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Abstract

Software Defined Networks (SDN)-enabled switches of today can be empowered to

intelligently forward as well as elastically steer the network traffic. In this work, we fo-

cus on developing a SDN-based framework to provide improved delivery performance

(of applications) in the network.

This dissertation proposed a new TCP join and split proxy on SDN platform. The

proposed framework allowed part of TCP (Transmission Control Protocol) optimiza-

tion to migrate from the application server to the proxy. Therefore, with a control

plane built between SDN controller and proxy, the SDN controller can further improve

the TCP delivery performance. The proxy (join-proxy) joins all TCP flows at the

beginning of the shared path into one long TCP flow. At the end of the shared path,

the proxy (split-proxy) splits the long flow for each joined client with the same TCP

session state. With the help of centralized controller of SDN and customized SDN

switch, the new design simplifies the TCP session synchronization between proxies.

Also, this dissertation developed Linked-ACK ((Acknowledgement) to maintain the

end-to-end semantic and limit the buffer size in each proxy by coupling the ACK of

three TCP flows separated by the join and split proxy. At the last, this dissertation

shows that the proposed proxy can well integrate with wireless network and MPTCP

(Multi-Path TCP) proxy [1]

The extensions of the proposed TCP Join and Split platform are applied to Smart

Grid network for improving fairness, WiFi network for reducing gaming traffic de-

lay, and Data Center network for addressing Virtual Machine (VM) live migration

problem.

First, the proposed TCP Join and Split platform can be applied to Smart Grid

xi



network to provide better fairness on the application layer. The latest research in

Smart Grid communications has advocated the aggregation of multiple traffic flows

in order to achieve an improved throughput. While aggregation improves the overall

throughput, the individual flows still suffer from unfair throughput performance. As

a result, the enablers for time sensitive Smart Grid services, such as load-shedding

which requires a timely report of data, are mostly affected.

This dissertation proposed a novel SDN-based framework to provide fairness among

smart-meters (SMs) through flow aggregation and scheduling. By exploring the SDN’s

flow-level manageability features, for the first time in this paper, we present an

implementation-based architecture to perform effective aggregation-and-scheduling

of traffic flows. The proposed framework ensures fairness (among the smart-meters)

as well as improve the throughput performance. Our extensive experimental results

validate the efficacy of our proposed framework.

Second, the proposed TCP Join and Split platform can be applied to WiFi network

to reduce the gaming traffic delay. WiFi users typically expect different performance

requirements for various types of applications. For instance, users expect 'better and

consistent throughput' for Internet video consumption, and 'minimal delay' for local

network gaming applications. The wireless access substrate (at the consumer-end),

typically being the bottleneck in these networks, causes different users (in the same

WiFi coverage) to experience unfair and fluctuating network performance. To com-

bat such unfair situations, we need approaches to effectively control and steer the

applications’ traffic in the shared WiFi medium. However, a network that deals with

a crowd or private end-users (such as gaming multiplayers or the Internet content dis-

tributors), encounters a major challenge in controlling the traffic without involvement

or modification at the end-host application devices.

In this dissertation, we propose a SDN-based seamless traffic steering and control

strategy in order to provide effective application-specific delivery services, such as

xii



reduced delay (for gaming traffic) and improved throughput (for video consumption).

Unlike simulation-based solutions, our approach is production-ready, as we have im-

plemented our framework on a real network testbed environment. With extensive

performance study and sufficient mathematical insight, we demonstrate the prowess

of our proposed framework.

Last but not the least, the proposed TCP Join and Split platform can be applied

to Data Center network to optimize the VM live migration. With the growth of data

volumes and a variety of Internet applications, virtualization has become common-

place in modern data centers and an effective solution to provide better management

flexibility, lower cost, scalability, better resources utilization, and energy efficiency.

One of the powerful features provided by virtualization is Virtual Machine (VM) live

migration, which facilitates moving workloads within the infrastructure with negligi-

ble downtime and minimal impact on workload. However, the performance of running

applications is likely to be negatively affected during a live VM migration. The objec-

tive of this paper is to optimize the total performance degradation of concurrent VM

live migration in the data center network by exploiting the SDN platform. The prob-

lem is modeled using mixed integer linear programming(MILP) for VM live migration

with a fixed path and VM live migration with path selection. To provide a practical

optimization, the greedy algorithm is proposed. Numerical study results show that

a significant decrease occur in performance degradation in MILP model and greedy

algorithm when the number of VMs increases. The proposed greedy algorithm can-

not yield the optimum solution as the problem become harder, but it provides better

solution than MILP model in terms of the time constrain exhibited in case of large

problems.
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Chapter 1

Introduction

There has been an enormous growth in the number of connected devices to the Inter-

net which in turn has produced high-speed and high-capacity networks and routers

that are capable of processing packets at rapid speed. For example, Juniper T-series

routers can forward in up wards of 30 billion packets per second. Such extreme speeds

are only possible with high-speed and multi-core router architectures. With at advent

of such high-speed router architectures is it natural to determine if the routers can

provide additional computational help other than providing the packet header lookup

and forwarding service. In fact, many router manufacturers have provided additional

services to run on the routers such as deep packet inspection to detect worms and

viruses based on known signatures.

The route control protocols and configuration of the routing tables are accom-

plished by routers using its control plane. The data plane is responsible for determin-

ing which output port to send the packet based on the destination address. Routers

also provide services such as monitoring and configuration services and this consti-

tutes the management plane. Software Defined Network (SDN) consists of routers

that run the SDN software which enhances the ability of the data, control, and man-

agement planes. With the availability of SDN routers, it becomes easy to control

the network traffic that is based on user-defined rules and not the one size fits all

approach of the current routers. As packets enter the SDN enabled router, the rules

are applied, which may require deep packet inspection and the packet is forwarded

to the user defined output port on the router.
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1.1 Software Defined Network SDN

SDN is a new network architecture that decouples the control and data planes and

allows the network control to be directly programmable [2]. Compared to, the network

gains programmability, automation, and network control to build highly scalable,

flexible, and adaptable networks.

A high-level view of SDN architecture is shown in Figure 1.1. The goal of SDN

architecture is to provide a controlled connection and open interface for enabling the

developer to inspect and modify the network traffic. SDN architecture can be divided

into data plane, control plane, and application plane. The data plane contains the

network elements implemented with SDN datapath which consists of Control-Data-

Plane Interface (CDPI) agent to communicate with control plane, and forwarding

engine and processing function which process packets following the management of

CDPI. Both physical and virtual switches can be network elements. The application

plane implements the business logic to the network through the Northbound Interfaces

(NBIs) provide by the control plane which allows the control plane to communicate

with a higher-level component that is application plane in the SDN architectures.

Therefore, the control plane working between data plane and application plane trans-

lates the business logic to the low-level interface in the SDN datapath and information

up to the application.

Control to Data-Plane Interface (CDPI) is an open source, vendor-neutral, and

an interoperable interface between the control plane and data plane. The essential

components of this interface are the flow table and external controller. When a first

packet belonging to a flow (a flow is a sequence of packets going from a source to a

destination) enters a SDN router for the first time, the packet is sent to a controller

- an external device that is connected to the same network. The controller then

inserts forwarding information including packet matching rules on all the routers in

2



the path from source to destination. The place when you insert this information is

called the Flow-Table. The Flow-Table contains packet matching rules and actions

that correspond to them. For example, an action would be discard the packet (as for

example when a virus is detected).

One of the most well known CDPI is OpenFlow that provides an open proto-

col to program the flow table in different switches and routers [3]. The OpenFlow

Switch and Controller communicate via a secure channel, which defines three message

types, controller-to-switch, asynchronous, and symmetric. The controller initiates

Controller-to-switch messages to manage and inspect the state of the switch, such as

insert or remove flow tables. The switch initiates asynchronous messages to update

the controller of network state of the switch, such as new packets come in, links lost

connection. Symmetric messages are initiated by either the switch or the controller

and mainly used for maintaining the connection between the switch and controller [4].

A packet received by OpenFlow switch is matched on each of the flow tables on

each router shown as Figure 1.2. Each Flow-Table contains multiple flow entries. A

flow entry in the OpenFlow Flow-Table consists of six fields: (1) Match Fields: match

against packets (2) Priority: provide precedence for each flow entry (3) Counters:

calculate matched packets (4) Instructions: modify the action set (5) Timeouts: is

the expired time (6) Cookie: is used for the controller to analyze flow entries [4].

In the market, OpenFlow protocol is supported both on commercial and virtual

switches. Mininet [5] is one of the most successful OpenFlow network simulator

enabling to build an OpenFlow network on the local machine. Moreover, there are

several controllers that implemented OpenFlow protocol, such as Floodlight [6] and

Nox [7]. In this report, we use Floodlight as the controller to show an example

of simulated OpenFlow testbed. Shown in Figure 1.3, the OpenFlow network is

comprised of 4 OpenFlow (OF) switches which are simulated in Mininet simulation

environment. The Controller Floodlight is logically linked to all the OFSwitches.

3
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1.2 Transmission control protocol (TCP)

TCP has been proposed since 1981 [8] and is still one of the most popular protocols in

the current internet. TCP is a reliable end-to-end, connection-oriented, byte-stream

protocol of transport layer of OSI model [9]. TCP flows start with establishing a

connection between two hosts to initialize and maintain the session for the data

stream. Data can be delivered in-order of a stream of bytes in each direction on

top of a less reliable network. TCP also includes flow control mechanism which re-

transfers lost packets and adopt sending data speed according to the network status.

Moreover, the TCP provides security mechanism and allows many simultaneous TCP

flows within a single host.

1.2.1 TCP Connection Establishment and Termination

In the normal case, TCP uses a Three-Way Handshake to establish a connection

shown as Figure 1.4. The purpose of Three-Way Handshake is that the Client and

Server agree on the starting sequence numbers that the two sides want to use for their

respective byte streams [10]. The following the process of Three-Way Handshake:

1. Both client and server start from CLOSE state. The Client performs an active

open which creates a transmission control block (TCB) to store all the important

information about the connection and sends out a SYN message to the server

with a random sequence number X. Then the Client moves to SYN-SENT state

to wait for an acknowledgment (ACK) to SYN. The Server creates a TCB and

moves to LISTEN states to wait for contact from a client.

2. The server receives the SYN message and replies with am SYN-ACK message

which the acknowledgment number is the received sequence number X plus 1,

and the sequence number is random number Y generated on the Server. Then
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the Server moves to SYN-RECEIVED state to wait for the ACK message.

3. Finally, the Clint receives the SYN+ACK that confirms the sequence number X

is received on the Server. Then the client sends back an ACK which the sequence

number is received X + 1, and acknowledgment number is Y + 1. Then the

Client moves to ESTABLISHED state. The Server receives the ACK and also

moves to the ESTABLISHED state. Since then, a full-duplex communication

is established.

Client Server

Client State

CLOSED

SYN-SENT

ESTABLISHED

Server State

CLOSED

LISTEN

SYN-RECEIVED

ESTABLISHED

Wait for Server

Active Open: Create 
TCB, Send SYN

Wait for ACK to SYN

Receive SYN+ACK, 
Send ACK

Passive Open:
Create TCB

Wait for Client

Receive SYN,
Send SYN+ ACK

Wait for ACK to SYN

Receive  ACK

SYN

SYN+ACK

ACK

#1

#2

#3

Figure 1.4: TCP Connection Establishment

In the typical case, the TCP uses Four-Way Handshake to close the connection

[11] shown as Figure 1.5. Each side of the connection terminates the connection

independently [12]. The process of Four-Way Handshake is similar to TCP Three-

Way Handshake. When the Client wishes to terminate the connection, it sends a

FIN message to the server and moves to FIN-WAIT-1 state to wait for ACK and FIN

from the server. The server receives FIN, sends ACK, informs the application (APP)

to stop, and moves to CLOSE-WAIT state. When the APP on Server is ready to

close, the Server sends FIN to the Client and move to LAST-ACK state. Once the
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Server receives the ACK to FIN, it closes the connection move to CLOSE state. The

Client side is more complicated than the Server. The Client receives the ACK and

moves to FIN-WAIT-2. Then the Client receives FIN, sends ACK to the server, and

moves to TIME-WAIT. After 2 Maximum Segment Life(MSL), the Client closes the

connection and moves to CLOSE state.

The TIME-WAIT state is designed for two purposes: First, it makes sure the

ACK reliable transmit to the Server. Second, it provides a time gap to isolate the

current connection with any subsequent ones. Otherwise, the TCP segments from

different connections could be confusion. Hence, the Client in TIME-WAIT state

is not available for establishing a new connection. The standard MSL is 120s. In

modern networks, the operating system allows selecting a lower value if it will lead

to a better performance.

Client Server

Client State

CLOSED

FIN-WAIT-1

ESTABLISHED

Server State

CLOSED

CLOSE-WAIT

LAST-ACK

ESTABLISHEDReceive Close 
Signal From APP,

Send FIN

Wait for ACK and FIN

Wait for FIN

Receive FIN, Send ACK

Receive Fin,
Send ACK,
Tell APP to Close

APP is Ready To 
Close, Send Fin

Wait for ACK to FIN

Receive  ACK

FIN

ACK

ACK

#1

#2

#4

FIN-WAIT-2

TIME-WAIT

Receive ACK

Wait For Double 
Maximum Segment 

Life(MSL) Time

FIN

#3

Figure 1.5: TCP Connection Termination

The TCP state diagram shown as Figure 1.6 is a summary of the TCP state transi-

tion for both TCP connection establish and terminate. In additional, it demonstrates
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the edge cases for simultaneously establishing and terminating TCP session. More

details can be found in [8]

CLOSED

LISTEN

ESTABLISHED

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2 CLOSING

TIME_WAIT CLOSED

CLOSE_WAIT

LAST_ACK

Passive open Close

Close

Active open/SYN

SYN/SYN+ACK

SYN/SYN+ACK Send/SYN

ACK SYN+ACK/ACK

Close/FIN

Close/FIN

ACK

FIN/ACK

FIN/ACK

ACK

FIN/ACK

ACK

Close/FIN

Timeout after two 
maximum segment 

lifetimes

Figure 1.6: TCP state Diagram

1.2.2 TCP Fairness

The flow control mechanism also provides TCP fairness. If K TCP sessions share

same bottleneck link of bandwidth R, each should have an average rate of R/K. This

dissertation uses Jain’s fairness index [13] to measure the TCP fairness. The equation

is shown in Eq 2.1 where xi represents the throughput of TCP flow-i, n is the total

number of flows. If each TCP flow shares the bottleneck link equally, then F = 1 is

the upper bound of Jain’s fairness index and stands for the best fairness. The worst

case is that one flow occupies the entire bandwidth of the bottleneck, then F = 1
n
is

9



the lower bound of Jain’s fairness index and stands for the worst fairness.

F (x1, x2..., xn) = (∑n
i=i xi)2

n
∑n
i=i x

2
i

(1.1)

1.2.3 TCP Proxy

A TCP proxy [14] consisting of multiple TCP servers and clients acts as an interme-

diary node between clients and remote servers. For each TCP flow from the client

to the remote server, a TCP proxy maintains two TCP sessions which are from the

client to TCP proxy server and TCP proxy client to the remote server. The TCP

proxy server receives the layer 5-7 data from the client and forwards it to the remote

server from the TCP proxy client. TCP proxy also can perform more than forwarding

data, such as provides weighted fair queue that allows TCP proxy to define traffic

classes and then assign different bandwidth to each class [15], initials TCP session

with optimized TCP configuration other than the default of the client and remote

server [16].

However, lacking the globe view of the network, the proxy doesn’t have the capac-

ity to make a global optimum decision. Extending the SDN controller to fully control

the TCP proxy will solving this problem, shown as Figure 1.7. SDN controller not

only keeps tracking the entire network but also can monitor and manipulate the pack-

ets of layer 2-4. TCP proxy is further expanded, such as can be transparent to both

client and the remote server, cooperate with other TCP proxies, glue each TCP flow

control status together.

This dissertation optimize the performance of TCP with SDN in different network

scenario by exploiting TCP proxy. A few recent studies have focused on improving the

TCP throughput performance through the technique of combining different flows in

the network. In [17], the authors with the help of simulation experiments improve the

smart grid meters’ traffic through a flow-aggregation framework. Along similar lines,
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Figure 1.7: TCP proxy on SDN platform

in a LTE-based wireless smart grid scenario [18], we showed that with appropriate

TCP aggregation and scheduling, fairness among the TCP flows can be achieved (in

addition to obtaining improved throughput).

In a different work [19], we proposed an integration of IoT-based MQTT mes-

sages at the edge switches (also known as fog nodes) for achieving improved deliv-

ery performance. The aforementioned works in common support the logic of simple

flow-aggregation frameworks that cannot be non-trivially extended and applied to

generic network scenarios that involve flow joining and splitting of flows. In a dif-

ferent work [20], we proposed split-only framework to separate flows into a chain of

two flows with first flow providing congestion-free wireless transport, and the second

(part of the) wired-network flow providing regular congestion based TCP transport.

Unlike the existing works that independently address either aggregation-only [18]

or split-only [20] frameworks of TCP flows, in this dissertation, we propose a unified
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join-and-split framework of TCP flows that provides an effective information synchro-

nization platform among the join and fork proxy points in the network. This feature

enables aggregation and split functionality to work at different points of the same

network.

Works such as [21] [22] [23] exploit the idea of preserving end-to-end semantics

of flows by caching the ACK segments, with the help of proxy nodes. However, they

do not focus on aggregating multiple TCP flows into a single flow. On the other

hand, MPTCP flow-based proxy framework has been proposed in [1]. However, this

work did not provide the details of preserving end-to-end semantics in the MPTCP

proxy. We in this dissertation integrate the MPTCP proxy into our ’join-and-split’

framework along with a concept of Linked-ACK to maintain the TCP end-to-end

semantics.

1.3 Smart Grid

Smart Grid network is defined as the next generation power grid networks in which

the electricity distribution and management are upgraded by incorporating advanced

two-way communications and pervasive computing capabilities for improved control,

efficiency, reliability, and safety [24]. There is still a lot of variation definition of

Smart Grid. Typically, all of them consist of distributed intelligence, communication

technologies, and automated control systems. [25]

Smart metering (SMs) is a device deployed at the distribution-end with bi-directional

communication to collect data or receive feedback. The purpose of SMs is to en-

able continuous monitoring and better utilization of resources at the customer-end

users (i.e., the electricity consumers). Some of the benefits include automatic billing,

load balancing, remote connect/disconnect [26]. The latest SMs are advanced with

processing capabilities and are integrated with full network transport suites such as
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TCP or UDP (User Datagram Protocol is an alternative communication protocol of

TCP, and primarily for low-latency and loss tolerating connections).

Data communication is the key enabler in Smart Grid networks. The deployment

of communication paradigm in the power domain yields benefits to all participants in

the system such as utility companies, governments, and consumers. Typical Smart

Grid network spans a vast geographical area connecting many devices such as SMs.

In a city scenario, millions of smart meters are distributed in the whole city. To

successfully collect, transfer, analyze, and store such massive data, move the server

of the Smart Grid to the Cloud, which is such a useful technology for Smart Grid

information management.

On a wired smart grid network, the authors in [27], [28] demonstrate an improved

TCP performance for the SMs using aggregator nodes that combine multiple TCP

connections. However, a natural extension of studying fairness among tandem ag-

gregator nodes is not investigated. In our earlier work [29], we proposed SDN-based

Fog computing nodes for Internet of Things (IoT) applications, and demonstrated

an improved TCP performance, by migrating the remote server functionality to the

edge switch for immediate response. A backup data transport is enabled by a single

TCP from edge switch server to a remote end-host server. However, the concept of

multiple edge-servers (aggregators) and their corresponding fairness is not explored.

Unlike the aforementioned works, in this dissertation, we exclusively study the fair-

ness among multiple (tandem) flows over wireless and wired networks in a smart grid

scenario.

1.4 Gaming traffic

Online games become significant contributors to Internet traffic, [30]. Recent reports

suggest that the game traffic is getting a dominant share of the internet traffic. It is
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worth to note that the global volume of game traffic has 22% of Compounded Annual

Growth Rate (CAGR) [31].

One of the most popular video game categories is the first-person shooter (FPS)

[32] which is centered around guns and other weapon-based combat in a first-person

perspective. Most of FPS games feature an online multiplayer model that let players

compete or cooperate with other players in one virtual 3D environment in real time.

A famous FPS game is Counter-Strike in which teams of terrorists and counter-

terrorists battle [33]. The Counter-Strike build the multiplayer game with a client-

server network model shown as Figure1.8. It’s a star network topology in which the

central hub node hosts the game server, all leaf nodes are game clients. During the

game, the server collects and synchronizes data to all clients and tries to enforce all

game players sharing the same players status. The advantage of the client-server

network model is that game clients can join or leave without disturbing the network.

Counter-Strike is very fast paced, delay sensitive, and has the capacity to host tens

of players in one virtual world. It relies on UDP protocol with high packet rate, short

packet size and short packet inter-arrive times.

game
server

game
client

game
client

game
client

game
client

game
client

game
client

Figure 1.8: Client-server network model
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This dissertation will address the gaming trafffic delay problem in WiFi network.

The authors in [34] studied the throughput unfairness among homogeneous types of

TCP uplink and TCP downlink traffic, and proposed a solution of modifying TCP

ACK segments in order to control the throughput, and as a result achieved fairness

among the flows. As this solution, stands on modifying TCP ACKs which is clocked

by the WiFi AP at the speed of the propagation delay (which includes both wired and

wireless part of the network). The throughput of TCP is effectively reduced by this

approach. On the other hand, in this dissertation, we in the first place split the TCP

between the wired and wireless part, therefore the throughput of TCP is a function

wireless (MAC) propagation delay only. Subsequent to the we contain the congestion

control of wireless TCP’s counterpart. Intuitively our proposed approach effectively

improves the TCP throughput.

The authors in [35], provided fairness among TCP uplink and TCP downlink traffic

by dynamically adjusting the WiFi AP’s buffer size in a simulation environment. On

the other hand, our solution of ensuring fairness developed in SDN based framework

is production-ready and presents a functional proof on a real testbed. In a different

work, the authors in [36] address the TCP unfairness among TCP uplink and downlink

traffic by appropriately modifying 802.11e WLANs EDCF configuration to ensure

fairness. This solution is effective only on a specific standard of 802.11e WiFi, and

recent studies [37] have shown that the ease of 802.11e’s configurable parameters can

also lead to creating selfish WiFi nodes that throttles the throughput of other nodes.

On the other hand, our solution relies on higher network layer that works on wide

versions of 802.11 protocols including the widely deployed relatively configuration

robust 802.11b protocols.
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1.5 Virtual machine live migration

Many enterprises, not only the large-market companies like Netflix and Snapchat,

but also small-market technology startup companies rely in large part on the data

center for computing infrastructure or business [38] [39]. These companies often

impose multifarious resource demands (storage, compute power, bandwidth, latency)

on the underlying infrastructure [40]. Moreover, the resource demands may change

over time according to companies’ requirement. To provide an effective, flexible,

security, scalable, energy efficiency approach to manage the data center resources,

the data center visualization technology is proposed and implemented in the current

data centers like AWS from Amazon, Azure from Microsoft.

Data center virtualization uses software or firmware called Hypervisor that virtual-

izes hardware such as servers, switches, links to be virtual machines, virtual switches,

and virtual links. For example, a physical machine (server) can be virtualized as

multiple independent VMs with different hardware capacities and operating systems.

One of the powerful features provided by virtualization is Virtual Machine (VM)

live migration, which facilitates moving workloads within the infrastructure to bring

multiple benefits such as higher performance, improved manageability and fault tol-

erance. Moreover, live migration of VMs often allows workload movement with neg-

ligible downtime, minimal impact on workload, and no disruption of network connec-

tivity [41] [42].

Clark et at [43] proposed a VM live migration system which transfers Memory,

storage and application status (CPU state, registers,non-pageable memory) of the

virtual machine from the original server to the destination. The system handles the

live migration by two main techniques, Pre-copy memory migration, and Stop-and-

copy memory migration shown as Figure 1.9.

In pre-copy memory migration, the Hypervisor typically copies all the memory
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pages from source to destination while the VM is still running on the source. The

updated memory pages during this process are re-copied until page dirtying rate is

faster than the rate of copy. In Stop-and-copy memory migration, it transfers the

remaining memory pages and application status to the destination, then stops the

original VM and resume on the destination.

Guest VM Guest VM

Host A Host B

ResumeStop-and-copy
Iterative 
Pre-copy

Figure 1.9: VM Live Migration Pre-copy and Stop-and-copy phase

This dissertation will optimize the scheduling of VM live migration problem. The

cost of VM migration has been defined in different ways in terms of a combination of

network, physical server and application performance. However, some of them did not

consider the application performance degradation or some of them didn’t consider the

total performance degradation for all VMs. Liu at el. [44] defined total VM migration

cost as a synthesized formula that integrates migration latency, total network traffic

during migration, application downtime and energy cost. They evaluated their model

with a real testbed for 8 VMs and did not consider the application performance

degradation during the migration. Breitgand et al. [45] defined the cost as the portion

of the requests to the VM that are not satisfied by their deadline. They found

out that the more bandwidth the migration program uses, the faster the migration
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will finish but more requests will miss the deadline. Fei at el. [46] proposed an

interference-aware VM live migration strategy where the interference is defined as the

performance degradation that the migrating VM imposes on other VMs hosted on the

same source or destination server. The interference-aware strategy they proposed for

making decisions on which VMs are to be migrated comes from an empirical study.

Mann et al. [47] proposed a system named Remedy that uses a cost estimation model

to minimize the cost of VM live migration, where cost is the network traffic that is

generated due to migration. They assume that the destinations for the VMs are not

known apriori and tries to relocate VMs in such as to reduce the network traffic.

1.6 Contributions of this dissertation

SDN is one of the most significant innovation in the networking field in recent times.

This dissertation proposes a TCP join and split protocol on SDN platform to improve

the performance of TCP. This protocol is extended to improve TCP fairness in Smart

Grid Networks and to reduce delay in gaming traffic on WiFi networks. SDN is also

maturing rapidly in Data Center networks which provide virtual infrastructure for

the organization. This dissertation addresses the performance of virtual machines

(VMs) live migration by proposing a Mixed Integer Linear Programming (MILP)

model and a heuristic algorithm which exploits the TCP join and split protocol. The

main contributions of this dissertation:

1. Developed and implemented a novel ’join and split’ TCP framework based on

SDN that seamlessly joins and splits TCP flows to achieve better performance.

Linked-ACK concept is proposed to maintain the TCP end-to-end semantics,

and effectively control the buffer usage of the proxy network points. Provide a

platform to offload TCP fine tuning from clients and servers to ’join and split’

proxy points, for better controllability [20] [48].
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2. We propose a novel SDN-based aggregation-cum-scheduling framework to im-

prove fairness and as well as maintain the improved TCP throughput perfor-

mance found in traditional aggregation-only frameworks. Unlike conceptual

idea on simulation, we present a white-box design of the proposed framework by

highlighting the implementation functionalities equivalent to developing a work-

ing prototype. We extensively study the throughput performance and fairness

with appropriate analytically model validating the experimental results [18] [49].

3. We provide an SDN-based solution of TCP-splitting along with partially-controlled

wireless sending rate to ensure fair throughput. The fair use of TCP downlink

resources allows the UDP game traffic to effectively utilize the residual shared

resources such as AP buffer, which enables them to achieve reduced delay. We

present an extensive performance study on the real testbeds to demonstrate

the prowess of our approach. Our implementation is production ready, as it is

tested on the off-the-shelf network components [50].

4. We improved the performance of virtual machines (VMs) live migration by

proposing a Mixed integer linear programming (MILP) model and a heuristic

algorithm which exploits the TCP join and split protocol [51].
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Chapter 2

Join and spilt TCP for SDN network: design,

implementation and evaluation

2.1 Introduction

Today’s Internet is constantly growing with the addition of new sets of applications

and devices. A network increasing in scale should also renew and reinvent its core

functional needs and adapt to new design paradigms in order to provide improved

delivery performance. Software-Defined Network (SDN) [2] is one candidate paradigm

that provides effective network management and dynamic flow steering capabilities

that enable engineers to build efficient network services.

While the traditional switches and routers perform simple packet routing and

forwarding, the SDN-enabled switches of today, on the other hand, can intelligently

forward as well as dynamically steer the network traffic. Appropriate steering and

management of flows in the network can be helpful in improving the delivery perfor-

mance of the associated flows. In this work, we exploit SDN technologies and develop

efficient frameworks to provide improved delivery performance of the network flows.

To this end, we present an SDN-based end-user agnostic ’join-and-split’ framework

for TCP flows, that effectively maintains end-to-end flow semantics. By end-to-end

semantics, we mean that upon a successful packet delivery, an acknowledgment for

a data segment comes from its original destination host, and not from any other

intermediate system [52].

In the framework, all TCP flows that share a common path are aggregated at
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the beginning of this shared path. In a typical network, this may happen on a node

at the network edge. For instance, geographically deployed (cellular-based) smart

grid meters that send their data to different servers that serve different purposes

such as monitoring, and power load balancing [53]. Another strategic point near the

server-side part of the access network can form the other end-point of this shared

path. Between these two join and split points, a single long TCP flow can steadily

transfer the aggregated network traffic by exploiting the common congestion control

mechanism of this TCP. The significant task of this framework lies in effectively

synchronizing necessary information between join and split network points. To this

end, we provide a control plane functionality to the join and split network points

for enabling synchronized information transfer. Moreover, this framework needs to

function in a seamless manner without user interference. The aggregated flow must

be routed between the join and the split points of the network in a user agnostic

manner.

Our framework maintains synchronized TCP session states between split point-

server part of the flows, and the corresponding client-join point of the flows. TCP

connections carry state information in the form of TCP options that are negotiated

during the connection setup time [54], such as enable selected ACK, enable timestamp,

and enable MPTCP [55]. These options are lost when the TCP flows aggregate into

a single long flow. This dissertation exploits SDN controller to perform Deep Packet

Inspection (DPI) [56] on each SYN segment from client, and synchronize the parsed

TCP options to the split TCP point (proxy) to establish the connection with same

options as required by the client.

The two proxy points in the network split the TCP flows into three non-overlapping

independent flows. These separated flows will have different throughput, and unless

properly handled would break the end-to-end flow semantics [57]. In this work, we

propose a new concept of Linked-ACK, wherein the ACKs of server side flows are sent
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along the path from the server to the client. Therefore, the clients receive ACKs only

when the packet is received at the server. The Linked-ACK mechanism can help in

maintaining the end-to-end flow semantics. In addition, the Linked-ACK limits the

total buffered data proportional to the maximum (sender) congestion window size of

the corresponding flows. In this manner, the buffers of the join and split proxy nodes

are protected from a potential overflow.

While a number of recent works have been attempted to improve TCP performance

by tuning the server-side TCP parameters, our framework provide the designers more

controls to fine-tune the TCP flow and achieve a better performance. Thanks to the

SDN technologies, with the help of SDN controller we can provide global view and

control of the network information which can be appropriately utilized to improve

the network performance. For instance, to support Multi-Path TCP (MPTCP), end-

users are required to upgrade to compatible kernel-code. On the other hand, our

framework facilitates the ’join’ proxy to be used as MPTCP proxy point and help

the end-users to benefit from the advantages of MPTCP without modifying enduser

side kernel codes. We believe this will provide a flexible and scalable solution for the

legacy systems in the network.

In summary, the main contributions of this work are as follows:

1. Develop and implement a novel ’join and split’ TCP framework based on SDN

that seamlessly joins and splits TCP flows to achieve better performance.

2. Linked-ACK concept is proposed to maintain the TCP end-to-end semantics,

and effectively control the buffer usage of the proxy network points

3. Provide a platform to offload TCP fine tuning from clients and servers to ’join

and split’ proxy points, for better controllability.
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2.2 System Design and Implementation

Controller

client2

client1

client3

server

Proxy2

switch2

Proxy1

switch1

SDN Data Plane

SDN Control Plane

Figure 2.1: System Model. Clients, switches and proxies are wired connected. SDN
controller connects to both switches and is expanded to connect to both switches

Figure 2.1 shows the system model used throughout the dissertation. Each switch

is considered to support SDN’s OpenFlow protocol. A proxy computing node is at-

tached to each of the switches. An SDN controller is connected to these OpenFlow

switches and proxy nodes. The controller interacts with the switches through Open-

Flow protocol, and sends commands to the proxy nodes through a custom-designed

application-layer protocol running over TCP network stack. Without loss of general-

ity, three clients share the same path from Switch-1 to Switch-2. Each of the three

clients are represented as C1, C2, and C3. The join proxy is represented as P1, and

the split-proxy is represented as P2. The server are represented as ’S’.
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2.3 SDN-based TCP Join and Split Framework

In our framework, the TCP flows from each of the clients are combined to form a

long TCP flow along a shared path of the network. The SDN controller generates

a Unique IDentification (UID) number, and associates it to each of the flows to be

aggregated. The join-proxy attaches the UID to each received data, and sends it to

the split-proxy node. The received data on split-proxy can split the flows properly

with the help of UID. As shown in Fig. 1, proxy1 joins TCP flows originated from

three different clients, namely C1, C2, and C3. Proxy2 splits the flow from each

client, and sends them to the server.

Clients and the server need not necessarily learn any information from the network.

To make the join-proxy and split-proxy transparent to both clients and the server, the

SDN controller is programmed to setup flow tables to create fake the TCP connections

between clients and join-proxy node, and subsequently between the split-proxy and

the server. While the clients assume that they are transmitting data to the server,

the data is actually sent to join-proxy node. A simple join-and-split framework has

been presented in [20]. In this join-and-split framework, we need to ensure that the

end-to-end semantics are maintained. Each TCP connection from every client to the

server is divided into three individual TCP connections at the join and split proxy

points. Each of these individual TCP connections adjusts the throughput in its own

path, and maintains its own TCP states. Typically, as incoming flow rate is higher

than the output rate at the proxy node, it creates an unstable queue. Therefore, it

is necessary to maintain the end-to-end semantics, and also maintain queue stability.

In this dissertation, we propose a "Linked-ACK" to link the ACKs of three individual

TCP flows through custom-defined Open- Flow protocol in the switches.
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Controller

Step2: 
1) Generate new  Unique ID (UID) of C1 to S
2) Generate new Source Transport (NSrcPort) of C1 to S

Step3: Send
1) Source IP
2) Source Port 
3) UID 

Step5: 
Insert Flow table: Fake TCP Connection
C1 to S switch to C1 to P1 

Step6: 
Insert Flow table: Fake TCP Connection
P2 to S switch to C1 to S 

Proxy2

switch2

Proxy1

switch1

Step1: 
Send C1 to S

Step4: Send
1) Source IP
2) Source Port 
3) UID 
4) NSrcPort

SDN Control Plane

Figure 2.2: SDN join and split control plane. When a new SYN segments come to
switch, the SDN control plane execute the program following the step 1 to 6
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client1 server

Proxy2

switch2

Proxy1

switch1

SDN Data Plane

Step1: 
c1 to s

Step2: 
c1 to Proxy1

Step3: 
1) Get UID by matching source IP and port
2) construct new packet UID+length+data

Step4: 
Proxy1 to Proxy2
UID+length+data

Step5: 
1) Get UID, length, data by parsing packets
2) Get Socket by matching UID
3) Create Socket with NSrcPort if Socket is NULL
4) Send(Socket, data, length)

Step6: 
Proxy2 to s

Step7: 
c1 to s

Figure 2.3: SDN join and split data flow initiation using TCP SYN segments

2.3.1 SDN-based TCP join and split

SDN supports both proactive and reactive ways of flow routing. Proactive way pop-

ulates flow tables ahead of the traffic coming from the switch. On the other hand,

the reactive way handles the flows ’on the fly’ depending on the information provided

by the incoming flows. In our work, we consider reactive way of routing the flows.

Without loss of generality, we consider that the routing table entries directing flows

from, and to the (join and split) proxy nodes are pre-installed. The first segment

of the incoming TCP flow from each client is forwarded to the SDN controller for

analysis. The sequence of steps in the flow table setup process is shown in Fig 2.2.

Switch-1 forwards the first packet (TCP SYN packet) from C1 (destined towards S)

to the SDN controller.

The SDN controller analyses the received segment, extracts the client’s informa-

tion, and distributes this information to the split and join proxy points. The SDN
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controller then generates a UID, and creates a new TCP transport (namely, NSrc-

Port) between the split-proxy point and the server, which is shown in step2 in the Fig

2.2. In a special case, when the new flow is one of the subflows of an MPTCP flow,

they would share the same UID. The UID with associated flow information is the key

component used in splitting and joining of flows. While a standard (out-of-the-box)

SDN controller lacks any control of the proxy, we extend the SDN control plane func-

tionality to allow the controller to manage the proxies attached to each OpenFlow

switch with a custom application protocol developed over TCP.

After analyzing the SYN packet, the controller computes the routing path and

creates a fake TCP connection between the client and join-proxy point. To this

end, a flow table entry substitutes the server information with join-proxy point’s

information in the specific fields of data link layer, network layer, and transport layer

of the incoming flow from the client. This modified TCP flow can be accepted by

the TCP server of join-proxy and vice versa. In a similar way, another fake TCP

connection is established between split-proxy and the server. This TCP connection

fakes the TCP client information (which typically comes with an arbitrary source port

number assigned by the client’s OS). It is worthwhile to note that the TCP flow from

split-proxy to the server with random source port can’t be associated with the client

information in the SDN controller. Therefore, split-proxy starts the TCP connection

with a given source port NSrcPort for SDN controller to retrieve client information.

After the flow tables are configured, the join-proxy receives data from clients

and retrieves the UID and the clien’s information (i.e., source IP address, and port

number). Then it constructs a new packet containing the following application layer

information: "UID+length+data", where ’length’ is the total length of the constructed

packet). Split-proxy point retrieves the UID and data, and pushes the data to a pre-

established socket, as shown as Fig 2.3.

We consider a 2-Byte UID thereby supporting a maximum of 65532 concurrent
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TCP flows, and use ’source IP and port-number’ information to identify these flows.

The TCP flows come with different TCP options that needs to be handled properly

when the split-proxy point establishes a new connection with the server. With the

help of SDN technologies, we can perform deep-packet inspection on these packets,

and forward the necessary TCP header configuration information to the split-proxy.

The split-proxy point can then establish a TCP flow with same configuration as if

it was an original client exchanging packets with the server (hence the name ’proxy’

points). The SDN controller is capable to inspect the application-layer information

over TCP. Therefore, by extending application layer functionality, our system (in

future) can also support application-layer join and split frameworks.

2.3.2 Preserving End-to-End Flow Semantics with ’Linked-ACK’

Controller

Step1: Insert Flow Table 
Match:
1)ACK from Proxy1 to clients 
Actions:
1)Fake TCP connection
2)Cache Packet 

Match: ACK from Proxy2 to 
Proxy1
Actions:
1)Release ACK from proxy1 
to clients
2)Output

switch2switch1

Step2: Insert Flow Table
Match:
1)ACK from Proxy1 to Proxy2 
Actions:
1)Cache Packet 

Match: ACK from s to clients
Actions:
1)Fake TCP connection
2)Release ACK from Proxy2 
to Proxy1
3)OutPut

Proxy2 to Proxy1
If(SYN==1) skipEnqueue

s to c1
s to c2
s to c3
If(SYN==1) skip

Aggregated ACK
+ extra ACK

Release ACK_Join

Proxy1 to c1
Proxy1 to c2
Proxy1 to c3
If(SYN==1) skip

Enqueue

Join ACK - extra ACK

Release ACK_Client

SDN Data Plane

SDN Control Plane

Figure 2.4: Linked-ACK. It shows the ACK collection, caching and distribution with
relative installed flow tables
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In this section, we describe the "Linked-ACK" framework that we have developed

to maintain the end-to-end semantics of the flows. As the TCP flow is split into

3 independent TCP flows, each of the resultant split flows will have its own TCP

congestion state, and throughput rate. Assuming the client is sending data at a

constant rate, the join-proxy maintains a buffer to store the received data from the

client. While a larger buffer size is expensive, a small buffer size on the other hand

negatively impacts with a reduced TCP throughput.

Our proposed ’Linked-ACK’ provides a better solution, and bounds the buffer

to a finite size. For brevity, let us represent the different ACK messages along a

server-client network path as follows: (i) The ACK message ’from server to split-

proxy’ be represented as ACK split, the ACK message from ’split-proxy to join proxy’

be represented as ACK join, and the ACK message from ’join-proxy to client’ be

represented as ACK client. Our ’Linked-ACK’ framework operates in a lock-step

fashion wherein the ACK join is not released until its associated ACK split packet

is released. In a similar way, an ACK client is received only upon the release of its

associated ACK join. We customize the standard OpenFlow protocol, and add the

following four actions: caching ACK join, caching ACK client, release ACK join, and

release ACK client. The modified flow table entries for routing the ACK packets are

shown in step1 and step2 in Fig 2.4. The ACK client is cached (instead of being

released) after the fake TCP connection is established on the switch-1. This fake

TCP connection directly connects to the join-proxy node. In a similar way, ACK join

is cached on the switch-2.

The ACK join, and the ACK client are stored in a FIFO queue data structure,

with an exception to the SYN+ACK segment which will be released immediately to

complete the three-way handshake. To guarantee that no ACK segments are lost,

the length of the FIFO queue is set to a size larger than the sender’s total congestion

window (CWND) size. Even when sender-side CWND is large, our approach works
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due to the TCP’s ’cumulative ACK’ mechanism wherein one ACK message represents

the summary of received in-order bytes.

The Algorithm-1 describes the release of ACK-join segment on split proxy node

to the join proxy node. We maintain an aggregated ACK (namely, aggregateACK)

for all TCP-split segments. This is done because the delayed ACK has to combine

several ACK responses together into a single response. As TCP uses the cumulative

ACKs, our ’Linked-ACK’ releases ACKs based on the increased ACK value, not on

the number of ACK segments. To this end, the IncreasedACKValue() function returns

the increased ACK value by comparing ACK values with the previous ACKs. For a

corner case, this function returns 0 if the ACK number is 0, which is caused by SYN

or RST flag.

The extra information such as UID and length which is attached to the data

message has to be taken into account in the ACK join. Therefore, a function called

extraACK() adds an extra ACK value to the aggregated ACK. Subsequently, by

using a loop this algorithm keeps checking for an increased ACK value in the ACK

join message stored in a queue. If ACK join has smaller increased ACK value than

the aggregated ACK segment, the ACKjoin is dequeued and sent to the join-proxy.

The release ACK Client function which runs on join-proxy nodes works in a similar

fashion. This function releases the ACK-client messages to the clients. However,

with the following difference: the added extra ACK has to be removed to tally extra

(UID+length) data cached in the join-proxy node.

2.3.3 Linked-ACK Framework Based TCP State Machine

Fig 2.5 shows the extended TCP state diagram with Linked-ACK implemented on

the proxy nodes. The traditional TCP state diagram [8] describes the different states

of a TCP sender/receiver. On the other hand, our extended state diagram in Fig. 5

describes the TCP sender and TCP receiver inside the proxy aggregation node. In the
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Algorithm 1: Release ACK function that runs on the split-proxy node
1: aggregateACK += IncreasedACKValue(ACK split)
2: aggregateACK += extraACK(ACK split)
3: while true do:
4: if increasedACK join > aggregateACK then
5: return
6: end if
7: aggregateACK -= increasedACK join
8: pop and send ACK join
9: end while

proxy aggregation node, the TCP receiver (server) receives TCP segments from end

host (clients). An application aggregates and buffers the received segments and ACK

messages, appropriately. A TCP sender maintains a connection with the TCP split

proxy node. Figure 5 shows the exchange of data and ACK segments between senders

and receivers. In addition to the traditional states, the following extra states are used:

i) PROXY RECEIVER ESTABLISHED, ii) PROXY SENDER ESTABLISHED, iii)

DATA BUFFERED, iv) RECEIVER RCVD, v) SENDER SENT, AND vi) ACK

BUFFERED.

In PROXY RECEIVER ESTABLISHED state, the TCP receiver (server) accepts

TCP connections from end-host clients. In the RECEIVER RCVD state the received

data from the clients are pushed into a buffer, and the TCP server transitions to

DATA BUFFERED. Senders in DATA BUFFERED state read data from the buffer

that are fed by the receivers. In PROXY RECEIVER ESTABLISHED state, when

ACK split message is received from the split proxy node, the join proxy node’s TCP

client transitions to ACK BUFFERED state and releases the buffered ACK join

messages to the appropriate receivers. To guarantee that no data segments are lost

in the buffer, the minimum buffer size is set to the maximum receiver CWND size.
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Figure 2.5: TCP state diagram. This diagram show hows how Linked-ACK couples
the proxy sender and receiver TCP state
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2.4 Performance Evaluation and Results

The network topology shown in Fig 2.1 is used for our performance study. The consid-

ered network is emulated in a Mininet network environment [5]. Hosts in the Mininet

run in different network namespaces with their own set of network interfaces, IP and

routing tables. Switches of Mininet support OpenFlow to enable SDN functionali-

ties. Links in the Mininet emulate bandwidth, delay, and packet loss probability. The

popular Floodlight [6] open-source SDN controller is used for managing flow tables in

our experiments. All the TCP flows use the default Linux kernel configuration, but

the MultiPath TCPs are installed from [58].

2.4.1 Aggregated TCP Goodput Performance

In this section, we show that the aggregated TCP flow can substantially improve the

TCP goodput. Using the topology shown in Fig 2.1, we simulated up to a maximum

of 800 concurrent TCP flows. The bottleneck link from switch-2 to the server is set to

1.5 Mbps, and all other links are configured to 1 Gbps. The switch to proxy links are

considered to have unrestricted bandwidth. The average TCP goodput performance

of aggregated TCP, and its non-aggregated TCP counterpart is shown in Fig 2.6. The

goodput performance is shown as values normalized using the total link bandwidth.

We used 95% confidence. Each test lasted for about 180 seconds. From Table 2.1, it is

clear that our approach is potentially scalable as the goodput remained consistently

higher with an increase in the number of flows. On the other hand, the regular

TCP goodput suffered throughput degradation with an increase in the number of

flows. Therefore, we can conclude that the aggregating TCP flows yields better TCP

throughput even as the number of TCP flows increases.
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Figure 2.6: Goodput comparison of aggregated TCP flows vs equivalent regular TCP
flows

Table 2.1: Aggregated TCP throughput and confidential interval

Flows Regular TCP throughput Aggregated TCP throughput
Mean Upper Lower Mean Upper Lower

1 0.9517 0.9518 0.9516 0.9438 0.9442 0.9435
100 0.9116 0.9178 0.9054 0.9431 0.9437 0.9425
200 0.8806 0.8987 0.8626 0.9439 0.9444 0.9434
300 0.8594 0.8769 0.8418 0.9441 0.9446 0.9437
400 0.8582 0.8907 0.8257 0.9443 0.9445 0.9441
500 0.8455 0.8669 0.8242 0.9444 0.9446 0.9443
600 0.8138 0.8338 0.7938 0.9446 0.9447 0.9444
700 0.7886 0.8028 0.7938 0.9445 0.9446 0.9445
800 0.7783 0.799 0.7576 0.9443 0.9447 0.9440

Flows : Number of concurrent TCP long flows
Mean : Mean value of TCP goodput/total bandwidth.
Upper : Confidential interval upper bounder.
Lower : Confidential interval lower bounder.
The confidential level is 95%.
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2.4.2 Linked-ACK Throughput Performance

With our Linked-ACK’ framework implementation, the throughput performance in

the sub-path between ’split-proxy and the server’ path gets synchronized with the

throughput along the sub-path between ’client and join-proxy’. Fig 2.7 shows the

TCP throughput performance of a long TCP flow from a single client to the server

with ’Linked-ACK’ framework. It is clear that both the flows have about the same

throughput performance. Fig 2.8 shows the total received bytes of the flows in the

respective sub-paths of client to join-proxy, and split-proxy to server. It is clear that

these flows have almost the same number of total received bytes, which indicates the

fact that they are well synchronized.
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Figure 2.7: Linked-ACK throughput of the client to the join-proxy (show as client)
the split-proxy to the server (show as server). These two flows synchronized by
Linked-ACK.

2.4.3 Proxy Buffer Analysis

Fig 2.9 shows a time plot of a client’s congestion window size and the buffer sizes of

join-proxy and split-proxy nodes. The client congestion window size is usually higher

than the buffer size of each proxies. By exploiting TCP’s flow control mechanism,

the proxy nodes can limit the maximum receiver window size to control the sender
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Figure 2.8: Linked-ACK Total received byte of the client to the join-proxy (show as
client ) the split-proxy to the server (show as server). Two lines are almost overlapped

client’s congestion window size. Our framework guarantees zero packet loss on the

proxy application layer, when the minimum buffer size of each TCP flow is set to

the maximum receiver window size. While the buffer size in the proxy is mostly

small for most of the time, it only shoots up when the TCP congestion window size

reduces (due to packet loss). Also, the total buffer size of join-proxy and split-proxy

is typically not larger than the TCP congestion window size.
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Figure 2.9: Linked-ACK client congestion window size and two proxies queue size.
The queue size of each proxy is always smaller than the congestion window size
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2.4.4 Fairness Application

In this section, with the help of a weighted round robin scheduler in our flow joining

framework we show that a better TCP fairness among different flows can be achieved.

However, this application in its native form doesn’t preserve the TCP end-to-end

semantics, and it also requires unbounded buffer size making the implementation

less practical. We hence integrated this fairness framework with our linked-ACK to

solve the unbounded buffer size problem and preserve end-to-end semantics. Fig 2.10

and Fig 2.11 respectively show the flow of data and ACK segments in our proposed

aggregation framework with Weighted Fair Queuing (WFQ). Figure 12 compares the

throughput of 3 TCP long flows in the absence of fairness framework. We consider

same round trip time (RTT) for all of the flows. Figure 13 shows the throughput

of 3 long flows with the integrated fairness application. We use Jain’s fairness index

to study the throughput fairness of flows in our experiments. Figure 2.14 shows the

Jains fairness index value of 3 TCP flows of traditional setup in Fig 2.12, and 3

TCP flows with proposed fairness framework integrated setup in Fig 2.13. The Jains

fairness index F is shown in Eq 2.1. where xi represents the throughput of flow-’i’, n

is the total number of flows, and F = 1 stands for complete fairness where each gets

an equal share of the bandwidth. The average fairness index of Fig 12 and Fig 13 are

0.8914 and 0.9993. The integrated fairness application provides close to 1 fairness is

12.1% better than original TCP flows.

F (x1, x2..., xn) = (∑n
i=i xi)2

n
∑n
i=i x

2
i

(2.1)

2.4.5 Wireless Application

In this section, we study the performance of the network in the presence of wirlessly

connected clients. In this network, each TCP flow experiences packet loss from both
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Figure 2.10: Schematic diagram showing the flow of data segments between clients
and server in our Proposed network framework with flow aggregation using Weighted
Fair Queue (WFQ)
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Figure 2.11: Schematic diagram showing the flow of ACK segments between clients
and server in our Proposed network framework with flow aggregation using Weighted
Fair Queue (WFQ)
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Figure 2.12: Three TCP flows unfair throughput. TCP receive throughput of three
TCP flows with TCP CUBIC congestion control algorithm.
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Figure 2.13: Three TCP flows fair throughput. TCP receive throughput three TCP
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Figure 2.14: Three TCP flows fair throughput. TCP receive throughput three TCP
flows with weighted round robin application on proxy
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wireless and wired parts of the network. Join proxy node placed at the boundary of

wireless and wired network protects the influential factors of the wireless TCP from

not being carried over to the wired part of the network, vice versa. In our simulation,

the wireless network link loss rate is set to p1 = 1causeapacketlossrateofp2 = 1

The closed-form expression [59] of TCP throughput T is shown in Eq 2.2:

T = MSS × C
RTT ×√p

(2.2)

where MSS is the Maximum Segment Size, C is a constant value, and p is the link

loss rate. The queue loss is factored-out by setting the queue size to a large value.

Without the proxy-based framework, the throughput T1 is given by Eq 2.3,

T1 = MSS × C
(t1 + t2 + ∆1)×

√
p1 + (1− p1) ∗ p2

≈ MSS × C
(t1 + t2 + ∆1)×√p1 + p2

(2.3)

where p1 and p2 are the link loss rates on the respective links of client1-switch1 and

switch2-server, t1 and t2 are the propagation delays on the respective links of client1-

switch1 and switch2-server, and ∆1 is the total queuing delay along the path from

client1-switch1-switch2-server. In our simulation, unless otherwise specified the p1

and p2 values are set to 1%, respectively. The propagation delays t1 and t2 are set to

40 ms and 40 ms, respectively.

On the other hand, the TCP throughput with our proposed proxy-based frame-

work is given by Eq 2.4

T2 = min( MSS × C
(t1 + t2 + ∆2)×√p1

,
MSS × C

(t2 + ∆3)×√p2
) (2.4)

where ∆2 is the total queuing delay along the path from client1-switch1- proxy1-

switch1-switch2-proxy2-switch2-server, ∆3 is the total queuing delay along the path

from proxy2-switch2-server. As shown in Eq 2.4, T2 is computed as the minimum
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throughput from the following two paths: between client and join-proxy node, and

split-proxy node to the server. Though the proxy node separates the respective

packet-losses from wired and wireless counterparts, the delay is influenced by the

entire network. Therefore Eq 2.5,

t1 + t2 + ∆2 > t2 + ∆3 (2.5)

The ratio of throughput from the respective frameworks is given in Eq 2.6.

T1

T2
=

(t1 + t2 + ∆2)×√p1

(t1 + t2 + ∆1)×√p1 + p2
(2.6)

Fig 2.15 shows respective throughput T1 and T2, and their average values were

found to be 0.915 Mbps and 1.12 Mbps, respectively. Fig 2.16 shows the respective

total delay values of t1 + t2 + δ1 and t1 + t2 + δ2. By substituting the values to the

throughput ratio T1/T2, the simulation data 0.915
1.12 = 0.8169 matches with the right

side is Eq 2.6 which is 0.8145.

Hence the matching TCP throughput model validates our proposed ’linked-ACK’

based flow aggregation framework, and also proves that the TCP performance is

improved. The extra delay caused by large queue size in proxy shown as Fig 2.16 can

be reduced by assigning a smaller maximum receiver congestion window size value on

the proxy-side.

2.4.6 MPTCP Application

MPTCP was proposed as an extension to TCP extension in order to enable multipath

forwarding. It provides the ability to simultaneously use multiple paths between peers

to improve robust data transport and throughput [55]. MPTCP can be feasible on the

devices with two or more network interfaces, such as latest smart phones and tablets

that come with WiFi and cellular radios. With MPTCP it is also possible that the
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Figure 2.15: TCP throughput performance in a wireless network environment
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Figure 2.16: TCP delay performance in wireless network environment
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different subflows from wireless network can be forwarded to a same path towards the

server on the wire network. In our framework, the linked-ACK based join-proxy node

is placed at the start of the overlapped path converts MPTCP to be regular TCP. In

this setting, MPTCP has to be typically installed on both client and server. By using

our ’linked-ACK’ based proxy node framework in this setting, we can have multiple

benefits. For instance, the server doesn’t need to have MPTCP installed as the proxy

node aggregates flows into one native TCP flow. In this manner the drawback of

MPTCP sub-flows propagating on the overlapped path can be avoided. Moreover,

’linked-ACK’ achieves better goodput by requiring less bytes as compared to having

12 byte TCP option in each TCP segment of MPTCP. In the simulation, the topology

of MPTCP is slightly different from the one in Fig 2.1. Instead of having one path

from client1 to switch1, client1 has two interfaces connecting two non-overlapped path

to the switch1. Client1 establishes the MPTCP connection with the join-proxy node,

and two subflows transfer data from two different path. Join-proxy only mark the

source IP address of the first subflow to the socket. All data received from MPTCP

socket are attached with the flow ID of the first subflow. Therefore, the split-proxy

establishes one new TCP flow with server by using the first subflow’s IP address. The

flows between join-proxy and split-proxy, and split-proxy to server run on regular TCP

with CUBIC congestion algorithm. Fig 2.17 shows that the throughput received on

the server matches well with the total MPTCP throughput performance, and the

throughput drop on regular TCP reflects well to all MPTCP subflows.
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Figure 2.17: Multipath TCP throughput with proxy. Two subflows of MPTCP suc-
cessfully convert to conventional TCP. The Linked-ACK preserved the end-to-end
semantics and synchronized well with MPTCP subflows

2.5 Summary

In this work, we have proposed and implemented a generic join-and split SDN frame-

work of aggregating and splitting TCP flows, with ’linked-ACK’ mechanism to pre-

serve end-to-end semantics. The framework developed is implemented in an user-

agnostic manner so as to make it more practical. With extensive simulation ex-

periments, we have demonstrated the efficacy of our proposed framework. We have

showed the following benefits as achieved by our proposed framework: i) achieves

an improved TCP goodput performance, ii) improved buffer usage at the respective

split and join nodes, iii) provides fairness among different client flows, iv) improved

wireless network throughput, and v) integrates MPTCP based proxy node which

provides a hybrid implementation of supporting MPTCP nodes to traditional TCP

flows. Despite that our framework also improves goodput performance in MPTCP

environment. In future, we plan to extend this work to support application-specific

optimization by exploiting our flow aggregation and splitting framework.
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Chapter 3

Achieving Throughput Fairness in Smart Grid Using

SDN-Based Flow Aggregation and Scheduling

3.1 Introduction

Data communication is the key enabler in smart grid networks. The deployment of

communication paradigm in the power domain yields benefits to all participants in the

system such as utility companies, governments, and consumers. Typical smart grid

network spans a vast geographical area connecting many devices such as Smart Me-

ters (SMs). The purpose of SMs is to enable continuous monitoring and better utiliza-

tion of resources at the customer-end users (i.e., the electricity consumers). Some of

the benefits include automatic billing, load balancing, remote connect/disconnect [26].

The latest SMs are advanced with processing capabilities, and are integrated with full

network transport suite such as TCP or UDP.

An essential requirement of SM-based communication includes the reporting of

meter-reading information to the end-server (for performing fault-detection, and load

shedding), in a timely manner. From the networking context, this requires the com-

munication infrastructure to provide a homogeneous delivery rate to all SMs. There

are several factors a communication infrastructure needs to consider in order to en-

able all SMs to deliver data with a fair throughput performance. One factor includes

heterogeneous propagation delay. Typical in smart grid environments, the data from

SMs in different geographical region would experience different propagation delays

before reaching the end-server.
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Latest research encourages the communication of SMs over wireless networks such

as cellular Long-Term Evolution (LTE) [26], [60]. The LTE-based communication

has its own benefits such as geographically wide coverage range (in the order of few

kms), which is an essential design requirement for the ubiquitously deployed SMs. In

addition to large coverage range, LTE also supports high data rates. From the base-

station, the SMs’ data is transported over wired network to the end-server. Much

of the existing studies on throughput frameworks in smart grid communications con-

siders only the wired infrastructure [28]. In order to be future-proof, it is vital to

consider both LTE and wired communication substrates in the infrastructure provid-

ing the smart grid services.

Even in the wired smart grid networks, the conventional way of enabling end-

to-end transport between each SMs and the end-server causes throughput degrada-

tion [27], [61]. Because a large number of short end-to-end TCP flows form a chaotic

performance in the network causing more retransmissions and connection failures.

As the individual TCP flows do not get sufficient time to sense the present conges-

tion condition in the network, they fail to tune their sending rates, thereby severely

degrading the delivery throughput performance. To combat such scenario, recent

works [28], [29] have advocated the use of aggregate-points in the network.

The aggregator nodes (in the network) function in the form of an application

layer on top of the regular TCP transport protocol suite. This application-layer

combines several short TCP connections (mice flows) into a single long TCP flow (also

known as ‘Elephant flow’). The TCP sender of the long flow can effectively sense the

congestion in the network, and thereby adapts the sending rate appropriately. In this

manner, the associated clients such as SMs can benefit from an improved throughput

performance. While such aggregation point based approaches only help in improving

the throughput performance, we argue in this dissertation that such frameworks would

not provide fairness to individual SMs, which is an important requirement in smart
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grid communications.

For illustration, let us consider a typical urban scenario, with end-server located

at the city center that is connected to SMs distributed across a vast geographical

area covering the outskirts of the city. A group of (spatially close) SMs are connected

wirelessly over LTE base stations, called eNodeBs (eNBs). Each region has multiple

eNBs deployed, and the number of eNBs are based on the number SMs to be covered

in an area (for example, city center sees a denser SMs (so more eNBs) than in the

outskirts). Thanks to the advancement in LTE allowing cloudlet-based computing

frameworks such as SMORE [62], we can perform aggregation of SM flows right at

the respective eNBs. Subsequently, aggregation can be done at the joining points of

multiple long flows in the wired network part (as observed in [28]).

The resulting communication framework will have a number of aggregation points

in tandem, along the path from SMs to the end-server. The individual long TCP

flows between aggregation points sense the congestion at the frequency of received

ACK messages, and subsequently control the sending rates at the clock of Round-Trip

Times (RTTs), i.e., the time between a data sent and its ack received. The RTTs are

comprised of two factors of delay, namely link propagation delays, and link queuing

delays. To avoid bufferbloat scenarios, the network engineers recommend the use of

small queue size at the network routers. Therefore it is practical to assume negligible

queueing delay in the network with small queues. In the case of smart grid networks,

with the SMs typically distributed in a geographical distance (in the orders of tens

to hundreds of kilometers), the propagation delay becomes a predominant factor that

causes heterogeneous RTTs, for different aggregation points. This becomes the root

cause for the unfairness among SMs across different regions.

To the best of our knowledge, we are the first to propose a framework to enable fair-

ness to SMs (insensitive to their geographical distance). Unlike existing approaches

our model comprehensively captures both the wireless and wired scenarios of a typical
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smart grid. The efficacy of our proposed framework is demonstrated by the fact that

fairness is achieved without much loss in throughput performance; typically obtained

from an aggregation-only framework.

Fortunately, with the advent of Software-Defined Networks (SDNs) the network

becomes more accessible, manageable, and programmable than ever. Using SDN, we

address fairness among multiple flows with our novel implementation-based ‘Aggregation-

and-Scheduling’ framework. Unlike existing works such as [28] that proposed the

conceptual use of aggregation idea in a simulation environments and demonstrated im-

proved performance; we on the other hand take a practical approach of an implementation-

based aggregation-and-scheduling framework, with a white-box design that describes

intricacies involved in a real working prototype. In summary, our contributions in

this work are as follows:

• We propose a novel SDN-based aggregation-cum-scheduling framework to im-

prove fairness and as well as maintain the improved TCP throughput perfor-

mance found in traditional aggregation-only frameworks.

• Unlike conceptual idea on simulation, we present a white-box design of the pro-

posed framework by highlighting the implementation functionalities equivalent

to developing a working prototype.

• We extensively study the throughput performance and fairness with appropriate

analytical model validating the experimental results.

3.2 Smart Grid Network Model

We consider a typical urban scenario smart grid environment, wherein the SMs are

connected through LTE User Equipments (UEs) to the wireless LTE eNBs, and the

several eNBs are connected to the end-server (located at the city center) via wired
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network. We considered the UDP transport from SMs to eNBs, and TCP transport

from eNBs to the end-server. The reason for UDP is to fully utilize the wireless

bandwidth, and also to have fairness among the first-mile LTE wireless uplinks. In

our ns-3 wireless experiments, we have obtained a success rate of receiving 99% packets

at wireless links for a wide range of input traffic rates (between 50 packets per second

and 500 packets per second), with each packet of 1500 bytes in length. In future,

for higher traffic loads, without loss of generality, a reliable UDP protocol can be

considered to further improve the success rates. The fairness at the wireless uplinks

between multiple UEs and eNBs comes from the following factors: (i) in a smart

grid all nodes are static i.e., the UEs, SMs, and eNBs. Static nodes create fixed and

same channel conditions across all UEs [63], and (ii) the LTEs default proportional

fair MAC scheduler allows a round-robin type of switching among all the backlogged

UEs. Our experiments showed accurate fairness among all UEs connected to the same

eNBs. The results are not show due to page constraints.

The schematic diagram of the described network is shown in Fig. 3.1. We have

numbered different eNBs from 1 to N from left to right (i.e., from outskirts region

towards city center to the end-server). We consider multiple SMs close in a colony

are connected over wired Ethernet links to a LTE UE, which is in turn connected

wirelessly to an eNB. To capture a scenario of denser SMs in city-center, and relatively

sparse SMs in the outskirts, we use one UE at the edge of the network and increase

the number of UEs towards the server. This naturally captures denser SMs towards

the path to the server node. The UDP packets received (from multiple SMs) at eNB

are sent via a single TCP sender in the wired-part of the network. As the wireless

LTE ensures fairness (through appropriate MAC scheduling and static nodes), we

need to provide fairness in the wired-part of the smart grid.

We consider TCP Reno version throughout this dissertation. The TCP reno

version is a widely used variant of TCP in the Internet. As we focus on long TCPs,
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Fig. 1. Schematic diagram of OpenFlow network with Aggregator-cum-
Scheduling (AS) nodes. For brevity, SDN controller is not shown. Also the
smart-meters in suburb, and citycenter regions are not shown.

connected to the same eNBs. The results are not show due
to page constraints.

The schematic diagram of the described network is shown
in Fig. 1. We have numbered different eNBs from 1 to N from
left to right (i.e., from outskirts region towards city center to
the end-server). We consider multiple SMs close in a colony
are connected over wired Ethernet links to a LTE UE, which is
in turn connected wirelessly to an eNB. To capture a scenario
of denser SMs in city-center, and relatively sparse SMs in
the outskirts, we use one UE at the edge of the network and
increase the number of UEs towards the server. This naturally
captures denser SMs towards the path to the server node. The
UDP packets received (from multiple SMs) at eNB are sent
via a single TCP sender in the wired-part of the network. As
the wireless LTE ensures fairness (through appropriate MAC
scheduling and static nodes), we need to provide fairness in
the wired-part of the smart grid.

We consider TCP Reno version throughout this paper. The
TCP reno version is a widely used variant of TCP in the
Internet. As we focus on long TCPs, we consider the per-
formance effects comprising the congestion avoidance phase
of TCP. The effects of TCP receiver window and network
link bandwidth is considered to be sufficient enough to not
affect the throughput performance. Without loss of generality,
we assume packet loss as the indication of congestion, and
we consider a simple identical and independent probability
distribution for the packet loss.

As shown in Fig. 1, we have two eNBs connected to
first switch, where these two long TCP flows are aggregated
into one composite long TCP flow through the Aggrega-
tion/Scheduler (AS) node 1. eNB-3 joins switch 2 wherein it is
mixed with the incoming aggregated flow at AS node 2. This
represents a typical scenario of many flows getting aggregated
towards the proximity of the server, eventually making the
server’s first hop as the bottleneck link. In the next section,
we describe the proposed aggregation/scheduling framework
and its implementation.

IV. PROPOSED SDN-BASED AGGREGATOR/SCHEDULER
FRAMEWORK

Figure 2 depicts the whitebox functional description of
the Aggregator/Scheduler (AS) node and the associated SDN
framework . For brevity, we depict the model with one AS
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Fig. 2. Internal functionality of the proposed framework with single aggrega-
tor/scheduler node. For brevity, only the connection-sequence related to eNB-1
is shown.

node. The AS node implementation design is conceived with
following goal:

• Transparent Aggregation and Scheduling: To enable
the framework to be market-ready, the aggregation and
scheduling of flows need to be performed in a seamless
manner, without explicit modifications at the end-hosts,
namely the UEs and the servers.

To achieve aforementioned design goal, we believe the
SDN [9] would be an ideal choice based on the offered
features such as: (i) centralized controller logic, and decoupled
data and control planes for better manageability, and (ii)
flow-based programmable control logic for enabling flexible
network services. As seen in the Fig 2, the (SDN) controller
primarily connects with all the SDN-based OpenFlow switches
in the network. The controller manages the control plane of
the network to administer flow-level management by writing
appropriate flow-entries at the switches.

A switch upon receiving the first packet of the TCP flow
(either from the eNB or from the preceeding AS node) will
forward it to the controller, for appropriate decision making. In
our scenario, the first TCP packet TCP-SYN is forwarded by
the switch to the controller. The controller with the available
topology information, will compute an appropriate flow entry
to direct this flow to the near-by AS node (an end-host). Upon
writing this flow-entry, all the future packets of this flow will
be diverted (by the switch) to the AS node. To enable the
TCP receiver 1 inside the AS node to further receive and
process the incoming segments, an additional flow-entry is
programmed at the switch (by the controller). This additional
entry enables the switch to modify/rewrite the destination-
field of the TCP header for the eNB-1’s flow with AS node
information. A similar entry, is made for return traffic carrying
ACK packets from TCP receiver in AS node. Therefore, the
eNB is abstracted from this rerouting logic to the AS node.

Each TCP receiver is associated with an independent queue
for buffering the incoming packets. Without loss of generality,
we consider this buffer to be sufficient enough to store incom-
ing packets. To enforce fairness, the scheduler should know the
information necessary for distinguishing the incoming com-
posite flows. Though the independent queues serve the purpose

Figure 3.1: Schematic diagram of OpenFlow network with Aggregator-cum-
Scheduling (AS) nodes. For brevity, SDN controller is not shown. Also the smart-
meters in suburb, and citycenter regions are not shown.

we consider the performance effects comprising the congestion avoidance phase of

TCP. The effects of TCP receiver window and network link bandwidth is considered

to be sufficient enough to not affect the throughput performance. Without loss of

generality, we assume packet loss as the indication of congestion, and we consider a

simple identical and independent probability distribution for the packet loss.

As shown in Fig. 3.1, we have two eNBs connected to first switch, where these

two long TCP flows are aggregated into one composite long TCP flow through the

Aggregation/Scheduler (AS) node 1. eNB-3 joins switch 2 wherein it is mixed with

the incoming aggregated flow at AS node 2. This represents a typical scenario of many

flows getting aggregated towards the proximity of the server, eventually making the

server’s first hop as the bottleneck link. In the next section, we describe the proposed

aggregation/scheduling framework and its implementation.
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connected to the same eNBs. The results are not show due
to page constraints.

The schematic diagram of the described network is shown
in Fig. 1. We have numbered different eNBs from 1 to N from
left to right (i.e., from outskirts region towards city center to
the end-server). We consider multiple SMs close in a colony
are connected over wired Ethernet links to a LTE UE, which is
in turn connected wirelessly to an eNB. To capture a scenario
of denser SMs in city-center, and relatively sparse SMs in
the outskirts, we use one UE at the edge of the network and
increase the number of UEs towards the server. This naturally
captures denser SMs towards the path to the server node. The
UDP packets received (from multiple SMs) at eNB are sent
via a single TCP sender in the wired-part of the network. As
the wireless LTE ensures fairness (through appropriate MAC
scheduling and static nodes), we need to provide fairness in
the wired-part of the smart grid.

We consider TCP Reno version throughout this paper. The
TCP reno version is a widely used variant of TCP in the
Internet. As we focus on long TCPs, we consider the per-
formance effects comprising the congestion avoidance phase
of TCP. The effects of TCP receiver window and network
link bandwidth is considered to be sufficient enough to not
affect the throughput performance. Without loss of generality,
we assume packet loss as the indication of congestion, and
we consider a simple identical and independent probability
distribution for the packet loss.

As shown in Fig. 1, we have two eNBs connected to
first switch, where these two long TCP flows are aggregated
into one composite long TCP flow through the Aggrega-
tion/Scheduler (AS) node 1. eNB-3 joins switch 2 wherein it is
mixed with the incoming aggregated flow at AS node 2. This
represents a typical scenario of many flows getting aggregated
towards the proximity of the server, eventually making the
server’s first hop as the bottleneck link. In the next section,
we describe the proposed aggregation/scheduling framework
and its implementation.

IV. PROPOSED SDN-BASED AGGREGATOR/SCHEDULER
FRAMEWORK

Figure 2 depicts the whitebox functional description of
the Aggregator/Scheduler (AS) node and the associated SDN
framework . For brevity, we depict the model with one AS
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Fig. 2. Internal functionality of the proposed framework with single aggrega-
tor/scheduler node. For brevity, only the connection-sequence related to eNB-1
is shown.

node. The AS node implementation design is conceived with
following goal:

• Transparent Aggregation and Scheduling: To enable
the framework to be market-ready, the aggregation and
scheduling of flows need to be performed in a seamless
manner, without explicit modifications at the end-hosts,
namely the UEs and the servers.

To achieve aforementioned design goal, we believe the
SDN [9] would be an ideal choice based on the offered
features such as: (i) centralized controller logic, and decoupled
data and control planes for better manageability, and (ii)
flow-based programmable control logic for enabling flexible
network services. As seen in the Fig 2, the (SDN) controller
primarily connects with all the SDN-based OpenFlow switches
in the network. The controller manages the control plane of
the network to administer flow-level management by writing
appropriate flow-entries at the switches.

A switch upon receiving the first packet of the TCP flow
(either from the eNB or from the preceeding AS node) will
forward it to the controller, for appropriate decision making. In
our scenario, the first TCP packet TCP-SYN is forwarded by
the switch to the controller. The controller with the available
topology information, will compute an appropriate flow entry
to direct this flow to the near-by AS node (an end-host). Upon
writing this flow-entry, all the future packets of this flow will
be diverted (by the switch) to the AS node. To enable the
TCP receiver 1 inside the AS node to further receive and
process the incoming segments, an additional flow-entry is
programmed at the switch (by the controller). This additional
entry enables the switch to modify/rewrite the destination-
field of the TCP header for the eNB-1’s flow with AS node
information. A similar entry, is made for return traffic carrying
ACK packets from TCP receiver in AS node. Therefore, the
eNB is abstracted from this rerouting logic to the AS node.

Each TCP receiver is associated with an independent queue
for buffering the incoming packets. Without loss of generality,
we consider this buffer to be sufficient enough to store incom-
ing packets. To enforce fairness, the scheduler should know the
information necessary for distinguishing the incoming com-
posite flows. Though the independent queues serve the purpose

Fig. 1. Schematic diagram of OpenFlow network with Aggregator-cum-
Scheduling (AS) nodes. For brevity, SDN controller is not shown. Also the
smart-meters in suburb, and citycenter regions are not shown.

connected to the same eNBs. The results are not show due
to page constraints.

The schematic diagram of the described network is shown
in Fig. 1. We have numbered different eNBs from 1 to N from
left to right (i.e., from outskirts region towards city center to
the end-server). We consider multiple SMs close in a colony
are connected over wired Ethernet links to a LTE UE, which is
in turn connected wirelessly to an eNB. To capture a scenario
of denser SMs in city-center, and relatively sparse SMs in
the outskirts, we use one UE at the edge of the network and
increase the number of UEs towards the server. This naturally
captures denser SMs towards the path to the server node. The
UDP packets received (from multiple SMs) at eNB are sent
via a single TCP sender in the wired-part of the network. As
the wireless LTE ensures fairness (through appropriate MAC
scheduling and static nodes), we need to provide fairness in
the wired-part of the smart grid.

We consider TCP Reno version throughout this paper. The
TCP reno version is a widely used variant of TCP in the
Internet. As we focus on long TCPs, we consider the per-
formance effects comprising the congestion avoidance phase
of TCP. The effects of TCP receiver window and network
link bandwidth is considered to be sufficient enough to not
affect the throughput performance. Without loss of generality,
we assume packet loss as the indication of congestion, and
we consider a simple identical and independent probability
distribution for the packet loss.

As shown in Fig. 1, we have two eNBs connected to
first switch, where these two long TCP flows are aggregated
into one composite long TCP flow through the Aggrega-
tion/Scheduler (AS) node 1. eNB-3 joins switch 2 wherein it is
mixed with the incoming aggregated flow at AS node 2. This
represents a typical scenario of many flows getting aggregated
towards the proximity of the server, eventually making the
server’s first hop as the bottleneck link. In the next section,
we describe the proposed aggregation/scheduling framework
and its implementation.

IV. PROPOSED SDN-BASED AGGREGATOR/SCHEDULER
FRAMEWORK

Figure 2 depicts the whitebox functional description of
the Aggregator/Scheduler (AS) node and the associated SDN
framework . For brevity, we depict the model with one AS
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Fig. 2. Internal functionality of the proposed framework with single aggrega-
tor/scheduler node. For brevity, only the connection-sequence related to eNB-1
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node. The AS node implementation design is conceived with
following goal:

• Transparent Aggregation and Scheduling: To enable
the framework to be market-ready, the aggregation and
scheduling of flows need to be performed in a seamless
manner, without explicit modifications at the end-hosts,
namely the UEs and the servers.

To achieve aforementioned design goal, we believe the
SDN [9] would be an ideal choice based on the offered
features such as: (i) centralized controller logic, and decoupled
data and control planes for better manageability, and (ii)
flow-based programmable control logic for enabling flexible
network services. As seen in the Fig 2, the (SDN) controller
primarily connects with all the SDN-based OpenFlow switches
in the network. The controller manages the control plane of
the network to administer flow-level management by writing
appropriate flow-entries at the switches.

A switch upon receiving the first packet of the TCP flow
(either from the eNB or from the preceeding AS node) will
forward it to the controller, for appropriate decision making. In
our scenario, the first TCP packet TCP-SYN is forwarded by
the switch to the controller. The controller with the available
topology information, will compute an appropriate flow entry
to direct this flow to the near-by AS node (an end-host). Upon
writing this flow-entry, all the future packets of this flow will
be diverted (by the switch) to the AS node. To enable the
TCP receiver 1 inside the AS node to further receive and
process the incoming segments, an additional flow-entry is
programmed at the switch (by the controller). This additional
entry enables the switch to modify/rewrite the destination-
field of the TCP header for the eNB-1’s flow with AS node
information. A similar entry, is made for return traffic carrying
ACK packets from TCP receiver in AS node. Therefore, the
eNB is abstracted from this rerouting logic to the AS node.

Each TCP receiver is associated with an independent queue
for buffering the incoming packets. Without loss of generality,
we consider this buffer to be sufficient enough to store incom-
ing packets. To enforce fairness, the scheduler should know the
information necessary for distinguishing the incoming com-
posite flows. Though the independent queues serve the purpose

Figure 3.2: Internal functionality of the proposed framework with single aggrega-
tor/scheduler node. For brevity, only the connection-sequence related to eNB-1 is
shown.

3.3 Proposed SDN-Based Aggregator/Scheduler Framework

Figure 3.2 depicts the whitebox functional description of the Aggregator/Scheduler (AS)

node and the associated SDN framework . For brevity, we depict the model with one

AS node. The AS node implementation design is conceived with following goal:

• Transparent Aggregation and Scheduling: To enable the framework to be

market-ready, the aggregation and scheduling of flows need to be performed in

a seamless manner, without explicit modifications at the end-hosts, namely the

UEs and the servers.

To achieve aforementioned design goal, we believe the SDN [2] would be an ideal

choice based on the offered features such as: (i) centralized controller logic, and

decoupled data and control planes for better manageability, and (ii) flow-based pro-

grammable control logic for enabling flexible network services. As seen in the Fig 3.2,
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the (SDN) controller primarily connects with all the SDN-based OpenFlow switches

in the network. The controller manages the control plane of the network to administer

flow-level management by writing appropriate flow-entries at the switches.

A switch upon receiving the first packet of the TCP flow (either from the eNB

or from the preceeding AS node) will forward it to the controller, for appropriate

decision making. In our scenario, the first TCP packet TCP-SYN is forwarded by

the switch to the controller. The controller with the available topology information,

will compute an appropriate flow entry to direct this flow to the near-by AS node

(an end-host). Upon writing this flow-entry, all the future packets of this flow will be

diverted (by the switch) to the AS node. To enable the TCP receiver 1 inside the AS

node to further receive and process the incoming segments, an additional flow-entry

is programmed at the switch (by the controller). This additional entry enables the

switch to modify/rewrite the destination-field of the TCP header for the eNB-1’s flow

with AS node information. A similar entry, is made for return traffic carrying ACK

packets from TCP receiver in AS node. Therefore, the eNB is abstracted from this

rerouting logic to the AS node.

Each TCP receiver is associated with an independent queue for buffering the

incoming packets. Without loss of generality, we consider this buffer to be sufficient

enough to store incoming packets. To enforce fairness, the scheduler should know the

information necessary for distinguishing the incoming composite flows. Though the

independent queues serve the purpose of distinguishing different flows (at the link-

level); in a tandem aggregator scenario each of these flows could be a composite flow

aggregated at the preceding AS nodes. Therefore, the scheduler should be made aware

of the appropriate scheduling information necessary for ensuring fairness. Thanks to

the SDN’s centralized controller logic that receives first packet of all the participating

flows in the network. The controller therefore maintains the global knowledge of each

flows, and their corresponding first aggregation points (i.e., AS nodes).
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for each: key in PolicyMap do
for i=0; i< PolicyMap.get(key);i++ do
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Fig. 3. Weighted round robin scheduling and aggregation implementation at
the AS node

of distinguishing different flows (at the link-level); in a tandem
aggregator scenario each of these flows could be a composite
flow aggregated at the preceding AS nodes. Therefore, the
scheduler should be made aware of the appropriate scheduling
information necessary for ensuring fairness. Thanks to the
SDN’s centralized controller logic that receives first packet
of all the participating flows in the network. The controller
therefore maintains the global knowledge of each flows, and
their corresponding first aggregation points (i.e., AS nodes).

Each AS node maintains two ‘key-value’ lookup data-
structures namely, QueueMap and PolicyMap as shown in
Fig. 3. The QueueMap is used by the scheduler to locate
the respective queues of the different flows. The PolicyMap
is the important data-structure that stores the weightage for
each (aggregated) flows indicating the number of actual flows
it is composed of or carrying with it. As explained earlier,
the controller provides the weightage information for the AS
nodes to maintain in their PolicyMaps. The underlying logic
for enabling fairness is made possible with a simple Weighted
Round Robin Scheduling at the AS nodes, and with the global
information support from SDN. The AS nodes aggregate traffic
received from each participating eNBs (or preceeding AS
nodes), and the TCP senders of the respective AS nodes
react only to the associated TCP receiver. Each TCP sender
therefore adjusts its sending rate which is homogeneous to
all the packets, thereby solving the different RTT scenario ob-
served in a typical non-aggregated network scenario. Therefore
the simple yet effective implementation of aggregation-cum-
scheduling can provide almost perfect fairness for the partic-
ipating TCP flows. The underlying aggregation and weighted
round robin scheduling logic of presented as ‘pseudo-code’ in
Fig. 3.

We now study the throughput performance through ana-
lytical investigation and measure the fairness by using the
popular Jain’s Fairness Index [10]. All our experiments are
performed in a Mininet network emulator environment [11];

which is a realistic virtual network running real kernel and
switch functionalities. Therefore, with minimal changes our
frameworks can be deployable on a real working prototype.
The TCP Reno’s congestion window evolution for the long
TCP flow is analytically modeled by authors in [12], and stud-
ied the statistical performance of the evolution around mean.
Fig. 4 shows the TCP Reno congestion window evolution
in the Congestion Avoidance (CA) phase. Let the congestion
window size W be represented in packets with values ranging
from 1 to wm. The value of W evolves at each RTT and
is controlled by the loss of packets in the network. The
TCP behavior in CA phase is captured in Fig. 4. Upon a
packet loss event the congestion window is halved, and on the
other hand, a no loss event increases the congestion window
size by 1 packet. For analytical tractability, without loss of
generality, we assume a Bernoulli link loss model wherein the
loss of packets is independent and identically distributed with
a probability p. Therefore the loss probability p(w) can be
computed as follows: p(w) = (1 � (1 � p)w).

As observed in Fig. 4 the Markov chain is approximately
aperiodic and irreducible for practical values of maximum
congestion window size; therefore, the chain has a unique
steady-state distribution, say ⇡. By Birkhoff’s ergodic theorem,
the sample mean of congestion window with scale (or sample
size N ), represented as W

N
almost-surely converges to mean

of the steady-state distribution ⇡, when N grows to 1 (N is
time in our context). Mathematically expressed as follows [12]:

W
N

=
1

N

NX

i=1

Wi
a.s����!

N!1
W

1
=

wmX

w=1

⇡w ⇥w = E[W ]. (1)

Where E[W ] is the average congestion window size. In other
words, from Eq. 1 the scaled mean throughput W

N
and its

difference in value with W
1

tends to 0 as N grows to infinity;
and this behavior of difference converging to zero is termed
as ‘rare event’ which can be characterized by large deviations
theory.

From the classical results of the large deviations theory, an
irreducible and aperiodic Markov chain, with finite state space,
holds a large deviations spectrum as given below [12]:

lim
✏!0

lim
N!1

1

N
log Pr(W

(N) 2 [↵� ✏,↵ + ✏]) = f(↵) (2)

where, f(↵) is called the large deviations spectrum. In our
context, the large-deviations spectrum f(↵) can be com-
puted [13] as the Legendre Fenchel transform of spectral
radius’(⇢) logarithm of a matrix (R(q))ij = exp(qj)Tij .
Where Tij is the transition matrix underlying the Markov
chain of states of TCP congestion window as shown in Fig. 4.

f(↵) = inf
q2R

(log ⇢(R(q)) � ↵q) (3)

An essential property of large-deviations spectrum is that it is
concave and satisfies the following property that if ↵ = W

1

then f(↵) = 0, and for all other values f(↵) < 0. Therefore,
the mean congestion window size E[W] can be computed

Figure 3.3: Weighted round robin scheduling and aggregation implementation at the
AS node
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Fig. 4. Markov Chain Model Long TCP Congestion Window Size Evolution in CA phase. Where p(i) is the loss probability with congestion window size
of ‘i’ packets.
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Fig. 5. eNBs TCP throughput with aggregation and without scheduling.

as the value of ↵ at f(↵) = 0. Subsequently, the average
throughput E[T] in (bps) is computed as follows:

E[T ] =
E[W ]

RTT
⇥ MSS. (4)

where RTT is the round-trip time (in seconds), and MSS is
the Maximum TCP Segment Size (in bits). It is worthwhile to
note that for the proposed aggregation-cum-scheduled frame-
work, the measured RTTs were almost steady to a fixed value
in our experiments, which also a significant factor towards
ensuring fairness.

V. PERFORMANCE EVALUATION

The LTE-based network is studied in ns-3 [14] simulation
environment, and wired-part of the network is studied in
Mininet network environment. We integrated ns-3 simulation
to Mininet environment in order to get a unified model of the
smart grid network.

Figure 5 shows the individual eNB’s throughput per-
formance in the aggregation-only setting. In other words,
weighted round robin is not considered. The unfairness among
flows are prevalent. This is due to the fact, that total throughput
is determined by the ‘last ASnode2 and the server’ pair, as
this forms the bottleneck link. Due to the high throughput
in preceding links, the packets get buffered in the queues and
are always available to the last AS node to consume. However,
different flows from the preceding links experience different
RTT the way they feed the queue is heterogeneous thereby
propagating the unfairness at the server. It is also noted that
different flows complete their transfer at different points in
time due to substantial difference in throughput.
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Fig. 6. eNB TCP throughput in Proposed Aggregation and Scheduling
Framework. The horizontal lines and the respective values show the analytical
average throughput, as computed from Eq. 4.

Figure 6 shows the improved fairness conditions in the sys-
tem utilizing our proposed aggregation-and-scheduling frame-
work, which is evident from the eNBs throughput being
proportional to the number of UEs connected. To understand
the accuracy of fairness, we have used Jain’s Fairness Index
to evaluate the fairness of the three respective network set-
tings, namely no-aggregation, aggregation-only, and aggrega-
tion/scheduling. The Jain’s Fairness Index [10] is computed as
follows:

Fairness index =
(
Pn

i=1 E[Ti])
2

n ⇥Pn
i=1 E[Ti]2

(5)

where E[Ti] throughput of TCP flow i and n is the total
number of flows. Figure 7 shows the fairness of the system
for three different network settings. It is more evident that
our proposed framework outperformed both no-aggregation,
and aggregation-only setups by exhibiting perfect fairness
for all the three heterogeneous RTT eNBs in the network.
With the practical operating scenario including heterogeneous
RTT flows, and composite multi-level aggregated flows due to
tandem aggregators, our proposed framework handled fairness
more effectively than other traditional systems.

Figure 8 and Fig. 9 show the received throughput of
independent UEs clearly demonstrating the fairness of the
proposed framework. To understand the throughput deviations
of all three types of frameworks, Fig. 10 shows the total
throughput distribution for the three different policies. In
addition to achieving fairness, the throughput of proposed

Figure 3.4: Markov Chain Model Long TCP Congestion Window Size Evolution in
CA phase. Where p(i) is the loss probability with congestion window size of ‘i’
packets.

Each AS node maintains two ‘key-value’ lookup data-structures namely, QueueMap

and PolicyMap as shown in Fig. 3.3. The QueueMap is used by the scheduler to lo-

cate the respective queues of the different flows. The PolicyMap is the important

data-structure that stores the weightage for each (aggregated) flows indicating the

number of actual flows it is composed of or carrying with it. As explained earlier, the

controller provides the weightage information for the AS nodes to maintain in their

PolicyMaps. The underlying logic for enabling fairness is made possible with a simple

Weighted Round Robin Scheduling at the AS nodes, and with the global information

support from SDN. The AS nodes aggregate traffic received from each participating

eNBs (or preceeding AS nodes), and the TCP senders of the respective AS nodes

react only to the associated TCP receiver. Each TCP sender therefore adjusts its

sending rate which is homogeneous to all the packets, thereby solving the different

RTT scenario observed in a typical non-aggregated network scenario. Therefore the

simple yet effective implementation of aggregation-cum-scheduling can provide al-

most perfect fairness for the participating TCP flows. The underlying aggregation

and weighted round robin scheduling logic of presented as ‘pseudo-code’ in Fig. 3.3.

We now study the throughput performance through analytical investigation and

measure the fairness by using the popular Jain’s Fairness Index [13]. All our exper-

iments are performed in a Mininet network emulator environment [64]; which is a
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realistic virtual network running real kernel and switch functionalities. Therefore,

with minimal changes our frameworks can be deployable on a real working prototype.

The TCP Reno’s congestion window evolution for the long TCP flow is analytically

modeled by authors in [65], and studied the statistical performance of the evolution

around mean. Fig. 3.4 shows the TCP Reno congestion window evolution in the Con-

gestion Avoidance (CA) phase. Let the congestion window size W be represented in

packets with values ranging from 1 to wm. The value of W evolves at each RTT and

is controlled by the loss of packets in the network. The TCP behavior in CA phase

is captured in Fig. 3.4. Upon a packet loss event the congestion window is halved,

and on the other hand, a no loss event increases the congestion window size by 1

packet. For analytical tractability, without loss of generality, we assume a Bernoulli

link loss model wherein the loss of packets is independent and identically distributed

with a probability p. Therefore the loss probability p(w) can be computed as follows:

p(w) = (1− (1− p)w).

As observed in Fig. 3.4 the Markov chain is approximately aperiodic and irre-

ducible for practical values of maximum congestion window size; therefore, the chain

has a unique steady-state distribution, say π. By Birkhoff’s ergodic theorem, the

sample mean of congestion window with scale (or sample size N), represented as WN

almost-surely converges to mean of the steady-state distribution π, when N grows to

∞ (N is time in our context). Mathematically expressed as follows [65]:

W
N = 1

N

N∑
i=1

Wi
a.s−−−→

N→∞
W
∞ =

wm∑
w=1

πw × w = E[W ]. (3.1)

Where E[W ] is the average congestion window size. In other words, from Eq. 3.1 the

scaled mean throughput WN and its difference in value with W
∞ tends to 0 as N

grows to infinity; and this behavior of difference converging to zero is termed as ‘rare

event’ which can be characterized by large deviations theory.
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From the classical results of the large deviations theory, an irreducible and aperi-

odic Markov chain, with finite state space, holds a large deviations spectrum as given

below [65]:

lim
ε→0

lim
N→∞

1
N

log Pr(W (N) ∈ [α− ε, α + ε]) = f(α) (3.2)

where, f(α) is called the large deviations spectrum. In our context, the large-

deviations spectrum f(α) can be computed [66] as the Legendre Fenchel transform

of spectral radius’(ρ) logarithm of a matrix (R(q))ij = exp(qj)Tij. Where Tij is the

transition matrix underlying the Markov chain of states of TCP congestion window

as shown in Fig. 3.4.

f(α) = inf
q∈R

(log ρ(R(q))− αq) (3.3)

An essential property of large-deviations spectrum is that it is concave and satisfies

the following property that if α = W
∞ then f(α) = 0, and for all other values

f(α) < 0. Therefore, the mean congestion window size E[W] can be computed as

the value of α at f(α) = 0. Subsequently, the average throughput E[T] in (bps) is

computed as follows:

E[T ] = E[W ]
RTT

×MSS. (3.4)

where RTT is the round-trip time (in seconds), and MSS is the Maximum TCP

Segment Size (in bits). It is worthwhile to note that for the proposed aggregation-

cum-scheduled framework, the measured RTTs were almost steady to a fixed value in

our experiments, which also a significant factor towards ensuring fairness.

3.4 Performance Evaluation

The LTE-based network is studied in ns-3 [67] simulation environment, and wired-

part of the network is studied in Mininet network environment. We integrated ns-3

simulation to Mininet environment in order to get a unified model of the smart grid
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Figure 3.5: eNBs TCP throughput with aggregation and without scheduling.
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Figure 3.6: eNB TCP throughput in Proposed Aggregation and Scheduling Frame-
work. The horizontal lines and the respective values show the analytical average
throughput, as computed from Eq. 3.4.

network.

Figure 3.5 shows the individual eNB’s throughput performance in the aggregation-

only setting. In other words, weighted round robin is not considered. The unfairness

among flows are prevalent. This is due to the fact, that total throughput is determined

by the ‘last ASnode2 and the server’ pair, as this forms the bottleneck link. Due to

the high throughput in preceding links, the packets get buffered in the queues and are

always available to the last AS node to consume. However, different flows from the

preceding links experience different RTT the way they feed the queue is heterogeneous

thereby propagating the unfairness at the server. It is also noted that different flows

complete their transfer at different points in time due to substantial difference in

throughput.
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Figure 3.6 shows the improved fairness conditions in the system utilizing our

proposed aggregation-and-scheduling framework, which is evident from the eNBs

throughput being proportional to the number of UEs connected. To understand the

accuracy of fairness, we have used Jain’s Fairness Index to evaluate the fairness of

the three respective network settings, namely no-aggregation, aggregation-only, and

aggregation/scheduling. The Jain’s Fairness Index [13] is computed as follows:

Fairness index = (∑n
i=1 E[Ti])2

n×∑n
i=1 E[Ti]2

(3.5)

where E[Ti] throughput of TCP flow i and n is the total number of flows. Figure 4.6

shows the fairness of the system for three different network settings. It is more evident

that our proposed framework outperformed both no-aggregation, and aggregation-

only setups by exhibiting perfect fairness for all the three heterogeneous RTT eNBs

in the network. With the practical operating scenario including heterogeneous RTT

flows, and composite multi-level aggregated flows due to tandem aggregators, our

proposed framework handled fairness more effectively than other traditional systems.

Figure 3.8 and Fig. 3.9 show the received throughput of independent UEs clearly

demonstrating the fairness of the proposed framework. To understand the throughput

deviations of all three types of frameworks, Fig. 3.10 shows the total throughput

distribution for the three different policies. In addition to achieving fairness, the

throughput of proposed aggregation with scheduling framework is still close to the

aggregation-only framework.
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Figure 3.7: Throughput fairness index of 3 different frameworks, computed using
Eq. 4.6.
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Figure 3.8: Individual UEs throughput in without aggregation and scheduling.
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Figure 3.9: Individual UEs throughput in with proposed aggregation and scheduling.
The horizontal line shows the analytical throughput average value.

62



0 5 10 15

0

0.2

0.4

0.6

0.8

1

Total Throughput (in Mbps)

Pr
ob

ab
ili

ty

Aggregation/Scheduling
Aggregation only
No Aggregation

Figure 3.10: Throughput probability distribution for three policies, no aggregation,
aggregation without policy, and proposed aggregation with policy

63



3.5 Summary

We have proposed a novel SDN-based TCP Aggregation/scheduling smart grid frame-

work that achieved a better throughput performance and fairness. We also have

proposed the white-box model of implementation with a detailed functional design.

The throughput performance is extensively studied and compared with the respec-

tive traditional no-aggregation, aggregation with no scheduling, and our proposed

aggregation and scheduling frameworks. Our proposed framework demonstrated fair-

ness to significant level of accuracy through out the course of the experiment, while

maintaining a high throughput.

In future, we plan to study the WiFi-based SM communications with TCP over

wireless links, to achieve throughput fairness.
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Chapter 4

Improved Video Throughput and Reduced Gaming Delay in

WLAN Through Seamless SDN-Based Traffic Steering

4.1 Introduction

Last decade has witnessed pervasive deployment of WLANs at residential apartments,

and public hotspots such as cafeterias. Typical users in these environments use the

network for entertainment services such as watching movies, listening songs, and

playing games. Recent reports suggest that the dominant data traffic in the Internet

is associated with video streaming and gaming applications. The most popular online

video content services such as Netflix and YouTube account for 37.1% and 17.9% of

Internet traffic in North America [68]. Of late, the game traffic is also getting

dominant share of the network traffic. It is worth to note that the global volume of

game traffic has 22% of Compounded Annual Growth Rate (CAGR) [31].

The dominant data traffic in such networks requires stringent delivery conditions

for better quality of experience. For instance, online video watching requires bet-

ter as well as consistent streaming throughput for constant playback. The gaming

applications on the other hand require low delay. On a local wireless network multi-

player scenario, a small increase in Round-Trip Time (RTT) (of one user) can signif-

icantly affect the other users of the game. Because the gaming states of the network

multiplayers are strictly synchronized (by a local server), so that every users move-

ments/actions will be constantly updated to all other users. Therefore, a larger RTT

experienced by even one gaming-user would negatively impact the playing experience
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of other gamers in the network.

It is well-known that the wireless part of the network becomes the performance

bottleneck that primarily affects these application-services. Moreover, the compos-

ite network-ecosystem comprised of local (game) traffic and exogenous (video) traf-

fic sharing the same WLAN network substrate further exacerbates the bottleneck

throughput, as well as increases application delays. Different types of applications

share the single AP resources (such as buffer) in a non-uniform manner, which also

leads to a larger delay, and reduced throughput. It is therefore, essential to ensure

fair use of network resources by these application.

In WLAN networks, unfairness among same-type applications stems from the un-

derlying transport layers used by them. For instance, within same-class applications

the fairness is heavily influenced by the underlying transport protocol. For example,

the inter-play of 802.11 MAC behavior, and TCP flow/congestion control mechanisms

leads to unfairness among multiple TCP uplink flows [36]. In a different work [34],

the unfairness among TCP uplink and TCP downlink traffic is observed over WLAN

access network. The work observed reduced fairness to TCP downlink traffic over

TCP uplink traffic.

In a practical scenario, the WiFi access network sees a mix of UDP and TCP based

applications. It is worth to note that major multiplayer (client-server) WLAN gaming

applications (such as CounterStrike) support the use of UDP transport. The popular

Internet video content providers such as YouTube and Netflix use TCP transport.

The UDP traffic alongside the TCPs negatively impacting congestion mechanisms on

wireless scenario, affect the performance of both the applications. For instance, video

users experience unfair and low TCP downlink throughput, and the gaming users

experience high latency.

In this dissertation, we present an end-host agnostic Software-Defined Network

(SDN) [2] based traffic steering and control approach to provide effective network
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performance. We consider a composite practical network comprised of applications

using heterogeneous transport protocols, namely TCP downlink (for video), local

UDP uplink, and local UDP downlink traffic (for WLAN gaming). To ensure the

fairness to the penalized downlink TCP traffic in the considered network, we logically

suppress the TCP’s congestion behavior only in the wireless part of the network, and

subsequently provide normal TCP behavior for the same flow in the wired part of

the network. By logically suppressing TCPs reactive behavior over WiFi part, the

inbuilt fairness feature of the 802.11’s DCF will play its role. In such a system, every

downlink application will benefit from the station-level fairness as offered by the WiFi

MAC protocol.

Thanks to the programmatic features offered by SDN, the congestion-independent

wireless TCP and congestion-based wired TCP for a single traffic flow can be made

possible by realizing a split TCP approach. Through the SDN’s powerful features

of flexible flow management, and deep-packet inspection, we have implemented the

TCP splitting near the WiFi AP, and also provided a congestion-free wireless TCP

downlink to the users. Moreover, such flow-management and split-TCP features are

agnostic to the end-users; which is an important design requirement for the considered

application scenario. Our contributions in this dissertation are as follows:

• We provide an SDN-based solution of TCP-splitting along with partially-controlled

wireless sending rate to ensure fair throughput. The fair use of TCP downlink

resources allow the UDP game traffic to effectively utilize the residual shared

resources such as AP buffer, which enables them to achieve reduced delay.

• We present an extensive performance study on the real testbeds to demonstrate

the prowess of our approach. Our implementation is production ready, as it is

tested on the off-the-shelf network components.
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4.2 System Model

TheWiFi AP is hosted on a OpenFlow switch that serves the wireless clients. An SDN

controller is wire connected to the AP. A video server (end-host) is also wire connected

to the AP, which is used by each of the wireless clients through TCP transport

protocol. A local WLAN multiplayer game session is created among different wireless

clients. The multiplayer game uses UDP transport, and one of the clients acts as game

server, that serves gaming clients running on the other wireless hosts. Reflecting the

practical network scenario, the wired links are set with higher bandwidth so that the

wireless network forms the bottleneck. The video server sends continuous traffic with

sufficient data to saturate the wireless bandwidth in the network.

In the aforementioned system, we consider three wireless clients, namely C1, C2,

and C3. The client C1 functions as the gaming server. It is worth to note that the

UDP server client C1 sees more UDP traffic than other clients. The network system

model is shown in Fig. 4.1.
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Figure 4.1: WLAN System Network Model. Solid line indicates wired connection,
and dotted lines indicate WiFi wireless connection.

4.3 Proposed SDN Fairness Model

A new end-host is wire connected to the WiFi AP, which acts as a proxy node that is

programmed to enable split TCP to the video downlink flow. The proxy in addition

caches the received data from (the relatively high-speed) wired TCP connection.

Splitting the TCP helps in enhancing the throughput by separating wireless and

wired counterparts. As the TCP throughput is inversely proportional to the Round

Trip Time (RTT) which is the function of propagation delay, unlike the traditional

end-to-end delay non-split TCP, our proposed framework’s split TCP throughput is

determined only by the wireless propagation delay, thereby yields higher throughput.

As a second part of the proposed framework, the wireless TCP split connection

has to be made insensitive to its congestion control behavior. To ensure that, we set

the TCP senders at the proxy node (not at the application end-hosts) to limit their
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TCP congestion window size set to 2 segments. With small congestion window size

the TCP will send roughly one or two segments per wireless RTT. Therefore, the

lock-step fashion of DATA-ACK TCP traffic, enables uniform packet distribution at

each of the clients and AP queues. Subsequently, the LAN gaming’s client-server con-

figuration, uses the lock-step fashion of Server UDP datagram-Client UDP datagram

alternating patterns. The lock-step fashion of each applications traffic along with

the WiFi MAC’s Distributed Coordination Function’s (DCF) station-level fairness

ensures fairness among all packets in the buffer (invariable to TCP, UDP packets).

In this manner, we ensure fairness among all TCP applications and local UDP appli-

cations.

To achieve the aforementioned solution in an application end-user agnostic man-

ner, we utilize flow-management and packet inspection features of the SDN frame-

work. The AP deployed on an SDN based OpenFlow switch provides the functionality

of inspecting flows, and routing them dynamically to the proxy machine (a host ma-

chine) that provides the split-TCP functionality. With SDN’s flow rerouting and

packet inspection features we seamlessly route the incoming TCP traffic to the proxy

machine, which splits the TCP of the wireless part from the wired part. The split

TCP segments are appropriately header-modified at the AP openflow switch, so that

both end-to-end application hosts receive the segments as if they have received it

from original end-user (without proxy). The gaming UDP traffic is routed as usual

in a traditional manner (through AP).

SDN provides support for proactive and reactive ways of routing flows. Proactive

flow populates flow tables ahead of the traffic coming to the switch. On the other

hand, the reactive flows handle the incoming flows on the fly. The first packet of

each flow is forwarded to the SDN controller, which inspects the packet and inserts

appropriate flow-entry into the AP OpenFlow switch. As the video traffic can come

from any end-user, we use reactive flows to configure (or) route the flows. During this
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process, we reroute to the proxy host, split the TCP and send back from proxy to the

AP, from which it routed to the application end-hosts. This provides transparency

to the system. Consider the dynamic routing features, the UDP gaming application

traffic is also routed using the reactive flow configuration method.

4.3.1 Network Flow in the Proposed Framework

Figure 4.2 shows the architecture of the proposed framework, as discussed in the

previous section. The flowing sequence of network flows happen in the system as

follows:

1. The wireless client starts the TCP session, and sends out TCP SYN packet.

The first packet of each new flow is sent to the SDN controller. The controller

upon inspecting the received packet will insert flow tables for wireless to proxy,

and proxy to wireless client (for return traffic). These flow tables hide the proxy

node by appropriately manipulating the Layer2 and Layer3 header fields.

2. The proxy starts a new TCP connection to the wired video server. The first

packet in Step 1 triggers the current step’s action, as the proxy does not know

which video server to connect. The controller sets up flow tables so that the

video server date can reach the wireless client.

3. When gaming server starts a WLAN multiplayer session, the controller routes

the flows to the UDP gaming server, which is a wireless client.

4. The controller also routes the gaming server traffic to the appropriate gaming

wireless clients.
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Figure 4.2: Proposed SDN based WLAN Network Architecture.
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4.4 Delay and Throughput Analysis of the Proposed Frame-

work

The background TCP video and UDP gaming traffic share the same queue. The UDP

traffic suffers more delay caused by TCP video traffic occupying the shared AP buffer.

Let us assume the AP buffer size can hold ‘B’ packets, and the AP buffer service rate

as S, in Mbps. Let TS = 1500 be the TCP segment size in bytes, and Ta = 40 be the

TCP ACK packet size in bytes. By considering, the TCP sender and receiver window

size to be large enough with immediate ACK, the TCP flow will always try to fill in

the buffer and eventually leads to packet loss. Let us assume that the total number

of TCP flows in the network as N . The maximum congestion window size of each

TCP flow be CW . For each of the game clients, let Up be the number of the (game)

UDP packets cached in the queue, and Ub be the total UDP cached traffic in bits.

The following condition needs to be satisfied, to have fair TCP throughput among

the flows, which is achieved through the MAC layers DCF functionality:

2×N × CW + Up × (N − 1) < B (4.1)

It is worth to note that the fairness also ensures low delay for each TCP traffic. The

available share of buffer for TCP flows can be computed as given below:

B − Up × (N − 1) (4.2)

To achieve fairness without buffer overflow, the following condition needs to be

satisfied, with subject to a small congestion window (namely C) for each of the flows:

B − Up × (N − 1)− (2×N × C) > 0 (4.3)
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The delay of each flow can be approximated by only considering the queuing delay of

the AP. All other factors causing delay are small enough to be ignored in our study.

According to the Little’s law, the TCP Round Trip Time (RTT) can be computed as

follows:

RTT = (N − 1)× Ub + 8N × C × Ta + 8N × C × Ts
S

(4.4)

To satisfy the constraint in Eq. 4.3, and also to achieve a minimum delay as in Eq. 4.4,

the value of C has to be as small as possible. We therefore choose C to be 2. Therefore,

the at most 2C packets are cached in the buffer. Under this condition, there is no

buffer overflow, and the TCP clients achieve fairness and low delay.

The throughput of TCP is computed as follows:

C ×MSS

RTT
= C ×MSS × S

(N − 1)× Ub + 8N × C × Ta + 8N × C × Ts
, (4.5)

where MSS represents the Maximum TCP Segment Size.

4.5 Performance Evaluation Study

Figure 4.3 shows the experiment testbed used for our performance study. The Open-

Flow Switch is a MikroTik wireless router with 802.11b radio, is running on Open-

Wrt. The Open vSwitch is installed to support OpenFlow protocol implementation.

Floodlight is the open-source SDN controller that is used in our experiments for the

OpenFlow protocol functioning. Initially, the switch will broadcast the ARP pack-

ets to locate the controller. Once the controller is found, the controller is connected

through the TCP connection. The CounterStrike game is used to perform WLAN

multiplayer gaming session. The video traffic starts first, and each gamers join the

system one by one. The TCP Reno version is used in the experiments.

Figure 4.4 shows the improvement in gaming delay traffic for the respective SDN-
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Figure 4.3: Real testbed used for the performance study.

Table 4.1: Average TCP throughput of each clients (in kbps) for the proposed and
traditional experiment setup.

2 Client 3 Clients 4 Clients
Client 1 Client 2 Client 1 Client 2 Client 3 Client 1 Client 2 Client 3 Client 4

Proposed 2487.77 2319.96 1458.23 1364.81 1464.58 916.88 912.95 932.82 952.2
Traditional 2167.77 2453.48 618.33 1388.03 1651.00 80.83 1074.03 1263.97 1273.78

based proposed framework, and the traditional setup. The increase in delay is due to

the TCP downlink traffic predominantly occupying the AP buffer. With our proposed

framework, the TCP traffic is split and wireless counterpart is contained with limited

congestion window size with value C = 2, therefore, the AP buffer is uniformly

occupied by all traffic types, this phenomenon significantly decreases the gaming

delay.

Figure 4.5 shows the video traffic delay of the proposed SDN framework with TCP

only traffic, and with TCP+UDP traffic. It is evident that the analysis presented in

previous section matches well with the experiment results. Though the analysis does

not capture gaming UDP traffic, the delay is not substantially different from the

TCP-only counter part.

Table 4.1 shows the TCP video throughput for the respective proposed frame-
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Table 4.2: Average UDP throughput (in kbps) for two clients setup, for the proposed
and traditional experiment setup.

Client 1 Client 2
Proposed 37.84 39.13
Traditional 40.65 47.7

work, and traditional framework. The proposed framework significantly enhances

the throughput and also maintains fairness among different clients. This therefore

demonstrate the prowess of the proposed SDN based split TCP framework. Table 4.2

shows the gaming traffic throughput which is minimal as the gaming clients exchange

data in a sporadic manner.

The Jain’s fairness index [13] plots in Fig. 4.6 and Fig. 4.7 show the accuracy of

throughput fairness throughout the sessions for an experiment with three clients and

four clients, respectively. Figure 4.8 shows the throughput fairness comparison of the

gaming UDP applications for the respective traditional and proposed frameworks.

The traditional fairness is maintained in the proposed framework (with a minimal

added fairness as reflected by an almost straight-line in the figure). This shows the

fact that the reduced delay is achieved without loss of fairness in the network. The

Jain’s fairness index is computed as follows:

Fairness index = (∑n
i=1 E[Ti])2

n×∑n
i=1 E[Ti]2

(4.6)

where E[Ti] throughput of TCP flow i and n is the total number of flows.
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4.6 Summary

In this dissertation, we have proposed a novel SDN-based framework to enable split

TCP, and limit the wireless TCP-side congestion window. The system therefore

utilized the WiFi MAC’s DCF fairness functionality effectively. As a result, the video

traffic throughput were significantly increased fairly among all the clients, and at the

same time the delay of the gaming traffic has been significantly reduced. The proposed

approach is practical in a way that it works in a transparent manner, agnostic to the

application end-users.

In future, we plan to study the analytical performance of the network by including

both TCP and UDP traffic.
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Chapter 5

On Scheduling Multiple Simultaneous Live Virtual Machine

Migrations

5.1 Introduction

Many enterprises, not only large-market company like Netflix and Snapchat, but also

small-market technology startups rely on cloud platforms for computing infrastructure

or business [38] [39]. A cloud platform, such as Amazon Web Services (AWS) or

Windows Azure, enables on-demand provisioning of computational resources in the

form of Virtual Machines (VMs) deployed in the cloud provider’s data center. These

services meet peak or fluctuating service demands, serve multiple users in a secure,

flexible and efficient way [69].

With the growth of data volumes and a variety of Internet applications, virtual-

ization has become commonplace in modern data centers and an effective solution

to provide better management flexibility, lower cost, scalability, better resources uti-

lization, and energy efficiency [40] [70]. One of the powerful features provided by

virtualization technology is VM live migration, which facilitates moving workloads

within the infrastructure to bring multiple benefits such as higher performance, im-

proved manageability and fault tolerance. Moreover, VM live migration of often

allows workload movement with negligible downtime, minimal impact on workload,

and no disruption of network connectivity [41] [42].

Clark et al. [43] proposed a VM live migration system which transfers memory,

storage and application status (CPU state, registers, non-pageable memory) of the
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virtual machine from the original server to the destination. The system handles

the live migration by two main techniques, namely pre-copy memory migration, and

stop-and-copy memory migration. In the pre-copy memory migration, the hypervisor

typically copies all the memory pages from the source to the destination while the

VM is still running on the source. The updated memory pages during this process

are then re-copied until page dirtying rate is faster than the rate of copy. In stop-

and-copy memory migration, the system transfers the remaining memory pages and

application status to the destination. Then the original VM is stopped and resumed

at the destination.

However, the performance of running applications is likely to be negatively affected

during this process. Clark et al. [43] also showed that around 12% performance

degradation is observed during the migration of a VM running a web server. One of

the most common reasons to justify VM migration is to move VMs out of overloaded

servers. To execute the live migration on an overloaded VM, the VM has to assign

part of its computing resources to the migration program and could result in lower

system performance.

An experimental study by Voorsluys et al. [41] have found that performance degra-

dation depends on the application’s behavior, for example, the number of related

memory pages need to be transferred and the migration program CPU utilization.

Beloglazov and Buyya [71] proposed a nice model for measuring the performance

degradation of a VM during the live migration taking into account the pre-copy

phase and is given below:

f = t0 + m(0) + ∑t
i=1 m(i)

T
(5.1)

D = d
∫ f

i=0
u(i) di (5.2)
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where D is the total performance degradation of the VM, t is the completion time

for the migration in worst-cast and can be computed by assuming the worst-case

size of the VM to be migrated, d is a constant value and varies with the type of

applications running on the VM, t0 is the start time of the migration process, f is the

migration completion time, m(0) is the memory size at the time when the migration

was initiated (initial size), and m(i) is the increase or decrease of the m(0) at time

step i. In the stop-and-copy phase, the migration has to re-transfer the dirty pages

and hence, m(i) captures the changes in memory size m(0) during each time period

i. T is the average throughput of the migration flow, u(i) is the CPU utilization of

the program at time period i that is used to perform the migration.

In this dissertation, we have developed a Mixed Integer Linear Programming

(MILP) model that will provide a schedule (preemptive) for the transfer of multi-

ple VMs from source to destination. This MILP model assumes that m(i) and u(i)

be available for each time-period i. In addition to the MILP model, we have also pro-

vide a heuristic that is based on path selection (for example, shortest widest path [72])

and priority assignment for flows corresponding to each VM migration. Our heuristics

uses the changes in memory size (m(i)) and CPU utilization (u(i)) at each time step

i to determine the migration schedule. We have made several performance compar-

isons including total performance degradation (TPD) and makespan (MS) which is

the total time taken to complete all the migrations. Additionally, we have developed

a simple MILP model for the problem, wherein we assume constant memory size for

each VM and constant CPU utilization.

We will assume that we will use VM transfer program that is based on Transmis-

sion Control Program (TCP). When two or more flows corresponding to VM migra-

tions share a link, the TCP program will allocate the bandwidth in a fair manner [73].

We show in this dissertation that this fair allocation will not result in optimal values

for TPD and MS.
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To enforce the computed schedules for the VM transfers, each node should be

provided with a schedule that provides for each time step i the order in which each

packet from each flow be be forwarded. We would like to point out that our MILP

models and the heuristic provide such an output.

To realize the application of the proposed ideas, we have developed a novel join-

and-split TCP protocol. In this protocol, several competing TCP flows are joined

at the front end of the shared link and the flows are then split at the back end of

the same shared link. During this join process, we can assign the priorities dictated

by the MILP model or by the proposed heuristic at nodes to forward packets from

different flows in the order in which the scheduling algorithms (MILP or Heuristic)

have dictated. This join-and-split protocol is built on the network with routers that

are programmable (software defined network (SDN) [3]).

The remainder of this dissertation is organized as follows.

In Section 5.2, we provide MILP models for variations of VM live migration prob-

lems Section 5.4 presents our greedy algorithms, and compare them with the MILP

formulations. Experimental results are presented in Section 5.5. Conclusions are

drawn in Section 5.6.

5.2 Problem Formulation

Consider the Virtual Machine (VM) live migration problem. Let G = (V,E) be a

network where V is the set of nodes, E = {e1, e2, · · · em} is the set of links and Bj is

the bandwidth of link ej, 1 ≤ j ≤ m.

Consider the set of n VMs, H = {h1, h2, · · ·hn}, to be migrated. Each VM hi is

being migrating from node si ∈ V to node di ∈ V . Let Mi(0) be the initial memory

size of hi, which is the initial size of the content to be transferred to the new location,

AGit, be the increase in memory size of Mi(0) at time interval t for hi, and Cit be
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the non-negative migration performance degradation constant of CPU utilization of

hi on each time interval t.

Apart from the above, we provide our MILP model, for each (si, di) the set of

possible paths (Qi) from si to di. Please note that we do understand while there may

be infinitely many paths from si to di in an arbitrary network, we restrict the size of

Qi. In special networks such as the Fat-Tree [74] common in data center networks,

the values Qi is bounded (and fixed).

We will use P̂i,k, hi ∈ H, j ∈ {1, 2 · · · , Qi} to denote each path. Each possible

path is P̂i,k represented using a binary array [Pi,k,0 Pi,k,1 · · · ] defined as follows:

Pi,k,j =


1, ej is used in P̂i,k

0, otherwise

We assume that only one path is selected and used for each hi during the migrating

process. For simplicity, we also assume that time is discretized as intervals T =

{t1, t2, · · · tp}, where tp is the last time interval (p >= f , in equation (1)).

The following decision variables are introduced to model the problem:

1. fi ∈ T (integer), the migration end (finish) time of hi

2. pi,k ∈ {0, 1} (binary), path P̂i,k is chosen

3. xi,t (continuous), allocated bandwidth of hi during time t ∈ T

4. ui,k,j,t (continuous), bandwidth usage of hi on path k and link ej during time

t ∈ T , which is equal to Pi,k,j · pik · xit

5. ri,t ∈ {0, 1} (binary), if hi migrating during time t ∈ T

6. zit ∈ {0, 1} (binary), if the t ofzit lager than fi, zit = 0 else zit = 1

7. y1,i,t, y2,i,t (binary), help to linearize zit
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To help us model the problem, we also defineR = {R1, R2, · · ·Rp} as a one-dimensional

array such that its length is the same as T (which is p) and Ri = i.

We adopt the definition of VM live migration performance degradation from

Equation 5.2 where u(i) = Cit · zit and assume the time interval is 1. Therefore,

Z = ∑n
i=1

∑p
t=1 Cit · zit and our goal is to minimize the total VM live migration per-

formance degradation Z. The problem then can be formulated as the following Mixed

Integer Linear Programing (MILP).
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Model VMLM

minimize

Z =
n∑
i=1

p∑
t=1

Cit · zit (5.3)

subject to:
hi∈H,P̂i,k∈Qi∑

uikjt ≤ Bk ∀ ej ∈ E, t ∈ T (5.4)

uikjt ≤ Pikj ·K3 · pik ∀ hi ∈ H, ej ∈ E,

1 ≤ j ≤ |Qi|, t ∈ T (5.5)

uikjt ≤ Pikj · xit ∀ hi ∈ H, ej ∈ E,

1 ≤ j ≤ |Qi|, t ∈ T (5.6)

uikjt ≥ Pikj · xit −

Pikj ·K3 · (1− pik) ∀ hi ∈ H, ej ∈ E,

1 ≤ j ≤ |Qi|, t ∈ T (5.7)
|Qi|∑
j=1

pik = 1 ∀ hi ∈ H (5.8)

0 ≤ (zit − 1) +K5 · y1it (5.9)

(fi −Rt + 1) ≤ K6 · (1− y1it) (5.10)

0 ≤ (0− zit) +K8 · y2it (5.11)

(Rt − fi) ≤ K9 · (1− y2it) (5.12)
p∑
t=1

xit = Mi +
p∑
t=1

AGit · zit ∀ hi ∈ H (5.13)

K1 · rit ≥ xit ∀ hi ∈ H, t ∈ T (5.14)

K2 · xit ≥ rit ∀ hi ∈ H, t ∈ T (5.15)

fi ≥ rit ·Rt ∀ hi ∈ H, t ∈ T (5.16)
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Objective function (5.3) captures the total VM live migration performance degra-

dation. Constraint (5.4) enforces the bandwidth limitation of each link ej ∈ E at

each time slot t. Constraint (5.5 – 5.7) is used to linearize uikjt = Pikj · pik · xit. K3

is a constant value, which is larger than the maximum bandwidth in the network

K3 ≥ max(Bk). pik is a binary variable which only can be 0 or 1. In our case, if

pik = 0, then uikjt = 0 else uikjt = Pikj · xit. Thus, uikjt is a linear equation on

both cases of pik. Constraint (5.5 – 5.7) shows how to describe the If Then logic in

MILP model. Put pik = 0 into Constraint (5.5 – 5.7) and this model assumes that

all the variables are larger or equals than 0. Then Constraint (5.5 – 5.7) make sure

that uikjt = 0. When pik = 1, then Constraint (5.6) uikjt ≤ Pikj · xit and Constraint

(5.7) uikjt ≥ Pikj · xit. Thus, uikjt has to equal to Pikj · xit. Constraint (5.8) ensures

that only one possible path is selected during the whole process. Constraint (5.9 –

5.12) is used to linearize zit = 0 when the index t larger than fi, else zit = 1, K4

to K9 are constant value that large enough to help for the linearization. Constraint

(5.13) measures the total data transfer of each VM migration, this must match the

size of each VM. Constraints (5.14) and (5.15) are used to couple xi,t and ri,t. If

xi,t is non-zero, ri,t is 1; other wise, ri,t is 0. K1 and K2 are constants chosen as

follows for this purpose: K1 is a constant value, which is larger than the maximum

bandwidth in the network K1 ≥ max(Bk). K2 is a constant value such that, for any

xit > 0, K2 · xit >= 1. Constraint (5.16) is used to capture the end time of each VM

migration.

5.2.1 Simplified Formulation

In this section we provide a simplified version of the formulation of Model VMLM. In

this formulation we provided the exact path for each (si, di) pair, and assume constant

values for CPU utilization and VM size (that is, it does not change during the course
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of the migration). Let the the paths between each pair of si and di are given as:

P̄i,j =


1, hi uses ej during the migration

0, otherwise

Then the CPU utilization Cit is a constant value, the formulation can be simplified

as Ci. The changes in memory is set to AGit = 0 and hence is removed from the

formulation. The simplified problem can be formulated as the following model.

Model VMLM-Simplified

minimize

Z =
n∑
i=1

Ci · fi (5.17)

subject to:

Constraints (5.14)−(5.16)
p∑
t=1

xit = Mi ∀ hi ∈ H (5.18)

n∑
i=1

P̄ij · xit ≤ Bj ∀ hi ∈ H, ej ∈ E, t ∈ T (5.19)

Because Ci is a constant value, so Objective function (5.17) can simplified to

Z = ∑n
i=1 Ci ·fi Constraints (5.14)−(5.16) are same as inModel VMLM. Constraint

(5.19) enforces the bandwidth limitation of each link ej ∈ E. Constraint (5.18)

removes the unused AGit from Constraint (5.13)and make sure that each VM send

out the initial memory size of data.

5.2.2 Examples

In [74], a k-ary fat-tree topology is introduced. There are k pods, each containing

two layers of k2 switches, namely edge layer and aggregation layer. Each k-port switch
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in the edge layer is directly connected to k
2 hosts. Each of the remaining k

2 ports is

connected to k
2 of the k ports switch in the aggregation layer of the hierarchy.

There are (k2 )2 k-port core switches. Each core switch only has one port connected

to each of the k pods. The ith port of any core switch is connected to ith pod. Assume

Core S = {S1, S2, · · · , Sx} is the set of core switches, A = {A1, A2, · · · , Ay} is the set

of aggregation switches of same pod. Each aggregation switch Ai connects to each of

core switches from S k
2 ·(i−1) to S k

2 ·i
. In general, a fat-tree network built with k-port

switches supports k3

4 hosts.

The advantage of the fat-tree topology is that all switching elements are iden-

tical, enabling us to leverage cheap commodity parts for all of the switches in the

communication architecture.

e11
e12

Core

Aggregation

Edge

Server

Pod 0

e1 e2 e3

e8e7

Pod 1

e4 e5 e6

e10e9

Pod 2 Pod 3

h1 h2 h3 New h1 New h2 New h3

v1 v2 v3 v4 v5 v6

v7 v8 v9 v10

v11 v12

v13

Figure 5.1: Fat-Tree Topology

Fig. 5.1 shows an example of 3 VM migrations on a Fat-Tree topology. VM h1

on node v1 migrates to New h1 on node v4 along the path {e1, e7, e11, e12, e9, e4},

similarly for VM s2 and s3. We consider the following 4 cases in different examples.

Let C = {c1, c2, c3} be the migration program CPU utilizations of VM 1 to 3, M =

{m1,m2,m3} be the memory sizes of VM 1 to 3 andB = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12}

be the bandwidth of link e1 through e12.

• Case 1. Link bandwidths (set at 10), VM memory sizes are the same (set at 10),

CPU utilizations are different. Let C = {10, 8, 4}. The schedule corresponding
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to the optimal solution is shown in Table 5.1, which indicates that migration

process with higher CPU utilization should be scheduled first. The optimal

total performance degradation value Z = 10× 4 + 8× 8 + 4× 12 = 152. Note

that the finish times for the three VMs are 4, 8, and 12.

• Case 2. Link bandwidth (set at 10) and CPU utilization (set at 10) are the

same, VM memory sizes are different Let M = {30, 40, 50}. The schedule

corresponding to the optimal solution is shown in Table 5.2, which indicates

that VM with smaller memory size should be scheduled first. The optimal total

performance degradation value Z = 10× 3 + 10× 7 + 10× 12 = 220. Note that

the finish times for the three VMs are 3, 7, and 12.

• Case 3. Link bandwidth are different, VMmemory sizes (set at 40) and CPU uti-

lizations (set at 10) are the same. LetB = {10, 8, 4, 10, 10, 10, 10, 10, 10, 10, 10, 10}.

This problem can be converted to find the minimum total finish time and re-

sult shown in Table 5.3 The optimal total performance degradation value Z =

10× 12 + 10× 6 + 10× 11 = 290. Note that the finish times for the three VMs

are 12, 6, and 11.

• Case 4. Link bandwidths, VM memory sizes and CPU utilization are all differ-

ent. Let C = {10, 8, 6},M = {40, 50, 30} andB = {6, 8, 7, 10, 10, 10, 10, 10, 10, 10, 10, 10}.

This is a mixed case of Case 1 to 3. The schedule corresponding to the opti-

mal solution is shown in Table 5.4. The optimal total performance degradation

value Z = 10 × 8 + 8 × 13 + 4 × 6 = 208. Note that the finish times for the

three VMs are 8, 13, and 6.
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Table 5.1: bandwidth allocation and Scheduling for
Case 1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
h1 10 10 10 10 0 0 0 0 0 0 0 0
h2 0 0 0 0 10 10 10 10 0 0 0 0
h3 0 0 0 0 0 0 0 0 10 10 10 10

Table 5.2: bandwidth allocation and Scheduling for
Case 2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
h1 10 10 10 0 0 0 0 0 0 0 0 0
h2 0 0 0 10 10 10 10 0 0 0 0 0
h3 0 0 0 0 0 0 0 10 10 10 10 10

Table 5.3: bandwidth allocation and Scheduling for
Case 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
h1 0 0 0 0 0 0 6 6 6 6 6 10
h2 6 6 8 6 8 6 0 0 0 0 0 0
h3 4 4 2 4 2 4 4 4 4 4 4 0

Table 5.4: bandwidth allocation and Scheduling for Case 4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
h1 6 6 6 4 3 3 6 6 0 0 0 0 0
h2 0 0 0 0 0 2 4 4 8 8 8 8 8
h3 4 4 4 6 7 5 0 0 0 0 0 0 0

5.3 Complexity

Model VMLM-Simplified is a special case of Model VMLM and we show the compu-

tational complexity of this model. According to the Proposition 1 in paper [75], if

Mi/Ci = 1 for i = 1, ...,m, the interchange of two adjacent migration tasks does not

alter the result of total performance degradation. Therefore, this special case equals

to makespan problem minimize fmax. The optimal solution of makespan problem

is also the optimal solution for the aforementioned special case of total performance

degradation. Since minimizing makespan problem is NP-hard, then minimizing the

total performance degradation is NP-hard [76].

Consider a network that each host only has one network adapter. So, the max-

imum number of simultaneous file transfers that the given host can engage in is 1.
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Forwarding is not allowed; each segment is transferred directly between the source

host to destination host. This special case has proven to be NP-hard in [77]. If as-

sume that each VM only has 1 segment to migrate and each segment has same length,

then our problem will be equivalent to the file transfer problem in [77]. Therefore,

the Model VMLM-Simplified and Model VMLM are NP-hard problems.

5.4 Greedy Algorithms

We designed a greedy algorithm to solve the TPD of VM live migration which are

NP-hard problems. Then we proposed an implementation framework to deploy the

greedy algorithm on the Date Center network.

5.4.1 Greedy Algorithms for Model VMLM and VMLM-Simplified

For the VM live migration problem (Model VMLM), we designed a greedy Algorithm

1. Our algorithms assigns priorities to the VMs based on the CPU utilization and its

memory size. Consider the results shown in Table 5.1 and 5.2. Clearly, in one case

when we schedule the VM with larger CPU utilization first yields an optimal total

performance degradation value while in the other case scheduling VMs with smaller

memory size yields a better result. Using this, we define G-Ratio as the ratio of a

VMs CPU utilization over its memory size. Please note as indicated earlier, both

CPU utilization and memory size changes over time and hence

G−Ratio(VMi) = Cit
Mi + ∑tc

t=1 AGit −
∑tc
t=1 BWit

(5.20)

where BWit is allocated bandwidth to VMi on each time interval.

The Algorithm 1 works as follows to produce the schedule. We first sort the VMs

in the descending order of the current G-Ratio values (stored in H ′). Once this is

done, we will determine the path Pi for VMi. While there are many possible paths,
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the choice we have made is to compute the shortest-widest path [72]. Once path is

determined for a particular VM, we have chosen not to change it (of course, one can

design other heuristics that allows for changes in path). The rationale for this to aid

our implementation on the SDN networks, wherein once the flow table is fixed it may

be expensive to change it.

As we sequentially choose each VMi from the sorted list H ′, we will consume

bandwidth on the links (done by reducing the bottleneck bandwidth for the path Pi).

If a VMi cannot be routed because the residual bandwidth is 0 on one or more links

in the path Pi, then this VM is scheduled later (actually after a VM completes its

migration). After a feasible set H ′′ (as set of VMs routed along the chosen paths)

of VMs is determined, we assume that they start the migration process. During the

migration process, note that all VMs experience changes in memory size and CPU

utilization, thus impacting their G-Ratio value. As soon as a single VM completes the

migration, we reset, and once again assign priorities based on their current G-Ratio

values and start the whole process again. Note that in line 18 of Algorithm 1 we say

start migrating VMs. By this we mean that we will now determine the schedule for

each VMs at each of the nodes in the network (at least for the nodes along the path

Pi for each VMi in H ′′.

The time-complexity of our algorithm is as follows. The total time for step 8 will

be O(n×(|E|+ |V | log |V |)), |E| is the number of links and |V | is the number of nodes

in the network G. Each time step 5 is executed it take a worst case time of O(n log n)

and it is done n times and hence has a total time complexity of O(n2 log n). Each

path Pi can be of size |V | − 1 and hence step 10 and step 14 will take O(n× |V | − 1)

each time through loop giving raise to a complexity of O(n2 × (|V | − 1)). Step 18

has a total time complexity of O(n2× (|V | − 1)). The other steps do not increase the

already determine time complexity and hence Algorithm 1 has a time-complexity of

O(n× (|E|+ |V | log |V |)) + n2 × (|V | − 1)).
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Algorithm 2: VM Migration Scheduler (Network G, VMs H)
1 H ′ = H;
2 G′ = G;
3 Selected (Pi)= False for all 1 ≤ i ≤ n; //n number of VMs;
4 while H ′ is not empty do
5 Sort VMs in H ′ in descending order of G-Ratio; Let H ′′ be this sorted list;
6 foreach VMi in H ′′ do
7 if not Selected(Pi) then
8 Find path Pi in G′ (e.g. shortest-widest) for each VMi (si, di) in H ′′

(go through the sorted list);
9 end

10 Let B(Pi) be the bottle next bandwidth on Pi;
11 if (B(Pi) == 0) then
12 Remove VMi from H ′′

13 else
14 Reduce B(Pi) from the links in the path Pi in G′;
15 Selected(Pi) = True;
16 end
17 end
18 Start migrating VMs in H ′′ and let VMk be the first one to finish in H ′′;
19 Update v.c and v.m values for VMs in H ′;
20 G′ = G;
21 Remove VMk from H ′.;
22 end
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5.4.2 Implementation

When the Algorithm 1 completes its execution, it produces a schedule for each node

for each time step. The schedule will be something like node 6 will forward packets

(TCP since we want reliable transfer of VMs) belonging to flow 1 (which may corre-

spond to the migration of VM 1), followed by packets from flow 4, and so on. The

number of packets to be forwarded for each flow by a single node at each time step

is determined by Algorithm 1 (note that the number of packets is determined by the

bottleneck bandwidth reserved for the particular migration). In a future time step,

the same node might be forwarding packets from flow 8 which is followed by flow 4,

and so on.

The current routers are not equipped to manage the different flows differently

without significant changes to existing router protocols. Our proposed heuristic can

be implemented on a network that supports Software Defined Network (SDN) infras-

tructure. The central controller has the entire view of the network and hence the

algorithm for path finding can be locally executed. Once the paths and schedules are

determined the flow tables can be sent to each of the routers. Our next challenge

would be to adjust the order and rate of packet forwarding at each node. The problem

is further confounded because of the underlying TCP protocol.

To address this issue, we have provided a simple join-and-split protocol. This

protocol runs on the SDN router (Network Function Virtualization in the SDN lingo).

The idea is when there are multiple flows (TCP flows), we will join them and send

one output flow. At the split location, we will separate the flows. The source and

destination nodes are oblivious to this process. Since we are able to join the TCP

flows, we can then use a Weighted Fair Queuing mechanism to regulate the flow as

dictated by the scheduling algorithm.

Figure 5.2 shows an example with 3 tcp flows for the join and split mechanism.
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First, each SDN enabled switch attaches a TCP proxy that is under the control of

SDN controller. The TCP proxy can run as a NFV (network function vitalization)

on remote server or an application inside the switch. Flows are aggregated to be a

long TCP flow at the switch where their paths start to overlap. A unique ID (UID)

and packet length (Len) are attached to the data before sending to the aggregate

flow. A WFQ (weighted fair queue) adjusts the weight following the instruction from

the SDN controller and controls the packet sending rate to the aggregate flow. The

aggregated flow splits at the switch where the path start to divide or is the last switch

by striping UID+Len from the data.

WFQ

UID Len dataAggregate

Map
Client Info UID

Map
UID Client Info

Split

data data data

switch1

Forwarding

Fake TCP Connection

client1

client1

client1

Forwarding

Fake TCP Connection

server

switch2

Proxy1 Proxy2

Data flow of Client1

Data flow of Client2

Data flow of Client3

Data flow of Aggregated flow

Figure 5.2: end-user agnostic TCP join and split framework in SDN

5.5 Performance Evaluation and Result Analysis

In this section, we show the results of the execution our optimization models and

heuristic under different scenarios and show the values for Total Performance Degra-

dation and Makespan. Our input network is a Fat-Tree topology with up to 8 pods

(network with 208 nodes). We choose leaf nodes as the source and destination nodes

for the migration. We varied the number of VMs to be migrated from 4 to 20. Our

optimization models were coded in Gurobi optimizer and all algorithms ran on on a

server with Intel(R) Xeon(R) CPU E5-1620 v3 running 3.50GHz, and uses 32 GB of

memory. Using random seeds we changed the values of initial CPU utilization, initial
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VM size, changes in values in CPU utilization and memory over time, and values of

bandwidth on the links. All our experiments where repeated and obtained a 95%

confidence interval on the values.

Other experiment configurations are defined as following:

1. The bandwidth of each link is randomly selected from 1 to 1000 Mbps by as-

suming that Data Center network reserves bandwidth for other different appli-

cations.

2. The initial memory size of each VM ranges is randomly selected from 1 to 8000

MB

3. The changes in memory size during each time period is randomly selected from

0% to 5% of initial memory size.

4. The migration process CPU utilization is is randomly selected from 1 to 20 for

each time period.

We used a combination of flow control and path selection mechanisms. For exam-

ple, one flow control we used was the traditional TCP (that is, each VM is migrated to

the destination using TCP). Note that TCP uses fair sharing of link bandwidths and

all VMs are scheduled at the same time. Since we are using TCP it is also noted that

the scheduling here is non-preemptive. Other flow control mechanisms are dictated

by the schedule given by the MILP models and Algorithm 1 (referred as Greedy in

the Figures). The path selection impacts the TPD and Makespan. We incorporate

two path selection criteria, a) Random: paths are chosen at random (among the set of

paths), and b) SW: shortest widest path is chosen. TCP-Random for example would

mean that we have chosen TCP as the main flow control mechanism on the paths for

each migration that has been chosen at random from a set of paths.
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Figure 3 shows the TPD of the scenario in Model VMLM where the number of

VMs ranges from 1 to 8. Please note that we ran the Gurobi modeler for 30 minutes

to get the results we have in Figure 3. We did not run the modeler for VMs above 8 as

it took a very long time compute the final results. Both TCP and Greedy algorithms

ran in few milliseconds for all ranges of VMs from 1-20. Comparing the result of

Greedy-SW with MILP, Figure 3 shows that the our proposed greedy algorithm get

better result than MILP model when the number of VM is 8. When we ran the MILP

model for a long time (like 6 hours) we found that the MILP model outperformed

the Greedy algorithm (see Figure 5.7). The Greedy algorithm outperforms the TCP

based approach in both the metrics: TPD and Makespan.
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We also studied the scenario of Model VMLM-Simplified to analyze how much

TPD the Model VMLM-Simplified, greedy algorithm can reduce by comparing the

result of TCP, Greedy, MILP for both Random and SW path shown as Figure 5.5.

The result shows that the Greedy and MILP reduce more TPD when the number of
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VMs increasing. The Greedy reduces 20.3% and MILP reduces 48.2% of TPD when

the number of VMs is 20 and the path is randomly selected. We also notice that

the SW get better result when the number of VM decreasing. When the number of

VM is 20, Figure 5.5 shows that TCP − SW/TCP − Random = 106.8%, Greedy −

SW/Greedy −Random = 98.5%,MILP − SW/MILP −Random = 96.7%.

Once can notice that the MILP models reduce the makespan and thereby mini-

mizing total performance degradation. In general, it is not possible to have a smaller

makespan and smaller total performance degradation. For example, in Figure 3, when

the number of VMs is 12, the TPD is TCP-random and Greedy-random is 3421 and

2766, respectively, while the make span values are 105 and 109, respectively. This

indicates that a higher makespan could have a lower TPD value.

We compare VMLM and VMLM-Simplified and our results show in Tables 5.5

and 5.6 that VMLM has a Makespan of 8 while VMLM-simplified has a value of 10.

The total performance degradation values for VMLM and VMLM-Simplified are 225,

and 232, respectively.

Table 5.5: bandwidth allocation and
Scheduling for Case 2

t1 t2 t3 t4 t5 t6 t7 t8
h1 806 806 806 526 806 0 0 0
h2 390 0 0 0 0 0 0 0
h3 633 633 633 633 409 633 633 633
h4 191 191 76 471 191 997 997 997

Table 5.6: bandwidth allocation and Scheduling for
Case 2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
h1 960 870 960 960 0 0 0 0 0 0
h2 390 0 0 0 0 0 0 0 0 0
h3 88 528 528 528 528 528 528 528 528 528
h4 609 609 609 609 609 609 457 0 0 0
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5.6 Summary

In this dissertation, we model the total performance degradation for concurrence VM

live migration by MILP and prove this problem is NP-hard. Then we provide an effi-

cient greedy algorithm for this problem. The simulation result show that our greedy

algorithm works better as compared with straight TCP, when either the number of

VM increasing or considering the variant CPU utilization and memory size. We pro-

vided a practical implementation mechanism that works on SDN networks using the

concept of Join-and-Split TCP. When a time limit is imposed to the MILP mode,

the proposed greedy algorithm can get better solution than MILP model when the

problem is very complex.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we mainly addressed the TCP optimization problem on SDN

platform in Smart Grid network, WiFi network and Data Center network.

First, we have proposed and implemented a generic join-and split SDN framework

of aggregating and splitting TCP flows, with ’linked-ACK’ mechanism to preserve

end-to-end semantics. The framework developed is implemented in an user-agnostic

manner so as to make it more practical. With extensive simulation experiments,

we have demonstrated the efficacy of our proposed framework. We have showed the

following benefits as achieved by our proposed framework: i) achieves an improved

TCP goodput performance, ii) improved buffer usage at the respective split and join

nodes, iii) provides fairness among different client flows, iv) improved wireless network

throughput, and v) integrates MPTCP based proxy node which provides a hybrid

implementation of supporting MPTCP nodes to traditional TCP flows. Despite that

our framework also improves goodput performance in MPTCP environment.

The join-and-split framework is the cornerstone of this dissertation. The following

research are all based on this platform. Different extensions of the join-and-split

framework are applied to a Smart Grid network, WiFi network and Data Center

network as follows:

In the Smart Grid network, we have proposed a novel SDN-based TCP Aggre-

gation/scheduling Smart Grid framework that achieved a better throughput perfor-
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mance and fairness. We also have proposed the white-box model of implementation

with a detailed functional design. The throughput performance is extensively studied

and compared with the respective traditional no-aggregation, aggregation with no

scheduling, and our proposed aggregation and scheduling frameworks. Our proposed

framework demonstrated fairness to a significant level of accuracy throughout the

course of the experiment, while maintaining a high throughput.

In the WiFi network, we have proposed a novel SDN-based framework to enable

split TCP, and limit the wireless TCP-side congestion window. The system, therefore,

utilized the WiFi MAC’s DCF fairness functionality effectively. As a result, the video

traffic throughput was significantly increased fairly among all the clients, and at the

same time the delay of the gaming traffic has been significantly reduced. The proposed

approach is practical in a way that it works in a transparent manner, agnostic to the

application end-users.

In Data Center network, we have optimized the total performance degradation for

live migration in Data Center network. It studied two scenarios that VM migration

with a fixed path and VM migration with path selection. With the help of SDN

platform, this paper proposed a preemption scheduler that modeled by MILP for both

scenarios. Moreover, this dissertation demonstrated the greedy algorithm for each

MILP model. A fat-tree topology with pod size 8 is used to test a maximum number

of 20 VM live migrations. The result shows a significant performance degradation

decreasing both in MILP model and greedy algorithm when the number of VMs

increases. The greedy algorithm can’t give the optimum solution as the problem

becoming harder, but it could provide a better solution than MILP model in terms

of the time constrain exhibited in case of large problems.
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6.2 Future Work

In the future, we plan to extend the TCP join-and-split framework with more ap-

plications on global TCP optimization and study the performance in the presence

of background traffic. Moreover, current join-proxy or split-proxy running on the

standard Linux system which part of TCP parameters are global variable for all TCP

sessions and part of TCP parameters are not accessible. If we can convert global

TCP parameters to private parameters for each TCP session and provide access to

each TCP parameter, the TCP join-and split framework will be more powerful and

flexible. To widely deploy this framework, we can encapsulate this framework a net-

work function of Network functions virtualization (NFV) [78] which can quickly scale

up and reducing the time to deploy new network function.

In the Smart Grid Network, 5G will replace LTE with much higher throughput

and lower delay. We would like to know how the smart grid network cooperates with

5G.

In the WiFi gaming network, we plan to study the analytical performance of the

network by including both TCP and UDP traffic. Moreover, mobile gaming gains

popularity over PCs, such as Pokemon Go which suffers serious network issue at the

beginning. We would like to know how the mobile gaming traffic work in the lasted

WiFi standard.

In the Data Center Network, the greedy algorithm could be improved by shorting

the VM migration maximum completion time. The proposed greedy algorithm can

be implemented with the TCP join-and-split framework.
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