$$
71-27,606
$$

CRI'TES, Thomas Richard, 1942BACKSCATTER OF NORMALLY INCIDENT INTERMEDIATE ENERGY BREMSSTRAHLUNG FROM SEMI-INFINITE MEDIA OF VARYING ATOMIC NUMBER.
The University of Oklahoma, Ph.D., 1971
Engineering, nuclear

University Microfilms, A XEROX Company , Ann Arbor, Michigan

THE UNLVERSTTY OF ORINOHA

GRADUATE COLHMCE

 OF VANDE ATOTA RUMER

A DTSSEBTAMOS
SUBMTHEN 'O THE GFADMTE TAOMTY'
in partial frifindment of the requinemonts for th
degree of
LOCTOR OF RHIJOGORHY

$1 ? 3$
MBOAS RV GRITES
Narmon. Oklahoma
1970

PLEASE NOTE:
Some pages have light and indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.

BACKSCATTER OF NORMALLY INCIDENT INTERMEDTA'TE ENERGY BREMSSTRAHLUNG FROM SEMT--INEINITE MEDLA

OF VARYING ATOMJC NUMBER

APPROVED BY

1. 3. Finciblact

DTSSERTMTE CMn mome

ACKNOWLEDGMENTS

The author expresses his sincere appreciation to Dr. Robert Y. Nelson, dissertation advisor, and William D. Burnett, resoarch advisor, for their valuable guidance, suggestions, and review throughout this research, which could not have been meaningfully completed without their assistance.

The author is very grateful to his wife, Frances, for the great personal efforts she has made in seeing this work through, and her excellent support in typing and proofreading.

The author is deeply indebted to William H. Kingsiey and Harold L. Rarrick for their efforts in making possible the work arrangenent under which the dissertation ras completed.

Gratitude is extended to the many Sandia Corporation personnel who aided in this project, in particular: Bill I. O'veal and monald E. Amos for many fruitful discussions; Tames H. Renken, Joan H. Flinchum and Kenneth G. Adams for the great amount of work they did in making possible the computer comparisons: lawrence D. Posey, Jesse
E. Harness, and Dan D. Craig for their support in obtaining data on the 3.5 and 10.5 MeV flash x-ray machine; Robert W. Mottern and S. A. Ravenbyrne at the Van de Graaff facjlity; and Alvie A. Barrett for his able shop assistance.

Financial. aid for this portion of the requirements for the Doctor of Philosophy Degroe at: the linivoreity of olfahoma was furnished in part by a United States Public Health Service Grant and in major by a United States Atomic Energy Commission prime contractor, Sandia Laboratories, Albuquerque New Mexico.

TABLE OF CONTENTS

Pige
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF ILLLUS'RRATIONS. x
Section

1. TNTRODHCTION 1
2. HISTORICAL REVIDN 4
2.1 Experimental. 4
2.2 Numerical Studies 13
2.3 Summary 19
3. THEORETICAL CONSIDERATION 20
3.1 Introduction 20
3.2 Photon Interactions 23
3.2.1 Photoelectric Absorption 23
3.2.2 Compton Scattering 28
3.2.3 Pair Production 39
3.2.4 Rayleigh Scattering and Photoniclear Interactions 45
3.2 .5 Summary 49
3.3 Detection Instrumentation 50
3.3.1 Scintillation Spectrometer 50
3.3.2 Thermoluminescent Detectors 51
Page
3.3.3 Attemation Methods of: Spectral. Docomination 53
4. NUMERICAL ANAIVSTS METHODS 57
4.1 Bmpirical Methods 57
4.2 Monte Carlo Methods 62
4.3 Method of Discrete Ordinates 64
5. EXPERTMBNAL DESEGR 66
5.1 Backscatter Yaterials 66
5.1.1 Introcluction 66
5.1.2 Lead 68
5.1.3 Iron 68
5.1.4 Concrete 69
5.2 Photon Sources 72
5.2.1 Van de Graaff 72
50202 Hasn x-1ay jevicus 73
5.2 .2 .1 3.5 Mov Cenerator 74
$5.2 .2 .2 \quad 7.0 \mathrm{Fr}$ Generator 78
5.2.2.3 10. 5 Mev Gonerator 80
5.3 iackscatter Surface, Collimators and Detector Positions 83
6。 EXPERTMENTAL RESUITS 85
6.1 Data Amalysis 85
6.2 Presentation of Results 92
6.3 Discussion of Results 108
6. CONCLUSTONS AND RECOMRENATTONS 112
\&. BIBLIOGRAPHY 115
7. APFENDIX $A:$ NOPBHCLATUPE. 128
8. APPENDIX B: VTMNED AREA COASIDERATIONS 132
9. APPENDIX C: COLLTMATOR EFFECTS 153
10. APPENDIX D: SPECTRAL DATA. 156
11. APPENDIX E: LiF ENERGY DEPENDENCY 205
12. APPENDIX F: THERMOLUMINESCENT DOSIMETER READ-OUT AND ANNEAIING prowemmes. 203
13. APPENITX G: INFINITE SIAB SIZE MEASUREMENTS. 21.3
14. APPENDIX H: BEAM DIVERGENCE. 21.9
15. APPENDIX I: THERMOILMINESCFNT DOSTMETER EXPERINENTAL DATA。 230
16. APPENDIX J: ERROR ANAJYSIS 390
17. APFENDIX K: MONTE CARLO PROGRNMO 401
 407
18. APPENDIX M: A CORPARTSON OF MONTE CARLO AND DTF RESULTS TO PREVJOUSJY PUBLISHED EXPERIMENTAL DATA. 413
19. APPEKIIIX $\mathrm{N}: ~ R E S U L T S$ OF THE CHILTON- HUDDLESTON EQUATIONS APPLIED TO THE "EFPECTIVE' ENERGIES OF THE PRESENT WORK 416
20. APPENDIY 0: $20-60 \mathrm{MeV}$ BACKSCATTER. 424

LIST OF TABLES

Table

Pege

1. Concrete Compositions 70
2. REBA Shot Characteristics................ 76

3. Detector Collimator Correctione.e....o.. 155
4. 2.0 MeV Measured Spectra (99, 100) $\ldots \ldots . .159$
5. 3.5 MeV Measured Spectra (102) o........... 160
6. 2.0 MeV Empirical Spectra................. 1.65
7. 3.5 MeV Empirical Spectra.................. 166
8. 7.0 MeV Measured Spectra (105) 169
9. $\quad 7.0 \mathrm{MeV}$ Empirical Spectra................... 170
10. 10.5 MeV Measured Spectra (110) 171
11. 10.5 MeV Empirical Spectra................ 173
12. 10.5 MeV Spectra.................................... 179
13. TLD Annealing Procedures 210
14. TLD Annealing Procedure Summary 211
15.

Iron Reflector Ratios ($\mathrm{x} 10^{5}$) 214
17. Concrete Refflector Ratios ($\mathrm{x} 10^{5}$) 214

LIST OF TABLES (cont'd)

18. Chilton-Huddjeston Parameters 420
19. Klein-ivishina Cross-sections 421
20. Chilton-Huadleston Albedo Values 422
21. Differential Dose Flux Albedo 426

LIST OF ILLUSTRATIONS

Figure Page

1. Relative position of detector, source, and scattering medium, Hine and McCall. 5
2. Experimental arrangement used by Clarke and Batten. 9
3. Experimental arrangement used by Pruitt. 12
4. Experimental arrangement used by Sugiyama and Tomimasu 13
5. Relative position of source, detector, and scatterer for the Chilton-Huddleston development. 16
6. Compton scattering. 30
7. Multiple Compton scattering 37
8. Attenuation extractions 54
9. Geometry of the Chilton-Huddleston derivation. 57
10. Albedo dependence on concrete composition for 2.0 MeV bremsstrahlung 71
11. REBA 77
12. Pulserad 1590 79
13. HERMES II 81
14. HERMES II 82

LIST OF ILIUSTRATIONS, (cont'd)

Figure Page
15. Experimental configuratione 83
16. Detector collimator 85
17. 2.0 MeV lead scatterex a_{Di} vs Angle. 93
 94
10.
19.2.0 WeV concrete scattercr odj vs Angle95
20. 3.5 MeV lead scatterer $\alpha_{\text {D1 }}$ vs Angle.... 96
3.5 MeV iron seatterer ${ }^{\circ} \mathrm{D} 1$ vs Angle. 97
21.
3.5 MeV concrete scatterer a D1 vs Angle 93
22.23.7.0 MeV lead roflector $\alpha_{\text {D1 }}$ vs magle...99
24. 7. 0 wey iron reflector a vi ve Anglonoou 1.00
25. 10.5 MeV lead scatterer a D 1 vs Angle. 101
26. 10.5 Mel iron scatterer $a_{i n 1}$ vs Angle... 102
27. 10.5 MeV concrete scatterer onl vs Angle 103
28. ${ }^{A} \mathrm{D} 1\left(\mathrm{H}_{2} \mathrm{O}\right)$ vs $\mathrm{E}_{\text {max }}$ " 106
29. $A_{\mathrm{D} 1}\left(\mathrm{H}_{2} \mathrm{O}\right)$ vs Atomic Number. 107
30. Viewed area geometry 133
31. Crystal geometry considerations. 136
32. Edge generated envelope. 137
33. Envelope generated by two edges. 138
34 。 Total viewed area 139
35. Unbral arca 139

LIST OF ILIUSTRATIONS, (cont'd)

Figure
Page
36. Total enclosed area........................... 145
37. Point detector viewed area............... 149
38. Collimator detail.......................... 154
30. SORPG absompton 2.0 Nev................. 157
40. 2.0 MeV iron scatterer (DTP) 158
41. 3.5 MeV copper absorption............... 161
42. DTF 3.5 NeV iron scaticerer.............. 162
43. Various 3.5 MeV input spectra........... 164
44. DTF 7.0 NeV l.cad scatterer............... 167
45. DTF 10. 5 MeV 1.ean scatterer.:cococos 168
46. 10.5 Nov copper absorption.oo........... 175
47. 10.5 NeV copper absurption............... 176
48. DTF 10.5 MeV iron scatterer............. 178
49. 10.5 MeV Spectra I......................... 180
50. 10.5 MeV Spectra JI......................... 181
51. DTF Various $E_{\max }$ concrete scatterers... 183
52. 2.0 MeV measured 60° concrete scatterer 185
53. 2.0 MeV measured 30° lead scatterer.... 186
54. DTF 2.0 MeV concrete scatterer......... 187
55. THF 2.0 MEV iron scatterer................ 188
56. DTF 2.0 MeV iead scatterer............... 189

LIST. OF ILLUSTRATIONS, (cont'd)

Figure Page
57. Monte Carlo 2.0 MeV aluminum scatterer 190
58. Monte Carlo 2.0 MeV Jead scatterer. 191
59. DTF 3.5 MeV concrete scatterer 192
60. DTE 3.5 Nov irun scationex 193
61. DTF 3.5 MeV lead scatterer. 194
62. Monte Carlo 3.5 MeV Eron scatterer. 195
63. DTF 7.0 $\mathrm{Mi} V$ concrete scatterer. 196
64. DTF 7,0 MeV iron scatterer 197
65. DTF 7.0 MeV lead scatterer 198
66. Monte Carlo 7.0 MeV lead scatterer. 199
67. DTF 10.0 MeV concrete scatterer. 200
68. DTF 10.5 MeV iron scacterer. 201
69. DTF 10.5 MeV lead scatterer 202
70. Monte Carlo 10.5 MeV iron scatterer. 203
71. Monte Carlo 10.5 MeV lead scatterer 204
72. TLD Energy response per R (81) 206
73. TLD Energy response per $\operatorname{Rad}\left(\mathrm{H}_{2} \mathrm{O}\right)(123)$. 206
74. 2.0 MeV lead surface area effects. 215
75. 2.0 MeV lead thickness effects 216
76. 60 MeV lead surface arca effects 217
77. 60 MeV lead thickness effects 218

LIST OF ILLUSTRATIONS, (cont ${ }^{-} \mathrm{d}$)

Figure Page
78. 2.0 MeV horizontal beam divergence. 220
79. 2.0 MeV vertical beam divergence. 221
80. 3.5 MeV vertical bean divergence. 222
81. 223
82. 7.0 MeV horizontal beam divergence 224
83. 7.0 MeV vertical beam divergence. 22.5
34. 2.0 MeV beam divergence. 226
85. 3.5 MeV beam divergence. 227
86. 7.0 MeV bean divergence 228
87. Tharaed particile ermilibriumenoemene 399
88. $\alpha_{\text {P1 }}$ vs Angle for Cs-137 lead scatterer 414
89. $a_{\text {E1 }}$ vs Angle for Co-60 iron scatterer 415
90. Lead C and C^{\prime} vs inergy 417
91. Iron C and C^{\prime} vs Energy 418
92。 Concrete C and C^{\prime} vs Energy. 419

1. INTRODUCTION

The dovaloment of zwray machines of greater output and the extension of accelerators for use outside experimentaj. laboratories, require an accurate knowledge of the surrounding radiation fields. The radiation field about Lhese facilities consists of two sources: transmitted and scattered radiation. Transmission and forward scattering (i.e, build~up) are fairly well clocumented in low to internediate energy range photons.

Less well established is scattering in a backward direction, or backscattering. Though very little experimental data exist on the backscattering of bremsstrahlung sources (1), the backscattering of gamna rays from radioisotopes has been studied for a great many sources and scattering materials, and these efforts will be reviewed in Section 2.

The term "albedo" is generally accepted in the study of beckscatter as the ratio of the radiation fluence refilected from a surface to the fluence incident on that surfaco. Dnlike the reflection of light (where the term
albedo arises) which can be considered a surface phenom.. enon, photons of MeV energies are much more penetrating. The albedo considered in radiation research takes into account photons that are scattered back out of the medium from several mean free paths below the surface. The albedo determines in the present research offort is an "offectivo" albedo, consisting of characteristic x-rays, singly scattered and multi-scattered photons, and bremsstrahlung and annihilation radiation from pair production interactions. No attempt has been made to differentiate the contributions of each method, but rather the effort was to determine the overall fluence to obtain the differential albedo from the surface of the backscattering material.

The dissertation investigation studied the angular dependency of backscat.ter of normally incident broad beam bremsstrahlung of varying energies reflecting from surfaces of varying atomic number. The brensstrahlung source machines used are discussed in Section 5.2. The reflected fluence was measured by LiF crystal thermoluminescent dosimeters, placed in highly collimated, copper-lined, lead shields to monitor the angular distribution. The scattering media used are common shielding materials of sufficient size to represent semi--infinite bodies, meaning that any increase in slab area or thickness will not result in a change in albedo. The
materials used in this work are concrete, steel, and lead. An extensive comparison of experimental results with results obtained by other methods is made. Computer methods have primarily been used to estimate the extent of backscatter, particularly when complicated incident spectra are involved. Two djfferent computer methods, a discrete ordinates solution to the photon transport equations and Monte Carlo, are used for comparison to the experimental data obtained. As the two computer methods approach the backscatter problem very differently, their results predictably differ somewhat from each other and from the clata obtained. These differences are examined in the dissertation. Nonenclature used in this dissertation is based on the International Commission of Radiological Units and Measurements recommendations in general (2) and the Oak Ridge National Laboratory Neutron and Gamuna-Ray Albedos Report (1) in particular.

2. HISTORICAL REVIEW

As forward scattering is well considered elsewhere $(3,4,5,6,7,8,9,10,11)$, the following discussion will consider only those experiments which center on backscatter.

2.1 EXPERIMENTAL

The first studies of backscatter gama-rays were probably made by Imbert and Bertin-Sans in 1896 (12). This and cther studios lod to the Famous work by Compton (13) in 1923 from which he developed his quantum theory of x-ray scatteringn Klein and Nishina (14) in 1929 obtained a general expression for the Compton differential scattering and collision cross-sections for initially unbound and stationary electrons. It was not until the development of more sensitive detection equipment and larger sources in the nineteen-fifties, that gamma-ray scattering was studied experimentally in greater depth.

In 1954 Hayward and Hubbell (15), using a collimated cobalt-60 source, studied the energy and scattering angle distribution from wood and steel wool with a collimated
scintillation detector. Also in that year, Hine and McCall (16) studied the backscatter of gama rays from iead, iron, aluminum, wood, and water using mercury-203, cesium-137, and cobalt-60 point sources in contact with the backscattering material. A scintillation gama-ray spectrometer was again used to jnvestigate the fintensity and energy of the beck scattered radiation. These experiments demonstrated the

NaI (T1)
crystal
source

Figure 1. Relative position of detector, source, and scattering medium, Hine and McCall.
anistropy of single-scattering and the isotropy of multiscattering; the significance of fluorescent radiation for matter of high atomic number, such as lead; and the dependence on incident energy and angle. By varying the thickness of backscatter material, Hine and McCall observed a variation in the amount of radiation scattered.

Bulatov and Garusov (1.7) in 1958 studied a very wide
range of backscattering materials using cobalt-60 and gold-198 sources of gamma-rays located some distance from the scattering media. By collimating the beam they were able to vary the angle of incidence of the gamma-rays and study this effect upon backscatter intensity. They, as did Hine and McCall, veriod the thickness of the backscatterer and then expressed the dependence of the energy albedo on scatterer thickness as

$$
\begin{equation*}
\eta(d)=\eta(\infty)\left(1-e^{-d / a}\right) \tag{Eq. 2.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\eta(d)= & \text { the value of the albedo for a scatter } \\
& \text { thickness, } d \\
\eta(\infty)= & \text { the limicing value of the albedo for "infinite" } \\
& \text { scatterer thickness } \\
d= & \text { the scatterer thickness in } \mathrm{gm} / \mathrm{cm}^{2} \\
a= & \text { a constant }
\end{aligned}
$$

From their work, Bulatov and Garusov formed an empirical relation to describe the variance of the albedo as a function of the prinary beam energy, E; the angle of incidence at the surface of the scatterer, $a ;$ the effective atomic number, Z, of the scatterer material; and its density, ρ,

$$
\eta(E, a, Z, \rho)=3.2 \frac{1}{E} \frac{1}{\cos a} \frac{\rho}{Z^{2}} \pm 20 \% \text { Eq. } 2.2
$$

Hyodo (18), in 1962, extended the work of Hine and McCall. He measured the spectra of backscattered radiation from semi-infinite slabs by means of a scintillation spectrometer as a function of the measuring angle. His sources were cobalt-60 and cesium-137 in close contact to slabs of paraffin, aluminum, iron, tin, and lead. Hyodo's work gives a comprehensive study of the energy and number albedos, the angular distributions of scattered energy and number of photons, and the energy distributions for the combinations of the gama iourcos and scatiterer materials used. Hyodo also studied the effect of thickness of scatterer material upon his results and, because of his geometry, arrived at a slightly lower value for "infinitely thick" than did Bulatov and Garusov. Hyodo's later work with Fujita et al. (19) and Nakamura (20) studied in greater detail the effect of scatterer thickness using jron as a backscatterer and cobalt-60 as a source in close contact with the iron. They arrived at the empirical relationship

$$
A(\theta, x)=A(\theta, x)\left(1-e^{-c x}\right)
$$

Eq. 2.3
where:

$$
\begin{aligned}
A(\theta, x)= & \text { the fraction of photons emergent at } \\
& \text { angle } \theta \text { per steradian for one primary } \\
& \text { photon incident to the scatterer of thick }- \\
& \text { ness } x \\
x= & \text { the slab thickness }
\end{aligned}
$$

Their value for "c" differs from that of " $\frac{1}{2}$ " in the BulatovGarusov development by about a factor of two. This study of the effect of thickness on backscattering was extended in 1967 by Hyodo, Matsumoto, and Mizukami (21) to cover polyethylene, aluminum, and lead, still using the point cobalt-60 source in contact with the sla!. A least squares fit of rineir data against

$$
A(x)-b=[A(i)-b]\left(1-e^{-c x}\right) \quad E q_{0} 2.4
$$

was made with good result. The terms here are the same as in Eq. 2.3, with " c " and " b " constants dependent upon experiment design. Their work, along with that of Bulatov and Garusov indicated that a thickness of material greater than two mean free paths of the source radiation would constitute an "infinite" thickness.

The first detailed backscatter work done with concrete as the scacter material was carried out in 1963 by Clarke
and Batten (22). They used uncollimated point sources of cobalt-60 and iridium-192 at varying heights above a concrete slab. An uncollimated ionization chamber detector was placed at various distances from the source and the concrete to determinc the effect of concrete on the dose measured. This work was extended by Herdee and Ellis (23) in 1965, Source
x

- Detector

Concrete

Figure 2. Experimental arrangement used by Clarke and Batten
using uncollimated cobalt-60 and cesium-137 sources scattered from semi-infinite slabs of concrete, lead, and water.

Jones, et al., $(24,25)$, in 1964, using cobalt-60
and cesium-137 as plane-parallel beam sources, studied the backscatter from concrete, aluminum, and steel as a function of the incident and the reflected angle with a scintillation detector. From their results, Jones, et al., developed the empirical formula

$$
\begin{equation*}
A_{d}(\Omega)=c \exp \left(-m \theta_{s}\right)+b^{\prime} \tag{Eq. 2.5}
\end{equation*}
$$

where:
$A_{d}(\Omega)=$ the differential doserrate ratio

$$
A_{d}(\Omega)=\frac{D}{D_{0}}
$$

Eq. 2.6
with:

$$
\begin{aligned}
D= & \text { the reflected dose per unit solid angle at } d \\
D_{0}= & \text { the incicient dose rate at the center of the } \\
& \text { slab's surface }
\end{aligned}
$$

"c", "m", and " b " in Eq, 2. 5 are constants which they determined for each sources backscatterer, and incident ansle. θ_{s} was the Compton scattering angle. Steyn and Andrews (?6) in their experiments of 1967 s did a very complete study, extending this work using gold-i.98, cesium-137, and cobalt-60 point sources one meter from graphite, aluminum, high density concrete, iron, nickel, tin, lcad, and uranium. A highly collimated scintillation spectrometer was used as the detector to determine angular and energy dependence of the backscatcered photons. The expression chosen by Steyn to best fit his data is

$$
\begin{equation*}
d A_{D}=a_{0}+a_{1} x+a_{2} x^{2} \tag{Eq. 2.7}
\end{equation*}
$$

where:
$d A_{D}=$ the differential dose albedo;

$$
\begin{aligned}
& \mathrm{x}=1+\cos \theta_{s} \\
& \theta_{s}=\text { Eqattorina angle as in Figure } 5.8
\end{aligned}
$$

"a a_{0} ", " a_{1} ", and "a a_{2} " are constants dependent upon the conditions of the experiment.

The integrated dose albelo empirical expression is represented by

$$
\begin{equation*}
a_{D}=3 a_{0}+a_{1}+\frac{a_{2}}{2} \tag{Eq. 2.9}
\end{equation*}
$$

where the constants have the same values as in Eq. 2.7. Both equations 2.7 and 2.9 neglect fluorescent x-ray dose contributions.

Data in the literature concorning the backscatter of x-rays in the source energy regions covered by the above papers show similar results $(27,28,29,30,31,32,33)$.

The backscatter of high energy bremsstrahlung was first studied by Kruglov and Lopatin (34) in 1959, when they were concernec about energy losses in using absorption calorimetry for calibrating the beam output of an $85-\mathrm{MeV}$ accelerator.

Pruitt (35) in 1964 was the first to consider backscatter from megavolt photons in ie albelo sense Using a scintillation spectrometer as a detector and backscatter media of carbon, magnesium, copper, tin, and lead, he determined the energy albedo for normally incident bremsstrahlung with a maximum photon energy of 90 MeV , and for lead at 25, 50 , and 170 MeV maximum.

Figure 3。 Experimental arrangement used by Pruitt.

In 1967, Sugiyama and Tomimasu (36), using lower energy (11.3 to 23.2 MeV moximum) bremsstrahlung, studied the angular distribution of the energy albedo from lead, copper, and Duralumin.

Karzmark and Capone (37), in 1968, performed a cursory look at radiation scattered from concrete by a 6 MeV Iinear accelerator.

Figure 4. Experimental arrangement used by Sugiyama and Tomimasu.

2.2 NUMERICAL

The development of numerical estimates of albedo followed the gathering of experimental data. After the work of Compton (13) and Kleir: and Nishina (14) which described the basic scattering interaction, several years passed untii sufficient data was collected to formulate empirical estimates. During chis period the Monte Carlo technique of random sampling and high speed computers were developed, presenting another method of numerically estimating the photon backscatter from a surface. Hayward and Hubbell (38) were among the first to employ the Monte Carlo technique; using a desk calculator they estimated the albedo of various materials for 1 MeV photons in 1954. The next year, Perkins (39) with an IBM computer repeated their process with normally incident photons of 1 MeV on concrete. Berger's
(40) Monte Carlo calculations in 1957 were based on an experimental design (Figure 2) to be tested eight years lacer by Clarke and Batten (21).

Wells (41) in 1959, developed, by Monte Carlo techniques, a very complete study of the angular distribution and energy spectra of ganma-ray scatter from concrete He postulated source energies of 0.6 MeV to 7.0 MeV incident at five different angles to the slab. His calculations include the effects of single and multiple scatter interactions, the photoelectric effect, and pair production reactions. As the cross-section data have since been largely revised (42), Wells repeated his analysis in 1964 (43). In 1962, Davisson and Bcach (44) extended this type of calculation to inclucie water, iron, and lead as backscatter media. In 1963, two studies were made which probably represent the best Monte Carlo examinations of photon backscatter from concrete available to date. Raso (45) and Leimdorfer (46) each worked on the reflection of photons from concrete in the energy range 1 to 10 MeV . While Raso allowed the angle of incident to vary and studied that effect, Leimdorfer used normal incidence and studied the variance of reflector thickness on albecio. Both consjdered photoabsorption, Compton interactions, and pair production. Their works are considered as standards against which experimental results
are often compared. Each of the above works considered only monoenergetic photons.

Bulatov and Leipinski (47) in 1961 were among the earliest to formulate quantitative expressions for albedo from experimental data. Based on experimental information gathered carlior by Bulatov (17), they expressed manec: and energy albedo as a function of build-up and build-up as a function of media thickness. Later in 1966, Bulatov (48) developed engineering formulas and nomograms for determining quantities of scattered gama-radiation. These were based on three geometries: a narrow beam striking a scattering material, an isotropic source in contact with a surface, and a plane unidirectional flow of garma quanta. Values are given primarily for cobalt-60 and gold-198 sources scattered from lead, iron, and aluninum. Some values for carbon and concrete are included.

In 1963, Chilton and Huddleston (49) developed a semiempirical formula for the differential dose albedo from gamma-rays incident on concrete, which has been very useful in this field. The energy ranges covered are from 0.2 to 10 MeV in a geometry as shown in Figure 5.

Their development considers single scattering as expressed by the Klein-Nishina representation and pair production annihilation and multiple scattering components

Figure 5. Relative position of source, detector, and scatterer for the Chiliton-Huddleston development.
as isotropic sources at the surface of the backscatterer. The relationship they derived is given by

$$
a_{d}\left(\theta_{0}, \theta, \phi\right)=\frac{C K\left(\theta_{\mathrm{s}}\right) \cdot 10^{26}+\mathrm{C}^{\prime}}{1+\cos \theta_{0} \sec \theta} \quad \text { Eq. } 2.10
$$

where:

$$
\begin{aligned}
a_{d}\left(\theta_{0}, \theta, \phi\right)= & \text { the differential dose albedo } \\
C \text { and } C= & \text { parameters to be adjusted for each } \\
& \text { incident energy } \\
K\left(\theta_{S}\right)= & \text { the Klein-Nishina value of the energy } \\
& \text { scattering cross-section per electron }
\end{aligned} \quad \begin{aligned}
\cos \theta_{S}= & \sin \theta_{0} \sin \theta \cos \phi-\cos \theta_{0} \cos \theta
\end{aligned}
$$

Values for C and C^{\prime} are given in their report. A number of comparisons are made with the results of this equation and results from Monte Carlo estimates and existing experimental data. Chilton (50) extended this work in 1965 to calculate the total albedo. Also in 1965, Chilton and Davisson (51) published values for the constants in Equation 2.10 for concrete, water, iron, and lead.

Huddleston (52) in 1964 updated some of the orjginai Chilton-Huddeston values and examined more closely those values near gold-198, cesium-137, cobalt-60, and sodium-24 gamma energies. With Shoemaker, he (53) set up a series of isnalbedo contours for engineering applicationse In 1965, due to more accurate Monte Carlo information, Chilton (54) revised their formula to more closely represent available data. The new formula is

$$
a\left(\theta_{0}, \theta, \phi\right)=F\left(\theta_{0}, \theta, \phi\right) \frac{C \cdot 10^{2 \sigma_{K_{e}}\left(E_{0}, \theta_{0}\right)+C^{\prime}}}{1+\cos \theta_{0} \sec \theta\left[1+2 E_{0}\left(1-\cos \theta_{s}\right)\right]^{1 / 2}}
$$

where

$$
\begin{aligned}
& F\left(\theta_{0}, \theta, \phi\right)=A_{1}+A_{2}\left(1-\cos \theta_{0}\right)^{2}+A^{3}(1-\cos \theta)^{2} \\
& +A_{4}\left(1-\cos \theta_{0}\right)^{2}(1-\cos \theta)^{2}+A_{5}\left(1-\cos \theta_{0}\right)(1-\cos \theta)(1-\cos \phi)
\end{aligned}
$$

Eq. 2.12
and the other parameters are as defined for the original equation 2.10. Thus far, only values for the constants with cesium:-137 and cobalt-60 sources have been established. In 1967 Chilton (55) revised these particular numbers. Recontly several other techmiques have been developed to estimate albedo $(56,57,58,59)$ and the method of discrete ordinates (as developed by Carlson [60]) deserves special mention. For some time neutron distributions have been calculated by discrete ordinates methods, while photon distributions had been calculated by Monte Carlo methods. In 1965 Iathrop (61) investigated the possibility of using the faster (computer time-wise) discrete ordinates method for pioton distribution calculations. His investigation showed excellent agreement with Monte Carlo methods and pointed the way for further development of the discrete ordinates method. Renken and Adams (62) in 1967 expanded

Lathrop's work on photon scatter. Multiple scattering and fluorescence are extensively covered.

Pair production annihilation contributions were written into the program two years later (63). Their program (DTF) allows a rapid calculation of photon densities as a frometion of angles radius, and energy. Input parameters may be widely varied with little resultant run-time penalty.
2.3 SUMMAPY

Except for the few examples discussed, backscatter of bremsstrahlung above a few Mev has not been investigated experimentally. The experimental configuration used by Pruitt did not allow the investigation of angular distribution. Both works were somewhat limited as to the energy range studied and choice of backscatterer materials. The present research provides information on energy regions not yet studied, and develops a method for determining albedo dose and angular distributions from pulse-type bremsstrahlung sources.

The notation used in this section is in each case that of the author discussed and definitions are given at that point.

3. THEORETICAL CONSIDERATIONS

3.1 INTRODUCTION

As the research topic deals with a continuous spectrum bremsstrahlung having a leading spectrun edge of intermediate energy (1 to 10 MeV), all the familiar photon interactions are of interest.

In the lower energy regions of the bremsstrahlung spectrum, photoclectric absorption is the predominant interaction. Electrons released by the photoelectric effect are of low energy and are not considered further. (Their ionization losses far outweigh their radiation loss.) In filling the K - and L^{-}orbital vacancies left by photoelectric absorption, $K-$ and $L-x$-rays, respectively, are given off. These x-rays are given off isotropically from the point they arise.

Characteristically a sharp drop occurs in the absorption cross-section of the material at energies just below the capture edge. The x-rays generated fall in this "depressed" cross-section region and consequently contribute significantly to backscatter yields.

Comption interactions are highly anisotropic, with angle and energy distributions calculated by Klein-Nishina formulas. In high energy Compton scattering events, the scattered photon distribution is largely in the forward direction. However, multiple Compton scattering events occur to create ar isotropic photon fluence from this source. Large energy transfers can occur to create Compton electrons. These electrons can then give up their energy through Dremsstrahlung which will add to the photon fluence in the backscatter media.
photons of energies greater than a few MeV can react in the field of a nucleus or an electron to create an electronmpositron pair. The cross-section for these reactions increases with incident photon energies and increasing Larget mass number. The energy of the photon (in excess of that required for formation of the electron-positron pair) goes into kinetic energy of tho created pair (or triplet if in the field of an electron). The angular distribution of the positron and negatron is mainly forward for incident photons of high energye Each gives up its kinetic energy by ionization, excitation, and bremsstrahlung. As the positron slows down it will recombine with an electron giving rise to two 0.511 Mey anninsation photons at that point. The bremsetrahlung and anninilation radiation will contribute
isotropically to the backscatter fluence.
Coherent, or Rayleigh, scattering occurs in the energy regions where atomic clectron binding effects must be considered in Compton scattering. The photon does not transfer energy to the atom while it is interacting. In the high energy regions where Rayleigh scattering need be considered (around 1 MeV) the majority of the photons are scattered by less than 5° and in the lower energy regions the crosssection for photoelectric absorption greatly overshadows the coherent scattering effect.

The energy region employed for this study encompasses the photonuclear absorption resonance regjons. However, the photonuclear cross-sections of the backscatter materials studied are small and the resultant photonetron fluence would be quite small relative to the photon fluence. The effect of the photoneutron fluence on the detectors used will be discussed later in this section.

Other photon interactions of minor importance, resonance scattering and Thomson scattering by the nucleus, Compton scattering by nucleons, meson production, resonance scattoring associated with meson production, Delbruck scatterings, and nucleon-antinucleon production, will not be considered (3, 64).

The detection instruments used in this work are thermoluminescent crystals and a scintillation spectrometer. Each is differential with respect to angular distribution; i.e. neither covers the entire emission field in the experimental set-up chosen, and the spectrometer is differential also with rospect to onergy. Mothods of using the output of these detectors in a manner suitable for comparison with prior numerical estimates will be discussed in greater depth. Each of these topics will now be reviewed in depth to assess their contribution to albedo as considered in this study. It is not the purpose of the following sections to derive a rigorous theoretical solution to the backscattering of intemediate energy bremsstrahlung, but rather they are given in an effort to point out sources of photons which contribute to the backscatter field and consider their relative importance。

3.2 PHOTON INTERACTIONS

3.2.1 Photoelectric Absorption (3, 11)

As pointed out in the introduction, photoelectric absorption is the predominant interaction for photons of low energy. The cross-section for this reaction is heavily Z dependent. For high Z target nuclei, photoelectric absorption may remain the predominant interaction to about

900 KeV . Although no longer the predominant interaction, a cross-section does continue to exist for photoelectric absorption to high photon energies (1.41×10^{-2} barn/atom at 100 MeV in Pb [65]). This reaction will occur primarily with the low energy region of the incident bremsstrahlung and with photons being scattered back from some depth in the backscatter medium.

The photoelectric effect is not easily treated theoretically due to bound electron considerations and outer orbital shielding effects. Estimates have been made for cross-sections in the energy range 0.2 MeV to 100 MeV using

$$
T_{K} \approx z^{5} \sum_{N=1}^{4} \frac{a_{n}+b_{n}^{2}}{1+c_{n}^{2}} E_{0}^{-p_{n}} \text { barn/atom Eq. } 3.1
$$

where:

$$
\begin{aligned}
&{ }^{\top} \mathrm{K}= \text { the } k-s h e l l \text { photoelectric cross-section in } \\
& \text { barns per atom } \\
& Z= \text { the atomic number of the target nuclei } \\
& a_{n}, b_{n}, c_{n}, P_{n}=\begin{array}{l}
\text { constants chosen for an empirical } \\
\text { fit }
\end{array}
\end{aligned}
$$

To add in the effect of other orbital electron interacions

$$
\frac{{ }^{\top} \text { pe }}{{ }^{\top} \mathrm{K}} \approx 1+0.01481 \ln ^{2} Z-0.000788 \ln ^{3} Z \quad \text { Eq. } 3.2
$$

is used where:

$$
\begin{aligned}
& T^{T}=\text { the total photoelectric cross-section in } \\
& \text { barms per atons }
\end{aligned}
$$

In lower energy ranges absorption edges vary the crosssection greatly. At these edges the cross-section shows discontinuous jumps because the phoion energy becomes smaller than the binding energy of some of the electrons. At this point the number of electrons which the photon is energetically capable of ejecting is suddenly decreased. The photoelectrons resulting from this interaction tend to be ejected at right angles to the incident photon path, showing preference for the forward direction with increasing photon energy.

After the ejection of an orbjetal electron, a vacancy exists which must be filled. Generally an electron in a higher orbit gives up energy to drop into the deficient orbit. The encrgy given up is in the form of characteristic x-rays and can be estimated by

$$
h v=13.6 \mathrm{z}^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \mathrm{eV} \quad \text { Eq. } 3.3
$$

where:
$h v=$ the emitted photon energy in eV
n_{1} and n_{2} are the principle quantum numbers for the initial and final electron vacancies. This radiation is given off in a truly isotropic distribution. The number of emitted photons by this process is dependent upon incident photon energy and the target material; the energy of each photon is dependent only upon the material. This energy range is such that the primary interactions these x-rays will undergo is photoelectric absorption. They are thus attenuated approximately exponentially from the point they arise until. they exit from the surface of the backscatter media. From these considerations, one can now derive an expression for the contribution to the backscatter fluence due to the photoelectric effect

$$
\begin{aligned}
& \operatorname{pe}_{N}\left(\phi_{0}, E_{0}, Z, r\right)=\frac{p N \cdot Z}{4 I r^{2} M} \int_{d} \int_{A}\left\{\phi_{0} \exp \left[-\mu_{t}\left(E_{0} Z\right) d\right]{ }_{p e}{ }^{T} E_{o}^{\left(E_{0} Z\right)}\right. \\
& \left.+\phi_{c}(d) T_{p e}\left(E_{c} Z\right)+\phi_{p p}(d) \tau_{p e}(0.511, Z)\right\} \\
& {\left[\exp \left[-\mu_{t}\left(E_{p e}, Z\right) d\left(\sec \theta_{s}\right)\right]\right] d d i d A \quad \text { Eq. } 3.4}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{pe}^{\phi_{\mathrm{N}}}\left(\phi_{\mathrm{O}}, \mathrm{E}_{\mathrm{O}}, Z, r\right)=\text { the number fluence from the } \\
& \text { photoelectric effect at some point } \\
& r \text { from the surface of a backscatter } \\
& \text { material with atomic number } Z \\
& \begin{aligned}
\phi_{0}= & \text { the incident fluence of photons at } \\
& \text { energy } E_{0}
\end{aligned} \\
& T_{p e}\left(\mathrm{E}_{\mathrm{O}}, Z\right)=\text { the photoelectric microscopic } \\
& \text { bremsstrahlung fluence } \\
& T_{p e}\left(E_{c}, Z\right)=\text { the photoelectric microscopic } \\
& \text { cross-section of photons having } \\
& T_{\text {pe }}(0.511,2)=\text { the photoelectric cross-section of } \\
& \text { photons created by pair production } \\
& d=\text { the depth in the backscatter media } \\
& \text { being considered } \\
& \mu_{t}\left(E_{o}, Z\right)=\begin{array}{l}
\text { the total attenuation coefficient } \\
\\
\text { for the incident bremsstrahlung }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\phi_{c}(d)= & \text { the fluence due to Compton scattered photons } \\
& \text { at a depth } d \\
\phi_{p p}(d)= & \text { the fluence due to pair production at } d \\
A= & \text { incident beam area }
\end{aligned}
$$

r is assumed much greater than the beam radius at the surface of the backscatterer.

The energy fluence under the same conditions is found to be

$$
p e_{N}^{\phi_{N}}\left(\phi_{0}, E_{0}, Z, r\right)=p e^{\phi} N \sum_{n} h v \quad E q \cdot 3.5
$$

where: $\mathrm{pe}^{\phi} \mathrm{N}$ is given by Eq. 3.4 and $h v$ by Eq. 3. 3

Using a detection system which is capable of differentiating energies, one would expect to observe an energy grouping due to these characteristic x-rays.

Fink, et al. (66) list extensive experimental resul.ts on fluorescence yiclds and energies.

3.2.3 Compton Scattering $(3,11)$

In the energy region approximately 0.5 to 5 NeV the dominant photon interaction is incoherent scattering from electrons, the Compton effech (67). Over this energy range
the cross-section for the Compton effect is given by the Klein-Nishina equation

$$
\begin{aligned}
& \mathrm{e}^{\sigma}=\frac{2 \Pi \mathrm{e}^{4}}{\mathrm{~m}_{0}^{2} \mathrm{c}^{4}}\left\{\frac{1+a}{\mathrm{~d}^{2}} \frac{2(1+a)}{1+2 a}-\frac{1}{a} \ln (1+2 a)\right. \\
& \left.+\frac{1}{2 a} \ln (1+2 a)-\frac{1+3 a}{(1+2 a)^{2}}\right\} \frac{\mathrm{cm}^{2}}{\text { electron }} \quad \text { Eq. } 3.6
\end{aligned}
$$

where:

$$
\begin{aligned}
\mathrm{e}^{\sigma=}= & \text { the probability of removal of a photon from a } \\
& \text { collimated beam whilc passing through an } \\
& \text { absorber containing one electron/cm } \\
\mathrm{e}= & \text { the electronic charge }\left(4.8 \times 10^{-10} \text { statcoulomb }\right) \\
\mathrm{m}_{\mathrm{o}}= & \text { the electron mass }\left(9.1083 \times 10^{-28} \mathrm{gm}\right) \\
\mathrm{c}= & \text { the veiocity of light }\left(2.998 \times 10^{10} \mathrm{~cm} / \mathrm{sec}\right)
\end{aligned}
$$

and $\quad a=\frac{E_{0}}{m_{0} c^{2}}$
Eq. 3.7
where E_{o} is the incident photon energy. This equation is based on interaction with an unbourd electron. In those cases where the photon energy is comparable with the binding energy of the atomic electrons, the photoelectric
cross-section usually greatly exceeds the Compton scattering cross--section (11) which is given by

$$
\begin{array}{r}
e^{\sigma} s=\frac{2 \Pi e^{4}}{m_{0}^{2} c^{4}}\left[\frac{4 a^{2}}{3(1+2 a)^{3}}-\frac{(1+a)}{a^{2}(1+2 a)^{2}}\left(1+2 a-2 a^{2}\right)\right. \\
\\
\left.\quad+\frac{1}{2 a^{3}} \ln (1+2 a)\right] \quad \text { Eq. } 3.8
\end{array}
$$

with terms as defined in Eq. 3.7.

Figure 6. Compton Scattering

The energy of the incident photon will be shared after the collision by a scattered photon and the struck electron. The energy of the scattered photon is given by

$$
h v^{\prime}=\frac{m_{o} c^{2}}{1-\cos \theta+\left(\frac{1}{a}\right)}
$$

Eq. 3.9
and the kinetic energy of the struck electron

$$
\begin{equation*}
T=h v_{0} \frac{2 a \cos ^{2} \varphi}{(1+a)^{2}-a \cos \varphi} \tag{Eq. 3.10}
\end{equation*}
$$

The direction of the scattered photon is given by

$$
\begin{equation*}
\frac{d\left(e^{\sigma}\right)}{d \theta}=\frac{d\left(e_{e}^{\sigma}\right)}{d \Omega} 2 I I \sin \theta \frac{\mathrm{~cm}^{2}}{\text { electron }} \tag{Eq. 3.11}
\end{equation*}
$$

where:

$$
\begin{aligned}
\frac{d\left(e^{\sigma}\right)}{d \theta}= & \text { the number of photons scattered at angle } \theta \\
& \text { per electron per } \mathrm{cm}^{2} \text { per incident } h v
\end{aligned}
$$

$$
\frac{d\left(e^{\sigma}\right)}{d \Omega}=\frac{e^{4}}{m_{0}^{2} c^{4}}\left(\frac{h v^{\prime}}{h v_{o}}\right)^{2}\left(\frac{h v_{o}}{h v^{\prime}}+\frac{h v^{\prime}}{h v_{o}}-\sin ^{2} \theta\right) \text { Eq. } 3.12
$$

with terms as defined before. Inspection of graphs of these functions by Evans (11) shows that as incident photon energy increases, scattering becomes greater in the forward direction.

The direction of the Compton electron is giva by
$\frac{d\left(e^{\sigma}\right)}{d \varphi}=\frac{d\left(e^{v}\right)}{d \Omega^{\prime}} 2 n \sin \varphi$ Eq. 3.13
where:
$\frac{d\left(e^{\sigma}\right)}{d \Omega^{\prime}}=\frac{d\left(e^{\sigma}\right)}{d \Omega} \frac{\sin \theta d \theta}{\sin \varphi d \varphi}$
Eq. 3.14

The distribution of struck electrons also shows peaking in the forward direction with increased incident photon. energy.

The numbermenergy distribution of the Compton clectrons can be represented as
$\frac{d\left(e^{\sigma}\right)}{d T}=\frac{d\left(e^{\sigma)}\right.}{d S \zeta} \frac{2 n}{a^{2} m_{0} \sigma^{2}}\left[\frac{(1+a)^{2}-a^{2} \cos ^{2} \varphi}{(1+a)^{2}-a(2+a) \cos ^{2} \varphi}\right]^{2}$
Eq. 3.15

From applyjng the conservation of momentum and energy in the Compton interaction one may write

$$
\frac{1}{h v^{\prime}}-\frac{1}{h v_{0}}=\frac{1}{m_{o} c^{2}}(1-\cos \theta) \quad \text { Eq. } 3.16
$$

From an examination of Eq. 3.16 it follows that, for a given scatter angle, higher energy incident photons suffer a greater energy change than do lower energy incident photons. Since the energy gained by the struck electron is

$$
T=h v_{0}-h v^{\prime} \quad \text { Eq. } 3.17
$$

Compton scattering favors energy transfer to electrons in the higher energy ranges. However, since the Compton process only predominates through about 5 MeV , the bremsstrahlung from these electrons will be of moderate energy and will be emitted isotropically. The ratio of energy lost by these electrons by bremsstrahlung to energy lost by ionization is approximated by

$$
\frac{\left(\frac{d T}{d s}\right)_{\mathrm{rad}}}{\left(\frac{d T}{d s}\right)_{\text {ion }}} \approx 2\left(\frac{m_{0}}{M_{o}}\right)^{2}\left(\frac{T}{1400 m_{o} c^{2}}\right) \quad \text { Eq. } 3.18
$$

where M_{o} is the rest mass of the particle near which the energy loss occurs and the other terms are as previously defined. For this radiation to then be contributed to the backscatter fluence, it must pass through some thickness, d, from the point of origin to the surface of the backscatter medium.

The degraded photon can then undergo further Compton scatter to be emitted at the surface also. Previous experiments (16, 23) using monoenergetic photon sources have been able to differentiate between these multiply scattcred photons and those singly scattered. Since the sources used for this research were bremsstrahlung spectra, this differentiation was not possible.

The contributions to backscatter fluence due to Compton interaction will be then
$C^{\phi_{N}}\left(\phi_{O}, \mathrm{E}_{\mathrm{O}}, \mathrm{Z}, \mathrm{r}\right)=\mathrm{SC}^{\phi} \mathrm{N}^{+}{ }_{\mathrm{MC}}{ }^{\phi} \mathrm{N}+{ }_{\mathrm{BC}}{ }^{\phi} \mathrm{N} \quad$ Eq. 3.19
where:

$$
\begin{aligned}
\mathrm{SC}^{\phi_{\mathrm{N}}}\left(\phi_{\mathrm{O}}, \mathrm{E}_{\mathrm{O}}, Z, r\right)= & \text { the number fluence due to singly } \\
& \text { Compton scattered photons at some } \\
& \text { point, } r, \text { from the surface of a } \\
& \text { backscattering medium with atomic } \\
& \text { number } Z \text { when exposed to a photon } \\
& \text { fluence } \phi_{o} \text { of energy } E_{o} \text { given by }
\end{aligned}
$$

$\operatorname{SC}^{\phi_{N}}\left(\phi_{O}, E_{O}, Z, r\right)=\int_{d} \int_{A}^{\phi_{0}\left(E_{0}\right) \exp \left[-\mu_{t}\left(E_{0}, Z\right) d\right]} r^{2}$

$$
\frac{d\left(e_{s}\right)}{d \Omega} \frac{P N_{1} Z}{M} \exp \left[-\mu_{t}\left(E_{c}, Z\right) d\left(\sec 0_{s}\right)\right] d d d A
$$

Eq. 3.20
where:

$$
\begin{aligned}
\phi_{0}\left(E_{0}\right)= & \text { the incident photon fluence } \\
\mu_{t}\left(E_{0} Z_{1}\right)= & \text { the total attenuation coefficient to the } \\
& \text { incident photons } \\
d= & \text { the depth in the backscatterer being } \\
& \text { considered }
\end{aligned} \quad \begin{aligned}
\frac{d\left({ }_{e} \sigma_{s}\right)}{d \Omega}= & \text { the number of photons being scattered into } \\
& \text { the solid angle of concern }
\end{aligned}
$$

$\mathrm{MC}^{\phi}{ }_{\mathrm{N}}\left(\phi_{\mathrm{O}}, \mathrm{E}_{\mathrm{O}}, \mathrm{Z}, \mathrm{r}\right)$ is the number fluence contribution due to multiply Compton scattered photons at some point, r, given here for twice Compton scattered:

$$
\begin{aligned}
& \operatorname{MC}^{\phi}{ }_{\mathrm{N}}\left(\phi_{\mathrm{O}}, \mathrm{E}_{\mathrm{O}}, \mathrm{Z}, \mathrm{r}\right)= \\
& \int_{A} \int_{(t, \alpha, \beta)} \int_{d} \int_{d^{\prime}} \phi_{o}\left(E_{0}\right) \exp \left[-\mu_{t}\left(E_{o}, Z\right) d^{\prime}\right] e_{s}^{\sigma_{s}\left(E_{o}\right) \frac{P N \cdot Z}{M}} \\
& \exp \left[-\mu_{t}\left(E_{c}, Z\right) t\right] \frac{1}{4 I t^{2}} \frac{d\left(e_{\sigma_{s}}\right)}{d \Omega}\left(E_{c}\right) \frac{\rho N \cdot Z}{M} \\
& \frac{\exp \left[-\mu_{t}\left(E_{D C}, Z\right) d \sec \theta_{S}\right]}{r^{2}} d d^{\prime} d d \operatorname{td} \alpha t \sin \alpha d \beta d i
\end{aligned}
$$

Eq. 3.21
where:

$$
\left.\begin{array}{rl}
\mathrm{d}^{\prime}= & \begin{array}{l}
\text { the depth into the backscatter medium } \\
\\
\text { until the first Compton interaction }
\end{array} \\
\mathrm{e}^{\sigma}\left(E_{0}\right)= & \text { the Compton microscopic scattering cross- } \\
& \text { section for the incident photons }
\end{array} \quad \begin{array}{rl}
\mu_{t}\left(E_{0} Z\right)= & \text { the total attenuation coefficient to } \\
& \text { the once Compton scattered photons }
\end{array}\right\} \begin{aligned}
t= & \text { the distance between the first and } \\
& \text { second Compton scatter events }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{d}= & \text { the depth in the backscatter mediun to the } \\
& \text { second Compton event } \\
(\alpha, \beta)= & \begin{array}{l}
\text { angles defining the direction of first } \\
\\
\\
\text { Compton scattering }
\end{array}
\end{aligned}
$$

and the rest of the terms are as previously defincd. Higher order scattering would be handed similarly.

Figure 7. Fultiple Compton Scattering

Finally, $B C{ }^{\phi}{ }_{N}$, the number filuence contribution due to bremsstrahling prodived by Compton scattered electrons, can more easij.y be represented by $\mathrm{BC}^{\phi} \mathrm{E}$, the energy of photons contributed to the backscatter fluence by the bremsstrahlung of Compton electrons: which can be given by

$$
B C^{\phi_{E}}\left(\phi_{0}, E_{0}, Z, r\right)=\int_{d} \int_{d} \int_{A} \int_{E_{B}} \phi_{0}\left(E_{0}\right) \exp \left[-\mu_{t}\left(E_{o}, Z\right) d^{\prime}\right]
$$

$$
e^{\sigma} \frac{p N_{0} Z}{\mathrm{Ni}} \frac{\left(\frac{d T}{d s}\right)_{\mathrm{rad}}}{\left(\frac{d 1}{d s}\right)_{\mathrm{rad}}+\left(\frac{d i}{d s}\right)_{\text {ion }}}
$$

$$
\frac{\exp \left[-\mu_{t}\left(E_{B}, Z\right) d \sec \theta_{S}\right]}{4!x^{2}} d E_{B} \mathrm{dA} \mathrm{dd}^{\prime} \mathrm{dd} \text { Eq. } 3.22
$$

where:

$$
\begin{aligned}
B C^{\phi} \mathrm{E}= & \begin{aligned}
& \text { the energy contributed to the backscatter } \\
& \text { fluence by the bremstrahlung of Compton }
\end{aligned} \\
& \text { electrons at the point } r
\end{aligned}
$$

and the rest of the terms are as previously defined.
The highest energy photon one might see emergent from the scattering surface due to Compton interaction, with the sources used in this dissertation, would be that due to a large number of Compton scatter events resulting in a photon emerging at 90° to the incideni beam. The larger the number of scatterings required the lower the probability of the
photon surviving。 A 10 MeV photon undergoing three Compton scatterings of 30° each would emerge with an energy of 1.13 MeV .
3.2.3 Pair Production (3, 11)

In the energy region of 5 MeV for high Z materials and 10 MeV for intermediate 2 materials, the cross-section for pair production interactions becomes important. The energy threshold for pair production is 1.022 MeV in the field of a nucleus and 2.644 MeV in the field of an electron.

The cross-section for this interaction in the field of a nucleus is estimated by

$$
\begin{aligned}
K_{n}= & {\left[\mathrm{K}_{\mathrm{n}}(\text { Born, unscreened })-S^{\mathrm{HFS}}\right][1+\Delta(\text { rad. corr。 })] } \\
& -\Delta(\text { empirical }) \cdot \Delta K_{\mathrm{n}}^{\mathrm{DBM}} \quad \text { Eq. } 3.23
\end{aligned}
$$

where: k_{n} (Born, unscreened) is an approximation represented by

$$
\left.\begin{array}{c}
K_{n}(\text { Born })=\frac{4 Z^{2} r_{e}^{2}}{137} \ln \left(183 Z^{-1 / 3}\right) \\
{\left[\left(1-\frac{2}{k}\right)\left(1+\frac{K}{k}\right)-\frac{\mu}{6}-\frac{2}{k}+\frac{\mu}{k^{2}}-\frac{2 \mu}{3 k^{3}}-\frac{2 k}{k} \frac{\left(1+\frac{\mu k}{k}\right)}{\sqrt{1+\frac{4 k}{k}} \ln \sqrt{1+\frac{4 k}{k}}+1-\frac{2}{k}} \sqrt{1+\frac{4 k}{k}}-1+\frac{2}{k}\right.}
\end{array}\right]
$$

Eq. 3.24
with

$$
\begin{array}{cc}
r_{c}=\frac{e^{2}}{m_{o} c^{2}} & \text { Eq. } 3.25 \tag{Eq. 3.25}\\
k=\frac{E_{y}}{0.511} & \text { Eq. } 3.26 \\
\mu=\frac{4}{3}+\left[9 \ln \left(183 Z^{-1 / 3}\right)\right]^{-1} & \text { Eq. } 3.27
\end{array}
$$

and

$$
K=\frac{255 \mathrm{Z}^{-1 / 3}}{(15.6-4 / 3 \ln Z)} \text { Eq. } 3.28
$$

in Eq. 3.23.

$$
\begin{aligned}
\mathrm{S}^{\mathrm{HFS}}= & \begin{array}{l}
\text { the Sorenssen screening } \\
\\
\text { correction }
\end{array} \\
1+\text { A(rad. corr.) }= & \text { the Mork-Olsen radiative } \\
& \text { correction factor } \\
\text { A(empirical) }= & \begin{array}{l}
\text { a correction factor for high- } \\
\\
\\
\\
\\
\end{array} \begin{array}{c}
\text { nergy Coulomb effects as is }
\end{array}
\end{aligned}
$$

Values for each of these are found in the literature (3). The crossmsection for pair production in the field of an electron is estimated by
$K_{e}=\frac{r_{0}^{2}}{137}\left\{\frac{28}{9} \ln (2 k)-\frac{218}{27}-\frac{1}{k}\right.$

$$
\left.\left[\frac{4}{3} \ln ^{3}(2 k)-3 \cdot \ln ^{2}(2 k)+6.84 \ln (2 k)-21.51\right]\right\}
$$

Eq. 3.29
with terms as defined above. The energy of the incident photon is shared by the electron-positron pair.

$$
h_{1}=\left(T_{-}+m_{0} c^{2}\right)+\left(\Gamma_{+}+m_{0} c^{2}\right) \quad \text { Eq. } 3.30
$$

where T_{-}and T_{+}are the kinetic energy of the electron and positron respectively. The kinetic energy of the positron is slightly greater than that of the electron when they are created in the field of a nucleus. This difference being, at most, about

$$
T_{+}-T_{-}=\frac{2 Z e^{2}}{\left(h / 2 \Pi m_{o} c^{2}\right)}=0.0075 \mathrm{Z} \text { Eq. } 3.31
$$

The angular distribution of the pair peaks in the forward direction for high energy incident photons (68).

For pair production in the field of an electron the photon's energy is djvided among three partjcles (the created positron and electron and the electron involved in the interaction).

All particles here lose energy by radiation, ionization, and excitation. The contribution of the bremsstrahlung can be considered in the same manner as described for the Compton electrons previously. As the positron slows down it will combine with an electron to create two annihilation photons of 0.511 MeV , which are emitted isotropically。 This radiation is expected to comprise the major portion of the backscatter fluence due to pair production interactions (46,

69, 70).
The fluence contribution, due to pair production interactions, at some point, r, can then be represented by

$$
\operatorname{PP}^{\phi} \mathrm{N}^{\left(\phi_{0}, \mathrm{E}_{0}, Z, r\right)=} \mathrm{BPP}^{\phi} \mathrm{N}^{+} \mathrm{A}^{\phi} \mathrm{N} \quad \text { Eq. } 3.32
$$

where $\operatorname{B.P}^{\phi} \mathrm{N}$ is the number fluence due to bremsstrahlung of the electrons and positrons and is to be represented in the same manner as $\mathrm{BC}^{\phi} \mathrm{N}^{\circ}$
$A^{\phi} N$ is the number fluence contribution due to annihilation radiation, expressed here as

$$
\begin{aligned}
& A^{\phi_{N}}\left(\phi_{0}, E_{0}, Z, r\right)=\int_{d} \int_{d^{\prime}} \int_{A} \phi_{0}\left(E_{0}\right) \frac{\exp \left[-\mu_{t}\left(E_{0}, Z\right) d^{\prime}\right]}{4 \pi r^{2}} \\
& 2 \tau_{K} \frac{\rho N \cdot Z}{M} \exp \left[-\mu_{t}(0,511, Z) d \sec \theta_{s}\right] d A d^{\prime} d d
\end{aligned}
$$

Eq. 3.33
where:

$$
\phi_{0}\left(E_{0}\right)=\text { the inciclent fluence }
$$

$$
\begin{aligned}
& \mu_{\mathrm{t}}\left(\mathrm{E}_{\mathrm{o}}, \mathrm{Z}\right)= \begin{array}{l}
\text { the total attenuation coefficient } \\
\\
\text { to the initial fluence in the back. } \\
\text { scatterer of atomic number } \mathrm{Z}
\end{array} \\
& \mathrm{~d}^{\prime}= \begin{array}{l}
\text { the distance from the surface to the } \\
\text { pair production interaction }
\end{array} \\
& \mu_{\mathrm{t}}(0,511, \mathrm{Z})= \begin{array}{l}
\text { the total attenuation coefficient to } \\
\\
\text { the annihilation radiation }
\end{array} \\
& \mathrm{d}= \begin{array}{l}
\text { the distance from the point of } \\
\\
\text { positron annililation to the surface } \\
\text { of the backscatterer }
\end{array} \\
& \mathrm{k}_{\tau}=\begin{array}{l}
\text { the pair production microscopic }
\end{array} \\
& \text { cross-section }
\end{aligned}
$$

The rest of the terms are as previously defined.
To obtain an fica of the photon energy to emerge under this interaction one can consider bremsstrahlung from the most probable electron energy to be produced in the pair production interaction

$$
E_{e^{-}}=\frac{1}{2}(h v-1.022) \mathrm{MeV} \quad \text { Eq. } 3.34
$$

Bremsstrahlung resulting from this electron will have a maximum leacing edge equal to the energy of the electron. With the sources used, a photon energy of 4.64 MeV might be observed from the 10.5 MeV machine.

3.2.4 Rayleigh Scattering and

Photonuclear Interactions

Although Rayleigh (coherent) scattering may be of some consequence in scattering radiation from a beam for transmission measurements, the angle of deflection is almas (11) emal1, and can be ostimated by

$$
\begin{equation*}
\theta_{c}=2 \arcsin \frac{0.0133 z^{1 / 3}}{E_{0}(\mathrm{MeV})} \tag{Eq. 3.25}
\end{equation*}
$$

where θ_{c} is the opening half angle of a cone containing at least 75% of the coherent-scattered photons. The number of Rayleigh scattering events necessary to reflect a photon reduces the probability of this contribution below the level to be considered here. Rayleigh scattered photons might well undergo further reactions to send them back out of the reflector, but since the total distance traveled by the photon will be nearly the same as the distance into the medium and nearly no energy is lost in the Rayleigh scattering process, for purposes of this report coherent scattering will not be considered further.

Although the photonuclear giant resonance peaks occur in the energy region of interest, their cross-sections are sma13. (5% to 10%) compared to those for the Compton effect
and for absorption by nuclear pair production. The most probable result of photonuclear absorption is the emission of a neutron. At present only experimental data is available for determining crossmections.

Considering the materials chosen for this work:
--. Lead hes a photonulcai Lhashold of about 6.8 MeV and reaches its resonance peak at 13.7 MeV . The cross-section at this peak is 0.81 barns/atom.
-- Iron has a photonucleax threshold of 11.2 MeV and resonance peak at 18.0 MeV , with a crosssection of 0.075 barnsiatom at that energy (71).
-- The principle components of concrete, oxygen and silicon, being of lower Z have higher threshold energies, and cross-sections et their resonance peaks are considerably smaller (0.02-0.03 barns/atom). (72)

Since the photonuclear cross-sections are a couple of orders of magnitude below the crossusection for pair production at the same energy, the decrease to the photon fluence due to photonuclear absorption will not be considered. However, it is necessary to consider the neutron fluence which arises. The number of neutrons arising can be calculated as

$$
N_{n}=\int_{B_{n}}^{E_{m}} \int_{a}^{\sigma}(\gamma, n)(E, Z A)\left(\frac{\rho N}{M}\right)_{N}(E) d a d E \text { Eq. } 3.36
$$

where:

$$
\begin{aligned}
& { }^{\sigma}(\gamma, n)(E, Z A)=\text { the photonuclear cross-section at } \\
& \text { energy } E \text { in a material of atomic } \\
& \text { number } Z \text { and atomic mass } A \\
& \begin{aligned}
\phi_{N}(E)= & \text { the photon number fluency at the } \\
& \text { point of interest }
\end{aligned} \\
& B_{n}=\text { the threshold energy } \\
& \begin{aligned}
E_{m}= & \text { the maximum energy at which nuclear } \\
& \text { capture occurs or the maximum energy }
\end{aligned} \\
& \text { of the incident beam, whichever is } \\
& \text { smaller } \\
& a=\text { incident beam area }
\end{aligned}
$$

The neutron number fluence at a point of interest, r, can be calculated

$$
\begin{gathered}
n_{N}^{\phi_{N}}\left(\phi_{o}, E_{o}, r, Z A\right)=\int_{d} \int_{B_{n}}^{E_{m}} \int_{A}^{\phi_{0}\left(E_{0}\right)} \frac{4 \Pi r^{2}}{4} \exp \left[-\mu_{t}\left(E_{o}, Z\right) d\right] \\
\sigma_{(\gamma, n)}(E, Z A) \frac{\rho_{0} N_{o}}{M} \exp \left[-\Sigma_{r}(E, Z A) d\right] d A d E d d
\end{gathered}
$$

Eq. 3.37
where:

$$
\phi_{0}\left(E_{0}\right)=\text { the incident photon fluence }
$$

$$
\left.\begin{array}{rl}
\mu_{t}\left(E_{0}, Z\right)= & \text { the total attenuation coefficient to } \\
& \text { the incident fluence }
\end{array}\right]=\begin{aligned}
& \text { the distance from the surface of the } \\
& \\
& \\
& \text { backscatter medium to the point of } \\
& \text { nuclear absorption }
\end{aligned}
$$

and the other terms are as previously defined. Photons having undergone one of the interactions previously discussed will not have sufficient energy for photonuclear capture and their fluence is not added in this calculation。

For the materials and energies used in this dissertation,

$$
\mathrm{n}^{\phi} \mathrm{N}_{0}\left(\phi_{0}, \mathrm{E}_{\mathrm{o}}, r, Z \mathrm{~A}\right) \ll \mathrm{pp}{ }^{\phi} \mathrm{N}+\mathrm{C}^{\phi} \mathrm{N}^{+} \mathrm{pe}^{\phi_{\mathrm{N}}}
$$

Eq. 3.38
where:

$$
\begin{array}{rl}
\mathrm{pe}^{\phi} \mathrm{N} \text { is given by Eq. } & 3.4 \\
\mathrm{C}^{\phi} \mathrm{N} & \text { is given by Eq. } \\
\mathrm{PP}^{\phi} \mathrm{N} & 3.19 \\
\text { is given by Eq. } & 3.32
\end{array}
$$

Therefore no neutron response correction will be made for the TID readings obtained.

Photofission is not considered for the materials chosen at the energies used for this research (73, 74).

3.2 .5 Summary

The total energy fluence at some point, r, can then be represented as the sum of the previously calculated fluence.

$$
\phi_{E}=p_{0}^{\phi} \sum_{i l} h \nu+F\left(E_{\mathrm{c}}\right) \mathrm{c}_{\mathrm{N}}^{\phi}+0.511 \mathrm{pp}^{\phi} \mathrm{N} \text { Eq. } 3.39
$$

where:

$$
\begin{aligned}
\text { pe }^{\phi} \sum_{\mathrm{N}} \mathrm{hv} & \text { is given in Eq. } 3.5 \\
\mathrm{C}^{\phi} \mathrm{N} & \text { is given by Eq. } 3.19 \text { and } F\left(E_{\mathrm{c}}\right) \text { is the } \\
& \text { distribution of the Compton scattered } \\
& \text { photons, and } \\
\mathrm{pF}^{\phi} \mathrm{N} & \text { is given by Equ } 3.32
\end{aligned}
$$

The exposure-dose distribution may be determined from the energy distribution above by

$$
D=\int\left(\frac{\mu(E)}{\rho}\right) \phi_{\mathrm{E}} \mathrm{dE} \quad E \mathrm{~F} \cdot 3.40
$$

where $\left(\frac{\mu(E)}{\rho}\right)$ is the energy mass absorption coefficient for water (sirce water is ofter used as.a dose standard, any material could, of course, be chosen).

3.3 DETECTION INSTRUMENTATION

3.3.1 Scintillation Spectrometer

The scintillation detector used in this research was a $5^{\prime \prime} \mathrm{D} x 3^{\prime \prime}$ right cylindrical. NaI (T1) crystal of Isotopes Inc. production with its photomiltiplier package. A Nuclear Data 512 channel instrument was used as the multi-channel pulse height anal.yzer and data display device。 The analyzer used has a "dead" time of ($5+0.25 \mathrm{~N}$) $\mu \mathrm{sec}$, where N is the channel number, and an internal delay time of $2 \mu \mathrm{sec}$. A detailed discussion of the operation of a scintillation spectrometer may be found in references 75 and 76 .

Due to system "iead" time, the scintillation spectrometer could not be used in the experiments with the flash x-ray devices.

It was not possible to sufficiently "detune" the 2.0 MeV Van de Graaff to make a measurement of the beam spectrum. Even at the maximum distance allowed by the radiographic bay and with a very smali opening collimator, the detector system was swamped out. Some measurements were made of the reflected spectra and these results are found in Appendix D for comparison with spectra generated by the two computer programs used.

Spectral data are given in Appendix D.

3.3.2 Thermoluminescent Detectors

The thermoluminescent detectors used in this research were Harshaw produced LiF crystals. Two sizes $\left(1 / 8^{\prime \prime} \mathrm{x}\right.$ $1 / 8^{\prime \prime} \times 0.035^{\prime \prime}$ and $6 \mathrm{~mm} \times 1 \mathrm{~mm} \times 0.9 \mathrm{~mm}$) were used to check for: systematic errors arising from crystal sjze considerations。

Particitex characteristics of the Tip thermo-
luminescent detector are:
-- a very lincar response over a wide energy range (77) though with some under-response at low energies (40 KeV) to bc discussed in greater detail in Appendix E;
-- fading of the "glow curve" is less than 5% per year (78) after an initial stabilizing period of a few hours;
..- Linear response ($\pm \mathbf{j} \%$) to accumulated doses of about 700 R (79) and doesn't saturate until doses of about $10^{5} \mathrm{R}$ (77);
-- lower limits of detection (with the detectors used) of approximately 5 MiR (80);
-- and dose rate independence in response to rates up to $2 \times 10^{11} \mathrm{rad} / \mathrm{sec} \pm 10 \%(81,82)$.

These characteristics make the LiF thermoluminescent detectors nearly ideal for the research undertaken, and certainly better than other, existing, passive detectors $(83,84)$.

The detectors lisec have some neutron response. TLD-100 (Harshav manufactured l.iF) shows a response of
about 1:37:: thermal neutron:gamma exposure。 The response to fast neutrons is much less $(85,86)$.

By placing these small detectors at various points from the surface of the backscattering material, one can determine the angular dependency of the scattered photons. Bue to the integrating nature of the detector, thoy do not readily lend themselves to a determination of the energy of the backscattered fluence.

Much work has been done on various methods of obtain.. ing data from TLD's. A variety of annealing and read-out procedures have been proposed $(87,88,89,90,91)$, to accomplish greater statistical accuracy, reproducibility, handling convenience, etc. In the present research an Eberline TLD Reader Model TLR-5 was employed with the LiF crystals previously discussed. The reader allows the operator to control the time ($0-60$ seconds) and temperature ($0-400^{\circ} \mathrm{C}$) of both a "pre-heat" cycle and an "incegrateii cycle. Nitrogen is purged through the chamber at one liter per minute during read-out to lower the instrument background. A modification of the reader was made by connecting an additional variable rheostat in series with the photo-multiplier gain adjust to allow greater accuracy in setting the gajn to a desired level. Appendix F discusses the method by which the read-out and annealing
procedures were chosen.
The theory of thermoluminescent dosimetry is well documented elsewhere (92, 93).

3.3.3 Attenuation Methods of

Spectral Determination

Various methods have been used to attempt to gain information about the spectral distribution of x-rays (94). The method to be discussed here is that of graphically fitting three exponentials to an attenuation curve. It is felt that three extractions are all that can be made from a single attenuation curve with accuracy (95)。

The elearest use of the atcenuation curve comes from plotting the logarithm of the fraction transmitted (ordinate) verses the depth in the attenuating material (abscissa). If the abscrber material is thick enough, the attenuation curve will approach a straight line at greater depths in the material. Extrapolation of this portion of the curve back to zero absorber thickness and subtraction from the original attenuation curve removes the high energy component of the incident fluence. The intercept of this portion of the curve on the ordinate axis gives the fraction of incident radiation contributed by the high energy component. This extraction procedure can then be repeated
as diagramed below。

Depth in absorber

Figure 8. Attenuation extractions

Curve A is the original attenuation information, curve B the high energy compnont extracted, curve 0 that portion remaining after removal of the high energy contribution, curve D the intermediate energy extraction, and curve E is the romaining low energy component (after Greening -- 94). Using the slopes of the linear curves, one can determine the linear attenuation coefficients of the various energy components in the particular absorber material used. From this an energy assignment can be made from values such as given in Attix, et al. (42). Having the energy and the fraction of the incident flux contributed by that energy, one car generally characterize the beam in a three-energy reprosentation. Greening (96) also
discusses a method of incident energy spectrum determination from absorption data using Laplace transforms. A recent attempt has been made to computerize absorption data in an effort to obtain better energy representations (97). Several difficulties arise in applying this method to determining the speciral output and reflected spectra for the machines used. The reflected intensity is so low as to be near the limit for statistically reliable measurement with TLD's. Any method which requires the attenuation of this intensity through several half values is impractical. The focal point for the electron beam striking an x-ray tatget is not precisely controlled on flash x-ray devices. It is therefore necessary to make a very large number of measurements with well collimated detectors to gain a meaningful absorption curve. This curve will then represent an average for the particular machine and not precisely represent any one shot. The spectral unfold for absorption data generated by bremsstrahlung spectra of the energy span covered in this dissertation becomes quite severe. A number of extensive measurements of spectra have been published (98, 99, 100, 101, 102, 103, 104, 105). These specira represent a compilation of information gathered Erom Compton scatter devjees, absorption data,
electron spectra-target codes, etc. In general previously published spectra are used in this report for computer program inputs. Appendix D discusses the spectra information generated in this work compared to previously published work. Sample albedo results with each are given to study the effect of different spectra inputs.
4. NUMERICAL ANAJYSIS METHODS
4.1. EMPIRICAL METHODS

Of the empirical methods for calculating albedo, only the Chilton-Huddleston (49) development attempts to go beyond a few MeV. For that reason, theirs will be the only one discussed in this section. The initial development was limited to scatter from concrete.

The geometry of the Chilton-Huddlestor ($\mathrm{C}-\mathrm{H}$) derivation is given in Figure 9.

[^0]Starting with the formula for differential dose at a point, from single scattering

$$
\mathrm{dD}=\frac{\mathrm{D}_{1} a_{\mathrm{d}} \cos \theta_{0} \mathrm{dA}}{\mathrm{r}_{1}{ }^{2} \mathrm{r}_{2}{ }^{2}}
$$

Eq. 4.1
where:

$$
\begin{aligned}
\mathrm{dD}= & \text { the differential dose at point of measurement } \\
\mathrm{D}_{1}= & \text { dose at reference point one unit distance from } \\
& \\
a_{\mathrm{d}}= & \text { dose albedo } \\
\theta_{0}= & \text { polar angle of incidence radiation } \\
\mathrm{dA}= & \text { differential area of reflecting surface } \\
\mathrm{r}_{1}= & \text { distance from source to differential area } \\
\mathrm{r}_{2}= & \text { distance from differential area to detector. }
\end{aligned}
$$

They develop a representałion of single scattering dose albedo

$$
a_{d S}=\frac{B K\left(\theta_{S}\right)}{\bar{\mu}_{1}+\bar{\mu}_{2} \cos \theta_{0} \sec \theta}
$$

Eq. 4.2
where:

$$
\begin{aligned}
& a_{\mathrm{dS}}=\text { the single scattering dose albedo } \\
& B=\text { a collection of factors which depend } \\
& \text { only on the reflecting material or are } \\
& \text { constant } \\
& \begin{aligned}
K\left(\theta_{s}\right)= & \text { the Klein-Nishina value of the energy } \\
& \text { scattering cross-section per elcctron }
\end{aligned} \\
& \bar{\mu}_{1} \text { and } \bar{\mu}_{2}=\text { the mass absorption coefficient for } \\
& \text { the gamma radiation before and after } \\
& \text { scattering, respectively. }
\end{aligned}
$$

Their representation of the contribution by annihilation radiation is of similar form but without the Klein-Nishina factor, since annihilation radiation is produced isotropically.

Eq. 4.3
where:

$$
\begin{aligned}
a_{d i}= & \text { annihilation dose albedo } \\
B_{1}^{\prime}= & \text { a collection of factors which depend only on } \\
& \text { the reflecting material or are constant }
\end{aligned} \quad \begin{aligned}
\bar{\mu}_{2}^{\prime}= & \text { the energy absorption coefficient at the } \\
& \begin{array}{l}
\text { average energy of the isotropically produced } \\
\\
\end{array} \quad \begin{aligned}
\text { radiation }
\end{aligned}
\end{aligned}
$$

Neglecting other contributions as being below the level of influence in this approximation, the over-all differentjal albedo is given as the sum of 4.2 and 4.3 with appropriate changes in the constants.
$a_{d}\left(\theta_{0}, \theta, \phi\right)=\frac{B_{3} K\left(\theta_{S}\right)}{\bar{\mu}_{1}+\bar{\mu}_{2} \cos \theta_{0} \sec \theta}+\frac{B_{2}^{\prime}}{\bar{\mu}_{1}+\bar{\mu}_{2}^{\prime} \cos \theta_{0} \sec \theta}$

Eq. 4.4

In the case of lead, and several other high Z materials, ignoring the photoelectric contribution results in low albedo estimates.

By assuming the attenuation coefficients are not greatly energy dependent and incorporating them into the constant terms, one arrives at the much simplified equation

$$
a_{d}\left(\theta_{0}, \theta, \phi\right)=\frac{C K\left(\theta_{S}\right) \cdot 10^{26}+C^{\prime}}{I+\cos \theta_{0} \sec \theta} \quad \text { Eq. } 4.5
$$

Where C and C^{\prime} are the $\mathrm{C}-\mathrm{H}$ parameters which must be adjusted for each incident photon energy. Comparison with Monte Carlo results appear to justify this assumption (though since the
parameters C and C^{\prime} are obtained from a least-squares fit to Monte Carlo data, this would follow). Their first paper (49) gave values of C and C^{\prime} only for concrete at incident energies of $0.2,0.5,1,2,4,6$, and 10 MeV .

In 1965, Chilton and Davisson (51) published values for the $\mathrm{C}-\mathrm{H}$ paramotors in water, concrete, iron, and lead for incident photons of energies up to 6.13 MeV .

A later paper by Chilton (54) revised the formula, to that shown in Eq. 2.11, to more closely match updated Monte Carlo runs. However, only values for 0.662 and 1.25 MeV reflected from concrete have been published. Consequently the revised formula cannot be used in this development.

Appendix N considers these empirical developments with "effective" x-ray energies from the machines used in this dissertation。

Leimdorfer (46) has developed an analytical expression for the total albedo (not considering the angular distribution and making much the same assumptions as ChiltonHuddleston). His development covers the same area as that of Chilton and Huddieston and lacks some of their flexibility; further work with it is not considered.

4.2 MONTE CARLO METHODS

The Monte Carlo method is a computerized experiment in which individual photon "case histories" are compiled until a statistically valid distribution is obtained. An individual photon enters the program at a given energy. On the basis of this energy, a probability generating subroutine assigns an interaction with energy loss, change of direction, etc. This process is continued until the photon is emitted from the material (transmitted or backscattered) or drops in energy below some premset cut-off level. At this point a new photon is introduced into the program.

Raso (45), in 1963, published values of total dose rate aijbedo from concrete with incident photon energies of 0.2 to 10.0 MeV . However, the data of Wells (43) published in 1964, is of a format more nearly that of this research. His data gives differential dose albedos for photon reflection from concrete. Source energies of $0.6,1,2,4$, and 7 MeV are used with angles of incidence of $\theta_{0}=0^{\circ}, 30^{\circ}$, $45^{\circ}, 60^{\circ}$, and 75°.

His representation of the differential dose albedo is given by the relation

$$
\begin{equation*}
a\left(\theta_{0}, \theta, \phi, E_{0}\right)=\frac{D\left(\theta_{0}, \theta, \phi, E_{0}\right)}{F\left(E_{0}\right) \sec \theta_{0}} \tag{Eq. 4.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \alpha\left(\theta_{0}, \theta, \phi, E_{0}\right)=\text { the ratio of the dose rate current } \\
& \text { reflected per siceradian in the } \theta, \phi \\
& \text { direction to the dose rate per photon } \\
& \text { of energy incicient unon the slab } \\
& \text { surface at an angle } \theta_{0} \\
& \begin{aligned}
\mathrm{D}\left(\Theta_{0}, \theta, \Phi, \mathrm{E}_{\mathrm{O}}\right)= & \text { the scattered photon rate current } \\
& \text { per steradian leaving the concrete }
\end{aligned} \\
& \text { surcace in the direction } \theta \text {, } 0 \text { per } \\
& \text { photon incident at an angle } \epsilon_{0} \text { per } \\
& \text { unit area on the concrete surface } \\
& F\left(E_{0}\right) \sec e_{0}=t \text { the dose rate incident to the } \\
& \text { surface per photon per } \mathrm{cm}^{2} \text { crossing } \\
& \text { the surface in the direction } \theta_{0}
\end{aligned}
$$

The cited literature deals only witin monoenergetic incident sources. The author fincis no published results of Monte Ca:-lo runs having been made for bremsstrahling, and since each bremsstrahlung spectrum would be a function of the particular generating machine, information of this type would be of limited value.

For comparison purnoses in this dissertation, a number of Monte Carlo rus have been made and their results plotted. The progran: used (Appendix K) is based on a publication by K. G. Adams and C. R. Mehl (106) as updated generally in April, 1968 , by Adams and with specific update features by Adams, August, 1970, for adaptation to the specific energies and materials encountered in the present
problem. A study of results from this particular Monte Carlo program with comparisons from DTF results (to be discussed in Section 4.3) and previously published experimental results is given in Appendix M.

4.3 METHOD OF DISCRETE ORDINATES

The method of discrete ordinates is a numerical procedure used to solve the Boltzmann transport equation. The solution of transport problems using the method of discrete ordinates is a well-established technique in neutron problems. These techniques have been adapted to photon transport problems at Sandia Laboratories (62) and other installutions dealing with shielding or energy deposition problems.

The particular program (DTF-69) used in this research (Appendix L) was written by J. H. Renken and.K. G. Adams (63) with updates specific to the problem of the dissertation by J. H. Flinchum of Sandia Corporation.

In any particular DTF run, the incident photon spectrum is divided into a finite number of energy groups (ine. a multigroup approximation). The monoenergetic transport equation for each group is then solved numerically by finite difference equations. The photon energy loss due to scattering is accounted for by the transfer of photons from
one group to another of lower energy. Within the limitations of the numerical nature of the solution, the result of this procedure is believed to be a rigorous solution of the transport equation.

A number of other codes based on the same principle are presently in use. A comprehensive review of the "staterof-the-art" as regards the method of discrete ordinates may be obtained from the Radiation Shielding Information Center (1.07).

Runs have been made for each experimental configuration for comparison purposes. These resul.ts are presented in the discussion of experimental data in Section 6.2 .

Various spectra were used as input. These spectra and resuits are discussed in Appendix D.

As with the Monte Carlo program, a number of runs were made for comparison with previously published experimental. data with results presented in Appendix M_{0}

5. EXPERIMENTAL DESIGN

5.1 BACKSCATTER MATERIAIS

5.1.1 Introduction

For results of various experiments to be comparable, it is necessary that variance in the dimensions of the backscatterer not affect the amount of radiation reflected. To this end experimenters generally use a "semi-infinite" slab of material, meaning that any increase in the irradiated slab area or the slab thickness must not result in a change in the albedo for the viewed area. Though all are agreed upon this principle, few are agreed upon what is necessary to constitute a semi-infinite piece of material. In the high energy bremsstrahlung experiments discussed previously $(35,36)$, variations from thicknesses of seven mean free path lengths and diameters of nine mean free path lengths to thickness of one half a mean free path length and less than one half a mean free path length in diameter are used.

Experiments with gamma ray sources have generally shown $(12,17,18,21)$ that increasing the thickness of
backscatter medium beyond two mean free path lengths does not significantly alter the albedo measured. Lateral dimensions are less well established however, perhaps because of variation in experimental design.

Hine (16) has demonstrated that for diameters of less than two mean free path lengths, variation in surface area significantly alters the measured albedo. Mizukami et al. (20) indicate that a surface area less than four mean free path lengths in diameter is inadequate, but that at a diameter of seven mean free path lengths no change in albedo will. be observed by increasing the surface area. Steyn (12) feels that five mean free path lengths form an adequate surface. Other experimenters using garnma-ray sources (17, 24,25) do not discuss the problem and use scatter surfaces of three to six mean free path lengths in diameter.

To insure that slabs used in this research were "semiinfinite", they were generally chosen to be two mean free path lengths thick at the point of minimum absorption for the energy spectrum being used and three and one half mean free path lengths from the edge of the viewed area (Appendix B) to any edge of the reflector. A number of measurements were made to insure the adequacy of the following calculations. These results are reported in Appendix G_{0}

5.1.2 Lead

Lead exhibits a minimum mass attenuation coefficient of $0.0410 \mathrm{~cm}^{2} / \mathrm{gm}$ to 3.4 McV photons. This corresponds to a mean free path length of 2.15 cm or 0.845 inches. A lead slab having adequate dimensions at this energy wouild be "semi-infinite" for any of the energins used in this porl. Lead slabs 1.75 inches thick and 12.0 inches square were used for albedo measurements. The surface was uniformly irradiated (Appendix H).

5.1.2 Iron

Iron has a minimum mass attenuation coefficient of $0.0299 \mathrm{~cm}^{2} / \mathrm{sm}$ for fhotons a- 8.5 HeV . This gives a mean free path length of 4.25 cm or 1.67 inches. Thus, a slab 3.34 inches thick and of diameter 11.69 inches plus viewed diameter (Apperdix B) could be called "semi-infinite". For the majority of this research, a slab of this size would be larger than necessary. With a bremsstrahlung maximum energy of 2.0 MeV , a slab 2.32 inches thick and 8.14 inches plus viewed diameter would be semi-infinite. A slab 3.50 inches thick and 14.0 inches square was used for albedo measurements at 2.0 and 3.5 MeV , a slab $18.0 \times 18.0 \times 4.50$ inches was used for 7.0 and 10.5 MeV .

5.1.3 Concrete

Normal density concrete ($2.30 \mathrm{gm} / \mathrm{cm}^{3}$) has a minimum absorption coefficient of 0.0204 or maximum mean free path length of 21.31 cm or 8.39 inches near 30 MeV . The energies considered in the present research are not that high and the absorption coefficient would therefore be somewhat higher. Also considerable differences exist in the atom densities of various concrete, depending upon how and where they are made. The concrete used was that typical of this area, poured with fine aggregate, stirred to prevent voids and formed without reinforcement steel to avoid high Z pertubation. The atom densilies of this concrete are compared with other concretes in Table 1. The effect of differing concrete atom densities on albedo is studied through use of the discrete ordinates computer program at an incident bremsstrahlung energy of 2.0 MeV maximum in Figure 10. Aluminum is often used for computer comparisons to concrete due to the closeness in density, atomic number (Z), etc., and the relative ease of calculating one Z vs $10-13 \mathrm{Z}$. The effective atomic number of the concrete used here was 12.1, the density $2.16 \mathrm{gm} / \mathrm{cm}^{3}$.

A slab 8 inches thick and 32 inches square was used as the concrete reflector at 2.0 and 3.5 MeV , a 10 inch thick,

36 inches square slab at 10.5 MeV . No concrete backscatter surface was used in the 7.0 MeV experiments due to the lack of handling equipment in that facility.

TABLE 1
CONCRETT COMPOSITTONS
ATOM DENSITIES (atoms $/ \mathrm{cm}^{3}$)

ELEMENT	CONCRETE USED IN	O R N L	RADIATION
	THIS DISSERTATION	STANDARD	RESEARCH
			CONCRETE
			ASSOCIATES

H C	$\begin{aligned} & 2.177 \times 10^{21} \\ & 4.355 \times 10^{21} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.50 \times 10^{21} \\ & 2.02 \times 10^{22} \\ & \hline \end{aligned}$	$\begin{array}{r} 9.886 \times 10^{21} \\ 6.913 \times 10^{20} \\ \hline \end{array}$
O Na	$\begin{aligned} & 3.986 \times 10^{22} \\ & 3.473 \times 10^{20} \end{aligned}$	$\begin{aligned} & 3.55 \times 10^{22} \\ & 1.63 \times 10^{19} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.473 \times 10^{22} \\ & 9.1 \times 10^{20} \\ & \hline \end{aligned}$
Mg Al	$\begin{aligned} & 2.6 \times 10^{19} \\ & 1.284 \times 10^{20} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.86 \times 1.0^{21} \\ & 5.56 \times 10^{20} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.922 \times 10^{20} \\ & 2.64 \times 10^{21} \end{aligned}$
Si P	1.775×10^{22} 0	1.70×1.0^{21} 0	$\begin{aligned} & 1.355 \times 10^{22} \\ & 3.326 \times 10^{19} \\ & \hline \end{aligned}$
S K	$\begin{gathered} 0 \\ 1.257 \times 10^{19} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 4.03 \times 10^{19} \\ \hline \end{gathered}$	$\begin{aligned} & 3.326 \times 10^{19} \\ & 5.862 \times 10^{20} \\ & \hline \end{aligned}$
Ca Ti	$\begin{gathered} 2.274 \times 10^{21} \\ 0 \end{gathered}$	$\begin{gathered} 1.11 \times 10^{22} \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.334 \times 10^{21} \\ & 9.577 \times 10^{19} \\ & \hline \end{aligned}$
Fe Cu	$\begin{aligned} & 2.515 \times 10^{19} \\ & 5.156 \times 10^{18} \\ & \hline \end{aligned}$	$\begin{gathered} 1.93 \times 10^{20} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 7.794 \times 10^{20} \\ 0 \\ \hline \end{gathered}$
Zn Sr	4.872×10^{19} 2.406×10^{18}	0 0	0 0

Figure 10 Albedo dependence on concrote composition

5.2 PHOTON SOURCES

5.2.1 Van de Graaff

The 2.0 MeV bremsstrahlung source used in this research was generated by an industrial radiographic Van de Graaff of High Voltage Engineering manufacture. The accelerating voltage is adjustable from 0.75 to 2.0 MeV , with sensitivity of $\pm 40 \mathrm{KeV}$ over 95% of a two hour period at 2.0 MeV 。 The electron beam current is adjustable from 0.01 to 0.25 milliamperes, with ± 5 нamp at 0.250 milliamperes. The device generates 85 roentgens per minute at one meter. The accelerator i.s mounted wi.th three degrees of freedom in a radiographic bay 19 feet wide, 26 feet high, and 26 feet from tube head to farthest wail.

Basic design and operating theory of Van de Graaffs are well discussed elsewhere (108,109).

Beam divergence at the backscatter location is discussed in Appendix H for this and the following machines.

A previously published measured spectrum from this type of generator is given in Table 5. Rough absorption measurements were made with copper absorbers to determine an "effective energy for the beam used. These results are shown i.n Appendix D.
5.2.2 Flash x-ray cievices $(110,111)$

The $3.5,7.0$, and 10.5 MeV bremsstrahlung spectra were generated by high-energy flash x-ray generators. The major components of thesc machines are a low-inductance Marx generator, a Blumlein transmission line, and a fieId-emission vacuum tube. These components are housed within a steel cylinder filled with transformer oil for insulation. During the charging cycle, storage capacitors are functionally placec in parallel with spark gaps acting as open circuits. When the desired charging voltage has been achieved, the power supply is electrically disconnected from the capacitor bank, and a high-voltage signal is initiated on the trigger line. Adjoining spark gaps are successively overvolted, causing the Marx generator to erect full output voltage. The negative voltage output of the Marx generator is placed on the intermediate cylinder of a folded Blumlein transmission line, During Blumlein charging, the outer and central cylinders, across which the tube is electrically located, are held near ground potential. When the Marx generator has erected to approximately 90 percent of its full output voltage, the Blumlein switch, between the central and intermediate cylinders, experiences self-breakdown, launching a traveling wave in the inner coaxial. line. The voltage pulse formed by the Blumlein
structure is impressed across the x-ray tube which consists of an insulating and vacuum-holding structure, a field emission cathode, and an anode.

The x-ray mode anode is a thick, high-Z target (generally tungsten) for maximum efficiency in generation of brensstrahlüs radiation by deceleration of the electrons. A thick aluminum plate filters the remaining electrons and low energy x-rays from the beam as it is extracted into the experimental area. The output characteristics of the machine are dependent upon numerous parameters, including charge voltage, anode-cathode gap configuration, Blumlein oil gap; switch spacing, and the post-pulse switch position. Because of the complexity of calculations and measurements of these quantities and the large number of combinations of machine parameters, photon intensity and spectrum as a function of position and time are not totally available either in experimental or theoretical form. That which is known of the beam rroduced by the machine used in this research is discussed in the following sections.

5.2.2.1 3.5 MeV Generator

The Relativistic Electron Beam Accelerator (REBA) is
a Sandia Corporation designed, Sandia built experimental device. The primary purpose of this device is to study the
deposition of energy in material by electron beams. By placing a high Z plate in the beam one can generate a bremsstrahlung photon spectrum. The time during which the experiments of this dissertation were carried out: is essentially the only time at which REBA has been operated in the x-ray mode. There exists, therefore very little information about the x-ray beam. Various spectra for possible photon distributions are given in Appendix D. A few measurements were made with copper absorbers to give some idea of the beam quality. A plot of this determination is shown in Figure 41.

The beam intensity per burst of REBA at-the point.of backscatter was lower than required for good measurement. Therefore, a number of shots were made for each measurement to acquire sufficient dose. This had the effect of averaging out the machine's performance, as generators of this sort tend not to reproduce exactly from burst to burst. A sample set of shot parameters (tube voltage V_{T}; and tube current, I_{T}) are given for REBA in Table 2. Tube voltage varied from averages of 3.38 to 3.52 MeV in the sets of experiments run for this paper. There is reason to believe (112) that these voltages may be high by as much as $10-15$ percent. The tube output was monitored and normalized for each set as discussed in Section 6.

REBA consists of a single capacitor bank system which may dump into either of two Blumlein transmission lines (Figure 11). The irradiation cell in which the experiments discussed here were conducted was 1.4 feet wide, 15 feet from tube head to opposite wall and essentially open topped.

TABLE 2
REBA SHOT CHARACTERISTICS

TUBE VOLTAGE
V_{T} (Mv)
3. 50
3.40
3.35
3.40
3.2 .7
3.37
3.25
3.53
3. 54
3.54
3.54
3.26
3.62
3.26
3.54

TUBE CURRENT

$$
I_{T}(k A)
$$

40.0
38.2
38.6
38.2
38.2
38.2
35.0
39.8
39.1
38.2
38.2
38.2
41.0
36.8
39.6

$$
\begin{aligned}
& \left(V_{T}\right) \text { avg }=3.42 \pm 0.13(3.71 \%) \mathrm{MV} \\
& \left(I_{T}\right) \text { avg }=38.49 \pm 1.40(3.64 \%) \mathrm{kA}
\end{aligned}
$$

5.2.2.2 7.0 MeV Generator

The Transient Radiation Effects Facility (TREF) (113) is an Air Foree Speciaj. Veapons Center laboratory designed for conducting transiont radiation effects experiments to assess the survivability of systems in a prompt garma radiation environent. The iacility is perhaps less generator development oriented than Sandia, but due to the high priority of systems requiring tests in these environments, and the operating expense ($\sim \$ 1000 /$ day) little moxe is known about the x-ray beam of the 7.0 MeV PulseRad 1590 (Figure 12) than that of the two other flash x-ray machines (REBA and HFRMES TT). Some ahsorption measuroments have boon made with absurbers of various atomic number which indicate an effective value of $4,1-4.2 \mathrm{MeV}(114)$. Filtration of the outpui beim of TREF is somewhat $(0.7934 \mathrm{~cm}$ A1 and 0.076 cm Ta) heavier than that of REBA or HERMES (at the time of these meacurements) . To the primary purpose of these machines, this excess is of little consequence. The effect of reducing the low energy component of the incident bremsstrahluag through filtration of the beam (Figures 49 and 50), may be of greater importance. (Figure 46) to albedo measurements. These figures inciicate that, as pointed out by Zol' nikov and Sukhanova (115), specification of the

PULSERAD 1590

Chum Shemion

Figure 12
bremsstrahlung neak may give little information as regards albedo. This will be discussed more fully in Section 6 . The experimental area of TREF is separated from the flash x-ray device by a 10 foot high, 12 foot wide, 20 foot long RF shielded room. Facility design was such as to preclude the ready handing of the massive concrete slab used for previous backscatter experiments. Results are reported in Section 6 for iron and lead only.

Dose output for the PulseRad 1590 is rated at 4,000 rads in water at 75 centimeters per pulse. One pulse per experimental set-up was, therefore, adequate. Tube voltage varied from 6.48 to 7.10 MeV with an average of 6.98 ± 0.18 (2.57\%) MeV for the shots made in this work.

$5.2 .2 .3 \quad 10.5 \mathrm{MeV}$ Generator

The second High Energy Radiation Megavolt Electron Source (HERNES II) is a Sandia designed and built flash x-ray device similar to those discussed previously. Some-what more is known about the beam characteristics of this machine. Spectra and beam divergence are discussed in Appendix D and by Chodorow (110). Figures 13 and 14 detail the device and experimental area. Dose per pulse is about 2,500 Rad in water at one meter, and agajn only one burst per experimental set up was required to obtain adequate dose

Figure 13 HERMES IT

Figure 14 HERMES II
levels. Experimental configurations were repeated a number of times for statistical purposes. Peak tube voltage varied from 9.95 to 10.9 MeV with an average of $10.56 \pm 0.28(2.68 \%)$ MeV for runs made in this experiment.
5.3 BACKSCATTER SURFACE, COLLIMATOR,

AND DETECTOR POSITION
The basic experimental design is diagramed in Figure I.5.

Figure 15. Experimental configuration

The x-ray source was shielded, not to restrict the bean, but to reduce air scatter at the detector locations. The beam was monitored at the center line and near the end of the beam colljnator for normalization of each run.

The baskscatter slab was placed normal to the x -ray beam axis at a distance adequate for uniform irradiation of the surface.

The detector collimators were placed as close to the backscatter slab as possible, without interrupting the incident beam. Distance from the slab and the angle between the slab and collimator axis determined the length of collimator required to restrict the viewed area sufficiently to maintain an "infinite" surface area slab. To provide flexibility in positioning the detector collimators and varying thejr length, the collimators were made up in segnents. Standard lead bricks ($2^{\prime \prime} \times 4^{\prime \prime} \times 8^{\prime \prime}$) were center drilled with 1.00" ID holes. One inch diameter copper rod was cut into $2.0,3.0$ and 4.0 inch lengths and center drilled with $0.50^{\prime \prime}$ ID holes. $0.25^{\prime \prime}$ slugs were cut from the copper rod to provide back-up shields. The copper was then pressure fitted to the lead and un-drilled lead bricks used around the assembly for additional shielding.

Figure 16. Detector collinator

The thermoluminescent dosimeters were packaged in polyethene bags and centered at the back of the detertor collimator. The dosimeters were calibrated to Co-60 in the same configuration, so all results are measured in dose in LiF equivalent to Co-60.

The collimator lengths and detector distances used in individual measurements are given with the TLD data in Appendix I.
6. EXPERTMENTAL RESULTS

6.1. DATA ANALYSIS

The Radiation Shielding Information Center's report on Neutron and Gamma-Ray Albedos (i) defines three types of differential albedos for which the particle flux has been weighted by a dose response function: $\alpha_{D 1}\left(E_{0}, \theta_{0}, \theta, \phi\right)$, differential current out (in ciose units) per incident flux (in dose units); $a_{D 2}\left(E_{0}, \theta_{0}, \theta_{,}()\right.$; differential current out (in dose units) per incident current (in dose units); and $a_{D 3}\left(E_{0}, \theta_{0}, \theta_{,} \psi\right)$; differential flux cut (in dose units) per incident flux (in dose units) As the incident beam is normal to the reflecting slab $\left(\theta_{0}=90^{\circ}\right), a_{D 1}$ and $a_{D 2}$ are identical for the present research and may be defined as the ratio of the particle current (in dose units, ω_{R}. per steradian reflected in the direction $\theta,()$ to the dose, D_{0}, due to incident particles of energy, E_{o}.

$$
\begin{equation*}
a_{\mathrm{D} 1}=a_{\mathrm{D} 2}=\frac{\mathrm{d}_{\mathrm{R}}}{\mathrm{D}_{\mathrm{O}}} \tag{Eq. 6.1}
\end{equation*}
$$

The experimental determination of d_{R} and D_{o}, and transformation to a form comparable to computer estimates, is not straight forward. Measurement of the incident dose at the backscatter surface would result in a measurement of the incident dose plus a reflected dose, which is substantial due to the solid angle intercepted by the detectors being located at the scatter surface. (This is the quantity defined by Johns [109] as backscateter.) Therefore, two runs were made for each individual ajbedo measurement, one background and the other backscatter. During the background run, thermoluminescent dosimeters (TLD's) were located at the point where the center of the backscatter slab was to be placed for the albedo measurement, another set of '[JJ's was, located midway between the x-ray target and the backscatter slab, and TLD's were located in each collimator to measure the background for that particular configuration due to air scatter, shield penetration, etc. The dosimeter positions were the same for albedo measurements less the set at the backscatter. location (Figure 15). The TLD's monitoring the beam between the x-ray target and backscatter slab were never less than thirty inches to the slab. At this point the backscatter contribution was less than 0.5%. The dose. actually deposited at the slab's surface was then calculated from measurements made during each of the runs.

$$
D D=D I\left(\frac{B C S}{B C G}\right)\left[\frac{i n c\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{\text {slab }}}{\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{\text {LiF }}}\right]
$$

Eq. 6.2

where:

$$
\begin{aligned}
& \text { DD = dose deposited at slab surface center during } \\
& \text { backscatter measurement } \\
& D I=\text { dose deposited in TLD's during background run } \\
& \text { at saine distance from x-ray target as DD } \\
& \text { BCS = dose in TLD at some point between backscatter } \\
& \text { slab and x-ray target } \\
& \begin{aligned}
& B C G= \text { dose in TLD at same point as BCS during } \\
& \text { background rum }
\end{aligned} \\
& \operatorname{inc}^{\left(\frac{\mu \text { en }}{\rho}\right)_{\text {slab }}=\begin{array}{l}
\text { mass energy-absorption coefficient for the } \\
\text { slab material and the incident beam }
\end{array}} \\
& \text { inc }\left(\frac{\mu e n}{\rho}\right)_{\text {LiF }}=\begin{array}{l}
\text { mass energy-absorption coefficient for } \\
\text { LiF and the incident beam }
\end{array}
\end{aligned}
$$

The dose to the slab surface was then averaged over the viewed area to account for beam divergence (Appendix H) to obtain D_{0}.
inc $\left(\frac{\mu_{\text {en }}}{\rho}\right)$ is an effective value for the particular
incident beam (Appendix D) considered and is estimated by:

$$
\operatorname{inc}\left(\frac{\mu_{e n}}{p}\right)=\frac{\sum_{i}\left(\frac{\mu_{e n}}{\rho}\right)_{i}^{E} E_{i}}{\sum_{i} E_{i}}
$$

Eq. 6.3
where $\left(\frac{\mu_{\text {en }}}{\rho}\right)_{i}$ is the mass energy-absorption coefficient at the average energy of the " i "th energy interval and E_{i} is the amount of energy in that interval.

The backscatter measurement was corrected for a background normalized to the backscatter input dose and expressed in terms of water dose.
$B S=\left[D R-D B G\left(\frac{B C S}{B C G}\right)\right]\left[\frac{r_{\text {eF }}\left(\frac{\mu_{\text {en }}}{\rho}\right)_{H_{2} O}}{r_{\text {ef }}\left(\frac{\mu_{e n}}{\rho}\right)_{L i F}}\right] \quad$ Eq. 6.4
where:

$$
\begin{aligned}
\mathrm{BS}= & \text { dose in water reflected by the backscatter } \\
& \text { slab at some angle and distance }
\end{aligned}
$$

DBG $=$ dose in TLD measured at same position as BS during background run
$\left.\operatorname{ref}^{\left(\mu_{\text {en }}\right.}\right)_{\mathrm{H}_{2} \mathrm{O}}=\underset{\text { mater and reflected beam }}{\text { matabsorption coefficient for }}$
 $\left(\frac{B C S}{B C G}\right)$ as defined in Eq. 6.2 ret $\left(\frac{\mu_{e n}}{\rho}\right) . \begin{aligned} & \text { is an effective value for the particular } \\ & \text { reflectod baam spectrum (Appendj.x D) } \\ & \text { considered. }\end{aligned}$

To determine the backscattered dose per steradian, BS was divided by the effective viewed solid angle of the particular collimator system used.

$$
\begin{equation*}
\Omega_{\epsilon}=\frac{A_{\epsilon}}{d^{2}} \tag{Eq. 6.5}
\end{equation*}
$$

where: $\quad A_{\epsilon}=$ effective viewed area normal to the collimator axis (Appendix B)
$d=$ detector to slab distance

The differential dose current per steradian is given by:

$$
D_{R}=\frac{B S}{\Omega_{\epsilon}} \cos \theta
$$

where θ is the angle between the incident beam center line and the detector collimator axis. D_{R} has no meaning in the true physical sense, but is the form traditionally used in comparing albedo data. The differential current dose albedo per steradian, ${ }^{{ }_{D 1}}$, may then be calculated by Equation 6.1.

Beam intensity, for machines of the nature discussed in Section 5, is most frequently given as kad in water per burst or per unit time at some point in the beam. Calculation of the dose in any particular shielding material involves detailed information as to incident beam energy spectra. Lacking such information, another expression of albedo might be more useful in shielding calculations.

$$
\begin{equation*}
a_{\mathrm{D} 3\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{\mathrm{d}_{\mathrm{R}\left(\mathrm{H}_{2} \mathrm{O}\right)}}{\mathrm{D}_{\mathrm{o}\left(\mathrm{H}_{2} \mathrm{O}\right)}} \tag{Eq. 6.7}
\end{equation*}
$$

Derivation of Eq. 6.7 would follow as Eq. 6.1 above with
inc $\left(\frac{\mu_{e n}}{\rho}\right)_{\mathrm{H}_{2} \mathrm{O}}^{\text {replacing }}{ }_{\text {inc }}\left(\frac{\mu_{e n}}{\rho}\right)_{\text {slab }}$ and the reffected dose being expressed as flux rather than current, a quantity with real physical meaning, useful in actual shielding calculations.

6.2 PRESENTATION OF RESULTS

Figures 17 through 27 compare the values of ${ }^{a{ }_{D 1}}$ obtained experimentally with those obtained by the Monte Carlo program (Appendix K), the DTF program (Appendix L) and the Chilton-Fucdieston formulation (Appendix N).

Error limits on the experimental points are discussed in Appendix J. Error bars for the Monte Carlo runs are not shown in an effort to avoid cluttering the graphs. In each plot, 200,000 case histories were run with a deviation of around $\pm 8.5 \%$ for iron at 10.5 MeV to about $\pm 16.2 \%$ for lead at 2.0 MeV. Tine precise error value was dependent upon the number of photons falling in a given angular spread. These errors are much increased when requesting an energy differentiation as plotted in Appendix D. DTF and the ChiltonHuddleston representations do not have readily representable error limits.

Table 3 lists the values of the differential dose in water flux albedo, $a_{\mathrm{D} 3}\left(\mathrm{H}_{2} \mathrm{O}\right)$, obtainod experimentolly.

TABLE 3
${ }^{a}{ }_{\mathrm{D} 3\left(\mathrm{H}_{2} \mathrm{O}\right)} \times 10^{3}$
ANGLE OF
SCATTER
SCATTER MATERIAL

$\begin{gathered} 2.0 \mathrm{MeV} \\ \theta_{\mathrm{s}} \end{gathered}$	Lead	Irron	Concrete
150°	$19.10 \pm 8.5 \%$	$14.05 \pm 8.9 \%$	$17.96 \pm 8.6 \%$
140°	24.12 ${ }^{\text {a }}$. 6%	$14.72 \pm 9.7 \%$	
$\begin{aligned} & 135^{\circ} \\ & 130^{\circ} \end{aligned}$	$14.43 \pm 10.9 \%$	$14.44 \pm 0.1 \%$	$19.06 \pm 14.2 \%$
120°	$19.98 \pm 9.5 \%$	15.73 * 6.6%	15.55 $\pm 9.9 \%$
110°	$7.95 \pm 13.0 \%$	$17.30 \pm 10.4 \%$	
3.5 MeV			
θ_{s}	Lead	Iron	Concrete
150°	$29.76 \therefore 0.5 \%$	14.17 $+15.3 \%$	14.99 $\pm 12.9 \%$
140°	$31.96 \pm 13.0 \%$	$15.34 \pm 11.2 \%$	
$\begin{aligned} & 135^{\circ} \\ & 130^{\circ} \end{aligned}$	$27.72 \pm 9.0 \%$	1.4.97 $\pm 9.5 \%$	$18.23 \pm 9.5 \%$
120°	$10.79 \pm 9.6 \%$	$15.19 \pm 12.9 \%$	$19.333 \pm 11.5 \%$
7.0 MeV			
θ_{s}	Lead	Iron	
150°	71.26 21.3%	$45.19 \pm 13.6 \%$	
140°	$75.98 \pm 9.2 \%$	$41.58 \pm 12.9 \%$	
130°	$61.79 \pm 11.2 \%$	$31.08 \pm 10.0 \%$	
120°	$38.11 \pm 31.7 \%$	$33.18 \pm 15.2 \%$	
10.5 MeV			
θ_{s}	lead	Iron	Concrete
150°	$21.91 \pm 13.7 \%$	7.64 $+11.0 \%$	10.11 $\pm 16.0 \%$
140°	$29.07 \pm 10.1 \%$	$0.36 \pm 15.4 \%$	$10.30 \pm 18.7 \%$
130°	$23.03 \pm 7.4 \%$	9.03 $\pm 9.4 \%$	$8.08 \pm 17.1 \%$
120°	$22.55 \pm 8.5 \%$	$9.83 \pm 11.2 \%$	$7.80 \pm 16.1 \%$

For purposes of examining $\alpha_{\mathrm{D} 3\left(\mathrm{H}_{2} \mathrm{O}\right)}$ as a function of atomic number and maximum bremsstrahlung energy, the albedo currents are "integrated" over the angular range studied so as to have one value, $A_{D 1}\left(\mathrm{H}_{2} \mathrm{O}\right)$, for each material-energy combination. This value should not be confused with $A_{D J}$ values published elsorheres as the dose referoneos differ and $\mathrm{A}_{\mathrm{DI}\left(\mathrm{H}_{2} \mathrm{O}\right)}$ is the current dose summed across ten degree averages for nreasurements of dose reflected only from 115° to 155°. Figure 28 is a plot of $\mathrm{AD}_{\mathrm{D} 1\left(\mathrm{H}_{2} \mathrm{O}\right)}$ against the bremsstrahlung peak energy and Figure 29 against atomic number.

Figure $29 \quad \mathrm{~A}_{\mathrm{D} 1}\left(\mathrm{H}_{2} \mathrm{O}\right)$ vs Atomic Number

6.3 DISCUSSICN OF RESULTS

In general the experimental values determined for $\alpha_{D 1}$, the differential dose current albedo, quite closely follow the estimate obtained from DTF, the discrete ordinate computer solution. No error limits are specified on the experimental points plotted in Figures 17 through 27 due to their very strong dependence, through the function

$$
\frac{\text { inc }^{\left(\frac{\mu_{e n}}{\rho}\right)_{\text {slab }}}{ }_{\left(\frac{\mu_{e n}}{\rho}\right)_{\text {LiF }}} \text {, upon the incident energy spectra }}{}
$$

considered. Errors due to measurement are discussed in Appendix J and are similar to those given in Table 3 of Section 6.2.

Results of the Chilton-Huddleston approximation are generally lower than the experimental. data, in particular at the higher scattering angles. Still these numbers are within the order of error often accepted in radiation shielding estimates and though unfortunately low, they are not as low as results obtained with the Monte Carlo program used here. As fluorescence is not considered in the ChiltonHuddleston development, the generaliy poor fit with lead
might be expected.
Error limits for the a ${ }^{2} 3\left(\mathrm{H}_{2} \mathrm{O}\right)$ values in Table 3 are giver with each value. This limit includes those errors considered in Appendix J and the error introduced by
due to the absorption coefficient of LiF rather closely following that of $\mathrm{H}_{2} \mathrm{O}$ throughout the spectra (Appendix E)。

$$
\left[\frac{\operatorname{ref}^{\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{\mathrm{H}_{2} \mathrm{O}}}}{\operatorname{ref}^{\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{\text {Lir }}}}{ }^{(}\right)
$$

is the same in either data set and also
does not wideiy vary ($\sim 5 \%$ over the reflected spectra considered in Appendix D).

The values for $A_{D 1}\left(\mathrm{H}_{2} \mathrm{O}\right)$ are for comparison within this data set only and the error limits given in those plots are an indication of the measurement errors only, not considering the practice of integrating ovor a small number of data points. The summation performed does, however, provide a single value for each (Z, E) combination, formed under the same conditions, by which Table 3 values may be considered for materials of different atomic number, exposed to different incident energies.

The plot of $A_{D 1}\left(1_{2} 0\right)$ against the maximum incident bremssirahlung energy (Figure 28) tends to confirm the Zol'nikov, et al. report (115) that albedos have little dependence u ipon $E_{\text {max }}$ in the bremsstrahlung spectra. The plot against atomic number (Figure 29) is very similar to other plots made from data obtained with mono-energetic sources (1). The closeness of points obtained from different reflecting materials and different incident spectra is perhaps the most interesting feature of this graph. The points at 7.0 MeV maximum, that spectrum reported to have a small low energy component, are an exception, perhaps indicating the energy contributions below a few hundred KeV to be more important
in albedo considerations than the rest of the spectrum.
This concept is explored, by computer, in Appendix D.

7. CONCLUSIONS AND RECOMMENDATIONS

Differcntial dose flus albedos were measured cxperimentally for broad-beam, normally incident bremsstrahlung spectra photons reflected from common shielding materials. These values were translated, through dose absorption ratios and angular relationships, to differential dose current albedos for comparison to various methods of estimating albedo. The comparison of experimental data to results of the discrete ordinates computer program (DTF) output was excellent, though the reliability of this fit is unknown due to the limited spectra information available on the generating devices studied. The results of the Chilton-Huddleston development, applied to the effective energies of the spectra studied, fall between the two computer estimates made and compare much better to the experimental results (generally within a factor of two) than might be expected considering the assumptions of this formulation. (Lead scatterers compare less well.)

The current albedo, though widely used in albedo studies, is an awkward form for shielding use as it lacks physical
meaning. Typical dose albedos, where the incident dose is based on energy deposition in the reflecting body, differ considerably from albedos calculated with the normally reported incident beam dose (based on water). These differences are dependent upon the reflecting material and can be interchanged only through an accurate knowledge of the energy spectra involved. To be of greatest value to those performing shielding calculations, results of this dissertation are reported as differential flux dose in water albedo. The albedos reported in Table 3 are much less
dependent upon reflector material and bremsstrahlung peak energy than might bo orpectod, Figure 29 indicates the low energy make-up of the incident bremsstrahlung spectra to be of considerable importance.

In addition to the primary subject of the dissertation: a DTF modification is presented which yields results in a form more convenient to radiation protection use (Appendix L); and a thermoluminescent fosimeter annealing procedure is developed which greatly facilitates dosimeter handling, while losing none of the advantages of other procedures in terms of reliability and stability (Appendix F).

The following areas might be of interest for future experimental study:
a) Backscattering measurements to determine the influence of the low energy portion of an incident bremsstrahlung spectrum, as more information as to the beam character in that region becomes available.
b) A study of the effect of surface areas much smaller than "semi-infinite" on albedo to examine the trend indicat." ed in Figures 74 and 76.
c) Backscattering measurements with materials of atomic numbers between 26 and 82 , which though not generally of radiation protection interest, have valuc to others.
d) Angles of beam incidence: other than normal.

8. BIBLIOGRAPHY

1. Selph, Wade E. Neutron and Gamma-rav Albedoso Oak Ridge National Laboratory, Oak Ridge, Temassee; February, 1960.
2. International Commission on Radiological Units. Report 11, September 1, ious.
3. Jaeger, Ro G.; Eisenlake, H. Ao, et alo, editorso Shielding Fundamentals and Methods. Vol. I of Engineering Compending on Radiation Shielding. Sponsored by International Atcmic Eneray Agency.
4. National Bureau of Standards Safety Standard for Nornichtoat x-roy and subled Gammaray Soracos. Part I. General. Handwook o3. U. S. Government Printing Office, 1066.
5. National Bureal of Standards. Sbelding for hism Energy Electron Acceleration Inatallatioris. Handbook 97. U. S. Government Printing Office, 1964.
6. Rockwell, T. III, editor, Intwoduction and outline of Basic Shielding Theory. Reactor Shielding Design Manual.
7. Walker, R. L. and Grotenhuis, M. A Summary of Shiolding Constants for Concrete. Argonne National Laboratory; November, 1961.
8. Kirn, Frederick So and Kennedy, Robert J. "How Much Concrete for Shielding?" Nuclconics, Vol. 12, No. 6 (June, 1954), pp. 44-48.
9. Murxay, Kenneth M. "Shielding Moderate-Energy Electron Accelerators,: Nuclecnics, Vol. 22, No. 2 February, 1964, pp. 61-67.
10. Raso, D. J. "Transmission of Scattered Ganma--Rays Through Concrete and Iron Slabs," Health Physics, Vol. 5 (1961), pp. 126-141.
11. Evans, R. D. The Atomic Nucleus. New York: McGrawHill, 4955.
12. Steyn, Julisin Jack. "Backscatter of Normally Incident Gamma Photons from Semi-Infinite Media of Varying Atomic Number." Thesiss University of Toronto, Caneda, 1066.
13. Compton, A. H. Phys. Rev. 21, 5 (1923). pg. 483.
14. Klein, D. and Nishina, Y. Zeit Fur Physik 52, (1929), pg. 853.
15. Hayward, E. and Hubbell, J. A. "The Backscattering of Co ${ }^{60}$ Gamma Rays from Infinite Media," J. Applied Physics, 25, 4, (April, 1954).
16. Hine, Jo anci McCall, R. C. "Gamma-ray Backscattering," Maclenice 12. No 4 (Apri], 1954): pp. 27-30.
17. Bulatov, B. Po and Garusov, E. A. ${ }^{60}$ Co and ${ }^{198} \mathrm{Au}$ Gamma-ray Albedo of Various Material," Journal of Nuclear $\frac{\text { Energy: Part A: Reactor }}{\text { Science }} \frac{\text { Vol }}{(1960), ~ p p . ~ 159-64 . ~}$
18. Hyodo, T. "Backscattering of Gamma Rays," Nucl. Sci. \& Engos 12, (1962), pp. 178-84.
19. Fumita, $\mathrm{H}=$; Kobayashi, K.; añ Hyodo, T. "Backscatcering of Gamma Rays from Iron Slabs," Science and Engineering, 19: 437-440, 1904.
20. Nakamura, T. and Hyodo, T. "Radial Distribution of Photons Backscattered from the Surface of Semi-infinite Scatterer," Nucl. Sci. \& Technol. 6[3], Pi. 143-152, Marci., 1969.
21. Mizukami. K.; Matsumoto, T.; and Hyodo, T. 'Backscattering of Gamna Rays from Polyethylene, Aluminum and Lead Slabs, J Journel of Nuclear Science and Technology, 4 (12), Pp. 607-613, (December, 1967).
22. Clarke, E. T. and Batten, J. F. "Gamma-ray Scattering by Concrete Surfaces," Nuclear Science and Engineering, 17:125-30, (1963).
23. Hendee, W. R. and Ellis, J. L. "Scattering of Gamma Radiation from Semi-Infinite Slabs," Health Physics, Vol. 12, (1966), pp. 673-681.
24. Jones, T. H.; Scofield, N. E.; Haggmark, L. G.; and Gurney, W. J. Experimental Determination of $\frac{\text { the Gimmoray }}{\text { Aluminum, and }}$ Stcel . Uas S. Naval Radiologicai Defense Laboratory, San Francisco, California 94135, (抽USNRDL-TR-790), 6 October 1964.
25. Haggmark, L. G.; Jones, T. H.: Scofield, N. E。; and Gurney, Wo J. "Differential Dose-Rate Measure-ments of Backscattered Gama Rays from Concrete, Aluminum, and Steel," Nucl. Sci. \& Eng., 23:138-149, (1965).
26. Steyn, J. J. and Andrews, D. G. "Experimental Differential Number, Energy and Exposure Albedos for Sumi-Infinite Modia, foi Nomally Incident Gama Photons," Nucl. Sci. \& Eng., 27:318-327, (1967).
27. Cormack, D. V.; Burke, D. G.; and Davj.tt, W. E. "Spectral Distributions of 140 KVP X -rays," Raciiology, 70 (1958), Fg. 91.
28. Cormack, D. V. and Mak, S. "Spectra of Scattered Radiation at Points off the Beam Axis," Radiology, 72 (1.959), pg. 107.
29. Jones, H. E. and Skarsgard, L. D. "The Spectral Distribution of Scattered Radiation Produced in a Water Phantom by X-rays in the Range 100 KV to $1.25 \mathrm{MeV}, "$ Rad. Research, 9, (1958), pg. 135.
30. Baran, J. A.; Faw, R. E.; and Kimel, W. R. "Reflection of $\mathrm{Co}{ }^{60}$ Gamma Rays from Concrete," Nuc. . Inst. and Methods, 75, (1969), pp. 141-148.

31．Kitazume，Mitsuyaki．＂Gamma－ray Scattering from Point Sources by Infinite Plane Surfaces，＂ Journal of Nuclear Science and Technology，${ }^{5}$ ， （3），（March，1968），pp．98－103．

32．Pozdnew，D．B．；Churin，S．A．；and Gokhshtein，L．F． ＂Backward Scattering of γ－Radiation from Aluminum Barriers of Finite Thickness，＂ Atomnaya Energiya，Vol．22，No．4，April， 5967.

33．Viktorov，An A．；Pfimank，B．Ao；Zololukhin，V．G．； Klimanov，V．A．，and Mashkovich，V．P。 ＂Differential Albedo for Gamna Rays from a Point Unidirectional Source，＂Atormaya Energiya Vol．23，No．3，pp．187－191（Sept．，1967．）

34．Kruglov，S．P．，and Lopatin，S．P．＂A Study of the Dispersion of the Energy of an Impact Radiation Beam from an Absorption Calorimeter，＂Zhumal $\frac{\text { Tekhicheskoi Fiziki }}{1960 \text { ），}}$ ，Vol． $424-43$ ，No． 4 ，（April，

35．Pruitt，J．S．＂High Energy X－ray Photon Albedo，＂ Muc1．1nsこ。 ani rechods，27，（1964），pp．23－28。

36．Sugiyama，So and Tomirmsu，T．＂High Energy X－ray Albedo for Pb, Cu and Duralumin，＂Nucl．Inst． and Methods，53，（1967），pp．346－348．

37．Karzmark，C．Jo and Capone，T．＂Measurements of 6 MV X－rays；JI：Characteristics of Secondary Radiation，＂Br．J．Radiol．，41，（March，1963）， pp．22．2－226．

38．Hayward，E．and Hubbell，J．＂The Albedo of Various Materials for $1-\mathrm{MeV}$ Photons，＂The Physical Review，Second Series，Vol．33，No．5， March 1， 1954.

39．Perkins，J．G．＂Monte Carlo Calculation of Gamma－ray Albedos of Concrete and Aluminum，＂Journal of Applied Physics，Volume 26，No．6，June， 1955.

40．Berger，J．J．＂Calculation of Energy Dissipation by Gamna Radiation near the Interface between Two Media，＂J．Applied Physics，28，Vol．12，（1957） pp．1502－1508．

41．Wells，M．B．＂Air and Concrete Scattering of Gamna Rays，＂Convair；ANP Doc．No．NARF－59－11T MR－N－29（2．0 March 1．959）。

42．Attix and Roesch，editors，Radiation Dosimetry， Volume 1， 1968.

43．Wells，M．B．＂Differential Dose Albedos for Calculation of Gamma－ray Reflection from Concrete，＂Radiation Research Associate Document RRA－T46，December： 1964.

44．Davisson，Charlotte and Beach，Lo A。＂A Monte Carlo Study of Backscattered Ganma Radiation，＂Trans． Am．Nucl．Soc．Vol．5，No．2，（1962），fg．381．

45．Raso，Dominic Je＇Monte Carlo Calculations on the Reflection and Transmission of Scattered Gamma Rays，＂Nuc：1．Sci．\＆Encs．17：411－418（1963）．

46．Leimdorfer，Martin＂The Backscattering of Ganma Radiation from Plane Concrete Nalls，＂Nucl． Sci。 \＆Engr，17：345－351，（1963）．

47．Bulatuo，B．P。 and Leipunski，O．I．＂The Albedo of X－rays and the Reflection Build－up Factor，＂ Soviet J．At．Energy，7，（1961），pg．1015．

48．Bulatov，B．P．＂Method of Ca1culating the Intensity of Backscattered Gamma Radiation，＂Translated from Atomnaya Energiya，Vol．21，No．5， （November，1966），pp．345－356．

49．Chilton，A．B．and Huddieston，C．Mc＂A Semi－ empirical Formula for Differential Dose Aibedo for Gamma Rays on Concrete，＂Nuci．Sci．\＆Engo， 17：419－424（i963）．

50．Chilton，A．B．＂Backscattering of Gamma Rays from Point Sources by an Infinite－Plane Concrete Surface，＂Nucl．Sci．\＆Eng．，21：194－200（1965）．

51．Chilton，A．Bo；Davisscn，C．Mo；and Beach，L．A。 ＂Parameters for C－H Albedo Formula for Gamma Rays Reflected from Water，Concrete，Iron and Lead，＂Trans．Am．Nucl．Soc．8，（1965），pg． 656.
52. Huddleston, C. M. Comparison of Experimental and Theoretical Gamma Ray Albedo - An Interim Report. U. So Naval Civil Engineering Laboratory, Point Hueneme, California, Doc. TN-567, 10 January 1964.
53. Huddlestorı, C. M. and Shoemaker, N. F. A Mathematicai Derivation of Contour Lines for Constant Albedo Of Gamma Rays on Concrete. U. S. Naval Civil Engineering Laboratory, Point Hueneme, Calif. DOC. TN-539.
54. Chilton, A. B. "A Modified Exposure Albedo Formula for Gamma Rays Reflected from Concrete," (1966 Winter Meeting American Nuclear Society), Trans. Am. Nucl. Soc., Vol. 9, No. 2, Pg. 368.
55. Chilton, A. B. "The Close-in Exposure Field from Point Isotropic Gammaray Sources Located at an Air-Ground Interface," Nucl. Sci. \& Eng., 27: 403-410, (1967).
56. Eisenhaner: C. "An Imare Souree Technique for Calculating Reflection of Gamma Rays or Neutrons," Health Physics, Vol. II (1965) pp. 1145-1154.
57. Kaiser, R. E. and Mingle, J. O. "Reflections of High-Energy Photons from Semi-Infinite Homogeneous Slabs by Invariant lmbedding Techniques," An. Nucl. Soc. Trans., Vol. 10, No. 2.
58. Doggett, W. O. and Bryan, F. A. "Theoretical Dose Transmission and Reflection Probabilities for $0.2-10.0 \mathrm{MeV}$ Photons Obliquely Incident on Finite Concrete Barriers," Nucl. Sci. \& Eng. Vol. 39, pp. 92-104 (1970).
59. Trubey, D. K. "The Single-scattering Approximation to the Solution to the Gamma-Ray Air-scattering Problem," Nucl. Sci. \& Eng., 10, (1961), pp. 102-116.
60. Carlson, B. G.; Lee, C. E. ; and Worlton, W. J. "The DSN and TDC Neutron Transport Codes," USAEC Document MAMS-2346 (1959).
61. Lathrop, K. D. "Use of Discrete-Ordinates Methods for Solution of Photon Transport Problems," Nucl. Sci. and Eng., 24:381-388, (1966).
62. Renken, James H. and Adams, K. Ge Application of the Method of Discrete Ordinates to Photon Transport Calculations: A Research Report; Sandia Laboratories, SC-RR-67-419, June, 1967.
63. Renken, J. H. and Adams, K. G. An Improved Capability for Solution of Photon Transporl Problems by the Method of Discrete Ordinates; Sandia Laboratories, SC-RR-739, December, 1969.
64. Segre, Eo, editor. Experimental Nuclear Physics. Vol. 1. New York: Joha Wiley and Sons, Ine. 1953.
65. Pratt, R. H. "Atomic Photoelectric Effect at High Energies," Physical Review, 117, (1960), pg. 1017-28.
66. Fink, R. Wo; Jopson, R. C.; Mark, H. ; and Swift, C。D. "Atomic Fluorescent Yiclds," Rev. Mod. Phys. Vol. 38, No. 3, June, 1966, pp. 513-540.
67. Morgan, K, Z. and Turner, Jo E., editors. Principles of Radiation Protection. New York: John Wiley and Sons, 1967.
68. Bethe, H. A. and Heitler. Proc. Roy. Soc., (London). 146, (1934), pg. 83.
69. Berger, J. J.; Hubbel, J. H. ; and Reingold, I. H. "Contribution of Annihilation Radiation to the Gamma Ray Flux in Lead," Physical Review, Vol. 113, No. 3 (Feb., 1959), pp. 857-862.
70. Motz, J. W.: Olsen, H. A.; and Koch, H. W. "Pair Production by Photons," Reviews of Modern Physics, Vol. 41, No: 4, pp. 58i-591 (Oct., 1969).
71. Johns, H. E.; Katz, L..; Douglas, R. An; and Haslam, R. N. H. "Gamma-Neutron Cross Section," Physical Review, 80, 6, (1950), pp. 1062-1068.

72．Baldwin，G．C．and Koch，H．W．＂Threshold Measure－ ments on the Nuclear Photo－effect，＂Physical Review， 67 （1945），pp．1－11．

73．Weinstock，E．V．and Halpern，J．＂Systematics of Photoproton Reaction，＂Physical Review，94， 6，（1954），pp．1651－54。

74．Levinger，J．S．Nuclear Photo－Disintcgration． Oxford Univ．Press， 1960.

75．Price，W．J．Nuclear Radiation Detection．New York： McGraw－Hill， 1964.

76．Attix，F．H．and Roesch，W．C．，editors．Radiation Dosimetry，Vol．II．Academic Press， 1966.

77．Attix，R．He Present Status of Dosimetry by Radiophotoluminescence and Thermoluminescence Methods．U．So Naval Research Laboratory Document NRL－6145，September， 1964.

78．llondee，\because ，Ro；Ibbott．G．Sc；and Gilbert，$D_{n} D_{0}$ ＂Effects of Total Dose on Energy Dependence of TLD－ 100 LiE Dosimeters，＂International Journal of Applied Radiation ard Isotopes，Vol．19， （1968），pp．431－437．

79．Durke，R．K．；Lucas，A。 C．；York，N．B．；Dahlstrom， T．S．；and Blair，G．E．Energy and Rate－ Dependence Studies，Edgerton，Germeshauser， and Grier，Inc．Document EGG－S－237－Re

80．Schayes，R．；Brooke，C．；Kozlowitz，I．；and Lheureux，M． ＂New Developments in Thermoluminescent Dosimetry，＂ Health Physics，Vol．14（1968），pp．251－263．

81．Tochilin，E。and Goldstein，N．Dose Rate and Spectral Measurements from Pulsed X－ray Generators， U．S．Naval Radiological Defense Laboratory Document DASA－1703，December， 1965.

82．Bernsc̈ein，B．H．＂Pulsed X－ray Prompt Gamma Simulation，＂U．S．Air Force Document BSD－TR 66－386，November， 1966.
83. Storm, E. and Shlaer, S. "Development of EnergyIndependent Film Badges with Multi-Element Filters," Health Physics, Vol. 11, pp. 11271144.
84. Yokota, Re; Nakajima, S.; and Sakai, E. "High Sensitivicy Silver-Activated Phosphate Glass for the Simultaneous Measurement of Thermal Neutrons, γ - and/or β-Rays," Healch Physics, Vol. 5, pp. 219-224.
85. Endres, G. W. Ro and Kocher, Le F. "The Response of Selected Thermoluminescent Materials to Fastm Neutron Exposures," Proceedings of Second International Conference on Iuminescent Dosimetry; Conf-680920, September, 1968.
86. Reddy, A. Ro; Ayyangar, K_{0}; and Brownell, Go L. "Thermoluminescence Response of LiF to Reactor Neutrons," Rad, Research Vol. 40, pp. 552-562 (1969).
87. Zimmerman, D. W.; Rhyner, C. Ro; and Cameron, J. Ro "Thermal Amealing Effects on the Thermoluminescence of Lir," Health Physics, Vol. 1.2, (1966), pp. 525-531.
88. Carlsson: Co A. "Thermoluminescence of LiF: Dependence of Thermal History," Phys. Med. Biol. 1969, Vol. 14, No. 1, pp. 107-118.
89. Martensson, B. K. A. "Thernoluminescence of LiF: A Statistical Analysis of the Influence of Pre-Annealing on the Precision of Measurement," Phys. Med. Biol., 1969, Vol. 14, No. 1, pp. 119-130.
90. Harshaw Chemical. Co. "High Sensitivity Ribbon Lithium Fluoride Thermoluminescent Dosimeters," Standard Data Sheets 074, 060, and 045.
91. Cameron, J. Ro; Zimmerman, Do; Kenney, Go; Buck, Ro; Bland, R.; and Grant, R. "Thermoluminescent Radiation Dosimetry Utilizing LiF," Health Physics, Vol. 10, pp. 25-29.

92．Randall，J．T＊and Wilkins，M．H．F．＂Phosphores－ cence and Electron Traps I and II；The Study of Trap Distribution，＂Proc．Roy．Soc．（London）， Vol．184，（1945），pp．347－433．

93．Attix，F．Ho，editor．Proceedings of International Conference on Luminescence Dosimetry，June， 1965.

94．Greening，J．R．＇The Derivation of Approximate X－ray Spectral Distribution and an Analysis of X－ray ＇Quality＇Specification．＇prit．J．Radiol． Vol．34，No．425，（Nay，1963），pp．$\overline{363-371 .}$

95．Silberstein，Lo＂Determination of the Spectral Composition of X－ray Radiation from Filtration Data，＂J．Opt．Soc．Amer．，22，（1932），pg．265．

96．Greening，J．R．＂The Decermination of X－ray Wave－ length Distributions from Absorption Data，＂ Proc．Phys．Soc．，（London），63A，（1950）， pp．1227－1234。

97．Trvidell，J．Wo＂The•Determination of X－ray Spectra Using Attenlation Measumements and a Computer Program，＂Phys．Mcd．Biolo，1970，Vol．15， No．3，pp．529－539．

98．O＇Dell，A。A。，Jr．；Sandifer，C。 Wo；Knowles，Ro B．； and George，W．D．Measurement of Absolute Thick－Target Bremsstrahlung Spectra，EG\＆G，Inc。 1183－2139，May 19，1967．

99．Edelsack，E．Ao：Kreger，Wo Eo；Mallet，Wo；and Scofield，N．E．＂Experimental Investigation of Thick－Target Bremsstrahlung Radiation Produced by Electrons of $1.00,1.50$ ，and 2.00 MeV，＂Health Physics，Vo1．4，ppo 1－15．

100．Pace，A．L．＂Radiographic Characteristics of High Energy X－rays，＂Non－Destructive Testing， March－April，1953．

101．Sandifer，C．W．and George，W．D．Radiation Calibra－ tion of a $20-\mathrm{MeV}$ Linac．EG\＆G，Inc．\＃ $\mathrm{S}-333-\mathrm{R}$ May，1965．
102. Goldie, C. H. ; Wright, K. A.; Anson, J. H. ; Cloud, R. W.; and Trump, J. G. "Radiographic Properties of X-rays in the Two-to-Six-MillionVolt Range," ASTM Bulletin, Oct.ober, 1954.
103. Evans, W. Wo; Granke, R. C.; Wright, K. A.; and

Trump, J. Go "Absorption of $2-\mathrm{MeV}$ Constant Potential. Roentgen Rays by Lead and Concrete," Dept. of Elect. Eng., M.I.T, October, 1951.
104. Motz; Je We; Miller, We; and Wjcikoff, H. Oe "ElevenMeV Thick Target Bremsstrahlung, " Physical Review, Vol. 89, No. 5, March, 1953.
105. Hoffman-Pinther, Po X-zay Distribution from Sources Operating at Five to Fiftecn Million Electron
106. Adams, K. G. and Mehl, C. R. Calculation of the Deposition of Energy by Photons, Sandia Laboratories, SC-RR-66-666, October, 1966.
107. Trubey, D. K. and Maskewitz, Be F. A Review of tho Discrete Ordinates Sn Method for Radiation Transport Calculations, USAEC Document ORNL-RSIC-19-UC-80, March, 1968。
108. Kapları, Io, Nuclear Physics, Addison-Wesley Publ. Co., Inc. 1963.
109. Johns, H. E. and Cunningham, J. R. The Physics of Radiology; Charles C. Thomas, Publisher, $1 \overline{969 .}$
110. Chodorow, A. M. HERNES II Experimenters' Manual, Sandia Laboratories, SC-M-70-242, June, 1970.
111. Bernstein, B. H. Pulsed X-ray Prompt Gamma Simulator, BSD-TR-65-386, Nov., 1966, Air Force Systems Command.
112. Johnson, D. Lo, Sandia Corporation, private communication, April, 1970.
113. TREF, Technical Planning Document, Dept. of Air Force Headquarters: Air Force Special Weapons Center, Kirtland Air Force Base, Albuquerque, New Mexico.
114. Dye, D. Air Force Special Weapons Center, Private Communication, April, 1970.
115. Zol'nikov, P. P. and Sukhanova, K. A. "Energy and Space Distribution of Backscattered Y-Radiation," Atomnaya Energiya, Vol. 25, No. 6, pg. 518, December, 1968.
116. Dahlstrom, T. So and Thompson, W. E. "The Angular Distribution of Dose Rate from Gamma Rays Scattered Though Various Thicknessos of Iron and Aluminums" USNRDL-TR-558, April 19, 1962.
117. Plimpton, J. D. Sandia Corporation, Private communication, September, 1970.
118. Mather, R. L. "Gamma-Ray Collimator Penetration and Scattering Effects," Journal of Applied Physics, Vol. 23, No. 10, October, 1957.
119. Martin, T. H. A Computerized Method of Predicting Electron Beam Bremsstrahlung Radiation with Specifir Andication to High Voltage Flash X-ray Machines, Sandia Corporation; $\overline{S C-R K}-$ 69-241., May, 1969.
120. Bonzon, L. L. and Rivard, J. B. Method for Calculation of Bremsstrahlung and Neutron Production from Electron iriven Targeto Sandia Corporation SC-TM-70-629, December, 1970。
121. Golden, J. C., Jro Analytical Expressions for Bremsstrahlung Spectra Enitted by Highly Filtered Thick Bigh-Z Targeted $\mathrm{X}-\mathrm{ray}$ Devices From 2 to 20 Mev. Sandia Corporation; $\overline{S C-T M}-67-2900$, December, 1967。
122. Bailey, F. Ao Sandia Corporation, Private communication, October 26, 1970.
123. Buckalew, W. Sandia Corporation, Private communication, August, 1970.
124. Tochilin, E.; Goldstein, N.; and Lyman, J. T. "The Quality and LET Dependence of Three Thermoluminescent Dosimeters and Their Potential Use as Secondary Standards," Proceedings of the Second International Conference on Luninescence Dosimetry, Conf-680929, September, 1968.
125. Almond, Po Ro et al. "The Energy Response of LiF, CaF_{2}, and $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}: \mathrm{Mn}$ from 26 KeV to 22 MeV ," Luminescence Dosimetry, USAEC Doc., April, 1967.
126. Almond, P. Ro; McCray, Ko; Espejo, Do; and Watanabe, So "The Energy Response of $\mathrm{LiF}, \mathrm{CaF}_{2}$, and $\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}: \mathrm{Mn}$ from 26 KeV to 22 MeV ," Proceedings of the Second International Conference on Luminescence Dosimetry, Conf-680920, September, 1968.
127. Frank, M. 'Thermoluminescent Dosimetry with LiF and Energy Dependence of Thermoluminescent Dosimeters of $\mathrm{CaF}_{2}: \mathrm{Mn}$ and LiF,"
Kernenergie, 6, 76, (1963)。
123. Barford, 1.0 O Experimental Measurements: Precision, Error and Truth. Addison-Wesley Publishing Co. 1967.

A. NOMIENCLATURE

$$
\begin{aligned}
& A_{\epsilon}=\text { effective viewed area normal to } \\
& \text { the collimator axis } \\
& \mathrm{a}=\text { collimator radius } \\
& \begin{aligned}
a_{D 1}\left(E_{0}, \Theta_{0}, \theta, d\right)= & \text { differential current out (in dose } \\
& \text { units) per incident flux (in dose } \\
& \text { units) }
\end{aligned} \\
& { }^{a} D_{2}\left(E_{0}, \theta_{0}, \theta_{0}, \phi\right)=\text { differential current out (in dose } \\
& \text { unit:s) per incident current (in } \\
& \text { dose units) } \\
& { }^{a}{ }_{D 3}\left(E_{0}, \theta_{0}, \theta, \infty\right)=\text { differential flux out (in dose } \\
& \text { units) per incident flux (in dose } \\
& \text { units) } \\
& \begin{aligned}
A_{D 1}\left(E_{0}, \theta_{0}\right)= & \text { total dose albedo, defined by } \\
& \text { integration of a } D 1 \text { over all } \theta_{,} \phi
\end{aligned} \\
& \begin{aligned}
A_{D 2}\left(E_{0}, \theta_{0}\right)= & \text { total ciose albedo, defined by } \\
& \text { integration of } a_{D 2} \text { over a } 11 \quad \theta, \phi
\end{aligned} \\
& \begin{aligned}
D_{D 3}\left(E_{o}, \Theta_{0}\right)= & \text { total dose albedo, defined by } \\
& \text { integration of a } \mathrm{D} 3 \text { over all } \theta, \phi
\end{aligned} \\
& a_{E} \text { and } A_{E} \text { are defined as above for energy albedo } \\
& a \text { and } A \text { are defined as above for particle } \\
& \text { albedo } \\
& \begin{aligned}
& \\
& \left(\mathrm{H}_{2} \mathrm{O}\right)= \\
& \text { albedo determined when both dose } \\
& \text { terms are calculated for deposition }
\end{aligned} \\
& \text { in water }
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{E_{0}}{m_{0} c^{2}} \\
& \text { BCG }=\text { dose in TLD at some point between backscatter }
\end{aligned}
$$

$$
\begin{aligned}
& e^{K\left(\theta_{S}\right)}=\text { Klein-Nishina energy scattering cross- } \\
& \text { section per electron } \\
& 1 n=\text { natural logarithrn } \\
& m_{0}=\text { the electronic mass }-9.1083 \times 10^{-28} \text { gms } \\
& \left(\frac{\mu_{\mathrm{en}}}{\rho}\right)=\text { mass energy-absorption coefficient } \\
& { }^{\mu}=\text { total attenuation coefricient } \\
& \Omega=\text { solid angle disignation } \\
& \Pi=3.14159 \ldots \ldots \ldots \\
& \phi=\text { the angle betreen the mojection on the } \\
& \text { surface of the backsoateter material of the } \\
& \text { incident radiadion beam and the projection } \\
& \text { of the reflecfed radiation } \\
& \Phi=\text { fluence } \\
& e^{\sigma=} \begin{array}{l}
\text { total microsconic Compton interaction } \\
\text { crossection }
\end{array} \\
& e^{\sigma} s=\text { the Conpton scattering cuefficient } \\
& \begin{aligned}
\sigma(\gamma, n)= & \text { photonuclar absorption coefficient for the } \\
& \text { emission of a single neutron }
\end{aligned} \\
& \Sigma_{r}=\text { removal cross-section for neutrons } \\
& T=\text { kinetic energy of a particle or temperature, } \\
& \text { dependent upon use } \\
& \tau_{K}=\text { the } \begin{array}{l}
\text { barshell photoelectric cross-section in }
\end{array} \\
& \text { barns per atom } \\
& \begin{aligned}
\tau_{p e}= & \text { the total photoelectric cross-scction in } \\
& \text { barns per atom }
\end{aligned} \\
& \theta=\text { the angle between the reflected radiation } \\
& \text { and the perpendicular to the surface of the } \\
& \text { backscatier materia]. }
\end{aligned}
$$

$\theta_{0}=$ the angle between the incident radiation beam and the perpendicular to the surface of the backscatter material
 $\theta_{S}=$ the angle between the transmitted beam axis and the reflected radiation

Additional specialized abbreviations are defined at the point of their use.

B. VIEWED AREA CONSIDERATIONS

The area of a slab, normal to the collimator, viewed by a TLD crystal at the back of the collimator is the envelope of the family of circles generated by considering each point on the crystal.

If one considers a plane of origin through the leading edge of the collimator (Figure 30) such that a circle of radius "a" (the collimator mains) is defined in the plane, 1, another parallel plane, 2, at distance "c" (the collimator length) in the positive direction, and a third parallel plane, 3, at a negative distance "d" (the distance from the collimator to the scattering center), he may derive the equation of the envelope defining the viewed area. The collimator radius, a, will appear in Plane 3 as

$$
r=\frac{(c+d) a}{c}
$$

Eq. B. 1
with center displacement \bar{x} and \bar{y} given by

Figure 30. Viewed area geometry

$$
\begin{array}{ll}
\bar{x}=-\frac{\hat{x} d}{c} & \text { Eq.B.2 } \\
\bar{y}=-\frac{\hat{y} c \bar{i}}{c} & \text { Eq.B. } 3
\end{array}
$$

from (\hat{x}, \hat{y}) in Plane 2.
The equation of the circle in Plane 3 defined by point (\hat{x}, \hat{y}) on the detecting crystal in P lane 2 and the collimator opening specified in Plane 1 is

$$
(x-\bar{x})^{2}+(y-\bar{y})^{2}=r^{2}
$$

Eq。Bo4
or, substituting equations $B_{0} 2$ and $B_{0} 3$,

$$
\left(x+\frac{\hat{\mathrm{y}} \mathrm{~d}}{c}\right)^{2}+\left(y+\frac{\hat{\mathrm{y}} \mathrm{~d}}{c}\right)^{2}=r^{2} \quad \text { Eq. B. } 5
$$

The envelope of the set of circles generated by tracing the outline of the detector is the outside boundary of the desired area.

Setting

$$
\hat{x}=\hat{x}(t) \quad \text { Eq. B. } 6
$$

and

$$
\hat{y}=\hat{y}(t)
$$

Eq. B. 7

The equation for the general circle will then be:

$$
\left(x+\frac{\hat{x}(t) d}{c}\right)^{2}+\left(y+\frac{\hat{y}(t) d}{c}\right)^{2}=r^{2} \quad \text { Eq. B. } 8
$$

To find the envelope of a set of lines, the general equation of the generating line is set equal. to zero, differentiated with respect to the variable and the variable then elimirated between the two equations.

$$
F(t)=\left(x+\frac{\hat{x}(t) d}{c}\right)^{2}+\left(y+\frac{\hat{y}(t) d}{c}\right)^{2}-r^{2}=0
$$

> Eq. Bo9

$$
\begin{aligned}
\frac{d F(t)}{d t}= & 2\left(x+\frac{\hat{x}(t) d}{c}\right) \frac{d}{c} \hat{x}^{\prime}(t) \\
& +2\left(y+\frac{\hat{y}(t) d}{c}\right) \frac{d}{c} \hat{y}^{\prime}(t)=0 \quad \text { Eq. B. } 10
\end{aligned}
$$

In the particular case being considered, several special cases arise as follows:

Figure 31. Crystal geometry considerations

Case I

$$
\hat{\mathrm{x}}=0 \quad \mathrm{Eq} \cdot \mathrm{~B}_{0} 11
$$

and

$$
\hat{x}^{\prime}=0
$$

Eq. B. 12

So $F(t)=x^{2}+\left(y+\frac{\hat{y}(t) d}{c}\right)^{2}-r^{2}=0$ Eq. B. 13
$\frac{F(t)}{d t}=2\left(y+\frac{\hat{y}(t) d}{c}\right)^{2} \frac{d}{c} \hat{y}^{\prime}(t)=0 \quad$ Eq. B. 14

$$
\widehat{y}=-\frac{c}{d} y
$$

Eq. B. 15

Substituting back into $F(t)$:

$$
\begin{aligned}
x^{2}+(y-y)^{2}-r^{2}=0 & \text { Eq.B. } 16 \\
x= \pm r & \text { Eq. B. } 17
\end{aligned}
$$

Therefore, a set of circles has been generated parallel to the y-axis of radius " r " along the x-axis.

Figure 32. Edge generated envelope

The total envelope in Case I is then the set of parallel lines joining the circles formed by viewing points at the first two corners of the crystal.

Case II is similar in a perpendicular direction along a line parallel to the x-axis at distance $-\bar{y}$. The envelope has equation

$$
y= \pm r
$$

Eq. B. 18

Figure 33. Envelope generated by two edges

Cases III and IV close the viewed area with a resultant figure:
curvature of radius, $r=\frac{(c+d)}{c} a \quad$ Eq. B. 19
center line separation of (crystal length) $\left(\frac{d}{c}\right)$ Eq. B. 20

Figure 34. Total viewed area

This area includes the area seen by any point on the crystal. Only a fraction of this is seen by every point on the crystal (umbra), the rest being seen by a decreasing anount of the crystal (penumbra). The umbral region is defined by the area determined by the common area of the circles defined by points originating at the greatest extents of the detector (ioe the four corners).

To find the umbral area consider the four defining circles:

Figure 35. Unbral area

$$
\begin{array}{ll}
\text { Circle 1; } x^{2}+y^{2}=r^{2} & \text { Eq. B. } 21 \\
\text { Circle 2; } x^{2}+(y+\bar{y})^{2}=r^{2} & \text { Eq. B. } 22 \\
\text { Circie } 3 ;(x+\bar{x})^{2}+(y+\bar{y})^{2}=r^{2} & \text { Eq。B. } 23 \\
\text { Circle } 4 ;(x+\bar{x})^{2}+y^{2}=r^{2} & \text { Eq. B. } 24
\end{array}
$$

The intersection of Circles 1 and 2 provides the least value of x :

Circle 1 - Circle 2: $y^{2}-(y+\bar{y})^{2}=0$
Eq. B. 25

$$
y^{2}-y^{2}-2 \bar{y} y-\bar{y}^{2}=0 \quad \text { Eq. B. } 26
$$

$$
2 y=-\bar{y}
$$

$$
\text { Eq. B. } 27
$$

$$
y=-\left(\frac{\bar{y}}{2}\right)
$$

$$
\text { Eq. B. } 28
$$

$$
x^{2}+\left(-\frac{\bar{y}}{2}\right)^{2}=x^{2}
$$

$$
x^{2}=x^{2}-\left(\frac{\bar{y}}{2}\right)^{2}
$$

$$
x= \pm \sqrt{r^{2}-\left(\frac{\ddot{y}}{2}\right)^{2}}
$$

Eq. B. 31
the negative solution for x being the one of interest. The intersection of either Circles 1 and 4 or Circles 2 and 3 provides a mid-point value of x.

Circle $1-$ Circle 4: $x^{2}-(x+\bar{x})^{2}=0 \quad$ Eq. B. 32

$$
\begin{array}{ll}
x^{2}-x^{2}-2 x \bar{x}-\bar{x}^{2}=0 & \text { Eq. B. } 33 \\
x=-\left(\frac{\bar{x}}{2}\right) & \text { Eq. B. } 34
\end{array}
$$

Solution of the intersection of Circles 3 and 4 would yield the righi-most boundary of x, but is not necessary as the two halves are symmetrical.

The total area of the umbra may then be found by:

$$
\begin{aligned}
& A_{u}=2 \int_{-(\text {Circle } 2 \text { boundary)-(Circle } 1 \text { boundary)] } d x \text { (㐫 }}^{-r_{r^{2}}^{2}-\left(\frac{\bar{y}}{2}\right)^{2}} \text { Eq. B. } 35 \\
& \text { Circle 1: } y= \pm \sqrt{r^{2}-x^{2}} \\
& \text { Eq. B. } 36
\end{aligned}
$$

the negative radical being of interest.

Circle 2: $y^{2}+2 y \bar{y}+\left(\bar{y}^{2}+x^{2}-r^{2}\right)=0$
Eq. B. 37
$y=\frac{-2 \bar{y}+\sqrt[6]{4 \bar{y}^{2}-4 \bar{y}^{2}-4 x^{2}+4 r^{2}}}{2}$
$E q_{0} B .38$

$$
y=-\bar{y} \pm \sqrt[{\sqrt{r^{2}-x^{2}}}]{y}
$$

the positive radical being of interest.
Eq. B. 35 then becomes:

$$
\begin{aligned}
& A_{u}=2 \int^{-\left(\frac{\bar{x}}{2}\right)}\left(-\bar{y}+2 \sqrt{r^{2}-x^{2}}\right) d x \quad \text { Eq. B. } 40 \\
& A_{u}=-\left.2 \bar{y} x\right|_{-\sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}} ^{-\left(\frac{\bar{x}}{2}\right)}+4 \int_{-\sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}}^{\sqrt{r^{2}-x^{2}}} d x
\end{aligned}
$$

$$
\begin{aligned}
& A_{u}=-2 \bar{y}\left[\frac{\bar{x}}{2}+\sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}\right] \\
& +\left.4\left[\frac{x}{2} \sqrt{i^{2}-x^{2}}+\frac{r^{2}}{2} \operatorname{ascsin} \frac{x}{r}\right]\right|_{-\sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}} ^{-\left(\frac{\bar{x}}{2}\right)}
\end{aligned}
$$

Eq. B. 42

$$
\begin{aligned}
A_{u} & =\bar{y} \bar{x}-2 \bar{y} \sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}+2\left\{\left[\left(-\frac{\bar{x}}{2}\right) \sqrt{r^{2}-\left(\frac{\bar{x}}{2}\right)^{2}}\right.\right. \\
& \left.+r^{2} \arcsin \left(-\frac{\bar{x}}{2 r}\right)\right] \\
& \left.-\left[-\sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}} \sqrt{r^{2}-r^{2}+\left(\frac{\bar{y}}{2}\right)^{2}}+r^{2} \arcsin -\sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}\right]\right)
\end{aligned}
$$

Eq. B. 43

$$
\begin{aligned}
A_{u} & =\bar{y} \bar{x}-2 \bar{y} \sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}-\bar{x} \sqrt{r^{2}-\left(\frac{\bar{x}}{2}\right)^{2}}+2 r^{2} \arcsin \left(-\frac{\bar{x}}{2 r}\right) \\
+ & \bar{y} \sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}-2 r^{2} \arcsin \left(\frac{\left.-\sqrt{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}\right)}{r}\right) \text { Eq. B.44 } \\
A_{u} & =\bar{y} \vec{x}-\bar{y} \sqrt[4]{r^{2}-\left(\frac{\bar{y}}{2}\right)^{2}}-\bar{x} \sqrt[8]{r^{2}-\left(\frac{\bar{x}}{2}\right)^{2}} \\
& +2 r^{2}\left[\begin{array}{l}
\left.\arcsin \left(-\frac{\bar{x}}{2 r}\right)-\arcsin \frac{-\sqrt[4]{r^{2}}-\left(\frac{\bar{y}}{2}\right)^{2}}{a^{2}}\right]
\end{array}\right.
\end{aligned}
$$

Eq. B. 45

Substituting absolute values from Eqs. B.1, B. 2, and B. 3 to obtain the actual area oi interest, Eq. B. 45 becomes:

$$
\left.\begin{array}{l}
A_{u}=\hat{x} \hat{y}\left(\frac{d}{c}\right)^{2}-\frac{\hat{y} d}{c} \sqrt{\frac{(c+d)^{2}}{c^{2}}} a^{2}-\frac{\hat{y}^{2} d^{2}}{4 c^{2}} \\
-\frac{\hat{x} d}{2} \sqrt{\frac{(c+d)^{2} a^{2}}{c^{2}}-\frac{\hat{N}^{2} a^{2}}{4 c^{2}}} \\
+2 \frac{(c+d)^{2} a^{2}}{c^{2}}\left[\arcsin \left(-\frac{\hat{x} d}{2 a(c+d)}\right)-\arcsin \frac{-\sqrt{\frac{(c+d)^{2} a^{2}}{2}-\hat{\frac{1}{2}}^{2} d^{2}}}{4 c^{2}}\right. \\
\end{array}\right]
$$

Eq. B. 46

The perumbral area is most easily found by determining the total enclosed area and subtracting the umbral area.

Figure 36. Total enclosed area

The total area can be seen by examination to be:

$$
\begin{array}{ll}
A_{T}=\Pi r^{2}+\bar{y} \bar{x}+2 \bar{x} r+2 \bar{y} r & \text { Eq. B. } 47 \\
A_{T}=\Pi r^{2}+\bar{y} \bar{x}+2 r(\bar{x}+\bar{y}) & \text { Eq.B. } 48
\end{array}
$$

Using absolute values for $\overline{\mathrm{x}}$ and $\overline{\mathrm{y}}$ from Equations B .1 , B. 2 and B. 3. Eq. B. 48 becomes
$A_{T}=\frac{\Pi a^{2}(c+d)^{2}}{c^{2}}+\hat{x} \hat{y}\left(\frac{d}{c}\right)^{2}+\frac{2 a(c+d)}{c}(\hat{x}+\hat{y})\left(\frac{d}{c}\right)$
Eq. B. 49
and

$$
A_{p}=A_{T}-A_{u}
$$

Eq. B. 50

As pointed out by Dahlstrom and Thompson (116) and demonstrated by Steyn (12), radiation originating in the penumbra is not as effective as that from the umbra and either must be weighted as such or the area weighted in such a manner as to accomplish the same end. The method chosen by Dahlstrom and Thompson was to consider the radiation density as decreasing linearly to zero between the umbra and penumbra limits and choosing an "effective area" which, emitting a constant radiation density, would
emit the same amount as the true umbral and penumbral areas.

$$
A_{\epsilon} \rho_{0}=A_{u} \rho_{0}+\int d A_{p} \rho(x)
$$

Eq. B. 51 .

$$
\text { with } \begin{aligned}
\rho_{0} & =\text { a constant radiation density } \\
\rho(r) & =\text { penumbral radiation density } \\
A_{c} & =\text { an effective viewed area }
\end{aligned}
$$

Steyn carried out a more detailed consideration of the intersected detector area and found that a numerical integration of Eq. B. 51 (since it does not reduce to an exact solution) compared to within 0.005% of the area determined by a point detector viewing the same surface. As the detector used in his calculations occupied the full back of the collimator the error involved would be greater than that for which a smaller detector is used (other dimensions remaining comparable).

Field and experimental use of a variety of detector shapes in collimators of differing aperture configurations (117) indicate the error between a precise solution of Equation B. 51 and the point detector approximation to be in the order of the square of the ratio of the greatest detertor dimension to the collinator length. In the worst
case of the data used here, that would be:

$$
\left(\frac{0.236}{6.00}\right)^{2} \text { or } 0.155 \%
$$

In view of these considerations and the untractable form the preceding development takes when considering other than normally vieved surfaces, the point source estimate is used in the actual data reduction. The maximum error invol.ved is far below the statistical variation of the thermoluminescent dosimeter readings.
B. 2 POINT DETECTOR VIEWED AREA

The area of a slab viewed by a point detector located in a collimator is determined by the detector to slab distance $(c+d)$, the collimator length (c) and radius (a), and the angle (θ) between the collimatcr axis and a normal to the slab.

$$
\begin{array}{ll}
x=h(\sec \theta) & \text { Eq. B. } 52 \\
y=(c+d)-g & \text { Eq. B. } 53 \\
\frac{a}{c}=\frac{h}{g} & \text { Eq. B. } 54
\end{array}
$$

Figure 37. Point detector viewed area

$$
g=\frac{c}{a} h
$$

Eq. B. 55
$y=h \tan \theta$
Eq. B. 56
$h \tan \theta=(c+d)-\frac{c}{a} h$
Eq. B. 57
$h=\frac{(c+d)}{\tan \theta+\frac{c}{a}}$
Eq. B. 58
$\cos \theta=\frac{h}{x}$
Eq. B. 59

$$
x=\frac{(c+d) \sec \theta}{\tan \theta+\left(\frac{c}{a}\right)}
$$

$$
\text { Eq. B. } 60
$$

$$
x=\frac{\left(\frac{a}{c}\right)(c+c) \sec \theta}{1+\left(\frac{a}{c}\right) \tan \theta}
$$

$$
\text { Eq. B. } 61
$$

$$
x=\frac{r \sec \theta}{1+\left(\frac{a}{c}\right) \tan \theta}
$$

$$
\text { Eq. B. } 62
$$

$$
\frac{a}{c}=\frac{u}{(c+d)+z}
$$

$$
\tan \theta=\frac{z}{u}
$$

Eq. B. 64

$$
\begin{aligned}
& z=u \tan \theta \\
& \frac{a}{c}=\frac{u}{(c+d)+u \tan \theta}
\end{aligned}
$$

Eq. B. 65

Eq. B. 66

$$
\left(\frac{a}{c}\right)(c+d)+u\left(\frac{a}{c} \tan \theta\right)=u
$$

Eq. B. 67

$$
\left(\frac{a}{c}\right)(c+d)=u\left[1-\left(\frac{a}{c}\right) \tan \theta\right]
$$

Eq. B. 68

$$
u=\frac{\left(\frac{a}{c}\right)(c+d)}{1-\left(\frac{a}{c}\right) \tan \theta}
$$

$$
\cos \theta=\frac{u}{w}
$$

$$
w=u \sec \theta
$$

Eq. B. 72

$$
w=\frac{r \cdot \sec \theta}{1-\left(\frac{a}{c}\right) \tan \theta}
$$

$$
w=\frac{\left(\frac{a}{c}\right)(c+d) \sec \theta}{1-\left(\frac{a}{c}\right) \tan \theta}
$$

$G=$ semi-major ellipse $=\frac{1}{2}(w+x)$
Eq. B. 74
$G=\frac{1}{2}\left[\frac{r \sec \theta}{1-\left(\frac{a}{c}\right) \tan \theta}+\frac{r \sec \theta}{1+\left(\frac{a}{c}\right) \tan \theta}\right]$

$$
G=\frac{r \sec \theta}{1-\left(\frac{a}{c}\right)^{2} \tan ^{2} \theta}
$$

Eq. B. 75

Eq. B. 76

$$
\begin{array}{ll}
H=\text { semi-minor ellipse }=\mathbf{r} & \text { Eq. B. } 77 \\
A=\text { area of ellipse }=\Pi H G & \text { Eq. B. } 78 \\
A=\frac{\Pi r^{2} \sec ^{2} \theta}{1-\left(\frac{a}{c}\right)^{2} \tan ^{2} \theta} & \text { Eq. B. } 79
\end{array}
$$

The area viewed on the reflecting slab by a point detector where:
$a=$ collimator madius
$c=$ collimator length
$r=$ detector to scattering center distance
$\begin{aligned} \theta= & \text { angle between collimator axis and a normal } \\ & \text { to the slab }\end{aligned}$

C. COLLIMATOR EFFECTS

One of the most complete and most frequently referenced works on collimator penetration and scattering is by Mather (118). He develops expressions which give the amount of radiation passing through a cylindrical hole in a slab of material, including the amount of radiation which penetrates the edges of the hole and that due to scattering from the walls of the colimator.

In Mather's report, it is show, that to a first approximation, the results are the same as the geometric aperture for a like diameter hole in a similar slab with one mean free path of material removed from each side.

Figure 38 details the collimator construction where c is the collinator length, specified in Appendix I for each measurement made.

A copper liner was pressure-fitted to the lead in an effort to eliminate any lead fluorescence response in the TLD's due to the shield.

Figure 38. Collimator detail

The mean free path was calculated by the standard equation (11):

$$
(m \mathrm{mp})=\frac{1}{\mu_{0}} \quad \text { Eq. } C_{0} 1
$$

where: μ_{0} is the total linear attenuation coefficient (as found in Reference 38).

Since the reflected radiation is certainly not monoenergetic (see Appendix D, Figures 49-66 for example spectra) a $\mu_{\text {eff }}$ must be used.

$$
\mu_{e f f}=\frac{\sum_{i} \mu_{O_{i}} E}{\sum_{j} \sum_{i}}
$$

where E_{i} is the amount of energy emitted in the "i"th energy interval. $\mu_{o_{i}}$ is the total attenuation coefficient at the average energy of the "i"th energy interval.

The computer-generated spectra in Appendix D were used to obtain the following table.

TABLE 4

DETECTOR COLLIMATOR CORRECTION

Incident Bremsstrahlung
Spectra Max: (MeV)

2.0	Lead	0.11
	Iron	0.32
3.5	Concrete	0.15
	Lead	0.15
7.0	Iron	0.31
	Concrete	0.18
	Lead	0.20
	Iron	0.31
	Lead	0.26
	Iron	0.32
	Concrete	0.26

D. SPECTRA CONSIDERATIONS

D. 1 ITIUT SPECTRi

In order to obtain a computer solution to the backscatter problem, one must have some knowledge of the incident beam energy spectra. Spectra for the machines studied in this dissertation are quite difficult tc obtair. For the purposes of gaining some computer comparison to the experimental data, the author has roliod heavily on preriously published spectra. At $2.0,3.5$, and 10.5 MeV very rough absorption measurements were made to have an "effective" energy measurement for comparison to the published spectra in DTF runso Copper was used in the absorption study and calibrated against Co-60 and Cs-137. Absorption measurements at 7.0 MeV had been made previously by facility operators.

Figure 39 was obtained from copper absorption of the 2.0 MeV Van de Graaff beam. An effective energy (determined by the method of Greening [96]) of 0.85 MiVV was used as imput to the DTF program. These results are compared in

Figure 40 with DTF results obtained when inputting a measured 2.0 MeV spectrum (Table 5). Iron was used as an example reflecting material.

TABLE 5
2.0 MeV MEASURED SPECTRA (99, 100)

GROUP BOUNDS (MeV)	INPUT FLUX (Photons/MeV)
2.0	5.6
1.5	13.6
1.02	22.0
0.80	35.0
0.60	60.0
0.52	65.0
0.50	68.0
0.44	75.0
0.38	85.0
0.32	87.0
0.28	90.0
0.25	90.0
0.225	90.0
0.20	80.0
0.175	70.0
0.15	60.0
0.13	50.0
0.12	40.0
0.10	40.0
0.088	40.0
0.07684	40.0
0.07664	35.0
0.68	35.0
0.060	30.0
0.055	25.0
0.050	20.0
0.045	15.0
0.040	10.0
0.035	5.0
0.030	

A similar process was carried out on the 3.5 MeV flash x-ray machine. Figure 41 shows the absorption curve, Figure 42 the DTF results, and Table 6 the measured spectra (102) used for comparison. By Greening's technique the 3.5 MeV beam was estimated to be $43.2 \% 0.24 \mathrm{MeV}$ and $50.8 \% 1.34 \mathrm{Mov}$. The moconod spectra in this case are somewhat rougher than before as they were used for input to both the Monte Carlo program and DTF. The Monte Carlo spectra input is limited to twenty-five energy groups. The scattering material is again iron.

TABLEE 6
3.5 MEV MEASLKED SPECIRA (102)

(MeV)
3.5
3.3
3.1
2.75
2.35
1.95
1.55
1.36
1.1 .5
0.78
0.68
0.58
0.48
0.38
0.32
0.30
0.10
0.06
0.03

INPUT FLUX
(Photons/MeV)
0.0143
0.0845
0.1194
0.1746
0.2553
0.3692
0.5355
0.6471
0.8261
1.2821
1.4412
1.6724
1.875
1.5789
0.312
0.0
0.0
0.0

Dose

Figure 42 DTF 3.5 MeV iron scatterer

Due to the relative scarcity of measured spectra from flash x-ray devices, several methods of calculating spectra have been derived. Most of these are computerized methods of studying electron transport in a target material. (119, 120). One (1.21), however, is based on an analytical approximation requiring only a maximum and minimum energy input to obtain a spectra guess. The measured spectrum reported for a 3.5 MeV machine (not that used in this work) is compared with the spectrum obtained from an electron transport code (122) and the empirical approximation spectra in Figure 43. Normalization of the three curves differs to more clearly show each. Results of the empirical. method are compared with results previously discussed in Figures 40 and 42. The spectra are given in Tables 7 and 8 . The results obtained using the empirical spectra with 7.0 MeV and 10.5 MeV are compared with measured spectra inputs for the same energies in Figures 44 and 45. Lead is used as a reflector int inese examples. The input spectra used are found in Tables 9, 10, 11, and 12.

TABLE 7
2.0 MeV EMPIRICAL SPECTRA

GROUP BOUNDS (MeV)
2.00
1.50
1.02
0.80
0.60
0.52
0.50
0.44
0.38
0.32
0.28
0.25
0.22 .5
0.20
0.175
0.15
0.13
0.12
0.10
0.08805
0.07684
0.07664
0.068
0.060
0.055
0.050
0.045
0.040
0.035
0.030

INPUT FLUX (Photons/MeV)
0.15186
0.38412
0.72064
1.06659
1.37953
1.51365
1.63223

1. 82633
2.04373
2.24355
2.39530
2.52180
2.64268
2.76940
2.90216
3.02695
3.11310
3.20190
3.29921
2. 37152
3.40500
3.43588
3.48987
3.53260
3.56580
3.59940
3.63320
3.66740
3.70200

TABLE 8
3.5 MeV EMPIRICAL SPECTRA

GROUP BOUNDS (MeV)
3.5
3.0
2.5
2.0
1.5
1.02
0.8
0.6
0.52
0.50
0.44
0.38
0.32
0.28
0.25
0.225
0.2
0.175
0.15
0.13
0.12
0.1
0.088
0.077
0.068
0.060
0.055
0.050
0.045
0.040
0.035
0.030

INPUT FLUX
(Photons/MeV)
0.040306
0.068831
0.117541
0.200724
0.338811
0.48852
0.61139
0.70908
0.74785
0.78068
0.83246
0.88767
0.93638
0.97209
1.0111
1.02083
1.05614
1.0848
1.1112
1.1292
1.14747
1.16727
1.18183

1. 19135
1.20536
1.21377
1.22029
1.22683
1.23342
1.24003
1.24669

TABLE 9

7.0 MeV MEASURED SPECTRA (1.05)

GROUP BOUNDS (MEV)	INPUT FLUX (Photons $/ \mathrm{HieV})$
7.0	1.4286
6.63	4.5249
6.12	6.5359
5.61	8.7344
5.1	10.784
4.59	13.508
4.08	16.667
3.57	21.008
3.06	26.471
2.55	34.11 .8
2.04	46.078
1.53	63.399
1.275	76.471
1.02	93.137
0.765	95.425
0.51	107.840
0.40	0.0
0.30	0.0
0.10	0.0
0.06	0.0
0.03	

TABLE 10
7.0 MeV EMPIRICAL SPECTRA

GROUP BOUNDS
INPUT FLUX (MeV) (Photons $/ \mathrm{MeV}$)

7.0	0.0100723
6.0	0.0172003
5.0	0.0293728
4.0	0.050159
3.0	0.0742656
2.5	0.0970494
2.0	0.126823
1.5	0.164807
1.02	0.198325
0.8	0.221891
0.6	0.239058
0.52	0.245523
0.5	0.250845
0.44	0.25903
0.38	0.267482
0.32	0.274729
0.28	0.279921
0.25	0.28407
0.225	0.287896
0.2	0.291773
0.175	0.295703
0.15	0.299285
0.13	0.301695
0.12	0.304128
0.10	0.306742
0.088005	0.308649
0.07684	0.309588
0.07664	0.310322
0.068	0.311706
0.06	0.312792
0.055	0.31363
0.05	0.314471
0.045	0.315313
0.04	0.316158
0.035	0.317005
0.03	

TABLE 11

10.5 MeV MEASURED SPECTRA (110)

$\underset{(\mathrm{MeV})}{\text { GROUP BOUNDS }}$
10.5
10.0
9.5
9.0

8,0
7.0
6.0
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.2
1.02
0.8
0.6
0.52
0.5
0.44
0.38
0.32
0.28
0.25
0.225
0.2
0.175
0.15
0.13
0.12
0.10
0.0880
0.07684
0.07604

INPUT FLUX
(Photons/MeV)
1.18
2.3
5.3
12.5
18.5
24.0
31.0
38.0
46.0 53.0 70.0 87.0 125.0 190.0 300.0
450.0
640.0 760.0 830.0 870.0 900.0 980.0
1112.0
1500.0
1500.0
1500.0
1112.0
980.0
900.0
450.0
0.0
0.0
0.0
0.0
0.0
0.0

TABLE 11 (cont'd)

GROUP BOUNDS	
(MeV)	INPUT FLUX
(Photons/MeV)	
0.070	0.0
0.06	0.0
0.05	0.0
0.04	0.0
0.03	

TABLE 12
10.5 MEV EMPIRICAL SPECTRA

GROUP BOUNDS
(MeV)

10.5	0.035003
10.0	0.045268
9.0	0.065839
8.0	0.0957568
7.0	0.13927
6.0	0.202555
.0	0.294598
4.0	0.428466
3.0	0.564976
2.5	0.681355
2.0	0.821707
1.5	0.987151
1.02	1.12425
0.8	1.2162
0.6	1.28143
0.52	1.30561
0.5	1.32535
0.44	1.35547
0.38	1.38629
0.32	1.41248
0.28	1.43111
0.25	1.44593
0.225	1.45954
0.2	1.47327
0.175	1.48713
0.15	1.49972
0.13	1.50816
0.12	1.53666
0.10	1.52578
0.088005	1.53241
0.07684	1.53567
0.07664	1.53764
0.07	1.54244
0.06	1.54823
0.05	
0.04	
0.03	

Absorption measurements by Kirtland Air Force personnel indicate an effective energy of $4.1-4.2 \mathrm{MeV}$ for the 7.0 MeV flash x-ray machine, as discussed in Section 5 .

Absorption measurements of the HERMES II beam are shown in Figures 46 and 47 : The curve in Figure 46 was made with a 70 mil tantalum x-ray target and 0.3125 inch aluminum filter while Figure 47 was made with a 60 mil tantalum target and 0.4 inch aluminum filter. The effect of the additional filter in "hardening" the beam can be seen. In the first case one gets a 58% component at 3.8 to 4.2 MeV and a 42% component of $0.27-0.28 \mathrm{MeV}$. The second set-up indicates about 75% at $4.9-5.5 \mathrm{MeV}$ and 25% at $0.11-0.15 \mathrm{MeV}$. The tube configuration at the time data was taken for this research was a 60 mil tantalum target backed by a 0.3125 inch aluminum plate.

None of the measured spectra referenced give photon flux for less than $200-300 \mathrm{KeV}$. There is considerable debate as to the amount of energy carried in the low energy range of the spectra. Some (123) feel that the low energy count goes significantly higher than any other portion of the spectra, while others $(104,105)$ indicate a drop to zero below 100 keV . Something in between these two views

is probabiy more nearly the correct representation. To the primary mission of the x-ray devices studied (i.e. dose deposition inside a steel-encased body) the question of low energy population is largely academic. The effect on the present experiments is shown in Figure 48. The jnput spectra for elase auves are given in Table 13. The total energy albedo from iron is reauced 31.8% by increasing the low energy component of the beam by the amounts shown. The difference the additional filter used at 7.0 MeV would make on the 10.5 MeV spectrum is shown in Figures 49 and 50.
Figure 48 DTF 10.5 MeV iron scatterer

'TABLE 13

10.5 MeV SPECTRA

GROUP BOIJNDS (MeV)	INPUT FLUX 1 (Photons/MeV)	INPUT FIUX 2 (Photons/MeV)	INPUT FLUX (Photons/MeV)
10.5	1.18	1. 18	1.18
10.0	2.3	2.3	2.3
9.5	5.3	5.3	5.3
90	12.5	12.5	12.5
8.0	18.5	18.5	18.5
7.0	24.0	24.0	24.0
6.0	31.0	31.0	31.0
5.0	38.0	38.0	38.0
4.5	46.0	46.0	46.0
4.0	53.0	53.0	53.0
3.5	70.0	70.0	70.0
3.0	87.0	87.0	87.0
2.5	125.0	125.0	125.0
2.0	190.0	190.0	190.0
1.5	300.0	300.0	300.0
1.2	4500	450.0	450.0
1.02	640.0	640.0	640.0
0, 8	760.0	760.0	760.0
0.6	830.0	830.0	830.0
0.52	870.0	870.0	870.0
0.5	900.0	900.0	900.0
0.44	980,0	980.0	980.0
0.38	1112.0	1112.0	1112.0
0.32	1500.0	1500.0	1500.0
0.28	1:00.0	1500.0	1800.0
0. 25	1500,0	1500.0	2600.0
0.225	1112.0	1500.0	3000.0
0.20	980.0	1500.0	4000, 0
0.175	900.0	1500.0	5600.0
0.15	450.0	1500.0	8000.0
0.13	0.0	1500.0	10000.0
0.12	0.0	1500.0	13000.0
0.10	0.0	1500.0	17000.0
0.088	0.0	1500.0	18500.0
0.07684	0.0	1500.0	19000.0
0.07664	0.0	1500.0	19000.0
0.07	0.0	1500.0	19500.0
0.06	0.0	1500.0	20000.0
0.05	0.0	1500.0	21500.0
0.04	0.0	1500.0	22500.0

Differential albedo plots for input bremsstrahlung spectra of different peak energies are given in Figure 51 with concrete as the scattering medium. As the input energy increases, DTF can be seen to predict a somewhat cyclic variation with angle. This tendency is more pronounced with iagier Z materials anci is shown to be quite distinct in Figure 45. This variation is also evident with single energy spectra inputs and is at odds with experimental data previously published for gamma sources. A comparison of DTF and Montc Carlo results with experimental. data published elsewhere is shown in Figures 88 and 89.

D. 29 REFLECTED SPECTRA

Physical measurement of the reflected spectra for backscatter flux with the flash x-ray machines was not possible, as is discussed in Section 3. Due to the steadystate operation mode of the Van de Graaff, some scintillation measuremente of reflected spectra were possible at 2.0 MeV. The crystal used (described in Section 3) was canned in $0.032^{\prime \prime}$ aluminum which gives a transmission of about 65% at 70 KeV decreasing to 12% at 30 KeV . Due to the rapidly shifting gain evidenced by the detector system functioning in the high radiation background existing in the radiographic bay, no effort was made to correct the spectra obtained. Figures 52 and 53 are examples of the spectra obtained。

Greater spectra information is necessary to make collimator length and riLD response corrections. Spectral results from DTF and Monte Carlo runs are plotted in Figures $\mathbf{5 4}$ to 71 for the materials and energies used in this work. These spectra were used for the corrections discussed in Appendices C and E. .

10^{5} Figure 60 .. DTF 3.5 MeV iron scatterer

10^{5} Figure 71 Monte Carlo 10.5 MeV lead scatterer

E. Lif ENERGY DEPENDENCY

A large number of experiments havn been carriod out in an effort to determine the relative response of Lif as a function of energy (79, 81, 91, 93, 124, 125, 126, 127, 128)。 Thougii there is sone disagreement in the literature, the response is well enough undersiood for a large rumber of private and government agencies to adopt thermolumnescent dosimetry for personnel exposure documentation and to consider it for use as a socondary standard in madietion measurement.

Energy dependency of TID's is most frequently piotted as "Thermoluminescent response per R relative to that for Com60" vs "Energy", and in this form shows a marked overresponse at energies below 100 KeV (Figure 72).

This dissertation, however, is concerned with the measurement of dose albedos. A plot of encrey dependency as "Response of i.ip per rad in water" vs "Energy" is therefore a more visible representation of the energy dependency of the present measurements.

Figure 72. TLD energy response per R (81)

The TLD response per rad $\left(\mathrm{H}_{2} \mathrm{O}\right)$, essentially the $\left[\frac{\left(\frac{\mu}{\rho}\right)_{H_{2} \mathrm{O}}}{\left(\frac{\mu}{\rho}\right)_{\text {LiF }}}\right]$ function discussed in Section 6 inverted, is
energy independent above 40 KeV . Reportedly (78) the dosimeters are even less energy sensitive at high dose levels.

Correction to the TLD data for calculation of "water dose" albedos is therefore relatively small and not rapidly varying as a function of x-ray spectra.

F. THERMOLUMIINESCENT DOSIMETER READ-OUT
 AND ANNEALJNG 'PROCEDURES

A series of experiments were carried out to determine the most convenient annealing - read-out procedure, with results comparable to "standard" procedures, using the available equipment. The experimental procedure consisted of adjusting the time and temperature of the "Pre-heat" and "Integrate" cycles by means of glow curves, to insure that essentially all the thermoluminescence was given off in as short a time and with as low a temperature as possible. Groups consisting of fifteen to twenty TLD's were treated according to several "standard" pre-irradiation annealing procedures ($30,87,39,90$), exposed to $1 \mathrm{R} \pm 5 \%$ of ${ }^{60}$ Co radiation, treated according to their corresponding post-irradietion annealing procedure and read out in the "Integrate" cycle. The time and temperature of the "Pre-heat" cyclc were then adjus!ed, by means of glow curves, to eliminate the lower temperature traps, and thus serve effectively as a post-irradiation annealing procedure. Upon
establishment of a suitable "Pre-heating" cycle, groups of 15 TLD crystals were pre-irradiation annealed according to a particular "standard" procedure, exposed to $1 \mathrm{R}^{60} \mathrm{Co}$, read out in the determined cycle and compared statistically to the groups which received a post-irradiation annealing before read-out, To verify the resultes mote subutantially, the experiment was repeated using fifty dosimeters in each procedure.

The read-out cycle, as determined by the use of glow curves, consisted of a "Pre-heat" period of 7 seconds at $165^{\circ} \mathrm{C}$ and an "Integrate" period of 1.5 seconds at $250^{\circ} \mathrm{C}$. The tirn inierval allows the dosineter to be read out and the heating element to cool back to an acceptable level in approximately 30 seconds with a mininum amount of dark current.

The data for that "standard" annealing cycle recommended for use with those TLD crystals used and the abbreviated annealing cycle developed here were compared statistically and found to be equivalent at the 99.5% confidence level under chi square testing. Compared with other "standard" annealing procedures, the abbreviated procedure yielded as great a mean sensitivity (light units/R) and was quite comparable in accuracy.

Table 14 lists the anncaling procedures studied and the results obtained with each, using twenty-five dosimetcrs per set. Table 15 summarizes the mean sensitivity and standard deviation obtained with each set. Individual TLD readings are found in Appendix I.

TABLE 14
TLD ANNEALING PROCEDURES

1) $1 \mathrm{hr} .400^{\circ} \mathrm{C}$ Pre-anneal
$2 \mathrm{hr} .100^{\circ} \mathrm{C}$
$10 \mathrm{~min} .100^{\circ} \mathrm{C}$ Post-anneal
No Pre-heat cycle
$15 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate
Mean $=718.5$
$\%=3.53$
2) $1 \mathrm{hr} \cdot 400^{\circ} \mathrm{C}$ Pre-anneal

2 hr. $100^{\circ} \mathrm{C}$
No Post-anneal
$7 \mathrm{sec} .165^{\circ} \mathrm{C}$ Premheat
$15 \mathrm{sec} \cdot 250^{\circ} \mathrm{C}$ Integrate
Mean $=711$
$\%=3.40$
5) $1 \mathrm{hr} .400^{\circ} \mathrm{C}$ Pre-anneal
$24 \mathrm{hr} .80^{\circ} \mathrm{C}$
No Post-anneal
$7 \mathrm{sec} .165^{\circ} \mathrm{C}$ Pre-heat
$15 \mathrm{sec} .2 .50^{\circ} \mathrm{C}$ Integrate
Mean $=706$
$\%=2.94$
7) $1 \mathrm{hr} .400^{\circ} \mathrm{C}$ Pre-anneal
$24 \mathrm{hr} .80^{\circ} \mathrm{C}$
10 min. $100^{\circ} \mathrm{C}$ Post-anneal
$7 \mathrm{sec} .165^{\circ} \mathrm{C}$ Pre-heat
$15 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate
Mean $=672$
$\%=5.12$
2) 1. hr. $400^{\circ} \mathrm{C}$ Pre-anneal
$2 \mathrm{hr} .100^{\circ} \mathrm{C}$
10 min. $100^{\circ} \mathrm{C}$ Post-anneal
$7 \mathrm{sec} .165^{\circ} \mathrm{C}$ Pre-heat
$15 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate Mean $=696.8$
$\%=6.50$
4) $1 \mathrm{hr} .400^{\circ} \mathrm{C}$ Pre-anneal

24 hr. $80^{\circ} \mathrm{C}$
No Post-anneal
No Pre-heat
$15 \mathrm{sec} .250^{\circ}$ Integrate Mean $=704$.
$\%=2.98$
6) $1 \mathrm{hr} \cdot 400^{\circ} \mathrm{C}$ Pre-anneal
$24 \mathrm{hr} .80^{\circ} \mathrm{C}$
10 min , $100^{\circ} \mathrm{C}$ Post-anneal
No Pre-heat
$15 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate Mean $=695$
$\%=2.94$
8) $1 \mathrm{hr} \cdot 400^{\circ} \mathrm{C}$ Pre-anneal
$24 \mathrm{hr} .80^{\circ} \mathrm{C}$
No Post-anneal
$7 \mathrm{sec} .165^{\circ}$ Pre-heat
$15 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate
Mean $=706$
$\%=2.94$

TABLE 14 (cont'd)

9) $1 \mathrm{hr}: 400^{\circ} \mathrm{C}$ Pre-anneal 10 min . $100^{\circ} \mathrm{C}$ Post-anneal
No Pre-heat
$1.5 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate Mean $=964$ $\%=2.89$
10) $1 \mathrm{hr} .400^{\circ} \mathrm{C}$ Prowanneal No Postwameal
$7 \mathrm{sec} .165^{\circ} \mathrm{C}$ Pre-heat $15 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate Mean $=936$ $\%=3.20$
11) $1 \mathrm{hr} \cdot 400^{\circ} \mathrm{C}$ Premameal $10 \mathrm{~min} .100^{\circ} \mathrm{C}$ Post-anneal $7 \mathrm{sec} .165^{\circ} \mathrm{C}$ Pre-heat $15 \mathrm{sec} .250^{\circ}$ Integiate Mean $=932$
$\%=4.27$
12) $1 \mathrm{hr}, 400^{\circ} \mathrm{C}$ Pre-anneal No Post-anneal. $7 \mathrm{sec}, 165^{\circ} \mathrm{C}$ Pre-heat $15 \mathrm{sec} .250^{\circ} \mathrm{C}$ Integrate Mean $=960$ $\%=3.82$
table 15
TLI A Anealing procedure sumary

WT W.

15en
STANDARD DEVYATLON (Percent)

1	718	3.53
2	697	6.50
3	71.1	3.40
4	704	2.98
5	706	2.94
6	695	2.94
7	672	5.12
8	706	2.94
9	964	2.89
10	932	4.27
11	936	3.20
12	960	3.82

To verify that the accuracy and the stability of the dosimeters were not affected by the abbreviated annealing procedure, a calibration curve was obtained yielding a slope of 1.016 and a maximum standard deviation at the 68% confidence interval for a 10 MR exposure of $\pm 6.0 \%$ fading characteristics were denonstrated to be negligible in a threemonth period.

The author was aided in work on this Appendix by B. L. O'Neal, Sandia Corporation, and D. Rudy, New Mexico State University.
G. INFINITE SLAB SIZE MEASUREMENTS

In order to simplify the geometry associated with beam perimeter fall-off and increasing slab size, all "infinite-size" studies were conducted with the incident beam restricted to $2.0^{\prime \prime}$ square at the backscatter surface. The distance from beam edge to backscatter slab edge was then increased, holding thickness constant, and the resulting albedos considered. Slab thickness effects were studied with a constant slab area. Lead slab areas of $4.0,6.0,7.0,8.0,9.0$, and 10.0 inches square and thicknesses of $0.25,0.50,0.625,0.75,1.00,1.25,1.375$, 1.50, and 2.00 inches were studied at 2.0 MeV . Slabs of $4.0,6.0,8.0,12.0$, and 14.0 inches square and thicknesses of $0.15,0.35,0.58,0.78,1.15,1.40,1.72$, and 2.10 inches were studied at 60.0 MeV . Infinite size calculations were checked at 2.0 MeV for iron and steel but the full plot not made due to machine time considerations.

A hypothesis test that the iron slabs are equally effective reflectors falls well within the 95% acceptance level. The concrete results are similar (Tables 16 and 17).

TABLE 16
IRON REFLECTOR RATIOS ($\mathrm{x} 10^{5}$)

	SLAB SIZE		
ANGLE	$12^{\prime \prime} \times 12^{\prime \prime}$ $\times 2.5^{\prime \prime}$	$12^{\prime \prime} \times 12^{\prime \prime}$ $\times 4.125^{\prime \prime}$	$14^{\prime \prime} \times 14^{\prime \prime}$
150°	$4.04 \pm 8.35 \%$	$4.00 \pm 8.30 \%$	$4.04 \pm 10.05 \%$
135°	$3.96 \pm 9.34 \%$	$4.04 \pm 8.61 \%$	$4.16 \pm 8.70 \%$
120°	$2.97 \pm 9.02 \%$	$2.97 \pm 7.97 \%$	$2.92 \pm 9.5 \%$

TABLE 17
CONCRETE REFLECTOR RATIOS ($\mathrm{x} 10^{5}$)
SLiB SIZE
AIGGLE

$$
32^{\prime \prime} \times 32^{\prime \prime}
$$

4.59
$32^{\prime \prime} \times 32^{\prime \prime}$
$36^{\prime \prime} \times 36^{\prime \prime}$
$\times 10^{\prime \prime}$
$\times 8^{\prime \prime}$

$$
150^{\circ}
$$

4.40
4.60
4.55
135°
3.25
4.22
4.43
120°
2.89
3.21

The following graphs, 74, 75, 76, and 77 show results of the above experiments.

At small backscatter surface areas, an increase in albedo was noted. These measurements were made with very little collimation, which might have recorded scatter from the sides of the backscatter slab as well as the face. This effect might better be studied with a ganma source-scintillation detector arrangement.

Figure 742.0 MeV lead surface area effects

Figure $76 \quad 60 \mathrm{MeV}$ iead surface area effects

Figure 7760 MeV lead thickness effects

H. BEAM DIVERGENCE

X-ray beams are inherently more directional than are isotopic sources. Beam divergence is a function of the particular generating machine used. Horizontal and vertical beam cross-sections are given for the machines used (except at 10.5 MeV for which published cross-sectional measurements exist) in Figures 78 to 83. Cylindrical symmetry is then assumed and a least squares fit made to detcrmine beam fali-off as a function of radius (figuzes 84 to 86). The incident slab dose is then averaged at the center of the "effective viewed area".

Albedo would be expected to vary with the amount of semi-infinite surface irradiated, up to some point, similar to the change experienced with increased surface area. The concept of "semi-infinite irradiated surface area" is even less well established than that of semi-infinite surface. Indeed, large numbers of albedo experiments have been conducted (Section 2) in which a uniformly irradiated surface could not have been achieved. In the experiments conducted in this research, only those with concrete at

Figure $78 \quad 2.0 \mathrm{MeV}$ horizontal beam divergence

Figure $79 \quad 2.0 \mathrm{MeV}$ vertical beam divergence

Figure $81 \quad 3.5 \mathrm{MeV}$ horizontal beam divergence

Figure $82 \quad 7.0 \mathrm{MeV}$ horizontal beam divergence

Figure $84 \quad 2.0 \mathrm{MeV}$ beam divergence

Figure $85 \quad 3.5 \mathrm{MeV}$ beam divergence

Figure $86 \quad 7.0 \mathrm{MeV}$ beam divergence

10.5 MeV are not clearly semi-infinite irradiated surface areas. And even in this case, results are not much below DTF results and the beam is as large as might generally be encountered.

I . TLD EXPERIMENTAL DATA

The following tables list the data collected in this project.

As mentioned previously, two sizes of crystals were used; these are referred to as "square" ($1 / 8^{11} \times 1 / 8^{\prime \prime}$) and "rod" (1mm x 6mm). The locations monitorcd are "Beam Collimator Exit", "Backscatterer Position", and the various angular positions which have the additional notation of "Background" or "Backscatter" depending upon the measurement made. "Beam Collimator Exit" was normally 30 to 35 inches from the x-ray target. The sides of the beam were shielded somewhat to lower background levels due to scatter out of the beam. "Backscatterer Position" denotes the location at which the backscatter slab was to be placed, 60 to 75 inches from the x-ray target. The experimental configuration is discussed in Section 5.

Calibration on the crystals was repeatedly checked throughout the period of this work so as to keep the reported readings comparable.

17.1 2 MeV

17.1.1 Backscatter

17.1.1.1 Lead

LOCATION
TLD READING

	SQUARE	ROD
Beam collimator exit.	13939800	11369800
	15503200	11776600
	12931600	9662700
	13893600	11142500
	14839500	10335200
Backscatterer position	13585800	10541700
	1044000	894800
	973500	922600
	1150600	909200
	1047700	865100
	1152100	745900
	1236200	756300

Background @ $14^{\prime \prime}, 30^{\circ} 2992$ $3.75^{\prime \prime}$ collimator 2991

3653 3277
Background @ $12^{\prime \prime}, 40^{\circ}$ 3020
$3.75^{\prime \prime}$ collimator 3018
Background @11", 50 224
3.75" collimator 208231211
Background @ $10^{\prime \prime}, 60^{\circ}$ 407
$3.75^{\prime \prime}$ collimator 371339

	SQUARE	ROD
Beam collimator exit	14928900	9575200
	13403800	10470300
	14424000	10695400
	13789500	1.0354900
	14346400	10812000
	13392100	9945700
Backscatter@14 30° $3.75^{\prime \prime}$ collimator	4216	
	4051	
	4493	
	4533	
$\begin{array}{r} \text { Backscatter @ } 12^{\prime \prime}, 40^{\circ} \\ 3.75^{\prime \prime} \text { collimator } \end{array}$		3022
		3360
		2886
		2907
$\begin{array}{r} \text { Backscatter @ } 11^{\prime \prime}, 50^{\circ} \\ 3.75^{\prime \prime} \text { collimator } \end{array}$	1223	
	1353	
	14.13	
	1338	
Backscatter @ $10^{\prime \prime}, 60^{\circ}$ 3.75' collimator		1150
		1119
		1242
		1092
Beam collimator exit	14889800	10441.500
	13182100	10613400
	14603600	10730600
	14217200	11083800
	14906500	11726900
	14327600	11215300
Backscatterer position	1124000	776600
	1164700	764000
	1179400	856100
	1158500	857100
	1202500	890000
	1082300	824500

LOCATION
TLD READING
SQUARE
ROD
Background @ $14^{\prime \prime}, 30^{\circ}$ 7314
$3.75^{\prime \prime}$ collimator 7026 7377 6877

Background @ $12^{\prime \prime}$, 40°
 448

$3.75^{\prime \prime}$ collimator 448
477
461
Background @ 11', $50^{\circ} \quad 125$
$3.75^{\prime \prime}$ collimator 150 163 165
Background @ $10^{\prime \prime}, 60^{\circ}$ 2.03
3.75' collimator 233215
211Beam collimator exit14607400100413001335540010525400$14491300 \quad 11334800$144968001105040015454400110064001378560011440300
Backscatter @ $14^{\prime \prime}, 30^{\circ}$ 4194
3.75' collimator 57984885
5470
Backscatter@12", 40° 1.432
3.75' collimator 1410
15321485
Backscatter @ 11", 50° 775
3.75' collimator 799815885

	SQUARE	ROD
Backscatter @ $10^{\prime \prime}, 60^{\circ}$ $3.75^{\prime \prime}$ collimator	$\begin{aligned} & 1423 \\ & 1397 \\ & 1504 \\ & 1343 \end{aligned}$	
Beam collimator exit	$\begin{aligned} & 5745500 \\ & 5401900 \\ & 5237200 \\ & 5795900 \\ & 5517800 \\ & 5364400 \end{aligned}$	$\begin{aligned} & 4196400 \\ & 4079800 \\ & 4167900 \\ & 4079300 \\ & 4468300 \\ & 3949500 \end{aligned}$
Backscatterer position	$\begin{aligned} & 885100 \\ & 905800 \\ & 913300 \\ & 991800 \\ & 905300 \\ & 826700 \end{aligned}$	$\begin{aligned} & 708800 \\ & 675000 \\ & 748600 \\ & 608700 \\ & 712700 \\ & 645400 \end{aligned}$
Backoround @ $97.12^{\prime \prime}, 30^{\circ}$ $11.50^{\prime \prime}$ collimator		4 3 3 3
Background @ 23.0'1, 30 $7.75^{\prime \prime}$ colimator	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	
Background @ $16.5^{\prime \prime}, 50^{\circ}$ $6.375^{\prime \prime}$ collimator		5 4 6 5
Background @ $10.0^{\prime \prime}, 50^{\circ}$ 7.5" collimator	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	
Background @ $24.88^{\prime \prime}, 50^{\circ}$ $13.25^{\prime \prime}$ collimator		3 3 3 3

LOCATION
TLD READINC

	SQUARE	ROD
Beam collimator exit	5984300	4293400
	5552100	4139400
	5429800	4178600
	5755500	42.67400
	5096300	346.5100
	5686200	4227700
Backscatter@27.0", 30° $11.5^{\prime \prime}$ colimator	12	
	13	
	11	
	12	
$\begin{gathered} \text { Backscatter @ }{ }^{23.0^{\prime \prime}, 30^{\circ}} \\ 7.75^{\prime \prime} \end{gathered}$		9
		8
		9
Backscatter @ 24.81", 50° $13.25^{\prime \prime}$ collimator	10	
	9	
	8	
	9	
Backscatter@181', 50° 7.5' collimator		7
		6
		6
		7
Backscatter @ $16.62^{\prime \prime}, 50^{\circ}$ $6.375^{\prime \prime}$ collimator	120	
	121	
	121	
	143	
Beam collimator exit	5922300	4193900
	5515800	4429800
	5906900	4088500
	5886000	4355200
	5316000	4286300
	5651400	4161200

LOCATION
TLD READING
SQUARE
ROD

1073000	630400
1006700	753600
1042400	716800
999800	716100
947500	701000
920800	723400

3
Background @ 25.25'1, 400
7.375" collimator

Background @ 25.19", 40° 4
$11.625^{\prime \prime}$ collimator
6
5
5
Background @17.69'1, 40° 5
6.375" collimator 5

6
5
Background @ 23.5'1,60
5
13.25" collimator

4
5
4
Background @ 23.44', 60°
7.50^{11} collimator
4
3
4
3

Beam coIlimator exit	5673000	3904800
	5329500	4340100
	5124900	4198700
	5340300	4336700
	5521100	3872100
	5892000	4243800

Backscatter@25.19", $40^{\circ} 12$
$11.625^{\prime \prime}$ collimator 12
12
1.1

Backscatter @ $25.25^{\prime \prime}, 40^{\circ}$
$7.375^{\prime \prime}$ collimator

Backscatter@17.69", 40°. 128 $6.375^{\prime \prime}$ collimator:
11.1

139
126
Backscatter @ 23.44 ${ }^{1 i}$, 60
7.50' collimator

7

Backscatter @ 23.50", $60^{\circ} \quad 12$
$13.25^{\prime \prime}$ collimator 10
11
11

Beam collimator exit.	5608100	3562900
	5798300	4096800
	5159900	3605000
	5720600	3828100
	5391800	3256400
	5446200	
	1022000	649800
	1029400	753500
	970300	706200
	1048700	719700
	1027500	804700
	902700	598400

Background @ 21.88", 30°
$5.562^{\prime \prime}$ collimator

Background @ $18.69^{\prime \prime}, 40^{\circ}$
13
5.312" collimator

11
11
10

LOCATION
TLD READING
SQUARE
ROD

Backscatter @ 21.88' $30^{\circ} 102$
$5.562^{\prime \prime}$ collimator 91
98
99
Backscatter@18.69" $\mathbf{H 0}^{\circ} 211$
5.312" collimator 218

216
227
Backscatter @ 18.7.5', 50° 41
$7.625^{\prime \prime}$ collimator 43

Backscatter @ $15.94^{\prime \prime}, 60^{\circ} 170$
$5.875^{\prime \prime}$ collimator 172
154
173

SQUARE
 ROD

Backscatter @ 21.19", 70°		27
$7.875^{\prime \prime}$ collimator		25
		29
		28
Beam collimator exit	6143900	4696400
	6267800	4592300
	5677200	4331700
	6139700	4205500
	5501700	3977500
	5861100	4475500
	1074900	785200
	1122600	795900
	1185400	757400
	1090500	737100
	1154700	859000
	1122700	776000

Background @ $22.62^{\prime \prime}: 30^{\circ} 12$.
$5.875^{\prime \prime}$ collima亡or 12
12
12
Background @ 20.50", $40^{\circ} 10$
$5.312^{\prime \prime}$ collimator 9

Background @ 20.12", $50^{\circ} \quad 6$
$7.688^{\prime \prime}$ collimator 6
6
7
Background @ 22.19", 60°
9.688" collimator

	SQUARE	ROD
Beam collimator exit	5777300	3747600
	5933100	4476500
	5342900	4724600
	5437600	4324600
	6151100	3890700
	4913400	4466200
Backscatter © 22.62', 30°	166	
$5.875^{\prime \prime}$ collimator	169	
	151	
	157	
Backscatter @ 20.50', 40°		150
$5.312^{\prime \prime}$ collimator		159
		181
		148
$\text { Backscatter@20.12 }, 50^{\circ}$		
$7.688^{\prime \prime}$ collimator	76	
	75	
	70	
Backscatter @ 22.19", 60°		18
$9.688^{\prime \prime}$ collimator		1.8
		20
		19

17.1.1.2 Iron		
LOCATION	TLD READING	
	SQUARE	ROD
Beam collimator exit	5314100	4010400
	6179900	4253400
	5303000	4039300
	5642300	4131600
	5100300	3673700
	5494500	4298900
Backscatterer position	1110800	691300
	969400	698400
	1006300	734000
	1005300	667900
	1036800	559000
	986300	723900
Background @ 22.69:, 30° 5.75" collimator		7
		7
		6
Background @ 20.15", 40° $3.25^{\prime \prime}$ collimator	10	
	10	
	11	
	11	
Background @ 20.19', 50° $7.625^{\prime \prime}$ collimator		4
		5
		4
		6
Background @ 21.88' $\quad 60^{\circ}$	9	
	5	
	5	
	5	
Beam collimator exit	5691700	3898200
	5633900	4258900
	5797000	4211900
	5656600	4436800
	4865300	4504600
	5610400	4326800

TLD READING

SQUARE
Backscatter@22.69'1,30
5.75' collimator

75
80
80
83
Backscatter @ 20.25", $40^{\circ} 144$
$5.25^{\prime \prime}$ collimator 135
125
148
Backscatter @ 20.19" $50^{\circ} 44$
$7.625^{\prime \prime}$ collimator
43

Backscatter @ 21.88', $60^{\circ} 39$
9.688^{11} collimator 40
37
39

5318700	3936200
5172700	4355700
4736100	3830100
5324300	4395200
5576500	4915300
5452300	4363500

1020500	803500
889900	669900
948600	669500
881700	799900
964500	786900
1003000	721700

Background @ $22.0^{\prime \prime}, 30^{\circ}$
5.562: collimator

Background @ $18.75^{\prime \prime}, 40^{\circ} 7$
5.312:" collimator 7

LOCATION

TLD READING

SQUARE
ROD
Background @ 18.75' , $50^{\circ} 7$
$7.562^{1 i}$ collimator 5
6
6
Background @ $15.94^{\prime \prime}, 60^{\circ} 7$
5.875' collimator

7
6
6
Background @21.31", 70 $\quad 7$
7.875' collimator 6

7
7

Beam collimator exit	5023700	4387500
	5254200	4207200
	5766400	4127400
	6038500	46701.00
	5772900	3886900
	5635800	3691400

Backscatter@22.0', $30^{\circ} 109$
$5.562^{\prime \prime}$ collimator 128
124
121
Backscatter @ $13.75^{\prime \prime}, 40^{\circ} 110$
$5.312^{\prime \prime}$ collimator 113
103
106
Backscatter@18.75", $50^{\circ} 57$
$7.562^{\prime \prime}$ collimator 66
61
67
$\begin{array}{cc}\text { Backscatter @ } 15.94^{\prime \prime}, 60^{\circ} & 95 \\ 5.875^{\prime \prime} \text { collimator } & 93\end{array}$

17.1.1.3 Concrete

LOCATION
TLD READING

	SQUARE	ROD
Beam collimator exit	6652900	5511400
	7201600	5400800
	7273400	5491600
	6833100	4900200
	5935200	5399400
	6879300	5290200
Backscatterer position	494800	339100
	443500	357800
	419800	236600
	487700	308600
	457300	347800
	442000	319100
Background @ 43.25', 30 $12.0^{\prime \prime}$ collimator	7	6
	8	5
	7	4.
	7	5
Background 0 35.6211, 45° $9.875^{\prime \prime}$ collimator	5	3
	4	4
	4	3
	4	3
Background @ 37.88', 60° $14.625^{\prime \prime}$ collimator	5	
	4	
	- 5	
	4	
Beam collimator exit	6198700	5268500
	6530300	5026100
	6062200	4752500
	6098000	5049600
	6217100	4602700
	6793000	5323200
Backscatter @ 43.25' , 30 ${ }^{\circ}$ $12.0^{\prime \prime}$ collimator	17	13
	18	13
	18	14
	22	13

LOCATION
TLD READING
SQUARE ROD
Backscatter@35.62 ${ }^{\prime \prime}$, 45°
23
24
21
17 9.875" collimator

22
18
22 19

Backscatter @ 37.88' 60°
13
11
14.625' collimator 13

12
13
9
10
9
17.1.2 Copper absorption in beam

DEPTH IN COPPER
2.00 inches146137

124
1.50210

215
195
226
1.25315

340
330
295
$1.00 \quad 474$
431
457
471
$0.875 \quad 531$
475
487
546
$0.75 \quad 625$
669
670
622
0.625

724
684
735
662
0.50

936
930
949
904
$0.25 \quad 1700$
1605
1619

17.1.3 Infinite size determinations
 (All measurements in this section were made with a $3.75^{\prime \prime}$ collimator)

17.1.3.1 Lead

17.1.3.1.1 $4^{\prime \prime}$ square, $1.75^{\prime \prime}$ thick

LOCATION
TLD READING

	SQUARE	ROD
Beam collimator exit	6480700	
	5735200	
	5710500	
	6423100	
	5356600	
	5896500	
	5548300	
	5576500	
	5777500	
	910000	
	822600	
	963500	
	970600	
	971400	
864200		
	909700	
	886600	
	930300	

Background @ 33.88', 30°

Background @ $28.62^{\prime \prime}, 45^{\circ}$

9
7
8
7

Background @ 23.38', 45
7
8
9
8
Backyround @ $22.56^{\prime \prime}, 60^{\circ}$ 10

7
7
9

Beam collimator exit | | 6029600 |
| :--- | :--- |
| 6202700 | |
| 6405100 | |
| | 6472100 |
| | 6093800 |
| 5930100 | |
| | 6368300 |
| | 6094400 |
| | 6025500 |

Backscatter@33.88", 30°
17
1.7

18
17
Backscatter @ $28.62^{\prime \prime}, 45^{\circ} 20$
21
18
20
Backscatter@23.38', 45°
28
25
27
27
Backscatter @ 22.56', $60^{\circ} 28$
29
27
28

LOCATION

TLD READING
SQUARE ROD
Beam collimator exit 43383003227500
42218004391000

$$
4206300
$$

$$
4361400
$$

$$
4246000
$$

$$
4084.100
$$

$$
4298800
$$

Backscatterer position 604700 568600 629200
590600 662900

$$
603800
$$

$$
616200
$$

$$
646700
$$

$$
578400
$$

Background @ $31.52^{\prime \prime}, 30^{\circ}$ 9
Background @ $23.81^{\prime \prime}, 45^{\circ}$ 7878
Background @ 24.81", 45° 1010109
Background @ 20.75', 60° 6

LOCATION

TLD READING
SQUARE ROD
Backscatterer position 4336800
Backscatter@31.52", 30° 14131415
Backscatter @ 23.81", 45° 21
19
Backscatter@ $24.81^{1 i}, 45^{\circ}$ 19181.7
19
Backscatter@20.75", 60° 202021

```
17.1.3.1.2 \(6^{\prime \prime}\) square, \(1.75^{\prime \prime}\) thick
```


LOCATION

	SQUARE
Beam collimator exit	
	4459000
	4196600
	4296100
	4167300
4559700	
	3959300
	4540100
	4407900

Background @ 34.19 $9^{\prime \prime}, 30^{\circ}$

Background @ $28.50^{\prime \prime}, 45^{\circ}$
Background @ $22.69^{\prime \prime}, 60^{\circ}$! 7
Beam collimator exit 4219700
Backscatter @ 34.19, 30° 11

LOCATION

Backscatter @ $28.50^{\prime \prime}, 45^{\circ}$

Backscaiter@ 22.69', 60° 17

Beam collimator exit 5359200
5500800
54.62800

5240900
5527500
5448500
4800700
5607800
51.53100

Backscatterer position
878800
868000
835500
790600
660800
933600
845400
836900
869100
Background @ 31.75'1, 30 38
33
35
38
Background @ 24.19' , 45 33 31 36
34

ROD
Background @ $24.25^{\prime \prime}, 45^{\circ} 38$
33
42
33
Background @ 21.06'1, 60° 30
25
34
29
Beam collimator exit
6368200
5437800
6056400
5269500
5870700
5435900
5563100
6483500
5944600
Backscatter@31.75', 30° 4235

39
44
Backscatter @ $24.19^{\prime \prime}, 45^{\circ} 53$
48
57
46
Backscatter@24.25', 45 ${ }^{\circ} 45$
56
46
56
Backscatter@21.06", 60 ${ }^{\circ} \quad 51$
17.1.3.1.3 $7^{\prime \prime}$ square, $1.75^{\prime \prime}$ thick

LOCATION

TLD READING
SQUARE
ROD
Bean collimator exit 5975100 6275500
5638400
6404600
6070900
6045900
Backscatterer position
932500
887500
877800
936400
857800
919500
Background @ 30.25'1, 30°
4
4
5
5
Background @ $14.50^{\prime \prime}, 45^{\circ}$
6
5
5
5
Background @ 19.62", 60°
5
5
5
Beam collimator exit
6319100 6396400 6025800 5905400 6037000
5949100
Backscatter: @ 30.25", $30^{\circ} 16$ 15 16

LOCATION

TLD READING

ROD
Backscatter @ 14.50', $45^{\circ} 76$
72
82
67
Backscatter @ 19.62', 60°. 30 31 30 31

Beam collimator exit 4340400

Backscatterer position 765200
727900
649500
611600
642000
643000
Background @ 30.06 ${ }^{\prime \prime}$, 30°3

Background @ $14.56^{\prime \prime}, 45^{\circ} 4$

Background @ 19.19', 60°4

LOCATION

TLD READING

Beam collimator exit
4331500
4635500 4360300 490.1400 4468100
4365400
Backscatter @ 30.06", 30° 11
Backscatter@14.56', 45° 55
Backscatter @ $19.19^{1 i}, 60^{\circ}$ 20

Beam collimator exit
4843000
4631300
5108500
5079200
5375700
5163500
Background @ $29.50^{\prime \prime}, 30^{\circ}$ 13
14
1315
Background @ $23.69^{\prime \prime}, 45^{\circ}$ 202123

ROD
5191800
5565100
5472400
5284500
5187600
5522000
Backscatter@29.50', 30 16
15
17
16
Backscatter@23.69', 45°
22
19
21
22
Backscatter @ 21.38'1, 60 21
22
20
21
17.1.3.1.4 $8^{\prime \prime}$ square, 1.75' thick

LOCATION

TLD READING
SQUARE
ROD
Beam collimator exit 5788300
5680300
4898800
5905100
5762300
5975700
6004600
6101300
5492500
Backscatterer position 890800
834800
859700
881500
821100
855800
928200
876500
902300
Background @28.81', $30^{\circ} \quad 7$
7
5
Background @ $22.38^{\prime \prime}, 45^{\circ}$

Background @ $25.00^{\prime \prime}, 45^{\circ}$
5
6
5
5
Background (20.19 $: 60^{\circ} \quad 8$
8
7

LOCATION

TLD READING
SQUARE
ROD
Beam collimator exit
5997300
5886400
5027700
5736700
5675700
6063900
6047700
5976200
5587300

Backscatter @ $28.81^{\prime \prime}, 30^{\circ}$ 1.9

18
18
17
Backscatter@22.38', 45° 29 31 26 30

Backscatter @ $25.00^{\prime \prime}, 45^{\circ} 24$ 20
23 21

Backscatter @ 20.19", $60^{\circ} 30$
30
30
26
Beam collimator exit 3903800
4244200
4322700
3935000
4122800
4436200
4122900
SQUARE ROD
Backscatterer position 645500627300
Background @ $31.62^{\prime \prime}, 30^{\circ}$566
Background @ 24.12 ${ }^{\prime \prime}$, 45 ${ }^{\circ}$ 565
liackeround @ 24.06 ${ }^{1 i}$, 45 9778
Background @ $21.25^{\prime \prime}, 60^{\circ}$ 6
6
Beam collimator exit 41933004131300
Backscatter@31.62", 30° 12
LOCATION TLD READING
SQUARE ROD
Backscatter @ 24.12 ${ }^{\prime \prime}$, 45° 18181920
Backscatter@24.06 ${ }^{11}$, 45° 20161820
Backscatter @ 21.25'1, 60 19
19
1918
17.1.3.1.5 $10^{\prime \prime}$ square, $1.75^{\prime \prime}$ thick

LOCATION
TLD READING
SQUARE
ROD
Beam collimator exit 4201500 4177300 3034800 4.124500 4347900 4341200 4400100 4033000 4202100

Backscatterer position 604400 695200 699000 622300 689900 646900 444900

Background @ 29.00" $.30^{\circ}$ 4

Background @ $22.50^{\prime \prime}, 45^{\circ}$
4
4
4
3
Background @ 25. $25^{\prime \prime}$, 45°

Background @ 20.12', 60°

LOCATION

TLD READING

SQUARE
 ROD

Backscatter@29.00", 30 14131213
Backscatter @ $22.50^{\prime \prime}, 45^{\circ}$ 22
Backscatter@25.25', 45 14151514
Backscatter @ 20.12", 60° 202218

Beam collimator exit
5374900
4996800 5753600 5252100 5641.100 5262100 5681400

Backscatterer position
840100
838100
841500
824400
787500
882900
806000
Background @ 31.00 ${ }^{\prime \prime}$, 30° 9

Background $023.75^{\prime \prime}, 45^{\circ} \quad 7$
6
7
6
Background © $23.62^{\prime \prime}, 45^{\circ}$ 9

9
9
10
Background $21.00^{\prime \prime}, 60^{\circ}$ 8 7 8
8
Beam colijmator exit 3943200 4709400 5036200 5343500 5.500300 5866100 4646300 5543300

Backscatter @ 31.00" 30° 12 1.4 1.3

17

Backscatter @ $23.75^{\circ}, 45^{\circ} 25$
25
25
25
Backiscatter @ 23.62', 45° 2526

$$
27
$$

$$
28
$$

Backscatter $\varliminf_{21.00^{\prime \prime}: 60^{\circ}}$ 262325
17.1.3.1.6 $12^{\prime \prime}$ square: $1.75^{\prime \prime}$ thick

LOCATJON
TLD READING

	SQUARE
Beam collimator exit	
	4179500
	4103400
	2933900
	3718700
	4084000
Backscatterer posjtion	3795400
	569500
	584200
	664100
	665200
	582000
	507100

Background (1) $29,44^{\prime \prime}, 30^{\circ}$
2
3
3
3

Background @23.69', $45^{\circ} 3$
2
2
3
Background @ $21.62^{\prime \prime}, 60^{\circ} 3$
3
3
2
Beam collimator exit
4044700
4204900
4234200
4302300
4395000
3998900
Backscatter $029.44^{\prime \prime}, 30^{\circ}$

1,OCATI.ON
TLD READING
SQUARE
ROD
Backscatter@23.69'1, 45 ${ }^{\circ} \quad 18$
15
16
15
Backscatter @ $21.62^{\prime \prime}, 60^{\circ}$. 15 15
14 15

Beam collimator exit 5846700
4800800 6307000 5969500 5717500 5906000

Backscatterer position 982300 913400 890300
969600
851400
807200
Background e29.25": 30°

Background @ $23.50^{\prime \prime}, 45^{\circ}$

Background @ 21.25', 60°

4
4
4
SQUARE ROD
Beam collimator exit 551440053274005356800505640054166006150900
Backscatter@29.25: 30 15171615
Backscatter: @ $23.50^{\prime \prime}, 45^{\circ}$ 23222120
Backscatter @ $21.25^{1 i}, 60^{\circ}$ 22212624

17.1.3.1.7 $9^{\prime \prime}$ square, $0.25^{\prime \prime}$ thick

LOCATION
TLD READING

	SQUARE	ROD
Beam collimator exit	5916900 6950400 6050700 6588100 6425800 6919600 6147500 6719600 6291300	
Backscatterer position	$\begin{array}{r} 910900 \\ 923000 \\ 1058500 \\ 1051600 \\ 1049700 \\ 1037200 \\ 993000 \\ 961500 \\ 819400 \end{array}$	
Background @ 27.62\%, 30°	9 7 8 9	
Background @ 11.81.', 45°	$\begin{aligned} & 11 \\ & 10 \\ & 11 \\ & 11 \end{aligned}$	
Background @ 12.69', 60°	$\begin{aligned} & 13 \\ & 12 \\ & 10 \end{aligned}$	
Beam collimator exit	$\begin{aligned} & 5619800 \\ & 5128300 \\ & 5539300 \\ & 5371900 \\ & 5625800 \\ & 5852100 \end{aligned}$	

LOCATION
 TLD READING

SQUARE
ROD
Backscatter@27.62', 30 21 22
23
21
Backscatter @ 11.81', 45°. 141
132
132
126
Backscatter@12.69'1, $60^{\circ} 100$
85
88
77
17.1.3.1.8 $g^{\prime \prime}$ square, $0.50^{\prime \prime}$ thickTILD READING
SQUARE ROD
Beam collimator exit 616540062509006426700

$$
49.38000
$$

$$
5716300
$$

$$
6004100
$$

$$
5386200
$$

$$
6356600
$$

$$
5807800
$$

Backscatter @ $27.69^{\prime \prime}$; 30° 20161819
Backscatter@11.88', 45° 125
119
12012.1
Backscatter @ $12.75^{\prime \prime}, 60^{\circ}$ 8286
97
96
17.1.3.1.9 $\quad 9^{\prime \prime}$ square, $0.625^{\prime \prime}$ thick

LOCATION
TiD READING
SOUARE ROD
Beam collimator exit 3752400
4125300
3733100
40581.00

4217800 4681900

Backscatterer position 654100 649600 677700 628500 663000 719200

Background @ $30.00^{\prime \prime}, 30^{\circ}$

Background @ $14.50^{\prime \prime}, 45^{\circ} 5$

Background @ $19.25^{\prime \prime}, 60^{\circ} 5$

Beam collimator exit 5282000
4378000
4194200
4571100
4700800
3526000
4965600
4971200
4746300

LOCATION

TLD READING
SQUARE
ROD
Backscatter@30.00 ${ }^{\prime \prime}, 30^{\circ} 15$
14
13
16
Backscatter (0) $14.50^{\prime \prime}, 45^{\circ} 63$
68
60
80
Backscatter@19.25",60 97
88
96
89

17.1.3.1.10 $9^{\prime \prime}$ square, $0.75^{\prime \prime}$ thick

LOCATION

SQUARE ROD
Beam collimator exit 56475005997300

$$
5950300
$$

$$
5605700
$$

$$
5674900
$$

$$
6240300
$$

Backscatter@27.75', 30° 18
16
1816
Backscatter@11.88', 45° 122112107103
Backscatter: @ $12.75^{\prime \prime}, 60^{\circ}$ 84938883

```
17.1.3.1.11 \(9^{\prime \prime}\) square, \(1.00^{\prime \prime}\) thick
```

LOCATION
TLD READING

	SQUARE
Beam collimator exit	
	4485400
	4179200
	4005100
	3742500
	3981100
	4060800
	4076500
	4165300
Backscatterer position	2964900
	565400
	698200
	718800
	656700
	803100
	600100
	589100
	829100
	628200

Background @ 27.69'1, $30^{\circ} 3$

Background @ 9.56", 45 ${ }^{\circ} 5$
5

Background 1.1.31", $60^{\circ} 5$

LOCATION
TLD READING
SQUARE ROD
Beam collimator exit 4668400
4274200 3947400 42.91300 4290500 4700800 4788000 4392200 3911400
Backscatter @ $27.69^{1 i}, 30^{\circ}$ 14
Backscatter @ 9.56'". 45° 109109116
Backscatter@11.31'1. 60 150174152
17.1.3.1.12 $9^{\prime \prime}$ square, 1.25" thick
LOCATION TLD READING
SQUARE ROD
Beam collimator exit 37727003903400461130041823003993800417330040050004161500
4031800
Backscatter @ 27.5", 30 22171714
Backscatter@9.44, 45° 145
159
164
169
Backscatter © $11.25^{\prime \prime}, 60^{\circ}$ 87
9190
17.1.3.1.13 $9^{\prime \prime}$ square, 1.375^{11} thick
LOCATION
TLD READING
SQUARE ROD
Beam collimator exit 4126300443010041408004292500

$$
4035800
$$

$$
4127300
$$

$$
4435600
$$

Backscatter@27.62', 30° 141314
14
Backscatter@11.81', 45° 899781.83
Backscatter@12.75', 60° 54
59
5459
17.1.3.1.14 $\quad 9^{\prime \prime}$ square, 1.50' thick

LOCATION
TID READING

	SQUARE	ROD
Beam collimator exit	6701400 6936700 5921000 6825300 6357500 6108500 6636100 6145900 6254900	
Backscatter@31.12', 30°	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 1.5 \end{aligned}$	
Backscatter @ $23.62^{\prime \prime}, 45^{\circ}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \\ & 26 \end{aligned}$	
Backscatter@9.19', 45°	$\begin{aligned} & 280 \\ & 284 \\ & 265 \\ & 278 \end{aligned}$	
Backscatter@ $20.62^{\prime \prime}, 60^{\circ}$	27 26 28 24	
Beam collimator exit		4754300 4658300 4515900 3268600 4135600 4261100 4784200 4752400 4770900

LOCATION

TLD READING
SQUARE ROD
Backscatter@31.38', 30° 17201920
Backscatter @ $23.88^{\prime \prime}, 45^{\circ}$ 18191918
Backscatter@9.62, 45° 167163166169
Backscatter@20.75", 60 1012
11

```
17.1.3.1.15 9'' square, 1.75' thick
```


LOCATION

SQUARE ROD
Beam collimstor exit 4041000
Backscatterer position 627100 649200 637800
Background @ 31.62', 30° 9
Background @ $23.75^{\prime}, 45^{\circ}$ 109810
Background @ $24.75^{\prime \prime}, 45^{\circ}$ 10141110
Background @ $20.75^{\prime \prime}$, 60° 9

TLD RFADING

	SQUARE	ROD
Beam collimator exit	6049200	2743000
	6133600	3734900
	5863600	3852000
	5548900	4067500
	5993500	3596500
	6285000	3694200
	4933000	4059500
	5010500	3680000
	5330600	4217300
Backscatter $31.62^{\prime \prime}, 30^{\circ}$	19	15
	10	14
	19	15
	17	15
Backscatter@23.75', 45°	28	23
	27	24
	25	21
	30	20
Backecatiter $24.75^{\prime \prime}, 45^{\circ}$	28	21
	26	20
	28	21.
	29	31
Backscatter (9) $20.75^{\prime \prime}, 60^{\circ}$	27	23
	27	20
	28	24
	30	23

1.7.1.3.1.16 $9^{\prime \prime}$ square, 2.00" thick
TLJ READING
SQUAREROD
Beam collinator exit 6347700

$$
6077600
$$

$$
6247200
$$

$$
5567900
$$

$$
5849600
$$

$$
6068000
$$

$$
6296200
$$

$$
6619700
$$

$$
6183200
$$

Backscatterer position 950500 940300

$$
1019600
$$

$$
902100
$$

$$
982000
$$

$$
960200
$$

$$
1013400
$$

$$
986100
$$

$$
1070800
$$

Background @ $31.25^{\prime \prime}, 30^{\circ}$4
Background @ $23.75^{\prime \prime}, 45^{\circ}$3Background @ 9.38' ; 45°6
Background @ 20.69', 60 ${ }^{\circ}$4
3
4
4

	SQUARE	ROD
Backscatterer position	6632000 6615100 6515000 6960200 5833500 6599500 6472200 6512000 6562600	
Backscatter@31.25', 30°	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 16 \end{aligned}$	
Backscatter@23.75', 45°	$\begin{aligned} & 29 \\ & 26 \\ & 26 \\ & 26 \end{aligned}$	
Backscatier @ 9.388, 45°	$\begin{aligned} & 274 \\ & 254 \\ & 262 \\ & 276 \end{aligned}$	
Backscatter@20.69', 60°	$\begin{aligned} & 27 \\ & 29 \\ & 29 \\ & 29 \end{aligned}$	

17.1.3.2 Iron

17.1.3.2.1 $12^{\prime \prime}$ square, $2.50^{\prime \prime}$ thick

LOCATION

TLJ READING
SQUARE
ROD
Beam collimator exit
5921000
6044000
6743200
5603200
5559900
.5983400
Backscatterer position
976400
998400
920800
885100
94.1100

944700
Background $929.31^{\prime \prime}, 30^{\circ}$

Background @ $23.94^{\prime \prime}, 45^{\circ}$

Background @ $21,62^{\prime \prime}, 60^{\circ}$

4

Bean collimator exit
6001300
6251800
5811000
6397600
6302500
6274500SQUAREROD
Backscatter@29.81", 30° 44444447
Backscatter@23.94', 45° 6056
6554
Backscatter@21.62", 60° 54
695960
Beam collimator exit 4371100
Backscatterer position 719000729000715100
750300
742900719700
Background @ 29.06'. 30° 655
Background @ 23.1.9', 45 6
Background @ $21.06^{\prime \prime}$, 60° 56
SQUARE ROD
Beam collimator exit 4355700
Backscatter @ 29.06 ${ }^{\prime \prime}, 30^{\circ}$ 36413637
Backscatter@23.19 1 , 45° 4144
Backscatter@21.06",60 47475049
17.1.3.2.2 $14^{\prime \prime}$ square, 2.50" thick

LOCATION
TLD READING

	SQUARE	ROD
Beam collimator exit	$\begin{aligned} & 6231400 \\ & 6030300 \\ & 6646900 \\ & 5419100 \\ & 5863700 \\ & 5731600 \end{aligned}$	
Backscatterer position	$\begin{array}{r} 862900 \\ 847400 \\ 1053700 \\ 890200 \\ 890600 \\ 850000 \end{array}$	
Background @ 29.81'", 30°	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
Background @ 23.94' , 4.5 ${ }^{\circ}$	5 6 5 5	
Background @ 21.62', 60	$\begin{aligned} & 6 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	
Beam collinator exit	$\begin{aligned} & 6250400 \\ & 562.2600 \\ & 61.92700 \\ & 5500100 \\ & 5324600 \\ & 5860800 \end{aligned}$	
Backscatter @ 29.81', $30{ }^{\circ}$	$\begin{aligned} & 44 \\ & 39 \\ & 45 \\ & 51 \end{aligned}$	

Backscatter@23.94', $45^{\circ} 55$ 59 60
51.

Backscatter@21.62", $60^{\circ} 55$
58
62
52
Beam collimator exit 4511300
5059300
4631200
4763700
4406900
4441300
Backscatterer position 649200 711600 769800 752000 651700 721300

Background @ 30', 30°

Background @ 24.1.2" $45^{\circ} 3$

ROD
Background @ $21.75^{\prime \prime}, 60^{\circ} 3$

Beant coljimai.ur exil

Backscatter@30'1, 30°
Backscattor @ 24.12", 45° 4737
Backscatter@21.75", 60° 45
17.1.3.2.3 $12^{\prime \prime}$ square, 4.125" thick

LOCATION

TLD READING

	SQUARE	ROD
Beam col.1imator exit	6789100	4239600
	6265300	4514800
	5710000	4660900
	6600800	4692200
	61.63500	4731100
	5774700	4257500
	884700	726300
	1042700	766300
	937200	771500
	1011600	748400
	916400	648500
	965500	721300

Background @ 29.06 ${ }^{\text {i }}, 30^{\circ}$
6
6
6
7
6
6
3
6
3
6
3
6
3

Background @ $21.06^{\prime \prime}, 60^{\circ}$
6
3
6
3
7
4
7
3
Beam collimator exit
6597300
6625100
4156200
6235700 4457600

6021100 5006200 4402900
6069700 4976000
5870100 4153200

Backscatter @ 29.06', 30°
55
33
$50 \quad 36$
$53 \quad 39$
54
35
LOCATION TLD READING
SQUARE ROD
Backscatter@23.19', 45° 63 47
70 41
65 45
71 41
Backscatter @ $21.06^{11}, 60^{\circ}$ 67 46
73 39
76 47
64 47

17.1.3.3 Concrete

17.1.3.3.1 $32^{1 i}$ square, $8^{\prime \prime}$ thick

LOCATION
TLD READING

	SQUARE	ROD
Beam collimator exit	5344300	
	5936900	
	5568300	
	5857700	
	6239600	
Backscatterer position	6449500	
	965900	
	899800	
	863800	
	835200	
	1004700	
	778700	

Background @ $28.94^{\prime \prime}, 30^{\circ}$
4
3
4
4

Background @ 21.75', $45^{\circ} 3$
4
5
5
Background @ $19.50^{\prime \prime}, 60^{\circ} \quad 6$
5
5
5
Beam collimator exit $\begin{array}{ll}5941900 \\ & 5607600 \\ & 5808100 \\ & 5559900 \\ & 5841800 \\ & 5549200\end{array}$
Backscatter (a) $21.75^{\prime \prime}, 45^{\circ}$ 6176

78 60

Backscatter@19.50', 60° 67 78 60
78
Beam collimator exit
4596400
4531300
4297800
4185600
4420200
4117400
Backscatterer position
7031.00

675700
62.1000

630600
635300
686400
Background @ $27.88^{\prime \prime}, 30^{\circ}$

Backeround © $22.75^{\prime \prime}, 45^{\circ} 3$
Background © $19.06^{\prime \prime}, 60^{\circ}$ 3

SQUARE ROD
Beam collimator exit 4640200 4127400 4381200 4009500 4181000 4214400

Backscatter@27.88' 30° 33 33 37 34

Backscatter @ 22.75', $45^{\circ} \quad 42$ 28
36 43

Backscatter@19.06", $60^{\circ} 32$ 45 41

42
17.1.3.3.2 $36^{\prime \prime}$ square, $8^{\prime \prime}$ thick

LOCATION
TLD READING

	SQUARE
Beam collimator exit	ROD
	4198600
	4570500
	4442700
	4005500
	4179900
	4521700
Backscatterer position	715900
	705000
	697800
	724800
	753700
	594500

Background @ $27.94^{\prime \prime}, 30^{\circ}$

Background @ $21.56^{\prime \prime}, 45^{\circ}$
3

Background @ $18.0^{\prime \prime}, 60^{\circ} 4$
4
3
4
Beam collimator exit 4282000
3797100
4208300
3806000
3898800
4334500
Backscatter@27.94, $30^{\circ} \quad 37$
39
42
35

SQUARE

ROD
Backscatter@21.56'1, 45 37
49
42
Backscatter@18.0 $0^{\prime \prime}, 60^{\circ}$ 4653
53

Beam collimator exit | 6023700 | |
| :--- | :--- |
| 6046600 | |
| 5825700 | |
| 6223000 | |
| | 6057000 |
| | 6436900 |

Backscatter@29.12", 30° 47
52
Backscatter@21.75', 45° 606673
50
Backscatter@19.62", 60° 477366
17.1.3.3.3 $32^{\prime \prime}$ square, $10^{\prime \prime \prime}$ thick
LOCATION

TLD READING
SQUARE
5540300
5393900
4830500
5329600
5248900
5949500

Backscatterer position
 752200

880800
927200
819900
943800
884700
Background @ $27.81^{\prime \prime}: 30^{\circ}$
4
4
4
5
Background @ 22.81", $45^{\circ} \quad 4$
6
5
5
Background @ 19.19', 60° 5 5
6
4
7
Beam collimator exit 5922200
5234.100

5672000
5804900
5689700
5539400
Backscatter @ 27.81", $30^{\circ} 58$
46
54

LOCATION

TLD READING
SQUARE ROD
Backscatter @ 2.2.81", 4.5° 63484362
Backscatter@19.19", 60° 67734945
Beam collimator exit 3848500
Backscatter @ 27.88'1, 30° 31
36
3335
Backscatter @ $22.70^{\prime \prime}, 45^{\circ}$ 294635
41
Backscatter@18.94.1, 60° 41433035
17.1.4 Beam divergence

HORIZONTAL DISPLACEMENT (inches)	TLD READING	
	Right of Center	Left of Center
17	72700	74857
	67600	71800
12	78900	68500
	72300	60300
10	80300	68600
	74600	76500
8	68500	69600
	67700	65400
6	83100	97300
	78300	81100
5	73000	88900
	80700	75900
4	84700	88400
	84600	78600
3	73900	89800
	79800	77800
2	71600	83700
	81900	73600
	82400	76100
	87300	73400
1	87300	84200
	77300	59700
	84400	80100
	78800	71000
Center		

	Above	Below
	Center	Center
17	47500	62700
	66500	70900
12	66700	74700
	64.100	72500
10	70200	61500
	62500	76000
8	79800	73200
	77500	79800
6	74300	84400
	86000	83400
5	89100	81500
	72300	89500
4	83100	78000
	79400	69100
3	71200	91600
	74500	81900
2	74900	85900
	76500	74600
	82800	72400
	86800	80300
1	83800	86900
	76800	73600
	77800	75200
	81000	87400

$17.2 \quad 3.5 \mathrm{MeV}$

17.2.1 Backscatter

17.2.1.1 Lead

LOCATION

TLD READING

	SQUARE	ROD
Beam collimator exit.	2110900	1964900
	2495600	1.755300
	2536900	1706400
	2320000	1719600
		1952500
		1878500
Backscatterer position	450300	317600
	455700	265100
	405900	283200
	422300	340500
	440600	330900
	341300	324700

Background @ $23.00^{\prime \prime}, 30^{\circ} 14$
$5.625^{\prime \prime}$ collimator 15
14
16
Background @ $20.38^{\prime \prime}, 40^{\circ} \quad 15$
5.562." collimator 15

17
17
Background @19.00 ${ }^{\text {it }} 50^{\circ} 7$
$6.25^{\prime \prime}$ collimator

8
8
9

Background @ $18.38^{\prime \prime}, 60^{\circ} \quad 8$
8.00^{11} collimator 9
9

TLD READING

	SQUARE	ROD
Beain collimator exit	2452300	1775900
	2298700	1558600
	2381000	1633600
	2372300	1636500
	2328600	1923500
	2611600	1754700

Backscatter @ $23.00^{\circ}, 30^{n}$ 91
$5.625^{\prime \prime}$ collimator 828783
Backscatter@20.38', 40° 169
5.562" collimator 1421.45
Backscatter @ $19.00^{\prime \prime}, 50^{\circ}$ 71
6.25" collimator 76
Backscatter @ 18. $38^{\prime \prime}, 60^{\circ}$ 53
8.00" collimator 5246

Beam collimator exit	3976400	2914600
	3649700	2657500
	3854800	2797900
	3818900	2551600
	4013500	2677800
	4185700	2890900

5.562" collimator 168158170
Backscatter@20.50'1, 40° 147
5.625" collimator 133
135122

Backscatter@19.50'1, 50° 104
7.00^{11} collimator 104 107 102

Backscatter @ $19.00^{\prime \prime}, 60^{\circ} 47$
$7.812^{\prime \prime}$ collimator 49

17.2.1.2 Iron		
LOCATION	TLD READING	
	SQUARE	ROD
Beam collimator exit	2234100	1585700
	2491000	1539800
	2422900	1767900
	2414300	1775000
	2302900	1720900
	21.44800	1721900
Backscatterer position	456000	283300
	472300	330500
	388100	279200
	392700	270700
	393700	309200
	419700	2791.00
Background @ $23.25^{\prime \prime}, 30^{\circ}$ 5.562 ${ }^{1 i}$ collimator	16	
	15	
	14	
	14	
Background 19.94", 40° 5.625" collimator		14
		12
		13
		14
Background @ 19.62 ${ }^{\text {II }}, 50^{\circ}$ $7.00^{\prime \prime}$ collimator		
	7	
	7	
	8	
Background @ $18.38^{\prime \prime}$, 60° $7.75^{\prime \prime}$ collimator		6
		5
		6
		5
Beam collimator exit	2716600	1810900
	2612100	1681200
	2095900	1963700
	2544700	1817400
	2318800	1556000
	2477800	2055600

LOCATION
TLD READING

Backscatter @ $23.25^{\prime \prime}, 30^{\circ} \quad 78$
5.562" collimator 72 72 73

Backscatter@19.94', $40^{\circ} 51$ 5.625" collimator 53 56 53

Backscatter@19.62", $50^{\circ} 45$
$7.00^{1 i}$ collimator 45
43
45
Backscatter @ $18.38^{\prime \prime}, 60^{\circ} \quad 26$
7.75' collimator 26

Beam collimator exit
4003300
2977500
4064600
3253100
4016400
3127600
$4648500 \quad 3335900$
4248900
3030000
4224100
2967700
Backscatter@23.00 ${ }^{\prime \prime}$, 30° 79
$5.625^{\prime \prime}$ collimator 78
Backscatter @ 20.50'1, 40° 119
5.50" collimator 120
Backscatter @ $19.38^{i 1}$, 50° 63
6.25' collimator 58

LOCATION

TLD READING
SQUARE
ROD

46
52
43
4.6

17.2.1.3 Concrete

LOCATION
TLD RFADING
SQUARE
ROD
Beam collimator exit
6728400
6899900
5948600
6285400
6032700
6651100
Backscatterer position
795200
868500
890300
820300
860800
748800
Background @ $25.00^{\prime \prime}, 30^{\circ}$
244
$6.25^{\prime \prime}$ collimator 236
202
244
Background @23.25', 45 $\quad 15$
$7.50^{\prime \prime}$ collimator 15
14
16
Background @ $26.00^{\prime \prime}, 60^{\circ} 16$
$9.362^{\prime \prime}$ collimator 18
18
18
Beam collimator exit
5525800
5793600
5202400
5823000
5923800
5730600

Backscatter @ 25.00' $30^{\circ} 343$
$6.25^{\prime \prime}$ collimator 350
352
292
Backscatter @ 23.25', $45^{\circ} 73$
7.50" collimator

65
71
71
Backscatter@26.00'1, 60 ${ }^{\circ} 55$
$9.562^{\prime \prime}$ collimator 48
51
53

17.2.2 Copper absorption in beam

DEPTH IN COPPER (inches)

TLD READING
SQUARE
ROD
107

- 101.

1.75

274

300
267
2.63

1. 50

203
315
284
256

1.25

612

600
623
625
1.125 507

424
530
579
1.00

1001
1.078

1044
1251
0.875

935
895
1074
782
0.75

589
549
397
493

SQUARE ROD
1434
1471
1897
1407
0.50
$0.25 \quad 2701$.
274.1

3731
2625
0.1252036

1474
1941
1652
0.0
634.7

3251
4788
2622
615 ?
2951.

50823172
2.50

5372
6499
6325
5872
1.75

9475
8744
9581
9127
$1.50 \quad 5815$
5708
5669
5874

DEPTH IN COPPER
TLD READING
(inches)

SQUARE	ROD	
1.25	11.787	
	10808	
	10718	
1.125	11374	6606
		7570
		7053

1.0012934

13678
11438
13270
0.87512772

11719
10241
1021.0
$0.75 \quad 4724$ 4300 4540 4544
$0.625 \quad 12911$
12860
13843
12652
$0.50 \quad 6702$
7314
6289
6272
0.25

12509
13163
13002
12130
DEPTH IN COPPERTLD READING(inches)
SQUARE ROD
0.125 54685118
4862

$$
5981
$$

0.0 14172 7555
13071 7779
1316.2 7910129267123

17.2.3 Beam divergence

HORIZONTAL DISPLACEMENT (inches)

TLD READING

RIGHT OF	LEFT OF CENTER
	CENTER
7910	7754
9001	9614
11405	11489
12020	11738
15072	14919
16898	15426
23222	22181
21290	24097
46807	49178
49645	50300
67144	71202
66511.	70743
67278	70632
70701	75019
74633	75900
74858	76889
75522	77582
72251	68331
75290	75996
75878	7964
82713	79453
80425	

VERTICAL DISPLACEMENT
TLD READING
(inches)

(inches)	SQUARE	ROD
18	21203	
	21520	
16	35552	44917
	35577	49274
14	52013	53497
	51043	50558
12	58143	5901.8
	58542	60972
10	64369	63785
	64483	62652
8	69170	68468
	68197	69632
6	73174	75902
	72310	75904
5	76880	73218
	72636	69605
4	75705	73732
	63805	69450
3	74771	75815
	77770	79808
2	79387	78059
	75922	74671
1	75352	84514
	78061	78408

316

$$
17.3 \quad 7.0 \mathrm{MeV}
$$

17.3.1 Backscatter
17.3.1.1 Lead

LOCATION
TILD READING
SQUARE ROD
Backscatterer position
802500543300
856600599000
$872200 \quad 604700$
820000581000
925400600200
832200622200
Background @ $26.94^{\prime \prime}, 30^{\circ}$
1618
$5.688^{\prime \prime}$ collimator
1605
1697
1608
Background @ 26.00 $0^{\prime \prime}, 40^{\circ} 1211$.
$5.625^{\prime i}$ collimator 1338
1387
1473
Background @ $26.50^{\prime \prime}, 50^{\circ} 101$
$6.50^{\prime \prime}$ collimator 87
95
93
Background e30.00', 60° 617
$9.312^{\prime \prime}$ collimator 509
Beckscatier@ 26.75', 30° 2078
$5.625^{\prime \prime}$ collimator 2104

SQUARE
ROD
2347
1919
2036
2359
Backscatter @ 25.88', $50^{\circ} \quad 401$
$6.50^{\prime \prime}$ collimator 354
413
382
Backscatter@29.32 ${ }^{\text {i }}, 60^{\circ} 205$
9.312" collimator 185

188
161
Backscatterer position
437400
303900
433600
323300
405200308600
401600
336200
440400
273900
475300 306700
$\begin{array}{cr}\text { Background @ } 24.12^{\prime \prime}, 30^{\circ} & 949 \\ 5.25^{\prime \prime} \text { collimator } & 942\end{array}$
$5.25^{\prime \prime}$ collimator 942
954
Background @ 23.9'1, 40° 107
$5.683^{\prime \prime}$ collimator 101
97119
Background e $27.50^{\prime \prime}, 50^{\circ}$ 68
$7.75^{\prime \prime}$ collimator 606963
Background @ $26.31^{\prime \prime}, 50^{\circ}$ 107
8.312" collimator 104

SQUARE
ROD
Backscatter @ $24.00^{\prime \prime}, 30^{\circ}$ 3679
$5.25^{1 i}$ collimator 3253
Backscatter@23.12", 40° 698
5.625' collimator 780
Backscatter @ $27.62^{\prime \prime}$, 50° 384
7.75" collimator 401.379359
Backscatter@26.50', 60° 166
8.31.2" collimator 194175

Backscatterer position	428900	303700
	406000	240900
	371200	299300
	424900	284700
	411800	271500
	374600	282700

5.2.5' collimator. 3272
31072882
Background @ 25.25', 40° 38
5.75" collimaťor 3937
39
Background @ 31.37", 50° 96
9.625" collimator 95101
Background @ 29.31', 60° 42
$10.312^{\prime \prime}$ collimator 42
Backscatter@26.12'1, 30 5235
$5.25^{\prime \prime}$ collimator 5233
Backscatter @ $25.25^{\prime \prime}, 40^{\circ}$ 455
5.75" collimator 395430 446
Backscatter@31.37', 50° 104
9.625^{1} collimator 107102
120
Backscatter @ $29.31^{1 i}, 60^{\circ}$ 95
$10.312^{\prime \prime}$ collimator 89
89
LOCATION
TLD READING $\times 10^{-3}$
Beam collinator exit 36093610
39603718

$$
3793
$$

$$
3716
$$

$$
3700
$$

$$
3527
$$

$$
3551
$$

$$
391.5
$$

Backscatterer position 870
873
885838860876887
878
826
880
Beam collimator exit 446941.96

$$
4366
$$

$$
4399
$$

$$
4366
$$

$$
4331
$$

$$
4230
$$

$$
4225
$$

$$
4332
$$

$$
4435
$$

Beam coliimator exit 23542430
21832378
238323312281
LOCATIONTLD READING $\times 10^{-3}$
Backscatterer position 457449450
470454470440443461

$$
443
$$

Beam collimator exit 4627
4707
4402467346334402
4714
44354501.4633
Beam collimator exit 234022512426
2281251023652417246024072448
Backscatterer position 431434468432422433
437
478426454

TLD READING $\times 10^{-3}$
Beam collimator exit 3335
3213
3369
3285
3326
3465
3197
3361
3554
3333

17.3.1.2 Iron

LOCATION
TLD READING

	SQUARE	ROD
Backscatterer posjition	385700	283500
	382000	260300
	373400	289600
	387700	265500
	373300	301800
	339900	262300

Background e $26.12^{\prime \prime}, 30^{\circ}$ 2162
5. $25^{\prime \prime}$ collimator 1012
Background $25.25^{\prime \prime}, 40^{\circ}$ 34
5.75' collimator 3333

$$
32
$$

Background @ 31.31"'s 50° 242
9.562^{11} collimator 261256276
Background @ 29.25', 60 50
$10.25^{\prime \prime}$ collimator 52
Backscatter @ 26.13', 30° 5544
$5.25^{\prime \prime}$ collimator 6137
Backscatter@25.25', 40 286
5.75" collimator 316274299

SQUARE
ROD

Backscatter@31.38'1, 50°
 56

$10.312^{\prime \prime}$ collimator 55
Backscatter @ 29.31", 60° 201
10.312" collimator 196
198
221
Backscatter@26.94 ${ }^{\prime \prime}$, 30° 3315
5.588" collimator 2720
30832990
Backscatter @ $26.00^{\prime \prime}, 40^{\circ}$ 1690
5.625" collimator 151416071653
Backscatter@26.50', 50° 190
$6.50^{\prime \prime}$ collimator 214210212
Backscatter@30.00" , 60 1690
9.312" collimator 151416071653

Backscatterer position	900400	544700
	799400	631.200
	844900	545200
	790600	581500
	782300	564000
	699300	549700

$5.25^{\prime \prime}$ collimator 1996

SQUARE
ROD
Background @ $23.29^{\prime \prime}, 40^{\circ} 220$
$5.688^{\prime \prime}$ collimator 216
243
234
Background @ 27.50", 50°. 142
$7.75^{\prime \prime}$ collimator 138
144
141
Background © $26.31^{\prime \prime}, 60^{\circ} 93$
$8.312^{\prime \prime}$ collimator 78
85
93
Backscatter @ 24.1.2 ${ }^{\prime \prime}$, $30^{\circ} 1823$
5.25^{11} colJimator 1710
1886
1681
Backscatter@23.1.9", $40^{\circ} 202$
5.688" collimator 245

235
255
Backscatter@27.50'1,50 148
$7.75^{\prime \prime}$ collimator 146
162
153
Backscatter@2.6.31', $60^{\circ} 54$
8.312" collimator 57

LOCATION

Beam collimator exit 2335
2301.

2153
2200
2234
2350
2106
2165
2304
2338
Backscatterer position 402
411 394 392 391 413 412 41.4 405 417
Beam collimator exit 51674985

$$
4607
$$

$$
4644
$$ 4364 4736 4401 4529 4955 4805

Beam collimator exit 4203 4161 4530 4399 4057 4533 4255 4609 4356 4468
LOCATION
Beam collimator exit 39603985

$$
4207
$$

$$
4057
$$

$$
42.00
$$

$$
4113
$$

$$
4059
$$

$$
4061
$$

$$
4212
$$

$$
3806
$$

Backscatterer position 859
779826811
1028778784
832
839787
Beam collimator exit 289828032898
2763292128312911282028622772
TID READING $\times 10^{-3}$
17.3.2 Beam divergence

HORIZONTAL DISPLACEMENT (inches)

TLD READING

VERTICAL DISPIACEMENT (inches)

TLD READING

ABIOVE	BELOW
CENTER	CENTER

2644
2380
3046
2977
3719
4237
5237
5373
5031
6248
8
5826
5996
7137
7287
7158
7209
4
7211
7334
6917 . 6987
7324
7248
$7298 \quad 7498$7498
Center 6181
$17.4 \quad 10.5 \mathrm{MeV}$

17.4.1 Backscatter

17.4 .1 .1 Leacl

LOCATION
TLD READING

	SQUARE	ROD
Beam collimator exit	17660000	12305100
	18324100	13899600
	16629900	14485700
	17724400	15152800
	19311000	15299200
	18328100	13829100
	3030500	2165400
	27839000	1935400
	2366200	2182000
	2665800	2084900
	2932900	2093900
	2680000	2360300

Background e $41.31^{\prime \prime}, 35^{\circ}$

8804
$6.68 \%^{\prime \prime}$ collimator
8590
7746
7623
Background @ 38.05', 40°
925
$6.00^{\prime \prime}$ collimator
865
879
983
Background @ 37.81", $50^{\circ} 203$
$11.062^{\prime \prime}$ collimator 190
189
190
Background © $36.19^{\prime \prime}, 60^{\circ} \quad 97$
$11.938^{\prime \prime}$ collimator 100

	SQUARE	ROD
Beam collimator exit	29242500	22386500
	30817500	20709700
	2.9099000	20747600
	31044800	20511500
	29386700	23246300
	30655700	21458700
Backscatto: © 41.21", 35° 6.688: collimator	10082	
	10426	
	8100	
	10262	
Backscatter@38.06', 40 6.00" collimator		2020
		2038
		1987
		1973
Backscatter @ 37.81", 50° 11. $062^{\prime \prime}$ collimator	438	
	457	
	480	
	494	
Backscatter@36.19", 60° 11.938" collimator		373
		358
		345
		362
Beam collimator exit	17920700	12099200
	16397300	13602500
	16555900	14372600
	16775800	13228100
	18253000	13852500
	17377700	11729900
Backscatterex position	5282200	3859000
	4642600	3606000
	4650800	3628700
	4992300	3921600
	4395900	3788200
	5129700	3418500

LOCATION

TLD READING
SQUARE
ROD
7549
Background @41.31", 35°
7152
7197
6599
Background @ 38.06" $40^{\circ} 1098$
$6.00^{\prime \prime}$ colimator
1185
1205
1019
Background @ $37.81^{\prime \prime}$, $50^{\circ} 189$
$11.062^{\prime \prime}$ collimator 203
191
199
Background @ 36.19 ${ }^{\prime \prime}, 60^{\circ} \quad 36$
11.938 colimator 30

38
32

Beam collimatcr exit	10244300	7354600
	11017200	6690200
	9046100	7605800
	9347100	8034600
	10427900	7375200
Backscatterer position	10059600	7196200
	1810800	1367700
	1879200	1385400
	1648200	1301200
	1382900	1161400
	1859700	1391600
	1819800	1318200

Background @ 60. $12^{\prime \prime}, 30^{\circ} 24$
$15.938^{\prime \prime}$ collimator 23

Background @ $45.88^{\prime \prime}, 40^{\circ} \quad 135$
$11.00^{\prime \prime}$ collimator 144
126
142

Background @41.06", $50^{\circ} 45$
$11.688^{\prime \prime}$ collimator
44
49
54
Background @ 38.38' , 60°
16
$13.75^{\prime \prime}$ col.1.mator 17
1.8

18
Beam collimator exit
7326900
6926400
6449900
6683500
6017000
6536300

4553100
4481000
5106700
4804700
5694500
4430900
Backscatter @ 60.12' , 30° 28
15.938" collimator: 25
Backscatter@ $45.88^{\prime \prime}, 40^{\circ}$ 163
$11.00^{\prime \prime}$ collimator 147
Backscatter@ 41.06 ${ }^{11}$, 50° 77
11.688" collimator 74
Backscatter@38.38", 60° 44
13.75' collimator 43

LOCATION

SQUARE ROD
Background (90.12 $60,30^{\circ}$
$15.938^{\prime \prime}$ collimator 24 25 27 25

Background @ 45.33' , 40 $0^{\circ} 130$
$11.00^{\prime \prime}$ collimator
156
144
157
Background @41.06", $50^{\circ} 53$
$11.688^{\prime \prime}$ collimator 53
50
54
Backscatter@38.38' $60^{\circ} 22$
$13.75^{\prime \prime}$ collinator 21
21 21

Beam collimator exit	5306000	3481100
	4382600	3634500
	$5191 ; 00$	3332800
	5199400	3166700
	4810100	3856000
	5023000	3541000
	974800	718200
Backscaticerer position	918000	589500
	781300	653700
	856600	637600
	865100	675500
	932100	738000

21 25 22 24
Background @ 44.38 ${ }^{\prime \prime}, 40^{\circ}$ 302
$11.00^{\prime \prime}$ collimator 294Background @ 39.44', 50°27
11.625:' collimator. 26
Background @ $37.53^{\prime \prime}, 60^{\circ}$ 9
13.688" collimator 10
ii11

Beam col.j.mator exit	9796700	691.0700
	8361800	7020400
	10238200	7832300
	10822300	7330200
	10434000	6801200
	10262400	7461200

Backscatier @ 58.69'1, 30° 45
15.938^{11} collimator 4647
Backscatter © $44.38^{\prime \prime}, 40^{\circ}$ 376
$11.00^{\prime \prime}$ collimator 375
438
425
Backscatter@39.44', 50° 88
11.625" collimator 80
Backscatter@37.53'1,60 37
13.688" collimatur. 3834

17.4.1.2 Iron

LOCATION

	SQUARE	ROD
Beam collimator exit	15193900	10420400
	13945000	11724800
	13805700	10025500
	14254600	11.539300
	15010900	11202900
	14173100	11443100
Backscatterer position	2381400	1700900
	2067500	1845900
	2241500	1651800
	2080500	1809300
	2167100	1732400
	2090400	1471100
Background @ 59.25", 30° 1.6.00" collimator-	31	
	30	
	33	
	36	
Background @ $44.88^{\prime \prime}, 40^{\circ}$ $11.00^{\prime \prime}$ collimator	426	
	415	
	432	
	395	
Background @ 40.06 ${ }^{\prime \prime}$, 50° $11.688^{\prime \prime}$ collimator		42
		37
		37
		38
Background @ 38.81", 60° 13.75" collimator		13
		15
		13
		11
Beam collimator exit	17877600	11.242700
	17426600	11109900
	15207900	9996800
	16488100	11811000
	14.324000	12960000
	14944500	12037000

SQUARE
ROD
Backscatter @ 59.251t, 30° 49
$16.00^{\prime \prime}$ collimator 52
Backscatter@ $44.88^{\prime \prime}, 40^{\circ}$ 267
$11.00^{\prime \prime}$ collinator 284
281
292
Backscatter@ 40.06 ${ }^{\prime}$, 50° 71
$11.688^{\prime \prime}$ collimator 6772
Backscatter@38.81', 60° 37
13.75'i collimator 353735
Beam collimator exit 11921600 9126400
12.547 .100 8095600
11545500 8823400
11739300 9610900
1688300 1354500
1889700 1279100 1483900
2000600 1167200
Background @ 59.25', 30° 26
$16.00^{\prime \prime}$ collimator 242224
Background @ 44.88 ${ }^{\prime \prime}$, 40° 169
$11.00^{\prime \prime}$ collimator 175

ROD
Background @40.06", $50^{\circ} 53$
$11.688^{\prime \prime}$ collimator 50
54
58
Background @38.81", $60^{\circ} \quad 20$
$13.75^{\prime \prime}$ collimator 24
23
21

10901600	7720800
11506000	8644400
10593300	7873800
11216100	8.488500

Backscatter @ 59.25', $30^{\circ} 26$
$16.00^{\prime \prime}$ collimator 31

Backscatter@44.88', $40^{\circ} 159$
$11.00^{\prime \prime}$ collimator 187
177
183
Backscatter @ 40.06" $50^{\circ} 94$
$11.688^{\prime \prime}$ collimator 82
82
80
Backscatter @ 38.81", $60^{\circ} 44$
$13.75^{\prime \prime}$ collimator 35
40
39

LOCATION

	SQUARE	ROD
Beam collimator exit	6423700	4593000
	52851.00	4226300
	4853600	3824800
	5498400	4437100
	5069700	4342800
	5170800	4319900
Backscatterer position	992800	692200
	1132900	703900
	1064700	761.400
	984700	783500
	999100	672700
	936200	712400
Background @ 59.251, 30° $16.00^{\prime \prime}$ collimator	44	
	33	
	40	
	38	
Background @ 44.88", 40° $11.00^{\prime \prime}$ collimator	226	
	2.49	
	273	
	247	
Background @ 40.06", 50° $11.688^{\prime \prime}$ collimator		42
		34
		37
		34
Background @ $38.81^{\prime \prime}, 60^{\circ}$ $13.75^{\prime \prime}$ collimator		15
		15
		16
		16
Beam collimator exit	8934300	9863300
	1.2324300	9704200
	10353500	8688500
	9691200	8940000
	1.0719600	8374400
	11654700	7946300

SQUARE ROD
Backscatter@ 59.25', 30° 51
$16.00^{\prime \prime}$ collimator 44
4545
Backscatter @ $44.88^{\prime \prime}, 40^{\circ}$ 238
$11.00^{\prime \prime}$ collimator 212
222261.
Backscatter@ 40.06'1, 50° 50
11.688' collimator 5052
Backscatter@38.81", 60° 26
13.75" collimator 21
25
20
Beam collimator exit 11602600 8351900
12111600 9.134900
10665400 7774800
11083900 8983500
Backscatterer position 1741900 1502600 1848700 1236100
2054000 988800
1869600 1135400
Background @59.25', 30° 33
$16.00^{\prime \prime}$ collimator 312728
Background @ $44.83^{\prime \prime}, 40^{\circ}$ 187
$11.00^{\prime \prime}$ collimator 217208179
SQUARE ROD
Background @40.06', 50° 31
$11.688^{\prime \prime}$ collimator 32
37
Background @ 38.81.", 60 12
$13.75^{\prime \prime}$ collimator 111313
Beam collimator exit 3753900 3522100
4599500 3698000
3986600 3136500
4249600 34401.00
Background @ 59.25', 30° 31
$16.00^{\prime \prime}$ collimator 28
3030
Background @ 44.88', 40° 200
$11.00^{\prime \prime}$ collimator 191198209
Background $40.06^{\prime \prime}, 50^{\circ}$ 34
$11.688^{\prime \prime}$ collimator 303434
Background @ 38.81', 60 ${ }^{\circ}$ 13
$13.75^{\prime \prime}$ collimacor 11
14
15
Beam collimator exit

12045300	9027100
11189100	8379400
10579900	9199000
12654900	9781500

LOCATION
TLD READING
SQUARE
ROD
Backscatter@59.25" $30^{\circ} 50$
$16.00^{\prime \prime}$ collimator 48
43
46
Backscatter e 44.88', 40°. 242
$11.00^{\prime \prime}$ collimator 225
248
209
Backscatter@40.06 ${ }^{\prime \prime}, 50^{\circ} 54$
$11.688^{\prime \prime}$ col.1imator
52
56
48
Backscatter@38.81', $60^{\circ} 26$
$13.75^{\prime \prime}$ collimator 22
23
24

Beam collimator exit	12566400	10804.100
	11573200	8531400
	11907500	10392200
	12226000	11114200
	11200700	8172900
	12729700	9158500
	2123200	1512000
	1914900	17901.00
	2210400	1519200
	2098000	1564500
	2036100	1721500
	2008000	1625300

Background (0) 59.251', 30° 32
$16.00^{\prime \prime}$ collimator 29

35

36
Background $@ 44.88^{\prime \prime}, 40^{\circ} 230$
$11.00^{\prime \prime}$ collimator 215
249
209

IOCATION
TLD READING
SQUARE ROD

Background @ 40.06", 50° 38 $11.688^{\text {11 }}$ collimator 37 37 40

Background @ $38.81^{\prime \prime}, 60^{\circ} 15$
$13.75^{\prime \prime}$ collimator
11
12
14
17.4.2 Copper absorption in beam

DEPTH IN COPPER (inches)
$0.0 \quad 57100$

57064
59525
62146
$0.123 \quad 38049$
40497
38354
44394
43356
42304
4.4106

40696
$0.50 \quad 29291$
31003
30111
28917
$0.75 \quad 22794$
25503
23366
24392
0.87517428

16651
16749
18198
$1.00 \quad 19569$
17281
19430
18427
13663
$130 \% 9$
13980
12323
DEPTH IN COPPER
(inches)
1.12514407
13593
14027
13796
1.2516699
16483
14208
14141
$1.50 \quad 8855$
9453
8994
8912
11619
10575
10863
11805
1.758610
7823
8369
8610
$2.00 \quad 7462$
7790
8144
7935
$2.50 \quad 5168$
521.5
5352
5238
$0.0 \quad 24446$
27186
23500
20089
$0.0 \quad 26688$
25487
25480
22365

DEPTH IN COPPER (inches)	TLD READING
0,125	19994
	22068
	22436
	23764
0.25	18457
	18546
	17033
	19759
0.50	16021
	14143
	15207
	12508
0.75	10.543
	9202
	10528
	9923
0.75	11539
	11.994
	12978
	12157
0.875	9313
	8844
	8534
	879.5
0.875	12082
	11747
	11158
	13567
1.00	9331
	9648
	9725
	8486

DEPTH IN COPPER
TLD READING (inches)
1.1257633
7671
8227
7161
1.12510774
9553
10631
11727
1.2514595
15907
13587
14181
1.256506
7765
6661.
8304
$1.25 \quad 5760$
8183
6331
8255
1.50
6881
6695
6646
5510
$1.50 \quad 6293$
6374
6190
6084
1.75
5995
4947
5498
4681
DEPTH IN COPPER (inches)
1.75 55354838

$$
5655
$$

$$
5296
$$

2.50 3798
350240163280
3.50 2262216322472464

BEAM MONITOR
1
28363 28776 19795 27964

2
24949
24148
23413
20948
3
18278
16864
19304 18949

4
20926
21686
22816
22054
5
21337
21115
23820
23089
6
32239
35034
32786
33579
7
24403
23127
22437
19047
$17.5 \quad 20 \mathrm{MeV}$
17.5.1 Lead Backscatter
LOCATION
Beam collimator exit 2152821538
Backscatcerer posj.tion 26212866
Background @ $12.0^{\prime \prime}, 22.5^{\circ}$ 43
40
Background @ $12.0^{\prime \prime}, 45^{\circ}$ 36
38
Background @ $12.0^{1 i} 67.5^{\circ}$ 37
37
Beam collimator axit 5005251551
Backscatter @ 12.0', 22. 5° 115119
Backscatter@12.0 ${ }^{\prime \prime}$, 45° 9693
Backscatter @ $12.0^{\prime \prime}, 67.5^{\circ}$ 7680

LOCATION
Backscatter, 0.86" thick . 45
45
43
Beam collimator exit 13061 12146 14174
Backscatter, 1.15" thick 42

Beam collimator exit

 15806 16941 15639Backscatter, 1.42" thick 45

Beam collimator exit

16442
16881.

16488
Backscatter, 1.72" thick 47
45
46
Beam collimator exit 17258
17147
15385
Backscatter, 1.81" thick
47
47
48
Beam collimator 17469
15879
16803
Backscatter, 2.50" thick 47
47
50

LOCATION

Beam collimator exit22031

20962
23097
Background 34
33
35
17.5.2.2 $4.0^{\prime \prime}$ thick, area as designated
Background and backscatter measurements@ $10.0^{\prime \prime}, 57.5^{\circ}$

LOCATION
Beam collimator exit 1013010864

$$
10480
$$

Background 38
3432
Beam collimator exit 245192420624368
Backscatter, 4.0" square 5455

$$
54
$$

Bean collimaicor exic 13787
14275
13989
Background 605759
Beam collimator exit 32048
3576735383
Backscatter, 6.0'" square 878584
Beam collimator exit 24843

$$
27299
$$

$$
25039
$$

Background 39
41

LOCATION
Beam collimator exit 39737
38883
39883
Backscatter, 8.0'1 square 70 73 7.4

Beam collimator exit 18959 16176 18726

Background 25
30

28

Beam collimator exit 37433
43698 41218

Backscatter, $10.0^{\prime \prime}$ square 63 63 66

Beam collimator exit 13087
13609
12722
Background 34
33

34

Beam collimator exit 31428
34260
31282
Backscatter, 12. $0^{1 i}$ square 59
67
Beam collinator exit 23593
23720
22409

LOCATION

Background
TLD READING 37 38 38

Beam collimator exit

40587 37074 41238

Backscatter, $14^{\prime \prime}$ square 69 65 72
17.6.1 Lead - infinite size
17.6.1.1 4.011 thick, area as designated
Background and backscatter measurements
@ $10.0^{\prime \prime}, 67.5^{\circ}$
LOCATIONBeam collimator exit
TLD READING
4051940072
Background 556
54883644
78352
74421 .
Backscatter, 4.0" square 825754
733
Beam collimator exit 48000 48000 47973
Background 20
17
18
Beam collimator exit9039982734
82429
Backscatter, 6.0" square 86
70

LOCATION

Beam collimator exjt 25908 33677 32829

Background 557
585
586
Beam colljmator exit 74749 76408 82676

Backscatter, 8.0" square 704
680
696
Beam collimator exit 30201
32691
35421
Background 652
6.4

631
Beam collimator exit 64450 62447 68474

676
663
663
Beam collimator exit 37594
37548
40205
Background 594
603
608
Beam collimator exit 51130
57250
55916

LOCATION
Backscatter, $12^{\text {" }}$ square 685
678
668
Beam collimator exit
30192
27610
28660
Background 872 699 716

Beam collimator exit 45095 51497 48551

Backscatter, $14^{\prime \prime}$ square 358
1062
1063

17.6.2 Beam cross-section

$17.7 \quad 40 \mathrm{MeV}$
17.7.1 Lead backscatter
LOCATION
Beam collimator exit
TLD READING5598251498
Backscatterer position 65066362
Background @ $12.0^{\prime \prime}, 22.5^{\circ}$ 43
44
Background © $12.0^{\prime \prime}, 45^{\circ}$ 40
43
Background @ $12.0^{\prime \prime}, 67.5^{\circ}$ 4145
Bean collimator exit89616 93045
Backscatter@12.0', 22.5 153158
Backscatter@12.0 $0^{\prime \prime}, 45^{\circ}$ 113120
Backscatter@12.0'1, 67.5 ${ }^{\circ}$ 8682
17.7.2 Lead - infinite size
17.7.2.1 12. $0^{\prime \prime}$ square, thickness as designated
Background and backscatter measurements @ $10.0^{\prime \prime}, 67.5^{\circ}$
LOCATION
Beam collimator exit 31741

$$
35690
$$

$$
30545
$$

Background 222123
Beam collimator exit 3994139604

$$
39835
$$

Backscatter, 0.15" thick 4244.

$$
42
$$

Beam collimator exit 46973
4534151020
Backscatter, 0.36" thick 5457

$$
59
$$Beam collimator exit49006

$$
48373
$$

$$
49690
$$

Backscatter, 0.57" thick 59
59
61Beam collimator exit4369943817

$$
39169
$$

LOCATION
Backscatter, 0.86" thi.ck
59
54
56
Beam collimator exit
43810
40618
39892
Backscatter, $1.15^{\prime \prime}$ thick 49
54
55
Beam collimator exit
46309
43357
47239
Backscatter, 1.42" thick 57 58
56
Beam col.limator exit
51367
56323
52752
Backscatter, 1.72" thick 64
62
61
Beam collimator exit
55867
55275
53278
Backscatter, 2.08" thick
61
60
60
Beam collimator exit
48948
47355
50388
Backscatter, 2.57" thick 60

LOCATION
TLD READING
Beam collimator exit 50150 49913
51811
Background 23
23
24
17.7.2.2 4.0'" thick, area as indicated

LOCATION

Beam collimator exit
TLD READING
163105 153437 161074

Background 51 51 55

Beam collimator exit 163129 157548 172490

Background 53 53 55

Beam collimator exit 183929 155932 160574

Backscatter, 4.0" square 178 166 167

Beam collimator exit 183124 192225 173896

Background 61 59 56

Beam collimator exit 190277 182371 175496

Backscatter, $6.0^{\prime \prime}$ square 220 218 235

LOCATION
Beam collimator exit
TLD READING
44997 37150 45530
Background 28

Beam collimator exit 75728 89594 88461

Backscatter, 8.0'1 square 93
94
98
Beam collimator exit
60961
54860
56489
Background 559
447
33
Beam collimator exit
172964
192693
175334
Backscatter, $10.0^{\prime \prime}$ square
224
212
236
Beam collimator exit
39309
39917
36748
19
20
20
Beam collimator exit
190843
1.57822 178053

LOCATION

Backscatter, 12.0" square 130
136
157
Beam collimator exit 62502
571.42

70865
Background 19
22
26
Beam collimator exit 172333
187764
203856
Backscatter, 14.0' square 178
171
188
17.7.3 Beam cross-section

HORIZONTAL 1JISPLACEMENT (inches)

TLD READING
LEFT OF
CENTER

310
$1.56 \quad 722$
1.19
7.525
0.75 1150
0.38

9435
8409
0.19

9184
Center 9291
9091

VERTICAL DISPLACEMENT (inches)

ABOVE	BELOW
CENTER	CENTER

2.38282
1.56 703
1.191054
0.81

4119
0.75

5058
$0.38 \quad 8262$
8550
0.19

9268

$$
17.8 \quad 60 \mathrm{MeV}
$$

17.8.1 Lead backscatter
LOCATION
Beam collimator exit
TLD READING111316110444
Backscatterer position 90258136
Background @ $12.0^{\prime \prime}, 22.5^{\circ}$ 4855
Background @ 12.0'1, 45 4443
Background @ 12.0", 67.5 4047
Beam collinatos rxit 27505%272831
Backscatter@12.011, 22.5 382360
Backscatter@12.0'1, 45° 304 270
Backscatter @ 12.0 $0^{\prime \prime}, 67.5^{\circ}$ 166160

> 17.8.2 Lead - infinite size
17.8.2.1 12.0'1 square, thickness as designated

Background and backscatter measurements
@ 10.0'1, 67.5 ${ }^{\circ}$

LOCATION
Beam collimator exit

Background
37
37
36
Beam collimator exit 65507
67690 70239

Backscatier, 0.15' thick 71
77
76
Beam collimator exit 98671
98107
101194
Backscatter, 0.36" thick 102
102
104
Beam collimator exit 100049
95412
105191
Backscatter, 0.57" thick 110
109
104
Beam collimator exit
86741
75480
91520

LOCATION
Backscatter, 0.79' thick 97
101
92
Beam collinator exit
65329
60036 66151

89
90
81
69499
64865
66368

88
88
91
76791
80212
76251
99
104
98
Beam collimator exit $\quad 77287$ 72870 73558

96
99
93
Beam collimator exit
81958
79575
81459
Backscatter, 2.57" thick 92
90
94

LOCATION

Beam collimator exit
TLD READING
73017
71364
69466
Background 42
43
42
17.8.2.2 4.0 $0^{\prime \prime}$ thick, area as designated
LOCATION
Beam collimator exit 9708485156
90687
Background 107109108
Beam collimator exit 186002
163199
188759
Backscatter, 4.0" square 236224221.
Beam collimator exit 1953620349
136%
Background 31.431.3

$$
330
$$Beam collimator exit184787

179372179721
Backscatter, 6.0' square 434419
422
Beam collimator exjt 133378

$$
1372.03
$$

$$
128563
$$

Background 107
105

LOCATION
Beam collimator exit

Backscatter, 8.0'1 square 214 220 231

Beam collimator exit 9220 7260 2693

Background 520 469 583

Beam col.1imator exit 225300 208864 219958

Backscatter, $10.0^{\prime \prime}$ square 674 571 540

Beam collimator exit 76575
79163
82820
108 112

Beam collimator exit. 149123
176767
181433
Backscatter, $12.0^{\prime \prime}$ square 239
242
221
Beam collimator exit 85081
80621
76680

LOCATION
Background 283
TLD READING 290 332

Beam collimator exit 200714 180116 181880

Backscatter: 14.0" square 155 144 137

HORIZONTAL DISPLACENENT (inches)

	LEFF OF CENTER	RIGHT OF CENTER
2.00		1925
1.56	172.52	2999
1.19	22287	
0.75		4097
0.38	24288	5562
0.19		2067
Center		20145

VERTICAL DISPIACEMENT:
(inches)

ABOVE	BELOW
CENTER	CENTER

$2.38 \quad 971$
1.563071

3239
1.19

4372
0.81

18735
16972
0.38

19736
20443
0.19

21388

17.9 TLD annealing procedures
 17.9.1 Annealing cycle
 TLD READING

Pre-anneal:	1 hour @ $400^{\circ} \mathrm{C}$	678
	2 hours @ $100^{\circ} \mathrm{C}$	729
Post-anneal.:	10 min .@ $100^{\circ} \mathrm{C}$	727
Pre-heat:	None	701
Read-out:	$15 \mathrm{sec} . @ 250^{\circ} \mathrm{C}$	749
		744
		713
		689
.		753
		732
		729
		724
		689
		728
		745
		730
		742
		663
		703
		719
		705
		739
		677
		724
		690

17.9.2 Annealing cycle
Pre-anneal: 1 hour @ $400^{\circ} \mathrm{C}$ 709
2 hours @ $100^{\circ} \mathrm{C}$ 678
Post-anneal: $10 \mathrm{~min} .100^{\circ} \mathrm{C}$ 733
Pre-heat: 7 sec . @ $165^{\circ} \mathrm{C}$ 744
Read-out: 15 sec . @ $250^{\circ} \mathrm{C}$ 693737691697718587752733
17.9.3 Annealing cycle

TLD READING

Pre-anneal:	$\begin{aligned} & 1 \text { hour @ } 400^{\circ} \mathrm{C} \\ & 2 \text { hours @ } 100^{\circ} \mathrm{C} \end{aligned}$	727 723
Post anneal:	None	742
Pre-heat:	7 sec @ $165^{\circ} \mathrm{C}$	700
Read-out:	15 sec : $2500^{\circ} \mathrm{C}$	700
		705
		698
		729
		756
		672
		741
		748
		703
		701
		721
		687
		662
		737
		724
		676
		704
		699
		706
		705

17.9.4 Anncaling cycle

TLID READING
Pre-anneal: $\quad 1$ hour @ $400^{\circ} \mathrm{C}$ 712
24 hours @ $80^{\circ} \mathrm{C}$ 703
Post-anneal: None 722
Pre-heat: None 677
Read-out: 15 sec . @ $250^{\circ} \mathrm{C}$ 703
711717684
721716675707726727691.
717683668704737704

17.9.5 Annealing cycle

TLD READJNG

Pre-anneal:	1 hour @ $400^{\circ} \mathrm{C}$	723
	24 hours @ $80^{\circ} \mathrm{C}$	744
Post-anneal:	None	750
Pre-heat:	7 sec . @ $165^{\circ} \mathrm{C}$	713
Read"out:	15 ser., $250{ }^{\circ} \mathrm{C}$	703
		702
		740
		689
		680
		707
		683
		718
		699
		696
		705
		698
		715
		703
		720
		662
		71.3
		711
		684

17.9.6 Annealing cycle

TJD READING

Pre-anneal:	1 hour @ $400^{\circ} \mathrm{C}$	715
	24 hours @ $80^{\circ} \mathrm{C}$	694
Post-anneal:	10 min.@ $100^{\circ} \mathrm{C}$	671
Pre-heat:	None	733
Read-out:	$15 \mathrm{sec} @ 250^{\circ} \mathrm{C}$	697
		700
		688
		669
		707
		692
		698
		721
		670
		698
		713
		638
		702
		680
		714
		681
		706
		693
		719
		681
		705

> 17.9.7 Annealing cycle
Pre-anneal: 1 hour @ $400^{\circ} \mathrm{C}$ 682
24 hours @ $80^{\circ} \mathrm{C}$ 700
Post-anneal: $\quad 10 \mathrm{~min}$ 。@ $100^{\circ} \mathrm{C}$ 713
Prewheat: 7 sec . @ $165^{\circ} \mathrm{C}$ 654
Read-out: $15 \mathrm{sec} @ 250^{\circ} \mathrm{C}$ 716694716585698592677665677684705690652633689672
675656727685
668
17.9.8 Amealing cycle

TLD READING

Pre-anneal:	1 hour @ $400^{\circ} \mathrm{C}$	723
	24 hours @ $80^{\circ} \mathrm{C}$	744
Post-anneal:	None	750
Pre--heat:	7 sec . @ $165^{\circ} \mathrm{C}$	713
Read-out:	$15 \mathrm{sec} . @ 250^{\circ} \mathrm{C}$	703
		702
		740
		689
		680
		707
		683
		718
		699
		696
	.	705
		698
		715
		703
		720
		662
		713
		711
		684

17.9.9 Annealing cycle

TLD READING

Pre-anneal:	1 hour @ $400^{\circ} \mathrm{C}$	983
Post-arneal:	10 min @ $@ 100^{\circ} \mathrm{C}$	944
Pre-heat:	None	967
Read-out:	15 sec @ $250^{\circ} \mathrm{C}$	960
		960
		929
		967
		928
		957
		950
		894
		990
		962
		1003
		962
		999
		956
		967
		974
		985
		920
		1004
		962
		965
		1015

17.9.10 Annealing cycle

		TLD READING
Pre-anneal:	1 hour @ $400^{\circ} \mathrm{C}$	965
Post-anneal:	10 min @ $100^{\circ} \mathrm{C}$	918
Pre-heat:	7 sec @ $165^{\circ} \mathrm{C}$	912
Read-out:	15 sec .@ $250^{\circ} \mathrm{C}$	959
		935
		947
		898
		1008
		954
		975
		967
		982
		862
		931
		924
		947
		977
		909
		829
		952
		938
		882
		923
		897
		926

17.9.11 Amealing cycle

TLD READING
Pre-anneal: 1 hour @ $400^{\circ} \mathrm{C} 992$
Post-anneal: None 936
Pre-heat: 7 sec 。@ $165^{\circ} \mathrm{C} \quad 973$
Readmout: $\quad 15 \mathrm{sec}$. @ $250^{\circ} \mathrm{C}$. 918
928
910
931.

959
934
944
921
958
914
817
905
865
942
924
941
939
978
978
972
924
888
17.9.12 Annealing cycle

TLI READING

In any set of experimentally obtained data, there exist points sufficiently far from the mean to be suspect. The discarding of suspect values without some firm and repeatable criteria might lead to loss of real information. The small number of measurements (four to eight) taken at each point during any one run, preclude the use of standard deviation or chi square testing for the rejection of extreme values.

Chauvenet's Criterion (128), which states: "any reading of a series of ' n ' readings shall be rejected when the magnitude of its deviation from the mean of the series is such that the probability of occurrence of all deviations that large, or larger, does not exceed $\frac{1}{2 n}$ ", was used in this dissertation. Chauvenet's Criterion for rejection (or more precisely, Chauvenet's Ratio) was applied to each set of TLD readings obtained and to final albedo calculations before using or reporting an average value. This procedure allows for the checking of values which appear to differ greatly from the average。

J. ERROR ANALYSIS

J. 1 STATISTICAL VARIATION OF THERMOLUMINESCENT JOSIMETERS

A nimber of Lif crystals exposed to the same radiation dose do not emit the sane amount of light upon read-out. The degree of this variance and its dependence upon the crystal's prior history are discussed in Appendix F. The error limits discussed there apply to a rather larger number of crystals exposed in each setting than was possible in the experiments conducted (Section 5). Also those limits apply to a given set of readings and the data gained by experiment required the subtraction of background, beam normalization, etc., thus possibly combining errors. Through stardard techniques (reviewed below) and the mechod of data reduction discussed in Section 6, total variance may be calculated.

$$
\left[\sigma\left(N_{1} \pm N_{2} \pm \ldots\right)\right]^{2}=\left[\sigma\left(N_{1}\right)\right]^{2}+\left[\sigma\left(N_{2}\right)\right]^{2}+
$$

Eq. J. 1

$$
\begin{gather*}
{\left[\frac{\sigma\left(\frac{N_{1}}{N_{2}}\right)}{\left(\frac{N_{1}}{N_{2}}\right)}\right]^{2}=\left[\frac{\sigma\left(N_{1} N_{2}\right)}{N_{1} N_{2}}\right]^{2}} \\
\approx\left[\frac{\sigma\left(N_{1}\right)}{N_{i}}\right]^{2}+\left[\frac{\sigma\left(N_{2}\right)}{N_{2}}\right]^{2} \\
\sigma=\frac{\sigma}{\sqrt{\mathrm{N}}}
\end{gather*}
$$

Putting Eg. 6.7 in symbels more converitent for this appondix, and leaving the energy absorption coefficient corrections for discussion in Section J. 3

$$
a_{D} \alpha \frac{D R-(D B G)\left(\frac{B C S}{\overline{B C G}}\right)}{D I\left(\frac{B C S}{B C G}\right) \Omega}
$$

Eq. J. 4
where:

$$
\begin{aligned}
{ }^{a}{ }_{D} & =\text { the differential aibedo } \\
D R & =\text { measured reflected dose } \\
\text { DBG } & =\text { measured background dose }
\end{aligned}
$$

```
BCS = measured dose at beam collimator exit during
        backscatter run
BCG = measured dose at beam collimator exit during
        background run
DI = measured dose at backscatterer position
    \Omega= the effective solid angle viewed
```

In each case the measured cose is the average of some number of readings and has associated with it some variance. The variance of α_{D} may then be calculated。

Rearranging Eq. J. 4 and leaving the error associated with Ω for discussion in Section J.2:

$$
\alpha_{D} \propto \frac{D R\left(\frac{B C G}{B C S}\right)-D B G}{D I}
$$

Eq. J. 5
and adopting, for this development, the notation:

$$
\frac{\sigma(N)}{N}=f \sigma(N)
$$

then

$$
\left[\mathrm{f} \sigma\left(a_{D}\right)\right]^{2}=\left[\mathrm{fo}\left(\mathrm{DR}\left[\frac{B C G}{B C S}\right]-\mathrm{DBG}\right)\right]^{2}+[\mathrm{f} \sigma(\mathrm{DI})]^{2} \quad \text { Eq. J. } 7
$$

$$
\left[\sigma\left(D R\left[\frac{B C G}{B C S}\right]-D B G\right)\right]^{2}=\left[\sigma\left(D R\left[\frac{B C G}{B C S}\right]\right)\right]^{2}+[\sigma(D B G)]^{2}
$$

Eq. J. 8

$$
\begin{aligned}
& {\left[f \sigma\left(D R\left[\frac{B C G}{B C S}\right]\right)\right]^{2}=[f \sigma(D R)]^{2}+\left[E u\left(\frac{B C G}{B C S}\right)\right]^{2} \quad \text { Eq. J. } 9} \\
& {\left[f \sigma\left(\frac{B C G}{B C S}\right)\right]^{2}=[f \sigma(B C G)]^{2}+[f \sigma(B C S)]^{2} \quad \text { Eq. J. } 10}
\end{aligned}
$$

$$
\sigma\left(a_{D}\right)=a_{D}\left\{\left[\frac{\sigma(D I)}{D L}\right]^{2}+\frac{[\sigma(D B G)]^{2}}{\left[D R\left(\frac{B C G}{B C S}\right)-D B G\right]^{2}}\right.
$$

$$
+\frac{\left[D R\left(\frac{B C G}{B C S}\right)\right]^{2}\left[\left\{\frac{(D R)}{D R}\right\}^{2}+\left\{\frac{(B C G)}{B C G}\right\}^{2}+\left\{\frac{(B C S)}{B C S}\right\}^{2}\right]^{\frac{3}{2}}}{\left[D R\left(\frac{B C G}{B C S}\right)-D B G\right]^{2}}
$$

Eq. J. 11

This wotild be the standard deviation of one measurement of the differential albedo due to variation in TLD readings. As each albedo was measured at least twice and generally several times, Eq. J. 3 was used to obtain the standard
deviation of the average albedo due to dosimeter variation, The percent of this deviation ran from 3.8% for iron @ 2.0 MeV to 17.6% for lead @ 7.0 MeV .

J. 2 PHYSICAL MEASUREMENTS

Measurement of collimator length and detector to slab distance determines the effective solid angle and viewed area used in the albedo calculation. The collimators used in this work were milled to the nearest thousandth of an inch. Variation of even five thousandths compared to the collimator dimensions would still introduce far smaller error than discussed in Section J.I. The detector to scattering center distance was made with a standard stecl tape measure and checked against a second tape. The author Eeels an error of $0.25^{\prime \prime}$ in $25.0^{\prime \prime}(1.0 \%)$ would be difficult to pass unnoticed. An error of this magnitude in the measurement of dosimeter to scatter surface would cause an error of $\pm 2.0 \%$ in the resulting calculated albedo.

An error in measuring the angular relationship of the collimator axis to the scattering slab would result in a changed area relationship and the measurement of a slightly different albedo than intended. The angles reported in this dissertation were measured from a protractor of $12.0^{\prime \prime}$ radius which had been checked against an engineering compass. At
$12.0^{\prime \prime}$ the linear separation of 10° is approximately $1.094^{\prime \prime}$ or $0.109^{\prime \prime}$ per degree. The author feeis alignment to be weil within 10% or one degree. Neither albedo nor the trigonometric relationships are rapidly varying between 30 and 60 degrees (the range of interest in this dissertation). The error in measured albedo due to $\pm 10 \%$ alignment is considerably smaller than that due to $\pm 1.0 \%$ distance measurement $(\pm 0.2 \%)$ 。

J. 3 ANALYTICAL

Considered here are errors due to false assumptions, theoretical. approximations and calculational mistakes. The major assumptions employed are that of semi-infinite slab area, uniform irradiation of the slab surface, and the energy absorption coefficient corrections to the dose measurments made. Extreme care has been taken to verify the required slab size by reference to previous works on this subject (Section 5.1) and experimental verification of a number of points (Appendix G). Uniform irradiation of the viewed area is demonstrated for nearly every case (Appendix H) and the one case in which uniform irradiation of the entire slab is questionable (i.e. concrete) is discussed in Appendix H .

Theoretical approximations made in the handing of the
data are discussed in Appendix B and Appendix C and Section 6. The error involved in the point detector approximation is shown to be much below others of this section. The validity of appiying computer generated spectra for a collimator penetration effect correction may be debated. A comparion of the spactal data given in Appendix D and of the generated spectra to the literature cited in Section 2 indicate the computer spectra certainly to be reasonable. To apply no correction would be to knowingly over-estimate the real collimator lengit. The corrections made decrease the albedos by 2.0% (lead @ 2.0 MeV) to 11.0% (iron @ 2.0 MeV). These values would certainly exceed the error made by performing the correction.

The mass energy-absorption coefficient correction to the absorbed dose used in Section 6 is based on both the imput and reflected spectra. The coefficients of LiF and water follow very closely throughout the energy range of interest in this dissertation and are essentially identical above a few hundred KeV (Appendix E) © Even with the wide variation of input spectra discussed in Appendix D the ratio of mass energy-absorption coefficients,

$$
\left[\frac{\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{\mathrm{H}_{2} \mathrm{O}}}{\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{L i F}}\right] \text { varies only on the order of } \pm 6 \% \text { for any }
$$

given bremsstrahlung maximum energy spectra. However, the $\left[\frac{\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{\text {SIab }}}{\left(\frac{\mu_{\mathrm{en}}}{\rho}\right)_{\text {LiF }}}\right]$ ratio varies greatily with the low energy portion of the energy spectra, as a glance at plots of the mass energy-absorption cocfficients for the various reflecting materials would indicate. This variance is far too great to include with the measurements to which it is applied and leave any meaning in the result. Therefore, until more reliable information becomes available as to the low energy make-up of flash x-ray bremsstrahlung spectra, no error limits can realistically be assigned those measurements plotted in Figures 17 through 27.

It is also assumed that the doses measured at each point are comparable (since they are manipulated algebraically together). The TLD packaging used ($\sim 0.14 \mathrm{gm} / \mathrm{cm}^{2}$) is not thick enough to create charged particle equilibrium
(CPE) to high (>1 MeV) energy photons. At the backscatter energies, the thickness of packaging is adequate. At 2.0, 3.5, and 10.5 MeV , the incident beam contains such a large number of low energy photons that a true charged particle equilibrium cannot be achieved. The absorption of low energy photons predominates the electron buildwup. The packaging chosen, therefore, is desirable as the surface dose most nearly approximates the "equilibrium dose". However, the more heavily filtered 7.0 MeV incicient beam does indeed show a build-up with increasing depth. Work at Kirtland (Figure 87) by EG\&G indicates an "equilibrium dose ${ }^{\prime \prime}$ is reached at about $1.0 \mathrm{gm} / \mathrm{cm}^{2}$. The measured dose is at about 0.905 of that and has been corrected accordingly, resulting in a 3.5% lowering of the albedo at that energy.

Any time a large number of computations are made, the very real possibility of hunan error exists. Each calculation made was repeated at a separate time and any suspect resultant values (as pointed up by the Chauvenct ratio test.) were again checked. Due to the check made for extreme values (Appendix I) the cuthor believes any prejudicing of reported values due to computational errors has been kept to a minimum.

Variance of the bremsstrahlung peak energy is

Figure 87 Charged particle equilibrium
discussed in Section 5 and results of that variance shown in Section 6.

The error bars reported in Section 6 are a statistical combination of the limits discussed in this appendix.

K. MONTE CARLO PROGRAM

The program used in this dissertation is based on a Monte Carlo adaptation of Adams and Meh1 (106) used for calculating the deposition of energy by photons. The original program includes fluorescence and Compton scattering, but neglects pair production interactions. Since, at the energies of interest in this dissertation, pair production interactions are quite important, it was necessary to add a sub-routine to handle this item. Mr. K. G. Adams of Sandia Corporation was extremely helpful in adding this feature to the existing Monte Carlo program.

The program, in its updated form, is somewhat limited as to material imputs, and requires certain material data to be included in the update patch not regularly part of the input. Otherwise input is as specified in (106), allowing a wide choice of input energy (or number) spectra and various output forms.

The update to the original program (1.06) is included here and is for the CDC 6600 computer.

- grobir vop

- Mrcoit -

E:
- Inceor, eine.pet

Cf:
700: 5-2:Ri,

-

-
Encivat ancerxz, xapray(1)
"Incepi, 1.17 .797

220 riLl roctl
221 E:=1.
IFEC5-E:1 223,73,23

raim! r : $1: \mathrm{m}$
rロ! Sicill

E! ©SS=4LES5+850-E1*2
tucip=arion+:
peryo:
218 cocinme

-

© IPPF゙S=IPFFL-1

3 FETUR:
...
－insest，riAn． 96.7

5：50：

500？nu sj：4 $i=1,1 \mathrm{a}$

－Fomas！！

E：＝$=1$
o： T

comen：／1／a（2，2п

PAI $\quad 2$
c DERD roffrenar，Fon Dara tape

PEN！：： 4
2 ？
if（i：nve．ine．innei）go to
昭 7 J＝1， 1 L
3 READ： 4,4 ）$!R,(B(I, J), I=1,7)$
4 FOFY： 1 （13，7E11．3）
昭：口（4，5）a（p，j）

ro to 1
co：tilnez
$\begin{array}{lll}90 & 29 & i=i, 8 \\ 60 & 20 & j=:, 20\end{array}$

no $25 \mathrm{I}=1$ ， NL
$535 \mathrm{~F}=1$, ， 20 Mat
RETYRM（1，K）＋AMT（J，I）＊B（K，J）
c CALCulate pain production cross section
EHTPY fitoca
$F A C=(E F-1.022 . C: 2)$
$I F(F A C) B, 10,10$
\qquad
$08 / 06 / 70$

PAGE

NO. 00003

 109
$r i n$
-COMPILESLAT
\qquad

fait 26
PAI $2 R$
$\begin{array}{ll}\text { FAY } & 30 \\ \text { Pai } & =1\end{array}$
$\begin{array}{ll}\text { pai } & 31 \\ \text { pil } & 32\end{array}$
faI 33
$\begin{array}{ll}\text { FAI } 35 \\ \text { PAI } & \text { Bat }\end{array}$

K0\％	30．3	sct：v®「ご
KCO	0 こ心i2	¢0；－irso
slas	Csi 37	martuaro
KCR	ここのころ	
$\times 0$.	csucs	as：u：\％
Ktip	Cucts	：1： 1 as：
KC？	0．530	د¢1：0：\％
K0\％	Cごっ\％	Act：uato
rive	－1603	
kop		
MR	Cisio	
16P	3．3う11	ACi：－－i＝0
KC．a	c30：2	AE：－：9！こ？
K08	C6： 13	act：as：
－09	0．646	a\％1\％n！
K0？	O－35	¢t！－：iso
KOP	00015	act：ateg
Kor		act：var：o
K0？	ccald	
KCP	0.329	Ac：amaz
K02	05：23	ativ：TE．
	0．uこ：	
Y0\％	205？${ }^{\text {a }}$	：ct：vis＝0
K¢\％		ativato
Kr？	02024	Aこt：uct
K0？	C0ics	acrejarco
Kく？		60才：ia：
KCR	05.27	act：ameo
K0\％	¢3¢	A6：1\％：1！
K02	00529	20：
H0\％	勺utis	6．f：\％9！－
K09	CuE1	
K¢p	000.32	
K0？	ccuこ3	
k．	C－u3：	－6t：inaty
K0．	005	
K00	20335	－5：adico
K0？	2S03？	fetiraied
\％or	cucsu	hCt：Sito
K0？	0¢0ご	
Slab	Cor， 54	EEn：\％ivateg
KCP．	CCC4\％	Aulymem
K09	0 C041	ciciveied
kb？	0．0342	20：\％as：
KCR	000．3	ACT：atry
KOR	Cu364	
K02	0いごう	AE1：jico
KCR	C00：45	dciven！en
K0r	06047	AET1Mate
K0R	03045	ACTE：ATEO
KOR	09349	mCtioutiod
K0\％	cecso	
KOR	0035：	acte：aico
K0n	0.1052	4CTi．ated
YCR	00053	DCリンロTE3

```
*hEOR-S, PALLS-S ANO MOQIFIGATIONS OA/06/70 PASE NO. 00007
```

```
SLAS
```


L. DTF PROGRAM

The discrete ordinates program used in this dissertation (called DTF-69) is based on work by J. H. Renken and K. G. Adams (63) of Sandia Corporation. The program, as written, is actually two programs, a cross-section generating program (GAMLEG 69) and the photon transport program (DTF-69). The program allows a very wide range of inputs, covering any Z material and various spectra to 15 MeV , but is one dimension limited. Fluorescence, Compton scattering, and pair-production are each calculated.

The program was designed primarily for use in energy deposition and energy passage calculation. Differentiation into energy spectra and emergent angle is somewhat more complicated. DTF results in this mode often show a disturbing tendency to oscillate.

Due to the weal.th of output available from DTF, transfer from the energy given to the dose desired for comparison to TLD data was unwieldy. The author is much indebted to Joann H. Flinchum of Sandia Corporation for an
update to the DTF program which calculates dose in addition to the energy outputs.

The update to the DTF program (63) used in this work follows and puts DTF in a form mich more useful to the health physicist interested in shielding calculations. From an input consisting primarily of the shielding material and source to be shielded, one may obtain the dose transmitted or reflected through any thickness.

The major advantage DTF holds over Monte Carlo programs is a great computer time saving. A half-hour program in Monte Carlo takes less than five minutes with DTF。

The following program is written for the CDC 6600 computer.

[^1]- J.Lithonir.s.e.

$5:=0 \cdot=$
F (I:C. -1.0 GL io 131
SO :

i=1F

1i-4 Cu:ailiase

117 nif:
ís Foriaiciatien mumber juas)

-20 OuT2d at = 1, 1p

vifi3/fu rige itu. Diluir
 2ذハ!

Tu:s=(6:ar1) $\because, \square(1+1) 1 / 2$.

is $=31+12$
$31=3+12$
$3 \dot{c}=3 \dot{c}+1 \leq$

If (JMM-IMMiol,oz, ii
- OO!PILE DTF
411

[^2]

Oif		CJ 115 \quad \％$=1,14$.
Uif		
כif	1：3	$5(:, 1)=3(1,4)+\operatorname{XNJ}(1,1)$
JTF	1：	ç．ais：
Cif		HरIC－（4TAPこ，i：ó）
UiF	1：6	
Jif	－	Jo i1\％ $\mathrm{I}=1, \mathrm{Lr}$
3 TF	$\therefore 17$	
JTF	1：5	
UTF	133	

K0r	63031	
nues	せ30ッ」	
kur	uuvis	Abiluited
U？	0Jコッハ	の6）
－	¢Jug\％	A心く」ulid
0．8	Quxpl	mClivituJ
रus	いつッグ	
xid	いうこちy	acile：
－	3） 0 99	activis．ad
nup	いJJou	atitiditej

M. A COMPARISON OF MONTE CARLO AND DTF TO PREVIOUSLY PUBLISHED. EXPERIMENTAL RESULTS

Due to the less than perfoct Eit of the experimental data of this dissertation to the computer runs, a few runs were made to examine the closeness of fit with experimental data of other researchers.

Figures 88 and 89 are plots of DTF and Monte Carlo resulis compared to results of two experimenters who used NaI scintillators in their albedo measurements, Figure 88 shows the results for an incident energy of 0.662 MeV and a lead reflector. Figure 89 is for 1.33 and 1.17 MeV reflected from iron. The experimental design of the two experimenters differs somewhat and is discussed in detail in Section'2. The design of Steyn closely resembles that of the present research.

Figure $89 \alpha_{E 1}$ vs Angle for Com60, iron scatterer

N. RESULTS OF THE CHILTON-HUDDLESTON EQUATIONS

APPLIED TO THE "EFFECTIVE" ENERGIES OF THE PRESENT WORK

The Chilton-Huddleston formulation is discussed in Section 4. The formula, as given there, is:

$$
a_{D}=\frac{C K\left(\theta_{S}\right) 10^{26}+C^{\prime}}{1+\cos \theta_{0} \sec \theta}
$$

Eq. N. 1

Values for C and C^{\prime} have been published for $0.2,0.66,1.0$, 2.5, and 6.13 MeV . To obtain values for the energies of this work, Figures 90, 91, and 92 were made. Table 1.8 notes the values of C and C^{\prime} used for the calculations made in this apperdix. $K\left(\theta_{s}\right) 10^{26}$ was calculated as indicated in reference 11 and values are tabulated in Table 19. Results of Eq. NoI are tabulated in Table 20 and plotted with the experimental and computer results in Section 6 .

TABLE 18

CHILTON-HUDDLESTON PARAMETERS

Effective Energy (NeV)

BACKSCATTER MATERIAL.

C C^{\prime}
 -0.0055
-0.008
Concrete $0.016 \quad 0.051$
Lead
Iron
Concrete
0.010
-0.0061
-0.006 0.038
I.ead

Iron
Concreto
0.039
-0.0095
0,0052
0.0137

Lead
0.0563
-0.0074
Iron 0.06660 .004
Concretc
0.0612
0.009

Lead
0.1059
0.005

Iron
Concrete
0.1302
0.0059
0.0051

TABLE 19

KLEIN-NISHINA CROSS-SECTIONS

EFFECTIVE ENERGY(MeV)	SCATTERING ANGLE	$\underline{K}\left(\theta_{s}\right) 10^{26}$
		$\mathrm{d} \Omega$
0.24	120°	1.2977
	135°	1.2604
	150°	1.2357
0.28	120°	1.0880
	135°	1.0692
	150°	1.0641
0.85	120°	0.2819
	135°	0.2525
	150°	0.2354
1.34	120°	0.14339
	135°	0.1232
	150°	0.1114
4.1.	120°	0.02216
	135°	0.01784
	$150{ }^{\circ}$	0.01538

CHILTON-HUDDILESTON ALBEDO VALUES

EFFECTIVE ENERGY (MeV)	BACKSCATTER MATERIAL	$\begin{aligned} & \text { SCATTERING } \\ & \text { ANGLE } \end{aligned}$	$a_{D} \times 10^{3}$
0.24	Lead	120°	1.18
		135°	0.959
		150°	0.720
	Iron	120°	13.21
		135°	11.36
		150°	8.91.
	Concrete	120°	33.31
		135°	29.48
		150°	23.59
0.28	Leaci	120°	2.22
		135°	1.90
		150°	1. 51
	Iron	120°	12.26
		135°	10.71
		150°	8.57
	Concrete	120°	27.73
		135°	24.60
		150°	19.76
0.85	Lead	120°	0.693
		135°	0.144
		150°	Negative
	Iron	120°	8.95
		135°	7.38
		150°	5.66
	Concrete	120°	12.28
		135°	10.41
		150°	8.12

TABLE 20 (cont'd)

EFFECTTYE ENERGY (MeV)	BACKSCATTER MATERIAL	$\begin{aligned} & \text { SCATTERING } \\ & \text { ANGLE } \end{aligned}$	${ }^{a}{ }_{\mathrm{D}} \times 10^{3}$
1.34	Lead	120°	0.312
		135°	Negative
			Negative
	Iron	120°	6.29
		135°	5.06
		150°	3.81
	Concrete	120°	8.25
		135°	6.85
		150°	5.27
4.1	Lead	120°	3.72
		$1.35{ }^{\circ}$	3.09
		150°	2.38
	Tron	120°	4.00
		135°	3.41
		150°	2.42

O. $20-60 \mathrm{MeV}$ BACKSCATTER

A few preliminary measurenents were made with a medical Synctucron unit. The masinum bromstrahlung edge was adjustable from 20 to 60 MeV . A thick target, thin window arrangenent was used with standard Schiff spectra expected.

The experimental set-up was similar to that discussed in Section 5, but the detectors were essentially uncollimated and the incident beam restricted to four square inches at the backscatter slab. Slabs of lead and concrete were used. The concrete was built up of light weight cinder block and thus those results are not comparable to the rest of this dissertation. That data is not presented. Results with lead at 20,40 , and 60 MeV follow.

Due to the experimental configuration chosen, backgrounds were much higher, resulting in greater error limits for the data. One standard deviation for the data presented here varies from 10 to 20% on the TLD measurements. Results presented here are not directly comparable to other results of the dissertation due to the narrow beam arrangement used,
but are presented here for possible comparison elsewhere. Because of the nature of Schiff spectra at low ($<250 \mathrm{KeV}$) energies, no dose absorption corrections are made for a (slab) calculations. The results presented in Table 21 are differential dose flux albedo, $a_{\text {D }}\left(\mathrm{H}_{2} 0\right)$ as discussed in Section 6 , for the specific experimental configuration considered here.

The results appear to be a bit lower than those of Table 3, but are similarly grouped, despite the change in $E_{\text {max }}$.

DIFFERENTIAL DOSE THUX ALBEDO

BACKSCATTER ANGLE

LEAD SCATTERER
20.0 MeV Incident Spectra Bremsstrahlung Maximum
θ_{s}
${ }^{a}{ }_{D} 3\left(\mathrm{H}_{2} \mathrm{O}\right) \times 10^{3}$
157.5°
135.0°
112.5°
9.56
7.70
5.12
40.0 MeV Incident Spectra Bremsstrahlung Maximum
θ_{s}
${ }^{a_{D 3}\left(H_{2} \mathrm{O}\right)} \times 10^{3}$
137.5°
135.0°
112.5°
9. 44
6.17
3.00
60.0 MeV Incident Spectra BremsstrahIung Maximum

$$
\theta_{\mathrm{s}}
$$

$\left.{ }^{a}{ }^{\mathrm{D} 3} \mathrm{H}_{2} \mathrm{O}\right) \times 10^{3}$
157.5°
135.0°
112.5°
13.84
10.80
4.93

[^0]: Figure 9. Geometry of the Chilton-Huddleston derivation

[^1]:

[^2]:

