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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Free-living amebae are normally found in soil and freshwater sources worldwide, 

including sources in Oklahoma (John and Howard, 1995).  Most species of amebae are 

part of the normal fauna, which feed on bacteria and other aquatic microorganisms.  

Several genera, including Naegleria, Acanthamoeba, Balamuthia, and Sappina, include 

species that are able to cause infection in humans and other animals.  They are termed 

opportunistic pathogens since they are able to live as either free-living organisms or as 

parasites in a host.  Naegleria fowleri is the causative agent of a rapid infection of the 

central nervous system (CNS) that is almost always fatal.  It is called primary amebic 

meningoencephalitis (PAM).  Acanthamoeba species cause a chronic form of PAM, 

known as granulomatous amebic encephalitis (GAE) as well as a very serious eye 

infection, called Acanthamoeba keratitis, which can cause blindness and is usually 

attributed to contaminated contact lens solutions (John, 1993).  Balamuthia mandrillaris 

causes a form of GAE similar to that produced by Acanthamoeba (John, 2005).  Sappina 

diplodea has recently been implicated in causing amebic encephalitis similar to PAM 

(Gelman et al., 2001). 

In 1958, Culbertson and his colleagues first noticed the disease-causing potential 

of Acanthamoeba when they identified a contaminant destroying cell cultures.  Animal 

models proved to be susceptible to a fatal infection when the amebae were introduced 
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intracerebrally, intranasally, and intravenously (Culbertson et al., 1958).  However, it 

wasn’t until 1965 that the first reported human cases appeared.  These cases occurred in 

Australia (3 children and 1 adult) with all succumbing within 4-5 days of the appearance 

of symptoms (Fowler and Carter, 1965).  Although no amebae were cultured from tissue, 

histological findings indicated amebae, tentatively identified as an Acanthamoeba 

species, as the causative agent.  It was later positively identified as Naegleria fowleri.  In 

1966, the first reported cases occurred in the United States.  Butt (1966) reported 3 cases 

in Florida, which were very similar to the Australian cases.  All of the individuals had a 

history of swimming in fresh water before becoming symptomatic.  He recognized that he 

was dealing with a new disease and called it primary amebic meningoencephalitis. 

1.2 Taxonomy and Biology of N. fowleri 

Naegleria spp. exist in three different forms; the trophozoite stage, flagellate 

stage, and cyst stage.  Other ameba species have only two forms, the trophozoite and cyst 

stages.  The trophozoite stage is the reproductive stage and has what is considered the 

“normal” amoeboid shape, which is the limax form, from the Latin word meaning slug.  

Trophozoites of different Naegleria species are very similar, being elongate and moving 

in a directional manner with eruptive pseudopodia (John, 1993).  Trophozoites of 

Naegleria feed on bacteria and other organic matter by phagocytosis and exhibit aerobic 

respiration by their mitochondria. 

The flagellate stage occurs when the organisms are exposed to ionic concentration 

changes in their environment, such as distilled water (Cable and John, 1986).  Typical 

Naegleria flagellates are cigar or pear-shaped with one or two flagella extending from the 

anterior rostrum (Figures 12 and 13).  Most N. fowleri flagellates will have two flagella, 
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while other species, such as N. australiensis may have as many as 8 flagella (John et al., 

1991).  Flagellates will revert back to the trophozoite stage since the flagellate is a non-

feeding, non-reproductive stage. 

During unfavorable environmental conditions (lack of food, cold temperatures, 

drought) the amebae will encyst (Figure 11).  Cysts of N. fowleri are often spherical and 

clumped together.  Diameter range is typically 7-15 µm (Page, 1988).  They will excyst 

when conditions are again favorable to feed and reproduce. 

N. fowleri cycles through all three of these stages to increase its chances for 

survival.  However, it is only the trophozoite stage which is infective, producing the fatal 

CNS infection called PAM (John, 1993; John, 2005). 

1.3 Primary Amebic Meningoencephalitis (PAM) 

PAM occurs most often in healthy children or young adults who have a recent 

history of swimming in freshwater contaminated with N. fowleri (John, 1993).  The 

amebae gain entry to the nasal cavity during swimming when droplets of contaminated 

water are inhaled or aspirated (John, 2005).  The organisms penetrate the mucosa and 

migrate through the cribriform plate via the olfactory nerves and into the olfactory bulb 

of the brain (Jarolim et al., 2000).  Once inside the CNS, they spread to more posterior 

regions of the brain.  Within the brain, the amebae cause extensive inflammation, 

necrosis and hemorrhage. (John, 2005) 

1.3.1 Clinical Features 

The clinical course of PAM is rapidly dramatic and ultimately fatal.  Initial 

symptoms include severe frontal headache with fever (39-40°C), anorexia with nausea 

and vomiting, and frequently positive Kernig’s sign (an indication of meningeal 
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irritation) (John, 2005).  Since the olfactory lobe is the first area of the brain affected, 

there are frequently changes in smell or taste noted early in the infection, even before the 

onset of headache and fever (Martinez, 1985).  Visual disturbances may occur, along with 

irritability, restlessness, confusion, and generalized seizures, prior to lapsing into a coma.  

Death ensues due to pulmonary edema and cardiorespiratory arrest, usually within 3-7 

days from the onset of symptoms (Parija et. al., 1999). 

1.3.2 Epidemiology 

Cases of PAM have been reported worldwide, including the United States 

(Parasitic Disease, 2002).  In the late 1960s, 14 of 16 cases of PAM were identified in 

individuals who swam in 2 man-made lakes in Richmond, Virginia (Callicott, 1968).  

Also in the late 1960s, 16 young people died after swimming in the same chlorinated, 

heated indoor swimming pool in the Czech Republic (Cerva et al., 1968).  Similar cases 

have been reported following swimming in pools, lakes, and streams from around the 

world in Australia, Belgium, England, and New Zealand and across the United States in 

Arkansas, Missouri, Texas, and others (Carter, 1970; Duma and Rosenblum, 1971).  Prior 

to August of 1998, there had been no confirmed case of PAM in the State of Oklahoma 

(John and Howard, 1999). 

1.3.3 Treatment 

The work of Goswick and Brenner (2003b) is probably the most current with very 

interesting information regarding a new method of treatment of PAM.  In this case, the 

use of azithromycin seemed to be much more effective in combating the pathogen, N. 

fowleri, than does the accepted method of using amphotericin B (Martinez, 1985).  This 

could indicate a major breakthrough in the ability to successfully treat the disease.  Much 
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more research will need to be done in this area before it becomes the accepted standard of 

care. 

Martinez (1985) gives a thorough account of the use of amphotericin B as a 

chemotherapeutic agent.  Seidel et al. (1982) have relevant information dealing with one 

of two cases of PAM which were treated successfully.  With reference to the Seidel case, 

it is possible that success wasn’t so much the drug used to treat the disease, but the 

aggressive and rapid form the treatment took.  The little girl was treated immediately and 

thoroughly for PAM.  Perhaps, if other cases were treated as such, there would be a 

higher success rate for this treatment. 

1.4 Sequence of Events 

On August 9, 1998, a 3-year-old girl died of PAM in Tulsa, the first confirmed 

case of the disease in Oklahoma (Primary Amebic Meningoencephalitis, 2001).  The 

course of the disease was similar to that described above, in which the little girl played in 

water at the edge of a local lake, where she presumably inhaled some water containing 

the amebae, 4 days prior to the onset of symptoms.  After her death, an autopsy was 

performed by the State Medical Examiner’s Office in Tulsa, and a diagnosis of PAM was 

made (John and Howard, 1999).  On August 13, 1998 the girl’s brain tissue was received 

from the Medical Examiner’s to test for the presence of amebae.  The tissue was 

processed, placed in appropriate culture media and incubated at 37°C (John and Howard, 

1993).  The following Monday, after having incubated for less than 72 hours, the cultures 

were positive for the presence of amebae.  This ameba isolate has been given the 

identification code HBT1-1998, which stands for human brain isolate from Tulsa, the 
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first one (1), which occurred in 1998, a designation recommended by the Centers for 

Disease Control and Prevention (CDC), Atlanta, Georgia. 

1.5 Significance of Study 

This is the first confirmed case of PAM in Oklahoma, which is one reason it is 

important to learn as much as we can about HBT1-1998.  It is also one of few cases 

where amebae were positively cultured from the brain tissue of the victim.  Usually, 

diagnosis is based on disease course and microscopic examination of brain tissue (post-

mortem) stained with hematoxylin and eosin (H & E) and by the indirect 

immunofluorescent assay.  Amebic infection can be diagnosed by trained personnel 

simply by observing a wet-mount of cerebrospinal fluid (CSF) if one knows to look for it.  

However, clinically, PAM closely resembles fulminating bacterial meningitis and the 

laboratory findings are similar.  Therefore, PAM usually is not considered until 

discovered during autopsy (John, 2005). 

Another reason it is important to classify and study HBT1-1998 carefully is the 

more we learn about this particular organism, known to be responsible for the death of a 

young girl, the better chances will be of saving a life in the future.  This research project, 

entitled “Characterization of the amebae isolated from the first confirmed case of primary 

amebic meningoencephalitis in Oklahoma”, will clearly show that the amebae cultured 

from the brain tissue of the 3-year-old victim were Naegleria fowleri.  The purpose of 

classifying the organism thusly can have a great impact on outdoor water activities 

(recreation and tourism) and public health issues in Oklahoma.  The Oklahoma State 

Department of Health has posted information on their website advising people when and 

how to take precautions against contracting this infection (Primary Amebic 
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Meningoencephalitis, 2001).  Though they do make statements about the rarity of this 

disease, it is at least an attempt to make people aware.  As of yet, sites that were 

determined to be positive for N. fowleri have not been posted by agencies in charge, 

though they have been made aware of the presence of these organisms at the locations.  

At least, as a result of this first Oklahoma case, the medical community has become more 

aware of the disease.  This can be important in that they can be more aggressive in testing 

for the presence of amebae in CSF of individuals with unknown meningeal symptoms 

and the subsequent treatment of PAM. 

Based on the typical disease course of this particular case of PAM and the initial 

testing of HBT1-1998, all indications are that this particular organism will prove to be N. 

fowleri.  This was verified with further confirmatory testing.  In the event that it is not 

confirmed, then the hypothesis that HBT1-1998 is N. fowleri would be false.  This would 

not mean that all the work is for naught.  Rather, it would support the primary aspect of 

the research proposal, “Characterization of the amebae isolated from the first confirmed 

case of primary amebic meningoencephalitis in Oklahoma”.  For instance, if further 

testing indicated the amebae were N. lovaniensis instead of N. fowleri, then that would be 

the result of the characterization.  These two species of Naegleria were considered to be 

identical (John, 1993).  The fact that they are very similar puts certain limitations on the 

project.  These limitations deal with showing conclusively that there is a difference 

between HBT1-1998 (presumably N. fowleri) and N. lovaniensis.  By utilizing specific 

experimental tests (IIF, antimicrobial sensitivity, and others), HBT1-1998 will be shown 

to be N. fowleri. 
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In this introduction, information has been provided about the basic life processes 

of free-living amebae and related information with regard to their potential pathogenicity, 

giving specific examples of documented cases of the disease PAM.  Next, the specifics 

about the particular research project dealing with the first confirmed case of PAM in 

Oklahoma were given.  The following section will detail the experimental methods used 

to complete the project and confirm the hypothesis.  Included in this are the statistical 

techniques used to support the findings. 
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CHAPTER 2 

RESEARCH DESIGN AND METHODOLOGY 

2.1 Methods and Techniques 

 The aim of this project was to accurately characterize the ameba species, hereafter 

referred to as HBT1-1998, isolated from the brain tissue of a 3-year-old girl who died 

from the first confirmed case of primary amebic meningoencephalitis (PAM) in 

Oklahoma.  Standard laboratory methods were used as well as experiments aimed at 

specifically identifying the species of ameba.  The general tests pertinent to ameba 

identification include the following criteria: growth in axenic media, Mix, Nelson’s, and 

Balamuth’s, at 23°C, 30°C, 37°C and 42°C, for 7 days with comparison growth for N. 

fowleri, Lee strain at 23°C, 30°C, 37°C and 42°C and N. gruberi, EGB strain at 23°C and 

30°C, the highest temperature at which the non-pathogenic Naegleria will grow; 

morphology and ameba characteristics by staining for measuring, logging data and taking 

photomicrographs of trophozoites, cysts and flagellates; concanavalin A agglutination; 

virulence of HBT1-1998, including percent mortality per inoculum, mean time to death 

(MTD), and the inoculum for 50% death (LD50); indirect immunofluorescence antibody 

titers (IIF) of HBT1-1998 amebae vs. species specific Naegleria antisera; histology of 

infected mice showing the presence of amebae in the nasal mucosa early in the infection 

and subsequently in brain tissue later during the course of the infection; and the 

effectiveness of the antimicrobials amphotericin B and azithromycin on the growth of 

HBT1-1998 in vitro. 
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2.2 Amebae Cultivation 

HBT1-1998 was cultivated axenically, without agitation, in three different 

media-Balamuth’s medium (Balamuth, 1964), Nelson’s medium (Weik and John, 1977), 

and Mix medium (John, 1993), which is an equal mixture of Balamuth’s and Nelson’s 

media consisting of 0.55% Panmede Liver Digest (Oxoid Ltd., Hampshire, England), 

0.5% Bacto Proteose Peptone (Becton, Dickinson and Co., Sparks, Maryland), 0.25% 

Difco Yeast Extract (Becton, Dickinson and Co., Sparks, Maryland), and 0.3% glucose in 

Page’s ameba saline (0.12 g NaCl, 0.004 g MgSO4⋅7H2O, 0.004 g CaCl2⋅2H2O, 0.142 g 

Na2HPO4, and 0.136 g KH2PO4 per liter of distilled water)(Page, 1988), supplemented 

with 4% bovine calf serum (Sigma Chemical Co., St. Louis, Missouri) and 1µg/ml hemin 

(Sigma Chemical Co., St. Louis, MO).  All components were steam sterilized by 

autoclave except the bovine serum and hemin, which were sterilized by filtration.  The 

amebae were cultivated in 25-cm2 polystyrene Falcon tissue-culture flasks (B and D 

Labware, Franklin Lakes, New Jersey), and each contained 10 ml of medium with an 

initial inoculation of 104 amebae/ml. 

2.3 Cell Counting 

Amebae were counted with a Coulter Counter (Model ZF, Coulter Electronics, 

Inc., Hialeah, FL) using the following settings: 1/amplification, 4; 1/aperture, 1; 

threshold, 10; sample volume, 500µl.  The electrolyte used to suspend amebae for 

counting consisted of 0.5% (v/v) formalin, and 0.4% (w/v) sodium chloride in deionized 

water.  Each trial was performed in triplicate, with each of the 3 flasks of the triplicate 

trial read 4 times.  The most atypical reading was excluded and the other 9 readings were 
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averaged (3 readings each of 3 flasks for each medium per growth temperature) (John and 

Howard, 1993). 

2.4 Growth Studies 

HBT1-1998 was cultivated axenically, without agitation, in three flasks each of 

the three different media at 23°C, 30°C, 37°C, and 42°C.  The counts were performed 

every 24 hours for a period of 96 hours, and then at 168 hours.  The average counts for 

each trial were plotted on a semi-log growth curve. 

N. fowleri, Lee strain, and N. lovaniensis, Aq/9/1/45 D strain, at 23°C, 30°C, 

37°C, and 42°C and N. gruberi, EGB strain at 23°C and 30°C, were cultivated in like 

manner to compare the growth of HBT1-1998 to both known pathogenic and non-

pathogenic species of Naegleria. 

2.5 Ameba Morphology and Characteristics 

Morphology of trophozoites, cysts, and flagellates is an important first step in 

characterization of an ameba species.  While determining the most appropriate growth 

conditions will enhance our ability to cultivate the ameba in vivo, morphology is the first 

indicator of what genus of ameba one may be observing.  For example, Acanthamoeba 

spp. have characteristic spiky pseudopodia whereas Naegleria spp. have smooth 

pseudopodia and the trophozoites are limax in appearance.  Naegleria spp. also produce 

flagellates (Page, 1988); Cyst size and shape can be diagnostic for a specific genus of 

ameba when comparing sizes and shapes. 

2.5.1 Trophozoites and Cysts 

Trophozoites were grown on sterile coverslips in Bellco Leighton tubes to the 

exponential growth phase and then fixed in 100% methanol before being stained with 
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iron hematoxylin stain.  These were observed and measured microscopically at 1000X 

magnification using an AO light microscope and ocular micrometer.  Trophozoites were 

measured in length and width, with 100 amebae being measured.  The average of the 

measurements and standard deviations were calculated for the trophozoites as well as for 

cysts. 

Average cyst size was calculated based on the measurements of the diameters of 

100 cysts at 1000X magnification under oil using the AO Microscope and Leitz Wetzlar 

ocular micrometer.  Cysts were applied to poly-l-lysine coated slides, fixed and stained in 

the same manner as the flagellates.  Cysts were observed microscopically and 

photographed in order to note their particular shape and structure. 

2.5.2 Flagellates and Enflagellation 

The enflagellation procedure of Cable and John (1986) was followed with some 

minor changes.  Amebae were grown axenically in a tissue culture flask in Mix medium 

at 37°C, as in the growth studies, to the log phase of growth, approximately 60 hours.  

Culture medium was aspirated and the adherent amebae were gently washed three times 

with Page ameba saline which had been warmed to 37°C.  After the third wash, amebae 

were suspended in 5 ml of cold (4°C) ameba saline.  A cell count was made and the 

concentration of the suspension was adjusted to 1 x 106 amebae per ml with cold ameba 

saline.  The final cell suspension was transferred to a 125-ml Erlenmeyer flask and 

agitated at 100 rpm at 37°C in a G24 Environmental Incubator Shaker (New Brunswick 

Scientific, Edison, NJ). 

Flagellate counts were taken hourly to determine the point of maximum 

transformation.  Time zero was defined as the point when the amebae were suspended in 
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the cold ameba saline.  Each hour, for 8 hours, 3 drops of ameba suspension were fixed 

and stained with 1 drop of D’Antoni’s iodine.  One to 2 drops of the fixed suspension was 

placed on a hemacytometer slide with a coverslip and counts were taken using a phase 

contrast, compound light microscope (Carl Zeiss, West Germany).  At least 100 cells per 

sample were counted to determine the percent flagellates.  Cells were considered to be 

flagellates if flagella, in any length or number regardless of body shape, were present 

(Cable and John, 1986; John et al., 1991).   

This procedure was repeated.  The second time, at the predetermined point of 

maximum transformation, 10 ml of amebae was fixed, with agitation, at room 

temperature by the addition of 10 ml of Schaudinn’s fixative working solution.  The 

fixation process was allowed to proceed overnight.  The final fixed suspension of 

flagellates was harvested by centrifugation (2000 x g for 10 minutes at 23°C).  The pellet 

was suspended in 15 ml of iodine/alcohol solution (3%/70%).  This suspension was 

allowed to stay at room temperature for 5-10 minutes.  The stained flagellates were 

harvested by centrifugation as previously described.  The pellet was then suspended in 

70% ethanol for 5-10 minutes.  The flagellates were once again harvested by 

centrifugation and suspended in a distilled water wash.  A final centrifugation was 

preformed and the pellet was suspended in 5 ml of distilled water. 

The fixed, stained, and washed flagellate preparation was applied to poly-l-lysine 

coated 10 x 35 mm coverslips and allowed to remain at room temperature for 10 minutes.  

Excess solution was shaken from the coverslips and they were placed in vials containing 

a working solution of iron hematoxylin stain for 4-5 minutes.  The coverslips were 

transferred to a vial of tap water, with a gentle flow of water, for 2 minutes.  Coverslips 
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were dehydrated through a series of ethyl alcohol solutions in increasing concentrations 

(30%, 70%, 95%, and 100%).  Coverslips equilibrated in each solution for at least 2 

minutes before being transferred to the next.  Dehydrated coverslips were then transferred 

to a vial of xylene.  They remained in xylene until they were applied to 1 x 3 inch slides 

with Permount®. 

Slides were examined at 1000X magnification under oil using an AO Microscope 

equipped with a Leitz Wetzlar (Germany) ocular micrometer, calibrated with an 

American Optical slide (stage) micrometer.  One hundred flagellates were observed for 

number of flagella present and their lengths measured. 

2.5.3 Concanavalin A Agglutination 

 Concanavalin A (Con A) is a plant lectin which can cause certain species of 

amebae to agglutinate.  Pathogenic Naegleria spp., such as N. fowleri, will not 

agglutinate in the presence of Con A, whereas non-pathogenic Naegleria spp., like N. 

gruberi, will. 

HBT1-1998 was inoculated into 75 cm2 tissue culture flasks (T75s) containing 50 

ml of Mix medium as per the growth studies.  After 72 hours of growth, the medium was 

aspirated and the sheet of cells was washed 3 times with Page’s ameba saline.  The 

washed amebae were harvested by centrifugation (2000 x g; 10 minutes; 23°C) and 

suspended in phosphate buffered saline (0.15 M NaCl, 0.01 M phosphate buffer) to a 

concentration of 1 x 106 amebae per ml.  Con A agglutination was accomplished by the 

addition of concanavalin A, Grade IV (Sigma Chemical Co., St. Louis, Missouri) at a 

concentration of 100µg Con A/ml  and incubated with agitation at 37°C for 30 minutes 

(John and Howard, 1996; Josephson et al, 1977).  HBT1-1998 was observed for 
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agglutination using a Nikon, phase-contrast, inverted microscope (model #TMS-F).  

Cultures of N. fowleri Lee strain and N. gruberi EGB strain were processed in a similar 

manner for comparison.  A negative control for each strain was included without Con A. 

2.6 Histology 

 Histology of the brain tissue of mice was performed following the methods of 

Jarolim, et al (2000).  HBT1-1998 was cultivated axenically in Mix medium to early 

stationary-growth-phase (John, 1993), harvested by centrifugation (1200 x g, 10 min, at 

23°C), washed three times in Page’s ameba saline, and suspended in Page’s saline to a 

concentration of 1 x 106 amebae per 10 µl.  Cell counts were made with a Coulter counter 

(model ZBI Coulter Electronics, Hialeah, Florida) using settings previously described 

(John and John, 1989). 

The mice used were 21-day-old, male, CD-1 outbred strain from Charles River 

Laboratories, Inc. (Wilmington, MA).  The mice were allowed to adjust to their new 

environment for 2-3 days before experimentation and were given free access to water and 

feed (Purina Lab Chow, Ralston Purina Corp., St. Louis, MO). 

Infection of the mice with HBT1-1998 was accomplished by intranasal (i.n.) 

instillation of a 10 µl suspension of amebae in Page’s saline.  Mice were anesthetized 

(Metofane, Pitman-Moore, Inc., Washington Crossing, NJ) and a single 10 µl drop 

containing the desired concentration of amebae was introduced into the left nostril using 

an Eppendorf pipet (Brinkman Instruments, Inc., Westbury, NY) (Bush and John, 1988; 

John and Howard, 1993).  The right nostril was not inoculated.  The mice were separated 

into groups of 3 and killed at time periods of 24, 48, 72, 96, and 120 hours post-

inoculation. 
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Mice were lightly anesthetized with Metofane, and quickly decapitated.  Skin and 

musculature was removed from the heads, the caudal aspect of the skull was opened and 

the heads were drop fixed for 72 hours in 10% neutral buffered formalin (NBF).  

Following fixation, remaining skin and muscle tissue was removed and the heads were 

decalcified in a solution of trisodium citrate and formic acid for 48 hours (Jarolim et al. 

2002).  Next, the decalcified heads were divided in a mid-sagittal plane with a razor 

blade.  The cribriform plate was identified and a rectangular block of tissue was made by 

cutting away the posterior of the brain and a small portion of the anterior portion of the 

brain.  The blocks of tissue included the olfactory bulb and a portion of the nasal cavity 

on each side of the cribriform plate.  The tissue blocks were equilibrated in 5% trisodium 

citrate, washed in water, then dehydrated and embedded in paraffin.  Serial sections were 

cut at 8 µm for light microscopy and the sections were stained with a combination of 

celestin blue, Harris hematoxylin, and acid fuchsin (CHF), modified from Minamisawa et 

al. (1990) and Auer et al. (1984).  Observations were made and photographs were 

obtained digitally using a Boreal Digital Microscope, model number WLS48149-DXW 

(Science Kit and Boreal Laboratories, Tonawanda, NY) and Motic Images 2000 (Motic 

China Group Co., Ltd.) 

2.7 Virulence 

 Virulence of a pathogenic ameba is a definitive indicator as to its species.  N. 

fowleri will demonstrate close to 100% mortality when inoculated intranasally into mice, 

whereas other species of pathogenic Naegleria (N. australiensis, N. lovaniensis) may 

show a 50% or less mortality when inoculated into mice.  The MTD can also be an 

important indicator as to species.  For example, N. fowleri infection will routinely run a 
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disease course with a MTD of 6 days or less post exposure.  N. australiensis infections 

may result in a MTD of 13 days or longer (John and Howard, 1996). 

 In the virulence study of HBT1-1998, amebae were cultivated as described in the 

histology portion of this section.  Mice were anesthetized as before and a single 10 µl 

drop containing the desired concentration of amebae was introduced into the left nostril 

using an Eppendorf pipet (Brinkman Instruments, Inc., Westbury, NY) (Bush and John, 

1988, and John and Howard, 1993).  Inocula included a 0% and a 100% mortality 

concentration in order to determine the LD50 (Reed and Muench, 1938).  The low dose 

inoculum was 1x101 amebae per mouse (the 0% dose), then 1x102, 1x103, 1x104, and 

finally 1x105 amebae per mouse needed for the 100% mortality dose.  For each inoculum, 

3 groups of 10 mice were used (30 mice were infected with 1x101 amebae, 30 mice with 

1x102 amebae, etc.).  A control group was given a 10µl drop of Page’s saline per mouse, 

i.n.  For each inoculum, MTD in days was plotted with error bars.  The percent mortality 

was plotted as a function of the inocula. 

2.8 Indirect Immunofluorescence (IIF) 

 IIF is an accurate and inexpensive method used for identifying ameba species.  

HBT1-1998 amebae were cultivated in Mix Medium to log phase at a concentration of  

1 x 106 amebae per ml at 37°C.  10 µl aliquots were applied to individual wells on Bellco 

12-well multiwell slides (Cel-Line/Erie Scientific Co., Erie, Pennsylvania).  The slides 

were incubated in moist chambers at 37°C for 30 minutes in order for the amebae to 

attach to the slides.  After incubation, medium was absorbed and the slides were 

immediately immersed in a 2% formalin-anhydrous methyl alcohol fixative solution for 

5-10 minutes.  Each slide was rinsed in 3 consecutive solutions of fresh phosphate 
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buffered saline (PBS) (8.0g NaCl, 0.2 g KCl, 1.13g Na2HPO4 (dibasic), and 0.2g KH2PO4 

(monobasic) per liter of distilled water) with a final rinse in distilled water.  Excess 

moisture was blotted from the slides, which were air-dried and then either assayed 

immediately or stored at -20°C (John et al., 1998). 

 Rabbit antisera to specific ameba species were used for identification.  For this 

project, antisera developed against N. fowleri, N. lovaniensis, N. australiensis, and N. 

gruberi (John et al., 1998) were used.  Rabbit anti-ameba serum to each of these four 

Naegleria species was diluted serially 2-fold in PBS in a 96 well plate beginning with a 

1:2 dilution.  A 10µl drop of each antiserum dilution was applied to appropriately labeled 

wells on the prepared slides of HBT1-1998.  Slides were incubated in a moist chamber at 

37°C for 30 minutes.  Each slide was then rinsed in three consecutive PBS rinse 

solutions.  At this point, the fluorescent conjugate was applied to each well.  Fluorescein 

isothiocyanate (FITC) conjugated goat anti-rabbit immunoglobulin (IgG) (Jackson 

ImmunoResearch Laboratories, Inc., West Grove, Pennsylvania) diluted 1:50 in PBS was 

used.  After applying 10µl of the diluted conjugate to each well, the slides were incubated 

at 37C for 30 minutes.  Slides were rinsed as before with PBS and counterstained with 

Evans blue, diluted 1:1200, rinsed in tap water, and air dried.  Mounting media was 

applied to each well and coverslips attached.  Slides were stored in the dark when not in 

use. 

The finished slides were examined by epifluorescence using a Leitz Orthoplan 

fluorescent microscope equipped with an Osram HBO short arc mercury vapor lamp.  

The degree of fluorescence was scored from 1+ to 4+, with 4+ denoting the brightest 
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apple-green fluorescence characteristic of FITC.  The endpoint titer was the final dilution 

of each antiserum tested which produced a 1+ fluorescence. 

2.9 Antimicrobial Sensitivity 

 Based on the methods of Goswick and Brenner (2003a,b), the effectiveness of 

amphotericin B and azithromycin against HBT1-1998 were tested.  Their work indicated 

that the LEE strain of N. fowleri was more susceptible to azithromycin, more so than to 

amphotericin B.  The LEE strain, like HBT1-1998, is also a human isolate.  This served 

as a good indicator that HBT1-1998 would be sensitive to treatment with azithromycin. 

LEE stock and HBT-1-1998 were each tested in this drug study.  30 ml of Mix 

medium was inoculated with 1 x 104 amebae/ml of actively growing stock-cultures of 

either the LEE stock or HBT1-1998.   A 0.2ml aliquot of diluted amphotericin B or 

azithromycin solution was added to experimental flasks to obtain the required drug 

concentrations, while control flasks received the same 0.2ml volume of sterile deionized 

water.  Antibiotics were tested at 3 different concentrations; amphotericin B at 0.01 

µg/ml, 0.1 µg/ml, and 1µg/ml, and  azithromycin at concentrations of 0.01µg/ml, 0.05 

µg/ml, and 0.1µg/ml with each concentration tested in triplicate. 

The flasks containing amebae and experimental agent combination were vortexed, 

10-ml aliquots distributed to each of three culture flasks and incubated at 37°C.  Cell 

growth was determined daily for a period of 4 days and then again at day 7 with a Coulter 

Counter (model ZF; Coulter Electronics, Inc., Hialeah, Florida).  A 0.2ml aliquot of each 

cell suspension was added to 9.8ml of electrolyte solution containing 0.5% (v/v) formalin 

and 0.4% (w/v) NaCl in deionized water.  Cuvettes were vortexed to separate cell 

aggregates and then read within 5 minutes.  Four successive counts were obtained for 
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each cuvette.  The most deviant count was excluded, and the means of the remaining nine 

counts (three flasks of three counts each) were determined, and ameba growth was 

expressed as the number of amebae per milliliter.  Ameba concentrations were plotted 

and compared with the Student’s t test to determine if the differences between control and 

treated groups were significant.  The minimum inhibitory concentration (MIC) of each 

agent was defined as the lowest concentration of drug that significantly (P < 0.01) 

inhibited ameba growth as compared to control cultures throughout the 7-day culture 

period as determined by the Student’s t test. 
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CHAPTER 3 

RESULTS 

3.1 In Vitro Studies 

 The in vitro studies were performed in order to obtain specific growth 

requirements for ameba HBT1-1998 and for comparisons to other known species of 

Naegleria.  All other in vitro experiments utilized cultures of HBT1-1998 that had been 

maintained at these optimum conditions. 

3.1.1 Growth of HBT1-1998 and Known Naegleria spp 

 Pilot studies were conducted to determine the optimal growth conditions for 

ameba HBT1-1998 as well as to compare similarities in these growth conditions to 

known species of Naegleria.  Growth conditions considered were the type of culture 

medium and different incubation temperatures.  Culture media tested included Nelson’s, 

Balamuth’s, and Mix media. Incubation temperatures tested included 23°C, 30°C, 37°C, 

and 42°C.  Cultures in each media type were tested at each temperature to optimize 

growth conditions.  Other species of Naegleria that were tested for comparison were 

Naegleria fowleri Lee ATCC 30894 in all three media at all 4 temperatures, Naegleria 

lovaniensis in Mix medium only at all 4 temperatures, and Naegleria gruberi EGB strain 

in Mix only at 23C and 30C.  N. gruberi is a non-pathogen normally found in the 

environment and will not grow at the higher temperatures. 

 As shown in Figure 1, HBT1-1998 had moderate growth in Nelson’s medium at 

42°C.  In Figure 2, growth patterns in Balamuth’s medium at 42°C were improved over 
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that which was seen in Nelson’s medium with a slightly greater concentration by day 7 (4 

x 105 amebae/ml in Balamuth’s vs. 2 x 105 amebae/ml in Nelson’s).  There was marked 

improvement however in the 30°C and 37°C cultures in Balamuth’s over the Nelson’s 

with concentrations greater than 1 x 105 amebae/ml.  Finally, in Mix medium (Figure 3), 

there was a dramatic increase in concentration of the amebae by day 4 in all temperatures 

except 23°C.  Standard errors for each data point in all three studies were negligible.  

Amebae counts were extremely consistent for each flask on a daily basis. 
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Figure 1. Growth of ameba HBT1-1998 incubated in Nelson’s medium at different 
temperatures over a 7-day period.  The data points represent the results of one experiment 
performed in triplicate.  The error bars represent the standard error of the mean for the 
individual data points. 
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Figure 2. Growth of ameba HBT1-1998 incubated in Balamuth’s medium at different 
temperatures over a 7-day period.  The data points represent the results of one experiment 
performed in triplicate.  The error bars represent the standard error of the mean for the 
individual data points. 
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Figure 3. Growth of ameba HBT1-1998 incubated in Mix medium at different 
temperatures over a 7-day period.  The data points represent the results of one experiment 
performed in triplicate.  The error bars represent the standard error of the mean for the 
individual data points. 
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 N. fowleri (Lee strain) demonstrated very good growth in Nelson’s medium 

(Figure 4) at 30°C and 37°C by day 4 and moderate growth in Balamuth’s medium 

(Figure 5) at 30°C, 37°C, and 42°C by day 4.  In Mix medium, Figure 6, the N. fowleri 

control culture showed excellent growth, greater than 1 x 106 amebae per ml by day 4, in 

30°C, 37°C , and 42°C, with the 37°C surpassing the growth of the other temperatures. 

N. lovaniensis and N. gruberi were studied as well to compare the growth 

characteristics of ameba HBT1-1998 with that of another pathogen, N. lovaniensis, and a 

non-pathogen, N. gruberi.  The results of their growth studies can be seen in Figure 7 and 

Figure 8.  The final results of the growth studies are tabulated in Table I, indicating 

temperatures at which each species of Naegleria tested can grow. 
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Figure 4. . Growth of N. fowleri, Lee strain (ATCC 30894) incubated in Nelson’s 
medium at different temperatures over a 7-day period.  The data points represent the 
results of one experiment performed in triplicate.  The error bars represent the standard 
error of the mean for the individual data points. 
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Figure 5. Growth of N. fowleri, Lee strain incubated in Balamuth’s medium at different 
temperatures over a 7-day period.  The data points represent the results of one experiment 
performed in triplicate.  The error bars represent the standard error of the mean for the 
individual data points. 
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Figure 6. Growth of N. fowleri, Lee strain incubated in Mix medium at different 
temperatures over a 7-day period.  The data points represent the results of one experiment 
performed in triplicate.  The error bars represent the standard error of the mean for the 
individual data points. 
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Figure 7. Growth of N. lovaniensis incubated in Mix medium at different temperatures 
over a 7-day period.  The data points represent the results of one experiment performed in 
triplicate.  The error bars represent the standard error of the mean for the individual data 
points. 
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Figure 8. Growth of N. gruberi, EGB strain, incubated in Mix medium at 2 different 
temperatures over a 7-day period.  The data points represent the results of one experiment 
performed in triplicate.  The error bars represent the standard error of the mean for the 
individual data points. 
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Table I. Summary of Growth at Various Temperatures for Species of Naegleria 

Incubation 
Temperature 

N. gruberi 
(EGB)1

N. fowleri 
(Lee) 

 
N. lovaniensis 

 
N. australiensis 

 
HBT1-1998 

23°C (20°C) + + + (+)2 + 
30°C + + + + + 
37°C - + + + + 
42°C - + + - + 
1. Naegleria gruberi (EGB) is a non-pathogenic strain of Naegleria found in the 

environment. 

2. (Page, 1988) N. australiensis was cultivated at 20°C. 
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3.1.2 Measurements of Trophozoites, Cysts, and Flagellates 

Part of the standard protocol for identification of ameba species is to characterize 

their morphology.  Table II shows the results of these methods, providing information of 

cyst size, trophozoite size and flagellate sizes as well as the number of flagella. 

33 



Table II. Morphological Characteristics of Ameba HBT1-1998 
and N. fowleri, Lee Strain 

 
  HBT1-1998 N. fowleri, Lee strain 
 µm Range µm Range 

Trophozoite     
Ave. length ±SD 12 ± 2.2 8-18 12 9-15* 
Ave. width ±SD 8 ± 1.4 10-12   
     
Cyst     
Ave. diameter ± SD 8 ± 1.1 6-11 11 7-15* 
     
Flagellate (flagella)     
Ave. length ± SD 17 ± 2.7 11-24   
Ave. number ± SD 2 ea ± 0.42 1-2 each 2 each**  

 
*Carter, 1970 

**Page, 1988 
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Figure 9 shows a photomicrograph at 1000x of stained trophozoites of ameba HBT1-

1998.  Figure 10 shows a stained trophozoite emerging from a cyst, while Figure 11 

shows a cluster of cysts.  Flagellates are shown in figures 12 and 13.  They were stained 

using a modified iron-hematoxylin procedure. 
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Figure 9. Iron hematoxylin-stained trophozoites of ameba HBT1-1998.  Arrow indicates 

nuclei with karyosome. 

 

Figure 10. A iron hematoxylin-stained trophozoite of ameba HBT1-1998 emerging from 
an empty cyst. 
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Figure 11. A cluster of iron hematoxylin-stained cysts of ameba HBT1-1998. 

 

Figure 12. Two flagellates of ameba HBT1-1998, iron hematoxylin-stained.  Arrow 
indicates visible nuclei. 

 

Figure 13. A flagellate of ameba HBT1-1998, iron hematoxylin-stained.  The nucleus is 
visible (arrow) at the narrow anterior portion of the flagellate. 
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Flagellate transformation was done using the method of John et al. (1991).  

Maximum transformation to flagellates was 26% after 5 hours.  A comparison of 

transformation of ameba HBT1-1998 and N. fowleri is shown in Figure 14. 

38 



Percent Transformation to Flagellate form of 
Ameba HBT1-1998 and N. fowleri , Lee strain

0

5

10

15

20

25

30

1

%
 F

la
ge

lla
te

s
HBT1-1998
N. fowleri

*

Figure 14. Comparison o
Lee strain.  * indicates m
25% flagellates in 90 mi
2 3 4 5 6 7 8

Time (hours)
 

f percent transformation of ameba HBT1-1998 and N. fowleri, 
aximum enflagellation for a non-pathogen, N. gruberi (EGB), of 

nutes (Cable and John, 1986). 

39 



3.1.3 Concanavalin A agglutination 

 Ameba HBT1-1998 did not agglutinate in the presence of Con A.  A control of N. 

fowleri also failed to agglutinate.  A positive agglutination control of N. gruberi 

agglutinated to a very high degree, indicating that the Con A was effective in causing 

agglutination (Figure 15).  Ameba HBT1-1998 was a non-agglutinator as was the 

pathogenic control.  Table III shows a compilation of this information. 

A. B. 
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A. 
A B 

Figure 15. Concanavalin A agglutination: 

A. N. gruberi, positive for Con A agglutination 

B. N. fowleri, negative for Con A agglutination 
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Table III. Concanavalin A Agglutination of Naegleria Species and HBT1-1998. 

 
 Con A agglutination1 Pathogenic for mice 
N. fowleri - + 
N. gruberi + - 
N. australiensis + + 
N. lovaniensis + ±2

HBT1-1998 - + 
 
1. Con A at 100 µg/ml of ameba saline. 
2. N. lovaniensis is considered nonpathogenic for mice.  However, one weakly virulent 
strain for mice has been isolated from the environment (John et al., 1998). 
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3.1.4 Indirect Immunofluorescence Titers 

 In the IIF portion of the study, there were replicate slides of each antiserum 

dilution series, at least triplicates.  Titers from each individual slide, for each antiserum, 

were tabulated and averaged.  For this variable the titer closest to the average is reported.  

Serially, 1:2 dilutions gave the following dilution series: 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 

1:128, 1:256, 1:512, 1:1024, 1:2048. 

Most antisera will titer out before one reaches the 1:2048 dilution (John et al., 

1998).  In this study the titer with the greatest frequency was reported.  This eliminated 

any outlier results getting averaged into the final result, possibly giving a more accurate 

picture of the actual titer of a particular antiserum.  However, if only 3 slides were 

assayed, and the resulting titers were 1:16, 1:32, or 1:64, which would be the correct 

titer?  There isn’t one with the greatest frequency.  For this particular example, the 

median would be the best choice as to the actual titer. 

 Table IV shows a positive comparison of titers of HBT1-1998 with only N. 

fowleri.  There was some similarity to the N. lovaniensis antisera, but the N. fowleri 

control shows the highest affinity for this particular antiserum. 
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Table IV. Indirect Immunofluorescence Antibody Titers of HBT1-1998 and 
Ameba Controls vs. Known Ameba Antisera. 

 
   Antibody Titers*  
Antiserum HBT1-1998 N. fowleri, 

Lee strain 
N. australiensis, 
strain pp397 

N. gruberi, 
EGB strain 

N. fowleri 1024 1024 4 8 
N. australiensis 16 8 512 64 
N. gruberi 32 2 4 2048 
N. lovaniensis 256 64 2 8 
 
*Reciprocal endpoint titers. 
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3.1.5 Antimicrobial Sensitivity 

 Figures 16 and 17 illustrate that the control and the lowest dose of amphotericin B 

(0.01 µg/ml) did not inhibit the growth of either ameba HBT1-1998 or N. fowleri, Lee 

strain.  These results indicate that there is only inhibition of growth of the ameba at the 

higher doses of amphotericin B, 0.1 µg/ml and 1.0 µg/ml. 

 Figures 18 and 19 presented with similar results in that the control and the lowest 

concentration of azithromycin (0.01 µg/ml) did not inhibit the growth of either ameba 

HBT1-1998 or N. fowleri, Lee strain.  However, in the azithromycin study, in both 

amebae tested, there was an increase of growth after 4 days of incubation.  These results 

indicate that there was inhibition of growth of the amebae only at the higher doses of 

azithromycin, 0.05 µg/ml and 0.1 µg/ml, and that azithromycin would have to be 

supplemented after 4 days of treatment. 
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Figure 16. Ameba HBT1-1998 in Mix medium treated with amphotericin B. 
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Figure 17. N. fowleri, Lee strain, in Mix medium treated with amphotericin B. 
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Figure 18. Growth of ameba HBT1-1998 in Mix medium treated with varying 
concentrations of Azithromycin. 
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Figure 19. N. fowleri, Lee strain, grown in Mix medium with varying concentrations of 
Azithromycin. 
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3.2 In Vivo Studies in a Murine Model 

 A murine model was utilized to study the disease course and to monitor the path 

the amebae took to enter the brain.  In the histological analysis, there is evidence of the 

amebae first in the nasal mucosa, and secondly in the brain tissue itself, thus confirming 

the intranasal route of infection.  The virulence study portion of this research calculates 

the LD50 and the length of time required to cause death in its host. 

3.2.1 Histological Analysis 

 In Figure 20, at 24 hours post infection, a trophozoite of HBT1-1998 can be seen 

migrating from the nasal mucosa to the olfactory bulb of the brain via the olfactory nerve 

fila.  Figure 21 at 48 hours post infection shows areas of inflammation, however amebae 

are difficult to see at this magnification.  Figure 22 illustrates abundant ameba in the 

brain tissue at 48 hours.  Therefore, it is concluded that the disease process is well 

underway at this early point in the infection. 
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Figure 20. Section of nasal mucosa and submucosa in mouse brain tissue 24 hours post 
infection with HBT1-1998 (400x magnification).  Arrow indicates trophozoite of HBT1-
1998 passing the turbinate bone (Tb) entering the olfactory fila (Of) from the submucosal 
nerve plexus (Sp); bar = 50 µm.  The inset is a 1000x magnification of the same ameba; 
bar = 15 µm.  The prominent karyosome and the elongate morphology are characteristic 
of N. fowleri;  

Tb 
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Figure 21. Midsagittal section of an area similar to Figure 19, magnified 100x, from a 
mouse infected for 48 hours with HBT1-1998.  Focal areas of acute inflammation 
(arrows) are located in the olfactory fila(Of).  The cribriform plate (Cp) is an incomplete 
barrier between the nasal cavity (Nc) and the olfactory bulb (Ob) of the central nervous 
system.  The olfactory fila (Of) occupies areas in the openings of the cribriform plate.  
Ep, olfactory epithelium lining the nasal cavity; Tb, turbinate bone projecting from the 
cribriform plate; bar = 150 µm. 
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Figure 22. An area of mouse brain tissue (400x magnified) 48 hours post infection with 
HBT1-1998.  Numerous trophozoites (arrows) are present in the olfactory bulb (Ob).  A 
blood vessel (Bv) can be seen with multiple lymphocytes lining the wall.  Note the 
isolated monocyte (white block arrow); Cp, Cribriform plate; bar = 50 µm. 
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3.2.2 Virulence 

The virulence portion of this study lends itself to a greater depth of statistical 

analysis.  Based on the numbers of amebae instilled in the mice, and the percent 

mortality, a lethal dose of 50% of the mice (LD50) was able to be calculated (Reed and 

Muench, 1938) (Table V).  This particular statistic emphasizes the virulence of the 

amebae, since, if the LD50 is low (meaning, the number of amebae required to kill 50% of 

the population is small), this would indicate a highly virulent strain.  On the other hand, if 

the LD50 is high (the number of amebae required to kill 50% of the population is large), 

the strain is weakly virulent.  This is pertinent in the characterization of HBT1-1998, 

since a strain of the highly virulent N. fowleri will have a low LD50 (approximately 100 

amebae per mouse to cause death).  Other species, such as N. australiensis, would have to 

be administered in much greater numbers (>1000 amebae per mouse) to achieve an LD50. 
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Table V. Virulence Data of Ameba HBT1-1998 
Percent Mortality and Mean Time to Death 

Inoculum of 
amebae per mouse 

(3 groups of 10 
mice each) 

Mean Time to 
Death in days 
± Standard 
Deviation 

Percent Mortality* 
± Standard 
Deviation 

1 x 101 0 0.0 
1 x 102 10.2 ± 3.8 43.3 ± 5.8 
1 x 103 7.9 ± 2.8 93.3 ± 11.5 
1 x 104 5.6 ± 0.8 96.7 ± 5.8 
1 x 105 5.4 ± 0.6 100 

 
* Calculated LD50 = 1.32 x 102 (Reed and Muench, 1938) ameba HBT1-
1998 for an inoculum of 10 µl instilled intranasally in 21-day-old male 
CD-1 mice. 
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Figure 23. Percent deaths in relation to the concentration of the inoculum.  
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Figure 24. Decreasing mean time to death with increasing concentration of inoculum. 
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The relationship between the dose of inoculum and the percent mortality can be seen in 

Figure 23.  As the inoculum increases, the percent mortality increases.  The increase is 

not proportional.  The first two 10-fold increases have rather dramatic effects on the 

percent deaths that occur, but by the time an inoculum of 1000 amebae is attained, there 

is almost 100% mortality.  The mean-time-to-death (MTD) graph in Figure 24 shows a 

steady decrease in the length of time at which death occurred with 10-fold increases in 

the inocula, an inverse relationship. 

3.3 Summary of Observations 

A complete summary of observations comparing Ameba HBT1-1998 with N. 

fowleri, N. gruberi, N. australiensis and N. lovaniensis is in Table VI.  This final table is 

a direct comparison of the results and illustrates the overwhelming similarities between 

Ameba HBT1-1998 and N. fowleri. 
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Table VI. Summary of Observations on Ameba HBT1-1998 

 
Observation 

Naegleria 
fowleri 

Ameba 
HBT1-1998 

Naegleria 
gruberi 

Naegleria 
australiensis 

Naegleria 
lovaniensis 

Growth at 42°C + + - + + 
Flagellate stage + + + + + 
Average no. flagella 2.0 2.0 2.4 3.1 2.0 
Con A agglutination1 - - + + + 
Pathogenicity + + - + ±2

Highly virulent + + - - - 
Weakly virulent - - - + + 
Human isolate + + - - - 
Immunofluorescence3 1024 1024 32 16 256 

Identity of Ameba HBT1-1998: Naegleria fowleri 
1. Concanavalin A at 100 µg/ml of ameba saline. 
2. N. lovaniensis is considered nonpathogenic for mice; however, one strain has been 

isolated from the environment that was pathogenic, but weakly virulent, for mice 
(John et al., 1998). 

3. Indirect Immunofluorescence reciprocal endpoint antibody titers. 
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CHAPTER 4 

DISCUSSION AND SUMMARY 

The purpose of this study was to determine the species of ameba for the human 

isolate HBT1-1998.  It was compared to both pathogenic and non-pathogenic species of 

Naegleria, this being the cause of most cases of PAM throughout the world.  Upon 

completion of the experimental work and analysis of the data, results were presented in 

tabular form, plotted on graphs, and relevant photo-micrographs presented, as compared 

to the known Naegleria species, to identify the species of HBT1-1998.  Based on 

observations and clinical manifestation, the hypothesis is that HBT1-1998 is N. fowleri 

4.1 Growth Requirements of Ameba HBT1-1998 vs. Other Naegleria Species 

 In vitro growth studies comparing amebae HBT1-1998 with established data on 

various Naegleria species indicated strongly that HBT1-1998 was indeed Naegleria 

fowleri.  Determining optimal growth conditions for HBT1-1998 was necessary to ensure 

successful cultivation of the amebae for various tests and studies deemed necessary to 

characterize this organism. 

 The media requirements for HBT1-1998 were the same as those that are common 

to the Naegleria species it was compared to.  All three of the control organisms (N. 

fowleri, N. gruberi, and N. lovaniensis) and HBT1-1998 demonstrated their highest 

numbers when cultivated in Mix medium.  Cultures of N. fowleri Lee strain and HBT1-

1998 reached numbers greater than 1x106 amebae/ml at the end of log phase growth in 
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this medium (See Figures 1-8) while N. lovaniensis reached a maximum growth of 3x105 

amebae/ml in Mix and N. gruberi reached a maximum of 6x105 amebae/ml in Mix. 

 Determining the optimal temperature at which to cultivate ameba HBT1-1998 not 

only ensured maximum growth of organisms, it also was an indicator of the species (see 

Table I).  By these criteria HBT1-1998 compared favorably with both N. fowleri and N. 

lovaniensis. 

4.2 Morphological Comparisons of HBT1-1998 and Control Naegleria Species 

 The general morphology of all species of Naegleria is virtually identical in some 

ways, with noted differences in other ways.  The amoeboid stage (trophozoite) tends to be 

similar in appearance and is referred to as being limax, from the Latin term for slug.  The 

nuclei of Naegleria have a large central nucleolus, or karyosome, and a visible nuclear 

membrane free of chromatin granules.  This feature helps to distinguish them from 

Entamoeba histolytica, a human parasitic ameba.  The nucleus of HBT1-1998 seen in 

Figure 9 is characteristic of a typical Naegleria. 

Naegleria tend to be elongate with directional motility.  Pseudopodia are extended 

in an very blunt, eruptive manner and are called lobopodia (John, 1993).  Comparisons of 

the trophozoites of HBT1-1998 and N. fowleri can be found in Table II.  Actively moving 

N. fowleri will average 22 µm in diameter, but the rounded, less active stage ranges from 

9-15 µm.  HBT1-1998 averaged 12 µm in diameter for rounded trophozoites, whereas 

trophozoites of N. australiensis average about 21µm in length (De Jonckheere, 1981). 

 The cysts of HBT1-1998 are spherical and often clumped together (Figure 11) as 

are typical cysts of N. fowleri.  The average diameter of HBT1-1998 cysts was 8 µm, 

with a range of 6-11 µm.  N. fowleri Lee strain cysts are, on average, 11 µm in diameter, 
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with a range of 7-15 µm (Carter, 1970; Page, 1988).  Cyst diameters of other species of 

Naegleria are ranges of 10-16 µm for N. gruberi and 9.6-13 µm for N. lovaniensis, and a 

mean of 11.6 µm of N. australiensis.  The smaller cyst diameter of HBT1-1998 compares 

more closely with the cyst size for N. fowleri than any of the other species of Naegleria. 

 Flagellates are unique for members of the family Valkampfiidae (Page, 1988).  

This is a very useful tool for identifying Naegleria, since other infectious amebae species, 

such as Acanthamoeba and Entamoeba, do not transform to the flagellate stage.  Also, 

other members of the Valkampfiidae family may form flagellates but are not known to be 

pathogenic.  Within this family, the Naegleria flagellates are unique, usually having 2 

flagella and being cigar or pear-shaped.  But different species of Naegleria have very 

distinctive flagellate stages.  Thus, this stage provides the essential distinction among 

genera with the ability to transform to flagellates (Page, 1988).  Based on the findings of 

this study, HBT1-1998 is most like N. fowleri and N. lovaniensis, being a biflagellate, vs. 

the 2.4 flagella of N. gruberi and the 3.1 of N. australiensis (see table VI). 

 Concanavalin A (Con A) is a plant lectin which can cause certain species of 

amebae to agglutinate or clump together.  The lectin binds to specific polysaccharides 

exposed on the surface of the amebae.  Pathogenic Naegleria sp., such as N. fowleri, will 

not agglutinate in the presence of Con A, whereas non-pathogenic Naegleria sp., like N. 

gruberi, will agglutinate (Josephson et al., 1977).  Again, the findings of this study 

confirmed the similarity of HBT1-1998 with N. fowleri since it does not agglutinate in 

the presence of Con A. 
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4.3 Pathogenicity and Virulence of HBT1-1998 as Compared to Other Species of 

Naegleria 

 Pathogenicity and virulence of the different species of Naegleria confirms the 

species of HBT1-1998.  As indicated in Table VI, HBT1-1998 caused the death of 

Emerald Watson and was confirmed to be a pathogen by using a mouse model.  The 

options were narrowed to it being either N. fowleri or N. australiensis.  Though one 

isolate of N. lovaniensis has been reported to be a weakly virulent pathogen, it is very 

unlikely that HBT1-1998 is this ameba.  HBT1-1998 is highly virulent, like N. fowleri 

and unlike N. australiensis and N. lovaniensis.  There have been numerous cases of PAM 

in which N. fowleri was the confirmed pathogen and none attributed to other species of 

Naegleria.  This information confirms that HBT1-1998 is N. fowleri.  Non-agglutination 

by Con A further confirms HBT1-1998 as N. fowleri. 

4.4 Indirect Immunofluorescence of Amebae HBT1-1998 

 IIF is an accurate and inexpensive method for species identification of amebae.  

Antisera to specific species can be acquired either by making them or by purchasing 

prepared antiserum from a biological supply company.  Our laboratory had previously 

prepared antisera to 26 different species of amebae in order to test this technique for its 

specificity (John et al, 1998); therefore, HBT1-1998 was tested against antisera to N. 

gruberi, N. australiensis, N. lovaniensis, and N. fowleri.  The results of these 

immunofluorescence assays indicated a positive match between HBT1-1998 and N. 

fowleri, with this species having the highest endpoint antibody titer (see Table VI). 
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4.5 Summary and Future Directions 

Future work involved in characterization of these organisms should include more 

advanced technologies:  This includes PCR for DNA analysis and species identification 

and isoenzyme analysis, a currently used biochemical technique in Europe.  Both of these 

methods will be able to give accurate, reliable, and rapid results.  IIF will still be useful 

based on its cost effectiveness, particularly for small, rural laboratories.  Current trends, 

coupled with greater availability and understanding of PCR technology, will make this a 

primary method for identification of pathogenic amebic organisms.  These advances, 

once they have been thoroughly researched, will be beneficial scientifically, but more 

importantly, may aid in more rapid diagnoses of infections and possibly prevent deaths 

due to PAM. 

4.5.1 Other Confirmed Cases of PAM in Oklahoma 

Since 1998 there have been 4 more cases of PAM confirmed in Oklahoma.  

Although there have been no more cases associated with Fort Gibson Lake, there was 1 

case from Lake Texoma, 1 from Lake Konawa, and 2 from the City of Tulsa (see Table 

VII)(PAM, 2001).  Of the 5 Oklahoma cases, Emerald Watson was the only female 

victim. 

In comparison, there are other states that have had greater numbers of deaths over 

the years due to PAM.  Virginia has the most with 16 confirmed cases, Florida had 15, 

and Texas with 12.  Other states surrounding Oklahoma with confirmed cases of PAM 

are Arkansas (2 cases) and Missouri (1 case). 
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Table VII.  Oklahoma Cases of PAM 

(1) • August 1998, First confirmed case 
   Emerald Watson, 3 year old female 
   Fort Gibson Lake, Taylor Ferry 

(2) • July 2000 
   Justin Baty, 13 year old male 
   Lake Texoma, Oklahoma side 

(3) • June 2001 
   Hosea Delara, 11 year old male 
   Lake Konawa, north of Ada 

(4 & 5) • August 2005 
   Terrell Hampton, 9 year old male 
   Martinez Owens, 7 year old male 
   Presumed; Mohawk Park, Tulsa; splash pad area 

 

Wellings (1977) compiled data to determine the relative risk of swimming in 

Florida waters.  Her statistical analysis indicated that for every 2.6 million swimming 

exposures in Florida lakes, there would be one case of PAM.  This information leads one 

to think initially that the chance of contracting this particular disease is extremely small.  

However, given the millions of people who swim in lakes and streams annually, it is 

surprising that there isn’t a higher incidence of PAM.  Still, there may be unreported 

cases in rural communities in states like Oklahoma, Texas and Arkansas.  Given the 

current capabilities for communication (internet, telemedicine) there is a greater 

awareness of this disease among physicians.  Being aware of the disease and the 

correlation with water activities prior to the onset of symptoms will aid in a more rapid 

diagnoses and earlier treatment. 

4.5.2 Treatment of PAM 

To date, the current treatment for PAM, amphotericin B, has proven to be 

relatively ineffective.  There have only been two well-documented cases where treatment 
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with this medication was successful (Anderson and Jamieson, 1972; Seidel et al., 1982).  

Seven other putative survivors have been reported; however, the reports are incomplete 

or have not been documented. 

Unfortunately, most cases do not lend themselves to being treated for amebic 

infection at all, as the patients usually die before a diagnosis is made.  Since HBT1-1998 

was isolated from a victim of PAM who was infected by the amebae from Oklahoma 

waters, it would be in our best interest to explore treatments more effective in curing 

patients with this disease. 

The work of Goswick and Brenner (2003a and 2003b) has introduced an 

antimicrobial alternative to amphotericin B.  In their studies, the antibiotic azithromycin 

was tested in vitro and in vivo, using a mouse model.  The results were dramatic.  

Amphotericin B protected 50% of mice infected with N. fowleri at a dose of 75 

mg/kg/day for 5 days.  Azithromycin at a dose of 75 mg/kg/day for 5 days protected 

100% of the mice infected with N. fowleri.  This study shows an obvious benefit to being 

treated with azithromycin. 

The present in vitro studies testing the anti-amebic capacities of amphotericin B 

and azithromycin, the results for both HBT1-1998 and the control N. fowleri Lee strain 

were comparable.  The highest treatments of 0.1 µg/ml completely inhibited amebic 

growth.  A dose of 0.05 µg/ml inhibited growth for the first 4 days, but the cultures began 

actively growing after 4 days.  The 0.01 µg/ml and negative controls had no effect on the 

growth of the amebae.  Given these results, it would appear that in vitro there is no 

difference between the amphotericin B and the azithromycin in their antimicrobial 

capabilities towards pathogenic amebae; however, given the potential toxicity of 
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amphotericin B as well as the increased effectiveness in the in vivo study (Goswick and 

Brenner, 2003a) azithromycin may indeed be a useful therapy in the treatment of PAM. 

4.5.3 Final Thought 

After months of cultivation of organisms, treatment with antimicrobials, staining, 

measuring and analyzing, it can be stated that HBT1-1998 is Naegleria fowleri. 
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