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Abstract

A synthetic seismogram is a tool to investigate seismic wave characteristics in aniso-

tropic attenuating media. A numerical technique for the computation of synthetic

seismograms in a homogeneous, as well as in a multilayered anisotropic medium was

developed. Full waveform theory is used to compute the synthetic seismograms. The

medium can be elastic or viscoelastic. In the latter case, attenuation is introduced by

giving materials complex elastic constants. To ensure that there are no false arrivals

in the synthetic seismogram, it is important to carefully control the integration kernel

singularity points, especially those due to repeated roots of the associated Green-

Christoffel equation. A novel approach is developed to safely track the continuity of

the integration kernel and, hence, the polarization vectors in critical and supercritical

zones.

The reflectivity approach is followed to consider wave propagation in a multilay-

ered medium. A simple and concise implementation of this method is developed.

This approach also enables one to investigate frequency dependent reflection co-

efficients varying with incidence angle and azimuth. The modeling of reflection

coefficients in fractured media suggests that amplitude versus offset and azimuth

(AVOAz) can be helpful in detecting fractured reservoirs.

In a new development, the effect of attenuation on P- and S-wave radiation

patterns in viscoelastic anisotropic media is investigated. The understanding of

xxii



radiation patterns in homogeneous media is applied to interpret various wave types

in attenuating multilayered media. Both the amplitude and the frequency content

of the synthetic seismograms are affected by attenuation properties of the media.

The spectral decomposition technique is found to be useful in our understanding of

the attenuation effects.

Seismic anisotropy in shales is a complex phenomenon. A number of theoretical

shale models are investigated to study the effects of clay orientation, aspect ratio of

cracks, porosity and fluid types on the synthetic seismograms.
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Chapter 1

Introduction

The focus of this research is to develop a numerical technique for full waveform

synthetic seismograms in order to investigate the effects of attenuation on various

wave types generated by different point sources in homogeneous and multilayered

anisotropic media. There are three distinct achievements resulting from this re-

search.

1. A novel technique is devised to safely track the longitudinal and shear waves

polarizations in a general anisotropic medium.

2. Full waveform synthetic seismogram software for vertically transverse isotropic

media is developed to include attenuation in a multilayered anisotropic media.

3. Spectral decomposition technique based on continuous wavelet transform (Sinha

et al., 2005) is applied to investigate frequency dependent radiation of sources

via anisotropic attenuating media.

These achievements can be applied to understand important aspects of the struc-

ture of the earth. Whether it is the core mantle boundary, or the continental crust,

1



or the oceanic crust or hydrocarbon or non-hydrocarbon reservoirs, the realistic

earth is anisotropic and attenuating. From the hydrocarbon exploration point of

view, let us consider one example of unconventional shaly reservoirs where shales

are hydraulically fractured to produce hydrocarbon. Shales are anisotropic and frac-

tures induced by injecting fluids in the shaly reservoirs make them viscoelastic or

attenuating media. This dissertation approaches the problem by forward modeling

of fractured, anisotropic and attenuating reservoirs.

Literature Reviews

A large number of published papers are devoted either to elastic anisotropic media or

to viscoelastic isotropic media. However, there has been growing interest in the wave

propagation in viscoelastic and anisotropic media. Recently, Cerveny and Psencik

(2005) investigated unbounded viscoelastic anisotropic media and Zhu and Tsvankin

(2006) analyzed attenuation anisotropy in transversely isotropic (TI) media.

Although seismic anisotropy has been the subject of active research among seis-

mologists for more than three decades, it is only now that anisotropy is being actively

pursued in exploration geophysics, since multi-component seismic data are becom-

ing available and our computational ability has been improved. Anisotropy in a

medium essentially represents some type of order therein. Various mechanisms can

cause anisotropy in a medium, for example, crystal alignments, aligned cracks, stress

etc. The reasons for anisotropy and their classification can be found in Crampin et

al. (1984). The most common type of seismic anisotropy under study is vertically
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transverse isotropy (VTI), which is characterized by five independent elastic con-

stants. Shales are extensively studied rocks in anisotropy investigations (Hornby et

al. (1994) and references therein) and represent a key interest of this dissertation.

Plane wave propagation in homogeneous anisotropic media is solved by the

Green-Christoffel equation. Matrix solution of this equation yields polarization and

slowness vectors for each wave type (Synge, 1957). These solutions are also obtained

with an alternative method called Stroh formalism (Stroh, 1958; Ting, 1996). The

Stroh formalism is a more stable compared to the matrix solution of the Green-

Christoffel equation. A novel technique has been devised to ensure smoothness in

the polarization vector for all integration slownesses.

The reason to consider viscoelastic media is to study the effects of attenuation

on wave propagation. There are two main types of attenuation: (1) scattering atten-

uation; and, (2) intrinsic attenuation. Scattering attenuation is caused by hetero-

geneity in the rocks. The physical mechanism of intrinsic attenuation is not clearly

understood. Irrespective of its mechanism, attenuation is commonly measured by

a dimensionless quantity Q, called the quality factor (Johnston and Toksoz, 1981).

Most attenuation studies in the literature have been limited to the case of isotropic

media.

Energy distribution of propagating plane waves in elastic media are studied by

using radiation pattern (Tsvankin and Chesnokov, 1990; Gajewski, 1993). The ra-

diation patterns for P- and S-waves in viscoelastic homogeneous unbounded VTI

media are investigated in this dissertation.

Seismic wave propagation through a stack of welded layers has been considered

by many researchers. The earliest method called the “transfer matrix method”
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was developed by Thomson (1950) and Haskell (1953), and is also known as the

Thomson-Haskell method. However, this method is inherently unstable for thick

layers at high frequencies. This problem was also known as large “fd” problem

(f stands for frequency and d for layer thickness) (Lowe, 1995). Dunkin (1965)

was the first to solve this instability in the transfer matrix method. Nayfeh (1991)

extended the transfer matrix method to include general anisotropy in the layers.

Another approach to solve the boundary value problem was developed by Kennett

(1974) and Kennett and Kerry (1979). This method is also called the “reflection

matrix method”. In this method, the wave reverberation operator is expanded into a

series of individual reflection-refraction terms. Truncated series of the reverberation

operator have been used to study multiple reflections and scattering attenuation

(Kennett, 1975). Fryer and Frazer (1984) developed wave propagators in the form

of scatterers. Another matrix method was proposed by Rokhlin and Wang (2002)

called the “stiffness matrix method”. All these matrix methods are after different

approaches to the same problem. Here the reflectivity matrix formalism (Fuchs and

Muller, 1971) is derived in a concise form which is easy to understand and presents

an unconditionally stable approach.

Synthetic seismogram methods in anisotropic media can be divided into two

groups: (1) ray theoretical approach; and, (2) full waveform approach. In the ray

theoretical approach, the wave equation is basically written as a series expansion

of individual rays. Depending on the number of terms used in the series, there are

several methods in the ray theory (Cerveny and Ravindra, 1971; Helmberger and

Harkrider, 1978). However, in the full waveform approach, there is no series ap-

proximation (Cormier and Richards, 1977). Although, the full waveform synthetic
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is a time-consuming procedure, yet has the significant advantage of accurate com-

putation of wave motion near critical points resulting in head waves in layers with

velocity contrast. In addition, guided waves and leaky modes can be studied for the

different sources considered.

Dissertation Outline

This dissertation is organized as follows:

Chapter 2 provides the mathematical treatment of the static Green’s tensor of a

general anisotropic medium and is applied to the isotropic case to give the analytical

solution. This forms the basis for Chapter 3 where the dynamic Green’s tensor is

developed. The dynamic Green’s tensor in frequency-wavenumber space assumes a

simple algebraical form, namely, the solution to Green-Christoffel’s equation, which

is fundamental to all the computations.

In Chapter 4, the layer matrix is formed which facilitates the task of solving

the boundary value problem, thereby ensuring the continuity of displacements and

tractions throughout a stack of welded anisotropic layers. A numerically stable

technique is developed to form the layer matrix. Also, a novel approach is developed

to trace the continuity of polarization vectors in critical and supercritical zones.

Chapter 5 gives a concise view of wave propagation through a multilayered media.

It forms a reflection-transmission coefficient matrix and is utilized to investigate

frequency and thickness - dependent reflection coefficients in multilayered media.

Chapter 6 investigates the reflection coefficients and velocity anisotropy due to

the presence of preferentially oriented fractures. A simple model consisting of two

half-spaces is considered. In the lower half-space, vertical fracture sets with various
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orientations are created and, subsequently, the reflection coefficients are computed

for the waves incident from above. The Schoenberg and Sayers (1995) method is

used to account for multiple fracture sets in the medium.

Chapter 7 provides a mathematical background and numerical techniques used

to generate a full waveform synthetic seismogram. A series of Bessel’s functions is

used to reduce the overall CPU time of the integration procedure.

In Chapter 8, various models, such as homogeneous and multilayered VTI me-

dia, are studied. Radiation patterns in homogeneous and attenuating anisotropic

media are investigated and the results obtained are utilized to interpret synthetic

seismograms in multilayered attenuating VTI media. Frequency and amplitude char-

acteristics of the synthetic seismogram are studied using spectral decomposition.

Chapter 9 is about shale anisotropy. Theoretical shale models of various types

are investigated from the standpoint of synthetic seismograms, with the following

controlling parameters: preferred orientation of clay particles, aspect ratio of cracks,

porosity, and fluid type.

Chapter 10 draws together the main conclusions of this dissertation and outlines

the avenue of future investigations.
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Chapter 2

Static Green Tensor

2.1 Introduction

This chapter is about a static point force in an elastic anisotropic medium. Green’s

function approach will be utilized to solve this problem. The theory developed in this

chapter is used in the subsequent part of this dissertation. This chapter represents

a concise view of a static point force solution.

The theoretical development of the static Green’s tensor for anisotropic media

has a long history, dating from about 60 years. An example is the publication of the

classic paper by Lifshitz and Rozenzweig (1947). The estimation of Green’s function

for an unbounded space, a half-space and the composite space of anisotropic elastic

media has been attempted by various researchers (Eshelby et al., 1953; Head, 1953;

Stroh, 1958; Willis, 1970; Chung and Ting, 1995b,a). Chadwick and Smith (1977)

presented real form solutions for the displacement and stress. Ting and Lee (1997)

obtained the elastostatic Green’s function for a general anisotropic medium in three-

dimensional space. Pan (2003) derived the complete set of three-dimensional Green’s

functions or the generalized Mindlin solutions in an anisotropic half-space. Budreck
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(1993) expressed Green’s function as a bilinear expansion in the eigenfunctions of

the linear elastic Hookean operator.

In the first section, the static point force solution to an anisotropic elastic medium

is derived. The static Green’s tensor is formulated analytically for the isotropic case

in the next section and derivatives of that formulation are developed for purposes of

practical applications.

2.2 Green Tensor of the Equilibrium Equation

In the static case, the displacements (u) in an anisotropic medium due to the action

of body forces (f) are given by the equation:

Limum = −fi (2.1)

where the operator Lim = ∂jCijmn∂n and fi is the body force density function. Cijmn

is a fourth-rank symmetric elastic tensor; ∂i represents partial derivatives in the

cartesian co-ordinate system; and (i, j, m, n) varies from 1 to 3.

The solution of equation (2.1) can be presented as the convolution of the appro-

priate Green’s tensor, G, with the body force density function, i.e. U = G ∗ f . Here,

Green’s function is essentially a transfer function between the source (e.g. force) and

the displacement at the observation point (receiver) which, under proper conditions,

represents the effective elastic properties of a general inhomogeneous and anisotropic

medium. Green’s function for the wave equation is also known as the dyadic Green’s
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function and is a second rank tensor called Green’s Tensor. It can be written in the

integral form as:

um(r) =

∫

Gml(r − r1)fl(r1)dr1, (2.2)

This integral formula tells us that the force (fl) acting along xl axis at point r1 causes

the displacement components um, m = 1, 2, 3 at an observation point r. Substituting

(2.2) into the equation (2.1), one gets:

Lim

∫

Gml(r − r1)fl(r1)dr1 = −δilfl(r)

= −δil

∫

δ(r − r1)fl(r1)dr1

or, LimGml = −δilδ(r) (2.3)

Here δil is the Kronecker delta tensor and δ(r) is the Dirac-delta function. Green’s

tensor can be transformed from r-space (spatial domain) to k-space (wavenumber

domain) and vice-versa, using the Fourier transform as:

Gml(k) =

∫

Gml(r)e
−ikrdr (2.4)

Gml(r) =
1

(2π)3

∫

Gml(k)eikrdk (2.5)

Here Gml(r) and Gml(k) are Green’s tensors in the spatial domain and wavenumber

domain, respectively. Using the definition of the operator Lim equation (2.3) can be

written as:
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∂jCijmn∂n

∫

Gml(r)e
−ikrdr = −δil

∫

δ(r)e−ikrdr

or, CijmnkjknGml(k) = δil (2.6)

or, ΓimGml(k) = δil (2.7)

where Γim is the static Green-Christoffel tensor:

Γim = Cijmnkjkn. (2.8)

Thus, the Green tensor in k-space can be found by taking the inverse of the Green-

Christoffel tensor. Thus,

Gml(k) = (Γ−1)ml =
Γadj

ml

| Γ | (2.9)

where | Γ | is the determinant of a third order matrix formed by the Green-Christoffel

tensor and Γadj is the adjoint matrix.

2.3 Green Tensor in Isotropic case

The simplest case is the case of isotropic elastic medium where elastic constants

Cijmn are dependent only on two parameters. In the case of the two independent

parameters being Lamé’s parameters, the elastic tensor components Cijmn can be

written as:
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Cijmn = λδijδmn + µ(δimδjn + δinδjm) (2.10)

In isotropic media, the Green-Christoffel tensor (2.8) is expanded in the form:

Γim = µk2δim + (λ + µ)kikm (2.11)

By taking the inverse of equation (2.11), the Green tensor in k-space simplifies to:

Gim(k) = Γ−1
im =

1

µk2
(δim − χνim) (2.12)

where χ = λ+µ
λ+2µ

; νi = ki

|k|
; and νim = νiνm.

The static Green’s tensor in r-space is derived by substituting (2.12) into equation

(2.5). Thus,

Gim(r) =
1

(2π)3

∫
1

µk2
(δim − χνim)eikrdk

=
1

8πµ

[

δim
1

π2

∫
1

k2
eikrdk − χ

1

π2

∫
kikm

k4
eikrdk

]

=
1

8πµ
[δimr,pp − χr,im] (2.13)

The following identity is utilized in the above equation (Shermergor, 1977).

r =
−1

π2

∫
eikr

k4
dk
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In order to compute the effective elastic constants of a heterogeneous medium

under appropriate conditions, the first and second partial derivatives of the Green

tensor in the equation (2.13) is required (Chesnokov et al., 1995).

Gim,l =
1

8πµ
[δimr,ppl − χr,iml]

Gim,lq =
1

8πµ
[δimr,pplq − χr,imlq] (2.14)

where r =
√∑

x2
i .

The partial derivatives of the r-function in the cartesian co-ordinate are given

below:

r,i = ni ≡
xi

r
; r,im = ni,m =

1

r
(δim − nim); r,pp =

2

r

r,iml = ni,ml =
1

r2
(3niml − niδml − nmδil − nlδim); r,ppl = − 2

r2
ni;

r,imlq = rs
,imlq + rf

,imlq;

rs
,imlq = −8π

15
δ(r)δimlq; rs

,pplq = −8π

3
δ(r)δlq; rs

,pphh = −8πδ(r)

rf
,imlq = ni,mlq ≡

1

r3
[3(nimδlq + nilδmq + niqδml + nlqδim + nmlδiq) − δimlq − 15nimlq] ;

rf
,pplq =

2

r3
(3nlq − δlq); rf

,pphh = 0 (2.15)

Here, rs
,imlq and rf

,imlq are singular (with superscript s) and formal (with super-

script f) components of r,imlq, respectively. Using expressions (2.15), Green’s tensor

and its first and second partial derivatives in 2.13 and 2.14 can be written as follows:
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Gim(r) =
1

8πµr
[(2 − χ)δim + χnim] (2.16)

Gim,l(r) =
1

8πµr
[3χniml + (2 − χ)nlδim − χ(niδml + nmδil] (2.17)

Gs
im,lq(r) = −1

3
δ(r)[δimδlq −

1

5
χδimlq] (2.18)

Gf
im,lq(r) =

1

8πµr3

{
(2 − χ)δim(3nlq − δlq) − χ

[
3
(
nimδlq + nilδmq + niqδml

+ nmqδil + nmlδiq

)
− 2δimlq − 15nimlq

]}
(2.19)

2.4 Summary

The static point force solution in a general anisotropic medium is developed and is

expanded to give an analytical solution for the isotropic case. In a more complex

case of anisotropy a numerical method is required. The theoretical development in

this chapter forms the basis for some techniques used in the subsequent text of the

dissertation. Note that the solutions obtained can be extended into the complex

domain to solve viscoelastic problems.
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Chapter 3

Dynamic Green Tensor

3.1 Introduction

Now consider the problem where the elastic or viscoelastic Green’s function is time

dependent. This time dependent Green’s function is referred to as the dynamic

Green’s function. In this case, one has to deal with both space and time. The results

of this chapter will be used to evaluate point forces in anisotropic attenuating media.

The study of more complicated sources will be conducted using multiple point forces.

As a point of interest, Ivanenko and Sokolov (1951) derived the relation between

static and dynamic Green’s tensor. The dynamic Green’s function can be written

as an integral over the slowness surface (Duff, 1960). Burrdige (1967) examined

the conical points on the slowness surface of media with cubic symmetry. Wang

and Achenbach (1993) developed a method based on the Radon transform to ob-

tain 3-dimensional space-time domain elastodynamic solutions for anisotropic solids.

Norris (1994) described a procedure to obtain Green’s functions for time harmonic

source functions. Vshivtsev et al. (1995) proposed a special-purpose decomposition

of Green’s function which allows one to find the contributions from each wave type
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for the wave propagation in anisotropic medium. In the aforementioned method, the

Fourier transform is used to calculate the dynamic Green’s function.

The second order partial differential equations for Green’s function in the space-

time domain and frequency-wavenumber domain are both developed in the first

section. In the next section, the solutions for the Green’s functions in a general

anisotropic medium is derived. These results are then applied to obtain Green’s

functions in analytical form for the special case of an isotropic medium, later in

the dissertation. The numerical application of these results of this chapter will be

addressed.

3.2 Equation for Generalized Green Function

Elastic wave particle motion is governed by the equation (wave equation):

ρÜi = fi + ∂jσij (3.1)

where Ui, Üi, fi, ρ, ∂jσij are the i-th components of the displacement, the accelera-

tion, the body force, mass density, and the traction force, respectively.

Stress in its general form is written as:

σij(ǫmn) = σij(0) +
∂σij

∂ǫmn
ǫmn +

∂2σij

∂ǫmn∂ǫpq
ǫmnǫpq + ....

σij(ǫnm) = σij(0) + Cijmnǫmn + Cijmnpqǫmnǫpq + .... (3.2)

where Cijmn is a fully symmetric fourth rank tensor of elastic constants. Cijmnpq is

a sixth rank tensor and it represents the physical nonlinearity. In the expression
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for strain tensor ǫmn = 1
2
(∂mUn + ∂nUm + ∂mUp∂nUp), the third term reflects the

geometrical nonlinearity. For a medium without initial stress, i.e. σij(0) = 0, one

can rewrite expression (3.2) as:

σij(ǫnm) = Cijmnǫmn + Cijmnpqǫmnǫpq + .... (3.3)

The linear Hooke’s law for an elastic anisotropic medium without initial stress is

written in the form:

σij = Cijmnǫmn (3.4)

Substituting equation 3.4 into 3.1, one obtains:

ρÜi − ∂jCijmn∂nUm = fi (3.5)

Let us represent a solution of equation 3.5 as (similar to equation 2.2):

Um(t, r) =

∫

dt′
∫

dr1 Gml(t − t′; r− r1)fl(r1), (3.6)

where Gml(t; r) is the dynamic Green’s function. Substituting equation 3.6 into 3.5,

we obtain a linear differential wave operator for Green’s function.

(δimρ∂2
t − ∂jCijmn∂n)Gml(t; r) = δilδ(r)δ(t) (3.7)
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The above equation can be written in the (ω − k) domain as (see Appendix A

for derivation details):

(−δimρω2 + Cijmnkjkn)Gml(ω;k) = δil (3.8)

The above equations 3.7 and 3.8 are partial differential equations of second order.

Analytical solutions to these equations are obtained using the Fourier transform in

the following section.

3.3 Solution of Green Function

By introducing a differential operator Aim, equation 3.7 can be further simplified

and written as:

(δim∂2
t + Aim)Gml(t; r1, r2) = δ(t)Bil(r1, r2) (3.9)

where Aim = −ρ−1∂jCijmn∂n and Bil(r1, r2) = δilδ(r1 − r2)/
√

ρ(r1)ρ(r2). Further-

more, equation 3.9 can be written in the matrix form as:

(∂2
t + A)G(t; r1, r2) = δ(t)B(r1, r2) (3.10)

Let us find the solution of a second order differential equation 3.10 in a similar way

to the equation 3.9 treating A as a numerical parameter.

(∂2
t + α)G(t, α) = δ(t) (3.11)
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The usual method of solving this problem is to take the Fourier transform with

respect to the time variable t.

G(t, α) =
1

2π

∫

G(ω, α)e−iωtdω

δ(t) =
1

2π

∫

e−iωtdω

Substituting the above Fourier representations in equation 3.11, the algebraic ex-

pression for the Fourier image G(ω, α) is written as:

(−ω2 + α)G(ω, α) = 1 ⇛ G(ω, α) = (α − ω2)−1

Taking the inverse Fourier transform with respect to ω, one obtains:

G(t, α) =
1

2π

∫
1

(α − ω2)
e−iωtdω = H(t)

sin(t
√

α)√
α

.

Here H(t) is the Heaviside function with conditions:

H(t) =







1, t ≥ 0

0, t < 0

Using the series expansion of a sine function, the solution of G(t, α) to equation

3.11 is obtained as an analytical function of parameter α.

G(t, α) = H(t)
sin(t

√
α)√

α
= H(t)

∞∑

n=0

(−1)nt(2n+1)

(2n + 1)!
αn
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Now let the parameter α be the initial matrix differential operator A and the solution

of the equation 3.10 can be presented in the series form as:

G(t; r1, r2) = H(t)

∞∑

n=0

(−1)nt(2n+1)

(2n + 1)!
AnB(r1, r2) (3.12)

What follows is the proof that the solution of the form 3.12 satisfies the equation

3.10. Let us find the first and second partial derivatives of G(t; r1, r2) with respect

to the time variable t:

∂

∂t
G(t; r1, r2) = δ(t)

∞∑

n=0

(−1)nt(2n+1)

(2n + 1)!
AnB(r1, r2) + H(t)

∞∑

n=0

(−1)nt(2n)

(2n)!
AnB(r1, r2)

The delta function in the first term comes from the fact that it is the 1st derivative

of Heaviside function. Furthermore,

lim
t→0

∞∑

n=0

(−1)nt(2n+1)

(2n + 1)!
An = 0

Therefore,

∂tG(t; r1, r2) = H(t)

∞∑

n=0

(−1)nt(2n)

(2n)!
AnB(r1, r2)

Second differentiation gives:

∂2
t G(t; r1, r2) = δ(t)

∞∑

n=0

(−1)nt(2n)

(2n)!
AnB(r1, r2) + H(t)

∞∑

n=1

(−1)nt(2n−1)

(2n − 1)!
AnB(r1, r2)
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In this case, the coefficient at the delta function is not zero.

lim
t→0

∞∑

n=0

(−1)nt2n

(2n)!
An = 1

Replacing the sum index n → n + 1, in the second term, one obtains:

∂2
t G(t; r1, r2) = δ(t)B(r1, r2) − H(t)

∞∑

n=1

(−1)nt(2n+1)

(2n + 1)!
An+1B(r1, r2) (3.13)

By substituting equations 3.12 and 3.13 in equation 3.10, one can write:

(∂2
t + A)G(t; r1, r2) = δ(t)B(r1, r2) − H(t)

∞∑

n=1

(−1)nt(2n+1)

(2n + 1)!
An+1B(r1, r2)

+ AH(t)

∞∑

n=1

(−1)nt(2n+1)

(2n + 1)!
AnB(r1, r2)

= δ(t)B(r1, r2)

Thus, equation 3.12 represents the solution of equation 3.10. Now, let us repre-

sent the unit element B(r1, r2) using the eigenfunctions of the operator A. The

eigensolutions of the matrix operator A is given by this homogeneous equation:

AUα(k; r) = ω2
α(k)Uα(k; r) (3.14)

Here, α indicates different modes of elastic waves. The eigenfunctions being orthog-

onal, one can write the unit element B(r1, r2) with weight ρ(r) as:

∫

d3k

3∑

α=1

Uα
i (k; r1)U

α

l (k; r2) = δil
δ(r1 − r2)

√

ρ(r1)ρ(r2)
≡ Bil(r1, r2) (3.15)

20



When the operator A acts on the unit element B(r1, r2), equations 3.15 and 3.14

yield the following:

AmiBil(r1, r2) =

∫

d3k

3∑

α=1

ω2
α(k)Uα

m(k; r1)U
α

l (k; r2) (3.16)

where the repetitive index i indicates summation from 1 to 3. Any integer power of

A results in the eigenvalues with the same integer power. Thus,

(An)miBil(r1, r2) =

∫

d3k
3∑

α=1

ω2n
α (k)Uα

m(k; r1)U
α

l (k; r2) (3.17)

Any integer power of A is determined by the matrix multiplication:

(An)mi = Ami1Ai1i2Ai2i3 ....Ain−1i

By substituting equation 3.17 into series 3.12, one obtains:

Gml(t; r1, r2) = H(t)

∫

d3k

3∑

α=1

1

ωα(k)

{
∞∑

n=0

(−1)n(tωα(k))(2n+1)

(2n + 1)!

}

Uα
m(k; r1)U

α

l (k; r2)

Using the series expansion of the sine function, the above equation is simplified

as:

Gml(t; r1, r2) = H(t)

∫

d3k

3∑

α=1

sin(ωα(k)t)

ωα(k)
Uα

m(k; r1)U
α

l (k; r2) (3.18)

Thus, if the spectrum of eigenvalues ω2
α(k) and the eigenfunction Uα

i (k; r) of the

operator A determined by the homogeneous equation:

AimUα
m(k; r) = ω2

α(k)Uα
i (k; r) (3.19)
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is known, then any integer power of A can be obtained using equation 3.17 . Once

An is found, any analytical function of the operator can be calculated. Thus, if the

spectrum of the operator A is known, the Green function is determined according to

equation 3.18. By substituting the differential form of operator Aim from equation

3.9 into equation 3.19, one obtains:

−∂j (Cijmn∂nUα
m(k; r)) = ρ(r)ω2

α(k)Uα
i (k; r) (3.20)

Let us consider the simplest case of homogeneous infinite media, where eigen-

functions of the operator A are harmonic waves:

Uα
i (k; r) =

1
√

(2π)3ρ
uα

i (k)eik.r (3.21)

By substituting equation 3.21 into 3.20, one obtains:

Cijmnkjknu
α
m(k) = ρω2uα

i (k) (3.22)

where uα
i (k) is the eigenvectors of the Green-Christoffel tensor Γim = Cijmnkjkn.

The normalization factor of
√

(2π)3ρ in equation 3.21 is derived from the general

condition of orthogonality for eigenfunctions having weight ρ(r):

∫

d3rρ(r)

3∑

i=1

Uα
i (k1; r)U

β

i (k2; r) = δαβδ(k1 − k2)

The eigenvalue solution of equation 3.22 is found from the following determinant:
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|Cijmnkjkn − δimρω2| = 0

or, |Cijmnνjνn − δimρV 2
α (ν)| = 0 (3.23)

where νi = ki

|k|
and k = ω(ν)

Vα(ν)
. The solutions of this equation correspond to the three

characteristic wave velocities Vα, α = 1, 2, 3.

Let us replace the integration variable k in equation 3.18 with frequency ω and

spherical coordinate angles (azimuthal angle θ, and polar angle φ).

k =
1

Vα(k)










ω sin(φ) cos(θ)

ω sin(φ) sin(θ)

ω cos(φ)










and

∫

dν =

∫ 2π

0

dθ

∫ π

0

sin φdφ (3.24)

The Jacobian transformation of 3.24 is:

∣
∣
∣
∣

∂(k1, k2, k3)

∂(ω, φ, θ)

∣
∣
∣
∣
=

ω2 sin φ

V 3
α (φ, θ)

=⇒ d3k = ω2 sin φV 3
α (ν)dωdφdθ (3.25)

Substituting 3.24 with Jacobian 3.25 and eigenfunction 3.21 into the Green function

in 3.18, one obtains:

Gml(t; r1, r2) = H(t)

∫ ∞

−∞

dω sin(ωt)ω

∫

|n=1|

dn
uα

m(n)uα
l (n)

2ρ(2πVα(n))3
e(

iω

Vα(n)
(n.(r1−r2)))
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In the general case of anisotropy, numerical techniques are required to solve the

above equation and are going to be computationally intensive. However, in a special

case of an isotropic medium, the above equations simplify.

3.4 Dynamic Green Tensor in Isotropic case

The elasticity tensor in the isotropic case is dependent only on two parameters. In

the case that the two parameters are λ, µ (Lamé parameters), the elasticity tensor

is given as:

Cijmn = λδijδmn + µ(δimδjn + δinδjm) (3.26)

Substituting equation 3.26 in 3.8, one gets:

(−δimρω2 + (λ + µ)kikm + µk2δim)Gml(ω;k) = δil (3.27)

The solution for Gml(ω;k) is given by:

Gml(ω;k) =
1

µk2 − ρω2

[

δml −
(λ + µ)kmkl

(λ + 2µ)k2 − ρω2

]

or, Gml(ω;k) =
1

ρ(V 2
S k2 − ω2)

[

δml −
(V 2

P − V 2
S )kmkl

V 2
P k2 − ω2

]

(3.28)

where VP =
√

(λ + 2µ)/ρ and VS =
√

µ/ρ.
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Taking the Fourier image of the above equation, it can be shown that the Green

function in space-time is:

Gml(t; r) =
1

4πρV 2
P r

δ(t − tP )nmnl

+
1

4πρV 2
S r

δ(t − tS) [δml − nmnl]

+
1

4πρr3
[3nmnl − δml] tH(t − tP )H(tS − t) (3.29)

where tP = r/VP , tS = r/VS and ni = ri/|r|

3.5 Summary

Analytical expressions for the dynamic Green tensor are developed using the Fourier

transform method. These expressions are expanded in the case of isotropic media

which are simple and easy to compute. However, in the general case of anisotropy,

computations based on these analytical expressions are fairly time consuming. There-

fore, numerical techniques are required to compute Green’s functions, which are

developed in the subsequent chapters.
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Chapter 4

Layer Matrix

4.1 Introduction

A layer matrix is of sextic (6x6) form in which columns represent upgoing and

downgoing waves for each wave types and rows represent cartesian components of

polarization and traction vectors. The layer matrix formalism facilitates the task

of solving the boundary value problem of wave propagation throughout a stack of

welded layers. Therefore, the layer matrix is also referred to as the propagator

matrix.

There are two types of approaches and algorithms used to form the layer matrix

for a homogeneous region of general anisotropic medium. The first approach is based

on the solution of a sixth order polynomial and finding eigensolutions of the Green-

Christoffel tensor (e.g. Fedorov (1968), Rokhlin et al. (1986)). The second approach

involves calculations of displacement and stress vectors simultaneously and is often

referred to as Sextic formalism, or Stroh formalism (Stroh, 1958, 1962; Crampin,

1981; Mandal and Toksoz, 1990; Ting, 1996). Synge (1957) suggested to take into
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account the sign of the imaginary part of the eigensolutions to distinguish between

upgoing and downgoing waves.

Finding the eigensolutions in the Stroh formalism is found to be computationally

more stable. However, in order to take partial derivatives of Green’s tensor, it is

desired to form polynomial with respect to slowness and this is accurately achieved

with the Green-Christoffel equation. In this dissertation, a combination of both

approaches is followed to give a more robust technique for building a layer matrix

and excitation vector due to source. The next two sections are devoted to the

first type of approach, showing the derivation and a programmable solution of the

Green-Christoffel equation leading to the layer matrix. The second approach is in

the fourth section giving the details of the Stroh formalism. In the fifth section, a

technique is discussed to combine these two methods and a novel technique is also

devised to safely track polarization of two shear waves across singularity points (or

acoustic axes).

4.2 Green-Christoffel Equation

Newton’s second law of motion and the definition of resultant force density from

continuum mechanics i.e. fi = ∂jσij are combined to give

∂jσij = ρ∂2
t ui (4.1)
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where σij = Cijklǫkl, ρ-mass density and u is displacement vector. Using equation

3.4, equation (4.1) can be expanded as:

∂jCijklǫkl + Cijkl∂jǫkl = ρ∂2
t ui

⇒ Cijkl∂jǫkl = ρ∂2
t ui (4.2)

because ∂jCijkl = 0 in any homogeneous medium.

Furthermore, since ǫkl = 1
2
(∂luk + ∂kul), one can write equation (4.2) as:

Cijkl∂j∂luk = ρ∂2
t ui (4.3)

Let us seek a solution to the equation (4.3) in the form of a plane wave.

ui = Aie
−ik(nmxm−vt) (4.4)

Substituting ui from (4.4) into equation (4.3), one obtains:

ρv2ui = Cijklnjnluk

or, ρv2δikuk = Cijklnjnluk

or, (Γik − ρv2δik)uk = 0 (4.5)

where Γik = Cijklnjnl. Equation (4.5) is called the Green-Christoffel equation.
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4.3 Solution of the Green-Christoffel Equation

Let us rewrite the Green-Christoffel equation (4.5) in terms of slowness pi = ni

v

(ni and v are direction cosines and the phase velocity, respectively) and density

normalized elasticity tensor aijkl.

(aijklpjpl − δik)uk = 0 (4.6)

The above system of homogeneous linear equations has a non-trivial solution for the

polarization vector u if and only if the matrix (G) of the system has a vanishing

determinant:

det(Gik) = |aijklpjpl − δik| = 0 (4.7)

Expansion of the (G) matrix entries:

G11 = a55p
2
3 + 2(a15p1 + a56p2)p3 + a11p

2
1 + 2a16p1p2 + a66p

2
2 − 1

G22 = a44p
2
3 + 2(a46p1 + a24p2)p3 + a66p

2
1 + 2a26p1p2 + a22p

2
2 − 1

G33 = a33p
2
3 + 2(a35p1 + a34p2)p3 + a55p

2
1 + 2a45p1p2 + a44p

2
2 − 1

G12 = a45p
2
3 + [(a14 + a56)p1 + (a46 + a25)p2]p3 + a16p

2
1 + (a12 + a66)p1p2 + a26p

2
2

G13 = a35p
2
3 + [(a13 + a55)p1 + (a36 + a45)p2]p3 + a15p

2
1 + (a14 + a56)p1p2 + a46p

2
2

G23 = a34p
2
3 + [(a36 + a45)p1 + (a23 + a44)p2]p3 + a56p

2
1 + (a46 + a25)p1p2 + a24p

2
2

Voigt notation is utilized to present the fourth-rank elasticity tensor as a second-

rank tensor. The determinant of (G) is a sixth order polynomial in p3 (i.e. z-

component of slowness vector p) for any given values of horizontal slownesses. Thus,
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there will be six solutions for p3 which fall into two equinumerous groups of upgoing

and downgoing waves, respectively. The p3 root can be purely real or complex.

In the case of a medium with a horizontal plane of symmetry, one can separate

upgoing waves from downgoing waves based on the sign of vertical slowness (p3)

real and imaginary parts (i.e. +ve for upgoing and -ve for downgoing). However, if

xy-plane is not a symmetry plane, the distinction between upgoing and downgoing

waves becomes problematic. In section 4.5, a combination of various approaches is

discussed to make the distinction between upgoing waves and downgoing waves and

types of waves (i.e. P, S1, S2).

Having calculated the roots of the sixth-order polynomial which gives phase

slowness (and hence phase velocity), the next step is to calculate polarization vectors

for each value of p3. In order to do this, we construct W – the adjoint matrix of G,

and compute the polarization vector components (ui) as follows:

W11 = G22G33 − G23G23, W22 = G33G11 − G13G13, W33 = G11G22 − G12G12

W12 = G13G23 − G12G13, W13 = G12G23 − G13G22, W23 = G13G12 − G23G11

∆ = W11 + W22 + W33

and

u2
i = Wii/∆ (4.8)

Equation (4.8) gives all three components of the polarization vector. However,

the aforementioned formula cannot warrant the polarization vector to be continuous

as the horizontal slowness increases in a given direction. In this case, it is advised to
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select one of the displacements which has the maximum absolute value and correct

the relative sign of the other displacement vector using the following equation:

uiuj = Wij/∆ (4.9)

Thus, the phase slownesses and the associated polarizations are obtained subject to

the requisite conditions. However, in some propagation directions, the S1 and S2

wave velocities may coincide rendering the adjugate tensor zero. Propagation direc-

tions with this property are called acoustic axes. The higher the symmetry in the

media, the higher the number of acoustic axes. This creates numerical instability.

However, it can be avoided using the perturbation approach. Another method dis-

cussed in the next section appears to be numerically more stable to compute phase

slownesses and polarizations in general anisotropic media.

Once the polarization vectors for a given slowness are calculated, the traction

vector in the Z-direction is computed using the following formula:

σi3 = Ci3klpkul (4.10)

Thus, the layer matrix with displacement-stress vector [ui, σi3] is formed.

4.4 Stroh Formalism

The advantage of this approach is that it gives displacement-stress vectors directly

without going into the complexity of solving the Green-Christoffel equation. For

wave propagation in a layered media, the displacements and tractions are assumed
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to be continuous throughout the multilayered medium, including its interfaces. The

traction vector at a unit plane area parallel to a layer interface is σi3 and can be

written as:

σi3 = Ci3kl∂luk (4.11)

or, σi3 =

(

Eik
x ∂x Eik

y ∂y Eik
z ∂z

)










ux

uy

uz










(4.12)

where

Ex = Eik
x = Ci3k1, Ey = Eik

y = Ci3k2, and Ez = Eik
z = Ci3k3 (4.13)

The displacement and traction vector in the form of a plane wave can be expressed

as:

σi3 = Ti exp[−iω(pxx + pyy − t)] (4.14)

ui = Ui exp[−iω(pxx + pyy − t)] (4.15)
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Substituting equations (4.14) and (4.15) into equation (4.12), one obtains:










Tx

Ty

Tz










= −iω(pxEx + pyEy)










Ux

Uy

Uz










+ Ez∂z










Ux

Uy

Uz










(4.16)

or, ∂z










Ux

Uy

Uz










= iωE−1
z [(pxEx + pyEy)]










Ux

Uy

Uz










+ E−1
z










Tx

Ty

Tz










(4.17)

or, U, z = iωE−1
z [(pxEx + pyEy)]U + E−1

z T (4.18)

or, U, z = iωMU + NT (4.19)

where M = E−1
z [(pxEx + pyEy)] and N = E−1

z .

Now let us look at equation (4.2). Substituting equation (4.15) into (4.2), one

obtains:

ω2ρU = ω2(p2
xF

ik
xx + p2

yF
ik
yy + 2pxpyF

ik
xy)U−F ik

zzU,zz + 2iω(pxF
ik
zx + pyF

ik
yz)U,z (4.20)
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where

Fxx = F ik
xx = Ci1k1,

Fyy = F ik
yy = Ci2k2,

Fzz = F ik
zz = Ci3k3,

2Fxy = 2F ik
xy = Ci1k2 + Ci2k1,

2Fyz = 2F ik
yz = Ci2k3 + Ci3k2,

2Fzx = 2F ik
zx = Ci3k1 + Ci1k3, (4.21)

From equalities in (4.13) and (4.21), we get 2Fzx = (Ex + ET
x ), 2Fyz = (Ey +

ET
y ), and Fzz = Ez. Furthermore, differentiating equation (4.19) with respect to z

leads to:

U,zz = iωMU,z + NT,z

= iωM(iωMU + NT) + NT,z

= −ω2MMU + iωMNT + NT,z (4.22)

Substituting values of U,zz and U,z in equation (4.20), one obtains:

ω2ρU = ω2(p2
xFxx + p2

yFyy + 2pxpyFxy)U

− Fzz[−ω2MMU + iωMNT + NT,z]

+ 2iω(pxFzx + pyFyz)(iωMU + NT) (4.23)
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or,

0 =ω2[p2
xFxx + p2

yFyy + 2pxpyFxy + FzzMM− 2(pxFzx + pyFyz)M − ρI]U

− iω[FzzMN − 2(pxFzx + pyFyz)N]T − FzzNT,z (4.24)

Some of the terms in the above equation can be expanded as follows:

FzzN = Ez E−1
z = I (4.25)

FzzMM = EzE
−1
z (pxEx + pyEy)E

−1
z (pxEx + pyEy)

= (pxEx + pyEy)E
−1
z (pxEx + pyEy) (4.26)

2(pxFzx + pyFyz)M = (px(Ex + ET
x ) + py(Ey + ET

y ))E−1
z (pxEx + pyEy)

= FzzMM + (pxE
T
x + pyE

T
y )E−1

z (pxEx + pyEy) (4.27)

FzzMN = EzE
−1
z (pxEx + pyEy)E

−1
z = (pxEx + pyEy)E

−1
z (4.28)

2(pxFzx + pyFyz)N = (px(Ex + ET
x ) + py(Ey + ET

y ))E−1
z

= FzzMN + (pxE
T
x + pyE

T
y )E−1

z (4.29)

Substituting equations from (4.25) to (4.29) into equation (4.24), one obtains:

T,z =ω2[p2
x(Fxx −ET

x E−1
z Ex) + p2

y(Fyy −ET
y E−1

z Ey)

+ pxpy(2Fxy −ET
x E−1

z Ey −ET
y E−1

z Ex) − ρI]U

+ iω[(pxE
T
x + pyE

T
y )E−1

z ]T (4.30)

or, T,z =ω2QU + iωRT (4.31)
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where

Q = p2
xQ1 + p2

yQ2 + pxpyQ3 − ρI

Q1 = Fxx −ET
x E−1

z Ex

Q2 = Fyy −ET
y E−1

z Ey

Q3 = 2Fxy − ET
xE−1

z Ey − ET
y E−1

z Ex

and, R = (pxE
T
x + pyE

T
y )E−1

z (4.32)

Combining (4.19) and (4.31), one can write:

∂z






U

τ




 = iω






M N

−Q R











U

τ




 = iω






M N

−Q MT











U

τ




 (4.33)

where τ = T/iω and R = MT . Equation (4.33) is a set of linear differential

equations which has the form:

∂zb(z) = iωA(z)b(z) (4.34)

where b is a displacement-traction vector and A is called the system matrix of

sextic (6x6) form parameterized by elastic constants Cijkl, density and horizontal

slownesses.
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4.5 Computational Aspects of Layer Matrix

A combination of two approaches is proposed to give a more robust technique to

form a layer matrix and source excitation vector in the following steps:

1. For a given horizontal slowness, the eigenvalues of the sextic matrix A (see

equation 4.34) represent vertical phase slownesses.

2. Using these horizontal and vertical slownesses, Green-Christoffel matrix G is

computed. Each entry of this matrix is a polynomial of the second order in p3

and can be written as:

Gik = Cikp
2
3 + Dikp3 + Eik (4.35)

where

Cik = ai3k3

Dik = (ai1k3 + ai3k1)p1 + (ai2k3 + ai3k2)p2

Eik = (ai1k2 + ai2k1)p1p2 + ai1k1p
2
1 + ai2k2p

2
2 − δik (4.36)

Furthermore, a subroutine is implemented which outputs all the polynomial

coefficients of a 6th order polynomial in p3. This is to facilitate calculation of

partial derivatives of Gik with respect to p3. This is needed to compute the

excitation vector for a point force in an anisotropic layer.

3. The adjoint matrix of G is formed using the set of equation 4.8 and normalized

to give the polarization vectors.
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4. In order to distinguish between upgoing and downgoing waves, two criteria are

used depending on whether the phase slowness is real or complex.

• If the phase slowness is real then the vertical component of group velocity

is used: +ve for upgoing and -ve for downgoing waves.

• If the phase slowness is complex then the sign of the imaginary part of

phase slowness is used: -ve for upgoing and +ve for downgoing waves.

5. The traction vector is formed using equation 4.10.

The above criteria assume that the Z-axis is oriented upwards.

It is observed that the S1 and S2 waves change their polarization dramatically

when their phase slowness surfaces cross each other. Furthermore, P, S1, and S2 po-

larization vectors change considerably in the critical and supercritical zones. There-

fore, it is desirable to have a sign convention for P, S1, and S2 polarizations and a

method to trace the continuity of polarization vectors. This is important in order to

get a smooth behavior of the reflection coefficients and the associated phases (dis-

cussed in the next chapter). A novel method is devised to track the continuity and

put the polarization in a right hand co-ordinate system as follows:

• S1 and S2 waves are polarized perpendicular to each other. With adequate

sampling of horizontal slowness, one can safely assume that, if polarization

vector of S1 and S2 rotate from their previous orientation, they do so by a

small angle. Thus, the continuity of S1 and S2 can be tracked by computing

the rotation angle of S1 and S2 at the current point with respect to the previous

point.
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• The signs of polarization vectors are governed so as to have the P-wave polar-

ization make an acute angle with the P-wave propagation direction, with S1

and S2 polarization vectors and P-wave polarization vectors forming a right-

hand frame.

4.6 Summary

The Stroh formalism is preferred over the polynomial solution of the Green-Christoffel

equation to compute vertical slowness. However, in order to have better accuracy,

it is desired to compute the partial derivatives of Green’s tensor using polynomial

formation of the Green-Christoffel equation. Therefore, a combined method gives

a more numerically robust technique to form a layer matrix along with an excita-

tion vector. A new technique is developed to make polarization vectors continuous

and follow a sign convention in order to have consistent reflection coefficients. The

layer matrix formulated in this chapter will be used in the subsequent chapters to

compute reflection coefficients in a multilayered anisotropic media as well as the

synthetic seismograms.
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Chapter 5

Wavefield and Reflection Coefficients

5.1 Introduction

Here a modified reflectivity method is used to consider wave propagation in a multi-

layered anisotropic medium. The continuity principle requires that the displacement

and stress vectors be continuous throughout the medium, including the interfaces.

Thus, there are two aspects of wave propagation in a multilayered medium: First,

wave propagation in a homogeneous medium (i.e. within a layer) and second, wave

propagation across an interface which gives rise to the reflection coefficients. The re-

flection coefficients are often utilized to evaluate amplitude versus offset and azimuth

(AVOAz) effects.

Most published papers treat reflection-refraction coefficients as an intermediate

step in the course of computation of synthetic seismograms. A comprehensive review

of various methods of this intermediary step can be found in the papers by Lowe

(1995) and Rokhlin and Wang (2002). For wave propagation through a multilayered

medium, the transfer matrix method was developed by Thomson (1950) and Haskell

(1953). However, it was found to be computationally unstable for thick layers at high
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frequencies (Lowe, 1995). Though this method was developed for isotropic media, it

was extended for general anisotropic media by Nayfeh (1991). The computational

instability of the transfer matrix method for isotropic media was resolved by Dunkin

(1965) and was generalized for anisotropic media by Castaings and Hosten (1994).

Knopoff (1964) proposed a global matrix method. Kennett (1974) and Kennett and

Kerry (1979) developed a reflection matrix method using the wave reverberations in

isotropic layers. Booth and Crampin (1983) extended the reflection matrix method

to orthotropic symmetry, and Fryer and Frazer (1984) further extended it to include

generally anisotropic layers. Rokhlin and Wang (2002) developed a recursive stiffness

matrix method in a manner similar to the reflection matrix method.

This chapter is devoted to the implementation of the layer matrix formulation

in a multilayered general anisotropic medium. In the following section, a recur-

sive method is developed to obtain the wavefield at any point in the multilayered

medium. The wavefield due to a point force is considered in section 5.3. In section

5.4, a method is developed to eliminate repeat computation in the case of a multi-

channel receiver system. Apart from the wavefield determination, another outcome

of this implementation of the layer matrix is a special purpose matrix representation

of plane wave reflection and refraction coefficients associated with an interface. In

section 5.5, the effects of anisotropy on reflection coefficients are analyzed. Further-

more, reflection coefficients are computed at an interface of a multilayered medium

to study the effects of frequency content of propagating waves and the thickness of

a layer.
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Figure 5.1: A schematic of the wavefield in a multilayered media above the source
level Zs. Note that there is only upgoing wavefield in the upper half-space.

5.2 Formulation of Reflection Coefficients

Suppose that the layer matrices for the layer 1 and 2 (Figure 5.1) are Lm1 and Lm2,

respectively. Here, the layer 1 is a half-space and in the absence of any sources in

the half-space, one can safely assume that there are no downgoing waves in this

layer. Let us represent the vectors of reflection-transmission coefficients (here and

in the sequel to be referred as ”R-T coefficients”) in the upper-half space and the

layer below as (f⊕ | 0)T and (f ′⊕ | f ′⊖)T . The superscripts ⊕ and ⊖ are for

upgoing and downgoing waves, respectively. f is a vector of excitation coefficients.

f and f ′ are excitation vectors in the layer 1 and layer 2, respectively. Since there is
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no downgoing wave in the upper half space, f⊖ = 0. Application of the continuity

principle across the interface Z1 gives:

Lm1






f⊕

0




 = Lm2






f ′⊕

f ′⊖




 =⇒ Lm−1

2 Lm1






f⊕

0




 =






f ′⊕

f ′⊖




 (5.1)

By denoting K = Lm−1
2 Lm1 in a block form, the above equation can be repre-

sented as:






f ′⊕

f ′⊖




 =






K11 K12

K21 K22











f⊕

0




 or,






f ′⊕

f ′⊖




 =







K11f
⊕

︸ ︷︷ ︸

K21K
−1
11

︸ ︷︷ ︸
K11f

⊕

︸ ︷︷ ︸







(5.2)

Equation (5.2) has the form (F⊕ | KrF
⊕)T where Kr = K21K

−1
11 and F⊕ =

K11f
⊕. Equation (5.2) essentially translates the wavefield across an interface.

In the next step, let us consider the wavefield propagation in a homogeneous

anisotropic layer. In this case, block matrix K has the following form (see Appendix

B for details):






f ′⊕

f ′⊖




 =






(E⊕)−1 0

0 (E⊖)−1











F⊕

KrF
⊕






or,






f ′⊕

f ′⊖




 =







(E⊕)−1F⊕

︸ ︷︷ ︸

(E⊖)−1KrE
⊕

︸ ︷︷ ︸
(E⊕)−1F⊕

︸ ︷︷ ︸







(5.3)
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Once again, equation 5.3 has the form (F⊕ | KrF
⊕)T where Kr = (E⊖)−1KrE

⊕

and F⊕ = (E⊕)−1F⊕.

Now let us look at the form of the wavefield in terms of R-T coefficients when

it propagates through the next interface. In this case the downgoing wavefield is

non-zero. Therefore,






f ′⊕

f ′⊖




 =






K11 K12

K21 K22











F⊕

KrF
⊕






or,






f ′⊕

f ′⊖




 =







(K11 + K12Kr)F
⊕

︸ ︷︷ ︸

(K21 + K22Kr)(K11 + K12Kr)
−1

︸ ︷︷ ︸
(K11 + K12Kr)F

⊕

︸ ︷︷ ︸







(5.4)

This is a general form of R-T coefficients across an interface. Note that this

equation is equivalent to (5.2) with Kr = 0. By using this equation over a loop, the

wavefield across a stack of vertically inhomogeneous anisotropic layers is obtained.

The form of Kr is equivalent to the frequency dependent reflection coefficients de-

scribed by Kennett and Kerry (1979) and Fryer and Frazer (1984). Thus, a recursive

formulation can be written for the frequency dependent reflection coefficients as:

KNew
r = (E⊖)−1(K21 + K22K

old
r )(K11 + K12K

old
r )−1E⊕ (5.5)

and for the upgoing wavefield as:

f⊕
New = (E⊕)−1(K11 + K12Kr)f

⊕
old (5.6)
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Figure 5.2: A schematic of the wavefield in a multilayered media below the source
level Zs. Note that there is only a downgoing wavefield in the lower half-space.

So far, the formulation was obtained for wave propagation in a multilayered stack

above the source level. Now, let us look at the multilayered anisotropic media below

the source level as shown in Figure 5.2. An equation similar to 5.1 can be written

for the lower set of layers. The N th layer is a half-space and there is no upgoing

wavefield in this layer. Therefore,






f ′⊕

f ′⊖




 =






K11 K12

K21 K22











0

f⊖




 or,






f ′⊕

f ′⊖




 =







K12K
−1
22

︸ ︷︷ ︸
K22f

⊖

︸ ︷︷ ︸

K22f
⊖

︸ ︷︷ ︸







(5.7)

where the block matrix K = Lm−1
N−1LmN . Equation (5.7) has the form (Ktf

⊖ | f⊖)T

where Kt = K12K
−1
22 and f ′⊖ = K22f

⊖.
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For the wavefield propagation in a homogeneous anisotropic layer, the block

matrix K has the following form:






f ′⊕

f ′⊖




 =






(E⊕) 0

0 (E⊖)











KtF
⊖

F⊖






or,






f ′⊕

f ′⊖




 =







(E⊕)KtE
⊖)−1

︸ ︷︷ ︸
E⊖F⊖
︸ ︷︷ ︸

(E⊖)F⊖

︸ ︷︷ ︸







(5.8)

Once again, the above equation 5.8 has the form (Ktf
′⊖ | f ′⊖)T where Kt =

(E⊕)Kt(E
⊖)−1 and f ′⊖ = (E⊖)f⊕.






f ′⊕

f ′⊖




 =






K11 K12

K21 K22











KtF
⊖

F⊖






or,






f ′⊕

f ′⊖




 =







(K11Kt + K12)(K21Kt + K22)
−1

︸ ︷︷ ︸
(K21Kt + K22)F

⊖

︸ ︷︷ ︸

(K21Kt + K22)F
⊖

︸ ︷︷ ︸







(5.9)

Thus, a recursive formulation can be written for the transmission matrices Kt

as:

KNew
t = E⊕(K11K

old
t + K12)(K21K

old
t + K22)

−1(E⊖)−1 (5.10)

and for the downgoing wavefield as:

f⊖
New = E⊖(K21Kt + K22)f

⊖
old (5.11)
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Thus, in this section a method is developed to propagate the wavefields from one

layer to another recursively. This formulation also avoids any growing exponentials

due to the large thickness of a layer.

5.3 Introduction of Source Field

Let us assume that (g⊕ | 0)T and (0 | g⊖)T are the vectors of excitation coefficients

due to the source in a homogeneous layer, evaluated just above and just under the

source depth level, respectively. Furthermore, let us assume that the lower set and

upper set of layered media contribute to f⊕ and f⊖, respectively, in the upgoing and

downgoing fields at the source depth level. Thus,

f⊖ = Kr(g
⊕ + f⊕)

f⊕ = Kt(g
⊖ + f⊖) (5.12)

The above set of equations (5.12) can be solved to obtain the upgoing and down-

going wavefield in terms of the source excitation vector as follows:

f⊕ = Ktg
⊖ + Kt(Krg

⊕ + Krf
⊕)

or, (I − KtKr)f
⊕ = Ktg

⊖ + KtKrg
⊕

or, f⊕ = (I − KtKr)
−1(KtKrg

⊕ + Ktg
⊖)

or, f⊕ = A1g
⊕ + B1g

⊖ (5.13)

where

A1 = (I − KtKr)
−1KtKr and B1 = (I − KtKr)

−1Kt
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Similarly,

f⊖ = Krg
⊕ + Kr(Ktg

⊖ + Ktf
⊖)

or, (I − KrKt)f
⊖ = Krg

⊕ + KrKtg
⊖

or, f⊖ = (I − KrKt)
−1(Krg

⊕ + KrKtg
⊖)

or, f⊖ = A2g
⊕ + B2g

⊖ (5.14)

where

A2 = (I − KrKt)
−1Kr and B2 = (I − KtKr)

−1KrKt

Thus, the total wavefield R-T coefficients at the source level can be written as:






g⊕

0




 +






f⊕

f⊖




 =






(I + A1)g
⊕ + B1g

⊖

A2g
⊕ + B2g

⊖




 (5.15)

just above the source level, and,






0

g⊖




 +






f⊕

f⊖




 =






A1g
⊕ + B1g

⊖

A2g
⊕ + (I + B2)g

⊖




 (5.16)

just below the source level.
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5.4 Wavefield at Receivers

Equations (5.6) and (5.11) can be utilized to find the wavefields at the receivers.

The R-T coefficients just above the source level is related to the R-T coefficients

above the surface as:

g⊕ + f⊕ = G⊕ = PsPN−1 · · · · · ·P3P2PrP1f
⊕ (5.17)

where P = (E⊕)−1(K11 + K12Kr) and G⊕ = (I + A1)g
⊕ + B1g

⊖. The subscripts of

P denote interfaces (1,2,..), receiver(r) and source(s) levels. In equation (5.17) f⊕

is unknown. Therefore,

f⊕ = P−1
1 P−1

r P−1
2 P−1

3 · · · · · ·P−1
N−1P

−1
s G⊕ (5.18)

Using the above equation (5.18), the wavefields at the receivers above the source

level can be written in the following form:

f⊕
r = P−1

r · · · · · ·P−1
N−1P

−1
s G⊕ (5.19)

Similarly, for the receivers below the source, one can rewrite equation (5.19) as:

f⊖
r = Q−1

r · · · · · ·Q−1
N−1Q

−1
s G⊖ (5.20)

where Q = (E⊖)(K21Kt + K22) and G⊖ = (I + A2)g
⊕ + B2g

⊖.
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5.5 Examples: Reflection Coefficient and Phase

In this dissertation, the reflection coefficient is considered as the amplitude of a

reflected wave relative to an incident wave. The variation of the reflection coefficient

with angle (or offset) and azimuth is the basis of the AVOAz analysis. In this section,

the reflection coefficients for various models are examined to show the effects of:

1. type of anisotropy – The reflection coefficients are computed at the interface

of two half-spaces - both of them are either isotropic or vertical transversely

isotropic (VTI) or orthorhombic.

2. rotation of symmetry axis in a transversely isotropic (TI) medium – In this

case, the reflection coefficients are computed at the interface of two TI half-

spaces. In the upper half-space, the symmetry is kept vertical while the sym-

metry axis in the lower half-space is gradually rotated from 0 to 90 degrees

(i.e. from vertical to horizontal).

3. frequency of the incident wave and thickness of the layers– A model consist-

ing of a VTI layer sandwiched between two VTI half-spaces is considered.

Frequency and thickness dependent reflection coefficients are examined.

5.5.1 Isotropic, VTI and Orthorhombic half spaces

An isotropic medium is characterized by two independent elastic constants and has

constant P and S wave velocities throughout the medium. In isotropic media, both

vertically and horizontally polarized shear waves (SV and SH, respectively) have the

same velocities. In the case of a horizontal interface between two isotropic media, the
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SV-wave is polarized in the plane perpendicular to the interface and the SH-wave is

polarized parallel to the interface. Figure 5.3a shows the reflection coefficients (solid

line) and phase change (dashed line) for the reflected P- (blue color) and SV- (black

color) waves for an incident P-wave. Incident waves are represented by a down-arrow

(e.g P↓) and reflected waves are represented by an up-arrow (e.g P↑). The elastic

constants for the upper and the lower isotropic half-spaces are given in Table 5.1.

Since the P- and SV-waves are decoupled from the SH wave in an isotropic medium,

there are only P- and SV-waves reflected from the incident P-wave. Similarly, for

an incident SV-wave, there are only P- and SV-waves reflected. However, for an

incident SH-wave, only the SH-wave will be reflected (see Figure C.1 in Appendix

C). The point of discontinuities on the curves of reflection coefficient versus angle of

incidence can be due to two reasons: (1) Critical angle of incidence for the incident

and reflected wave type; and, (2) change of phase of the reflected wave. The angle

of incidence is measured from the normal to the interface.

A transversely isotropic (TI) medium has five independent elastic constants.

When the axis of symmetry is vertical, the transversely isotropic medium is called

a vertically transverse isotropic (VTI) medium. For a horizontal interface between

two VTI media, the reflection coefficient for a given angle of incidence does not vary

with azimuth. The angular dependence of reflection coefficients for the incident

P-wave at a horizontal interface between two VTI half-spaces are shown in Figure

5.3b. The elastic coefficients for the two VTI half-spaces are given in Table 5.1. Note

that because of the symmetry, the SH-wave is decoupled from the P-SV waves and

therefore, there are only P- and SV-waves reflected from an incident P-wave. The

51



reflection coefficients for incident shear waves and reflected longitudinal and shear

waves are given in Appendix C (see Figure C.2).

Upper Half-space Lower Half-space
Cs Orthorhombic VTI Isotropic Orthorhombic VTI Isotropic
C11 19.49 20.35 19.38 47.49 52.77 49.04
C22 21.22 20.35 19.38 58.05 52.77 49.04
C33 17.44 17.44 19.38 41.57 41.57 49.04
C44 5.32 4.73 5.18 15.27 11.86 11.13
C55 4.14 4.73 5.18 8.46 11.86 11.13
C66 6.07 6.07 5.18 9.66 9.66 11.13
C12 3.01 8.21 9.02 16.0 33.45 26.78
C13 6.39 6.63 9.02 12.65 13.7 26.78
C23 6.88 6.63 9.02 14.75 13.7 26.78
ρ 2.34 2.34 2.34 2.37 2.37 2.37

Table 5.1: Elastic coefficients and densities for the upper and lower half-spaces in
isotropic, VTI and orthorhombic media. There are nine independent elastic con-
stants in the orthorhombic media, five in VTI and two in the isotropic media. The
elastic constants for the VTI and isotropic media are calculated by averaging the
elastic constants of the orthorhombic media. All the elastic coefficients are in GPa
unit and the densities are in gm/cc.

There are nine independent elastic constants for an orthorhombic medium. In

this case, the three wave types are coupled and there are no pure vertically or

horizontally polarized shear waves. Therefore, the two shear waves are denoted as S1

and S2. Unlike the reflection coefficients as discussed above for the isotropic and VTI

media, the reflection coefficients at the interface between two orthorhombic media

vary azimuthally. Figures 5.4a, b and c show azimuthal variation of the reflection

coefficients of the reflected P, S1 and S2 waves, respectively, from an incident P-

wave. The solid and dashed curves are colored according to their azimuths shown at

the top of each graph in Figure 5.4. Note that for an incident P wave, all three wave

types are reflected. Similarly, for incident S1 and S2 waves, all three wave types are
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reflected (see Figures C.3 and C.4 in Appendix C). The elastic constants for the

orthorhombic upper and lower half-spaces are given in Table 5.1.
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Figure 5.3: Reflection coefficients (solid line) and phase change (dashed line) for
the reflected P- and S-waves from an incident P-wave at the boundary between two
half spaces: (a) isotropic media (b) VTI media. The elastic coefficients used for the
computation are given in Table 5.1.
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Figure 5.4: Reflection coefficients and phase change at the boundary between two
orthorhombic half-spaces. The elastic constants for the two half-spaces are given in
Table 5.1. The reflection coefficients are computed for an incident P-wave and the
reflected (a) P (b) S1 and (c) S2 wave types. The curves are colored according to
the azimuthal variation of the reflection coefficients.
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5.5.2 Rotation of Symmetry axis in a TI medium

In the previous section, a model with two VTI half-spaces was considered. In other

words, both half-spaces had a vertical axis of symmetry. However, in a geologically

realistic situation two transversely isotropic media (e.g. shales) across an interface

may not have a vertical axis of symmetry, for example, across an unconformity

plane. Modeling in this section, therefore, is carried out to study the effects of tilt

in the symmetry axis on the reflection coefficients. As shown in Figure 5.5 the two

half-spaces are transversely isotropic. The upper half-space has a vertical axis of

symmetry while the symmetry axis in the lower half-space is gradually rotated from

the vertical to the horizontal (i.e. from VTI to HTI). The set of five independent

elastic constants and density for each half-space are given in Table 5.2.

Figure 5.5: A schematic diagram showing two VTI half-spaces. In the lower half-
space, the vertical axis of symmetry is rotated from 0 to 90 degrees.

The reflection coefficients are computed in the vertical plane containing the sym-

metry axes of both half-spaces. Figure 5.6 shows the reflection coefficients of the

reflected P and S2 wave types from an incident P-wave. The reflection coefficients
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and phase change are colored according to the rotation (or tilt) angle of the sym-

metry axis from the vertical. The PP reflection coefficients for normal incidence

vary considerably due to tilt and also AVO behavior for PP reflection changes at the

interface. The reflection coefficients of P, S1 and S2 wave types from the incident

S1 and S2 waves are included in Appendix C(Figure C.5). Here S1 and S2 are shear

waves polarized in the horizontal and the vertical plane, respectively (or, SH and

SV waves, respectively) at least in the vertical plane containing the symmetry axes

of both half-spaces. Note that in this vertical plane, S1 and S2 waves are decoupled

and therefore, there is no S1-wave reflected from the incident P-wave in this plane.

Cs Up. Half Space Lr. Half Space
C11 21.26 59.4
C33 17.63 42.42
C44 5.32 15.27
C66 8.99 19.7
C13 6.97 15.82
ρ 2.34 2.37

Table 5.2: VTI elastic coefficients (in GPa) and density (gm/cc) used in the model
Figure 5.5
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Figure 5.6: Reflection coefficients and phase change for the reflected (a)P-wave (b)
S2 (SV)-wave from an incident P-wave in the plane containing the symmetry axes
of both half-spaces. The color index for each graph is shown at the top.
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5.5.3 Frequency dependent reflection coefficients: A VTI

layer between two VTI half spaces

Figure 5.7: A schematic diagram showing a VTI layer sandwiched between two VTI
half-spaces. The reflection coefficients are computed at the upper interface.

Cs Up. Half Space Middle Layer Lr. Half Space
C11 59.4 21.26 59.4
C33 42.42 17.63 42.42
C44 15.27 15.32 15.27
C66 19.7 8.99 19.7
C13 15.82 6.97 15.82
ρ 2.37 2.34 2.37

Table 5.3: VTI elastic coefficients (in GPa) and density (in gm/cc) used to compute
the reflection coefficients in the model Figure 5.7.

A layer of finite thickness in a multilayer medium acts as a scatterer, thus, making

the reflection coefficients frequency dependent. The frequencies ω which parameter-

ize the reflection coefficients from a multilayered stack as the whole, are from the

formula of monochromatic plane wave. The model shown in Figure 5.7 has a VTI

layer sandwiched between two VTI half-spaces of same elastic constants. The elastic
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constants and densities of the layers are given in Table 5.3. This model is investi-

gated with the frequency ranging from 10 to 50 Hz and the reflection coefficients

for the reflected P and S2 (SV) waves an incident P wave are plotted in Figure 5.8.

Since both the half-spaces are VTI with their symmetry axes perpendicular to the

interface, there is no reflected S1 (SH) wave from the incident P-wave. The reflection

coefficients and phase are colored by frequencies. Notice the change in PP reflection

coefficients with the change in frequency. If the dominant frequency of investigation

changes, the behavior of reflection coefficients with angle will change. Thus, it is

important to include frequency effect in AVO interpretations. The reflection coeffi-

cients for incident shear waves and the reflected P, S1 and S2 waves for this model

are included in Appendix C (Figure C.6).

59



0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle(deg)

R
C

 (
S

ol
id

 L
in

e)

P↓P↑

Freq.(Hz)→ 10 20 30 40 50

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

P
ha

se
 (

D
as

he
d 

Li
ne

)

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

(a)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle(deg)

R
C

 (
S

ol
id

 L
in

e)

P↓S2↑

Freq.(Hz)→ 10 20 30 40 50

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

P
ha

se
 (

D
as

he
d 

Li
ne

)

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

0 10 20 30 40 50 60 70 80 90
−pi

−3pi/4

−pi/2

−pi/4

0

pi/4

pi/2

3pi/4

pi

(b)

Figure 5.8: Reflection coefficient and phase for the reflected (a)P-wave and (b) S2-
wave from an incident P-wave in the frequency range of 10 to 50Hz. The elastic
coefficients for this calculation is given in Table 5.3.
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5.5.4 Effect of thickness on reflection coefficients

In this section, effects of the thickness variation on the reflection coefficients are

analyzed. The model used for computation is similar to the model (Figure 5.7)

used in the previous section, i.e. a VTI layer sandwiched between two VTI half

spaces. The thickness of the sandwiched layer is varied from 210 to 300 m. The

elastic coefficients and densities for the model are given in Table 5.3. The reflection

coefficients are computed at 10Hz frequency for the reflected P and S2 (SV) waves

from an incident P-wave as shown in Figure 5.9. Note that there is no S1 (SH) wave

reflected for the incident P-wave in this model. It is evident from the plots that

the thickness of a layer affects the reflection coefficients. Thus, AVO interpretation

can be affected. Therefore, it is important to consider thickness variation in our

models and compute reflection coefficients using exact formulations. In the case of

incident shear waves, the reflection coefficients for P, S1 and S2 waves are included

in Appendix C (Figure C.7).

5.6 Summary

The seismic wave propagation in a multilayered medium is explained in a simplistic

manner, thus avoiding too involved analytical derivations. The reflection coefficients

and associated phase are readily computed at an interface in a multilayered medium.

Various models are investigated for reflection coefficient variation with incidence

angle. It is evident from these models that AVO interpretation may not yield desired

results without due regard for the anisotropy of the study medium and frequency

characteristics of the incident wavefield.
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Figure 5.9: Reflection coefficient and phase for an incident P-wave and the reflected
(a) P-wave (b) S2-wave. Thickness of the sandwiched layer varies from 210 to 300 m.
The reflection coefficient and phase curves are colored according to the thickness of
the sandwiched layer. The elastic coefficients and densities for this model are given
in Table 5.3.
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Chapter 6

Fractured Media

6.1 Introduction

This chapter investigates the effects of multiple sets of fractures on reflection coef-

ficients and velocity anisotropy. Natural fractures or hydraulic fracturing of shales

changes the anisotropy pattern in shales. Whether there is a single set or multiple

sets of preferentially oriented fractures, the fracturing of shales changes its initial

anisotropy behavior. In the simplest case, a single set of vertical fractures in a

VTI shale turns the medium into an orthorhombic medium where azimuthal veloc-

ity anisotropy is also observed. Therefore, in order to understand the response of

multiple stages of fracturing in shales, it is important to model velocity anisotropy

and reflection coefficients for various wave types, especially when multi-component

surface seismic data is becoming available.

Hydraulically induced fractures in shales from micro-seismic and surface seismic

point of views are now extensively being investigated (Lynn, 2004; Searcy et al., 2005;

Browning, 2006). Chen (2000) looked at amplitude versus offset (AVO) aspects of

fractured models (2 sets of vertical fractures) and limits his analysis in terms of angles
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up to 45 degrees. Being simple in its essence, Schoenberg and Sayers’ (1995) method

is often used within the framework of its limitations to model multiple fractures in

exploration seismic.

In the first section of this chapter, a detailed mathematical formulation is shown

in order to compute effective elastic constants in a medium with multiple sets of

fractures. Then, in the next section, a few models are considered to show veloc-

ity variation of each type in the fractured media. These models are generated by

adding identical vertical fracture sets at various angles assuming that these frac-

tures are non-interacting. Furthermore, effects of fractures on reflection coefficient

variations with angles and azimuth (and hence AVOAz) are investigated at the inter-

face between two anisotropic half-spaces. In the models, it is assumed that induced

fractures in a VTI medium are contained within the lower half-space and are not

propagating in the VTI layer above the interface.

6.2 Effective Elastic Constants in Fractured

Media

The assumptions in the formulation of effective elastic constants for fractured media

are as follows:

• Interaction between fractures is negligible and therefore, excess compliance due

to fractures is additive.

• Density of the resultant medium does not change due to fractures.

• Fractures are parallel to each other in a fracture set.
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• Fractures are in the long wavelength limit, i.e. fracture spacing is much smaller

compared to the wavelength of investigation.

The resultant strain ǫij due to applied stress σij over a representative volume V

containing fractures can be written as:

ǫij = ǫM
ij + ǫC

ij

= SM
ijklσkl +

1

V

∫
1

2

(
δi

xj
+

δj

xi

)

dV

= SM
ijklσkl +

1

2V

∫

(δinj + δjni)
dV

A
(6.1)

where superscripts M and C denote background media and cracks, respectively. The

compliance tensor is denoted by Sijkl, and A = xi · ni represents the aperture of the

fractures.

Excess strain due to N penny shaped cracks with diameter Dk and aperture Ak

can be expressed as:

ǫC
ij =

1

2V

N∑

m=1

(
δin

m
j + δjn

m
i

)
(

πD2
m

4

)

(6.2)

Oda et al. (1984) assumed that the displacement discontinuity is proportional to the

traction applied. i.e.

δi = K0Dσijnj (6.3)

where the constant of proportionality is assumed to be proportional to the diameter

D of the cracks, and the proportionality constant K0 can be dependent on pressure

(stress).
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By substituting 6.3 into 6.2, one obtains:

ǫC
ij =

1

2V

N∑

m=1

(
Km

0 Dmσiln
m
l nm

j + Km
0 Dmσjln

m
l nm

i

)
(

πD2
m

4

)

=
1

2

N∑

m=1

Km
0 πD3

m

4V

(
nm

l nm
j σil + nm

l nm
i σjl

)

=
1

4

N∑

m=1

Km
0 πD3

m

4V

(
δikn

m
l nm

j + δjkn
m
l nm

i + δiln
m
k nm

j + δjln
m
k nm

i

)
σkl

=
1

4

N∑

m=1

Km
0 ξm

(
δikn

m
l nm

j + δjkn
m
l nm

i + δiln
m
k nm

j + δjln
m
k nm

i

)
σkl (6.4)

where ξm = πD3
m/4V is called fracture density. Equation 6.4 describes scalar cracks

as K0 is the same in all directions.

By introducing a stress-dependent proportionality tensor Kij instead of constant

K0, one can rewrite equation 6.3 as:

δi = KijDσjknk (6.5)

Thus, equation 6.2 can be expanded as:

ǫC
ij =

1

4

N∑

m=1

ξm

(
Km

iknm
l nm

j + Km
jkn

m
l nm

i + Km
il nm

k nm
j + Km

jl n
m
k nm

i

)
σkl (6.6)

Schoenberg and Sayers (1995) used the product Zij = Kijξ as a fracture system

compliance tensor, which is similar to the crack compliance tensor used by Kachanov

(1992). If the crack compliance is denoted by SC
ijkl, the extra strain as a result of a

fracture can be written as:

ǫC
ij = SC

ijklσkl (6.7)
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Comparing equations 6.7 and 6.6, one can write the crack compliance tensor in the

following form:

SC
ijkl =

1

4
ξ (Kiknlnj + Kjknlni + Kilnknj + Kjlnkni) (6.8)

6.3 Models: Multiple sets of vertical fractures

Figure 6.1: (a) A schematic diagram showing two VTI half spaces. Vertical frac-
tures are introduced in the lower half space at 0, 30, 60 and 90 degrees as shown
schematically in (b).

Elastic coefficients for the VTI half spaces used in the model Figure 6.1 are given

in Table 5.1. Initially VTI medium in the lower half space is fractured vertically by

gradually increasing the fracture sets at angles of 0, 30, 60 and 90 degrees with the
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X-axis direction. The modeling here does not mean that a rock fractures at these

angles in succession. These fracture sets are considered entirely from a numerical

point of view to understand the anisotropic effects of multiple fracture sets. In

another model only two fracture sets are considered: one at a 0 degree angle and

another at a 90 degree angle. All fractures have an identical compliance tensor Zij,

and its diagonal elements are [0.01, 0.125, 0.125] and non-diagonal elements are zero.

Five fracture models are generated for anisotropy analysis and are tabulated

below.

Model
No. of

fracture sets
Orientations Associated figures

1 1 00 (a) in 6.2 - 6.6 and D.1 - D.6
2 2 00 and 300 (b) in 6.2 - 6.6 and D.1 - D.6
3 3 00, 300 and 600 (c) in 6.2 - 6.6 and D.1 - D.6
4 4 00, 300, 600 and 900 (d) in 6.2 - 6.6 and D.1 - D.6
5 2 00 and 900 (e) in 6.2 - 6.6 and D.1 - D.6

Table 6.1: Table of fracture models and associated figures

When there is azimuthal variation in velocity behavior, it is difficult to quantify

the amount of anisotropy and compare various models. However, one can visually

compare the range of velocity variation and pattern of azimuthal variation. Although

there is not much change in the range of velocity variation, there is noticeable differ-

ence in the azimuthal pattern of P and S velocity curves (Figures 6.2 and 6.3). The

curves are colored according to the azimuths, and the color index is given at the top

of each figure. Maximum azimuthal anisotropy is observed in the horizontal plane

(i.e. along 90 degree angle in the plots). Azimuthal velocity behavior becomes more

symmetrical as the number of fracture sets increases. Note that some azimuthal
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velocity curves overlap each other. When two curves overlap each other, the over-

lapping curve is plotted by a dotted dash line so that one can see the underlying

curve as well. Thus, by comparing P and S waves velocity behavior, it is clear that

anisotropy decreases as the number of fracture sets increases.

Change in reflection coefficients with angle and azimuth is often referred to as

AVOAz (Amplitude Variation with Offset and Azimuth). The reflection coefficients

for an incident P-wave and the reflected P, S1 and S2 are shown in Figures 6.4,

6.5, and 6.6, respectively. Comparison of the reflection coefficients and phase from

all models shows that the critical angle for PP reflection increases as the reservoir

becomes increasingly fractured (Figure 6.4). This suggests that the AVOAz study

has the potential to discriminate between highly fractured reservoir and less frac-

tured reservoir. It is cautioned here that this result may not be true for all models.

Furthermore, reflection coefficients are frequency and thickness dependent, as dis-

cussed in the previous chapter. Therefore, detailed modeling should be performed

for the case at hand. Also note that the converted S-waves change more rapidly

with offset (i.e. angle) and azimuth (Figures 6.5 and 6.6). For incident shear waves,

the reflection coefficients for P, S1 and S2 waves are included in Appendix D. Thus,

use of shear waves and converted waves also has potential in fracture detection.
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Figure 6.2: P-wave velocity anisotropy for the five fracture models. The curves are
colored according to the azimuths from 0 to 90 degrees. Only overlapping curves are
plotted by dotted dash lines to show the underlying curves.
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Figure 6.3: Shear wave velocity anisotropy for the five fracture models. S1 is plotted
by solid line and S2 is plotted by a dashed line. Only overlapping curves are plotted
by dotted dash lines to show the underlying curves.
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Figure 6.4: PP reflection coefficient and phase variation with angle and azimuth.
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Figure 6.5: PS1 reflection coefficient and phase variation with angle and azimuth.
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Figure 6.6: PS2 reflection coefficient and phase variation with angle and azimuth.
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6.4 Summary

Schoenberg and Sayers’ (1995) method was used to include multiple sets of vertical

fractures in an initially VTI shale. Modeling of reflection coefficients in a fractured

reservoir suggests the following:

1. The anisotropy in the medium decreases as the number of fracture sets in-

creases.

2. PP reflections show the change of the critical angle due to the presence of

fracture sets in the reflecting medium.

3. Shear waves are more sensitive to fractures, as compared to the P-waves.

Thus, the reflectivity modeling of a fractured reservoir coupled with AVOAz analysis

from surface seismic data can potentially be applied in the fracture characterization.
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Chapter 7

Synthetic Seismogram: Mathematical Details for

Computation Purposes

7.1 Introduction

In the previous chapters, theoretical and computational aspects of Green-Christoffel’s

equation and formulation for layer matrices and associated wavefields were discussed.

So far, all the mathematical treatments were in the frequency and slowness domains.

However, the seismograms are recorded in the time domain and therefore, change

from the frequency-slowness domain to the time-space domain is essential. It in-

volves integration over frequency and slowness. This chapter gives mathematical

details of the numerical techniques to implement the integration scheme.

Early development of body wave synthetic seismograms in anisotropic media

was restricted by the computational power. Less computational intensive meth-

ods were developed based on ray theory to compute body waves synthetic seismo-

grams in anisotropic media (Cerveny, 1972; Petrashen and Kashtan, 1984; Gajewski

and Psencik, 1987). However, the ray method has a reduced accuracy (Martynov
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and Mikhailenko, 1984). Though the full waveform method is computationally

intensive, it allows accurate computation of synthetic seismograms (Cormier and

Richards, 1977; Booth and Crampin, 1983; Gajewski and Psencik, 1987). For lay-

ered anisotropy computational procedure are simplified (Taylor, 1987; Fryer and

Frazer, 1987). Chesnokov and Abaseev (1986) performed integration over vertical

slowness to get the solution of the stationary problem. Tsvankin and Chesnokov

(1990) proposed an approach based on an analytical approximation of amplitude

and phase terms of the integral kernel.

Here, the spectral approach of computing synthetic seismograms is followed (i.e.

slowness integration is performed first and then the inverse Fourier transform is

performed). The Bessel function is used to economize computational time.

7.2 Polarization in (ω - p) domain

Having calculated the wavefield at the receivers (section 5.4) and layer matrices

(chapter 4), one can obtain polarization in the frequency-slowness (i.e. ω − p)

domain from the matrix-vector product:

U = Lm · f, (7.1)

where Lm and f are a layer matrix and a vector of excitation coefficients, respec-

tively, at a receiver location. However, seismic records are in the time-space domain.

Therefore, it is required to transform the above equation 7.1 into the (t−x) domain,

and this is described in the next section.
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7.3 Polarization in the (t− x) domain - Synthetic

Seismogram

Using the Fourier transformation, one can write,

u(x, y, zr, t) =
1

8π3

∫ ∫ ∫

u(kx, ky, zr, ω)exp[i(ωt− kxx − kyy)]dkxdkydω (7.2)

where kx and ky are wavenumbers in x- and y- directions, respectively. By a

change of variable k = pω, equation (7.1) can be written as:

u(x, y, zr, t) =
1

8π3

∫ ∫ ∫

ω2u(px, py, zr, ω)exp[i(ωt − pxx − pyy)]dpxdpydω (7.3)

Furthermore, one can rotate the medium azimuthally (about the z-axis) such

that the x-axis in the current orientation coincides with the radial direction of the

receiver from the source. In this case, the Bessel function approach can be utilized

to reduce the overall CPU time of the integration procedure.

Let us use the following change of variable:

px = p cosφ, py = p sin φ

where φ is the angle of rotation in the x-y plane. Therefore,
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dpx = −p sin φ dφ + cos φ dp

dpy = p cos φ dφ + sin φ dp

dpxdpy = −p sin2 φ dφ dp − p cos2 φ dφ dp

+ p2 sin φ cos φ (dφ)2 + sin φ cos φ (dp)2

= −p sin2 φ dφ dp − p cos2 φ dφ dp

= −p dφ dp = p dp dφ (7.4)

Thus, equation (7.2) can be written as:

u(x, y, zr, t) =
1

2π

∫

dω ω2eiωt

∫ ∫

u(p, φ, zr, ω)e−iωpr cos φp dpdφ (7.5)

Using Bessel’s function series expansion, one can write the above equation as:

u(x, y, zr, t) =
1

2π

∫

dω ω2eiωt

∫

dp p

∫
∑

m

u(p, φ, zr, ω)Jm(ωpr)e−imφdφ (7.6)

where m is the angular order. In the case of a point force in a VTI medium, the

summation over angular order m is in fact performed over the range −2 ≤ m ≤ 2

(Fryer and Frazer, 1984). However, if the medium is azimuthally anisotropic, the

angular order m retained should be fairly large in order to gain reasonable accuracy.

The following form of the Bessel function is utilized in the VTI subroutine.

e−ixcosφ = J0(x) + 2

∞∑

m=1

(−i)mJm(x) cos(mφ) (7.7)
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The Bessel series expansion in the form 7.7 is derived in Appendix E. For a VTI

medium, u is independent of φ and m varies up to 2. Therefore, equation 7.6 can

be simplified for a VTI medium as:

u(x, y, zr, t) =
1

2π

∫

dω ω2eiωt

∫

dp p u(p, zr, ω)

∫

J0(x) + 2

2∑

m=1

(−i)mJm(x) cos(mφ)dφ

=
1

2π

∫

dω ω2eiωt

∫

dp p u(p, zr, ω)

[

J0(x)2π + 2
2∑

m=1

(−i)mJm(x)

∫

cos(mφ)dφ

]

(7.8)

7.4 Frequency Filtering

The frequency filtering is introduced here to allow for the amplitude-frequency re-

sponse of the geophones. In equation (7.6) the innermost integral is over slowness

and is computed as discussed in the previous section. The outer integral is over fre-

quency and requires a damping factor to remove the ringing effect in the signal. Let

us denote the inner integral by S(ω) and damping factor by ϕ(f). Thus, equation

(7.6) can be expressed as:

u(r, t) =

∫

ω2ϕ(f)S(ω)eiωtdt (7.9)

A Gaussian filter ϕ(f) is used, and it has the form:

ϕ(f) = e−α(f/fc)2 (7.10)
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where fc is a cut-off frequency and is chosen from the frequency response of receivers.

α is a filter parameter to remove ringing.

7.5 Sampling Frequency

In order to avoid aliasing in the signal, sampling frequency up to the Nyquist fre-

quency (Yilmaz, 2000) is used and defined as:

fNyquist =
1

2∆t
(7.11)

where ∆t is the time sampling interval. Thus, with a view to use the Fast Fourier

Transform, the sampling frequency interval is determined by the following formula:

∆f =
1

∆t · Nt

(7.12)

where Nt is the total number of time samples.

7.6 Constrained Cubic Interpolation

The interpolation just mentioned allows us to gain a higher order of accuracy of

the integration procedure. In this section, a method is discussed to find a cubic

polynomial passing through two points at x0 and x1, where the function values
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and their first derivatives are known. Let the function be F (x) with coefficients

C0, C1, C2, and C3 such that

F (x) = C0 + C1(x − x0) + C2(x − x0)
2 + C3(x − x0)

3

= C0 + C1(x1 − x0)

(
x − x0

x1 − x0

)

+ C2(x1 − x0)
2

(
x − x0

x1 − x0

)2

+ C3(x1 − x0)
3

(
x − x0

x1 − x0

)3

= Cn0 + Cn1

(
x − x0

x1 − x0

)

+ Cn2

(
x − x0

x1 − x0

)2

+ Cn3

(
x − x0

x1 − x0

)3

(7.13)

where Cn0 = C0, Cn1 = C1(x1 − x0), Cn2 = C2(x1 − x0)
2 and Cn3 = C3(x1 − x0)

3.

Differentiating F (x) with respect to x, one obtains:

(x1 − x0)F
′(x) = Cn1 + 2Cn2

(
x − x0

x1 − x0

)

+ 3Cn3

(
x − x0

x1 − x0

)2

or, Fn′(x) = Cn1 + 2Cn2

(
x − x0

x1 − x0

)

+ 3Cn3

(
x − x0

x1 − x0

)2

(7.14)

where Fn′(x) = (x1 − x0)F
′(x).
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The boundary conditions reduce equations 7.13 and 7.14 to:

F0 = Cn0

F1 = Cn0 + Cn1 + Cn2 + Cn3

Fn′
0 = Cn1

Fn′
1 = Cn1 + 2Cn2 + 3Cn3

(7.15)

Solving the set of equations in 7.15 for the coefficients Cn, one obtains:

Cn0 = F0

Cn1 = Fn′
0

Cn2 = 3F1 − Fn′
1 − 3F0 − 2Fn′

0

Cn3 = 2F0 − 2F1 + Fn′
0 + Fn′

1

(7.16)

Finally,

C0 = Cn0

C1 =
Cn1

x1 − x0

C2 =
Cn2

(x1 − x0)2

C3 =
Cn3

(x1 − x0)3

(7.17)
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7.7 Summary

This chapter is summarized as follows:

1. Integration over azimuthal angle is optimized by the use of the Bessel function

series expansion.

2. In the framework of VTI media the Bessel function series reduces down to the

second angular order.

3. The frequency filter is introduced to allow for the amplitude-frequency response

of the geophones.

4. Constrained cubic interpolation allows us to gain a higher order of accuracy

of the integration scheme.
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Chapter 8

Synthetic Seismograms in Homogeneous and

Multilayered VTI media

8.1 Introduction

In this chapter, full waveform synthetic seismograms in attenuating homogeneous

and multilayered VTI media, their radiation patterns and spectral characteristics

are investigated. This approach allows us to study seismic wave characteristics in

anisotropic attenuating media. This frontier area of research in seismic methods

has a potential application in hydraulic fracturing of shaly reservoirs. Shales are

commonly VTI and hydraulic fracturing can potentially alter the velocity and at-

tenuation properties.

There are various causes of attenuation; however, they are characterized into two

types: scattering and intrinsic attenuation. Irrespective of its mechanism, attenua-

tion is specified by 1/Q where Q is the quality factor(Johnston and Toksoz, 1981). A

viscoelastic or attenuating medium can be treated numerically by allowing the elas-

tic coefficients to be complex (White, 1965). The full waveform synthetic program

85



developed as part of this dissertation allows us to compute synthetic seismograms

in viscoelastic media by giving separate values of Q for each layer in a multilayered

anisotropic media.

Radiation patterns in elastic anisotropic media have been investigated by Gajew-

ski (1993) using the ray theory approach and by Tsvankin and Chesnokov (1990)

using the full waveform theory. Zhu and Tsvankin (2006) studied plane wave prop-

agation in attenuating VTI media. However, they have not shown the effect of

attenuation on the classical ”butterfly” radiation pattern of dislocation source mod-

els used for earthquakes.

In the first section, the effects of a point force on synthetic seismograms are

explained. In the next section, it is shown that the attenuation can modify the radi-

ation patterns of P- and S-waves for the basic point force solutions. This helps in our

understanding of spectral decomposition of a full waveform synthetic in an attenu-

ating multilayered anisotropic medium. The basic idea is to attempt to identify the

propagation and source effects of attenuation. Simple modeling in this study sug-

gests that the spectral decomposition has much potential for identifying attenuating

media (e.g. hydrocarbon reservoir).

8.2 Point force orientation and synthetic

seismograms

Seismograms have signatures of both the source and the media. They are combined

results of source radiation and propagation effects through the media. Therefore, it

is important to understand the radiation patterns of various wave types. Figure 8.1
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shows P- and S-wave radiation patterns in a plane containing the vertical force in

an unbounded homogeneous isotropic medium (Aki and Richards, 2002).

(a) (b)

~
w
w

~
w
w

Figure 8.1: (a) P-wave radiation pattern (b) S-wave radiation pattern in isotropic
media. Arrows at the centers indicate the direction of force.

Important points to note here are:

• Polarization directions are shown by the arrows. P-waves are polarized in the

direction of wave propagation, and S-waves are polarized transversely to it.

• P-wave has zero amplitude in the horizontal plane and maximum in the vertical

direction.

• S-wave has zero amplitude in the vertical direction and maximum in the X-

direction.

• Vertical components of P-wave polarizations in the upper half space are out-

ward, whereas they are inward in the lower half space. Horizontal components

are always away from the source.
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• Vertical components of S-wave polarizations are in the direction of the ap-

plied force and horizontal components are inward in the upper half-space and

outward in the lower half-space.

• Horizontal components of P- and S-waves are polarized in opposite directions,

whereas their vertical components are polarized in the same direction.

Now let us investigate the radiation patterns in an unbounded homogeneous VTI

medium. The five independent elastic coefficients and density of this medium are:

C11 = 21.26, C33 = 17.63, C44 = 5.32, C66 = 8.99, C13 = 6.97 GPa and ρ = 2.34

g/cc. The phase velocity characteristics of P-, SH- and SV-waves in the medium are

shown in Figure 8.2.

(a) (b)

Figure 8.2: Phase velocity variation with angle for P-wave is shown in (a), and
SV(Green) and SH(Blue) waves are shown in (b).
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Four different orientations of a force vector are considered to show their effects

on the radiation pattern. Receivers are placed at 1 km radius from the source in a

vertical plane. The frames of 3-component receivers are oriented just as the standard

cartesian system is, with radial, transverse and vertical components being along the

X-, Y-, and Z-axis, respectively. Arrival times of P- and S-waves are recorded and

plotted radially such as Figure 8.3a. Such plots have radii in temporal units and

are in the vertical plane (X-Z plane) containing all the receivers. If such a plot were

to be made for an isotropic medium, it would have a constant arrival time forming

a quarter circle. In anisotropic medium the arrival times of P- and S-waves do not

conform to circles. P-wave arrives before S-waves. Deviation of the color from the

background indicates polarity of the waves and intensity of the color is indicative of

wave amplitude.

1. Vertical force: Here, the force vector is along the Z-direction. It produces

displacement in vertical and radial directions only, and there is no transverse

component of the displacement. This is shown in figure 8.3. Displacement

components are shown in the X-Z plane. Figure 8.4 shows a synthetic seis-

mogram plotted in a conventional way. Red, blue and bluish green colors in-

dicate the radial, transverse and vertical component, respectively. Gray color

indicates absolute value of the displacement. This color scheme for synthetic

seismograms is followed throughout this dissertation. Note that the radial com-

ponents of P- and SV-wave are polarized in the opposite direction, whereas

vertical components are in the same direction. Displacement amplitude is also

consistent with the observation made in the isotropic case.
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2. Radial force: In this case, the force is applied in the radial direction. Here,

we do not observe any transverse component either (Figures 8.5 and 8.6). The

radial component of P- and SV-waves are now polarized in the same direction,

while their horizontal components are in the opposite direction.

3. Transverse force: Transverse force could excite SH only. P- and SV-waves

are vanishing in the X-Z plane (Figures 8.7 and 8.8).

4. Diagonal force: This force has three components equal in magnitude. In

this case, all the wave types, namely P, SV and SH, are excited in the X-Z

plane (Figures 8.9 and 8.10). It is important to emphasize here that the plane

containing the force vector will not have a transverse wave in the VTI media.

In this section, the polarization directions of different wave types are explained. The

amplitude of polarizations of P and S waves are investigated in detail in the next

section.
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X

Y

Z

(a) (b)

P

S

(c) (d)

Figure 8.3: Application of force vector in Z-direction as shown in (a) produces
displacement components in (b) radial and (d) vertical directions only. Transverse
component as shown in (c) is zero. Arrivals of P- and S-waves are plotted radially
in a vertical plane for receivers at a distance of 1km from the source. Change in
color shades from the background shows the polarization direction (+ve or -ve) and
intensity of the color is indicative of amplitude of displacement.
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Figure 8.4: Synthetic seismograms: X-component(red), Y-component(blue), Z-
component(bluish green), Absolute amplitude value(gray).
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(a) (b)

(c) (d)

Figure 8.5: Application of force vector in the X-direction as shown in (a) produces
displacement components in (b) radial and (d) vertical directions only. Transverse
component as shown in (c) is zero.

93



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

90

75

60

45

30

15

0

Time(sec)

A
ng

le
(d

eg
)

Figure 8.6: Synthetic seismograms: X-component(red), Y-component(blue), Z-
component(bluish green), Absolute amplitude value(gray).
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(c) (d)

Figure 8.7: Application of force vector in the Y-direction as shown in (a) produces
displacement components in transverse direction only as shown in (c). There is no
(b) radial and (d) vertical components of the displacements.
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Figure 8.8: Synthetic seismograms: X-component(red), Y-component(blue), Z-
component(bluish green), Absolute amplitude value(gray).
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Figure 8.9: Diagonal force applied as shown in (a) in the VTI medium produces the
displacement components in all three directions. (b) radial component (c) transverse
component (d) vertical component. The absolute value of the displacement is shown
in (e).

97



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

90

75

60

45

30

15

0

Time(sec)

A
ng

le
(d

eg
)

Figure 8.10: Synthetic seismograms: X-component(red), Y-component(blue), Z-
component(bluish green), Absolute amplitude value(gray).
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8.3 Effects of Attenuation on Radiation Pattern

in Homogeneous Media

Effects of anisotropy on radiation patterns in terms of amplitudes of P- and S-waves

were investigated by Tsvankin and Chesnokov (1990) and Gajewski (1993). Here

the effects of attenuation on radiation amplitudes of P- and S-waves are addressed.

The response of an unbounded homogeneous VTI medium to a vertical force is

analyzed. The VTI model under consideration has the same elastic constants and

density, which was used in the previous section, and it’s phase velocity behavior

is shown in figure 8.2. Attenuation is incorporated in the medium by the quality

factor(Q). The quality factor is defined as the quantity proportional to the ratio

of the real and imaginary part of elastic coefficients (White, 1965). The quality

factor essentially represents a viscoelastic medium. Low values of Q suggest a high

attenuating medium and vice-versa.

Here, radiation patterns are constructed as a polar diagram by taking the max-

imum amplitude of the first motions of P- and S-waves in a given plane. Here, the

radiation pattern is shown in the vertical plane. The radiation pattern can also be

thought of as a far-field radiation in terms of amplitude of the displacement. There

are four subfigures in each figure starting from 8.11 to 8.18. Subfigures (a) and (b)

in the figures show radial and vertical components, respectively, of P- and S-waves.

Note that there is no transverse component, as the source is a vertical force and

receivers are in a vertical plane. The absolute value of displacement is plotted in

the subfigures (c). The subfigures (d) in these figures show the radiation pattern of

P- and S-waves colored as red and blue, respectively. In order to show the effect of
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anisotropy, the radiation pattern of an equivalent isotropic medium by a dashed line

in Figure 8.11d. Radiation patterns are computed for Q equal to 50, 100, 300, 500,

1000, 5000, 10000 and 10, and are plotted in the same order. Radiation patterns ap-

pear as a “butterfly” with the head and tail showing P-wave radiation patterns and

wings representing S-wave radiation patterns. Note that P-wave radiation shrinks

as we increase the quality factor. In each radiation pattern the data are normalized

to S-wave maximum amplitude. Change in amplitude can be summarized in a graph

plotted in Figure 8.19. Amplitudes of P- and S-waves both decrease as we decrease

the quality factor. Generally, an S-wave has a higher amplitude compared to that of

a P-wave. Following a critical point on the attenuation axis the P-wave amplitude

becomes larger than the S-wave amplitude, while in the radiation pattern “head and

tail” becomes larger than the ”wings” .
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(a) (b)

(c) (d)

Figure 8.11: Attenuation parameter Q is 50. X- and Z-components of the synthetic
seismograms are shown in (a) and (b), respectively. Absolute value of the displace-
ment amplitude is shown in (c). Radiation patterns of P- and S-waves are shown in
(d) with red and blue color, respectively. A dashed line represents radiation patterns
in an equivalent isotropic medium.
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(a) (b)

(c) (d)

Figure 8.12: Attenuation parameter Q is 100. X- and Z-components of the synthetic
seismograms are shown in (a) and (b), respectively. Absolute value of the displace-
ment amplitude is shown in (c). Radiation patterns of P- and S-waves are shown in
(d) with red and blue color, respectively.
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(a) (b)

(c) (d)

Figure 8.13: Attenuation parameter Q is 300. X- and Z-components of the synthetic
seismograms are shown in (a) and (b), respectively. Absolute value of the displace-
ment amplitude is shown in (c). Radiation patterns of P- and S-waves are shown in
(d) with red and blue color, respectively.
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(a) (b)

(c) (d)

Figure 8.14: Attenuation parameter Q is 500. X- and Z-components of the synthetic
seismograms are shown in (a) and (b), respectively. Absolute value of the displace-
ment amplitude is shown in (c). Radiation patterns of P- and S-waves are shown in
(d) with red and blue color, respectively.
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(a) (b)

(c) (d)

Figure 8.15: Attenuation parameter Q is 1000. X- and Z-components of the syn-
thetic seismograms are shown in (a) and (b), respectively. Absolute value of the
displacement amplitude is shown in (c). Radiation patterns of P- and S-waves are
shown in (d) with red and blue color, respectively.
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(a) (b)

(c) (d)

Figure 8.16: Attenuation parameter Q is 5000. X- and Z-components of the syn-
thetic seismograms are shown in (a) and (b), respectively. Absolute value of the
displacement amplitude is shown in (c). Radiation patterns of P- and S-waves are
shown in (d) with red and blue color, respectively.
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(a) (b)

(c) (d)

Figure 8.17: Attenuation parameter Q is 10000. X- and Z-components of the syn-
thetic seismograms are shown in (a) and (b), respectively. Absolute value of the
displacement amplitude is shown in (c). Radiation patterns of P- and S-waves are
shown in (d) with red and blue color, respectively.
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(a) (b)

(c) (d)

Figure 8.18: Attenuation parameter Q is 10. X- and Z-components of the synthetic
seismograms are shown in (a) and (b), respectively. Absolute value of the displace-
ment amplitude is shown in (c). Radiation patterns of P- and S-waves are shown in
(d) with red and blue color, respectively.
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Figure 8.19: Change in P- and S-wave amplitudes with respect to quality factor.
Amplitude factor is the ratio of P- and S-wave amplitudes.

In this section, the effects of attenuation on P- and S-waves amplitudes in a

homogeneous anisotropic medium are examined. This understanding of amplitude

attenuation will be applied to interpret full waveform synthetic seismograms in a

multilayered anisotropic medium. In addition to this, effects of attenuation on fre-

quency will also be analyzed using spectral decomposition.
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8.4 Multilayered VTI Media

In this section, a point source in a multilayered viscoelastic anisotropic media is

examined via a series of downhole multicomponent receivers. This is the same

type of recording geometry used in micro-earthquake studies of hydraulic fracturing

(Fehler et al., 2001). From here onwards, this geometry will be referred to as micro-

earthquake seismic profile (MESP). Motivation for this study comes from the fact

that such MESP profiles are often generated during hydraulic fracturing of shaly

reservoirs, which have a varying degree of attenuation. Irrespective of their attenu-

ation mechanisms, shales are assigned different values of Q to study amplitude and

frequency characteristics of the synthetic seismograms.

A simple model of one layer VTI shale sandwiched between two VTI half spaces

is considered. As shown in the schematic diagram (Figure 8.20), the VTI shale layer

is 300 m thick. A vertical string of 96 channel multi-component receivers spread

over 600 m, symmetrically apart above and below the source level, is placed 300 m

away from the source. The source is situated equidistant from the upper and lower

interface.

In this modeling, only two types of elastic coefficients for shales are considered:

Type I - low velocity shale and Type II - high velocity shale. These shales have been

considered for modeling reflection coefficients in previous chapters. Their elastic

constants and phase velocity behaviors of various wave types are shown in figures 8.21

and 8.22. Multi-component MESPs are generated for four models having vertical

and inclined force vectors and varying Q. These models are M1, M2-100, M2-10, M3

as listed in Figure 8.20.
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Figure 8.20: A schematic diagram showing a multilayered VTI model for the syn-
thetic seismogram experiment with various orientations of a point force. There are
96 channel multi-component receivers to produce MESPs. Four models, namely M1,
M2-100, M2-10 and M3, are generated by changing the orientation of force vector
(i.e. source), the rock type (I and II), and the attenuation parameter Q.
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CIJ =











21.26 3.28 6.97 0 0 0
3.28 21.26 6.97 0 0 0
6.97 6.97 17.63 0 0 0
0 0 0 5.32 0 0
0 0 0 0 5.32 0
0 0 0 0 0 8.99











GPa, ρ = 2.34 gm/cc

(a)

(b) (c)

Figure 8.21: Model VTI Type I: (a)Elasticity tensor (b)P-wave velocity (c)S-wave
velocity (SH (blue), SV (green)).
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CIJ =











59.40 20.0 15.82 0 0 0
20.0 59.40 15.82 0 0 0
15.82 15.82 42.42 0 0 0

0 0 0 15.27 0 0
0 0 0 0 15.27 0
0 0 0 0 0 19.7











GPa, ρ = 2.37 gm/cc

(a)

(b) (c)

Figure 8.22: Model VTI Type II: (a)Elasticity tensor (b)P-wave velocity (c)S-wave
velocity (SH (blue), SV (green)).
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In the model M1, the sandwiched layer is a high velocity layer. The multilay-

ered medium is non-attenuating. We observe all possible reflected, refracted and

converted waves. S-waves shown in Figures 8.23 and 8.24 are of the SV-type. Since

vertical force is applied in this VTI medium, it does not produce SH-waves. Ampli-

tudes and the associated phase of P- and S-waves are consistent with the explanation

given in Section 8.2. Note that there is total absence of the radial component of P-

and S-waves in the source plane, and the S-wave lightens up in the vertical compo-

nent.

While keeping the force vector vertical, shale layers are interchanged in the next

model M2-100 such that the sandwiched layer has low velocity. This model is im-

portant from a seismic exploration point of view because hydrocarbon reservoirs are

generally low velocity zones trapped between high velocity layers. A Q value of 100

is assigned to the sandwiched layer. Radial and vertical components of the MESP

synthetic for this model are shown in Figures 8.25 and 8.26. Note that the head

waves (HW) appear in the MESP. A necessary condition for a head wave to appear

is that the wave propagates in a low velocity layer with a bounding high velocity

zone.

Keeping everything the same from the previous model but the value of Q, a new

model is created. The idea here is to examine the effect of changing attenuation.

This change in attenuation could be due, for example, to producing a shaly reservoir

or changing fluid saturation between shale layers by injecting fluids in the reservoir.

Change in attenuation is modeled by altering the value of Q. In the model M2-10, Q

is assigned a value of 10, i.e. the sandwiched layer is now more attenuating. Radial

and vertical components of the synthetic MESP for this model are shown in Figures
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8.27 and 8.28. Note that the wavelet shapes and amplitudes of P- and S-wave types

have changed. Comparison of Figures 8.25 and 8.27 reveals that the radiation energy

has shifted from S-wave to P-wave. This is in consistent with the findings in Section

8.3.

In the next model, the force direction is changed such that it is inclined to the

vertical direction and off the X-Z plane. In fact, the force vector used in this case is

[1.0,1.0,0.2]. This force vector is close to the horizontal plane. The basic idea here is

to record the SH-wave and its reflection and refraction. All three components of the

synthetic MESP for this new model M3 are shown in Figures 8.29, 8.30 and 8.31.

Reflection and refraction of SH-waves are simple as no conversion of the wavetype

was involved. Note that the P-wave energy on the radial component is very high,

due to the fact that the force vector is close to the horizontal plane.
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Figure 8.23: Synthetic MESP showing the radial component of polarization vectors
for model M1.
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Figure 8.24: Synthetic MESP showing the vertical component of polarization vectors
for model M1.
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Figure 8.25: Synthetic MESP showing the radial component of polarization vectors
for model M2-100.
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Figure 8.26: Synthetic MESP showing the vertical component of polarization vectors
for model M2-100.
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Figure 8.27: Synthetic MESP showing the radial component of polarization vectors
for model M2-10.
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Figure 8.28: Synthetic MESP showing the vertical component of polarization vectors
for model M2-10.
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Figure 8.29: Synthetic MESP showing the radial component of polarization vectors
for model M3. Force vector is inclined from the vertical and out of the X-Z plane.
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Figure 8.30: Synthetic MESP showing the transverse component of polarization
vectors for model M3. Force vector is inclined from the vertical and out of the X-Z
plane.
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Figure 8.31: Synthetic MESP showing the vertical component of polarization vectors
for model M3. Force vector is inclined from the vertical and out of the X-Z plane.
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8.5 Effects of Attenuation on Spectral

Characteristics of Synthetic Seismograms

In the previous section, the synthetic MESPs from models M2-100 and M2-10 sug-

gested that attenuation could change the wavelet shapes of P- and S-waves and

redistribute their energies. In this section, spectral decomposition is utilized to

study both aspects (i.e. wave shapes relating to frequency and energy related to

wave amplitude) of the full waveform synthetic in attenuating media.

For this purpose, the spectral decomposition technique, based on continuous

wavelet transform called TFCWT (Sinha et al., 2005), is utilized. It is noted in the

above-referenced article that the TFCWT method is best-suited for seismic data

analyses. This method has already been applied to detect attenuation due to hy-

drocarbon reservoirs from the real seismic data. The Morlet wavelet (Morlet et

al., 1982) is used here for the spectral decomposition because it has a good time-

frequency resolution.

For the spectral analysis of synthetic seismograms, two traces are chosen: the

first one is from the synthetic MESP of M2-100 and the second from the synthetic

MESP of M2-10; both are from the same receiver placed within the sandwiched

layer. These traces are plotted in figure 8.32a. A spectral decomposition map of

trace 1 is plotted in Figure 8.32b and partly enhanced (between 0 and 0.18 sec)

to plot as 8.32c to show the range of frequency content. A spectral decomposition

map for trace 2 is plotted in Figure 8.32d. Note that for Q values of 100 and 10,

the dominant frequency is around 100 Hz and 50 Hz, respectively, as shown by

arrows frequency axes in Figures 8.32c and 8.32d. The interpretation here is that
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as attenuation increases (i.e. Q decreases), dominant frequency of the seismogram

decreases. Furthermore, by comparing Figures 8.32b and 8.32d, we can say that

radiation energy shifts from S wave to P wave as attenuation increases.

8.6 Summary

The full waveform method is successfully implemented in elastic and viscoelastic,

homogeneous and multilayered anisotropic media to generate synthetic seismograms

for various orientations of sources. Radiation patterns in the VTI media are ex-

plained in light of radiation patterns in isotropic media. It is found that P- and

S-wave radiation patterns are affected by the attenuation in the viscoelastic media,

and it has the technological potential in hydrocarbon exploration. Not only are the

amplitudes affected, but also frequency contents of all wave types are modified by the

attenuating media. Implementation of the spectral decomposition of the synthetic

seismograms in viscoelastic media unfolds the effects of attenuation, in terms of am-

plitude and frequencies of the seismograms. Thus, spectral decomposition should

be extensively utilized as a seismic exploration tool to study attenuation effects on

seismic wave patterns.
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Figure 8.32: (a) Synthetic seismograms for 100Q(1) and 10Q(2) (b)Spectral decom-
position of trace 1 and partly enhanced in between 0 and 0.18 sec(c). (d) spectral
decomposition of trace 2.
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Chapter 9

Shale Anisotropy

9.1 Shale Models

Shales are important from the standpoint of hydrocarbon exploration because they

form either source rocks or reservoir rocks. Since shales are generally anisotropic, it

is important to understand shales from a seismic point of view in order to accurately

image the subsurface. The nature of anisotropy varies from one shale to another.

Anisotropy in shales can be caused by the following reasons.

1. preferred orientation of clay minerals

2. orientation of silt minerals - quartz, feldspar, and pyrite. Quartz is the most

anisotropic crystal among silt minerals.

3. orientation of cracks

The scope of this work is to investigate seismic anisotropy of shales by construct-

ing synthetic seismograms from point sources in shale models. The following models

are considered:
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1. Hornby shales: (i) Measured, (ii) Predicted: (a)aligned clay particles (b) dis-

tributed clay particles. (Hornby et al., 1994)

2. Non-porous shale vs. porous shale with nearly spherical pores (with 12%

porosity).

3. Clay particles are aligned and other minerals are randomly oriented. Cracks

are aligned along clay minerals.

• Gas saturated cracks; aspect ratio of cracks: 0.03 and 0.1; porosity varying

from 0.5 to 4%

• Water saturated cracks; aspect ratio of cracks: 0.03 and 0.1; porosity

varying from 0.5 to 12%

4. All minerals including clay particles are randomly oriented. Cracks have pre-

ferred orientation.

• Gas saturated cracks; aspect ratio of cracks: 0.03; porosity varying from

0.5 to 4%

• Water saturated cracks; aspect ratio of cracks: 0.03; porosity varying

from 0.5 to 4.0%

These models are created to show the anisotropy effects of clay orientation, the

crack’s aspect ratio, fluid types, porosity and various combination of these param-

eters on the synthetic seismograms. The General Singular Approximation (GSA)

method is used to model shales theoretically (Bayuk and Chesnokov, 2000). The

above descriptions of the models do not essentially correspond to the arrangement
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of the models shown in Table 9.1. The next section presents the detailed analyses

of each model shown in Table 9.1 in terms of synthetic seismograms and velocity

behavior of P and S waves.

9.2 Synthetic Seismograms and Interpretations

All the listed models in Table 9.1 are VTI. Due to symmetricity in a VTI medium,

anisotropy is observed only in the vertical plane and not in the azimuthal plane.

For all the models, full waveform synthetic seismograms are generated in the X-Z

plane for angles of propagation ranging from 0 to 90 degrees. Figures, such as 9.1-a,

show arrival times for P, SH, and SV waves from the receivers distributed radially

from the source in the vertical plane X-Z. Color represents displacement amplitude

of various wave types. The distance between source and receivers are adjusted so

that P- and S-wave arrivals could be shown on the same figure.

The following can be interpreted from the modeling:

1. Figure 9.1 shows synthetic seismograms for Hornby shale models (Model 1-

a, b and c in Table 9.1). It appears that the cusps on the SV wave surface

become stronger with clay plate alignment. Comparison of the three models

suggests that the real shale has only a fraction of clay platelets aligned. The

development of cusps gives rise to more than two S-wave arrivals in certain

directions.

2. When nearly spherical pores are introduced in a non-porous shale, change in

shear wave pattern is insignificant (Figure 9.2). This is due to the fact that
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randomly distributed nearly spherical pores do not introduce any order in the

medium.

3. Phase velocity characteristics are also dependent on whether the cracks are

water saturated or gas saturated. Gas saturated cracks tend to produce a

strong anisotropy in the medium. Water saturated cracks develop wide cusps

while gas saturated cracks develop small cusps, if any (Figure 9.3).

4. In the case of gas filled cracks, the maximum change in P- and S-wave velocities

are observed normal to the cracks. By comparing Figures 9.4 and 9.5, it is

evident that the change in aspect ratio has a pronounced effect on P- and SV-

wave velocity anisotropy (i.e. the amount of anisotropy) in case of gas-filled

cracks, whereas the anisotropy pattern (e.g. cusps) is modified in the case of

water-filled cracks.

5. In a model with a constant aspect ratio of flat cracks, porosity is increased

or decreased by increasing or decreasing the fracture density in the model.

Due to the change in porosity (hence, fracture density), the maximum change

in P- and S-wave velocities are observed perpendicular to the fractures. By

changing the porosity in the model, the anisotropy patterns in the case of

water-filled cracks are altered more compared to that in the case of gas-filled

cracks (Figures 9.6 - 9.9).

6. Cracks have dominant effects as compared to the orientation of clay platelets,

on the anisotropy behavior of shales (Figure 9.10).
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Model # C11 C33 C55 C66 C13 ρ Ar φ(%) Fluid Type

Model 1-a 34.3 22.7 5.4 10.6 10.7 2.3 NA 11 NA

1-b 38.12 16.6 2.95 12.74 8.32 2.3 NA 11 NA

1-c 34.67 22.16 6.02 10.76 11.46 2.3 NA 11 NA

Model 2-a 49.57 38.21 7.72 13.64 7.22 2.59 NA 0 NA

2-b 36.95 29.05 6.29 10.74 5.63 2.28 0.99 12 W

Model 3-a 35.82 13.63 7.5 12.41 5.83 2.59 0.03 0.5 G

3-b 38.19 27.43 7.61 12.42 11.55 2.59 0.03 0.5 W

Model 4-a 35.82 13.63 7.5 12.41 5.83 2.59 0.03 0.5 G

4-b 37.18 21.79 9.44 12.38 9.29 2.59 0.1 0.5 G

Model 5-a 38.19 27.43 7.61 12.42 11.55 2.59 0.03 0.5 W

5-b 38.15 27.55 9.5 12.39 11.65 2.59 0.1 0.5 W

Model 6-a 35.82 13.63 7.5 12.41 5.83 2.59 0.03 0.5 G

6-b 34.82 8.88 5.76 12.34 3.9 2.57 0.03 1.0 G

6-c 33.78 5.2 3.91 12.19 2.4 2.55 0.03 2.0 G

6-d 32.55 2.81 2.36 11.89 1.41 2.5 0.03 4.0 G

Model 7-a 37.74 17.63 8.52 12.28 11.25 2.58 0.1 1.0 W

7-b 35.5 20.41 5.21 11.68 9.42 2.54 0.1 4.0 W

7-c 32.90 15.72 3.35 10.90 7.9 2.47 0.1 8.0 W

7-d 30.57 17.63 2.41 10.17 6.9 2.41 0.1 12.0 W

Model 8-a 33.65 27.36 4.08 11.02 10.2 2.57 0.03 2.0 W

8-b 37.12 23.59 4.04 12.19 10.21 2.57 0.03 2.0 W

Table 9.1: Elastic coefficients, density, aspect ratio of cracks, porosity and fluid type
for each theoretical VTI shale model.

Thus, the anisotropy in shales depends on numerous parameters and a few of

them are investigated in this study. These are: orientation of clay particles, aspect

ratio of cracks, change in porosity and fluid types. Investigation of these models

in terms of synthetic seismograms is unique. The development of cusps on the SV

wave surfaces should be investigated to avoid pitfalls in the interpretations of real

seismograms.
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(a)

(b) (c)

Figure 9.1: Synthetic seismograms for Model 1-a, b and c (Table 9.1). Model param-
eters are taken from Hornby et al. (1994). These synthetic seismograms are created
for (a) measured shale parameters; and, (b) and (c) predicted shale parameters with
clay platelets aligned and distributed, respectively. The source-receiver distance for
this computation is 500 m.
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(a) (b)

Figure 9.2: Comparison of the synthetic seismograms for (a) porous shale versus (b)
non-porous shale.
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Figure 9.3: Effects of fluid types. (a) and (b) show P- and S-wave velocity behavior,
respectively, for gas filled (solid line) and water filled (dashed line) cracks. Synthetic
seismograms in a vertical plane corresponding to gas-filled and water-filled cracks
are shown in (c) and (d), respectively. The model parameters are given in Table
9.1-Model#3.
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Figure 9.4: Gas filled cracks. Porosity 0.5%, Solid and dashed lines in (a) and (b)
correspond to the aspect ratio of 0.03 and 0.1, respectively. Synthetic seismograms
in a vertical plane: (c) for Ar=0.03; and, (d) for Ar=0.1
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Figure 9.5: Water-filled cracks. Porosity 0.5%, Solid and dashed lines in (a) and (b)
correspond to the aspect ratio of 0.03 and 0.1, respectively. Synthetic seismograms
in a vertical plane: (c) for Ar=0.03; and, (d) for Ar=0.1

137



0 20 40 60 80
Angle

1

2

3

4
V

p(
km

/s
)

4000

6000

8000

10000

12000

V
p(

ft/
s)

(a)

0 20 40 60 80
Angle

0.8

1.2

1.6

2

V
s(

km
/s

)

3000

4000

5000

6000

7000

V
s(

ft/
s)

(b)

Figure 9.6: Vp and Vs behavior with changing porosity 0.5% (solid line),
1.0%(dashed line), 2.0%(dashed dot), 4.0%(dashed dot dot). Its phase velocity char-
acteristics for P -wave are shown in (a) and for S-waves are shown in (b) (SH – Blue
colored, SV – Green colored).
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(a) (b)

(c) (d)

Figure 9.7: Synthetic seismograms in a vertical plane for the model:(a)0.5% (b) 1.0%
(c) 2.0% (d) 4.0%
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Figure 9.8: Vp and Vs behavior with changing porosity 1.0% (solid line),
4.0%(dashed line), 8.0%(dashed dot), 12.0%(dashed dot dot). Its phase velocity
characteristics for P -wave are shown in (a) and for S-waves are shown (b) (SH –
Blue colored, SV – Green colored).
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(a) (b)

(c) (d)

Figure 9.9: Synthetic seismograms in a vertical plane for the model:(a)1.0% (b) 4.0%
(c) 8.0% (d) 12.0%
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Figure 9.10: Effects of clay orientation. The models have oriented cracks of aspect
ratio 0.03. Solid and dashed lines in (a) and (b) represent oriented clay and random
clay, respectively. Synthetic seismograms in a vertical plane (c) orientated clay and
(d) random clay orientation
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Chapter 10

Conclusions

The results of this dissertation contribute to the fundamental understanding of wave

propagation in viscoelastic anisotropic media. A numerical technique for computing

synthetic seismograms has been developed in the framework of the full waveform

theory. Although full waveform synthetic is a time-consuming procedure compared

to the ray synthetic, it offers the advantage of accurate computation of the wavefield

of interest, including head waves. Moreover, it is not scuh an expensive method

considering our present day computational power.

Although numerical implementation of an elastic wave equation in the form of the

Green-Christoffel equation looks simple, a problem arises when shear wave slowness

surfaces meet at acoustic axes, where the two shear waves can exchange polariza-

tions. In this dissertation a novel method is developed to trace continuity in the

polarizations.

Wave propagation in multilayered media requires that displacement and stress

vectors be continuous everywhere, including the interfaces. A concise form of the
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reflectivity method, which is unconditionally stable and easy to implement, is de-

veloped. The reflectivity method not only gives the full wavefield solution at any

point in the multilayered media, but also yields frequency dependent reflection co-

efficients. Modeling of multilayered media suggests that the AVO behavior can be

misunderstood if proper consideration of sounding frequency of investigation and

layer thickness is not given. Reflection coefficient modeling of fractured media sug-

gest that AVOAz can be potentially utilized in fracture characterization.

In another new development, radiation patterns of P- and S-waves are investi-

gated in an unbounded homogeneous viscoelastic medium. It is observed that, as

the quality factor Q decreases, S-wave radiation pattern shrinks faster than the P-

wave radiation pattern does, and after a critical point on attenuation, the P-wave

radiation pattern becomes larger than the S-wave radiation pattern. Not only are

P and S waves amplitude characteristics modified in attenuating media, but their

frequency characteristics are also altered. For this purpose spectral decomposition

is used. Time-frequency spectrum of synthetic seismogram reveals that reference

frequencies of the signal decrease with the decrease of Q values. This method has

potential application in hydraulic fracturing of shales. Time dependent rock prop-

erties in a fractured reservoir can be estimated. With proper acquisition layout of

micro-seismic measurements, the extent of fractured reservoir can be calculated.

Investigation of shale anisotropy from the standpoint of synthetic seismograms

gives us the opportunity to understand seismic characteristics of shales. From the-

oretical shale models and their synthetic seismograms, it appears that investigation

of the development of cusps on shear wave surfaces and their size could be another

possible line of research. Note that the key parameters of the seismic anisotropy
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models are: preferred orientation of clay particles, aspect ratio of cracks, porosity,

and fluid type.
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Appendix A

Dynamic Green Tensor in ω and k domain

(δimρ∂2
t − ∂jCijmn∂n)Gml(t; r) = δilδ(r)δ(t)

or, Lim(t; r)Gml(t; r) = δilδ(r)δ(t) (A.1)

where Lim(t; r) = (δimρ∂2
t − ∂jCijmn∂n) is a partial differential operator.

Using the Fourier transformation, one can write:

Gml(t; r) =

∫
dω

2π

∫
dk

(2π)3
Gml(ω;k)ei(kr−ωt) (A.2)

δ(t) =

∫
dω

2π
e−iωt (A.3)

δ(r) =

∫
dk

(2π)3
eikr (A.4)

Substituting equations A.2, A.3 and A.4 in equation A.1, one obtains:

(−δimρω2 + Cijmnkjkn)Gml(ω;k) = δil

Lim(ω;k)Gml(ω;k) = δil (A.5)
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Appendix B

Propagation in Homogeneous Anisotropic

Medium

ZN−1•

ZN
•��

UU

I II

Figure B.1: This is a schematic diagram showing a layer and two points – one just
below the upper boundary and another just above the lower boundary.

Let us say that the upgoing wavefields just below the upper boundary layer and

just above the lower boundary layer are f⊕
ZN−1

and f⊕
ZN

, respectively. When a source

is below the layer, the R-T coefficients are computed by moving the wavefield from

the upper half space or free surface to the source. Thus, within a homogeneous

anisotropic layer, one can move wavefield from the (N − 1)th layer to the N th layer

marked as I in the figure above. Similarly, when the source is above the layer, one
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can move the wavefield from the N th layer to (N − 1)th layer marked as II in the

above figure. One can write:

f⊕
ZN−1

= e−iωp⊕z ZN−1U

and, f⊕
ZN

= e−iωp⊕z ZN U.

∴ eiωp⊕z ZN−1f⊕
ZN−1

= eiωp⊕z ZN f⊕
ZN

or, f⊕
ZN

= eiωp⊕z (ZN−1−ZN )f⊕
ZN−1

or, f⊕
ZN

= (E⊕)−1f⊕
ZN−1

.

Similarly, f⊖
ZN

= (E⊖)−1f⊖
ZN−1

. (B.1)

where (E⊕) = e−iωp⊕z ∆Z , and (E⊖) = e−iωp⊖z ∆Z ; ∆Z being thickness of the layer and

is a positive quantity. Similarly in the case II, one can write:

f⊕
ZN−1

= E⊕f⊕
ZN

and f⊖
ZN−1

= E⊖f⊖
ZN

(B.2)
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Appendix C

Additional Figures for Reflection Coefficients
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Figure C.1: Reflection coefficients (solid line) and phase change (dashed line) at the
interface between two isotropic half spaces for the incident SV and SH waves are
shown in (a) and (b), respectively. The elastic coefficients used for the computation
are given in Table 5.1.
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Figure C.2: Reflection coefficients and phase change at the interface between tow
VTI half spaces for the incident SV and SH waves are shown in (a) and (b), respec-
tively. The elastic coefficients used for the computation are given in Table 5.1.
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Figure C.3: Reflection coefficients and phase change at the boundary between two
orthorhombic half spaces. The elastic constants for the two half spaces are given in
Table 5.1. The reflection coefficients are computed for an incident S1-wave and the
reflected (a) P, (b) S1, and (c) S2 wave types. The curves are colored according to
the azimuthal variation of the reflection coefficients.
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Figure C.4: Reflection coefficients and phase change at the boundary between two
orthorhombic half spaces. The elastic constants for the two half spaces are given in
Table 5.1. The reflection coefficients are computed for an incident S2-wave and the
reflected (a) P, (b) S1, and (c) S2 wave types. The curves are colored according to
the azimuthal variation of the reflection coefficients.
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Figure C.5: Reflection coefficients are in the vertical plane containing the vertical
symmetry axis of the upper half space and the tilted symmetry axis of the lower half
space: (a) for incident S1 and reflected S1, (b) and (c) for incident S2 and reflected
P and S2 waves, respectively. The curves are colored according to the rotation angle
of symmetry axis from the vertical in the lower half space.
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Figure C.6: Reflection coefficient and phase for the reflected (a) S1-wave from an
incident S1-wave and for the reflected (b) P-wave and (c) S2-wave from an incident
S2-wave in the frequency range of 10 to 50Hz. The elastic coefficients used for this
calculation are given in Table 5.3.
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Figure C.7: Reflection coefficient and phase for the reflected (a)S1-wave from an
incident S1-wave and for the reflected (b) P-wave and (c) S2-wave from an incident
S2-wave. The curves are colored according the thickness variation (210-300m) of the
sandwiched layer. The elastic coefficients used for this calculation are given in Table
5.3.
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Appendix D

Additional Figures for Fractured Media

Additional figures are included here for the reflection coefficients of the five fracture

models used in chapter 6. Figures D.1, D.2 and D.3 are plotted for the reflection

coefficients of P, S1 and S2 waves, respectively, from an incident S1 wave and the

corresponding reflection coefficients for an incident S2 waves are shown in Figures

D.4 to D.6.
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Figure D.1: S1P reflection coefficients and phase variation with angle and azimuth.
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Figure D.2: S1S1 reflection coefficients and phase variation with angle and azimuth.
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Figure D.3: S1S2 reflection coefficients and phase variation with angle and azimuth.
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Figure D.4: S2P reflection coefficients and phase variation with angle and azimuth.
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Figure D.5: S2S1 reflection coefficients and phase variation with angle and azimuth.
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Figure D.6: S2S2 reflection coefficients and phase variation with angle and azimuth.
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Appendix E

Bessel Series

e−ixcosφ =
∞∑

m=−∞

(−i)mJm(x)e−imφ

= J0(x) +

∞∑

m=1

(−i)mJm(x)e−imφ +

−∞∑

m=−1

(−i)mJm(x)e−imφ

= J0(x) +

∞∑

m=1

(−i)mJm(x)e−imφ +

∞∑

m=1

(−i)−mJ−m(x)eimφ

= J0(x) +
∞∑

m=1

(−i)mJm(x)e−imφ +
∞∑

m=1

(−i)−m(−1)−mJm(x)eimφ

= J0(x) +
∞∑

m=1

(−i)mJm(x)e−imφ +
∞∑

m=1

(i)−mJm(x)eimφ

= J0(x) +
∞∑

m=1

(−i)mJm(x)e−imφ +
∞∑

m=1

(−i)mJm(x)eimφ

= J0(x) +

∞∑

m=1

(−i)mJm(x)
[
e−imφ + eimφ

]

= J0(x) + 2

∞∑

m=1

(−i)mJm(x) cos(mφ) (E.1)
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