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CHAPTER I 
  

 
INTRODUCTION 

 

Red Beds of central North America cover approximately four percent of the 

continent (Tomlinson, 1916; Fig. 1).  Though these Red Bed deposits are wide spread, 

much of the detailed work determining their depositional environments has focused on 

the western US (Gustavson et al., 1980; Handford and Fredericks, 1980; Handford, 1981; 

Presley, 1981; Speer, 1983; Presley, 1987; Andreason, 1992; Mack et al., 1995; Lucas et 

al., 1999; Lucas et al., 2001; Mack, 2007), with little detailed work done in Oklahoma.  

The Red Beds of Oklahoma are a potential source of copper resources (Heine, 1975; Cox 

and Al-Shaieb, 1980; Yang, 1985; Fay and Brockie, 2002), provide important water 

resources (Osborn et al., 1998; Johnson, 2003; Paxton et al., 2004), and the dissolution of 

gypsum layers during drilling may provide shallow hazards to oil and gas exploration.  

Previous work on the Duncan Formation of the North American mid-continent has 

interpreted this formation as fluvial deltaic (Sawyer, 1924; Gould, 1926; Becker, 1930; 

Green, 1937; Fay, 1964) and little recent detailed work has been conducted on the 

depositional environments of these units.   One problem with early interpretations is that 

the large fluvial environments that would be needed to deposit the thick sequences of 

shale and sand do not fit into current climate models for the Permian of central North 
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America.  These recent climate models for the Permian mid-continent point to a dry 

climate and suggest eolian processes were an important agent acting on the landscape 

(Tabor and Montañez, 2004; Tabor and Montanez, 2005; Peyser and Poulsen, 2008; 

Soreghan et al., 2008a).  

Classic facies models of shallow marine systems such as those of deltas  (e.g. 

Galloway, 1975; Bhattacharya and Giosan, 2003) and estuaries (e.g. Dalrymple et al., 

1992) may not apply very well to fine grained arid environments .  Recent work from the 

Solway Basin (Permian) in the United Kingdom has outlined the characteristics of 

deposits formed in arid systems with a large influx of fine-grained material (Brookfield, 

2008). Brookfield (2008) compared the hyperarid intracontinental Solway Basin to 

modern lake deposits in the hyperarid deserts of north central Africa and central Australia 

where recent work has documented the importance of terminal splays and playa lakes 

upon the landscape (Tooth, 1999; Lang et al., 2004; Tooth, 2005; Fisher et al., 2008).   

The El Reno Group (Permain) of the North American mid-continent provides an 

excellent place to reevaluate these early depositional models for the Red Beds of 

Oklahoma.  Within the El Reno Group fine grained sandstones, shales, and mudstone 

conglomerates of the Duncan Formation grade into shales of the Dog Creek and 

Flowerpot Shales, and the shales, gypsum, and dolomites of the Blaine Formation. The 

purpose of this project is to reexamine the El Reno Group and determine if the 

depositional environments are consistent with classic models of shallow marine systems 

or depositional systems that may have formed within more arid environments.  It is 

hypothesized that the Duncan Formation will not fit more traditional models of deltas or 

other shallow marine systems as determined by previous authors (Sawyer, 1924; Gould, 



  4

1926; Becker, 1930; Green, 1937; Fay, 1964), but represents an arid-land depositional 

system.  Through the use of geological mapping on topographic maps at a 1:24,000 scale, 

detailed measured sections, examination of thin sections, and x-ray diffractometry (XRD) 

of shale samples, a facies model was developed for the Duncan Formation, which may be 

of use in interpreting other Red Beds of the mid-continent of North America.   



  5

CHAPTER II 
 
 

Geological Background 

Geological Setting 
 

Permian age rocks comprise the majority of Paleozoic rock units cropping out in 

western Oklahoma, the Texas panhandle and southwestern Kansas.  The only exception is 

a thin veneer of late Miocene to Pliocene aged Ogallala conglomerates and sandstones, a 

few isolated outcrops of Cretaceous marine sandstones, and the Quaternary fluvial and 

eolian deposits associated with river courses of the tributaries of the Arkansas and Red 

Rivers. These Permian Red Beds are thought to represent the encroachment of a shallow 

epeiric sea from the west, which extended into the Delaware and Midland basins of West 

Texas and New Mexico to the southwest and similar shallow-epeiric seas of Kansas to 

the north (Hills, 1942; Holdoway, 1978; Johnson, 1990; Fig. 2). The area is bordered by 

the Wichita, Arbuckle, and Ouachita Mountains to the south and the Ozark Dome to the 

northeast (Fig. 2). Although there is an indication of tectonic deformation of Permian 

strata on the flanks of the Anadarko and Midland Basins, as well as local karsting in 

western Oklahoma, Texas and Kansas, deformation within the study area is minimal 

(Fay, 1962; Fay, 1964). Beds in west-central and northwestern Oklahoma have a gentle 

regional dip of 0.26 degrees to the southwest with local dips ranging between 0.07 and 

0.37 degrees (Fay, 1964).  Karst processes associated with some of the gypsum units and 
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Figure 2- Paleogeographic map of the study area 
during during Blaine time. Modified from 
Johnson (1990). Red Box outlines approximate 
area of study. 
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other salt-related movements of some of the Permian beds have resulted in local 

deformation of the strata (Fay, 1962; Johnson, 1972; Gustavson et al., 1980). Within the 

study area gypsum beds are at a minimal thickness and karst process are insignificant to 

nonexistent. A general stratigraphic column for the area is shown in Figure 3.  The 

gypsum and dolomite beds within the Blaine Formation weather to produce prominent 

capstones creating the bluffs of the Blaine Escarpment and gypsum hills of western 

Oklahoma (Fig. 4).  This provides an excellent setting to map the facies changes within 

the El Reno Group.   

 

Geological Formations 

Blaine Formation 

Through correlations with equivalent strata in the Permian Basin of west Texas, 

biostratigraphy from bounding formations, and strontium isotope dating, the Blaine 

Formation is thought to be late Cisuralian or early Guadalupian in age (Clifton, 1944; 

Pendery, 1963; Fay, 1964; Johnson, 1967; Denison et al., 1998; Fig. 3). Fay (1964) 

divides the Blaine Formation into three geographic units: a northern platform facies, a 

central basinal facies, and a southern deltaic facies. These depositional systems received 

sediment from both the Ozark Dome and the Ouachita and Arbuckle uplifts.  Both the 

platform and central-basinal facies are comprised of alternating shales, dolomites and 

gypsums (Fay, 1964).  The platform facies of the Blaine Formation have thicker gypsum 

beds but an overall thinner thickness than the basinal facies.  The southern deltaic facies  
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Figure 4- Typical escarpment of the Blaine Formation 
within the study area.  
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interfingers with sandstones and conglomerates of the Duncan Formation to the east and 

south (Fay, 1964; Fig. 5).  As this change occurs the gypsum and dolomites disappear and 

the mudstone conglomerates and sandstones appear.  This marks the change from the 

Blaine Formation to the Duncan Formation. 

Previous authors have suggested that the gypsum-shale interbeds represent sea-

level changes (Clifton, 1944; Fay, 1964).  Fay (1964) concludes that when rivers flowing 

into the shallow sea were at a maximum seaward extent, with a more humid climate, the 

influx of siliciclastic material resulted in deposition of the shales of the Blaine Formation.  

Conversely the gypsum beds represent highstand times when the source of siliciclastic 

material is shifted further landward (Fay, 1964).    
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Duncan Formation 

The Chickasha/Duncan Formation was known as the “purple sandstone”, from the 

Purple Series, until Gould (1924) differentiated the Chickasha Formation from the 

underlying Duncan Sandstone.   The description Gould (1924) gave of the Chickasha 

Formation came directly from Mr. Clyde Becker, and follows:   

1. An upper purple sandstone member 70 to 80 feet thick, the upper 30 feet of which 

consist chiefly of loose pink sand in which occur numerous thin lenses of purple 

“mudstone conglomerate” beds separated by thin strata of pink sand. 

2. A middle pink sand member consisting of 50 feet of uncemented pink sand. 

Occasionally this sand shows cementation on both upper and lower contacts, but 

the lithologic characteristics are the same as of the pink sand, and not similar in 

texture or color to the “mudstone conglomerate.” 

3. A lower purple sandstone member chiefly composed of “mudstone 

conglomerates,” 50 feet thick, more distinctly stratified than any other portion of 

the Purple Series.  

Recognizing that the Chickasha and Duncan Formation were similar in lithology, Sawyer 

(1924) considered the Chickasha and Duncan Formations as one formation that he termed 

the Duncan Sandstone. Green (1936) followed the terminology used by Sawyer (1924) 

and dismissed the name Chickasha Formation arguing that no unit described from the 

type locality could be traced. He instead grouped all formations from the “Purple Series” 

under the name Duncan Sandstone. The following year the name Chickasha was 

redefined, as separate from the Duncan Sandstone, for units that were found through most 

of Grady County (Brown, 1937).   The Duncan Sandstone was considered a separate 
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formation from the Chickasha Formation until Fay (1964) describes the character of the 

Duncan Sandstone (outside of the type section) to be the same as the Chickasha, and 

considered the two units as one.  

 The author of this paper, and others mapping the same units (e.g. Suneson and 

Stanley, 2001; Miller and Stanley, 2002) believe that the Chickasha Formation is 

indistinguishable from the Duncan Formation in outcrop and the two should be 

considered one formation. Since both names were introduced in the same paper (Gould, 

1924) neither name has precedence over the other.  Fay (1964) also considered the 

formations as the same, but failed to clear up the naming by referring to the units together 

as the Chickasha and Duncan Formation.  This paper will follow the terminology used by 

Sawyer (1924) since he was the first author to use a single name to refer to all the units of 

sandstones, shales, and mudstone conglomerates as the Duncan Formation.  

The Duncan Formation has been interpreted to be the proximal deposits that grade 

into the facies of the Blaine Formation, Flowerpot Shale, and Dog Creek Shale.  These 

three units can be seen interfingering throughout central Oklahoma (Green, 1937; Fay, 

1962; Fay, 1964; Fig. 5, Fig. 6).   

 

Flowerpot Shale 

Named for the type locality of Flower-pot Mound in Barber County, Kansas the 

Flowerpot Shale is a reddish-brown gypsiferous shale between the Medicine Lodge 

Gypsum of the Blaine Formation above and the Cedar Hills Sandstone below.  The 

Flowerpot Shale has a maximum thickness of 142 meters and is divided into five 

lithologic units (Fay, 1964).  Fay (1964) describes the Chickasha/Duncan Formation  
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Figure 6- MS 5/21 #2.  Measured section through the 
Blaine Formation.  Note the Duncan mudstone 
conglomerate (Facies #1) incased in the Blaine Formation 
Shales. 
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interlayered with the Flowerpot Shale in Blaine County, Oklahoma.  To the south in 

central Canadian County, it is believed that the Flowerpot Shale is represented by the 

lowermost Chickasha Formation (Fay, 1964). 

 

Dog Creek Shale 

The Dog Creek Shale is the name given to the series of reddish-brown clay shales 

with thin dolomites and siltstones between the top of the Altona Dolomite of the Blaine 

Formation and the base of the Marlow Formation (Fay, 1964).  The Dog Creek Shale 

thins to the north from a thickness of 58 meters in Blaine County, Oklahoma to 9 meters 

in Kansas (Fay, 1964).  The Dog Creek Shale contains several distinct dolomite and 

gypsum beds that have been used for correlation between Blaine County, Oklahoma and 

the type section in Kansas (Fay, 1964). 



  16

CHAPTER III 
 
 

METHODOLOGY 

 

The study includes the area between approximately 97° 55′ 00″ and 98° 7′ 30″ W 

and between the North Canadian River to the south and the Kingfisher/Canadian County 

border to the north (~35° 43′ 32″ N) (Fig. 7).  This encompasses an area of approximately 

two 7.5′ quadrangles, and includes portions of four USGS topographic quadrangles: El 

Reno, OK; Fort Reno, OK; Fort Reno NE, OK; and Okarche, OK (Fig. 7).  Topographic 

maps of the area were used as a basemap for geological mapping.  For field work hard 

copies of the topographic maps were purchased from the Oklahoma Geological Survey.  

Geological mapping was conducted by driving sections roads and following stream traces 

over the entire study area.  Digitizing of the geological map was done in the lab using 

ArcMap with the topographic maps as a base.  Digital copies of topographic maps were 

downloaded from the Center for Spatial Analysis operated by the University of 

Oklahoma. 

Rock samples were collected at various locations across the study area for thin 

section analysis and XRD analysis.   Three samples were collected for thin sections from 

the Altona Dolomite (samples: 1/13 #1, 1/13#2, 1/13 #3) and two smaples from the 

Magpie Dolomite (samples: 2/6 #7, 2/6 #17) for comparison of the dolomite beds at 

different locations.  Eight samples were collected for thin section analysis from the  



  17

 

  

Figure 7- Location of mapping area.  Four italiced names 
in center if inset map are the names of the respective 
USGS 7.5’ quadrangles.  
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Duncan Formation for aiding in the description and interpretation of facies (samples: 

facies #1, 2/6 #1, 2/6 #20; facies #3, 2/6 #9, 2/6 #10, 2/6 #11; facies #4 2/6 #3; facies #6, 

2/6 #2, 2/6 #12).  Thin section analysis included point counts on all samples.  Shale 

samples were taken from the Duncan Formation, Blaine Formation and Flowerpot Shale 

for XRD anyalsis.  Six shale samples were collected from the Blaine Formation; two 

samples five to ten meters above the Blaine/Flowerpot contact, two samples one to three 

meters below the Magpie Dolomite and two samples one to three meters below the 

Altona Dolomite.  These samples were taken at the western and eastern edges of the 

study area.  Three samples were taken from the Flowerpot Shale at different locations 

across the study area.  Two samples were taken from shales within the Duncan 

Formation.   

Six locations were selected for measured sections. At those locations eleven 

sections were measured and described in detail.   Two sections cover most of the Blaine 

Formation at locations at opposite (east-west) ends of the study area.  One section was 

measured in the lower section of the Flowerpot Shale near the Flowerpot/Duncan contact.  

Eight sections were measured in the Duncan Formation for comparison of the different 

facies of the Duncan Formation (Fig. 6, Fig. 8, Fig. 9, Fig. 10). 
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Figure 8- MS 4/14 #1.  Measured section through Blaine 
Formation. 
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Figure 9- Measured sections. A) 
MS 5/6 #7. Duncan Formation; B) 
MS 5/21 #3. Duncan Formation; 
C) MS 5/21 #1. Flowerpot Shale. 
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CHAPTER IV 
 
 

RESULTS 

Geological Map 

A geological map at the 1:24,000 scale was produced for the study area (plate #1).  

Regional dip in the area is to the southwest, therefore younger units cropout to the 

southwest.  Quaternary alluvial sediments, terrace deposits and dune sands are present in 

the southern portion of the study area. The Duncan Formation covers the largest area.  

The Duncan Formation is present in the north and northeastern portions of the map.  

Stratigraphically above, laterally equivalent and grading into the Duncan Formation are 

the Flowerpot Shale, Blaine Formation and Dog Creek Shale (Fig. 5).  This is illustrated 

on the geological map as a thinning of the Flowerpot Shale, Blaine Formation, and the 

Dog Creek Shale to the southeast (plate #1).     

 

Measured Sections 

A complete description of the eleven measured sections from the study area can 

be found in Figures 6, 8, 9, and 10.  Within MS 5/21 #2 the Duncan Formation facies #1 

was found to be intertounging with Blaine Formation shales above and below (Fig. 6).   
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Quaternary Sediments 

 A thin veneer of Quaternary fluvial and eolian deposits associated with major 

river courses is found in the southern portion of the study area.  Alluvial sediments of the 

North Canadian River flood plain cover the southern-most portion of the study area.  

Older alluvial terrace deposits are found to the north of the modern floodplain.  Above 

these deposits recent sand dunes have developed along the western edge of the fluvial 

terrace.  These dunes are no longer active, but were presumably developed at a time in 

the past when conditions were more arid (Brady, 1989; Muhs and Wolfe, 1999).   

 

El Reno Group 

Flowerpot Shale 

Outcrops of the Flowerpot Shale are red-brown (2.5 YR 4/6) and clay dominated.  

Scattered silt and very fine sand units are also present in the Flowerpot Shale 

stratigraphically above the Duncan contact.  These silty units are indications of the inter-

tonguing of the Duncan Formation with the Flowerpot Shale.   

 

Blaine Formation 

The Blaine Formation consists of shales and interbedded gypsums and dolomites.  

These gypsum and dolomite beds form capstones that create the distinct escarpment of 

the Blaine Formation in Western Oklahoma (Fig. 4).  Of the three named dolomite beds 

and four named gypsum beds of the Blaine Formation identified by Fay (1964), only two 

dolomites and three gypsums are present in the study area.  The other units described by 

Fay (1964) are found to the west of the study area.  The dolomite beds found include the 
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Altona Dolomite and the Magpie Dolomite. The gypsum members in the area include the 

Medicine Lodge Gypsum, the Kingfisher Creek Gypsum and the Nescatunga Gypsum.  

The Shimer Gypsum is found west of the study area.  The gypsum units are only found in 

the northwestern part of the study area and the dolomite beds thin considerably to the 

south and east.   

 

Dolomites 

Altona Dolomite 

The Altona Dolomite forms a well defined scarp from the northwest edge of the 

study area and continues to where the Blaine Formation grades into the Duncan 

Formation.  The Altona Dolomite is oolitic and fossiliferous both in hand sample and thin 

section (Fig. 11a and Fig 11b).  In outcrop the Altona Dolomite is gray to white in color.  

Fossils of the Altona Dolomite have a  low diversity containing only a single genus of 

clam, Permophorus (Fay, 1964). 

 The majority of the Altona Dolomite is dolomitized micrite (52% avg.).  Ooids 

and fossils were found in two of the three thin section samples (1/13 #1 and 1/13 #2). 

Secondary calcite cement is found in two samples (1/13 #2 and 1/13 #3).  Porosity makes 

up the remainder of the samples and averages of 6.8%.  The majority of the Altona 

Dolomite is an oolitic fossiliferous wackestone with a few local areas of oolitic 

fossiliferous packstone (Dunham, 1962).  Petrographically the Altona Dolomite is fine 

grained with rhomb sizes ranges of 5 to 20 μm (Fig. 11c).  The texture of the dolomite is 

planer-S (Sibley and Gregg, 1987).   
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  Figure 11- A. Altona Dolomite oolitic wackestone, 4x; B. Altona Dolomite oolitic 
fossiliferous packstone, 10x.  Secondary calcite is stained red with alizarin red-S; C. 
Altona Dolomite showing rhomb size and texture, 40x; D. Magpie Dolomite, 10x.
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Magpie dolomite 

The Magpie Dolomite is not as well defined as the Altona Dolomite, but still 

forms a well defined scarp in the study area.  The Magpie Dolomite is in most areas a 

silty fine crystalline dolomite that weathers into a distinctive vuggy texture (Fig. 12). 

This texture is helpful for field identification of the Magpie Dolomite.  This vuggy 

texture comes from weathering of interlayered clays and silts in the dolomite.  The color 

of the Magpie Dolomite is gray-reddish brown.  Thin section analysis reveals that the 

majority of the Magpie Dolomite is fine crystalline dolomite (86%) with rhomb size 

ranges of 5-15 μm (Fig. 11d).  Quartz grains represent 5% of the Magpie Dolomite.  The 

quartz grains are on average silt-size (0.04 mm).  Hematite cement (6%) and hematite 

grains (>1%) are also present in the Magpie Dolomite.  Porosity values of the Magpie 

dolomite were lower than the Altona Dolomite at 3%.  

Gypsums  

The Medicine Lodge Gypsum member of the Blaine Formation was only found in 

one outcrop in the study area.  The Medicine Lodge Gypsum consists of interbedded red 

shales and thin layers of nodular and satin spar gypsum.  The Medicine Lodge Gypsum 

marks the contact between the Blaine Formation and the Flowerpot Shale.  The 

Kingfisher Creek Gypsum is the thickest gypsum in the study area.  In much of the 

western part of the study area the Kingfisher Creek has been mined and largely removed 

for aggregate material.  The member is white, argillaceous, and mottled pink.  The 

Kingfisher Creek forms a small escarpment throughout the study area.  The Nescatunga 

Gypsum Member is present in the western part of the study area as a greenish-gray, 

argillaceous nodular gypsum.  In some areas white-pink satin spar gypsum is interbedded  
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Figure 12- Magpie Dolomite. Note Vuggy texture. 
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with the green-gray unit.  The Nescatunga is the first gypsum above the Magpie 

Dolomite. 

 

Shales 

 Shales of the Blaine Formation are red-brown (5 YR 4/6) in color and  blocky.  

Numerous mottled greenish-gray (gley2 8/10G) silty areas that display a channel-like 

geometry are present in Blaine Formation.  These scattered silt layers are similar to those 

observed in the Flowerpot Shale. 

 

Dog Creek Shale 

The Dog Creek Shale consists of dark red (2.5 YR 3/6), blocky and fissle shales 

overlying the Altona Dolomite bed of the Blaine Formation.  In the study area the Dog 

Creek Shale contains one minor silty dolomite layer and one to two scattered gypsum 

layers.  Shales from the Dog Creek are darker red in color when compared to the shales 

of the Blaine Formation and the Flowerpot Shale.    

 

Duncan Formation 

The Duncan Formation contains interlayered sandstones, siltstones, mudstones, 

and mudstone conglomerates.  Six major facies were identified within the study area 

based on grain size and sedimentary structures.  The facies of the Duncan Formation are 

discontinuous and correlation from one outcrop to another outcrop is not possible.  
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Facies #1-Mudstone Conglomerate  

The most distinctive facies of the Duncan Formation is the mudstone 

conglomerate facies.  The thickness of the mudstone conglomerate beds are typically 

between 0.5 and 0.7 meters.  The mudstone conglomerates of the Duncan Formation are 

generally found directly overlying sandstones, mudstones, and siltstones of Duncan facies 

#6, #3, or #4 and truncate underlying beds (Fig. 13a).  The mudstone conglomerate facies 

grade laterally into medium and fine-grained sandstones of Facies #3 and #4 (Fig. 9).   

 Thin section analysis shows that sedimentary rock fragments make up the 

majority of facies #1 (average 39%).  Average size for the rock fragments is 1.0 mm 

(very coarse sand), but some clasts are as large as 2.25 mm (gravel).  The grains 

comprising the clasts are the same size and type as the matrix of facies #1.  Two cements  

are present in Duncan facies #1, dolomite and hematite.  Dolomite matrix comprises 

about 30% of the rock.  Hematite cement is grain coating and makes up approximately  

11% of the samples.  The matrix of facies #1 is made of sand-size grains and clay.  Sand 

grains make up 8% of the samples and the clay fraction comprises approximately 5% of  

the rock.  The majority of the grains are quartz, but a small fraction of hematite grains 

were also observed.  Porosity values for facies #1 average 4%. 

 

Facies #2- Clay layers 

 Many scattered silty-clay layers were observed in the study area (Fig 13b).  These 

clay layers were associated with other facies of the Duncan Formation.  The clay layers 

are interbedded with deposits of Facies #3 and #4.  Facies #2 is reddish-brown in color  
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Figure 13-A) Facies #1. Mudstone Conglomerate showing 
erosional base with underlying Duncan shales; B) Facies 
#2.  Diagenitic reducing zones highlighting silty-clay 
layers.  Note convoluted bedding; C) Facies #3. Ripple 
cross laminated sandstone with interlayered clay drapes; D) 
Facies #4. Fine to medium grained sandstone with large 
scale low angle trough cross beds; E) Facies #5. Well sorted 
sandstone with high angle trough cross beds; F) Facies #6. 
Shale dipping in clinoforms.    
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and their thickness ranges from 10 to 30 cm.  Convoluted bedding was observed between 

Facies #2 and Facies #4 (Fig. 13b).  

 

Facies #3-Ripple cross laminated very fine-grained sandstone 

The most abundant facies of the Duncan Formation in the study area is a very 

fine-grained ripple cross-laminated sandstone (Fig. 13c).  The thickness of facies #3 is 

between 0.4 and 1.5 meters.  Interlayered with the ripple cross laminated very fine sand 

layers are thin scattered drapes of fine grained silt and clay (Fig. 13c).   

 Thin section analysis of facies #3 shows that the majority of the constituents are 

quartz sand grains (54%).  Hematite grains (avg. 5%) and volcanic rock fragments (avg. 

6%) are also present.  The average size of the grains is very fine sand with some grains 

up to 0.8 mm (coarse sand).  Grain coating hematite cement is also present averaging 

12% of the rock.  Facies #3 has a relatively high porosity of 19%.   

 

Facies #4-Fine to medium sand with large scale low angle trough cross beds. 

Facies #4 contains large scale low angle trough cross beds (Fig. 13d).  The 

thickness of this facies ranges from one to 3 meters.  Facies #4 has an erosional base and 

overlies the red-brown blocky silty shale of the Duncan Formation (Facies #6).  Scattered 

through Facies #4 are many discontinuous silty-clay layers of Facies #2.   

In thin section, Facies #4 is shown to have a large fraction of clay   

matrix (Fig. 14).  This facies consists mainly of quartz sand grains (avg. 30%) with an 

average size of 0.1 mm (very fine sand).  Minor amounts of feldspars (3%), hematite 

(3%) and volcanic rock fragment (1%) are also present.  Cements in facies #4 include  
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Figure 14- Facies #4 showing high fraction of 
clay matrix; A. Plain polarized light at 10x; B. 
cross polarized light at 10x. 
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calcite (26%) and grain coating hematite (3%).  The large amount of clay matrix (28%) 

distinguishes this facies from other sandy Duncan Formation facies analyzed in thin 

section.  Porosity values for facies #4 are similar to other facies at 7%.   

 

Facies #5-Clean fine grained sandstone with high angle trough cross beds 

Stratigraphically above Facies #4 is a well sorted fine grained sandstone (Fig. 

13e).  Numerous large scale high angle trough cross beds are present in the interval. The 

thickness of Facies #5 is at least 2.5 meters (Fig. 9a).  The grain size of facies #5 ranges 

from fine to very fine sand.  Facies #5 also contains many circular, burrow-like features 

lined with calcite glaebules (Fig. 15).  These features are interpreted to represent root 

casts. 

 

Facies #6-Shale/Mudstone 

The fine-grained facies of the Duncan Formation is similar to the shale facies of 

related formations.  The shale facies of the Duncan Formation often display a clinoform-

like geometry (Fig. 13f).  The modern (non-decompacted) dip on the clinoforms of facies 

#6 ranges from 12° to 14°. Red-brown shales and mudstones are seen in the field area 

stratigraphically below the mudstone conglomerates of Facies #1.  Many reducing areas 

have a green-gray color.  These color changes cut across shale laminations and are 

interpreted to represent diagenesis (Fig. 16).  XRD analysis of the shales from the 

Duncan Formation reveal that they have a higher silica content than shales of the 

Flowerpot Shale and Blaine Formation (Table #1).  
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Figure 15- Circular burrow-like features from facies #5.  
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Figure 16- Diagenitic color change in the shales of the 
Duncan Formation.  Reduced layer can be seen cutting 
across bedding layers. 
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Thin section analysis of facies #6 reveals that clay-size material is the most 

prevalent grain size of facies #6 (avg. 48%).  Duncan facies #6 also contains a large 

amount of silt-sized (0.04 mm) quartz grains (33%).  Small amounts of silt-size hematite 

grains (4%) and sedimentary rock fragments (2%) are also present.  Cements in the 

Duncan facies #6 include calcite (1%) and hematite (3%).  Porosity values on one of the 

samples are skewed because a large portion of the sample was lost during the grinding 

process, but values can be estimated at 4% for facies #6.   

 

X-Ray Diffraction 

 X-ray diffraction (XRD) was conducted by Steve Chipera at Chesapeake 

Energy and a detailed description of the methods used can be found in appendix #1.  

Table 1 shows the normalized data from the XRD analysis.  Illite is the major clay that is 

present in the El Reno group (Table #1), and illite values are consistent for all formations 

of the El Reno Group.  Fay (1964) came to a similar conclusion.  Quartz comprises the 

majority of the non-clay fraction with feldspar, hematite, calcite, dolomite, and gypsum 

also present in minor amounts (Table #1).  Shale of the Duncan Formation differs from 

units of the El Reno Group with higher grain constituents and a lower clay fraction.  This 

allows a distinction to be made between the shales of the Duncan Formation and shales of 

the other formations within the El Reno Group by comparing their quartz contents (Table 

#1).  Intertounging of the Duncan Formation with the Flowerpot Shale is confirmed by 

XRD data.  Sample 2/6 #19 taken from the Flowerpot Shale near the contact with the 

Duncan Formation has a higher quartz content than samples 2/6 #17 and 2/6 #18 taken 

stratigraphically lower in the section from the Flowerpot Shale (Table #1).  



  37

R
aw

 D
at

a 
N

O
R

M
A

LI
ZE

D
 to

 su
m

 to
 1

00
%

 

#1
9 

FP
 

 

31
.0

 
07

 
8.

6 
0.

1 
5.

5 
0.

3 
1.

5 

47
.7

 

 
6.

5 

42
.3

 

3.
4 

52
.3

 

 
10

0.
0 

 19
.1

 

15
.2

 

1.
25

 

Ta
bl

e 
#1

- T
ab

le
 sh

ow
in

g 
X

-r
ay

 d
iff

ra
ct

io
n 

re
su

lts
.  

B
/L

 -B
la

in
e 

Lo
w

er
.  

B
/M

- B
la

in
e 

M
id

dl
e.

 B
/U

- B
la

in
e 

U
pp

er
.  

Fp
- F

lo
w

er
po

t 

#1
8 

FP
 

16
.3

 
0.

1 
4.

5 
0.

2 
0.

0 
0.

0 
1.

7 

22
.9

 

14
.6

 

58
.8

 

3.
7 

77
.1

 

10
0.

0 

 17
.8

 

20
.8

 

2.
60

 

#1
7 

FP
 

14
.6

 
0.

3 
5.

2 
0.

3 
0.

0 
0.

0 
1.

8 

22
.2

 

9.
4 

60
.2

 

8.
2 

77
.8

 

10
0.

0 

 19
.8

 

14
.2

 

1.
86

 

#1
4 

B
/U

 

19
.7

 
0.

3 
4.

5 
0.

5 
0.

0 
0.

0 
1.

8 

26
.8

 

9.
9 

58
.9

 

4.
4 

73
.2

 

10
0.

0 

 20
.9

 

16
.0

 

2.
07

 

#8
 

B
/U

 

22
.7

 
0.

4 
6.

2 
0.

0 
0.

0 
0.

1 
1.

5 

30
.9

 

12
.7

 

52
.5

 

3.
9 

69
.7

 

10
0.

0 

 19
.8

 

21
.8

 

2.
52

 

#6
 

B
/M

 

15
.7

 
0.

2 
4.

7 
0.

0 
0.

0 
0.

0 
1.

6 

22
.2

 

10
.5

 

61
.2

 

6.
1 

77
.8

 

10
0.

0 

 19
.7

 

15
.6

 

2.
07

 

#1
5 

B
/M

 

24
.5

 
0.

9 
7.

8 
0.

5 
0.

0 
0.

0 
1.

7 

35
.4

 

10
.1

 

49
.2

 

5.
3 

64
.6

 

10
0.

0 

 18
.9

 

19
.4

 

1.
91

 

#1
3 

B
/L

 

19
.3

 
0.

3 
6.

2 
0.

0 
0.

0 
0.

0 
2.

6 

28
.4

 

8.
1 

59
.6

 

3.
9 

71
.6

 

10
0.

0 

 18
.1

 

13
.1

 

1.
47

 

#5
 

B
/L

 

15
.8

 
0.

1 
4.

5 
0.

6 
0.

0 
3.

7 
1.

6 

26
.3

 

16
.4

 

52
.9

 

4.
4 

73
.7

 

10
0.

0 

 18
.0

 

25
.2

 

2.
95

 

#1
2 

D
un

ca
n 

33
.5

 
0.

6 
10

.1
 

0.
0 

0.
0 

0.
0 

1.
5 

45
.7

 

9.
0 

42
.7

 

2.
6 

54
.3

 

10
0.

0 

 17
.9

 

19
.3

 

1.
61

 

#2
 

D
un

ca
n 

37
.1

 
0.

8 
10

.9
 

1.
2 

0.
0 

0.
0 

1.
7 

51
.8

 

14
.8

 

29
.8

 

3.
7 

48
.2

 

10
0.

0 

 17
.8

 

37
.1

 

2.
63

 

  SA
M

PL
E 

ID
 

SA
M

PL
E 

FO
R

M
A

TI
O

N
 

N
O

N
-C

LA
Y

 F
R

A
C

TI
O

N
 

Q
ua

rtz
 

K
-F

el
ds

pa
r 

Pl
ag

io
cl

as
e 

C
al

ci
te

 
D

ol
om

ite
 

G
yp

su
m

 
H

em
at

ite
 

TO
TA

L 

C
LA

Y
 F

R
A

C
TI

O
N

 
M

ix
ed

-L
ay

er
 

IL
LI

TE
/S

M
EC

TI
TE

  (
In

cl
ud

es
 

R
3)

 

Ill
ite

 +
 M

ic
a 

C
hl

or
ite

 
TO

TA
L 

 G
R

A
N

D
 T

O
TA

L 

 %
 E

xp
an

da
bl

e 
La

ye
rs

 in
 I/

S 

%
 I/

S 
to

 Il
lit

e 
in

 <
1.

0u
m

 F
ra

ct
io

n 

%
 E

xp
an

da
bl

e 
I/S

 L
ay

er
s i

n 
sa

m
pl

e 

 



  38

CHAPTER V 
 
 

DISCUSSION  

Aridity  

 Clifton (1942) found several fauna within the Blaine Formation to the south and 

west of the study area.  These faunas include ammonoids and nautiloids.  However, other 

fauna usually associated with the observed cephalopods are absent, or poorly represented.  

Brachiopods, crinoids, and gastropods are extremely rare, and no fusulinids have been 

found within the Blaine Formation (Clifton, 1942).  Boardman et al. (1984) and Kammer 

et al. (1986) have described a process by which dead cephalopods float into areas 

otherwise uninhabited by normal marine life.  This process could explain the absence of 

brachiopods, crinoids, gastropods, and fusulinids with the presence of cephalopods within 

the El Reno Group.  

Based on the thick gypsum deposits from the Blaine Formation, the absence of 

coals from a proposed marginal marine setting, the presence of dolomite (see Blaine and 

Flowerpot Depositional Environment), the absence of a normal marine fauna, and a low 

diversity of biota, the climate at the time of deposition of the El Reno Group is believed 

to have been arid.  This arid environmental interpretation is supported by previous studies 

of the El Reno Group and equivalent formations (Fay, 1964; Presley, 1987; Johnson, 

1990) as well as recent regional work (Tabor and Montanez, 2005; Peyser and Poulsen, 

2008; Soreghan et al., 2008a).   
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While the environment during the Permian is believed to have been arid it should 

be kept in mind that minor periods of more humid conditions may have existed.  Work on 

Carboniferous strata in the Appalachian Basin point out that ongoing Milankovitch cycles 

will produce time periods of more humid climates during an overall arid time (Cecil, 

1990; Cecil, 1996; Cecil and Edgar, 2003).  These high-frequency changes explain the 

presence of flora and fauna indicating a humid climate from other Red Beds of the North 

American mid-continent (Olson, 1951; Olson and Mead, 1982). 

 

Blaine and Flowerpot Depositional Environment 

   Working on Permian evaporites of the Texas panhandle equivalent in age to the 

El Reno Group, Presley (1987) identified four depositional environments.  These include: 

1) inner shelf, 2) brine-pan, 3) salt-flat, and 4) mud-flat. Presley (1987) interpreted the 

Flowerpot Shale and Blaine Formation of the Texas panhandle as an extensive supratidal 

mud-flat system characterized by interbedded red siliclastics.  Presley (1987) drew upon 

mud flats from the Gulf of California (Thompson, 1968; Thompson, 1975) and Ranns of 

Kutch, India (Glennie and Evans, 1976) as analogues.  Episodic flooding of these mud 

flats occurs during spring tides and strong storm surges.  In addition, strong winds could 

produce water levels high enough to flood the entire region without large tidal ranges 

such as in the mud flats of Laguna Madre, TX (Fisk, 1959; Miller, 1975; Long and 

Gudramovics, 1983).  

Handford (1981) conducted a study of the Clear Fork Formation (immediately 

underlying the San Andres Formation studied by Presley, 1987).  He suggested that 
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rocks, whose character is very similar to the Blaine Formation and Flowerpot Shale, are 

the deposits representing suspended material from discontinuous fluvial systems. 

The amount of bromide within halite can sometimes be used to determine the 

origin and diagenesis of evaporites (Holser, 1966; Holser, 1970; Holdoway, 1978; 

Handford and Fredericks, 1980).  Bromide concentrations between 50-200 ppm within 

halite are thought to indicate a marine origin (Holdoway, 1978).  Typically, very low 

bromide concentrations (0-5 ppm) indicate that the salts were recycled by non-marine 

waters, or are not of marine origin (Holser, 1966; Holser, 1970).  Bromide concentrations 

from the Flowerpot-Blaine salt have a concentration of less than 5 ppm Br- (Holdoway, 

1978).  This supports an a nonmarine environmental interpretation for the Flowerpot-

Blaine salt.  

Strontium isotope values from the Blaine Formation in Blaine, County, Oklahoma 

suggest that the majority of the gypsums of the Blaine Formation have meteoric water 

contributions and do not necessarily represent open-water conditions (Denison et al., 

1998).  Denison et al (1998) interpret the Nescatunga and Shimer Gypsums of the Blaine 

Formation to be sourced from open-marine waters, and the Medicine Lodge and 

Kingfisher Creek gypsums to have a significant meteoric contribution consistent with a 

mixed marine and terrestrial or fluvial source.  Of the two gypsums interpreted by 

Denison et al. (1998) to be open-marine sourced (Nescatunga and Shimer), only one 

(Nescatunga) is present in the study area.   

The Blaine Formation and the Flowerpot Shale contain several minor siltstone 

channels.   These channels are scattered throughout the Blaine and Flowerpot section.  

These channels are interpreted to be the result of either: 1) frequent oscillations in sea 
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level or 2) large discharge events associated with flooding of the surrounding lands 

resulting in flows reaching further into the basin.  Similar channels were seen in the 

Upper Triassic Mercia Mudstone Group of west Somerset (England) (Talbot et al., 1994).  

Presley (1987), recognized similar small scale channels within the Permian San Andres 

Formation (Blaine Formation equivalent) that he interpreted to represent minor terrestrial 

drainages.     

The interbedded dolomite, gypsum and mudstones of the Blaine Formation have 

been interpreted to represent the result of changes in sea level (Fay, 1964).  Fay (1964) 

noticed these cycles and interpreted the gypsums as representing highstands during arid 

times when clastic influx is lower, and the shales representing lowstands at more humid 

times when the clastic influx would be higher.  Work on deposits from the Late Triassic 

of northwest Somerset (England) and the late Quaternary of east-central Australia suggest 

a different model.  While the gypsums represent highstands, they also form at times when 

the environment is more humid and the mud-flats are periodically inundated in water 

(Talbot et al., 1994).  Shale deposition represents arid times when the mud-flats are 

exposed over much of the area (Talbot et al., 1994). Widespread flooding of the mud-

flats would result in environments suitable for the production of carbonates such as 

fossils and ooids.  Evaporation of these waters would lead to gypsum and salt deposition.  

As the waters continue to withdraw, terrestrial clastics from the surroundings dominate.  

The reoccurrence of dolomite below gypsum capped by shales fit the Talbot et al. (1994) 

model.  The classic flooding sequence for the Blaine Formation then would be 

represented by: 1) inundation of the area with lacustrine, possibly marine water resulting 
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in the deposition of carbonate (dolomites), 2) evaporation of water to the point of gypsum 

deposition, and 3) mudstone deposition during periods of no water.  

Within the study area the original calcium carbonate ooids and fossils from the 

Altona Dolomite and Magpie Dolomite have undergone complete conversion to 

dolomite.  Several dolomitization models have been proposed for different units 

worldwide (Adams and Rhodes, 1960; Hanshaw et al., 1971; Hsu and Schneider, 1973; 

Land, 1985; Tucker et al., 1990).  Based on the presence of evaporites in the Blaine 

Formation the models of dolomitization that best fit are those based on evaporation, i.e., 

evaporitic pumping (sabkha) or seepage-reflux. The evaporative pumping model for 

dolomitization was developed by studies of sabkhas in Abu Dhabi by Hsu and Schneider 

(1973) and (McKenzie et al., 1980).  This model invokes flooding of the sabkha by 

marine water leading to downward movement of water through sediments to form a net 

seaward flow of groundwater.  Warm temperatures over the sabkhas leads to evaporation 

and an upward flow of ground water to the capillary zone.  The seepage-reflux model is 

usually applied to ancient dolomites associated with evaporites (Adams and Rhodes, 

1960; Fisher and Rodda, 1969).  This model involves precipitation of gypsum in a shelf 

environment to raise the Mg/Ca ratio of the fluid.  Then these Mg enriched brines 

descend through permeable strata below and replace less dense marine pore water 

causing dolomitization (Adams and Rhodes, 1960; Tucker et al., 1990).   These models 

for dolomitization are consistent with arid climate during the time of El Reno deposition.  

Petrographically, the majority of modern evaporative dolomite is fine grained with 

dolomite crystal rhombs ranging in size from 1 to 5 μm, and ancient dolomites thought to 

have formed by this mechanism have rhomb sizes ranging from 5 to 20 μm (Tucker et al., 
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1990), consistent with the crystal sizes of the Altona Dolomite and Magpie Dolomite (Fig 

11d).  

Based on similar studies from the Texas panhandle (Presley, 1987), proposed 

evaporation models for dolomitization, bromide concentrations (Holdoway, 1978; 

Handford, 1981), strontium isotope ratios (Denison et al., 1998), and observed siltstone 

channels (Talbot et al., 1994), the author of this paper interprets the Blaine Formation in 

the study area to be the result of mud-flat deposition in a continental sabkha environment 

with sporadic inundation by lacustrine, or possibly marine waters. 

  

Duncan Depositional Environment 

 Previous authors have always followed the interpretation of Green (1937) that the 

Duncan formation is a delta, even naming it the Tussey delta.  Work on recent sediments 

of central Australia (Tooth, 1999; Lang et al., 2004; Nichols and Fisher, 2007; Fisher et 

al., 2008) and Permain to late Triassic deposits from the Solway Basin, United Kingdom 

(Brookfield, 2008) may provide a clearer understanding of the environment at the time of 

Duncan deposition.  The association of coarse grained Duncan facies intertounging with  

supra tidal, continental sabkha, mud-flat facies of the Flowerpot Shale, Blaine Formation, 

and Dog Creek Shale indicate that the Duncan Formation may have been deposited in a 

different setting such as an alluvial fan, shoreline or terminal splay.   

 

Terminal Splay Deposits  

Recent work on Lake Eyre, central Australia has attempted to build a facies model 

for terminal-splay deposits (Tooth, 1999; Lang et al., 2004; Nichols and Fisher, 2007; 
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Fisher et al., 2008).  Fisher et al. (2008) defines a terminal splay as – “a lobe-shaped 

body of sediment found at the terminus of a river that has been deposited from 

unconfined, sub-aerial sheetfloods which propagated over a dry floodplain, playa or 

lakebed.”  Fisher et al. (2008) defines a terminal splay complex as – “a large-scale, 

amalgamated sediment package which may include sediment deposited and reworked by 

both sub-aerial processes (e.g. fluvial, sheetflooding, aeolian) and sub-aqueous processes 

(e.g. deltaic) at the terminus of a fluvial system.”   Fisher et al. (2008) breaks the terminal 

splay into three parts: distributary channel, proximal splay, and distal splay.   

The distributary channel is composed of bedload material deposits from confined 

flow.   Cross-bedded and massive bedded sands and a significant amount of ripple-

laminated sand dominate the sedimentary structures of the distributary channels.  All of 

these structures may be associated with clay.  Discontinuous layers of clay and gravel are 

also present in the distributary channel (Fisher et al., 2008).   

 Deposits of the proximal splay are dominated by thick beds of planer cross-

bedded and massive sands.  The sediments are dominantly bedload material of clean, 

medium-grained to coarse-grained sands.  Thin beds of ripple-laminated sands are also 

common and thin beds of clay line a few of the sandy lithofacies (Fisher et al., 2008).  

Proximal splay deposits represent the initial stages of the flow leaving the distributary 

channel and becoming unconfined.  Fisher et al. (2008) suggests that the initial stages of 

the flow becoming unconfined have an erosional component based of the presence of 

small erosional surfaces and large clay clasts.   

Distal splay deposits are dominated by very fine-grained, massive sand.  This 

sand lithofacies is intercalated with a clay lithofacies (Fisher et al., 2008).  Thinly bedded 
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horizons of carbonaceous silt are commonly seen in the outer reaches of the distal splay.  

Fisher et al. (2008) suggest that these silt layers are the result of waning flow as the flood 

waters reach further into the basin.   The absence of cross-bedding and ripple-laminations 

indicate that the sediments of the distal splay primarily represent suspended load.   This 

dominance of suspended load sedimentation is what differentiates  the proximal splay 

from the distal splay (Fisher et al., 2008). 

 

Comparison of Duncan Facies to Terminal Splay Deposits 

The facies of the Duncan Formation identified in this study have similarities to 

the facies identified from arid terminal-splay deposits.  Fisher et al. (2008) describes 

seven facies of modern terminal splays.  Overall the splay deposits decrease in grain-size, 

thickness of the lithofacies, erosional surfaces and evidence of bedload sedimentary 

structures with increasing distance from the source.   Table #2 is a summary of the 

lithofacies of Fisher et al. (2008).   

Fisher’s facies Gs is comparable to Facies #1 of the Duncan Formation (Table #2).  

Both facies are interpreted as channel deposits and have erosive bases.   The Duncan 

Formation facies #1 is on average thicker with a thickness of 0.5 to 0.7 meters compared 

to 0.1 meter thickness of the Gs facies.   This is most likely due to the splay of the  

Duncan Formation being larger in size than the Douglas Creek terminal splay of Fisher et 

al. (2008).   

Facies Sr  from Fisher et al. (2008) is equivalent to facies #3 of the Duncan 

Formation (Table #2).  Facies #3 is the most abundant facies identified within the Duncan 

Formation.  Ripple laminations and drapes of silt and clay were seen in both the Douglas  
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 Creek splay and the Duncan Formation.  The ripple laminations are believed to be the 

result of bedload deposition. As the flow is waning the finer grained silt and clay drapes 

are deposited (Ashley et al., 1982).  

The Sc facies of Fisher et al. (2008) consist of fine to coarse sand with occasional 

pebble casts.  Structures identified by Fisher et al. (2008) include planer and trough 

cross-bedding.  This Sc facies from Fisher et al. (2008) is comparable to Facies #4 from 

the Duncan Formation.  

Contained within both Facies #3 and Facies #4 of the Duncan Formation are silty-

clay layers of Facies #2.  This Facies #2 is equivalent to the Clm facies of Fisher et al. 

(2008).  These deposits are interpreted to represent deposition from suspension from 

standing water in small ponds formed on the terminal splay (Fisher et al., 2008).  

The Sm facies of Fisher et al. (2008) is a widespread massive facies with grain-

sizes ranging from fine to coarse sand (Table #2).  Fisher et al. (2008) identifies several 

potential causes for the massive structure of the Sm lithofacies.   One of these causes is 

post-depositional bioturbation (Retallack, 1990; Talbot et al., 1994).  Bioturbation could 

explain why the Sm facies is not seen in the Duncan Formation.  Bioturbation was seen in 

the study area at one location within Facies #5 of the Duncan Formation (Fig. 9a).  

Limited bioturbation in the study area could have helped to preserve primary structures 

that would have been destroyed had the study area been habitable to organisms during 

deposition.  

Within the Duncan Formation the mudstone channels are seen stacked and are 

present at several locations throughout the study area (Fig. 10).   These stacked channels 

indicate that the Duncan Formation is a terminal-splay complex rather than a single 
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terminal splay (Fisher et al., 2008). These channels appear to be found randomly 

throughout the section and no correlation was identified between their presence and either 

gypsum-rich or shale-rich intervals within the Blaine Formation and Flowerpot Shale. 

  As sediment is sourced from the east onto the mud-flat environment, the 

majority of bedload and coarse sand-sized material is trapped in the terminal-splays 

represented by the Duncan Formation.  The higher amount of quartz (Table 1) from the 

Duncan Formation confirm earlier work from the Blaine Formation that showed the 

amount of quartz in samples of the El Reno Group decreases to the west (Blatt and 

Totten, 1981).  Although, Blatt and Totten (1981) assumed that the Blaine Formation was 

a marine environment, the same distribution in coarse-grained clastics would be expected 

in a continental sabkha-like system.  In lue of marine processes redistributing the coarser 

material basinward (west), eolian or occasional high-intensity floods could transport the 

material towards the west out onto the mudflats represented by the Blaine Formation and 

the Flowerpot Shale.  Prevailing winds are thought to have been from a southeasterly 

direction by early Permian time (Dott and Batten, 1971; Soreghan and Soreghan, 2007; 

Soreghan et al., 2008b).   One would therefore expect decreasing amounts of sand as you 

move towards the center of the mudflats.  

Through measured section and examination of different facies, it is believed that 

the El Reno Group was deposited in an arid continental sabkha setting.  Figure 17 

summarizes a model of how the facies within the El Reno Group were deposited on the 

edge of a Permian intracontinental basin. 
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Figure 17- Facies model for the El Reno Group. 
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CHAPTER VI 
 
 

CONCLUSION 

 

Through geological mapping, measuring section, and analyzing thin sections and 

XRD data, the deposits of the El Reno Group (Permian) of central Oklahoma were 

examined.  Based on similar studies from the Texas panhandle, proposed evaporation 

models for dolomitization, bromide concentrations and strontium isotope ratios from 

previous studies, and observed siltstone channels within the shales, the Flowerpot Shale, 

Blaine Formation, and Dog Creek Shale are interpreted to represent a continental sabkha 

environment with sporadic inundation by lacustrine, possibly marine waters.  The classic 

flooding sequence for the Blaine Formation is represented by: 1) inundating the area with 

lacustrine or marine water resulting in the deposition of carbonate (dolomites), 2) 

evaporation of water to the point of gypsum deposition, and 3) mudstone deposition 

during periods of no water.  Six facies were identified within the coarser-grained Duncan 

Formation: 1) mudstone conglomerate; 2) clay layers; 3) ripple-cross laminated very fine-

grained sandstone; 4) fine to medium sand with large scale low angle trough cross beds; 

5) clean fine-grained sandstone with high angle trough cross beds and root casts; and 6) 

shale-mudstone.  These facies are similar to the facies described in the Douglas Creek 

terminal splay of Lake Eyre in central Australia and other terminal-splay deposits from 

Australia.  This comparison supports an interpretation that the Duncan Formation was
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deposited on the edge of an intracontinental basin as a terminal-splay complex as defined 

by Fisher et al. (2008).  Our work suggests that arid-land depositional environments may 

provide a better analogue when trying to interpret the Red Beds of the North American 

mid-continent than traditional depositional models.
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Appendix #1-XRD methods taken directly from Steve Chipera 

X-ray Diffraction Analyses: 

To prepare the samples for X-ray powder diffraction analysis (XRD), a small portion of 

each sample (~1.6 g) was mixed with 1.0-μm corundum (Al2O3) internal standard in the 

ratio 80% sample to 20% corundum by weight.  Each sample was then ground under 

acetone in an McCrone Micronizing mill (fitted with an agate grinding set) for a time of 

approximately 10 minutes.  This produced a sample with an average particle size of less 

than 5 μm and ensured thorough mixing of sample and internal standard.  The fine 

particle size is necessary to ensure adequate particle statistics and to reduce primary 

extinction and other sample-related effects (Bish and Reynolds 1989; Klug and 

Alexander 1974).   

 

All diffraction patterns were collected on a Bruker D4 X-ray powder diffractometer using 

CuKα radiation and a Bruker VANTEC position sensitive detector, from 2–70°2θ, using 

~0.02° steps, and counting for at least 2s/step.   Samples were mounted in a circular back-

pack-mount machined out of aluminum and anodized. 

 

Mineral abundances were determined using FULLPAT, a quantitative X-ray powder 

diffraction (QXRD) program and method developed in the Earth and Environmental 

Sciences Division at Los Alamos National Laboratory (Chipera and Bish, 2002).  

FULLPAT matches entire patterns including the background, and utilizes a least-squares 

refinement to optimize the fitting of the library standards to the observed pattern.  The 
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advantage of FULLPAT over the other QXRD methods is that amorphous components 

are now explicitly analyzed by fitting the entire background.  FULLPAT no longer 

requires that the amorphous abundance be constrained as the difference from 100% (i.e. 

amorphous abundance = 100% - sum of phases abundances for the crystalline phases).  

Like the traditional RIR method but unlike the other full-pattern methods, all library 

standards and samples are mixed with corundum as an internal standard to compensate 

for matrix effects so that an unconstrained analysis can be made.  Fitting of entire 

patterns alleviates many of the problems encountered with the traditional RIR methods of 

quantitative analyses (see Bish and Chipera, 1988; 1995 for a more complete discussion).  

FULLPAT has an advantage over the Rietveld method (Bish and Howard, 1988) in that 

the Rietveld method requires that a crystal structure be known for all the phases and that 

the phases all exhibit 3-dimensional order – which is not the case for clay minerals. 

 

Clay Mineral Analyses: 

Clay mineral analyses are conducted by disaggregating an aliquot of sample suspended in 

de-ionized water with an ultrasonic probe for about 10 minutes.  Sample is then 

centrifuged to sediment out the larger than 1.0µm fraction.  The <1.0µm fraction which is 

still in suspension is then vacuum filtered onto silver-membrane filters.  Samples are 

immersed overnight into an ethylene-glycol atmosphere inside of an oven held at 80ºC 

and then X-rayed.  The large organic molecules go into the clay interlayers to determine 

the amount of expandable layers in the I/S.  Expansion is approximated by comparing the 

patterns to calculated patterns generated by the NEWMOD computer program written by 

Robert Reynolds, Jr.  Details of these analyses can be found in Moore and Reynolds 
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(1989).  Illite is composed of 100% collapsed layers.  Pure smectite has 100% expandable 

layers (i.e., swells with the introduction of water).  Mixed-layer illite/smectite (I/S) is 

used when the clay has both expandable and collapsed layers.  In the case of your 

samples, the I/S comprises about 10-15% of the rock and is itself composed of about 20% 

expandable layers.  To get a qualitative sense on rock behavior due to the swelling of 

clays, we can multiply the percentage of the I/S times the amount of expandable layers to 

put it in a relative % of expandable layers in the rock basis.  
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