1
Protease: Conformationally Flexible Docking by Evolutionary Programming.
Chemistry & Biology, 19952(5): p. 317-324.

Luke, B.T., Evolutionary Programming Applied to the Development of
Quantitative Structure-Activity Relationships and Quantitative Strudtuoperty
Relationships.Journal of Chemical Information and Computer Sciences, 1994.
34(6): p. 1279-1287.

Kubinyi, H., Variable Selection in QSAR Studies. Il. A Highly Efficient
Combination of Systematic Search and Evoluti@uantitative Structure-Activity
Relationships, 1994.3(4): p. 393-401.

Storn, RDifferential Evolution (DE) for Continuous Function Optimization (an
Algorithm by Kenneth Price and Rainer Storn) [cited 2008 December];
Available from: http://www.icsi.berkeley.edu/~storn/code.html.

Yerramsetty, K.M. and C.V.S. Murtgynthesis of Cost-Optimal Heat Exchanger
Networks Using Differential EvolutionComputers & Chemical Engineering,
2008.32(8): p. 1861-1876.

Reddy, M.J. and D.N. KumamMultiobjective Differential Evolution with
Application to Reservoir System Optimizatidournal of Computing in Civil
Engineering, 200721(2): p. 136-146.

Oonsivilai, R. and A. OonsivilaiDifferential Evolution Application in
Temperature Profile of Fermenting Proce$sTOS, 20109(6): p. 618-628.

Das, S. and A. Konahutomatic Image Pixel Clustering with an Improved
Differential Evolution Applied Soft Computing, 2009(1): p. 226-236.

46



83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Ouyang, Y., F. Ye, and Y. Liangy Modified Electronegativity Equalization
Method for Fast and Accurate Calculation of Atomic Charges in Large Biabgic
Molecules Physical Chemistry Chemical Physics, 200H29): p. 6082-6089.

Yerramsetty, K.M., et alA Skin Permeability Model of Insulin in the Presence of
Chemical Penetration Enhancelnternational Journal of Pharmaceutics, 2010.
3881-2): p. 13-23.

Rumelhart, D.E., G.E. Hinton, and R.J. Williamkearning Internal
Representations by Error Propagatiomn Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol.1086, MIT Press. p. 318-
362.

Olden, J.D., D.A. Jackson, and P.R. Peres-Netedictive Models of Fish
Species Distributions: A Note on Proper Validation and Chance Predictions.
Transactions of the American Fisheries Society, 208%2): p. 329 - 336.

Tropsha, A., P. Gramatica, and V.K. Gom@dre Importance of Being Earnest:
Validation Is the Absolute Essential for Successful Application and letatmpn
of QSPR ModelQSAR & Combinatorial Science, 200(1): p. 69-77.

Hagan, M.T., H.B. Demuth, and M.H. Bealeural Network Design1996,
Boston ; London: PWS Pub. 1 v. (various pagings).

lyer, M.S. and R.R. RhinehaX, Method to Determine the Required Number of
Neural-Network Training RepetitiondEEE transactions on neural networks,
1999.10(2): p. 427-432.

Prechelt, L.Automatic Early Stopping Using Cross Validation: Quantifying the
Criteria. Neural Networks, 1998.1(4): p. 761-767.

Rich, C., L. Steve, and G. Le®yerfitting in Neural Nets: Backpropagation,
Conjugate Gradient, and Early Stoppir00.

Wu, W., et al.Artificial Neural Networks in Classification of NIR Spectral Data:
Design of the Training SeChemometrics and Intelligent Laboratory Systems,
1996.33(1): p. 35-46.

47



93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Yasri, A. and D. Hartsougfpward an Optimal Procedure for Variable Selection
and QSAR Model BuildingJournal of Chemical Information and Computer
Sciences, 20041(5): p. 1218-1227.

Gramatica, P., P. Pilutti, and E. Papalidated QSAR Prediction of OH
Tropospheric Degradation of VOGCs: Splitting into Training—Test Sets and
Consensus Modelinglournal of Chemical Information and Computer Sciences,
2004.44(5): p. 1794-1802.

Gramatica, P., E. Giani, and E. Pajatistical External Validation and
Consensus Modeling: A QSPR Case Study for Koc Predicioantnal of
Molecular Graphics and Modelling, 20@5(6): p. 755-766.

Kennard, R.W. and L.A. Ston&omputer Aided Design of Experiments.
Technometrics, 1969.1(1): p. 137-148.

Gunturi, S.B. and R. Narayandn, Silico ADME Modeling 3: Computational
Models to Predict Human Intestinal Absorption Using Sphere Exclusion and kNN
QSAR Method€QSAR & Combinatorial Science, 20@6(5): p. 653-668.

Laboratory of Computer and Information Scienc2005 [cited 2011; Available
from: http://www.cis.hut.fi/somtoolbox/.

Rothlauf, F. and D.E. Goldberggepresentantions for Genetic and Evolutionary
Algorithms 2002, Heidelberg, Alemania : Physica.

Toropov, A.A. and A.P. Toropovadjodeling of Acyclic Carbonyl Compounds
Normal Boiling Points by Correlation Weighting of Nearest Neighboring Codes
Journal of Molecular Structure: THEOCHEM, 20631(1-3): p. 11-15.

Shen, M., et al.Development and Validation of K-Nearest-Neighbor QSPR
Models of Metabolic Stability of Drug Candidatedournal of Medicinal
Chemistry, 200346(14): p. 3013-3020.

Duchowicz, P.R., et alApplication of the Replacement Method as Novel
Variable Selection in QSPR. 2. Soil Sorption Coefficie@isemometrics and
Intelligent Laboratory Systems, 20@8(2): p. 197-203.

48



103.

104.

105.

106.

107.

108.

Karelson, M., et alNeural Networks Convergence Using Physicochemical Data.
Journal of Chemical Information and Modeling, 200&5): p. 1891-1897.

Soto, A., et al.A Wrapper-Based Feature Selection Method for ADMET
Prediction Using Evolutionary Computingin Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatick. Marchiori and J.
Moore, Editors. 2008, Springer Berlin / Heidelberg. p. 188-199.

Ravindranath, D., et aQSPR Generalization of Activity Coefficient Models for
Predicting Vapor—Liquid Equilibrium Behaviofrluid Phase Equilibria, 2007.
2571): p. 53-62.

Deb, K., et al.A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-II.
Evolutionary Computation, IEEE Transactions on, 2@)2): p. 182-197.

Agrafiotis, D.K., W. Cedefio, and V.S. Loban®n the Use of Neural Network
Ensembles in QSAR and QSHRurnal of Chemical Information and Computer
Sciences, 200212(4): p. 903-911.

Merkwirth, C., et al.LEnsemble Methods for Classification in Cheminformatics.
Journal of Chemical Information and Computer Sciences, 2048): p. 1971-
1978.

49



CHAPTER 3

A NON-LINEAR QSPR MODEL FOR OCTANOL-WATER PARTITION

COEFFICIENT

3.1. Introduction

The octanol-water partition coefficient {lor log Koy) is used to denote the lipophilicity
of a molecule. It is a thermophysical property that exprabsesatio of concentrations of
a compound in coexisting phases comprised of octanol and water. éeflgtvere the
first authors to review comprehensively the octanol-water tjpartisystem and its
applications. Although lipophilicity has many uses, its importanctnenfield of drug
delivery is paramount. Several researchers have studied the efféipiophilicity on the
biological activity of drugs [2-6] and on their transport properti&8][ Their findings
and many other studies indicate the importance of lipophilicity iretaduation of new

drugs or prodrugs [10].

The experimental procedures for measuring theuwlues are detailed by Sangster [11];
however, only a relatively small percentage of existing corai@echemicals have been
tested experimentally for their o values [10]. This is particularly so for highly
hydrophobic compounds withol values > 18 The low solubility of these compounds
in the aqueous-rich phase rendegg Keasurements difficult to undertake, and therefore,
few values exist at this range. Furtheg, kexperiments are, in general, time and labor
intensive, and they are impractical to carry out for the largebeurof potential drugs
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identified in the developmental stages of drug discovery. As suchea ayasts for
reliable predictive models to determine accurately, Malues without the need for

experimentation. Therefore, this work focuses on the following objectives:

1. Develop an accurate non-linear QSPR model to predict thevElues using a
database made up of diverse set of compounds.

2. Compare the current modeling approach with existing modeling approaciies
literature, on common external set data. This would furtheblestahe efficacy of
the modeling approach used in the work.

3.2. State of the Art in Predicting K, Values

Although rudimentary predictive models fogpKwere established nearly half a century
ago, advances in computational capabilities has led to the morg desxelopment of a
diverse variety of models. An article by Mannhold efE2] lists and compares the state-
of-the-art models available currently for,|K These models for § can be broadly

classified as:

1. Fragment-based methods that divide the molecule into various frag(eéghts at
the molecular or atomic level), and then sum the contributions of thdsadual
fragments to provide the final value. Examples include KowWINedasn the
algorithms developed by Meylan and Howard [10], CLOGP [13], and Ghogpet
models [14-16].

2. Molecular-property based methods that utilize characteristics of tine smlecule to
predict for K. These characteristics are usually referred to as motedesariptors
and are normally calculated from the three-dimensional struofutee molecule or

from the topology of the molecule. Common examples of this model classificagion ar
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QLOGP based on the algorithm by Bodor and Buchwald [17], GBLOGIPobgv

[18], and ALOGPS [12, 19-21].
Fragment-based methods have been highly successful in developimgt@cnodels for
Kow. After comparing the performance of currently available metloodthree different
datasets, Mannhold et ¢lL2] ranked the best methods, which includetyment-based
methods like AB/LogP [22], CLOGP [13] and KowWIN [10]. The fragmieased
methods rely solely on the two-dimensional structure of the mlekecuwas such,
thousands of molecules typically generated in a virtual moleculgndegstem can be
processed in a relatively short period of time. A disadvantagéeofragment-based
methods is the lack of parameter values when a structure candett®posed to sub-
structures for which the fragment values are available [23]. Aadillly, these methods
cannot be used to attach any physical significance to thawtalutactors affecting the

value of the partition coefficient.

The molecular descriptor based methods do not need additional corrfactiors and
provide better physical insight into the factors affecting paatition coefficient.
However, finding the optimal three-dimensional structure of the migeis a time
consuming task, which limits the ability of these methods to hdadje numbers of
molecules in a reasonable amount of time. Most molecular-propasigd methods do
not use all available molecular descriptors, but limit themsehstead to a small subset
of descriptors, which have already been proven to be effective {gtat& indices [24,
25] by ALOGPS [19, 20] and VLOGP [26], topological descriptors by TEJ&/] and

molecular size and H-bonding descriptors by QLOGP [17]. As atydbeke models
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provide little insight in the identification of specific moleaufgroperties that affect the

partition coefficient.

In this work, we propose a non-linear quantitative structure-propaeionship (QSPR)
model for predicting the octanol-water partition coefficient. Tagibpremise of a QSPR
methodology asserts that a thermophysical property to some degdenction of its
structural attributes [28]. QSPR models have been able to pradegssfully a number

of thermophysical properties such as normal boiling point [29-31], mgghdint [32-34],
refractive index [35, 36] and glass transition temperature [37fhAlmolecular-property
based models for ¢ discussed previously represent different types of QSPR models,
where a variety of structural descriptors are employed, ingudianstitutional,
topological, geometrical, electrostatic, quantum-chemical and/ormduasymnamic

descriptors.

Our model utilizes all the descriptors (including three-dimensideacriptors) of the
molecule generated using CODESSA PRO [38]. Nearly 800 descripttwaging to

various classes like constitutional, topological, geometrical,treltatic, quantum-
chemical and thermodynamic were generated for each molétsitegy a wrapper-based
algorithm, we determined that 50 descriptors resulted in an aecoratlel for the

partition coefficient; nevertheless, the pruning of descriptors 86t to 50 is not a
trivial task, particularly in non-linear QSPR modeling. A reaewniew article by Dudek
et al. [39] summarizes the different types of descriptor prureéchniques in use. In

general, these methods fall into two categories:
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1. Filter-based methods: These methods are implemented before tipgngnap the
structural attributes to the property of interest. Some exammpiude methods based
on mutual information [40].

2. Wrapper-based methods: In these methods, the selection of besptdesas
undertaken along with the mapping or the learning step. The errthrei mapped
model is used as the judging criterion for the selection psoc&sme common
examples include sequential forward selection, sequential backwianthation,
genetic algorithms (GA), simulated annealing (SA) and ant colony optionza

The filter-based methods are quite fast but may not result isdieetion of the best

subset of descriptors. A more reliable descriptor subset selgrbordure is observed

with wrapper-based methods, but these methods are slow in the thgak sof the
algorithm. This is particularly true of the stochastic methad$ sas GA, SA and ant
colony optimization. In this work, we propose a novel wrapper-based talgofor the
selection of the best subset of descriptors using an evolutiongoyitiain called
differential evolution (DE) [41], which uses artificial neuralwetks as the non-linear
mapping functions. DE has been proven to be as effective as or better thad @aaais

easier to implement [42, 43].
3.3. QSPR Methodology

The development of a QSPR model involves the following series of: Si@pdata set
generation, (b) descriptor calculation, (c) descriptor reducimh model development,

and (d) model validation. These elements are described below.

3.3.1. Data Set GenerationExperimental octanol-water partition coefficient (logwK

values were taken from the PhysProp database [44] by SyraessarBh. This database
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had experimental log {¢ values listed for 13,553 compounds. Of these, 350 were not
included in the modeling effort because they are either neetathining compounds,
inorganics (compounds without a carbon atom), or isomers of another mokdsolefor

33 compounds, ChemBioDraw Ultra 11.0 (ChemBioOffice 2008 suite) [45] waseunabl
to generate two-dimensional (2D) structures from the moleculesiamthe PhysProp
database [44], thus they were excluded. As such, a total of 13,170 moleaukes
selected for further analysis. However, only 11,308 molecules coutuptimized for
their most favorable (lowest energy) three-dimensional conformatising our
automated procedure. While characterization of this large dataébbeyond the scope of
this work, Hansch et al. [46] have stated that the Lggualues can be experimentally
determined to an average deviation of +0.05 for most solutes. For dblatémve a Log
Kow Value lower than -3 and greater than 6, as well as solutes rinatelatively

insensitive to gas chromatography, the average deviation expected is £0.1.

3.3.2. Descriptor Calculation:Descriptor calculation requires a series of steps common
to all QSPR models. In the current work, ChemBioDraw Ultra 11.0 \|Hg used to
generate two-dimensional (2D) structures for the moleculdseimata set and stored as
.cdx files. These 2D structures were then used to generate threesthnal (3D)
structures. Each 2D structure can be translated into a large nafréi@ conformations;
however, only the conformation with the lowest conformational energynsidered
representative of the natural state of the molecule. When congjdieei multiple minima

of the total-energy curve, finding this 3D conformation is notvaatrtask. Chem3D Pro
11.0 (CambridgeSoft 2008 suite) [45] is a commercial softward asenmonly to

minimize the total-energy of a 3D conformation; however, the softvganot guaranteed

55



to find the global minimum energy conformation. Therefore, an optimaizaising
several initial 3D conformations will have an improved chanceocéting the global
minimum. This process is not integrated into Chem3D Pro 11.0 and retjugreD
structure to be manually reinitialized to a different startagformation each time before
optimization. This operation not only places an increased time aod kéfrden on the
user, but it is not a reliable method of locating the global minimumnalleviate this
problem, we have used an automated strategy for identifying@heonformation with
the least total energy. Chem3D Pro 11.0 was used as the optimigimg,ebut it was
controlled using its Component Object Model (COM) interface withrddicft Visual
Studio 8 (2005) as the back-end. The 3D structures were furthenizgdi using
AMPAC 6.0 [47], and the final optimized structures were provided to CRE}¥PRO
[38] for descriptor calculation. CODESSA PRO has the capaldityenerate over 800
descriptors; however, due to structural complexity, this number magpwer for a
particular structure and for such structures the missing dessripere assigned a zero

value.

3.3.3. Descriptor Reduction and Model DevelopmentThe current approach in
descriptor reduction involves a hybrid strategy, which results moralinear wrapper
based model, where descriptor reduction and model development happearsously.
Specifically, an evolutionary algorithm called differential evalnt{DE) was used as a
wrapper around artificial neural networks (ANNs) to search thar best descriptor
subsets from a large number of molecular descriptors whoses sie@oted as Desc_Sz.
The method begins with an initial population of single or doubles hidderethyyd\NNs

(individuals). The ANNSs in the initial population are assigned randescrgptor subsets
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as inputs. These ANNs then undergo mutation and cross-over operatiossicogssive
generations. In each generation, the ANNs that can accupagglict the target property
are favored over inaccurate ANNs to remain in the population. ThereAdNs in the
later generations are, on average, closer to the global minimum abjdative function.
The subsequent discussion will be a brief introduction to DE and ANNsved by

details on the actual descriptor reduction algorithm employed in the current stud

Differential Evolution (DE):DE is another simple stochastic optimization algorithm
similar to GA and was proposed by Price and Storn [41] in 1994. Tju difierence
between GA and DE is that the former uses probability distribuborsélection of
parents, while in the latter trail vectors are generated. mhles the DE algorithm self-
organizing by reducing the number of parameters that need t@{sefoy the user. The

basic DE algorithm for minimization has the following steps:

1. Randomly generate an initial population of a fixed size, N. Usulaéypopulation
size is heuristically determined based on the dimensionality ofitthess surface
denoted as n.

2. Do the following for successive generations until some stopping criteriortis me

For each vectax in the population the following steps are conducted:

a. Choose three different individuadsb andc that are different from.
b. Pick a random integer R between 1 to n.
c. Generate a trial vectgr={y1, Yo, ...V, ...Yn} by iterating over each i from
lton
» Generate a uniformly distributed random number r between 0O

and 1.
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» If i=R or if r < CR (cross-over number), thenzya + F*(b - ¢),
else y= x;, where F is the mutation factor.
d. If the trail vectory has lower objective function than the original vector
then replace with y.
DE has been successfully applied to various optimization problems sudiead
exchanger network synthesis [48], reservoir system optimizatiolh [@&sign of
temperature profiles for fermentation processes [50] and image @ustering [51].
Despite its popularity in other optimization fields, DE has bgmplied to few QSPR
studies to date, which include prediction of atomic charges by Quetal. [52] and
insulin skin permeability in the presence of chemical penetratidrareers by the

Oklahoma State University group [53].

Artificial Neural Networks (ANNSs)Artificial neural networks are inspired by the brain
and the interconnections between neurons, which form a complex network wher
electrical and other types of signals are exchanged to &eilinctioning of the brain.
Although, much of neuronal function in the brain is still unclear, rebees have been
able to develop ANNs as limited and simplified models for reergaintelligence
artificially. Different types of ANNs exist based on arcbitee, but in view of the
current work, only feed-forward ANNs are relevant and any fueference to ANNS in

the current work refers to feed-forward ANNS.

In a feed-forward ANN, information travels only in the forward clien from the input
nodes to the output nodes. The different layers are connected usgigsaeand biases

which represent the strength of the signal between the differens,nadé these are

58



updated during the learning phase of the algorithm to minimizerntoe between the

network outputs and the network targets.

An important aspect of ANNs is the architecture or design, wéocisists of number of
inputs, number of hidden layers and the number of neurons in each hiddennldaker.
current work, the number of inputs to an ANN is chosen such thattibefaata points
to the number of inputs is at least ten. For most applications, wshgre hidden layer
is adequate; however, choosing the right number of neurons in this heggemay not
be straightforward. Choosing too few hidden neurons might lead to antA&tNs not
flexible enough to encapsulate the complexity of the data and choosingany may
lead to over-fitting and poor generalization. There is no theoréidsis for choosing the
number of hidden neurons and hidden layers, and most researcheral @seltarror for
selection of the architecture leading to the best perform&inee a two hidden-layer
network is capable of reasonable approximation of any non-lineardantitie maximum
number of hidden layers in the current work was limited to two [B84dddition, for each
ANN, the ratio of the number of training data to the number afssalple weights and
biases was ensured to be always greater than two [55]. Thislovee as a precaution

against over-fitting to the training data.

Once, the network architecture has been specified, an ANN isdraime&nown data
before use as a predictive todlhe most popular learning algorithm for feed-forward
ANNSs is the back-propagation algorithm proposed by Rumelhart. €g6®@], which
consists of a forward propagation step and a weight update stepehiapeated until the
network performance is satisfactory. The network weights andsbizame be updated

using several algorithms, but the most popular are the gradiererdesnd Levenberg-
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Marquardt algorithms [57]. However, these algorithms do not guarétagon of the
global minimum; thus, multiple initializations of the program afeen necessary. lyer
and Rhinehart [58] have proposed a multiple initialization method to Berdae
probability of locating the global minimum. This method is built ithe descriptor

reduction algorithm used in the current work.

Another important issue associated with ANN training is ovangitwhich results in
poor predictive capability. Although several methods for avoiding ovarefiexist, in
the current work over-fitting is avoided by application of a traisieg(T) and an internal
validation set (V) with an early-stopping method [59, 60]. The validaroor normally
decreases during the initial phase of training, as does almenty set error; however,
when the network begins to over-fit the data, the error in theat@n set typically
begins to rise. When the validation error increases for a sgkadimber of iterations,
the training is stopped, and the weights and biases at the mininiatioa error are
retained. Although the early-stopping algorithm is easy to undersiad implement,
choosing the right training and internal validation sets is nogktfarward. Ideally, the
training set should be representative of the entire data set, amfd datum in the
validation set should correspond to at least one training datum. Sewathadds exist in
the literature for allocation of the data such as random divisior6f1self-organizing
maps (SOMs) [63, 64], Kennard-Stone design [65] and sphere exclusioithatg[66].
In the current work, the random sphere exclusion algorithm [67] witlpegifeed
dissimilarity level of was used to divide the data into trairang validation sets. The
dissimilarity level was chosen to divide the training and vabdasets in the range 70-

80% and 20-30% of the data samples, respectively.
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During training of the ANNSs in the current work, the inputs and tarfiee experimental
values of the property that need to be modeled), are normatiZzeave zero mean and
unity standard deviation, which ensures that exceptionally largedalescriptors or
targets do not bias the network. The Nguyen-Widrow algorithm is teseditialize
weights and biases, which are updated using the Levenberg-Maraguuiization

technique.

Genetic RepresentatiolA good genetic representation of the solution domain is an
important step in developing an efficient evolutionary algorithm. iBin@presentation is
most widely used due to the direct encoding technique for most prolaectghe
applicability for crossover dependent evolutionary algorithms like GA anfbBJEReal-
valued representations on the other hand are better suiteddathaits like evolutionary
programming (EP) that are dependent upon mutation as the major evolubpesaayor.

In the current work, the solution space is comprised of single hiddenAdNs with all
possible molecular descriptor subsets of a fixed size, ND, as ,imghit$ are determined

by the user at the start of the program. The number of hidden neuronsn ltése
ANNSs lies between a minimum of two and a maximum usuallydfixethree times the
value of ND. An individual chromosome in the solution space is represented as a string of
real numbers (genes) where each number (gene) corresponds ticwdgpatescriptor.

An example of three sample chromosomes with 100 original dessrifitesc_Sz = 100)
and a model size, ND equal to 5, is shown in Table 3.1. Each chromospradaaup of
five genes, where each gene represents a descriptor that ssusednput variable to an

associated ANN, which is subsequently trained to predict the target property.

Binary representation of the chromosomes entails large meraquyrements, and the
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algorithm requires longer convergence times to reach algidhanum when compared
with real-valued representations. The above considerations provide thefdrassing

real-valued chromosomes in the current work.

The Objective FunctionAnother major aspect of an evolutionary algorithm is the choice
of a suitable objective function. In the current work, a wrappesebasodeling approach
is used for simultaneous descriptor reduction and non-linear model deeslbopsing
ANNs. The objective function used for an individual ANN is the mimation of the
root-mean-squared error (RMSE) of the predicted propertyhéotraining set data. The
minimization of RMSE on the training set is achieved by adjustiagveights using the
back-propagation algorithm and the minimization is stopped once the error on ithal inte
validation set increases for six successive iterations of thegrapagation algorithm. In
addition, because of the wrapper type approach of the current wokkjsteesecond tier
of optimization associated with the evolutionary algorithm for selgdhe best ANN
(that has already been optimized) from a large number of ppgsMINs. In general, the
objective function for the second tier of optimization in a wrappeedaescriptor
reduction approach must be selected such that a good estimate afdh@arece of the
underlying linear or non-liner models is achieved. The objective ibmecichosen for
linear QSPR models typically maximize statistical measwsuch as the correlation
coefficient (R) [69], adjusted Rand ¢ [70], and Akaike information content [71]. For
non-linear models, the root-mean- squared error (RMSE) [72, 73] andii@bavkrage
deviation (AAD) [74] are used. In the current work, the training)R}SE was used as

the objective functionf:
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F = RMSE (3.1)

With proper selection of an objective function, an algorithm can beedpplthich
searches for the set of descriptors resulting in an ANN ésatts in a minimum value of

the objective function.

The Algorithm:The flow chart for the algorithm is given in Figure 3.1. Befotecation
of the algorithm, the following parameters are set by the: ag desired number of
descriptors in the model, ND, (b) population size, Pop_Sz, which is usealy 400, (c)
mutation factor, F, is set at 0.75, and (d) crossover factor, C&, a 6.8. The algorithm
has an initialization process that happens once. The individual ANNs parent
population denoted as ‘D’ are initialized with random descriptor sub$size ND. The
j™ gene in the™ individual is represented as D(i,j). The number of hidden layedsthe
number of hidden neurons for each ANN is randomly initialized. Thé&l#\ldre then
trained using a back-propagation, with Levenberg-Marquardt weight ogddgorithm,
resulting in network weights that minimize the RMSElue. To avoid over-fitting the
ANNs to the training data, early-stopping on the internal validageh is used.
Specifically, training is stopped when RMgHecreases for six successive training
iterations. The objective functid for the I" individual in population ‘D’ is denoted as
F{D(i)}. Population ‘D’ then undergoes the DE operations in a singlatien of the
algorithm. Specifically, mutated population ‘TM’ is generatedcbynbining the genes
from three different individuals in population ‘D’. This operation imikr to the
mutation operation in the traditional DE algorithm. Next, the nedtgtopulation ‘TM’
and the parent population ‘D’ are recombined using the recombinatiortiopevathe
traditional DE algorithm. The recombined population is denoted as populet’. The
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ANNSs in ‘M’ undergo training and the f{M(i)} values are calculdt®r all individuals.
The objective function values of the new ANNs are compared with tleetodg function
values of the corresponding ANNSs in population ‘D’ f{if1(i)} is lower than f{D(i)},
then M(i) is considered fitter than D(i), and therefore, M(plaees D(i) in population
'D’. This is denoted as ‘individual competition.’

Creating Ensembles for Final PredictionBNNs are known to be highly unstable, and
their predictive performance is dependent heavily on the trainingatiatdhe training
parameters. Therefore, a single outlier in the training daghtmhave disastrous
implications on the generalization ability of the model. To preteist aggregation or
ensembling of ANNSs is used, where the predictions of differenié\ldre averaged to
result in the final predictions [75, 76]. The ANNSs in the ensembiedd&er with respect
to (a) the training data, (b) weights between the different ngclethe number of hidden
layers and neurons, and finally (d) based on the input descriptong tutrent work, an
ensemble of neural networks was created using networks witathe architecture and
inputs as the best network in the final DE population, but differing irvéhees of the

weights between the different layers.

External Validation:In a recent articlelropsha et al. [55] emphasized the need to
validate QSPR models using external data sets. Also, Mannhdld E2]ehave recently
compared the variousdlg models in the literature using an external public database by
Avdeef [77], which consisted of 266 molecules in total. Of these, 214 metewdre
similar to the molecules in the PhysProp database [44] and chassified as star set
molecules. The remaining 43 molecules were classified as absettmolecules. Since

these molecules were not reported in the PhysProp datasethigcan be used as an

64



external validation set for comparing our model with other modetseiterature. The
performance of the current model on this new dataset would indieatgeneralization

capability of the final model.
3.4. Results

Thirty, 40, 50 and 60 descriptors were evaluated as inputs to the ANNSRVISE
values on the training set generally increased with incieasember of descriptors, but
no significant difference was observed between the models developedsQsamgl 60
descriptors. Therefore, for simplicity, 50 descriptor models were usdhe current
study. From the DE algorithm, 50-33-35-1 neural network architecturefoussl to
result in the least RMSE for the training set data. Neuralarks with the same input
data and architecture as the best network identified using the DR algorithm were
trained with different random initial weights. Of the networkshegated, the five
networks resulting in the least RMSE values in the trainingvee¢ chosen, and their
weights were recorded. The final predictions are calculatedd sas\ple average of the
individual predictions by these five networks. The addition of furtiedworks did not

improve significantly the overall RMSE of the training set.

The RMSE values for the training set and validation set data for the five ketarat the
resultant average network are shown in Table 3.2. In subsequent dissugie
prediction results are from the ensemble network, which is thagaef the predictions

by the five best networks. Comparisons of the experimental and teckdig, values for

the training and validation sets are shown in Figure 3.2 and Figune§p&ctively. The
correlation coefficients (B between the experimental and predicted values for the

training and the validation sets are 0.96 and 0.88, respectively. TamErsRMSE
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values for training and validation sets are 0.28 and 0.38, respectivily the ensemble
MAE values for the training and validation sets are 0.20 and 0.34, resheciA
histogram of the residuals (no figure shown) was plotted, and théuligtn of the
residuals around zero was found to be similar to a normal distribtdroboth the
training set and validation set data. The model predictions framitik for the star and
the non-star sets from the Avdeef test set are shown indsigud and 3.5. The RMSE
for the star-set molecules and the non-star set moleculescalerdated to be 0.57 and
1.01, respectively. A comparison of the performance of the current modbe Avdeef
set with those of the best models in the literature (as repbytéMannhold et al.[12]) is
provided in Table 3.3. The best set of descriptors identified in thentumork is shown

in Table 3.4.

3.5. Discussion

The best network ensemble identified is a combination of twoddyaetworks with fifty
input descriptors each. This ensemble was able to account for 96% andf88%
variation in the training (Figure 3.2) and validation (Figure 3.3, sespectively. The
statistics presented in Table 3.2 justify the use of a neatabnk ensemble as compared
to individual networks. Network 1 in the ensemble had the lowest RMbiE @& 0.329
for the training set, which is nearly 21% higher than the corresppmMSE value of
the entire ensemble (Table 3.2). The different networks in the éfesdrad differing
weights, which produces varying predictions in different regiorteinput space. This

further supports the advantage of ensemble networks over an individual network.

The DE + NN approach employed in the current work has been siutdesdentifying
the best descriptors describing the octanol-water partitioninigyadilmolecules. This is
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evident from the performance of the model on the external validatiofTakle 3.3)
where the RMSE of the star-set was 0.57 and that of the noresteas 1.01. Our model
performs better than 28 of the 34,Kmodels tested by Mannhold et al. [12] listed in
Table 3.3. Of the six models that outperform the current model, four Isnedse
developed using fragment-based approaches, which cannot be applied toesolattul
unknown fragments. ALOGPS [12, 19, 20] and S+LogP [78] are the onlycutate
descriptor-based methods that perform better than the current. MbdeALOGPS [12,
19, 20] model was developed using the DIPPR database and 75 E-stas asdicputs.
The marginally better performance of the ALOGPS model couléttvéuted to the
larger number of input descriptors when compared to the current mddeh anly
employs 50 descriptors. S+LogP [78] was developed using 217 input descapt was
trained using the same database from which the star-set melegale extracted.
Therefore, the better predictions by the S+LogP model could béodhe inclusion of
the same or similar molecules in the training set. Also to tloie,external validation
data set is limited in its size and therefore cannot trulydeel to test the generalization
ability of the current model. Mannhold et al. [12] had also tested3# models using a
Pfizer proprietary dataset of aroud 96,000 compounds. After careflysmsnaf the
performance of the different models, Mannhold et al. [12] reported tlie@tnolecular
descriptor-based methods consistently outperform the fragment-ipasiubds, with
ALOGPS and S+LogP being the best methods. Testing on suchebdrageal data sets
could clearly establish the generalization ability of the model$ bsing the approach
described herein. Also, the current model was built using only gessrigenerated by

CODESSA [38]. Other descriptors such as functional-group descriptatsWHIM
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descriptors (molecular descriptors obtained as statisticatesdif the atoms projected
onto the 3 principal components obtained from weighted covariancecesauf the
atomic coordinates) available in DRAGON [79] could be employethé future to
further improve the model. The model in the current work is purelgirgcal and is
therefore limited in the ability to generalize to systems beytsndpplicability domain.
To remedy this limitation, a theory-based,Kmnodel could be built that utilizes QSPR
generalized activity coefficient models to predict the soliybdf solute molecules in

each of the two phases of the octanol-water system.

Table 3.4 lists the best set of descriptors for the final ensepntbie majority of which
are quantum-chemical descriptors related to the presence of hetero-atbensoidcule.
These descriptors account for the electronegative effectsedhdtero-atoms present in
the molecule. These descriptors were found to be important in Kthenodels in the
literature as well. Specifically, the MLOGP model by Moriguet al. [80] is developed
using 11 descriptors, the majority of which describe the presente @ldctronegative
effects of hetero-atoms in the molecule. Also, these Moriguchid&8¢riptors, with the
addition of descriptors that account for the charge and polarizabilibeaholecule, are

an important part of the S+LogP model [78].
3.6. Conclusions

1. A hybrid algorithm that combines differential evolution algoritiiDE) and artificial
neural networks (ANNSs) provides an accurate predictive modebdtanol-water
partition coefficient that compares favorably with viable literature models

2. An ensemble of neural networks that differ in the values of thghtsibetween

layers provides improved predictive generalizations compared to a sietyork and
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yielded predictions with an%f 0.98 and 0.96 for the training and validation sets of
a database involving 11,308 molecules.

3. The RMSE on the external test set for the current model OM&8 on star set
molecules and 1.01 on non-star set molecules. These results coaymaedlfy with
the other molecular-descriptor-based method such as ALOGPS [12, 19-21]. The
current model performs worse than a few fragment-based methdhde literature;
however, unlike the fragment-based methods, the current model cawploed &o
molecules with unknown fragments.

4. The resulting model from this work can be used to predmtori the octanol-water

partition coefficient of new molecules.
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Start

A

Generate a mutated population (M) using the mutation rule:
Mi; = Daj + F*(Dp, - Dc;)
where F = 0.5

v

Remove insignificant (R?<0.1) and highly
correlated (R?>0.99) descriptors

Generate a target population (T) using the crossover rules:
Ti,j = Mi,j if rand<CR
Ti’j = Di’j if rand = CR
where CR =0.75

y

y

Generate randomly the initial population (D)
comprised of n models

Using the descriptors and the network architecture in each model
of T, train a neural network with Bayesian regularization and
calculate the fitness (Tr_obj;) of each model.

A

Using the descriptors and the network architecture in each model
of (D), train a neural network with backpropagation and calculate
the fitness (In_obj;) of each model.

Select the better of corresponding models in populations, D and T
Di,j = Ti,j if Tr_obji<In_obij;
Di’j = Di’j if Tr_obji=|n_obji

Yes

Is current gen < maximum
number of generations?

Record the
best model

Figure 3.1: Flowchart for the differential evolution algorithm
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Figure 3.2: Comparison between the experimental and predicted values of
Log Kow in the training set
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Figure 3.3: Comparison between the experimental and predicted values of
Log Kow in the validation set
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Predicted Log K,

Experimental Log Ky

Figure 3.4: Comparison between the experimental and predicted
values of Log Ky, for the star set compounds in the external
validation set
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Predicted Log Ky

Experimental Log K,

Figure 3.5: Comparison between the experimental and predicted values
of Log Koy for the non-star set compounds in the external validation set
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Table 3.1: Three sample chromosomes of size five, chosen from a set of 100
descriptors

Chromosome # Input Input Input Input Input
Descriptor Descriptor Descriptor  Descriptor  Descriptor
1 2 3 4 5
Chromosome 1 23 45 54 3 98
Chromosome 2 23 49 22 9 67
Chromosome 3 34 44 1 7 100

Table 3.2: Training and validation set root-mean-squared error (RMSE) value$or
the five best networks and the ensemble

Network Network Network Network Network Ensemble

1 2 3 4 5
Training 0.329 0.343 0.345 0.348 0.350 0.279
RMSE
Validation 0.447 0.450 0.446 0.452 0.462 0.380
RMSE
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Table 3.3: A comparison of the ensemble predictions with available litature
models on the Avdeef test set as determined by Mannhold et al. [12]

Method Star Set (223 molecules) Non-Star set (43 molecules)
RMSE % of Molecules within  RMSE % of Molecules within
Error Range Error Range

<05 05-1 > 1 <0.5 0.5-1 >1
AB/LogP 0.41 84 12 4 1.00 42 23 35
S+logP 0.45 76 22 3 0.87 40 35 26
ACD/LogP 0.50 75 17 7 1.00 44 33 23
CLOGP 0.52 74 20 6 0.91 47 28 26
VLOGP OPS 0.52 64 21 7 1.07 47 28 26
ALOGPS 0.53 71 23 6 0.82 33 28 26
Thiswork 0.57 71 21 8 1.01 37 35 28
MiLogP 0.57 69 22 9 0.86 49 30 21
XLOGP3 0.62 60 30 10 0.89 47 23 30
KowWIN 0.64 68 21 11 1.05 40 30 30
CSLogP 0.65 66 22 12 0.93 58 19 23
ALOGP 0.69 60 25 16 0.92 28 40 33
MolLogP 0.69 61 25 14 0.93 40 35 26
ALOGP98 0.70 61 26 13 1.00 30 37 33
OsirisP 0.71 59 26 16 0.94 42 26 33
VLOGP 0.72 65 22 14 1.13 40 28 33
TLOGP 0.74 67 16 13 1.12 30 37 30
ABSOLV 0.75 53 30 17 1.02 49 28 23
QikProp 0.77 53 30 17 1.24 40 26 35
QuantlogP 0.80 47 30 22 1.17 35 26 40
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Table 3.3 (cont'd): A comparison of the ensemble predictions with availabl
literature models on the Avdeef test set as determined by Mannhold at [12]

Method Star Set (223 molecules) Non-Star set (43 molecules)
RMSE % of Molecules within  RMSE % of Molecules within
Error Range Error Range

<05 051 >1 <05 051 >1
SLIPPER-
2002 0.80 62 22 15 1.16 35 23 42
COSMOFrag 0.84 48 26 19 1.23 26 40 33
XLOGP2 0.87 57 22 20 1.16 35 23 42
QLOGP 0.96 48 26 25 1.42 21 26 53
VEGA 1.04 47 27 26 1.24 28 30 42
CLIP 1.05 41 25 30 1.54 33 9 49
LSER 1.07 44 26 30 1.26 35 16 49
MLOGP 126 38 30 33 156 26 28 47
(Sim+)
NC+NHET 1.35 29 26 45 1.71 19 16 65
SPARC 1.36 45 22 32 1.70 28 21 49
MLOGP 152 39 26 35 245 23 30 47
(Dragon)
LSER UFZ 1.60 36 23 41 2.79 19 12 67
AAM 1.62 22 24 53 2.10 19 28 53
HINT 1.8 34 22 44 2.72 30 5 65
GBLOGP 1.98 32 26 42 1.75 19 16 65
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Table 3.4: The list of the best set of descriptors identified in thiwork

No Name of the Descriptor Type of Descriptor

1 Number of I atoms Constitutional

2 Randic index (order 3) Topological

3 Number of N atoms Constitutional

4 Relative number of F atoms Constitutional

5 HACA-1 [Zefirov's PC] Electrostatic

6 Min electroph. react. index for a Br atom Quantum-chemical
7 f;\;?jreargle) Complementary Information Conteml'opological

8 Number of N atoms Constitutional

9 Complementary Information content (order 1) Topological

10 Relative number of | atoms Constitutional

11 Number of O atoms Constitutional

12 Max net atomic charge for a H atom Electrostatic

13 Number of atoms Constitutional

14 Max bond order of a C atom Quantum-chemical
15 Relative number of N atoms Constitutional

16 Number of O atoms Constitutional

17 Min resonance energy for a Br-C bond Quantum-chemical
18 Information content (order 2) Topological

19 min(#HA, #HD) [Quantum-Chemical PC] Quantum-chemical
20 Vib heat capacity (300K) Thermodynamic
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Table 3.4 (cont’d): The list of the best set descriptors identifieth this work

No Name of the Descriptor Type of Descriptor
21 Avg bond order of a O atom Quantum-chemical
22 Min e-n attraction for a C-S bond Quantum-chemical
23 I\Pﬂgj( partial charge for a N atom [Zefirov's Electrostatic
24 Max nucleoph. react. index for a O atom Quantum-chemical
25 Max e-n attraction for a H-N bond Quantum-chemical
26 count of H-donors sites [Zefirov's PC] Electrostatic
27 Translational entropy (300K) / # of atoms Thermodynamic
28 (1/6)X GAMMA polarizability (DIP) Quantum-chemical
29 Min e-n attraction for a CI-N bond Quantum-chemical
30 DPSA-3 Diff(?rence in CPSAs (PPSA3- Electrostatic

PNSA3) [Zefirov's PC]
31 Min n-n repulsion for a Br-C bond Quantum-chemical
32 Min electroph. react. index for a N atom Quantum-chemical
33 Max n-n repulsion for a H-N bond Quantum-chemical
34 Kier shape index (order 2) Topological
35 Max e-n attraction for a C-S bond Quantum-chemical
36 Max total interaction for a H-O bond Quantum-chemical
37 Exch. eng. + e-e rep. for a C-H bond Quantum-chemical
38 Min e-e repulsion for a S atom Quantum-chemical
39 Max atomic state energy for a F atom Quantum-chemical
40 Max total interaction for a F-P bond Quantum-chemical

79



Table 3.4 (cont’d): The list of the best set descriptors identifieth this work

No Name of the Descriptor Type of Descriptor
41 Min e-n attraction for a C-Cl bond Quantum-chemical
42 Max resonance energy for a N-O bond Quantum-chemical
43 Max e-n attraction for a H-P bond Quantum-chemical
44 Exch. eng. + e-e rep. for a N-N bond Quantum-chemical
45 Max e-n attraction for a N atom Quantum-chemical
46 Min e-n attraction for a O-Si bond Quantum-chemical
a7 Max e-n attraction for a O atom Quantum-chemical
48 Min n-n repulsion for a C-P bond Quantum-chemical
49 Max total interaction for a F-P bond Quantum-chemical
50 Min e-n attraction for a H-S bond Quantum-chemical
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CHAPTER 4

A NON-LINEAR QSPR MODEL FOR MELTING POINT TEMPERATURE

4.1. Introduction

Melting point (MP) is the temperature at which the solid and lighiases of a substance
co-exist in equilibrium. These temperatures are invariabported at atmospheric
pressure. MP is an important property for identifying compounds andrfalyzing
purity. In addition, MP is used for predicting aqueous solubiliti¢sdadiling points [2]
and eutectic compositions [3]. Aqueous solubility has enormous prasiticaficance in
the pharmaceutical industry for predicting the bioavailabdgityl toxicity potential of

drugs.

The solid structural form of any compound is held together by molesukractions
such as ionic, polar, dispersion and hydrogen bonding, which are enthatess, fand by
positional, expansion, rotational and conformation flexibilities, whieheatropic forces
[4]. Melting occurs when the thermal agitation inside the sobdercomes these
enthalpic and entropic forces. Thermodynamically, at the meltingt dgj, the Gibbs

free energy of phase transition becomes zero, which is expressed
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AGy, = AH,, — TpASy, = 0 (4.1)

AH,, (4.2)
Ty = ——
AS,,

where,AHp, reflects the enthalpic forces an&,, reflects the entropic forces. Melting of
a substance occurs when the Gibbs free energy of the liquid stabe clubstance

becomes lower than its solid state.

Inorganic compounds generally have high melting points due to thegstlectrostatic
forces between the constituent ions. The strongest intermolefaree generally
exhibited by organic compounds is intermolecular hydrogen bondinghwshrelatively
weaker than electrostatic forces. Therefore, organic moleculksmelt at lower
temperatures than inorganic compounds [5]. For large molecules, howeverednduc
dipole interactions become significant and can impact the crystadture [6]. Further,
molecular motion, categorized into oscillations or thermal libratimw;jentations, and
phase transitions, can also influence the structure of the cayslahffect the melting
point [7]. All atoms in a molecule undergo oscillations, which becoigeificant at
higher temperatures. Some groups of atoms in a molecule or sosdétmevhole
molecule can undergo rotations or translations even at temperaturéeléw their
melting points. If these reorientation motions become too easy fretpeent, the crystal
structure becomes plastic or pre-liquid-like [7]. Some substasdabit polymorphism
where the compound can crystallize in many different cryfstahs and, due to the
polymorphism, these substances do not necessarily have only ong aéfsrdd melting
point [6]. These phase transformations are usually difficult to vbserd the stability of
each phase is not understood clearly. Brown and Brown [8] providedadigmission on
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the thermodynamic aspects of melting and the effects of wtalcsymmetry and

flexibility on melting.

The models available in the literature for predicting the MP galue discussed in the
next section. The majority of these models are developed usirnigdichata, and hence,
their general applicability is limited. In the current work,0ef§ have been made to
develop QSPR models with much wider applicability using a much larger datakdBe of

values. This work focuses on the following objectives:

1. Develop an accurate non-linear QSPR model to predict the MP vabieg a
database made up a diverse set of compounds.

2. Compare the current modeling approach with existing modeling approaciies
literature on common external set data. This would furtheblestathe efficacy of
the modeling approach used in the work.

4.2. State of the Art in Melting Point Prediction

Despite the relative ease of measuring accurately melting poipetatures, modeling of
MP has historically been one of the more difficult propertiesdadeh This is due largely
to the effect of secondary structural effects such as ioteoular hydrogen bonding and
polymorphism, as discussed above. Hughes et al. [9] compared thetipeedccuracies
of models for octanol-water partition coefficients (Log,k MP and aqueous solubility
and reported that MP models are significantly less reliakd@ #ither Log K, or
solubility models. Bergstrom et al. [10] and others [6, 11] have sugigistethis lack of
accuracy is due to the inability of the currently available mdée descriptors to

describe the crystal structure of various compounds.
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The earliest model for melting point prediction was developed It M 1884 [12],
after which the majority of MP models have been based on eitbap-gontribution
methods (GCM) or quantitative structure-property relationship (QSRRthods.
Katritzky et al. [5] provide a good review of the different apphas for melting point
modeling prior to 2001. In GCM approaches, any molecular property is assumed to be the
sum of contributions from predefined groups of atoms in that molecllack@and Reid
[13] developed one of the earliest GCM approaches for predictiorelbing points and
boiling points along with other physical properties. Later ConstantamaliGani [14]
developed a GCM approach based on UNIversal Functional ActivitgffiGents
(UNIFAC) groups that lead to better correlations than a sing@M approach by
considering second order group interactions. Wang et al. [15] have irdpitterésCM
approach by taking into account position group contributions along withaficssecond
order group contributions. The average deviation of prediction for theirlmadel4.5

K as opposed to 29.3 K and 27.8 K for the models by Joback and Reid [13], and
Constantinou and Gani [14], respectively. Simamora and Yalkowsky [16] e
group contributions along with rotational symmetry (which is a aaditive and non-
constituent molecular property) to develop a model with a standardideved 37.5 K
for 1690 compounds. Yalkowsky and coworkers [17-20] have estimated meltimg poi
from the ratio of enthalpy and entropy of melting. Enthalpy of ingeltvas estimated
using GCM approaches [20], while entropy of melting was estanaseng two sets of
parameters. The first parameter set [17, 20] included moleguianstry, ¢ (indicates
the number of identical images that can be produce by rigidawtat the molecule) and

molecular flexibility, T (empirically derived from the number of twist angles present i

92



the molecule). The second parameter set [19] was eccenti¢agcounts for entropy of
expansion) and spiralityp (accounts for entropy of configuration). The models
developed using only the molecular symmetry and flexibility numinesse able to
predict the entropy of melting with an average error of 21% for ®f@pounds [17].
When this model was coupled with the GCM model for enthalpy dfrmgethe resulting
absolute average errors in melting point for a test set of 120 compaasd3t K [18].
Also, the models for entropy of melting based on eccentricitysandlity were able to
reduce the average absolute error on the melting points for setest 106 compounds
by 52% (from 90 K to 43 K) [19]. The GCM approaches suffer from nthgadvantages
such as their inability to (a) model structures containing undefuredional groups, and
(b) account for the interaction between different functional groups anthéir spatial

arrangement.

In QSPR approaches, the entire molecule is parameterized uslaguhar descriptors
that are calculated using molecular mechanics or quantum medhanéthods.
Bergstrom et al. [10] have built a QSPR model based only on the @Bxamolecular
descriptors that were able to account for 63% of the variation imnggloint data. This
same data set was employed by Deeb et al. [21] to develop aovedpmodel using
genetic algorithms (GAs) and atrtificial neural networks (A)NThis model could
account for 70% of the variation in the melting point data and had apoadioot-mean
squared error (RMSE) of 36 K. Modarresi et al. [4] have used thgsBém et al. [10]
training dataset along with stepwise regression and geneicitams for descriptor
selection. Their final model was comparable to the Bergstroal. ¢1.0] model in its

accuracy. Karthikeyan [6] put together a large melting point bdat&a of 4,173
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compounds, which is, to date, the most diverse database used for npaltirig
prediction. Further, the author employed the 277 drug-like molecules udgertpstrom
et al. [10] as an external test set to gauge the pneglipgrformance of the models.
Principal component analysis (PCA), along with ANNs, was used dé&scriptor
reduction and model development. The resulting model had a mean absolu(®AE)
of 32.6 K. Several other researchers have utilized the Karthikjadata set with
differing techniques for descriptor selection and model developmehtasi& nearest
neighbor regression with genetic parameter optimization [22],ndries of extreme
learning machines [23], and atrtificial ant colony algorithms [24le RMSE on the

internal test set for these models range from 45-49 K.

Recently, Godavarthy et al. [25] have developed a QSPR model dtiingn point
prediction using symmetry descriptors. They report an RMSE wlli@ K on a training
set of over 1200 molecules; however, the calculation of symmetry narhiasrbeen
performed manually in this work, as the rules used to evaluatsytheetry numbers
cannot be translated into programming languages. This plas®ie dimitation on the
applicability of this model, particularly in automated evaluatiorhefgroperties of new
molecules. Apart from the general models mentioned above, tleeothar models in the
literature that are applicable only to restricted classesmpounds such as alkanes [26],
aldehydes [27], ketones [27], amines [27], substituted benzenes [28], and gatatad
biphenyls [29]. These models will not be discussed further, sincebjeetive of the
current study is to develop a generalized melting point modelctratbe applied to a

diverse structural range of compounds.
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4.3. QSPR Methodology

The development of a QSPR model involves the following series of: Si@pdata set
generation, (b) descriptor calculation, (c) descriptor reduction andl tmaisheng, and (d)

model validation. These elements are described below.

4.3.1. Data Set Generation:Experimental melting point values of 4,173 organic
compounds, ranging from 287-665.5 K were taken from the articlednthiKeyan [6].
To date, this is the most comprehensive open-literature datalmksdi/for MP values.
From this database, we have removed compounds that are salts| as e@hpounds
that are stereo-isomers of other structures in the database. pfiming of the
Karthikeyan database resulted in 3,878 melting point data. Addiyonake have
included 952 melting point values from other sources [14, 16, 30-33] to furthen dre
diversity of the database. The resulting OSU database isrisethpof 4,830 melting
point data; however, 43 of these molecules could not be optimized sitlyctor the
most favorable (lowest energy) three-dimensional conformation umingautomated
procedure. The melting points of the resulting 4,787 molecules ramme74-662.15K.
(Figure 4.1 provides the distribution of MP data). The molecular Meigf these
compounds vary from 16.05 g/mol to 786.04 g/mol, and the octanol-water partition
coefficient Ky, (calculated by the DRAGON [34] software using the Ghose-Cnippe
ALOGP model) varies from -8.7 and 15. Details on the database tdraraiton are
given in Table 4.1. This principal dataset was used for training thelntag¢her, the
molecules in the database are also characterized based on tngpiikeiness as

calculated using DRAGON [35] (Table 4.1). A score of 0 implies tiia molecule has
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no characteristics of a drug, while a score of 1 implies tlmdecule has all the

characteristics of being a drug.

In addition to the principal dataset, another set of 277 compounds wasousatefnal

validation. This dataset is the same as the external tegsag by Karthikeyan [6] and
was originally composed by Bergstrom et al. [10]. The purpose ofddtisset is to
provide a reliable estimation of the generalization capabilitypredictive capability of

the final model.
4.3.2. Descriptor Calculation:See section 2.5.
4.3.3. Descriptor Reduction and Model Developmentee section 2.6.

External Validation:In a recent articleTropsha et al. [36] emphasized the need to
validate QSPR models using external data sets. In the cwoglt a dataset of 277
molecules as identified by Karthikeyan [6] was used as therreattvalidation set. The
performance of the current model on this new dataset would indieatgeneralization

and predictive capability of the final model.
4.4. Results

10-descriptor, 15-descriptor, and 20-descriptor-models were tested, lmignikcant
difference was observed among the models. Therefore, forakkee o simplicity, 10-
descriptor models were used in the final models in the current. dtisityg less than 10
descriptors resulted in a significant increase in the trgiRMSE values for databases
made up of more than 150 data points. Figure i4.22 comparison between the
experimental and predicted melting point values for the data in ihegal dataset. As

can be expected from the distribution of melting point data (Figure #héd)deviation
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between the predictions and the experimental values is the lowwesbrhpounds with
melting points in the range 300-600 K, and the deviation becomes progne$sgredr
beyond this interval. The correlation coefficient’Pbetween the experimental and
predicted values is 0.86. The prediction residual errors are plottadure .3, which
demonstrates that the residuals are distributed normally eatd¢pmperatures beyond
550 K where the residuals show a distinctive downward bias. FurthéRMB& and the
MAE values for the principal dataset predictions are 39.5 K and 30.2 K, respeclively
RMSE values for the individual ensembles range from 40.0 K to 41.6 Kdddwziptors
used for creating the eight different ensembles are shownhble Ba2. Note that the
neural networks in the ensembles are allowed to have a maximumetifelputs, but
most frequently have a lower number. The descriptors FO1[C-NJ,.S34, RBN, and Hy
are common to all the ensembles, while the descriptors CIC3, NaB&; ATSC1i, and
IC4 also occur frequently. The types and physical meaning of do@seonly occurring

descriptors are extracted from the DRAGON [33] help file and provided in Table 4.3.

The comparison between the experimental and the predicted mptings for the
external test set is provided in Figure 4.4, where the ctdcul® value is 0.43,
signifying considerable differences between the calculatedtfze experimental values.
The RMSE and MAE values for the external set predictions are Klabd 33.9 K,
respectively, which are only slightly higher than the correspondaiges for the
principal dataset. The corresponding RMSE values for the individuaméles range

from 41.8-45.0 K.
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4.5. Discussion

For his model, Karthikeyan [6] reports MAE values of 37.6 K and 39.8 kh#otraining
and internal validation sets, respectively; however, the MAEh®rcurrent model over
the much larger principal dataset is 30.2 K, which is signifigalotiver. These error
levels are considerably higher than the typical experimentat ef 1-2 K reported for
organic compounds, which suggest that the MP temperatures are harcetateavith
the existing molecular descriptors. Table 4.4 compares the poedset error in this
work with the errors calculated for other models in the litgeathat have used the same
prediction set. Except for the linear model by Bergstrom efl4l], the remaining
models, which are all non-linear in nature, have statisticatlitas RMSE values for the
prediction set. The important difference, however, is the numbdesiriptors used in
the final model; this model employed 27 different molecular detecs across eight
ensembles, whereas the model by Karthikeyan [6] is made up oin2ggpl components
comprising more than 100 different molecular descriptors and, theraforeore
complex. An interesting aspect of the melting point ensemblesedréa the present
work is the narrow difference in RMSE values between the bekirpeng ensemble
and the worst performing ensemble. The best performing ensemble hatiSdhdR 41.8
K as opposed to 45 K for the worst predicting ensemble. Consequentlyiffdrence
between the average ensemble and the best ensemble is minimaodidibe attributed
to the lack of molecular descriptors that can encode accurdtelyintermolecular

interactions or the crystal structure of the molecule.

Also of significance is the observation that the current modelrginever-predicts for

compounds that melt at lower than 425 K and under-predicts for tempseraiginer than
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425 K. This is the reason for the downward bias observed in tliiaésior MP values
higher than 550 K in Figure 4.3. This is a trend also observed by Kawdhiké}y Nigsch
et al. [22] and Bhat et al. [23] and could be explained, in part, bpwer numbers of

high- and low-melting molecules in the database employed in the current work.

Table 4.2 lists the most common descriptors across the eighedifiensembles, which
surprisingly are all 2D descriptors or constitutional descriptodgpendent of the 3D
conformation of the molecule. Karthikeyan [6], in his article reports a sitnéad in that
the 2D descriptors performed better than 3D descriptors in predwmfiorelting point
temperatures. The physical meanings of some descriptors in Fablkere difficult to
interpret, such as the 2D autocorrelation descriptors and the taadlagformation
indices; however, the common occurrence of these descriptorsfindheodel implies
that the melting point is correlated with the 2D shape of the mleleand presence of
electronegative groups in the molecule. Other common descriptors sier ¢a
understand, like FO1[C-N] which represents the number of C-N bonds indlieeute,
Hy which represents the hydrophilicity and nDB which representauh®er of double
bonds in the molecule. Hydrophobicity or hydrophilicity, electronededssiand partial
charges have been found to be important molecular descriptorstimkégan’'s model
[6] as well. An interesting descriptor in Table 4.3 is RBN whiepresents the number of
bonds in the molecule that can be freely rotated around them. Thigptesds
theoretically similar to the molecular symmetry numlgrpgroposed by Yalkowsky and

coworkers [17, 19, 20] to model the entropy of melting.
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4.6. Conclusions

1. A non-linear QSPR model for melting point temperature was develoged)
wrapper-based descriptor pruning techniques.

2. The RMSE on the external test set for the current model was 42hBi&gh compares
favorably with the value of 41.4 K for Karthikeyan's model [6]; howetles,number
of descriptors used in the current work is 27 as compared to more than 100
descriptors used by Karthikeyan.

3. According to the current work, the 2-dimensional shape of the molecule,
hydrophilicity of the molecule, and the presence of electronegahiaeges in the
molecule have an effect on the melting point temperature. Futtteemumber of
rotatable bonds in the molecule is important in determining the MP temperature.

4. Like other literature models for predicting MP temperatutes,current model has
relatively high prediction errors due to the lack of descriptbet tan encode
effectively the intermolecular forces and crystal structure infoomat

5. The resulting models from this work can be used to predutori the melting point

temperatures of new molecules with reasonable accuracy.
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Table 4.1: Characteristics of the principal dataset made up of 4,787 molecules

Standard
Molecular Property Minimum  Maximum Mean

Deviation
Melting point (K) 74 662.15 398.8 101.9
Molecular weight (g/mol) 16.05 786.04 279.4 117.7
Octanol-water partition

-8.7 15.0 2.6 2.3

coefficient (Log Kow)
DRAGON drug like score (0-1) 0.26 1.0 0.82 0.11
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Table 4.2: List of the descriptors used in the final eight ensembles

Desc;iptor Ensemble 1 Ensemble2 Ensemble3 Ensemble4 Ensemble 5nsdimble 6 Ensemble 7 Ensemble 8
1 FO1[C-N] FO1[C-N] FO1[C-N] FO1[C-N] FO1[C-N] FO1[C-N] FO1[C-N] FQT{N]
2 GATSl1e GATSle GATSle GATSle GATSle GATSle GATSle GATSle
3 RBN RBN RBN RBN RBN RBN RBN RBN
4 Hy Hy Hy Hy Hy Hy Hy Hy
5 CIC3 NdssC NdssC NdssC CIC3 CIC3 CIC3 CIC3
6 nDB C-040 SP02 SpPos_B (p) nDB nDB Morlle C-040
7 nHACC IC4 IC4 IC4 RFD P—VFS,AZLOQ VR3.Dz(Z) RDFO015m
8 SM3_Dt ATSCI1i ATSCI1i ZM1Per SM2_ B (p) SM2_B(p) ATSCI1i SM3_Dt
9 IAC SpAbs_B(p)  EE_B(e) WIA GID  WIA_G/D P—VF?AZ"OQ ARR
10 - - - - P—VFS)f‘ll—LOQ - - -
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Table 4.3: Physical meaning of the commonly occurring descriptors in the
ensembles

Descriptor

Descriptor Type

Physical Meaning

FO1[C-N] 2D atom pairs Number of Carbon-Nitrogen (C-N) bonds in the molecule.

Geary coefficient, calculated from molecular graph by
summing the products of atomic Sanderson
2D electronegativities of the terminal atoms of all the paths of

GATSle autocorrelation unit path length. Geary coefficient is a distance-type
function varying from zero to infinite. Strong spatial
autocorrelation produces small values of this index.
Number of bonds which allow free rotation around

I themselves. These are defined as any single bond, not in a
Constitutional . .

RBN indices ring, bound to a r_lontermlnal heavy atom. Exclu;leo! from
the count are amide C—N bonds because of their high
rotational energy barrier
A hydrophilicity descriptor defined by Todeschini et al.

Hy Molecular [82] based on the number of hydrophilic groups (-OH, -

property SH, -NH), the number of carbon atoms and the number of
atoms excluding hydrogen.
A topological information index calculated for an H-
included molecular graph and based on neighbor degrees
and edge multiplicity. It is calculated by partitioning graph
Topological vertices into equivalence classes; the topological
IC4 information equivalence of two vertices is that the corresponding
index neighborhoods of the 4th order are the same. The vertex
neighborhood can be thought of as an open sphere
comprising all the vertices in the graph, such that their
distance from the considered vertex is less than 4.
The Complementary Information Content (CIC3)
Topological measures the deviation of the information content IC3
CIC3 information from its maximum value, which corresponds to the vertex
index partition into equivalence classes containing one element
each.
NdssC ':ttgtren-i;y dpigez_ Number of atoms of type dssC
nDB dConstlltutlonaI Number of double bonds in the molecule
escriptor
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Table 4.3 (cont’d): Physical meaning of the commonly occurring descriptors ithe

ensembles
Descriptor Descriptor Physical Meanin
p Type y g
Centered Broto-Moreau correlation, calculated from
ATSCLi 2D molecular graph by summing the products of ionization
autocorrelation potentials of the terminal atoms of all the paths of unit

path length.

Table 4.4: Comparison of the current model with literature models on théasis of
predictions for 277 drug-like molecules

No. of Descriptors RMSE MAE

Researchers Model Type Used in the Model (K) (K)

27 descriptors
across eight 42.5 33.9
ensembles

Stochastic optimization

This work and ANNs

26 principal

Principal component
components made

Karthikeyan [6] Zrl]\lal\llysSIS (PCA) and up of more than 41.4 32.6
100 descriptors
Bergstrom et al.  Partial least squares 121 descriptors 49 8

[10] (PLS)

Genetic algorithms and 146 descriptors
Nigsch et al. [22] k-nearest neighbor (k- across 15 nearest 42.2
NN) neighbors
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CHAPTER 5

A NON-LINEAR QSPR MODEL FOR GIBBS ENERGY OF FORMATION
5.1. Introduction

A frequent problem encountered by chemists is the inabilietermine if a particular
compound can be synthesized using certain reaction principles. Furthietyah design
paradigms, whether a designed compound can exist at a spdeifigerature and
pressure is often in question. The solution to these problems is bagedinderstanding
of the thermodynamic potentials of the reactants and products involhtkd compound
synthesis. These thermodynamic potentials are the driving flmca#§ natural processes
to their equilibrium states [1]. Free energy, which is usualpressed as the Helmholtz
function, A, or the Gibbs function, G, is a measure of the thermodgnaotential, and
consequently, is an important property in thermodynamics [2]. Thehdéttorfunction is
generally applied to a system with constant number of parttel@perature, and volume
(constant NVT), whereas the Gibbs function is generally afpdicto a system with
constant number of particles, temperature and pressure (constant 8iRGg most

experiments are carried out at constant temperature and presthee,
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Gibbs function, also known as the free enthalpy, is the commonly useddoepresent

the free energy [2].

Consider the formation of a compound P from its constituent elemeatrsdRR.

n;R; + n,R, &P (5.2)

where, i and n are the number of moles of Bnd R, respectively.
At a given temperature, the equilibrium constant of this equationbeawritten as
follows:

(P)

K= Rom. Ry

(5.2)

where, K is the equilibrium constant for the formation reaction. Thermodyraiwnithis
equilibrium constant is related to the change in Gibbs fregeriaGy) in the following

manner:
AG¢ = —R * T * In (K§) (5.3)

where, R is the molar gas constant and T is the temperature.

According to Equation 5.2, the equilibrium for the reaction (Equation 5liLpb&vshifted
to the right if K is greater than 1, and shifted to the left jfiless than 1. Considering
the relation betweenKandAG; from Equation 5.3, a negative value &&; implies the
reaction is shifted to the right, and a positive valuAa®f implies the reaction is shifted
to the left. In other words, a compound is stable if the valuaGyfat that particular

temperature is negative. In addition, for a reaction system involpnegucts and
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reactants, the Gibbs free energy of the reaction is equal suthef the free energies of
formation of the reactants subtracted from the free energiesnoation of the products.
For example, consider a reaction where C and D react to forppraéldeicts F and G as

shown:

C+DoF+G (5.4)

The free energy of the above reaction is written as:

AGreaction = AGer + AGgg — AGgc — AGyp (5-5)

This free energy of the reactidtGeaciionCan then be used to estimate the equilibrium of

the reaction shown in Expression 5.4.

The preceding discussion illustrates the importance of the Gisb®frergy of formation
for estimating the stability of a compound relative to its etgseand for estimating the
position of equilibrium for a given reaction. However, experimentardenation of the

free energy is difficult, particularly for systems with nplE# minimum energy

configurations separated by low-energy barriers [2]. Further,component properties
such as entropy and chemical potential are difficult to meaf\se, other popular

computational techniques such as molecular dynamics (MD) and Monle E4C)

simulations are impractically expensive to carryout for pure systems [3].

Therefore, a need exists for models that can reliably predetGibbs energy of
formation values for a wide range of compounds. The models avaitatie iiterature
for predicting the Gibbs energy of formation are discussed innéx¢ section. The

majority of these models are developed using limited data, and,héete general
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applicability is limited. In the current work, efforts have been maddevelop QSPR
models with much wider applicability using a much larger databfssibbs energy of

formation values. This work focuses on the following objectives:

1. Develop an accurate non-linear QSPR model to predict the Gilebgyeof formation
using a database made up of diverse set of compounds.

2. Validate the current modeling approach by employing an extersal set of
compounds that has not been used to develop the model.

3. Compare the current modeling approach with existing modeling approaciies
literature, on common training and external set data. This woultefuestablish the
efficacy of the modeling approach used in the work.

5.2. State of the Art in Predicting the Gibbs Energy of Formation

The earliest work involving Gibbs energy of formation modeling gaased out by van
Krevelen and Chermin [1], who used the group-contribution (GCM) approaciirntaee

the Gibbs energy with a mean average error (MAE) of 3.1 kcaibméhe entire training
data (data that has been used for model development) set. Jobackdijped an
improved GCM approach and reported a MAE of 1.01 kcal/mol on a traintagsdtof

328 compounds. Constantinou and Gani [5] have further improved the GCM approach by
including second-order group contributions, and they report a MAE value of 0.78
kcal/mol for their model on the training data. Mavrovouniotis [6] hasl @» analogous
GCM method to model the energy of formation of biochemical compoundgueous
solutions. More recently, Ivanciuc et al. [7] have employed informationytfadong with
guantitative structure-property relationship (QSPR) modeling technigqoiesevelop a

model for predicting the free energy of alkanes betwegan@ G,. Wang et al. [8] have
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used a relatively more diverse set of 180 small to mediund siganic molecules (with
less than 10 carbon atoms) and employed the density functional {B&orywith neural
network corrections to model the Gibbs free energy. Their best neeinabrk had a
root-mean-squared error (RMSE) of 3.1 kcal/mol on an externadd¢esf 30 molecules.

In another recent work, Yan [9] developed a QSPR model for fregyehased only on
the 2-dimensional (2D) descriptors of the molecules, and it engplthge same set of
compounds as Wang et al. [8], except for three compounds that wereeddeem
incompatible with their descriptor generation software. Yan’'s mf@elas built using
Kohonen’s self-organizing neural networks and produced a mean absolut@vekey

of 11.2 kcal/mol for an external test set (data that has not besh fos model

development) made up of 27 molecules.

5.3. QSPR Methodology

The development of a QSPR model involves the following series of: Si@pdata set
generation, (b) descriptor calculation, (c) descriptor reduction andl tmaitheng, and (d)

model validation. These elements are described below.

5.3.1. Data Set GenerationExperimental Gibbs energy of formation;, values at

298K for 1,126 organic compounds were taken from the chemical properties handbook
by Yaws [10]. Of these compounds, the structures for four molecules wotube found

and the descriptors for 14 other molecules could not be calculatedtheimiRAGON

[11] software. Therefore, the final database used for modeling ipas®ed of 1,108
molecules. To date, this is the most comprehensive databasabbddr AG; values.

The AGt values of the molecules in the final OSU database lie inatiiger-1970 kJ/mol

to 665 kJ/mol (Figure 5.1 provides the distributiom/A@; data). The molecular weights
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of these compounds vary from 16.05 g/mol to 446.74 g/mol, and the octanol-water
partition coefficient K, (calculated using the Ghose-Crippen ALOGP model in
DRAGON [11] ) varies between -2.9 and 9.8. Additionally, the molecules ar
characterized based on their drug-likeness as calculatedDRAGON [11]. A score of

0 implies that the molecule has no characteristics of g druite a score of 1 implies the
molecule has all the characteristics of being a drug. Fudbgils on the database

characterization are given in Table 5.1.

In addition to the above data sets, additiax@] data of 180 diverse organic compounds
were extracted from the article by Yan [9], which were ioally taken from the
Chemical Properties Handbook [10]. Henceforth in this work, thiswiditbe referred to
as the Yan's database to differentiate it from the OSU skttaTo validate the current
modeling approach, Yan's data were used to develop a QSPR modedict theAG;
values and the resulting model was compared with the prediction reguftan.[9]. To
ensure a fair comparison, the same training and external tastrdployed by Yan were

used in the current work.

5.3.2. Descriptor Calculation:See Section 2.5

5.3.3. Descriptor Reduction and Model Developmenee Section 2.6

External Validation:In a recent articleJropsha et al. [12emphasized the need to
validate QSPR models using external data sets. Therefore, anutdet was built by
separating some data from the original database and allpdatm an external test set.
However, the data cannot be randomly separated, as the externalight not be
representative of the training set. Therefore, a self-organimap (SOM) network was
created using the best descriptors identified in the first drisemvhich was developed
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using the entire database. This SOM was used to identify dustdre data and partition
the data into T, IV and IT sets as explained in Section 5.3.3. The nomip&p units in
this SOM was varied until the percentage of data points in the IT set &stl %% of the
size of the entire final data set of 1108 molecules. This I'wastthen set aside as an
external test set and the remaining data was used for devekptizer modetle novg
by repeating the search for the best descriptors, best netvabrikeature and network
weights. In the current work, 177 molecules were identified as t@nnex test set using
this procedure, and the remaining 931 data points were again divided iManid IT
sets and subjected to the descriptor search algorithm as dés¢nsSection 5.3.3. For
clarity, in this work, the model created using all 1108 data pointgrdoring will be
referred to as Model 1 and the model created using just the 93paiiats as Model 2.
Model 1 will be used in the computer-aided molecular design (CAM@Qrithms
because of its larger training set size, and Model 2 will bd tesassess approximately

the generalization capability of Model 1, as advocated by Tropsha et al. [12].
5.4. Results

5.4.1 Model 1:Ten-descriptor, 20-descriptor and 30-descriptor models weexlidbe
20-descriptor models had lower training set errors than the 10{utesanodels, but no
significant difference was observed between the 20-descriptor ades8@iptor models.
Therefore, for the sake of simplicity, 20-descriptor models wseel in the final models
in the current study. Going lower than 10 descriptors resultedigndicant increase in
the training RMSE values for databases made up of more than 150 data poirfaréher
twenty was chosen as the minimum number of input descriptors. Figures &2

comparison between the experimental and predi&t€d values for Model 1. The
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correlation coefficient (B between the experimental and predicted values is 0.99. The
prediction residual errors in kJ/mol are plotted in Figure 5.3 lwbliearly demonstrates,
that the residuals are almost symmetrically distributed argbhadhorizontal axis, as
should be expected from an unbiased model. A histogram of the resfdaalgure
shown) was plotted, where the distribution of the residuals around zertowad to be
similar to a normal distribution. In addition, the RMSE and the MARieslfor the
training data set predictions are 17.4 kJ/mol and 9.7 kJ/mol, respgciived RMSE
values for the individual ensembles range from 18.3 kJ/mol to 20.6 kJVhmlresults
from the overall ensemble are slightly better than the refaultie individual ensembles,

which validates the use of ensembles with different descriptors as inputs.

The different descriptors used for creating the eight difteemsembles are shown in
Table 5.2. Note that the neural networks in the ensembles are dllmvbave a
maximum of 20 elite inputs, but most frequently they end up havingglatigllower
number of elite descriptors as inputs, after the insignificantrigiggrs have been
removed as described in Section 5.3.3. The descriptors nN, Ho_D/Dt, MAXDN,
P_VSA v 3, P_VSA_p_3, SdO and SM1 Dz (Z) are the most common across the
ensembles. The types and physical meanings of these commonlgiracdescriptors, as

extracted from the DRAGON [11] help file, are provided in Table 5.3.

5.4.2. Model 2:For Model 2, 20-descriptor inputs were chosen for model development.
Figure 5.4is a comparison between the experimental and predic®dralues for the
training data of 931 compounds. The correlation coefficient) (Between the
experimental and predicted training data is 0.99. The prediction regdoas on this

data are near-symmetrically distributed around the horizonta(raxiBgure showh The
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RMSE and MAE values for the training set data are 21.4 kJ/mollantl kJ/mol,
respectively. Figure 5.8ompares the experimental and predictgg; values of the
external test set of 177 compounds. The RMSE and MAE values fortdraaxest set

are calculated to be 32.4 kJ/mol and 16.4 kJ/mol, respectively.

The descriptors used for creating the eight different enserfdrié4odel 2 are tabulated

in Table 5.4. The descriptors nN, nHet, MAXDN, C-024, ONOV, P_VSA p_ 3, and
SM15_EA (dm) are the most common across the ensembles. The hgedhysical
meanings of these commonly occurring descriptors, as extraotadtie DRAGON [11]

help file, are provided in Table 5.5.

5.4.3. Model for Yan’s DatabaseTen descriptor-models were developed in the current
work to correlate the molecules in the Yan’s database [9]. QGolecoie could not be
optimized for its 3D structure, and therefore was left out ofrtbdeling process. For the
current model, the RMSE and MAE values are calculated to be 21.5 kdhudl6.6
kJd/mol, respectively for the training set comprising 152 compoundshEa@xternal test

set comprising 27 compounds, the RMSE and MAE values are calculaber 26.2
kJ/mol and 21.1 kJ/mol, respectively. A comparison between the expésimand
predictedAGs values for the external data of 27 compounds is provided in Figure 5.6. The
correlation coefficient (B between the experimental and predicted external test data is

calculated to be 0.98.

The errors for all models developed in the current work are tabulated in Table 5.6.
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5.5. Discussion

The RMSE value for the Model 1 training set is approximately 2&6%ei than the
corresponding value for Model 2. This difference can be attribotéldet larger training
set size for Model 1, which allows for better training acrossdifferent classes of
compounds. Due to the larger training data set, Model 1 would be expgeqgberform
similarly to Model 2 on unseen data (external data set). Theretbe predictive
performance of Model 2 on an external test set can be used gp@xi@mation for
determining the generalization capability of Model 1. Few waksst in the open
literature relating to the prediction of Gibbs energy of foramtiand to the best
knowledge of the author, the models by Wang et al. [8] and Yan [9tharenly
generalized Gibbs energy of formation models in the literatunere an external test set
has been used to assess the predictive capability. These madetsmgpared with the
current model in Table 5.7. Wang et al. [8] have reported a RMSE oaRi& kcal/mol
(13.0 kd/mol) on an external test set of 30 molecules, using a rhatields trained on a
data set of 150 molecules. Using 177 compounds from the same dataldésegast al.
[8], Yan [9] reported a MAE value of 11.2 kcal/mol (46.9 kJ/mol) for aeraal test set

comprising 27 molecules.

Also, the compounds that exhibit the largest deviations in the various models wene furthe
examined manually to identify any correlation between their enigérrors and the
presence/absence of certain functional groups. The majority aoheéltecules that had
high deviations contain at least one oxygen atom. Table 5.8 listsci@ounds in the
external set, for which the Model 2 predictions and the experahealues ofAG; differ

by more than 100 kJ/mol. The first molecule is a geometric isamekthe high error can
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be attributed to the lack of sufficient number of geometric issrrethe training data.
The last molecule is an inorganic compound, and the high predictionirerttus case
may be due to the lack of sufficient number of inorganics in thmimg set. The
functional groups of the other three molecules, however, are repressfiteidrgly in

the training set, and any reason for the high error is unclear.

Table 5.3 lists the most common descriptors for the eight differesembles for Model

1. Surprisingly, these descriptors are 2D descriptors or constitutidesdriptors
independent of the 3D conformation of the molecule. Due to the blackdiare of the
artificial neural networks (ANNSs), a quantitative assesst of the significance of the
different descriptors on the Gibbs energy is not possible. However, apptex
gualitative interpretations can be made based on the typewipdess. For example, the
presence of the 2D matrix-based descriptors, Ho_D/Dt and SM1 Dmdifates a
correlation betweenG; and the shape of the molecule. In addition, the presence of the
descriptors, MAXDN, P_VSA p3, and SdO indicates that the charge digirkaround
the molecule also has an effect on At values. The number of nitrogen atoms, denoted
by the descriptor nN also has an effect on the Gibbs energysvélsexpected, some of
the common descriptors for Model 2 (listed in Table 5.5) are idertbcddle common
descriptors for Model 1. For example, the descriptors nN, MAXDN, A \p3 are
common across both Model 1 and Model 2. The other descriptors in @athelugh not
exactly identical to Model 1 descriptors, are drawn from theesaub-category of
descriptors as in Model 1, and describe the shape of the moleculsugbests a strong

correlation between the shape and Gibbs energy of formation folegute. In addition,
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the common descriptors observed in the current work are similar @2Dthaescriptors

such as charge and lone-pair electronegativity, employed by Yan [9].

To compare the efficacy of the current modeling approach, the Yatassda[9] had
been employed to develop a QSPR model. The results from this nmedaloaided in
Table 5.9, along with the results by Wang et al.[8], using dhgestraining and external
test set data. The current model performs significantly bettéxoth the training data and
the external set data, which indicates better generalization capabtlite current model,
when compared with the model by Yan [9]. The same data, betretlf training and
external test set partitions were employed by Wang ¢g8Rin their DFT correction
approach of modeling thaG; values. The considerably lower error for the model by
Wang et al. [8] could be due to fact that all these moleculesraafl molecules (with
lower than 10 carbon atoms) and the Gibbs energy of formation valueslenated
using the density-functional theory, and not by the standard molardariptor
approach. Although, the systematic deviations in the densityibmatt theory
calculations for small molecules (with lower than 10 carbon atmas)be accurately
corrected using multi-linear regression or neural networks, twatibns from the
experimental values for medium to large sized moleculesgifisantly large and
alternative strategies of modeling are usually preferred [B¢ durrent QSPR model
does not suffer from this disadvantage and can be applied to molecaleste, which
makes it ideal for predicting the Gibbs energies of formationegafor new molecules

identified during the virtual design process.
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5.6. Conclusions

1. A non-linear QSPR model foAG; at 298K was developed using wrapper-based
descriptor pruning techniques.

2. Two models were developed. Model 1 was built usix@; values for 1,108
compounds, and all this data was used for model development, and Modeb@ikvas
by employingAG; values of 931 compounds from the original database of 1,108
compounds with 177 compounds reserved as an external test set.

3. The RMSE values on the training sets for Model 1 and Model 2&#kJ/mol and
21.4 kJ/mol, respectively. The RMSE value for Model 2 on the extéesalset is
32.4 kJ/mol.

4. According to the current work, the 2-dimensional shape of the melemud the
distribution of electronegative charges in the molecule sigmtfig affect the Gibbs
energy of formation values.

5. The current model developed using the Yan’'s data set performscsgtiif better
than the model by Yan [9] on an external test set of 27 compounds. Theviide
on the external test set for the model by Yan is 47 kJ/mol aparech to a MAE
value of 21 kJ/mol from the current model.

6. The resulting models from this work can be used to accuratelycpeegriori the

Gibbs energy of formation of new molecules and thereby their stability.
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Table 5.1:

Characteristics of the final OSU data set

Molecular Property Minimum Maximum Mean Standard
Deviation

AGt (kJ/mol) -1970.0 665.0 -47.2 268.1

Molecular weight (g/mol) 16.05 446.74 129.3 55.5

Octanol-water partition -8.7 15.0 2.6 2.1

coefficient(Log Kow)

DRAGON drug like score (0-1) 0.49 1.0 0.78 0.1
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Table 5.2: List of the descriptors used in the final eight ensemblesrfModel 1

Descriptor# Ensemble 1 Ensemble 2 Ensemble3 Ensemble Ensemble5 Ensemble6 Ensemble?7 Ensemble 8

1 nN nN nN nN nN nN nN nN
2 SAdon TDBO3u Ho D/Dt  Ho D/Dt  Ho D/Dt  Ho D/Dt  Ho DDt Ho_D/Dt
3 ZM1V ZM1V Eta—AbetaS— Eta—AbetaS— X% X% Eta beta  Eta beta
4 MAXDN  MAXDN EE_H2 EE_H2 MAXDN  MAXDN nBO nBO
VR2_B EE Dz EE Dz
5 P1m B01[0-O EE_B(s EE_B(s EE_B(s - —~ —~
[0-0] _B(s) _B(s) BO) i ) )
6 PVSA V3 PVSAv3 SRWO2 SRW02 P VSAv3 PVSAv3 ChOEA  Chio EA
7 PVSAV2 PVSAVvV2 PVSAp3 PVSAp3 nCar Hypggens' P VSA p 3 P VSA p 3
SM6 Dz SM6 Dz SM1 Dz  SM1 Dz SM1 Dz  SM1 Dz
8 N N N - SM3_D SM3_D - -
(m) (m) (2) (2) ~ - (2 (2)
9 B01[0-O] BBI SMé_B SM6 B S\a Be) SM4 B(e) L1v Dz
(P) (P)
10 SpMaxA_pt >PPiam_Dz Spbiam_EA SpDiam_EA 5\, ONO nCbH nCbH

(P) (dm) (dm)
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Table 5.2 (cont’d): List of the descriptors used in the final eight engebles for Model 1

Descriptor # Ensemble 1 Ensemble 2 Ensemble3 Ensemble Ensemble’ 5 Ensemble 6 Ensemble7 Ensemble 8

11 SpMa_xA_D Eta F SpMAD Dz SM1 Dz nHACC nHACC SpMa_xA_D SpMa_xA_D
z(i) () () z(i) z(i)

12 Spl;c(JS;_og_ SAdon SpA([;asAEA SpA([;aaAEA Eta B P_Vig\_MR SpP?Vs)A_Dz SpPE)Vs)A_Dz
13 Sdo Sdo SaaCH SaaCH Sdo Sdo NdO NdO
14 VR(%DZ VR(%DZ ATS2s ATS2s ATS1p ATS1p ATS1s ATS1s
15 SCBO SCBO TIC4 TIC4 stk P-YSAM xiMad X1Mad
16 RDFO010p RDFO010p Mor22e Mor22e P_VS4A_m_ nCar nF nF
17 MPCO04 NRNHR SM(;)—DZ HATS3m P—Vig—MR NnROR  SpAD RG  SpAD_RG
18 DLS 02 L1m Mor20e Mor20e NnROR S1K NRNHR LPRS
19 nBM nBM HATS3m - nC nC LPRS NRNHR
20 CAlT _SLZLD—O EE_A Dz
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Table 5.3: Physical meaning of the commonly occurring descriptors in the
ensembles for Model 1

. Descriptor . .
Descriptor Type Physical Meaning
nN Const_ltutlonal Number of nitrogen atoms in the molecule.
descriptor
2D matrix Hosoya-like index, which is a topological index,
Ho_D/Dt based calculated by applying a logarithmic function to the
descriptor distance/detour matrix.
Maximal electrotopological negative variation [13],
Topological which is an E-state index calculated as the maximum
MAXDN X . . ;
Indices negative value oAl; in the moleculeAl; is the
intrinsic state of the ith atom.
The amount of van der Waals surface area of the
P_VSA
P VSA v 3 descriotor molecule that has a value of van der Waals volume
P between 1 and 1.3 [14].
P VSA The amount of van der Waals surface area of the
P_VSA p_3 descri molecule that has a value of polarizability between 1
escriptor
and 2 [14].
- Sum of the electrotopological state values of all ‘=0’
Sdo E-state indices atom types in the molecule [15].
2D matrix .
The spectral moment of order 1 from Barysz matrix
SM1 Dz (Z) based . .
descriptor weighted by atomic number [16].
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Table 5.4: List of the descriptors used in the final eight ensembles fdtodel 2

Descriptor# Ensemble 1 Ensemble 2 Ensemble 3 Ensemble Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8

1 nN NN nN nN nN nN nN nN

2 nHet nHet nHet nHet nHet nHet nHet nHet

3 MAXDN MAXDN MAXDN MAXDN MAXDN MAXDN MAXDN MAXDN

4 C-024 C-024 C-024 C-024 C-024 C-024 C-024 C-024

5 ONOV ONOV ONOV ONOV ONOV ONOV ONOV ONOV

6 PVSAv3 PVSAv3 PVSAp3 PVSAp3 PVSAp3 PVSAp3 PVSAp3 P VSADp3

SM15 EA( SM15_EA(d SM15 EA( SM14 EA(d SM15 EA( SM15 EA(d

FO1[0-0]  F01[0-O]

m) m) m) m) m) m)
8 RDFO10s  RDF010s  RDF010s  RDF010s  RDFO15m  RDF015m RDFO15m  RDFO015m
9 SpDiam_B(i SpDiam_B(i SpDiam_B(i SpDiam_B(i SpDiam_G/ SpDiam_G/ SpDiam_G/ SpDiam_G/

) ) ) ) D D D D
10 SpAbs B SpAbs B SpAbs B SpAbs B g5 gy SM5 B(p) SM5.B(p) SpPos H2

v) (v) v) v)
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Table 5.4 (cont’d): List of the descriptors used in the final eight enggbles for Model 2

Descriptor # Ensemble 1 Ensemble 2 Ensemble 3 Ensemble Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8

11 SpMaxA B( SpMaxA_B( SpMaxA B( SpMaxA B( SpPosLog SpPosLog SpPosLog_ SpPoslLog
m) m) m) m) L L L L

12 SM3_RG SM3_ RG SM3 Dz () SM3 Dz() Hywi B(@) Hywi B(@i) HywWi B(@ HyWi_B (i)
13 SpAD_Dz(i) SpAD_Dz(i) P—VS4A—m— P—VS4A—m— SMlil—)EA(d SpAD_Dz() P.VSA p.1 P VSA p 1
14 VR1_H2 Eta_zetaP_ CA;"_SLZLD_O CA;"_SLZLD_O Eta_betaP Eta_betaP EigléclﬁEA(e Eigléc‘rﬁEA(e
15 ATSC2p  ATSC2p  Mor0lu Mor01u MLOGP  MLOGP Chiob—SEA( Chi%—O?EA(
16 Gu Gu VR2 B(e) VR2_B(e) ALOGP ALOGP nBM nBM
17 ATSC4p VR1_H2 QXXm QXXm nX nX nX nXx
18 SM2_L RDF020i RDF020i N% --- SpPos_H2
19 Morlls Morlls Morlls --- GGI8 GGI8 GGI8 GGI8
20 SpMAD_Dz SpMAD_Dz

(P) (P)
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Table 5.5: Physical meaning of the commonly occurring descriptors in the
ensembles for Model 2
Descriptor Descriptor Physical Meanin
p Type y g

nN Const_|tut|onal Number of Nitrogen atoms in the molecule.
descriptor

nHet Const_|tut|onal Number of heteroatoms in the molecule
descriptor

Maximal electrotopological negative variation [13],

Topological which is an E-state index calculated as the

MAXDN . : : :
Indices maximum negative value &f; in the moleculeAl;

is the intrinsic state of the ith atom.

Atom centered

C-024 f Number of carbon atoms of the type R—CH—R
ragments

ONOV Topological The overall modified Zagreb index of order 0 by
indices valence vertex degrees [17].
P VSA The amount of van der Waals surface area of the

P_VSA p 3 d(;scriptor molecule that has a value of polarizability between 1

SM15_EA(dm)

and 2 [14].

Edge adjacency The spectral moment of order 15 from edge

indices

adjacency matrix weighted by dipole moment [18].
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Table 5.6: The errors for all models developed in this work

Training Set External Test Set
Mode| RMSE  MAE 2 RMSE  MAE 2
(kJ/mol)  (kJ/mol) (kJ/mol)  (kJ/mol)
Model 1 17.4 9.7 0.99 --- --- ---
Model 2 21.4 11.4 0.99 324 16.4 0.98
Model for 21.5 16.6 0.99 29.2 21.1 0.98
Yan data

Table 5.7: Comparison of the current model with literature models on théasis of
predictions on external test set molecules

No. of molecules

Researchers Type of model in the external RMSE
(kJ/mol)
test set
. Stochastic optimization and
This work ANNS 177 32.4
Wang et al. [8] gﬁgiﬁgincnonw theory 30 13.7
van [9] Pair-wise correlation analysis 47 46.9

and ANNs
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Table 5.8: List of molecules in the external test set for Model 2 that had an abstd
error of more than 100 kJ/mol

Experimental Predicted
Name Structure AG, (kJ/mol) AG,
' (kd/mol)
Cl
1,4-
dichloro- 1085 113
Ccis-2- . .
butene /
Cl
Dicumyl
peroxide /O 2420 617
(@]

Di-n- /\/\ N/\/\ 1300 e
H

butylamine

Methyl © o)

nitrite \N/ N 1.0 2325
Carbon di- o

oxide 0=C=0 -394.4 -274.6
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Table 5.9: Comparison of the current model with literature models on th&an data

set
. Number of
Training . External Test
Researchers Model Type Set MAE Molecules in Set MAE
External Test Set

Stochastic
This work optimization and 16.6 45 21.1

ANNSs

Pair-wise

correlation
Yan [9] analysis and 48.1 27 46.9

ANNSs

Density-
Wang et al, [g]+ Tunctional theory 5 30 13.0

correction using
ANNs

* The external test set used in the referenced vgodifferent from the one employed by the othedeis
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CHAPTER 6

A NON-LINEAR QSPR MODEL FOR NORMAL BOILING POINT TEMPERATRE

6.1. Introduction

Boiling point is an important thermophysical property that is ddfiae the temperature
at which the liquid and vapor phases of a pure substance co-exist lioreeoui If
measured at atmospheric pressure, the boiling point is referattee normal boiling
point temperature (henceforth called NBP). Boiling point is onethef properties
typically investigated first [1], when identifying new compounds. Afram estimating
the volatility of a compound, NBP information can also be used alongfiagh point
data, to assess the flammability of the compound. Further, the NB$digsed widely to
predict other physical properties including critical temperat[#g enthalpies of

vaporization [3, 4], flash points [5] and gas chromatographic retention indices [4].

In most extractive distillation process, the solvents used ar@gxpeand are, therefore,
recovered and recycled. The NBP of a solvent often determines the processAéyaut
a solvent with a low-boiling point is used, the solvent is usually exeovalong with one
of the solutes from the condenser stream; however, the use ofladiligly point solvent
requires recovery from the re-boiler. Therefore, the boiling poinbfien the first

property measured for a new solvent.
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Normal boiling points are easy to determine experimentally; however, wheamacethis
unavailable, hazardous to handle or yet to be synthesized, a reliadx@elyre to estimate
its boiling point is required. In fact, the rapid growth of combinat@hamistry provides
large numbers of prospective new molecules, which then need to be mgthasd
tested; thus, providing the opportunity and impetus for the development otamatac

predictive model for NBP predictions.

The models available in the literature for predicting the NBBegaare discussed in the
next section. The majority of these models are developed usirtgdingata, and hence,
their general applicability is limited. In the current work,oef§ have been made to
develop QSPR models with much wider applicability using a mugerdatatabase of

NBP values. This work focuses on the following objectives:

1. Develop an accurate non-linear QSPR model to predict the NBP vadieg a
database made up of diverse set of compounds.

2. Validate the current modeling approach by employing an extersal set of
compounds that has not been used to develop the model.

3. Compare the current modeling approach with existing approacheslitetagire, on
common training and external set data. This would further estatbis efficacy of
the modeling approach used in the work.

6.2. State of the Art in Predicting Normal Boiling Point Temperatures

According to Katritzky [6], the boiling point of a compound is determhifgy the

intermolecular forces in the liquid state, and by the differemdbe molecular internal
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partition function between the vapor and liquid phases. Therefore, thagbeiiint
temperature of a compound should be predictable from its chemicaitusé.
Accordingly, many models have been developed to correlate thevidBBBs with the
molecular structure of the compounds. One of the first reportedsfiias by Walker
[7], who attempted to correlate the boiling point with the numberadban atoms and
molecular weight. Horvath [8], Nendza [9], Lyman et al. [10], and ik&ir et al. [6]
have summarized the early work (until the 1990’s) on boiling point predicThe
majority of the early prediction approaches were based on groupbkedimin methods
(GCM), where any molecular property is assumed to be a surondfibutions from
predefined groups of atoms in that molecule. Joback and Reid [11] developed the
earliest GCM approaches for prediction of melting points and boilimgpalong with
other physical properties. They reported a mean absolute error)(MIAR.9 K for a
database of 438 compounds. Later, Constantinou and Gani [12] developed a GCM
approach based on UNIversal Functional Activity Coefficients @&Q) groups that
lead to better correlations than a simple GCM approach by congjdeecond-order
group interactions. They report a MAE value of 5.4 K on their inginiata (data that has
been used for model development) of 392 compounds, extracted from thgn Desi
Institute for Physical Properties Research (DIPPR) datghi&eStein and Brown [14]
have improved the Joback and Reid [11] approach, primarily by increasimgimber of
functional groups. They employed a training set database of 4426 compounds and
external test (data that has not been used for model developmeiths84 compounds.
Their model produced MAE values of 15.5 K and 20.4 K for the training anddtst
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respectively; however, the majority of their experimental degiee measured at pressures
lower than 1 atm, and these data were then extrapolated topaniospressure using a

vapor pressure equation.

Despite their popularity, GCM approaches suffer from major disadyesitsuch as their
inability to model structures containing undefined functional groups aagdount for
the interaction between different functional groups and for #patial arrangement. An
alternative to the GCM approach is the quantitative structure-pyopelationship
(QSPR) method, where the entire molecule is parameterized aslegular descriptors
calculated through molecular mechanics or quantum mechanitabadse Using a data
set of about 150 compounds, Sola and coworkers [15] demonstrated that the QSPR
approach to modeling the NBP values is more accurate than thavadsble GCM
approach. The pioneering work in predicting boiling points using QSé&Ritpes was
carried out by Wiener [16], who introduced the path number (Wiener indégh is
defined as the sum of the distances between any two carbon atthrasrinlecule. Using
this descriptor, Wiener [16] was able to calculate the boiling pah®4 paraffins within
a deviation of one degree Celsius. Other early contributions includéoplodogical
indices developed by Randic [17], and Kier and Hall [18] which have be®loyed
successfully to model the boiling points of alkanes and amines. Mmgthg a plethora
of QSPR models for boiling point prediction have appeared in thetliterawith the
majority of the developed models dealing with a specific atdssompounds such as
alkanes [19-24]. Dearden [25] provides a detailed review of thefigons and also tests

them using an external test set of 100 organic molecules. De&%lemofes that almost
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all the models have standard errors in single figures andognghph theoretical
descriptors, also known as topological descriptors; these descriporielpful in

describing the branching in molecules.

Dearden [25] also reviews some of the generalized QSPR modtlaré¢hbased on a
diverse set of compounds, such as the models based on the ComprehensipéoBesc
for Structural and Statistical AnalygJi€§ODESSA) [26] and ADAPT [24] software. One

of the most accurate generalized models for NBP predictiorderadoped by Hall and
coworkers, who employ E-state indices [27, 28] and report a MAE valB®® K for a
training set of 298 compounds, and a MAE value of 3.86 K for an exterhaktesf 30
compounds. Katritzky et al. [29] developed a generalized QSPR modgl584 diverse
organic compounds for training and 28 additional compounds (mostly fluorinated and
chlorinated compounds) as an external test set. They report meaotsquared error
(RMSE) value of 14.6 K for the training set and a RMSE value oKn the test set,
which is comparable to the estimated experimental RMSE of 11ct #e entire data

set. Chalk and coworkers [30] developed a generalized model fortprgdBP values
based on semi-empirical molecular orbital (MO) descriptors, wsilagge training data

set of 6000 compounds and a representative external test set of 629 compounds
However, the experimental errors for this data were not availabtl therefore, the
quality of the resulting model is questionable. They report standaratides of 16.5 K

and 19.0 K for the training and test sets, respectively.

Despite the availability of sufficient experimental NBP dat@ majority of generalized

QSPR models in the literature are trained using fewer than 30pocms. The only
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comprehensive model using a reasonably sized data set was de\sidfedtzky et al.
[29], but their model was not tested sufficiently using an extdasalset. In this work,
we augmented the data provided by Katritzky et al. [29] adktitional data from DIPPR
[13] to develop generalized NBP models and tested these modelseioptedictive

ability using an external test set.
6.3. QSPR Methodology

The development of a QSPR model involves the following series of: Si@pdata set
generation, (b) descriptor calculation, (c) descriptor reduction andl tmaitheng, and (d)

model validation. These elements are described below.

6.3.1. Data Set GenerationExperimental NBP values were extracted from the DIPPR
database. The DIPPR database provides an estimated maximuforezemmh datum, and
only data that have an estimated error of less than 5% werdoudegining the models

in the current work. In total, the DIPPR database has 1,317 NBRsvalith estimated
maximum errors less than 5%. Of these, 101 compounds are either insrgasalts and
were removed from the database. The pruned DIPPR databasmmhised with the
database employed by Katritzky and coworkers [31]. KatritzRgtabase [29] is made
up of data from DIPPR, the CRC handbook of chemistry and physics §8&]the
Aldrich catalog of fine chemicals [33]. The experimental unceres for the specialty
fine chemicals are not given but are expected to be higher than Af@86 removing
duplicates, the combined database has values for 1,321 compounds; howevasg| the fi

OSU-NBP database used for modeling is made up of 1,320 NBP vdleesemoving
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phosphoric acid ester, which could not be optimized structurally for tst favorable
(lowest energy) three-dimensional conformation using our automateddprecésee

Section 6.2.2).

The OSU-NBP database is one of the most comprehensive datakasdabkle for NBP
values in the open literature. The NBP values of the moleculessiddtabase are in the
range of 111.66 K to 716.15 K. Figure 6.1 provides the distribution of NBes/a the
OSU-NBP database. The molecular weights of these compoundfaary6.05 g/mol
to 607.44 g/mol, and the octanol-water partition coefficienty, Kcalculated by the
DRAGON [34] software using the Ghose-Crippen ALOGP model) variaseea -2.3
and 12.9. In addition, the molecules are characterized based on thelikenaegs as
calculated using DRAGON [34], where score of O implies that tléecuale has no
characteristics of a drug, while a score of 1 implies the cuotde has all the
characteristics of being a drug. Further details on the dsabharacterization are

provided in Table 6.1.

In addition to the above data sets, NB&a of 394 diverse organic compounds were
extracted from the article by Ghavami et al. [35]. This daatains 52 alcohols, 22
amines, 69 alkanes, 156 mono-alkenes, 9 ethers, 69 alkyl benzenes, and 1ilidég;
Henceforth in this work, this data will be referred to as thev@mi's database to
differentiate it from the OSU-NBP data set. To validate tmeenit modeling approach,
Ghavami’'s data were used to develop a QSPR model to predicBfhedlues and the

resulting model was compared with the prediction results by&hiaand coworkers
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[35]. To ensure a fair comparison, the same training and extestaldta employed by

Ghavami et al. [35] were used in the current work.
6.3.2. Descriptor Calculation:See Section 2.5
6.3.3. Descriptor Reduction and Model Developmen&ee section 2.6

External Validation:In a recent articleTropsha et al[36] emphasized the need to
validate QSPR models using external data sets. Therefore, anutdet was built by
separating some data from the original OSU-NBP database mwtialg it to an
external test set. However, the data cannot be randomly sepasitdes external set
might not be representative of the training set. Therefore f-argahnizing map (SOM)
network was created using the best descriptors identified iirehensemble, which was
developed using the entire database. This SOM was used to idemsifgrslin the data
and partition the data into T, IV and IT sets as explained indde6t3.3. The number of
map units in this SOM was varied until the percentage of dataspoirthe IT set is at
least 15% of the size of the entire OSU_NBP data set of 18&tutes. This IT set was
then set aside as an external test set and the remainingvaatased for developing
another modetle novg by repeating the search for the best descriptors, besbnketw
architecture and network weights. In the current work, 203 molewdes identified as
an external test set using this procedure, and the remaining 1,11jbo$awere again
divided into T, IV and IT sets and subjected to the descriptor sedgdhuithm as
discussed in Section 6.3.3. For clarity in this work, the model created all 1,320 data

points in the OSU-NBP database for model development will beredféo as Model 1
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and the model created using just the 1,116 data points as Model 2. Motldbd wged
in the computer-aided molecular design (CAMD) algorithms because afgés taaining
set size, and Model 2 will be used to assess the generalizgpiabiltg of Model 1, as

advocated by Tropsha et al. [36].
6.4. Results

6.4.1 Model 1:10-descriptor, 15-descriptor, and 20-descriptor-models were tested, but
no significant difference was observed between the models. Ther&dorthe sake of
simplicity, 10-descriptor models were used in the final models in the csiteht. Going
lower than 10 descriptors resulted in a significant increasee training RMSE values
for databases made up of more than 150 data points. Thereforeagerthosen as the
minimum number of input descriptors. Figure 62 a comparison between the
experimental and predicted NBP values for Model 1. The cowelatefficient ()
between the experimental and predicted values is 0.97. The predididuatesrrors in
K are plotted in Figure 6.3 for Model 1, which clearly demonstihigsthe residuals are
almost symmetrically distributed around the horizontal axishasld be expected from
an unbiased model. A histogram of the residuals (not shown) wasdplethere the
distribution of the residuals around zero was found to be similantoraal distribution.
The RMSE, MAE, and the average absolute percentage deviation (Y0/i&s for the
training data set predictions are 14.4 K, 9.3 K, and 2.3%, respectivelyh@aiRMSE
values for the individual ensembles range from 14.7 K to 16.8 K. Thesdgutt the
overall ensemble are slightly better than the results fomttigidual ensembles, which

validates the use of ensembles with different descriptors as inputs.
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The different descriptors used for creating the eight difteemsembles are shown in
Table 6.2. Note that the neural networks in the ensembles are dllmvbave a
maximum of 10 elite inputs, but most ensembles frequently havees lavmber of elite
descriptors as inputs, after the insignificant descriptors haverbe®ved as described
in Section 6.3.3. The descriptors AMR, P_VSA p_2, pilD, TICO, and SpPosLog G a
the most common to all the ensembles. The types and physical ngearfi these
commonly occurring descriptors, as extracted from the DRAGGH help file, are

provided in Table 6.3.

6.4.2. Model 2:For Model 2, 10-descriptor models were chosen as the final models.
Figure 6.4is a comparison between the experimental and predicted NBP ilties
training data of 1,117 compounds. The correlation coefficierf) (etween the
experimental and predicted training data is 0.98. The prediction regdoas on this
data are near-symmetrically distributed around the horizontal (agid=igure shown

The RMSE, MAE, and %AAD values for the training set datal®&é K, 8.6 K, and
2.1%, respectively. Figure 6dompares the 204 experimental and predicted NBP values
of the external test. The RMSE, MAE, and %AAD values for tktereal test set are

calculated to be 17.8 K, 10.2 K, and 2.6%, respectively.

The descriptors used for creating the eight different enserfdsldsodel 2 are tabulated
in Table 6.4. The descriptors AMR, P_VSA p 2, GATS1s, nHM, and Eta_sh _bpeare t
most common across all the ensembles. The types and physicaingseaf these
commonly occurring descriptors, extracted from the DRAGON [Bélp file are

provided in Table 6.5.
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6.4.3. Model for Ghavami’'s Database:Ghavami et al. [35] had 10 topological
descriptors to develop their model, and so to ensure a fair comparisonsctiptde-
models were developed in the current work as well. For the current model, the RMISE a
MAE values are calculated to be 1.8 K and 1.3 K, respectively fotréneing set
comprising 354 compounds. For the external test set comprising 40 compdwnds, t
RMSE and MAE values are calculated to be 2.1 K and 1.5 K, resplgcth comparison
between the experimental and predicted Ni#ues for the external data of 40
compounds is provided in Figure 6.6. The correlation coefficie} fRtween the

experimental and predicted external test data is calculated to be nearly 1.0.
The errors for all models developed in the current work are tabulated in Table 6.6.
6.5. Discussion

The RMSE values for the training set of both Model 1 and Model 2 are almost eqgeial. Du
to the larger training set, Model 1 would be expected to perfamtasly to Model 2 on
unseen data (external dataset). Therefore, the predictive pertmmo&iModel 2 on an
external test set can be used as an approximation for deterntn@ngeneralization
capability of Model 1. The %AAD value for the external testisetithin the maximum

experimental uncertainty (5%) in the data used for modeling.

Few recent works in the open literature employ an externaséestomprised of diverse
molecules to test the predictive capability of a developed NBEem To the best
knowledge of the author, the models by Stein and Brown [14], and Chdlk&®]aare

the only models that are developed using a diverse set of organitutes|eand they are
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also assessed for their predictive capability using an extdata set (Table 6.7). Stein
and Brown [14] employ experimental boiling point data measuredilaatsnospheric
pressures, which are then extrapolated to atmospheric pressureausipg@r pressure
equation. They report a RMSE value of 20.4 K on an external tesf sbbot 6,500
molecules, using a GCM approach. Chalk et al. [30] employ quantum mesland
artificial neural networks (ANNSs) to develop their QSPR modets they report RMSE
and MAE values of 19 K and 13 K, respectively, on an externaldest §29 molecules,
using a model that had been trained on a data set of 6000 molecatéd. MMrom the
current work resulted in RMSE and MAE values of 17.8 K and 10.2 K regplgctior
an external set of 203 compounds. These results are better thasulte neported by
Chalk et al. [30] for their external test set. Also, the compoundseiimabit the largest
deviations in the various models were further examined manuallydotify any
correlation between their higher errors and the presence/abstmegtain functional
groups. However, no particular trends were observed between the fundgrongks
present in the molecule and the prediction error for the moleculehigher errors for
some molecules could be due to the high experimental uncertaititg ohata for those

molecules.

Most of the descriptors in Table 6.2 are 2D descriptors or constihtdescriptors and
are independent of the 3D conformation of the molecule. Table 6s3thst most
common descriptors for the eight different ensembles for Model 1idthe black-box
nature of the ANNs, a quantitative assessment of the signdec of the different

descriptors on the NBP values is not possible; however, approximatgatouea
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interpretations can be made based on the type of descriptors. hgrlexAMR, which
denotes the molar refractivity calculated according to the GGdpgen model [37],
occurs in all eight ensembles and therefore, must be correlatetB#. Egolf and Jurs
[38] have also reported a correlation between NBP and molactiefty, and they
attribute molar refractivity to be a measure of the poddniiity of the molecule, which
consequently describes the ability of a molecule to form bonds métghboring
molecules in the liquid state. The descriptor P_VSA p 2, which alsailiessdhe
polarizability of a molecule, was found to be occurring frequertipss the ensemble.
Additional commonly occurring descriptors in the ensembles are gD TICO, which
describe the degree of unsaturation (presence of multiple bondsitpireshe molecule
and the molecular complexity, respectively. In addition, Table 6.2 iogns®me 2D-

matrix based descriptors that describe the 2-dimensional shape of the molecule

As expected, some of the common descriptors for Model 2 (listed bte &a5) are
identical to the common descriptors for Model 1. For example, thezipiess AMR and
P_VSA_p2 are common across both Model 1 and Model 2. The other descnptors i
Model 2, though not exactly identical to Model 1 descriptors, anerdfeom the same
sub-category of descriptors as in Model 1. A few descriptors in botteM 1 and 2 are
either 2D matrix-based descriptors or other descriptors thatiloegte shape of the
molecule. This suggests some correlation between the shape and NBB oh a

molecule.

To compare the efficacy of the current modeling approach, the GhHavdema set had

been employed to develop a QSPR model. The results from this nmedaloaided in
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Table 6.8, along with the results by Ghavami et al. [35], usingséinee training and

external test set data. The current model performs signifychetter on both the training

data and the external set data, which indicates better gengoalizapability of the

current model. The poor performance of the model by Ghavami et al. [35] could be due to

the absence of 3D molecular descriptors in their modeling, which ptohgesfficacy of

3D QSPR modeling when compared to 2D QSPR modeling.

6.6. Conclusions

1.

4.

In the current work, a non-linear QSPR model for the normal boiling poediction

was developed using wrapper-based descriptor pruning techniques.

. Two models were developed in the current work: Model 1 was built USBIg

values for 1,320 compounds, where all data was used for model development, and
Model 2 was developed using just 1,116 compounds from the OSU-NBP database,
while the remaining 204 compounds were employed as an external test set.

The RMSE values on the training sets for Model 1 and Model 24AreK and 13.1

K, respectively. The RMSE value for Model 2 on the externalsegssis 17.8 K. The
models by Stein and Brown [14], and Chalk et al. [30] are the only workise
literature for predicting the NBP values for a wide ranfjenolecular classes using

an unbiased external test set. The predictive accuracy of Mdd@hzhis work, on

an external test set of 204 compounds is better than the accurtwy midels by

Stein and Brown [14], and Chalk et al. [30] (Table 6.8).

According to the descriptors identified by the current work pilarizability and the

2-dimensional shape of the molecule significantly affect the NBP values.
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5. The current model developed using the Ghavami data set performs sigryifimzttet
than the model by Ghavami and co-workers [35] on an external tesif sk
compounds. The RMSE value on the external test set for the modélava@i et al.
[35] is 6.8 K as opposed to RMSE value of 2.1 K from the current model.

6. The resulting models from this work can be used to accuratelycpeegriori the

NBP values of organic compounds.
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Table 6.1: Characteristics of the final data set of 1,320 molecules

Molecular Property Minimum  Maximum Mean Standard
Deviation

NBP (K) 111.7 716.2 422.5 88.7

Molecular weight (g/mol) 16.0 607.4 127.6 54.9

Octanol-water partition

coefficient(Log Kow) 23 12.9 22 L7

DRAGON drug like score 0.49 10 0.80 0.10

(0-1)
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Table 6.2: List of the descriptors used in the final eight ensembles fdtodel 1

Descriptor# Ensemble 1 Ensemble 2 Ensemble 3 Ensemble Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8
1 AMR AMR AMR AMR AMR AMR AMR AMR
> P VSAp2PVSAp2PVSAV2PVSAV2PVSAp2PVSAp2PVSAp2PVSAp?2
3 pilD pilD AAC AAC X2 X2 pilD pilD
4 Ho B (s) Ho B (s) SM6_Dt SM6_Dt TICO TICO TICO TICO
5 H% H% NssO NssO SpPosLog_ SpPosLog_ SpPoslLog
G G G
6 SMO8_EA SMO8_EA SpPosA A  SpPosA_A N-072 N-072 SpPosLog SpPosLog_
(dm) (dm) D D
v VEZ2 L VEZ2 L VR3_Dz VR3_Dz SpAbs Dz SpAbs_ Dz Ho_Dz(p) Ho_Dz(p)
(m) (m) () ()
3 piPCO02 SM02_AEA SM4 _RG SM4_RG Mp Mp Chi0_EA Chi0_EA
(ed)
9 RDFO010u RDFO10u  SpMAD_R SpMAD_Dt SpMAD_Dt
G
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Table 6.3: Physical meaning of the commonly occurring descriptors in the
ensembles for Model 1

Descriptor Descriptor Type Physical Meaning
AMR Molecular Ghose-Crippen molar refractivity
property
P VSA like The amount of van der Waals surface area of the
P_VSA p 2 descriptor molecule that has a value of polarizability between
P 0.4 and 1 [39]
The total number of weighted paths obtained by
summing the weights of all paths of any length (from
iD Walk and path 0 to the maximum path length) in the graph. The
P count weight of each path is calculated by multiplying the
conventional bond order of all the edges of the path
[40]
Information Calculated as nAT times ICO, nAT being the total
TICO index number of molecule atoms, and ICO being the mean
information content of order 0 [41]
. Logarithmic spectral positive sum from geometrical
SpPosLog_G 3D matrix based matrix (a square matrix of Euclidian distances for

descriptor

each pair of atoms in the molecule).
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Table 6.4: List of the descriptors used in the final eight ensembles fdtodel 2

Descriptor# Ensemble 1 Ensemble 2 Ensemble 3 Ensemble Ensemble 5 Ensemble 6 Ensemble 7 Ensemble 8

1 AMR AMR AMR AMR AMR AMR AMR AMR

5 PVSAp2 PVSAp2 PVSAp2 PVSAp?2 PVSAp?2 PVSAp2 PVSAp2 PVSAp?2
3 GATS1s GATS1s GATS1s GATS1s GATS1s GATS1s ChiA_RG ChiA_RG

4 RBF RBF nHM nHM FO1[C-O]  FO1[C-O] nHM nHM

5 Eta sh p Eta sh p EE_D/Dt EE_D/Dt SM6_D/Dt  SM6_D/Dt Eta sh p Eta sh p

5 SM1 Dz (p) SM3_RG nRCONHR nRCONHR Ho Dz() Ho Dz() VR1 G/D VR1 G/D

v SM1 Dz (Z) SM1_Dz (2) Mv Mv Eta_zetaS_ Eta_epsi_A R2u

8 TDBO1s TDBO1s BLTA96 --- XMOD --- IDM IDM

9 SM02_AEA SMO02_AEA

(bo) (bo)
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Table 6.5: Physical meaning of the commonly occurring descriptors in the

ensembles for Model 2

Descriptor  Descriptor Type Physical Meaning
AMR Molecular Ghose-Crippen molar refractivity
property
P_VSA p 2 P_VSAlike The amount of van der Waals surface area of the
descriptor molecule that has a value of polarizability between
0.4 and 1 [39]
GATS1s 2D Geary coefficient, calculated from molecular graph by
autocorrelation  summing the products of intrinsic states of the
terminal atoms of all the paths of unit path length.
Geary coefficient is a distance-type function varying
from zero to infinite. Strong spatial autocorrelation
produces small values of this index [42]
nHM Constitutional Number of heavy atoms
index
Eta_sh p ETA index Eta p shape index

Table 6.6: The errors for all models developed in this work

Training Set External Test Set

Model

RMSE 2 RMSE 2

MAE (K R MAE (K R

(K) 9 (K) 9
Model 1 14.4 9.3 0.97
Model 2 13.1 8.6 0.98 17.8 10.2 0.96
Model for
Ghavami 1.8 1.3 1.00 2.1 15 ~1.00
data
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Table 6.7: Comparison of the current OSU-NBP model with literature modls, on

the basis of external test set predictions

Number of
Researchers Model Type Molecules in RMSE (K)
External Test Set
This work Stochastic optimization and
(Model 2) ANNSs 204 17.8
Chalk etal. [30] Quantum mechanics and ANNs 629 19.0
Stein and Brown  Group-contribution method 6584 20.4

[14]"

(GCM)

* Majority of the boiling point data, were measured at pressuseghan 1 atm., and then
extrapolated to atmospheric pressure

Table 6.8: Comparison of the current model with the model by Ghavami et al. [35]

on the Ghavami database

Training Set External Test Set

Researchers Model Type RMSE (K) RMSE (K)
, Stochastic optimization

This work and ANNS 1.8 2.1

Ghavami et al. Principal components 6.1 6.8

[35]

and ANNs
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CHAPTER 7

GENERALIZING THE UNIVERSAL QUASI-CHEMICAL (UNIQUAC) MOLCEL

PARAMETERS USING A NON-LINEAR QSPR MODEL
7.1. Introduction

A thorough understanding of chemical phase behavior properties emtiaksfor
designing and optimizing chemical and separation processes. é&haligria properties
such as compositions and partition coefficients are typically unedsin laboratory
experiments, which require a substantial investment of money and time. Thataléeis

to predict phase equilibria properties using generalized thermodynamétsno

Vapor-liquid phase equilibria properties are typically determinétthinvone of two
computational frameworks. The first is thigd) approach, where fugacity coefficients
(¢) for the vapor and liquid phases are calculated using equation®fB&@S) models.
The second framework involves the split approach),(where different models are used
to predict the deviation function$, andy of each component in each phase. Fugacity
coefficients and activity coefficientg)(are used as non-ideal behavior correction factors

to the component ideal fugacities in the vapor phase and liquid phagectiesly.

Fugacity coefficients are determined using various EOS maatadsactivity coefficients
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are calculated using excess Gibbs enefy) models; however, both EOS models and

GE models have limited capabilities farpriori predictions.
7.2. State of the Art in Activity Coefficient Modeling

A number of activity coefficient models for predicting vapor-lgj@quilibria (VLE)
have been proposed by various researchers [1-5], and these ncadel® classified as
follows: (a) empirical and theory-based activity coefficient nideich as Margules,
Redlich-Kister and van Laar, regular solution, Wilson, non-random tuoadli(NRTL)
model, and the universal quasi-chemical (UNIQUAC) model [3]; djdpfedictive
group-contribution models, such as universal functional activity cosftidlUNIFAC)
and analytical solution of groups (ASOG) [2, 6]. Wilson first propcseaquation for
excess Gibbs energyif) using the “local composition” concept that is based on the
hypothesis that the local concentration around a molecule isedifférom the bulk
concentration. Although the Wilson model performed better than other eatpirodels,
the equation cannot be used to predict liquid-liquid equilibria (LLE) ptieserRenon
and Prausnitz [1] proposed the NRTL model based on Wilson’s locapastion
concept [7] and Scott’'s two-liquid solution theory [8]. The NRTL moded ttaee
adjustable parameters that can be generalized to multicomponeuatesinsing only the
binary mixture parameters. One of the model parameters caet l@e piori, which

creates effectively a two parameter model.

Another popular activity coefficient model is the universal quasigbal (UNIQUAC)
model. Abrams and Prausnitz [3] derived the UNIQUAC equation for nonrandom
mixtures containing molecules of different sizes [9]. The basibeofUNIQUAC model

is that the excess Gibbs energy is the sum of the combinandakesidual effects. The
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combinatorial portion attempts to describe the dominant entropidsetad the residual
portion accounts for the intermolecular forces of the system.c@imbinatorial portion
can be determined using composition, size and shape of the componentssidal r
portion requires two adjustable binary parameters to account &miolecular forces.
The UNIQUAC model is applicable to a wide range of liquid mixtuhes contain polar
and nonpolar fluids. Although the UNIQUAC model requires only two adjustable
parameters, this equation is more complex than the NRTL modelddiioa, the
UNIQUAC model is not always as precise for some systeinsrevmore than two
adjustable binary parameters are needed [9]. Similar to BiELNnodel, attempts to

generalize the UNIQUAC model parameters have been limited [10].

Many of the activity coefficient models in literature are genheralized models and, as
such, they cannot be applied fopriori prediction of VLE behaviors. Until recently, the
preferred approach fa priori predictions of activity coefficients was the use of group-
contribution models. These models are based on functional group interastichsas
UNIFAC and ASOG [2, 6]. Since the number of functional groups is mueliesnthan
the number of compounds, a large number of mixtures can be geneusiizgd smaller
number of functional group interactions [6]. The ASOG model estsnatwivity
coefficients by summing the effects of molecular weight andctional group
interactions. In the UNIFAC model, activity coefficients areedained based on the
UNIQUAC model formulation, where combinatorial and residual effece summed to
determine the activity coefficients. The combinatorial portion ftbenUNIQUAC model

is used directly, whereas the residual portion is calculatembbsgidering the interaction

of the functional groups present in the molecules. While successtulfioy systems, the
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UNIFAC model suffers from some limitations, including an inabitiyaccount for the
effects of neighboring molecules [11]. Further, the models arecapjdi only for

mixtures consisting of compounds for which functional groups are containéte in
UNIFAC data matrix. If the functional groups of interest are p@sent in the data
matrix of UNIFAC, experimental data are required to deterntime interaction

parameters. Another limitation is the inability to define effety the functional groups
of some chemical species. A detailed review of other availgblesralized activity

coefficient models can be found elsewhere [12, 13].

Recently, we sought an alternative methodology for providing geérsdahctivity
coefficient models that is more effective than group contributid@% BSpecifically, we
used the quantitative structure-property relationship (QSPR) mgdelpproach to
generalize the model parameters of the NRTL and UNIQ@EAtWity coefficient models
and providea priori VLE property predictions. The current research is an improvement
on the previously reported work. In the earlier study, 332 binaryemgstthat are
encountered commonly in refinery processes were used to develop twenddat
QSPR models to predict the two adjustable parameters in the NuUation [11].
However, having two separate models could result in different npedameter values
for a specific binary system, depending on the order of components involvedake
the model internally consistent, a single QSPR model for both p&eesnis required.
Moreover, employing a more representative VLE database thatgyend the needs of
refinery processes would produce a more applicable generalized nibdetfore, the

objectives of the current work are twofold: (a) to expand the egistatabase to include
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compounds comprised of a wider range of functional groups, and (b) t@pdevsingle

QPSR model for the two UNIQUAC model parameters.

Two case studies were conducted to investigate the predictive capabilitiesproposed
QSPR-UNIQUAC activity coefficient model using (a) binaryteyss from the previous
database [13] where systems in refining processes weredhs, fand (b) compounds
that are formed in the refining process of pyrolysis oil usiAghlaisic reaction processes.
The latter was of particular interest because of tbhavigig interest in bi-phasic reaction
processes to upgrade pyrolysis oil as well as the diversittheofmolecular species

encountered in these processes.
7.3. UNIQUAC Activity Coefficient Model Theory

The basis of UNIQUAC is that the excess Gibbs energy is a sum ofrttienedorial and

residual terms:
gE = g(I:Eomb+ glrzesid (71)

This can be extended to multi-component systems; however, for iliustpaurposes the

pertinent equations are given for a binary system:

gE b ¢1 ¢2 Z e1 e2
eomb — . In| =2 [+ X,In| =2 [+ =] g, In—2+ g%, In—2 7.2
RT 1 (Xl 2 X2 2 ql 1 (1)1 q2 2 (|)2 ( )
and
E
%: —0,%, In[0,+0,7,,]-qx,In[0 ,+06 7 ,] (7.3)

where, § is the excess Gibbs energ¥cqgn and Gresiq are the combinatorial and residual

terms of the excess Gibbs energy, respectivelis an empirical binary interaction
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parameter that is experimentally determinBds the universal gas constant,i§ the
mixture temperaturesdenotes the mole fraction of a componers the component area
fraction,0 denotes the component volume fraction, and g and r denote the van der Waa
surface area and volume of a component, respectively. A single nahmsuigscript
indicates that the property is calculated for either componen® bbthe binary mixture,
while 11, and 1,1 are the interaction parameters between the two moleculed) atec

determined using Equation 7.5 [3] below.

The area fractiond(; ) and volume fractionf,) in Equation 7.3 are defined as:

o, = X 0, = X410, (7.4)
X+ X, I, X0, + X0,

where, X, g, and r, are as defined previously.

The values of the van der Waals surface area and volume are dldtaimethe Bondi

group contribution method [13].
Uy, — U U,, — U a
T,, = EXp- (%) = exp- (%) T, = EXp- (%) = exp- (%) (7.5)

The parameters;aand @; are regressed from the available experimental data, and if
experimental data do not exist, modeling of phase equilibria for thystems using
UNIQUAC is not possible. Hence, the need exists for developingbleligredictive

models to estimate UNIQUAC parameters.
7.4. QSPR Methodology
The development of a QSPR model for activity coefficients in tineent work involves

the following series of steps: (a) data set generation, (b)rdgression to evaluate the
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best set of coefficients, (c) molecular descriptor calculafsngdescriptor reduction and
model training on the best coefficients, and (e) model validationseT lukfferent

elements are described in greater detail below.

7.4.1. Database DevelopmentThe predictive capability of a QSPR model depends
strongly on the accuracy of the experimental data used in the model developruess pr
The VLE data used in this work were collected from severalcesuBinary systems
with sufficient representation of different functional groups have hedoded in the
database. The experimental VLE data points in each systendigarbuted evenly over
the entire concentration range of O (pure component 2) to 1 (pure componeniel)

general database and the two specialized databases are describeerimgraabelow.

General Database (Binary Systema)iow-pressure binary VLE database consisting of
186 systems totaling 4,716 data points was extracted from the Oldabtate University
(OSU) database. The database is comprised of systems pbfatali and aromatic
hydrocarbons, water, alcohols, ethers, sulphides and nitrile compounds.oAd sec
database, comprised of 390 binary VLE systems totaling 12,010 data wastsken
from the DECHEMA VLE database. In total, the database comjpildds work consists

of a total of 578 binary systems formed from various combinations of X#S5edit
compounds. As such, a total of over 16,500 vapor-liquid equilibrium data poirngs wer

assembled in the final database (OSU database II).

The compounds present in the OSU database Il were classifiesinmilar manner as the
UNIFAC functional group classification approach [2]. The databaseomsposed of
compounds belonging to 31 chemical classes. Figure 7.1 illustrateattnelistribution

of the binary systems in the OSU database Il based on chemical class.
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Refining Systems Databaskhis sub-set database, which was adopted from the previous
study by Ravindranath et al. [13], consists of binary systerat dhe commonly
encountered in refining processes. In this database, 332 binary systemsising
various combinations of 92 compounds are considered. These compounds contain 28 of
the 31 chemical classes that are represented in the daté&bhese9,700 VLE data at
different temperatures were assembled in this database, andaiteddedatabase

assessment can be found in the previously published article [11].

Bi-phasic Database (Compounds Formed in Bi-phasic Reacti@ig)hasic catalytic
reaction is a promising technique that can be applied to the pyrollysidining process.
This methodology employs nanoparticle catalysts to selecticatglyze the target
reactions in the oil and aqueous phases either individually or simulislige[14].
Pyrolysis oil is an amalgam of different organic compounds such ids, aesters,
alcohols, aldehydes, oxygenates, sugars, furans, phenols, guaiac®jsiagals [15]. To
be used as a transportation biofuel, pyrolysis oil needs to be udgraldieh includes
increasing the caloric value of the refining process productedycing the oxygen
content and improving storage stability by reducing the levels auftive compounds
such as aldehydes [16]. To characterize these target readtimveledge of the phase

behavior or the activity coefficients of the compounds in the pyrolysis oilgeriant.

The bi-phasic database consists of eight compounds that are foriigohiasic catalytic
reactions. These compounds are comprised of 6 of the 31 chemicsclast are
represented in the OSU database Il. These chemical claskete alcohols, aldehydes,
alkanes, furfural, ketones and water. The bi-phasic database is eahgfos27 binary

systems formed by different combinations of these compounds and apaieyi2800
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data points. In Figure 7.1, the data shaded in grey are systemstingnsf the
compounds that are formed in bi-phasic reactions. The figure also ghewsmber of

available binary systems of this sub-set.

7.4.2. Model Parameter RegressionsTo determine the optimum values of the two
adjustable parameterg,and a; in the UNIQUAC equation, a regression analysis using
an equal-fugacity equilibrium framework with mass balance constraias performed to

estimate the interaction parameters in Equation 7.5.

The vapor-liquid phase equilibrium criteria of a multicomponent closstsyat given

temperature and pressure are:

f'=f' i=1..,N (7.6)
TV :TI
PV :PI

where, f; is fugacity of component in the mixture,T is the temperature? is the
pressure, and the superscriptgndl, indicate the vapor and liquid phases, respectively.
In the regression analysis, a split approach was employed to £xpeesomponent

fugacities:
#PY, =7, fiofli X (7.7)

where,x; is the liquid mole fractiony; is the vapor mole fractiong, is the vapor
fugacity,y; is the liquid activity coefficientf; is the liquid fugacity at saturation, arid

is the Poynting factor. In this study, the bubble-point iteration function was gaaplo
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_ZnZYizzn‘,KiXi =1 (7.8)

where, n is the number of componemtss the equilibrium constant for componént is
the component mole fractions in the liquid phase yarsdthe component mole fractions

in the liquid vapor phase.

The parameter regression analysis was performed using anabfeaatction,F, which is
expressed for a binary system as the sum of squares of ttieerelaors in pressure and

the activity coefficients of the two components, as follows:

=1

PExp PCaIc _ ,,Calc Exp _ , Calc
e ${PE) S5 )
i i i=1 i

where, n is the number of data points, the superscrifiigp and Calc, refer to
experimental and calculated values, respectively, and the substrgitd 2, refer to the

binary components.

In addition to pressure and activity coefficients, the quality optiedictions is assessed
using temperature and equilibrium constants of each binary systemedUiiérium
constantK, for component is defined as the ratio of vapor to liquid mole fraction, or:
. f0
K o=d=2 (7.10)
X 4P
7.4.3. Descriptor Calculation:The descriptors were calculated for each compound in the
database using the method described in Section 2.5. The descriptor sact binary
system is prepared by combining all the descriptors of the thdiVicompounds in the

system. Therefore, the first half of the descriptor set lgslon the solute (component 1)
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and the second half of the descriptor set belongs to the solvent (corh@birea binary

system.
7.4.4. Descriptor Reduction and Model Developmenee Section 2.6.

External Validation:In a recent articleTropsha et al. [17emphasized the need to
validate QSPR models using external data sets. In the currekt soone data were set
aside as an external validation set. The performance of thentunodel on this data set
would indicate the generalization capability of the final model.ciigate this external

data set, three different approaches were implemented:

1. A self-organizing map (SOM) clustering technique as describ&eation 2.6wvas
used to divide the data (1,156 parameters for 578 systems) into 4 rdiféets
(training, validation, internal test, and external test setsjngUthis approach,
performing system-specific predictions is not possible becauspattzeneters ia
and a; of a specific system might lie in different data sets.

2. The entire data set was also divided into four sub-sets (travafigation, internal
test, and external test sets) based on the functional groupsaainipenents present
in the binary systems. The data were divided such that all thedfda sets have
adequate representation from the 31 functional groups shown in Figure 7.1. The
proportion of data used for the different data sets as follows: 50% for the traghing s
15% for the internal validation set, 10% for the internal test rsettlae remaining
25% for the external test set.

3. In the final approach, the training, validation, and internal testwsets chosen

using the SOM clustering technique. The external test set,vieoyweas selected
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based on the functional groups of the components present in the binangsyEhe
external test set was used to evaluate the predictive capability of the mode
7.4.5. Case StudiesTo meet the objectives of this work, four case studies were
constructed to investigate QSPR model parameterization of th@UNT parameters.
In all these case studies, the ideal gas (IG) model was used to preaaityfegefficients
in the vapor phase, since all systems considered in this woit soe/ pressures. The

four case studies are outlined as follows:

Case 1. Ideal Solution modeélhe ideal solution model was used to predict the phase-

equilibria properties.

Case 2:  UNIQUAC modelThe UNIQUAC model was used to predict the activity
coefficients. The UNIQUAC model parameters were regressedtiyirfrom

the experimental data.

Case 2Q UNIQUAC-QSPR model: The UNIQUAC model was used to prediet t
activity coefficients based on interaction parameters providethdyewly
developed generalized QSPR parameter model.

Case 3U: UNIFAC modelThe UNIFAC model [2] was used to predict the activity
coefficients of each component. The UNIFAC interaction paramedposted
by Gmehling et al. [2] were used in this case study. This study allows a
direct comparison between the current modeling approach and the belt mode
reported in the literature.

Cases 1 was conducted to evaluate the correlative capabilities OINIQUAC model,

whereas Cases 1, 2Q and 3U are focused on assessangriba predictive capabilities
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of the ideal solution, the generalized model (UNIQUAC /QSPR) and the UNIF#d&Im

respectively.

For the first case, the ideal solution model was used to predi;tK; andK; for the
entire database of 578 binary systems. In Case 2, the two UNIQu#del parameters,
a;» and a1, shown in Equation 7.11 were regressed and used directly to prefick;

andKo.

a, - 91 — 02 a,, = 921~ 9u (7.11)

R R

Property predictions using the regressed UNIQUAC parametsufied in the minimum
error possible for the considered systems in Case 2. Thereformotthe parameters
found in the regression analysis were used as target values deuba®pment of the
QSPR models. The property prediction errors using the regressedgtars were taken

as a benchmark to judge the performance of the QSPR model.

Figure 7.2 shows the correlation between the two regressed UNIQhdhameters in
Case 2. The figure indicates that there is some level of aborelbetween the two
parameters. The parameter correlation may hinder the accurttey QSPR models and
the capability to provide reliable predictions from the structuréghefcomponents. A
sequential parameter regression approach was applied in an wffogduce the
correlation of the model parameters. In this approach, one parawesteiixed at the
generalized value while the other parameter was regresded. pfocedure was
performed multiple times until the effect of the correlation lo& model development
was minimized. A flowchart for the model development process gmglm the current

work is provided in Figure 7.3.
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7.5. Results

Four VLE properties T, P, K and K,) were used to analyze the predictions or the
representations (Case 2) of the various models used in Cases 1,a2d28). The
models used in each case were evaluated by comparing thetpmeeliction errors, as
described by root-mean-squared error (RMSE), bias and percerisgleitea average

deviation (AAD).

Table 7.1 presents the property prediction errors for the ideal @ol(@ase 1) and
UNIQUAC (Case 2) models. The ideal solution model has overall AalDes of 12.4%,
1.3%, 13.2% and 21.6% fdr, P, K, andK; predictions, respectively. The UNIQUAC
(Case 2) model with regressed parameters shows lower osdBllvalues of 2.5%,
0.2%, 3.5% and 6.2% far, P, K andK; predictions, respectively. Case 2 establishes the
best achievable level of prediction errors using the UNQUAC mobed model
parameters ¢a and a;) that were obtained by regression in Case 2 were then used as
targets in the QSPR model development for Case 2Q. Our godabwlaselop a QSPR
model which would be capable of predictifigP, K andK; within twice the AAD value

of the data regression in Case 2.

QSPR models were developed by applying the three data division elpgsodiscussed
in Section 7.4.5. The models that were developed using these apprbadhssnilar
prediction capabilities. Since there were no significant prediatipnovements, we have
presented only the results found using the second approach, in which theedata
divided into four sets with each containing binaries with comparabldidmat groups.
The QSPR model development process was initiated by dividing the Bai& Biystems

into four sets; 285 for training, 89 for validation, 65 for internalinigstand 139 for
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external testing. Regressed parameters from Case 2 werasisargets for developing
the QSPR models. Models with 10, 20, 30 and 40 input descriptors werepzlel he
models with 30 and 40 descriptors had lower training RMSE values thd9-tlaad 20-
descriptor models. For sake of simplicity, 30-descriptor models fudieer examined in
the current work since the 40-desciptor models did not provide aistdlyssignificant
reduction in the training RMSE values when compared with the 30-descmutdels.
The final model was chosen after nine iterations of sequengession process, where
the parametersia and a; were regressed alternatively. The final ensemble model
consisted of 20 different networks, each having the same descriptorsuas but with

different network architecture and weights.

Figures 7.4 and 7.6ompare the regressed UNIQUAC model parameters from Case 2,
with the predicted model parameters from the UNIQUAC-QSPR (Case 2Q), fuogs!

data excluding the external test set. The plots indicate tbBaQEPR predictions are in
good agreement with the regressed model parameters. SimHaylyes 7.6 and 7.7
compare the regressed UNIQUAC model parameters from Caséh2the predicted
model parameters from the UNIQUAC-QSPR (Case 2Q) modelhéoexternal test set.
The generalization capability of the QSPR model was fudhatyzed by predicting,

P, Ki and K, properties using the predicted model parameters. Table 7.2 shows the
property prediction errors obtained using the UNIQUAC-QSPR pextliparameters
(Case 2Q) for the training, validation, internal test and extéesakets. The AAD values

for the VLE predictions in all data sets were approximatelge the AAD values
calculated in the UNIQUAC regression analysis (Case 2). Q&PR predicted

parameters resulted in training set AAD values of 6.4%, 0.6%, 7.2% and fdr.8%P,
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K1, and K; property predictions, respectively. The validation and training seligiion
errors were comparable, which demonstrates sufficient netwarkngawithout over
fitting. As expected, the generalized model results in slightiier prediction errors for
systems in the internal and external test sets. The AAD wdtrethe external test set
were 8.6%, 0.7%, 8.2% and 14.2% TarP, K, andK; predictions, respectively. The 29
elite descriptors (discussed in Section 2.6) that are used as faptii® ANNs in the
final ensemble model are listed in Table 7.3. Component numbers ar¢oudedote
whether the particular descriptor belongs to the first componghe@econd component
in the binary system. Also, sample VLE plots for three systemgprovided in Figures
7.8-7.10. For each of these systems, the experimental mole fraictitims liquid and

vapor phases are compared with the model predictions from this study.

Further, the results from the Case 2Q predictions were comyuatieel predictions by the
modified UNIFAC model [2] (Case 3U). The UNIFAC model could notpplied to 28
systems, due to the lack of parameters. Table 7.4 shows the ovedaditipn errors
found using the generalized parameters (Case 2Q) and UNIFA@ @Ths Table 7.5
shows the property prediction errors for systems with compounds rinaly@cally

encountered in refining, and Table 7.6 shows the property predictios &raystems
with compounds that are typically formed in bi-phasic reactions.tablke lists VLE

prediction errors found using the regressed parameters in Casel Yeaeralized

parameters in Case 2Q for eight chemicals.
7.6. Discussion

As expected, accounting for the non-ideal behavior through the UNEXdodel (Case

2) resulted in significant error reductions (up to 4 times in the psopeedictions) when
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compared to the ideal solution model (Table 7.1). For the generalMEQUAC-QSPR
(Case 2Q) model, the errors in property prediction for the extstaset are about 1.1 -
1.3 times the corresponding errors in the training set, which igagaory (Table 7.2).
Also to note, the UNIQUAC-QSPR model typically had higher erdors systems
consisting of sulfide, chloro-alkane and amine functional groups. Thgiser prediction
errors can be attributed to the lack of adequate represergativtures in the training

set.

A closer examination of Figures 7.4-7.7 suggests that the moal#d k® inaccurate
predictions for parameteg;@awhen compared to predictions for parameteras evident
from the flat prediction curve for values close to zero in Figuse This could be due to
the order of regression employed in this work, where paranagiewas regressed
initially, followed by the regression of parameter. &0 prove this, another iteration of
regression was performed on parameggnahile fixing the values of parameter at the
QSPR prediction values from the previous iteration. This led to batéelictions for
parameter 4, but decreased the accuracy of the predictions for paramef@odigure
shown). The predictions fof, P, kK, and K,, however, did not significantly change
during this additional iteration, which highlights the effects ofapeeter correlation,
where each parameter;{a@r &) can have a range of optimum values of the other
parameter with similar prediction results. To illustrate #ssertion, five different binary
systems from the flat prediction region in Figure 7.5 werectale and a sensitivity
analysis was performed by varying thealue systematically, and optimizing for the a
parameters, while simultaneously recording the AAD values &gspire predictions. For

the systems studied, a wide range of parameter values wdsiedethat led to only a
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25% increase in the AAD value on the pressure predictions. Figurelldstiates this
for one binary system, wherg,asalues in the range -250 to 550 and \&lues in the
range -320 to 380 lead to statistically similar AAD valueshi& pressure predictions.
This suggests that for some systems, optimizing just one pa&mragher @ or a3 IS
sufficient to result in good predictions, as long as the other ptgamenithin a certain
range. This also explains the poor agreement between thesemraxsd predicted,a

values for the systems in the external test set (Figure 7.7)

Table 7.3 lists the 29 elite descriptors that are used as inptitie ®8NNs in the final
ensemble model. Due to the nature of the ANNs, a quantitativesasset of the
significance of these descriptors is not possible. However, the muohlsescriptors
associated with the solute and the solvent molecules in Tabégere8most the same. Of
the 29 best input descriptors, four are molecular representationuofuséls based on
electron diffraction (3D-MoRSE) descriptors [18]. These descritiegsised to describe
the 3-dimensional (3D) structure of any molecule using a fxedber of variables. Also
common are the GEometry, Topology, and Atom-Weights AssemblYTABEAY)
descriptors, which according to Consonni and coworkers encode both the gesimetri
information given by the influence molecular matrix and the topcdbgnformation
provided by the molecular graph, weighted by the chemical informagiecoded in
selected atomic weightings [19]. These descriptors contain inflemeabncerning the
3D structure of the molecule. In addition, the best descriptorl8st fzas three binary
fingerprint descriptors that describe the presence of carbon-caraboxygen-oxygen

bonds at certain topological distances in the molecule.
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Figure 7.12 shows the correlation of the regressed parameter values thegadnas target
values in the final QSPR model‘r(ﬁeration model). The plot reveals that the correlation
between the two parameters was significantly reduced inilhé regression analysis.
This shows that the sequential regression technique was sucdesséducing the
correlation of the model parameters. The RMSE values betweeredhessed and the
predicted parameter values from QSPR were 218 and 219 fondlaemdaa; model
parameters respectively. After nine iterations of sequengatssion analysis, the RMSE
values decreased to 62 and 133 fgr and a; model parameters respectively. As
expected, the reduction in the correlation of the regressed parameteraccompanied
by reduction in the RMSE values between the regressed and thetguteparameter

values from the QSPR models.

Table 7.4shows the comparison between predictions from the generalized QS&&

with predictions from the modified UNIFAC model (Case 3U). As b& seen from
Table 7.4, the overall results of the QSPR model are better camjwatbe UNIFAC
group-contribution method. The AAD values of UNIFAC are 19.7%, 1.7%, 20.4% and
28.4% forT, P, K andK; predictions, respectively. The current QSPR model resulted in
approximately three times lower errors than that of UNIFpA€Hictions, which indicates
that a QSPR modeling approach is effective in generalizing UNKIQ model
parameters foa prior property prediction. This could be attributed partially to the ability
of the descriptors in the QSPR model to describe the 3D strudtuties solute and the
solvent; whereas, the UNIFAC model is based only on the 2D strugtioanation and

may be deficient in describing completely the solute-solvent interactions.

190



Table 7.5 shows the property prediction errors for systems thatc@renonly
encountered in refining processes. The table provides VLE predmtiors using the
regressed parameters in Case 2, and generalized parame@ase 2Q, for the 332
binary systems. The property predictions using generalized parametere
approximately twice the regression results. Comparable oymedliction errors were
found from the previously reported results by Ravindranath et al. [11d, esnployed
two different QSPR models to predict for the two UNIQUAC modehpeeters. Some of
the descriptors used in our newly developed model were reportesigaisicant
descriptors in the previous work [11] as well. These include des&iptamh as atomic

charge for N, O, C atoms, electro negativity and C - C bond related descriptors.

Finally, Table 7.6 shows the property prediction errors for systems with compthatds
are typically formed in bi-phasic reactions. The property ptiedie using generalized
parameters were approximately two times that of the ragresssults. Lower prediction
errors were observed for systems with propionaldehyde and 2-propaboth Case 2
and Case 2Q; however, systems consisting of water and fugaval higher errors in
both Case 2 and 2Q. This can be attributed to a higher degree aleadity of the

components and/or the lower quality of the data for systems with similar compounds
7.7. Conclusions

1. In the current work, a non-linear QSPR model was developed toratjeae
successfully the UNIQUAC model parameters using an exteusitabase of 578
binary systems. As compared to previous works, where two diffel@RRQmodels
were employed to predict for the two UNIQUAC parameteng, ¢urrent work

successfully employed just one QSPR model.
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. This work demonstrated an effective approach for the reductitreaforrelation of
model parameters using a sequential regression technique.

. The prediction AAD values on an external test set of 139 binargragsivere 8.6%,
0.7%, 8.2% and 14.2% for, P, K, and K predictions, respectively. Our QSPR
model resulted ira priori predictions with errors approximately twice the errors
obtained regressing experimental data.

. According to the current work, 3D descriptors of the species invohaa a
significant effect on the UNIQUAC parameter values. This coulthbereason for
the higher accuracy of the current QSPR model compared to thimg@NIFAC
group-contribution method.

. The generalized UNIQUAC model was used to predict the equilibriopepties for
127 binary systems comprised of compounds typically formed in bi-pbatstytic
reactions. The AAD values for these systems were calculatda t9.2%, 0.8%,
8.1%, and 15.9% foll, P, K, and K, predictions, respectively. This case study
illustrates that the QSPR-generalized UNIQUAC model camiydayed to predict
the activity coefficients for binary systems with reasonabiacy, even when no

experimental data are available.
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1 Alcohol 13] 2

2 Aldehyde 3

3 Alkane 24 5115

4 Alkene 101 1 )11

5 Alkyne 6|3]2 X

6 Amide 6 v Number of available binary systems

7 Amine 5 2 consisting of chemicals with functional

8 Aromatic Bromo 1 groups of X and Y

9 Aromatic Floro 2 2

10 | Benzene Derivative | 6 | 4 |14 Number of available binary systems
11 Bromoalkane # consisting of chemicals with functional
12 Carboxylate 2] 6 groups formed in bi-phasic reactions
13 Chloroalkane 6 6

14 Chloroalkene 1 .
15 | Chlorobenzene 3 16 No VLE data available
16 Epoxide 2

17 Ester 1)1

18 Ether 13 2|18

19 Furfural 1 3

20 H2S 1

21 lodoalkane 1

22 Ketone 314120

23 Nitrile ) 4

24 Nitrite

25 | Nitro Compound 3

26 | Pyridine Derivative 4

27 Sulfide 4 4

28 Thiol 1

29 Thiophene 1

30 | Toluene Derivative | 3| 5| 4

31 Water 8111

Figure 7.1: Database matrix of the compounds in the OSU database Il along it
the 31 functional groups represented
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Correlation of VLE data Generation and optimization
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Figure 7.3: Schematic of the model development process elmyed in this
work
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Figure 7.8: Equilibrium phase compositions for cyabhexane (1) + chlorobenzene (:
at T=348.15K
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Figure 7.9: Equilibrium phase compositions for hexae (1) + benzene (2) ¢
P =1.0133 bar
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Table 7.1: VLE predictions using ideal solution (Case 1) and UNIQUAC (Cas®

models
Case# Model (VIL) Parameters  Property RMSE Bias %AAD
P (bar) 0.60 -0.10 12.4
T (K) 8.60 3.80 1.3
1 Ideal Solution None
K1 5.30 -0.70 13.2
K> 0.90 -0.20 21.6
P (bar) 0.17 0.00 2.5
Regressed T (K) 2.13 0.24 0.2
2 IG/UNIQUAC
a12& 821 Ky 351 -024 35
K> 0.25 -0.02 6.2
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Table 7.2: VLE prediction errors for the UNIQUAC-QSPR (Case 2Q) model

Data Set # of systems Property # of Pts. RMSE Bias %AAD
Training 285 P (bar) 8451 0.29 0.01 6.4
Set T (K) 8479 3.93 0.42 0.6
K1 5018 0.97 -0.05 7.2
K> 5016 0.53 -0.05 11.8
Validation 89 P (bar) 2977 0.12 -0.01 6.6
Set T (K) 2995 3.98 0.47 0.6
K1 1866 0.51 -0.03 6.8
K> 1864 1.02 -0.07 10.4
Internal 65 P (bar) 1701 0.14 0.01 8.0
Test Set T (K) 1701 3.76 0.02 0.6
K 897 9.12 -1.25 6.5
K> 897 0.47 -0.02 14.3
External 139 P (bar) 3547 0.30 -0.03 8.6
Test Set T (K) 3551 4.27 0.17 0.7
K1 2174 5.33 -0.47 8.2
K> 2174 0.43 0.00 14.2
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Table 7.3: List of the descriptors used in the final ensemble for theNUJQUAC-QSPR (Case 2Q) model

No. Descriptor Complete Name of Descriptor Component Type of
1 RDEO35y Radial Distribution Function - 3.5 / weighted by atomic van der RDF descriptors
Waals volumes
2 Mor31lu  3D-MoRSE - signal 31 / un-weighted geDsc'\;/:ﬁ)thoSrsE
3 Morl8v ~ 3D-MoRSE - signal 18 / weighted by atomic van der Waals volumes geDsc'\:/:ﬁ’othoSrsE
4 G3u 3st component symmetry directional WHIM index / unweighted \c;\ggclzl\r/ilptors
5 WA Mean Wiener index gopolpglcal
escriptors
6 R6e R autocorrelation of lag 6 / weighted by atomic Sanderson GETAWAY
electronegativities descriptors
: . 2D frequency
7 FO1[C-C] Frequency of C - C at topological distance 01 fingerprints
8 Plu 1st component shape directional WHIM index / unweighted \éVHIM
escriptors
9 Mor28v ~ 3D-MoRSE - signal 28 / weighted by atomic van der Waals volumes gD'M.ORSE
escriptors
10 TPSA(NO) Topological polar surface area using N,O polar contributions r'\)/lrglgecrtéilsg
11 EPS1 Edge connectivity index of order 1 ili((jj?fezdjacency
12 nCIR Number of circuits dCé):;tigijélrosnal
13 DISPp d COMMA2 value / weighted by atomic polarizabilities dGeesOcr:;Stt(r)ersal
14 MWCO07  Molecular walk count of order 07 Walk and path

counts




Table 7.3 (cont'd): List of the descriptors used in the final ensembler the UNIQUAC-QSPR (Case 2Q) model

No. Descriptor Complete Name of Descriptor Component No. Type of Descriptor
. . 2D frequency
15 FO3[0-0O] Frequency of O - O at topological distance 03 fingerprints
16 X1v Valence connectivity index chi-1 Connectivity indices
17 nN Number of Nitrogen atoms dCOI‘]St.ItutIOI‘]a|
escriptors
18 BO6[C-C] Presence/absence of C - C at topological distance 06 2 2D bingampfints
Broto-Moreau autocorrelation of a topological .
19 ATSTp structure - lag 7 / weighted by atomic 2D autocorrelations
20 GATS3V Geary autocorrelation - lag 3 / weighted by atomic 2D autocorrelations
van der Waals volumes
3D-MoRSE - signal 24 / weighted by atomic 3D-MoRSE
21 Mor24e L .
Sanderson electronegativities descriptors
22 HATSOM Le\'/erage-welghte'd autocorrelation of lag 0 / GETAWAY
weighted by atomic masses descriptors
23 MPCO04 Molecular path count of order 04 Walk and path counts
Leverage-weighted autocorrelation of lag 3 / GETAWAY
24 HATS3e . . L .
weighted by atomic Sanderson electronegativities descriptors
25 H-051 H attached to alpha-C Atom-centered
fragments
26 BLI Kier benzene-likeliness index Topolpglcal
descriptors
27 nROH Number of hydroxyl groups Functional group
counts
o8 HATS2e Leverage-weighted autocorrelation of lag 2 / GETAWAY

weighted by atomic Sanderson electronegativities

descriptors
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Table 7.3 (cont'd): List of the descriptors used in the final ensembler the UNIQUAC-QSPR (Case 2Q) model

No. Descriptor Complete Name of Descriptor Component No. Type of Descriptor
Balaban-type index from van der Waals weighted Topological

29 Jhetv ) . 2 ,
distance matrix descriptors
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Table 7.4: Cases 2Q and 3Ua priori VLE prediction comparison

Case # Model (VIL) # of Property RMSE Bias %AAD
systems
P(par) 0.24 0.00 7.0
2Q IG/UNIQAUC 578 T (K) 400 034 06
K1 153 -0.15 7.3
Kz 0.36 -0.02 12.3
IG/UNIFAC (Due to lack P(bar) 470 020 197
3U of interaction model 550 T (K) 12.20 -0.80 1.7
parameters 28 systems
from 578 systems were nc K 490 0.10 20.4
considered) K. 420 020 284
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Table 7.5: Case 2 and 2Q — VLE property predictions for systems that are
commonly encountered in refining processes

# of
Case # Model (VIL) Parameters syste Property RMSE Bias %AAD
ms
P (bar) 0.26 0.01 2.4
a;oRegressed
T (K) 192 0.20 0.2
2 IG/UNIQUAC 332
K1 0.85 -0.01 3.4
&1 Regressed
K> 0.24 -0.01 6.1
P (bar) 0.31 -0.01 6.4
aleSPR
T (K) 3.69 0.24 0.6
2Q IG/UNIQUAC 332
K1 0.50 -0.01 7.5
a1 QSPR
K> 0.30 -0.02 11.9
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Table 7.6: Case 2Q — VLE property predictions for systems with compoundsah
are formed in bi-phasic reactions

%AAD
Case 2 (Regression) Case 2Q

Compound #  #of (UNIQUAC/QSPR)

of pts

Sys P T Ky K; P T Ky Kz

(bar) (K) (bar) (K)

n-octane 14 313 25 02 21 35 88 07 59 147
1-Propanol 16 315 35 03 36 92 68 05 84 138
2-propanol 5 105 16 01 37 38 58 04 8.8 8.2
Acetone 36 977 27 02 40 76 71 06 80 140
Benzaldehyde 3 70 35 03 51 106 59 04 24 156
Propionaldehyde 9 177 10 01 26 4.2 44 04 70 80
Furfural 16 262 54 06 31 141 152 21 49 28.0
Water 28 629 49 04 6.9 124 13.7 0.9 135 1938
Total 127 2848 34 03 40 86 92 08 81 159
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CHAPTER 8

A NON-LINEAR QSPR MODEL FOR THE INFINITE-DILUTION ACTIVITY

COEFFICIENTS OF CYCLOHEXANE AND BENZENE
IN VARIOUS SOLVENTS
8.1. Introduction

Solvents play an important role in many chemical reactions and sepgraicesses. The
design of solvents for specific applications requires an understaoflthg interactions
between the solute and the solvent at the molecular level. Farsdietions, the mean
strength of the interactions between all the molecules (includingtessblvent
interactions) is the same, and therefore, the mixture propediebe described using just
the concentrations of the individual species. For non-ideal solutionsplie-solvent
interactions are different from the solute-solute, or the solvewéisointeractions. These
interactions can be described quantitatively using dimensionless tpsacéiled activity
coefficients, which are denoted using the Greek symbol gammaq be specific, the
activity coefficient,y;, describes the non-ideality for a species ‘i’ in a mixturéewthe
solute mole fraction, jx approaches zero, the activity coefficient is referred tthas

infinite-dilution activity coefficient, and is denoted-g5:

Vi = iiig})(Yi) (8.1)
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Infinite-dilution activity coefficient values are of great imf@ce because they describe

only the solute-solvent molecular interactions, without the complicatiaime solute-

solute interactions. The magnitude of tfievalue provides insight into the molecular
forces that exist between the solute and the solvent molecules. &rpmnactical
viewpoint, y* can be used to design separation equipment, to predict phase equilibria

properties and to determine the fate of chemicals in the environment [1].

The experimental determination pf values is time-consuming and expensive. Further,
these experimental techniques are difficult for sparingly soluble solutesxpadmental
values typically do not exist for novel molecules that are desigmesilico in the
chemical and pharmaceutical industries. Therefore, a need éxispredictive models
that can computg” values accurately based on molecular structures of the soldtéhe

solvent molecules.
8.2. State of the Art in Predictingy™ Values

Since values of” can encompass a range of several orders of magnitude, logarithmic
transformations such as lg§ or Iny” are much easier to model, when compared to the
originaly” values. In activity coefficient literature, the most common practicensodel

the Iny” values and therefore, the same practice is employed inwtiris Several
predictive models for I™ exist in the literature and are based on group-contribution
methods (GCM). The universal functional activity coefficieddiN(FAC) approach by
Fredenslund and coworkers [2] is one of the earliest predictive sfmteln y*, where

for typical binary systems a deviation of 20% between expeatahand predicted values

is reported. Many modifications of the original UNIFAC method havenbaroposed

such as Modified UNIFAC (Dortmund) [3, 4] and Modified UNIFAC (LY [5].
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Voutsas and Tassios [6] compared various methods of calculating {fievétues and
reported that the modified UNIFAC methods give better results thanoriginal
UNIFAC for athermal alkane/alkane asymmetric mixtures. AnoB@M based model
is the analytical solutions of groups (ASOG) model by Tochigi eodorkers [7].
Despite their popularity, GCM methods suffer from disadvantageb, autheir inability
to model structures containing undefined functional groups and to accouthefor
interaction between different functional groups and their spatiah@ement. For polar
systems in particular, the UNIFAC approach leads to significanaccurate predictions
[8]. Alternate strategies such as the linear solvation enexlgyianship (LSER) [9]
models have been found to be more accurate. The LSER method isdépdntere an
average absolute deviation of 0.294 units fog’invalues of 336 organics in water [9].
Molecular simulation methods are the other major class of prediotiodels for Iny™.
These methods are usually based on potential energy functions deoregure-fluid
properties such as heats of vaporization, and therefore theoretiaedlyeasier to
implement due to the availability of the data, when compared to Gipkbaches, which
are based on binary mixture thermodynamic data. Lazaridis anditiza|il0] developed
a free energy perturbation method with Monte Carlo simulations, réatigling Iny”
values for chlorinated organic compounds in water. However, the aeviagtween the
experimental and predicted values was found to be unacceptable egengier solutes.
Moreover, the method was expensive computationally to employ, evenofierately
sized solutes. The conductor-like screening model for real solf€@SMO-RS) is a
relatively new promising simulation methodology for calculatthg y* values. The

COSMO-RS theory describes the interactions in a fluid in teo$ocal contact
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interactions of molecular surfaces [11]. Putnam et al. [12] hatedtése COSMO-RS
model and report that the model predicts reasonably for aqueous byséens, but

predicts poorly for some non-aqueous systems.

An attractive alternative to the previous modeling methods is theitpiaet structure-
property relationship (QSPR) approach, where the target molgurolaerty is expressed

in terms of the structural aspects of the molecule. Mackay and Shiu [13] developEd one
the earliest QSPR correlations for i, where a correlation between i values of
polynuclear aromatic hydrocarbons in water with the number of cartmmsawas
discovered. This model, developed for a specific class of compoundsrigla solvent,
resulted in better predictions than the more general universali anesnical
(UNIQUAC) and UNIFAC models. In a similar study, Medir anddBif14] developed a
correlation between Ip” values and molecular connectivity descriptors for aromatic and
aliphatic hydrocarbons in water. While more limited in applicatibeir model provided
better predictions than both the UNIQUAC and the UNIFAC modelslyNseal. [15]

had developed a neural network based QSPR model for predictinglues of
hydrocarbon-water binary systems. Their model had an AAD \ail6&6 on the training
data, but had poor predictive performance on extended temperaturesmitaavgork,
Mitchell and Jurs [16] developed a QSPR model for a large numlmeganics in water
using the automated data analysis and pattern recognition toolRARA). They
reported a prediction set (in this case, data that have not beenfarsedodel
development) error of 0.43 units for #f values, which is better than corresponding
predictions from UNIFAC models. Rani and Dutt [17] performed a lammstudy

consisting of 351 training data (the data used to develop the modeBdict@2 Iny”
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values for one halocarbon in water, 17 organics in one hydrofluoraparaffd one
organic in five hydrofluoroparaffins with a reported average absaleviation (AAD)

of 11.8% on the basis of ki’ values. In a recent work, Giralt and coworkers [8] used
Kohonen self-organizing maps (SOMs), along with fuzzy-ARTMAP aleciassifiers to
develop QSPR models that had an average absolute error of 0.52 (&t6%4) logunits

for a prediction set of 45 organics in water. Schult [18] devel@eodified UNIFAC
model to predict the Ip” values of 20 solutes in n-methyl-2-pyrrolidone and hexadecane.
They report AAD values of 8% and 11% for solutes in n-methyli2etigone and

hexadecane, respectively.

This brief review of the existing literature highlights tleeté that the majority of the
models deal with aqueous systems, and the generalized UNIQUACNIRAC models
cannot provide reliable predictions when quality experimental dataodexist for the
specific solutes and solvents. Further, QSPR techniques have proveeffiecbhee when
dealing with a limited class of compounds. This provides the impetuthéocurrent
work, where specific QSPR models were built to predict th€ iralues for benzene and
cyclohexane, separately, in the presence of a varied clasohoént compounds.

Specifically, this work focuses on the following objectives:

1. Develop an accurate non-linear QSPR model to predict thevalues for benzene
and cyclohexane using a database made up of diverse set of solvents.

2. Validate the current modeling approach by employing an extdesil set of
compounds that has not been used to develop the model.

3. Compare the current modeling approach with existing approachés iitdrature,

on common training and external set data. This would further ms$tabk efficacy
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of the modeling approach used in the work. Specificallyy®invalues for 325
organics in water were extracted from the literature ane weed to develop QSPR
models.

8.3. QSPR Methodology

The development of a QSPR model involves the following series p$:sta) data set
generation, (b) descriptor calculation, (c) descriptor reducimh model development,

and (d) model validation. These elements are described below.

8.3.1. Data Set GenerationExperimentaly™ values at 20°- 40°C were extracted from
the DECHEMA chemistry data series [19, 20] for binary systesitis cyclohexane and
benzene as solutes. Thé values have been assumed to be temperature-independent in
this narrow temperature range, which is a reasonable assumptiordecmggsithe
experimental uncertainty associated with the data. To supportghenpison, plots of In

v~ versus temperature are provided in Figures 8.1 and 8.2, for benzenglahéxane,
respectively. These plots suggest that the uncertainties in mvepeal data are
considerable for Iy values close to zero, and for the systems considered, the variation
of In y”* values with temperature is minimal within the 20°- 40°C rangellJri75 and

192 unique solvent™ values were extracted from the literature, for cyclohexant a
benzene, respectively. Approximately 80% of this data was within28fe 30°C
temperature range. The DECHEMA chemistry data series [19, @Y dot provide
estimates for the experimental uncertainties of the data, arefdreethe quality of the

data used in the current work cannot be assessed.

CyclohexaneThe Iny” values of the molecules in the final database for cyclohexane lie

in the range of -0.65 to 5.7 natural log units (Figure 8.3 providedistébution of Iny”
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data). The molecular weights of these compounds vary from 32.05 g/n#36t@6
g/mol, and the octanol-water partition coefficient, log,K(calculated using the Ghose-
Crippen ALOGP model in DRAGON [21]) varies between -1.7 and 11.3. Futétails

on the database characterization are provided in Table 8.1.

BenzeneThe Iny” values of the molecules in the final database for benzene tiein
range of -0.76 to 3.6 natural log units (Figure 8.4 provides the distribaftiony™ data).

The molecular weights of these compounds also vary from 32.05 g/mol to 426316

and the log K., values (calculated using the Ghose-Crippen ALOGP model in DRAGON
[21]) vary between -1.7 and 11.3. Further details on the database ehaaticin are

given in Table 8.2.

In addition to the above data sets, additiona}”irdata of 325 organics in water were
extracted from literature [8, 16]. This data was originally céedpby Sherman et al. [9],
and has been used to develop models to predict tjieMalues of organics in water, by
Sherman et al. [9], Mitchell and Jurs [16], and more recently bgltGet al. [8].
Henceforth in this work, this data will be referred to as theeags database to
differentiate it from the cyclohexane and benzene data setdt &tiral. [8] report that
their model performs better than the models by Sherman et ahn@]Mitchell and Jurs
[16] on this aqueous data set. To validate the current modeling apptbackame
aqueous data were used to develop a QSPR model to predictytherdfues and the
resulting model was compared with the prediction results byt@irall. [8]. To ensure a
fair comparison, the same training and external test data emtbloy Giralt et al. [8]

were used in the current work.

8.3.2. Descriptor Calculation:See Section 2.5.

218



8.3.3. Descriptor Reduction and Model Developmenee Section 2.6.

External Validation:In a recent articleTropsha et al[22] emphasized the need to
validate QSPR models using external data sets. Therefore, anutdet was built by
separating some benzene and cyclohexane data from the origadzdskatnd allocating
them to an external test set; however, the data cannot be randepdsated, as the
external set might not be representative of the training setefore, a SOM network
was created using the best descriptors identified in the dmsemble, which was
developed using the entire database. This SOM was used to idemsifgrslin the data
and facilitate the partitioning of data into T, IV and IT setexgdained in Section 8.3.3.
The number of map units in this SOM was varied until the perceofadata points in
the IT set is 15% of the size of the entire final data™at IT set was then set aside as
an external test set and the remaining data was used fdogiegeanother modeaile
novg by repeating the search for the best descriptors, best netwdrikeeture and
network weights. In the current work, 15% of the molecules weeatiited as an
external test set using this procedure, and the remaining 85%palata were again
divided into T, IV and IT sets and subjected to the descriptor sedgdhuithm as
discussed in Section 8.3.3. For clarity, the model created usidgtallpoints for model
development will be referred to as Model 1 and the model developed ustr@bpo of
the data points as Model 2. Model 1 will be used in the computer-aidedutenl design
(CAMD) algorithms because of its larger training set,sael Model 2 will be used to

assess the generalization capability of Model 1, as advocated by Tropshazit a
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8.4. Results

8.4.1. Model 1 for Cyclohexane:Ten-descriptor, 15-descriptor, and 20-descriptor-
models were tested, but no significant difference was observecgdetthe models.
Therefore, for the sake of simplicity, 10 descriptors were uséte final models. Using
less than 10 descriptors resulted in a significant increase tratheng RMSE values for
databases comprised of more than 150 data points, which provides addujpat $or
the choice of ten input descriptors. Figure 8fowsthe comparison between the
experimental and predicted ¥ values for Model 1. The correlation coefficient’R
between the experimental and predicted values is 0.94. The predididuatesrrors in
natural log units are plotted in Figure 8véhich demonstrates clearly that the residuals
are almost symmetrically distributed around the horizontal asisxpected from an
unbiased model. A histogram of the residuals (not shown) was plottedthand
distribution of the residuals around zero was found to be similantoraal distribution.
Additionally, the RMSE and the mean average error (MAE) valoethe training data
set predictions are 0.29 natural log units and 0.22 natural log unitsctreslye The
RMSE values for the individual ensembles range from 0.30 natural log tanis36
natural log units. The results from the overall ensemble are biedie the results for the
individual ensembles, which validates the use of ensembles withediffdescriptors as

inputs.

The different descriptors used for creating the eight difteemsembles are shown in
Table 8.3. Note that the neural networks in the ensembles are dllmvbave a
maximum of 10 elite inputs, but frequently the individual networks malle a slightly

lower number of elite descriptors as inputs after the insigmtidescriptors have been
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removed, as described in Section 8.3.3. The descriptors R1s, ALOGP, Chi@mEA (
HyWi B (m) and SpPosLog_Dz (Z) are the most common achesgrisembles. The
types and physical meanings of these commonly occurring dessrips extracted from

the DRAGON [21] help file, are provided in Table 8.4.

8.4.2. Model 2 for Cyclohexane:For Model 2, 10-descriptor models were chosen.
Figure 8.7provides a comparison between the experimental and prediciédvldues

for the external test data set of 28 compounds. The correlationcee®ff{R) between
the experimental and predicted external test data is 0.83. Thetjoredésidual errors on
this data are near-symmetrically distributed around the horizaxiglno figure shown
The RMSE and MAE values for the training set data of 147 compoun@s3arand 0.23
natural log units, respectively. The RMSE and MAE values for therred test set are

calculated to be 0.48 and 0.39 natural log units, respectively.

8.4.3. Model 1 for BenzeneSimilar to the models for cyclohexane, ten-descriptor, 15-
descriptor, and 20-descriptor-models were tested, but no significdetedide was
observed between the models. Therefore, for the sake of simpl@itdescriptor models
were used in the final models in the current study. FiguresBdvs a comparison
between the experimental and predictedythvalues for Model 1 for benzene. The
correlation coefficient (B between the experimental and predicted values is 0.93. The
prediction residual errors in natural log units are plotted inur€ig8.9 which
demonstrates clearly that the residuals are almost symatigtrdistributed around the
horizontal axis, as expected from an unbiased model. A histogram oédideials (not
shown) was plotted, and the distribution of the residuals around zerfowas to be

similar to a normal distribution. Additionally, the RMSE and the M#&ues for the
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training data set predictions are 0.19 and 0.14 natural log units, tresjyed he RMSE

values for the individual ensembles range from 0.19-0.24 natural log units.

The different descriptors used for creating the eight difteemsembles are shown in
Table 8.5. The descriptors MLOGP, SAdon, and Sp_Abs B (e) are thecomston
across the ensembles. The types and physical meanings of theserdgmccurring

descriptors, as extracted from the DRAGON [21] help file, are provided in Table 8.6.

8.4.4. Model 2 for Benzene:For Model 2, 10 descriptor-models were chosen. A
comparison between the experimental and predicted Walues for the external test data
of 30 compounds is provided in Figure 8.10. The RMSE and MAE values fathieg

set data of 162 compounds are 0.19 and 0.15 natural log units, respectiveRMBEe
and MAE values for the external test set are calculated 4% and 0.29 natural log
units, respectively. The correlation coefficient’Fbetween the experimental and
predicted external test data is 0.66. The prediction residual emaisis data are near-

symmetrically distributed around the horizontal axis (no figure shown).

8.4.5. Model for Aqueous DataGiralt et al. [8] had employed 12 descriptors in their
model, and so to ensure a fair comparison, 10 descriptor-models werepgevel the
current work. For the current model, the RMSE and MAE values are calculated to be 0.38
and 0.28 natural log units, respectively for the training set cemgrk80 compounds.

For the external test set comprising 45 compounds, the RMSE and MAEs vare
calculated to be 0.67 and 0.35 natural log units, respectively. A compbhaseeen the
experimental and predicted k° values for the external data of 45 compounds is
provided in Figure 8.11. The correlation coefficienf)(Retween the experimental and

predicted external test data is calculated to be 0.96.
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The errors for all models developed in the current work are tabulated in Table 8.7.
8.5. Discussion

The Model 2 MAE values for the cyclohexane and benzene externaktesire within
two times the corresponding training set MAE values, which indicatmal predictive
performance, based on comparison with other models in the litetadremploy neural
networks to model physico-chemical properties [23, 24]. Due to ther laegeing data
set, Model 1 for both cyclohexane and benzene would be expected to penfidants

or better than Model 2 on unseen data (external data set). ditegréie predictive
performance of Model 2 on an external test set can be used gpm@xi@mation for

determining the generalization capability of Model 1 for both cyclohexane and benzene

The residual plots (Figures 8.6 and 8.9) of Model 1 for both cyclohexah®&enzene
exhibit over-prediction for lower values of Jff and under-prediction for higher values of
In y*. Similar trends were observed in Model 2 for both cyclohexanédangzene. This
could be explained, in part, by the lower numbers of molecules withnegtiny™ values

in the databases employed in the current work. Further, the compouheéxhlmt the
largest deviations in the various models were examined manualidetdify any
correlation between their higher errors and the moleculartstajcas typified by the
presence/absence of certain functional groups. This examinationotlideveal any
particular trends between the functional groups present in the nebwdiithe prediction
error for the molecule. The higher errors for some molecules tauttiie to the higher

experimental uncertainty in the data for those molecules.

The prediction results from Model 2 for cyclohexane and benzen@rmgacable to the

existing QSPR models in the literature. In particular, thereoirmodel compares
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favorably to a recent model developed by Giralt and coworkers [8¢hwiad a MAE
value of 0.52 natural log units for an external test set of 45 orgamiester, and the
model by Mitchell and Jurs [16], which had a MAE value of 0.33 fornaareal test set

comprising 25 organics in water.

The largest contributor to the prediction error in the current worlddoeildue to the use
of experimental data which is a compilation of all availablerdture data without
consideration of the associated experimental uncertainties. Timatate sufficient data
for a reasonably generalized QSPR model, all data within theet@ture range of 20°-
40°C have been considered in the current work.yIhealues have been assumed to be
temperature-independent in this narrow temperature range, which reasanable

assumption considering the experimental uncertainty associated with the data.

Tables 8.4 and 8.6 list the most common descriptors for the eightdiffensembles for
cyclohexane and benzene, respectively. Due to the black-box natulhe eftificial
neural networks (ANNSs), a quantitative assessment of thaveslebntribution of the
different descriptors to the calculated values is not possible; however, approximate
gualitative interpretations can be made based on the typewipdess. For example, the
presence of the octanol-water partition coefficient in both tioéobgxane and benzene
models indicates a strong correlation between ythevalues and the octanol-water
partition coefficient values. This relationship is not surprisiogscdering the theoretical
mutual dependence between the two properties [1, 25]. In addition,ebenpe of the
2D-matrix based descriptors for both cyclohexane and benzene suggesteng
correlation between molecular shape afidvalues. Also, for the cyclohexane model,

topological and 3D geometrical structures of the solvent affegt"thaues.
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To compare the efficacy of the current modeling approach, the agdatauset had been
employed to develop a QSPR model. The results from this modpl@rgled in Table
8.8, along with the results by Giralt et al. [8], using the stairing and external test set
data. Although, the model by Giralt et al. [8] has a signifigaotiver training set MAE,
the current model performs better on the external set data, whiibates better
generalization capability on new molecules unseen by the modehédiand Jurs [16]
also employed the same aqueous database to develop their QSPR mattekXtetnal
test set of only 25 molecules was used to validate their model.répest an MAE value
of 0.33 for their external test set. A direct comparison betweemdidel by Mitchell and
Jurs [16] and the model from the current work is not possible due tlifférences in the
training and test sets employed. However, despite the larggrnaktest set employed in
the current work, the difference between the MAE values on theektest set between

this model and the model by Mitchell and Jurs [16] is insignificant.
8.6. Conclusions

1. Separate non-linear QSPR models fogtrvalues in the temperature range of 20°-
40°C were developed, using wrapper-based descriptor pruning techniques, for
systems containing cyclohexane and benzene as solutes in a variety of solvents

2. Two models each were developed for cyclohexane and benzenepasfdllodel 1
was created using Ip” values for all available data in the model development;
Model 2 was developed by employingyfivalues of 85% of data from the original

database, with 15% of the compounds reserved as an external test set.
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. For cyclohexane, the RMSE values of the training sets for Mbded Model 2 are
0.29 and 0.32 natural log units, respectively. The RMSE value for Mbdélthe
external test set is 0.48 natural log units.

. For benzene, the RMSE values of the training sets for Model 1 and Rladel0.19
and 0.19 natural log units, respectively. The RMSE value for Model 2 ektkeenal
test set is 0.45 natural log units.

. According to the descriptors identified in the current work, thtarmt-water
partition coefficient and the 2-dimensional shape of the molecule $igadicant
effect on the” values for both cyclohexane and benzene systems.

. The current model developed using the aqueous data set performs significketly be
than the model by Giralt and coworkers [8] on an external tesf ¢& compounds.
The MAE value on the external test set for the model by Getadd. [8] is 0.52 as
compared to a MAE value of 0.35 from the current model.

. The resulting models from this work can be used to predigtiori the infinite-

dilution activity coefficients of cyclohexane or benzene binary systems.
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Table 8.1: Characteristics of the final cyclohexane data set made up of 175 solvent

data
Molecular Property Minimum Maximum  Mean Staqdard
Deviation
Ln (v*) -0.65 5.70 1.80 1.1
Molecular weight (g/mol) 32.05 426.76 133.28 62.8
Octanol-water partition coeff. (Log 1.7 113 15 51

Kow)

Table 8.2: Characteristics of the final benzene data set made up of 192 solveata

Molecular Property Minimum Maximum  Mean Staqdard
Deviation
Ln (v*) -0.76 3.60 0.50 0.7
Molecular weight (g/mol) 32.05 426.76 137.75 68.4
Octanol-water partition coeff.
-1.7 11.3 1.6 2.2

(Log Kow)
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Table 8.3: List of the descriptors used in the final eight ensembles Model 1 for cyclohexane

Descriptor # Ensemble 1 Ensemble2 Ensemble 3 Ensemble 4Ensemble5 Ensemble 6 Ensemble 7 Ensemble 8
1 R1s R1s R1s R1ls R1ls R1ls R1ls R1ls
2 ALOGP ALOGP ALOGP ALOGP ALOGP ALOGP ALOGP ALOGP

Chi0O_EA Chi0O_EA Chi0O_EA Chi0O_EA Chi0O_EA Chi0O_EA
3 MATS2s MATS1s
(dm) (dm) (dm) (dm) (dm) (dm)
SM07_EA(b SMO7_EA(b HyWi_B HyWi_B HyWi_B HyWi_B HyWi_B HyWi_B
4 - -
) ) (m) (m) (m) (m) (m) (m)
5 EE_B(m) EE_B(m) G (N..N) G (N..N) CATSNZIE)—M CATSNZLD—M T (N..N) T (N..N)
6 SpMAD_B SpMAD_B SM09_EA SM09_EA ALOGP? ALOGP2 NSOH NSOH
(s) (s) (bo) (bo)
7 ZM1Kup ZM1Kup ATSC6m ATSC6m HOMA AVS_D/ Dt VR1_X VR1_X
8 SpMax Dt SPTOSLOOD qyis by ) SM3 Dz()  RDF130e  RDF130e “P0St0d D SpPoslog D
z(2) z(2) z (m)
9 Eig0l EA() GATSIm  VE3 G/D QzzZm E'gliafEA( E'gliafEA( Eta_epsi Eta_epsi
10 AVS_D/ Dt VR3_D
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Table 8.4: Physical meaning of the commonly occurring descriptors acrodst
ensembles in Model 1 for cyclohexane

Descriptor

Descriptor Type

Physical Meaning

R1s

ALOGP

Chi0_EA
(dm)

Hywi B
(m)

SpPosLog_Dz (2)

GETAWAY
descriptor

Molecular property

Influence/distance matrix R,
autocorrelation of lag 1 / weighted by
|-state [26]

Ghose-Crippen octanol-water partition
coefficient

Connectivity-like index of order O
from edge adjacency matrix weighted
by dipole moment. The edge
adjacency matrix is derived from the

Edge-adjacency index H-depleted molecular graph and

2D-matrix based

descriptor

2D-matrix based

descriptor

encodes the connectivity between
graph edges. The entries of the matrix
equal one if the considered bonds are
adjacent and zero otherwise.

Hyper-Wiener-like index (log
function) from Burden matrix
weighted by mass

Logarithmic spectral positive sum
from Barysz matrix weighted by
atomic number 2D [27]
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Table 8.5: List of the descriptors used in the final eight ensembles Model 1 for benzene

Descriptor # Ensemble 1 Ensemble2 Ensemble3 Ensemble 4Ensemble5 Ensemble6 Ensemble7 Ensemble 8
1 HATS4i HATS4i VR L VR L VR1_H2 VRL_ H2  Chi_Dz(m) Chi_Dz (m)
2 MLOGP MLOGP MLOGP MLOGP H-048 H-048 P—Vg_Ag"og P—Vg_Ag"og
3 SAdon SAdon R7e R7e SAdon SAdon SAacc SAacc
4 PVSAm1 PVSAm1 SpPos B(e) SpPos B(e) SpAbs B(e) SpAbs B E’e'?o(zl)‘og—B Sppo(zl)‘og—B
5 SM(%%EA SM(Z%EA SsOH SSOH J_B() J_B () piPC10 CATiZLD—OZ
6 TDBOAi TDBO4i  VR3_B (V) SpPOfLog—D SpAD B (e) SpPos Dz(Z)  Morldu Mor14u
7 AVS B(s) AVS_B(s) SpM(iZ)(a—Bh AVS B(p) ATSCIm  ATSClm C-009 C-009
8 VE3_Dz (v) HyWi Dz(v) AVS_Dz(v)  BLTD48 BLTD48 NdO NdO
9 Chi(?anA)EA ONOV ATSC2p
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Table 8.6: Physical meaning of the commonly occurring descriptors acrodst
ensembles in Model 1 for benzene

Descriptor Descriptor Type Physical Meaning

Moriguchi octanol-water partition

MLOGP Molecular property coefficient

Surface area of donor atoms from

SAdon Molecular property P VSA-like descriptors

Graph energy from Burden matrix
Sp_Abs B (e) 2D-matrix based descriptor weighted by Sanderson
electronegativity

Table 8.7: The errors for all models developed in this work

Training Set External Test Set

Model

RMSE MAE R RMSE MAE R
Model 1 for 0.29 0.22 0.94
cylcohexane
Model 2 for 0.32 0.23 0.93 0.48 0.39 0.83
cylcohexane
Model 1 for 0.19 0.14 0.93
benzene
Model 2 for 0.19 0.15 0.93 0.45 0.29 0.83
benzene
Model for 0.38 0.28 0.99 0.67 0.35 0.96

agueous data

237



Table 8.8: Comparison of the current model with literature models on thaqueous

data set
. Number of
Training . External Test
Researchers Model Type Set MAE Molecules in Set MAE
External Test Set
Stochastic
This work optimization and 0.28 45 0.35
ANNSs

Giralt et al. [8]

Mitchell and
Jurs [16]

Neural classifiers
and self- 0.02 45 0.52
organizing maps

ADAPT and

0.28 25 0.33
neural networks

* The external test set used in the referenced vgodifferent from the one employed by the othedeis
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CHAPTER 9

COMPUTER-AIDED MOLECULAR DESIGN (CAMD):
METHODOLOGY AND APPLICATIONS
9.1. Introduction

The demand for newly designed molecules that enhance existingspes and satisfy
more stringent operating requirements in technology has been ingedsowever, the
rational design of molecules with desired properties posesndicagt challenge to
engineers attempting to meet the needs of various industriagdimglpharmaceuticals,
polymers, petrochemicals and construction [1T3le traditional approach of identifying
molecules with desired properties involves testing thousands of ufedetor their
chemical and physical properties, which is an expensive and labarmmestaking.
Hence, rational design techniques, such as computer-aided moléesign (CAMD),
have found wide application in recent years [4, 5]. CAMD methods havedmegloyed
successfully to identify novel molecules with superior propertesaf wide range of
applications, including solvent design/selection [6] and design of cHlmm-d¢arbon
substitutes, alternative process fluids, polymers [2] and drugs [7#phdmmaceutical
industries, CAMD is used to discover novel drugs for targeted apphsa while

meeting health constraints, such as minimal side effects andcityox
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In contrast to traditional methodologies, CAMD methods expedite thgndesocess by

predicting the behavior of potential molecules using reliable propeogels. CAMD

involves the design of new molecules based on a specified setirgddesoperties and
can be classified as (a) forward CAMD, which involves computatiorchamical,
physical and biological properties from the molecular structamd, (b) inverse CAMD,

which involves generation of a molecular structure with the desired properties [8, 9].

A typical CAMD design algorithm utilizes two key components) & method for
generating candidate molecules, and (b) accurate models to tpthdicpertinent
physicochemical properties of the newly generated molecules. rBrgpedictions for
the generated molecules are usually completed using group-contribugtmods,
equation-of-state approaches and quantitative structure-propertionetep (QSPR)

models. Figure 9.1 presents a simplified view of the various stages involved in CAMD.

9.2. State of the Art in CAMD

In general, CAMD techniques can be divided into the following categjdkieowledge-
based generation and test methods [10, 11], mathematical optimizegibads [12, 13]
and combinatorial optimization methods [6, 14, 15]. Knowledge-based methods utiliz
expert rules that guide the design process; however, many nondingeture property
relationships are not easily simplified to rules. Mathematipimization methods utilize
mixed-integer, non-linear programming (MINLP) approaches aedcamputationally
expensive to perform and have a high probability of being trappedahrtonima (sub-
optimal molecular structures) for a highly non-linear systeneaifations. Recently,
combinatorial approaches that involve stochastic optimization methodsstsimulated

annealing and genetic algorithms have been applied successfulBAMD. These
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methods have several advantages which makes them widely applgiatiieas ease of
applicability and independent implementation with respect to the pyopestiction
portion of the algorithm. However, they are highly dependent on thenptaes used for
the various mutation operations. Inverse QSPR methods for generatingtruoetures
have also been implemented [16]. These methods involve the use of spesdigptor
types leading to accurate property prediction, as well as allofeingholecules to be
designed based on these same descriptors; however, the desigsiloiefenolecules
using these specific descriptors is usually difficult [17]. Anottisadvantage of this
method is the inability to account for 3-dimensional (3D) moleals#gcriptors, which in
most cases lead to better predictions than 2-dimensional (2D)pdescalone for many
physical properties. Further, limitations are usually placed etyfhes of descriptors that
can be used in this approach such as the monotonically increasing reasiteg

descriptors employed by Miyao et al. [18] in their inverse-QSPR approach.

The majority of applications of CAMD employ connectivity indicesfragment-based
QSPRs, which decrease the execution time for the algorithm but are notiegteeas the
3D descriptor-based QSPRs for many important molecular prapefte performance
of CAMD techniques, however, relies heavily on the accuracy of therlyimde

predictive models. Korichi et al. [19] have used 2D and 3D desgaifitoicomputational
design of aromatic molecules and reported that 3D descriptors pebitar than 2D
descriptors in their design framework. Further, in most studies, thdsgmace is limited
to a certain family of molecular functional groups. This leadsata@eduction in

computational time at the cost of failing to discover bettelenules that may be present
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outside the search space. Therefore, there is a need to develodizgzhenalecular

search algorithms for CAMD.

In summary, the CAMD literature suggests that a need exists highly accurate but
reasonably fast algorithm that searches for globally-optistralctures of molecules
satisfying a certain set of molecular property constrafsther, this algorithm should
be capable of handling non-linear constraints and be generally applfoaldewide
range of molecular design problems. In addition, an algorithm that can bautdiypated
would be much more efficient, and it would also help in reducing theseassociated

with human involvement.
9.3.CAMD Methodology

A genetic algorithm (GA) based approach was used in the cwvmritto identify the
optimal molecular structures that satisfy specific moleadésign constraints. The basic
premise of the GA approach relates to the theory of natulattes, as famously
proposed by Charles Darwin [20], which asserts that individuals ¢spbnd better to
environmental stresses or changes in a given population have a dietare of
transferring their genetic material to future generations. Quwelarge number of
generations, this process leads to elimination of the weakerdodigi and proliferation
of the stronger individuals in a specific population. In biological eiwautthe two
aspects of change through reproduction from the parents to the offapdrnlye selective
survival of the offspring are sufficient to produce generationsdividuals that are

progressively better suited to the existing environment.

The same concepts of natural selection can be extended to CAMIx e molecules

represent individuals, and the selection pressure is applied using ativebfanction
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and design constraints. The fithess of the molecules is assastwts of a specified
objective function and the number of design constraint violations. Tredection of
individuals is simulated using crossover and mutation operations, and rsaflelion is
simulated using various selection procedures such as tournametiopsedea roulette
wheel selection. The overview of the GA-based CAMD algorithm eyeol in the
current work is provided in Figure 9.2. The details of the algordihenpresented in the

following sections.

9.3.1 Problem Formulation: According to Achenie et al. [21], the basic CAMD problem
can be defined as: “Given a set of building blocks and a sped#fied t&arget properties,
determine the molecule or molecular structure that matches pinegerties.” Therefore,
identifying the desired target properties of the chemical compdonas designed is the
first step in CAMD processes. A knowledge-based system isreglgto identify target
properties, as well as their corresponding property values. Aaly@AMD problem

would need the following information:

1. The desired application of the designed molecules

2. The relevant operating conditions of the process

3. The design criteria based on molecular descriptors or properties

4. A property prediction method to predict the relevant molecular properties

5. A quantitative measure of the fitness of the generated molecules.

The CAMD problem is then to design molecules that have the optialak of a
particular fitness function, and at the same time adhere tofispgesign criteria. In

mathematical form, this can be expressed as:
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min F(X)
X

Subject to: (9.1)

gx) =0

h(X) <0
where,F is the fitness function that is dependent upon the vector of molgrojaerties
denoted ascl];. The design criteria, operating conditions and logical constramets a
represented using andh, respectively. The above formulation can be used to treat both
linear and non-linear objective functions and constraints and allowarfalytical or

numerical techniques of evaluation.

9.3.2 Fitness Function and Constraint Handling: The fitness function is a key
component of a GA, and the value of this function determines the propatfilthe
individuals in the population to participate in the reproductive operatmch as
crossover and mutation. There are many different variationsnafsétfunctions in the
literature which are tailored to specific CAMD problems. Du¢he stochastic nature of
the GA-based CAMD algorithm, the fithess function does not have ta beell-
characterized equation with calculable derivatives; however, thes§ function does
need to act as a relevant guideline that can help distinguisiedretwo molecules in a
population [22]. Therefore, the fitness function should be a function of Hieddarget
property values, the individual molecular property values, the userispetiferance
level based on the confidence in property prediction methods, and sonspesiéed
tuning parameters to set penalties for molecules whose propistiede from the target
property values. In general, the choice of fithess function is bas¢deomser’'s prior

knowledge of the important design criteria for the specific problgiiough many
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forms of fitness functions can be used with GAs, the majority of the CAMD #igwsiin

the literature employ a function that varies continuously betwesmd . Molecules with
a fitness function value close to 0 are considered closer to theabptimkecular structure
than molecules whose fitness values are closer to 1. Venkatasulamanearal. [1, 5]
were the first to use a Gaussian-like function to calculatdittiess value in a CAMD
algorithm. When designing for target properties with both lowerwper bounds, the
fitness function proposed by Venkatasubramanian et al. [1, 5] hadotlosvifg

Gaussian-like form:

C P —P,
F = exp (—a [Z @ ( —P-) _ )]) (9.2

where,P; is the 1" property value, Rx P.min and P[1; are the maximum, minimum and

average values of th8 property, respectively, andis the fitness decay factor.

When designing for target properties with only a lower bound or @erupound, the

following sigmoidal form of the fitness function is commonly used:

1
Fi = - 05

1+ exp (—a [u] ) (©-3)

Pi,lrange

where, Fis the contribution of théhiproperty to the overall fitness F,iBthe I" property
value, R, is the lower or upper bound on tfedroperty and PangelS the overall possible
range of the property, which is used to normalize the contribution of each property
toward the fitness function. The 0.5 term in Equation 9.3 ensures, thatved-is zero

when the property value B equal to the lower or upper bound valye Phis value is a
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matter of convenience, and the use of any other value would not akeshape of the
fitness function, but it would shift the fitness function higher or lowith respect to a

base line value.

The magnitude of the decay factar,determines how strictly an individual molecule is
penalized for not meeting the desired property values. A large \wlthe decay factor
would mean that small deviations from the target value are peddteavily leading to
small fitness values; whereas a small decay factor woulthdre lenient, and large
deviations from the desired property values would lead to modetagsdiscores. The
decay factor plays a significant role in influencing the seleqressure of the algorithm.
For instance, in the case of a large decay factor, smallatffes in the deviations from
target values between two molecules are amplified leadingidelydifferent fitness
scores. In the extreme case, this may lead to premature cengergf the GA to a
population of similar and suboptimal solutions. When a small decagr fectised, the
fitness function is more forgiving, and the GA may accept solutastinslarge deviations
from a desired target which would lead to an increase in the dweisthe sampled
solutions. The disadvantage in this case would be the additional computaimaal

required for algorithm convergence.

The fitness function must also account for the various design constaasuciated with
the problem. One approach is to devise a molecular generationesavbioh generates
only those molecules that satisfy all constraints. In other wdtds constraints are
handled in the crossover and mutation stages, instead of in theosetdatie of the GA
algorithm. This approach may work for simple constraints bumpossible to implement

for constraints based on complex molecular properties. Another methoohnstraint

249



satisfaction in GA is to reject individuals that violate constsa i.e., the infeasible
individuals. Infeasible individuals can appear as the result ofdhetig operators, but
these individuals are not admitted to the new generation. This methodonia when
the feasible region of the search space for moleculessenahly large; however, when
this feasible search region is small, rejection of infeasidividuals may lead to the loss
of important genetic information that might be useful when coupleth wenetic
information from other individuals in future generations. Another commadmigue for
handling constraints is to penalize the infeasible molecules Y28katasubramanian et
al. [23] used the following fitness functionyf, in their work for a minimization

problem:

P
Frotal = F+5 ) 0 9.4)
i=1

where, F is the fitness function associated with the molecular pyapat needs to be
optimized,P is the total number of design constraistss the penalty coefficient and;

is the penalty weight associated with tfigenalty term.

The magnitude of the penalties in Equation 8epends on the extent of constraint
violation. The selection of molecules for crossover or mutation isdbas the total
fitness, which is the weighted sum of fithess and penalty. Thasifbie individuals
participate in the genetic process, as they are still condidapable of delivering useful
offspring; however, a careful adjustment of the penalty weightsquired. If the penalty
weights are too low, infeasible individuals could be preferred ththlitess fit but much

more feasible individuals, or application of high penalty weights mesyit in the loss of
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useful genetic information, and the process may converge to feasibleub-optimal

individuals.

Another method of property constraint handling is the inclusion of constrainthe
fitness function, where a property constraint is treated as amoaddlitontribution to the
fitness function (Equation 9.3). However, this method is only suitable when
constraints are simple inequalities, leading to lower or upper bounds particular
molecular property value. Since all constraints encountered iruthent work belong to

this category, the sigmoidal form of the fitness function shovwigemation 9.3 is used to
account for both the actual fitness function and the constraintexiorple, consider the
design of molecules having a normal boiling point (NBP) of less488rK. The fitness
values calculated using Equation 9.3 are plotted as a function of NBP values in Figure 9.3
for four different fitness decay values. For valuesuaflose to one, there is a better
distinction in fitness values between molecules having slighthereifit NBP values;
however, this would lead to longer computational times for the GAdchrconvergence.

At higher values, convergence can be achieved faster, but thereasough distinction
between molecules, including even those that have NBP valuestedpaya500 K. A
middle value of 5 fora is a compromise between premature convergence and long

computational times and is used in this work.

Although Equation 9.3 is suited perfectly to represent the minimizatiomaximization
of property values, the handling of inequality constraints in property yakoplires a
small modification. According to Figure 9.3, among molecules thahgahe NBP
constraint, those molecules with NBP values close to zero derrpeeover molecules

with NBP values slightly lower than 400 K. From a design petsge however,
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molecules with NBP close to zero might not offer any pracidabntage over molecules
whose NBP values are closer to 400 K. In such circumstances, Egueggion 9.3 as

written, would drive the GA algorithm to search for moleculef WBP values close to

zero and would lead to a loss of diversity in the population. To avoidtlleigollowing

modification has been made to Equation 9.3 in the current work:

P —P
1+ exp (—a [_l; l’r] )
irange

(9.5)
Flz{ﬂ if F; > 0
710 ifF;<0
The above modification would lead to an equal probability of selectioallfonolecules
that satisfy a particular inequality constraint. Of course, thadification is only
applicable when there is no design advantage for molecules thatefatweely lower or
higher property values, as long as these values are within theanoedtproperty range.
For cases where there is a design advantage for lower or highers within the

constrained range, Equation 9.3 in its original form is applied.

The total fitness function in the current work is now calculatedumming the weighted

fitness functions for each property constraint:

n
Fiotal = 2 @;F; (9.6)
=1

where, [ is the weight term associated with tHB ¢onstraint, F; is the fitness

contribution of thef constraint and n is the total number of constraints in the problem.

252



The weights for each constraint are decided by the user base@erreace and specific

requirements.

9.3.3 Genetic RepresentationWWhen designing a GA, choosing a representation scheme
is an important step. Genetic algorithms traditionally operatey st string encoding of
the chromosomes in the population. Employing a bit string representati GA-based
CAMD algorithms would involve constructing large binary matrices dll possible
functional groups or atomic fragments in the molecules. Dealitly these matrices
would quickly become impractical even for moderately sized maedudl]. A practical
alternative is to use the representations used commonly by steemvhere molecular
and atomic fragments are represented using symbols. For CAMD,aonenagine a
number of such molecular representation schemes, ranging frophesstrings (line
notation) to more complicated 3D structures. Despite using the samderlying
principles of inheritance and evolution, the results obtained with diffesghemes can
vary widely. These differences are due to the representation echkmg with the
recombination operators limiting the exploration of the search gpacertain regions.
The 3D representations are most commonly used in protein-dockanghsagorithms,
where the 3D structures of the protein and ligand are signmiffeators. In the current
work, the property prediction QSPR models are based on 3D moleculaptescand
theoretically, the CAMD algorithm must also be based on a 3eseptation of the
molecules. However, dealing with the higher level 3D representatitreaholecules is
far from simple, and could prove computationally cumbersome even foumesized
molecules. Therefore, a lower level representation scheme ba$ied naotations is used

in this work.
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Line notations are a popular method for representing chemicalfas. The simplified
molecular input line entry system (SMILES) is the most poputar hotation, which is
based on rules derived from molecular graph theory. The SMILESiarotallows
rigorous structure specification by use of natural grammar amgtlissuited for high-
speed machine processing. SMILES have four basic rules which t@pp§% of the

molecules typically encountered in solvent design [24].
Rule 1: Atom Specifications (see Table 9.1)

a. Use ordinary atomic symbols C, N, O, S, F, CI, and Br.

O

. Suppress hydrogen except on pyrrole nitrogen where it is [nH].

c. Other atoms and any charges are placed in brackets; e.g. [N+].

d. Use lower case for sp2-hybridized atoms and upper case for all other atoms
Rule 2: Bond Specifications (see Table 9.2)

a. Bonds are always assumed to be single bonds unless specified otherwise

(example: ethane, represented as CC).

b. Double bonds are represented by an equal symbol (example: acetaldehyde,

represented as O=CC).

c. Triple bonds are represented by a pound symbol (example: hydrogen cyanide,

represented as C#N).
Rule 3: Branching Specification (see Table 9.3)
a. A branched group is placed in parentheses (example: isobutyric acid, regutesent

as 0=C(0)C(C)C).
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Branches can be stacked (example: fluroform, represented as C(Ey(lRgsted

(example: 4-heptanoic acid, represented as CCCC(C(=0)O)CCOQC).
No predefined limit to how deep branching may be nested.

Most implementations, however, define such a limit, typically between 10 and 50.

Rule 4: Ring Specification

a.

Ring closure is specified by appending matching digits to the joined atoms.

Pick one bond in each ring numbering them in any order. Break the ragnber
bonds, appending the bond number to the atoms on the ends of the bonds. This
leaves an acyclic structure which can always be specifiedj ukan rules for

specifying atoms and branching (Figure 9.4).

There are usually many different, but equally valid descriptionthefsame
structure (see Figure 9.5).

A single atom may have more than one ring closure.

A ring closure digit can be reused (see Figure 9.6).

A molecule always has a unique SMILES structure but can havepl®uD

conformations of which one conformation will possess the lowest coatmnal energy.

In this work, an automated algorithm that searches for this mininem@rgy

conformation starting from the line notation of the molecule was |logee and

combined with the CAMD algorithm. This conformational energy ealgorithm

ensures a one-to-one mapping between the lower level line notatibith (@llows for

easy crossover and mutation operations) and the higher level 3Dergpt&s) (which is

essential for molecular property predictions).
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9.3.4 Initial Population: In creating an initial population, two decisions need to be made:
the size and the source of the initial population. The size of the popufat GAs is
usually proportional to the number of adjustable parameters for tledispaolecular
design of interest. While a larger population would increase the eglgoamputational
power and ensure globally optimum solutions, a smaller population wouldedower
computational power and could lead to sub-optimal solutions. The siZee dghitial
population is governed largely by the type of attachments usedér structure
generation. If molecular fragments or functional groups are ussdad of atomic
fragments, then a larger population size would be needed to ensuré qbdibzal
solutions. When functional groups are used, the algorithm has a teridgrmgrize the
results, which means that if a molecule generated in the ig#iaération shows high
fitness value, then the probability of such a molecule being involved wurefut
reproduction operations is high. This process results in the genes&tioolecules that
are similar to the high fithess molecule, and consequently mekeauth low fitness that
could potentially lead to a better candidate molecule after a gemerations are
eliminated. The selection of the initial population should reflecida wange of structural
diversity, while considering the design constraints. The initial pdpuala&ian arise from
random structures, which satisfy some minimal fitness crijterigdrom the results of
other calculations or studies. Similar to choosing the populationteae, is no single
best method for generating initial populations for different apptinatiof CAMD. Of
note, GAs with initial populations that are fitter but not suffidiediverse would most

probably yield inferior final solutions.
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9.3.5 Genetic Operatorsin each generation, individuals from the current population are
selected and processed using genetic operators to create a neatipoplihe selected
individuals are referred to as the mating pool individuals. In GAs, several tygeaetic
operators such as crossover, mutation, elitism and reproductiasede Crossover and
mutation operators must be carefully designed since their chmi¢ebeites highly to the
performance and convergence speed of the GA. In this work, elitissover and

mutation are employed as operators and are described in greater detail below.

Elitism: A part of the new population of structures can be creatednylysicopying,
without change, selected individuals from the present population. Ths gipessibility
of survival for already developed fit solutions. In the current waohle best two
individual molecules from each generation are allowed to pass over to theenesdtgpn

without any modifications to their structures.

Crossover:Crossover is a mechanism that promotes interbreeding of maeduie
genetic material of the parents is combined to form new mokedhk retain some
characteristics of the parent molecules. The first step ofctbssover operation is
identification of structural fragments which are suitable farssover. Two types of
crossover are possible. They are (a) single-point crossover, Wieefeagment in the
terminal position is cut and connected to the similar terminaitiposfrom another
molecule, and (b) multipoint-crossover which involves the excision of an internainport
of a molecule and insertion into a molecule with a similar regiemoved. A
diagrammatic representation of one-point and two-point crossoversisnpee in Figures

9.7 and 9.8, respectively. Both methods begin with the random selectionssbwer
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type, followed by the selection of a random pair of distinct paréoin the previous

generation.

In later phases of evolution, adaptively changing the crossover rgie be beneficial
(higher crossover rates in early phases and a lower rate antheof the genetic
algorithm), to keep the fitter individuals intact. Sometimes, usegral different types
of crossover at different stages of evolution might be benefidibis so-called
“knowledge-augmented” crossover operation constructs offspring fhemparents by

making use of domain knowledge related to a given problem.

In the current work, the molecules can only undergo only the simple oneapolirtvo-
point crossover operations; each of these operations occurs with ailitsob&b.25 for

a pair of selected molecules.

Mutation: In CAMD algorithms, mutation is an important operator, which peréolocal
search around a molecular structure. The mutation operator hlas tmplemented
carefully when dealing with chemical systems, due to the camistramposed by the
valency rules and the requirement to keep all the atoms in a nelemuhected. The
mutation operator applied is usually selected at random. In thentwmek, eight
different mutation operations are performed (Table 9.4). These opeaatossmilar to
those used by Lameijer et al. [25]. The probability of a mutationatipa for a selected
molecule is 0.5, and the different mutation operations have uniform pliabalaf being
selected. Further, for mutations that involve adding or inserting aatem into the
molecule, the probabilities of the new atom being a certain typéabulated in Tables
9.5 and 9.6. In addition, the mutation operation is not carried out if theexklaolecule

does not meet the requirements for the particular mutation operatioex&mple, if a
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molecule without any rings is considered for the ‘break-ringtation operation, the
operation is not performed, and the algorithm returns to selectingeaimoblecule and

another genetic operator.

The different mutation operations are described briefly as follows:

1. Add Atom:An atom in the molecule whose implicit valence is not satisBguldked
randomly, and one of the ‘new’ atoms from Table 9.5 is bondedusirigy a single
bond. The second column in the table lists the probabilities of selefdr the

corresponding ‘new’ atoms.

2. Insert Atom:An atom in the molecule whose implicit valence is not satisfied is picked

randomly, and one of the ‘new’ atoms from Table 9.6 is bondedusirigy a single
bond. The second column in the table lists the probabilities of selefdr the
corresponding ‘new’ atoms. The current algorithm cannot insert atoms in a ring.

3. Delete AtomAn atom in the molecule that is bonded to only one other non-hyaroge
atom (through a single bond) in the molecule is deleted.

4. Uninsert Atom:An atom in the molecule that is bonded to exactly two other non-
hydrogen atoms in the molecule is deleted. A single bond is nowdieetigeen the
two neighboring non-hydrogen atoms.

5. Increase Bond-OrdefTwo neighboring atoms in a molecule, whose implicit valence
is not satisfied, are selected and an additional bond is credteeebethem (a single
bond is updated to a double bond, and a double bond is updated to a triple bond).

6. Decrease Bond-Ordeifwo neighboring atoms in a molecule, whose implicit valence
is not satisfied, are selected and the bond-order is decreasee lfg double bond is

updated to a single bond, and a triple bond is updated to a double Gmrate Ring:
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Similar to increase bond-order operation, but operates between tvomngated

atoms in the molecule. A single bond is created between two randmaidgted

unconnected atoms.
7. Break Ring:A single bond in the molecule that is inside a ring is chosen and deleted.
9.3.6 Selectionin each generation of a GA, some individuals are selected toaheg
pool, where these individuals exchange genetic material and produgeingffshat
comprise the next generation population. A “good” mating pool of individuaisbe
ensured by employing an effective selection strategy, whicbraed a high selective
pressure leading to the selection of the best individuals in the populand
consequently, to faster convergence of the algorithm. However, whiigh selection
pressure may lead to premature convergence to sub-optimal sqlutonselection
pressure leads to an increase in population diversity, but slower cengerd herefore,
an effective selection strategy must strike a balanceeeetveonvergence speed and

diversity.

Selection strategies commonly include proportionate-based selectibordinal-based
selection [26]. In proportionate-based selection, the individuals edeetad based on
their fitness values when compared to other individuals in the populati@mes
include proportionate selection [27] and stochastic universal samplinglifi28tdinal-
based selection, the individuals are selected based on their réia@ss ranking with
respect to other individuals and not on the basis of their absdhgsdivalues. Common
examples of ordinal-based selection strategies are tournantecticse [29] and linear

ranking [28]. Ordinal-based strategies are usually preferred owegonpionate-based
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strategies for many reasons, including stochastic sampling eanat scaling problems

associated with the latter methods [26].

Tournament selection was chosen as the selection strategy uritket evork, because of
its advantages over proportionate-based selection and simplicitypténrantation. In
tournament selection, a specified number of parents, known as the tonotrsree are
chosen in each generation and are allowed to enter a competitiowiniter is decided
based on the fitness values of the individuals. The process is repestdtie desired
number of offspring molecules has been generated. This method id iisdfe
population has some individuals with high fitness, and it biases thetieal toward the
above-average individuals while at the same time not allowinguger-fit individuals to
dominate the search. This differs from other selection schem#sainthe selection
probability is fairly static; therefore, no update of selection grihiias is required.
Binary tournament selection, where only two individuals compete ih agnament,

was implemented in the current algorithm.

9.3.7. Property Prediction: A typical CAMD algorithm utilizes two key components,
which are a search method for generating candidate moleculesicaleds to predict the
pertinent physiochemical properties of the generated candidatecuted. Property
predictions for the generated molecules are usually done usowup-gontribution
methods, equation-of-state approaches and QSPR models. The padsenit SAMD is
heavily reliant on fragment-based QSPR models for property pmdictThis leads to
inaccurate predictions when the generated structures have fraghatrase not included
in the training phase of the models. Models based on complete 3D inftornudt

molecules do not suffer from this problem and can be used to predict t@eder
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unknown structures with reasonable accuracy. Further, a majorite @$PR efforts in
the literature are based on linear models, which can fail whetroag non-linear
relationship exists between the target property and moleculatusgutn this work, a
novel non-linear QSPR modeling methodology was developed and applied @ gredi

various molecular properties for the CAMD algorithm.
9.4. Applications

9.4.1. Chemical Penetration Enhancers for Transdermal Delivery of nisulin:

Traditional insulin delivery techniques, such as intravenous admirostradre often
associated with problems relating to over- and under-dosing, itermevith the harsh
gastro-intestinal environment and/or the production of toxic by-ptedticrough
metabolism in the liver. Recently, transdermal drug delivery (TDB)da@gned popularity
due to its ability to overcome most of the above problems with cdiowval delivery

techniques.

Human skin is considered to be one of the most efficient natural pdyaind serves as a
barrier to the transport of chemicals both in and out of the human BOdg1]. Each of
the different layers of the skin offers a varying resistaiocpermeation [32, 33], and for
large hydrophilic molecules like insulin, this resistance is Saaritly higher. Several
physical and chemical alternatives are currently being imaetl for possible
improvement of TDD of insulin [34] and other drugs. However, the ecanwiability
and technical feasibility of using chemicals as penetration errafCPESs) makes them

the most attractive option [35].

Problem FormulationOnly a few knowledge systems that discuss problem formulation

for novel drug design exist. Lipinski’s ‘rule of 5’ is one such ekpgstem that predicts
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the solubility and permeability of the drug molecules based antdoget properties [36],
which are the molecular weight, count of hydrogen bond donors, count ofgeydoond
acceptors and octanol/water partition coefficient (log,)K Since our target is the
identification of novel potential CPEs, extensive knowledge of the pgrepef the CPEs
and their corresponding functionalities is needed. The target maeshubelld be able to
enhance the permeation of a selected drug through the skin withoutgcangiharmful
side-effects. After thorough analysis of the currently all&€PEs and their properties,
Golla et al. [37] [38] have identified the following property coastts as significant for
transdermal drug delivery. This is a subjective list based on kdg&lacquired from the

open literature and our previous experience with CPEs:

1. Molecular weight: Molecules with low molecular weights eagienetrate the skin
due to their small size. Hence, an upper limit of 500 was imposedeamdtecular
weight of potential CPEs [36, 39-41].

2. Octanol/water partition coefficient ¢k): Drugs with very low or high partition
coefficient fail to reach systemic circulation [36, 40, 41]. Salveanges of log Ky
values have been proposed in the literature for effective permeatianeament. In
this work, molecules with log § values in the range of 1-3 were accepted and
considered to indicate good permeation enhancement [39].

3. Melting point: Molecules with high melting points, due to their lowubdity both in
water and fat, are ineffective in transdermal drug deliveI [40], and only
molecules with melting points less than 200°C were considered as good CPEs [39].

4. Skin sensitization: The CPE should not cause any skin irritatisergitization upon

application [39]. All the newly generated molecules are scarsihg three
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independent skin sensitization QSPR models, based on the Fedditateln®r
Health Protection of Consumers and Veterinary Medicine (BgVatplthse, the
guinea pig maximization test (GPMT) database and the looapHynode assay
(LLNA) database.

5. Number of hydrogen donor groups: The sum of the hydrogen atoms tmkeggen
and nitrogen atoms in the molecule determines the total number aigeydbond
donor groups in a molecule. The permeability across the lipidyer-laas been
identified to be significantly lower for drugs with an excessnumber of these
groups [36, 39]. Hence, a hydrogen-bond donor number upper limit of five was
specified for acceptance of a molecule as a CPE.

6. Number of hydrogen acceptor groups: The total number of nitrogen, oxame
fluorine atoms in the molecule (excluding nitrogen atoms with a dbmositive
charge, higher oxidation states and pyrrolyl forms) determimegatal number of
hydrogen-bond acceptor groups in a molecule. Presence of too mapioagreups
has been identified as a hindrance to the permeability acredgith bi-layer [36];
therefore, an upper limit of 10 was used for the hydrogen-bond acceptor number.

In addition to the above constraints, two more constraints are impostutk aurrent

design algorithm, based on experimental measurements of the reduckom resistance

and the enhancement of insulin permeation in the presence of moréObafifferent
compounds:

7. Combined number of hydrogen donors and acceptors: All the compounds that have
been proven experimentally to enhance the permeation of insulin Hadsatone

hydrogen-bond donor or acceptor group. The hydrogen bonding capacity of some
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compounds is known to temporarily disrupt the structure of the skin andyhere
enhance the permeation of the drug molecules [42, 43]. Therefore, thégd &€ Es
are constrained to have a minimum of one hydrogen donor or acceptor.

8. Permeability coefficient of the CPE: The CPEs that enhamsedin permeation had
a permeability coefficient (Log K of greater than -2.5. This suggests that the higher
permeability allows the CPEs to permeate into the inner layfetie skin easily,
which is essential for the CPEs to ultimately disrupt thenalestructure of the skin
through hydrogen bonding. Therefore, only those CPEs with a petfityeabi
coefficient (Log k) greater than -2.5 were preferred.

In addition to the above constraints, the potential CPE has to be a stable molemuie at

temperature and atmospheric pressure; thus, the following constasnadded to the

design algorithm to account for thermodynamic stability, whereb$s energy of
formation was included to quantify the stability of the designed molecules:

9. Standard Gibbs free energy of formation: The standard Gibbs fregye of
formation for any molecule has to be lower than zero for stability at room temmgera
and pressure. The lower the Gibbs free energy, the more shkabledlecule is
relative to its elements. Therefore, only compounds with neg&iivies free energy
in reference to their elements were preferred in the algorithm.

Initial Population: In earlier CPE design work, Golla et al. [37, 38] compiled an

Oklahoma State University (OSU) CPE database composed of over £Dén@Bcules

from diverse chemical classes such as fatty alcohols, dattis, fatty acid esters, fatty

alcohol ethers, alkanones, sulfoxides, biologics, enzymes, amines, acunogsexing

agents, macrocyclics, classical surfactants, pyrrolidones, iompaunds, solvents and
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azone-related compounds. One hundred CPEs from this list were rarskledied and
used as the initial population in the current design algorithm.

Property Constraints and Fitness Functiohhe property constraints that need to be
satisfied for a compound to be an insulin CPE were described prgvidable 9.7 lists
the property constraints and the fitness function weights used in Bite design
algorithm, along with the mean average error (MAE) associattdthe QSPR models
for property prediction when applicable. Some of these properties eadsulated using
DRAGON [44] software, while other properties were estimatedgu§)SPR models
developed by the Molecular Design Group at OSU. The constraints agdgrsted to
account for the model prediction uncertainties when applicable. Tesditcontribution
of each constraint is calculated using Equation 9.5 and varies betva@en0Xb, where a
value of 0 implies that the constraint has been satisfied. Thes$§ contribution of each
constraint is then multiplied by the particular fithess wefgintthat constraint, and the
resulting values for all constraints are summed to give thefitrtass function value, as
shown in Equation 9.6. For the CPE design case, a penalty of magnitudefartivar
added to the total fitness function if the molecule has no hydroged-donors or

acceptors. Therefore, the total fitness function was now modified as follows:

( n
Z @;F; if (nHDon + nHAcc) > 0 ©.7)
Fiotal = = '

1=1

n
lS + Z @;F; if (nHDon + nHAcc) = 0
i=1
where, [; is the weight term associated with tH& ¢onstraint, F; is the fitness

contribution of the'! constraint, n is the total number of constraints in the problem and
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nHDon and nHAcc denote the number of hydrogen-bond donors and acceptors in the

molecule, respectively.

Results:A total of 62 iterations of the design algorithm were complededng which
6,200 molecules were generated. The molecular properties listdé@hble 9.7 were
computed for these molecules, and only 627 of the original 6,200 moleatitf®ed the
constraints listed in Table 9.7. A self-organizing map was dewltpalentify clusters
among the best 627 molecules based on functional group descriptaratealaising
DRAGON [45]. Five major clusters composed of at least 15 moleauéze identified.
Table 9.8 lists the structure of an example compound from each cluster accompimied w

the relevant molecular properties.

The results from the current CAMD approach for designing CPEbea@ompared with
the results obtained by Golla et al. [38]. Specifically, the ptedi K, values of the
majority of the CPEs identified in this work are comparabldéodompounds that were
identified by Golla et al. [38] and Godavarthy et al. [14], and w&perimentally tested
at OSU to be good enhancers. However, the current CAMD apptuashseveral
advantages over the methodology adopted by Golla et al. [38] and Gbglaataat. [14].
First, the QSPR models employed in the current approach are ooorate, and second,
the entire CAMD algorithm has been automated to minimize humarvémiion, and
therefore the implementation of a large number of generationpessible. The design
approaches by Golla et al. [38] and Godavarthy et al. [14] wereautomated and
therefore, the execution of the algorithm was limited to leas ten generations. Also,

the inclusion of the Gibbs free energy of formation models in thesrmurdesign
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algorithm ensures that only stable molecules are identifiedhbyatgorithm. Such

stability models were not included in the previous work by our group [14, 38].

9.4.2. Solvents for Extractive Distillation of Cyclohexane and Benzeneln
conventional distillation, chemical mixtures are separated intoitueTdt components to
yield products with greater commercial value. However, mixt@ireguently contain
molecular species that are similar in their physical pragserand behavior ("close-
boiling" mixtures), which makes their separation by conventionalldigin extremely
difficult and cost-prohibitive. One well-established method to dedl suith situations is
to use extractive distillation (ED), where an additional compomn@nt@dmponents) is
introduced to alter the behavior of the mixture in such a waythkatriginal components
become easier to separate. The ability of a given component ontstdvenprove the
separability of the components in the original mixture depends onmitiecular
interactions between the original species and the solvent added.aFpoatess view
point, the technical and economic feasibility of ED is, to a lalegree, decided by the
solvent used. In addition, some of the economic benefits and motivationssignidg
new solvents are as follows, where the statistics are payjedrom Phillips Petroleum

[46, 47]:

1. A successful new solvent can provide multi-million dollars of annual sales
2. Efficiencies of current processes can be increased

3. Capital costs for new processes can be decreased

4. Recovery of specialty chemicals is profitable (~$40/gallon fose¢hehemicals

compared to ~$1.98/gallon for gasoline)
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5.

In

The replacement of a currently used solvent in an existing petnocdigprocess with

an improved solvent could result in substantial operating cost savings.

this work, the solvent design methodology is exemplified using the

cyclohexane/benzene system. The methodology, after some minor cheagebge

extended to the design of solvents for any system.

Problem Formulation: The design of solvents for extractive distillation involves

consideration of various properties, among which three are of major signifid&jce

1.

Selectivity: The manner in which an extractive solvent affdugs separability of
close-boiling substances may be explained in terms of itswelablatility. The
relative volatility, oi; of a mixture represents a measure of the ease with whth tw
chemicals (species i and j, species i being the more volgpiéeies) may be

separated:

_ (y/%);

Qi = WX)] (9.8)

where, y and x are the mole fractions of the component in the vapoicand |
phases, respectively. The higher the valuenpfthe easier the substances are to
separate by distillation. The value @f can be expressed in thermodynamic terms as

follows:
a; = (pi/p;) (vi/v;) (9.9)

where, p° is the vapor pressure gnds the activity coefficient. For typical close-

boiling species, both the vapor pressures and the activity ceafficof the two
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components are very similar, leading to a relative volatility ngdty and, thus, a
difficult separation. However, by introducing a suitable solvent, kvh&s a higher
affinity for one component, the activity coefficient ratig { y;) can be changed
significantly and separation of the components becomes easienafibeof the

activity coefficients at infinite dilution (selectivity) of specieand j is given by

Y
55 =" /y]?o (9.10)

Here,y;° is the infinite-dilution activity coefficient (IDAC) of apgcies i, which is

defined as

vi, = limy; (9.11)

X;—0

Equation 9.11 may be written in a similar manner for specieshjgher selectivity
leads to a larger relative volatility, a smaller reflatio and lower capital costs in a
distillation column [49]. For these reasons, the solvent with the s$tigiedectivity is
always considered the most promising candidate for a given sepgatcess [50].
In this work, a lower limit of 4 was imposed on the selegtjvéind molecules with

selectivity lower than this value were considered unfit.

. Normal boiling point: The normal boiling point (NBP) of the solvent mist
significantly higher than the mixture components to avoid possdrtedtion of a
solute-solvent azeotrope and to ensure easy recovery of the solvemtirAum

difference of 25-50 K is usually desired [11]. Therefore, a solvent for theheyane
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(NBP = 354 K)/benzene (NBP=353 K) system must have a NBP vahidedst 380
K (107°C).

3. Melting point: Melting point (MP) of the solvent is significantorder to avoid any
crystallization problems at ambient temperature. The gerardéncy in industry has
been to use solvents that are liquids at room temperature. Thet&®@rpotential
solvents must have a MP value lower than 300 K (27°C).

In addition to the above constraints, a potential solvent has to be a staldcule at

room temperature and atmospheric pressure. The following consti@énadded to the

design algorithm to account for thermodynamic stability:

4. Standard Gibbs free energy of formation: The standard Gibbs fresyye of
formation for any molecule has to be lower than zero for it tsthble at room
temperature and pressure. The lower the Gibbs free energy, diee stable the
molecule is relative to its elements.

Further, to avoid the identification of complex molecules that mightdifficult to

synthesize, a limit is placed on the maximum molecular weight of the solvent.

5. Molecular weight: Solvent molecules with molecular weight lothem 150 g/mol
are preferred. This number was chosen after carefully analffzéngeported solvent
molecules in the literature.

Other considerations such as cost, safety, availability and envirtantewicity of

candidate solvents are also important, but they have not been conandérisdnork. As

an alternative, these constraints could be imposed on the final poputditihe best
structures identified by the design algorithm, to further nartevriumber of potential

solvents.
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Initial Population: Solvent molecules for which th€ values of cyclohexane or benzene
are available from the DECHEMA chemistry data seriesewextracted. A hundred
molecules from this extracted database were selected randmahlysed as the initial
population for the solvent design algorithm. The initial databasenaa® up of diverse
chemical classes such as fatty alcohols, fatty acids, daityesters, fatty alcohol ethers,
alkanones, sulfoxides, amines, amides, pyrrolidones, pyridines, clasaitactants,

chlorides, bromides, nitriles, and azone-related compounds.

Property Constraints and Fitness Functiofhe property constraints selected for the
design of a suitable cyclohexane/benzene solvent were describvauple Table 9.9
lists the property constraints and the fitness function weightsingibe solvent design
algorithm accompanied with the mean average error (MAE) a$sdcwith the QSPR
models for property prediction when applicable. Some of these propeetiealculated
using DRAGON [44] software, while other properties were es@thaising QSPR
models developed by the Molecular Design Group at OSU. The cotstrnare adjusted
to account for the model prediction uncertainties when applicable. Thesd
contribution of each constraint is calculated using Equation 9.5, and batwesen 0 and
0.5, where a value of 0 implies that the constraint has beeniezhtithe fitness
contribution of each constraint is then multiplied by the partiditiaess weight for that
constraint, and the resulting values for all constraints are surtompabvide the total
fitness function value as shown in Equation 9.6. All constraints arbdenfarm of
Equation 9.5, except for the selectivity constraint, which is in tha furEquation 9.3.
Therefore,molecules that have the highest selectivity values are prdfe@wver other

molecules that have slightly lower selectivity values but stiket the selectivity
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constraint. This sometimes leads to the generation of moledwéshave very high
selectivity values but are unstable (positive Gibbs energy ofattmmvalues). To avoid
this, a higher weight was given to the Gibbs energy of fooman the solvent design

case in comparison to the CPE design case.

Results:A total of 63 iterations of the design algorithm were complatedng which

6,300 molecules were generated. The molecular properties listdédhble 9.9 were
computed for these molecules, and only 407 of the original 6,300 moleatitded all

the constraints listed in Table 9.9. A self-organizing map deasloped to identify
clusters among the best 407 molecules based on functional group descafitolated
using DRAGON [45]. Five major clusters composed of at least 4@aulgls were
identified, and Table 9.10 lists the structure of an example compoundeiomcluster

along with the relevant molecular properties.

The results from the current CAMD approach for designing solvearsbe compared
with previous results obtained by our group. In his dissertation waska¥arthy [6]
limited his design methodology to search only for nitrogen- and sulmmiaioing
compounds, based on experimental knowledge. In the current CAMD methodoldgy, suc
restrictions were not placed; nevertheless, the majorityeoptitential solvents that were
identified are nitrogen- and sulphur-containing compounds. This proves lite @fitihe
current CAMD approach to identify the best solvents, startiogy frandom chemical
structures. Also, the predicted selectivity values of the nigjofithe solvents identified

in this work are 2 to 4 times better than the best solvents igeng&érlier [6]. Further,

the current CAMD approach has several additional advantages.tRe<DSPR models

employed in the current work are more accurate and were develspeglarger data
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sets. Second, the entire CAMD algorithm has been automated to m@nhmiman
intervention, and therefore the implementation of a large number ofagjensr was
possible. In fact, the current automated approach allowed for sagtlfiggreater number
of generations during the execution of the algorithm. Third, the iodus the Gibbs
free energy of formation models in the current design algorghsures that only stable
molecules are identified by the algorithm. Such stability nedere not included n the

earlier work [6].

9.4.3. Additional Selection Criteria: At the end of the design algorithm, hundreds of
potential candidate molecules that have similar fithess functiameyadre identified.
However, validating all these molecules experimentally is iotwal. Instead, additional
criteria such as ease of synthesis, cost of manufacturingy,safel toxicity should be
imposed on the initial list of potential candidate molecules tactséie best candidates

for immediate attention.

9.4.4. Experimental Validation: As a final validation, the best candidate molecules
should be experimentally tested for their efficacy. The pateGPESs must be tested
vitro for reduction in skin resistance [51] and enhancement of insulin péom¢a2].
Also, the toxicity potential of the CPEs must be experimentidtgrminedn vitro. The
CPEs that perform well in thi vitro experiments must then be put throughvivo

experimentation using mouse/rat models.

Similarly, the best candidate solvent molecules are experimentatiateal. Specifically,
infinite-dilution activity coefficient measurements must be coretldb validate the
selectivity of the solvent molecules. This should be followed up bgegss-simulation

studies to estimate the cost and other process paramestecsated with the utilization of
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the solvent molecules in the separation process. The final stegkdattion must include

lab-scale and pilot scale studies of the envisioned separation process.

9.5.Conclusions

1.

4.

A robust algorithm combining genetic algorithms and QSPR techniguees
developed for the design of novel molecules with desired properties.

The current algorithm is the only completely automated designriable literature
that is based on accurate 3-dimensional structure-propertionslaip models. The
algorithm was applied to two separate case studies: identificaf new CPEs for
enhancing insulin transdermal delivery and identification of solveots tliie

extractive distillation of cyclohexane /benzene mixtures.

A total of 627 molecules that meet all the specifications gdad insulin CPE have
been identified. The identified molecules are categorized intodii¥erent clusters
based on their functional groups.

A total of 407 molecules that meet all the specifications of @dg
cyclohexane/benzene solvent have been identified. The identified melearde
categorized into five different clusters based on their functional groups.

Further, the algorithm in this work is generalized and so could beead&ptany

design problem, where there exists a need for new molecules.
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Figure 9.2: Flow-diagram for the design algorithm used in this work
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Table 9.1: Atomic specifications for SMILES

Chemical Name SMILES Structure
Methane C CH,
Pyridine nlcccccl @

N
Pyrrole clc[nH]ccl ZQB

N
H

Table 9.2: Bond specifications for SMILES

Chemical Name SMILES Structure
Ethane CcC H3C——CHjs

H
Acetaldehyde CC=0 (|:

O/ \CH3

Hydrogen R
Cyanide CHN —
Benzene cl:c:c.c:c:.cl ©

Table 9.3: Branching specifications for SMILES

Chemical Name

SMILES Structure

Iso Butyric Acid

Fluroform

O,

%OH

F

CC(C)C(=0)0

Heptanoic Acid

C(F)(F)F 4<

CCCC(C(=0)0)CCC

F
o

HO)J\/\/\/
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Table 9.4: The different mutation operations used in this work

Mutation . . Initial Final

Operator Initial Structure Final Structure SMILES SMILES
OH

Add clc(O)cccc

Atom clcccecl 1

Insert N NN

N

Atom H CCcCcCcC CCCCNC

OH
Delete clc(O)cccc
Atom ©/ @ 1 clccececl
Uninsert O Q CICCNCC i ccccen
Atom 1

NH
Increase _
Bond- ciccecl flCCC‘C
Order
Decrease C1CCC=C
Bond- ~~ Clccccea

1

Order

Create /\/\ Q CCCcCC cicccel

Ring

Break Q _"~_~-"~._ ciccccl  cceee
Ring




Table 9.5: The different atoms that can be added to
a molecule, with the probability of selection

Atom Probability of Selection
B 0.01
Br 0.04
C 0.36
Cl 0.05
N 0.15
O 0.20
P 0.075
S 0.075
F 0.04
| 0.01

Table 9.6: The different atoms that can be inserted
in a molecule, with the probability of selection

Atom Probability of Selection
B 0.01
C 0.39
N 0.2
@) 0.2
P 0.1
S 0.1
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Table 9.7: The different property constraints and fitness weights &l in the
CPE design algorithm and, when applicable, the mean average error (MAE)
values for QSPR models used to predict the property values

Calculated

Property Constraint using MAE \'/:\'/ter:ef]f
DRAGON g

Molecular weight MW < 500

(MW) g/mol Yes N/A 10

Octanol-water

partition coeff. (Log 0.5 <Log ko Yes 0.5 10

<35

|<0W)

Melting Point (MP) MP < 250°C No 34°C 15

Federal Institute for

Health Protection of

Consumers and

Veterinary Medicine BgVWW <05 No 0.45 10

(BgwV)

Guinea pig

maximization test GPMT <0.33 No 0.30 10

(GPMT)

Local lymph node

assay (LLNA) LLNA <0.25 No 0.25 10

Number of hydrogen AHDon < 5 Yes N/A 5

donors (nHDon)

Number of hydrogen nHACC < 10 Yes N/A 5

acceptors (nHAcc)

Skin permeability i

coefficient (Log Kp) Log Kp > -3 No 0.5 10

Gibbs free energy of AGs < -20

formation (AGy) kJ/mol No 16 kJ/mol 15
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Table 9.8: The properties of an example CPE from each cluster

cluse %9 Bgv opm LN MW ibe pHAe A MP
(Kp g (g/mol (KJd/mol (°C
r# V T A o
) Kow ) ) )
1 14 04 02 02 34 144 1 1 115 -67
2 15 04 01 02 24 148 1 2 307 -20
3 15 04 02 02 32 158 1 2 312 -18
4 17 05 02 02 30 156 1 1 42 6.0
5 18 03 02 02 32 158 1 1 118 -8.0
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Table 9.9: The different property constraints and fithess weights &l in the
solvent design algorithm, and when applicable, the mean average error (MAE)
values for QSPR models used to predict the property values

Calculated

Property Constraint using MAE \'/:\'/ter:ef]f
DRAGON g

Selectivity (S) S>5 No 0.9 25

Normal boiling point o o

(NBP) NBP > 135°C No 28°C 15

Melting point (MP) MP < -14°C No 34°C 15

Gibbs free energy of AGs < -20

formation (AGy) kJ/mol No 16 kJ/mol 35

Molecular weight MW < 150

(MW) g/mol Yes N/A 10

Table 9.10: The properties of an example solvent from each cluster

Cluster#  Selectiviy NBP (°C)  MP (°C) (KJA/?nfon (g'\;'r\r’]‘gl)
1 38 235 31 292 137.22
2 26 271 21 317 112.01
3 15 245 27 376 148.25
4 24 159 30 233 76.05
5 46 200 41 291 137.13
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