

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ASSEMBLY JOB SHOP SCHEDULING PROBLEMS WITH COMPONENT

AVAILABILITY CONSTRAINTS

A DISSERTATION

SUBMITTED TO GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

KAI-PEI CHEN
Norman, Oklahoma

2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SHAREOK repository

https://core.ac.uk/display/215231554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UMI Number: 3291943

3291943
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

© Copyright by KAI-PEI CHEN 2007

All Rights Reserved.

 iv

Acknowledgments

I would like to thank the many people who have supported me to complete this

dissertation. First, I thank my advisors, Dr. Pulat and Dr. Moses, for their supervision,

guidance and friendly attitude throughout the process of this research. I would also like to

express my appreciation to other committee members, Dr. Grant , Dr. Gruenwald and Dr.

Trafalis, for their review of this work and helpful comments. Finally, I would like to

thank my parents, my wife, Hui-Ling, and my beautiful daughter, Rou-An, for their

patience, understanding and constant love during the progress of this dissertation. This

dissertation would not have been possible without their sacrifice.

 v

Table of Contents
List of Figures .. viii
List of Tables .. vii
Abstract .. ix
Chapter 1. Introduction... 1

1.1 Research Motivation ... 1
1.2 Research Overview ... 5
1.3 Research Summary ... 9
1.4 Contribution .. 14
1.5 Organization.. 15

Chapter 2. Literature Review.. 17
2.1 Classical Job Shop Scheduling ... 20
2.2 Assembly Job Shop Scheduling.. 25
2.3 Assembly Job Shop Scheduling with component availability constraints........ 29
2.4 Shifting bottleneck procedures ... 34

2.4.1 The Generic Shifting Bottleneck Procedure ... 35
2.4.2 The Shifting Bottleneck Procedure with parallel machines...................... 39
2.4.3 Efficient Shifting Bottleneck heuristic for parallel machines (ESBPM).. 40

Chapter 3. Methodology... 42
3.1 Problem description and assumptions... 45
3.2 The extended disjunctive graph and mathematical formulation 47
3.3 Optimization Approach:.. 53
3.4 Heuristic approach .. 57

3.4.1 Modified shifting bottleneck procedure (MSBP) 58
3.4.2 Efficient shifting bottleneck procedure (ESBP) 67
3.4.3 Efficient shifting bottleneck procedure + Rolling horizon procedure (RHP)
 69

3.5 Dispatching rules .. 72
Chapter 4. Computational Results .. 77

4.1 Design of Experiments.. 78
4.2 Performance Measures and Computational Results ... 80
4.3 Computational results for optimization methods.. 82
4.4 Computational results for dispatching rules: .. 86
4.5 Computational results for heuristic approach 1 – Modified shifting bottleneck
procedure (MSBP) : .. 89
4.6 Computational results for heuristic approach 2 – Efficient shifting bottleneck
procedure (ESBP) : ... 99
4.7 Computational results: ESBP vs. MSBP vs. Dispatching rules...................... 112
4.8 Computational results for RHP :... 115
4.9 Recommendations for choosing appropriated methods:................................. 118

Chapter 5. Future research directions ... 119
5.1 Dynamic assembly job shop scheduling problems with components availability
constraints ... 119
5.2 The effect of different approaches on the overall performance of a production
system 122
5.3 Other future research and directions ... 123

 vi

Chapter 6. Conclusions... 125
Reference .. 127
Appendix A. Example of Input data format – 5 jobs, 5 machines and 5 components... 133
Appendix B. Source Code of Xpress-MP Model – MIP .. 135
Appendix C. Source Code of Xpress-MP Model – MSBP.. 141
Appendix D. Source Code of Xpress-MP Model – ESBP.. 180

 vii

List of Tables
Table 2.1 Classification for relevant studies:.. 19
Table 3.1 The summary of shifting bottleneck procedures for assembly job shop
scheduling problem... 44
Table 3.2 Notation of the assembly job shop scheduling problem.................................. 52
Table 3.3 Notation of the assembly job shop scheduling problem................................... 54
Table 3.4 The description of MSBP methods... 62
Table 3.5 The description of ESBP methods ... 69
Table 3.6 The summary of dispatching rules.. 76
Table 4.1 Experimental design for randomly generated test problems 80
Table 4.2 Experimental design for randomly generated test problems – Optimization
methods ... 83
Table 4.3 Computational results for optimization methods.. 85
Table 4.4 Experimental design for randomly generated test problems – Dispatching rules
... 87
Table 4.5 Computational results for dispatching rules ... 87
Table 4.6 Experimental design for randomly generated test problems – MSBP.............. 90
Table 4.7 The summary of SB3 methods and dispatching rule used in this experiments 92
Table 4.8 Computational results for SB3 methods ... 93
Table 4.9 The summary of SB4 methods and dispatching rule used in this experiments 95
Table 4.10 Computational results for SB4 methods ... 96
Table 4.11 Computational results for MSBP methods ... 98
Table 4.12 Experimental design for randomly generated test problems - ESBP............ 100
Table 4.13 The summary of ESBP1 methods used in this experiments 102
Table 4.14 Computational results for ESBP1 methods .. 103
Table 4.15 The summary of ESBP2 methods used in this experiments 105
Table 4.16 Computational results for ESBP2 methods .. 106
Table 4.17 The description of ESBP3 methods used in this experiments 108
Table 4.18 Computational results for ESBP3 methods .. 109
Table 4.19 Computational results for ESBP methods .. 111
Table 4.20 Computational results for ESBP vs. MSBP.. 114
Table 4.21 Experimental design for randomly generated test problems –RHP.............. 116
Table 4.22 Computational results for RHP – CPU(H) ... 117
Table 4.23 Computational results for RHP – TWT(H)... 117
Table 5.1 Notation of dynamic assembly job shop scheduling problems....................... 121

 viii

List of Figures
Figure 1.1 Example of different product structures .. 11
Figure 2.1 Example of the disjunctive graph G .. 36
Figure 3.1 Example for product structures of assembly job .. 46
Figure 3.2 A example of a disjunctive graph for assembly job shop scheduling with
component availability constraints ... 49
Figure 3.3 Figure 3.3 Mathematical formulation for assembly job shop scheduling
problems.. 54
Figure 4.1 CPU(H) and TWT(H) for optimization methods .. 86
Figure 4.2 TWT(H) – Mean and SD for dispatching rules ... 89
Figure 4.3 CPU(H) and TWT(H) for MSBP methods.. 99
Figure 4.4 CPU(H) and TWT(H) for ESBP methods ... 112
Figure 4.5 CPU(H) and TWT(H) for MSBP vs. ESBP .. 115
Figure 4.6 Decision tree to choose appropriated methods.. 118

 ix

Abstract

Job shop scheduling has been widely studied for several decades. In generalized

of the job shop scheduling problem, n jobs are to be processed on m machines under

specific routings and due dates. The majority of job shop scheduling research

concentrates on manufacturing environments processing string-type jobs with a linear

routing where no assembly operations are involved. However, many manufacturing

environments produce complex products with multi-level assembly job structures and

cannot be scheduled efficiently with existing job shop scheduling techniques. Little

research has been done in the area of assembly job shop scheduling, and we are not aware

any of those studies consider on the availability of purchased components and the impact

of component availability on the performance of assembly job shops. This research

focuses on scheduling job shops that process jobs requiring multiple-levels of assembly

and it also considers the availability of components that are procured from outside

suppliers. By considering material constraints during production scheduling,

manufacturers can increase resource utilization and improve due date performance.

To represent assembly job shop scheduling problems with component availability

constraints, a modified disjunctive graph formulation is developed in this research. A

mixed-integer programming model with the objective of minimizing the total weighted-

tardiness is also developed in this research. Several heuristic methods, described as

modified shifting bottleneck procedure (MSBP), efficient shifting bottleneck procedure

(ESBP) and rolling horizon procedure (RHP), are proposed to reduce the computational

time required for assembly job shop scheduling problems. These methods are extended

from the shifting bottleneck procedure. The performance of various flavors of the MSBP

 x

and ESBP is demonstrated on a set of test instances and compared with different

dispatching rules that are widely used in practice. Results show that MSBP and ESBP

outperform the dispatching rules by 18% to 16% on average.

This dissertation not only studies the assembly job shop scheduling problem with

component availability constraints, but also demonstrates how the decomposition

methodology can reduce the complexity of NP-hard problems. Based on the relative

preference of solution quality and computational time, recommendations for appropriate

methods to solve assembly job shop scheduling problems with different problem sizes are

given in the conclusions of this dissertation.

 1

Chapter 1. Introduction

Globally competition is getting intensive in past few decades. To compete with

other companies globally, manufacturers not only need to quote shorter lead time to

customers, but also keep delivery promises to them. To allocate limited resources

efficiently, production scheduling play an important role in manufacturing environments.

Thus, job shop scheduling has been one of most complicated production scheduling

problems being studied for researchers. This dissertation focuses on the assembly job

shop scheduling problem which is a special case of the job shop scheduling problem. In

an assembly job-shop, a job is not only spending time on machines queue, but is also

waiting for assemblies, sub-assemblies and components which are necessary to form a

final product. Unlike other literatures in assembly job shop scheduling, we assume that

components can not be manufactured in-house and have to be procured from vendor

outside. This makes the assembly job shop scheduling problem with component

availability constraints a problem that can not be resolved by existing job shop

scheduling techniques. The research motivation is described in the next section and

follows by research overview summarizing the related literatures in the past. Then, the

summary of methodologies used in this dissertation is outlined in the next section. Finally,

the contributions and organization of this dissertation is illustrated in the end of chapter.

1.1 Research Motivation

Most of the past literatures in job shops scheduling problems concentrated on shop

models processing string-type jobs (Adam et al., 1987) with a linear routing where no

 2

assembly operations are performed. However, in the real world, jobs in a typical

manufacturing environment often require assembly operations which parallel components

that have to be processed and assembled together through the shop. It is common that

many manufacturing environments are assembly systems, such as auto and electronics

companies. Scheduling with string-type jobs, which involves only one type of job delay,

is much simpler than scheduling with assembly-type jobs because of different degrees of

job delays. There are some unique problems that only happen when scheduling with

assembly-type jobs. In job shop scheduling with string type jobs, job delays are primarily

due to capacity constraints, such as the lack of available resources which are necessary to

perform operations. However, scheduling in assembly job shops requires not only

consideration of capacity constraints but also assembly (precedence) constraints which an

item may need to wait for its parallel components before performing assembly operations.

If one of its parallel components is not available, the assembly operation will not perform

until all components become available, even resources (machines) are ready at that time.

In other words, assembly, sub-assembly and components belonging to the same job are

extremely dependent on each other compared to the string-type job. Hence, job delays in

an assembly job shop may occur due to the lack of production capacity or the lack of

components which are necessary to form an assembly or sub-assembly. It makes the

assembly job shop scheduling problem becomes the most difficult problem in job shop

scheduling.

Moreover, in some industries, material constraints are more intensive than

capacity constraints. According to Karmarkar and Ramakrishnan (1996), Computerworld

(March 29, 1993) reported that IBM’s $ 1 billion backlog for its ThinkPad 700 line of

 3

notebook computers can be partly attributed to the shortage of, literally, “a nickel part”.

This report shows what the severe damages due to the material shortages can do to a

multi-billion dollars company. To avoid the unexpected delays on shipments,

manufacturers must keep enough materials on hand to meet the schedules for final

products. Hence, companies can maintain a substantial level of inventory to avoid the late

delivery due to material shortage. However, inventories are the tangible assets of a

company and holding excess inventory will lead to a low return on investment (ROI).

Holding a substantial level of inventory to relax the material constraints is the worst

solution for manufacturers. Additionally, the availability of materials is usually fixed in

short-range production plans due to long vendor lead times. Thus, material shortage may

occur easily once the demand increases rapidly. How to provide a best level of customer

service at minimum inventory costs becomes an essential problem for manufacturers. To

accomplish these tasks successfully, manufacturers need to consider the availability of

materials during scheduling. Musselman and Uzsoy (2001) state that it is an important

advantage that material and capacity are considered simultaneously as elements that may

constrain production to ensure that the material plan is in agreement with capacity

schedule to avoid the potential violations.

Over the past decades, cost-effective production continues to play a critical role for

manufacturers to survive in global competition. Companies have to quote shorter lead

times (delivery times) to customers and fulfill these orders as promised. Failure to meet

the customer due date may result in the loss of future business. In practice, how to

classify high margin orders and satisfy these customers becomes important to the growth

of a company because these customers can bring more profit to manufacturers than others

 4

in the same resource utilization. How to allocate available resources to production

activities efficiently becomes an important issue to a production system. These resource

allocation problems can be addressed as production scheduling problems and the job shop

scheduling problem is one of the most complicated problems in production scheduling.

Due to the lack of computational power in past decades, the conventional resource

allocation methods aggregate the requirements into different appropriate buckets to

reduce the computational time. Although the bucket approach reduces the complexity of

the problem, it also sacrifices accuracy. In addition, these methods sometimes ignore

order priority and use a fixed lead time to account for the capacity constraints. These

methods generate inaccurate required times and could cause the delay of high priority

orders. To improve the accuracy of conventional resource allocation methods, most

research on the resource allocation problem formulates production problems as a mixed

integer programming model and combines with relaxation techniques to reduce the

computational effort. But these approaches are not scalable and hence, are not efficient in

a production environment. Additionally, capacity requirements are still approximated in

these relaxation models.

It is interesting to study the scheduling problems to satisfy both the capacity

schedules and material plans in an assembly job shop at the same time. It is also

important to distinguish different classes of customers in order to satisfy high margin

orders for future business. By doing so, manufacturers can attain the better due date

performance and have higher margin in the same resource utilization. However, assembly

job shop scheduling problems without component availability constraints have been

known as NP-hard problems. To capable of solving large scale problems in practice, it

 5

would be a challenging to develop efficient algorithms that can not only find feasible

solutions, but also obtain acceptable solutions which are close to optima in a reasonable

amount of time.

1.2 Research Overview

Production scheduling problems have been studied widely for past decades. In a

broader view, the definition of production scheduling is the assignment of scarce

production resources to competing activities over time in order to optimize certain

performance criteria (Musselman and Uzsoy, 2001). There are three well-studied shop

models in production scheduling, which are flow shop, job shop and open shop problems.

In open shop problems, operations of a job can be performed in any order through the

shop. In job shop problems, operations have to be processed in specific orders through

the shop as stated on a predetermined routings. The flow shop problem is a special case

of job shop problems because each job follows the same route through the shop. In this

dissertation, we are only interested in job shop scheduling problems which is one of the

most difficult combinatorial optimization problems and widely studied production

scheduling problem.

In a job-shop, jobs must be processed on machines in a specified order to meet the

due date. When there are only one or two machine types with one machine of each

machine type, the makespan can be minimized using Johnson's algorithm (Johnson,

1954). However, a job shop with ten jobs and ten machines cannot usually be scheduled

optimally (Adams et al., 1988). However, when there are more than two machines, the

problem becomes strongly NP-hard.

 6

 Thus, attempts at developing optimization algorithms have focused on the

variations of the branch-and-bound approach. While these methods assure optimality,

they are impractical because of intensive computational requirements for large problems.

Thus, much effort has been given to develop heuristics that can find solutions that are

close to optimal in a reasonable amount of time. Dispatching rules are the most

commonly used techniques in job shop scheduling in practice. They have fast

computational times and are easy to implement, but they may perform poorly in the long

run. Thus, heuristics have been researched that can find improved solutions at a cost of

increased computational time, such as the shifting bottleneck procedure (Adams et al.

1988).

Although job shop scheduling is one of the most common problems in production

systems, it is very complex and a strong NP-hard problem. To avoid the intensive

computational time to solve large instances, it is reasonable to divide the original problem

into several small subproblems which can be solved efficiently and still be able to

achieve good solutions. The idea of shifting bottleneck procedure (Adams et al., 1988) is

to breakdown the job-shop scheduling problem into numerous single-machine

subproblems which can be solved sequentially based on a subproblem criticality and use

a disjunctive graph to present operations precedence constraints and reflect machine

sequence decisions. Adams et al. (1988) showed that, compared to the best priority

dispatching rules, the shifting bottleneck procedure determined much lower and often

optimal makespans. They solved the famous 10 job-10 machine problem of Muth and

Thompson (1963) to optimality using the shifting bottleneck procedure with enumeration

(SBII method) in 320 seconds. Adams et al. (1988) also used dispatching rules, the

 7

shifting bottleneck procedure without enumeration (SBI), and SBII to solve 40 other test

problems. In 38 of the problems, SBI found solutions superior to the best solutions found

by dispatching rules, while the running time was about the same. In addition, SBII

usually found solutions that were considerably better than solutions found by SBI.

 Most of the past research concentrated on job shop scheduling problems with

string-type jobs to simplify the problems as discussed above, even assembly operations

are very common in manufacturing environments today. In an assembly job shop, there

are two types of job delays to be considered during scheduling. One is caused by the

availability of machine capacity and another one is due to the lack of assembly or sub-

assembly items which are needed in parallel before starting assembly operations. It is

undoubted that the assembly job shop scheduling problem is one of the most difficult

production scheduling problems. Most literatures tends to use dispatching rules to solve

the assembly job shop scheduling problems. Some of them also studied the impact of

different job structures on the overall performance in an assembly job shop. Maxwell

and Mehea (1968) test the performance of several dispatching rules and concluded that

use the composite priority rules can achieve the best performance in assembly job shop.

Russell and Taylor (1985) found that the dispatching rules, which produce good solutions

in simple job shops, are not appropriate for an assembly job shop. They also concluded

that the job structures do affect the performance of dispatching rules significantly. Fry et.

al. (1989) evaluated the performance of numerous dispatching rules and concluded that

due-date oriented dispatching rules perform better than other dispatching rules. They also

studied the effect of stage delays on the performance due to different job structures. They

figured that taller-structured BOM (Bill-of-Materials) produces more tardy jobs than

 8

shorter-structured BOM because taller-structured BOM has more chances to create stage

delays. There are some new dispatching rules developed by researches to work on

assembly job shop in past years. Philipoom et al. (1991) introduced a new set of

sequencing rules which incorporate important ratio (IR) based on the remaining number

of operations on a particular branch to the one on the longest path to job completion.

Reeja and Rajendran (2000) created a new dispatching rules based on “operation

synchronization rules”.

Dispatching rules had been studied intensively in assembly job shop scheduling

problems. Only limited number of researches uses different methodologies, such as

mathematical formulations, to solve assembly job shop scheduling problems. Park and

Kim (1999) created a non-linear mathematical model for an assembly job shop

scheduling problems under due date constraints. Park and Kim (2000) extended their

previous research and created a mixed-integer programming model with lagrangian

relaxation method to solve the same problem. Pathumnkul and Egbelu (2006) also

studied the scheduling problems with objective of minimizing the weighed earliness

penalty in an assembly job shop. A heuristics algorithm was created to reduce the

complexity of the problems.

Although some articles on assembly job shop scheduling problems have been

published, we are not aware of any literature related to assembly job shop scheduling

problems with component availability. In an assembly job-shop, the operations of a job

are performed both in series and parallel as defined by precedence relations. The

operations are not only waiting for resources but also waiting for parallel components

which belonging to the same assembly or sub-assembly. However, most of researches

 9

assumed components required to make a product always arrive before the release of jobs

or there are unlimited quantities of components on hand. In other words, materials are

always available at the start of the first operation of a job and there are no material

constraints in their models. However, there are many industries tends to material

intensive in their manufacturing environments. Thus, material and capacity should be

considered simultaneously to achieve the best performance when making scheduling

decisions (Musselman and Uzsoy, 2001). Unlike other researches in assembly job shop

scheduling, this dissertation is not only studying on the assembly job shop scheduling,

but also brings attention to the availability of components which required to assembly for

final products. We assume the availability of components is dependent on deliveries

made by vendors based on different arrival times and the quantities of components may

not be sufficient for all jobs in the beginning. It means that the assembly operations in the

lowest level of the BOM (bill of materials) are not only waiting for parallel components

but also the arrival of components from suppliers. If a component does not have

sufficient quantity on hand, a job’s completion time will be delayed and the due date will

be missed even there is an infinite capacity in the production system. It is important to

have the capacity schedules which are in agreement with material plans to reduce total

tardiness of all orders in an assembly job shop.

1.3 Research Summary

The assembly job shop studied in this dissertation consists of m machines and n

jobs. Each machine is unique and can only process one job at a time. Each job has to

process by the specific machines through the shop as stated on predetermined routing. A

 10

job represents an order for a final product which requested by customers. The due date,

priority and operation time for each job are known in advance. Unlike conventional job

shop with string-type jobs, a final product in an assembly consists of assemblies, sub-

assemblies and components based on its Bill-Of-Materials (BOM) structure. The quantity

of assemblies, subassemblies and components needed to form a final product can be

computed according to its BOM. In most assembly job shop scheduling problems, it

assumes that components are produced in-house or no components needed at all. But

there is a different assumption for assembly job shop models in this dissertation, which is

components can not be manufactured in-house and need to be purchased from outside

suppliers. A job can not be processed if there are insufficient quantities of components.

An example for different product structures is shown in Figure 1.1.

The demands for final products are known in advance. Thus, the arrival time and

quantities of components from outside vendors is also deterministic. In addition, all jobs

are ready to process in the beginning but there is no inventory in an assembly job shop.

Once a job allocates necessary components to form a subassembly or an assembly, it is

ready to be processed by specific machines according to its routing. However, there could

be more than one job to request the same components or specific machines. If these

resources utilization are tight, a decision must be made to allocate limited resources to

most urgent jobs first to avoiding miss their due dates. The goal of assembly job shop

scheduling problems in this dissertation is to schedule all jobs and complete them before

their due dates under resources constraints. Failure to meet these due dates will result in

penalties and the loss of future business. To measure the performance related to due dates

 11

and the importance of customer orders, the objective function of the assembly job shop

scheduling problem is to minimize the total weighted tardiness of all jobs.

Figure 1.1 Example of different product structures

This dissertation intends to achiever two objectives. First, unlike traditional

assembly job shop scheduling, it is interesting to study the scheduling problems to satisfy

both the capacity constraints within machines and the material constraints between

different components in an assembly job shop. This work can help manufactures make

better decisions on production scheduling and improve the due date performance. Second,

although assembly job shop scheduling is common in practice, it is intrinsically a NP-

 12

hard problem when solving by optimization methods. Most of the current research uses

dispatching rules to solve assembly job shop scheduling to reduce its complexity.

However, these dispatching rules are myopic and lack the ability to consider the broader

view of the entire problem. Solutions obtained from dispatching rules cannot compare

with the solutions obtained from the optimization method. While optimization methods

assure optimality, they are impractical because of intensive computational requirements

for large problems. Dispatching rules avoid computational difficulties, but they are

doubtful to provide good solutions. Based on the consideration of solution quality and

computational time, it is reasonable to develop efficient algorithms that can find

acceptable solutions which are close to optimal solutions in a limited amount of

computational efforts.

A generic assembly job shop scheduling problem with component availability

constraints is formulated as a mixed-integer programming model and solved by using

commercial optimization software. The objective function of our models is to minimize

the total weighted tardiness, which designs to measure due date performance. The

optimization approach here not only provides a lower bound compared to the

performance of heuristic techniques, but also applies to real-world problems if the

computational time is acceptable. Several scalable and computationally efficient

heuristics are also developed based on the shifting bottleneck procedure concept to allow

trade-offs between the computation time and the solution quality. The original shifting

bottleneck procedure (Adams et al. 1988) was designed to solve the job shop scheduling

problem with scheduling a single machine of each machine type to minimize makespan.

However, it is common to have an assembly system in many manufacturing

 13

environments and existing job shop scheduling techniques are not suitable for them. In

this dissertation, the shifting bottleneck procedure is extended to solve the assembly job

shop scheduling problem with component availability constraints.

The modified shifting bottleneck procedure (MSBP) is to decompose the original

problem into numerous different subproblems which present material plans for

components or capacity schedules for machines. The extended disjunctive graph is used

to describe the relation between different jobs. After solving each subproblem, machine

schedules or material plans are updated iteratively until the whole problem being solved.

By doing so, it is able to reduce the complexity of the original problem and keep

solutions at acceptable levels. Additionally, subproblems can be solved by dispatching

rules or efficient algorithms to reduce the computational times. Based on the degree of

solution accuracy obtained from subproblems, there are four MSBP methods developed

in this research.

However, the computational time may still grow exponentially for MSBP as the

size of problems increases. Because the total number of subproblems required in MSBP

and the computational times needed to solve a subproblem are extremely large. To reduce

the computational efforts, we introduce the efficient shifting bottleneck procedure

(ESBP), where bottleneck resource selection procedure is avoided and re-optimization

procedure is constrained to only few iterations. It designs to reduce the total number of

subproblems to be involved in whole shifting bottleneck procedure and also provides

acceptable solutions within realistic computational effort. By constraining the total

number of subproblems, ESBP is suited for solving assembly job shop scheduling

 14

problems in practice. Moreover, based on the degree of solution accuracy, there are three

ESBP methods developed in this dissertation.

Although ESBP reduces the total number of subproblems involved to solve the

assembly job shop scheduling problem, the size of subproblem is still not constrained

properly. This means that computational times required to solve subproblems could grow

exponentially as the size of subproblems increase. To capable of solving realistic

problems, it is necessary to reduce the complex of subproblem. The rolling horizon

procedure (RHP), which implemented the rolling horizon procedure to solve subproblems,

is designed to constrain the size of subproblems. By applying RHP in each subproblem, it

divides the subproblem into numerous time windows and each time window contains the

total number of operations can be optimized independently within a short computational

efforts. By doing this, the complexity of overall problem will be restricted in an accepted

level.

Additionally, a set of test problems are used to verify the performance of

optimization and the effectiveness of heuristics approaches and demonstrate the impact of

the assembly job shop scheduling on the due date performance of a production system.

1.4 Contribution

 The benefits of the research in the assembly job shop scheduling problems with

component availability constraints are summarized as follows:

 (1). This research extends the study of assembly job shop scheduling problems

with component availability constraints.

 15

(2). The modified disjunctive graph is developed to represent the assembly job

shop model with consideration of components purchased from outside vendors.

 (3). The mathematical formulation is created to represent the assembly job shop

model.

(4). Four different approaches, which address the different degree of scalability, to

solve the assembly job shop scheduling problems with component availability constraints,

included MSBP, ESBP, RHP and dispatching rules.

(5). All approaches are coded in commercial mathematical modeling and

optimization software XPRESS-MP. Numerous experiments are carried out to evaluate

the performance of proposed approaches.

(6). This dissertation demonstrates how the decomposition methodology can

reduce the complexity of NP-hard scheduling problems.

(7). The mathematical formulation is formed to represent the dynamic assembly

job shop with component availability constraints.

1.5 Organization

This dissertation is organized into six chapters. The first chapter describes the

statements of problems and the overview of general approaches related to the problem.

The contribution of this research is also addressed in this chapter. Then, it is followed by

the organizations of this dissertation. The rest of the dissertation is organized as follows:

Chapter 2 reviews the relevant literature on assembly job shop scheduling with

component availability constraints; Chapter 3 describes a mixed-integer programming

model for the assembly job shop. The optimization approach and several heuristics based

 16

on the concept of the shifting bottleneck procedure are introduced to solve assembly job

shop problems; Chapter 4 outlines the details of experiments and demonstrates the

computational results of our methodologies. Future research directions are given in

Chapter 5 and finally, conclusions are discussed in Chapter 6.

 17

Chapter 2. Literature Review

 Scheduling is a decision-making process that is used daily as an instruction to

perform certain activities in many organizations. The functionality of scheduling is to

allocate limited resources to complete given tasks (or activities) over time in order to

optimize the performance of a system (Pinedo, 2005). This dissertation focuses on the

scheduling problems in manufacturing environments, which are referred to as the

production scheduling problem. In production scheduling problems, resources could be

machines, tooling, components or labor. Activities are operations, setups or transportation.

The purpose of production scheduling is to schedule jobs and control their flow through a

production process efficiently. A schedule for a production system should contain a set of

operations with start times and machine assignments for each operation of all jobs to be

scheduled. Each activity may have a due date which could be committed externally or

internally. Moreover, to address the importance of an activity, each activity may have a

priority level and can be used to expedite high priority jobs through the production

process.

On time delivery and short customer lead times are important to keep future

business. They are much easier to achieve if resource utilization is very low and

inventory level is always enormous. However, manufacturers expect to have high

resource utilization and low inventory level to survive in today’s global competitive

business environments. It is hard to achieve the high utilization and keep delivery

promises at the same time. Furthermore, the performance measures of a production

system usually set to maximize the utilization of resources, minimize cycle time, reduce

system WIP or lower tardy ratio. But, it is impossible to satisfy all of the above objectives

 18

unless manufacturers have unlimited resources, which is impractical in today’s

manufacturing environments. To increase the effectiveness of the production system, the

ability to allocate critical resources to production activities efficiently becomes a key

concern for manufacturers.

In addition, the production schedule also provides visibility for possible conflicts

between critical resources in the future. It allows manufacturers to identify criticality of

production resources (capacity, materials, labors and so on) in advance and balance them

to avoid further delay on delivery. All of the above reasons make production scheduling

an important tool in today’s manufacturing environments. Moreover, more research

agrees that in addition to the classical scheduling problem, decisions such as order release,

due date quotation and lot sizing are related closely to the production scheduling problem

(K. Kempf et al., 2000).

Job shop scheduling is one of most complicated production scheduling problems

in practice. In this chapter, we will first review the related research on the job shop

scheduling problem and then extend it to the assembly job shop scheduling problem

which involves jobs with assembly operations in their product structure. We will also

provide a review on various scheduling techniques which are used to solve job shop

scheduling problems, such as shifting bottleneck procedures (Adams et al., 1988). In the

following section, a short review on component availability problems in job shop

scheduling is also given as shown in Table 2.1.

 19

Table 2.1 Classification for relevant studies:

Class Related Research

Classical job shop

scheduling

Cheng and Cupta (1989), Lawler et al. (1993), Adams et

al. (1988), Pinedo (2006)

Assembly job shop

scheduling

Conway and Maxwell (1962), Maxwell and Mehea (1968),

Russell and Taylor (1985), Elvers and Treleven (1985),

Adam et al. (1987), Fry et al. (1989), Philipoom et al.

(1991), Reeja and Rajendran (2000) , Park and Kim

(1999) , Park and Kim (2000), Pathumnakul and Egbelu

(2006)

Component availability Tang (1988), Luss and Smith (1988), Klein et al. (1994),

Klein et al. (1994) , Guide and Srivastava (2000) ,

Karmarker and Nambimadom (1996), Kolisch (2000) ,

Balakrishnan and Geunes (2000), Klein et al. (1995)

Shifting bottleneck

procedure

Chen et al. (2006) , Adams et al. (1988), Ovacik and Uzsoy

(1997) , Uzsoy and Wang (2000) , Demirkol et al. (1997)

 20

2.1 Classical Job Shop Scheduling

The production scheduling problem has received great attention from researchers

in past decades. According to Cheng and Gupta (1989), the scheduling problem can be

classified as static vs. dynamic, deterministic vs. stochastic, single-product vs. multi-

product, single-processor vs. multi-processor facilities and theory vs. practice. In the

static job shop model, all jobs are available to process at the same starting time. In the

dynamic job shop model, the number of jobs available for processing varies over time,

jobs continually enter and leave the production system in a random manner governed by

some probabilistic laws. This dissertation focuses on a static, deterministic, multi-product

production scheduling problem.

The problem of production scheduling involves the allocation of limited resources

to perform given tasks over time to optimize the performance of a system. Job shop

scheduling is one of the most classical and complicated scheduling problems. The job

shop scheduling problem concerns the allocation of n jobs to m machines and each job

follows a predetermined routing through the shop. There are three approaches for solving

job shop-scheduling problems: dispatching rules, combinational optimization, local

search and constraints programming. Optimization approaches include the branch and

bound method, the lagrangian relaxation based method and the dynamic programming

method to provide an optimal solution, but they are only capable of solving small-sized

problems and require enormous amounts of computational time. In job shop, each job has

a different order to visit specific machines with different operation times as stated on the

routing. Since every job has a different routing, there is up to n! sequences for each

machine and nm! possible solutions if each job visits every machine once. Not all of them

 21

are feasible and it is impracticable to test all possible sequences within a reasonable

computational time. Hence, finding a good solution for the job shop scheduling problem

is very difficult in large scale instances. Conflicts with constraints arise frequently

especially in the allocation of critical resources. To overcome this, research tends to

develop heuristic algorithms to identify possible sequences and provide acceptable

solutions with reasonable computational efforts. The dispatching rule is used to prioritize

the jobs which are waiting in the machine queue and choose the one with highest value to

process. The dispatching rule is widely used in practice because it produces feasible

solutions for large scale instances within acceptable computational time. Moreover,

production systems in real world are always stochastic. Machines can be broken at any

moment and components are not always available. In this dissertation, we consider the

availability of components and present an algorithm performing in situations encountered

large instances in practice.

The job shop scheduling problem (JSP) is a class of combinational optimization

problems known as NP-hard one. In the last decades, many researchers have become

interested in such problems and job shop scheduling problem was received significant

attentions because it determines jobs sequences and resources utilization in production

planning. In a classical job shop scheduling problem, there are n jobs available to be

processed on m machines. Each job has a predetermined routing which contains

operations to direct the order through he shop in a specific order. Each operation has its

own processing time and required machine. Moreover, each job has restrictions on

release time and due date which are set externally by production planner or customers.

An earliness or tardiness penalty may be incurred if a job has been completed early or

 22

late. The objective of the job shop scheduling problem is to identify the job sequences on

machines in order to optimize the performance of the production system, which includes

maximizing resources utilization, minimizing lead times, minimizing work in process,

minimizing makespan or minimizing order tardiness.

There are many different objectives on job shop scheduling problems. Following

the three-field notation as described by Lawler et al. (1993), we shall refer to the job-

shop scheduling problem of minimizing makespan as J//Cmax, and that of minimizing

maximum lateness as J//L max. Adams et al. (1988) define the job shop scheduling

problem of minimizing makespan as follows. Let N represent the set of operations with

operations S and T representing the dummy operations “start” and “finish” operations.

Let M represent the set of machines. Let A denote the set of pairs of operations

constrained by precedence relations representing the condition that the sequence of

machines is prescribed for each job. Let Ek represent the set of pairs of operations to be

performed on machine k with non-overlapping durations. Hence, each machine can only

process one job at any given time. Let pi and ti represent the processing time and start

time of operation i, respectively. The minimum makespan job-shop scheduling problem

can be modeled as:

 min tT

 tj – ti ≥ pi, (i, j) ∈ A,

 ti ≥ 0, i ∈ N,

 tj – ti ≥ pi ∨ ti – tj ≥ pj, (i, j) ∈ Ek, k ∈ M. (P)

A feasible solution to (P) is called a schedule. The first constraint ensures the

operations sequence of a job following a predetermined order as stated in job routings.

 23

The second constraint assures the start time of operations cannot be negative. The third

constraint guarantees no two operations can be processed at the same time. Moreover, the

first constraint can be referred as precedence constraint, second, as non-negativity

constraint and third, as capacity constraint or disjunctive constraint.

According to Pinedo (2006), we can classify the methodologies to solve job shop

scheduling problems as follows: (1) Optimization approach; (2) Heuristics approach; (3)

Constraint Programming.

(1). Optimization approach: A number of researchers have focused on exact solution

procedures to solve job shop scheduling problems optimally. These scheduling problems

are usually formulated as integer programming models and solved by various methods,

included branch and bound procedures, cutting plane methods and hybrid methods.

However, these scheduling problems are also referred to as NP-hard and the

computational time of the optimization methods grows exponentially in the worst case

when the size of problem instances increased. Hence, most optimization approaches are

only suitable for small problems practically. In addition, the largest instances that have

been solved to optimality are 20 jobs and 10 machines up-to-date.

(2) Heuristics approach: Extensive research has been studied on heuristics that can

produce near-optimal solutions with less computational times in the past decades. These

heuristics are referred as polynomial time algorithm. Heuristic approaches for job shop

scheduling problems can mainly be divided into two categories: constructive procedures

and local search procedures. The local search approaches are all based on neighborhood

 24

structures defining how to obtain a new solution from the current ones, such as tabu

search and simulated algorithm. Instead of trying to improve an initial solution using

moves in a given neighborhood, the constructive procedures build a schedule from

scratch by inserting unscheduled operations into a partial schedule until the schedule is

complete. Dispatching rules, which are extensively discussed in many literatures, are

widely used in practice. Whenever a machine becomes free, these rules examine the

currently available jobs and select the next job to be scheduled based on a priority index

derived from job and machine characteristics. The advantages of dispatching rules are

easy implementation and low computational burden. However, their myopic nature can

result in poor performance due to lack of consideration of the effects of local decisions on

the whole shop. Another well-known constructive procedure is the shifting bottleneck

procedure developed by Adams et al. (1988), which decomposes the original problem

into numerous subproblems and solves them iteratively. Shifting bottleneck procedure

will be discussed comprehensively in the following section.

(3). Constraint programming: Constraint programming was originally from the

constraint satisfaction problems which are required a search for feasible solutions which

satisfied all constraints. According to Pindeo (2006), constraint programming is not only

used to solve feasible solutions, but also used to solve optimization problems in the last

decade. These approaches include the Optimization Programming Language (OPL),

which designed for modeling and solving optimization models through both constraint

programming techniques and mathematical programming procedures.

 25

2.2 Assembly Job Shop Scheduling

Scheduling problems are generally very complex in nature, particularly in the case

of assembly job-shop scheduling where products with multiple components are

manufactured. This dissertation studies a multi-level assembly job shop scheduling in a

static make-to-order environment. An assembly job shop in this dissertation refers to a

shop that carries both processing and assembly operations where consumable resources

(assemblies, sub-assemblies or components) have to be assembled together and processed

by specific non-consumable resources as stated on job routings. A massive amount of

research has studied job shop scheduling problems with the assumption of simple string-

type jobs with a linear routing to simplify the problems over past decades. But most

products may require some assembly operations in industry. Moreover, there are more

shops processing multi-level assembly jobs than shops performing simple string-type jobs

in today’s manufacturing environment, particularly in electric industry. However,

literatures related to assembly job shop scheduling are somewhat limited.

In an assembly job shop, the operations of an item are not only performed in serial

following the precedence relationships, but are also carried out in parallel. In this context,

an item, a component, or a sub-assembly may need to wait for the components belonging

to the same item before the required assembly operations can take place. Moreover, a job

in an assembly job shop may not only spend time on the queue of non-consumable

resources, but may also wait for components which may carry out in parallel. To produce

a feasible schedule in an assembly job shop, one has to consider not only the capability of

non-consumable resources, but also the availability of consumable resources (assemblies,

sub-assemblies or components) as stated on job routings. This makes the scheduling

 26

problem in assembly job shop scheduling much more difficult than conventional job-shop

scheduling.

Conway and Maxwell (1962) showed that priority rules based on slack time

performed much better than the shortest processing rule (SPT) when shop loads were

relatively high. They demonstrated the need to coordinate or synchronize the completion

of the parts in the same job. There are several interesting points that must be mentioned

in the attempt to summarize the research on priority scheduling rules for job shops with

assembly operations. First, the number of studies reported is insignificant when compared

with those on priority rules for primary job is not appropriate for jobs with assembly

operations. This is because of the need to coordinate the completion time of related parts

and inability of SPT to achieve this.

Maxwell and Mehea (1968) tested the performance of several basic priority rules

and some composite rules in their experiments when multi-level “symmetric tree

structured” job structure is used. They concluded that the performance of the shop can be

improved if job structure is considered in the composite priority rules.

Russell and Taylor (1985) studied the impact of product structure on the

performance of sequencing rules. Two product structures were created to represent two

different product structures, one tall BOM and one flat BOM. Several sequencing rules

were evaluated by using a simulation analysis of a hypothetical assembly shop and

simulation results are analyzed via an ANOVA procedure that identifies major

differences in the results of several performance measures. In their study, they concluded

that the sequencing rule has a significant effect on the mean flow time, and root mean

square from tardiness of jobs completed by an assembly shop. Moreover, sequencing

 27

rules that excel in a simple job shop are not necessarily appropriate for an assembly shop.

Although the sequencing rule’s performance is affected by the structure of jobs processed,

the ranking of sequencing rules does not differ significantly under job structure.

Treleven and Elvers (1985) have shown that the routing pattern of jobs has no

significant impact on the relative effectiveness of various dispatching rules. Their study

concludes that if lateness criteria are considered most important, then earliest due date

and least slack per remaining number of operations dispatching rules are considered good

choices.

Adam et al. (1987) studied the priority rules for assembly job shops which

processed multiple-level assembly jobs. They classified the job lead time into two

components: flow time and job staging delays. They developed a set of priority rules

which the structural complexity of jobs can be incorporated explicitly to reduce the

staging delays. They concluded that the combined rules, such as a pacing rule in

conjunction with an acceleration rule, can improve the performance of lead time. Also

these combined rules also show a significant improvement over other priority rules if

higher levels of assembly jobs are involved.

Fry et al. (1989) studied the performance of priority dispatching rules on three

different product structures which are flat, tall and complex. In their experiments, a six-

machines assembly shop was simulated to evaluate the performance of fourteen

sequencing rules. Results indicate that taller-structured BOMs tend to have more tardy

orders than the flat BOMs because more staging delays are involved. Hence, due-date

oriented sequencing rules will perform better when product structures become taller.

Moreover, the SPT rule is not appropriate to use in an assembly job shop even though it

 28

performs better in a single-stage job shop. Also, they found no evidence that using the

operation due-date reduces order tardiness. They suggested that using specific sequencing

rules for certain product structures in an assembly shop is important to improve due date

performance.

Philipoom et al. (1991) proposed a new set of sequencing rules, called importance

ratio (IR). It is based on the ratio of the remaining number of operations on a particular

branch or path to job completion, to the remaining number of operations on the longest

path to job completion. In their study, importance ratio rules perform better on jobs with

higher levels of assembly. They also evaluated the performance of several sequencing

rules which incorporate multiple attributes of assembly job shop. In their experiments,

they concluded that it is not necessary to incorporate both attributes of job shop and

assembly shop scheduling into sequencing rules to achieve best performance.

Reeja and Rajendran (2000) studied the performance of dispatching rules on

assembly job shops. New dispatching rules based on “operation synchronization date”

were introduced and tested the performance on a simulation study. The results indicated

that new dispatching rules are superior to others in most performance measurements.

 Park and Kim (1999) developed a non-linear mathematical model for a production

planning problem in an assembly system with discrete time representation. In their model,

all jobs must be completed before their due date and the objective is to minimize the total

holding costs including work-in-process and final product inventory. A heuristic

algorithm based on a network model was also presented and used to generate a

production plan from downstream workstations to upstream workstations. In their

experiment, they concluded that performance of their algorithms was superior to

 29

commercial software and the backward finite-loading methods they tested. Park and Kim

(2000) also presented a mixed integer programming model with continuous time

representation to solve the same problem. A branch and bound algorithm based on a

lagrangian relaxation method is introduced and tested on a set of randomly generated

problems with a maximum number of products up to seven and the number of machines

equals to three. Results from their experiments demonstrated that the branch and bound

algorithm can find optimal solutions within reasonable computational time.

Pathumnakul and Egbelu (2006) studied the problem of minimizing the weighted

earliness penalty in assembly job shops. In their study, tardiness is not allowed and all

orders must be completed before due dates. A mathematical model based on continuous

time representation was presented and a heuristics algorithm based on several local

optimality properties was developed to reduce intensive computational time associated

with the problem. The performance of heuristics is closed to optimal solutions obtained

from 50 test problems with maximum number of machines and products up to five.

2.3 Assembly Job Shop Scheduling with component availability constraints

As mentioned in the previous section, research on job shop scheduling has

concentrated on the problems with simple string-type jobs. Few of them studied the job

shop scheduling problems with multi-level assembly operations. Most of them have an

assumption that all components are always available at the beginning of operations to

simplify problems. In other words, there are no insufficient components problems and

capacity constraints are major concerns in their models. However, to reduce the lead time

of orders, manufacturers may release partial orders to the shop floor before arrivals of all

 30

necessary components from outside suppliers. Thus, components from outside suppliers

could arrive late and rush orders could be released to the shop floor at any time. Only

considering capacity constraints in assembly job shop models may not be suitable for

manufacturers which tended to be material intensive.

Most famous material allocation example in practice is Material Requirement

Planning (MRP). MRP was designed to plan and control flows of materials and provide

valid order due dates for production systems. MRP provides components priorities in the

form of component due dates by offsetting component gross requirements by expected

lead times. Once manufacturing jobs are ready to be released to the shop floor, order

release function in MRP will allocate available components to manufacturing jobs. When

a conflict arises between different manufacturing jobs, the order release function will

decide which manufacturing jobs are released to the shop floor and which ones remain

staying in the job pool until the arrival of components in the future. By doing so,

manufacturers only need to deal with capacity constraints in production scheduling

problems. However, the fixed-lead time assumption of MRP tends to make the schedule

inaccurate. Changes on demand frequently in current business environment will cause the

disruption of production schedules generated by MRP. Thus, poor schedules will result in

inappropriate delivery from outside suppliers. If supplier deliveries are too early, it causes

too much materials inventory. If they arrive behind schedule, production lines will be half

due to insufficient quantities of inventory. To overcome these drawbacks, a new

scheduling approach, called Advanced Planning and Scheduling (APS), generates

schedules that consider both material and capacity simultaneously as elements that may

constrain production (Musselman and Uzsoy, 2001). This ensures that the material plan is

 31

in agreement with capacity schedule. In this section, we review the research which

related to resource allocation problems.

The resource allocation problem has been studied in different fields, such as

supply chain management, logistics and store space design. Tang (1988) describes a

nonsimplex-based integer algorithm to solve a max-min allocation model to optima. The

original problem is decomposed into subproblems and the optimal solution is obtained by

literately solving a set of subproblems. It is clear that the computational time of his

algorithm depends on how fast subproblems can be solved optimally. Other researchers

have studied max-min problems in the past. However, Tang (1988) is one of few

researchers to apply max-min allocation models to manufacturing problems, such as

storage space allocation, line balance, production quantity allocation and raw material

allocation problems. Luss and Smith (1988) describe a minimax approach to solve

multiperiod allocation problems on electronic assembly industry. The objective function

of their model is to minimize the maximum weighted deviation of cumulative activity

levels (jobs) from the cumulative demands. That is, their model allocates resources

(electronic components) to activities (jobs) over a multiperiod and minimizes the

percentage of incomplete jobs. Their objective is capable of solving large problems very

quickly. Klein et al. (1994) describe resource allocation models for the electronic

assembly industry and solve those using relaxation-based approaches. They also integrate

the component substitution constraints into their models. Although their models can be

applied to manufacturing resource allocation problems, they are still too simple to apply

in practice due to single-level BOM and single material structure assumptions.

 32

Guide and Srivastava (2000) survey the recent techniques that deal with the

uncertainty in material requirements. Those methodologies include lead time setting, the

choice of lot-size and shop floor control. Some researchers suggest carrying safety stock

to deal with quantity uncertainty and safety lead-time against timing uncertainty.

Karmarker and Nambimadom (1996) propose a formal model for the material

allocation problem in MRP. In their paper, they address the flaws in the material

allocation function of MRP, such as the simple due-date sequence allocation rule and lack

of priority issue. They use the lagrange relaxation technique to solve this problem and

provide a lower bound on the optimal solutions. They also develop four heuristics based

on modified MRP logic to achieve shorter computational time for large scale problems.

Moreover, an improvement procedure is also designed to decrease tardiness. The

objective of these models is to minimize penalties of late orders. Their models consider

multi-BOM structures. In their experiments, the Lagrangian relaxation heuristic performs

5% to 10% worse than the optimal solution. The best modified MRP logic heuristic

reduced cost by 25% to 40% compared to MRP. It is noted that the computational time of

Lagrangian relaxation heuristic is about 50 times longer than that of MRP.

Kolisch (2000) describes a mixed integer programming model to solve assembly

scheduling problems in a make-to-order (MTO) environment. In his model, jobs are

scheduled based on capacity, assembly spaces, parts availability and jobs precedence

constraints. The objective function is to minimize the total tardiness of orders. Due to the

excess computational time, a list-scheduling heuristic is proposed in his paper as well. It

is worth noting that the part assignment problem in this paper is solved as a transportation

problem.

 33

Balakrishnan and Geunes (2000) propose a dynamic requirement planning model

with BOM flexibility based on mixed-integer programming. The BOM-flexibility

function allows manufacturing to switch from one material to another based on cost or

availability. Given the BOM flexibility and demand for each product, a requirements

planning with substitutions problem (RPS) is represented by a generalized network-flow

model. In the model, there are three different nodes: origin nodes, component nodes and

demand nodes, which represent component type, inventory level and actual demand

component, respectively. Three different arcs: productions arcs, inventory arcs and usage

arcs, which describe the activities of the production system. After the RPS problem is

translated into a generalized network-flow model, it is solved as a shortest path problem.

Balakrishnan and Geunes (2000) develop a dynamic programming to solve the shortest

path problems. Their experiment indicates that flexibility-BOM can save 8.7% in

production cost. The objective of RPS is to reduce production cost but not the safety

stocks requirement that has been widely studied in this field.

 Klein et al. (1995) propose a multiperiod allocation model with substitution

constraints. In their model, resources are storable and can be used in subsequent periods

in the case of surplus resources. The objective function is to minimize the largest

cumulative deviation from cumulative demands. It can be explained in a way which

minimizes the largest tardy jobs ratio in material allocation problems of the electronic

assembly industry. They propose a relaxation-based algorithm to solve multiperiod

allocation problems. For each iteration, the usage of activity (jobs) is given and a

multiperiod allocation feasibility problem is solved to determine the corresponding

 34

feasibility solution. They formulate the multiperiod allocation feasibility problem as a

network flow model and solved using maximal flow problems.

2.4 Shifting bottleneck procedures

Job shop scheduling involving more than two machines is one of well known NP-

hard problems for researchers. To avoid the intensive computational time to solve large

instances, it is reasonable to divide the original problem into several small subproblems

which can be solved efficiently and still able to achieve good solution. The shifting

bottleneck procedure is one of popular algorithm to adopt this concept on job shop

scheduling problems. The idea of shifting bottleneck procedure (Adams et al. 1988) is to

breakdown the job-shop scheduling problem into numerous single-machine subproblems

which can solve sequentially based on subproblem criticality and use disjunctive graph to

present operations precedence constraints and reflect machine sequence decisions. In

their experiments, shifting bottleneck procedure is superior to other algorithms in term of

computational time and solution quality. However, there are usually numerous machines

with similar functionality to be group as work-centers in practice. Instead of solving one

machine subproblems, parallel machines (work-centers) subproblems in shifting

bottleneck procedure can be solved to capable of solving real-world job shop scheduling

problems (Ovacik and Uzsoy, 1997). However, shifting bottleneck procedure still

requires the excess of computational times to solve job shop scheduling problems with

parallel machines due to numerous subproblems need be solved. Chen et al. (2006)

introduce the efficient shifting bottleneck heuristic (ESBPM) which designs to reduce

 35

total number of subproblems to be involved in shifting bottleneck procedure and also

capable to solve job-shop problems with parallel machines in practice.

2.4.1 The Generic Shifting Bottleneck Procedure

Adams et al. (1988) define the job-shop scheduling problem as follows. Let N

represent the set of operations with operations S and T representing the dummy

operations “start” and “finish” operations. Let M represent the set of machines. Let A

denote the set of pairs of operations constrained by precedence relations representing the

condition that the sequence of machines is prescribed for each job. Let Ek represent the

set of pairs of operations to be performed on machine k with non-overlapping durations.

Hence, each machine can only process one job at any given time. Let pi and ti represent

the processing time and start time of operation i, respectively. The job-shop scheduling

problem can then be formulated as:

 min tT

 tj – ti ≥ pi, (i, j) ∈ A,

 ti ≥ 0, i ∈ N,

 tj – ti ≥ pi ∨ ti – tj ≥ pj, (i, j) ∈ Ek, k ∈ M. (P)

A feasible solution to (P) is called a schedule. It is helpful to use a disjunctive

graph G to represent this problem as shown in Figure 1. Let G = (N, A, E), where N is the

node set, A is the ordinary (conjunctive) arc set, and E is the disjunctive arc set. Each

node is an operation. The directed arcs correspond to precedence relations. The pairs of

disjunctive arcs correspond to the pairs of operations that are performed on the same

 36

machine. The processing time of an operation is shown on an arc. The set of disjunctive

arcs, E, consists of cliques Ek, one for each machine k, where E = ∪(Ek: k ∈ M).

Figure 2.1 Example of the disjunctive graph G

The directed graph that results from taking out the disjunctive arcs from G is

represented by D = (N, A). Sk is called a selection if it includes one and only one member

of each disjunctive arc pair of Ek. If a selection does not have a directed cycle, it is

acyclic. Since each acyclic selection (Sk) corresponds to a particular ordering of the

operations associated with machine k, sequencing a machine k is equivalent to an acyclic

selection in Ek. The union of the selections Sk (one in each Ek, k ∈ M) is called a

complete selection S, and a partial selection consists of the union taken over a subset (M0)

of M. An ordinary directed graph, DS = (N, A ∪ S), results from choosing a complete

selection S, that is, putting the ordinary conjunctive arc set S in place of the disjunctive

arc set E. The length of a longest path in DS is equivalent to the makespan of a schedule

correspond to the selection S. Therefore, the goal is to find an acyclic, complete selection

S ⊂ E that minimizes the length of a longest path in the directed graph DS.

1

3 4

2

S T

Machine 1

Machine 1Machine 2

Machine 2

Disjunctive arc Job 1

Conjunctive arc
Job 2

 37

 Based on the disjunctive graph representation, we can describe the shifting

bottleneck procedure defined by Adams et al (1988). Let M be the set of all machines. M0,

a subset of M, is defined as the set of machines for which a selection of disjunctive arcs

(representing a sequence of jobs) has been determined in the earlier iterations. Initially,

M0 is an empty set. The result of a typical iteration is the selection of a machine from M –

M0 to be added to M0. In addition, the processing order of the operations for those

machines must be specified. The goal is to determine the unscheduled machine that

causes the severest disruption in production if not scheduled immediately. This

bottleneck machine will be the next one added to M0. In order to find the bottleneck

machine, in the original directed graph, all the disjunctive arcs for the machines that have

yet to be scheduled are removed. In addition, only the relevant disjunctive arcs of the

machines that have already been scheduled are retained. Call this graph G′. There are

one or more critical paths in G′ that determine the graph’s makespan. Call this makespan

Cmax(M0). Note that machine k will become machine type k when parallel machines

(work-centers) are considered.

The three key tasks in the shifting bottleneck procedure are described below:

 (1). Bottleneck machine selection procedure:

 The critical paths in G′ determine the release dates and the due dates for all the

operations. The definitions of the release date(ri) and due date(di) for an operation are: ri

= L(0, i) and di = L(0, n) – L(i, n) + pi, where pi is the processing time for operation i and

L(i, j) is the length of a longest path from i to j in the graph. Let each of the machines

that have yet to be sequenced be considered as a separate 1 | rj | Lmax scheduling problem.

 38

After solving the set of jobs sequence problems, the machine with the greatest maximum

lateness is designated as the bottleneck machine and included in M0 next. Call this

machine, machine k, and its maximum lateness Lmax(k).

(2). Procedure to update the disjunctive graph G′:

Schedule machine k using the solution found in solving the job sequence

subproblem for machine k. Add the disjunctive arcs that specify the order of operations

on machine k to G′. With the addition of these disjunctive arcs, the makespan for the

partial selection goes up by Lmax(k): Cmax(M0 ∪ k) = Cmax(M0) + Lmax(k).

(3). Reoptimization procedure:

 The machines that have already been sequenced are resequenced. This is

accomplished by taking a machine, machine l, form the set M0. Graph G′′ is formed by

deleting the disjunctive arcs that specify the order of operations on machine l from G′.

Machine l is resequenced by solving the corresponding job sequence subproblem (1 | rj |

Lmax) using the release dates and due dates determined by the critical path(s) in G′′

(Pinedo 1995). This may result in a new makespan.

After resequencing machine l, the machine is added back into M0 at the same

place it was taken out and the disjunctive arcs that specify the new order of operations on

machine l are added to the graph G′′. The makespan may have to be adjusted according to

the maximum lateness determined by reoptimizing the sequencing for machine l.

Resequencing all of the machines in the original set M0 (excluding the machine just

sequenced, machine k) completes one cycle of reoptimization.

 39

If there is no improvement in the makespan after complete cycle of reoptimization,

then the first local reoptimization procedure is complete. Otherwise, the first local

reoptimization procedure continues until there is not any improvement within an entire

cycle. The shifting bottleneck procedure will return to bottleneck machine selection

procedure to select the next bottleneck machine. The procedure terminates when M0

contains all machines types.

2.4.2 The Shifting Bottleneck Procedure with parallel machines

 For job shop scheduling problems with parallel machines, not only jobs need to be

sequenced a given machine type, but also the specific machine within a work-center

which will process the job has to be determined. Chen et. al (2006)) describe a procedure

similar to Ovacik and Uzsoy (1997) that uses the earliest-due-date first (EDD)

dispatching rule to assign a machine within the work-center to a given job. In the next

section, we described efficient version of the shifting bottleneck procedure. EDD

dispatching rule is simple but effective for parallel machine allocation and sequence

subproblem and provides the schedule without presenting cycles and delay precedence

problem. The SB procedure with parallel machines (SBPM) can be described as follows:

Step 1. Let M0 = ∅ and M represent the set of machine types.

Step 2. Remove all the disjunctive arcs in the graph. Obtain the makespan, Cmax, of the

graph by finding the longest path from the source node to the sink node.

Step 3. For each of the machine types in M – M0, solve a P | rj | Lmax problem with release

dates and due dates determined by using the graph. Solve the parallel machine

 40

allocation and sequence subproblems using the earliest-due-date-first (EDD)

dispatching rule.

Step 4. Designate the machine type k with the greatest maximum lateness Lmax(k) as the

“bottleneck machine”. If there exists a tie for largest maximum lateness,

designate the machine type k with the greatest average lateness Lave(k) as the

“bottleneck machine”. If there is a tie for largest average lateness, then designate

the first machine that is tied for largest average lateness the “bottleneck” (an

arbitrary rule). Add machine type k to the set M0 and schedule machine type k

using the optimal solution found in the P | rj | Lmax problem for machine type k.

Step 5. Add the disjunctive arcs that specify the order of the operations on machine type k

to the graph. Revise the makespan using the equation Cmax(M0 ∪ k) = Cmax(M0)

+ Lmax(k).

Step 6. If |M0| = 1, then local reoptimization is not needed, go to step 3. If |M0| > 1, then

resequence the machine types in M0 one at a time until a full cycle goes by

without any improvement. After resequencing a machine, say machine type l,

put the machine type back into M0 in the same place that it was removed from

and add the disjunctive arcs that specify the order of the operations on machine

type l to the graph. Adjust the makespan: Cmax(M0 ∪ l) = Cmax(M0) + Lmax(l). If

|M0| = |M|, then terminate the procedure. Otherwise, go to step 3.

2.4.3 Efficient Shifting Bottleneck heuristic for parallel machines (ESBPM)

The job shop scheduling problem with parallel machines is harder to solve than job

shop scheduling problems with single machine work-centers. In addition to solving a job

 41

sequencing problem, it also needs to solve a machine allocation problem. Chen et al.

(2006) propose an efficient shifting bottleneck heuristic for parallel machine work-

centers, where bottleneck machine selection procedure is avoided and re-optimization

procedure is constrained to few iterations. Hence, the total number of subproblems is

expected to decrease. A generic efficient shifting bottleneck heuristic (ESBPM) can be

described as follows:

Step 1. Choose an efficient dispatch rule or any other parallel machine algorithm to

obtain job sequence and machine allocation of each machine type as the initial

solution.

Step 2. Use re-optimization procedure to improve the initial solution. The parallel

machine allocation and sequence subproblems can be solved by using a

dispatching rule.

 42

Chapter 3. Methodology

There has been a significant amount of research focused on assembly job shop

scheduling, but we are not aware of any studies considered the availability of components.

Moreover, most of these studies concentrated on the problems involved only capacity

constraints as discussed in chapter 2. Despite of capacity constraints, the most popular

example to allocate components to material requirements in practice is the First-come

First serve (FCFS) dispatching rule or so-called MRP-logic (Material requirement

planning). In MRP logic, the material required time is calculated as a function of the

fixed lead time which represents capacity requirements or vendor lead times. Moreover,

allocation of on-hand inventories and scheduled receipts are typically executed by a fixed

decision rule based on the FCFS sequence. Once jobs held enough materials, they are

released to the shop floor. In other words, material constraints have relaxed in advance

and only capacity constraints remain in the scheduling problem. However, some

components may have long vendor lead times and have to be procured in advance based

on the forecast of demand. It could increase customer lead times if jobs are waiting for all

required components before releasing them to the shop floor. Thus, releasing partial

orders into the shop floor may help to improve the due date performance (Bragg et. al.

1999). Second, frequent change in demand and late delivery from outside vendors may

delay the shipments and cause the loss of business reputation. A scheduling technique

which incorporates both a material plan and a capacity schedule is necessary for a

production system in order to respond quickly to these changes. Unlike discrete time

representation used in conventional resource allocation methods, our model uses a

continuous time representation to improve accuracy and defines tardiness cost as the

 43

difference between the completion time and the due date. Moreover, the lead time in our

model is dynamic and computed from both material plans and capacity schedules.

The goal of this dissertation is to develop algorithms to solve the assembly job shop

scheduling problems, which are scalable to deal with real world problems. To accomplish

this task, we must first describe the assembly job shop scheduling model with component

availability constraints as a mixed-integer programming model. To overcome the excess

of computational effort, several heuristics are developed to solve the same problem

efficiently, including the modified shifting bottleneck procedure (MSBP), the efficient

shifting bottleneck procedure (ESBP) and the rolling horizon procedure (RHP). The

performance of these heuristics is compared to solutions obtained from several

dispatching rules in terms of solution quality and computation time. The shifting

bottleneck procedures developed in this dissertation is summarized in Table 3.1.

A modified shifting bottleneck procedure (MSBP) is designed to decompose the

original problems into several subproblems which related to material plans or machine

schedules in order to reduce the complexity of the problem. In the following sections, the

efficient shifting bottleneck procedure (ESBP), which is based on the concept of shifting

bottleneck procedure and the findings from MSBP, is introduced. ESBP is designed to

reduce the total number of subproblems by avoiding the bottleneck resources selection

procedure and constraining the number of re-optimization cycles. It consists of two main

steps depicted as follows: Obtain initial solutions and perform re-optimization cycles.

However, subproblems in both MSBP and ESBP are still NP-hard problems because of

the nature of the mixing integer programming. The computational effort may not be

acceptable if the size of problem is extremely large. To reduce the complexity of

 44

subproblems, the rolling horizon procedure (RHP) is presented to obtain the solutions

from subproblems rapidly in large size instances by dividing the scheduling time horizon

into several different time windows. The performance of MSBP and ESBP is tested on a

set of test problems in experiments and compared with various dispatching rules which

are normally used in practice. The results from our experiments show that MSBP and

ESBP outperform the best dispatching rule by an average of 19% to 22% for the all test

problems.

Table 3.1 The summary of shifting bottleneck procedures for assembly job shop

scheduling problem

Method Bottleneck selection

procedure

Re-optimization

Procedures

Subproblem solution

procedure

MSBP Subproblem TWTmax

(Max Total Weighted

Tardiness) value

Full re-optimization up

to 3 cycles

Branch and Bound or

Dispatching rules

ESBP Machine sequencing

number

Full re-optimization up

to 3 cycles

Branch and Bound or

Dispatching rules

RHP Machine sequencing

number

Full re-optimization up

to 3 cycles

Branch and Bound or

Dispatching rules with

rolling horizon

procedure

 45

3.1 Problem description and assumptions

An assembly job shop scheduling problem with component availability constraints

is not only addressed on allocation of operations to machines but is also concerned with

the allocation of available components to operations which have material requirements

originating from an internal (subassembly) or an external (customer) source. The

assembly job shop considered in this research consists of various machines. Each

machine has different functionality and can only process one job at a time. A final

product is fabricated from various items, included assemblies, sub-assemblies and

components according the Bill-Of-Materials (BOM) structure as shown in Figure 3.1.

The number of assemblies, sub-assemblies and components required to form a final

product can be exploded from its BOM. In our assembly job shop model, there is no

inventory for components in the beginning. Furthermore, the components can not be

manufactured in-house and have to procure from outside vendors. Each shipment from

outside vendors delivers single component type and is represented by a purchase order.

Moreover, a job can not be processed by machines if there are insufficient quantities of

components in an assembly job shop. There are also many jobs in assembly job shop.

These jobs are ready to process in the beginning once they allocate enough components.

Each job, which represents an order for a final product requested by customers, contains

to numerous operations and need to be processed by different machines through assembly

shop as stated on the predetermined job routing. Each job has the due date and priority

which are known in advance. Failure to deliver final products on time will result in

penalty. The objective of the problems is to schedule all jobs to complete on time and

also satisfy both capacity and material constraints.

 46

Figure 3.1 Example for product structures of assembly job

However, there are still some assumptions beyond our assembly job shop models.

The first assumption is that all jobs are ready to process in the beginning and processing

time is deterministic. Second, the purchase order lead time is greater than average

customer order lead time. Otherwise, manufacturers could procure the necessary

quantities of components after they accepted orders. Additionally, material requirements

are assumed to be procured in advance based on forecasts which show as scheduled

Assembly-Type Job
with Components

Final Product,
Assembly, Sub-

Assembly

Operation

Component

 47

receipts for raw materials in the assembly job shop model. If the actual demand is greater

than the forecast demand, a material shortage will occur and possibly lead to tardy jobs.

Hence, it may result in the loss of customer goodwill. For this reason, the objective of our

model is to minimize the total weighted tardiness.

3.2 The extended disjunctive graph and mathematical formulation

The conventional job shop scheduling problem can be represented by using a

disjunctive graph. Each node corresponds to an associated operation and each disjunctive

arc indicates a possible sequence between two operations which have to be processed in

the same type machine. A feasible schedule corresponds to a selection of one disjunctive

arc from each pair such that the resulting directed graph is acyclic. This dissertation

extends the disjunctive graph to represent the problem of assembly job shop scheduling

with components availability. To doing this, a set of nodes representing arrivals of

purchase orders (scheduled receipts), called purchase order node (PON), is added into

disjunctive graph. Each operation requesting a component is connected to all PONs

which carry that type of component using disjunctive (broken) arcs.

It is useful to define the assembly job-shop scheduling problem using a

disjunctive graph as shown in Figure 3.2. Let N represent the total set of operations with

operations S and T representing the dummy operations “start” and “finish” operations.

Let Z represent the set of all jobs. Let dv represent the due date, wv represent job’s priority,

and sv represent the completion time for job v. Let M represent the set of all machines, P

represent the set of all components and R represent the set of all purchase orders. Let A

denote the set of pairs of operations constrained by precedence relations representing the

 48

condition that the sequence of machines is prescribed for each job. Let C denote the set of

arcs constrained by precedence relations representing the arrival time for each purchase

order. Let Ek represent the set of pairs of operations to be performed on machine k with

non-overlapping durations. Hence, each machine can only process one job at any given

time. Let pi , ti and qi represent the processing time, start time and requested quantity for

component of operation i, respectively. Let Bh represent the set of operations to request

component h and Fh represent the set of purchase orders to delver component h. Let an

and qn represent the arrival time and delivery quantity of purchase order n. Let Yh

represent the material allocation of components h and niy , represent the allocation of

component from purchase order n to operation i.

49

Figure 3.2 A example of a disjunctive graph for assembly job shop scheduling with component availability constraints

 50

A feasible solution to (P*) is called a schedule. It is helpful to use a disjunctive

graph G to represent this problem. Let G = (N, A, E, R, C, Y), where N is the node set for

operations, A is the ordinary (conjunctive) arc set for operations, E is the disjunctive arc

set for machines, R is the node set for purchase orders, C is the ordinary (conjunctive) arc

set for purchase orders and Y is the allocation arc set for components. Each node

belonging to set N is an operation. The directed arcs correspond to precedence relations.

The pairs of disjunctive arcs correspond to the pairs of operations that are performed on

the same machine. Each node belonging to set R is a purchase order. The allocation arcs

represent the material allocation of components from purchase orders to operations. The

processing time of an operation is shown on an arc. The set of disjunctive arcs, E,

consists of cliques Ek, one for each machine k, where E = ∪(Ek: k ∈ M). The set of

allocation arcs, Y, consists of cliques Yh, one for each component h, where Y = ∪(Yh: h ∈

P).

The directed graph that results from taking out the disjunctive arcs and the

allocation arcs from G is represented by D = (N, A, R, C). Sk is called a machine selection

if it includes one and only one member of each disjunctive arc pair of Ek. If a machine

selection does not have a directed cycle, it is acyclic. Since each acyclic selection (Sk)

corresponds to a particular ordering of the operations associated with machine k,

sequencing machine k is equivalent to an acyclic selection in Ek. Similarly, Uh is called a

component selection if it includes allocation arcs of Yh. The union of the machine

selection Sk (one in each Ek, k ∈ M) and the component selection Uh (one in each Fh,

Ph∈) is called a complete selection SU, and a partial selection consists of the union

taken over a combination of subset (M0) of M and subset (R0) of R. An ordinary directed

 51

graph, DSU = (N, R, A ∪ S, C ∪ U), results from choosing a complete selection SU, that is,

putting the machine selection set S in place of the disjunctive arc set E and component

selection set U in place of the allocation arcs set Y. The length of the longest path in DSU

is equivalent to the makespan of a schedule corresponding to the selection SU. The

completion time of job v is equal to the length of the longest path for source node S to top

node of jobs v. Lateness of job v can be calculated as the completion time of job v minus

the due date of job v. Tardiness of job v is equivalent to the lateness of job v, if the

lateness of job v is positive; otherwise, it is zero. Therefore, the goal of this dissertation is

to find an acyclic, complete selection)()(YUES ⊂∪⊂ that minimizes the weighted

tardiness of all orders in the directed graph DSU.

The generic assembly job shop scheduling problem with the objective of

minimizing total weighted tardiness can then be formulated as:

 (P*)

 min ∑ −
v

vvv dsw)0,max(* v ∈ Z, ----------------------------(1)

Subject to:

 tj – ti ≥ pi, (i, j) ∈ A, -------------------------(2)

 ti ≥ 0, RNi ∪∈ ----------------------(3)

 tj – ti ≥ pi ∨ ti – tj ≥ pj, (i, j) ∈ Ek, k ∈ M. --------------(4)

∑ ≤
i

nni qy , PhFnBi hh ∈∈∈ ,, -----------(5)

∑ =
n

ini qy , PhFnBi hh ∈∈∈ ,, -----------(6)

ni at ≥ 1,,, , =∈∈∈ nihh yPhFnBi ---(7)

 52

Table 3.2 Notation of the assembly job shop scheduling problem

N Set of operations
Z Set of jobs
dv The due date for job v, Zv∈
wv The priority for job v, Zv∈
sv The completion time for job v, Zv∈
M The set of all machines
P The set of all components
A The set of pairs of operations constrained

by precedence relations
C The set of arcs constrained by the arrival

time of purchase orders
Ek The set of pairs of operations to be

performed on machine k
pi The processing time for operation i
ti The start time for operation i
qi The requested quantity for components

from operation i
Bh The set of operations to request component

h , Ph∈
Fh The set of purchase orders to delver

component h, Ph∈
R The set of all purchase orders
an The arrival time for purchase order n,

Rn∈
qn The delivery quantity for purchase order n,

Rn∈
Yh The material allocation of components h,

Ph∈
niy , The allocation of component from purchase

order n to operation i.

Equation 1 is the objective function of the problem, which designs to minimize

the total weighted tardiness for all jobs. Equation 2 and 3 represent the precedence

relation between operations. Equation 4 is the capacity constraint. Equation 5, 6 and 7 are

material constraints, which used to allocation components to material requirements.

 53

3.3 Optimization Approach:

 In Figure 3.3, the structure of mathematical formulation for multi-level assembly

job shop scheduling model consists of three groups of constraints: assembly coordination

constraints, material constraints and capacity constraints. The function of the assembly

coordination constraints is to assure that the order’s precedence constraints are met

according to the order’s BOM structure. For example, parent’s operation PST (Planned

Start Time) must be greater than or equal to the child’s operation PET (Planned End

Time). However, the assembly coordination constraints only consider the assembly

coordination between jobs and does not directly provide operation’s PST. To obtain the

operation’s PST accurately, material and capacity constraints are used to compute the

operation’s PST as described in the following sections. For each job, operation’s PST is

determined by performing material allocation and capacity schedules with the objective

of minimizing total weighted tardiness. Unlike the infinite capacity assumption in the

MRP logic, operation’s lead time in our model is dynamic and determined by material

and capacity constraints. By doing so, operations’ PST is not only feasible to either

material constraints or capacity constraints, but also is an optimal solution.

 In a multi-level assembly job shop scheduling model, orders are collected within

a specific time period and processed periodically for scheduling decisions. Scheduling

decision involved allocation of limited resources and determination of order PSTs.

Consider an assembly job shop scheduling problem over a given planning horizon, T.

Assuming that the demand and supply information are known ahead of time for the entire

planning horizon. The assembly job shop scheduling problem can be formulated as a

mixed integer programming model with the following notations:

 54

 Figure 3.3 Figure 3.3 Mathematical formulations for assembly job shop

scheduling problems

Table 3.3 Notation of the assembly job shop scheduling problem

N Set of operations
Z Set of jobs
dv The due date for job v, Zv∈
wv The priority for job v, Zv∈
sv The completion time for job v, Zv∈
G Set of last (Top) operations for job v,

Zv∈
M The set of all machines
P The set of all components
A The set of pairs of operations constrained

by precedence relations
Ek The set of pairs of operations to be

performed on machine k
pi The processing time for operation i
ti The start time for operation i
qi The requested quantity for components

from operation i
Bh The set of operations to request component

h , Ph∈
Fh The set of purchase orders to delver

component h, Ph∈
R The set of all purchase orders
an The arrival time for purchase order n,

Rn∈
qn The delivery quantity for purchase order n,

Rn∈
Yh The material allocation of components h,

Ph∈

Master problem
(Coordination problem)

Material Constraints Capacity Constraints

PST

 55

niy , The binary variable for the allocation of
component from purchase order n to
operation i.

jiS , The binary variable for capacity allocation.

 (P) min ∑ −
v

vvv dsw)0,max(* v ∈ Z, --------------------------------(1)

Subject to:

* Assembly coordination constraints

 iiv pts += i ∈ G, , Zv∈ ----------------------(2)

iij ptt +≥ (i, j) ∈ A, j is i parent operation ----(3)

 0≥it i ∈ N, ---------------------------------(4)

* Capacity constraints

 jijii SMtpt ,*+≤+ (i, j) ∈ Ek, k ∈ M. ------------------(5)

)1(* , jiijj SMtpt −+≤+ (i, j) ∈ Ek, k ∈ M. -------------------(6)

* Material constraints

∑ ≤
i

nni qy , PhFnBi hh ∈∈∈ ,, ---------------(7)

∑ =
n

ini qy , PhFnBi hh ∈∈∈ ,, ---------------(8)

nini yat ,*≥ PhFnBi hh ∈∈∈ ,, ---------------(9)

 56

In equation 1, the ∑ −
v

vvv dsw)0,max(* shows the sum of weighted tardiness for

all jobs as the objective function of the problem. The term)max(vv ds − represents the

tardiness of job v. When this term is multiple by job’s priority vw , one obtains the

weighted-tardiness for job v. The objective function shown above is to minimize the total

weighted tardiness for all jobs within the planning horizon T. Equation 2, 3 and 4 are

precedence constraints. They ensure the precedence relations are held between operations.

Equation 2 represents the completion time of job v is equal to the top operation of job v.

Equation 3 make sure the start time of parent operation is greater than the completion

time of child operation. Equation 4 ensures that all start time of operations are positive.

Equation 5 and 6 are capacity constraints. They specify that the no operations belonging

to the same machine can be processed simultaneously. jiS , is the binary variable. When

operation i is the predecessor of operation j, jiS , = 1. Equation 7, 8 and 9 are material

constraints. They allocate available components to material requirements and guarantee

that all operations can not be processed before the arrival of all necessary components.

Equation 7 ensures that all material requirements are fulfilled. Equation 8 affirms that the

total quantity of components allocates from the specific purchase order to all material

requirements is less than the delivered quantity of that purchase order. Equation 9

specifies that the start time of operation is greater than the arrival time of specific

purchase order. It will guarantee that operations can only start after the arrival of all

necessary components.

 57

3.4 Heuristic approach

The assembly job shop scheduling problem with availability of components is

harder to solve than the conventional job shop scheduling problem. In addition to solving

a job sequencing problem, one needs to also solve a component allocation problem. In the

previous section, we present an optimization approach to solve the multi-level assembly

job shop scheduling problem using a mixed-integer programming model. The PST of all

jobs will be optimized with respect to material allocation and capacity schedule

simultaneously.

Although one can optimally sequence jobs on a single machine within a work-

center in a job shop using the branch and bound method, it is not always computationally

feasible to optimally sequence jobs when assembly operations are presented. Additionally,

the optimization approach requires an excess of computational time and is unable to solve

large-scale instances in practice even after relaxation techniques. To overcome these

drawbacks, a heuristic is needed to quickly allocate materials to jobs and to determine job

sequencing within a machine under precedence relations. To reduce the computational

effort, it is necessary to decompose the original problem into numerous subproblems and

verify which resource is critical or tightest one. The theory of constraints (Goldratt, 1998)

states that critical resources have to be dealt with first in order to improve the overall

performance. The concept of TOC had been adopted successfully on the shifting

bottleneck algorithm which is one of the popular approaches to solve conventional job

shop scheduling problems. This dissertation develops several heuristic approaches, which

are based on the concept of the shifting bottleneck algorithm and are capable of solving

large-scale assembly job shop scheduling problems, as described in the following section.

 58

Solving both capacity and material constraints optimally are unachievable for large-scale

problems in practice. The goal of the heuristic approach is to provide an algorithm which

is scalable and provides a solution close to the optimal solution in the desired

computational time.

In this chapter, we present three heuristics, which are modified shifting bottleneck

procedure (MSBP), efficient shifting bottleneck procedure (ESBP) and rolling horizon

procedures (RHP) for the assembly job shop scheduling problem with the availability of

components. The idea of modified shifting bottleneck procedure is to decompose the

original assembly job shop scheduling problem into several different subproblems which

present material plans for components or capacity schedules of machines. The

relationship between different jobs is described on the disjunctive graph. Each disjunctive

arc represents machine sequences in the appropriate direction and allocation arcs

correspond to material allocations. Machine schedules and material allocations are

updated to the disjunctive graph iteratively after solving associated subproblems.

The performance of the developed heuristics is also studied in this research with

respect to two measures: minimization of the total weighted tardiness and the

computational time. The computational results are demonstrated in the next chapter.

3.4.1 Modified shifting bottleneck procedure (MSBP)

A generic modified shifting bottleneck heuristic (MSBP) can be described as

follows:

 59

Step 1. Let M0 = ∅ and M represent the set of machine types. Let R0 = ∅ and R represent

the set of component types

Step 2. Remove all the disjunctive arcs and allocation arcs in the graph. Obtain the total

weighed tardiness, TWTmax, of the graph by finding the longest path from the

source node to the top node of every job.

Step 3. For each of the component types in R – R0, solve the material allocation

subproblems using the optimization method or dispatching rule.

Step 4. Designate the component type h with the greatest total weighted tardiness Tmax(h)

as the “bottleneck component”. If there exists a tie for largest total weighted

tardiness, designate the component type h with the average total weighted

tardiness Tave(k) as the “bottleneck component”. If there is a tie for largest

average total weighted tardiness, then designate the first component that is tied

for largest average total weighted tardiness the “bottleneck” (an arbitrary rule).

Add component type h to the set R0 and schedule component type h using the

solution found in the material allocation subproblem, named MAh, for component

type h.

Step 5. Add the allocation arcs that specify purchase orders to the operations on

component type h to the graph. Revise the total weighted tardiness using the

equation TWTmax(R0 ∪ h, M0) = Tmax(h).

 60

Step 6. If |R0| = 1, then local reoptimization is not needed, go to step 3. If |R0| > 1, then

resequence the component types in R0 one at a time until a full cycle goes by

without any improvement. After resequencing a component, say component type

l, put the component type back into R0 in the same place that it was removed

from and add the allocation arcs that specify the orders to the operations on

component type l to the graph. Adjust the total weighed tardiness: TWTmax(R0 ∪

l, M0) = Tmax(l). If |R0| = |R|, then go to step 7. Otherwise, go to step 3.

Step 7. For each of the machine types in M – M0, solve the machine allocation and

sequence subproblems, named CAm, using the optimization method or

dispatching rule.

Step 8. Designate the machine type k with the greatest maximum total weighted tardiness

Tmax(k) as the “bottleneck machine”. If there exists a tie for largest maximum

total weighted tardiness, designate the machine type k with the greatest average

lateness Tave(k) as the “bottleneck machine”. If there is a tie for largest average

total weighted tardiness, then designate the first machine that is tied for largest

average total weighted tardiness the “bottleneck” (an arbitrary rule). Add

machine type k to the set M0 and schedule machine type k using the solution

found machine allocation subproblem for machine type k.

 61

Step 9. Add the disjunctive arcs that specify the order of the operations on machine type k

to the graph. Revise the total weighted tardiness using the equation TWTmax(R0,

M0 ∪ k) = Tmax(k).

Step 10. Resequence the component types in R0 one at a time until a full cycle goes by

without any improvement. After resequencing a component, say component type

l, put the component type back into R0 in the same place that it was removed

from and add the allocation arcs that specify the orders to the operations on

component type l to the graph. Adjust the total weighed tardiness: TWTmax(R0 ∪

l, M0) = Tmax(l). Then go to step 11.

Step 11. If |M0| = 1, then local reoptimization is not needed, go to step 7. If |M0| > 1,

then resequence the machine types in M0 one at a time until a full cycle goes by

without any improvement. After resequencing a machine, say machine type l,

put the machine type back into M0 in the same place that it was removed from

and add the disjunctive arcs that specify the order of the operations on machine

type l to the graph. Adjust the total weighted tardiness: TWTmax(R0, M0 ∪ l) =

Tmax(l). If |M0| = |M|, then terminate the procedure. Otherwise, go to step 7.

There are four modified shifting bottleneck procedures (MSBP) which are

developed to solve assembly job shop scheduling problems. There methods are SB1, SB2,

SB3 and SB4. The difference between these MSBP methods is the degree of solution

 62

accuracy obtained from subproblems. The four MSBP methods are summarized in Table

3.4.

Table 3.4 The description of MSBP methods

 SB1 SB2 SB3 SB4

Material

allocation

subproblem

(MA)

Optimization

method

(MA1)

Optimization –

longest path

implementation

(MA2)

Dispatching

rule

Optimization

method

(MA1)

Capacity

allocation

subproblem

(CA)

Optimization

method

(CA1)

Optimization –

longest path

implementation

(CA2)

Optimization

method

(CA1)

Dispatching

rule

SB1 uses the optimization method to solve both material and capacity

subproblems. The material allocation subproblem and capacity schedule subproblem in

SB1 can be formulated as MA1 and CA1. However, the computational time requiring to

solve SB1 may still increase exponentially as the size of subproblems increase. To reduce

the complexity of SB1, the longest path algorithm is applied to represent the precedence

constraints in SB2. By doing so, the total number of constraints is expected to reduce to a

reasonable level. The material allocation subproblem in SB2 can be formulated as MA2

and the capacity allocation subproblem in SB2 can be formulated as CA2. The SB3 uses

the dispatching rule to solve material allocation subproblems and apply optimization

method, CA1, which use the same mathematical formulation as SB1, to solve capacity

 63

subproblems. The SB4 uses the dispatching rule to solve capacity allocation subproblems

and apply optimization method, MA1, to solve material allocation subproblems.

Material allocation subproblem (MA1):

For each 0\ RRh∈

min ∑ −
v

vvv dsw)0,max(* v ∈ Z, -----------------------(1)

 tj – ti ≥ pi, AMpSji p ∪∈∪∈):(),(0 -----(2)

 ti ≥ 0, RNi ∪∈ -----------------------(3)

∑ ≤
i

nni qy , CRcUni c ∪∈∪∈):(),(0 -------(4)

∑ =
n

ini qy , CRcUni c ∪∈∪∈):(),(0 --------(5)

ni at ≥ CRcUni c ∪∈∪∈):(),(0 --------(6)

∑ ≤
i

nni qy , 0\,),(RRhYni h ∈∈ ----------------(7)

∑ =
n

ini qy , 0\,),(RRhYni h ∈∈ ----------------(8)

0≥∨≥ ini tat 0\,),(RRhYni h ∈∈ ----------------(9)

Equation 1 is the objective function of the problem, which designs to minimize

the total weighted tardiness for all jobs. Equation 2 and 3 represent the operation

sequences from the scheduled machines at set M0. Equation 4, 5 and 6 represent the

material allocations from scheduled components at set R0. Equation 7, 8 and 9 are

 64

material constraints, which used to allocation components to material requirements for

the component type h.

Capacity allocation subproblem (CA1):

For each 0\ MMk ∈

min ∑ −
v

vvv dsw)0,max(* v ∈ Z, -----------------------(1)

 tj – ti ≥ pi, AMpSji p ∪∈∪∈):(),(0 -----(2)

 ti ≥ 0, RNi ∪∈ ----------------------------(3)

 tj – ti ≥ pi ∨ ti – tj ≥ pj, (i, j) ∈ Ek, 0\ MMk ∈ -------------(4)

 ∑ ≤
i

nni qy , CRcUni c ∪∈∪∈):(),(0 -------(5)

∑ =
n

ini qy , CRcUni c ∪∈∪∈):(),(0 --------(6)

ni at ≥ CRcUni c ∪∈∪∈):(),(0 ----------(7)

Equation 1 is the objective function used to minimize the total weighted tardiness

for all jobs. Equation 2 and 3 represent the operation sequences from the scheduled

machines at set M0. Equation 4 are capacity constraints, which used to decide the

machine sequence for the specific machine type k. Equation 5, 6 and 7 represent the

material allocations from scheduled components at set R0.

 65

Material allocation subproblem (MA2):

min ∑ −
v

vvv dsw)0,max(* v ∈ Z, --------------------------------(1)

),(),(vSlsvilts viv =∨+= 0\, RRhBi h ∈∈ --------------------(2)

∑ ≤
i

nni qy , CRcUni c ∪∈∪∈):(),(0 ---------(3)

∑ =
n

ini qy , CRcUni c ∪∈∪∈):(),(0 ---------(4)

ni at ≥ CRcUni c ∪∈∪∈):(),(0 ---------(5)

∑ ≤
i

nni qy , 0\,),(RRhYni h ∈∈ ----------------(6)

∑ =
n

ini qy , 0\,),(RRhYni h ∈∈ ----------------(7)

0≥∨≥ ini tat 0\,),(RRhYni h ∈∈ ----------------(8)

Where),(jil is the value of longest path from operation i to operation j.

Equation 1 is the objective function to minimize the total weighted tardiness for

all jobs. Equation 2 represents the completion time of job v, which is calculated from the

start time of operation i plus the value of longest path from operation i to job v or the

value of longest path from source node to job v. Equation 3, 4 and 5 represent the

material allocations from scheduled components at set R0. Equation 6, 7 and 8 are

material constraints, which used to allocation components to material requirements for

the component type h. In MA2, there are no capacity constraint equations because the

delay from capacity conflict is added in the longest path calculation.

 66

Capacity allocation subproblem (CA2):

min ∑ −
v

vvv dsw)0,max(* v ∈ Z, --------------------------------(1)

),(),(vSlsvilts viv =∨+= 0*, MMkNi ∈∈ -------------(2)

 tj – ti ≥ pi, AMpSji p ∪∈∪∈):(),(0 ----(3)

 ti ≥),(iSl , 0*, MMkNi ∈∈ ----------------(4)

 tj – ti ≥ pi ∨ ti – tj ≥ pj, (i, j) ∈ Ek, 0\ MMk ∈ ------------(5)

Where N* is the set of operations to be processed on machine k and),(jil is the

value of longest path from operation i to operation j.

Equation 1 is the objective function designs to minimize the total weighted

tardiness for all jobs. Equation 2 represents the completion time of job v, which is

calculated from the start time of operation i plus the value of longest path from operation

i to job v or the value of longest path from source node to job v. Equation 3 represents the

machines sequences from scheduled machines at set M0. Equation 4 ensures that all start

time of operations are greater than the value of longest path from the source node to itself.

Equation 5 represents the capacity constraints used to decide the machine sequence for

machine type k.

 67

3.4.2 Efficient shifting bottleneck procedure (ESBP)

However, it may be still hard to solve subproblems optimally for large instances

even after decomposition procedures. Uzsoy and Wang (2000) discovered that most of

the computational effect in a shifting bottleneck procedure is dedicated to solving

subproblems during re-optimization procedure. In general, the complexity increases as

number of jobs increases and the number of machine types increases, as there are more

subproblems to solve. By reducing the number of subproblems or denying efficient

procedures to solve subproblems, the computational time of the shifting bottleneck

procedure can be reduced significantly. Demirkol et al. (1997) concluded that unlike

subproblems and re-optimization procedures, bottleneck machine selection criteria didn’t

have any significant effect on solution quality and computational time.

Based on the finding from Demirkol et al. (1997), the shifting bottleneck

procedure with a limited re-optimization procedure in the last iteration reduces

computational time without a significant sacrifice in solution quality. If a reasonable

material plan or job sequence on machines can produce by using a dispatching rule, then

a good solution can be obtained and improved using a re-optimization procedure. We

propose an efficient shifting bottleneck procedure (ESBP) for the assembly job shop

scheduling problem with the availability of components, where bottleneck machine or

component selection procedure is avoided and re-optimization procedure is constrained to

few iterations. Hence, the total number of subproblems is expected to decrease in ESBP.

 We introduce the efficient shifting bottleneck procedure which aims to reduce the

total number of subproblems to be solved in a shifting bottleneck procedure, while

keeping the solution quality at an acceptable level. Unlike modified shifting bottleneck

 68

procedure, efficient shifting bottleneck procedure does not solve the all subproblems, it

designs to obtain feasible solutions of the limited number of subproblems within

reasonable computational time by using efficient algorithms or dispatching rules which

are suited for assembly job shop scheduling problems in practice.

A generic efficient shifting bottleneck procedure (ESBP) can be described as

follows:

Step 1. Choose an efficient dispatching rule or any other assembly job shop scheduling

algorithm to obtain material plan of each component, job sequence and machine

schedule of each machine type as the initial solution.

Step 2. Use re-optimization procedure to improve the initial solution. The material

subproblems and capacity subproblems can be solved by using a dispatching rule

which is more efficient to obtain solutions.

There are three efficient shifting bottleneck procedures (ESBP) introduced to

solve assembly job shop scheduling problems, which are ESBP1, ESBP2 and ESBP3.

The difference between these ESBP methods is the degree of solution accuracy. ESBP1

uses the optimization method to solve both material and capacity subproblems. The

ESBP2 uses the dispatching rule to solve material allocation subproblems and apply

optimization method, which has the same formulation as SB1, to solve capacity

subproblems. The ESBP3 uses the dispatching rule to solve capacity subproblems and

 69

apply optimization method to solve material subproblems. The three ESBP methods are

summarized in Table 3.5.

Table 3.5 The description of ESBP methods

 ESBP1 ESBP2 ESBP3

Initial Solution Dispatching

rule

Dispatching

rule

Dispatching

rule

Material allocation

subproblem (MA)

Optimization

method

(MA1)

Dispatching

rule

Optimization

method

(MA1)

Capacity allocation

subproblem (CA)

Optimization

method

(CA1)

Optimization

method

(CA1)

Dispatching

rule

3.4.3 Rolling horizon procedure (RHP)

Although ESBP reduces the total number of subproblems requiring to solve the

assembly job shop scheduling problem, these subproblems are still NP-hard problems in

nature. It is necessary to reduce the complex of subproblems to capable of solving large

size problems within reasonable computational times for practice uses. We introduce the

ESBP with implementation of the rolling horizon procedure to solve subproblems, so-

called RHP. The procedures of RHP is similar to ESBP, the only difference between

them is the way to solve subproblems. In RHP, subproblems are solved by the rolling

 70

horizon procedure. The rolling horizon procedure decomposes the subproblem into

numerous time windows that can be optimized independently within a reasonable

computational effort. There are several algorithms to divide the problems, which included

the number of operations and the length of time window. In RHP, the subproblem is

divided into time windows by the fixed number of operations, which is similar to the rule

developed by Ovacik and Uzsoy (1995). In their works, operations are chosen based on

earliest due date rule. However, RHP uses the dispatching rule to obtain initial solutions

of the subproblem. Then, operations are separated into different time windows based on

their starting time from the initial solutions. Afterward, the sequence of operations

belonging to the first time window is optimized and the partial sequence is frozen. The

operations belonging to second time window are added into the problem. The sequence of

operations is optimized and the partial sequences are scheduled according to solutions.

This procedure will repeat until all operations are scheduled. By restricting the size of

subproblems, it does not only decrease the computational effort of subproblems, but also

reduces the complexity of the overall problem as well. Furthermore, the complexity of

this approach is expected to be a function of the time window’s size.

A rolling horizon procedure (RHP) can be described as follows:

Step 1. Choose an efficient dispatching rule or any other assembly job shop scheduling

algorithm to obtain material plan of each component, job sequence and machine

allocation of each machine as the initial solution.

 71

Step 2. Use re-optimization procedure to improve the initial solution. The material

subproblems and capacity subproblems can be solved by using a dispatching rule

or an optimization method with the implementation of rolling horizon procedure

to reduce the complexity of test problems.

The procedure of RHP is described as follows. Let n denote the number of

operations per time window and denote p the number of overlapping operations per time

window. Let V(t) presents the set of unscheduled operations, S(t) presents the set of

scheduled operations and K(t) presents the set of candidate operations for current time

window.

Step 1. Choose first O=min(n-|K(t)|, |V(t)|) operations from the set of unscheduled

operations V(t) for machine k and add these operations to the set of candidate

operations K(t), which is belonging to current subproblem. Let V(t) = V(t) – O(t)

and K(t) = K(t) U O(t).

Step 2. Optimize the sequence of operations in K(t). Select first L= min(n-p, |K(t)|)

operations from K(t) and schedule them according to the partial sequence. Mark

the status of these operations to “Fixed” and add these operations to S(t). Let

S(t)= S(t)U L(t). For the last O=min(p, n-L) operations in K(t). Mark the status

of operations in O(t) to “Open”.

Step 3. If K(t) = empty set , Stop RHP; otherwise, go to Step1.

 72

3.5 Dispatching rules

The assembly job shop scheduling problem is NP-hard problem in both

theoretical research and real world practice. A simple way to schedule all jobs on the

machines in practice is dispatching rules which received great attention from researchers

in past decades. Many different dispatching rules have been developed in both research

and practice. In general, dispatching rules sort all jobs according to specific priority

indexes when they enter the queue of machines or materials. A priority index is based on

job characteristics, machine attributes or current shop conditions, such as job processing

time and the order of arrival time at a machine. Because dispatching rules only rely on

current shop status and local information, they are myopic in nature. Without considering

the future jobs in the global view, we do not expect dispatching rules to work well in the

long run. However, scheduling problems are complex and the excess computational time

on optimization methods is not suitable in realistic production systems. Additionally the

options for scheduling realistic systems are still very limited, dispatching rules continues

to find extensive use in industry (Hopp and Spearman, 2000).

Although dispatching rules can not provide the superior solutions, they may

perform better on a specific objective. The simplest dispatching rule is first come first

served (FCFS). The FCFS rule sorts the jobs in increasing order which they arrive at a

machine disregarding the priority and the processing time of jobs. To improve due date

performance, earliest due date first (EDD) is wild used. The EDD rule processes the job

in the increasing order of job’s due date which could be set internally or externally. To

reduce congestion or total completion time, shortest processing time first (SPT) may be a

 73

good candidate. The SPT rule chooses the job to process in the increasing order of the

processing time of the jobs.

In an assembly job shop, jobs consist of several levels in the BOM. Assembly of

components may occur all the time when jobs are being processed through the shop.

Failure to provide sufficient amount of components at the time of assembly will result in

delays of shipments. In MRP systems, assembly due dates are provided for components

which are being assembled and can be used as the reference for progress of jobs towards

completion. Baker and Kanet (1983) found that the use of operation due dates as progress

milestones improves the due date-oriented sequencing rules using only job due dates in a

single stage job shop.

In this dissertation, six dispatching rules are used to evaluate the performance of

MSBP and ESBP. Because the objective of these models is to minimize the total

weighted tardiness for the assembly job shop scheduling problem, EDD rule is chosen as

a candidate for performance comparison. To consider the impact of the priority of the

jobs on the objective, WEDD is developed as a function of due dates and priorities. The

WEDD rule chooses the job to process in the increasing order of priority and break ties

by due date. The objective of minimizing total weighted tardiness is more difficult to

solve than the one of minimizing maximum tardiness. The Apparent Tardiness Cost

(ATC) rule is a function of WSPT and MS. It is designed to minimize total weighted

tardiness on a single machine with consideration of release dates and due dates. The

dispatching rules used in this dissertation are described as follows:

 74

1. EDD (Earliest due date first): The EDD rule will select a job with the earliest due

date to be processed next when machines are idle. It is designed to minimize the

maximum lateness among jobs for a single machine.

2. WEDD (Weighted Earliest due date first): When machines are idle, the WEDD

rule will choose a job with the highest priority to be processed first and break ties

by earliest due date. It is designed to minimize the total weighted tardiness among

jobs for a single machine.

3. WTC (Weighted tardiness cost): When a machine becomes free, the WTC will

choose the jobs with highest ranking index to be scheduled next. The index is

described as follows: jj dTjLTNOWtA −+=),()(. If)(tAj is

negative,)()(tAtI jj = , else, jjj wtAtI *)()(= . It is designed to minimize total

weighted tardiness on a single machine with consideration of job’s priority and

due dates.

4. ATC (Apparent tardiness cost): When a machine becomes free, the ATC will

choose the jobs with highest ranking index to be scheduled next. The index is

described as following:)
)0,max(

exp()(
pK

tpd
p
w

tI jj

j

j
j

−−
−= , where K is the

scaling parameter, which can be determined empirically, and p is the average of

the processing times of the remaining jobs. It is designed to minimize total

weighted tardiness on a single machine with consideration of release dates and

due dates. Additionally, if K is very large, the ATC rule reduces to the WSPT rule.

If K is very small and there are no overdue jobs, the rule reduces to the MS rule.

 75

5. MWTC (Modified weighted tardiness cost): When a machine becomes free, the

MWTC will choose the jobs with highest ranking index to be scheduled next. The

index is described as follows: jj dTjLTNOWtA −+=),()(. For the material plans,

if)(tAj is negative,)()(tAtI jj = , else, jjj wtAtI *)()(= . For the capacity

schedules, if)(tAj is negative,)()(tAtI jj = , else, jjj ptAtI /)()(= . It is

designed to minimize total weighted tardiness on a single machine with

consideration of release dates and due dates.

6. WSPT (Weighted shortest processing time first): When a machine becomes free,

the WSPT will choose the jobs with highest priority over processing time to be

scheduled next. It tends to minimize the total weighted completion times among

jobs for a single machine.

 76

Table 3.6 The summary of dispatching rules

Rule Capacity Allocation Index Material Allocation Index

EDD

(Earliest due date

first)

Earliest jd Earliest jd

WEDD

(Weighted Earliest

due date first)

Smallest jj dw * Smallest jj dw *

WTC

(Weighted

tardiness cost):

If 0)(≤tAj ,)()(tAtI jj = , else,

jjj wtAtI *)()(=

If 0)(≤tAj ,)()(tAtI jj = ,

else, jjj wtAtI *)()(=

ATC

(Apparent tardiness

cost)

)
)0,max(

exp()(
pK

tpd
p
w

tI jj

j

j
j

−−
−=

Earliest jd

MWTC

(Modified

weighted tardiness

cost)

If 0)(≤tAj ,)()(tAtI jj = , else,

jjj wtAtI *)()(= .

If 0)(≤tAj ,)()(tAtI jj = ,

else, jjj ptAtI /)()(=

WSPT

(Weighted shortest

processing time

first)

Highest
j

j

p
w

Earliest jd

* jj dTjLTNOWtA −+=),()(

 77

Chapter 4. Computational Results

In this dissertation, several modified shifting bottleneck procedures (MSBP),

efficient shifting bottleneck procedures (ESBP) and rolling horizon procedure (RHP) are

developed to solve assembly job shop scheduling problems with the availability of

components in the make-to-order (MTO) environment. We also investigated the

performance of all proposed methods and their impact on the performance of a

production system. There are several dispatching rules developed in this research and are

used as performance comparisons in our experiments. The optimization approach, which

is MIP model, is first evaluated for the performance. The computational results show how

the complexity of the MIP model based on the different number of jobs with limited

maximum CPU time setting. Second, the performance of heuristic approaches, which are

based on shifting bottleneck procedures, is studied with respect to two measures:

minimization of the total weighted tardiness and the computational time. The goal is to

identify an approach which is scalable and provides solutions close to solutions obtained

from optimization methods with the objective of the minimization of the total weighted

tardiness measure. Third, we study the difference of the performance between

dispatching rules and heuristics. Fourth, the effect of the implementation of rolling

horizon procedure to solve subproblems is also investigated. The results demonstrate how

different shifting bottleneck algorithms can help manufacturers improve the performance

of an assembly job shop.

 78

4.1 Design of Experiments

The manufacturing models used in this experiment acts as a real-world job-shop

production environment. There are ten components consumed by ten assembly items and

ten end items. There are also ten machines in this manufacturing model and the

processing time of an operation is selected from a uniform distribution between 5 and 30.

Each job has maximum levels of BOM up to 3 and the total number of assembly items

per BOM is equal to 3. For each operation, there is a 40% probability to consume

components which have to be procured from outside vendors in advance. Our experiment

consists of several factors and varying number of levels for each factor. The number of

jobs is set at 5, 10, 15, 20, 25, 30 and 35. Tightness of supply levels is assumed to be

medium. A medium level tightness of supply means that the inter-arrival time for each

components follows a uniform distribution with mean equals to 10 and standard deviation

equals to 5. Tightness of supply (TOS) value is a major measure for material constraints.

It will determine by demand and supply patterns. In our experiments, we control the TOS

value by changing the variability of supply, instead of supply mean. For example, two

supply patterns may have the same inter-arrival rate, but different variability. The supply

pattern with lower variability will generate less tardy orders than the one with higher

variability. We can simply increase or decrease the variability of supply inter-arrival time

until reaching the desirable level of TOS and still maintain the same inter-arrival rate for

both demand and supply.

Each job is randomly given a priority value set at 1, 2 and 4 with probability equal

to 70%, 20% and 10%. A job is classified as a high priority order if the priority value is 4.

A medium priority job if the priority value is 2 and a low priority order otherwise. A 10%

 79

high priority ratio in our experiments means that 10% of orders are high priority jobs. We

define “the job penalty ratio” as the ratio of penalty factor of high priority jobs to the

penalty factor of low priority jobs. We tested job penalty ratios of 2, referring them as

medium in our experiments. A job’s due date is calculated as a function of total

processing time and a due date factor. The job’s due-date is quoted as job’s arrival time

plus the estimated flow time as the following equation.

Due Date = Job arrival time + Estimated flow time

Job arrival time = 0

Estimated flow time = Uniform{ (2.5*Total Processing Time)*(1-

Due date factor), 0.3*Total Processing time}

It is noted that our due-date setting method treats all orders in the same way with no

regard to weather they are high priority or low priority jobs. The only difference between

a high priority job and a low priority job is job penalty ratio. This means that late high

priority jobs will generate more penalty than late low priority jobs. A similar logic is used

by Malhotra et al (1994).

The test problems were generated randomly by varying a set of parameters as

described above. For each instance, the performance measures are computed from 5

different random seeds in order to increase the accuracy of the experiments. More than 5

optimization method settings are tested in selected test problems and over 30 different

heuristics settings and dispatching rules are evaluated for each test problem. Hence, there

are 1105 randomly test problems in our experiments. The description of parameters used

in test problems is illustrated as shown in Table 4.1. To make fair comparisons between

all proposed methods, MIP methods, SB heuristics and dispatching rules are all coded

 80

using Xpress-MP (Mosel). The experiments are performed under the Windows platform

with Pentium 4 2.8 GHz processor (single core processor).

Table 4.1 Experimental design for randomly generated test problems

Factors Levels Number of levels

Number of jobs 5, 10, 15, 20, 25, 30, 35 7

Number of machines 10 1

Number of items 10 1

Order Priority

(Order penalty ratio)

Low(70%, 1), Medium(20%, 2),

High(10%, 4)

1

Due Date Tightness Medium (0.3) 1

Tightness of supply Medium 1

Number of BOM

level

Medium (3) 1

Number of items per

assembly level

Medium (3) 1

Methods MIP, SB1, SB2, SB3, SB4, ESBP1,

ESBP2, ESBP3

8

Total test problems

4.2 Performance Measures and Computational Results

 Two measures, total weighted tardiness cost and computational time, are used to

study the performance of the optimization methods and heuristic approaches. The

 81

primary performance measure is the total weighted tardiness, which distinguishes

between high and low priority jobs. It measures customer service levels. For measure of

scalability, the computational time is an important indicator.

We have adopted a relative measure scale instead of an absolute one while

discussing weighted tardiness cost and computational time. A value of 1.0 in

computational time means that the corresponding approach had the least computational

time compared to the other approaches tested in the study. Similarly, a value of 1.3 in

weighted tardiness cost for an approach means that the weighted tardiness cost using that

approach had a value 30% above the best cost value.

We used performance measures similar to Demirkol et al. (1997). Since the

subproblems can not generally be solved to optimality by dispatch rules, we replaced

LB(I), denoted a lower bound on the optimal total weighted tardiness value of instance I,

by TWT(SB, I) and CPU(SB, I).

In this experiment, TWT(H) and CPU(H) are used to evaluate the performance of

heuristics H. For a given problem class S, let TWT(H) be the total weighted tardiness

value obtained by heuristic H divided by total weighted tardiness value of best heuristic

in that class.

 TWT (H) =
∑
∑

∈

∈

SI

SI

ISBTWT

IHTWT

),(

),(

There are two performance measures of CPU time. CPU(H) shows the performance

of heuristic H compared to heuristic SB in a given problem class S. For a given problem

class S, let CPU(H) as the CPU time obtained by heuristic H divided by CPU time of the

best heuristic SB in that class.

 82

 CPU (H) =
∑
∑

∈

∈

SI

SI

ISBCPU

IHCPU

),(

),(

.

The value of TWT (H) and CPU(H) indicated the performance of specific heuristic

H on a given problem class S compared to best heuristic SB in that class. If TWT(H) or

CPU(H) is equal to 1, it means the specific heuristic H provides best solutions or

computational time for all test problems.

4.3 Computational results for optimization methods

In this section, we present the one optimization method to solve assembly job

shop scheduling problems, which are the mixed integer programming model (MIP), and

two heuristics for comparison purposes, which are modified shifting bottleneck procedure

(SB1) and the modified shifting bottleneck procedure with longest path implementation

(SB2). In the MIP model, production constraints are formulated as a mixed-integer

programming model without any relaxation constraints. In this case, the MIP model

requires excess computing power to obtain the optimal solution and can not solve large-

scale assembly job shop scheduling problems in practice. To overcome this drawback, we

developed an SB1 method by decomposing the original assembly job shop schedule

problem to numerous subproblems and solving them iteratively. Hence, it requires less

computational time and provides the solutions closed to the solutions of MIP.

Additionally, SB2 is introduced to save the computational time in each subproblem by

using the longest path implementation to represent the precedence constraints. In this

 83

section, the experiments are designed to assess the performance of the MIP, the SB1 and

the SB2 as shown in Table 4.2. The goal is to evaluate the difference of solutions

between the MIP, the SB1 and SB2 based on computational time and solution quality.

Table 4.2 Experimental design for randomly generated test problems –

Optimization methods

Factors Levels Number of levels

Number of jobs 5, 10, 15 5

Number of machines 10 1

Number of items 10 1

Methods MIP (100), MIP (500), MIP (1000),

MIP (3000), MIP (5000), SB1, SB2

7

Total test problems 175

* MIP(100): MIP model with maximum CPU time setting equals to 100 seconds.
* MIP(500): MIP model with maximum CPU time setting equals to 500 seconds.
* MIP(1000): MIP model with maximum CPU time setting equals to 1000 seconds.
* MIP(3000): MIP model with maximum CPU time setting equals to 3000 seconds.
* MIP(5000): MIP model with maximum CPU time setting equals to 5000 seconds.
* SB1: Shifting bottleneck algorithm with maximum CPU time setting equals to 20
seconds.
* SB2: Shifting bottleneck algorithm with longest path implementation and maximum
CPU time setting equals to 20 seconds.

In Table 4.3, CPU(H) ratio of MIP methods increase dramatically as the

MaxCPUTime increases. It is due to the nature of mixing-integer programming. However,

TWT(H) ratio of MIP (5000) only improve by 17% when CPU(H) ratio raises more than

16 times compared to MIP (100). Moreover, MIP (5000), which has the MaxCPUTime

setting to 5000 seconds, only found three more integer solutions than MIP (100) does on

 84

average. Out of 15 test problems, it provides only two more better solutions than MIP

(100) does. It indicates that increasing MaxCPUTime setting for MIP method does not

seem to improve the solution quality that much and only increases the computation

effects as shown in Figure 4.1. Thus, an algorithm which can respond to both material

plans and capacity schedules faster than the MIP method is needed to solve assembly job

shop scheduling problems efficiently. In this experiment, two SB heuristics, SB1 and

SB2, have been used to evaluate the performance of decomposition methodology on the

solution quality and computational time. SB1 is based on the concept of shifting

bottleneck procedures. It breakdowns the assembly job shop scheduling problems into

numerous subproblems, which represent different material plans and capacity schedules,

and solve each separately. SB2 used the same theory to solve assembly job shop

scheduling problems but tries to reduce more computational efforts by the

implementation of longest path algorithm to represent the precedence relation between

operations in each subproblem. The TWT(H) ratio of SB1 and SB2 is better than all MIP

methods in test problems consistently as shown in Table 4.3. In addition, SB1 and SB2

require less computational time than MIP methods by 93% on average and provide better

solutions than MIP method by 17% in overall test problems. It shows that the benefit of

decomposition methodology does not only reduce the computational time but also

improves the solution quality in the case that optimal solutions can not be obtained from

MIP method in reasonable computational times. Moreover, SB2 requires less

computational time than SB1 because of the reduction on the total number of variables

and constraints in each subproblem. But it also sacrifices the solution quality by 9%

compared to SB1, as shown in Table 4.3. In Figure 4.1, it easily can see that the two

 85

shifting bottleneck procedures are superior to all MIP methods on all performance

measures.

Table 4.3 Computational results for optimization methods

Method MIP MIP MIP MIP MIP SB1 SB2

MaxCPUTime* 100 500 1000 3000 5000 20 20

CPU(H) –Mean 4.510 19.739 35.904 100.17 164.34 5.592 2.839

TWT(H)-Mean 1.656 1.449 1.404 1.388 1.380 1.158 1.261

TWT(H)-SD 0.315 0.398 0.365 0.352 0.348 0.226 0.225

Number of

integer found 7.33 8.73 9.40 9.86 10.00 - -

Number of best

solutions 4 5 5 6 6 11 4

Percentage of

best solutions 16% 20% 20% 24% 24% 44% 16%

* MaxCPUTime: The maximum cpu time allowed for each subproblem. The

parameter is controlled by "XPRS_MAXTIME" parameter in Xpress-MP.

 86

0

20

40

60

80

100

120

140

160

180

MIP(100) MIP(500) MIP(1000) MIP(3000) MIP(5000) SB1 SB2

Methods

CP
U

Ti
m

e
Ra

tio
 -

CP
U(

H)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

To
ta

l W
ei

gh
te

d
Ta

rd
in

es
s

Ra
tio

 T
W

T(
H)

CPU(H)
TWT(H)

Figure 4.1 CPU(H) and TWT(H) for optimization methods

4.4 Computational results for dispatching rules:

There are six dispatching rules which are used to evaluate the performance of

heuristic approaches in this experiment as shown in Table 4.4. These dispatching rules

are EDD, WEDD, ATC, WSPT, WTC and MWTC. EDD and WEDD are used to

minimize the maximum lateness. WSPT are designed to minimize the total weighted

completion time. ATC, WTC and MWTC are introduced to minimize the total weighted

tardiness.

 87

Table 4.4 Experimental designs for randomly generated test problems – Dispatching

rules

Factors Levels Number of levels

Number of jobs 15, 20, 25, 30, 35 5

Number of machines 10 1

Number of items 10 1

Methods EDD, WEDD, WAC, ACT, MWAC,

WSPT

6

Total test problems 180

* EDD: earliest due date first.
*WEDD: Weighted earliest due date first
* WTC: Weighted tardiness cost
* ATC: Apparent tardiness cost
* MWTC: Modified weighted tardiness cost
* WSPT: Weighted shortest processing time first.

Table 4.5 Computational results for dispatching rules

Method MWTC ATC EDD WEDD WTC WSPT

CPU(H) –Mean 1.094 1.085 1.122 1.086 1.065 1.079

TWT(H) -Mean 1.079 1.076 1.204 1.136 1.136 1.288

TWT(H)-SD 0.091 0.080 0.201 0.218 0.086 0.415

Number of best

solutions 8 9 1 10 0 1

Percentage of best

solutions 32% 36% 4% 40% 0% 4%

 88

The ratio of CPU(H) for all six dispatching rules are closed as shown in Table 4.5.

However, the TWT(H) ratio of MWTC and ATC are better than other dispatching rules

from 5% to 21% because they consider more information on status of jobs and the shop

than others. The TWT(H) ratio of ATC is 0.3% less than the TWT(H) ratio of MWTC.

However, the performance of ATC rule relies on the scaling parameter K, which needs to

be determined empirically. The value of scaling parameter K used in this experiment is 5.

MWTC does not need any parameters and provide similar performance as ATC. WEDD

provides better TWT(H) value than EDD by 7%. It indicates the performance can be

improved if dispatching rules include job priority in their index. WSPT is commonly used

on conventional job shop scheduling problems with string-type jobs which have linear

routings. But it does not perform well on assembly job shop according to the performance

measure TWT(H) as shown in Table 4.5. In Figure 4.2, it shows that MWTC, ATC and

WTC not only have low value on TWT(H) ratio in average, but also provide low

variability on TWT(H) ratio as well. It indicates these three dispatching rules produce the

solutions which are more reliable than other dispatching rules.

 89

0.950

1.000

1.050

1.100

1.150

1.200

1.250

1.300

1.350

MWTC ATC EDD WEDD WTC WSPT

Methods

To
ta

l W
ei

gh
te

d
Ta

rd
in

es
s

R
at

io

TW
T(

H
)-

M
ea

n

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

TW
T(

H
)-

SD

TWT(H)

TWT(H)-
SD

Figure 4.2 TWT(H) – Mean and SD for dispatching rules

4.5 Computational results for heuristic approach 1 – Modified shifting bottleneck

procedure (MSBP) :

We present the optimization approach to solve assembly job shop scheduling

problems. However, the MIP methods are not scalable to run real-world problems due to

excessive computational time. To be able to solve large-sized problems, several heuristic

approaches are developed. These heuristics provide solutions close to optimal solutions

within reasonable computational times. In this experiment, we are interested in the

performance of heuristic approaches with different order sizes from 15 to 35. Hence, the

performance of these heuristics is compared to the best solutions obtained form the

 90

dispatching rules. By doing so, we demonstrate the trade-off between optimization

approaches, heuristic approaches and dispatching rules in term of computational time and

solution quality.

Table 4.6 Experimental design for randomly generated test problems – MSBP

Factors Levels Number of levels

Number of jobs 15, 20, 25, 30, 35 5

Number of machines 10 1

Number of items 10 1

Methods SB1, SB2, SB3-Dispatch, SB4-

Dispatch

14

Total test problems 350

*SB1: Shifting bottleneck procedure
*SB2: Shifting bottleneck algorithm (Using longest path to present precedence
constraints)

SB3-Dispatch uses the same shifting bottleneck procedure to solve assembly job

shop scheduling problems. It still applies optimization methods to solve capacity

subproblems but it uses dispatching rules to solve material subproblems to reduce the

computational time. There are six different SB3-Dispatch methods tested in this

experiment, which included SB3-ATC, SB3-MWTC, SB3-EDD, SB3-WEDD, SB3-

WTC and SB3-WSPT as described in Table 4.7. The results of all test problems are

shown in Table 4.8 and it can easily be seen that SB3-ATC, SB3-MWTC and SB3-WTC

has better TWT(H) ratio than others. Moreover, the TWT(H) ratio of SB3-WEDD is

better than SB3-EDD rule by 28%, it indicates that WEDD rule could produce better

 91

solutions than EDD rule in material subproblems because of the consideration of job

priority. Additionally, SB3-ATC and SB3-MWTC are chosen to present the SB3-

Dispatch compared to other heuristic approaches in later experiments.

92

Table 4.7 The summary of SB3 methods and dispatching rule used in this experiment

 SB3-ATC SB3-MWTC SB3-EDD SB3-WEDD SB3-WTC SB3-WSPT

Material

allocation

subproblem

ATC

Dispatching

rule

MWTC

Dispatching

rule

EDD

Dispatching

rule

WEDD

Dispatching

rule

WTC

Dispatching

rule

WSPT

Dispatching

rule

Capacity

allocation

subproblem

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

93

Table 4.8 Computational results for SB3 methods

Method

SB3-

ATC

SB3-

MWTC

SB3-

EDD

SB3-

WEDD

SB3-

WTC

SB3-

WSPT ATC

CPU(H) -Mean 1333 1402 1593 1371 1396 2581 1

TWT(H) – Mean 1.033 1.038 1.527 1.107 1.039 1.308 1.202

TWT(H) – SD 0.046 0.052 0.595 0.175 0.051 0.314 0.110

Number of best solutions 12 12 0 5 11 0 0

Percentage of best solutions 48% 48% 0% 20% 44% 0% 0%

 94

SB4-Dispatch follows the same shifting bottleneck procedure as SB1 to solve

assembly job shop scheduling problems. It applies optimization methods to solve material

subproblems but uses dispatching rules to solve capacity subproblems to reduce the

computational time. There are six different SB4-Dispatch methods tested in this

experiment, which include SB4-ATC, SB4-MWTC, SB4-EDD, SB4-WEDD, SB4-WTC

and SB4-WSPT as summarized in Table 4.9. In addition, test problems used in this

experiment are material-intensive because of assembly operations and insufficient

amounts of components. The results of all test problems are shown in Table 4.10 and it

can easily be seen that all SB4-Dispatch rules produce worse TWT(H) ratio than ATC

dispatching rule. This indicates that using optimization methods to solve material

constraints incompletely may produce worse solutions than using dispatching rules, such

as ATC rule. Furthermore, SB4-ATC and SB4-WEDD are chosen to present the SB4-

Dispatch compared to other heuristics approaches in later experiments.

95

Table 4.9 The summary of SB4 methods and dispatching rule used in this experiment

SB4-ATC

SB4-

MWTC SB4-EDD SB4-WEDD SB4-WTC SB4-WSPT

Material

allocation

subproblem

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Capacity

allocation

subproblem

ATC

Dispatching

rule

MWTC

Dispatching

rule

EDD

Dispatching

rule

WEDD

Dispatching

rule

WTC

Dispatching

rule

WSPT

Dispatching

rule

96

Table 4.10 Computational results for SB4 methods

Method

SB4-

ATC

SB4-

MWTC

SB4-

EDD

SB4-

WEDD

SB4-

WTC

SB4-

WSPT ATC

CPU(H) - Mean 10621 10840 10753 10653 10672 10373 1

TWT(H) – Mean 1.241 1.232 1.418 1.137 1.186 1.294 1.095

TWT(H) – SD 0.281 0.274 0.448 0.121 0.138 0.339 0.186

Number of best solutions 4 3 1 5 1 3 11

Percentage of best solutions 16% 12% 4% 20% 4% 12% 44%

 97

 The comparison of MSBP method is summarized in Table 4.11. There are six

MSBP methods tested in this experiment, which included SB1, SB2, SB3-ATC, SB3-

MWTC, SB4-WEDD and SB4-WTC. It can easily be seen that SB1 has the best THT(H)

ratio among all MSBP methods shown in Table 4.11. The TWT(H) ratio of SB3-ATC

and SB3-MWTC is worse than TWT(H) of SB1 by 5%, but these two methods could

reduce computational times by 91% compared to SB1. Moreover, the two SB3 methods

also provide better solutions than ATC rule by 14% in term of TWT(H) ratio. However,

two SB4 methods produce worse solutions than any methods used in this experiment. The

difference between SB3 and SB4 is different degrees of solutions obtained from material

subproblems and capacity subproblems. SB3 uses dispatching rules to solve material

subproblems and apply optimization methods to obtain solutions from capacity

subproblems. SB4 solves capacity subproblems by using dispatching rules and solves

material subproblems by employing optimization methods. It indicates that dispatching

rules, ATC and MWTC, used in this experiment can provide solutions closed to SB1 in

material subproblems. Second, the dispatching rules could produce better solutions in

material subproblems than capacity subproblems compared to optimization methods with

limited computational time settings. In addition, SB2 does not perform well in both

TWT(H) and CPU(H) ratios because of the technical problems of programming. The

longest path algorithm used in SB2 is written using MOSEL language, which is designed

to solve mathematical problems. It is very inefficient to execute “IF statement” in terms

of computational times compared to C language, particularly in large-sized instances. It

caused SB2 to become the worst among all heuristics approaches. In Figure 4.3, it can

 98

easily be seen that SB3 methods are best choice to solve the problems efficiently in terms

of computational times and solution quality among all MSBP methods.

Table 4.11 Computational results for MSBP methods

Method SB1 SB2

SB3-

ATC

SB3-

MWTC

SB4-

WEDD

SB4-

WTC ATC

CPU(H) -

Mean 16429 61753 1333 1402 10653 10672 1

TWT(H) –

Mean 1.034 1.433 1.078 1.084 1.309 1.367 1.260

TWT(H) – SD 0.047 0.339 0.106 0.117 0.152 0.171 0.205

Number of

best solutions 13 0 7 7 0 0 0

Percentage of

best solutions 52% 0% 28% 28% 0% 0% 0%

 99

0

10000

20000

30000

40000

50000

60000

70000

SB1 SB2 SB3-ATC SB3-MWTC SB4-WEDD SB4-WTC ATC
Methods

C
PU

 T
im

e
R

at
io

 -C
PT

(H
)

1.0

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1.5

1.5

To
ta

l W
ei

gh
te

d
Ta

rd
in

es
s

R
at

io
 -

TW
T(

H
)

CPU(H)

TWT(H)

Figure 4.3 CPU(H) and TWT(H) for MSBP methods

4.6 Computational results for heuristic approach 2 – Efficient shifting bottleneck

procedure (ESBP) :

Although MSBP produces better solutions than the MIP method, it is still a time-

consumed approach due to numerous subproblems needing to be solved during the re-

optimization procedure. According to Chen et al. (2006), the complexity increases as the

number of jobs increases and the number of machine types increases, as there are more

subproblems to solve. By reducing the number of subproblems or applying efficient

procedures to solve subproblems, one can reduce the computational time of the shifting

bottleneck procedure significantly. Additionally, Demirkol et al. (1997) concluded that

 100

bottleneck machine selection criteria had no significant effect on solution quality and

computational time but subproblems and re-optimization procedures did.

It is reasonable to obtain an initial solution by using a dispatching rule, then

improve it using a re-optimization procedure in order to reduce the number of

subproblems which required to solve assembly job shop scheduling problems by using

MSBP methods. Chen et al. (2006) propose an efficient shifting bottleneck heuristic for

parallel machine work-centers, where bottleneck machine selection procedure is avoided

and re-optimization procedure is constrained to few iterations. Hence, the total number of

subproblems is expected to decrease. In this section, the performance of ESBP is

evaluated and the effect of the re-optimization procedure on TWT(H) and CPU(H) are

investigated in this experiment.

Table 4.12 Experimental design for randomly generated test problems - ESBP

Factors Levels Number of levels

Number of jobs 15, 20, 25, 30, 35 5

Number of machines 10 1

Number of items 10 1

Methods ESBP1, ESBP2-Dispatch, ESBP3-

Dispatch

13

Total test problems 325

 101

In ESBP1, the initial solution is obtained by dispatching rules. Then, improve it

by using re-optimization procedure with optimization methods to solve both material

subproblems and capacity subproblems. ESBP1 avoids the bottleneck machine selection

procedure and limits the re-optimization procedure to few iterations. By doing so, ESBP1

is able to reduce the excess of computational times which is a major complaint of MSBP

as the size of problems increase. The total number of subproblems requiring to be solved

by ESBP1 is expected to decrease as compared to MSBP methods. There are six different

ESBP1 methods tested in this experiment, which include ESBP1-ATC, ESBP1-MWTC,

ESBP1-EDD, ESBP1-WEDD, ESBP1-WTC and ESBP1-WSPT as seen in Table 4.13.

The results of all test problems are shown in Table 4.14 and it can see easily that ESBP1-

ATC, ESBP1-MWTC and ESBP1-WTC provide better TWT(H) ratio than the others.

Moreover, ESBP1 methods that produce better initial solutions do perform better on

TWT(H) ratio. The only exception is ESBP1-WTC. This indicates that the better initial

solution could help ESBP1 methods perform better during re-optimization procedures.

Furthermore, ESBP1-ATC and ESBP1-MWTC are chosen to present the ESBP1

compared to other heuristic approaches in later experiments.

102

Table 4.13 The summary of ESBP1 methods used in this experiment

 ESBP1-

ATC

ESBP1-

MWTC

ESBP1-

EDD

ESBP1-

WEDD

ESBP1-

WTC

ESBP1-

WSPT

Initial

Solution

ATC

Dispatching

rule

MWTC

Dispatching

rule

EDD

Dispatching

rule

WEDD

Dispatching

rule

WTC

Dispatching

rule

WSPT

Dispatching

rule

Material

allocation

subproblem

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Capacity

allocation

subproblem

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

103

Table 4.14 Computational results for ESBP1 methods

Method

ESBP1-

ATC

ESBP1-

MWTC

ESBP1-

EDD

ESBP1-

WEDD

ESBP1-

WTC

ESBP1-

WSPT ATC

CPU(H) - Mean 1178 1260 1206 1102 1219 1088 1

TWT(H) – Mean 1.057 1.070 1.162 1.128 1.089 1.274 1.257

TWT(H) – SD 0.060 0.084 0.151 0.144 0.073 0.334 0.141

Number of best solutions 9 7 3 8 0 1 0

Percentage of best solutions 36% 28% 12% 32% 0% 4% 0%

 104

ESBP2 follows the same procedure as ESBP1 to solve assembly job shop

scheduling problems. But it solves the material subproblems by using dispatching rules

and obtains the solutions from capacity subproblems by optimization methods during the

re-optimization procedure. There are six different ESBP2 methods tested in this

experiment, which include ESBP2-ATC, ESBP2-MWTC, ESBP2-EDD, ESBP2-WEDD,

ESBP2-WTC and ESBP2-WSPT as summarized in Table 4.15. The results of all test

problems are shown in Table 4.16 and it can easily be seen that ESBP2-ATC, ESBP2-

MWTC and ESBP2-WTC has best TWT(H) ratio than the others. It indicates that these

three ESBP2 methods can generate similar solutions which are close to the solutions from

optimization methods with limited computational times restrictions in material

subproblems. But the TWT(H) ratio of ATC rule also indicates that ESBP2 methods

produce the solutions which are worst than the ones obtained from the ESBP1. However,

the CPU(H) ratio of ESBP2 shows a significant reduction on computational time by 80%

compared to ESBP1. Moreover, the ESBP2 methods that produce better initial solutions

do perform better on the TWT(H) ratio. It is the same finding as seen in the results from

the ESBP1. Furthermore, ESBP2-ATC and ESBP2-MWTC are chosen to present the

ESBP1 compare to other heuristic approaches in later experiments.

105

Table 4.15 The summary of ESBP2 methods used in this experiment

 ESBP2-

ATC

ESBP2-

MWTC

ESBP2-

EDD

ESBP2-

WEDD

ESBP2-

WTC

ESBP2-

WSPT

Initial

Solution

ATC

Dispatching

rule

MWTC

Dispatching

rule

EDD

Dispatching

rule

WEDD

Dispatching

rule

WTC

Dispatching

rule

WSPT

Dispatching

rule

Material

allocation

subproblem

ATC

Dispatching

rule

MWTC

Dispatching

rule

EDD

Dispatching

rule

WEDD

Dispatching

rule

WTC

Dispatching

rule

WSPT

Dispatching

rule

Capacity

allocation

subproblem

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

Optimization

method

(CA1)

106

Table 4.16 Computational results for ESBP2 methods

Method

ESBP2-

ATC

ESBP2-

MWTC

ESBP2-

EDD

ESBP2-

WEDD

ESBP2-

WTC

ESBP2-

WSPT ATC

CPU(H) - Mean 198 209 193 218 234 230 1

TWT(H) – Mean 1.051 1.065 1.215 1.131 1.075 1.323 1.197

TWT(H) – SD 0.058 0.078 0.206 0.204 0.077 0.413 0.102

Number of best solutions 9 8 1 7 6 0 0

Percentage of best solutions 36% 32% 4% 28% 24% 0% 0%

 107

ESBP3 follows the same procedure as ESBP1 to solve assembly job shop

scheduling problems. But it solves the material subproblems by using the optimization

method and obtains the solutions from capacity subproblems by dispatching rules during

the re-optimization procedure. As seen in Table 4.17, there are six different ESBP3

methods tested in this experiment, which include ESBP3-ATC, ESBP3-MWTC, ESBP3-

EDD, ESBP3-WEDD, ESBP3-WTC and ESBP3-WSPT. The results of all test problems

are seen in Table 4.18 and it can easily be seen that only ESBP3-MWTC, ESBP3-WEDD

and ESBP3-WTC have better TWT(H) ratio than the ATC rule by 3% on average. It

indicates that all ESBP3 methods does not perform well in capacity subproblems by

using dispatching rules compared to the optimization method with limited computational

times. In addition, ESBP3 methods only reduce computational times by 25% compared to

ESBP1. Furthermore, ESBP3-WEDD and ESBP3-MWTC are chosen to present the

ESBP3 compared to other heuristic approaches in later experiments.

108

Table 4.17 The description of ESBP3 methods used in this experiment

ESBP3-ATC

ESBP3-

MWTC ESBP3-EDD

ESBP3-

WEDD

ESBP3-

WTC

ESBP3-

WSPT

Initial

Solution

ATC

Dispatching

rule

MWTC

Dispatching

rule

EDD

Dispatching

rule

WEDD

Dispatching

rule

WTC

Dispatching

rule

WSPT

Dispatching

rule

Material

allocation

subproblem

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Optimization

method

(MA1)

Capacity

allocation

subproblem

ATC

Dispatching

rule

MWTC

Dispatching

rule

EDD

Dispatching

rule

WEDD

Dispatching

rule

WTC

Dispatching

rule

WSPT

Dispatching

rule

109

Table 4.18 Computational results for ESBP3 methods

Method

ESBP3-

ATC

ESBP3-

MWTC

ESBP3-

EDD

ESBP3-

WEDD

ESBP3-

WTC

ESBP3-

WSPT ATC

CPU(H) - Mean 914 919 1023 809 1000 846 1

TWT(H) - Mean 1.085 1.094 1.191 1.118 1.136 1.289 1.145

TWT(H) - SD 0.086 0.109 0.169 0.152 0.075 0.398 0.111

Number of best solutions 7 9 2 10 0 1 0

Percentage of best solutions 28% 36% 8% 40% 0% 4% 0%

 110

The comparison of all ESBP methods is given in Table 4.11. There are six ESBP

methods tested in this experiment, which are ESBP1-ATC, ESBP1-MWTC, ESBP2-ATC,

ESBP2-MWTC, ESBP3-MATC and ESBP3-WEDD. It can be seen that ESBP1 has

better THT(H) ratio among all ESBP methods as shown in Table 4.19. The TWT(H) ratio

of ESBP2-ATC and ESBP2-MWTC is worse than TWT(H) of ESBP1 around 5%, but

they could reduce computational times by 83%. In addition, ESBP2 methods are superior

to the ATC rule in terms of the solution quality. Two ESBP3 methods only provide better

solutions than ATC rule by 4% on TWT(H) ratio. The difference between ESBP2 and

ESBP3 is a different degree of solutions obtained from material subproblems and

capacity subproblems. ESBP2 uses dispatching rules to solve material subproblems and

applying optimization methods to obtain solutions from capacity subproblems. ESBP3

solves capacity subproblems by using dispatching rules and solves material subproblems

by employing optimization methods. This indicates that dispatching rules, ATC and

MWTC, used in this experiment could provide solutions closed to ESBP1 in material

subproblems. Second, the dispatching rules could produce better solutions in material

subproblems than capacity subproblems compared to optimization methods with limited

computational time settings.

111

Table 4.19 Computational results for ESBP methods

Method

ESBP1-

ATC

ESBP2-

MWTC

ESBP3-

MATC

ESBP1-

MWTC

ESBP2-

ATC

ESBP3-

WEDD ATC

CPU(H) - Mean 1273 209 919 1260 231 809 1

TWT(H) – Mean 1.049 1.107 1.190 1.061 1.117 1.215 1.245

TWT(H) – SD 0.051 0.135 0.155 0.129 0.134 0.183 0.166

Number of best solutions 6 4 1 10 3 4 0

Percentage of best solutions 24% 16% 4% 40% 12% 16% 0%

 112

0

200

400

600

800

1000

1200

1400

ESBP1-
ATC

ESBP2-
MWTC

ESBP3-
MWTC

ESBP1-
MWTC

ESBP2-
ATC

ESBP3-
WEDD

ATC

Methods

C
PU

 T
im

e
R

at
io

-C
PU

(H
)

1.000

1.050

1.100

1.150

1.200

1.250

1.300

To
ta

l W
ei

gh
te

d
Ta

rd
in

es
s

R
at

io
 -T

W
T(

H
)

CPU(H)
TWT(H)

Figure 4.4 CPU(H) and TWT(H) for ESBP methods

4.7 Computational results: ESBP vs. MSBP vs. Dispatching rules

In this section, the performance of seven methods from MSBP, ESBP and

dispatching rules is investigated in terms of TWT(H) ratio and CPU(H) ratio. These

methods are SB1, SB3-ATC, SB4-EDDP, ESBP1-ATC, ESBP2-MWTC, ESBP3-MWTC

and ATC rule. As be seen in Table 4.20, SB1 has the best TWT(H) ratio among all

methods and is followed by ESBP1-ATC, SB3-ATC and ESBP2-ATC. But SB1 also

have the worst performance on CPU(H) ratio among all methods. SB1 produces a better

TWT(H) ratio than ESBP2-MWTC by 8.2%, but it has a CPU(H) ratio 78 times more

than ESBP2-MWTC. In addition, SB1 has a better TWT(H) ratio than ESBP1-ATC by

2.5%, but it has a CPU(H) ratio 13 times more than ESBP1-ATC. Hence, ESBP1-ATC

 113

and ESBP2-MWTC both perform better than the ATC rule on TWT(H) ratio by 16% and

11%. These results indicate that ESBP could dramatically reduce the computational times

of MSBP by decreasing the total number of subproblems which are required during re-

optimization procedures. Second, avoiding the knowledge on the rank of bottleneck

resources selection only has a small effect on the solution quality around 3% as shown on

a comparison of TWT(H) ratio of MSBP over TWT(H) of ESBP. Third, the reduction of

computational times on SB3-ATC is due to the reduction of computational times to solve

material subproblems by using dispatching rules. The reduction of computational times

on ESBP2-MWTC is due to the decrease of total number of subproblems and

implementation of dispatching rules on material subproblems. Fourth, using dispatching

rules to solve capacity subproblems does not provide the acceptable solutions which are

close to the ones obtained from optimization methods with limited computational times.

However, using dispatching rules to solve material subproblems does produce the

acceptable solutions which are close to the ones obtained from optimization methods with

limited computational times. It made the performance of SB3-ATC and ESBP2-MWTC

better than SB4-WEDD and ESBP3-MWTC on both TWT(H) and CPU(H).

114

Table 4.20 Computational results for ESBP vs. MSBP

Method SB1

SB3-

ATC

SB4-

WEDD

ESBP1-

ATC

ESBP2-

MWTC

ESBP3-

MWTC ATC

CPU(H) - Mean 16429 1345 10653 1273 209 919 1

TWT(H) – Mean 1.044 1.090 1.323 1.070 1.130 1.212 1.274

TWT(H) – SD 0.056 0.122 0.164 0.094 0.162 0.167 0.221

Number of best solutions 10 7 1 5 4 0 0

Percentage of best solutions 40% 28% 4% 20% 16% 0% 0%

Number of subproblems 230.8 230.8 232 28.8 26.4 21.6 -

 115

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

SB1 SB3-ATC SB4-WEDDESBP1-ATC ESBP2-
MWTC

ESBP3-
MWTC

ATC

Methods

C
PU

 T
im

e
R

at
io

 -C
PU

(H
)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

To
ta

l W
ei

gh
te

d
Ta

rd
in

es
s

R
at

io
 -

TW
T(

H
)

CPU(H)

TWT(H)

Figure 4.5 CPU(H) and TWT(H) for MSBP vs. ESBP

4.8 Computational results for RHP :

In this section, RHP, ESBP2-ATC and ATC rule are selected as candidates to

evaluate the performance of RHP in this experiment as shown in Table 4.22. The only

difference between RHP and ESBP2-ATC is to use different methods to solve capacity

subproblems. In RHP, capacity subproblems are solved by using optimization methods

combined with rolling horizon procedures. For each capacity subproblem, operations are

broken down into different time windows and solved them iteratively. However, in

 116

ESBP2-ATC, each capacity subproblem is solved by using optimization methods in

single time window. By doing this, RHP could reduce the complexity of capacity

subproblems in case of the number of jobs increases.

Table 4.21 Experimental design for randomly generated test problems –RHP

Factors Levels Number of levels

Number of jobs 40, 50, 60, 70, 80 5

Number of machines 10 1

Number of items 10 1

Methods ESBP2-ATC, RHP, ATC 3

Total test problems 75

In Table 4.23, it can be seen that RHP has a TWT(H) ratio which is 0.9% worse

than ESBP2-ATC. But it reduces the CPU(H) ratio by 55% compared to ESBP2-ATC.

This indicates that using rolling horizon procedures can reduce the complexity of

assembly job shop scheduling problems. However, CPU(H) ratio of RHP raises when the

number of jobs increases from 40 to 80. It is because the number of jobs in each time

window also increases and it requires more computing power to solve the problems

associated with each time window. Moreover, the computational time for each

subproblem in ESBP2-ATC already reaches the maximum CPU setting and would not

increase anymore. Additionally, TWT(H) ratio of RHP is 6% better than the ATC rule. It

can be improved by increasing the maximum CPU time setting for each subproblem in

Xpress-MP.

 117

Table 4.22 Computational results for RHP – CPU(H)

Number of

jobs RHP ESBP2-ATC ATC

40 184.6 511.8 1

50 234.6 597.3 1

60 277.0 583.4 1

70 252.7 520.6 1

80 260.8 458.4 1

Average 241.9 534.3 1

Table 4.23 Computational results for RHP – TWT(H)

Number of

jobs RHP ESBP2-ATC ATC

40 1.015 1.002 1.104

50 1.021 1.005 1.076

60 1.015 1.014 1.053

70 1.026 1.016 1.057

80 1.023 1.016 1.074

Average 1.020 1.011 1.082

SD 0.005 0.007 0.017

 118

4.9 Summary of computational results:

 Based on findings from computational results, we can draw the decision tree for

choosing appropriate methods to solve assembly job shop scheduling problem. According

to number of jobs and maximum computation time allowance, the best method to use to

maximize total weighted tardiness can be shown as the decision tree below in Figure 4.6.

Figure 4.6 Summary of computational results

Number
of Jobs

CPU Time
Allowance

CPU Time
Allowance

CPU Time
Allowance

CPU Time
Allowance

N≤150

15050 ≤≤ N

505 ≤≤ N

5≤N

CPU≤1000

1000≤CPU

CPU≤500

50025 ≤≤ CPU

CPU≤25

CPU≤1000

1000200 ≤≤ CPU

200≤CPU

RHP

ATC

ESBP

RHP

ATC

MSBP

ESBP

RHP

MIP

 119

Chapter 5. Future research directions

5.1 Dynamic assembly job shop scheduling problems with components availability

constraints

In this research, several assumptions have been made to simplify the assembly job

shop scheduling problems. One of the assumptions is the static assembly job shop

scheduling problem, which means all jobs are ready to process in the beginning. However,

real life scheduling problems are dynamic and stochastic in nature. The arrival times of

jobs are not always the same and new jobs can enter the system after processing start in a

random manner. Some operations could still be in progress at the point that scheduling

decisions are made. These problems are so-called dynamic assembly job shop scheduling

problems. In dynamic assembly job shop scheduling problems, problems can classified

into two classes as deterministic and stochastic assembly job shop problems based on the

information of problem parameters, such as processing time and release times. For

example, release times play a critical rule for the performance of job shop because they

control work-in-process (WIP) directly. If release times of jobs are fixed, these problems

are deterministic assembly job shop scheduling problems. If release times of jobs are

varied and can not be known in advance, these problems become stochastic assembly job

shop scheduling problems.

 It is interesting to study dynamic assembly job shop scheduling problems with

component availability constraints, because these problems are much more complicated

than the static assembly job shop scheduling problems and are close to realistic problems.

However, there are more constraints to be considered in dynamic assembly job shop

problems than static ones. First, some operations may be still in progress on specific

 120

machines at the time of scheduling. These operations have to be the earliest ones on the

machine sequences, otherwise, the solution would not be feasible. Second, jobs can not

be processed before their release times. Third, previous schedules may not be valid and

rescheduling actions are needed because of new arrival jobs and completed jobs. A

mathematical formulation of dynamic assembly job shop scheduling problems with

deterministic release times and processing time is described as follows.

(P) min ∑ −
v

vvv dsw)0,max(* v ∈ Z, --------------------------------(1)

Subject to:

* Assembly coordination constraints

 iiv pts += i ∈ G, , Zv∈ ----------------------(2)

iij ptt +≥ (i, j) ∈ A, j is i parent operation ---(3)

 Ttrt iii ≥∨≥ i ∈ N, ---------------------------------(4)

* Capacity constraints

 tj – ti ≥ pi ∨ ti – tj ≥ pj, (i, j) ∈ Ek, k ∈ M. ------------------(5)

tj – ti ≥ Tui + i ∈ Uk, k ∈ M. and j is i parent operation---(6)

* Material constraints

∑ ≤
i

nni qy , PhFnBi hh ∈∈∈ ,, ---------------(7)

 121

∑ =
n

ini qy , PhFnBi hh ∈∈∈ ,, ---------------(8)

iini rtat ≥∨≥ PhFnBi hh ∈∈∈ ,, ---------------(9)

Table 5.1 Notation of dynamic assembly job shop scheduling problems

N Set of operations
Z Set of jobs
dv The due date for job v, Zv∈
wv The priority for job v, Zv∈
sv The completion time for job v, Zv∈
M The set of all machines
T The current time
Uk, The set of in progress operation for

machine k, Mk ∈
ui Remaining operation time for operation i
ri Release time for operation i
P The set of all components
A The set of pairs of operations constrained

by precedence relations
Ek The set of pairs of operations to be

performed on machine k
pi The processing time for operation i
ti The start time for operation i
qi The requested quantity for components

from operation i
Bh The set of operations to request component

h , Ph∈
Fh The set of purchase orders to delver

component h, Ph∈
R The set of all purchase orders
an The arrival time for purchase order n,

Rn∈
qn The delivery quantity for purchase order n,

Rn∈
Yh The material allocation of components h,

Ph∈
niy , The allocation of component from purchase

order n to operation i.

Equation 1 is the objective function of the problem. It tends to minimize the total

weighted tardiness for all jobs. Equation 2 and 3 represent the precedence relation

 122

between operations. . Equation 4 ensures that no operations are starting before its release

time. Equation 5 specifies that the no two operations belonging to the same machine can

be processed at the same time. Equation 6 ensures that unfinished operation is the first

one to be processed on the specific machine. Equation 7, 8 and 9 are material constraints.

They guarantee that all operations can not be started before the arrival of necessary

components and all material requirements are fulfilled. Equation 9 specifies that the

operation will not start before the release time or arrival time of specific purchase order.

5.2 The effect of different approaches on the overall performance of a production

system

 It is interesting to investigate the effect of the different approaches with varying

degrees of solution accuracy on the overall performance of a production system,

including due-date, order release, shop floor scheduling and machine sequence.

Several researchers have studied due-date setting, material planning and order release and

review problems over the past few decades. Moses et al. (2003) proposed the real-time

order promising methods with two different order release policies. Their results indicate

that order release policy can significantly improve the overall due-date performance.

They also conclude that good due-date assignment methods lead to superior due-date and

shop floor performance. However, poor due-date assignment methods will restrict the

overall performance despite of an efficient order release policy. It is motivating to

investigate different scheduling methods on the overall performance of a production

system, which included total weight tardiness, total tardiness, tardy ratio, service level,

median absolute lateness, estimated flowtime, actual flowtime, shop flow time, total work

 123

in process, released work in process and utilization. By doing so, we are able to define

how the different scheduling methods can help manufacturers achieve superior

performance and determine what the actual contributions of these methods are to the

performance of a production system. By doing this, we are able to answer that whether

better scheduling approaches can improve overall performance with or without good

quality due-date setting methods, order release technique and sequencing rules.

5.3 Other future research and directions

A good direction of further research is to consider improving the solution quality

of subproblems in the efficient SB heuristics. It will be interesting to apply other efficient

algorithms to solve material plan and machine schedule subproblems. EDD-LI, proposed

by Ovacik and Uzsoy (1997) considered adjacent pair exchange to find local optimum, is

a good algorithm to improve solution quality of the efficient SB procedures. RHP

demonstrates how to breakdown the subproblems and solve them efficiently can reduce

the complexity of problems. The algorithm to determine which operations put into these

time windows is essential for the solution quality and computational effects. It may

become an interesting subject to study in the future.

Components substitution is also another interesting topic to improve due date and

shop floor performance. Chen et al. (2001, 2002) incorporate two dimensions of

“customer flexibility” – quantity and customer raw material configuration. The flexibility

allows customers to select preferred suppliers for raw materials. For a specific raw

material type (component), if customers choose more than one supplier source,

manufacturers will have a better chance to accept orders by switching from one raw

 124

material to another based on each customer’s preference list.

Computing power has been improved dramatically in past few years and

processors with multiple cores are available to PC users. With multiple execution cores,

the processor can manage processor-intensive and multi-threads tasks easily. Another

interesting topic for further research is to distribute the subproblems to different threads

and use multiple-cores processor to execute these threads simultaneously. This work can

be done by using the specific software and import the settings into an optimization

software, such as Xpress-MP. By doing this, we expect that the computational time can

be reduced even the total number of subproblems remain the same as it is in this research.

 125

Chapter 6. Conclusions

The focus of most studies in production scheduling is on convenient job shop

scheduling problems. Only few of these research considers job shop scheduling problems

involving assembly operations. This dissertation reviews the literature related to

assembly job shop scheduling problems. It also considers component availability

constraints and addresses scalability issues. The functionality of assembly job shop

scheduling in this dissertation is not only to allocate jobs to machines, but also to

consider material allocation and the availability of components. Moreover, the disjunctive

graph is extended to represent the assembly job shop scheduling problems and the

mathematical model is also developed. Several heuristic approaches are also introduced

to reduce the computational effort and are able to solve large-scale problems in practice.

This research also investigates the performance of optimization approaches, heuristics

methods and dispatching rules. The computational results demonstrate the trade-off

between optimization and heuristic approaches in terms of solution quality and

computational time.

The shifting bottleneck procedure is one of the most popular heuristics used to

solve job-shop problems. In this dissertation, modified shifting bottleneck procedures

(MSBP) adopt the concept of shifting bottleneck procedures to reduce computation time

and maintain solution quality in assembly job shop scheduling problems with component

availability constraints. An efficient shifting bottleneck procedure (ESBP) is also

developed to reduce the complexity of problems and the trade-off between computation

time and solution quality is also studied. The results of experiments indicate that the

number of subproblems involved in shifting bottleneck procedures has a significant effect

 126

on the computational time. Moreover, decreasing the total number of subproblems does

not only reduce most of the computational time significantly but also increases robustness

in large-scale instances. The computational results also suggest using rolling horizon

procedure (RHP) to restrain the size of subproblems can reduce most of computational

times and keep solution quality at an accept level.

 127

Reference

Adam, N. R., Bertrand, J. M., and Surkis, J., (1987), “Priority Assignnet Procedures in

Multi-Level Assembly Job Shops”, IIE Transaction, 19, 317-328.

Adams, J., Balas, E., and Zawack, D., (1988), “The shifting bottleneck procedure for job

shop scheduling”, Management Science, 34, 391-401.

Baker, K. R., and Kanet, J. J., (1983), “Job Shop Scheduling with modified due dates”,

Journal of Operations Management, 4, 11-12.

Balakrishnan, A. and Geunes, J., (2000), “Requirements Planning with Substitutions:

Exploiting Bill-of-Materials Flexibility in Production Planning”, Manufacturing &

Service Operations Management, 2, 2, 166-185.

Bragg, D., Duplaga, E. and Watts, C., (1999), “The effects of partial order release and

component reservation on inventory and customer service performance in an MRP

environment”, International Journal of Production Research, 37, 3, 523-538.

Chen, C.-Y., Zhao, Z, and Ball, M., (2002), “A Model for Batch Advanced Available-To-

Promise”, Production and Operations Management, 11, 4.

Chen, C.-Y., Zhao, Z, and Ball, M., (2001), “Quantity and Due Date Quoting Available

to Promise”, Information Systems Frontiers, 3, 4, 477-488.

 128

Chen, K., Lee, M., Pulat, S. and Moses, S., (2006), “The shifting bottleneck procedure for

job shops with parallel machines”, International Journal of Industrial and Systems

Engineering, 1, 244-262.

Conway, R. W., and Maxwell, W. L., (1962), “Network dispatching by shortest operation

discipline”, Operation Research, 10, 51-73.

.

Demirkol, E., Mehta, S. and Uzsoy, R., (1997), “A computational study of shifting

bottleneck procedures for shop scheduling problems”, Journal of Heuristic, 3, 111-137.

Elvers, D. A., and Treleven, M. D., (1985), “An investigation of labor assignment rules in

a dual-constrained job shop”, Journal of Operations Management, 6, 51-68.

Fry, T. D., Oliff, M. D., Minor, E. D., and Leong, G. K., (1989), “The effects of

production structure and sequencing rules on assembly-job shop performance”,

International Journal of Production Research, 27, 671-686.

Goldratt, E. M. and Cox, J., (1986), The Goal: A Process of Ongoing Improvement, North

River Press, New York, NY.

Guide, J. V., and Srivastava, R., (2000), “A review of techniques for buffering against

uncertainty with MRP systems”, Production Planning and Control, 11, 3, 223-233.

 129

Holtsclaw, H. H. and Uzsoy, R., (1996), “Machine criticality measures and subproblem

solution procedures in shifting bottleneck methods: A computational study”, Journal of

the Operational Research Society, 47, 666-677.

Hopp, W. J. and Spearman, M. L., (2000), Factory Physics, McGraw-Hill, New York,

NY.

Johnson, S. M., (1954), “Optimal two- and three-stage production schedules with set-up

times included”, Naval Research Logistics Quarterly, 1, 61-68.

Karmarkar, U. and Nambimadom, R., (1996), “Material allocation in MRP with

Tardiness Penalties”, Journal of Global Optimization, 9, 453-482.

Kempf, K., Uzsoy, R., Smith, S., and Gary, K., (2000), “Evaluation and comparison of

production schedules”, Journal of Industry, 42, 2-3, 203-20.

Klein, R., Luss, H. and Rothblum, U., (1994), “Relaxation-based algorithms for minimax

optimization problems with resource allocation applications”, Mathematical

Programming, 64, 337-363.

Klein, R., Luss, H. and Rothblum, U., (1995), “Multiperiod allocation of substitutable

resources”, European Journal of Operational Research, 85, 488-503.

 130

Kolisch, R., (2000), “Integrated scheduling, assembly area and part-assignment for large-

scale, make-to-order assemble”, International Journal of Production Economics, 64, 127-

141.

Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G. and Shmoys D.B. , (1993),

Sequencing and scheduling: algorithms and complexity, Handbooks in Operations

Research and Management Sciences: Logistics of Production and Inventory, North-

Holland, Amsterdam, 445–522.

Luss, H. and Smith, D., (1988), “Multiperiod Application of Limited ResourcesL A

Minimax Approach”, Naval Research Logistics, 35, 490-501.

Maxwell, W. L., and Mehra, M., (1968), “Multiple-Factor Rules for Sequencing with

Assembly Constraints”, Naval Research Logistics Quarterly, 15, 241-254.

Moses, S., Grant, H., Gruenwald, L. and Pulat, S., (2003), “Real-time due-date promising

by build-to-order environments”, International Journal of Production Research, 42, 20,

4353-4375.

Musselman, K and Uzsoy, R., (2001), “Advanced Planning and Scheduling for

Manufacturing”, Handbook of Industrial Engineering, 2033-2053.

 131

Muth, J. F. and Thompson, G. L., (1963), Industrial Scheduling, Prentice Hall,

Englewood Cliffs, NJ.

Ovacik, I. M. and Uzsoy, R., (1995), “Rolling horizon procedures for dynamic parallel

machine scheduling with sequence-dependent setup times”, International Journal of

Production Research, 33, 3173-3192.

Ovacik, I. M. and Uzsoy, R., (1997), Decomposition Methods for Complex Factory

Scheduling Problems, Kluwer Academic Publishers, Noewell, MA.

Park, M., and Kim, Y., (2000), “A branch and bound algorithm for a production

scheduling problem in an assembly system under due date constraints”, European

Journal of Operational Research, 123, 504-518.

Park, M., and Kim, Y., (1999), “A heuristic algorithm for a production planning problem

in an assembly system”, Journal of Operational Research Society, 50, 138-147.

Pathumnakul, S., and Egbelu, P., (2006), “An algorithm for minimizing weighted

earliness penalty in assembly job shops”, International Journal of Production Economics,

103, 203-245.

 132

Philipoom, R. P., Russell, S. R., and Fry, D. T., (1991), “A preliminary investigation of

multi-attribute based sequencing rules for assembly shops”. International Journal of

Production Research, 29, 739-753.

Pinedo, M., (1995), Scheduling: Theory, Algorithms, and Systems, Prentice Hall,

Englewood Cliffs, NJ.

Pinedo, M., (2005), Planning and Scheduling in Manufacturing and Services, Springer,

New York, NY.

Reeja, M. K., and Rajendran, C., (2000), “Dispatching rules for scheduling in assembly

jobshops – Part 1”. International Journal of Production Research, 38, 9, 2051-2066.

Russell, R. S., and Taylor III, B. W., (1985), “An evaluation of sequencing rules for an

assembly shop”. Decision Science, 16, 196-212.

Tang, S., (1988), “A Max-Min Application problem: its Solution and Applications”,

Operations Research, 36, 2, 359-367.

Uzsoy, R. and Wang, C. S., (2000), “Performance of decomposition procedures for job

shop scheduling problems with bottleneck machines”, International Journal of

production Research, 38, 1271-1286.

 133

Appendix A. Example of Input data format – 5 jobs, 5 machines and 5
components

CO: [1 2 3 4 5]

orderNumber: [1 2 3 4 5]

orderRequestedItem: ["2" "2" "1" "2" "1"]

orderQuantity: [1 1 1 1 1]

orderDueDate: [95 79 59 51 101]

orderPriority: [1 1 1 2 1]

SO: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44]

SONumber: ["1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"
"21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32" "33" "34" "35" "36" "37" "38" "39" "40" "41"
"42" "43" "44"]

parentCO: [1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0]

parentSO: [0 1 2 2 2 1 6 6 6 1 0 11 12 12 12 11 11 17 17 17 0 21 21 23 23 23 21 0 28 28 30 30 30 28 0 35
36 36 36 35 35 41 41 41]

SOItem: ["2" "5" "8" "8" "6" "3" "10" "7" "6" "6" "2" "5" "7" "7" "10" "10" "4" "7" "9" "10" "1" "6" "5"
"10" "8" "10" "8" "2" "9" "3" "6" "8" "9" "9" "1" "4" "8" "9" "7" "8" "4" "7" "8" "9"]

SOQuantity: [1]

SOPriority: [1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1]

requestedMachine: ["1" "3" "0" "0" "0" "5" "0" "0" "0" "0" "3" "5" "0" "0" "0" "0" "2" "0" "0" "0" "4" "0"
"2" "0" "0" "0" "0" "4" "0" "3" "0" "0" "0" "0" "1" "1" "0" "0" "0" "0" "2" "0" "0" "0"]

OP: [10 17 0 0 0 24 0 0 0 0 7 14 0 0 0 0 21 0 0 0 8 0 26 0 0 0 0 13 0 17 0 0 0 0 15 25 0 0 0 0 11 0 0 0]

parentCO1: [1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5]

assemblyRequired: [0]

Part: [1 2 3 4 5 6 7 8 9 10]

partNumber: [1 2 3 4 5 6 7 8 9 10]

partID: ["1" "2" "3" "4" "5" "6" "7" "8" "9" "10"]

RWType: [0 0 0 0 0 1 1 1 1 1]

ASType: [0 0 1 1 1 0 0 0 0 0]

EDType: [1 1 0 0 0 0 0 0 0 0]

 134

PO: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

PONumber: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

POItem: ["10" "9" "10" "8" "10" "6" "10" "9" "6" "10" "6" "10" "6" "10" "10" "7" "7" "8" "8"]

POTime: [13 8 27 17 40 7 55 15 30 61 51 70 74 75 80 23 34 38 43]

POQuantity: [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]

MC: [1 2 3 4 5]

MachineNumber: [1 2 3 4 5]

MachineID: ["1" "2" "3" "4" "5"]

 135

Appendix B. Source Code of Xpress-MP Model – MIP

model MA
uses "mmxprs", "mmsystem" !Xpress-Optimizer

parameters
 inputFileName = 'MA.dat'
 outputFileName = 'out.dat'
 maxCPUTime = 10
 maxCPUTimeSelection = 5
 maxCPUTimeReOpt = 10
 maxCPUTimeFullReOpt = 10
 rollingInterval = 20
 overlapInterval = 10
end-parameters

forward procedure printResult

declarations
 CO:set of integer !Customer Orders
 SO: set of integer !Shop Order
 Part: set of integer !Parts
 PO: set of integer !Purchase Orders
 MC: set of integer !Machines
end-declarations

!initializations from '5CO_25PO_2M_MOSES.dat'
!initializations from '10CO_50PO_2M_MOSES.dat'
!initializations from '20CO_100PO_2M_MOSES.dat'
!initializations from '40CO_200PO_2M_MOSES.dat'
initializations from inputFileName
 CO SO Part PO MC
end-initializations

finalize(CO)
finalize(SO)
finalize(Part)
finalize(PO)
finalize(MC)

declarations
 !Customer Orders
 orderNumber: array(CO) of integer
 orderRequestedItem: array(CO) of string
 orderQuantity: array(CO) of integer
 orderDueDate: array(CO) of integer
 orderPET: array(CO) of mpvar
 orderPriority: array(CO) of integer
 orderTardiness: array(CO) of mpvar

 !Shop Order
 SONumber: array(SO) of string

 136

 parentCO: array(SO) of integer
 parentSO: array(SO) of integer
 SOItem: array(SO) of string
 SOQuantity: array(SO) of integer
 SOPriority: array(SO) of integer
 requestedMachine: array(SO) of string
 OP: array(SO) of integer
 PST: array(SO) of mpvar !Desicion variables
 PET: array(SO) of mpvar !Desicion variables
 LL: array(SO) of integer
 parentCO1: array(SO) of integer

 !Parts
 partNumber: array(Part) of integer
 partID: array(Part) of string
 RWType: array(Part) of integer
 ASType: array(Part) of integer
 EDType: array(Part) of integer

 !Purchase Orders
 PONumber: array(PO) of integer
 POItem: array(PO) of string
 POTime: array(PO) of integer
 POQuantity: array(PO) of integer

 !Machines
 MachineNumber: array(MC) of integer
 MachineID: array(MC) of string

 TM: array(SO, PO) of mpvar !Desicion variables
 AM: array(SO, PO) of mpvar !Desicion variables
 AC: array(SO, SO) of mpvar !Desicion variables

 BigM: real
 starttime: real

 MaterialST1: array(PO) of linctr
 MaterialST2: array(SO) of linctr
 MaterialST3: array(SO, PO) of linctr
 MaterialST4: array(SO, PO) of linctr
 MaterialST5: array(SO, PO) of linctr
 CapacityST1: array(SO, SO) of linctr
 CapacityST2: array(SO, SO) of linctr
 CapacityST3: array(SO, SO) of linctr
 PrecST1: array(SO) of linctr
 PrecST2: array(SO, SO) of linctr
 PrecST3: array(CO, SO) of linctr

 NumberOfSM: real
 TotalCUPTimeSM: real
 TotalGapSM: real
 NumberOfSP: real
 TotalCUPTimeSP: real
 TotalGapSP: real

 NumberOfSR: real

 137

 TotalCUPTimeSR: real
 TotalGapSR: real

 initialSolDispatch: real
 initialSolRHP: real
 initialSolSB: real

end-declarations

!initializations from '5CO_25PO_2M_MOSES.dat'
!initializations from '10CO_50PO_2M_MOSES.dat'
!initializations from '20CO_100PO_2M_MOSES.dat'
!initializations from '40CO_200PO_2M_MOSES.dat'
initializations from inputFileName

 ! CO (Customer Orders) data
 orderNumber orderRequestedItem orderQuantity orderDueDate orderPriority

 ! SO (Shop Order)
 SONumber parentCO parentSO SOItem SOQuantity SOPriority requestedMachine OP parentCO1

 !Part (Parts)
 partNumber partID RWType ASType EDType

 !PO (Purchase Orders)
 PONumber POItem POTime POQuantity

 !MC (Machines)
 MachineNumber MachineID
end-initializations

!--

starttime:= gettime
BigM:= 2000000

!Objective
PrimalObj:= sum(k in CO) orderPriority(k)*orderQuantity(k)*orderTardiness(k)
!PrimalObj:= sum(k in CO) orderQuantity(k)*orderTardiness(k)

forall(k in CO) orderTardiness(k) >= orderPET(k)-orderDueDate(k)
forall(k in CO) orderTardiness(k) >= 0

!--------------Material constraints

!Limits on PO Quantity
forall(j in Part | RWType(j) = 1) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST1(s):= sum(i in SO | SOItem(i) = partID(j)) TM(i,s) <= POQuantity(s)
end-do

!Satisfy SO Requirements

 138

forall(j in Part | RWType(j) = 1) do
 forall(i in SO | SOItem(i) = partID(j))
 MaterialST2(i):= sum(s in PO |POItem(s) = partID(j)) TM(i,s) = SOQuantity(i)
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST3(i,s):= PST(i) >= POTime(s)*AM(i,s)
 end-do
end-do

! if TW(s,i) > 0, AW = 1, else, AW = 0

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST4(i,s):= TM(i,s) >= AM(i,s)
 end-do
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST5(i,s):= TM(i,s)<= 1000*AM(i,s)
 end-do
end-do

!-----------Capacity constraints
!if PST(i) >= PET(j), then AC(i,j) =1 , else, AC(i,j) = 0

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST1(i,ii):= PET(i) <= PST(ii) + BigM*AC(i, ii)
 end-do
end-do

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST3(i,ii):= AC(i,ii) + AC(ii,i) = 1
 end-do
end-do

!forall(i in SO, s in PO) AM(i,s) <= 1
!forall(i in SO, s in PO) AM(i,s) >= 0
!forall(i in SO, ii in SO) AC(i,ii) <=1
!forall(i in SO, ii in SO) AC(i,ii) >=0

 139

!------------Precedence constraints

forall(i in SO) PrecST1(i):= PET(i) = PST(i) + OP(i)

!forall(i in SO) PST(i) <= 1100000000
forall(i in SO) PST(i) <= 1000000

forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) PrecST2(i, ii):= PST(i) >= PET(ii)
end-do

forall(k in CO) do
 forall(i in SO | parentCO(i) = k) PrecST3(k, i):= orderPET(k) = PET(i)
end-do

forall(i in SO) PST(i) is_integer
forall(i in SO) PET(i) is_integer
forall(i in SO, s in PO) AM(i,s) is_binary
forall(i in SO, s in PO) TM(i,s) is_integer
forall(i in SO, ii in SO) AC(i,ii) is_binary

declarations
 status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
end-declarations

starttime:= gettime

setparam("XPRS_SCALING",0)
setparam("XPRS_FEASTOL",1.0E-10)
setparam("XPRS_MIPTOL",1.0E-9)

setparam("XPRS_MAXTIME",maxCPUTime)
setparam("XPRS_MAXMIPSOL",0)
minimize(PrimalObj)

status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
writeln('Primal is ', status(getprobstat), ",Objective: ",getobjval)
writeln(" CPU time: " , gettime-starttime)
writeln('best bound is ', getparam("XPRS_BESTBOUND"))
writeln('Number of integer found is ', getparam("XPRS_MIPSOLS"))

forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)), ";PET(",i,"):", getsol(PET(i)), ";OP(",i,"):",
getsol(OP(i)))
writeln('Primal is ', status(getprobstat), ",Objective: ",getobjval)
writeln(" CPU time: " , gettime-starttime)
writeln(" BigM: " , getsol(BigM))
forall(k in CO) writeln("CO--orderTardiness(", k,"):", getsol(orderTardiness(k)))
forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k)))
forall(k in CO) writeln("CO--DueDate(", k,"):", getsol(orderDueDate(k)))
forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k)))

 140

!forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)), ";PET(",i,"):", getsol(PET(i)), ";OP(",i,"):",
getsol(OP(i)))

End-model

 141

Appendix C. Source Code of Xpress-MP Model – MSBP

model MA
uses "mmxprs", "mmsystem" !Xpress-Optimizer

parameters
 inputFileName = 'MA.dat'
 outputFileName = 'out.dat'
 maxCPUTime = 10
 maxCPUTimeSelection = 5
 maxCPUTimeReOpt = 10
 maxCPUTimeFullReOpt = 10
 rollingInterval = 20
 overlapInterval = 10

 machineSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withlongestPath)
 partSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withlongestPath)

end-parameters

forward procedure SB

forward procedure partSubproblem(currentPartID:string)

forward procedure machineSubproblem(currentMachineID:string)

forward procedure partSubproblemOpt(currentPartID:string)

forward procedure machineSubproblemOpt(currentMachineID:string)

forward procedure partSubproblemDsp(currentPartID:string)

forward procedure machineSubproblemDsp(currentMachineID:string)

forward procedure partSubproblemOptSP(currentPartID:string)

forward procedure machineSubproblemOptSP(currentMachineID:string)

forward procedure partSubproblemDspSP(currentPartID:string)

forward procedure machineSubproblemDspSP(currentMachineID:string)

forward function getInfoToCO(i: integer):integer

forward function getNumberOfOP(i, j: integer):integer

forward function getInfoSlack(i: integer):integer

forward procedure checkSolution

 142

forward function getLongestPath(i, j: integer):integer

forward function getSOParnetCO(i: integer):integer

forward procedure push(i, j: integer)

forward procedure pull(i, j: integer)

forward procedure pushcycle(i, j, k: integer)

forward function getLongestPath1(i, j: integer):integer

forward procedure push1(i, j: integer, nodePush: boolean)

forward procedure printResult

declarations
 CO:set of integer !Customer Orders
 SO: set of integer !Shop Order
 Part: set of integer !Parts
 PO: set of integer !Purchase Orders
 MC: set of integer !Machines
end-declarations

initializations from inputFileName
 CO SO Part PO MC
end-initializations

finalize(CO)
finalize(SO)
finalize(Part)
finalize(PO)
finalize(MC)

declarations
 !Customer Orders
 orderNumber: array(CO) of integer
 orderRequestedItem: array(CO) of string
 orderQuantity: array(CO) of integer
 orderDueDate: array(CO) of integer
 orderPET: array(CO) of mpvar
 orderPriority: array(CO) of integer
 orderTardiness: array(CO) of mpvar

 !Shop Order
 SONumber: array(SO) of string
 parentCO: array(SO) of integer
 parentSO: array(SO) of integer
 SOItem: array(SO) of string
 SOQuantity: array(SO) of integer
 SOPriority: array(SO) of integer

 143

 requestedMachine: array(SO) of string
 OP: array(SO) of integer
 PST: array(SO) of mpvar !Desicion variables
 PET: array(SO) of mpvar !Desicion variables
 LL: array(SO) of integer
 parentCO1: array(SO) of integer
 numberOfIncomingArc: array(SO) of integer
 numberOfToken: array(SO) of integer
 dueDate: array(SO) of integer

 !Parts
 partNumber: array(Part) of integer
 partID: array(Part) of string
 RWType: array(Part) of integer
 ASType: array(Part) of integer
 EDType: array(Part) of integer
 PartCV: array(Part) of real
 PartDone: array(Part) of boolean

 !Purchase Orders
 PONumber: array(PO) of integer
 POItem: array(PO) of string
 POTime: array(PO) of integer
 POQuantity: array(PO) of integer

 !Machines
 MachineNumber: array(MC) of integer
 MachineID: array(MC) of string
 MachineCV: array(MC) of real
 MachineDone: array(MC) of boolean

 TM: array(SO, PO) of mpvar !Desicion variables
 AM: array(SO, PO) of mpvar !Desicion variables
 AC: array(SO, SO) of mpvar !Desicion variables

 BigM: real
 starttime: real
 maxCV: real
 allDone: boolean

 MaterialST1: array(PO) of linctr
 MaterialST2: array(SO) of linctr
 MaterialST3: array(SO, PO) of linctr
 MaterialST4: array(SO, PO) of linctr
 MaterialST5: array(SO, PO) of linctr
 CapacityST1: array(SO, SO) of linctr
 CapacityST2: array(SO, SO) of linctr
 CapacityST3: array(SO, SO) of linctr
 CapacityST4: array(SO, SO) of linctr
 PrecST1: array(SO) of linctr
 PrecST2: array(SO, SO) of linctr
 PrecST3: array(CO, SO) of linctr
 PrecST4: array(SO) of linctr
 PrecST5: array(SO, CO) of linctr
 Tard1: array(CO) of linctr

 144

 Tard2: array(CO) of linctr
 fixedAC: array(SO,SO) of linctr
 fixedAM: array(SO,PO) of linctr
 tempAC: array(SO, SO) of real
 tempAM: array(SO, SO) of real
 DelayPrecST: array(SO,SO) of linctr

 UE: array(SO) of real
 UE_st: array(SO) of real
 UE_temp: array(SO) of real
 UE1: array(SO, CO) of real
 UE1_st: array(SO, CO) of real
 UE1_temp: array(SO, CO) of real

 tk: real
 iteration: real
 BestObjPrime: real

 PathFrom: array(SO) of integer
 Flow: array(SO) of integer
 UpdatePathFrom: boolean
 UpdatePathFrom1: array(SO) of boolean
 counter: integer
 sumAC: real
 sumAC1: real

 PathToSO: array(SO, SO) of integer
 UpdatePathToSO: array(SO) of boolean
 nodePush: array(SO) of boolean

 NumberOfSM: real
 TotalCUPTimeSM: real
 TotalGapSM: real
 NumberOfSP: real
 TotalCUPTimeSP: real
 TotalGapSP: real

 NumberOfSR: real
 TotalCUPTimeSR: real
 TotalGapSR: real

 initialSolDispatch: real
 initialSolRHP: real
 initialSolSB: real

 TotalROWS: real
 TotalCOLS: real
 TotalELEMS: real
 TotalMIPENTS: real

 SIndex: array(SO) of real
 readySeq: array(SO) of integer
 POQuantityS: array(PO) of integer

 numberOfOPS: array(SO) of integer
 pathToCO: array(SO) of integer

 145

 numberOfOPSSlack: array(SO) of integer
 pathToCOSlack: array(SO) of integer

end-declarations

initializations from inputFileName
 ! CO (Customer Orders) data
 orderNumber orderRequestedItem orderQuantity orderDueDate orderPriority

 ! SO (Shop Order)
 SONumber parentCO parentSO SOItem SOQuantity SOPriority requestedMachine OP parentCO1

 !Part (Parts)
 partNumber partID RWType ASType EDType

 !PO (Purchase Orders)
 PONumber POItem POTime POQuantity

 !MC (Machines)
 MachineNumber MachineID
end-initializations

!--

starttime:= gettime
BigM := 10000
!Objective
PrimalObj:= sum(k in CO) orderPriority(k)*orderQuantity(k)*orderTardiness(k)

forall(k in CO) Tard1(k) := orderTardiness(k) >= orderPET(k)-orderDueDate(k)
forall(k in CO) Tard2(k) := orderTardiness(k) >= 0

!--------------Material constraints

!Limits on PO Quantity
forall(j in Part | RWType(j) = 1) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST1(s):= sum(i in SO | SOItem(i) = partID(j)) TM(i,s) <= POQuantity(s)
end-do

!Satisfy SO Requirements
forall(j in Part | RWType(j) = 1) do
 forall(i in SO | SOItem(i) = partID(j))
 MaterialST2(i):= sum(s in PO |POItem(s) = partID(j)) TM(i,s) = SOQuantity(i)
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST3(i,s):= PST(i) >= POTime(s)*AM(i,s)
 end-do

 146

end-do

! if TW(s,i) > 0, AW = 1, else, AW = 0

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST4(i,s):= TM(i,s) >= AM(i,s)
 end-do
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST5(i,s):= TM(i,s) <= 1000* AM(i,s)
 end-do
end-do

!-----------Capacity constraints
!if PST(i) >= PET(j), then AC(i,j) =1 , else, AC(i,j) = 0

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST1(i,ii):= PET(i) <= PST(ii) + BigM*AC(i, ii)
 end-do
end-do

(!
forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST2(i,ii):= PET(ii) <= PST(i) + BigM*(1-AC(i, ii))
 end-do
end-do
!)

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST3(i,ii):= AC(i,ii) + AC(ii,i) = 1
 end-do
end-do

!------------Precedence constraints
forall(i in SO) PrecST1(i):= PET(i) = PST(i) + OP(i)

forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) PrecST2(i, ii):= PST(i) >= PET(ii)
end-do

forall(k in CO) do

 147

 forall(i in SO | parentCO(i) = k) PrecST3(k, i):= orderPET(k) = PET(i)
end-do

!forall(i in SO) PST(i) <= 8000000
forall(i in SO) PST(i) <= 10000
forall(i in SO) PST(i) is_integer
forall(i in SO) PET(i) is_integer
forall(i in SO, s in PO) AM(i,s) is_binary
forall(i in SO, s in PO) TM(i,s) is_integer
forall(i in SO, ii in SO) AC(i,ii) is_binary

!********* perform main program

SB

checkSolution

printResult

!********* End of main program

procedure SB

declarations

status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string

end-declarations

starttime := gettime

! Relax material constraints
forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), true)
 end-do
 end-do
end-do

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 tempAC(i,ii):= 0
 fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii)
 end-do
 end-do
end-do

 148

!Reset all values
forall(m in MC) do
 machineDone(m) := false
end-do

forall(j in Part | RWType(j) = 1) do
 partDone(j) := false
end-do

allDone := false

setparam("XPRS_MAXTIME",maxCPUTimeSelection)

!start SB --Part
while(allDone = false) do
 maxCV := -1
 finishSubproblem := false

 forall(j in Part | RWType(j) = 1 and PartDone(j) = false) do
 partSubproblem(partID(j))

 maxCV := maxlist(maxCV, getsol(PartCV(j)))
 end-do
 writeln("maxCV(endSelection):", maxCV)

 forall(j in Part | RWType(j) = 1 and PartDone(j) = false) do
 if(maxCV = getsol(PartCV(j)) and finishSubproblem = false) then
 setparam("XPRS_MAXTIME",maxCPUTime)
 partSubproblem(partID(j))
 setparam("XPRS_MAXTIME",maxCPUTimeSelection)

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), false)
 end-do
 !fixed TM(i,s)
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 tempAM(i,s):= getsol(AM(i,s))
 fixedAM(i,s):= AM(i,s) = tempAM(i,s)

 end-do
 end-do

 finishSubproblem := true
 PartDone(j) := true
 end-if
 end-do

 writeln("maxCV(endSub):", maxCV)

!---part---- reopt

 149

 objective := getobjval
 writeln("CurrentObj(BegReopt):", getobjval)

 forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), true)
 sethidden(fixedAM(i,s), true)
 end-do
 end-do
 setparam("XPRS_MAXTIME",maxCPUTimeReOpt)
 partSubproblem(partID(j))
 setparam("XPRS_MAXTIME",maxCPUTimeSelection)
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), false)
 end-do
 !fixed TM(i,s)
 if(getobjval < objective) then
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 tempAM(i,s):= getsol(AM(i,s))
 fixedAM(i,s):= AM(i,s) = tempAM(i,s)

 end-do
 end-do
 objective := getobjval
 writeln("BestObj:", getobjval)
 end-if

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(fixedAM(i,s), false)
 end-do
 end-do

 end-do

 !check allDone Value
 allDone := true

 forall(j in Part | RWType(j) = 1 and PartDone(j) = false) do
 allDone := false
 end-do

end-do

!Reset all values
forall(m in MC) do
 machineDone(m) := false
end-do

forall(j in Part | RWType(j) = 1) do

 150

 partDone(j) := false
end-do

allDone := false

!start SB ---machine

while(allDone = false) do
 maxCV := -1
 finishSubproblem := false

 forall(m in MC| MachineDone(m) = false) do
 machineSubproblem(MachineID(m))

 maxCV := maxlist(maxCV, getsol(MachineCV(m)))
 end-do

 forall(m in MC| MachineDone(m) = false) do
 if(maxCV = getsol(MachineCV(m)) and finishSubproblem = false) then
 setparam("XPRS_MAXTIME",maxCPUTime)
 machineSubproblem(MachineID(m))
 setparam("XPRS_MAXTIME",maxCPUTimeSelection)
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)
 end-do
 end-do

 writeln("maxCV(endSelection):", maxCV)

 !fixed AC(i,ii)
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 tempAC(i,ii):= getsol(AC(i,ii))
 fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii)
 end-do
 end-do

 finishSubproblem := true
 MachineDone(m) := true
 end-if
 end-do

 !reoptimization

objective := getobjval

writeln("CurrentObj-(Before Reopt-Part):", getobjval)

 151

 setparam("XPRS_MAXTIME",maxCPUTimeReOpt)

 forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), true)
 sethidden(fixedAM(i,s), true)
 end-do
 end-do
 !setparam("XPRS_MAXTIME",maxCPUTimeReOpt)
 partSubproblem(partID(j))
 !setparam("XPRS_MAXTIME",maxCPUTimeSelection)
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), false)
 end-do
 !fixed TM(i,s)
 if(getobjval < objective) then
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 tempAM(i,s):= getsol(AM(i,s))
 fixedAM(i,s):= AM(i,s) = tempAM(i,s)
 end-do
 end-do
 objective := getobjval
 writeln("BestObj:", getobjval)
 end-if

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(fixedAM(i,s), false)
 end-do
 end-do

 end-do

 setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt)

 writeln("maxCV:", maxCV)
 writeln("CurrentObj:(Before Reopt-Machine):", objective)

 forall(m in MC| MachineDone(m) = true) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 sethidden(fixedAC(i,ii), true)
 end-do
 end-do

 machineSubproblem(MachineID(m))

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)

 152

 end-do
 end-do

 if(getobjval < objective) then
 !fixed AC(i,ii)
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 tempAC(i,ii):= getsol(AC(i,ii))
 fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii)
 end-do
 end-do
 objective := getobjval
 writeln("BestObj:", getobjval)
 end-if

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(fixedAC(i,ii), false)
 end-do
 end-do
 end-do

 !check allDone Value
 allDone := true

 forall(m in MC| MachineDone(m) = false) do
 allDone := false
 end-do

end-do

initialSolSB := getobjval

count:= 1
maxCount := 3
currentObj := getobjval
bestObj := getobjval + 1

while(count <= maxCount and currentObj < bestObj) do
 bestObj := getobjval

 writeln("CurrentObj(Full-Opt):", getobjval, ";Count:", count)

 writeln("CurrentObj(Full-Opt):", getobjval)

 forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), true)
 sethidden(fixedAM(i,s), true)
 end-do
 end-do

 153

 partSubproblem(partID(j))

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), false)
 end-do
 !fixed TM(i,s)
 if(getobjval < objective) then
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 tempAM(i,s):= getsol(AM(i,s))
 fixedAM(i,s):= AM(i,s) = tempAM(i,s)
 end-do
 end-do
 objective := getobjval
 writeln("BestObj:", getobjval)
 end-if

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(fixedAM(i,s), false)
 end-do
 end-do

 end-do

!objective := getobjval
 writeln("CurrentObj:", getobjval)

 !reoptimization
 forall(m in MC| MachineDone(m) = true) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 sethidden(fixedAC(i,ii), true)
 end-do
 end-do

 machineSubproblem(MachineID(m))

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)
 end-do
 end-do

 if(getobjval < objective) then
 !fixed AC(i,ii)
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 tempAC(i,ii):= getsol(AC(i,ii))
 fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii)
 end-do

 154

 end-do
 objective := getobjval
 writeln("BestObj:", getobjval)
 end-if

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(fixedAC(i,ii), false)
 end-do
 end-do

 end-do

count:= count +1
 currentObj := getobjval
end-do

! unHidden all material constraints
forall(j in Part | RWType(j) = 1) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST1(s), false)
 end-do
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 sethidden(MaterialST2(i), false)
 end-do
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), false)
 sethidden(MaterialST4(i,s), false)
 sethidden(MaterialST5(i,s), false)
 end-do
 end-do
end-do

!unHidden all capacity constraints
forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)
 end-do
 end-do
end-do

!unHidden precedence constaint
forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), false)

 155

end-do

forall(k in CO) do
 forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),false)
end-do

 !Add precedence constraints
 forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 sethidden(PrecST4(i),true)
 end-do
 end-do

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(k in CO) do
 sethidden(PrecST5(i, k),true)
 end-do
 end-do
end-do

end-procedure

procedure partSubproblem(currentPartID:string)

(!
 machineSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withLongestPath)
 partSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT, 10-OPT(withLongestPath)
!)

case partSubMethod of
 0: partSubproblemOpt(currentPartID)
 10: partSubproblemOptSP(currentPartID)
 1..9: partSubproblemDsp(currentPartID)
 !11: partSubproblemDspSP(currentPartID)

end-case

end-procedure

procedure machineSubproblem(currentMachineID:string)

case machineSubMethod of
 0: machineSubproblemOpt(currentMachineID)
 10: machineSubproblemOptSP(currentMachineID)
 1..9: machineSubproblemDsp(currentMachineID)
 !11: machineSubproblemDspSP(currentMachineID)

 156

end-case

end-procedure

!***** part-subproblem optimization **********

procedure partSubproblemOpt(currentPartID:string)

declarations
originalPrimalObj: real
primalObjective: real
bestPrimalObjective: real
tempBestPrimalObj: real
dualObj: real
objective: real
dual_cap: real
lamda: real
countLamda: real
fixedPST: array(SO) of linctr !Desicion variables
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
fixedTM: array(SO, PO) of linctr !Desicion variables
fixedAM: array(SO, PO) of linctr !Desicion variables
fixedAC: array(SO, SO) of linctr !Desicion variables
tempTM: array(SO, PO) of real
tempAM: array(SO, PO) of real
tempAC: array(SO, SO) of real
firstrun: boolean

end-declarations

startTimeSP := gettime

!Start from raw materials
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), false)
 end-do
 setparam("XPRS_SCALING",0)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)

 !Record CV
 PartCV(j) := getobjval

 forall(i in SO| SOItem(i) = partID(j)) do

 157

 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), true)
 end-do

end-do

NumberOfSP := NumberOfSP + 1
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP)
if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSP := TotalGapSP + 0
else
 TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

!***** machine-subproblem optimization **********

procedure machineSubproblemOpt(currentMachineID:string)

declarations
originalPrimalObj: real
primalObjective: real
bestPrimalObjective: real
tempBestPrimalObj: real
dualObj: real
objective: real
dual_cap: real
lamda: real
countLamda: real
fixedPST: array(SO) of linctr !Desicion variables
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
fixedTM: array(SO, PO) of linctr !Desicion variables
fixedAM: array(SO, PO) of linctr !Desicion variables

!fixedAC: array(SO, SO) of linctr !Desicion variables
tempTM: array(SO, PO) of real
tempAM: array(SO, PO) of real
!tempAC: array(SO, SO) of real
firstrun: boolean

end-declarations

startTimeSM := gettime

 158

!Start from machines
forall(m in MC | MachineID(m) = currentMachineID) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)
 sethidden(fixedAC(i,ii), true)
 end-do
 end-do
 setparam("XPRS_SCALING",0)
 setparam("XPRS_FEASTOL",1.0E-10)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)
 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval)

 !Record CV
 MachineCV(m) := getobjval

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 sethidden(fixedAC(i,ii), false)
 end-do
 end-do

end-do

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(fixedAC(i,ii),false)
 end-do
 end-do
end-do

NumberOfSM := NumberOfSM + 1
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM)
if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSM := TotalGapSM + 0
else
 TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

 159

end-procedure

!***** part-subproblem optimization longest path implmentation **********

procedure partSubproblemOptSP(currentPartID:string)

declarations

status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
fixedAM1: array(SO,PO) of linctr
!tempAM: array(SO,PO) of real

end-declarations

startTimeSP := gettime

!Start from raw materials
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do

 forall(jj in Part | RWType(jj) = 1) do
 forall(i in SO| SOItem(i) = partID(jj)) do
 forall(s in PO | POItem(s) = partID(jj)) do
 sethidden(MaterialST3(i,s), true)
 end-do
 end-do
 end-do

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), false)
 end-do
 end-do

 UpdatePathFrom := false

 forall(i in SO)
 UpdatePathFrom1(i):= false

 forall(i in SO) PathFrom(i) := 0

 forall(i in SO) UpdatePathToSO(i) := false
 forall(i in SO, jj in SO) PathToSO(i,jj) := 0

 forall(m in MC) do

 160

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 end-do
 end-do
 end-do

 forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), true)
 end-do

 forall(k in CO) do
 forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),true)
 end-do

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(k in CO) do
 forall(jj in SO|parentCO(jj) = k) do
 if(getLongestPath1(i,jj) > 0) then
 PrecST5(i, k):= orderPET(k) >= PST(i) + getLongestPath1(i,jj)+OP(jj)
 end-if
 if(i=jj) then
 PrecST5(i, k):= orderPET(k) >= PST(i) + OP(i)
 end-if
 end-do
 end-do
 end-do

 setparam("XPRS_SCALING",0)
 !setparam("XPRS_HEURDEPTH",5)
 setparam("XPRS_FEASTOL",1.0E-10)
 !setparam("XPRS_BIGMMETHOD",1)
 !setparam("XPRS_OPTIMALITYTOL",0)
 !setparam("XPRS_PRESOLVE",0)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)

 !Record CV

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(k in CO) do
 forall(jj in SO|parentCO(j) = k) do

 161

 if(getLongestPath1(i,jj) > 0) then
 sethidden(PrecST5(i, k), true)
 end-if
 if(i=j) then
 sethidden(PrecST5(i, k), true)
 end-if
 end-do
 end-do
 end-do

 forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), false)
 end-do

 forall(k in CO) do
 forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),false)
 end-do

 forall(m in MC | MachineDone(m) = true) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)
 end-do
 end-do
 end-do

forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(fixedAM1(i,s) , false)
 tempAM(i,s):= getsol(AM(i,s))
 fixedAM1(i,s):= AM(i,s) = tempAM(i,s)

 end-do
end-do

forall(jj in Part | RWType(jj) = 1 and PartDone(jj) = true) do
 forall(i in SO| SOItem(i) = partID(jj)) do
 forall(s in PO | POItem(s) = partID(jj))
 sethidden(MaterialST3(i,s), false)
 end-do
end-do

 setparam("XPRS_SCALING",0)
 !setparam("XPRS_HEURDEPTH",5)
 setparam("XPRS_FEASTOL",1.0E-10)
 !setparam("XPRS_BIGMMETHOD",1)
 !setparam("XPRS_OPTIMALITYTOL",0)
 !setparam("XPRS_PRESOLVE",0)
 setparam("XPRS_MIPTOL",1.0E-9)

 162

 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution (Actual) after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime2)
 !writeln('best bound is ', getparam("XPRS_BESTBOUND"))
 !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS"))

 PartCV(j) := getobjval

forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do

 sethidden(fixedAM1(i,s) , true)
 end-do
end-do

end-do

NumberOfSP := NumberOfSP + 1
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP)

if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSP := TotalGapSP + 0
else
 TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

!***** machine-subproblem optimization longest path implmentation **********

procedure machineSubproblemOptSP(currentMachineID:string)

declarations

status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
fixedAC1: array(SO,SO) of linctr
!tempAC1: array(SO, SO) of real

end-declarations

 163

startTimeSM := gettime

!Start from machines
forall(m in MC | MachineID(m) = currentMachineID) do

 forall(j in Part | RWType(j) = 1) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST1(s), true)
 end-do
 end-do

 forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 sethidden(MaterialST2(i), true)
 end-do
 end-do

 forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), true)
 sethidden(MaterialST4(i,s), true)
 sethidden(MaterialST5(i,s), true)
 end-do
 end-do
 end-do

 forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), true)
 end-do

 forall(k in CO) do
 forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),true)
 end-do

 !---- only need machine m constraints, hide all capacity constraints, then unhidden machine m constraints

 forall(mm in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(mm)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(mm) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 end-do
 end-do
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)

 164

 sethidden(fixedAC(i,ii), true)
 end-do
 end-do

 !--------------------

 writeln("Machine:", m)
 UpdatePathFrom := false

 forall(i in SO)
 UpdatePathFrom1(i):= false

 forall(i in SO) PathFrom(i) := 0

 forall(i in SO) UpdatePathToSO(i) := false
 forall(i in SO, j in SO) PathToSO(i,j) := 0

 !calculate longest path for (0,i) and (i,k)

 !Add precedence constraints
 cputime:= gettime

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 PrecST4(i):= PST(i) >= getLongestPath(0,i)
 end-do

 writeln("cpu time:", gettime-cputime)

 cputime:= gettime

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(k in CO) do
 forall(j in SO|parentCO(j) = k) do
 if(getLongestPath1(i,j) > 0) then
 PrecST5(i, k):= orderPET(k) >= PST(i) + getLongestPath1(i,j)+OP(j)
 end-if
 if(i=j) then
 PrecST5(i, k):= orderPET(k) >= PST(i) + OP(i)
 end-if
 end-do
 end-do
 end-do
 writeln("cpu time:", gettime-cputime)

 cputime:= gettime
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do
 if(getLongestPath1(i,j) > 0) then
 DelayPrecST(i,j):= PST(j) >= PST(i) + getLongestPath1(i,j)
 end-if
 end-do
 end-do

 165

 writeln("cpu time:", gettime-cputime)

 setparam("XPRS_SCALING",0)
 !setparam("XPRS_HEURDEPTH",5)
 setparam("XPRS_FEASTOL",1.0E-10)
 !setparam("XPRS_BIGMMETHOD",1)
 !setparam("XPRS_OPTIMALITYTOL",0)
 !setparam("XPRS_PRESOLVE",0)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval)

 writeln("cycle-CPU time: " , gettime-starttime)

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 sethidden(PrecST4(i),true)
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(k in CO) do
 forall(j in SO|parentCO(j) = k) do
 if(getLongestPath1(i,j) > 0) then
 sethidden(PrecST5(i, k), true)
 end-if
 if(i=j) then
 sethidden(PrecST5(i, k), true)
 end-if
 end-do
 end-do
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do
 sethidden(DelayPrecST(i,j),true)
 end-do
 end-do

 forall(j in Part | RWType(j) = 1) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST1(s), false)
 end-do
 end-do

 forall(j in Part | RWType(j) = 1) do

 166

 forall(i in SO| SOItem(i) = partID(j)) do
 sethidden(MaterialST2(i), false)
 end-do
 end-do

 forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 !sethidden(MaterialST3(i,s), false)
 sethidden(MaterialST4(i,s), false)
 sethidden(MaterialST5(i,s), false)
 end-do
 end-do
 end-do

 forall(j in Part | RWType(j) = 1 and PartDone(j) = true) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), false)
 end-do
 end-do

 forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), false)
 end-do

 forall(k in CO) do
 forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),false)
 end-do

 !---- unhide all capacity constraints to find actual solution

 forall(mm in MC | MachineDone(mm) = true) do
 forall(i in SO|requestedMachine(i) = MachineID(mm)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(mm) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)

 end-do
 end-do
 end-do

 !--------------------

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do

 tempAC1(i,ii):= round(getsol(AC(i,ii)))
 fixedAC1(i,ii):= AC(i,ii) = tempAC1(i,ii)
 sethidden(fixedAC1(i,ii), false)
 !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii))
 end-do

 167

 end-do

 setparam("XPRS_SCALING",0)
 !setparam("XPRS_HEURDEPTH",5)
 setparam("XPRS_FEASTOL",1.0E-10)
 !setparam("XPRS_BIGMMETHOD",1)
 !setparam("XPRS_OPTIMALITYTOL",0)
 !setparam("XPRS_PRESOLVE",0)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution (Actual) after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)
 !writeln('best bound is ', getparam("XPRS_BESTBOUND"))
 !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS"))

 !Record CV
 MachineCV(m) := getobjval

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(fixedAC1(i,ii), true)
 !sethidden(fixedAC(i,ii), false)
 !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii))
 end-do
 end-do

end-do

NumberOfSM := NumberOfSM + 1
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM)
if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSM := TotalGapSM + 0
else
 TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

 168

!***** part-subproblem dispatch **********

procedure partSubproblemDsp(currentPartID:string)

declarations

 status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
 fixedAM1: array(SO,PO) of linctr
 tempAM1: array(SO,PO) of real

end-declarations

startTimeSP := gettime

!Start from raw materials
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 sethidden(MaterialST3(i,s), false)
 end-do

 cOrder := 0
 simulatorClock := 100000
 onhand := 0
 currentPO := 0

 forall(s in PO | POItem(s) = partID(j)) do
 POQuantityS(s) := POQuantity(s)
 end-do

 forall(i in SO | SOItem(i) = partID(j)) do
 readySeq(i) := 1
 end-do

 AllPODone := false

 while(AllPODone = false) do
 simulatorClock := 100000

 forall(s in PO | POItem(s) = partID(j)) do
 if(POQuantityS(s) > 0) then
 simulatorClock := minlist(simulatorClock, POTime(s))
 end-if
 end-do

 forall(s in PO | POItem(s) = partID(j)) do

 if(POQuantityS(s) > 0 and POTime(s) <= simulatorClock) then
 onhand := onhand + POQuantityS(s)
 POQuantityS(s) := 0
 currentPO := s
 end-if

 169

 end-do

 !writeln("nextArrivaltime:" + simulatorClock + ",s:" + currentPO)

 forall(i in SO | SOItem(i) = partID(j)) do
 forall(jj in SO| parentCO(jj) = parentCO1(i)) do
 SIndex(i) := 0!getLongestPath1(i,jj)
 end-do
 end-do

 forall(i in SO | SOItem(i) = partID(j) and readySeq(i) = 1) do
 if(readySeq(i) = 1) then

 case partSubMethod of
 1: do !ATC
 NOO := getInfoToCO(i)
 temp_exp := -1*maxlist(0,orderDueDate(parentCO1(i)) - pathToCO(i) -
simulatorClock) /5*17.5
 SIndex(i) := SOPriority(i) * exp(temp_exp)
 end-do

 2: do !ATC1
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 5: do !ODDT
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 7: do !TWK
 NOOS := getInfoSlack(i)
 SIndex(i) := pathToCOSlack(i)
 end-do

 8: do !SOPN
 NOOS := getInfoSlack(i)
 SIndex(i) := (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulatorClock)/
numberOfOPSSlack(i)
 end-do

 end-case

 170

 end-if
 end-do

 !assign raw materals
 cOrder := 0
 noMorePart := false
 while(onhand > 0 and noMorePart = false) do

 forall(i in SO | SOItem(i) = partID(j)) do
 if(readySeq(i) = 1) then
 case partSubMethod of
 1: do !ATC
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) > SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 2: do !ATC1
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) > SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 3: do !EDD
 if(cOrder = 0) then
 cOrder := i
 elif(dueDate(i) < dueDate(cOrder)) then
 cOrder := i
 end-if
 end-do

 4: do !EDDP
 if(cOrder = 0) then
 cOrder := i
 elif(SOPriority(i) > SOPriority(cOrder)) then
 cOrder := i
 elif(SOPriority(i) = SOPriority(cOrder)) then
 if(orderDueDate(parentCO1(i)) < orderDueDate(parentCO1(cOrder))) then
 cOrder := i
 end-if
 end-if
 end-do

 5: do !ODDT
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) > SIndex(cOrder)) then
 cOrder := i
 end-if

 171

 end-do

 6: do !WSPT
 if(cOrder = 0) then
 cOrder := i
 elif(SOPriority(i) > SOPriority(cOrder)) then
 cOrder := i
 end-if
 end-do

 7: do !TWK
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) < SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 8: do !SOPN
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) < SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 9: do !SPT
 if(cOrder = 0) then
 cOrder := i
 elif(OP(i) < OP(cOrder)) then
 cOrder := i
 end-if
 end-do

 end-case
 end-if
 end-do

 if(cOrder > 0) then

 onhand := onhand-1
 readySeq(cOrder) := 2
 !writeln("fixedAM(" + cOrder + "," + currentPO + "," + onhand)
 fixedAM1(cOrder, currentPO):= AM(cOrder, currentPO) = 1
 sethidden(fixedAM1(cOrder, currentPO), false)

 cOrder := 0
 else
 noMorePart := true
 end-if
 end-do

 172

 AllPODone := true
 forall(i in SO | SOItem(i) = partID(j)) do
 if(readySeq(i) = 1) then
 AllPODone := false
 end-if
 end-do

 end-do

 setparam("XPRS_SCALING",0)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)

 !Record CV
 PartCV(j) := getobjval

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(MaterialST3(i,s), true)
 sethidden(fixedAM1(i,s), true)
 end-do
 end-do

end-do

NumberOfSP := NumberOfSP + 1
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP)

if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSP := TotalGapSP + 0
else
 TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

 173

!***** machine-subproblem dispatch **********

procedure machineSubproblemDsp(currentMachineID:string)

declarations

status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
fixedAC1: array(SO,SO) of linctr
tempAC1: array(SO, SO) of real

end-declarations

startTimeSM := gettime

!Start from machines
forall(m in MC | MachineID(m) = currentMachineID) do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), false)
 sethidden(CapacityST3(i,ii), false)
 sethidden(fixedAC(i,ii), true)
 end-do
 end-do

 writeln("Machine:", m)
 UpdatePathFrom := false

 forall(i in SO)
 UpdatePathFrom1(i):= false

 forall(i in SO) PathFrom(i) := 0

 forall(i in SO) UpdatePathToSO(i) := false
 forall(i in SO, j in SO) PathToSO(i,j) := 0

 !calculate longest path for (0,i) and (i,k)

 cputime:= gettime

 progressJob := 0
 previousJob := 0
 simulationClock := 10000000

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 simulationClock := minlist(getLongestPath(0,i), simulationClock)
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 readySeq(i) := 0
 end-do

 174

 AllOpsDone := false

 while(AllOpsDone = false) do

 NoReadyOrder := true
 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do
 NoReadyOrder := false
 end-do

 if(NoReadyOrder = true) then
 minRelease := 100000
 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0) do
 minRelease := minlist(getLongestPath(0,i), minRelease)
 end-do
 simulationClock := maxlist(minRelease, simulationClock)
 end-if

 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0) do
 !writeln("readySeq(" + i + "): "+readySeq(i) + "," + getLongestPath(0,i))

 if(getLongestPath(0,i) <= simulationClock) then
 readySeq(i) := 1
 end-if

 forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do
 if(getLongestPath1(j,i) > 0 and readySeq(j) < 2) then
 readySeq(i) := 0
 end-if
 end-do

 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(j in SO|parentCO(j) = parentCO1(i)) do
 SIndex(i) := 0!getLongestPath1(i,j)
 end-do
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do
 if(readySeq(i) = 1) then

 case machineSubMethod of
 1: do !ATC
 NOO := getInfoToCO(i)
 temp_exp := -1*maxlist(0,orderDueDate(parentCO1(i)) - pathToCO(i) - simulationClock)
/5*17.5
 SIndex(i) := SOPriority(i) * exp(temp_exp)
 end-do

 2: do !ATC1
 NOO := getInfoToCO(i)

 175

 temp_SIndex := simulationClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := SOPriority(i) /OP(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 5: do !ODDT
 NOO := getInfoToCO(i)
 temp_SIndex := simulationClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 7: do !TWK
 NOOS := getInfoSlack(i)
 SIndex(i) := pathToCOSlack(i)
 end-do

 8: do !SOPN
 NOOS := getInfoSlack(i)
 SIndex(i) := (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulationClock)/
numberOfOPSSlack(i)
 end-do

 end-case

 end-if
 end-do

 progressJob := 0

 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do
 !writeln("Job(" + i + "): OP:" + OP(i))
 if(readySeq(i) = 1) then

 case machineSubMethod of
 1: do !ATC
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) > SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 2: do !ATC1
 if(progressJob = 0) then
 progressJob := i

 176

 elif(SIndex(i) > SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 3: do !EDD
 if(progressJob = 0) then
 progressJob := i
 elif(dueDate(i) > dueDate(progressJob)) then
 progressJob := i
 end-if
 end-do

 4: do !EDDP
 if(progressJob = 0) then
 progressJob := i
 elif(SOPriority(i) > SOPriority(progressJob)) then
 progressJob := i
 elif(SOPriority(i) = SOPriority(progressJob)) then
 if(orderDueDate(parentCO1(i)) < orderDueDate(parentCO1(progressJob))) then
 progressJob := i
 end-if
 end-if
 end-do

 5: do !ODDT
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) > SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 6: do !WSPT
 if(progressJob = 0) then
 progressJob := i
 elif(SOPriority(i)/OP(i) > SOPriority(progressJob)/OP(progressJob)) then
 progressJob := i
 end-if
 end-do

 7: do !TWK
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) < SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 8: do !SOPN
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) < SIndex(progressJob)) then
 progressJob := i

 177

 end-if
 end-do

 9: do !SPT
 if(progressJob = 0) then
 progressJob := i
 elif(OP(i) < OP(progressJob)) then
 progressJob := i
 end-if
 end-do

 end-case

 end-if
 end-do
 !writeln("currentJob():" + progressJob)

 if(progressJob > 0) then
 if(readySeq(progressJob) = 1) then
 simulationClock := simulationClock + OP(progressJob)

 if(previousJob > 0) then
 fixedAC1(progressJob, previousJob):= AC(progressJob, previousJob) = 1
 sethidden(fixedAC1(progressJob, previousJob), false)

 end-if

 previousJob := progressJob
 readySeq(progressJob) := 2
 end-if
 end-if

 AllOpsDone := true

forall(i in SO|requestedMachine(i) = MachineID(m)) do

 if(readySeq(i) <= 1) then
 AllOpsDone := false
 end-if
end-do

 end-do

 setparam("XPRS_SCALING",0)
 setparam("XPRS_FEASTOL",1.0E-10)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 !minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 !writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval)

 setparam("XPRS_SCALING",0)

 178

 !setparam("XPRS_HEURDEPTH",5)
 setparam("XPRS_FEASTOL",1.0E-10)
 !setparam("XPRS_BIGMMETHOD",1)
 !setparam("XPRS_OPTIMALITYTOL",0)
 !setparam("XPRS_PRESOLVE",0)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution (Actual) after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)
 !writeln('best bound is ', getparam("XPRS_BESTBOUND"))
 !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS"))

 !Record CV
 MachineCV(m) := getobjval

 !Hidden all capacity constraints
 forall(mm in MC|MachineDone(mm) = true) do
 forall(i in SO|requestedMachine(i) = MachineID(mm)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(mm) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 end-do
 end-do
 end-do

 !Hidden precedence constaint
 forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) sethidden(PrecST2(i, ii), true)
 end-do

 forall(k in CO) do
 forall(i in SO | parentCO(i) = k) sethidden(PrecST3(k, i),true)
 end-do
 !)

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(CapacityST1(i,ii), true)
 sethidden(CapacityST3(i,ii), true)
 sethidden(fixedAC(i,ii), false)
 end-do
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(fixedAC1(i,ii), true)
 !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii))
 end-do
 end-do

 179

end-do

NumberOfSM := NumberOfSM + 1
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM)
if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSM := TotalGapSM + 0
else
 TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

 180

Appendix D. Source Code of Xpress-MP Model – ESBP

model MA
uses "mmxprs", "mmsystem" !Xpress-Optimizer

parameters
 inputFileName = 'MA.dat'
 outputFileName = 'out.dat'
 maxCPUTime = 10
 maxCPUTimeSelection = 5
 maxCPUTimeReOpt = 10
 maxCPUTimeFullReOpt = 10
 rollingInterval = 20
 overlapInterval = 10

 initMachineSubDispatch = 1 !*** 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT
 initPartSubDispatch = 1 !*** 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT
 machineSubMethod = 0 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT
 partSubMethod = 1 !*** 0-Opt, 1-ATC, 2-ATC2 , 3-EDD, 4-EDDP, 5-ODDT, 6-WSPT, 7-TWK, 8-
SOPN, 9-SPT
 rhp = 1 !*** 0-No RHP, 1-RHP

end-parameters

forward procedure SB

forward procedure partSubproblem(currentPartID:string)

forward procedure machineSubproblem(currentMachineID:string)

forward procedure partSubproblemOpt(currentPartID:string)

forward procedure machineSubproblemOpt(currentMachineID:string)

forward procedure partSubproblemDsp(currentPartID:string)

forward procedure machineSubproblemDsp(currentMachineID:string)

forward procedure simulation

forward procedure checkSolution

forward function getLongestPath(i, j: integer):integer

forward function getSOParnetCO(i: integer):integer

forward procedure push(i, j: integer)

forward procedure pull(i, j: integer)

 181

forward procedure pushcycle(i, j, k: integer)

forward function getLongestPath1(i, j: integer):integer

forward procedure push1(i, j: integer, nodePush: boolean)

forward procedure printResult

forward function getInfoToCO(i: integer):integer

forward function getNumberOfOP(i, j: integer):integer

forward function getInfoSlack(i: integer):integer

forward procedure setTimeBucket

forward procedure solveSubproblem(bucketNumber:integer)

declarations
 CO:set of integer !Customer Orders
 SO: set of integer !Shop Order
 Part: set of integer !Parts
 PO: set of integer !Purchase Orders
 MC: set of integer !Machines
end-declarations

initializations from inputFileName
 CO SO Part PO MC
end-initializations

finalize(CO)
finalize(SO)
finalize(Part)
finalize(PO)
finalize(MC)

declarations
 !Customer Orders
 orderNumber: array(CO) of integer
 orderRequestedItem: array(CO) of string
 orderQuantity: array(CO) of integer
 orderDueDate: array(CO) of integer
 orderPET: array(CO) of mpvar
 orderPriority: array(CO) of integer
 orderTardiness: array(CO) of mpvar

 !Shop Order
 SONumber: array(SO) of string
 parentCO: array(SO) of integer
 parentSO: array(SO) of integer
 SOItem: array(SO) of string
 SOQuantity: array(SO) of integer
 SOPriority: array(SO) of integer

 182

 requestedMachine: array(SO) of string
 OP: array(SO) of integer
 PST: array(SO) of mpvar !Desicion variables
 PET: array(SO) of mpvar !Desicion variables
 LL: array(SO) of integer
 parentCO1: array(SO) of integer
 numberOfIncomingArc: array(SO) of integer
 numberOfToken: array(SO) of integer
 dueDate: array(SO) of integer
 TimeBucket: array(SO) of integer

 !Parts
 partNumber: array(Part) of integer
 partID: array(Part) of string
 RWType: array(Part) of integer
 ASType: array(Part) of integer
 EDType: array(Part) of integer
 PartCV: array(Part) of real
 PartDone: array(Part) of boolean

 !Purchase Orders
 PONumber: array(PO) of integer
 POItem: array(PO) of string
 POTime: array(PO) of integer
 POQuantity: array(PO) of integer

 !Machines
 MachineNumber: array(MC) of integer
 MachineID: array(MC) of string
 MachineCV: array(MC) of real
 MachineDone: array(MC) of boolean
 MachineEST: array(MC) of real

 TM: array(SO, PO) of mpvar !Desicion variables
 AM: array(SO, PO) of mpvar !Desicion variables
 AC: array(SO, SO) of mpvar !Desicion variables

 BigM: real
 starttime: real
 maxCV: real
 allDone: boolean

 MaterialST1: array(PO) of linctr
 MaterialST2: array(SO) of linctr
 MaterialST3: array(SO, PO) of linctr
 MaterialST4: array(SO, PO) of linctr
 MaterialST5: array(SO, PO) of linctr
 CapacityST1: array(SO, SO) of linctr
 CapacityST2: array(SO, SO) of linctr
 CapacityST3: array(SO, SO) of linctr
 CapacityST4: array(SO, SO) of linctr
 CapacityST5: array(SO) of linctr

 PrecST1: array(SO) of linctr

 183

 PrecST2: array(SO, SO) of linctr
 PrecST3: array(CO, SO) of linctr
 PrecST4: array(SO) of linctr
 PrecST5: array(SO, CO) of linctr
 Tard1: array(CO) of linctr
 Tard2: array(CO) of linctr
 fixedAC: array(SO,SO) of linctr
 fixedAM: array(SO,PO) of linctr
 tempAC: array(SO, SO) of real
 tempAM: array(SO, SO) of real
 DelayPrecST: array(SO,SO) of linctr

 UE: array(SO) of real
 UE_st: array(SO) of real
 UE_temp: array(SO) of real
 UE1: array(SO, CO) of real
 UE1_st: array(SO, CO) of real
 UE1_temp: array(SO, CO) of real

 tk: real
 iteration: real
 BestObjPrime: real

 PathFrom: array(SO) of integer
 Flow: array(SO) of integer
 UpdatePathFrom: boolean
 UpdatePathFrom1: array(SO) of boolean
 counter: integer
 sumAC: real
 sumAC1: real

 PathToSO: array(SO, SO) of integer
 UpdatePathToSO: array(SO) of boolean
 nodePush: array(SO) of boolean

 NumberOfSM: real
 TotalCUPTimeSM: real
 TotalGapSM: real
 NumberOfSP: real
 TotalCUPTimeSP: real
 TotalGapSP: real

 NumberOfSR: real
 TotalCUPTimeSR: real
 TotalGapSR: real

 initialSolDispatch: real
 initialSolRHP: real
 initialSolSB: real

 TotalROWS: real
 TotalCOLS: real
 TotalELEMS: real
 TotalMIPENTS: real

 readySeq: array(SO) of integer

 184

 POQuantityS: array(PO) of integer

 !Simulation
 simulatorClock: integer
 nextEventTime: integer
 allOrderDone: boolean
 noMorePart: boolean

 simOrderPET: array(CO) of integer
 simOrderTardiness: array(CO) of integer

 readyOrder: array(SO) of integer
 numberOfChild: array(SO) of integer
 simPST: array(SO) of integer
 simPET: array(SO) of integer

 nextArrivalTime: array(Part) of integer
 onhand: array(Part) of integer
 currentOrder: array(Part) of integer

 nextAvailableTime: array(MC) of integer
 currentJob: array(MC) of integer

 SIndex: array(SO) of real

 numberOfOPS: array(SO) of integer
 pathToCO: array(SO) of integer

 numberOfOPSSlack: array(SO) of integer
 pathToCOSlack: array(SO) of integer

 currentBucket: integer
 maxBucket: integer
 inputBucket: integer
 fixedPST: array(SO) of linctr

end-declarations

initializations from inputFileName
 ! CO (Customer Orders) data
 orderNumber orderRequestedItem orderQuantity orderDueDate orderPriority

 ! SO (Shop Order)
 SONumber parentCO parentSO SOItem SOQuantity SOPriority requestedMachine OP parentCO1

 !Part (Parts)
 partNumber partID RWType ASType EDType

 !PO (Purchase Orders)
 PONumber POItem POTime POQuantity

 !MC (Machines)
 MachineNumber MachineID
end-initializations

 185

!--

starttime:= gettime
BigM := 10000
!Objective
PrimalObj:= sum(k in CO) orderPriority(k)*orderQuantity(k)*orderTardiness(k)

forall(k in CO) Tard1(k) := orderTardiness(k) >= orderPET(k)-orderDueDate(k)
forall(k in CO) Tard2(k) := orderTardiness(k) >= 0

!--------------Material constraints

!Limits on PO Quantity
forall(j in Part | RWType(j) = 1) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST1(s):= sum(i in SO | SOItem(i) = partID(j)) TM(i,s) <= POQuantity(s)
end-do

!Satisfy SO Requirements
forall(j in Part | RWType(j) = 1) do
 forall(i in SO | SOItem(i) = partID(j))
 MaterialST2(i):= sum(s in PO |POItem(s) = partID(j)) TM(i,s) = SOQuantity(i)
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST3(i,s):= PST(i) >= POTime(s)*AM(i,s)
 end-do
end-do

! if TW(s,i) > 0, AW = 1, else, AW = 0

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST4(i,s):= TM(i,s) >= AM(i,s)
 end-do
end-do

forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j))
 MaterialST5(i,s):= TM(i,s) <= 1000* AM(i,s)
 end-do
end-do

!-----------Capacity constraints
!if PST(i) >= PET(j), then AC(i,j) =1 , else, AC(i,j) = 0

 186

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST1(i,ii):= PET(i) <= PST(ii) + BigM*AC(i, ii)
 end-do
end-do

(!
forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST2(i,ii):= PET(ii) <= PST(i) + BigM*(1-AC(i, ii))
 end-do
end-do
!)

forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 CapacityST3(i,ii):= AC(i,ii) + AC(ii,i) = 1
 end-do
end-do

!------------Precedence constraints
forall(i in SO) PrecST1(i):= PET(i) = PST(i) + OP(i)

forall(i in SO) do
 forall(ii in SO | parentSO(ii) = i) PrecST2(i, ii):= PST(i) >= PET(ii)
end-do

forall(k in CO) do
 forall(i in SO | parentCO(i) = k) PrecST3(k, i):= orderPET(k) = PET(i)
end-do

!forall(i in SO) PST(i) <= 8000000
forall(i in SO) PST(i) <= 10000
forall(i in SO) PST(i) is_integer
forall(i in SO) PET(i) is_integer
forall(i in SO, s in PO) AM(i,s) is_binary
forall(i in SO, s in PO) TM(i,s) is_integer
forall(i in SO, ii in SO) AC(i,ii) is_binary

!********* perform main program

simulation

initializations from inputFileName
 POQuantity
end-initializations

SB

checkSolution

 187

printResult

!********* end of main program

procedure SB

declarations

status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string

end-declarations

starttime := gettime

case rhp of

1: do

 setTimeBucket

 inputBucket := 1

 while(inputBucket <= maxBucket) do
 writeln("---------Current Bucket: ", inputBucket,' -------')
 solveSubproblem(inputBucket)
 inputBucket := inputBucket + 1
 end-do

 forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 sethidden(CapacityST1(i,ii), false)
 end-do
 end-do

 forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii)
 sethidden(CapacityST3(i,ii), false)
 end-do
 end-do

 forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 sethidden(CapacityST5(i), true)
 end-do
 end-do

 checkSolution

 188

 !printResult

 writeln('Check-Solution is ', getprobstat, ",Objective: ",getobjval)

 initialSolRHP := getobjval

 if(initialSolDispatch < initialSolRHP or getprobstat = 6) then
 writeln("---------use dispatch rule solution: ", initialSolDispatch ,' -------')
 !simulation
 forall(i in SO) do
 sethidden(fixedPST(i), false)
 fixedPST(i) := PST(i)= simPST(i)
 setparam("XPRS_SCALING",0)
 setparam("XPRS_MAXMIPSOL",0)
 setparam("XPRS_MAXTIME",maxCPUTime)
 minimize(PrimalObj)
 end-do
 end-if

 end-do

0: do
 forall(i in SO) do
 fixedPST(i) := PST(i) = getsol(simPST(i))
 end-do
 end-do

end-case

setparam("XPRS_SCALING",0)
setparam("XPRS_FEASTOL",1.0E-10)
setparam("XPRS_MIPTOL",1.0E-9)
setparam("XPRS_MAXMIPSOL",0)
setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt)

minimize(PrimalObj)

objective := getobjval

forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)))
status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
writeln('Initial Solution is ', status(getprobstat), ",Objective: ",getobjval)
writeln("CPU time: " , gettime-starttime)

!fixed TM(i,s)
forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 tempAM(i,s):= getsol(AM(i,s))
 fixedAM(i,s):= AM(i,s) = tempAM(i,s)
 end-do
 end-do

 189

end-do

!fixed AC(i,ii)
forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 tempAC(i,ii):= getsol(AC(i,ii))
 fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii)
 end-do
 end-do
end-do

forall(i in SO) do
 sethidden(fixedPST(i), true)
end-do

objective := getobjval

count:= 1
maxCount := 3
currentObj := getobjval
bestObj := getobjval + 1

while(count <= maxCount and currentObj < bestObj) do
 bestObj := getobjval

 writeln("CurrentObj(Full-Opt):", getobjval, ";Count:", count)

 forall(j in Part | RWType(j) = 1) do
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 !sethidden(MaterialST3(i,s), true)
 sethidden(fixedAM(i,s), true)
 end-do
 end-do

 partSubproblem(partID(j))

 !fixed TM(i,s)
 if(getobjval < objective) then
 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 tempAM(i,s):= getsol(AM(i,s))
 fixedAM(i,s):= AM(i,s) = tempAM(i,s)
 end-do
 end-do
 objective := getobjval
 writeln("BestObj:", getobjval)

 190

 end-if

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 sethidden(fixedAM(i,s), false)
 end-do
 end-do

 end-do

 !objective := getobjval
 writeln("CurrentObj:", getobjval)

 !reoptimization
 forall(m in MC) do
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 !sethidden(CapacityST1(i,ii), true)
 sethidden(fixedAC(i,ii), true)
 end-do
 end-do

 machineSubproblem(MachineID(m))

 if(getobjval < objective) then
 !fixed AC(i,ii)
 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 tempAC(i,ii):= getsol(AC(i,ii))
 fixedAC(i,ii):= AC(i,ii) = tempAC(i,ii)
 end-do
 end-do
 objective := getobjval
 writeln("BestObj:", getobjval)
 end-if

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(fixedAC(i,ii), false)
 end-do
 end-do

 end-do

 count:= count +1
 currentObj := getobjval
end-do

writeln("CPU time: " , gettime-starttime)

forall(k in CO) writeln("CO--orderTardiness(", k,"):", getsol(orderTardiness(k)))

 191

forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k)))
forall(k in CO) writeln("CO--DueDate(", k,"):", getsol(orderDueDate(k)))
forall(k in CO) writeln("CO--PET(", k,"):", getsol(orderPET(k)))
!forall(i in SO) writeln("SO--PST(", i,"):", getsol(PST(i)), ";PET(",i,"):", getsol(PET(i)), ";OP(",i,"):",
getsol(OP(i)))

end-procedure

procedure partSubproblem(currentPartID:string)

(!
 machineSubMethod = 1 !*** 1-Opt, 2-Dispatch
 partSubMethod = 1 !*** 1-Opt, 2-Dispatch
 !)

case partSubMethod of

 0: partSubproblemOpt(currentPartID)

 1..9 : partSubproblemDsp(currentPartID)

end-case

end-procedure

procedure machineSubproblem(currentMachineID:string)

case machineSubMethod of

 0: machineSubproblemOpt(currentMachineID)

 1..9: machineSubproblemDsp(currentMachineID)

end-case

end-procedure

procedure partSubproblemOpt(currentPartID:string)

declarations
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string

end-declarations

startTimeSP := gettime

!Start from raw materials
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do

 192

 setparam("XPRS_SCALING",0)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)

 !Record CV
 PartCV(j) := getobjval

end-do

NumberOfSP := NumberOfSP + 1
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP)
if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSP := TotalGapSP + 0
else
 TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

procedure machineSubproblemOpt(currentMachineID:string)

declarations
status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string

end-declarations

startTimeSM := gettime

!Start from machines
forall(m in MC | MachineID(m) = currentMachineID) do

 setparam("XPRS_SCALING",0)
 !setparam("XPRS_HEURDEPTH",5)
 setparam("XPRS_FEASTOL",1.0E-10)
 !setparam("XPRS_BIGMMETHOD",1)
 !setparam("XPRS_OPTIMALITYTOL",0)
 !setparam("XPRS_PRESOLVE",0)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",maxCPUTimeFullReOpt)
 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']

 193

 writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)
 !writeln('best bound is ', getparam("XPRS_BESTBOUND"))
 !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS"))

 !Record CV
 MachineCV(m) := getobjval

end-do

NumberOfSM := NumberOfSM + 1
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM)
if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSM := TotalGapSM + 0
else
 TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

procedure partSubproblemDsp(currentPartID:string)

declarations

 status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
 fixedAM1: array(SO,PO) of linctr
 tempAM1: array(SO,PO) of real

end-declarations

startTimeSP := gettime

!Start from raw materials
forall(j in Part | RWType(j) = 1 and partID(j) = currentPartID) do

 cOrder := 0
 simulatorClock := 100000
 onhand1 := 0
 currentPO := 0

 forall(s in PO | POItem(s) = partID(j)) do
 POQuantityS(s) := POQuantity(s)
 end-do

 forall(i in SO | SOItem(i) = partID(j)) do
 readySeq(i) := 1
 end-do

 194

 AllPODone := false

 while(AllPODone = false) do
 simulatorClock := 100000

 forall(s in PO | POItem(s) = partID(j)) do
 if(POQuantityS(s) > 0) then
 simulatorClock := minlist(simulatorClock, POTime(s))
 end-if
 end-do

 forall(s in PO | POItem(s) = partID(j)) do

 if(POQuantityS(s) > 0 and POTime(s) <= simulatorClock) then
 onhand1 := onhand1 + POQuantityS(s)
 POQuantityS(s) := 0
 currentPO := s
 end-if

 end-do

 !writeln("nextArrivaltime:" + simulatorClock + ",s:" + currentPO)
 forall(i in SO | SOItem(i) = partID(j)) do
 forall(jj in SO| parentCO(jj) = parentCO1(i)) do
 SIndex(i) := 0!getLongestPath1(i,jj)
 end-do
 end-do

 forall(i in SO | SOItem(i) = partID(j) and readySeq(i) = 1) do
 if(readySeq(i) = 1) then

 case partSubMethod of
 1: do !ATC
 NOO := getInfoToCO(i)
 temp_exp := -1*maxlist(0,orderDueDate(parentCO1(i)) - pathToCO(i) -
simulatorClock) /5*17.5
 SIndex(i) := SOPriority(i) * exp(temp_exp)
 end-do

 2: do !ATC1
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 5: do !ODDT
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then

 195

 SIndex(i) := temp_SIndex * SOPriority(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 7: do !TWK
 NOOS := getInfoSlack(i)
 SIndex(i) := pathToCOSlack(i)
 end-do

 8: do !SOPN
 NOOS := getInfoSlack(i)
 SIndex(i) := (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulatorClock)/
numberOfOPSSlack(i)
 end-do

 end-case

 end-if
 end-do

 !assign raw materals
 cOrder := 0
 noMorePart := false
 while(onhand1 > 0 and noMorePart = false) do

 forall(i in SO|SOItem(i) = partID(j) and readySeq(i) = 1) do
 !writeln("Job(" + i + "): OP:" + OP(i))
 if(readySeq(i) = 1) then

 case partSubMethod of
 1: do !ATC
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) > SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 2: do !ATC1
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) > SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 3: do !EDD
 if(cOrder = 0) then
 cOrder := i
 elif(dueDate(i) < dueDate(cOrder)) then
 cOrder := i

 196

 end-if
 end-do

 4: do !EDDP
 if(cOrder = 0) then
 cOrder := i
 elif(SOPriority(i) > SOPriority(cOrder)) then
 cOrder := i
 elif(SOPriority(i) = SOPriority(cOrder)) then
 if(orderDueDate(parentCO1(i)) <
orderDueDate(parentCO1(cOrder))) then
 cOrder := i
 end-if
 end-if
 end-do

 5: do !ODDT
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) > SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 6: do !WSPT
 if(cOrder = 0) then
 cOrder := i
 elif(SOPriority(i) > SOPriority(cOrder)) then
 cOrder := i
 end-if
 end-do

 7: do !TWK
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) < SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 8: do !SOPN
 if(cOrder = 0) then
 cOrder := i
 elif(SIndex(i) < SIndex(cOrder)) then
 cOrder := i
 end-if
 end-do

 9: do !SPT
 if(cOrder = 0) then
 cOrder := i
 elif(OP(i) < OP(cOrder)) then
 cOrder := i
 end-if

 197

 end-do

 end-case

 end-if
 end-do

 if(cOrder > 0) then
 !PST(currentOrder(j)) := simulatorClock
 !PET(currentOrder(j)) := simulatorClock
 onhand1 := onhand1-1
 readySeq(cOrder) := 2
 !writeln("fixedAM(" + cOrder + "," + currentPO + "," + onhand)
 fixedAM1(cOrder, currentPO):= AM(cOrder, currentPO) = 1
 sethidden(fixedAM1(cOrder, currentPO), false)

 cOrder := 0
 else
 noMorePart := true
 end-if
 end-do

 AllPODone := true
 forall(i in SO | SOItem(i) = partID(j)) do
 if(readySeq(i) = 1) then
 AllPODone := false
 end-if
 end-do

 end-do

 setparam("XPRS_SCALING",0)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after part-', j ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)

 !Record CV
 PartCV(j) := getobjval

 forall(i in SO| SOItem(i) = partID(j)) do
 forall(s in PO | POItem(s) = partID(j)) do
 !sethidden(MaterialST3(i,s), true)
 sethidden(fixedAM1(i,s), true)
 end-do
 end-do

end-do

 198

NumberOfSP := NumberOfSP + 1
TotalCUPTimeSP := TotalCUPTimeSP + (gettime - startTimeSP)

if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSP := TotalGapSP + 0
else
 TotalGapSP := TotalGapSP + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

procedure machineSubproblemDsp(currentMachineID:string)

declarations

status: array({XPRS_OPT, XPRS_UNF, XPRS_INF, XPRS_UNB})of string
fixedAC1: array(SO,SO) of linctr
tempAC1: array(SO, SO) of real

end-declarations

startTimeSM := gettime

!Start from machines
forall(m in MC | MachineID(m) = currentMachineID) do

 progressJob := 0
 previousJob := 0
 simulationClock := 10000000

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 simulationClock := minlist(getLongestPath(0,i), simulationClock)
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 readySeq(i) := 0
 end-do

 AllOpsDone := false

 while(AllOpsDone = false) do

 NoReadyOrder := true

 199

 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do
 NoReadyOrder := false
 end-do

 if(NoReadyOrder = true) then
 minRelease := 100000
 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0) do
 minRelease := minlist(getLongestPath(0,i), minRelease)
 end-do
 simulationClock := maxlist(minRelease, simulationClock)
 end-if

 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 0) do
 !writeln("readySeq(" + i + "): "+readySeq(i) + "," + getLongestPath(0,i))

 if(getLongestPath(0,i) <= simulationClock) then
 readySeq(i) := 1
 end-if

 forall(j in SO|requestedMachine(j) = MachineID(m) and i<>j) do
 if(getLongestPath1(j,i) > 0 and readySeq(j) < 2) then
 readySeq(i) := 0
 end-if
 end-do
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do
 if(readySeq(i) = 1) then

 case machineSubMethod of
 1: do !ATC
 NOO := getInfoToCO(i)
 temp_exp := -1*maxlist(0,orderDueDate(parentCO1(i)) - pathToCO(i) - simulationClock)
/5*17.5
 SIndex(i) := SOPriority(i) * exp(temp_exp)
 end-do

 2: do !ATC1
 NOO := getInfoToCO(i)
 temp_SIndex := simulationClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := SOPriority(i) /OP(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 5: do !ODDT
 NOO := getInfoToCO(i)
 temp_SIndex := simulationClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)

 200

 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 7: do !TWK
 NOOS := getInfoSlack(i)
 SIndex(i) := pathToCOSlack(i)
 end-do

 8: do !SOPN
 NOOS := getInfoSlack(i)
 SIndex(i) := (orderDueDate(parentCO1(i)) - pathToCOSlack(i) - simulationClock)/
numberOfOPSSlack(i)
 end-do

 end-case

 end-if
 end-do

 progressJob := 0

 forall(i in SO|requestedMachine(i) = MachineID(m) and readySeq(i) = 1) do
 !writeln("Job(" + i + "): OP:" + OP(i))
 if(readySeq(i) = 1) then
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) > SIndex(progressJob)) then
 progressJob := i

 end-if

 case machineSubMethod of
 1: do !ATC
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) > SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 2: do !ATC1
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) > SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 3: do !EDD
 if(progressJob = 0) then
 progressJob := i
 elif(dueDate(i) > dueDate(progressJob)) then

 201

 progressJob := i
 end-if
 end-do

 4: do !EDDP
 if(progressJob = 0) then
 progressJob := i
 elif(SOPriority(i) > SOPriority(progressJob)) then
 progressJob := i
 elif(SOPriority(i) = SOPriority(progressJob)) then
 if(orderDueDate(parentCO1(i)) < orderDueDate(parentCO1(progressJob))) then
 progressJob := i
 end-if
 end-if
 end-do

 5: do !ODDT
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) > SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 6: do !WSPT
 if(progressJob = 0) then
 progressJob := i
 elif(SOPriority(i)/OP(i) > SOPriority(progressJob)/OP(progressJob)) then
 progressJob := i
 end-if
 end-do

 7: do !TWK
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) < SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 8: do !SOPN
 if(progressJob = 0) then
 progressJob := i
 elif(SIndex(i) < SIndex(progressJob)) then
 progressJob := i
 end-if
 end-do

 9: do !SPT
 if(progressJob = 0) then
 progressJob := i
 elif(OP(i) < OP(progressJob)) then
 progressJob := i
 end-if

 202

 end-do

 end-case

 end-if
 end-do
 !writeln("currentJob():" + progressJob)

 if(progressJob > 0) then
 if(readySeq(progressJob) = 1) then
 !simPST(currentJob(m)) := simulatorClock
 !simPET(currentJob(m)) := simPST(currentJob(m)) + OP(currentJob(m))
 !tempPET := simPET(currentJob(m))
 simulationClock := simulationClock + OP(progressJob)

 if(previousJob > 0) then
 fixedAC1(progressJob, previousJob):= AC(progressJob, previousJob) = 1
 sethidden(fixedAC1(progressJob, previousJob), false)
 !writeln("fixedAC:", progressJob, ",", previousJob)
 end-if

 previousJob := progressJob
 readySeq(progressJob) := 2
 end-if
 end-if

 AllOpsDone := true

forall(i in SO|requestedMachine(i) = MachineID(m)) do

 if(readySeq(i) <= 1) then
 AllOpsDone := false
 end-if
end-do

 end-do

 setparam("XPRS_SCALING",0)
 !setparam("XPRS_HEURDEPTH",5)
 setparam("XPRS_FEASTOL",1.0E-10)
 !setparam("XPRS_BIGMMETHOD",1)
 !setparam("XPRS_OPTIMALITYTOL",0)
 !setparam("XPRS_PRESOLVE",0)
 setparam("XPRS_MIPTOL",1.0E-9)
 setparam("XPRS_MAXMIPSOL",0)
 !setparam("XPRS_MAXTIME",10)

 minimize(PrimalObj)
 status:= ['Optimum found', 'Unfinished', 'Infeasible', 'Unbounded']
 writeln('Solution after machine-', m ,' is ', status(getprobstat), ",Objective: ",getobjval)
 !writeln("CPU time: " , gettime-starttime)
 !writeln('best bound is ', getparam("XPRS_BESTBOUND"))
 !writeln('Number of integer found is ', getparam("XPRS_MIPSOLS"))

 203

 writeln("cycle-CPU time: " , gettime-starttime)

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 forall(ii in SO |requestedMachine(ii) = MachineID(m) and i <> ii) do
 sethidden(fixedAC1(i,ii), true)
 !writeln("AC(",i,",",ii,"):",strfmt(getsol(AC(i,ii)),13),",tempAC:",tempAC(i,ii))
 end-do
 end-do

end-do

NumberOfSM := NumberOfSM + 1
TotalCUPTimeSM := TotalCUPTimeSM + (gettime - startTimeSM)
if(getparam("XPRS_BESTBOUND")= 0) then
 TotalGapSM := TotalGapSM + 0
else
 TotalGapSM := TotalGapSM + (getparam("XPRS_MIPOBJVAL")-
getparam("XPRS_BESTBOUND"))/getparam("XPRS_BESTBOUND")
end-if

TotalROWS := TotalROWS + getparam("XPRS_ROWS")
TotalCOLS := TotalCOLS + getparam("XPRS_COLS")
TotalELEMS := TotalELEMS + getparam("XPRS_ELEMS")
TotalMIPENTS := TotalMIPENTS + getparam("XPRS_MIPENTS")

end-procedure

procedure simulation

 starttime:= gettime

 simulatorClock := 0
 allOrderDone := false

 forall(i in SO) do
 numberOfchild(i) := 0
 end-do

 forall(i in SO) do
 if(OP(i) > 0) then
 readyOrder(i) := 0
 else
 readyOrder(i) := 1
 end-if

 forall(ii in SO) do
 if(parentSO(ii) = i) then
 numberOfchild(i) := numberOfchild(i) + 1
 end-if
 end-do

 dueDate(i) := orderDueDate(parentCO1(i))

 204

 end-do

 forall(j in Part | RWType(j) = 1) do
 currentOrder(j) := 0
 nextArrivalTime(j) := 0
 end-do

 forall(m in MC) do
 currentJob(m) := 0
 nextAvailableTime(m) := 0
 end-do

 repeat
 writeln("simulator clock: " + simulatorClock)

 !update part status
 forall(j in Part | RWType(j) = 1) do
 if(simulatorClock >= nextArrivalTime(j)) then

 nextArrivalTime(j) := 1000000000
 forall(s in PO | POItem(s) = partID(j)) do
 if(POQuantity(s) > 0 and POTime(s) <= simulatorClock) then
 onhand(j) := onhand(j) + POQuantity(s)
 POQuantity(s) := 0
 end-if

 if(POQuantity(s) > 0 and POTime(s) >= simulatorClock) then
 nextArrivalTime(j) := minlist(nextArrivalTime(j), POTime(s))
 end-if
 end-do
 if(nextArrivalTime(j) = 1000000000) then
 nextArrivalTime(j) := simulatorClock
 end-if

 !assign raw materals
 currentOrder(j) := 0
 noMorePart := false
 while(onhand(j) > 0 and noMorePart = false) do

 forall(i in SO | SOItem(i) = partID(j) and readyOrder(i) = 1) do
 case initPartSubDispatch of
 1: do !ATC
 NOO := getInfoToCO(i)
 temp_exp := -1*maxlist(0,orderDueDate(parentCO1(i)) - pathToCO(i) -
simulatorClock) /5*17.5
 SIndex(i) := SOPriority(i) * exp(temp_exp)
 end-do

 2: do !ATC1
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) -
orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)
 else

 205

 SIndex(i) := temp_SIndex
 end-if
 end-do

 5: do !ODDT
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) -
orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 7: do !TWK
 NOOS := getInfoSlack(i)
 SIndex(i) := pathToCOSlack(i)
 end-do

 8: do !SOPN
 NOOS := getInfoSlack(i)
 SIndex(i) := (orderDueDate(parentCO1(i)) - pathToCOSlack(i) -
simulatorClock)/ numberOfOPSSlack(i)
 end-do

 end-case
 end-do

 forall(i in SO | SOItem(i) = partID(j)) do
 if(readyOrder(i) = 1) then

 case initPartSubDispatch of
 1: do !ATC
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(SIndex(i) > SIndex(currentOrder(j))) then
 currentOrder(j) := i
 end-if
 end-do

 2: do !ATC1
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(SIndex(i) > SIndex(currentOrder(j))) then
 currentOrder(j) := i
 end-if
 end-do

 3: do !EDD
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(dueDate(i) < dueDate(currentOrder(j))) then
 currentOrder(j) := i

 206

 end-if
 end-do

 4: do !EDDP
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(SOPriority(i) > SOPriority(currentOrder(j))) then
 currentOrder(j) := i
 elif(SOPriority(i) = SOPriority(currentOrder(j))) then
 if(orderDueDate(parentCO1(i)) <
orderDueDate(parentCO1(currentOrder(j)))) then
 currentOrder(j) := i
 end-if
 end-if
 end-do

 5: do !ODDT
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(SIndex(i) > SIndex(currentOrder(j))) then
 currentOrder(j) := i
 end-if
 end-do

 6: do !WSPT
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(SOPriority(i) >
SOPriority(currentOrder(j))) then
 currentOrder(j) := i
 end-if
 end-do

 7: do !TWK
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(SIndex(i) < SIndex(currentOrder(j))) then
 currentOrder(j) := i
 end-if
 end-do

 8: do !SOPN
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(SIndex(i) < SIndex(currentOrder(j))) then
 currentOrder(j) := i
 end-if
 end-do

 9: do !SPT
 if(currentOrder(j) = 0) then
 currentOrder(j) := i
 elif(OP(i) < OP(currentOrder(j))) then
 currentOrder(j) := i

 207

 end-if
 end-do

 end-case

 end-if
 end-do

 if(currentOrder(j) > 0) then
 simPST(currentOrder(j)) := simulatorClock
 simPET(currentOrder(j)) := simulatorClock
 onhand(j) := onhand(j)-1
 readyOrder(currentOrder(j)) := 2

 if(parentSO(currentOrder(j)) > 0) then
 numberOfchild(parentSO(currentOrder(j))) :=
numberOfchild(parentSO(currentOrder(j))) -1
 if(numberOfchild(parentSO(currentOrder(j))) = 0) then
 readyOrder(parentSO(currentOrder(j))) := 1
 end-if
 end-if
 currentOrder(j) := 0
 else
 noMorePart := true
 end-if
 end-do

 end-if
 writeln("nextArrivaltime(" + j + ")" + nextArrivalTime(j))

 end-do

 !Update machine status
 forall(m in MC) do
 if(simulatorClock >= nextAvailableTime(m)) then

 if(currentJob(m) > 0) then
 if(parentSO(currentJob(m)) > 0) then
 numberOfchild(parentSO(currentJob(m))) :=
numberOfchild(parentSO(currentJob(m))) -1
 if(numberOfchild(parentSO(currentJob(m))) = 0) then
 readyOrder(parentSO(currentJob(m))) := 1
 end-if
 end-if
 end-if
 end-if
 end-do

 forall(m in MC) do
 if(simulatorClock >= nextAvailableTime(m)) then

 currentJob(m) := 0

 forall(i in SO|requestedMachine(i) = MachineID(m) and readyOrder(i) = 1) do
 case initMachineSubDispatch of

 208

 1: do !ATC
 NOO := getInfoToCO(i)
 temp_exp := -1*maxlist(0,orderDueDate(parentCO1(i)) - pathToCO(i) -
simulatorClock) /5*17.5
 SIndex(i) := SOPriority(i) * exp(temp_exp)
 end-do

 2: do !ATC1
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := SOPriority(i) /OP(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 5: do !ODDT
 NOO := getInfoToCO(i)
 temp_SIndex := simulatorClock + pathToCO(i) - orderDueDate(parentCO1(i))
 if(temp_SIndex > 0) then
 SIndex(i) := temp_SIndex * SOPriority(i)
 else
 SIndex(i) := temp_SIndex
 end-if
 end-do

 7: do !TWK
 NOOS := getInfoSlack(i)
 SIndex(i) := pathToCOSlack(i)
 end-do

 8: do !SOPN
 NOOS := getInfoSlack(i)
 SIndex(i) := (orderDueDate(parentCO1(i)) - pathToCOSlack(i) -
simulatorClock)/ numberOfOPSSlack(i)
 end-do

 end-case
 end-do

 forall(i in SO|requestedMachine(i) = MachineID(m)) do
 !writeln("Job(" + i + "): OP:" + OP(i))
 if(readyOrder(i) = 1) then

 case initMachineSubDispatch of
 1: do !ATC
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(SIndex(i) > SIndex(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 209

 2: do !ATC1
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(SIndex(i) > SIndex(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 3: do !EDD
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(dueDate(i) > dueDate(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 4: do !EDDP
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(SOPriority(i) > SOPriority(currentJob(m))) then
 currentJob(m) := i
 elif(SOPriority(i) = SOPriority(currentJob(m))) then
 if(orderDueDate(parentCO1(i)) <
orderDueDate(parentCO1(currentJob(m)))) then
 currentJob(m) := i
 end-if
 end-if
 end-do

 5: do !ODDT
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(SIndex(i) > SIndex(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 6: do !WSPT
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(SOPriority(i)/OP(i) >
SOPriority(currentJob(m))/OP(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 7: do !TWK
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(SIndex(i) < SIndex(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 210

 8: do !SOPN
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(SIndex(i) < SIndex(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 9: do !SPT
 if(currentJob(m) = 0) then
 currentJob(m) := i
 elif(OP(i) < OP(currentJob(m))) then
 currentJob(m) := i
 end-if
 end-do

 end-case

 end-if
 end-do
 writeln("currentJob(" + m + ")" + currentJob(m))

 if(currentJob(m) > 0) then
 if(readyOrder(currentJob(m)) = 1) then
 simPST(currentJob(m)) := simulatorClock
 simPET(currentJob(m)) := simPST(currentJob(m)) + OP(currentJob(m))
 tempPET := simPET(currentJob(m))
 nextAvailableTime(m) := simPET(currentJob(m))
 readyOrder(currentJob(m)) := 2

 end-if
 end-if

 end-if
 writeln("nextAvailabletime(" + m + ")" + nextAvailableTime(m))

 end-do

 !determine next event time
 tempClock := simulatorClock
 firstTime := true
 forall(j in Part | RWType(j) = 1) do
 if(tempClock < nextArrivalTime(j)) then
 if(firstTime = true) then
 simulatorClock := nextArrivalTime(j)
 firstTime := false
 else
 simulatorClock := minlist(simulatorClock, nextArrivalTime(j))
 end-if
 end-if
 end-do

 211

 forall(m in MC) do
 if(tempClock < nextAvailableTime(m)) then
 if(firstTime = true) then
 simulatorClock := nextAvailableTime(m)
 firstTime := false
 else
 simulatorClock := minlist(simulatorClock, nextAvailableTime(m))
 end-if
 end-if
 end-do

 allOrderDone := true
 forall(i in SO) do
 if(readyOrder(i) < 2) then
 allOrderDone := false
 end-if
 end-do

 until (allOrderDone = true)

 forall(k in CO) do
 forall(i in SO | parentCO(i) = k) simOrderPET(k) := simPET(i)

 trad := simOrderPET(k)-orderDueDate(k)
 if(trad > 0) then
 simOrderTardiness(k) := simOrderPET(k)-orderDueDate(k)
 else
 simOrderTardiness(k) := 0
 end-if
 end-do

 Objective := 0
 forall(k in CO) do
 writeln("tradiness(" + k + "):" + orderPriority(k)*orderQuantity(k)*simOrderTardiness(k))
 end-do

 Objective := sum(k in CO) orderPriority(k)*orderQuantity(k)*simOrderTardiness(k)
 Objective1 := sum(k in CO) orderQuantity(k)*simOrderTardiness(k)

 initialSolDispatch := Objective

 writeln("Objective:" + Objective + " ;CPUTime:" + (gettime-starttime))
 writeln("Objective1:" + Objective1)

 forall(k in CO) writeln("CO--orderTardiness(", k,"):", getsol(simOrderTardiness(k)))
 forall(k in CO) writeln("CO--PET(", k,"):", getsol(simOrderPET(k)))
 forall(k in CO) writeln("CO--DueDate(", k,"):", getsol(orderDueDate(k)))
 forall(k in CO) writeln("CO--PET(", k,"):", getsol(simOrderPET(k)))
 forall(i in SO) writeln("SO--PST(", i,"):", getsol(simPST(i)), ";PET(",i,"):", getsol(simPET(i)),
";OP(",i,"):", getsol(OP(i)))

end-procedure

