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Abstract 

Job shop scheduling has been widely studied for several decades. In generalized 

of the job shop scheduling problem, n jobs are to be processed on m machines under 

specific routings and due dates. The majority of job shop scheduling research 

concentrates on manufacturing environments processing string-type jobs with a linear 

routing where no assembly operations are involved. However, many manufacturing 

environments produce complex products with multi-level assembly job structures and 

cannot be scheduled efficiently with existing job shop scheduling techniques. Little 

research has been done in the area of assembly job shop scheduling, and we are not aware 

any of those studies consider on the availability of purchased components and the impact 

of component availability on the performance of assembly job shops. This research 

focuses on scheduling job shops that process jobs requiring multiple-levels of assembly 

and it also considers the availability of components that are procured from outside 

suppliers. By considering material constraints during production scheduling, 

manufacturers can increase resource utilization and improve due date performance.  

To represent assembly job shop scheduling problems with component availability 

constraints, a modified disjunctive graph formulation is developed in this research. A 

mixed-integer programming model with the objective of minimizing the total weighted-

tardiness is also developed in this research. Several heuristic methods, described as 

modified shifting bottleneck procedure (MSBP), efficient shifting bottleneck procedure 

(ESBP) and rolling horizon procedure (RHP), are proposed to reduce the computational 

time required for assembly job shop scheduling problems. These methods are extended 

from the shifting bottleneck procedure. The performance of various flavors of the MSBP 
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and ESBP is demonstrated on a set of test instances and compared with different 

dispatching rules that are widely used in practice. Results show that MSBP and ESBP 

outperform the dispatching rules by 18% to 16% on average.  

This dissertation not only studies the assembly job shop scheduling problem with 

component availability constraints, but also demonstrates how the decomposition 

methodology can reduce the complexity of NP-hard problems. Based on the relative 

preference of solution quality and computational time, recommendations for appropriate 

methods to solve assembly job shop scheduling problems with different problem sizes are 

given in the conclusions of this dissertation.   
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Chapter 1. Introduction 

Globally competition is getting intensive in past few decades. To compete with 

other companies globally, manufacturers not only need to quote shorter lead time to 

customers, but also keep delivery promises to them. To allocate limited resources 

efficiently, production scheduling play an important role in manufacturing environments. 

Thus, job shop scheduling has been one of most complicated production scheduling 

problems being studied for researchers. This dissertation focuses on the assembly job 

shop scheduling problem which is a special case of the job shop scheduling problem. In 

an assembly job-shop, a job is not only spending time on machines queue, but is also 

waiting for assemblies, sub-assemblies and components which are necessary to form a 

final product. Unlike other literatures in assembly job shop scheduling, we assume that 

components can not be manufactured in-house and have to be procured from vendor 

outside. This makes the assembly job shop scheduling problem with component 

availability constraints a problem that can not be resolved by existing job shop 

scheduling techniques. The research motivation is described in the next section and 

follows by research overview summarizing the related literatures in the past. Then, the 

summary of methodologies used in this dissertation is outlined in the next section. Finally, 

the contributions and organization of this dissertation is illustrated in the end of chapter.  

   

1.1 Research Motivation 

Most of the past literatures in job shops scheduling problems concentrated on shop 

models processing string-type jobs (Adam et al., 1987) with a linear routing where no 
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assembly operations are performed. However, in the real world, jobs in a typical 

manufacturing environment often require assembly operations which parallel components 

that have to be processed and assembled together through the shop. It is common that 

many manufacturing environments are assembly systems, such as auto and electronics 

companies. Scheduling with string-type jobs, which involves only one type of job delay, 

is much simpler than scheduling with assembly-type jobs because of different degrees of 

job delays. There are some unique problems that only happen when scheduling with 

assembly-type jobs. In job shop scheduling with string type jobs, job delays are primarily 

due to capacity constraints, such as the lack of available resources which are necessary to 

perform operations. However, scheduling in assembly job shops requires not only 

consideration of capacity constraints but also assembly (precedence) constraints which an 

item may need to wait for its parallel components before performing assembly operations. 

If one of its parallel components is not available, the assembly operation will not perform 

until all components become available, even resources (machines) are ready at that time. 

In other words, assembly, sub-assembly and components belonging to the same job are 

extremely dependent on each other compared to the string-type job. Hence, job delays in 

an assembly job shop may occur due to the lack of production capacity or the lack of 

components which are necessary to form an assembly or sub-assembly. It makes the 

assembly job shop scheduling problem becomes the most difficult problem in job shop 

scheduling. 

Moreover, in some industries, material constraints are more intensive than 

capacity constraints. According to Karmarkar and Ramakrishnan (1996), Computerworld 

(March 29, 1993) reported that IBM’s $ 1 billion backlog for its ThinkPad 700 line of 
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notebook computers can be partly attributed to the shortage of, literally, “a nickel part”. 

This report shows what the severe damages due to the material shortages can do to a 

multi-billion dollars company. To avoid the unexpected delays on shipments, 

manufacturers must keep enough materials on hand to meet the schedules for final 

products. Hence, companies can maintain a substantial level of inventory to avoid the late 

delivery due to material shortage. However, inventories are the tangible assets of a 

company and holding excess inventory will lead to a low return on investment (ROI). 

Holding a substantial level of inventory to relax the material constraints is the worst 

solution for manufacturers. Additionally, the availability of materials is usually fixed in 

short-range production plans due to long vendor lead times. Thus, material shortage may 

occur easily once the demand increases rapidly. How to provide a best level of customer 

service at minimum inventory costs becomes an essential problem for manufacturers. To 

accomplish these tasks successfully, manufacturers need to consider the availability of 

materials during scheduling. Musselman and Uzsoy (2001) state that it is an important 

advantage that material and capacity are considered simultaneously as elements that may 

constrain production to ensure that the material plan is in agreement with capacity 

schedule to avoid the potential violations.  

Over the past decades, cost-effective production continues to play a critical role for 

manufacturers to survive in global competition. Companies have to quote shorter lead 

times (delivery times) to customers and fulfill these orders as promised. Failure to meet 

the customer due date may result in the loss of future business. In practice, how to 

classify high margin orders and satisfy these customers becomes important to the growth 

of a company because these customers can bring more profit to manufacturers than others 
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in the same resource utilization. How to allocate available resources to production 

activities efficiently becomes an important issue to a production system. These resource 

allocation problems can be addressed as production scheduling problems and the job shop 

scheduling problem is one of the most complicated problems in production scheduling. 

Due to the lack of computational power in past decades, the conventional resource 

allocation methods aggregate the requirements into different appropriate buckets to 

reduce the computational time. Although the bucket approach reduces the complexity of 

the problem, it also sacrifices accuracy. In addition, these methods sometimes ignore 

order priority and use a fixed lead time to account for the capacity constraints. These 

methods generate inaccurate required times and could cause the delay of high priority 

orders. To improve the accuracy of conventional resource allocation methods, most 

research on the resource allocation problem formulates production problems as a mixed 

integer programming model and combines with relaxation techniques to reduce the 

computational effort. But these approaches are not scalable and hence, are not efficient in 

a production environment. Additionally, capacity requirements are still approximated in 

these relaxation models. 

It is interesting to study the scheduling problems to satisfy both the capacity 

schedules and material plans in an assembly job shop at the same time. It is also 

important to distinguish different classes of customers in order to satisfy high margin 

orders for future business. By doing so, manufacturers can attain the better due date 

performance and have higher margin in the same resource utilization. However, assembly 

job shop scheduling problems without component availability constraints have been 

known as NP-hard problems. To capable of solving large scale problems in practice, it 
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would be a challenging to develop efficient algorithms that can not only find feasible 

solutions, but also obtain acceptable solutions which are close to optima in a reasonable 

amount of time. 

 

1.2 Research Overview 

Production scheduling problems have been studied widely for past decades. In a 

broader view, the definition of production scheduling is the assignment of scarce 

production resources to competing activities over time in order to optimize certain 

performance criteria (Musselman and Uzsoy, 2001). There are three well-studied shop 

models in production scheduling, which are flow shop, job shop and open shop problems. 

In open shop problems, operations of a job can be performed in any order through the 

shop. In job shop problems, operations have to be processed in specific orders through 

the shop as stated on a predetermined routings. The flow shop problem is a special case 

of job shop problems because each job follows the same route through the shop. In this 

dissertation, we are only interested in job shop scheduling problems which is one of the 

most difficult combinatorial optimization problems and widely studied production 

scheduling problem.  

In a job-shop, jobs must be processed on machines in a specified order to meet the 

due date. When there are only one or two machine types with one machine of each 

machine type, the makespan can be minimized using Johnson's algorithm (Johnson, 

1954). However, a job shop with ten jobs and ten machines cannot usually be scheduled 

optimally (Adams et al., 1988). However, when there are more than two machines, the 

problem becomes strongly NP-hard.   
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 Thus, attempts at developing optimization algorithms have focused on the 

variations of the branch-and-bound approach. While these methods assure optimality, 

they are impractical because of intensive computational requirements for large problems.  

Thus, much effort has been given to develop heuristics that can find solutions that are 

close to optimal in a reasonable amount of time. Dispatching rules are the most 

commonly used techniques in job shop scheduling in practice. They have fast 

computational times and are easy to implement, but they may perform poorly in the long 

run. Thus, heuristics have been researched that can find improved solutions at a cost of 

increased computational time, such as the shifting bottleneck procedure (Adams et al. 

1988). 

Although job shop scheduling is one of the most common problems in production 

systems, it is very complex and a strong NP-hard problem. To avoid the intensive 

computational time to solve large instances, it is reasonable to divide the original problem 

into several small subproblems which can be solved efficiently and still be able to 

achieve good solutions. The idea of shifting bottleneck procedure (Adams et al., 1988) is 

to breakdown the job-shop scheduling problem into numerous single-machine 

subproblems which can be solved sequentially based on a subproblem criticality and use 

a disjunctive graph to present operations precedence constraints and reflect machine 

sequence decisions. Adams et al. (1988) showed that, compared to the best priority 

dispatching rules, the shifting bottleneck procedure determined much lower and often 

optimal makespans. They solved the famous 10 job-10 machine problem of Muth and 

Thompson (1963) to optimality using the shifting bottleneck procedure with enumeration 

(SBII method) in 320 seconds. Adams et al. (1988) also used dispatching rules, the 



 

 7

shifting bottleneck procedure without enumeration (SBI), and SBII to solve 40 other test 

problems.  In 38 of the problems, SBI found solutions superior to the best solutions found 

by dispatching rules, while the running time was about the same. In addition, SBII 

usually found solutions that were considerably better than solutions found by SBI. 

 Most of the past research concentrated on job shop scheduling problems with 

string-type jobs to simplify the problems as discussed above, even assembly operations 

are very common in manufacturing environments today. In an assembly job shop, there 

are two types of job delays to be considered during scheduling. One is caused by the 

availability of machine capacity and another one is due to the lack of assembly or sub-

assembly items which are needed in parallel before starting assembly operations. It is 

undoubted that the assembly job shop scheduling problem is one of the most difficult 

production scheduling problems. Most literatures tends to use dispatching rules to solve 

the assembly job shop scheduling problems. Some of them also studied the impact of 

different job structures on the overall performance in an assembly job shop.  Maxwell 

and Mehea (1968) test the performance of several dispatching rules and concluded that 

use the composite priority rules can achieve the best performance in assembly job shop. 

Russell and Taylor (1985) found that the dispatching rules, which produce good solutions 

in simple job shops, are not appropriate for an assembly job shop. They also concluded 

that the job structures do affect the performance of dispatching rules significantly. Fry et. 

al. (1989) evaluated the performance of numerous dispatching rules and concluded that 

due-date oriented dispatching rules perform better than other dispatching rules. They also 

studied the effect of stage delays on the performance due to different job structures. They 

figured that taller-structured BOM (Bill-of-Materials) produces more tardy jobs than 
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shorter-structured BOM because taller-structured BOM has more chances to create stage 

delays. There are some new dispatching rules developed by researches to work on 

assembly job shop in past years. Philipoom et al. (1991) introduced a new set of 

sequencing rules which incorporate important ratio (IR) based on the remaining number 

of operations on a particular branch to the one on the longest path to job completion. 

Reeja and Rajendran (2000) created a new dispatching rules based on “operation 

synchronization rules”.  

Dispatching rules had been studied intensively in assembly job shop scheduling 

problems. Only limited number of researches uses different methodologies, such as 

mathematical formulations, to solve assembly job shop scheduling problems. Park and 

Kim (1999) created a non-linear mathematical model for an assembly job shop 

scheduling problems under due date constraints. Park and Kim (2000) extended their 

previous research and created a mixed-integer programming model with lagrangian 

relaxation method to solve the same problem. Pathumnkul and Egbelu (2006) also 

studied the scheduling problems with objective of minimizing the weighed earliness 

penalty in an assembly job shop. A heuristics algorithm was created to reduce the 

complexity of the problems.        

Although some articles on assembly job shop scheduling problems have been 

published, we are not aware of any literature related to assembly job shop scheduling 

problems with component availability. In an assembly job-shop, the operations of a job 

are performed both in series and parallel as defined by precedence relations. The 

operations are not only waiting for resources but also waiting for parallel components 

which belonging to the same assembly or sub-assembly. However, most of researches 



 

 9

assumed components required to make a product always arrive before the release of jobs 

or there are unlimited quantities of components on hand. In other words, materials are 

always available at the start of the first operation of a job and there are no material 

constraints in their models. However, there are many industries tends to material 

intensive in their manufacturing environments. Thus, material and capacity should be 

considered simultaneously to achieve the best performance when making scheduling 

decisions (Musselman and Uzsoy, 2001). Unlike other researches in assembly job shop 

scheduling, this dissertation is not only studying on the assembly job shop scheduling, 

but also brings attention to the availability of components which required to assembly for 

final products. We assume the availability of components is dependent on deliveries 

made by vendors based on different arrival times and the quantities of components may 

not be sufficient for all jobs in the beginning. It means that the assembly operations in the 

lowest level of the BOM (bill of materials) are not only waiting for parallel components 

but also the arrival of components from suppliers. If a component does not have 

sufficient quantity on hand, a job’s completion time will be delayed and the due date will 

be missed even there is an infinite capacity in the production system. It is important to 

have the capacity schedules which are in agreement with material plans to reduce total 

tardiness of all orders in an assembly job shop.  

 

1.3  Research Summary         

The assembly job shop studied in this dissertation consists of m machines and n 

jobs. Each machine is unique and can only process one job at a time. Each job has to 

process by the specific machines through the shop as stated on predetermined routing. A 
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job represents an order for a final product which requested by customers. The due date, 

priority and operation time for each job are known in advance. Unlike conventional job 

shop with string-type jobs, a final product in an assembly consists of assemblies, sub-

assemblies and components based on its Bill-Of-Materials (BOM) structure. The quantity 

of assemblies, subassemblies and components needed to form a final product can be 

computed according to its BOM. In most assembly job shop scheduling problems, it 

assumes that components are produced in-house or no components needed at all. But 

there is a different assumption for assembly job shop models in this dissertation, which is 

components can not be manufactured in-house and need to be purchased from outside 

suppliers. A job can not be processed if there are insufficient quantities of components. 

An example for different product structures is shown in Figure 1.1.   

The demands for final products are known in advance. Thus, the arrival time and 

quantities of components from outside vendors is also deterministic. In addition, all jobs 

are ready to process in the beginning but there is no inventory in an assembly job shop. 

Once a job allocates necessary components to form a subassembly or an assembly, it is 

ready to be processed by specific machines according to its routing. However, there could 

be more than one job to request the same components or specific machines. If these 

resources utilization are tight, a decision must be made to allocate limited resources to 

most urgent jobs first to avoiding miss their due dates. The goal of assembly job shop 

scheduling problems in this dissertation is to schedule all jobs and complete them before 

their due dates under resources constraints. Failure to meet these due dates will result in 

penalties and the loss of future business. To measure the performance related to due dates 
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and the importance of customer orders, the objective function of the assembly job shop 

scheduling problem is to minimize the total weighted tardiness of all jobs.   

 

 

Figure 1.1 Example of different product structures 
 

 

This dissertation intends to achiever two objectives. First, unlike traditional 

assembly job shop scheduling, it is interesting to study the scheduling problems to satisfy 

both the capacity constraints within machines and the material constraints between 

different components in an assembly job shop. This work can help manufactures make 

better decisions on production scheduling and improve the due date performance. Second, 

although assembly job shop scheduling is common in practice, it is intrinsically a NP-
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hard problem when solving by optimization methods. Most of the current research uses 

dispatching rules to solve assembly job shop scheduling to reduce its complexity. 

However, these dispatching rules are myopic and lack the ability to consider the broader 

view of the entire problem. Solutions obtained from dispatching rules cannot compare 

with the solutions obtained from the optimization method. While optimization methods 

assure optimality, they are impractical because of intensive computational requirements 

for large problems. Dispatching rules avoid computational difficulties, but they are 

doubtful to provide good solutions. Based on the consideration of solution quality and 

computational time, it is reasonable to develop efficient algorithms that can find 

acceptable solutions which are close to optimal solutions in a limited amount of 

computational efforts. 

A generic assembly job shop scheduling problem with component availability 

constraints is formulated as a mixed-integer programming model and solved by using 

commercial optimization software. The objective function of our models is to minimize 

the total weighted tardiness, which designs to measure due date performance. The 

optimization approach here not only provides a lower bound compared to the 

performance of heuristic techniques, but also applies to real-world problems if the 

computational time is acceptable. Several scalable and computationally efficient 

heuristics are also developed based on the shifting bottleneck procedure concept to allow 

trade-offs between the computation time and the solution quality. The original shifting 

bottleneck procedure (Adams et al. 1988) was designed to solve the job shop scheduling 

problem with scheduling a single machine of each machine type to minimize makespan. 

However, it is common to have an assembly system in many manufacturing 
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environments and existing job shop scheduling techniques are not suitable for them. In 

this dissertation, the shifting bottleneck procedure is extended to solve the assembly job 

shop scheduling problem with component availability constraints.  

The modified shifting bottleneck procedure (MSBP) is to decompose the original 

problem into numerous different subproblems which present material plans for 

components or capacity schedules for machines. The extended disjunctive graph is used 

to describe the relation between different jobs. After solving each subproblem, machine 

schedules or material plans are updated iteratively until the whole problem being solved. 

By doing so, it is able to reduce the complexity of the original problem and keep 

solutions at acceptable levels. Additionally, subproblems can be solved by dispatching 

rules or efficient algorithms to reduce the computational times. Based on the degree of 

solution accuracy obtained from subproblems, there are four MSBP methods developed 

in this research.  

However, the computational time may still grow exponentially for MSBP as the 

size of problems increases. Because the total number of subproblems required in MSBP 

and the computational times needed to solve a subproblem are extremely large. To reduce 

the computational efforts, we introduce the efficient shifting bottleneck procedure 

(ESBP), where bottleneck resource selection procedure is avoided and re-optimization 

procedure is constrained to only few iterations. It designs to reduce the total number of 

subproblems to be involved in whole shifting bottleneck procedure and also provides 

acceptable solutions within realistic computational effort. By constraining the total 

number of subproblems, ESBP is suited for solving assembly job shop scheduling 
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problems in practice. Moreover, based on the degree of solution accuracy, there are three 

ESBP methods developed in this dissertation. 

Although ESBP reduces the total number of subproblems involved to solve the 

assembly job shop scheduling problem, the size of subproblem is still not constrained 

properly. This means that computational times required to solve subproblems could grow 

exponentially as the size of subproblems increase. To capable of solving realistic 

problems, it is necessary to reduce the complex of subproblem. The rolling horizon 

procedure (RHP), which implemented the rolling horizon procedure to solve subproblems, 

is designed to constrain the size of subproblems. By applying RHP in each subproblem, it 

divides the subproblem into numerous time windows and each time window contains the 

total number of operations can be optimized independently within a short computational 

efforts. By doing this, the complexity of overall problem will be restricted in an accepted 

level.  

Additionally, a set of test problems are used to verify the performance of 

optimization and the effectiveness of heuristics approaches and demonstrate the impact of 

the assembly job shop scheduling on the due date performance of a production system.  

 

1.4 Contribution 

 The benefits of the research in the assembly job shop scheduling problems with 

component availability constraints are summarized as follows: 

 (1). This research extends the study of assembly job shop scheduling problems 

with component availability constraints. 
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(2). The modified disjunctive graph is developed to represent the assembly job 

shop model with consideration of components purchased from outside vendors. 

 (3). The mathematical formulation is created to represent the assembly job shop 

model.  

(4). Four different approaches, which address the different degree of scalability, to 

solve the assembly job shop scheduling problems with component availability constraints, 

included MSBP, ESBP, RHP and dispatching rules. 

(5). All approaches are coded in commercial mathematical modeling and 

optimization software XPRESS-MP. Numerous experiments are carried out to evaluate 

the performance of proposed approaches. 

(6). This dissertation demonstrates how the decomposition methodology can 

reduce the complexity of NP-hard scheduling problems. 

(7). The mathematical formulation is formed to represent the dynamic assembly 

job shop with component availability constraints. 

       

1.5 Organization 

This dissertation is organized into six chapters. The first chapter describes the 

statements of problems and the overview of general approaches related to the problem. 

The contribution of this research is also addressed in this chapter. Then, it is followed by 

the organizations of this dissertation. The rest of the dissertation is organized as follows: 

Chapter 2 reviews the relevant literature on assembly job shop scheduling with 

component availability constraints; Chapter 3 describes a mixed-integer programming 

model for the assembly job shop. The optimization approach and several heuristics based 
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on the concept of the shifting bottleneck procedure are introduced to solve assembly job 

shop problems; Chapter 4 outlines the details of experiments and demonstrates the 

computational results of our methodologies. Future research directions are given in 

Chapter 5 and finally, conclusions are discussed in Chapter 6. 
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Chapter 2. Literature Review 

 Scheduling is a decision-making process that is used daily as an instruction to 

perform certain activities in many organizations. The functionality of scheduling is to 

allocate limited resources to complete given tasks (or activities) over time in order to 

optimize the performance of a system (Pinedo, 2005). This dissertation focuses on the 

scheduling problems in manufacturing environments, which are referred to as the 

production scheduling problem. In production scheduling problems, resources could be 

machines, tooling, components or labor. Activities are operations, setups or transportation. 

The purpose of production scheduling is to schedule jobs and control their flow through a 

production process efficiently. A schedule for a production system should contain a set of 

operations with start times and machine assignments for each operation of all jobs to be 

scheduled. Each activity may have a due date which could be committed externally or 

internally. Moreover, to address the importance of an activity, each activity may have a 

priority level and can be used to expedite high priority jobs through the production 

process.  

On time delivery and short customer lead times are important to keep future 

business. They are much easier to achieve if resource utilization is very low and 

inventory level is always enormous. However, manufacturers expect to have high 

resource utilization and low inventory level to survive in today’s global competitive 

business environments. It is hard to achieve the high utilization and keep delivery 

promises at the same time. Furthermore, the performance measures of a production 

system usually set to maximize the utilization of resources, minimize cycle time, reduce 

system WIP or lower tardy ratio. But, it is impossible to satisfy all of the above objectives 
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unless manufacturers have unlimited resources, which is impractical in today’s 

manufacturing environments. To increase the effectiveness of the production system, the 

ability to allocate critical resources to production activities efficiently becomes a key 

concern for manufacturers.  

In addition, the production schedule also provides visibility for possible conflicts 

between critical resources in the future. It allows manufacturers to identify criticality of 

production resources (capacity, materials, labors and so on) in advance and balance them 

to avoid further delay on delivery. All of the above reasons make production scheduling 

an important tool in today’s manufacturing environments. Moreover, more research 

agrees that in addition to the classical scheduling problem, decisions such as order release, 

due date quotation and lot sizing are related closely to the production scheduling problem 

(K. Kempf et al., 2000).  

Job shop scheduling is one of most complicated production scheduling problems 

in practice. In this chapter, we will first review the related research on the job shop 

scheduling problem and then extend it to the assembly job shop scheduling problem 

which involves jobs with assembly operations in their product structure. We will also 

provide a review on various scheduling techniques which are used to solve job shop 

scheduling problems, such as shifting bottleneck procedures (Adams et al., 1988). In the 

following section, a short review on component availability problems in job shop 

scheduling is also given as shown in Table 2.1. 
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Table 2.1 Classification for relevant studies: 

Class Related Research 

Classical job shop 

scheduling 

Cheng and Cupta (1989), Lawler et al. (1993), Adams et 

al. (1988), Pinedo (2006) 

Assembly job shop 

scheduling 

Conway and Maxwell (1962), Maxwell and Mehea (1968), 

Russell and Taylor (1985), Elvers and Treleven (1985), 

Adam et al. (1987), Fry et al. (1989), Philipoom et al. 

(1991), Reeja and Rajendran (2000) , Park and Kim 

(1999) , Park and Kim (2000), Pathumnakul and Egbelu 

(2006) 

 

Component availability Tang (1988), Luss and Smith (1988), Klein et al. (1994), 

Klein et al. (1994) , Guide and Srivastava (2000) , 

Karmarker and Nambimadom (1996), Kolisch (2000) , 

Balakrishnan and Geunes (2000), Klein et al. (1995) 

 

Shifting bottleneck 

procedure 

Chen et al. (2006) , Adams et al. (1988), Ovacik and Uzsoy 

(1997) , Uzsoy and Wang (2000) , Demirkol et al. (1997) 
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2.1 Classical Job Shop Scheduling  

The production scheduling problem has received great attention from researchers 

in past decades. According to Cheng and Gupta (1989), the scheduling problem can be 

classified as static vs. dynamic, deterministic vs. stochastic, single-product vs. multi-

product, single-processor vs. multi-processor facilities and theory vs. practice. In the 

static job shop model, all jobs are available to process at the same starting time. In the 

dynamic job shop model, the number of jobs available for processing varies over time, 

jobs continually enter and leave the production system in a random manner governed by 

some probabilistic laws. This dissertation focuses on a static, deterministic, multi-product 

production scheduling problem. 

The problem of production scheduling involves the allocation of limited resources 

to perform given tasks over time to optimize the performance of a system. Job shop 

scheduling is one of the most classical and complicated scheduling problems. The job 

shop scheduling problem concerns the allocation of n jobs to m machines and each job 

follows a predetermined routing through the shop. There are three approaches for solving 

job shop-scheduling problems: dispatching rules, combinational optimization, local 

search and constraints programming. Optimization approaches include the branch and 

bound method, the lagrangian relaxation based method and the dynamic programming 

method to provide an optimal solution, but they are only capable of solving small-sized 

problems and require enormous amounts of computational time. In job shop, each job has 

a different order to visit specific machines with different operation times as stated on the 

routing. Since every job has a different routing, there is up to n! sequences for each 

machine and nm! possible solutions if each job visits every machine once. Not all of them 
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are feasible and it is impracticable to test all possible sequences within a reasonable 

computational time. Hence, finding a good solution for the job shop scheduling problem 

is very difficult in large scale instances. Conflicts with constraints arise frequently 

especially in the allocation of critical resources. To overcome this, research tends to 

develop heuristic algorithms to identify possible sequences and provide acceptable 

solutions with reasonable computational efforts. The dispatching rule is used to prioritize 

the jobs which are waiting in the machine queue and choose the one with highest value to 

process. The dispatching rule is widely used in practice because it produces feasible 

solutions for large scale instances within acceptable computational time. Moreover, 

production systems in real world are always stochastic. Machines can be broken at any 

moment and components are not always available. In this dissertation, we consider the 

availability of components and present an algorithm performing in situations encountered 

large instances in practice.  

The job shop scheduling problem (JSP) is a class of combinational optimization 

problems known as NP-hard one. In the last decades, many researchers have become 

interested in such problems and job shop scheduling problem was received significant 

attentions because it determines jobs sequences and resources utilization in production 

planning. In a classical job shop scheduling problem, there are n jobs available to be 

processed on m machines. Each job has a predetermined routing which contains 

operations to direct the order through he shop in a specific order. Each operation has its 

own processing time and required machine. Moreover, each job has restrictions on 

release time and due date which are set externally by production planner or customers. 

An earliness or tardiness penalty may be incurred if a job has been completed early or 



 

 22

late. The objective of the job shop scheduling problem is to identify the job sequences on 

machines in order to optimize the performance of the production system, which includes 

maximizing resources utilization, minimizing lead times, minimizing work in process, 

minimizing makespan or minimizing order tardiness. 

There are many different objectives on job shop scheduling problems. Following 

the three-field notation as described by Lawler et al. (1993), we shall refer to the job-

shop scheduling problem of minimizing makespan as J//Cmax, and that of minimizing 

maximum lateness as J//L max. Adams et al. (1988) define the job shop scheduling 

problem of minimizing makespan as follows.  Let N represent the set of operations with 

operations S and T representing the dummy operations “start” and “finish” operations. 

Let M represent the set of machines.  Let A denote the set of pairs of operations 

constrained by precedence relations representing the condition that the sequence of 

machines is prescribed for each job. Let Ek represent the set of pairs of operations to be 

performed on machine k with non-overlapping durations. Hence, each machine can only 

process one job at any given time. Let pi and ti represent the processing time and start 

time of operation i, respectively. The minimum makespan job-shop scheduling problem 

can be modeled as: 

   min tT 

   tj – ti ≥ pi,   (i, j) ∈ A, 

   ti ≥ 0,    i ∈ N, 

   tj – ti ≥ pi ∨ ti – tj ≥ pj,   (i, j) ∈ Ek, k ∈ M.        (P) 

A feasible solution to (P) is called a schedule. The first constraint ensures the 

operations sequence of a job following a predetermined order as stated in job routings. 
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The second constraint assures the start time of operations cannot be negative. The third 

constraint guarantees no two operations can be processed at the same time. Moreover, the 

first constraint can be referred as precedence constraint, second, as non-negativity 

constraint and third, as capacity constraint or disjunctive constraint.    

According to Pinedo (2006), we can classify the methodologies to solve job shop 

scheduling problems as follows: (1) Optimization approach; (2) Heuristics approach; (3) 

Constraint Programming.  

 

(1). Optimization approach: A number of researchers have focused on exact solution 

procedures to solve job shop scheduling problems optimally. These scheduling problems 

are usually formulated as integer programming models and solved by various methods, 

included branch and bound procedures, cutting plane methods and hybrid methods. 

However, these scheduling problems are also referred to as NP-hard and the 

computational time of the optimization methods grows exponentially in the worst case 

when the size of problem instances increased. Hence, most optimization approaches are 

only suitable for small problems practically. In addition, the largest instances that have 

been solved to optimality are 20 jobs and 10 machines up-to-date.  

 

(2) Heuristics approach: Extensive research has been studied on heuristics that can 

produce near-optimal solutions with less computational times in the past decades. These 

heuristics are referred as polynomial time algorithm. Heuristic approaches for job shop 

scheduling problems can mainly be divided into two categories: constructive procedures 

and local search procedures. The local search approaches are all based on neighborhood 
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structures defining how to obtain a new solution from the current ones, such as tabu 

search and simulated algorithm.  Instead of trying to improve an initial solution using 

moves in a given neighborhood, the constructive procedures build a schedule from 

scratch by inserting unscheduled operations into a partial schedule until the schedule is 

complete. Dispatching rules, which are extensively discussed in many literatures, are 

widely used in practice. Whenever a machine becomes free, these rules examine the 

currently available jobs and select the next job to be scheduled based on a priority index 

derived from job and machine characteristics. The advantages of dispatching rules are 

easy implementation and low computational burden. However, their myopic nature can 

result in poor performance due to lack of consideration of the effects of local decisions on 

the whole shop. Another well-known constructive procedure is the shifting bottleneck 

procedure developed by Adams et al. (1988), which decomposes the original problem 

into numerous subproblems and solves them iteratively.  Shifting bottleneck procedure 

will be discussed comprehensively in the following section.  

 

(3). Constraint programming: Constraint programming was originally from the 

constraint satisfaction problems which are required a search for feasible solutions which 

satisfied all constraints. According to Pindeo (2006), constraint programming is not only 

used to solve feasible solutions, but also used to solve optimization problems in the last 

decade. These approaches include the Optimization Programming Language (OPL), 

which designed for modeling and solving optimization models through both constraint 

programming techniques and mathematical programming procedures.    
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2.2 Assembly Job Shop Scheduling  

Scheduling problems are generally very complex in nature, particularly in the case 

of assembly job-shop scheduling where products with multiple components are 

manufactured. This dissertation studies a multi-level assembly job shop scheduling in a 

static make-to-order environment. An assembly job shop in this dissertation refers to a 

shop that carries both processing and assembly operations where consumable resources 

(assemblies, sub-assemblies or components) have to be assembled together and processed 

by specific non-consumable resources as stated on job routings. A massive amount of 

research has studied job shop scheduling problems with the assumption of simple string-

type jobs with a linear routing to simplify the problems over past decades. But most 

products may require some assembly operations in industry. Moreover, there are more 

shops processing multi-level assembly jobs than shops performing simple string-type jobs 

in today’s manufacturing environment, particularly in electric industry. However, 

literatures related to assembly job shop scheduling are somewhat limited.   

In an assembly job shop, the operations of an item are not only performed in serial 

following the precedence relationships, but are also carried out in parallel. In this context, 

an item, a component, or a sub-assembly may need to wait for the components belonging 

to the same item before the required assembly operations can take place. Moreover, a job 

in an assembly job shop may not only spend time on the queue of non-consumable 

resources, but may also wait for components which may carry out in parallel. To produce 

a feasible schedule in an assembly job shop, one has to consider not only the capability of 

non-consumable resources, but also the availability of consumable resources (assemblies, 

sub-assemblies or components) as stated on job routings. This makes the scheduling 



 

 26

problem in assembly job shop scheduling much more difficult than conventional job-shop 

scheduling. 

Conway and Maxwell (1962) showed that priority rules based on slack time 

performed much better than the shortest processing rule (SPT) when shop loads were 

relatively high. They demonstrated the need to coordinate or synchronize the completion 

of the parts in the same job. There are several interesting points that must be mentioned 

in the attempt to summarize the research on priority scheduling rules for job shops with 

assembly operations. First, the number of studies reported is insignificant when compared 

with those on priority rules for primary job is not appropriate for jobs with assembly 

operations. This is because of the need to coordinate the completion time of related parts 

and inability of SPT to achieve this. 

Maxwell and Mehea (1968) tested the performance of several basic priority rules 

and some composite rules in their experiments when multi-level “symmetric tree 

structured” job structure is used. They concluded that the performance of the shop can be 

improved if job structure is considered in the composite priority rules.  

Russell and Taylor (1985) studied the impact of product structure on the 

performance of sequencing rules. Two product structures were created to represent two 

different product structures, one tall BOM and one flat BOM. Several sequencing rules 

were evaluated by using a simulation analysis of a hypothetical assembly shop and 

simulation results are analyzed via an ANOVA procedure that identifies major 

differences in the results of several performance measures. In their study, they concluded 

that the sequencing rule has a significant effect on the mean flow time, and root mean 

square from tardiness of jobs completed by an assembly shop. Moreover, sequencing 
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rules that excel in a simple job shop are not necessarily appropriate for an assembly shop. 

Although the sequencing rule’s performance is affected by the structure of jobs processed, 

the ranking of sequencing rules does not differ significantly under job structure. 

Treleven and Elvers (1985) have shown that the routing pattern of jobs has no 

significant impact on the relative effectiveness of various dispatching rules. Their study 

concludes that if lateness criteria are considered most important, then earliest due date 

and least slack per remaining number of operations dispatching rules are considered good 

choices.  

Adam et al. (1987) studied the priority rules for assembly job shops which 

processed multiple-level assembly jobs. They classified the job lead time into two 

components: flow time and job staging delays. They developed a set of priority rules 

which the structural complexity of jobs can be incorporated explicitly to reduce the 

staging delays. They concluded that the combined rules, such as a pacing rule in 

conjunction with an acceleration rule, can improve the performance of lead time. Also 

these combined rules also show a significant improvement over other priority rules if 

higher levels of assembly jobs are involved. 

Fry et al. (1989) studied the performance of priority dispatching rules on three 

different product structures which are flat, tall and complex. In their experiments, a six-

machines assembly shop was simulated to evaluate the performance of fourteen 

sequencing rules. Results indicate that taller-structured BOMs tend to have more tardy 

orders than the flat BOMs because more staging delays are involved. Hence, due-date 

oriented sequencing rules will perform better when product structures become taller. 

Moreover, the SPT rule is not appropriate to use in an assembly job shop even though it 
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performs better in a single-stage job shop. Also, they found no evidence that using the 

operation due-date reduces order tardiness. They suggested that using specific sequencing 

rules for certain product structures in an assembly shop is important to improve due date 

performance.    

Philipoom et al. (1991) proposed a new set of sequencing rules, called importance 

ratio (IR). It is based on the ratio of the remaining number of operations on a particular 

branch or path to job completion, to the remaining number of operations on the longest 

path to job completion. In their study, importance ratio rules perform better on jobs with 

higher levels of assembly. They also evaluated the performance of several sequencing 

rules which incorporate multiple attributes of assembly job shop. In their experiments, 

they concluded that it is not necessary to incorporate both attributes of job shop and 

assembly shop scheduling into sequencing rules to achieve best performance.   

Reeja and Rajendran (2000) studied the performance of dispatching rules on 

assembly job shops. New dispatching rules based on “operation synchronization date” 

were introduced and tested the performance on a simulation study. The results indicated 

that new dispatching rules are superior to others in most performance measurements.   

 Park and Kim (1999) developed a non-linear mathematical model for a production 

planning problem in an assembly system with discrete time representation. In their model, 

all jobs must be completed before their due date and the objective is to minimize the total 

holding costs including work-in-process and final product inventory. A heuristic 

algorithm based on a network model was also presented and used to generate a 

production plan from downstream workstations to upstream workstations. In their 

experiment, they concluded that performance of their algorithms was superior to 



 

 29

commercial software and the backward finite-loading methods they tested. Park and Kim 

(2000) also presented a mixed integer programming model with continuous time 

representation to solve the same problem. A branch and bound algorithm based on a 

lagrangian relaxation method is introduced and tested on a set of randomly generated 

problems with a maximum number of products up to seven and the number of machines 

equals to three. Results from their experiments demonstrated that the branch and bound 

algorithm can find optimal solutions within reasonable computational time.     

Pathumnakul and Egbelu (2006) studied the problem of minimizing the weighted 

earliness penalty in assembly job shops. In their study, tardiness is not allowed and all 

orders must be completed before due dates. A mathematical model based on continuous 

time representation was presented and a heuristics algorithm based on several local 

optimality properties was developed to reduce intensive computational time associated 

with the problem. The performance of heuristics is closed to optimal solutions obtained 

from 50 test problems with maximum number of machines and products up to five.    

 

2.3 Assembly Job Shop Scheduling with component availability constraints  

As mentioned in the previous section, research on job shop scheduling has 

concentrated on the problems with simple string-type jobs. Few of them studied the job 

shop scheduling problems with multi-level assembly operations. Most of them have an 

assumption that all components are always available at the beginning of operations to 

simplify problems. In other words, there are no insufficient components problems and 

capacity constraints are major concerns in their models. However, to reduce the lead time 

of orders, manufacturers may release partial orders to the shop floor before arrivals of all 
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necessary components from outside suppliers. Thus, components from outside suppliers 

could arrive late and rush orders could be released to the shop floor at any time. Only 

considering capacity constraints in assembly job shop models may not be suitable for 

manufacturers which tended to be material intensive.       

Most famous material allocation example in practice is Material Requirement 

Planning (MRP). MRP was designed to plan and control flows of materials and provide 

valid order due dates for production systems. MRP provides components priorities in the 

form of component due dates by offsetting component gross requirements by expected 

lead times. Once manufacturing jobs are ready to be released to the shop floor, order 

release function in MRP will allocate available components to manufacturing jobs. When 

a conflict arises between different manufacturing jobs, the order release function will 

decide which manufacturing jobs are released to the shop floor and which ones remain 

staying in the job pool until the arrival of components in the future. By doing so, 

manufacturers only need to deal with capacity constraints in production scheduling 

problems. However, the fixed-lead time assumption of MRP tends to make the schedule 

inaccurate. Changes on demand frequently in current business environment will cause the 

disruption of production schedules generated by MRP. Thus, poor schedules will result in 

inappropriate delivery from outside suppliers. If supplier deliveries are too early, it causes 

too much materials inventory. If they arrive behind schedule, production lines will be half 

due to insufficient quantities of inventory. To overcome these drawbacks, a new 

scheduling approach, called Advanced Planning and Scheduling (APS), generates 

schedules that consider both material and capacity simultaneously as elements that may 

constrain production (Musselman and Uzsoy, 2001). This ensures that the material plan is 



 

 31

in agreement with capacity schedule. In this section, we review the research which 

related to resource allocation problems.  

The resource allocation problem has been studied in different fields, such as 

supply chain management, logistics and store space design. Tang (1988) describes a 

nonsimplex-based integer algorithm to solve a max-min allocation model to optima. The 

original problem is decomposed into subproblems and the optimal solution is obtained by 

literately solving a set of subproblems. It is clear that the computational time of his 

algorithm depends on how fast subproblems can be solved optimally. Other researchers 

have studied max-min problems in the past. However, Tang (1988) is one of few 

researchers to apply max-min allocation models to manufacturing problems, such as 

storage space allocation, line balance, production quantity allocation and raw material 

allocation problems. Luss and Smith (1988) describe a minimax approach to solve 

multiperiod allocation problems on electronic assembly industry. The objective function 

of their model is to minimize the maximum weighted deviation of cumulative activity 

levels (jobs) from the cumulative demands. That is, their model allocates resources 

(electronic components) to activities (jobs) over a multiperiod and minimizes the 

percentage of incomplete jobs. Their objective is capable of solving large problems very 

quickly. Klein et al. (1994) describe resource allocation models for the electronic 

assembly industry and solve those using relaxation-based approaches. They also integrate 

the component substitution constraints into their models. Although their models can be 

applied to manufacturing resource allocation problems, they are still too simple to apply 

in practice due to single-level BOM and single material structure assumptions.  
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Guide and Srivastava (2000) survey the recent techniques that deal with the 

uncertainty in material requirements. Those methodologies include lead time setting, the 

choice of lot-size and shop floor control. Some researchers suggest carrying safety stock 

to deal with quantity uncertainty and safety lead-time against timing uncertainty.  

Karmarker and Nambimadom (1996) propose a formal model for the material 

allocation problem in MRP. In their paper, they address the flaws in the material 

allocation function of MRP, such as the simple due-date sequence allocation rule and lack 

of priority issue. They use the lagrange relaxation technique to solve this problem and 

provide a lower bound on the optimal solutions. They also develop four heuristics based 

on modified MRP logic to achieve shorter computational time for large scale problems. 

Moreover, an improvement procedure is also designed to decrease tardiness. The 

objective of these models is to minimize penalties of late orders. Their models consider 

multi-BOM structures. In their experiments, the Lagrangian relaxation heuristic performs 

5% to 10% worse than the optimal solution. The best modified MRP logic heuristic 

reduced cost by 25% to 40% compared to MRP. It is noted that the computational time of 

Lagrangian relaxation heuristic is about 50 times longer than that of MRP.  

Kolisch (2000) describes a mixed integer programming model to solve assembly 

scheduling problems in a make-to-order (MTO) environment. In his model, jobs are 

scheduled based on capacity, assembly spaces, parts availability and jobs precedence 

constraints. The objective function is to minimize the total tardiness of orders. Due to the 

excess computational time, a list-scheduling heuristic is proposed in his paper as well. It 

is worth noting that the part assignment problem in this paper is solved as a transportation 

problem.  
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Balakrishnan and Geunes (2000) propose a dynamic requirement planning model 

with BOM flexibility based on mixed-integer programming. The BOM-flexibility 

function allows manufacturing to switch from one material to another based on cost or 

availability. Given the BOM flexibility and demand for each product, a requirements 

planning with substitutions problem (RPS) is represented by a generalized network-flow 

model. In the model, there are three different nodes: origin nodes, component nodes and 

demand nodes, which represent component type, inventory level and actual demand 

component, respectively. Three different arcs:  productions arcs, inventory arcs and usage 

arcs, which describe the activities of the production system. After the RPS problem is 

translated into a generalized network-flow model, it is solved as a shortest path problem. 

Balakrishnan and Geunes (2000) develop a dynamic programming to solve the shortest 

path problems. Their experiment indicates that flexibility-BOM can save 8.7% in 

production cost. The objective of RPS is to reduce production cost but not the safety 

stocks requirement that has been widely studied in this field.  

 Klein et al. (1995) propose a multiperiod allocation model with substitution 

constraints. In their model, resources are storable and can be used in subsequent periods 

in the case of surplus resources. The objective function is to minimize the largest 

cumulative deviation from cumulative demands. It can be explained in a way which 

minimizes the largest tardy jobs ratio in material allocation problems of the electronic 

assembly industry. They propose a relaxation-based algorithm to solve multiperiod 

allocation problems. For each iteration, the usage of activity (jobs) is given and a 

multiperiod allocation feasibility problem is solved to determine the corresponding 
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feasibility solution. They formulate the multiperiod allocation feasibility problem as a 

network flow model and solved using maximal flow problems.  

 

2.4 Shifting bottleneck procedures  

Job shop scheduling involving more than two machines is one of well known NP-

hard problems for researchers. To avoid the intensive computational time to solve large 

instances, it is reasonable to divide the original problem into several small subproblems 

which can be solved efficiently and still able to achieve good solution. The shifting 

bottleneck procedure is one of popular algorithm to adopt this concept on job shop 

scheduling problems. The idea of shifting bottleneck procedure (Adams et al. 1988) is to 

breakdown the job-shop scheduling problem into numerous single-machine subproblems 

which can solve sequentially based on subproblem criticality and use disjunctive graph to 

present operations precedence constraints and reflect machine sequence decisions. In 

their experiments, shifting bottleneck procedure is superior to other algorithms in term of 

computational time and solution quality. However, there are usually numerous machines 

with similar functionality to be group as work-centers in practice. Instead of solving one 

machine subproblems, parallel machines (work-centers) subproblems in shifting 

bottleneck procedure can be solved to capable of solving real-world job shop scheduling 

problems (Ovacik and Uzsoy, 1997). However, shifting bottleneck procedure still 

requires the excess of computational times to solve job shop scheduling problems with 

parallel machines due to numerous subproblems need be solved. Chen et al. (2006) 

introduce the efficient shifting bottleneck heuristic (ESBPM) which designs to reduce 
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total number of subproblems to be involved in shifting bottleneck procedure and also 

capable to solve job-shop problems with parallel machines in practice. 

 

2.4.1 The Generic Shifting Bottleneck Procedure   

Adams et al. (1988) define the job-shop scheduling problem as follows.  Let N 

represent the set of operations with operations S and T representing the dummy 

operations “start” and “finish” operations. Let M represent the set of machines.  Let A 

denote the set of pairs of operations constrained by precedence relations representing the 

condition that the sequence of machines is prescribed for each job. Let Ek represent the 

set of pairs of operations to be performed on machine k with non-overlapping durations. 

Hence, each machine can only process one job at any given time. Let pi and ti represent 

the processing time and start time of operation i, respectively. The job-shop scheduling 

problem can then be formulated as: 

   min tT 

   tj – ti ≥ pi,   (i, j) ∈ A, 

   ti ≥ 0,    i ∈ N, 

   tj – ti ≥ pi ∨ ti – tj ≥ pj,   (i, j) ∈ Ek, k ∈ M.        (P) 

A feasible solution to (P) is called a schedule.  It is helpful to use a disjunctive 

graph G to represent this problem as shown in Figure 1.  Let G = (N, A, E), where N is the 

node set, A is the ordinary (conjunctive) arc set, and E is the disjunctive arc set.  Each 

node is an operation.  The directed arcs correspond to precedence relations.  The pairs of 

disjunctive arcs correspond to the pairs of operations that are performed on the same 
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machine.  The processing time of an operation is shown on an arc. The set of disjunctive 

arcs, E, consists of cliques Ek, one for each machine k, where E = ∪(Ek: k ∈ M). 

 

 

 

 

 

 

  

Figure 2.1 Example of the disjunctive graph G 

 

The directed graph that results from taking out the disjunctive arcs from G is 

represented by D = (N, A).  Sk is called a selection if it includes one and only one member 

of each disjunctive arc pair of Ek.  If a selection does not have a directed cycle, it is 

acyclic.  Since each acyclic selection (Sk) corresponds to a particular ordering of the 

operations associated with machine k, sequencing a machine k is equivalent to an acyclic 

selection in Ek.  The union of the selections Sk (one in each Ek, k ∈ M) is called a 

complete selection S, and a partial selection consists of the union taken over a subset (M0) 

of M.  An ordinary directed graph, DS = (N, A ∪ S), results from choosing a complete 

selection S, that is, putting the ordinary conjunctive arc set S in place of the disjunctive 

arc set E.  The length of a longest path in DS is equivalent to the makespan of a schedule 

correspond to the selection S.  Therefore, the goal is to find an acyclic, complete selection 

S ⊂ E that minimizes the length of a longest path in the directed graph DS. 
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 Based on the disjunctive graph representation, we can describe the shifting 

bottleneck procedure defined by Adams et al (1988). Let M be the set of all machines. M0, 

a subset of M, is defined as the set of machines for which a selection of disjunctive arcs 

(representing a sequence of jobs) has been determined in the earlier iterations. Initially, 

M0 is an empty set. The result of a typical iteration is the selection of a machine from M – 

M0 to be added to M0.  In addition, the processing order of the operations for those 

machines must be specified.  The goal is to determine the unscheduled machine that 

causes the severest disruption in production if not scheduled immediately.  This 

bottleneck machine will be the next one added to M0.  In order to find the bottleneck 

machine, in the original directed graph, all the disjunctive arcs for the machines that have 

yet to be scheduled are removed.  In addition, only the relevant disjunctive arcs of the 

machines that have already been scheduled are retained.  Call this graph G′.  There are 

one or more critical paths in G′ that determine the graph’s makespan.  Call this makespan 

Cmax(M0). Note that machine k will become machine type k when parallel machines 

(work-centers) are considered.  

The three key tasks in the shifting bottleneck procedure are described below: 

 

 (1). Bottleneck machine selection procedure: 

 The critical paths in G′ determine the release dates and the due dates for all the 

operations.  The definitions of the release date(ri) and due date(di) for an operation are: ri 

= L(0, i) and di = L(0, n) – L(i, n) + pi, where pi is the processing time for operation i and 

L(i, j) is the length of a longest path from i to j in the graph.  Let each of the machines 

that have yet to be sequenced be considered as a separate 1 | rj | Lmax scheduling problem.  
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After solving the set of jobs sequence problems, the machine with the greatest maximum 

lateness is designated as the bottleneck machine and included in M0 next.  Call this 

machine, machine k, and its maximum lateness Lmax(k). 

 

(2). Procedure to update the disjunctive graph G′: 

Schedule machine k using the solution found in solving the job sequence 

subproblem for machine k.  Add the disjunctive arcs that specify the order of operations 

on machine k to G′.  With the addition of these disjunctive arcs, the makespan for the 

partial selection goes up by Lmax(k): Cmax(M0 ∪ k) = Cmax(M0) + Lmax(k).  

 

(3). Reoptimization procedure: 

 The machines that have already been sequenced are resequenced.  This is 

accomplished by taking a machine, machine l, form the set M0.  Graph G′′ is formed by 

deleting the disjunctive arcs that specify the order of operations on machine l from G′.  

Machine l is resequenced by solving the corresponding job sequence subproblem (1 | rj | 

Lmax) using the release dates and due dates determined by the critical path(s) in G′′ 

(Pinedo 1995). This may result in a new makespan. 

After resequencing machine l, the machine is added back into M0 at the same 

place it was taken out and the disjunctive arcs that specify the new order of operations on 

machine l are added to the graph G′′. The makespan may have to be adjusted according to 

the maximum lateness determined by reoptimizing the sequencing for machine l. 

Resequencing all of the machines in the original set M0 (excluding the machine just 

sequenced, machine k) completes one cycle of reoptimization. 
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If there is no improvement in the makespan after complete cycle of reoptimization, 

then the first local reoptimization procedure is complete. Otherwise, the first local 

reoptimization procedure continues until there is not any improvement within an entire 

cycle. The shifting bottleneck procedure will return to bottleneck machine selection 

procedure to select the next bottleneck machine. The procedure terminates when M0 

contains all machines types.    

 

2.4.2 The Shifting Bottleneck Procedure with parallel machines  

 For job shop scheduling problems with parallel machines, not only jobs need to be 

sequenced a given machine type, but also the specific machine within a work-center 

which will process the job has to be determined. Chen et. al (2006)) describe a procedure 

similar to Ovacik and Uzsoy (1997) that uses the earliest-due-date first (EDD) 

dispatching rule to assign a machine within the work-center to a given job. In the next 

section, we described efficient version of the shifting bottleneck procedure. EDD 

dispatching rule is simple but effective for parallel machine allocation and sequence 

subproblem and provides the schedule without presenting cycles and delay precedence 

problem. The SB procedure with parallel machines (SBPM) can be described as follows:   

 

Step 1.  Let M0 = ∅ and M represent the set of machine types.  

Step 2.  Remove all the disjunctive arcs in the graph.  Obtain the makespan, Cmax, of the 

graph by finding the longest path from the source node to the sink node. 

Step 3. For each of the machine types in M – M0, solve a P | rj | Lmax problem with release 

dates and due dates determined by using the graph.  Solve the parallel machine 
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allocation and sequence subproblems using the earliest-due-date-first (EDD) 

dispatching rule. 

Step 4. Designate the machine type k with the greatest maximum lateness Lmax(k) as the 

“bottleneck machine”.  If there exists a tie for largest maximum lateness, 

designate the machine type k with the greatest average lateness Lave(k) as the 

“bottleneck machine”.  If there is a tie for largest average lateness, then designate 

the first machine that is tied for largest average lateness the “bottleneck” (an 

arbitrary rule).  Add machine type k to the set M0 and schedule machine type k 

using the optimal solution found in the P | rj | Lmax problem for machine type k. 

Step 5. Add the disjunctive arcs that specify the order of the operations on machine type k 

to the graph.  Revise the makespan using the equation Cmax(M0 ∪ k) = Cmax(M0) 

+ Lmax(k). 

Step 6.  If |M0| = 1, then local reoptimization is not needed, go to step 3.  If |M0| > 1, then 

resequence the machine types in M0 one at a time until a full cycle goes by 

without any improvement.  After resequencing a machine, say machine type l, 

put the machine type back into M0 in the same place that it was removed from 

and add the disjunctive arcs that specify the order of the operations on machine 

type l to the graph.  Adjust the makespan: Cmax(M0 ∪ l) = Cmax(M0) + Lmax(l).  If 

|M0| = |M|, then terminate the procedure.  Otherwise, go to step 3. 

 

2.4.3 Efficient Shifting Bottleneck heuristic for parallel machines (ESBPM)  

The job shop scheduling problem with parallel machines is harder to solve than job 

shop scheduling problems with single machine work-centers. In addition to solving a job 
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sequencing problem, it also needs to solve a machine allocation problem. Chen et al. 

(2006) propose an efficient shifting bottleneck heuristic for parallel machine work-

centers, where bottleneck machine selection procedure is avoided and re-optimization 

procedure is constrained to few iterations. Hence, the total number of subproblems is 

expected to decrease. A generic efficient shifting bottleneck heuristic (ESBPM) can be 

described as follows: 

 

Step 1. Choose an efficient dispatch rule or any other parallel machine algorithm to 

obtain job sequence and machine allocation of each machine type as the initial 

solution. 

Step 2. Use re-optimization procedure to improve the initial solution. The parallel 

machine allocation and sequence subproblems can be solved by using a 

dispatching rule.  
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Chapter 3. Methodology 

There has been a significant amount of research focused on assembly job shop 

scheduling, but we are not aware of any studies considered the availability of components. 

Moreover, most of these studies concentrated on the problems involved only capacity 

constraints as discussed in chapter 2. Despite of capacity constraints, the most popular 

example to allocate components to material requirements in practice is the First-come 

First serve (FCFS) dispatching rule or so-called MRP-logic (Material requirement 

planning). In MRP logic, the material required time is calculated as a function of the 

fixed lead time which represents capacity requirements or vendor lead times. Moreover, 

allocation of on-hand inventories and scheduled receipts are typically executed by a fixed 

decision rule based on the FCFS sequence. Once jobs held enough materials, they are 

released to the shop floor. In other words, material constraints have relaxed in advance 

and only capacity constraints remain in the scheduling problem. However, some 

components may have long vendor lead times and have to be procured in advance based 

on the forecast of demand. It could increase customer lead times if jobs are waiting for all 

required components before releasing them to the shop floor. Thus, releasing partial 

orders into the shop floor may help to improve the due date performance (Bragg et. al. 

1999). Second, frequent change in demand and late delivery from outside vendors may 

delay the shipments and cause the loss of business reputation. A scheduling technique 

which incorporates both a material plan and a capacity schedule is necessary for a 

production system in order to respond quickly to these changes. Unlike discrete time 

representation used in conventional resource allocation methods, our model uses a 

continuous time representation to improve accuracy and defines tardiness cost as the 
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difference between the completion time and the due date. Moreover, the lead time in our 

model is dynamic and computed from both material plans and capacity schedules.  

The goal of this dissertation is to develop algorithms to solve the assembly job shop 

scheduling problems, which are scalable to deal with real world problems. To accomplish 

this task, we must first describe the assembly job shop scheduling model with component 

availability constraints as a mixed-integer programming model. To overcome the excess 

of computational effort, several heuristics are developed to solve the same problem 

efficiently, including the modified shifting bottleneck procedure (MSBP), the efficient 

shifting bottleneck procedure (ESBP) and the rolling horizon procedure (RHP). The 

performance of these heuristics is compared to solutions obtained from several 

dispatching rules in terms of solution quality and computation time. The shifting 

bottleneck procedures developed in this dissertation is summarized in Table 3.1. 

A modified shifting bottleneck procedure (MSBP) is designed to decompose the 

original problems into several subproblems which related to material plans or machine 

schedules in order to reduce the complexity of the problem. In the following sections, the 

efficient shifting bottleneck procedure (ESBP), which is based on the concept of shifting 

bottleneck procedure and the findings from MSBP, is introduced. ESBP is designed to 

reduce the total number of subproblems by avoiding the bottleneck resources selection 

procedure and constraining the number of re-optimization cycles. It consists of two main 

steps depicted as follows: Obtain initial solutions and perform re-optimization cycles. 

However, subproblems in both MSBP and ESBP are still NP-hard problems because of 

the nature of the mixing integer programming. The computational effort may not be 

acceptable if the size of problem is extremely large. To reduce the complexity of 
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subproblems, the rolling horizon procedure (RHP) is presented to obtain the solutions 

from subproblems rapidly in large size instances by dividing the scheduling time horizon 

into several different time windows. The performance of MSBP and ESBP is tested on a 

set of test problems in experiments and compared with various dispatching rules which 

are normally used in practice. The results from our experiments show that MSBP and 

ESBP outperform the best dispatching rule by an average of 19% to 22% for the all test 

problems. 

 

Table 3.1 The summary of shifting bottleneck procedures for assembly job shop 

scheduling problem  

Method Bottleneck selection 

procedure 

Re-optimization 

Procedures 

Subproblem solution 

procedure 

MSBP Subproblem TWTmax 

(Max Total Weighted 

Tardiness)  value 

Full re-optimization up 

to 3 cycles 

Branch and Bound or 

Dispatching rules 

ESBP Machine sequencing 

number 

Full re-optimization up 

to 3 cycles 

Branch and Bound or 

Dispatching rules 

RHP Machine sequencing 

number 

Full re-optimization up 

to 3 cycles 

Branch and Bound or 

Dispatching rules with 

rolling horizon 

procedure 
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3.1 Problem description and assumptions 

An assembly job shop scheduling problem with component availability constraints 

is not only addressed on allocation of operations to machines but is also concerned with 

the allocation of available components to operations which have material requirements 

originating from an internal (subassembly) or an external (customer) source. The 

assembly job shop considered in this research consists of various machines. Each 

machine has different functionality and can only process one job at a time. A final 

product is fabricated from various items, included assemblies, sub-assemblies and 

components according the Bill-Of-Materials (BOM) structure as shown in Figure 3.1. 

The number of assemblies, sub-assemblies and components required to form a final 

product can be exploded from its BOM. In our assembly job shop model, there is no 

inventory for components in the beginning. Furthermore, the components can not be 

manufactured in-house and have to procure from outside vendors. Each shipment from 

outside vendors delivers single component type and is represented by a purchase order. 

Moreover, a job can not be processed by machines if there are insufficient quantities of 

components in an assembly job shop. There are also many jobs in assembly job shop. 

These jobs are ready to process in the beginning once they allocate enough components. 

Each job, which represents an order for a final product requested by customers, contains 

to numerous operations and need to be processed by different machines through assembly 

shop as stated on the predetermined job routing. Each job has the due date and priority 

which are known in advance. Failure to deliver final products on time will result in 

penalty. The objective of the problems is to schedule all jobs to complete on time and 

also satisfy both capacity and material constraints.  
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Figure 3.1  Example for product structures of assembly job 

 

However, there are still some assumptions beyond our assembly job shop models. 

The first assumption is that all jobs are ready to process in the beginning and processing 

time is deterministic. Second, the purchase order lead time is greater than average 

customer order lead time. Otherwise, manufacturers could procure the necessary 

quantities of components after they accepted orders. Additionally, material requirements 

are assumed to be procured in advance based on forecasts which show as scheduled 

  

  

 

 

 

 

Assembly-Type Job 
with Components 

Final Product, 
Assembly, Sub-

Assembly 

Operation 

Component 



 

 47

receipts for raw materials in the assembly job shop model. If the actual demand is greater 

than the forecast demand, a material shortage will occur and possibly lead to tardy jobs. 

Hence, it may result in the loss of customer goodwill. For this reason, the objective of our 

model is to minimize the total weighted tardiness.  

 

3.2 The extended disjunctive graph and mathematical formulation  

The conventional job shop scheduling problem can be represented by using a 

disjunctive graph. Each node corresponds to an associated operation and each disjunctive 

arc indicates a possible sequence between two operations which have to be processed in 

the same type machine. A feasible schedule corresponds to a selection of one disjunctive 

arc from each pair such that the resulting directed graph is acyclic. This dissertation 

extends the disjunctive graph to represent the problem of assembly job shop scheduling 

with components availability. To doing this, a set of nodes representing arrivals of 

purchase orders (scheduled receipts), called purchase order node (PON), is added into 

disjunctive graph. Each operation requesting a component is connected to all PONs 

which carry that type of component using disjunctive (broken) arcs.   

It is useful to define the assembly job-shop scheduling problem using a 

disjunctive graph as shown in Figure 3.2. Let N represent the total set of operations with 

operations S and T representing the dummy operations “start” and “finish” operations. 

Let Z represent the set of all jobs. Let dv represent the due date, wv represent job’s priority, 

and sv represent the completion time for job v. Let M represent the set of all machines, P 

represent the set of all components and R represent the set of all purchase orders. Let A 

denote the set of pairs of operations constrained by precedence relations representing the 
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condition that the sequence of machines is prescribed for each job. Let C denote the set of 

arcs constrained by precedence relations representing the arrival time for each purchase 

order. Let Ek represent the set of pairs of operations to be performed on machine k with 

non-overlapping durations. Hence, each machine can only process one job at any given 

time. Let pi , ti and qi represent the processing time, start time and requested quantity for 

component of operation i, respectively. Let Bh represent the set of operations to request 

component h and Fh represent the set of purchase orders to delver component h. Let an 

and qn represent the arrival time and delivery quantity of purchase order n. Let Yh 

represent the material allocation of components h and niy ,  represent the allocation of 

component from purchase order n to operation i.  
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Figure 3.2  A example of a disjunctive graph for assembly job shop scheduling with component availability constraints 
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A feasible solution to (P*) is called a schedule.  It is helpful to use a disjunctive 

graph G to represent this problem.  Let G = (N, A, E, R, C, Y), where N is the node set for 

operations, A is the ordinary (conjunctive) arc set for operations, E is the disjunctive arc 

set for machines, R is the node set for purchase orders, C is the ordinary (conjunctive) arc 

set for purchase orders and Y is the allocation arc set for components. Each node 

belonging to set N is an operation. The directed arcs correspond to precedence relations.  

The pairs of disjunctive arcs correspond to the pairs of operations that are performed on 

the same machine. Each node belonging to set R is a purchase order. The allocation arcs 

represent the material allocation of components from purchase orders to operations. The 

processing time of an operation is shown on an arc. The set of disjunctive arcs, E, 

consists of cliques Ek, one for each machine k, where E = ∪(Ek: k ∈ M). The set of 

allocation arcs, Y, consists of cliques Yh, one for each component h, where Y = ∪(Yh: h ∈ 

P). 

The directed graph that results from taking out the disjunctive arcs and the 

allocation arcs from G is represented by D = (N, A, R, C).  Sk is called a machine selection 

if it includes one and only one member of each disjunctive arc pair of Ek.  If a machine 

selection does not have a directed cycle, it is acyclic.  Since each acyclic selection (Sk) 

corresponds to a particular ordering of the operations associated with machine k, 

sequencing machine k is equivalent to an acyclic selection in Ek. Similarly, Uh is called a 

component selection if it includes allocation arcs of Yh.  The union of the machine 

selection Sk (one in each Ek, k ∈ M) and the component selection Uh (one in each Fh, 

Ph∈ ) is called a complete selection SU, and a partial selection consists of the union 

taken over a combination of subset (M0) of M and subset (R0) of R.  An ordinary directed 
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graph, DSU = (N, R, A ∪ S, C ∪ U), results from choosing a complete selection SU, that is, 

putting the machine selection set S in place of the disjunctive arc set E and component 

selection set U in place of the allocation arcs set Y.  The length of the longest path in DSU 

is equivalent to the makespan of a schedule corresponding to the selection SU. The 

completion time of job v is equal to the length of the longest path for source node S to top 

node of jobs v. Lateness of job v can be calculated as the completion time of job v minus 

the due date of job v. Tardiness of job v is equivalent to the lateness of job v, if the 

lateness of job v is positive; otherwise, it is zero. Therefore, the goal of this dissertation is 

to find an acyclic, complete selection )()( YUES ⊂∪⊂ that minimizes the weighted 

tardiness of all orders in the directed graph DSU. 

The generic assembly job shop scheduling problem with the objective of 

minimizing total weighted tardiness can then be formulated as: 

 

           (P*) 

   min ∑ −
v

vvv dsw )0,max(*  v ∈ Z,  ----------------------------(1)      

Subject to:             

   tj – ti ≥ pi,   (i, j) ∈ A, -------------------------(2) 

            ti ≥ 0,    RNi ∪∈    ----------------------(3) 

   tj – ti ≥ pi ∨ ti – tj ≥ pj,   (i, j) ∈ Ek, k ∈ M.   --------------(4)        

∑ ≤
i

nni qy ,    PhFnBi hh ∈∈∈ ,,   -----------(5) 

∑ =
n

ini qy ,    PhFnBi hh ∈∈∈ ,,   -----------(6) 

ni at ≥                           1,,, , =∈∈∈ nihh yPhFnBi   ---(7) 
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Table 3.2  Notation of the assembly job shop scheduling problem 

N Set of operations 
Z Set of jobs 
dv The due date for job v, Zv∈  
wv The priority for job v, Zv∈  
sv The completion time for job v, Zv∈  
M The set of all machines  
P The set of all components 
A The set of pairs of operations constrained 

by precedence relations 
C The set of arcs constrained by the arrival 

time of purchase orders 
Ek The set of pairs of operations to be 

performed on machine k 
pi  The processing time for operation i 
ti  The start time for operation i 
qi The requested quantity for components 

from operation i 
Bh The set of operations to request component 

h , Ph∈  
Fh The set of purchase orders to delver 

component h, Ph∈  
R The set of all purchase orders 
an The arrival time for purchase order n, 

Rn∈  
qn The delivery quantity for purchase order n, 

Rn∈  
Yh The material allocation of components h, 

Ph∈   
niy ,  The allocation of component from purchase 

order n to operation i. 
 

Equation 1 is the objective function of the problem, which designs to minimize 

the total weighted tardiness for all jobs. Equation 2 and 3 represent the precedence 

relation between operations. Equation 4 is the capacity constraint. Equation 5, 6 and 7 are 

material constraints, which used to allocation components to material requirements.  
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3.3 Optimization Approach: 

 In Figure 3.3, the structure of mathematical formulation for multi-level assembly 

job shop scheduling model consists of three groups of constraints: assembly coordination 

constraints, material constraints and capacity constraints. The function of the assembly 

coordination constraints is to assure that the order’s precedence constraints are met 

according to the order’s BOM structure. For example, parent’s operation PST (Planned 

Start Time) must be greater than or equal to the child’s operation PET (Planned End 

Time). However, the assembly coordination constraints only consider the assembly 

coordination between jobs and does not directly provide operation’s PST. To obtain the 

operation’s PST accurately, material and capacity constraints are used to compute the 

operation’s PST as described in the following sections. For each job, operation’s PST is 

determined by performing material allocation and capacity schedules with the objective 

of minimizing total weighted tardiness. Unlike the infinite capacity assumption in the 

MRP logic, operation’s lead time in our model is dynamic and determined by material 

and capacity constraints. By doing so, operations’ PST is not only feasible to either 

material constraints or capacity constraints, but also is an optimal solution.   

 In a multi-level assembly job shop scheduling model, orders are collected within 

a specific time period and processed periodically for scheduling decisions. Scheduling 

decision involved allocation of limited resources and determination of order PSTs. 

Consider an assembly job shop scheduling problem over a given planning horizon, T. 

Assuming that the demand and supply information are known ahead of time for the entire 

planning horizon. The assembly job shop scheduling problem can be formulated as a 

mixed integer programming model with the following notations: 
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            Figure 3.3   Figure 3.3 Mathematical formulations for assembly job shop 

scheduling problems 

 

Table 3.3 Notation of the assembly job shop scheduling problem 

N Set of operations 
Z Set of jobs 
dv The due date for job v, Zv∈  
wv The priority for job v, Zv∈  
sv The completion time for job v, Zv∈  
G Set of last (Top) operations for job v, 

Zv∈  
M The set of all machines  
P The set of all components 
A The set of pairs of operations constrained 

by precedence relations 
Ek The set of pairs of operations to be 

performed on machine k 
pi  The processing time for operation i 
ti  The start time for operation i 
qi The requested quantity for components 

from operation i 
Bh The set of operations to request component 

h , Ph∈  
Fh The set of purchase orders to delver 

component h, Ph∈  
R The set of all purchase orders 
an The arrival time for purchase order n, 

Rn∈  
qn The delivery quantity for purchase order n, 

Rn∈  
Yh The material allocation of components h, 

Ph∈   

Master problem 
(Coordination problem) 

Material Constraints Capacity Constraints 

PST 
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niy ,  The binary variable for the allocation of 
component from purchase order n to 
operation i. 

jiS ,  The binary variable for capacity allocation. 
 

 (P)   min ∑ −
v

vvv dsw )0,max(*  v ∈ Z, --------------------------------(1)   

Subject to:     

* Assembly coordination constraints    

   iiv pts +=    i ∈ G, , Zv∈    ----------------------(2) 

iij ptt +≥    (i, j) ∈ A, j is i parent operation ----(3) 

   0≥it     i ∈ N,  ---------------------------------(4) 

 

* Capacity constraints 

   jijii SMtpt ,*+≤+   (i, j) ∈ Ek, k ∈ M.   ------------------(5) 

)1(* , jiijj SMtpt −+≤+  (i, j) ∈ Ek, k ∈ M.  -------------------(6) 

 

* Material constraints 

∑ ≤
i

nni qy ,    PhFnBi hh ∈∈∈ ,,   ---------------(7) 

∑ =
n

ini qy ,    PhFnBi hh ∈∈∈ ,,   ---------------(8) 

nini yat ,*≥    PhFnBi hh ∈∈∈ ,,   ---------------(9) 
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In equation 1, the ∑ −
v

vvv dsw )0,max(*  shows the sum of weighted tardiness for 

all jobs as the objective function of the problem. The term )max( vv ds − represents the 

tardiness of job v. When this term is multiple by job’s priority vw , one obtains the 

weighted-tardiness for job v. The objective function shown above is to minimize the total 

weighted tardiness for all jobs within the planning horizon T.  Equation 2, 3 and 4 are 

precedence constraints. They ensure the precedence relations are held between operations. 

Equation 2 represents the completion time of job v is equal to the top operation of job v. 

Equation 3 make sure the start time of parent operation is greater than the completion 

time of child operation. Equation 4 ensures that all start time of operations are positive. 

Equation 5 and 6 are capacity constraints. They specify that the no operations belonging 

to the same machine can be processed simultaneously. jiS ,  is the binary variable. When 

operation i is the predecessor of operation j, jiS , = 1. Equation 7, 8 and 9 are material 

constraints. They allocate available components to material requirements and guarantee 

that all operations can not be processed before the arrival of all necessary components. 

Equation 7 ensures that all material requirements are fulfilled. Equation 8 affirms that the 

total quantity of components allocates from the specific purchase order to all material 

requirements is less than the delivered quantity of that purchase order. Equation 9 

specifies that the start time of operation is greater than the arrival time of specific 

purchase order. It will guarantee that operations can only start after the arrival of all 

necessary components.    
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3.4 Heuristic approach 

The assembly job shop scheduling problem with availability of components is 

harder to solve than the conventional job shop scheduling problem. In addition to solving 

a job sequencing problem, one needs to also solve a component allocation problem. In the 

previous section, we present an optimization approach to solve the multi-level assembly 

job shop scheduling problem using a mixed-integer programming model. The PST of all 

jobs will be optimized with respect to material allocation and capacity schedule 

simultaneously. 

Although one can optimally sequence jobs on a single machine within a work-

center in a job shop using the branch and bound method, it is not always computationally 

feasible to optimally sequence jobs when assembly operations are presented. Additionally, 

the optimization approach requires an excess of computational time and is unable to solve 

large-scale instances in practice even after relaxation techniques. To overcome these 

drawbacks, a heuristic is needed to quickly allocate materials to jobs and to determine job 

sequencing within a machine under precedence relations. To reduce the computational 

effort, it is necessary to decompose the original problem into numerous subproblems and 

verify which resource is critical or tightest one. The theory of constraints (Goldratt, 1998) 

states that critical resources have to be dealt with first in order to improve the overall 

performance. The concept of TOC had been adopted successfully on the shifting 

bottleneck algorithm which is one of the popular approaches to solve conventional job 

shop scheduling problems. This dissertation develops several heuristic approaches, which 

are based on the concept of the shifting bottleneck algorithm and are capable of solving 

large-scale assembly job shop scheduling problems, as described in the following section. 
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Solving both capacity and material constraints optimally are unachievable for large-scale 

problems in practice. The goal of the heuristic approach is to provide an algorithm which 

is scalable and provides a solution close to the optimal solution in the desired 

computational time.  

In this chapter, we present three heuristics, which are modified shifting bottleneck 

procedure (MSBP), efficient shifting bottleneck procedure (ESBP) and rolling horizon 

procedures (RHP) for the assembly job shop scheduling problem with the availability of 

components. The idea of modified shifting bottleneck procedure is to decompose the 

original assembly job shop scheduling problem into several different subproblems which 

present material plans for components or capacity schedules of machines. The 

relationship between different jobs is described on the disjunctive graph. Each disjunctive 

arc represents machine sequences in the appropriate direction and allocation arcs 

correspond to material allocations. Machine schedules and material allocations are 

updated to the disjunctive graph iteratively after solving associated subproblems.  

The performance of the developed heuristics is also studied in this research with 

respect to two measures: minimization of the total weighted tardiness and the 

computational time. The computational results are demonstrated in the next chapter.   

 

3.4.1 Modified shifting bottleneck procedure (MSBP) 

A generic modified shifting bottleneck heuristic (MSBP) can be described as 

follows: 
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Step 1.  Let M0 = ∅ and M represent the set of machine types. Let R0 = ∅ and R represent 

the set of component types  

 

Step 2.  Remove all the disjunctive arcs and allocation arcs in the graph.  Obtain the total 

weighed tardiness, TWTmax, of the graph by finding the longest path from the 

source node to the top node of every job.  

 

Step 3. For each of the component types in R – R0, solve the material allocation 

subproblems using the optimization method or dispatching rule. 

 

Step 4. Designate the component type h with the greatest total weighted tardiness Tmax(h) 

as the “bottleneck component”.  If there exists a tie for largest total weighted 

tardiness, designate the component type h with the average total weighted 

tardiness Tave(k) as the “bottleneck component”.  If there is a tie for largest 

average total weighted tardiness, then designate the first component that is tied 

for largest average total weighted tardiness the “bottleneck” (an arbitrary rule).  

Add component type h to the set R0 and schedule component type h using the 

solution found in the material allocation subproblem, named MAh, for component 

type h. 

 

Step 5. Add the allocation arcs that specify purchase orders to the operations on 

component type h to the graph.  Revise the total weighted tardiness using the 

equation TWTmax(R0 ∪ h, M0) = Tmax(h). 
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Step 6.  If |R0| = 1, then local reoptimization is not needed, go to step 3.  If |R0| > 1, then 

resequence the component types in R0 one at a time until a full cycle goes by 

without any improvement.  After resequencing a component, say component type 

l, put the component type back into R0 in the same place that it was removed 

from and add the allocation arcs that specify the orders to the operations on 

component type l to the graph.  Adjust the total weighed tardiness: TWTmax(R0 ∪ 

l, M0) = Tmax(l).  If |R0| = |R|, then go to step 7.  Otherwise, go to step 3. 

 

Step 7. For each of the machine types in M – M0, solve the machine allocation and 

sequence subproblems, named CAm, using the optimization method or 

dispatching rule. 

 

Step 8. Designate the machine type k with the greatest maximum total weighted tardiness 

Tmax(k) as the “bottleneck machine”.  If there exists a tie for largest maximum 

total weighted tardiness, designate the machine type k with the greatest average 

lateness Tave(k) as the “bottleneck machine”.  If there is a tie for largest average 

total weighted tardiness, then designate the first machine that is tied for largest 

average total weighted tardiness the “bottleneck” (an arbitrary rule).  Add 

machine type k to the set M0 and schedule machine type k using the solution 

found machine allocation subproblem for machine type k. 
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Step 9. Add the disjunctive arcs that specify the order of the operations on machine type k 

to the graph.  Revise the total weighted tardiness using the equation TWTmax(R0, 

M0 ∪ k) = Tmax(k). 

 

Step 10.  Resequence the component types in R0 one at a time until a full cycle goes by 

without any improvement. After resequencing a component, say component type 

l, put the component type back into R0 in the same place that it was removed 

from and add the allocation arcs that specify the orders to the operations on 

component type l to the graph.  Adjust the total weighed tardiness: TWTmax(R0 ∪ 

l, M0) = Tmax(l).  Then go to step 11.  

 

Step 11.  If |M0| = 1, then local reoptimization is not needed, go to step 7.  If |M0| > 1, 

then resequence the machine types in M0 one at a time until a full cycle goes by 

without any improvement.  After resequencing a machine, say machine type l, 

put the machine type back into M0 in the same place that it was removed from 

and add the disjunctive arcs that specify the order of the operations on machine 

type l to the graph. Adjust the total weighted tardiness: TWTmax(R0, M0 ∪ l) = 

Tmax(l).  If |M0| = |M|, then terminate the procedure.  Otherwise, go to step 7. 

 

There are four modified shifting bottleneck procedures (MSBP) which are 

developed to solve assembly job shop scheduling problems. There methods are SB1, SB2, 

SB3 and SB4. The difference between these MSBP methods is the degree of solution 
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accuracy obtained from subproblems. The four MSBP methods are summarized in Table 

3.4.  

 

Table 3.4 The description of MSBP methods 

 SB1 SB2 SB3 SB4 

Material 

allocation 

subproblem 

(MA) 

Optimization 

method  

(MA1) 

Optimization –

longest path 

implementation 

(MA2) 

Dispatching 

rule 

Optimization 

method  

(MA1) 

Capacity 

allocation 

subproblem 

(CA) 

Optimization 

method  

(CA1) 

Optimization –

longest path 

implementation 

(CA2) 

Optimization 

method  

(CA1) 

Dispatching 

rule 

 

SB1 uses the optimization method to solve both material and capacity 

subproblems. The material allocation subproblem and capacity schedule subproblem in 

SB1 can be formulated as MA1 and CA1. However, the computational time requiring to 

solve SB1 may still increase exponentially as the size of subproblems increase. To reduce 

the complexity of SB1, the longest path algorithm is applied to represent the precedence 

constraints in SB2. By doing so, the total number of constraints is expected to reduce to a 

reasonable level. The material allocation subproblem in SB2 can be formulated as MA2 

and the capacity allocation subproblem in SB2 can be formulated as CA2. The SB3 uses 

the dispatching rule to solve material allocation subproblems and apply optimization 

method, CA1, which use the same mathematical formulation as SB1, to solve capacity 
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subproblems. The SB4 uses the dispatching rule to solve capacity allocation subproblems 

and apply optimization method, MA1, to solve material allocation subproblems.  

 

Material allocation subproblem (MA1): 

 

For each 0\ RRh∈  

min ∑ −
v

vvv dsw )0,max(*  v ∈ Z,   -----------------------(1)  

 tj – ti ≥ pi,   AMpSji p ∪∈∪∈ ):(),( 0  -----(2)  

 ti ≥ 0,    RNi ∪∈  -----------------------(3)        

∑ ≤
i

nni qy ,    CRcUni c ∪∈∪∈ ):(),( 0   -------(4) 

∑ =
n

ini qy ,    CRcUni c ∪∈∪∈ ):(),( 0  --------(5) 

ni at ≥     CRcUni c ∪∈∪∈ ):(),( 0  --------(6) 

∑ ≤
i

nni qy ,    0\,),( RRhYni h ∈∈  ----------------(7) 

∑ =
n

ini qy ,    0\,),( RRhYni h ∈∈  ----------------(8) 

0≥∨≥ ini tat   0\,),( RRhYni h ∈∈  ----------------(9) 

 

Equation 1 is the objective function of the problem, which designs to minimize 

the total weighted tardiness for all jobs. Equation 2 and 3 represent the operation 

sequences from the scheduled machines at set M0. Equation 4, 5 and 6 represent the 

material allocations from scheduled components at set R0. Equation 7, 8 and 9 are 
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material constraints, which used to allocation components to material requirements for 

the component type h.  

 

Capacity allocation subproblem (CA1): 

 

For each 0\ MMk ∈  

min ∑ −
v

vvv dsw )0,max(*  v ∈ Z,  -----------------------(1) 

 tj – ti ≥ pi,   AMpSji p ∪∈∪∈ ):(),( 0  -----(2)   

 ti ≥ 0,    RNi ∪∈  ----------------------------(3) 

 tj – ti ≥ pi ∨ ti – tj ≥ pj,   (i, j) ∈ Ek, 0\ MMk ∈  -------------(4)         

 ∑ ≤
i

nni qy ,    CRcUni c ∪∈∪∈ ):(),( 0   -------(5) 

∑ =
n

ini qy ,    CRcUni c ∪∈∪∈ ):(),( 0  --------(6) 

ni at ≥     CRcUni c ∪∈∪∈ ):(),( 0 ----------(7) 

 

Equation 1 is the objective function used to minimize the total weighted tardiness 

for all jobs. Equation 2 and 3 represent the operation sequences from the scheduled 

machines at set M0. Equation 4 are capacity constraints, which used to decide the 

machine sequence for the specific machine type k. Equation 5, 6 and 7 represent the 

material allocations from scheduled components at set R0.  
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Material allocation subproblem (MA2): 

 

min ∑ −
v

vvv dsw )0,max(*  v ∈ Z,  --------------------------------(1) 

),(),( vSlsvilts viv =∨+=  0\, RRhBi h ∈∈  --------------------(2) 

∑ ≤
i

nni qy ,    CRcUni c ∪∈∪∈ ):(),( 0  ---------(3) 

∑ =
n

ini qy ,    CRcUni c ∪∈∪∈ ):(),( 0  ---------(4) 

ni at ≥     CRcUni c ∪∈∪∈ ):(),( 0  ---------(5) 

∑ ≤
i

nni qy ,    0\,),( RRhYni h ∈∈  ----------------(6) 

∑ =
n

ini qy ,    0\,),( RRhYni h ∈∈  ----------------(7) 

0≥∨≥ ini tat   0\,),( RRhYni h ∈∈  ----------------(8) 

Where ),( jil  is the value of longest path from operation i to operation j. 

 

Equation 1 is the objective function to minimize the total weighted tardiness for 

all jobs. Equation 2 represents the completion time of job v, which is calculated from the 

start time of operation i plus the value of longest path from operation i to job v or the 

value of longest path from source node to job v. Equation 3, 4 and 5 represent the 

material allocations from scheduled components at set R0. Equation 6, 7 and 8 are 

material constraints, which used to allocation components to material requirements for 

the component type h.  In MA2, there are no capacity constraint equations because the 

delay from capacity conflict is added in the longest path calculation.  
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Capacity allocation subproblem (CA2): 

 

min ∑ −
v

vvv dsw )0,max(*  v ∈ Z, --------------------------------(1) 

),(),( vSlsvilts viv =∨+=  0\*, MMkNi ∈∈  -------------(2) 

 tj – ti ≥ pi,   AMpSji p ∪∈∪∈ ):(),( 0  ----(3)   

 ti ≥ ),( iSl ,   0\*, MMkNi ∈∈  ----------------(4) 

 tj – ti ≥ pi ∨ ti – tj ≥ pj,   (i, j) ∈ Ek, 0\ MMk ∈  ------------(5)         

         

Where N* is the set of operations to be processed on machine k and ),( jil  is the 

value of longest path from operation i to operation j. 

 

Equation 1 is the objective function designs to minimize the total weighted 

tardiness for all jobs. Equation 2 represents the completion time of job v, which is 

calculated from the start time of operation i plus the value of longest path from operation 

i to job v or the value of longest path from source node to job v. Equation 3 represents the 

machines sequences from scheduled machines at set M0. Equation 4 ensures that all start 

time of operations are greater than the value of longest path from the source node to itself. 

Equation 5 represents the capacity constraints used to decide the machine sequence for 

machine type k.  
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3.4.2 Efficient shifting bottleneck procedure (ESBP) 

However, it may be still hard to solve subproblems optimally for large instances 

even after decomposition procedures. Uzsoy and Wang (2000) discovered that most of 

the computational effect in a shifting bottleneck procedure is dedicated to solving 

subproblems during re-optimization procedure. In general, the complexity increases as 

number of jobs increases and the number of machine types increases, as there are more 

subproblems to solve. By reducing the number of subproblems or denying efficient 

procedures to solve subproblems, the computational time of the shifting bottleneck 

procedure can be reduced significantly. Demirkol et al. (1997) concluded that unlike 

subproblems and re-optimization procedures, bottleneck machine selection criteria didn’t 

have any significant effect on solution quality and computational time.   

Based on the finding from Demirkol et al. (1997), the shifting bottleneck 

procedure with a limited re-optimization procedure in the last iteration reduces 

computational time without a significant sacrifice in solution quality. If a reasonable 

material plan or job sequence on machines can produce by using a dispatching rule, then 

a good solution can be obtained and improved using a re-optimization procedure. We 

propose an efficient shifting bottleneck procedure (ESBP) for the assembly job shop 

scheduling problem with the availability of components, where bottleneck machine or 

component selection procedure is avoided and re-optimization procedure is constrained to 

few iterations. Hence, the total number of subproblems is expected to decrease in ESBP. 

 We introduce the efficient shifting bottleneck procedure which aims to reduce the 

total number of subproblems to be solved in a shifting bottleneck procedure, while 

keeping the solution quality at an acceptable level. Unlike modified shifting bottleneck 
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procedure, efficient shifting bottleneck procedure does not solve the all subproblems, it 

designs to obtain feasible solutions of the limited number of subproblems within 

reasonable computational time by using efficient algorithms or dispatching rules which 

are suited for assembly job shop scheduling problems in practice.  

 

A generic efficient shifting bottleneck procedure (ESBP) can be described as 

follows: 

 

Step 1. Choose an efficient dispatching rule or any other assembly job shop scheduling 

algorithm to obtain material plan of each component, job sequence and machine 

schedule of each machine type as the initial solution. 

Step 2. Use re-optimization procedure to improve the initial solution. The material 

subproblems and capacity subproblems can be solved by using a dispatching rule 

which is more efficient to obtain solutions.  

 

There are three efficient shifting bottleneck procedures (ESBP) introduced to 

solve assembly job shop scheduling problems, which are ESBP1, ESBP2 and ESBP3. 

The difference between these ESBP methods is the degree of solution accuracy. ESBP1 

uses the optimization method to solve both material and capacity subproblems. The 

ESBP2 uses the dispatching rule to solve material allocation subproblems and apply 

optimization method, which has the same formulation as SB1, to solve capacity 

subproblems. The ESBP3 uses the dispatching rule to solve capacity subproblems and 
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apply optimization method to solve material subproblems. The three ESBP methods are 

summarized in Table 3.5.  

 

Table 3.5  The description of ESBP methods 

 ESBP1 ESBP2 ESBP3 

Initial Solution Dispatching 

rule 

Dispatching 

rule 

Dispatching 

rule 

Material allocation 

subproblem (MA) 

Optimization 

method 

(MA1) 

Dispatching 

rule 

Optimization 

method 

(MA1) 

Capacity allocation 

subproblem (CA) 

Optimization 

method 

(CA1) 

Optimization 

method 

(CA1) 

Dispatching 

rule 

 

 

3.4.3 Rolling horizon procedure (RHP) 

Although ESBP reduces the total number of subproblems requiring to solve the 

assembly job shop scheduling problem, these subproblems are still NP-hard problems in 

nature. It is necessary to reduce the complex of subproblems to capable of solving large 

size problems within reasonable computational times for practice uses. We introduce the 

ESBP with implementation of the rolling horizon procedure to solve subproblems, so-

called RHP. The procedures of RHP is similar to ESBP, the only difference between 

them is the way to solve subproblems. In RHP, subproblems are solved by the rolling 
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horizon procedure. The rolling horizon procedure decomposes the subproblem into 

numerous time windows that can be optimized independently within a reasonable 

computational effort. There are several algorithms to divide the problems, which included 

the number of operations and the length of time window. In RHP, the subproblem is 

divided into time windows by the fixed number of operations, which is similar to the rule 

developed by Ovacik and Uzsoy (1995). In their works, operations are chosen based on 

earliest due date rule. However, RHP uses the dispatching rule to obtain initial solutions 

of the subproblem. Then, operations are separated into different time windows based on 

their starting time from the initial solutions. Afterward, the sequence of operations 

belonging to the first time window is optimized and the partial sequence is frozen. The 

operations belonging to second time window are added into the problem. The sequence of 

operations is optimized and the partial sequences are scheduled according to solutions. 

This procedure will repeat until all operations are scheduled. By restricting the size of 

subproblems, it does not only decrease the computational effort of subproblems, but also 

reduces the complexity of the overall problem as well. Furthermore, the complexity of 

this approach is expected to be a function of the time window’s size.  

  

A rolling horizon procedure (RHP) can be described as follows: 

 

Step 1. Choose an efficient dispatching rule or any other assembly job shop scheduling 

algorithm to obtain material plan of each component, job sequence and machine 

allocation of each machine as the initial solution. 
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Step 2. Use re-optimization procedure to improve the initial solution. The material 

subproblems and capacity subproblems can be solved by using a dispatching rule 

or an optimization method with the implementation of rolling horizon procedure 

to reduce the complexity of test problems.  

 

The procedure of RHP is described as follows. Let n denote the number of 

operations per time window and denote p the number of overlapping operations per time 

window. Let V(t) presents the set of unscheduled operations, S(t) presents the set of 

scheduled operations and K(t) presents the set of candidate operations for current time 

window. 

 

Step 1. Choose first O=min(n-|K(t)|, |V(t)|) operations from the set of unscheduled 

operations V(t) for machine k and add these operations to the set of candidate 

operations K(t), which is belonging to current subproblem. Let V(t) = V(t) – O(t) 

and K(t) = K(t) U O(t).  

Step 2. Optimize the sequence of operations in K(t). Select first L= min(n-p, |K(t)| ) 

operations from K(t) and schedule them according to the partial sequence. Mark 

the status of these operations to “Fixed” and add these operations to S(t). Let 

S(t)= S(t)U L(t). For the last O=min(p, n-L) operations in K(t). Mark the status 

of operations in O(t) to “Open”.  

Step 3. If K(t) = empty set , Stop RHP; otherwise, go to Step1.  
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3.5 Dispatching rules  

The assembly job shop scheduling problem is NP-hard problem in both 

theoretical research and real world practice. A simple way to schedule all jobs on the 

machines in practice is dispatching rules which received great attention from researchers 

in past decades. Many different dispatching rules have been developed in both research 

and practice. In general, dispatching rules sort all jobs according to specific priority 

indexes when they enter the queue of machines or materials. A priority index is based on 

job characteristics, machine attributes or current shop conditions, such as job processing 

time and the order of arrival time at a machine. Because dispatching rules only rely on 

current shop status and local information, they are myopic in nature. Without considering 

the future jobs in the global view, we do not expect dispatching rules to work well in the 

long run. However, scheduling problems are complex and the excess computational time 

on optimization methods is not suitable in realistic production systems. Additionally the 

options for scheduling realistic systems are still very limited, dispatching rules continues 

to find extensive use in industry (Hopp and Spearman, 2000).    

Although dispatching rules can not provide the superior solutions, they may 

perform better on a specific objective. The simplest dispatching rule is first come first 

served (FCFS). The FCFS rule sorts the jobs in increasing order which they arrive at a 

machine disregarding the priority and the processing time of jobs. To improve due date 

performance, earliest due date first (EDD) is wild used. The EDD rule processes the job 

in the increasing order of job’s due date which could be set internally or externally. To 

reduce congestion or total completion time, shortest processing time first (SPT) may be a 
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good candidate. The SPT rule chooses the job to process in the increasing order of the 

processing time of the jobs.  

In an assembly job shop, jobs consist of several levels in the BOM. Assembly of 

components may occur all the time when jobs are being processed through the shop. 

Failure to provide sufficient amount of components at the time of assembly will result in 

delays of shipments. In MRP systems, assembly due dates are provided for components 

which are being assembled and can be used as the reference for progress of jobs towards 

completion. Baker and Kanet (1983) found that the use of operation due dates as progress 

milestones improves the due date-oriented sequencing rules using only job due dates in a 

single stage job shop.    

In this dissertation, six dispatching rules are used to evaluate the performance of 

MSBP and ESBP. Because the objective of these models is to minimize the total 

weighted tardiness for the assembly job shop scheduling problem, EDD rule is chosen as 

a candidate for performance comparison. To consider the impact of the priority of the 

jobs on the objective, WEDD is developed as a function of due dates and priorities. The 

WEDD rule chooses the job to process in the increasing order of priority and break ties 

by due date. The objective of minimizing total weighted tardiness is more difficult to 

solve than the one of minimizing maximum tardiness. The Apparent Tardiness Cost 

(ATC) rule is a function of WSPT and MS. It is designed to minimize total weighted 

tardiness on a single machine with consideration of release dates and due dates. The 

dispatching rules used in this dissertation are described as follows:     
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1. EDD (Earliest due date first): The EDD rule will select a job with the earliest due 

date to be processed next when machines are idle. It is designed to minimize the 

maximum lateness among jobs for a single machine. 

2. WEDD (Weighted Earliest due date first): When machines are idle, the WEDD 

rule will choose a job with the highest priority to be processed first and break ties 

by earliest due date. It is designed to minimize the total weighted tardiness among 

jobs for a single machine. 

3. WTC (Weighted tardiness cost): When a machine becomes free, the WTC will 

choose the jobs with highest ranking index to be scheduled next. The index is 

described as follows: jj dTjLTNOWtA −+= ),()( . If )(tAj is 

negative, )()( tAtI jj = , else, jjj wtAtI *)()( = . It is designed to minimize total 

weighted tardiness on a single machine with consideration of job’s priority and 

due dates. 

4. ATC (Apparent tardiness cost): When a machine becomes free, the ATC will 

choose the jobs with highest ranking index to be scheduled next. The index is 

described as following: )
)0,max(

exp()(
pK

tpd
p
w

tI jj

j

j
j

−−
−= , where K is the 

scaling parameter, which can be determined empirically, and p is the average of 

the processing times of the remaining jobs. It is designed to minimize total 

weighted tardiness on a single machine with consideration of release dates and 

due dates. Additionally, if K is very large, the ATC rule reduces to the WSPT rule. 

If K is very small and there are no overdue jobs, the rule reduces to the MS rule.  
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5. MWTC (Modified weighted tardiness cost): When a machine becomes free, the 

MWTC will choose the jobs with highest ranking index to be scheduled next. The 

index is described as follows: jj dTjLTNOWtA −+= ),()( . For the material plans, 

if )(tAj is negative, )()( tAtI jj = , else, jjj wtAtI *)()( = . For the capacity 

schedules, if )(tAj is negative, )()( tAtI jj = , else, jjj ptAtI /)()( = . It is 

designed to minimize total weighted tardiness on a single machine with 

consideration of release dates and due dates. 

6. WSPT (Weighted shortest processing time first): When a machine becomes free, 

the WSPT will choose the jobs with highest priority over processing time to be 

scheduled next. It tends to minimize the total weighted completion times among 

jobs for a single machine. 
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Table 3.6 The summary of dispatching rules 

Rule Capacity Allocation Index Material Allocation Index 

EDD  

(Earliest due date 

first) 

Earliest jd  Earliest jd  

WEDD  

(Weighted Earliest 

due date first) 

Smallest jj dw *  Smallest jj dw *  

WTC  

(Weighted 

tardiness cost): 

If 0)( ≤tAj , )()( tAtI jj = , else, 

jjj wtAtI *)()( =  

If 0)( ≤tAj , )()( tAtI jj = , 

else, jjj wtAtI *)()( =  

ATC  

(Apparent tardiness 

cost) 

)
)0,max(

exp()(
pK

tpd
p
w

tI jj

j

j
j

−−
−=

 

Earliest jd  

MWTC  

(Modified 

weighted tardiness 

cost) 

If 0)( ≤tAj , )()( tAtI jj = , else, 

jjj wtAtI *)()( = . 

If 0)( ≤tAj , )()( tAtI jj = , 

else, jjj ptAtI /)()( =  

WSPT  

(Weighted shortest 

processing time 

first) 

Highest 
j

j

p
w

 
Earliest jd  

*  jj dTjLTNOWtA −+= ),()(  
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Chapter 4. Computational Results 

In this dissertation, several modified shifting bottleneck procedures (MSBP), 

efficient shifting bottleneck procedures (ESBP) and rolling horizon procedure (RHP) are 

developed to solve assembly job shop scheduling problems with the availability of 

components in the make-to-order (MTO) environment. We also investigated the 

performance of all proposed methods and their impact on the performance of a 

production system. There are several dispatching rules developed in this research and are 

used as performance comparisons in our experiments. The optimization approach, which 

is MIP model, is first evaluated for the performance. The computational results show how 

the complexity of the MIP model based on the different number of jobs with limited 

maximum CPU time setting. Second, the performance of heuristic approaches, which are 

based on shifting bottleneck procedures, is studied with respect to two measures: 

minimization of the total weighted tardiness and the computational time. The goal is to 

identify an approach which is scalable and provides solutions close to solutions obtained 

from optimization methods with the objective of the minimization of the total weighted 

tardiness measure. Third, we study the difference of the performance between 

dispatching rules and heuristics. Fourth, the effect of the implementation of rolling 

horizon procedure to solve subproblems is also investigated. The results demonstrate how 

different shifting bottleneck algorithms can help manufacturers improve the performance 

of an assembly job shop.   
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4.1 Design of Experiments 

The manufacturing models used in this experiment acts as a real-world job-shop 

production environment. There are ten components consumed by ten assembly items and 

ten end items. There are also ten machines in this manufacturing model and the 

processing time of an operation is selected from a uniform distribution between 5 and 30. 

Each job has maximum levels of BOM up to 3 and the total number of assembly items 

per BOM is equal to 3. For each operation, there is a 40% probability to consume 

components which have to be procured from outside vendors in advance. Our experiment 

consists of several factors and varying number of levels for each factor. The number of 

jobs is set at 5, 10, 15, 20, 25, 30 and 35. Tightness of supply levels is assumed to be 

medium. A medium level tightness of supply means that the inter-arrival time for each 

components follows a uniform distribution with mean equals to 10 and standard deviation 

equals to 5. Tightness of supply (TOS) value is a major measure for material constraints. 

It will determine by demand and supply patterns. In our experiments, we control the TOS 

value by changing the variability of supply, instead of supply mean. For example, two 

supply patterns may have the same inter-arrival rate, but different variability. The supply 

pattern with lower variability will generate less tardy orders than the one with higher 

variability. We can simply increase or decrease the variability of supply inter-arrival time 

until reaching the desirable level of TOS and still maintain the same inter-arrival rate for 

both demand and supply.  

Each job is randomly given a priority value set at 1, 2 and 4 with probability equal 

to 70%, 20% and 10%. A job is classified as a high priority order if the priority value is 4. 

A medium priority job if the priority value is 2 and a low priority order otherwise. A 10% 
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high priority ratio in our experiments means that 10% of orders are high priority jobs. We 

define “the job penalty ratio” as the ratio of penalty factor of high priority jobs to the 

penalty factor of low priority jobs. We tested job penalty ratios of 2, referring them as 

medium in our experiments. A job’s due date is calculated as a function of total 

processing time and a due date factor. The job’s due-date is quoted as job’s arrival time 

plus the estimated flow time as the following equation.  

Due Date = Job arrival time + Estimated flow time 

Job arrival time = 0 

Estimated flow time = Uniform{ (2.5*Total Processing Time)*(1-

Due date factor), 0.3*Total Processing time}  

It is noted that our due-date setting method treats all orders in the same way with no 

regard to weather they are high priority or low priority jobs. The only difference between 

a high priority job and a low priority job is job penalty ratio. This means that late high 

priority jobs will generate more penalty than late low priority jobs. A similar logic is used 

by Malhotra et al (1994).  

The test problems were generated randomly by varying a set of parameters as 

described above. For each instance, the performance measures are computed from 5 

different random seeds in order to increase the accuracy of the experiments. More than 5 

optimization method settings are tested in selected test problems and over 30 different 

heuristics settings and dispatching rules are evaluated for each test problem. Hence, there 

are 1105 randomly test problems in our experiments. The description of parameters used 

in test problems is illustrated as shown in Table 4.1. To make fair comparisons between 

all proposed methods, MIP methods, SB heuristics and dispatching rules are all coded 
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using Xpress-MP (Mosel). The experiments are performed under the Windows platform 

with Pentium 4 2.8 GHz processor (single core processor).  

 

Table 4.1 Experimental design for randomly generated test problems 

Factors Levels Number of levels 

Number of jobs 5, 10, 15, 20, 25, 30, 35 7 

Number of machines 10 1 

Number of items 10 1 

Order Priority 

(Order penalty ratio) 

Low(70%, 1), Medium(20%, 2), 

High(10%, 4) 

1 

Due Date Tightness Medium (0.3) 1 

Tightness of supply Medium 1 

Number of BOM 

level 

Medium (3) 1 

Number of items per 

assembly level  

Medium (3) 1 

Methods MIP, SB1, SB2, SB3, SB4, ESBP1, 

ESBP2, ESBP3 

8 

Total test problems   

 

4.2 Performance Measures and Computational Results  

 Two measures, total weighted tardiness cost and computational time, are used to 

study the performance of the optimization methods and heuristic approaches. The 
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primary performance measure is the total weighted tardiness, which distinguishes 

between high and low priority jobs. It measures customer service levels. For measure of 

scalability, the computational time is an important indicator.  

We have adopted a relative measure scale instead of an absolute one while 

discussing weighted tardiness cost and computational time. A value of 1.0 in 

computational time means that the corresponding approach had the least computational 

time compared to the other approaches tested in the study. Similarly, a value of 1.3 in 

weighted tardiness cost for an approach means that the weighted tardiness cost using that 

approach had a value 30% above the best cost value. 

We used performance measures similar to Demirkol et al. (1997). Since the 

subproblems can not generally be solved to optimality by dispatch rules, we replaced 

LB(I), denoted a lower bound on the optimal total weighted tardiness value of instance I, 

by TWT(SB, I) and CPU(SB, I).  

In this experiment, TWT(H) and CPU(H) are used to evaluate the performance of 

heuristics H. For a given problem class S, let TWT(H) be the total weighted tardiness 

value obtained by heuristic H divided by total weighted tardiness value of best heuristic 

in that class.  

  TWT (H) = 
∑
∑

∈

∈

SI

SI

ISBTWT

IHTWT

),(

),(
  

There are two performance measures of CPU time. CPU(H) shows the performance 

of heuristic H compared to heuristic SB in a given problem class S. For a given problem 

class S, let CPU(H) as the CPU time obtained by heuristic H divided by CPU time of the 

best heuristic SB in that class.  
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  CPU (H) = 
∑
∑

∈

∈

SI

SI

ISBCPU

IHCPU

),(

),(
 

.  

The value of TWT (H) and CPU(H) indicated the performance of specific heuristic 

H on a given problem class S compared to best heuristic SB in that class. If TWT(H) or 

CPU(H) is equal to 1, it means the specific heuristic H provides best solutions or 

computational time for all test problems.  

 

4.3 Computational results for optimization methods 

In this section, we present the one optimization method to solve assembly job 

shop scheduling problems, which are the mixed integer programming model (MIP), and 

two heuristics for comparison purposes, which are modified shifting bottleneck procedure 

(SB1) and the modified shifting bottleneck procedure with longest path implementation 

(SB2). In the MIP model, production constraints are formulated as a mixed-integer 

programming model without any relaxation constraints. In this case, the MIP model 

requires excess computing power to obtain the optimal solution and can not solve large-

scale assembly job shop scheduling problems in practice. To overcome this drawback, we 

developed an SB1 method by decomposing the original assembly job shop schedule 

problem to numerous subproblems and solving them iteratively. Hence, it requires less 

computational time and provides the solutions closed to the solutions of MIP. 

Additionally, SB2 is introduced to save the computational time in each subproblem by 

using the longest path implementation to represent the precedence constraints. In this 
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section, the experiments are designed to assess the performance of the MIP, the SB1 and 

the SB2 as shown in Table 4.2. The goal is to evaluate the difference of solutions 

between the MIP, the SB1 and SB2 based on computational time and solution quality. 

 

Table 4.2  Experimental design for randomly generated test problems – 

Optimization methods 

Factors Levels Number of levels 

Number of jobs 5, 10, 15 5 

Number of machines 10 1 

Number of items 10 1 

Methods MIP (100), MIP (500), MIP (1000), 

MIP (3000), MIP (5000), SB1, SB2 

7 

Total test problems  175 

* MIP(100): MIP model with maximum CPU time setting equals to 100 seconds. 
* MIP(500): MIP model with maximum CPU time setting equals to 500 seconds. 
* MIP(1000): MIP model with maximum CPU time setting equals to 1000 seconds. 
* MIP(3000): MIP model with maximum CPU time setting equals to 3000 seconds. 
* MIP(5000): MIP model with maximum CPU time setting equals to 5000 seconds. 
* SB1: Shifting bottleneck algorithm with maximum CPU time setting equals to 20 
seconds. 
* SB2: Shifting bottleneck algorithm with longest path implementation and maximum 
CPU time setting equals to 20 seconds. 
 

In Table 4.3, CPU(H) ratio of MIP methods increase dramatically as the 

MaxCPUTime increases. It is due to the nature of mixing-integer programming. However, 

TWT(H) ratio of MIP (5000) only improve by 17% when CPU(H) ratio raises more than 

16 times compared to MIP (100). Moreover, MIP (5000), which has the MaxCPUTime 

setting to 5000 seconds, only found three more integer solutions than MIP (100) does on 
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average. Out of 15 test problems, it provides only two more better solutions than MIP 

(100) does. It indicates that increasing MaxCPUTime setting for MIP method does not 

seem to improve the solution quality that much and only increases the computation 

effects as shown in Figure 4.1. Thus, an algorithm which can respond to both material 

plans and capacity schedules faster than the MIP method is needed to solve assembly job 

shop scheduling problems efficiently. In this experiment, two SB heuristics, SB1 and 

SB2, have been used to evaluate the performance of decomposition methodology on the 

solution quality and computational time. SB1 is based on the concept of shifting 

bottleneck procedures. It breakdowns the assembly job shop scheduling problems into 

numerous subproblems, which represent different material plans and capacity schedules, 

and solve each separately. SB2 used the same theory to solve assembly job shop 

scheduling problems but tries to reduce more computational efforts by the 

implementation of longest path algorithm to represent the precedence relation between 

operations in each subproblem. The TWT(H) ratio of SB1 and SB2 is better than all MIP 

methods in test problems consistently as shown in Table 4.3. In addition, SB1 and SB2 

require less computational time than MIP methods by 93% on average and provide better 

solutions than MIP method by 17% in overall test problems. It shows that the benefit of 

decomposition methodology does not only reduce the computational time but also 

improves the solution quality in the case that optimal solutions can not be obtained from 

MIP method in reasonable computational times. Moreover, SB2 requires less 

computational time than SB1 because of the reduction on the total number of variables 

and constraints in each subproblem. But it also sacrifices the solution quality by 9% 

compared to SB1, as shown in Table 4.3. In Figure 4.1, it easily can see that the two 
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shifting bottleneck procedures are superior to all MIP methods on all performance 

measures.       

 

Table 4.3 Computational results for optimization methods 

Method MIP MIP MIP MIP MIP SB1 SB2 

MaxCPUTime* 100 500 1000 3000 5000 20 20 

CPU(H) –Mean 4.510 19.739 35.904 100.17 164.34 5.592 2.839 

TWT(H)-Mean 1.656 1.449 1.404 1.388 1.380 1.158 1.261 

TWT(H)-SD 0.315 0.398 0.365 0.352 0.348 0.226 0.225 

Number of 

integer found 7.33 8.73 9.40 9.86 10.00 - - 

Number of best 

solutions 4 5 5 6 6 11 4 

Percentage of 

best solutions 16% 20% 20% 24% 24% 44% 16% 

* MaxCPUTime: The maximum cpu time allowed for each subproblem. The 

parameter is controlled by "XPRS_MAXTIME" parameter in Xpress-MP. 
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Figure 4.1 CPU(H) and TWT(H) for optimization methods 

 

4.4 Computational results for dispatching rules: 

There are six dispatching rules which are used to evaluate the performance of 

heuristic approaches in this experiment as shown in Table 4.4. These dispatching rules 

are EDD, WEDD, ATC, WSPT, WTC and MWTC. EDD and WEDD are used to 

minimize the maximum lateness. WSPT are designed to minimize the total weighted 

completion time. ATC, WTC and MWTC are introduced to minimize the total weighted 

tardiness. 
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Table 4.4 Experimental designs for randomly generated test problems – Dispatching 

rules 

Factors Levels Number of levels 

Number of jobs 15, 20, 25, 30, 35 5 

Number of machines 10 1 

Number of items 10 1 

Methods EDD, WEDD, WAC, ACT, MWAC, 

WSPT 

6 

Total test problems  180 

* EDD: earliest due date first. 
*WEDD: Weighted earliest due date first 
* WTC: Weighted tardiness cost 
* ATC: Apparent tardiness cost 
* MWTC: Modified weighted tardiness cost 
* WSPT: Weighted shortest processing time first. 
 

Table 4.5 Computational results for dispatching rules 

Method MWTC ATC EDD WEDD WTC WSPT 

CPU(H) –Mean 1.094 1.085 1.122 1.086 1.065 1.079 

TWT(H) -Mean 1.079 1.076 1.204 1.136 1.136 1.288 

TWT(H)-SD 0.091 0.080 0.201 0.218 0.086 0.415 

Number of best 

solutions 8 9 1 10 0 1 

Percentage of best 

solutions 32% 36% 4% 40% 0% 4% 
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The ratio of CPU(H) for all six dispatching rules are closed as shown in Table 4.5. 

However, the TWT(H) ratio of MWTC and ATC are better than other dispatching rules 

from 5% to 21% because they consider more information on status of jobs and the shop 

than others. The TWT(H) ratio of ATC is 0.3% less than the TWT(H) ratio of MWTC. 

However, the performance of ATC rule relies on the scaling parameter K, which needs to 

be determined empirically. The value of scaling parameter K used in this experiment is 5. 

MWTC does not need any parameters and provide similar performance as ATC. WEDD 

provides better TWT(H) value than EDD by 7%. It indicates the performance can be 

improved if dispatching rules include job priority in their index. WSPT is commonly used 

on conventional job shop scheduling problems with string-type jobs which have linear 

routings. But it does not perform well on assembly job shop according to the performance 

measure TWT(H) as shown in Table 4.5. In Figure 4.2, it shows that MWTC, ATC and 

WTC not only have low value on TWT(H) ratio in average, but also provide low 

variability on TWT(H) ratio as well. It indicates these three dispatching rules produce the 

solutions which are more reliable than other dispatching rules.     
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Figure 4.2 TWT(H) – Mean and SD for dispatching rules 

 

4.5 Computational results for heuristic approach 1 – Modified shifting bottleneck 

procedure (MSBP) :  

We present the optimization approach to solve assembly job shop scheduling 

problems. However, the MIP methods are not scalable to run real-world problems due to 

excessive computational time. To be able to solve large-sized problems, several heuristic 

approaches are developed. These heuristics provide solutions close to optimal solutions 

within reasonable computational times. In this experiment, we are interested in the 

performance of heuristic approaches with different order sizes from 15 to 35. Hence, the 

performance of these heuristics is compared to the best solutions obtained form the 
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dispatching rules. By doing so, we demonstrate the trade-off between optimization 

approaches, heuristic approaches and dispatching rules in term of computational time and 

solution quality.   

 

Table 4.6 Experimental design for randomly generated test problems – MSBP 

Factors Levels Number of levels 

Number of jobs 15, 20, 25, 30, 35 5 

Number of machines 10 1 

Number of items 10 1 

Methods SB1, SB2, SB3-Dispatch, SB4-

Dispatch 

14 

Total test problems  350 

*SB1: Shifting bottleneck procedure 
*SB2: Shifting bottleneck algorithm (Using longest path to present precedence 
constraints) 
 

SB3-Dispatch uses the same shifting bottleneck procedure to solve assembly job 

shop scheduling problems. It still applies optimization methods to solve capacity 

subproblems but it uses dispatching rules to solve material subproblems to reduce the 

computational time. There are six different SB3-Dispatch methods tested in this 

experiment, which included SB3-ATC, SB3-MWTC, SB3-EDD, SB3-WEDD, SB3-

WTC and SB3-WSPT as described in Table 4.7. The results of all test problems are 

shown in Table 4.8 and it can easily be seen that SB3-ATC, SB3-MWTC and SB3-WTC 

has better TWT(H) ratio than others. Moreover, the TWT(H) ratio of SB3-WEDD is 

better than SB3-EDD rule by 28%, it indicates that WEDD rule could produce better 



 

 91

solutions than EDD rule in material subproblems because of the consideration of job 

priority. Additionally, SB3-ATC and SB3-MWTC are chosen to present the SB3-

Dispatch compared to other heuristic approaches in later experiments.    
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Table 4.7 The summary of SB3 methods and dispatching rule used in this experiment 

 SB3-ATC SB3-MWTC SB3-EDD SB3-WEDD SB3-WTC SB3-WSPT 

Material 

allocation 

subproblem  

ATC 

Dispatching 

rule 

MWTC 

Dispatching 

rule 

EDD 

Dispatching 

rule 

WEDD 

Dispatching 

rule 

WTC 

Dispatching 

rule 

WSPT 

Dispatching 

rule 

Capacity 

allocation 

subproblem  

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 
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Table 4.8 Computational results for SB3 methods 

Method 

SB3-

ATC 

SB3-

MWTC 

SB3-

EDD 

SB3-

WEDD 

SB3-

WTC 

SB3-

WSPT ATC 

CPU(H) -Mean 1333 1402 1593 1371 1396 2581 1 

TWT(H) – Mean 1.033 1.038 1.527 1.107 1.039 1.308 1.202 

TWT(H) – SD 0.046 0.052 0.595 0.175 0.051 0.314 0.110 

Number of best solutions 12 12 0 5 11 0 0 

Percentage of best solutions 48% 48% 0% 20% 44% 0% 0% 
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SB4-Dispatch follows the same shifting bottleneck procedure as SB1 to solve 

assembly job shop scheduling problems. It applies optimization methods to solve material 

subproblems but uses dispatching rules to solve capacity subproblems to reduce the 

computational time. There are six different SB4-Dispatch methods tested in this 

experiment, which include SB4-ATC, SB4-MWTC, SB4-EDD, SB4-WEDD, SB4-WTC 

and SB4-WSPT as summarized in Table 4.9. In addition, test problems used in this 

experiment are material-intensive because of assembly operations and insufficient 

amounts of components. The results of all test problems are shown in Table 4.10 and it 

can easily be seen that all SB4-Dispatch rules produce worse TWT(H) ratio than ATC 

dispatching rule. This indicates that using optimization methods to solve material 

constraints incompletely may produce worse solutions than using dispatching rules, such 

as ATC rule. Furthermore, SB4-ATC and SB4-WEDD are chosen to present the SB4-

Dispatch compared to other heuristics approaches in later experiments.    
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Table 4.9 The summary of SB4 methods and dispatching rule used in this experiment 

 

SB4-ATC 

SB4-

MWTC SB4-EDD SB4-WEDD SB4-WTC SB4-WSPT 

Material 

allocation 

subproblem  

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Capacity 

allocation 

subproblem  

ATC 

Dispatching 

rule 

MWTC 

Dispatching 

rule 

EDD 

Dispatching 

rule 

WEDD 

Dispatching 

rule 

WTC 

Dispatching 

rule 

WSPT 

Dispatching 

rule 
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Table 4.10 Computational results for SB4 methods 

Method 

SB4-

ATC 

SB4-

MWTC

SB4-

EDD 

SB4-

WEDD 

SB4-

WTC 

SB4-

WSPT ATC 

CPU(H) - Mean 10621 10840 10753 10653 10672 10373 1 

TWT(H) – Mean 1.241 1.232 1.418 1.137 1.186 1.294 1.095 

TWT(H) – SD 0.281 0.274 0.448 0.121 0.138 0.339 0.186 

Number of best solutions 4 3 1 5 1 3 11 

Percentage of best solutions 16% 12% 4% 20% 4% 12% 44% 
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 The comparison of MSBP method is summarized in Table 4.11. There are six 

MSBP methods tested in this experiment, which included SB1, SB2, SB3-ATC, SB3-

MWTC, SB4-WEDD and SB4-WTC. It can easily be seen that SB1 has the best THT(H) 

ratio among all MSBP methods shown in Table 4.11. The TWT(H) ratio of SB3-ATC 

and SB3-MWTC is worse than TWT(H) of SB1 by 5%, but these two methods could 

reduce computational times by 91% compared to SB1. Moreover, the two SB3 methods 

also provide better solutions than ATC rule by 14% in term of TWT(H) ratio. However, 

two SB4 methods produce worse solutions than any methods used in this experiment. The 

difference between SB3 and SB4 is different degrees of solutions obtained from material 

subproblems and capacity subproblems. SB3 uses dispatching rules to solve material 

subproblems and apply optimization methods to obtain solutions from capacity 

subproblems. SB4 solves capacity subproblems by using dispatching rules and solves 

material subproblems by employing optimization methods. It indicates that dispatching 

rules, ATC and MWTC, used in this experiment can provide solutions closed to SB1 in 

material subproblems. Second, the dispatching rules could produce better solutions in 

material subproblems than capacity subproblems compared to optimization methods with 

limited computational time settings. In addition, SB2 does not perform well in both 

TWT(H) and CPU(H) ratios because of the technical problems of programming. The 

longest path algorithm used in SB2 is written using MOSEL language, which is designed 

to solve mathematical problems. It is very inefficient to execute “IF statement” in terms 

of computational times compared to C language, particularly in large-sized instances. It 

caused SB2 to become the worst among all heuristics approaches. In Figure 4.3, it can 
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easily be seen that SB3 methods are best choice to solve the problems efficiently in terms 

of computational times and solution quality among all MSBP methods.  

        

Table 4.11 Computational results for MSBP methods 

 

Method SB1 SB2 

SB3-

ATC 

SB3-

MWTC 

SB4-

WEDD 

SB4-

WTC ATC 

CPU(H) -  

Mean 16429 61753 1333 1402 10653 10672 1 

TWT(H) – 

Mean 1.034 1.433 1.078 1.084 1.309 1.367 1.260 

TWT(H) – SD 0.047 0.339 0.106 0.117 0.152 0.171 0.205 

Number of 

best solutions 13 0 7 7 0 0 0 

Percentage of 

best solutions 52% 0% 28% 28% 0% 0% 0% 
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Figure 4.3 CPU(H) and TWT(H) for MSBP methods 

 

4.6 Computational results for heuristic approach 2 – Efficient shifting bottleneck 

procedure (ESBP) :  

Although MSBP produces better solutions than the MIP method, it is still a time-

consumed approach due to numerous subproblems needing to be solved during the re-

optimization procedure. According to Chen et al. (2006), the complexity increases as the 

number of jobs increases and the number of machine types increases, as there are more 

subproblems to solve. By reducing the number of subproblems or applying efficient 

procedures to solve subproblems, one can reduce the computational time of the shifting 

bottleneck procedure significantly. Additionally, Demirkol et al. (1997) concluded that 
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bottleneck machine selection criteria had no significant effect on solution quality and 

computational time but subproblems and re-optimization procedures did.  

It is reasonable to obtain an initial solution by using a dispatching rule, then 

improve it using a re-optimization procedure in order to reduce the number of 

subproblems which required to solve assembly job shop scheduling problems by using 

MSBP methods. Chen et al. (2006) propose an efficient shifting bottleneck heuristic for 

parallel machine work-centers, where bottleneck machine selection procedure is avoided 

and re-optimization procedure is constrained to few iterations. Hence, the total number of 

subproblems is expected to decrease. In this section, the performance of ESBP is 

evaluated and the effect of the re-optimization procedure on TWT(H) and CPU(H) are 

investigated in this experiment. 

 

Table 4.12 Experimental design for randomly generated test problems - ESBP 

Factors Levels Number of levels

Number of jobs 15, 20, 25, 30, 35 5 

Number of machines 10 1 

Number of items 10 1 

Methods ESBP1, ESBP2-Dispatch, ESBP3-

Dispatch 

13 

Total test problems  325 
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In ESBP1, the initial solution is obtained by dispatching rules. Then, improve it 

by using re-optimization procedure with optimization methods to solve both material 

subproblems and capacity subproblems. ESBP1 avoids the bottleneck machine selection 

procedure and limits the re-optimization procedure to few iterations. By doing so, ESBP1 

is able to reduce the excess of computational times which is a major complaint of MSBP 

as the size of problems increase. The total number of subproblems requiring to be solved 

by ESBP1 is expected to decrease as compared to MSBP methods. There are six different 

ESBP1 methods tested in this experiment, which include ESBP1-ATC, ESBP1-MWTC, 

ESBP1-EDD, ESBP1-WEDD, ESBP1-WTC and ESBP1-WSPT as seen in Table 4.13. 

The results of all test problems are shown in Table 4.14 and it can see easily that ESBP1-

ATC, ESBP1-MWTC and ESBP1-WTC provide better TWT(H) ratio than the others. 

Moreover, ESBP1 methods that produce better initial solutions do perform better on 

TWT(H) ratio. The only exception is ESBP1-WTC. This indicates that the better initial 

solution could help ESBP1 methods perform better during re-optimization procedures. 

Furthermore, ESBP1-ATC and ESBP1-MWTC are chosen to present the ESBP1 

compared to other heuristic approaches in later experiments.    
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Table 4.13 The summary of ESBP1 methods used in this experiment 

 ESBP1-

ATC 

ESBP1-

MWTC 

ESBP1-

EDD 

ESBP1-

WEDD 

ESBP1-

WTC 

ESBP1-

WSPT 

Initial 

Solution 

ATC 

Dispatching 

rule 

MWTC 

Dispatching 

rule 

EDD 

Dispatching 

rule 

WEDD 

Dispatching 

rule 

WTC 

Dispatching 

rule 

WSPT 

Dispatching 

rule 

Material 

allocation 

subproblem  

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Capacity 

allocation 

subproblem  

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 
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Table 4.14 Computational results for ESBP1 methods 

Method 

ESBP1-

ATC 

ESBP1-

MWTC

ESBP1-

EDD 

ESBP1-

WEDD 

ESBP1-

WTC 

ESBP1-

WSPT ATC 

CPU(H) - Mean 1178 1260 1206 1102 1219 1088 1 

TWT(H) – Mean 1.057 1.070 1.162 1.128 1.089 1.274 1.257 

TWT(H) – SD 0.060 0.084 0.151 0.144 0.073 0.334 0.141 

Number of best solutions 9 7 3 8 0 1 0 

Percentage of best solutions 36% 28% 12% 32% 0% 4% 0% 
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ESBP2 follows the same procedure as ESBP1 to solve assembly job shop 

scheduling problems. But it solves the material subproblems by using dispatching rules 

and obtains the solutions from capacity subproblems by optimization methods during the 

re-optimization procedure. There are six different ESBP2 methods tested in this 

experiment, which include ESBP2-ATC, ESBP2-MWTC, ESBP2-EDD, ESBP2-WEDD, 

ESBP2-WTC and ESBP2-WSPT as summarized in Table 4.15. The results of all test 

problems are shown in Table 4.16 and it can easily be seen that ESBP2-ATC, ESBP2-

MWTC and ESBP2-WTC has best TWT(H) ratio than the others. It indicates that these 

three ESBP2 methods can generate similar solutions which are close to the solutions from 

optimization methods with limited computational times restrictions in material 

subproblems. But the TWT(H) ratio of ATC rule also indicates that ESBP2 methods 

produce the solutions which are worst than the ones obtained from the ESBP1. However, 

the CPU(H) ratio of ESBP2 shows a significant reduction on computational time by 80% 

compared to ESBP1. Moreover, the ESBP2 methods that produce better initial solutions 

do perform better on the TWT(H) ratio. It is the same finding as seen in the results from 

the ESBP1. Furthermore, ESBP2-ATC and ESBP2-MWTC are chosen to present the 

ESBP1 compare to other heuristic approaches in later experiments. 
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Table 4.15 The summary of ESBP2 methods used in this experiment 

 ESBP2-

ATC 

ESBP2-

MWTC 

ESBP2-

EDD 

ESBP2-

WEDD 

ESBP2-

WTC 

ESBP2-

WSPT 

Initial 

Solution 

ATC 

Dispatching 

rule 

MWTC 

Dispatching 

rule 

EDD 

Dispatching 

rule 

WEDD 

Dispatching 

rule 

WTC 

Dispatching 

rule 

WSPT 

Dispatching 

rule 

Material 

allocation 

subproblem  

ATC 

Dispatching 

rule 

MWTC 

Dispatching 

rule 

EDD 

Dispatching 

rule 

WEDD 

Dispatching 

rule 

WTC 

Dispatching 

rule 

WSPT 

Dispatching 

rule 

Capacity 

allocation 

subproblem  

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 

Optimization 

method  

(CA1) 
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Table 4.16 Computational results for ESBP2 methods 

Method 

ESBP2-

ATC 

ESBP2-

MWTC

ESBP2-

EDD 

ESBP2-

WEDD 

ESBP2-

WTC 

ESBP2-

WSPT ATC 

CPU(H) - Mean 198 209 193 218 234 230 1 

TWT(H) – Mean 1.051 1.065 1.215 1.131 1.075 1.323 1.197 

TWT(H) – SD 0.058 0.078 0.206 0.204 0.077 0.413 0.102 

Number of best solutions 9 8 1 7 6 0 0 

Percentage of best solutions 36% 32% 4% 28% 24% 0% 0% 
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ESBP3 follows the same procedure as ESBP1 to solve assembly job shop 

scheduling problems. But it solves the material subproblems by using the optimization 

method and obtains the solutions from capacity subproblems by dispatching rules during 

the re-optimization procedure. As seen in Table 4.17, there are six different ESBP3 

methods tested in this experiment, which include ESBP3-ATC, ESBP3-MWTC, ESBP3-

EDD, ESBP3-WEDD, ESBP3-WTC and ESBP3-WSPT. The results of all test problems 

are seen in Table 4.18 and it can easily be seen that only ESBP3-MWTC, ESBP3-WEDD 

and ESBP3-WTC have better TWT(H) ratio than the ATC rule by 3% on average. It 

indicates that all ESBP3 methods does not perform well in capacity subproblems by 

using dispatching rules compared to the optimization method with limited computational 

times. In addition, ESBP3 methods only reduce computational times by 25% compared to 

ESBP1. Furthermore, ESBP3-WEDD and ESBP3-MWTC are chosen to present the 

ESBP3 compared to other heuristic approaches in later experiments. 
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Table 4.17 The description of ESBP3 methods used in this experiment 

 

ESBP3-ATC

ESBP3-

MWTC ESBP3-EDD

ESBP3-

WEDD 

ESBP3-

WTC 

ESBP3-

WSPT 

Initial 

Solution 

ATC 

Dispatching 

rule 

MWTC 

Dispatching 

rule 

EDD 

Dispatching 

rule 

WEDD 

Dispatching 

rule 

WTC 

Dispatching 

rule 

WSPT 

Dispatching 

rule 

Material 

allocation 

subproblem  

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Optimization 

method  

(MA1) 

Capacity 

allocation 

subproblem 

ATC 

Dispatching 

rule 

MWTC 

Dispatching 

rule 

EDD 

Dispatching 

rule 

WEDD 

Dispatching 

rule 

WTC 

Dispatching 

rule 

WSPT 

Dispatching 

rule 
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Table 4.18 Computational results for ESBP3 methods 

Method 

ESBP3-

ATC 

ESBP3-

MWTC

ESBP3-

EDD 

ESBP3-

WEDD 

ESBP3-

WTC 

ESBP3-

WSPT ATC 

CPU(H) - Mean 914 919 1023 809 1000 846 1 

TWT(H) - Mean 1.085 1.094 1.191 1.118 1.136 1.289 1.145 

TWT(H) - SD 0.086 0.109 0.169 0.152 0.075 0.398 0.111 

Number of best solutions 7 9 2 10 0 1 0 

Percentage of best solutions 28% 36% 8% 40% 0% 4% 0% 
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The comparison of all ESBP methods is given in Table 4.11. There are six ESBP 

methods tested in this experiment, which are ESBP1-ATC, ESBP1-MWTC, ESBP2-ATC, 

ESBP2-MWTC, ESBP3-MATC and ESBP3-WEDD. It can be seen that ESBP1 has 

better THT(H) ratio among all ESBP methods as shown in Table 4.19. The TWT(H) ratio 

of ESBP2-ATC and ESBP2-MWTC is worse than TWT(H) of ESBP1 around 5%, but 

they could reduce computational times by 83%. In addition, ESBP2 methods are superior 

to the ATC rule in terms of the solution quality. Two ESBP3 methods only provide better 

solutions than ATC rule by 4% on TWT(H) ratio. The difference between ESBP2 and 

ESBP3 is a different degree of solutions obtained from material subproblems and 

capacity subproblems. ESBP2 uses dispatching rules to solve material subproblems and 

applying optimization methods to obtain solutions from capacity subproblems. ESBP3 

solves capacity subproblems by using dispatching rules and solves material subproblems 

by employing optimization methods. This indicates that dispatching rules, ATC and 

MWTC, used in this experiment could provide solutions closed to ESBP1 in material 

subproblems. Second, the dispatching rules could produce better solutions in material 

subproblems than capacity subproblems compared to optimization methods with limited 

computational time settings.  
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Table 4.19 Computational results for ESBP methods 

Method 

ESBP1-

ATC 

ESBP2-

MWTC

ESBP3-

MATC 

ESBP1-

MWTC 

ESBP2-

ATC 

ESBP3-

WEDD ATC 

CPU(H) - Mean 1273 209 919 1260 231 809 1 

TWT(H) – Mean 1.049 1.107 1.190 1.061 1.117 1.215 1.245 

TWT(H) – SD 0.051 0.135 0.155 0.129 0.134 0.183 0.166 

Number of best solutions 6 4 1 10 3 4 0 

Percentage of best solutions 24% 16% 4% 40% 12% 16% 0% 
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Figure 4.4 CPU(H) and TWT(H) for ESBP methods 

 

4.7 Computational results: ESBP vs. MSBP vs. Dispatching rules  

In this section, the performance of seven methods from MSBP, ESBP and 

dispatching rules is investigated in terms of TWT(H) ratio and CPU(H) ratio. These 

methods are SB1, SB3-ATC, SB4-EDDP, ESBP1-ATC, ESBP2-MWTC, ESBP3-MWTC 

and ATC rule. As be seen in Table 4.20, SB1 has the best TWT(H) ratio among all 

methods and is followed by ESBP1-ATC, SB3-ATC and ESBP2-ATC. But SB1 also 

have the worst performance on CPU(H) ratio among all methods. SB1 produces a better 

TWT(H) ratio than ESBP2-MWTC by 8.2%, but it has a CPU(H) ratio 78 times more 

than ESBP2-MWTC. In addition, SB1 has a better TWT(H) ratio than ESBP1-ATC by 

2.5%, but it has a CPU(H) ratio 13 times more than ESBP1-ATC. Hence, ESBP1-ATC 
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and ESBP2-MWTC both perform better than the ATC rule on TWT(H) ratio by 16% and 

11%. These results indicate that ESBP could dramatically reduce the computational times 

of MSBP by decreasing the total number of subproblems which are required during re-

optimization procedures. Second, avoiding the knowledge on the rank of bottleneck 

resources selection only has a small effect on the solution quality around 3% as shown on 

a comparison of TWT(H) ratio of MSBP over TWT(H) of ESBP. Third, the reduction of 

computational times on SB3-ATC is due to the reduction of computational times to solve 

material subproblems by using dispatching rules. The reduction of computational times 

on ESBP2-MWTC is due to the decrease of total number of subproblems and 

implementation of dispatching rules on material subproblems. Fourth, using dispatching 

rules to solve capacity subproblems does not provide the acceptable solutions which are 

close to the ones obtained from optimization methods with limited computational times. 

However, using dispatching rules to solve material subproblems does produce the 

acceptable solutions which are close to the ones obtained from optimization methods with 

limited computational times. It made the performance of SB3-ATC and ESBP2-MWTC 

better than SB4-WEDD and ESBP3-MWTC on both TWT(H) and CPU(H).  
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Table 4.20 Computational results for ESBP vs. MSBP 

Method SB1 

SB3-

ATC 

SB4-

WEDD 

ESBP1-

ATC 

ESBP2-

MWTC

ESBP3-

MWTC ATC 

CPU(H) - Mean 16429 1345 10653 1273 209 919 1 

TWT(H) – Mean 1.044 1.090 1.323 1.070 1.130 1.212 1.274 

TWT(H) – SD 0.056 0.122 0.164 0.094 0.162 0.167 0.221 

Number of best solutions 10 7 1 5 4 0 0 

Percentage of best solutions 40% 28% 4% 20% 16% 0% 0% 

Number of subproblems 230.8 230.8 232 28.8 26.4 21.6 - 
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Figure 4.5 CPU(H) and TWT(H) for MSBP vs. ESBP 

 

4.8 Computational results for RHP :   

In this section, RHP, ESBP2-ATC and ATC rule are selected as candidates to 

evaluate the performance of RHP in this experiment as shown in Table 4.22. The only 

difference between RHP and ESBP2-ATC is to use different methods to solve capacity 

subproblems. In RHP, capacity subproblems are solved by using optimization methods 

combined with rolling horizon procedures. For each capacity subproblem, operations are 

broken down into different time windows and solved them iteratively. However, in 
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ESBP2-ATC, each capacity subproblem is solved by using optimization methods in 

single time window. By doing this, RHP could reduce the complexity of capacity 

subproblems in case of the number of jobs increases.    

 

Table 4.21 Experimental design for randomly generated test problems –RHP 

Factors Levels Number of levels 

Number of jobs 40, 50, 60, 70, 80 5 

Number of machines 10 1 

Number of items 10 1 

Methods ESBP2-ATC, RHP, ATC 3 

Total test problems  75 

 

In Table 4.23, it can be seen that RHP has a TWT(H) ratio which is 0.9% worse 

than ESBP2-ATC. But it reduces the CPU(H) ratio by 55% compared to ESBP2-ATC. 

This indicates that using rolling horizon procedures can reduce the complexity of 

assembly job shop scheduling problems. However, CPU(H) ratio of RHP raises when the 

number of jobs increases from 40 to 80. It is because the number of jobs in each time 

window also increases and it requires more computing power to solve the problems 

associated with each time window. Moreover, the computational time for each 

subproblem in ESBP2-ATC already reaches the maximum CPU setting and would not 

increase anymore. Additionally, TWT(H) ratio of RHP is 6% better than the ATC rule. It 

can be improved by increasing the maximum CPU time setting for each subproblem in 

Xpress-MP.     
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Table 4.22 Computational results for RHP – CPU(H) 

Number of 

jobs RHP ESBP2-ATC ATC 

40 184.6 511.8 1 

50 234.6 597.3 1 

60 277.0 583.4 1 

70 252.7 520.6 1 

80 260.8 458.4 1 

Average 241.9 534.3 1 

 

Table 4.23 Computational results for RHP – TWT(H) 

Number of 

jobs RHP ESBP2-ATC ATC 

40 1.015 1.002 1.104 

50 1.021 1.005 1.076 

60 1.015 1.014 1.053 

70 1.026 1.016 1.057 

80 1.023 1.016 1.074 

Average 1.020 1.011 1.082 

SD 0.005 0.007 0.017 
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4.9 Summary of computational results:  

 Based on findings from computational results, we can draw the decision tree for 

choosing appropriate methods to solve assembly job shop scheduling problem. According 

to number of jobs and maximum computation time allowance, the best method to use to 

maximize total weighted tardiness can be shown as the decision tree below in Figure 4.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Summary of computational results 
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Chapter 5. Future research directions 

5.1 Dynamic assembly job shop scheduling problems with components availability 

constraints  

In this research, several assumptions have been made to simplify the assembly job 

shop scheduling problems. One of the assumptions is the static assembly job shop 

scheduling problem, which means all jobs are ready to process in the beginning. However, 

real life scheduling problems are dynamic and stochastic in nature. The arrival times of 

jobs are not always the same and new jobs can enter the system after processing start in a 

random manner. Some operations could still be in progress at the point that scheduling 

decisions are made. These problems are so-called dynamic assembly job shop scheduling 

problems. In dynamic assembly job shop scheduling problems, problems can classified 

into two classes as deterministic and stochastic assembly job shop problems based on the 

information of problem parameters, such as processing time and release times. For 

example, release times play a critical rule for the performance of job shop because they 

control work-in-process (WIP) directly. If release times of jobs are fixed, these problems 

are deterministic assembly job shop scheduling problems. If release times of jobs are 

varied and can not be known in advance, these problems become stochastic assembly job 

shop scheduling problems. 

 It is interesting to study dynamic assembly job shop scheduling problems with 

component availability constraints, because these problems are much more complicated 

than the static assembly job shop scheduling problems and are close to realistic problems. 

However, there are more constraints to be considered in dynamic assembly job shop 

problems than static ones. First, some operations may be still in progress on specific 
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machines at the time of scheduling. These operations have to be the earliest ones on the 

machine sequences, otherwise, the solution would not be feasible. Second, jobs can not 

be processed before their release times. Third, previous schedules may not be valid and 

rescheduling actions are needed because of new arrival jobs and completed jobs. A 

mathematical formulation of dynamic assembly job shop scheduling problems with 

deterministic release times and processing time is described as follows. 

 

 

(P)   min ∑ −
v

vvv dsw )0,max(*  v ∈ Z, --------------------------------(1)   

Subject to:     

* Assembly coordination constraints    

   iiv pts +=    i ∈ G, , Zv∈    ----------------------(2) 

iij ptt +≥    (i, j) ∈ A, j is i parent operation  ---(3) 

   Ttrt iii ≥∨≥    i ∈ N,  ---------------------------------(4) 

 

* Capacity constraints 

   tj – ti ≥ pi ∨ ti – tj ≥ pj,  (i, j) ∈ Ek, k ∈ M.   ------------------(5) 

tj – ti ≥ Tui +           i ∈ Uk,  k ∈ M. and j is i parent operation---(6) 

 

* Material constraints 

∑ ≤
i

nni qy ,    PhFnBi hh ∈∈∈ ,,   ---------------(7) 
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∑ =
n

ini qy ,    PhFnBi hh ∈∈∈ ,,   ---------------(8) 

iini rtat ≥∨≥   PhFnBi hh ∈∈∈ ,,   ---------------(9) 

 

Table 5.1 Notation of dynamic assembly job shop scheduling problems 

N Set of operations 
Z Set of jobs 
dv The due date for job v, Zv∈  
wv The priority for job v, Zv∈  
sv The completion time for job v, Zv∈  
M The set of all machines  
T The current time 
Uk, The set of in progress operation for 

machine k, Mk ∈  
ui Remaining operation time for operation i 
ri Release time for operation i 
P The set of all components 
A The set of pairs of operations constrained 

by precedence relations 
Ek The set of pairs of operations to be 

performed on machine k 
pi  The processing time for operation i 
ti  The start time for operation i 
qi The requested quantity for components 

from operation i 
Bh The set of operations to request component 

h , Ph∈  
Fh The set of purchase orders to delver 

component h, Ph∈  
R The set of all purchase orders 
an The arrival time for purchase order n, 

Rn∈  
qn The delivery quantity for purchase order n, 

Rn∈  
Yh The material allocation of components h, 

Ph∈   
niy ,  The allocation of component from purchase 

order n to operation i. 
 

Equation 1 is the objective function of the problem. It tends to minimize the total 

weighted tardiness for all jobs. Equation 2 and 3 represent the precedence relation 
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between operations. . Equation 4 ensures that no operations are starting before its release 

time. Equation 5 specifies that the no two operations belonging to the same machine can 

be processed at the same time. Equation 6 ensures that unfinished operation is the first 

one to be processed on the specific machine. Equation 7, 8 and 9 are material constraints. 

They guarantee that all operations can not be started before the arrival of necessary 

components and all material requirements are fulfilled. Equation 9 specifies that the 

operation will not start before the release time or arrival time of specific purchase order.   

 

5.2 The effect of different approaches on the overall performance of a production 

system 

 It is interesting to investigate the effect of the different approaches with varying 

degrees of solution accuracy on the overall performance of a production system, 

including due-date, order release, shop floor scheduling and machine sequence.  

Several researchers have studied due-date setting, material planning and order release and 

review problems over the past few decades. Moses et al. (2003) proposed the real-time 

order promising methods with two different order release policies. Their results indicate 

that order release policy can significantly improve the overall due-date performance. 

They also conclude that good due-date assignment methods lead to superior due-date and 

shop floor performance. However, poor due-date assignment methods will restrict the 

overall performance despite of an efficient order release policy. It is motivating to 

investigate different scheduling methods on the overall performance of a production 

system, which included total weight tardiness, total tardiness, tardy ratio, service level, 

median absolute lateness, estimated flowtime, actual flowtime, shop flow time, total work 
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in process, released work in process and utilization. By doing so, we are able to define 

how the different scheduling methods can help manufacturers achieve superior 

performance and determine what the actual contributions of these methods are to the 

performance of a production system. By doing this, we are able to answer that whether 

better scheduling approaches can improve overall performance with or without good 

quality due-date setting methods, order release technique and sequencing rules.  

 

5.3 Other future research and directions 

A good direction of further research is to consider improving the solution quality 

of subproblems in the efficient SB heuristics. It will be interesting to apply other efficient 

algorithms to solve material plan and machine schedule subproblems. EDD-LI, proposed 

by Ovacik and Uzsoy (1997) considered adjacent pair exchange to find local optimum, is 

a good algorithm to improve solution quality of the efficient SB procedures. RHP 

demonstrates how to breakdown the subproblems and solve them efficiently can reduce 

the complexity of problems. The algorithm to determine which operations put into these 

time windows is essential for the solution quality and computational effects. It may 

become an interesting subject to study in the future.  

Components substitution is also another interesting topic to improve due date and 

shop floor performance. Chen et al. (2001, 2002) incorporate two dimensions of 

“customer flexibility” – quantity and customer raw material configuration. The flexibility 

allows customers to select preferred suppliers for raw materials. For a specific raw 

material type (component), if customers choose more than one supplier source, 

manufacturers will have a better chance to accept orders by switching from one raw 
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material to another based on each customer’s preference list.  

Computing power has been improved dramatically in past few years and 

processors with multiple cores are available to PC users. With multiple execution cores, 

the processor can manage processor-intensive and multi-threads tasks easily. Another 

interesting topic for further research is to distribute the subproblems to different threads 

and use multiple-cores processor to execute these threads simultaneously. This work can 

be done by using the specific software and import the settings into an optimization 

software, such as Xpress-MP. By doing this, we expect that the computational time can 

be reduced even the total number of subproblems remain the same as it is in this research.  
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Chapter 6. Conclusions 

The focus of most studies in production scheduling is on convenient job shop 

scheduling problems. Only few of these research considers job shop scheduling problems 

involving assembly operations. This dissertation reviews the literature related to 

assembly job shop scheduling problems. It also considers component availability 

constraints and addresses scalability issues. The functionality of assembly job shop 

scheduling in this dissertation is not only to allocate jobs to machines, but also to 

consider material allocation and the availability of components. Moreover, the disjunctive 

graph is extended to represent the assembly job shop scheduling problems and the 

mathematical model is also developed. Several heuristic approaches are also introduced 

to reduce the computational effort and are able to solve large-scale problems in practice. 

This research also investigates the performance of optimization approaches, heuristics 

methods and dispatching rules. The computational results demonstrate the trade-off 

between optimization and heuristic approaches in terms of solution quality and 

computational time.  

The shifting bottleneck procedure is one of the most popular heuristics used to 

solve job-shop problems. In this dissertation, modified shifting bottleneck procedures 

(MSBP) adopt the concept of shifting bottleneck procedures to reduce computation time 

and maintain solution quality in assembly job shop scheduling problems with component 

availability constraints. An efficient shifting bottleneck procedure (ESBP) is also 

developed to reduce the complexity of problems and the trade-off between computation 

time and solution quality is also studied. The results of experiments indicate that the 

number of subproblems involved in shifting bottleneck procedures has a significant effect 
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on the computational time. Moreover, decreasing the total number of subproblems does 

not only reduce most of the computational time significantly but also increases robustness 

in large-scale instances. The computational results also suggest using rolling horizon 

procedure (RHP) to restrain the size of subproblems can reduce most of computational 

times and keep solution quality at an accept level.  
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Appendix A.  Example of Input data format – 5 jobs, 5 machines and 5 
components 

 
CO: [1 2 3 4 5 ] 
 
orderNumber: [1 2 3 4 5 ] 
 
orderRequestedItem: ["2" "2" "1" "2" "1" ] 
 
orderQuantity: [1 1 1 1 1 ] 
 
orderDueDate: [95 79 59 51 101 ] 
 
orderPriority: [1 1 1 2 1 ] 
 
SO: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
37 38 39 40 41 42 43 44 ] 
 
SONumber: ["1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" "17" "18" "19" "20" 
"21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32" "33" "34" "35" "36" "37" "38" "39" "40" "41" 
"42" "43" "44" ] 
 
parentCO: [1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 ] 
 
parentSO: [0 1 2 2 2 1 6 6 6 1 0 11 12 12 12 11 11 17 17 17 0 21 21 23 23 23 21 0 28 28 30 30 30 28 0 35 
36 36 36 35 35 41 41 41 ] 
 
SOItem: ["2" "5" "8" "8" "6" "3" "10" "7" "6" "6" "2" "5" "7" "7" "10" "10" "4" "7" "9" "10" "1" "6" "5" 
"10" "8" "10" "8" "2" "9" "3" "6" "8" "9" "9" "1" "4" "8" "9" "7" "8" "4" "7" "8" "9" ] 
 
SOQuantity: [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] 
 
SOPriority: [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 ] 
 
requestedMachine: ["1" "3" "0" "0" "0" "5" "0" "0" "0" "0" "3" "5" "0" "0" "0" "0" "2" "0" "0" "0" "4" "0" 
"2" "0" "0" "0" "0" "4" "0" "3" "0" "0" "0" "0" "1" "1" "0" "0" "0" "0" "2" "0" "0" "0" ] 
 
OP: [10 17 0 0 0 24 0 0 0 0 7 14 0 0 0 0 21 0 0 0 8 0 26 0 0 0 0 13 0 17 0 0 0 0 15 25 0 0 0 0 11 0 0 0 ] 
 
parentCO1: [1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 ] 
 
assemblyRequired: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] 
 
Part: [1 2 3 4 5 6 7 8 9 10 ] 
 
partNumber: [1 2 3 4 5 6 7 8 9 10 ] 
 
partID: ["1" "2" "3" "4" "5" "6" "7" "8" "9" "10" ] 
 
RWType: [0 0 0 0 0 1 1 1 1 1 ] 
 
ASType: [0 0 1 1 1 0 0 0 0 0 ] 
 
EDType: [1 1 0 0 0 0 0 0 0 0 ] 
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PO: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ] 
 
PONumber: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ] 
 
POItem: ["10" "9" "10" "8" "10" "6" "10" "9" "6" "10" "6" "10" "6" "10" "10" "7" "7" "8" "8" ] 
 
POTime: [13 8 27 17 40 7 55 15 30 61 51 70 74 75 80 23 34 38 43 ] 
 
POQuantity: [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ] 
 
MC: [1 2 3 4 5 ] 
 
MachineNumber: [1 2 3 4 5 ] 
 
MachineID: ["1" "2" "3" "4" "5" ] 
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Appendix B. Source Code of Xpress-MP Model – MIP 
 

model MA 
uses "mmxprs", "mmsystem"   !Xpress-Optimizer 
 
parameters  
   inputFileName = 'MA.dat' 
   outputFileName = 'out.dat' 
   maxCPUTime = 10 
   maxCPUTimeSelection = 5 
   maxCPUTimeReOpt = 10 
   maxCPUTimeFullReOpt = 10 
   rollingInterval = 20 
   overlapInterval = 10 
end-parameters 
 
forward procedure printResult 
 
declarations 
  CO:set of integer        !Customer Orders 
  SO: set of integer       !Shop Order 
  Part: set of integer      !Parts 
  PO: set of integer       !Purchase Orders 
  MC: set of integer        !Machines 
end-declarations 
 
 
!initializations from '5CO_25PO_2M_MOSES.dat' 
!initializations from '10CO_50PO_2M_MOSES.dat' 
!initializations from '20CO_100PO_2M_MOSES.dat' 
!initializations from '40CO_200PO_2M_MOSES.dat' 
initializations from inputFileName 
  CO SO Part PO MC 
end-initializations 
 
finalize(CO) 
finalize(SO) 
finalize(Part) 
finalize(PO) 
finalize(MC) 
 
 
declarations 
  !Customer Orders 
  orderNumber: array(CO) of integer 
  orderRequestedItem: array(CO) of string 
  orderQuantity: array(CO) of integer 
  orderDueDate: array(CO) of integer 
  orderPET: array(CO) of mpvar 
  orderPriority: array(CO) of integer 
  orderTardiness: array(CO) of mpvar 
 
  !Shop Order 
  SONumber: array(SO) of string 
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  parentCO: array(SO) of integer 
  parentSO: array(SO) of integer 
  SOItem: array(SO) of string 
  SOQuantity: array(SO) of integer 
  SOPriority: array(SO) of integer 
  requestedMachine: array(SO) of string 
  OP: array(SO) of integer 
  PST: array(SO) of mpvar    !Desicion variables 
  PET: array(SO) of mpvar       !Desicion variables 
  LL: array(SO) of integer 
  parentCO1: array(SO) of integer 
   
  !Parts 
  partNumber: array(Part) of integer 
  partID: array(Part) of string 
  RWType: array(Part) of integer 
  ASType: array(Part) of integer 
  EDType: array(Part) of integer 
 
  !Purchase Orders 
  PONumber: array(PO) of integer 
  POItem: array(PO) of string 
  POTime: array(PO) of integer 
  POQuantity: array(PO) of integer 
 
  !Machines 
  MachineNumber: array(MC) of integer 
  MachineID: array(MC) of string 
 
  TM: array(SO, PO) of mpvar    !Desicion variables 
  AM: array(SO, PO) of mpvar    !Desicion variables 
  AC: array(SO, SO) of mpvar    !Desicion variables 
 
  BigM: real 
  starttime: real 
 
  MaterialST1: array(PO) of linctr 
  MaterialST2: array(SO) of linctr 
  MaterialST3: array(SO, PO) of linctr 
  MaterialST4: array(SO, PO) of linctr 
  MaterialST5: array(SO, PO) of linctr 
  CapacityST1: array(SO, SO) of linctr 
  CapacityST2: array(SO, SO) of linctr 
  CapacityST3: array(SO, SO) of linctr 
  PrecST1: array(SO) of linctr 
  PrecST2: array(SO, SO) of linctr 
  PrecST3: array(CO, SO) of linctr 
   
  NumberOfSM: real 
  TotalCUPTimeSM: real 
  TotalGapSM: real 
  NumberOfSP: real 
  TotalCUPTimeSP: real 
  TotalGapSP: real 
   
  NumberOfSR: real 
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  TotalCUPTimeSR: real 
  TotalGapSR: real 
   
  initialSolDispatch: real 
  initialSolRHP: real 
  initialSolSB: real 
   
end-declarations 
 
 
!initializations from '5CO_25PO_2M_MOSES.dat' 
!initializations from '10CO_50PO_2M_MOSES.dat' 
!initializations from '20CO_100PO_2M_MOSES.dat' 
!initializations from '40CO_200PO_2M_MOSES.dat' 
initializations from inputFileName 
 
  ! CO (Customer Orders) data  
  orderNumber orderRequestedItem orderQuantity orderDueDate orderPriority 
 
  ! SO (Shop Order) 
  SONumber parentCO parentSO SOItem SOQuantity SOPriority requestedMachine OP parentCO1 
 
  !Part (Parts) 
  partNumber partID RWType ASType EDType 
 
  !PO (Purchase Orders) 
  PONumber POItem POTime POQuantity 
 
  !MC (Machines) 
  MachineNumber MachineID 
end-initializations 
 
 
!---------------------------------------------------------------- 
 
starttime:= gettime 
BigM:= 2000000  
 
!Objective 
PrimalObj:= sum(k in CO) orderPriority(k)*orderQuantity(k)*orderTardiness(k) 
!PrimalObj:= sum(k in CO) orderQuantity(k)*orderTardiness(k) 
 
 
forall(k in CO) orderTardiness(k) >= orderPET(k)-orderDueDate(k) 
forall(k in CO) orderTardiness(k) >= 0 
 
 
!--------------Material constraints 
 
!Limits on PO Quantity 
forall(j in Part | RWType(j) = 1) do 
   forall(s in PO | POItem(s) = partID(j) )  
     MaterialST1(s):= sum(i in SO | SOItem(i) =  partID(j) ) TM(i,s) <= POQuantity(s) 
end-do  
 
!Satisfy SO Requirements 
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forall(j in Part | RWType(j) = 1) do 
   forall(i in SO | SOItem(i) = partID(j) )  
     MaterialST2(i):= sum(s in PO |POItem(s) = partID(j) ) TM(i,s) = SOQuantity(i) 
end-do 
 
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) )  
        MaterialST3(i,s):=  PST(i) >= POTime(s)*AM(i,s)  
   end-do 
end-do 
 
! if TW(s,i) > 0, AW = 1, else, AW = 0  
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) 
         MaterialST4(i,s):= TM(i,s) >= AM(i,s) 
   end-do 
end-do 
  
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) 
         MaterialST5(i,s):= TM(i,s)<= 1000*AM(i,s) 
   end-do 
end-do 
 
 
 
!-----------Capacity constraints 
!if PST(i) >= PET(j), then AC(i,j) =1 , else, AC(i,j) = 0 
 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST1(i,ii):= PET(i) <= PST(ii) + BigM*AC(i, ii) 
    end-do 
end-do 
 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST3(i,ii):= AC(i,ii) + AC(ii,i) = 1 
    end-do 
end-do 
 
 
!forall(i in SO, s in PO) AM(i,s) <= 1 
!forall(i in SO, s in PO) AM(i,s) >= 0 
!forall(i in SO, ii in SO) AC(i,ii) <=1 
!forall(i in SO, ii in SO) AC(i,ii) >=0 
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!------------Precedence constraints 
 
forall(i in SO) PrecST1(i):= PET(i) = PST(i) + OP(i) 
 
!forall(i in SO) PST(i) <= 1100000000 
forall(i in SO) PST(i) <= 1000000 
 
forall(i in SO) do 
  forall(ii in SO | parentSO(ii) = i) PrecST2(i, ii):= PST(i) >= PET(ii) 
end-do 
 
forall(k in CO) do 
   forall(i in SO | parentCO(i) = k) PrecST3(k, i):= orderPET(k) = PET(i) 
end-do 
 
 
 
forall(i in SO) PST(i) is_integer 
forall(i in SO) PET(i) is_integer 
forall(i in SO, s in PO) AM(i,s) is_binary 
forall(i in SO, s in PO) TM(i,s) is_integer 
forall(i in SO, ii in SO) AC(i,ii) is_binary 
 
 
 
declarations 
  status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
end-declarations 
 
starttime:= gettime 
 
 
setparam("XPRS_SCALING",0) 
setparam("XPRS_FEASTOL",1.0E-10) 
setparam("XPRS_MIPTOL",1.0E-9) 
 
setparam("XPRS_MAXTIME",maxCPUTime) 
setparam("XPRS_MAXMIPSOL",0) 
minimize(PrimalObj) 
 
status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
writeln('Primal is ', status(getprobstat), ",Objective: ",getobjval ) 
writeln(" CPU time: " , gettime-starttime) 
writeln('best bound is ', getparam("XPRS_BESTBOUND")) 
writeln('Number of integer found is ', getparam("XPRS_MIPSOLS")) 
 
 
forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)), ";PET(",i,"):", getsol(PET(i)), ";OP(",i,"):", 
getsol(OP(i)) ) 
writeln('Primal is ', status(getprobstat), ",Objective: ",getobjval ) 
writeln(" CPU time: " , gettime-starttime) 
writeln(" BigM: " , getsol(BigM)) 
forall(k in CO) writeln("CO--orderTardiness(", k,"):", getsol(orderTardiness(k))) 
forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k))) 
forall(k in CO) writeln("CO--DueDate(", k,"):", getsol(orderDueDate(k))) 
forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k))) 
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!forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)), ";PET(",i,"):", getsol(PET(i)), ";OP(",i,"):", 
getsol(OP(i)) ) 
 
End-model 
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Appendix C.  Source Code of Xpress-MP Model – MSBP 
 
 
model MA 
uses "mmxprs", "mmsystem"   !Xpress-Optimizer 
 
parameters  
   inputFileName = 'MA.dat' 
   outputFileName = 'out.dat' 
   maxCPUTime = 10 
   maxCPUTimeSelection = 5 
   maxCPUTimeReOpt = 10 
   maxCPUTimeFullReOpt = 10 
   rollingInterval = 20 
   overlapInterval = 10 
    
   machineSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withlongestPath) 
   partSubMethod = 0    !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withlongestPath) 
   
    
end-parameters 
 
 
forward procedure SB 
 
forward procedure partSubproblem(currentPartID:string) 
 
forward procedure machineSubproblem(currentMachineID:string) 
 
forward procedure partSubproblemOpt(currentPartID:string) 
 
forward procedure machineSubproblemOpt(currentMachineID:string) 
 
forward procedure partSubproblemDsp(currentPartID:string) 
 
forward procedure machineSubproblemDsp(currentMachineID:string) 
 
forward procedure partSubproblemOptSP(currentPartID:string) 
 
forward procedure machineSubproblemOptSP(currentMachineID:string) 
 
forward procedure partSubproblemDspSP(currentPartID:string) 
 
forward procedure machineSubproblemDspSP(currentMachineID:string) 
 
forward function getInfoToCO(i: integer):integer 
 
forward function getNumberOfOP(i, j: integer):integer 
 
forward function getInfoSlack(i: integer):integer 
 
 
forward procedure checkSolution 
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forward function getLongestPath(i, j: integer):integer 
 
forward function getSOParnetCO(i: integer):integer 
 
forward procedure push(i, j: integer) 
 
forward procedure pull(i, j: integer) 
 
forward procedure pushcycle(i, j, k: integer) 
 
forward function getLongestPath1(i, j: integer):integer 
 
forward procedure push1(i, j: integer, nodePush: boolean) 
 
forward procedure printResult 
 
 
declarations 
  CO:set of integer        !Customer Orders 
  SO: set of integer       !Shop Order 
  Part: set of integer      !Parts 
  PO: set of integer       !Purchase Orders 
  MC: set of integer        !Machines 
end-declarations 
 
 
initializations from inputFileName 
  CO SO Part PO MC 
end-initializations 
 
finalize(CO) 
finalize(SO) 
finalize(Part) 
finalize(PO) 
finalize(MC) 
 
 
declarations 
  !Customer Orders 
  orderNumber: array(CO) of integer 
  orderRequestedItem: array(CO) of string 
  orderQuantity: array(CO) of integer 
  orderDueDate: array(CO) of integer 
  orderPET: array(CO) of mpvar 
  orderPriority: array(CO) of integer 
  orderTardiness: array(CO) of mpvar 
 
  !Shop Order 
  SONumber: array(SO) of string 
  parentCO: array(SO) of integer 
  parentSO: array(SO) of integer 
  SOItem: array(SO) of string 
  SOQuantity: array(SO) of integer 
  SOPriority: array(SO) of integer 
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  requestedMachine: array(SO) of string 
  OP: array(SO) of integer 
  PST: array(SO) of mpvar    !Desicion variables 
  PET: array(SO) of mpvar       !Desicion variables 
  LL: array(SO) of integer 
  parentCO1: array(SO) of integer 
  numberOfIncomingArc: array(SO) of integer 
  numberOfToken: array(SO) of integer 
  dueDate: array(SO) of integer 
 
  !Parts 
  partNumber: array(Part) of integer 
  partID: array(Part) of string 
  RWType: array(Part) of integer 
  ASType: array(Part) of integer 
  EDType: array(Part) of integer 
  PartCV: array(Part) of real 
  PartDone: array(Part) of boolean 
 
  !Purchase Orders 
  PONumber: array(PO) of integer 
  POItem: array(PO) of string 
  POTime: array(PO) of integer 
  POQuantity: array(PO) of integer 
 
  !Machines 
  MachineNumber: array(MC) of integer 
  MachineID: array(MC) of string 
  MachineCV: array(MC) of real 
  MachineDone: array(MC) of boolean 
 
  TM: array(SO, PO) of mpvar    !Desicion variables 
  AM: array(SO, PO) of mpvar    !Desicion variables 
  AC: array(SO, SO) of mpvar    !Desicion variables 
 
  BigM: real 
  starttime: real 
  maxCV: real 
  allDone: boolean 
 
 
  MaterialST1: array(PO) of linctr 
  MaterialST2: array(SO) of linctr 
  MaterialST3: array(SO, PO) of linctr 
  MaterialST4: array(SO, PO) of linctr 
  MaterialST5: array(SO, PO) of linctr 
  CapacityST1: array(SO, SO) of linctr 
  CapacityST2: array(SO, SO) of linctr 
  CapacityST3: array(SO, SO) of linctr 
  CapacityST4: array(SO, SO) of linctr 
  PrecST1: array(SO) of linctr 
  PrecST2: array(SO, SO) of linctr 
  PrecST3: array(CO, SO) of linctr 
  PrecST4: array(SO) of linctr 
  PrecST5: array(SO, CO) of linctr 
  Tard1: array(CO) of linctr 
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  Tard2: array(CO) of linctr 
  fixedAC: array(SO,SO) of linctr 
  fixedAM: array(SO,PO) of linctr 
  tempAC: array(SO, SO) of real 
  tempAM: array(SO, SO) of real 
  DelayPrecST: array(SO,SO) of linctr 
   
  UE: array(SO) of real 
  UE_st: array(SO) of real 
  UE_temp: array(SO) of real 
  UE1: array(SO, CO) of real 
  UE1_st: array(SO, CO) of real 
  UE1_temp: array(SO, CO) of real 
 
  tk: real 
  iteration: real 
  BestObjPrime: real 
   
  PathFrom: array(SO) of integer 
  Flow: array(SO) of integer 
  UpdatePathFrom: boolean 
  UpdatePathFrom1: array(SO) of boolean 
  counter: integer 
  sumAC: real 
  sumAC1: real 
   
  PathToSO: array(SO, SO) of integer 
  UpdatePathToSO: array(SO) of boolean 
  nodePush: array(SO) of boolean 
   
   NumberOfSM: real 
  TotalCUPTimeSM: real 
  TotalGapSM: real 
  NumberOfSP: real 
  TotalCUPTimeSP: real 
  TotalGapSP: real 
   
  NumberOfSR: real 
  TotalCUPTimeSR: real 
  TotalGapSR: real 
   
  initialSolDispatch: real 
  initialSolRHP: real 
  initialSolSB: real 
   
  TotalROWS: real 
  TotalCOLS: real 
  TotalELEMS: real 
  TotalMIPENTS: real 
   
  SIndex: array(SO) of real 
  readySeq: array(SO) of integer 
  POQuantityS: array(PO) of integer 
   
  numberOfOPS: array(SO) of integer 
  pathToCO: array(SO) of integer 
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  numberOfOPSSlack: array(SO) of integer 
  pathToCOSlack: array(SO) of integer 
   
end-declarations 
 
 
initializations from inputFileName 
  ! CO (Customer Orders) data  
  orderNumber orderRequestedItem orderQuantity orderDueDate orderPriority 
 
  ! SO (Shop Order) 
  SONumber parentCO parentSO SOItem SOQuantity SOPriority requestedMachine OP parentCO1 
 
  !Part (Parts) 
  partNumber partID RWType ASType EDType 
 
  !PO (Purchase Orders) 
  PONumber POItem POTime POQuantity 
 
  !MC (Machines) 
  MachineNumber MachineID 
end-initializations 
 
 
!---------------------------------------------------------------- 
 
starttime:= gettime 
BigM := 10000 
!Objective 
PrimalObj:= sum(k in CO) orderPriority(k)*orderQuantity(k)*orderTardiness(k) 
 
forall(k in CO) Tard1(k) := orderTardiness(k) >= orderPET(k)-orderDueDate(k) 
forall(k in CO) Tard2(k) := orderTardiness(k) >= 0 
 
 
!--------------Material constraints 
 
!Limits on PO Quantity 
forall(j in Part | RWType(j) = 1) do 
   forall(s in PO | POItem(s) = partID(j) )  
     MaterialST1(s):= sum(i in SO | SOItem(i) =  partID(j) ) TM(i,s) <= POQuantity(s) 
end-do  
 
!Satisfy SO Requirements 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO | SOItem(i) = partID(j) )  
     MaterialST2(i):= sum(s in PO |POItem(s) = partID(j) ) TM(i,s) = SOQuantity(i) 
end-do 
 
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) )  
        MaterialST3(i,s):=  PST(i) >= POTime(s)*AM(i,s)  
   end-do 
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end-do 
 
! if TW(s,i) > 0, AW = 1, else, AW = 0  
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) 
         MaterialST4(i,s):= TM(i,s) >= AM(i,s) 
   end-do 
end-do 
 
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) 
         MaterialST5(i,s):= TM(i,s) <= 1000* AM(i,s) 
   end-do 
end-do 
 
 
 
!-----------Capacity constraints 
!if PST(i) >= PET(j), then AC(i,j) =1 , else, AC(i,j) = 0 
 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST1(i,ii):= PET(i) <= PST(ii) + BigM*AC(i, ii) 
    end-do 
end-do 
 
(! 
forall(m in MC) do 
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST2(i,ii):= PET(ii) <= PST(i) + BigM*(1-AC(i, ii)) 
    end-do 
end-do 
!) 
 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST3(i,ii):= AC(i,ii) + AC(ii,i) = 1 
    end-do 
end-do 
 
 
!------------Precedence constraints 
forall(i in SO) PrecST1(i):= PET(i) = PST(i) + OP(i) 
 
forall(i in SO) do 
  forall(ii in SO | parentSO(ii) = i) PrecST2(i, ii):= PST(i) >= PET(ii) 
end-do 
 
forall(k in CO) do 
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   forall(i in SO | parentCO(i) = k) PrecST3(k, i):= orderPET(k) = PET(i) 
end-do 
 
!forall(i in SO) PST(i) <= 8000000 
forall(i in SO) PST(i) <= 10000 
forall(i in SO) PST(i) is_integer 
forall(i in SO) PET(i) is_integer 
forall(i in SO, s in PO) AM(i,s) is_binary 
forall(i in SO, s in PO) TM(i,s) is_integer 
forall(i in SO, ii in SO) AC(i,ii) is_binary 
 
 
!********* perform main program 
 
SB 
 
checkSolution 
 
printResult 
 
!********* End of main program 
 
 
procedure SB 
 
declarations 
 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
 
end-declarations 
 
starttime := gettime 
 
 
! Relax material constraints 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
         sethidden(MaterialST3(i,s), true)  
      end-do 
   end-do 
end-do 
 
 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(CapacityST1(i,ii), true) 
          sethidden(CapacityST3(i,ii), true) 
          tempAC(i,ii):= 0 
          fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii)  
       end-do 
    end-do 
end-do 
 
 



 

 148

!Reset all values 
forall(m in MC) do 
 machineDone(m) := false 
end-do 
 
forall(j in Part | RWType(j) = 1) do 
 partDone(j) := false 
end-do 
 
allDone := false 
 
setparam("XPRS_MAXTIME",maxCPUTimeSelection) 
 
 
 
!start SB --Part 
while( allDone = false) do 
   maxCV := -1 
   finishSubproblem := false 
    
    
   forall(j in Part | RWType(j) = 1 and PartDone(j) = false) do 
      partSubproblem( partID(j) ) 
       
      maxCV := maxlist(maxCV, getsol(PartCV(j)) ) 
   end-do 
  writeln("maxCV(endSelection):", maxCV) 
   
  forall(j in Part | RWType(j) = 1 and PartDone(j) = false) do 
     if(maxCV = getsol(PartCV(j)) and finishSubproblem = false) then 
        setparam("XPRS_MAXTIME",maxCPUTime) 
        partSubproblem( partID(j) ) 
        setparam("XPRS_MAXTIME",maxCPUTimeSelection) 
         
        forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) )  
        sethidden(MaterialST3(i,s), false)  
     end-do 
        !fixed TM(i,s)    
  forall(i in SO| SOItem(i) = partID(j)) do 
     forall(s in PO | POItem(s) = partID(j) ) do 
        tempAM(i,s):= getsol(AM(i,s)) 
        fixedAM(i,s):= AM(i,s) = tempAM(i,s) 
  
      end-do   
  end-do 
   
        finishSubproblem := true 
        PartDone(j) := true 
     end-if 
  end-do    
   
  writeln("maxCV(endSub):", maxCV) 
   
!---part---- reopt 
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 objective := getobjval 
  writeln("CurrentObj(BegReopt):", getobjval) 
   
  forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do 
        forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) ) do  
           sethidden(MaterialST3(i,s), true) 
           sethidden(fixedAM(i,s), true) 
        end-do  
     end-do 
     setparam("XPRS_MAXTIME",maxCPUTimeReOpt) 
        partSubproblem( partID(j) ) 
        setparam("XPRS_MAXTIME",maxCPUTimeSelection) 
        forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) )  
        sethidden(MaterialST3(i,s), false)  
     end-do 
        !fixed TM(i,s) 
        if(getobjval < objective) then     
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
         tempAM(i,s):= getsol(AM(i,s)) 
         fixedAM(i,s):= AM(i,s) = tempAM(i,s) 
    
       end-do   
   end-do 
   objective := getobjval 
   writeln("BestObj:", getobjval) 
  end-if 
   
  forall(i in SO| SOItem(i) = partID(j)) do 
     forall(s in PO | POItem(s) = partID(j) ) do 
        sethidden(fixedAM(i,s), false) 
      end-do   
  end-do 
   
  end-do    
   
   
 !check allDone Value 
  allDone := true 
   
   
  forall(j in Part | RWType(j) = 1 and PartDone(j) = false) do 
     allDone := false 
  end-do 
  
end-do    
 
 
!Reset all values 
forall(m in MC) do 
 machineDone(m) := false 
end-do 
 
forall(j in Part | RWType(j) = 1) do 
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 partDone(j) := false 
end-do 
 
allDone := false 
 
 
 
!start SB  ---machine  
 
while( allDone = false) do 
   maxCV := -1 
   finishSubproblem := false 
    
   forall(m in MC| MachineDone(m) = false) do 
      machineSubproblem( MachineID(m) ) 
       
      maxCV := maxlist(maxCV, getsol(MachineCV(m)) ) 
   end-do 
   
   
     
  forall(m in MC| MachineDone(m) = false) do 
     if(maxCV = getsol(MachineCV(m)) and finishSubproblem = false) then 
        setparam("XPRS_MAXTIME",maxCPUTime) 
        machineSubproblem( MachineID(m) ) 
        setparam("XPRS_MAXTIME",maxCPUTimeSelection) 
       forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           sethidden(CapacityST1(i,ii), false) 
           sethidden(CapacityST3(i,ii), false) 
        end-do 
     end-do 
      
     writeln("maxCV(endSelection):", maxCV) 
         
  !fixed AC(i,ii) 
     forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           tempAC(i,ii):= getsol(AC(i,ii)) 
           fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii) 
        end-do 
     end-do 
       
        finishSubproblem := true 
        MachineDone(m) := true 
     end-if 
  end-do 
   
   
  !reoptimization 
   
   
objective := getobjval 
   
writeln("CurrentObj-(Before Reopt-Part):", getobjval) 
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  setparam("XPRS_MAXTIME",maxCPUTimeReOpt) 
   
  forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do 
        forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) ) do  
           sethidden(MaterialST3(i,s), true) 
           sethidden(fixedAM(i,s), true) 
        end-do  
     end-do 
     !setparam("XPRS_MAXTIME",maxCPUTimeReOpt) 
        partSubproblem( partID(j) ) 
        !setparam("XPRS_MAXTIME",maxCPUTimeSelection) 
        forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) )  
        sethidden(MaterialST3(i,s), false)  
     end-do 
        !fixed TM(i,s) 
        if(getobjval < objective) then     
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
         tempAM(i,s):= getsol(AM(i,s)) 
         fixedAM(i,s):= AM(i,s) = tempAM(i,s)  
       end-do   
   end-do 
   objective := getobjval 
   writeln("BestObj:", getobjval) 
  end-if 
   
  forall(i in SO| SOItem(i) = partID(j)) do 
     forall(s in PO | POItem(s) = partID(j) ) do 
        sethidden(fixedAM(i,s), false) 
      end-do   
  end-do 
   
  end-do    
   
  setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt) 
   
  writeln("maxCV:", maxCV) 
  writeln("CurrentObj:(Before Reopt-Machine):", objective) 
     
  forall(m in MC| MachineDone(m) = true) do 
        forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           sethidden(CapacityST1(i,ii), true) 
           sethidden(CapacityST3(i,ii), true) 
           sethidden(fixedAC(i,ii), true) 
        end-do 
     end-do 
 
        machineSubproblem( MachineID(m) ) 
         
       forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do  
           sethidden(CapacityST1(i,ii), false) 
           sethidden(CapacityST3(i,ii), false) 
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        end-do 
     end-do 
         
        if(getobjval < objective) then 
   !fixed AC(i,ii) 
      forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
         forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
            tempAC(i,ii):= getsol(AC(i,ii)) 
            fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii) 
         end-do 
      end-do 
      objective := getobjval 
   writeln("BestObj:", getobjval) 
  end-if 
   
  forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           sethidden(fixedAC(i,ii), false) 
        end-do 
     end-do 
  end-do 
 
  !check allDone Value 
  allDone := true 
   
  forall(m in MC| MachineDone(m) = false) do 
     allDone := false 
  end-do 
   
end-do    
 
 
initialSolSB := getobjval 
 
 
count:= 1 
maxCount := 3 
currentObj := getobjval 
bestObj := getobjval + 1 
 
while( count <= maxCount and currentObj < bestObj) do 
  bestObj := getobjval 
   
  writeln("CurrentObj(Full-Opt):", getobjval, ";Count:", count ) 
 
 
  writeln("CurrentObj(Full-Opt):", getobjval) 
   
  
  forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do 
        forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) ) do  
           sethidden(MaterialST3(i,s), true) 
           sethidden(fixedAM(i,s), true) 
        end-do  
     end-do 
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        partSubproblem( partID(j) ) 
         
        forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) )  
        sethidden(MaterialST3(i,s), false)  
     end-do 
        !fixed TM(i,s) 
        if(getobjval < objective) then     
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
         tempAM(i,s):= getsol(AM(i,s)) 
         fixedAM(i,s):= AM(i,s) = tempAM(i,s)  
       end-do   
   end-do 
   objective := getobjval 
   writeln("BestObj:", getobjval) 
  end-if 
   
  forall(i in SO| SOItem(i) = partID(j)) do 
     forall(s in PO | POItem(s) = partID(j) ) do 
        sethidden(fixedAM(i,s), false) 
      end-do   
  end-do 
   
  end-do    
 
!objective := getobjval 
  writeln("CurrentObj:", getobjval) 
   
  !reoptimization 
  forall(m in MC| MachineDone(m) = true) do 
        forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           sethidden(CapacityST1(i,ii), true) 
           sethidden(CapacityST3(i,ii), true) 
           sethidden(fixedAC(i,ii), true) 
        end-do 
     end-do 
 
        machineSubproblem( MachineID(m) ) 
         
       forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           sethidden(CapacityST1(i,ii), false) 
           sethidden(CapacityST3(i,ii), false) 
        end-do 
     end-do 
         
        if(getobjval < objective) then 
   !fixed AC(i,ii) 
      forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
         forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
            tempAC(i,ii):= getsol(AC(i,ii)) 
            fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii) 
         end-do 
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      end-do 
      objective := getobjval 
   writeln("BestObj:", getobjval) 
  end-if 
   
  forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           sethidden(fixedAC(i,ii), false) 
        end-do 
     end-do 
   
        
  end-do 
 
count:= count +1 
  currentObj := getobjval 
end-do 
 
 
! unHidden all material constraints 
forall(j in Part | RWType(j) = 1) do 
      forall(s in PO | POItem(s) = partID(j) ) do  
        sethidden(MaterialST1(s), false)  
   end-do 
end-do 
 
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      sethidden(MaterialST2(i), false)       
   end-do 
end-do 
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
         sethidden(MaterialST3(i,s), false) 
         sethidden(MaterialST4(i,s), false) 
         sethidden(MaterialST5(i,s), false)      
      end-do 
   end-do   
end-do 
 
!unHidden all capacity constraints 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(CapacityST1(i,ii), false) 
          sethidden(CapacityST3(i,ii), false) 
       end-do 
    end-do 
end-do 
 
!unHidden precedence constaint 
forall(i in SO) do 
  forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), false) 
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end-do 
 
forall(k in CO) do 
   forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),false) 
end-do 
 
 
 !Add precedence constraints  
 forall(m in MC) do 
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       sethidden(PrecST4(i),true)   
    end-do 
 end-do 
 
 
 
forall(m in MC) do 
  forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
    forall(k in CO) do 
           sethidden(PrecST5(i, k),true) 
    end-do   
  end-do 
end-do 
 
end-procedure 
 
 
procedure partSubproblem(currentPartID:string) 
 
(! 
   machineSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withLongestPath) 
   partSubMethod = 0    !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withLongestPath) 
!) 
 
case partSubMethod of 
   0: partSubproblemOpt(currentPartID) 
   10: partSubproblemOptSP(currentPartID) 
   1..9: partSubproblemDsp(currentPartID) 
   !11: partSubproblemDspSP(currentPartID) 
       
end-case 
 
 
end-procedure 
 
 
 
procedure machineSubproblem(currentMachineID:string) 
 
case machineSubMethod of 
   0: machineSubproblemOpt(currentMachineID) 
   10: machineSubproblemOptSP(currentMachineID) 
   1..9: machineSubproblemDsp(currentMachineID) 
   !11: machineSubproblemDspSP(currentMachineID) 
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end-case 
 
 
end-procedure 
 
 
!***** part-subproblem optimization ********** 
 
 
procedure partSubproblemOpt(currentPartID:string) 
 
declarations 
originalPrimalObj: real 
primalObjective: real 
bestPrimalObjective: real 
tempBestPrimalObj: real 
dualObj: real 
objective: real 
dual_cap: real 
lamda: real 
countLamda: real 
fixedPST: array(SO) of linctr    !Desicion variables 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
fixedTM: array(SO, PO) of linctr    !Desicion variables 
fixedAM: array(SO, PO) of linctr    !Desicion variables 
fixedAC: array(SO, SO) of linctr    !Desicion variables 
tempTM: array(SO, PO) of real 
tempAM: array(SO, PO) of real     
tempAC: array(SO, SO) of real  
firstrun: boolean 
 
end-declarations 
 
startTimeSP := gettime 
 
 
!Start from raw materials 
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) )  
        sethidden(MaterialST3(i,s), false)  
   end-do 
   setparam("XPRS_SCALING",0) 
   setparam("XPRS_MAXMIPSOL",0) 
   !setparam("XPRS_MAXTIME",10) 
    
   minimize(PrimalObj) 
   status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
   writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
   !writeln("CPU time: " , gettime-starttime) 
    
   !Record CV 
   PartCV(j) := getobjval 
 
       
   forall(i in SO| SOItem(i) = partID(j)) do 
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      forall(s in PO | POItem(s) = partID(j) )  
        sethidden(MaterialST3(i,s), true)  
   end-do 
    
end-do 
 
NumberOfSP := NumberOfSP + 1 
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP) 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSP := TotalGapSP + 0 
else 
   TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
 
 
 
 
 
!***** machine-subproblem optimization ********** 
 
 
procedure machineSubproblemOpt(currentMachineID:string) 
 
declarations 
originalPrimalObj: real 
primalObjective: real 
bestPrimalObjective: real 
tempBestPrimalObj: real 
dualObj: real 
objective: real 
dual_cap: real 
lamda: real 
countLamda: real 
fixedPST: array(SO) of linctr    !Desicion variables 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
fixedTM: array(SO, PO) of linctr    !Desicion variables 
fixedAM: array(SO, PO) of linctr    !Desicion variables 
 
!fixedAC: array(SO, SO) of linctr    !Desicion variables 
tempTM: array(SO, PO) of real 
tempAM: array(SO, PO) of real     
!tempAC: array(SO, SO) of real  
firstrun: boolean 
 
end-declarations 
 
startTimeSM := gettime 
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!Start from machines 
forall(m in MC | MachineID(m) = currentMachineID) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(CapacityST1(i,ii), false) 
          sethidden(CapacityST3(i,ii), false) 
          sethidden(fixedAC(i,ii), true) 
        end-do 
    end-do 
    setparam("XPRS_SCALING",0) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
    minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
    writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
     
    !Record CV 
    MachineCV(m) := getobjval 
     
        
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(CapacityST1(i,ii), true) 
          sethidden(CapacityST3(i,ii), true) 
          sethidden(fixedAC(i,ii), false) 
       end-do 
    end-do 
 
 
end-do 
 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(fixedAC(i,ii),false)  
       end-do 
    end-do 
end-do 
 
NumberOfSM := NumberOfSM + 1 
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM) 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSM := TotalGapSM + 0 
else 
   TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
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end-procedure 
 
 
 
 
 
 
!***** part-subproblem optimization longest path implmentation ********** 
 
 
procedure partSubproblemOptSP(currentPartID:string) 
 
declarations 
 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
fixedAM1: array(SO,PO) of linctr 
!tempAM: array(SO,PO) of real 
 
end-declarations 
 
startTimeSP := gettime 
 
 
!Start from raw materials 
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do 
    
    
   forall(jj in Part | RWType(jj) = 1) do 
      forall(i in SO| SOItem(i) = partID(jj)) do 
         forall(s in PO | POItem(s) = partID(jj) ) do  
           sethidden(MaterialST3(i,s), true)  
         end-do 
       end-do 
   end-do 
    
    
    
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do  
        sethidden(MaterialST3(i,s), false)  
       end-do 
   end-do 
    
    
   UpdatePathFrom := false 
  
 forall(i in SO)  
    UpdatePathFrom1(i):= false 
     
 forall(i in SO) PathFrom(i) := 0 
  
 forall(i in SO) UpdatePathToSO(i) := false  
 forall(i in SO, jj in SO) PathToSO(i,jj) := 0 
  
     
    forall(m in MC ) do 
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       forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
          forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
             sethidden(CapacityST1(i,ii), true) 
             sethidden(CapacityST3(i,ii), true) 
          end-do 
       end-do 
    end-do 
     
    
    
   forall(i in SO) do 
   forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), true) 
 end-do 
  
 forall(k in CO) do 
    forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),true) 
 end-do 
     
    
    
   forall(i in SO| SOItem(i) = partID(j)) do 
       forall(k in CO) do 
          forall(jj in SO|parentCO(jj) = k) do 
           if(getLongestPath1(i,jj) > 0) then 
              PrecST5(i, k):= orderPET(k) >= PST(i) + getLongestPath1(i,jj)+OP(jj) 
           end-if 
           if(i=jj) then 
              PrecST5(i, k):= orderPET(k) >= PST(i) + OP(i) 
           end-if 
       end-do 
       end-do   
    end-do 
    
    
    setparam("XPRS_SCALING",0) 
    !setparam("XPRS_HEURDEPTH",5) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 !setparam("XPRS_BIGMMETHOD",1) 
 !setparam("XPRS_OPTIMALITYTOL",0) 
 !setparam("XPRS_PRESOLVE",0) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
    
   minimize(PrimalObj) 
   status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
   writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
   !writeln("CPU time: " , gettime-starttime) 
    
   !Record CV 
    
   
   
  forall(i in SO| SOItem(i) = partID(j)) do 
       forall(k in CO) do 
          forall(jj in SO|parentCO(j) = k) do 
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           if(getLongestPath1(i,jj) > 0) then 
              sethidden(PrecST5(i, k), true) 
           end-if 
           if(i=j) then 
              sethidden(PrecST5(i, k), true) 
           end-if 
       end-do 
       end-do   
    end-do 
     
   
  forall(i in SO) do 
   forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), false) 
 end-do 
  
 forall(k in CO) do 
    forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),false) 
 end-do 
     
   
    forall(m in MC | MachineDone(m) = true) do 
       forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
          forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
             sethidden(CapacityST1(i,ii), false) 
             sethidden(CapacityST3(i,ii), false) 
          end-do 
       end-do 
    end-do 
         
   
   
forall(i in SO| SOItem(i) = partID(j)) do 
   forall(s in PO | POItem(s) = partID(j) ) do 
      sethidden( fixedAM1(i,s) , false) 
      tempAM(i,s):= getsol(AM(i,s)) 
      fixedAM1(i,s):= AM(i,s) = tempAM(i,s) 
       
    end-do   
end-do 
 
forall(jj in Part | RWType(jj) = 1 and PartDone(jj) = true) do 
  forall(i in SO| SOItem(i) = partID(jj)) do 
      forall(s in PO | POItem(s) = partID(jj) )  
        sethidden(MaterialST3(i,s), false)  
   end-do 
end-do 
   
 
 
  setparam("XPRS_SCALING",0) 
    !setparam("XPRS_HEURDEPTH",5) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 !setparam("XPRS_BIGMMETHOD",1) 
 !setparam("XPRS_OPTIMALITYTOL",0) 
 !setparam("XPRS_PRESOLVE",0) 
 setparam("XPRS_MIPTOL",1.0E-9) 
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    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
     
    minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
    writeln('Solution (Actual) after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
    !writeln("CPU time: " , gettime-starttime2) 
    !writeln('best bound is ', getparam("XPRS_BESTBOUND")) 
    !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS")) 
    
  PartCV(j) := getobjval 
 
   
   
forall(i in SO| SOItem(i) = partID(j)) do 
   forall(s in PO | POItem(s) = partID(j) ) do 
       
      sethidden( fixedAM1(i,s) , true) 
    end-do   
end-do 
   
  
end-do 
 
NumberOfSP := NumberOfSP + 1 
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP) 
 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSP := TotalGapSP + 0 
else 
   TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
 
 
 
 
!***** machine-subproblem optimization longest path implmentation ********** 
 
procedure machineSubproblemOptSP(currentMachineID:string) 
 
declarations 
 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
fixedAC1: array(SO,SO) of linctr 
!tempAC1: array(SO, SO) of real 
 
 
end-declarations 



 

 163

 
startTimeSM := gettime 
 
!Start from machines 
forall(m in MC | MachineID(m) = currentMachineID) do 
     
     
    forall(j in Part | RWType(j) = 1) do 
    forall(s in PO | POItem(s) = partID(j) ) do  
       sethidden(MaterialST1(s), true)  
    end-do 
 end-do 
  
  
 forall(j in Part | RWType(j) = 1) do 
    forall(i in SO| SOItem(i) = partID(j)) do 
       sethidden(MaterialST2(i), true)       
    end-do 
 end-do 
  
 forall(j in Part | RWType(j) = 1) do 
    forall(i in SO| SOItem(i) = partID(j)) do 
       forall(s in PO | POItem(s) = partID(j) ) do 
          sethidden(MaterialST3(i,s), true) 
          sethidden(MaterialST4(i,s), true) 
          sethidden(MaterialST5(i,s), true)      
       end-do 
    end-do   
 end-do 
     
     
    forall(i in SO) do 
   forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), true) 
 end-do 
  
 forall(k in CO) do 
    forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),true) 
 end-do 
    
   !---- only need machine m constraints, hide all capacity constraints, then unhidden machine m constraints 
    
    forall(mm in MC ) do 
       forall(i in SO|requestedMachine(i) = MachineID(mm) ) do 
          forall( ii in SO |requestedMachine(ii) = MachineID(mm) and i <> ii) do 
             sethidden(CapacityST1(i,ii), true) 
             sethidden(CapacityST3(i,ii), true) 
          end-do 
       end-do 
    end-do 
         
     
     
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(CapacityST1(i,ii), false) 
          sethidden(CapacityST3(i,ii), false) 
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          sethidden(fixedAC(i,ii), true) 
       end-do 
    end-do 
     
    !-------------------- 
     
     
     
    writeln("Machine:", m) 
    UpdatePathFrom := false 
     
    forall(i in SO)  
    UpdatePathFrom1(i):= false 
     
    forall(i in SO) PathFrom(i) := 0 
     
    forall(i in SO) UpdatePathToSO(i) := false  
    forall(i in SO, j in SO) PathToSO(i,j) := 0 
 
      
    !calculate longest path for (0,i) and (i,k) 
     
     
    !Add precedence constraints  
    cputime:= gettime 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       PrecST4(i):=  PST(i) >= getLongestPath(0,i)   
    end-do 
     
    writeln("cpu time:", gettime-cputime) 
     
    cputime:= gettime 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall(k in CO) do 
          forall(j in SO|parentCO(j) = k) do 
           if(getLongestPath1(i,j) > 0) then 
              PrecST5(i, k):= orderPET(k) >= PST(i) + getLongestPath1(i,j)+OP(j) 
           end-if 
           if(i=j) then 
              PrecST5(i, k):= orderPET(k) >= PST(i) + OP(i) 
           end-if 
       end-do 
       end-do   
    end-do 
    writeln("cpu time:", gettime-cputime) 
     
    cputime:= gettime 
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do 
          if(getLongestPath1(i,j) > 0) then 
             DelayPrecST(i,j):= PST(j) >= PST(i) + getLongestPath1(i,j) 
          end-if 
       end-do   
    end-do 
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    writeln("cpu time:", gettime-cputime)   
     
     
    setparam("XPRS_SCALING",0) 
    !setparam("XPRS_HEURDEPTH",5) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 !setparam("XPRS_BIGMMETHOD",1) 
 !setparam("XPRS_OPTIMALITYTOL",0) 
 !setparam("XPRS_PRESOLVE",0) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
     
    minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
    writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
     
     
    writeln("cycle-CPU time: " , gettime-starttime) 
    
   
     forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        sethidden(PrecST4(i),true)   
     end-do 
     
     forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall(k in CO) do 
          forall(j in SO|parentCO(j) = k) do 
           if(getLongestPath1(i,j) > 0) then 
              sethidden(PrecST5(i, k), true) 
           end-if 
           if(i=j) then 
              sethidden(PrecST5(i, k), true) 
           end-if 
       end-do 
       end-do   
    end-do 
     
     
    
     forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do 
         sethidden(DelayPrecST(i,j),true) 
       end-do   
    end-do 
     
     
     
    forall(j in Part | RWType(j) = 1) do 
    forall(s in PO | POItem(s) = partID(j) ) do  
       sethidden(MaterialST1(s), false)  
    end-do 
 end-do 
  
  
 forall(j in Part | RWType(j) = 1) do 



 

 166

    forall(i in SO| SOItem(i) = partID(j)) do 
       sethidden(MaterialST2(i), false)       
    end-do 
 end-do 
  
 forall(j in Part | RWType(j) = 1) do 
    forall(i in SO| SOItem(i) = partID(j)) do 
       forall(s in PO | POItem(s) = partID(j) ) do 
          !sethidden(MaterialST3(i,s), false) 
          sethidden(MaterialST4(i,s), false) 
          sethidden(MaterialST5(i,s), false)      
       end-do 
    end-do   
 end-do 
  
 forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
       forall(s in PO | POItem(s) = partID(j) )  
         sethidden(MaterialST3(i,s), false)  
    end-do 
 end-do 
  
 forall(i in SO) do 
   forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), false) 
 end-do 
  
 forall(k in CO) do 
    forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),false) 
 end-do 
     
  
  
 !---- unhide all capacity constraints to find actual solution 
    
    forall(mm in MC | MachineDone(mm) = true) do 
       forall(i in SO|requestedMachine(i) = MachineID(mm) ) do 
          forall( ii in SO |requestedMachine(ii) = MachineID(mm) and i <> ii) do 
             sethidden(CapacityST1(i,ii), false) 
             sethidden(CapacityST3(i,ii), false) 
              
          end-do 
       end-do 
    end-do 
         
  !-------------------- 
     
  
     
   forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
           
          tempAC1(i,ii):= round(getsol(AC(i,ii))) 
          fixedAC1(i,ii):= AC(i,ii) = tempAC1(i,ii)  
          sethidden(fixedAC1(i,ii), false) 
          !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii)) 
       end-do 
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    end-do 
     
     
     
    setparam("XPRS_SCALING",0) 
    !setparam("XPRS_HEURDEPTH",5) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 !setparam("XPRS_BIGMMETHOD",1) 
 !setparam("XPRS_OPTIMALITYTOL",0) 
 !setparam("XPRS_PRESOLVE",0) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
     
    minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
    writeln('Solution (Actual) after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
    !writeln("CPU time: " , gettime-starttime) 
    !writeln('best bound is ', getparam("XPRS_BESTBOUND")) 
    !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS")) 
    
    
    !Record CV 
    MachineCV(m) := getobjval 
    
         
   forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(fixedAC1(i,ii), true) 
          !sethidden(fixedAC(i,ii), false) 
          !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii)) 
       end-do 
    end-do 
     
     
end-do 
 
NumberOfSM := NumberOfSM + 1 
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM) 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSM := TotalGapSM + 0 
else 
   TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
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!***** part-subproblem dispatch ********** 
 
 
procedure partSubproblemDsp(currentPartID:string) 
 
declarations 
 
 status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
 fixedAM1: array(SO,PO) of linctr 
 tempAM1: array(SO,PO) of real 
 
end-declarations 
 
startTimeSP := gettime 
 
!Start from raw materials 
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) )  
        sethidden(MaterialST3(i,s), false)  
   end-do 
    
       
   cOrder := 0 
   simulatorClock := 100000 
   onhand := 0 
   currentPO := 0 
    
    
   forall(s in PO | POItem(s) = partID(j) ) do 
      POQuantityS(s) := POQuantity(s) 
   end-do 
    
   forall(i in SO | SOItem(i) = partID(j) ) do 
      readySeq(i) := 1 
   end-do 
     
    AllPODone := false 
      
 while( AllPODone = false) do  
       simulatorClock := 100000 
        
       forall(s in PO | POItem(s) = partID(j) ) do 
          if( POQuantityS(s) > 0 ) then 
             simulatorClock := minlist( simulatorClock, POTime(s) )           
          end-if 
       end-do 
        
       forall(s in PO | POItem(s) = partID(j) ) do 
           
             if( POQuantityS(s) > 0 and POTime(s) <= simulatorClock ) then 
             onhand := onhand + POQuantityS(s) 
             POQuantityS(s) := 0 
             currentPO := s 
          end-if 
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       end-do 
        
        !writeln("nextArrivaltime:" + simulatorClock + ",s:" + currentPO) 
            
           forall(i in SO | SOItem(i) = partID(j) ) do 
        forall(jj in SO| parentCO(jj) = parentCO1(i) ) do 
              SIndex(i) := 0!getLongestPath1(i,jj) 
        end-do 
     end-do 
     
     
     
    forall(i in SO | SOItem(i) = partID(j) and readySeq(i) = 1) do 
       if(readySeq(i) = 1 ) then 
           
          case partSubMethod of    
             1: do !ATC 
                   NOO := getInfoToCO(i)                
                      temp_exp := -1*maxlist( 0,orderDueDate(parentCO1(i)) - pathToCO(i) - 
simulatorClock) /5*17.5 
                      SIndex(i) :=  SOPriority(i) * exp( temp_exp )  
                   end-do 
                    
                2: do !ATC1 
                      NOO := getInfoToCO(i) 
                      temp_SIndex :=  simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
             if( temp_SIndex > 0) then 
                SIndex(i) := temp_SIndex * SOPriority(i)         
             else 
                SIndex(i) := temp_SIndex  
             end-if 
                   end-do 
                 
                5: do  !ODDT 
                      NOO := getInfoToCO(i) 
                      temp_SIndex :=  simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
             if( temp_SIndex > 0) then 
                SIndex(i) := temp_SIndex * SOPriority(i)         
             else 
                SIndex(i) := temp_SIndex  
             end-if 
                   end-do 
                 
                7: do  !TWK 
                      NOOS := getInfoSlack(i) 
                    SIndex(i) := pathToCOSlack(i)  
                   end-do 
                 
                8: do  !SOPN 
                      NOOS := getInfoSlack(i) 
                    SIndex(i) :=  (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulatorClock)/ 
numberOfOPSSlack(i) 
                   end-do 
                    
                  
             end-case 
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       end-if    
    end-do 
           
           
           
       !assign raw materals 
       cOrder := 0 
       noMorePart := false 
       while( onhand > 0 and noMorePart = false) do 
           
          forall(i in SO | SOItem(i) = partID(j) ) do 
             if(readySeq(i) = 1 ) then 
                case partSubMethod of    
             1: do !ATC                     
                      if(cOrder = 0) then 
                   cOrder := i 
                elif( SIndex(i) > SIndex(cOrder) ) then 
                   cOrder := i 
                end-if    
                   end-do 
                    
                2: do  !ATC1 
                      if(cOrder = 0) then 
                   cOrder := i 
                elif( SIndex(i) > SIndex(cOrder) ) then 
                   cOrder := i 
                end-if    
                   end-do 
                 
                3: do !EDD 
                      if(cOrder = 0) then 
                   cOrder := i 
                elif( dueDate(i) < dueDate(cOrder) ) then 
                   cOrder := i 
                end-if 
                   end-do 
                    
                4: do !EDDP 
                   if(cOrder = 0) then 
                      cOrder := i 
                   elif( SOPriority(i) > SOPriority(cOrder) ) then 
                      cOrder := i 
                   elif( SOPriority(i) = SOPriority(cOrder) ) then 
                      if( orderDueDate(parentCO1(i)) < orderDueDate(parentCO1(cOrder)) ) then 
                   cOrder := i 
                      end-if 
                   end-if 
                   end-do 
                    
                5: do  !ODDT 
                      if(cOrder = 0) then 
                   cOrder := i 
                elif( SIndex(i) > SIndex(cOrder) ) then 
                   cOrder := i 
                end-if    
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                   end-do 
                 
                6: do  !WSPT 
                   if(cOrder = 0) then 
                cOrder := i 
             elif( SOPriority(i) > SOPriority(cOrder) ) then 
                cOrder := i 
             end-if 
                   end-do 
                    
                 
              
          7: do  !TWK 
                      if(cOrder = 0) then 
                   cOrder := i 
                elif( SIndex(i) < SIndex(cOrder) ) then 
                   cOrder := i 
                end-if    
                   end-do 
                    
                8: do  !SOPN 
                      if(cOrder = 0) then 
                   cOrder := i 
                elif( SIndex(i) < SIndex(cOrder) ) then 
                   cOrder := i 
                end-if    
                   end-do 
                    
                9: do  !SPT 
                      if(cOrder = 0) then 
                   cOrder := i 
                elif( OP(i) < OP(cOrder) ) then 
                   cOrder := i 
                end-if    
                   end-do 
                    
                end-case    
       end-if 
          end-do 
        
          if( cOrder > 0) then 
              
             onhand := onhand-1 
             readySeq(cOrder) := 2 
             !writeln("fixedAM(" + cOrder + "," + currentPO + "," + onhand) 
             fixedAM1( cOrder, currentPO):= AM(cOrder, currentPO) = 1 
                sethidden(fixedAM1(cOrder, currentPO), false) 
              
             cOrder := 0 
          else 
             noMorePart := true 
          end-if 
       end-do 
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      AllPODone := true 
      forall(i in SO | SOItem(i) = partID(j) ) do 
         if(readySeq(i) = 1 ) then 
            AllPODone := false 
         end-if 
      end-do 
   
   end-do 
    
    
    
   setparam("XPRS_SCALING",0) 
   setparam("XPRS_MAXMIPSOL",0) 
   !setparam("XPRS_MAXTIME",10) 
    
   minimize(PrimalObj) 
   status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
   writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
   !writeln("CPU time: " , gettime-starttime) 
    
   !Record CV 
   PartCV(j) := getobjval 
 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
        sethidden(MaterialST3(i,s), true) 
        sethidden(fixedAM1(i,s), true)  
      end-do 
   end-do 
    
end-do 
 
NumberOfSP := NumberOfSP + 1 
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP) 
 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSP := TotalGapSP + 0 
else 
   TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
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!***** machine-subproblem dispatch ********** 
 
procedure machineSubproblemDsp(currentMachineID:string) 
 
declarations 
 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
fixedAC1: array(SO,SO) of linctr 
tempAC1: array(SO, SO) of real 
 
 
end-declarations 
 
startTimeSM := gettime 
 
!Start from machines 
forall(m in MC | MachineID(m) = currentMachineID) do 
     
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(CapacityST1(i,ii), false) 
          sethidden(CapacityST3(i,ii), false) 
          sethidden(fixedAC(i,ii), true) 
       end-do 
    end-do 
     
     
    writeln("Machine:", m) 
    UpdatePathFrom := false 
     
    forall(i in SO)  
    UpdatePathFrom1(i):= false 
     
    forall(i in SO) PathFrom(i) := 0 
     
    forall(i in SO) UpdatePathToSO(i) := false  
    forall(i in SO, j in SO) PathToSO(i,j) := 0 
     
     
    !calculate longest path for (0,i) and (i,k) 
 
    cputime:= gettime 
    
     
    progressJob := 0 
    previousJob := 0 
    simulationClock := 10000000 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       simulationClock := minlist(getLongestPath(0,i), simulationClock)   
    end-do 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       readySeq(i) := 0  
    end-do 
     



 

 174

     
    AllOpsDone := false 
     
    while( AllOpsDone = false) do 
     
    NoReadyOrder := true 
    forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1 ) do 
       NoReadyOrder := false 
    end-do 
     
    if(NoReadyOrder = true) then 
       minRelease := 100000 
       forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0) do 
          minRelease := minlist(getLongestPath(0,i), minRelease)   
       end-do 
       simulationClock := maxlist(minRelease, simulationClock) 
    end-if 
     
     
     
    forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0 ) do 
       !writeln("readySeq(" + i + "): "+readySeq(i) + "," + getLongestPath(0,i) ) 
       
       if( getLongestPath(0,i) <= simulationClock ) then 
          readySeq(i) := 1 
       end-if 
        
       forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do 
          if(getLongestPath1(j,i) > 0 and readySeq(j) < 2) then 
             readySeq(i) := 0 
          end-if 
       end-do  
         
    end-do 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
      forall(j in SO|parentCO(j) = parentCO1(i)) do 
            SIndex(i) := 0!getLongestPath1(i,j) 
         end-do 
   end-do 
   
   
   
  forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do 
     if(readySeq(i) = 1 ) then 
         
        case machineSubMethod of    
           1: do !ATC 
                 NOO := getInfoToCO(i)                
                 temp_exp := -1*maxlist( 0,orderDueDate(parentCO1(i)) - pathToCO(i) - simulationClock) 
/5*17.5 
                 SIndex(i) :=  SOPriority(i) * exp( temp_exp )  
              end-do 
               
           2: do !ATC1 
                 NOO := getInfoToCO(i) 
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                 temp_SIndex :=  simulationClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
           if( temp_SIndex > 0) then 
              SIndex(i) := SOPriority(i) /OP(i)         
           else 
              SIndex(i) := temp_SIndex  
           end-if 
              end-do 
            
           5: do  !ODDT 
                 NOO := getInfoToCO(i) 
                 temp_SIndex :=  simulationClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
           if( temp_SIndex > 0) then 
              SIndex(i) := temp_SIndex * SOPriority(i)         
           else 
              SIndex(i) := temp_SIndex  
           end-if 
              end-do 
            
           7: do  !TWK 
                 NOOS := getInfoSlack(i) 
               SIndex(i) := pathToCOSlack(i)  
              end-do 
            
           8: do  !SOPN 
                 NOOS := getInfoSlack(i) 
               SIndex(i) :=  (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulationClock)/ 
numberOfOPSSlack(i) 
              end-do 
               
             
        end-case 
         
         
     end-if    
  end-do 
   
    
   
  progressJob := 0 
   
  forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do 
     !writeln("Job(" + i + "): OP:" + OP(i) ) 
    if(readySeq(i) = 1 ) then 
        
       case machineSubMethod of    
           1: do !ATC                     
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) > SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if        
              end-do 
               
           2: do  !ATC1 
                 if(progressJob = 0) then 
              progressJob := i 
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           elif( SIndex(i) > SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if       
              end-do 
            
           3: do !EDD 
                if(progressJob = 0) then 
              progressJob := i 
           elif( dueDate(i) > dueDate(progressJob) ) then 
                    progressJob := i 
                 end-if       
              end-do 
               
           4: do !EDDP 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SOPriority(i) > SOPriority(progressJob) ) then 
              progressJob := i 
           elif( SOPriority(i) = SOPriority(progressJob) ) then 
              if( orderDueDate(parentCO1(i)) < orderDueDate(parentCO1(progressJob)) ) then 
                 progressJob := i 
               end-if 
           end-if 
              end-do 
               
           5: do  !ODDT 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) > SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if        
              end-do 
            
           6: do  !WSPT 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SOPriority(i)/OP(i) > SOPriority(progressJob)/OP(progressJob) ) then 
                    progressJob := i 
                 end-if       
              end-do 
               
            
         
        7: do  !TWK 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) < SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if         
              end-do 
               
           8: do  !SOPN 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) < SIndex(progressJob) ) then 
                    progressJob := i 
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                 end-if         
              end-do 
               
           9: do  !SPT 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( OP(i) < OP(progressJob) ) then 
                    progressJob := i 
                 end-if         
              end-do 
               
           end-case    
        
    end-if 
 end-do 
 !writeln("currentJob():" + progressJob)  
  
 if( progressJob > 0) then 
    if(  readySeq(progressJob) = 1 ) then 
       simulationClock := simulationClock + OP(progressJob) 
        
       if( previousJob > 0) then 
          fixedAC1( progressJob, previousJob):= AC(progressJob, previousJob) = 1 
          sethidden(fixedAC1(progressJob, previousJob), false) 
                  
       end-if 
        
       previousJob := progressJob 
       readySeq(progressJob) := 2 
    end-if 
 end-if 
     
  
 AllOpsDone := true 
  
forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
   
  if( readySeq(i) <= 1) then 
     AllOpsDone := false 
  end-if 
end-do 
  
 end-do 
     
     
    setparam("XPRS_SCALING",0) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
     
    !minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
    !writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
    
    setparam("XPRS_SCALING",0) 
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    !setparam("XPRS_HEURDEPTH",5) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 !setparam("XPRS_BIGMMETHOD",1) 
 !setparam("XPRS_OPTIMALITYTOL",0) 
 !setparam("XPRS_PRESOLVE",0) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
     
    minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
    writeln('Solution (Actual) after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
    !writeln("CPU time: " , gettime-starttime) 
    !writeln('best bound is ', getparam("XPRS_BESTBOUND")) 
    !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS")) 
    
    
    !Record CV 
    MachineCV(m) := getobjval 
    
      
 !Hidden all capacity constraints 
 forall(mm in MC|MachineDone(mm) = true) do 
  forall(i in SO|requestedMachine(i) = MachineID(mm) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(mm) and i <> ii) do 
           sethidden(CapacityST1(i,ii), true) 
           sethidden(CapacityST3(i,ii), true) 
        end-do 
     end-do 
 end-do 
  
 !Hidden precedence constaint 
 forall(i in SO) do 
   forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), true) 
 end-do 
  
 forall(k in CO) do 
    forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),true) 
 end-do 
    !) 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(CapacityST1(i,ii), true) 
          sethidden(CapacityST3(i,ii), true) 
          sethidden(fixedAC(i,ii), false) 
       end-do 
    end-do 
     
     
   forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(fixedAC1(i,ii), true) 
          !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii)) 
       end-do 
    end-do 
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end-do 
 
NumberOfSM := NumberOfSM + 1 
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM) 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSM := TotalGapSM + 0 
else 
   TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 180

Appendix D.   Source Code of Xpress-MP Model – ESBP 
 
model MA 
uses "mmxprs", "mmsystem"   !Xpress-Optimizer 
 
parameters  
   inputFileName = 'MA.dat' 
   outputFileName = 'out.dat' 
   maxCPUTime = 10 
   maxCPUTimeSelection = 5 
   maxCPUTimeReOpt = 10 
   maxCPUTimeFullReOpt = 10 
   rollingInterval = 20 
   overlapInterval = 10 
    
   initMachineSubDispatch = 1 !*** 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT 
   initPartSubDispatch = 1    !*** 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT 
   machineSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT 
   partSubMethod = 1    !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT 
   rhp = 1  !*** 0-No RHP, 1-RHP 
    
end-parameters 
 
 
forward procedure SB 
 
forward procedure partSubproblem(currentPartID:string) 
 
forward procedure machineSubproblem(currentMachineID:string) 
 
forward procedure partSubproblemOpt(currentPartID:string) 
 
forward procedure machineSubproblemOpt(currentMachineID:string) 
 
forward procedure partSubproblemDsp(currentPartID:string) 
 
forward procedure machineSubproblemDsp(currentMachineID:string) 
 
forward procedure simulation 
 
forward procedure checkSolution 
 
 
forward function getLongestPath(i, j: integer):integer 
 
forward function getSOParnetCO(i: integer):integer 
 
forward procedure push(i, j: integer) 
 
forward procedure pull(i, j: integer) 
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forward procedure pushcycle(i, j, k: integer) 
 
forward function getLongestPath1(i, j: integer):integer 
 
forward procedure push1(i, j: integer, nodePush: boolean) 
 
forward procedure printResult 
 
forward function getInfoToCO(i: integer):integer 
 
forward function getNumberOfOP(i, j: integer):integer 
 
forward function getInfoSlack(i: integer):integer 
 
 
forward procedure setTimeBucket 
 
forward procedure solveSubproblem(bucketNumber:integer) 
 
 
declarations 
  CO:set of integer        !Customer Orders 
  SO: set of integer       !Shop Order 
  Part: set of integer      !Parts 
  PO: set of integer       !Purchase Orders 
  MC: set of integer        !Machines 
end-declarations 
 
initializations from inputFileName 
  CO SO Part PO MC 
end-initializations 
 
finalize(CO) 
finalize(SO) 
finalize(Part) 
finalize(PO) 
finalize(MC) 
 
 
declarations 
  !Customer Orders 
  orderNumber: array(CO) of integer 
  orderRequestedItem: array(CO) of string 
  orderQuantity: array(CO) of integer 
  orderDueDate: array(CO) of integer 
  orderPET: array(CO) of mpvar 
  orderPriority: array(CO) of integer 
  orderTardiness: array(CO) of mpvar 
 
  !Shop Order 
  SONumber: array(SO) of string 
  parentCO: array(SO) of integer 
  parentSO: array(SO) of integer 
  SOItem: array(SO) of string 
  SOQuantity: array(SO) of integer 
  SOPriority: array(SO) of integer 
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  requestedMachine: array(SO) of string 
  OP: array(SO) of integer 
  PST: array(SO) of mpvar    !Desicion variables 
  PET: array(SO) of mpvar       !Desicion variables 
  LL: array(SO) of integer 
  parentCO1: array(SO) of integer 
  numberOfIncomingArc: array(SO) of integer 
  numberOfToken: array(SO) of integer 
  dueDate: array(SO) of integer 
  TimeBucket: array(SO) of integer 
   
  !Parts 
  partNumber: array(Part) of integer 
  partID: array(Part) of string 
  RWType: array(Part) of integer 
  ASType: array(Part) of integer 
  EDType: array(Part) of integer 
  PartCV: array(Part) of real 
  PartDone: array(Part) of boolean 
 
  !Purchase Orders 
  PONumber: array(PO) of integer 
  POItem: array(PO) of string 
  POTime: array(PO) of integer 
  POQuantity: array(PO) of integer 
 
  !Machines 
  MachineNumber: array(MC) of integer 
  MachineID: array(MC) of string 
  MachineCV: array(MC) of real 
  MachineDone: array(MC) of boolean 
  MachineEST: array(MC) of real 
 
   
  TM: array(SO, PO) of mpvar    !Desicion variables 
  AM: array(SO, PO) of mpvar    !Desicion variables 
  AC: array(SO, SO) of mpvar    !Desicion variables 
 
  BigM: real 
  starttime: real 
  maxCV: real 
  allDone: boolean 
 
 
  MaterialST1: array(PO) of linctr 
  MaterialST2: array(SO) of linctr 
  MaterialST3: array(SO, PO) of linctr 
  MaterialST4: array(SO, PO) of linctr 
  MaterialST5: array(SO, PO) of linctr 
  CapacityST1: array(SO, SO) of linctr 
  CapacityST2: array(SO, SO) of linctr 
  CapacityST3: array(SO, SO) of linctr 
  CapacityST4: array(SO, SO) of linctr 
  CapacityST5: array(SO) of linctr 
   
  PrecST1: array(SO) of linctr 
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  PrecST2: array(SO, SO) of linctr 
  PrecST3: array(CO, SO) of linctr 
  PrecST4: array(SO) of linctr 
  PrecST5: array(SO, CO) of linctr 
  Tard1: array(CO) of linctr 
  Tard2: array(CO) of linctr 
  fixedAC: array(SO,SO) of linctr 
  fixedAM: array(SO,PO) of linctr 
  tempAC: array(SO, SO) of real 
  tempAM: array(SO, SO) of real 
  DelayPrecST: array(SO,SO) of linctr 
   
  UE: array(SO) of real 
  UE_st: array(SO) of real 
  UE_temp: array(SO) of real 
  UE1: array(SO, CO) of real 
  UE1_st: array(SO, CO) of real 
  UE1_temp: array(SO, CO) of real 
 
  tk: real 
  iteration: real 
  BestObjPrime: real 
   
  PathFrom: array(SO) of integer 
  Flow: array(SO) of integer 
  UpdatePathFrom: boolean 
  UpdatePathFrom1: array(SO) of boolean 
  counter: integer 
  sumAC: real 
  sumAC1: real 
   
  PathToSO: array(SO, SO) of integer 
  UpdatePathToSO: array(SO) of boolean 
  nodePush: array(SO) of boolean 
   
   NumberOfSM: real 
  TotalCUPTimeSM: real 
  TotalGapSM: real 
  NumberOfSP: real 
  TotalCUPTimeSP: real 
  TotalGapSP: real 
   
  NumberOfSR: real 
  TotalCUPTimeSR: real 
  TotalGapSR: real 
   
  initialSolDispatch: real 
  initialSolRHP: real 
  initialSolSB: real 
   
  TotalROWS: real 
  TotalCOLS: real 
  TotalELEMS: real 
  TotalMIPENTS: real 
   
  readySeq: array(SO) of integer 
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  POQuantityS: array(PO) of integer 
   
   
  !Simulation 
  simulatorClock: integer 
  nextEventTime: integer 
  allOrderDone: boolean 
  noMorePart: boolean 
   
  simOrderPET: array(CO) of integer 
  simOrderTardiness: array(CO) of integer 
   
  readyOrder: array(SO) of integer 
  numberOfChild: array(SO) of integer 
  simPST: array(SO) of integer 
  simPET: array(SO) of integer 
   
  nextArrivalTime: array(Part) of integer 
  onhand: array(Part) of integer 
  currentOrder: array(Part) of integer 
   
  nextAvailableTime: array(MC) of integer 
  currentJob: array(MC) of integer 
   
  SIndex: array(SO) of real 
  
  numberOfOPS: array(SO) of integer 
  pathToCO: array(SO) of integer 
   
  numberOfOPSSlack: array(SO) of integer 
  pathToCOSlack: array(SO) of integer 
   
  currentBucket: integer 
  maxBucket: integer 
  inputBucket: integer 
  fixedPST: array(SO) of linctr 
   
end-declarations 
 
initializations from inputFileName 
  ! CO (Customer Orders) data  
  orderNumber orderRequestedItem orderQuantity orderDueDate orderPriority 
 
  ! SO (Shop Order) 
  SONumber parentCO parentSO SOItem SOQuantity SOPriority requestedMachine OP parentCO1 
 
  !Part (Parts) 
  partNumber partID RWType ASType EDType 
 
  !PO (Purchase Orders) 
  PONumber POItem POTime POQuantity 
 
  !MC (Machines) 
  MachineNumber MachineID 
end-initializations 
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!---------------------------------------------------------------- 
 
starttime:= gettime 
BigM := 10000 
!Objective 
PrimalObj:= sum(k in CO) orderPriority(k)*orderQuantity(k)*orderTardiness(k) 
 
forall(k in CO) Tard1(k) := orderTardiness(k) >= orderPET(k)-orderDueDate(k) 
forall(k in CO) Tard2(k) := orderTardiness(k) >= 0 
 
 
!--------------Material constraints 
 
!Limits on PO Quantity 
forall(j in Part | RWType(j) = 1) do 
   forall(s in PO | POItem(s) = partID(j) )  
     MaterialST1(s):= sum(i in SO | SOItem(i) =  partID(j) ) TM(i,s) <= POQuantity(s) 
end-do  
 
!Satisfy SO Requirements 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO | SOItem(i) = partID(j) )  
     MaterialST2(i):= sum(s in PO |POItem(s) = partID(j) ) TM(i,s) = SOQuantity(i) 
end-do 
 
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) )  
        MaterialST3(i,s):=  PST(i) >= POTime(s)*AM(i,s)  
   end-do 
end-do 
 
! if TW(s,i) > 0, AW = 1, else, AW = 0  
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) 
         MaterialST4(i,s):= TM(i,s) >= AM(i,s) 
   end-do 
end-do 
 
 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) 
         MaterialST5(i,s):= TM(i,s) <= 1000* AM(i,s) 
   end-do 
end-do 
 
 
 
!-----------Capacity constraints 
!if PST(i) >= PET(j), then AC(i,j) =1 , else, AC(i,j) = 0 
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forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST1(i,ii):= PET(i) <= PST(ii) + BigM*AC(i, ii) 
    end-do 
end-do 
 
(! 
forall(m in MC) do 
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST2(i,ii):= PET(ii) <= PST(i) + BigM*(1-AC(i, ii)) 
    end-do 
end-do 
!) 
 
forall(m in MC) do 
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
          CapacityST3(i,ii):= AC(i,ii) + AC(ii,i) = 1 
    end-do 
end-do 
 
 
!------------Precedence constraints 
forall(i in SO) PrecST1(i):= PET(i) = PST(i) + OP(i) 
 
forall(i in SO) do 
  forall(ii in SO | parentSO(ii) = i) PrecST2(i, ii):= PST(i) >= PET(ii) 
end-do 
 
forall(k in CO) do 
   forall(i in SO | parentCO(i) = k) PrecST3(k, i):= orderPET(k) = PET(i) 
end-do 
 
!forall(i in SO) PST(i) <= 8000000 
forall(i in SO) PST(i) <= 10000 
forall(i in SO) PST(i) is_integer 
forall(i in SO) PET(i) is_integer 
forall(i in SO, s in PO) AM(i,s) is_binary 
forall(i in SO, s in PO) TM(i,s) is_integer 
forall(i in SO, ii in SO) AC(i,ii) is_binary 
 
 
!********* perform main program 
 
simulation 
 
initializations from inputFileName 
   POQuantity 
end-initializations 
 
SB 
 
checkSolution 
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printResult 
 
!********* end of main program 
 
 
 
procedure SB 
 
declarations 
 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
 
end-declarations 
 
starttime := gettime 
 
 
 
case rhp of 
 
1: do 
 
 setTimeBucket 
  
 inputBucket := 1 
  
 while( inputBucket <= maxBucket) do 
     writeln("---------Current Bucket: ", inputBucket,' -------') 
  solveSubproblem(inputBucket) 
  inputBucket := inputBucket + 1 
 end-do 
  
 forall(m in MC) do 
  forall(i in SO|requestedMachine(i) = MachineID(m)  ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
           sethidden(CapacityST1(i,ii), false) 
     end-do 
 end-do 
  
  
 forall(m in MC) do 
  forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
        forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)  
           sethidden(CapacityST3(i,ii), false) 
     end-do 
 end-do 
   
  
 forall(m in MC) do 
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       sethidden(CapacityST5(i), true)  
    end-do 
 end-do 
   
  
 checkSolution 
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 !printResult 
  
  
 writeln('Check-Solution is ', getprobstat, ",Objective: ",getobjval ) 
   
 initialSolRHP := getobjval  
     
 if(initialSolDispatch < initialSolRHP or getprobstat = 6) then 
    writeln("---------use dispatch rule solution: ", initialSolDispatch ,' -------') 
    !simulation 
    forall(i in SO) do 
       sethidden(fixedPST(i), false) 
       fixedPST(i) :=  PST(i)= simPST(i) 
       setparam("XPRS_SCALING",0) 
       setparam("XPRS_MAXMIPSOL",0) 
       setparam("XPRS_MAXTIME",maxCPUTime) 
       minimize(PrimalObj) 
    end-do  
 end-if 
     
  end-do 
 
0: do 
      forall(i in SO) do 
         fixedPST(i) := PST(i) = getsol(simPST(i)) 
      end-do 
   end-do 
 
end-case 
 
 
 
setparam("XPRS_SCALING",0) 
setparam("XPRS_FEASTOL",1.0E-10) 
setparam("XPRS_MIPTOL",1.0E-9) 
setparam("XPRS_MAXMIPSOL",0) 
setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt) 
 
minimize(PrimalObj) 
 
objective := getobjval 
 
forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)) ) 
status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
writeln('Initial Solution is ', status(getprobstat), ",Objective: ",getobjval ) 
writeln("CPU time: " , gettime-starttime) 
 
 
!fixed TM(i,s) 
forall(j in Part | RWType(j) = 1) do 
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
      tempAM(i,s):= getsol(AM(i,s)) 
      fixedAM(i,s):= AM(i,s) = tempAM(i,s) 
   end-do      
   end-do   
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end-do 
    
!fixed AC(i,ii) 
forall(m in MC) do 
   forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
      forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
         tempAC(i,ii):= getsol(AC(i,ii)) 
         fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii) 
      end-do 
   end-do 
end-do    
 
forall(i in SO) do 
   sethidden(fixedPST(i), true) 
end-do 
 
 
 
 
 
 
 
 
objective := getobjval 
 
count:= 1 
maxCount := 3 
currentObj := getobjval 
bestObj := getobjval + 1 
 
while( count <= maxCount and currentObj < bestObj) do 
  bestObj := getobjval 
   
  writeln("CurrentObj(Full-Opt):", getobjval, ";Count:", count ) 
   
  forall(j in Part | RWType(j) = 1 ) do 
     forall(i in SO| SOItem(i) = partID(j)) do 
        forall(s in PO | POItem(s) = partID(j) ) do  
           !sethidden(MaterialST3(i,s), true) 
           sethidden(fixedAM(i,s), true) 
        end-do  
     end-do 
     
     partSubproblem( partID(j) ) 
     
      
     !fixed TM(i,s) 
     if(getobjval < objective) then     
  forall(i in SO| SOItem(i) = partID(j)) do 
     forall(s in PO | POItem(s) = partID(j) ) do 
        tempAM(i,s):= getsol(AM(i,s)) 
        fixedAM(i,s):= AM(i,s) = tempAM(i,s)  
      end-do   
  end-do 
  objective := getobjval 
  writeln("BestObj:", getobjval) 
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  end-if 
  
  forall(i in SO| SOItem(i) = partID(j)) do 
    forall(s in PO | POItem(s) = partID(j) ) do 
       sethidden(fixedAM(i,s), false) 
     end-do   
  end-do 
   
  end-do    
 
 
 
  !objective := getobjval 
  writeln("CurrentObj:", getobjval) 
   
  !reoptimization 
  forall(m in MC) do 
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          !sethidden(CapacityST1(i,ii), true) 
          sethidden(fixedAC(i,ii), true) 
       end-do 
    end-do 
 
    machineSubproblem( MachineID(m) ) 
     
    if(getobjval < objective) then 
  !fixed AC(i,ii) 
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          tempAC(i,ii):= getsol(AC(i,ii)) 
          fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii) 
       end-do 
    end-do 
       objective := getobjval 
    writeln("BestObj:", getobjval) 
 end-if 
  
 forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(fixedAC(i,ii), false) 
       end-do 
    end-do 
  
    
  end-do 
   
  count:= count +1 
  currentObj := getobjval 
end-do 
 
 
writeln("CPU time: " , gettime-starttime) 
 
 
forall(k in CO) writeln("CO--orderTardiness(", k,"):", getsol(orderTardiness(k))) 
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forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k))) 
forall(k in CO) writeln("CO--DueDate(", k,"):", getsol(orderDueDate(k))) 
forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k))) 
!forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)), ";PET(",i,"):", getsol(PET(i)), ";OP(",i,"):", 
getsol(OP(i)) ) 
 
end-procedure 
 
 
procedure partSubproblem(currentPartID:string) 
 
(! 
   machineSubMethod = 1 !*** 1-Opt, 2-Dispatch 
   partSubMethod = 1    !*** 1-Opt, 2-Dispatch 
  !) 
 
case partSubMethod of 
 
   0: partSubproblemOpt(currentPartID) 
       
   1..9 : partSubproblemDsp(currentPartID) 
       
end-case 
 
 
end-procedure 
 
 
 
procedure machineSubproblem(currentMachineID:string) 
 
case machineSubMethod of 
 
   0: machineSubproblemOpt(currentMachineID) 
       
   1..9: machineSubproblemDsp(currentMachineID) 
       
end-case 
 
 
end-procedure 
 
 
 
procedure partSubproblemOpt(currentPartID:string) 
 
declarations 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
 
end-declarations 
 
startTimeSP := gettime 
 
!Start from raw materials 
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do 
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   setparam("XPRS_SCALING",0) 
   setparam("XPRS_MAXMIPSOL",0) 
   !setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt) 
    
   minimize(PrimalObj) 
   status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
   writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
   !writeln("CPU time: " , gettime-starttime) 
    
   !Record CV 
   PartCV(j) := getobjval 
 
end-do 
 
NumberOfSP := NumberOfSP + 1 
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP) 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSP := TotalGapSP + 0 
else 
   TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if  
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
    
 
end-procedure 
 
 
 
procedure machineSubproblemOpt(currentMachineID:string) 
 
declarations 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
 
end-declarations 
 
startTimeSM := gettime 
 
!Start from machines 
forall(m in MC | MachineID(m) = currentMachineID) do 
  
    setparam("XPRS_SCALING",0) 
    !setparam("XPRS_HEURDEPTH",5) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 !setparam("XPRS_BIGMMETHOD",1) 
 !setparam("XPRS_OPTIMALITYTOL",0) 
 !setparam("XPRS_PRESOLVE",0) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt) 
    minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 



 

 193

    writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
    !writeln("CPU time: " , gettime-starttime) 
    !writeln('best bound is ', getparam("XPRS_BESTBOUND")) 
    !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS")) 
     
    !Record CV 
    MachineCV(m) := getobjval 
       
     
end-do 
 
NumberOfSM := NumberOfSM + 1 
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM) 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSM := TotalGapSM + 0 
else 
   TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
 
 
procedure partSubproblemDsp(currentPartID:string) 
 
declarations 
 
 status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
 fixedAM1: array(SO,PO) of linctr 
 tempAM1: array(SO,PO) of real 
 
end-declarations 
 
startTimeSP := gettime 
 
!Start from raw materials 
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do 
      
   cOrder := 0 
   simulatorClock := 100000 
   onhand1 := 0 
   currentPO := 0 
    
    
   forall(s in PO | POItem(s) = partID(j) ) do 
      POQuantityS(s) := POQuantity(s) 
   end-do 
    
   forall(i in SO | SOItem(i) = partID(j) ) do 
      readySeq(i) := 1 
   end-do 
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    AllPODone := false 
      
 while( AllPODone = false) do  
       simulatorClock := 100000 
        
       forall(s in PO | POItem(s) = partID(j) ) do 
          if( POQuantityS(s) > 0 ) then 
             simulatorClock := minlist( simulatorClock, POTime(s) )           
          end-if 
       end-do 
        
       forall(s in PO | POItem(s) = partID(j) ) do 
           
             if( POQuantityS(s) > 0 and POTime(s) <= simulatorClock ) then 
             onhand1 := onhand1 + POQuantityS(s) 
             POQuantityS(s) := 0 
             currentPO := s 
          end-if 
           
       end-do 
        
        !writeln("nextArrivaltime:" + simulatorClock + ",s:" + currentPO) 
           forall(i in SO | SOItem(i) = partID(j) ) do 
        forall(jj in SO| parentCO(jj) = parentCO1(i) ) do 
              SIndex(i) := 0!getLongestPath1(i,jj) 
        end-do 
     end-do 
     
     
     
    forall(i in SO | SOItem(i) = partID(j) and readySeq(i) = 1) do 
       if(readySeq(i) = 1 ) then 
           
          case partSubMethod of    
             1: do !ATC 
                   NOO := getInfoToCO(i)                
                      temp_exp := -1*maxlist( 0,orderDueDate(parentCO1(i)) - pathToCO(i) - 
simulatorClock) /5*17.5 
                      SIndex(i) :=  SOPriority(i) * exp( temp_exp )  
                   end-do 
                    
                2: do !ATC1 
                      NOO := getInfoToCO(i) 
                      temp_SIndex :=  simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
             if( temp_SIndex > 0) then 
                SIndex(i) := temp_SIndex * SOPriority(i)         
             else 
                SIndex(i) := temp_SIndex  
             end-if 
                   end-do 
                 
                5: do  !ODDT 
                      NOO := getInfoToCO(i) 
                      temp_SIndex :=  simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
             if( temp_SIndex > 0) then 
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                SIndex(i) := temp_SIndex * SOPriority(i)         
             else 
                SIndex(i) := temp_SIndex  
             end-if 
                   end-do 
                 
                7: do  !TWK 
                      NOOS := getInfoSlack(i) 
                    SIndex(i) := pathToCOSlack(i)  
                   end-do 
                 
                8: do  !SOPN 
                      NOOS := getInfoSlack(i) 
                    SIndex(i) :=  (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulatorClock)/ 
numberOfOPSSlack(i) 
                   end-do 
                    
                  
             end-case 
              
       end-if    
    end-do 
           
           
           
       !assign raw materals 
       cOrder := 0 
       noMorePart := false 
       while( onhand1 > 0 and noMorePart = false) do 
          
          forall(i in SO|SOItem(i) = partID(j) and readySeq(i) = 1) do 
        !writeln("Job(" + i + "): OP:" + OP(i) ) 
       if(readySeq(i) = 1 ) then 
           
          case partSubMethod of    
              1: do !ATC                     
                       if(cOrder = 0) then 
                    cOrder := i 
                 elif( SIndex(i) > SIndex(cOrder) ) then 
                    cOrder := i 
                 end-if    
                    end-do 
                     
                 2: do  !ATC1 
                       if(cOrder = 0) then 
                    cOrder := i 
                 elif( SIndex(i) > SIndex(cOrder) ) then 
                    cOrder := i 
                 end-if    
                    end-do 
                  
                 3: do !EDD 
                       if(cOrder = 0) then 
                    cOrder := i 
                 elif( dueDate(i) < dueDate(cOrder) ) then 
                    cOrder := i 
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                 end-if 
                    end-do 
                     
                 4: do !EDDP 
                    if(cOrder = 0) then 
                       cOrder := i 
                    elif( SOPriority(i) > SOPriority(cOrder) ) then 
                       cOrder := i 
                    elif( SOPriority(i) = SOPriority(cOrder) ) then 
                       if( orderDueDate(parentCO1(i)) < 
orderDueDate(parentCO1(cOrder)) ) then 
                    cOrder := i 
                       end-if 
                    end-if 
                    end-do 
                     
                 5: do  !ODDT 
                       if(cOrder = 0) then 
                    cOrder := i 
                 elif( SIndex(i) > SIndex(cOrder) ) then 
                    cOrder := i 
                 end-if    
                    end-do 
                  
                 6: do  !WSPT 
                    if(cOrder = 0) then 
                 cOrder := i 
              elif( SOPriority(i) > SOPriority(cOrder) ) then 
                 cOrder := i 
              end-if 
                    end-do 
                     
                  
               
           7: do  !TWK 
                       if(cOrder = 0) then 
                    cOrder := i 
                 elif( SIndex(i) < SIndex(cOrder) ) then 
                    cOrder := i 
                 end-if    
                    end-do 
                     
                 8: do  !SOPN 
                       if(cOrder = 0) then 
                    cOrder := i 
                 elif( SIndex(i) < SIndex(cOrder) ) then 
                    cOrder := i 
                 end-if    
                    end-do 
                     
                 9: do  !SPT 
                       if(cOrder = 0) then 
                    cOrder := i 
                 elif( OP(i) < OP(cOrder) ) then 
                    cOrder := i 
                 end-if    



 

 197

                    end-do 
                    
                end-case 
         
       end-if 
    end-do 
           
          if( cOrder > 0) then 
             !PST(currentOrder(j)) := simulatorClock 
             !PET(currentOrder(j)) := simulatorClock 
             onhand1 := onhand1-1 
             readySeq(cOrder) := 2 
             !writeln("fixedAM(" + cOrder + "," + currentPO + "," + onhand) 
             fixedAM1( cOrder, currentPO):= AM(cOrder, currentPO) = 1 
                sethidden(fixedAM1(cOrder, currentPO), false) 
              
              
             cOrder := 0 
          else 
             noMorePart := true 
          end-if 
       end-do 
       
       
       
      AllPODone := true 
      forall(i in SO | SOItem(i) = partID(j) ) do 
         if(readySeq(i) = 1 ) then 
            AllPODone := false 
         end-if 
      end-do 
   
   end-do 
    
    
   setparam("XPRS_SCALING",0) 
   setparam("XPRS_MAXMIPSOL",0) 
   !setparam("XPRS_MAXTIME",10) 
    
   minimize(PrimalObj) 
   status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
   writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
   !writeln("CPU time: " , gettime-starttime) 
    
   !Record CV 
   PartCV(j) := getobjval 
 
      
   forall(i in SO| SOItem(i) = partID(j)) do 
      forall(s in PO | POItem(s) = partID(j) ) do 
        !sethidden(MaterialST3(i,s), true) 
        sethidden(fixedAM1(i,s), true)  
      end-do 
   end-do 
    
end-do 
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NumberOfSP := NumberOfSP + 1 
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP) 
 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSP := TotalGapSP + 0 
else 
   TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
 
 
 
 
procedure machineSubproblemDsp(currentMachineID:string) 
 
declarations 
 
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string 
fixedAC1: array(SO,SO) of linctr 
tempAC1: array(SO, SO) of real 
 
 
end-declarations 
 
startTimeSM := gettime 
 
!Start from machines 
forall(m in MC | MachineID(m) = currentMachineID) do 
       
             
    progressJob := 0 
    previousJob := 0 
    simulationClock := 10000000 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       simulationClock := minlist(getLongestPath(0,i), simulationClock)   
    end-do 
     
    forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       readySeq(i) := 0  
    end-do 
     
     
    AllOpsDone := false 
     
    while( AllOpsDone = false) do 
     
    NoReadyOrder := true 
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    forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1 ) do 
       NoReadyOrder := false 
    end-do 
     
    if(NoReadyOrder = true) then 
       minRelease := 100000 
       forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0) do 
          minRelease := minlist(getLongestPath(0,i), minRelease)   
       end-do 
       simulationClock := maxlist(minRelease, simulationClock) 
    end-if 
     
     
     
    forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0 ) do 
       !writeln("readySeq(" + i + "): "+readySeq(i) + "," + getLongestPath(0,i) ) 
       
       if( getLongestPath(0,i) <= simulationClock ) then 
          readySeq(i) := 1 
       end-if 
        
       forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do 
          if(getLongestPath1(j,i) > 0 and readySeq(j) < 2) then 
             readySeq(i) := 0 
          end-if 
       end-do   
    end-do 
     
     
   
  forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do 
     if(readySeq(i) = 1 ) then 
         
        case machineSubMethod of    
           1: do !ATC 
                 NOO := getInfoToCO(i)                
                 temp_exp := -1*maxlist( 0,orderDueDate(parentCO1(i)) - pathToCO(i) - simulationClock) 
/5*17.5 
                 SIndex(i) :=  SOPriority(i) * exp( temp_exp )  
              end-do 
               
           2: do !ATC1 
                 NOO := getInfoToCO(i) 
                 temp_SIndex :=  simulationClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
           if( temp_SIndex > 0) then 
              SIndex(i) := SOPriority(i) /OP(i)         
           else 
              SIndex(i) := temp_SIndex  
           end-if 
              end-do 
            
           5: do  !ODDT 
                 NOO := getInfoToCO(i) 
                 temp_SIndex :=  simulationClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
           if( temp_SIndex > 0) then 
              SIndex(i) := temp_SIndex * SOPriority(i)         
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           else 
              SIndex(i) := temp_SIndex  
           end-if 
              end-do 
            
           7: do  !TWK 
                 NOOS := getInfoSlack(i) 
               SIndex(i) := pathToCOSlack(i)  
              end-do 
            
           8: do  !SOPN 
                 NOOS := getInfoSlack(i) 
               SIndex(i) :=  (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulationClock)/ 
numberOfOPSSlack(i) 
              end-do 
               
             
        end-case 
         
     end-if    
  end-do 
   
     
  progressJob := 0 
   
  forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do 
     !writeln("Job(" + i + "): OP:" + OP(i) ) 
    if(readySeq(i) = 1 ) then 
       if(progressJob = 0) then 
          progressJob := i 
       elif( SIndex(i) > SIndex(progressJob) ) then 
          progressJob := i 
        
       end-if 
        
       case machineSubMethod of    
           1: do !ATC                     
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) > SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if        
              end-do 
               
           2: do  !ATC1 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) > SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if       
              end-do 
            
           3: do !EDD 
                if(progressJob = 0) then 
              progressJob := i 
           elif( dueDate(i) > dueDate(progressJob) ) then 
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                    progressJob := i 
                 end-if       
              end-do 
               
           4: do !EDDP 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SOPriority(i) > SOPriority(progressJob) ) then 
              progressJob := i 
           elif( SOPriority(i) = SOPriority(progressJob) ) then 
              if( orderDueDate(parentCO1(i)) < orderDueDate(parentCO1(progressJob)) ) then 
                 progressJob := i 
               end-if 
           end-if 
              end-do 
               
           5: do  !ODDT 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) > SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if        
              end-do 
            
           6: do  !WSPT 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SOPriority(i)/OP(i) > SOPriority(progressJob)/OP(progressJob) ) then 
                    progressJob := i 
                 end-if       
              end-do 
               
            
         
        7: do  !TWK 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) < SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if         
              end-do 
               
           8: do  !SOPN 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( SIndex(i) < SIndex(progressJob) ) then 
                    progressJob := i 
                 end-if         
              end-do 
               
           9: do  !SPT 
                 if(progressJob = 0) then 
              progressJob := i 
           elif( OP(i) < OP(progressJob) ) then 
                    progressJob := i 
                 end-if         
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              end-do 
               
       end-case    
 
    end-if 
 end-do 
 !writeln("currentJob():" + progressJob)  
  
 if( progressJob > 0) then 
    if(  readySeq(progressJob) = 1 ) then 
       !simPST(currentJob(m)) := simulatorClock 
       !simPET(currentJob(m)) := simPST(currentJob(m)) + OP(currentJob(m)) 
       !tempPET := simPET(currentJob(m)) 
       simulationClock := simulationClock + OP(progressJob) 
        
       if( previousJob > 0) then 
          fixedAC1( progressJob, previousJob):= AC(progressJob, previousJob) = 1 
          sethidden(fixedAC1(progressJob, previousJob), false)          
          !writeln("fixedAC:", progressJob, ",", previousJob) 
       end-if 
        
       previousJob := progressJob   
       readySeq(progressJob) := 2 
    end-if 
 end-if 
     
  
 AllOpsDone := true 
  
forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
   
  if( readySeq(i) <= 1) then 
     AllOpsDone := false 
  end-if 
end-do 
  
 end-do 
     
    setparam("XPRS_SCALING",0) 
    !setparam("XPRS_HEURDEPTH",5) 
    setparam("XPRS_FEASTOL",1.0E-10) 
 !setparam("XPRS_BIGMMETHOD",1) 
 !setparam("XPRS_OPTIMALITYTOL",0) 
 !setparam("XPRS_PRESOLVE",0) 
 setparam("XPRS_MIPTOL",1.0E-9) 
    setparam("XPRS_MAXMIPSOL",0) 
    !setparam("XPRS_MAXTIME",10) 
     
    minimize(PrimalObj) 
    status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded'] 
    writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval ) 
    !writeln("CPU time: " , gettime-starttime) 
    !writeln('best bound is ', getparam("XPRS_BESTBOUND")) 
    !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS")) 
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    writeln("cycle-CPU time: " , gettime-starttime) 
     
   forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
       forall( ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do 
          sethidden(fixedAC1(i,ii), true) 
          !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii)) 
       end-do 
    end-do 
     
     
end-do 
 
NumberOfSM := NumberOfSM + 1 
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM) 
if(getparam("XPRS_BESTBOUND")= 0) then 
   TotalGapSM := TotalGapSM + 0 
else 
   TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND") 
end-if 
 
TotalROWS := TotalROWS + getparam("XPRS_ROWS") 
TotalCOLS := TotalCOLS + getparam("XPRS_COLS") 
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS") 
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS") 
 
end-procedure 
 
 
 
 
procedure simulation 
 
 starttime:= gettime 
  
 simulatorClock := 0 
 allOrderDone := false 
  
 forall(i in SO) do 
    numberOfchild(i) := 0 
 end-do 
  
 forall(i in SO) do 
    if(OP(i) > 0) then 
        readyOrder(i) := 0 
    else 
        readyOrder(i) := 1 
    end-if 
     
    forall(ii in SO) do 
       if(parentSO(ii) = i) then 
          numberOfchild(i) := numberOfchild(i) + 1 
       end-if 
    end-do 
     
     dueDate(i) := orderDueDate(parentCO1(i)) 
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 end-do 
  
 forall(j in Part | RWType(j) = 1) do 
    currentOrder(j) := 0 
    nextArrivalTime(j) := 0 
 end-do 
  
 forall(m in MC) do 
    currentJob(m) := 0 
    nextAvailableTime(m) := 0 
 end-do 
     
  
 repeat 
     writeln("simulator clock: " + simulatorClock) 
    
    !update part status 
    forall(j in Part | RWType(j) = 1) do 
       if(simulatorClock >= nextArrivalTime(j) ) then 
        
        nextArrivalTime(j) := 1000000000 
        forall(s in PO | POItem(s) = partID(j) ) do 
           if( POQuantity(s) > 0 and POTime(s) <= simulatorClock ) then 
              onhand(j) := onhand(j) + POQuantity(s) 
              POQuantity(s) := 0 
           end-if 
            
           if( POQuantity(s) > 0 and POTime(s) >= simulatorClock ) then 
              nextArrivalTime(j) := minlist( nextArrivalTime(j), POTime(s) ) 
           end-if 
        end-do 
        if( nextArrivalTime(j) = 1000000000) then 
           nextArrivalTime(j) := simulatorClock 
        end-if 
         
        !assign raw materals 
        currentOrder(j) := 0 
        noMorePart := false 
        while( onhand(j) > 0 and noMorePart = false) do 
            
           forall(i in SO | SOItem(i) = partID(j) and readyOrder(i) = 1) do 
            case initPartSubDispatch of    
              1: do !ATC 
                    NOO := getInfoToCO(i)                
                       temp_exp := -1*maxlist( 0,orderDueDate(parentCO1(i)) - pathToCO(i) - 
simulatorClock) /5*17.5 
                       SIndex(i) :=  SOPriority(i) * exp( temp_exp )  
                    end-do 
                     
                 2: do !ATC1 
                       NOO := getInfoToCO(i) 
                       temp_SIndex :=  simulatorClock + pathToCO(i) - 
orderDueDate(parentCO1(i)) 
              if( temp_SIndex > 0) then 
                 SIndex(i) := temp_SIndex * SOPriority(i)         
              else 
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                 SIndex(i) := temp_SIndex  
              end-if 
                    end-do 
                  
                 5: do  !ODDT 
                       NOO := getInfoToCO(i) 
                       temp_SIndex :=  simulatorClock + pathToCO(i) - 
orderDueDate(parentCO1(i)) 
              if( temp_SIndex > 0) then 
                 SIndex(i) := temp_SIndex * SOPriority(i)         
              else 
                 SIndex(i) := temp_SIndex  
              end-if 
                    end-do 
                  
                 7: do  !TWK 
                       NOOS := getInfoSlack(i) 
                     SIndex(i) := pathToCOSlack(i)  
                    end-do 
                  
                 8: do  !SOPN 
                       NOOS := getInfoSlack(i) 
                     SIndex(i) :=  (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - 
simulatorClock)/ numberOfOPSSlack(i) 
                    end-do 
                     
                   
              end-case 
       end-do 
        
            
           forall(i in SO | SOItem(i) = partID(j) ) do 
              if( readyOrder(i) = 1 ) then 
                  
                 case initPartSubDispatch of    
               1: do !ATC                     
                        if(currentOrder(j) = 0) then 
                     currentOrder(j) := i 
                  elif( SIndex(i) > SIndex(currentOrder(j)) ) then 
                     currentOrder(j) := i 
                  end-if    
                     end-do 
                      
                  2: do  !ATC1 
                        if(currentOrder(j) = 0) then 
                     currentOrder(j) := i 
                  elif( SIndex(i) > SIndex(currentOrder(j)) ) then 
                     currentOrder(j) := i 
                  end-if    
                     end-do 
                   
                  3: do !EDD 
                        if(currentOrder(j) = 0) then 
                     currentOrder(j) := i 
                  elif( dueDate(i) < dueDate(currentOrder(j)) ) then 
                     currentOrder(j) := i 
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                  end-if 
                     end-do 
                      
                  4: do !EDDP 
                     if(currentOrder(j) = 0) then 
                        currentOrder(j) := i 
                     elif( SOPriority(i) > SOPriority(currentOrder(j)) ) then 
                        currentOrder(j) := i 
                     elif( SOPriority(i) = SOPriority(currentOrder(j)) ) then 
                        if( orderDueDate(parentCO1(i)) < 
orderDueDate(parentCO1(currentOrder(j))) ) then 
                     currentOrder(j) := i 
                        end-if 
                     end-if 
                     end-do 
                      
                  5: do  !ODDT 
                        if(currentOrder(j) = 0) then 
                     currentOrder(j) := i 
                  elif( SIndex(i) > SIndex(currentOrder(j)) ) then 
                     currentOrder(j) := i 
                  end-if    
                     end-do 
                   
                  6: do  !WSPT 
                     if(currentOrder(j) = 0) then 
                  currentOrder(j) := i 
               elif( SOPriority(i) > 
SOPriority(currentOrder(j)) ) then 
                  currentOrder(j) := i 
               end-if 
                     end-do 
                      
                   
                
            7: do  !TWK 
                        if(currentOrder(j) = 0) then 
                     currentOrder(j) := i 
                  elif( SIndex(i) < SIndex(currentOrder(j)) ) then 
                     currentOrder(j) := i 
                  end-if    
                     end-do 
                      
                  8: do  !SOPN 
                        if(currentOrder(j) = 0) then 
                     currentOrder(j) := i 
                  elif( SIndex(i) < SIndex(currentOrder(j)) ) then 
                     currentOrder(j) := i 
                  end-if    
                     end-do 
                      
                  9: do  !SPT 
                        if(currentOrder(j) = 0) then 
                     currentOrder(j) := i 
                  elif( OP(i) < OP(currentOrder(j)) ) then 
                     currentOrder(j) := i 
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                  end-if    
                     end-do 
                      
                 end-case 
     
              end-if 
           end-do 
            
           if( currentOrder(j) > 0) then 
              simPST(currentOrder(j)) := simulatorClock 
              simPET(currentOrder(j)) := simulatorClock 
              onhand(j) := onhand(j)-1 
              readyOrder(currentOrder(j)) := 2 
               
              if(parentSO(currentOrder(j)) > 0) then 
                 numberOfchild(parentSO(currentOrder(j))) := 
numberOfchild(parentSO(currentOrder(j))) -1 
                 if( numberOfchild(parentSO(currentOrder(j))) = 0) then 
                    readyOrder(parentSO(currentOrder(j))) := 1 
                 end-if 
              end-if 
              currentOrder(j) := 0 
           else 
              noMorePart := true 
           end-if 
        end-do 
        
       end-if 
       writeln("nextArrivaltime(" + j + ")" + nextArrivalTime(j)) 
    
    end-do 
    
   !Update machine status 
   forall(m in MC) do 
      if(simulatorClock >= nextAvailableTime(m) ) then 
       
        if( currentJob(m) > 0) then 
          if(parentSO(currentJob(m)) > 0 ) then 
            numberOfchild(parentSO(currentJob(m))) := 
numberOfchild(parentSO(currentJob(m))) -1 
            if( numberOfchild(parentSO(currentJob(m))) = 0) then 
               readyOrder(parentSO(currentJob(m))) := 1 
            end-if 
         end-if 
      end-if 
   end-if 
      end-do 
      
               
   forall(m in MC) do 
      if(simulatorClock >= nextAvailableTime(m) ) then 
       
         currentJob(m) := 0 
          
         forall(i in SO|requestedMachine(i) = MachineID(m) and readyOrder(i) = 1) do 
           case initMachineSubDispatch of    
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             1: do !ATC 
                   NOO := getInfoToCO(i)                
                   temp_exp := -1*maxlist( 0,orderDueDate(parentCO1(i)) - pathToCO(i) - 
simulatorClock) /5*17.5 
                   SIndex(i) :=  SOPriority(i) * exp( temp_exp )  
                end-do 
                 
             2: do !ATC1 
                   NOO := getInfoToCO(i) 
                   temp_SIndex :=  simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
             if( temp_SIndex > 0) then 
                SIndex(i) := SOPriority(i) /OP(i)         
             else 
                SIndex(i) := temp_SIndex  
             end-if 
                end-do 
              
             5: do  !ODDT 
                   NOO := getInfoToCO(i) 
                   temp_SIndex :=  simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i)) 
             if( temp_SIndex > 0) then 
                SIndex(i) := temp_SIndex * SOPriority(i)         
             else 
                SIndex(i) := temp_SIndex  
             end-if 
                end-do 
              
             7: do  !TWK 
                   NOOS := getInfoSlack(i) 
                 SIndex(i) := pathToCOSlack(i)  
                end-do 
              
             8: do  !SOPN 
                   NOOS := getInfoSlack(i) 
                 SIndex(i) :=  (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - 
simulatorClock)/ numberOfOPSSlack(i) 
                end-do 
                
              
             end-case 
   end-do 
       
         
         forall(i in SO|requestedMachine(i) = MachineID(m) ) do 
              !writeln("Job(" + i + "): OP:" + OP(i) ) 
          if(readyOrder(i) = 1 ) then 
              
              case initMachineSubDispatch of    
              1: do !ATC                     
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( SIndex(i) > SIndex(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if        
                 end-do 
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              2: do  !ATC1 
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( SIndex(i) > SIndex(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if       
                 end-do 
               
              3: do !EDD 
                   if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( dueDate(i) > dueDate(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if       
                 end-do 
                  
              4: do !EDDP 
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( SOPriority(i) > SOPriority(currentJob(m)) ) then 
                 currentJob(m) := i 
              elif( SOPriority(i) = SOPriority(currentJob(m)) ) then 
                 if( orderDueDate(parentCO1(i)) < 
orderDueDate(parentCO1(currentJob(m))) ) then 
                    currentJob(m) := i 
                  end-if 
              end-if 
                 end-do 
                  
              5: do  !ODDT 
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( SIndex(i) > SIndex(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if        
                 end-do 
               
              6: do  !WSPT 
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( SOPriority(i)/OP(i) > 
SOPriority(currentJob(m))/OP(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if       
                 end-do 
                  
               
            
           7: do  !TWK 
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( SIndex(i) < SIndex(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if         
                 end-do 
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              8: do  !SOPN 
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( SIndex(i) < SIndex(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if         
                 end-do 
                  
              9: do  !SPT 
                    if(currentJob(m) = 0) then 
                 currentJob(m) := i 
              elif( OP(i) < OP(currentJob(m)) ) then 
                       currentJob(m) := i 
                    end-if         
                 end-do 
                  
              end-case 
              
          end-if 
       end-do 
       writeln("currentJob(" + m + ")" + currentJob(m))  
          
        
           
          if( currentJob(m) > 0) then 
          if(readyOrder(currentJob(m)) = 1 ) then 
             simPST(currentJob(m)) := simulatorClock 
             simPET(currentJob(m)) := simPST(currentJob(m)) + OP(currentJob(m)) 
             tempPET := simPET(currentJob(m)) 
             nextAvailableTime(m) := simPET(currentJob(m)) 
             readyOrder(currentJob(m)) := 2 
              
          end-if 
       end-if 
       
    end-if 
    writeln("nextAvailabletime(" + m + ")" + nextAvailableTime(m)) 
    
    end-do 
  
  
    
   !determine next event time 
   tempClock := simulatorClock 
   firstTime := true 
   forall(j in Part | RWType(j) = 1) do 
      if( tempClock < nextArrivalTime(j) ) then 
         if( firstTime = true ) then 
            simulatorClock := nextArrivalTime(j) 
            firstTime := false 
         else 
            simulatorClock := minlist(simulatorClock, nextArrivalTime(j) ) 
         end-if 
      end-if 
   end-do 
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   forall(m in MC) do 
      if( tempClock < nextAvailableTime(m) ) then 
         if( firstTime = true ) then 
            simulatorClock := nextAvailableTime(m) 
            firstTime := false 
         else 
            simulatorClock := minlist(simulatorClock, nextAvailableTime(m) ) 
         end-if 
      end-if 
   end-do 
    
    
   allOrderDone := true 
   forall(i in SO) do 
      if( readyOrder(i) < 2 ) then 
         allOrderDone := false 
      end-if 
   end-do 
  
 until ( allOrderDone = true) 
  
  
 forall(k in CO) do 
    forall(i in SO | parentCO(i) = k) simOrderPET(k) := simPET(i) 
     
    trad := simOrderPET(k)-orderDueDate(k) 
    if( trad > 0) then 
       simOrderTardiness(k) := simOrderPET(k)-orderDueDate(k) 
    else 
       simOrderTardiness(k) := 0 
    end-if 
 end-do 
  
 Objective := 0 
 forall(k in CO) do 
    writeln("tradiness(" + k + "):" + orderPriority(k)*orderQuantity(k)*simOrderTardiness(k) ) 
 end-do 
  
 Objective := sum(k in CO) orderPriority(k)*orderQuantity(k)*simOrderTardiness(k) 
 Objective1 := sum(k in CO) orderQuantity(k)*simOrderTardiness(k) 
  
 initialSolDispatch := Objective 
  
 writeln("Objective:" + Objective  + " ;CPUTime:" + (gettime-starttime) ) 
 writeln("Objective1:" + Objective1 ) 
  
  
 forall(k in CO) writeln("CO--orderTardiness(", k,"):", getsol(simOrderTardiness(k))) 
 forall(k in CO) writeln("CO--PET(", k,"):", getsol(simOrderPET(k))) 
 forall(k in CO) writeln("CO--DueDate(", k,"):", getsol(orderDueDate(k))) 
 forall(k in CO) writeln("CO--PET(", k,"):", getsol(simOrderPET(k))) 
 forall(i in SO) writeln("SO--PST(", i,"):", getsol(simPST(i)), ";PET(",i,"):", getsol(simPET(i)), 
";OP(",i,"):", getsol(OP(i)) ) 
 
 
end-procedure 




