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1. Introduction

1.1. Overview of Ground-Source Heat Pump Systems

Ground-source heat pump (GSHP) systems (also referred to as geothermal heat

pump systems, earth energy systems, and GeoExchange system) have received

considerable attention in the recent decades as an alternative energy source for re idential

and commercial space heating and cooling applications. GSHP application are one of

three categories of geothermal energy resources as defined by ASHRAE (1995). The e

categories are: (l) high-temperature (>302 of (>150 °C) ) electric power production, (2)

intermediate- and low-temperature «302 OF «150 °C» direct-use applications, and (3)

GSHP applications (generally <90 OF «32 °C». The GSHP application are

distinguished from the others by the fact that they operate at relatively low temperature.

The term "ground-source heat pump" has become an all-in~lu~iv.eJerm to

describe a heat pump system that u es the earth, ground water, or surface water as a heat

source and/or sink. GSHP systems consist of three loops or cycles as shown in Figure I­

I. The first loop is on the load side and is either an air/water loop or a water/water loop,

depending on the application. The second loop is the refrigerant loop inside a water­

source heat pump. Thermodynamically, there is no difference between the well-known

vapor-compression refrigeration cycle and the heat pump cycle; both sy. terns absorb heat

at a low temperature level and reject it to a higher temperature level. The difference

between the two systems is that a refrigeration application i only concerned with the low

temperature effect produced at the evaporator, while a heat pump may be concerned with



both, the cooling effect produced at the evaporator as well as the heatin effec produced

,at the condenser. In these dual-mode GSHP systems, a reversing valve is used to switch

between heating and cooling modes by reversing the refrigerant flow direction. The third

loop in the system is the ground loop in which water or an antifreeze solution exchanges

heat with the refrigerant and the earth. t J ( I'

r

To
H.... LOId

~.

Ii_Elu:Iloua­
CYcle

t. l

'Hal

P1IIIIpi
To

CooiDt! LOId

-
1, .

<a) (b)

Figure 1-1. Schematic ofcycles in a GSHP system in (a) cooling mode
and (b) heating mode.

Efficiencies of GSHP systems are much greater than conventional air-source heat

pump systems. A higher COP (coefficient ofperformance) can be achieved by a GSHP

because the source/sink earth temperature is relatively constant compared to air



temperatures. Additionally, heat is ab orbed and rejected through water which i a more

desirable heat transfer medium because of its relatively high heat capacity.

GSHP systems rely on the fact that, under normal geothermal gradi _nts of about

0.5 °FIlOO ft (30 °CIkm) (Grant et aI., 1982), the earth temperature i roughJy con tant in

a zone extending from about 20 ft (6.1 m) deep to about 150 ft (45.7 m). deep (Hart and

Couvillion, 1986). This constant temperatura interval within the earth i the re ult of a

complex interaction of heat fluxes from above {the un and the atmo phere) and from

below (the earth interior). As a result, the temperature of this interval withjn th earth i

approximately.:qu_al!~~ av ra e-annuaJ air tern e tgJ~JHart and Couvillion, 1986).

Above this zone (less than about 20 feet (6.1 m) deep), the earth temperature is a damp~_

version of the air temperature at the earth's surface. Below this zone (greater than about

150 ft (45.7 m) deep), the earth temperature begins to rise according to the natural

geothermal gradient

ASHRAE (1995) groups GSHP systems into three categorie ba ed on th heat

source/sink used. A fourth category is added here for the sake of com l~~
---------. - . These

-

categories are: (1) ground-water heat pump (GWHP) systems, (2) ground-coupled heat

pump (GCHP) systems, (3) surface water heat pump (SWHP) systems, and (4) standing

column well (SCW) systems. Each of these is discussed in the foHowing sub ections.
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1.1.1. Ground-Water Heat Pump Systems

GWHP systems, also referred to a open-loop y tern are th original type of

GSHP system. The first GWHP system were installed in the late 1940 K vanaugh and

Rafferty, 1997). GWHP systems are oot the~f~__ofthis the i I 0 they will only be

briefly described here.-------
A schematic of a GWHP system is shown in Figure 1-2. In GWHP sy tern ,

c.?}!v otional water wells and ~_~.u._PU.ID.I2S are used to su I round water to a heat pump

or directly to some application. Corrosion protection of the heat pump may be nece sary

._~~~...-...;:ality i~oor. The "used" ground water i typically di charged

to a suitable receptor, such as back to an aquifer, to the unsaturated. zone (a shown in

Figure 1-2), to a surface-water bod , or to a sewer. Desi consid ratiQI) for GWHP
~--'- --

systems are fairly-well established; well-drilling technologie and well-testing m th----...::.-------
have been well-known for decades. Design con iderations include: graund-wat r

availability, ground-water chemical quality, and ground-water di asal method.

The main advantage of GWHP systems is their low cost, simplicity, and small

amount of ground area required relative to other GSHP and conventional ysterns.

Disadvantages include limited availability and poor chemical quality of ground water in

some regions. With growing environmental concerns over recent decade, many legal
-----------.--~ ...------ --------

issues have arisen over ground water withdrawal and re-injection in some locahtie .



s

I l

Figure 1-2. A schematic ofa ground-water heat pump system.

1.1.2. Ground-Coupled Heat Pump Systems

GORP systems, also referred to as closed-loop ground-source heat pump y tern ,

were ieered in the 1970s. Their main advantage over their water-well Jm~eGeS~;s.ls

that they eliminate the problems ~as::-.:;,.c::.;i~...... w-.;it,.... ground water quality and availability and

they generally require much less pumping energy than water well systems because there

is less elevation head to overcome. GCHP systems can be installed at any location where------
drilling or earth trenching is feasible.

In GCHP systems, heat rejection/extraction is accom l' . circulating a heat

exchange puid through a piping system buried in the earth. This fluid is either pure wat~

or an antifree solution and is typically circulated through high-density polyeth lene-------- ...-



(HOPE) pipe installed in vertical boreholes r horizontalGh .' shown in Figur 1-3.

Thus, these systems are further subdivided into vertical GCHP y tern and horizontal

GCHP systems.

1.1.2.1. Vertical Ground-Coupled Heat Pump Systems

Vertical borehole GCHP systems are the primary focus ofthi entir the i .

Therefore, they are described in some detail here and their d..:.es::;;;i..........;;;.;;.;.=~!..:..::­

explained, la in the foundation for the motivation of this study.

In vertical borehole GCHP systems, ground heat exchanger configurations

typically consist of one to tens of boreholes each containing a V-shaped pipe through

which the heat exchange fluid is circulated. Some Swedish applications use borehole

inclined from the vertical. A number of borehole to borehole plu bin m t are

possible. Typical V-tubes have a diameter in the range of 3A in. (19 mm) t 1 Yz in. (38

mm) and each borehole is typically 100 ft (30.5 m) to 300 ft (91.4 m) d ep with

diameter ranging from 3 in. (76 mm) to 5 in. (127 mm). The borehole annulu i

generally backfilled with a material that prevents contamination of ground water.
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(a> I t

(b)

Figure 1-3. A schematic of (a) a vertical borehole ground-coupled heat
pump system and (b) horizontal ground-coupled heat pump
system.
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The design of vertical ground heat exchanger i complicat d by th variety of

geological formations and ro rti~ that affect their thermal performance (ASHRAE,

1995). Proper subsurface cha cteri~ is not economically fe ibJe for every project.

One of the fundamental tasks in the design of a reliable GCHP y tern i prop rly izing

the ground-coupled heat exchanger length (i.e. depth of boreholes). Particularly for large

systems, an extensive effort is made to design the ground loop heat xchanger 0 that

they are not too large (resulting in too high of a first cost) or too smaJl (re ulting in th

building's thennalload not being met).

In the early days of GCHP technology, the task of sizing the ground-loop heat

exchanger was accomplished using rules of thumb (i.e. 250 feet of bore length per ton of

heating or cooling capacity). These rules were slightly modified on a_case-by-ca e basi

using some estimates of thermal conductivity of the formation or using previou design

experience, but additional costs of more detailed testing or calculation wa judg d to

outwei h the costs of a conservative design. This relatively imple approach prov d to

be successful in most residential and other small applications, but in larger- cal

commercial and institutional applications, some ground-loop heat exchanger fai led to

meet their design loads after the first few years of operation. Further, the ractice of

greatly over-desi nin large GCHP systems was found to be unacceptable becau e the
~

first costs were sim Iy not competitive with the first co ts of conventional y tern .

Consequently, intensive research regarding methods to optimize ground-loop heat

exchanger design has been ongoing for the last decade.



Simple approaches to sizing the ground-loop heat e cb nger in larg - cale

applications are inadequate mainly becau e the beat tran fe proce:-- '"'--
in th gr und are

com licated by thermally interacting borehole and hourly periodic heat

extraction/injection pulses. Annual heat rejection and. beat extraction are ually not

equal and peak temperatures rise or fall over a number of year . A a r~t, ground-loop

heat exchanger designers need to consider hourly heating and cooling load of tb

building and need to perlorm some simulation of the ground-loop temperature over the

life-cycle of the building. Recent research efforts have produced several methods and

computer software'programs for this purpose. However, none of the program con ider

the effects of ground water flow on ground-loop beat exchanger performance~ tbe

effects have not been well understood, perhaps becau,e of the lack of relevant

investigations. This is the topic of Chapter 2 of tbi thesis.

Another challenge in the design of GCHP system ari es from the fact that mo t

commercial and institutional buildings, even in moderate climates, are generally cooling-

dominated and therefore reject more heat to the ground than they extract over the annual

cycle. This load imbalance may require the heat exchanger length to be significantly

greater than the length required if the annual loads were balanced. A a result, the GSHP

system may be eliminated from consideration early in the design phase of the project due

to excessive first cost. This has given ri _to the conce f "supplemental heat rejecter"
~-

or so-called "hybrid GSHP systems".
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Supplemental heat rejecter have been 'Dte rated into buiLdi

~balance the ground loads and therefore reduce the nece ar J~n ~ of the

ground-loop heat exchanger. In some applications, the excess~t that would otherwi e

build up in the ground may be used for domestic hot water heaters, car washes, and

pavement heating systems. In cases where the exce heat cannot be u ed b n ficiaJly,
-----~

conventional cooling towers or shallow ponds can provide a co t-effective mean to

reduce heat exchanger length.

Design of these supplemental components adds to the challenge of de igning the

overall hybrid GCHP system because of their highly transient nature. Heat rejection

systems are likely to operate more often during the night-time hours or when the building

is not in use. Therefore, it is essential that the hourly (or less) behavior of these systems

be examined during their design phase. These are the topics of Chapters 3 (shallow

ponds) and Chapter 4 (pavement heating systems) of this the i .

1.1.2.2. Horizontal Ground-Coupled Heat Pump Systems

In horizontal GCHP systems, ground heat exchanger configuration typically

consist of a series of parallel pipe arrangements laid out in dug trenches or horizontal

boreholes about 3 ft (0.91 m) to 6 ft (l.83 m) deep. A number of piping arrangements are

possible. "Slinky" configurations (as shown in Figure 1-3 (b» are popular and imple to

install in trenches and shallow excavations. In horizontal boreholes, straight pipe

configurations are installed. Typical pipes have a diameter in the range of % in. (19 mm)
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to 1 Y2 in. (38 mm) aDd about400ft(12L.9 m) to 600 ft (182.9 m) of pipe i in tall d P r

ton of heating and cooling capacity.

The thennal characteristics of horizontal GCHP sy terns are imjlar to tho of

vertical ODes. The maiD difference is that horizontal ground-Loop heat exchange ar

more affected by weather and air temperature fluctuations because of their roximity to

the earth's surface. This may result in Larger loop temperature fluctuation and therefore

lower heat pump efficiencies. Recent researc activit~s have focus ed on u iog th e

systems as supplemental heat rejecters with vertical borehole GCHP system . A P cific

application (i.e. the use of a shallow pavement heating system) is the focu of Chapter 4

of this thesis.

Aside from the invention of the Slinky coil itself and the use of these system as

suppLemental heat rejecters, horizontal systems have received much Ie s att ntion than

vertical systems with res ect to recent research efforts. This may be due to the fact that_. -- -~ ....... ~..--.
vertical systems tend to be preferred in larger applications since much les ground area i

required. Also, since horizontal systems are installed at shallow depth, geologic site

characterization is relativeLy easier because soils can be readily seen and sampled.

Further, over-conservative designs are not as cost prohibitive as with vertical borehole

designs because of the relatively low installation costs of the heat exchanger pipe.
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1.1.3. Surface-Water Heat Pump Systems

The third category of GSHP systems is the surface-water heat pump (SWHP)

system. A specific application of SWHP systems (i.e. the use of a shallow pond as a

supplemental heat rejecter in vertical GCHP systems)i~focu of Chapter 3 of thi

thesis.

A schematic of a SWHP system is shown in Figure 1-4. The surface-water heat

exchanger can be a closed-loop or open-loop type. Typical clo ed-loop configuration

are the Slinky coil type (as shown in Figure 1-4) or the loose bundle coil type. In the

closed-loop systems, heat rejection/extraction is accomplished by circulating a heat

exchange fluid through HDPE pipe positioned at an adequate depth within a lake, pond,

reservoir, 0~uita~9 en cha.D1!~l. Typical pipe diameters range from % in. (19

mm) to I Y2 in. (38 mm) and a length of 100 feet (30.48 m) to 300 feet (91.44 m) per ton

of heating or cooling capacity is recommended by ASHRAE (1995b), depending on the

climate. In open-loop systems, water i extracted from the urface-water body through a

screened intake area at an adequate depth and is discharged to a suitable recepLor.

Heat transfer mechanisms and the thermal characteristics of surface-water bodies

are quite different than those of soils and rocks. This subject will be further discus ed in

Chapter 3 of this thesis. At the present time, design tools for surface-water heat pump

systems are in their developmental infancy (Kavanaugh and Rafferty, 1997). However,- -- ._----~.-

many successful instaJlations are currently in operation and some guideline do exist. In



short, the loop design im

specifying adequate dian

and locating the coil at a

Figure 1-4

1.1.4. Standing Columa

The fourth categor

system. These systems an

recently receiving much a1

only briefly discussed hen:



A schematic ofm sew system is shown in Figure 1-5. This type ofGSHP draws

water to a heat pump from a standing column ofwater in a deep well bore and returns the

water to the same well These systems, primarily installed in hard rock areas, use

uncased bo eholes with typical diameters of about 6 in. (15.24 cm) and depths up to l500

feet (4~7.2 m). The uncased. borehole allows the. heat exchange fluid to be in direct

contact with the earth (unlike closed-loop heat exchangers) and allows groupd water

~filtrati9n over the entire length of the borehole. Properly sited and designed, sew

systems have been shown to have significant installation cost savings over closed-loop

GCHP systems. Design guidelines for sew systems are currently under development.

I.

Figure 1-5. A schematic ofa standing column well system.



1.2. Thesis Objectives and Scope

This s .deals with the modeling of vertical do ed-loop and

source heat pump systems. The challenges associated ith the de ign

were discussed in the previous section. A considerable amount of rese

decade has bee
-....c.-._~

this study is part of those efforts.

There are thTee primary objectives of this study. These are to:

(1) examine the effects of ground-water flow on closed-loop G~

(2) develop a design and simulation tool for modeling the perfo

shallow pond as a supplemental heat rejecter with closed-Ioc

and

(3) develop a design and simulation tool for modeling the p rfo:

hydronic pavement heating system as a supplemental heat re

closed-loop GSHP systems.

Chapter 2 of this thesis ad-'-d.....r~_r the first objective. Given the t

constraints of finding a suitable site with significant ground waterflow,

that site, and collecting and analyzing data at the site over a time period

computer modeling study was conducted as a preliminary assessment of

ground-water flow on closed-loop GSHP systems. Hydraulic and therm

soils and rocks were compiled and AQUA3D, a commercially-available



ground-water flow and heat transport model developed by Vatn . kil Con ultin

Engineers, Inc., Reykjavik, Iceland, was used to simulate the impact of ground-\!

flow on the average heat exchange fluid temperature in single and multiple bor

systems. The impact of ground-water flow on the estimation of oil/rock th rma

conductivity from in-situ test data w=as::....=a1=s;:.o_---=='~

Chapter 3 of this thesis addresses the second objective. The development

validation of a design and simulation tool for modeling the perfonnance of a hal

pond as a supplemental heat rejecter with closed-loop GSHP systems is presentee
--.:...---

model has been developed in the TRNSYS modeling environment and can theref(

coupled to other GSHP system component models for short-time step (hourly or

minutely) system analyses. TRNSYS, developed at the University of Wi consin-

Madison, is a widely-used modular transient thermal systems simulation program

each system component is described mathematically by a FORTRAN ubroutin .

simple language, the components are connected together in a manner analogou t<-------ducting, and wiring in a physical system (Duffie and Beckman, 1991). An examp

application of the pond model is also presented.

Chapter 4 of this thesis addresses the third objective. The development ani

validation of a design and simulation tool for modeling the performance of a hydn

pavement heating system as a supplemental heat rejecter with closed-loop GSHP "

is presented. This model has also been developed in the TRNSYS modeling envir,
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for use in short-time step system analyse . An example application of the pavem nt

heating model is al 0 presented.

Finally, Chapter 5 of thistbesi~e~~mclu ion f the~

studies.

1.3. The Overall Modeling Approach

Each of the objectives of this thesis deals with the development and/or application

of a model. Since the term "model" can be used loosely, some definitions and

---------
approaches as applicable to this study are described here.
~

A ''model'' is a physical or a mathematical representation of an actual system.

This study deals only with mathematical representations of system . American ociety

for Testing and Materials (ASTM) defines a mathematical model a "mathematical

equations expressing the physical system behavior and including simplifying

assumptions". Mathematical models are solved analytically or numerically u ing manual

or computer methods.

The overall modeling approach consists of six stages: (1) define the purpose of

the model, (2) develop a conceptual model of the system, (3) develop or define the

mathematical model of the system, (4) implement the solution method, (5) validate the

model, and (6) apply the model. Each of these is described in the following paragraphs.



1

The first stage in the modeling approach i to clearly d fin the purpo and

objectives of model. This helps to detennine the level of detail and accuracy desired by

the model and helps in making decisions regarding the resource needed.

The second stage in the modeling approach is to develop a conceptual model. of

the system. ASTM defines a conceptual model as "an interpretation or working

description of the characteristics and dynamics of the physical system". The purpose of

the conceptual model is to describe the system by a set of assumptions and concepts that

can be evaluated mathematically.

The third stage in the modeling approach is to develop a mathematical model. In

this stage, the conceptual model is translated to mathematical equations that can be

solved for the desired unknowns. The solution method and limiting a sumption or

simplifications are also identified.

The fourth stage in the modeling approach is to implement the solution method to

solve the mathematical equations. With respect to this thesis, this stage involved using

computer methods with a combination of commercially-available software and

FORTRAN code developed specifically for this study.



The fLfth stage in the modeling approach is to validat th mod j. With r p t to

this thesis, this stage involved comparing model re uLts, where applicable, to an

analytical solution or to experimental data.

The sixth stage in the modeling approach is to finally use the model to analyze the

performance and behavior of actuaJ thermal systems.
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2. A Preliminary Assessment of the Effects of Ground-Water Flow on ..

Closed-Loop Ground-Source Heat Pump Systems

2.1. Introduction

One of the fundamental tasks in the design of a reliable ground-coupled heat

pump system is properly sizing the ground-coupled heat exchanger length (i.e. depth of

boreholes). Recent research efforts have produced several method and commercially­

available design software tools for this purpose (Ingersoll, 1954; Kavanaugh, 1984:

Eskilson, 1987; IGSHPA, 1991; Spitleret aI., 1996; and Kavanaugh and Rafferty, 1997).

All of these design tools are based on principles of heat conduction and rely on some

estimate of the ground thermal conductivity and volumetric specific heat. These

parameters are perhaps the most critical to the system design, yet adequately determining

them is often the most difficult task in the design phase.

Methods of determining the thermal properties of the ground have al 0 be n the

subject of considerable recent research (Eklof and Gehlin, 1996; and Au tin et aI., 2000).

Current methods range from estimating values from published data to conducting

laboratory experiments on soil/rock samples to conducting single-borehole, in-. itu field

tests. In general, thermal property values derived from in-situ field tests are mo t

representative because the values are site-specific and a larger volume of material i

evaluated under more realistic conditions than is possible in the laboratory. The typical

field procedure in in-situ tests is to measure the temperature response of a fluid flowing

through a ground heat exchanger in a single borehole. A schematic of the typical field
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apparatus is howD in Figure 2-1. Tbe fluid temperature at eguJar time iot rv and beat

added to the fluid stream are recorded over the course of the test.

Pipe
Insulation

Temperature
Sensol'S

Portable
Unit

Flow
Meier

Waler
Circulating

Pumps

U-Tube Heat Exchanger

Figure 2-1. Schematic of typical apparatus for in-situ ground thermal
conductivity testing.

Determination of thermal conductivity from temperature-time data i an inverse

problem. Several analytical and numerical methods exist for interpreting the data et.

These methods will not be disoussed in detail here, but include the "cylinder- ource"

analytical solution (Carslaw and Jaeger, 1946), the "line-source" analytical olution

(Kelvin, 1882; Ingersoll, 1954), numerical solutions (Mei and Emerson, 1985; Muraya et

aI., 1996; and Rottmayer et aI., 1997), and numerical solutions with parameter e timation
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(Shonder and Beck, 1999, Au tin et al., 2000). Each of th e method i ba ed on

Fourier's Law of heat conduction. .1 ' 't

A further complication in the design of ground-coupled heat pump yst ms i the

presence of ground water. Where ground water is present, flow will occur in re ponse to

hydraulic gradients and the physical process affecting heat transfer i.n the ground i

inherently a coupled one of heat diffusion (conduction) and heat advection by moving

ground water. In general, ground-water flow can be expected to be beneficial to the

thermal perfonnance of closed-loop ground heat exchangers ince it will have a

moderating effect on borehole temperatures in both heating and cooling mod

Complications in the borehole field design process due to the pre ence of flowing

ground water arise from the fact that both current in-situ conductivity te t data

interpretation methods and ground-loop heat exchanger design method. are based on

models that only consider heat conduction. Therefore, ground-water flow may impact the

design process in two ways: (I) thermal conductivities derived from iin- itu test may

appear artificially high and (2) borehole fields designed from artificially high thermal

conductivity values may be over- or under-designed. An unusually high thermal

conductivity value was determined from in-situ test data at a site in Minnesota where

significant ground-water flow was believed to occur (Remund, 1998).

The objectives of the work presented in this chapter have been to make a

preliminary examination of the effects of ground water flow on both in-situ ground
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thennal conductivity measurements and long-term borehole field performance. Thi h

been attempted firstly by examining the range of hydrogeological condition that might

be expected and estimating the order of magnitude of the corresponding ground-water

flows. A simple method of examining the importance of heat advection from ground-

water flow is then presented.

A finite-element numerical ground-water flow and heat transport model ha been

used to simulate and observe the effects of ground-water flow on the average fluid

temperature in a single V-tube borehole in various geologic materials. The model wa

used to simulate several in-situ ground thermal conductivity tests, and thermal

conductivities were derived from these data using a standard approach. For each te t

case, the derived thermal conductivities, along with the thennal loads from an actual

building, were used to design a hypothetical multi-borehole field by employing

conventional design tools and procedures. For different sets of hydrogeological

conditions, a numerical model of the whole borehole field was u ed to simulate its long-

term performance. Conclusions are presented on the ability of conventional design

procedures to correctly predict the long-term performance of closed-loop ground heat

exchangers under different ground-water flow conditions.
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2.2. Coupled Ground Water Flow and Heat Transport

2.2.1. Ground-Water Flow

Underground water occurs in two zones: the unsaturated zone and the aturated

zone. The tenn "ground water" refers to water in the saturated zone. The urface

separating the saturated zone from the unsaturated zone is known as the "water table". At

the water table, water in soil or rock pore spaces is at atmospheric pre sure. In the

saturated zone (below the water table), pores are fully saturated and water exist at

pressures greater than atmospheric. In the unsaturated zone, pore are only partially

saturated and the water exists under tension at pressures less than atmospheric. In this

paper, we deal only with water in the saturated zone.

Ground water is present nearly everywhere, but it is only available in u able

quantities in aquifers. An "aquifer" is defined by Driscoll (l986) as a formation, group

of formations, or part of a fonnation that contains sufficient saturated permeable material

to yield economical quantities of water to wells and springs. Aquifer are de cribed a

being either confined or unconfined. Unconfined aquifers are bounded at their upper

surface by the water table. Confined aquifers are bounded between two layers of lower

penneablity materials. In practice, the boreholes of ground-loop heat exchanger may

partially penetrate several geologic layers.

The governing equation describing flow through porous media is Darcy's Law:



dh
q=-K-

dx
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(2-1)

• I

where q is the specific discharge (volume flow rate per unit of cross- ectional area), K i

the hydraulic conductivity, and h is the hydraulic head. The specific di charge i related

to average linear ground water velocity, v, by:

v =!l..
n

(2-2)

where n is the porosity and is introduced to account for the difference between the unit

cross-sectional area and the area of the pore spaces through which the ground water flows

(Freeze and Cherry, 1979; Fetter, 1988).

By applying the law of conservation of mass to a control volume and by making

use of Darcy's Law (Equation 2-1), an equation defining the hydraulic head di tribution

can be derived. Transient ground-water flow with constant den ity can then be expre ed

in Cartesian tensor notation as:

s ah -~(K.'~J=R·
or at ax. IJ ax

I /

(2-3)

Since ground water at 1lOoF (43.3°C) (an extreme temperature limit expected in GSHP

applications) has a specific gravity of approximately 0.99 J , the assumption of constant

density flow for low-temperature geothermal applications may be considered valid.
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2.2.2. Heat Transport in Ground Water

Heat can be transported through a saturated porou medium by the following thre

processes:

temperature of rock/water matrix. It is the second term in Equation 2-4 that repre ents

applying the law of conservation of energy to a control volume, an equation for heat

differential equation of the advection-dispersion type (Freeze and Cherry, 1979). By

(2-4)nR
aT

+v aT -~(D aTJ=Q*at I ax ax. IJ ax
I I I

transport in ground water can be found and can be expressed as:

(3) heat transfer through the liquid phase by advection.

where the velocity, Vi is determined from the solution of Equation 2-3 and T is the

(2) heat transfer through the liquid phase by conduction, and

(1) heat transferthrough the solid phase by conduction,

advection of heat by the ground water and couples Equations 2-3 and 2-4 together. If the

ground water velocity is zero, Equation 2-4 reduces to a form of Fourier's Law of heat

The governing equation describing mass or heat transport in groundwater i a partial

conduction.

The diffusion coefficient tensor Dij is modeled here as an effecti ve thermal

diffusivity given by:

-



DO = kerr
PlCl

• t

(2-5)
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The effective thermal conductivity k~ff is a volume-weighted average th rmal conductivity

of the saturated rock matrix and can be expressed using the porosity as:

(2-6)

It is necessary to distinguish between the conductivity and thermal capacity of the water

and soil/rock in this way to account for the fact that heat is stored and conducted through

both the water and soil/rock, but heat is only advected by the water. Similarly, it i

necessary to define a retardation coefficient R accounting for retardation of the thermal

plume which results from differences in the liquid and solid volumetric heat capacities:

R = 1+(1- n)csps
n Clpe

2.2.3. Typical Hydraulic and Thermal Property Values for Soils and Rocks

(2-7)

In assessing the significance of ground-water flow to closed loop heat exchanger

performance, the question arises as to what locations have significant ground-water flow.

Darcy's Law indicates that flow is dependent on both the local hydraul ic gradient and the

hydraulic conductivity of the geologic material. Heat transfer is dependent on the flow

velocity and the thermal properties of the material. It is therefore useful, in making a

preliminary assessment of the significance of ground-water flow, to consider the range of

naturally-occurring soil and rock properties and possible values of hydraulic gradient.
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Naturally-occurring ranges of value of hydraulic and thermal prop rti of oil

and rocks are summarized in Table 2-1. Values of hydraulic gradient are omewhat more

site-specific; the United States Environmental Protection Agency (1996) report a typical

range of hydraulic gradient values of 0.000 1 to 0.05.

Some specific examples of natural ground water velocities include: 1796 ft/yr

(547.5 m/yr) to 7185 ft/yr (2190 rnlyr) under a hydraulic gradient of 0.002 to 0.012 in the

Snake River Group basalt, Idaho, USA (Lindholm and Vaccaro, 1988); 361 ft/yr (110

rnIyr) in the High Plains sand and gravel aquifer, western central USA (Week and

Gutentag, 1988); and 1.3 x 10-3 ftlyr (4.0 x 10-4 rnIyr) to 1.50 x 10-2 ft/yr (4.6 x 10-3

rnIyr) in glacial clay soils in Southern Ontario, Canada (Stephenson et aI., 1988). Local

pumping activities may further increase ground-water flow rates in aquifers.

The thermal properties of soils and rocks are function of mineral content,

porosity, and degree of saturation. Of these, porosity may be considered the mo t

important property simply because of the origin and nature of soils and rock. Rocks

originate under higher heat and pressure environments than soils and consequently

generally possess lower porosities. Lower porosities in rocks result in higher contact area

between grains and therefore higher thermal conductivities than soils, regardless of

mineral content. For saturated materials, increased porosity results in increased heat

capacities and therefore lower thermal diffusivities.



TABLE 2-1.

Typical Values of Hydraulic and Thermal Properties of Soils and Rocks

Porous MedIum Hydraulic Properties Thermal ProDertles
Hydraulic Conductivity' Porosity' Velocity" Thermal Conductivity'" Volumetric Heat Capacity'"

(K) (n) (v) (k) (Psc.)

ft/s H ft/yr Btulhr.ft-of Btulff-OF
Im/s) (mivr) rN/m-OC) (J/m3-OC)

Range Geometric Range Arithmetic Range Arithmetic Range Arithmetic
Averaae Averaae Averaae Averaae

So/ls
Gravel 9.84E-04 - 9.84E-02 9.84E-Q3 0.24 - 0.38 0.31 1.00E+04 0.40 - 0.52 0.46 -- - -- 2.09E+01

3.00E-04 - 3.00E-02 3.00E-03 3.05E+03 (0.70) - (0.90) (0.80) - - -- (1.40E+06)
Sand (coarse) 3.0E-06 - 2.0E-02 2.4E-04 0.31 - 0.46 0.385

.

1.98E+02 0.40 - 0.52 0.46 2.09E+Ol-- - --
I (9.0E-071 - (6.0E-03) (7.3E-051 1(6.01 E+Oll (0.701 - (090) (0.80) - - -- (1.40E+06)

Sand (fine) 6.6E-07 - 6.6E-04 2.1E-05 0.26 - 0.53 0.40 1.66E+Ol 0.40 - 0.52 0.46 -- - -- 2.09E+01
I (2.0E-07) - (2.0E-04) (6.3E-06) I(5.05E+00\ (0.70\ - (0.90\ (0.801 -- . -- (1.40E+06)

Silt 3.3E-09 - 6.6E-OS 4.6E-07 0.34 - 0.61 0.475 3.D8E-01 0.69 - 1.39 1.04 3.58E+01 - 4.92E+Ol 4.25E+Ol
I(1.0E-09) - (2.0E-05) (1.4E-07) (9.40E-02) (1.20) - (2.40) (1.80) (2.40E+061 - (3.30E+061 (2.85E+06)

Clay 3.3E-11 - 1.SE-08 7.1E-l0 0.34 - 0.60 0.47 4.78E-04 0.49 - 0.64 0.56 4.47E+Ol - 5.37E+Ol 4.92E+Ol
I(1.0E-lll - (4.7E·091 (2.2E-l0) (1.46E-041 (0.85) - (1.10) (0.98) (3.00E+06) - (3.60E+06) (3.3E+061

Rocks
Limestone, Dolomite 3.3E-09 - 2.0E-05 2.5E-07 0 - 0.20 0.10 8.02E-Ol 0.87 - 1.91 1.39 3.17E+02 - 8.20E+Ol 1.99E+02

1(1.0E-09) - (6.0E·OS) (7.7E-08) (2.44E-Ol) (1.50) - (3.30) (2.40) (2.13E+071 - (S.50E+06) (1.34E+07)
Karst Limestone 3.3E-QS - 3.3E-02 3.3E-04 0.05 - 0.50 0.275 3.76E+02 1.44 - 2.48 1.96 3.17E+02 - 8.20E+Ol 1.99E+02

1(1.0E-06) - (1.0E-02) (1.0E-041 I(1.15E+02) (2.501 - (4.30) (3.40) (2.13E+07) - (5.50E+06) (1.34E+07)
Sandstone 98E-l0 - 2.0E-05 1.4E-07 0.05 - 0.30 0.18 2.51 E-Ol 1.33 - 3.76 2.54 3.17E+Ol - 7.46E+Ol 5.31E+Ol

I(3.0E-l01 - (6.0E-061 (4.2E-08) (7.6SE-021 (2.30\ - (6.50\ (4.401 (2.13E+06) - (5.00E+061 (3.56E+061
Shale 3.3E-13 - 6.6E-09 4.6E-11 0 - 0.10 0.0525 2.79E-04 0.87 - 2.02 1.44 3.54E+Ol - 8.20E+01 5.87E+Ol

I(1.OE-13) - (2.0E-09) (1.4E-11) (8.50E-D5) (1.50) - (3.50) (2.50) (2.38E+06) - (5.50E+06) (3.94E+06)
Fractured Igneous 2.6E-08 - 9.8E-Q4 5.1 E-OS 0 - 0.10 0.05 3.21E+Ol 1.47 - 3.83 2.65 -- -- 3.28E+Ol

and Metamorphic I(8.0E-09) - (3.0E-04) (1.5E-06) I(9.78E+00) (2.50) - (6.60) (4.581 -- - -- (2.20E+06)
Unfractured Igneous 9.8E-14 - 6.SE-l0 8.0E-12 0 - 0.05 0.025 1.01E-04 1.47 - 3.83 2.65 -- - -- 3.28E+Ol
and Metamorphic I(3.0E-13) • (2.0E-10\ (2.4E-121 (3.09E-OSl (2.501 - (6.60) (4.581 -- - -- (2.20E+06)

Notes: Thermal conductivity values are taken to represent that of materials in the dry condition .
• hydraulic conductivity and porosity data from Domenico and Schwartz (1990).
" v is the average linear ground water velocity based on an assumed gradient of 0.01 fVft (mlm) .
••• thermal property data from Hellstrom (1991). For sedimentary rocks, Hellstrom lists only Cs. In these cases, a density of 2500 kglm3 is assumed.



The porosity of soils and rocks can al 0 be an importan controlling'nflu n on

hydraulic conductivity (Freeze and Cherry, 1979). Materials with higher poro ity

generally also have higher hydraulic conductivity. However, thi correlation doe not

hold for fine-grained soils (see Table 2-1.). Porosity and hydraulic oonductivity of oil

and rocks can be increased by so-called "secondary porosity" which is attributJ d to

solution channels (i.e. in karst limestone) or to fracturing (i.e. in rock and cohe iv

soils).

2.2.4. Conduction Versus Convection in Geologic Materials

o

It has already been noted that it is the presence of advection that distingui hes the

heat transfer regime under ground-water flow conditions from that of heat conduction

alone. Some assessment of the significance of the flow can be made by considering the

order of magnitude of the advection of heat compared to conduction (diffusion).

A dimensionless parameter describing conduction versus convection is th Peelet

number (Pe). In this application, the Peelet number expresses the transport of heat by

bulk fluid motion to the heat transported by conduction. Domenico and Schwartz (1990)

define Pe for heat transport in ground water as:

Pe = ptctqL
k eff

The term L is defined as some characteristic length dependent on the situation.

(2-8)

According to Bear (1972), L can be chosen as any length dimension, so long as it is

consistent with other comparisons. In principle, advection becomes significant when Pe



3

is of order one. The exact value of Pe at which advection becom significant i lightly

dependent on the choice of L.

The Peelet number has been used to quantify the relative importance of

mechanical (or advective) dispersion versus molecular diffusion in mas tran port in

ground water. Many studies have been conducted and the data have been ummarized by

Bear (1972). In short, when the characteristic length was chosen as mean grain ize,

diffusion is the process controlling mass transport at Peelet number Ie s than about 0.4.

At Peelet numbers in the range of 0.4 to 5, a transition occurs where mechanical

dispersion (or advective dispersion) and diffusion are of the same order of magnitude.

Above a Peelet number of about 5, mechanical dispersion (or advective dispersion)

dominates. No similar studies conducted for heat transport have been found.

An analysis of the Peelet number using the typical hydraulic and thennal values

of soils and rocks presented in Table 2-1 may be used to assess the role of ground water

flow in the design of elosed-loop ground heat exchangers. The characteristic length

could conceivably be chosen as (I) a typical borehole spacing or (2) the length of the

borehole field in the direction of flow. The calculated Peelet numbers are listed in Table

2-2 using a typical borehole spacing of 14.8 ft (4.5 m) and assuming the fluid property

values of Pt, ct , and k( as 62.4lb/ft3 (1000 kglm\ 1.0 Btu/lb-oF (4180 J/kg-OC), and

0.347 Btu/hr-ft-oF (0.60 W/m-oC).
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A review of the data presented in Table 2-2 reveals that heat advection by ground

water flow is significant process contributing to heat transfer in coar e-grained oil

(sands and gravels) and in rocks exhibiting secondary porositie (fracturing and olution

channels). When the characteristic length is defined as the borehole pacing, Peelet

numbers exceeding 1 exist only for sands, gravels, and karst limestones. It i pos ible

however, that even when the Peelet number is of order one or higher, the effect of the

ground-water flow on the temperature response may not be seen within the normal time

scale of an in-situ thennal conductivity test. This is one of the reasons for conducting

numerical borehole field simulations for the duration of several year .

TABLE 2-2.

Peclet Numbers Corresponding to Typical Values of Hydraulic and Thermal
Pr.operties of Soils and Rocks

Porous Medium Peclet Number
where L =a typical
borehole spacing of

14.8 ft (4.5 m)

[--]
Soils \

Gravel 5.72E+02
Sand (coarse) 1.34E+01
Sand (fine) 1.15E+OO
Silt 1.28E-02
Clay 3.24E-05

Rocks
Limestone, Dolomite 5.92E-03
Karst Limestone 5.28E+OO
Sandstone I 1.77E-03
Shale 1.05E-06
Fractured Igneous 6.32E-02

and Metamorphic
Unfractured Igneous 1.00E-07

and Metamorphic
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2.2.5. Numerical Ground-Water Flow and Heat Transport Models

In assessing the effects of ground-water flow on V-tube heat exchanger

performance, one is mainly interested in the temperature of the heat exchange fluid.

Therefore, modeling of the V-tubes in some detail is important in this problem. The heat

exchange fluid temperature is affected by the transient building thermal loads .in addition

to the heat transfer in the porous medium around the horehole. Consequently, this

problem is characterized by an irregular model domain with time-varying boundary

conditions and is best handled by a numerical model.

Numerous commercially-available and public domain numerical software codes

exist for modeling mass and/or heat transport in ground water. Of these, the following

8 were selected for a more detailed review for potential application to thi project:

• 3DFEMFAT (3-Dimensional Finite Element Method Flow and Transport) by G.

Yeh, Pennsylvania State University. This code was developed to imulate ma s

transport in variably-saturated porous media. Density-dependent flow can also be

simulated.

• AQUA3D by Vatnaskil Consulting Engineers, Reykjavik, Iceland. This code is aL 0 a

three-dimensional, finite-element code. It was developed mainly for simulation of

mass-transport problems but allows easy adaptation of boundary conditions to model

heat transport without density-dependent ground-water flow.
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• FEFLOW (Finite Element FLOW) by WASY Institute for Wate

Planning and Systems Research, Ltd., Berlin, Germany. Thi code i al 0 a thr -

dimensional, finite-element code. It is capable of imulating both m and h at

transport in variable-density ground-water flow systems.

• Flowpath II by Waterloo Hydrologic, Inc. (WHD, Waterloo, Ontario. Tbi code i a

two-dimensional finite difference code. It was developed originally for imuLation of

ground-water flow problems only; contaminant-transport simulation capabiLitie ,

mainly in the horizontal plane, have been recently added.

• HST3D (Heat and Solute Transport in 3 Dimensions) by USGS, Denver, Colorado.

This code is a three-dimensional finite-difference code. It is capable of simulating

mass and heat transport in variable-density ground-water flow ystem . It was

developed mainly for simulating problems involving wa te injection into aqui~ r .

• MT3d6 (Mass Transport in 3 Dimensions) by S.S. Papadopulos & As ociates, Inc.,

Bethesda, Maryland. This code is also a three-dimensional finite-difference code. It

solves the mass transport equation only and requires a solution to the ground-water

flow equation from another code. It was developed for simulating contaminant­

transport problems in ground water.
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• SUTRA (Saturated-Unsaturated TRAnsport) by United Sta e Geological Sur y

(USGS), Denver, Colorado. This code is a two-dimen ioncU finjt~ I m n cod . It i

capable of simulating mass or energy transport in variably-saturated variabl -den ity

ground-water flow systems. It was mainly developed as a cros - ectional model for

simulating salt-water intrusion into fresh-water aquifers.

• SWIFT (Sandia Waste Isolation Flow and Transport) by HSI GeoTran ,Sterling,

Virginia. This code is a three-dimensional finite-difference code. It is capable of

simulating mass and heat transport in variable-density ground-water flow sy tern in

porous or fractured media. It was developed mainly for simulating problem

involving deep-well radioactive waste injection into geologic repositories.

In the code selection process, particular attention was paid to the following item : (I)

the type of boundary conditions handled by the code, (2) the solution cherne mployed

by the code, (3) verification of the code, and (4) cost. Each of the e point i described

in more detail below.

The type of boundary conditions handled by the code was perhap the most important

consideration in the code selection process. For simulation of periodic heat extraction or

heat rejection to the ground, the selected code needed to be capable of handling time­

varying, heat flux boundary conditions. Further, since a relatively large number of time­

varying data were to be used as input, the selected code needed to be capable of reading

time-varying conditions from an external file.
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The software codes that were reviewed for this project employ either finite-diff rence

methods (FDM) of finite-element methods (FEM) to solve the partial differential

equations describing heat/mass transport in ground water (Equation 2-3 and 2-4). The

solution scheme was considered important for two main reasons. First, FEM offer an

advantage over FDM in the ability to represent complex or irregular geometries (i.e.

circular V-tubes in a rectangular domain). Second, there has been controver y in the

literature over advantages of FEM over FDM in solving the advection-dispersion

equation (Equation 2-4). In general, experience has shown the FEM to be generally

superior to FDM in solution stability (Wang and Anderson (1982) and Mercer and Faust

(1986». Consequently, codes employing an FEM solution scheme were preferred.

Documented verification of the code was an important consideration since it often

requires years to find and fix bugs in these types of software programs. All of the 8

codes listed above have been originally developed in the 1980s and many validation

examples exist.

The cost of the code was also a main consideration in the selection proce since the

project had an allocated budget for software.
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2.3. The Numerical Model

2.3.1. Model Description

The computer code selected for this study was AQUA3D. It i a commercially­

available software package originally developed in 1983 by Vatnaskil Consulting

Engineers of Reykjavik, Iceland. The partial differential Equations 2-3 and 2-4 are

discretized spatially by a Galerkin finite clement method using triangular element with

linear weighting functions (Vatnaskil, 1998). The temporal term of the equation i dealt

with by first order backward differencing in time. AQUA3D does not allow for the

explicit representation of the heat transport equation, but provides a general form of the

mass transport equation (EquatioD 2-4). Temperatures were in fact calculated by suitable

choice of the coefficients of the mass transport equation and corresponding adaptation of

the boundary conditions.

The finite element ground-water flow and mass/heat transport model wa used in

this study as the primary means of assessing the effects of ground-water flow on c1osed­

loop heat exchangers. Use of a numerical model allows a wide range of conditions to be

examined and is the only practical means of modeling a whole borehole field. In each

test case, a uni-directional flow field was imposed over the whole numerical domain. As

the flow was assumed to be fuJly-saturated and within homogeneous geologic material, it

was only necessary to use a two-dimensional model.
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2.3.2. The Finite Element Mesh

Finite element meshes for a single borehole geometry, and for a complete

borehole field geometry have been constructed using triangular element . Nodal pacing

was kept relatively fine around the pipe walls where the steepe t temperature gradient

were expected. The mesh for the single borehole geometry was constructed within a

square domain and consisted of 465 nodes, as shown in Figure 2-2.

I I
I I
I I

~ 3.46 in. (8.8 em) ---+!

,<III 14.4 It (4.4 m) ~,

Figure 2-2. Finite element mesh representing a single borehole.



A mesh for a four-by-four configuration borehole field w con tructed by u iug

the single borehole mesh (Figure 2-2) as the basis for the me h at each borehole and by

expanding the mesh in the direction of ground-waterflow a shown in Figure 2-3. This

mesh consisted of 4532 nodes.

1;4..----- 1640 ft(SOOm) --------.t

...~--- 57.71t117.8m) ----.t~!

Figure 2-3. Finite element mesh representing a 16 borehole field.

2.3.3. Boundary Conditions

Two sets of boundary conditions are required: one set for the flow model and one

set for the transport model.
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In the flow model, first-type or fixed-value (Dirichlet) boundary condit,ion were

set on the left-hand and right-hand boundaries in order to impo e a fiJ(l d hydraulic

gradient across the domain. Second-type or fixed-gradient (Neumann) boundary

conditions were set on the upper and lower boundaries of the flow domain and were

specified as zero flux. This work assumes that no ground-water recharge take place

across the water table within the model domain. In the transport model, Dirichlet

boundary conditions were set on all four sides of the model domain. The e conditions

represent fixed background or far-field temperatures.

In order to impose the ground thermal loads as boundary condi.tion at the V-tube

pipe walls, some adaptation of the usual boundary condition was required. Thi ari es

from the use of the mass transport equation to model heat transport. First, a zero flux

condition for the mass (heat) transport equation was applied at each of the sixteen nodes

forming each pipe wall. The required heat flux is imposed using a source term in the

ground-water flow equation at these nodes (representing injection of the heating/cooling

water). The flow injected, V·, was set negligibly small (3.53 x 10- 19 fe/s [1.0 x 10.20

m3/s]) so as not to disturb the ground-water flow field. The temperature of this injection

flow, Tw was set to achieve the required heat input (the ground thermal load), 0 that,

q*T :=::;--=---
W PlCl v*

(2-9)

The values of ptand ctare taken as constants of 62.4 Jb/ft3 (1000 kg/m3
) and 1.0 Btu/lb-

OP (4180 J/kg-°C). The average temperature of the heat exchange fluid in each borehole

is taken as the average of the nodal temperatures of the 32 nodes defining the V-tube pipe
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in each borehole. Where single borehole cases were simulated, the heat input per pipe

node, q., was set at a fixed value representative of in-situ thermal conductivity te t

conditions. Where the whole borehole field was modeled, q. was determined from the

time-varying building loads.

2.3.4. Validation of the Numerical Model

In order to check the accuracy of the AQUA3D model and the implementation of

the boundary conditions, an appropriate analytical solution was sought. Numerous

analytical solutions have been developed for the advection-dispersion equation (Equation

2-4). However, these are mostly specific to pollutant-transport problems (T i replaced

by solute concentration in Equation 2-4) involving point or line sources with uniform

concentration in time. Fetter (1988) and Bear (1972) summarize solutions for boundary

and initial conditions describing situations that are commonly found in nature. The

literature gives little to no attention to analytical solutions describing the explicit

transport of heat in ground water.

The most appropriate analytical solution found was that described by E kil on

(1987) for steady-state heat extraction from a borehole in a ground-water flow field.

However, Eskilson's solution contains some approximations.

Eskilson (1987) describes the steady-state temperature at the borehole wall (Tsw,b)

as:



(2-10)q' { 1 [ (H J (H )~}T -T +- -- In - -p -
.!W.b - om H 2n:k

s
2r

b
IV £

The logarithmic term gives the steady-state resistance and Pw ( ~ }s a correction term

accounting for ground-water flow which is approximated as:
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error between the two solutions is 4.9%. This error was considered to be acceptable.

Comparisons of the steady-state temperature at the wall of a pipe were made

(2-11)
Q
~

m
0

(2-12)
tll

where £»rb

using both the AQUA3D and the Eskilson (1987) solution. The following data were u ed

(H) H 1P .- =In-+ r--1n(3)
IV £ U 2

for f. defined as:

depth of 250 ft (76.2 m), soil thermal property values of sand from Table 2-1, water

properties as described above, a far-field temperature of 63°F (17.2°C), and a heat flux of

as inputs: a pipe diameter of 0.787 in. (2 cm) (i.e. a single leg of a typical V-tube), a pipe

Eskilson's (1987) solution were 101.4°F (38.54°C) and 99.59~ (37.55°C), respectively.

8530 Btulhr (2500 W). The temperature predicted by AQVA3D at steady- tate time and

In tenns of temperature increase above the far-field temperature, the percent difference in

-
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2.4. Results And Discussion

2.4.1. Single-Borehole Simulations

The numerical model was initially used to determine average borehole

temperatures for a range of soil and rock types over a two-year simulation time. The

objective was to examine trends in heat exchanger performance with increa ing Peelet

number. The hydraulic and thermal property inputs are those listed in Table 2-1 and a

hydraulic gradient of 0.01 was assumed. A constant heat flux of 8530 Btu/hr (2500 W)

was applied on a V-tube in a 250 ft (76.2 m) deep borehole. The initial temperature and

first-type boundary conditions were set at 63°F (17.2°C). The model domain is that

shown in Figure 2-2. A simulation time of two years with a time step of 5 days was used

for these simulations. For comparison purposes, simulations were made for each case but

with zero ground-water flow.

Plots of average borehole fluid temperature versus time for three example

geologic materials are shown in Figure 2-4. A review of these plots reveals that a

"typical" ground water flow rate in a coarse sand dramatically lowers the average

borehole fluid temperature when compared to the zero-flow case. After a one-year

period, the average fluid temperature in the borehole is approximately 15°F (8.3°C) lower

than the average fluid temperature in the borehole where no ground-water flow was

simulated, and appears to have reached a steady state. A small reduction in peak

temperature is shown for the case of fine sand. However, "typical" ground waterflow
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Figure 2-4. Average borehole fluid temperature vs. time for (a) coarse sand,
(b) fine sand, and (c) shale.
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rates in rocks such as granites, limestones, dolomite , and shales were found to have a

negligible effect on the average borehole fluid temperature.

The trends shown in these results are in agreement with the previou Peelet

number analysis. At Peelet numbers of order one or higher, advection of heat by flowing

ground water is a significant process contributing to heat transfer in the ground. At

Peelet numbers of order less than one, conduction is the dominant heat transfer proce s

and enhancement to the heat exchanger performance is negligible.

2.4.2. Simulated In-Situ Thermal Conductivity Tests

The second objective of the single-borehole simulations was to determine the

effects of ground-water flow (in a material where ground-water flow is expected to be

significant) on the interpretation of data from in-situ ground thermal conductivity t t.

The previous results showed the effects of ground-water flow to be most significant in the

cases of gravel and eoarse sand. Accordingly, the simulated in-situ thermal conductivity

test calculations have been based on coarse sand properties.

As previously discussed, in-situ thermal conductivity tests involve the application

of a steady heat flux to a test borehole along with the measurement of the temperature

response of the circulating water. These data are used either with an analytical model or

with a numerical model and parameter estimation technique to arrive at a value of

thermal conductivity of the soil! rock formation. Here, the borehole temperature response
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is calculated for a range of ground-water flows using the AQUA3D model. The da

have been analyzed in exactly the same way as if the data had been measured in- itu.

Hence, 'effective' thermal conductivities have been estimated for different flow

conditions.

In-situ test conditions were modeled by applying a constant heat flux of 8530

Btulhr (2500 W) on a U-tube in a 250 ft (76.2 m) deep borehole. The simulation time

periods were 50 hours and one week, corresponding to typical duration of in- itu ground

thermal conductivity tests. The model time step was 2.5 minutes. The initial temperature

and first-type boundary conditions were set at 63°F (17.2°C) and the model domain i that

shown in Figure 2-2. Model input hydraulic and thermal property values are those listed

in Table 2-1 for a coarse sand, except the ground water flow velocity was varied from a

"typical" value of 196.8 fttyr (60 m/yr) to a more extreme value of J968.5 fttyr (600

m/yr) by adjusting the hydraulic conductivity value. Twelve case wer simulat d a

listed in Table 2-3.

Resulting temperature responses for the 12 cases are plotted in Figure 2-5. A

review of Figure 2-5 shows that ground water flow in a coarse sand significantly impacts

the average borehole fluid temperature over the time scales of an in-situ ground thermal

conductivity test. Two noteworthy conclusions can be drawn from these simulation : (1)

as ground water velocity increases, the time to reach steady-state conditions decrease

and (2) as ground water velocity increases, the steady-state temperature decrease . Also,

the deviation from the zero-flow condition can be seen to be dependent on the duration of
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the test; temperatures are further reduced with increasing duration. Hence, the duration

of the test could be expected to have an influence on the estimated thermal conductivity

derived from an in-situ test.

TABLE 2-3
Case Summary of Simulated In-Situ Ground Thermal Conductivity Tests

Case Simulation Time Period Ground Water Flow Velocity

1 50 hours No Ground Water Flow

2 50 hours 196.8 ft/yr (60 m1yr)

3 50 hours 393.7 ft/yr (120 m1yr)

4 50 hours 787.4 ft/yr (240 m1yr)

5 50 hours 1574.8 ftlyr (480 rn/yr)

6 50 hours 1968.5 ft/yr (600 rn/yr)

7 1 week No Ground Water Flow

8 1 week 196.8 ft/yr (60 rn/yr)

9 1 week 393.7 ft/yr (120 rn/yr)

10 I week 787.4 ft/yr (240 m1yr)
] 1 ] week ]574.8 ft/yr (480 rn/yr)
]2 ] week 1968.5 ft/yr (600 rn/yr)

The effective thermal conductivity values predicted by the Austin et al. (2000)

model are plotted against the corresponding ground-water flow velocity for each of the

two in-situ test simulation times (50 hours and 1 week) in Figure 2-6. The actual values

are listed by case number in Table 2-4. A review of these results shows that as ground

water flow velocity increases, the predicted effective thermal conductivity value from a

conduction-based model are significantly different, depending on the duration of the

simulated test. These values are "effective" values since they include the effects of

ground water advection. However, at this stage of the design process, it is not clear if the
I



50-hour data set or the I-week data set produces more representative value , or if either

data set produces representative values at all.
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Figure 2-5. Average borehole fluid temperatures for the 12 simulated in-situ
ground thermal conductivity test cases in a coarse sand with ground
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In order to investigate the effects of ground-water flow on borehole field

performance and system design procedures further, the predicted ground thermal

Figure 2-6. Predicted effective ground thermal conductivity values versus
ground-water flow velocity for 50-hour and I-week imulated in­
situ thermal conductivity tests.
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2.4.3. Borehole Field Simulations

conductivities were used to design a borehole field for a test building. The test building

was an actual building located in north-central Oklahoma. This building i a ingle- tory

office building with 8 thermal zones and has a predominant demand for cooling. The

hourly building loads were determined for one year using building energy simulation

software (BLAST, 1986). The building loads were then converted to ground loads under



the assumption that all heat pumps in the system have a constant coefficient of

performance of 4.0. The ground loads for this building are shown in Figure 2-7.

TABLE 2-4

Summary of Borehole Field Design Parameters for Each Test Case

Case Simulation Ground-Water Ground Thermal Design Borehole
Number Duration Flow Rate Conductivity Depth

Predicted by Predicted by
Numerical Model of Design Software of
Austin et al. (2000) Spitler et al. (1996)

(hours) ftlyr Btulhr-ft-OF ft
(m/yr) (W/m-OC) (m)

1 50 0 0.643 239.98

(1.11 ) (73.15)

2 50 196.85 0.650 238.56

(60.00) (1.12) (72.71 )

3 50 393.70 0.731 224.10

(120.00) (1.26) (68.31)

4 50 787.40 1.146 171.56

(240.00) (1.98) (52.29)

5 50 1574.80 3.657 87.24

(480.00) (6.33) (26.59)

6 50 1968.50 6.074 61.58

(600.00) (10.51) (18.77)

7 168 0 0.625 243.86

(1.08) (74.33)

8 168 196.85 0.691 230.86

(60.00) (1.20) (70.37)

9 168 393.70 0.962 191.58

(120.00) (1.66) (58.39)

10 168 787.40 2.250 115.91

(240.00) (3.89)
I

(35.33)

11 168 1574.80 8.229 , 4B.02

(480.00) (14.24) (14.64)

12 168 1968.50 15.107 26.90

(600.00) (26.14) (8.20)

5

I
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Figure 2-7. Hourly ground loads for the test building. Heating load is shown
negative, representing heat extracted from the ground; cooling load
is shown positive, representing heat rejected to the ground.

Borehole field designs were produced for each of the twelve test cases. This was

done with GLHEPRO, a commercially-available ground-loop heat exchanger design

software tool developed by Spitler et al. (1996). A 16 borehole field (four-by four

boreholes in a square pattern) was deemed adequate for the test building ground load

(Figure 2-7). The monthly loads and peak hourly loads are generally input in the design

software. For this study, no peak hourly loads were specified for the sake of the

computational time required for the subsequent borehole field simulations (see discu sion

below). Peak design entering fluid temperatures to the heat pump were specified at 90°F

(32.2°C) maximum and 3SoF (1.7°C) minimum. The borehole depths were sized for 20-

years of operation.
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For each test case, the corresponding effective thermal conductivity hown in

Figure 2-6 and Table 2-4 was input into the ground-loop heat exchanger de ign oftware

(GLlIEPRO). The borehole depths predicted by GLHEPRO are plotted again t the

corresponding ground water flow velocity for each of the two in-situ te t imulation times

(50 hours and I week) in Figure 2-8. The values are listed by case number in Table 2-4.

Figure 2-8. Design borehole depths versus ground-water flow velocity for 50­
hour and I-week simulated in-situ thermal conductivity test.
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AQUA3D was further used to simulate the long-term performance of each

borehole field designed from the simulated in-situ ground thermal conductivity te teases.

The model domain was that previously described for the multi-borehole field simulations

shown in Figure 2-3. The simulation time for all cases was 10 year and the model time

step was 5 days. The simulated heat flux at the internal boundary node defining the U-

tube pipes was a time-varying source corresponding to the monthly ground loads for the
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test building. Hydraulic and thermal property input for each borehole i ld c number

is the same as the corresponding single-borehole case number, except for tbe borebol

depths, which are those listed in Table 2-4. Each lO-year simulation required

approximately 60 hours of computation time on a personal computer with a 233

megahertz pentium II processor.

Annual maximum and minimum peak temperatures are plotted for each case in

Figure 2-9. Examination of the cases with no ground-water flow (cases I and 7) how

annual rises in peak temperature typical of cooling-dominated buildings. After the

second year, all of the cases with ground-water flow show no changes in minimum and

maximum temperatures from year to year.

Some notable differences can be seen between the borehole field designs based on

50-hour test data compared to one week test data. Thi is shown by ca 'e 5 and 6 which

represent thermal conductivity values determined from a 50-hour te t at ground water

flow velocities of 1574.8 ft/yr (480 m/yr) and 1968.5 ft/yr (600 m1yr), respectively, and

by cases 11 and 12 which are for the same flow rates but based on thermal conductivity

values determined from one-week test data. The thermal conductivity values determined

in cases 11 and 12 are unrealistically high and consequently the design borehole depth

are too shallow; the result is that the maximum peak temperature of the simulated

borehole field in both cases exceeds the maximum design temperature during the fir t

year. This implies that for in-situ test cases where the average borehole fluid temperature

reaches steady-state in a relatively short time (as demonstrated by case 4/10, case 5/11,
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and case 6/12 in Figure 2-5), increasing the duration of the in- itu te t produce d d

confidence in the accuracy of the effective thermal conductivity value determined from

the test.
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Figure 2-9. Annual maximum (a) and (c) and minimum (b) and (d) average
borehole fluid temperatures for the 16 borehole field simulations.



Except for cases 11 and 12, the annual maximum and minimum temperatur fell

within the design conditions. Having followed conventional de ign procedur

interesting to note from Figure 2-9 (a) that it is the cases where the ground-water flow i

moderate (cases 2, 3, and 4) that are most over-designed. These cases have maximum

peak temperatures of about 74°F (23.3°C), some 16°F (8.9°C) below the maximum design

temperature. Considerable drilling cost savings could be seen in cases like this where

shallower borehole depths could have been adequate. It is at higher flow rates (cases 5

and 6) that the peak temperature was closest to the original design condition after ten

years. This illustrates the non-linearHy introduced into the design problem by the

presence of advection. It also illustrates the difficulty in adapting conventional design

methods to accurately size closed-loop ground heat exchangers in ca es with ignificant

ground-water flow.

The temperature field predicted by the numerical model for case 8 is hown in

Figure 2-10 in the fonn of a series of contour plots over the to year imulation period.

The data are plotted for the end of September, when the average annual ground

temperatures are the greatest (i.e. at the end of the cooling season).

, ,



ground water flow rate = 60 m/yr (197 ft/yr)
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Figure 2-10. Temperature contours for Case 8 for the end of September ofyears 1, 2, 5,
and 10.
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A further feature that is shown in the predicted temperature field (Figure 2-l 0) i

the development of a peak in the temperatures immediately down tr am of the bor hole

field after year 2. This arises from the advection of the heat rejected to the ground at the

boreholes during the previous year. In the contours plotted for year 10, thermal plumes

from previous years can be distinguished.

2.5. Concluding Remarks and Recommendations for Future Work

Using a compilation of "typical" hydraulic and thermal properties of oil and

rocks, a preliminary analysis of the effects of ground-water flow on the design and

performance of closed-loop ground-coupled heat pump ystem has been made. A

simple but useful method of assessing the relative importance of heat conduction in the

ground versus heat advection by moving ground water is demonstrated through the use of

the dimensionless Peclet number.

A finite-element numerical ground-water flow and heat tran port model wa u d

to simulate and observe the effects of ground-water flow on the heat transfer from a

single U-tube closed-loop ground heat exchanger in various geologic material . From

these simulations and from a Peelet number analysis, it appears tbat it i only in geologic

material with high hydraulic conductivities, such as coarse-grained soil (sand and

gravels) and in rocks exhibiting secondary porositie such fractures and olution

channels, that ground-water flow could be expected to have a significant effect on c1osed-

loop heat exchanger performance.

:'J'­, .
........'..'.

......
':~
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The effect of ground-water flow on in- itu thermal conductivity te t re ult h

been examined by numerically simulating test conditions around a ingle bOI bol under

different flow conditions. These data were analyzed as if it came from real in- itu

sources to arrive at effective thennal conductivity values. As expected in all ca of

ground-water flow, these values were artificially high. Results from one week te t data

have been shown to be no more reliable than data from 50-hour test .

The finite-element numerical ground water flow and heat transport model was

also used to simulate the 10-year performance of borehole fields de igned from

application of conventional design procedures using the derived thennal conductivity

data. For coarse-grained sands, the presence of moderate ground-water flows had the

effect of removing the year-by-year increase in ground temperature found in systems

where there is no ground-water flow. The borehole fields de igned using conv ntional

methods and the derived effective thennal conductivities were generally over-de igned.

However, in some cases at very high ground-water flow rate , temperatures were found

to rise above the design criteria.

From this preliminary assessment of the effects of ground-water flow, it appears

difficult to adapt results from current design and in-situ measurement method to fully

account for ground-water flow conditions. Over the last decade, considerable progress

has been made in developing both in-situ test methods and design procedure for

borehole field design for situations where there is no ground-water flow. Research would





3. A Model for Simulating the Performance of a Shallow Pond as a

Supplemental Heat Rejecter with Closed-Loop Ground-Source Heat

Pump Systems

3.1. Introduction

Commercial buildings and institutions are generally cooling-dominated, and

therefore reject more heat than they extract over the annual cycle. In order to adequately

dissi ate the imbalanced annual loads, the required ground-loop heat exchanger length

are significantly greater than the required length if the annual loads were balanced.

Consequently, under these c' cumstances, ground-source heat pump sy terns may be

eliminate~fr~~onside..!,!tion during the feasibility study phase of the HVAC de ign

process because of excessive first cost.

To effectively balance the ground loads and reduce the nece 'sary size of the

ground loop heat exchanger, supplemental components can be integrated into the ground-

loop heat exchanger design. GSHP systems that incorporate some type of upplemental

heat rejecter are commonly referred to as hybrid GSHP system. In ome application,

the excess heat that would otherwise build up in the ground may be used for dome tic hot
- ------ - ~. --

water heaters, car washes, and pavement heating systems. In cases where the exce s heat

cannot be used ~!lJili~iall ,shallow ponds can provide a cost-effective_mea~ to balance

the thermal loading to the ground and reduce heat exchanger length.

The objective of the work presented in this chapter has been to develop a design

and simulation tool for modeling the performance of a shallow pond that can be useful1y
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and cost-effectively integrated into a ground-source heat pump y tern a a upplemental

heat rejecter. The pond model has been developed in the TRNSYS modeling

environment (SEL, 1997) and can be cou led to other GSHP sy tern component model

for short-time step (hourly or minutely) system analy es. The model ha b n validated

by comparing simulation results to experimen_~a! data. As an example of the model'...-------- - ._- ~. ------- .~ "-- ..-

applicability, GSHP system simulation results are presented for a commercial building

located in Tulsa, Oklahoma with a h othetical closed-loop GSHP y tern with and

without a shallow pond supplemental heat rejecter.

3.2. Heat Transfer In Ponds

3.2.1. General Overview

Pertinent concepts of heat transfer in ponds and lakes have been summarized by-- -

many sources. Dake and Harleman (1969) conducted studie of thermal tratification in

lakes and addressed the overall thermal energy distribution in lakes. ASHRAE ( 1995),

ASHRAE (1995b), and Kavanaugh and Rafferty (1997) describe heat tran fer in lakes in

relation to their use as heat sources and sinks.

Solar energy is identified as the~~~ing~ for ponds and lakes.

The~n f.9.~lin~mechan!§!!l is evaporation. Thermal radiation can also account for a

significant amount of cooling during night hours. Convective heating or cooling to the

atmosphere is less significant. Natural convection of water due to buoy~c:y effects. i the

primary mechanism for heat transfer within a surface water body. Conduction heat r'



transfer to the ground is generally a relatively insignificant proce ,except in c

the water surface is frozen.

Shallow ponds are generall thermally unst~at~i~d. Natural stratification of

deeper ponds and lakes is due to buoyancy forces and to the fact that water i at it
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where

greatest density at 39.2°F (4°C). Therefore, over the annual cycle, water in deeper ponds

will completely over-tum. Thermal stratification in ponds is also dictated by inflow and

outflow rates or ground water seepage rates. If inflow and outflow rates are high enough,

the pond will not stratify. Consequently, thennal stratification occur only in pond and

lakes that are relatively deep, generally greater than 20 - 30 ft (6.1 - 9.1 m), with low

inflow rates. The relevant heat transfer mechanisms occurring within shallow ponds are

illustrated in Figure 3-1.

3.2.2. Existing Pond and Lake Models

Several mathematical and computer models have been developed for simulation

of lakes used as heat sinks/sources and for solar ponds.

Raphael (1962) develo ed a numerical model for determining the temperature of

surface water bodies as heat sinks for power plants. Thermal stratification of the water

body was not considered. Input data to the model included weather data and inflow and

outflow data for the water body. Raphael reported that the model successfully predicted--- -----
the temperature changes in a ri ver used as a heat sink for a power plant.



6

Figure 3-1. Heat transfer mechanisms in shallow pond.

Thermal RadiatiCl1

Evaporation

~ ~ ~
~~miilltl~~

Convection

Wind

Jobson (1973) develo ed a mathematical model for water bodie u ed a heat----
sinks for power plants. Thermal stratification of the water body Wa not con id r d. The

results of that work showed that the heat transfer at the water/air interface i highly
..- -------
dependent on the natural water temperature and the wind speed..

Cantrell and Wepfer (1984) devel ed a numerical model for evaluating the

potential of shallow ponds for dissipating heat from buildings. The model takes weather

data and building cooling load data as inputs and computes the steady- tate pond

temperature using an energy balance method. Thermal stratification of the pond was not

considered. The model showed that a 3-acre (12,141 m2
), IO-feet (3.048 m) deep pond in
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Cleveland, Ohio could reject 1000 ton (3516 kW) of thermal energy wjth a maximum

increase in pond temperature of about SOp (2.78°C) over a daily cycle.

Rubin et al. (1984) develo ed a model for solar ponds. The purpo e of a olar

pond is to concentrate heat energy from the sun at the pond bottom. Thi i accomplished
....--.- . -----

by suppressing natural convection within the pond induced by bottom heating, u ually by

adding a brine layer at the pond bottom. As a res~lt, solar ponds have three distinct zones

as described by Newell (1984): (1) a top layer which is stagnated by some method and

acts as a transparent layer of insulation, (2) a middle layer which is usually allowed to be

mixed by natural convection, and (3) a lower layer where solar energy is collected. The

model of Rubin et al. (1984) applied an implicit finite difference scheme to solve a one-

dimensional heat balance equation on a solar pond. Large-scale convecti.ve currents in

the pond were assumed to be negligible while small-scale convective currents were

handled by allowing the coefficient of heat diffusion to vary through the pond depth.

Solar radiation was modeled as an exponentially decaying function through the pond

depth. The model successfully predicted seasonal variation in solar pond temperatures.

Srinivasan and Guha (1987) ~p.e.d a model similar to the model of Rubin et

al. (1984) for solar ponds. The Srini vasan and Guha (I 987) model con isted of three

coupled differential equations, each describing a thermal zone within the solar pond.

Solar radiation in each zone is computed as a function of depth. The model ~I~o_

~ucc~~sful.1¥--PFediGted seasonal variations in solar pond temperatures with various heat

extraction rates.
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Pezent and Kavanaugh (1990)rdeveloped a model for lake u ed a heat our

or sinks with water-source heat pumps. The model es entially combined the model of

Srinivasan and Guha (1987) to handle stratified cases and of Raphael (1962) to handle

unstratified cases. As such, thermal stratification of a lake could be handled in the-
summer months, when lakes are generally most stratified, and neglected in the winter

months, when lakes are generally unstratified. The model i driven by monthly av rage

bin weather data and handles both heat extraction and heat rejection. With no heat

extraction or rejection, the model favorabl predicted a lake temperature profile in--
Alabama. The temperatures within the upper zone of the lake (the epiUmnion) and the

lower zone of the lake (the hypolimnion) were predicted to within 4<>P (2.22°C) and

approximately lOp (0.55°C), respectively. However, the model had orne difficulty in

matching the intermediate zone (the thermocline), perhaps due to the fact that thi zone

possesses moving boundaries (unlike the boundaries of a solar pond which are more

distinct). As concluded by Pezent and Kavanaugh (1990), a numerical method i

necessary to more accurately predict the thermocline rof .

The model presented in this paper is based on the as urnption that thermal

gradients in shallow ponds are negligible, especially during times of heat rejection. Thi

model is developed in the TRNSYS modeling environment and can be coupled to other

component models for larger system simulations. Purther, this model allow the pond

performance to be simulated on hourly or minutely time scales.



3.3. Experimental Methods---:----- .. _.- -- ---

3.3.1. Pond Description and Data Collection

~on~ construction and data collection for this study have ~~~. conduc~~~

researc~ers affiliated with _~~ Division of En ineering Technology at the Oklahoma State

University.------
Two ponds were constructed on a test site at the north end of the cam u . The---- - _.

ponds are rectangular with a Ian area of 40 ft (12.19 m) by 3 ft (0.91 m). Each pond was

constructed with vertical sidewalls with one of the ponds being 2 feet (0.61 m) deep and

the other being 3.5 ft (1.07 m) deep. The walls and the bottom of each pond were

constructed of reinforced concrete, approximately 8 in. (20.3 cm) thick.

Heat was rejected to each pond by circulating heated water through a "slinky"

heat exchanger (a pipe coiled in a circular fas ion such that each loop overlaps the

adjacent loop) installed in each pond. Each slinky pipe was made of high-density

polyethylene plastic and is 500 feet (152.40 m) long with a nominal diameter of % in.

(0.019 m). The pipe was coiled such that the resulting slinky heat exchanger wa 40 ft

(12.19 m) long with a diameter of 3 ft (0.91 m) and a 1O-in. (0.254 m) pitch (the

separation distance between the apex of each successive loop). In the 2-ft (0.61-m) deep

pond, the slinky heat exchanger was positioned horizontally within the pond at a depth of

approximately 10 in. (0.254 m). In the 3.5-ft (1.07-m) deep pond, the slinky heat

....



exchanger was positioned vertically within the pond along the center-line of the long axi

of the pond.

The temperature of the pond water was measured by tbennistor po itioned at

four locations witbin the pond: (1) near the pond surface at the center of tbe linky, (2)

below the slinky at its center, (3) near the pond surface at the end 0 0 ite from the

supply end, and (4) below the slinky at the end of the pond opposite from the upplyend.

Slinky supply and return water temperatures were measured by thermistor embeddeg, in-
the slinky header. Each system also included a flow meter, a water heating element, and

a watt transducer. All sensor information was recorded by the data acquisition y te

time intervals of 6 minutes.

The tests were controlled to maintain a set supply water temperature by heating

the supply water if the temperature fell below a set point. Two et point temperatures

were used in this study: 90<>P (32.2°C) in the summer season and 75°F (23.9°C) in the

winter season.

3.3.2. Weather Instrumentation and Data Collection

Weather data for this study were obtained from the Oklahoma Mesonet

(mesoscale network), which is a weather station network consisting of weather

monitoring sites scattered throughout Oklahoma. Depending on the weather parameter,

)

I)
.)

".

data are recorded at time' ,-=~=ingJrom3 seconds to 30 seconds and averaged

over 5-minute observation intervals.
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Weather data at IS-minute intervals for the Stillwater monitoring tation w re

acquired for the time periods of interest for this study. The Stillwater station is located

approximately I mile from the test pond site. Data for the following parameter w re

obtained: wind speed, wind direction, air temperature, relative humidity, and oJar

radiation. Further details of the weather station network may be found in Elliott et aL.

(1994).

3.4. Model Development

3.4.1. Governing Equations

The governing equation of the model is an overall energy balance on the pond

using the lum ed ca acitance (or lum ed ar~ler) approach:

)

2
.)

:>

(3-1) ~,

:I...

where qill is the heat transfer to the pond, quul is the heat transfer from the pond, V is the

pond volume, p is the density of the pond water, cp is the specific heat capacity of the

pond water, and dT is the rate of change of temperature of the pond water. This
dt

approach assumes that tern erature radients within the ~~~~.2.9_c!Y..~~~_~~Eligi~I~:.....

Considering the heat transfer mechanisms shown in Figure 3-1, Equation 3-1 can be

expressed to describe the rate of change in average pond temperature as:
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dT = q solar + q IhermLl( + q convection + q ground + q groundwater + q YOpOTUIWn + q fluid

dt VPCp
(3-2)

where, qsolar is the solar radiation heat gain to the pond, qtlJemUlI is the thermal radiation

heat transfer at the pond surface, qconvection is the convection heat tran fer at the pond

surface, qgroulw is the heat transfer to/from the ground in contact with the pond, qgroutwlVaJer

is the heat transfer due to groundwater inflow or outflow, qevaporalion i the heat/rna

transfer due to evaporation at the pond surface, and (jjluid is the total heat tran fer to/from

the heat exchange fluid flowing in all spools or coils in the pond. Each of the heat

transfer terms used in the above equation is defined below.

3.4.1.1. Solar Radiation Heat Gain

Solar radiation heat gain (qsolar) is the net solar radiation absorbed by the pond. It

is assumed that all solar radiation incident on the pond urface becom s heat gain xcept

for the portion reflected at the surface.

To determine the reflected component of solar radiation, the angl of incidence

(8) of the sun's rays is first computed at each time step from correlation giv n by

Spencer (1971), Duffie and Beckman (1991), and ASHRAE (1997). The angle of

refraction (Or) of the un's rays at the pond surface i given by Snell' Law. The

reflectance (p') is computed from:

b

(3-3)
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where -ris the transmittance of solar radiation by the pond orface and the ub cript 'a

refers to the absorbed component. These are computed after Duffie and Beckman (1991)

as:

and

(3-4)

(3-5)

where 11' is the extinction coefficient for water, d is the pond depth, nl represents the

parallel component of unpolarized radiation, and r.1 represents the perpendicular

component of unpolarized radiation which are computed after Duffie and Beckman

(1991) as:

)

)

I
)

...
)...
)

J:.

tan 2 (8r -8)
r. =_---,---:----'-_-C..

II tan 2 (8r +0)

sin 2 (8r -8)
r =-....,..-'----'---

J. sin 2 (8
r

+8)

Finally, the amount of soLar radiation absorbed by the pond (qsolar) is expressed as:

qsolar = /(1- p')A pond

(3-6)

(3-7)

(3-8)

.,
:2..

where I is the solar radiation flux incident on the pond surface (here, the total reflectance

is approximated by the beam reflectance) and Apond is the area of the pond surface. The
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model also accepts solar radiation in the form of beam (Ib) and diffu e (Id) component , in

which case I is computed from:

I = I b cos (} + I d

3.4.1.2. Thermal Radiation Heat Transfer

(3-9)

This heat transfer mechanism accounts for heat tran fer at the pond surface due to

thermal or long-wave radiation. This model uses a linearized radiation coefficient (hr )

defined as:

(3-10)

where c is the emissivity coefficient of the pond water, ais the Stefan-Boltzmann

constant, Tpond is the pond temperature in absolute units, and Tsky is the sky temperature in

absolute units. Tsky is computed from relationship given by Bli s (1961) which relate

sky temperature to the dew point temperature (Tdp) and the dry bulb temperatur (Tr/b):

I

(
Td J4Tslcy = Tdb 0.8 + -p-

250
(3-11 )

-

where all temperatures are in absolute units. The model uses the TRNSYS psychrometric

subroutine to compute Tdp if it is unknown. Tdp is computed from either of the following

pairs of state properties: (1) dry bulb temperature (Tdb) and wet bulb temperature (Twb) or

(2) Tdb and relative humidity. The thennal radiation heat transfer (qthennaD is then

computed by:
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(3-12)

3.4.1.3. Convection Heat Transfer at the Pond Surface

This mechanism accounts for heat transfer at the pond surface due to free and

forced convection. Several empirical formulations exist for determining the convection

coefficient for different geometries. For a pond surface, correlations for a horizontal flat

plate are the most applicable.

In free convection heat transfer, the Nusselt Number (Nu) is often correlated to

the Rayleigh Number (Ra), which describes the relative magnitude of the buoyancy and

viscous forces in the fluid:

..

•)...
)

)

Ra = gf3(!lT)L
3

va
(3-13)

where g is the acceleration due to gravity, ais the thermal diffusivity of air, f3 i the

volumetric thermal expansion coefficient of air, v is the kinematic vi cosity of air, L1T

refers to the temperature difference between the pond and the air, and Lithe

characteristic length. The thermal properties a, fl, and v are aU evaluated at the film

temperature which can be approximated as the average of the air and pond temperatures.

In the model, the thermal properties of air are computed at each time step using

correlations given by Irvine and Liley (1984). For horizontal flat plates, the characteristic

length (L) can be defined as the ratio of the area (A) to the perimeter (P) (Incropera and

DeWitt, 1996):



A
L=-

P

7

(3-14)

In external free convection flows over a horizontal flat plate, the critical Rayleigh

Number is about 107
. Therefore, two empirical relations for the Nu elt number ar used

in the model as described by Incropera and DeWitt (1996) for free convection from the

upper surface of a heated plate or the lower surface of a cooled plate:

I-
(104 < Ra < 107

- laminar flow)Nu =0.54Ra 4 (3-15a)

and

I-
(l07 > Ra > 1011 - turbulent flow)Nu=0.15Ra 3 (3-15b)

The convection coefficient (he) for free convection can then be determined from:

I
I
I.

I~
•
)

)

,­..
Nu k

h =-­
C L

(3-16)

where k is the thermal conductivity of air evaluated at the film temperature a with the

other thermal properties described above and L is the characteristic length de cribed by

Equation 3-14.

In forced convection heat transfer, Nu is a function of the Reynolds (Re) and

Prandtl (Pr) Numbers. The Reynolds number is described as:

)
1



Re= vL
v
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(3-17)

where v is the wind speed, v is the kinematic viscosity of air, and the characteri tic length

(L) is now defined by the length dimension over which the wind blows and i detennined

from the pond orientation (degrees from north) and wind direction. The Prandtl Numb r

is defined as:

Cl'fl
Pr=--

k
(3-18)

where cp is the specific heat capacity of air, fl is the dynamic visco ity of air and k i the

thermal conductivity of air, all evaluated at the air film temperature.

For external forced convection over a flat plate (i.e. the pond surface), the critical

Reynolds Number is approximately 105 (Incropera and DeWitt, 1996). Therefore, two

empirical relations for the Nusselt number are used in the model as de crib d by

Incropera and DeWitt (1996) for forced convection over a flat plate:

to
)
to
)

,

)
J

I I

Nu =O.664Re 2 Pr 3 (laminar flow regime)

and

(3-19a)

., I

Nu = 0.037 Re 5 Pr 3 (mixed and turbulent flow) C3-19b)

The convection coefficient (he) for forced convection can then be determined by Equation

3-16 with the characteristic length value described by Equation 3-14 for a horizontal flat

plate.

~~------- .d
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Finally, the convection heat transfer at the pond urface (q nile tio ) i computed

by:

qeotlveclirm = he ApOlld (Tair - Tpolld )

I I

(3-20)

where Tair is the ambient air temperature and he is taken as the maximum of the fr e

convection coefficient and the forced convection coefficient. This practice of choosing

the larger of the free and forced convection coefficients is recommended by Duffie and

Beckman (1991) and McAdams (1954) and is used in the absence of additional

experimental evidence regarding combined free and forced convection.

3.4.1.4. Heat Transfer to the Ground

This heat transfer mechanism accounts for heat conduction to/from the oi I or

rock in contact with the sides and the bottom of the pond. This mechani m of heat.---- _.._... ---
transfer is hi hly site-specific and complex and depends on man factors uch as------ . ----
soil/rock thermal properties,. climatic factors, pond geometry, and thermall.oading

history. In this model, a semi-empirical approach developed by Hull et a!. (1984) was

chosen to determine heat losses/gains from the bottom and sides of the pond. Hull et al.

(1984) used a three-dimensional numerical code to compute steady-state ground heat

losses from solar ponds of varying sizes, geometries, and sidewall insulation type.

Hull et al. (1984) expresses ground heat losses from any pond as a function of the

pond area, pond perimeter, the ground thermal conductivity (kgruund), and the distance

II

,~
'...
:.
....,
c•.t:'
..
)
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from the pond bottom to a constant temperature sink.. For practical urpo e th on tant

temperature sink can be taken as the groundwater table (Ki bore and Jo hi, 19 4). For a

rectangular pond with vertical side walls, a heat transfer coefficient for ground heat

transfer (Ugroufld) can be computed from:

Uground = o.999(d kgro",~ J+ 1.37(kgroundPpOlld J
groundwater d pond A pond

(3-21)

where kground is the thermal conductivity of the ground, dgroundwlIler is the depth to the water

table or the constant source/sink from the ground surface, dprmd is the pond depth, and

Ppond is the pond perimeter. The conduction heat transfer between the ground and the

pond is then given by:

...

I
,I­
'.

qgrou/ltl =U grollnd A,IOI'" (TgroundlValer - T"ond ) (3-22)

...
:5

t is recognized that the above conduction heat transfer model is a relatively

simple representation of the true transient behavior of heat transfer in the ground.

However, ground heat conduction is a relatively minor proces affecting the overall heat

transfer within the pond as compared to other processes.

3.4.1.5. Heat Transfer Due to Ground Water Seepage

This heat transfer mcchanism accounts for inflows and outflows of ground water

to the pond. Although ground water contributions may not be expected in shallow heat

rejecter ponds, this heat transfer mechanism can be used to accountfo~ ot.~~!JnflQ.W and. _.-_...- ..--

outflows, such as make-up water or rain water.
-.------- .---_.-

I
:~

t
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Tbe volumetric groundwater flow rate (Q) is computed by Darcy Law:

Q = Ki(Ppond (d pond - d gmundwalu) + Apond ) (3-23)

where K is the hydraulic conductivity of the soil/rock surrounding the pond and i i the

hydraulic gradient. The heat transfer contribution from ground water (qgroundwalu) i then

given by:

...

qgfOUndwUI" = Qpc p (Tgroundwat" - T pond ) (3-24)

where p and cp represent the density and specific heat capacity of ground water. These

properties of ground water are computed from relationships given in the Handbook of

Chemistry and Physics (CRC, 1980).

3.1.4.6. Heat Transfer Due to Evaporation

This heat transfer mechanism is the most important one contributing to pond

cooling. This model uses the j-factor analogy to compute the mass transfer of

evaporating water (m: )at the pond surface:

)..
I..
•
...
J

·•I
I

t:

t
)

t

(3-25)

where hd is the mass transfer coefficient, Wair is the humidity ratio of the ambient air, and

wsuifrepresents the humidity ratio of saturated air at the pond surface. The wsuifterm i
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computed using the TRNSYS psychrometric subroutine by etting T db and Twb equal to

the pond temperature. The Wair term may also be computed u ing the TRNSYS

psychrometric subroutine depending on what two state properties of the air are known.

The model accepts the following pairs of state properties for the calculation of Wair if it is

unknown: (1) Tdb and TWb' (2) T db and relative humidity or (3) Tdb and Tdp. The mas

transfer coefficient (hd) is defined using the Chilton-Colburn analogy as:

(3-26) ....

where he is the convection coefficient defined previously, cp is the specific heat capacity

of the air evaluated at the pond-air film temperature, and Le is the Lewis number. Le is

computed as:

)
·•..
I....
•;.

a
Le=-

DAB

(3-27) ....

where a is the thermal diffusivity of the air evaluated at the pond-air film temperature

and DAB represents the binary diffusion coefficient. The thermal propertie (a and cp) of

air are computed at each time step using correlations given by Irvine and Liley (1984).

DAB is computed after Mills (1995) who references Marrero and Mason (1972):

1.87xl O-loT2.072
D

AB
=------

~lir

(280K < T < 450K) (3-28)
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where T refers to the pond-air film temperature in ab olute units and Pair i the

atmospheric pressure in atmospheres.

The heat transfer due to evaporation (qevaporalion) is then computed by:

q ~vaporalion = h/8 A pond m: (3-29)

where hfg is the latent heat of vaporization and is computed at each time tep from the

relationship given by Irvine and Liley (1984).

3.4.1.7. Heat Transfer Due to the Heat Exchange Fluid

Heat transfer due to the heat exchange fluid represents the pond thermal load.
~-.._~--

This model has been developed to account for water or antifreeze as the heat exchange

fluid. The thermal properties of the fluid are computed at each time step from

correlations given in the Handbook of Chemistry and Physics (CRC, 1980) for water and

from correlations given by Wadivkar (1997) for an antifreeze solution. The thermal

properties are computed a~~w~e_~~iQJ~J!l.Per~!.~_T, u!d). This temperature is

computed as the average of the inlet and outlet temperatures at the given time step. Since

the outlet temperature at any current time step is not known, the previous converged

value is used as an initial guess and calculation of Tfluid is iterative. Solution of the pond

temperature is also an iterative procedure as discussed below.

The heat transfer due to the heat exchange fluid ({jj1uid) is computed by:

).

­...
I
;-

:



q jluid =UA pipe (TjlUid - T pond )(Ncircuit) (3-30

where UApipe is the overall heat transfer coefficient for the pipe expressed in terms of

inside pipe area and Ncircui/ refers to the number of flow circuit (i.e. the number 0

spools) installed in the pond. Thus, Equation 3-30 is based on the assumption that one

spool is one flow circuit and that the flow rate is divided evenly between the circuit in a

parallel arrangement. The term UApipe is expressed in terms of the inside pipe area as:

(3-31 ) •

)

where rj is the inner pipe radius, Lspoo{ is the length of one spool or circuit, and J:R,

re resents the com osite thermal resistance which is defined by the following resistance-_._- ----

network:

­•
•

:

LRt =Ri + Rpipe + R" + if (3-32)

where R i is the thennal resistance due to fluid flow through the pipe, Rpipe i the pipe

thermal resistance, R, is the thermal resistance at external pipe surface, andifrepre ent a

fouling factor at both the inner and outer pipe walls. The resistance terms are defined as

follows (in terms of inner pipe radius):

1
R=­

i h.'
r

(3-33)



and

r. (r JRpip~ = -'-In .....!!....
kpip~ ri

(3-34)

(3-35

where hi is the convection coefficient due to fluid flow through the pip , kpipe i the

thermal conductivity of the pipe material, ho is the convection coefficient at the out r

surface of the pipe, and ri and r o are the inner and outer radii of the pipe, respectively.

The above convection coefficients are determined u jng correlation for the

Nusselt number in flow through a horizontal cylinder, 'nc 0 s ecific correlation exi t- -
'.

for a sl" A constant heat flux at the pipe surface is assumed.

..
In~~~aQ§J~r due to internal flow, Nu is a function of the Reynold

and Prandtl numbers. Determination of Re is described in Equation 3-17. For thi ca

v represents the mass flow rate of the heat exchange fluid, v represent the kin matic

viscosity of the heat exchange fluid, and the characteristic length (L) is the inner pipe

diameter. A Reynolds number of 2000 is a umed to be critical. For laminar, fully-

developed flow in the pipe (Re<2000), the Nusselt Number is a constant equal to 4.36

(Incropera and DeWitt, 1996, Equation 8-53). For turbulent flow, the Dittus-Boelter

relation is used to compute the Nus elt Number:

•

:

··

4

Nu; = O.023Re 5 prA' (3-36)
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where Pr is defined by Equation 3-18 for f1, cpo and k representing the thermal prop rtie

of the heat exchange fluid evaluated at its average temperature. The value of the

exponent x in Equation 3-36 is dependent upon whether the entering fluid i being heat d

or cooled; x is equal to 0.3 if the entering fluid is greater than the pond temperature and x

is equal to 0.4 if the entering fluid is less than the pond temperature. The inside pipe

convection coefficient can then be determined by using Equation 3-16 where Nu is NUj, k

is the thermal conductivity of the heat transfer fluid, and L is the characteristic length

which is defined in this case as the inner diameter of the pipe (Incropera and DeWitt,

1996).

In free convection at the external pipe surface, the Nusselt Number is a function-----_.._ ----_ _._ .- ..

of the Rayleigh Number. Ra is computed using Equation 3-13 wnere ~ /3, and

v represent the thermal diffusivity of water, the volumetric thermal expansion coefficient

of water, and the kinematic viscosity of water, respectively, all evaluated at the pip film

temperature, which is approximated as the average of the pipe surface and pond

temperatures at the given time step. The term ,1T refers to the temperature difference

between the pipe surface and the pond temperatures. Nu for free convection from a

horizontal cylinder is defined as (Churchill and Chu (1975) ):

2

..

)

-

:

...

I

O.387Ra 6
Nu o = 0.60+ 8

(1 + (O.559/Pr)':r (3-37)
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where Pr is defined by Equation 3-18 for Jl, cp, and k representing the thermal propertie

of the pond water evaluated at the pipe film temperature. Now the external pip

convection coefficient can be determined by u ing Equation 3-16 where Nu is Nuo k i

the thenna! conductivity of the pond water evaluated at tbe pipe film temperature, and L

is the characteristic length which is defined now as the outer pipe diameter.

The outlet fluid temperature (Tout) is computed from an overall energy balance on

the pipe:

T - T _ qcirclJit
out - fluid 2'

mcl'
(3-38)

where rh is the mass flow rate of the heat exchange fluid per flow circuit cp is the specific

heat capacity of the heat exchange fluid, and qcircuil is the heat rejected/extracted by one

flow circuit. This outlet temperature is u ed to compute the average fluid temperature at

the next iteration as described above.

3.4.1.8. Solving the Overall Energy Balance Equation

The differential equation describing the overall energy balance on the pond

(Equation 3-2) is rearranged in the form:

:.

(3-39)



-
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where T represents the pond temperature, XI contain all term of Equation 3-2 th

multiply T, and X2 contains all terms of Equation 3-2 that are independent of T.

Equation 3-39 is a linear first-order ordinary differential equation which i solved

at each time step using the exponential function ~ an integr~~in~ factor. The olution i

. b ~gIven y the TRNSYS differential equation solver subroutine as:'
. -

where Tt is the average pond temperature at the new time step and T,..1I is the average

pond temperature at the previous time step.

Many of the quantities in the heat transfer equations described above require that

the average pond temperature at the current time step be known. Thu , the actual pond

temperature is arrived at iteratively. A convergence criterion for the pond temperature of

3.4.2. Computer Implementation

Thc component configuration for the pond model is hown in Figure 3-2. A

C9J!!P'~ model was also developed which manipu~es any weather dat~Jleeded.ior the

pond model. The weather component model makes use of the TRNSYS psychrometric--- -- ---

subroutine to compute moist air properties given two known state properties. The two

----

•

..

-



state properties are dry bulb temperature and one of wet bulb temperature, relative

humidity, or dew point temperature. The weather component model al 0 compute the

sky temperature, the solar radiation on a horizontal surface, and the olar incidence angle.

A computer algorithm is shown in Figure 3-3 in the fonn of a flow chart.

air sky wind solar angle inlet mass
temperature temperature direction of incidence

inlet
flow rate

1
humidity 1 wind

1
solar

1
fluid

1ratio speed radiation temperature

~ ~ + +
POND MODEL PARAMETERS:

1. initial pond temperature
3. pond length
5. pond depth
7. extinction coefficient for water
9. spool length

11. pipe thermal conductivity
13. fluid type (water or antifreeze)
15. ground thermal conducti vity
17. ground water or far field temperature
19. hydraulic gradient

2. pond orientation from north
4. pond width
6. emissivity coefficient
8. number of spools or coil

10. pipe outer diameter
12. pipe wall thicknes
14. antifreeze concentration if used
16. fouling factor
18. soil hydraulic conductivity
20. depth to water table

l 1 1 1
pond outlet fluid mass flow heat

temperature temperature rate rejected/ab orbed

Figure 3-2. Pond model component configuration.



Wealher dam from
compOllenl model

Auid temperature
and flow rate from

upstream component

y

Yes Set pond tempernlu Ie

equal 10 rUlal value
or previou lime step

Compute the average temperature of the
heat exchange fluid

Call TRNSYS differential equation solver
to compute the average pond temperature

Compute new outlet fluid temperature

No

Figure 3-3. Pond model computer algorithm.
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3.5. Results and Discussion

3.5.1. Model Comparison to Experimental Results with No Heat Rejection

The first step in the ~odel verification pr.~~ was to compare the model pond

temperatures to measured pond temperatures during time when no heat was being

rejected to the ponds. This comparison allowed a validity check of the simulation of the--
several environmental heat transfer mechanisms occurrin within the ponds. Simulated

and actual pond average hourly temperatures are shown in Figure 3-4 for an 8-da eriod

in July 1998 when no heat was rejected to the ponds. Therefore, in these case, the model

is driven by weather data input only.

A review of the plots in Figure 3-4 shows that the model temperatures compare

favorably to the measured pond temperatures. The simulated temperature are within 3°F
-- .

(1.67 °C) of the observed temperatures throughout the test period. The difference
. --'-._.

between the average simulated pond temperature and the average o~_~~~~ pond

temperature for the entire test period is 1.93°F (1.07°C) for the 2-feet deep pond and-----_.
1.55°F (O.86°C) for the 3.5-feet deep pond. Shallow ground water was not encountered at

r- -

the site and therefore ground water contributions were not considered. .!'.?uling of the

heat exchanger pipe was also not considered.

-------------------
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3.5.2. Model Comparison to Experimental Results with Heat Rejection

Heat rejection to the ponds was simulated over a 25-day period from November

12 to December 7, 1998. Input data to the model consisted of weather data as de cribed

previously in addition to measured slinky heat exchanger supply water temperatures and

flow rates on 6-rninutely time intervals. The model performance was evaluated by

comparing (I) the simulated to the observed return temperature of the heat exchange fluid

and (2) the simulated cumulative heat rejected to the ponds to the measured water

heating element and pump power input. These comparisons are shown in Figures 3-5 and

3-6 respectively. As with the previous comparisons, ground water contribution and

fouling of the heat exchanger pipe were not considered.

A review of the temperature plots in Figure 3-5 shows that model fluid return

temperatures compare favorably to the observed fluid return temperatures. The average

observed and modeled fluid return temperatures over the test period i.n the 2-Jeet (0.61-

meter) deep pond were 70.5°F (21.4°C) and 70.2°F (21.2°C), respectively, and in the 3.5-

feet (I.07-meter) deep pond were 69.2OP (20.7°C) and 70AoF (2] .3°C), respectively. The

deeper pond has slightly larger differences between modeled and observed fluid return

temperatures. The error is small, however, and is probably acceptable for purposes of

simulating hybrid GSHP systems; even a 20P (1.1 ]°C) error in return fluid temperature

from the pond will cause only a slight difference in modeled heat pump performance.

/1
/

'.
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A review of the plots in Figure 3-6 shows that the model cumulative heat rejected

compares well to the measured heating element and pump power input. At the end of the

25-day test period, the percent difference between the cumulative imulated heat rejected

and the cumulative measured heat rejected is -2.95 % for the 2-feet deep (O.61-meter)
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pond and -5.20 % for the 3.5-feet (1.07-meter) deep pond. The e di cr pan i m y b

due partly to heat losses from the pond supply/return pipe to the ground and to th

atmosphere in the equipment building. A model and experimental uncertainty naly i

presented in Appendix A.

3.5.3. Model Application

To illustrate the applicability of the model as well as the viability of u ing hallow

ponds as supplemental heat rejecters in GSHP systems, a model of a hypothetical GSHP---- --

system was constructed in the TRNSYS modeling environment. A siro li.(i~C!_ !~~m

sch~matic is shown in Figure 3-7. Each of the component models i de cribed_bQefly

below.

Ground loop

Heat Exchange'

Figure 3-7. System schematic for the example model of a GSHP system with a
shallow pond supplemental heat rejecter.

-

Pond loop

Heal Exchange,

Buidlng 1---j-..----1 Heat

loads Pumps



The building is not modeled explicitly in thi application. The hourly building

thennalloads are pre-computed using a p!oprietary building energy analy i program and

are read from a file and passed to the heat pump subroutines. The building i an actual

four-stor 45 000-ft2 (4181-m2
) office building located in Tul a, Oklahoma and i highly

cooling dominated. The building thennalloads are shown in Figure 3-8.

A simple water-to-air heat pump model was developed for this and other aSHP

system simulations. Inputs to the model include sensible and latent building load ,

entering fluid temperature, and fluid mass flow rate. The model use quadratic curve-fit

equations to manufacturer's catalog data to compute the heat of rejection in cooling

mode, heat of absorption in heating mode, and the heat pump power consumption.

-r.:.~:'==-=-:::;..J-.;=--_-Qct<M-i-ncludeeX,iting fl.uid temperature, power consumption,

and fl.uid mass flow rate. In this application, one heat pump component model handles

the heating load and a second heat pump component model handles the cooling load.

The ground-loop heat exchanger model used in this application is that de cribed

by Yavuzturk and Spitler (1999) which is based partly on the work of Eskilson (1987)

who developed "long time-step" (monthly) response factors for vertical ground-coupled

U-tube heat exchangers. The model of Yavuzturk and Spitler (1999) ex tends the work of

Eskilson (1987) to hourly or less ("short-time step") time intervals. The development of

the short time-step response factors are ba ed on an analytically validated, transient two­

dimensional implicit finite volume model (Yavuzturk et aI., 1999) that simulates the heat

transfer over a vertical U-tube ground heat exchanger. In this application, the modeled

borehole field consisted of one hundred 2S0-feet (76.2-m) deep boreholes arranged in a

-- 0
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10 by 10 square pattern. The total system flow was rate 270 gpm (61.36 rn /hr).

Representative thermal properties of sedimentary rock were chosen.
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Time

Figure 3-8. Building thennalloads for the example building in Tulsa, OK.
Cooling loads are shown as positive values, indicating heat to be
rejected to the aSHP system; heating loads are shown as negative
values, indicating heat to be extracted from the GSHP system.

Models for ancillary components such as pumps, t-pieces, flow diverters, and the

differential controller are described by SEL (1997). The control trategy ysed ~toua~.YaI:e.-
- -----

the circulating pump to the pond was chosen somewhat arbitrarily by using the------. ----- ._---
temperature difference between the pond and the exiting fluid temperature from the heat

pumps. When this temperature difference exceeds 9°P (SOC), the circulating pump to the

pond is energized and heat will be rejected to the pond. During these times of heat

rejection to the pond, flow is diverted to the pond such that each heat exchanger coil in

the pond receives 4 gpm (0.909 m3/hr) of water. The properties of each heat exchanger
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coil in the example model are the same as tho e de cribed in the experim ntal pIO edur .

Hourly input weather data for the pond model were taken from a typical me or I gical

year (TMY) record for Tulsa, Oklahoma.

The model was run for two cases for a duratio~_<?f 3 years with a time step of one
,

hour. The first case was the GSHP system with no pond and the second case was the

GSHP system with the pond. Hourly heat pump entering water temperature ar hown

in Figure 3-9 for both cases.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 3-9. Entering heat pump water temperatures for the example GSHP
system simulation with no pond and with a 2-feet (O.6096-m) deep,
6ooo-ft2 (557.4 m2

) pond.

A review of the data presented in Figure 3-9 shows the advantages of u ing a

pond supplemental heat rejecter. Assuming that a maximum heat pump entering water

temperature of 100°F (37.78°C) is desirable, the system without the pond would fail

during the second year of operation. In fact, based on the results of a ground-loop heat

____________________1



exchanger sizing program (Spitler et al., 1996), the boreholes of a 10 by ~O qu r pattern

would need to be approximately 400 feet (121.9 m) deep to accommodate the cooling-

dominated loads of this building for 20 years of operation. Such a y tem would ilk Jy

be eliminated from consideration early on in the design phase becau e of exce ive fir t

cost.

Using the TRNSYS model as a design tool, the size of the pond upplemental heat

rejecter was determined under the assumption that the 10 by 10 borehole field could not

be feasibly deeper than 250 feet (76.2 m). The heat pump entering water temperatures

for the GSHP system with the pond shown in Figure 3-9 were produced by imulating a

2-feet (0.61-m) deep, 6000 fr2 557 (m2
) pond with 50 slinky heat exchanger coils. A

summary of pond performance is given in Table 3-1. By adding the pond supplemental

heat rejecter in this example, the depth of the borehole field could be decreased by

approximately 35%. A more detailed system simulation could in'y9lve s Jem life-cycle-_..

operating cost analyses, control strategy variations, and design variable optimization.

Table 3-1. Summary 01 Pond Pertormance for Example GSHP
System Simulation

Year Hours Average Pond Heat Pump Maximum Heat Rejected
ON Temperature Entering Fluid

Temperature
(OF) (0C) (OF) (0C) (kBtu) (MJ)

1 3937 74.79 23.77 99.95 37.75 1,618,224 1,706,903
2 4873 76.37 24.65 100.29 37.94 2,160,080 2,278,452
3 5324 77.52 25.29 100.18 37.88 2,498,961 2,635,904
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3.6. Concluding Remarks and Recommendations for Futur Work

A design and simulation tool for modeling the performance of a shallow pond as a-
supplemental heat rejecter in ground-source heat pump sy tern has been d velo ed

model has been developed in the TRNSYS modeling environment (SEL, 1997) and can

be coupled to other GSHP system component models for short-time tep (hourly or

minutely) system analyses. The model has been validated b c mparing imulation

results to experimental data.

The model accounts for several natural heat transfer mechanisms within a urface
----- --

water body plus convective heat transfer due to a closed-loop heat exchanger coil. The

heat transfer fluid is assumed to be carried by a series of pipes in the form of bundle

spools or "sLinky" coils. Environmental heat transfer mechanisms that are simulated by

the model include solar radiation heat gain, heat and mass tran fer due to vaporation,

convection heat transfer to the atmosphere, thermal or long-wave radiation heat tran fer,

conduction heat transfer to the surrounding soil or fill material, and ground water

discharge contributions. The solu( cJleme involv lumped-capacitance approach

----

and the resulting first-order differential equation describing the overall energy balance on

the pond is solved numerically. Some outputs provided by the model include average
------

pond temperature, exiting fluid temperature, and heat rejected to the pond.

An example application has been presented to demonstrate the use of the model as
- -

we]] as the viability of the use of shallow ponds as supplemental heat rejecter in GSHP--

-------------------



systems. Through this example, it is shown that the ize of ground-Io p h at hanger

can be significantly decreased by incorporating a shallow pond into the GSHP y tern.

The potential exists for significantly increasing the performance of hallow pond

used as supplemental heat rejecters in GSHP system . Further research i ugge ted in

the following areas:

• Optimization of the design procedure and control strategy. Hybrid ground source

heat pump systems have many degrees of freedom; there are tradeoffs between the

reduction in size of the ground loop heat exchanger, the ize of the pond, and the

control strategy. To more fully understand this, additional re earch using the

simulation techniques developed in this paper is needed. This research would al 0

take into account the economic costs and benefits, which we have not inve tigated.

• Additional validation of the model, using data from a working ystem, would be

useful.

• Extension of the model to cover deep pond for ituations where an existing pond or

lake is available.

• The use of spray fountains and other aeration device in the pond to enhance pond

cooling.

• The impact of pipe configuration within the pond on the overall system performance.

-----------------



4. A Model for Simulating the Performance of a Pavement Heating
System as a Supplemental Heat Rejecter with Closed-Loop Ground­
Source Heat Pump Systems

4.1. Introduction

The reasons for using supplemental heat rejecters in vertical borehole GSHP

systems have been described in Section 3.1. Several comhinations of so-called "hybrid

GSHP systems" are possible. Chapter 3 has dealt with using a shallow pond as

supplemental heat rejecter. This chapter deals with using a hydronic pavement heating

system as a supplemental heat rejecter. With additional heating equipment where

applicable, these types of systems can also provide a useful and cost-effective method for

pavement de-icing.

The objective of the work presented in this chapter has been to develop a de ign

and simulation tool for modeling the performance of a hydronic pavement heating sy tern

that can be usefu)]y and cost-effectively integrated into a ground- ource heat pump

system as a supplemental heat rejecter. The pavement heating model has been developed

in the TRNSYS modeling environment (SEL, 1997) and can therefore be coupled to other

GSHP system component models for short-time step (hourly or minutely) system

analyses. The model has been validated by comparing simulation results to experimentaJ

data. As an example of the model's applicability, GSHP system simulation results are

presented for a commerci,al building located in Tulsa, Oklahoma with a hypothetical

closed-loop GSHP system with and without a pavement supplemental heat rejecter.
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4.2. Heat Transfer in Pavement Slabs

Hydronically-heated pavement systems are commonly one of two typ of

configurations: (1) "serpentine" configuration (Figure 4-1) or (2) " linky' configuration

(Figure 4-2).

The serpentine configuration is that commonly used in snow-melting sy tern .

The pipes are embedded in the pavement material and are placed on even center and

connected with V-shaped tubing. In the slinky configuration, a pipe i coiled in a circular

fashion such that each loop overlaps the adjacent loop. The linky i typically in tailed in

fill material near the base of the pavement slab.

Pertinent concepts of heat tran fer in pavement lab have been addr ed f r

snow melting applications by many ources including Adlam (1950), Chapman (1952),

Kilkis (1994), ASHRAE (1995), and Ramsey et al. (1999). Heat tran fer mechani ms

acting upon the pavement slab are shown schematically in Figure 4-3. Heat transfer

within the slab itself is by conduction. Internal sources of heat are due to convection

from flow of the heat transfer fluid through the pipes. Heat fluxes at the pavement

surface are due to a number of environmental interactions and include convection, olar

radiation, thermal (long-wave) radiation, sensible heat transfer from precipitation and

latent heat transfer from melting snow and evaporating water. On the bottom and ide of

the slab, heat fluxes are due to conduction to the ground and mayor may not be

------------------_.
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significant as compared to the top suIface heat fluxe . If the slab bottom i expo ed, as in

the case of a bridge or parking deck, heat transfer from the bottom urface i by

convection and radiation to the surroundings.

4.3. Experimental Methods

4.3.1. Test Slab Description and Data Collection

Two hydronically-heated concrete slabs have been constructed on a test site at the

Oklahoma State University and used for this study. Each is discussed in the following

subsections.

4.3.1.1. Bridge Deck Test Section

The first test slab was constructed resembling a concrete bridge deck.

Construction details are given by Liao and Hogue (1996). The te t slab i rectangular

with a plan area of 10 ft (3.05 m) by 3 ft (0.91 m) and a thickne s of 8 in. (0.2032 m).

The slab has been constructed on a steel frame and insulated on aU four sides to minimize

edge losses. Heat was rejected to the slab by circulating a heated fluid through a pipe

system installed in a serpentine configuration. The pipes are made of polybutylene with a

nominal diameter of %-inch (O.OI905-m) and were embedded at a depth of 2.5 in.

(0.0635 m) from the slab suIface on 6.5-inch (0.1651-m) centers.
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Figure 4-1. Serpentine pipe configuration in a hydronically-heated pavement
slab in (a) plan view and (b) cross-sectional view.
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Figure 4-2. Slinky pipe configuration in a hydronically-heated pavement lab in
(a) plan view and (b) cross-sectional view along the linky center-

line.
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(a)

Se••lble htlt + heat ~ f",lon
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Heal or e"aporation
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Fill

(b)

Sensible htll + htll <I fusion
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of rain and melted .nnw

Wind
Convection Thermal Radiation

Figure 4-3. Heat transfer mechanisms in hydronically-heated pavement slab
with (a) no bottom exposure to the atmosphere and (b) bottom
exposure to the atmosphere.

Data used in this portion of the study were collected by Wadivkar (1997). An

antifreeze heat exchange fluid was circulated through the bridge deck coupled to a

closed-loop ground-source heat pump system over several night-time periods during the
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winter of 1996. The bridge deck fluid upply and return temperatur the fluid fl . fa

and the bridge surface temperature were recorded at 5-minutely interval .. Tbe bridg

surface temperature was measured using 28 thermocouple embedded in the concrete

surface and the bridge fluid supply and return temperature were me ured u Lng

thermocouples embedded in the pipes. Icing condition OR the concrete surface were al 0

noted during the Wadivkar (1997) study.

4.3.1.2. Parking Lot Test Section

The construction of this second test slab and data collection for this study have

been conducted by resellrchers affiliated with the Division of Engineering Technology at

the Oklahoma State University.

This test slab was constructed resembling a parking lot or concrete sidewalk. This

test slab is rectangular with a plan area of 40 ft (12.19 m) by 4 ft (1.22 m) and a thickne

of 6 in. (0.1524 m). The concrete slab was underlain by 6 in. (0.1524 m) of and fill

material. Heat was rejected to the slab by circulating heated water through a linky heat

exchanger installed at the concrete/sand fill interface. The slinky pipe i made of HOPE

plastic and is 500 feet (152.40 m) long with a nominal diameter of % in. (0.01905 m).

The pipe was coiled such that the resulting slinky heat exchanger is 40 ft (12.19 m) long

with a diameter of 3 ft (0.91 m) and a lO-in. (0.254 m) pitch (the separation distance

between the apex of each successive loop).

The temperature of the concrete surface was measured by two thermistor

embedded in the concrete at a depth of approximately 14 in. (0.0064 m) from the surface.
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One thennistor was placed near the slinky center between two pipe of the linky and the

other was placed near the end of the s inky above a pipe. Slinky upply and return water

temperatures were measured by thermistors embedded in the slinky header. The

remainder of the heat rejection system included a flow meter, a water heating element,

and a watt transducer. All sensor information was recorded at time intervals of 6

minutes.

The tests are controlled to maintain a set water temperature by heating the water if

the temperature falls below a set point. Two set point temperatures were used in thi

study: 900P (32.2°C) in the summer season and 75°F (23.9°C) in the winter ea on.

4.3.2. Weather Instrumentation and Data Collection

Weather data for this tudy were obtained from the Oklahoma Me onet

(mesoscale network), which is a weather station network consi ting of weather

monitoring sites scattered throughout Oklahoma. Depending on the weather parameter,

data are recorded at time intervals ranging from 3 seconds to 30 econds and averaged

over 5-minute observation intervals.

Weather data at 15-minute intervals for the Stillwater monitoring station were

acquired for the time periods of interest for this study. The Stillwater station is located

approximately 1 mile from the test site. Data for the following parameters were obtained:

wind speed, wind direction, air temperature, relative humidity, and solar radiation.

Further details of the weather station network may be found in Elliott et al. (1994).
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4.4. Model Development

4.4.1. Governing Equations

Transient heat transfer in the pavement slab is represented in the model in two-

dimensional (2-D) cross-section using the cartesian coordinate system. The 2-D

approach is reasonable if the cross-section is taken through the mid-section of the slab

along the major direction of fluid flow in the pipe system. The transient 2-D heat

conduction equation can be expressed as:

a2T a2T I aT
--+--=--ax 2 az 2 a at (4-1)

This equation has been discretized using an explicit finite difference method. The typical

geometry and notation of the finite difference cells in the x-z cartesian coordinate plan

are shown in Figure 4-4.

The nodal equations are formulated using a node-centered, energy balance

approach. The resulting general form of the explicit finite difference equation i :

4 ( T 1 - T (1-1"') JLq,,;(I-t.l) A = Vpc
p

. (m.lI) (m.lI)

i~ ~t
(4-2)

where, q:t-t.l) is the heat flux across the cell face i at the previous time step, A is the cell

face area (assuming a unit depth), V is the cell volume (assuming a unit depth), p i the
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average density of the cell material, cp is the average specific heat capacity of th c U

material, T(m,n/ is the nodal temperature at the current time step, T(m,nttJr i the nodal

temperature at the previous time step, and Lit is the time step. The heat flux, q' , for

conduction into node (m,n) during a given time step is given by Fourier' Law in di crete

fonn as:

(T -T )
II _ k ; (m,tI)

q ;-+(m,tI) - I! (4-3)

where subscript i denotes a neighboring node (from 1 to 4), k is the average thermal

conductivity of the material between nodes i and (m,n), and eis the distance between

nodes i and (m,n) .

.------....... x

(m - I, n - 1

z

1m - I, n

(m - I, n + I) (m, n + 1)

....lIII-- I1x --.....

m+l,n-I)

(m + I, nil

/).z

1
(m + I, n + I)

Figure 4-4. Finite difference cell geometry and notation.
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The size of the time step is limited by the need to maintain stability. In this fully

explicit method, the stability criterion for two-dimensional problem i given by:

where ais the thermal diffusivity of the material within the cell and eis the nodal

spacing.

4.4.2. The Finite Difference Grid

(4-4)

The finite difference grid used in the model is shown in Figure 4-5. A uniform

square nodal spacing equal to the pipe radius has been used. Because of symmetry and

small temperature differences between adjacent pipe, and neglecting edge effects, the

model domain was reduced to a width equivalent to one-half of the pipe spacing as

shown in Figure 4-5. In the z direction, the domain corresponds to the top of the slab and

bottom of the slab or the base of the underlying fill material. In the x direction, the

domain corresponds to a distance from the center-line of a pipe to half the distance to the

adjacent pipe.

4.4.3. Boundary Conditions

The boundaries of the model domain are treated as flux-type (Neumann)

conditions as shown in Figure 4-5. The temperature at each boundary node is given by
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the energy balance equation (Equation 4-2), where q~ repre ents the appropriate ternal

flux and conduction flux from adjacent nodes.

t-
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mdius
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Heat Flux Boundary - Pavement Top urface
(solar heat gain, convection, thermal mdiation, sensible heal from

precipitation, heal of fusion from snow melt, heat of eYapomtion of precipilation)

~

HeatFluxB
Pipe

(fluid cony
internal p

..
Adiabatic or Convective Boundary. Pavement Botlom Surface

1/2 pipe spacing

Figure 4-5. The model domain showing the finite-difference grid and boundary
conditions. Shaded squares show example control volumes for
different types of grid node geometrie ,

Lines of symmetry on the left- and right-hand boundaries are, by definition, zero-

flux conditions. Heat flux at the pipe surface nodes represents convection from the heat

transfer fluid. Heat flux at each top surface node (q~n.I)) i given by:

II = II + II + II + II + II
q (m,l) q solar q lhemwl q conVfClion q ra;n.snow-.lflLrible q rain,mow-Ialfll' (4-5)
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where q;olar is the solar radiation heat flux, q~rmal is the thermal radiation heat flux

q:onvection is the convection heat flux, q:ain,.mow-.,ensible i the sen ible heat flux from faIling

rain and snow, and q:ain.snow-lalent is the latent heat flux from melting now and

evaporating/condensing water. The bottom surface is treated either as an in ulated

surface or as a surface exposed to convective plus radiative conditions. Each of the heat

flux terms is further described below.

4.4.3.1. Solar Radiation Heat Flux

Solar radiation heat flux (q;olar) is the net solar radiation absorbed by the

pavement surface and is given by:

" aJq solar = (4-6)

where I is the solar radiation incident on the pavement surface and a i the absorptivity

coefficient for the pavement material. The absorptivity coefficient i corrected for olar

incidence angle (8) dependence using an empirical correlation given by Duffie and

Beckman (1991). The model also accepts solar radiation in the form of beam (I,,) and

diffuse (ld) components, in which case I is computed from:

I = I b cos 8 + I d

The angle of incidence (8) of the sun's rays is computed at each time step from

(4-7)

correlations given by Spencer (1971), Duffie and Beckman (1991), and ASHRAE (1997).
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4.4.3.2. Thermal Radiation Heat Flux

This heat transfer mechanism accounts for heat flux at the pavement top urface

and bottom surface (if exposed) due to thennal or long-wave radiation. Thi model u e

a linearized radiation coefficient (hr) defined as:

(
T. T J3h

r
=4£0' (m,n~+ 2 (4-8)

where £ is the emissivity coefficient of the pavement material, a is the Stefan-Boltzmann

constant, TCm,n) is the surface node temperature in absolute units, and T 2 represents the ky

temperature in absolute units. T.~ky is computed from the relationship given by Bliss

(1961). If the bottom of the slab is exposed, Equation 4-8 is also used to determine hr for

the bottom surface, where T2 represents the ground temperature in absolute units, which

is approximated as the air temperature. The thermal radiation heat flux at each node

(q~ermal) is then computed by:

(4-9)

4.4.3.3. Convection Heat Flux at the Pavement Surfaces

This mechanism accounts for heat tran fer at the pavement top and bottom

surfaces due to free and forced convection. The convection coefficient (he) is a function

of the Nusselt Number (Nu). Several empirical fonnulations exi t for determining the

convection coefficient for different geometries. For a pavement surface, correlation for
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a horizontal flat plate are the most applicable and therefore the convection c ffi ient h)

is determined as described in Section 3.4.1.3.

In free convection heat transfer, Nu is a function of the Rayleigh Number (Ra).

Ra is determined as described by Equation 3-13 where ~T refers to the temperature

difference between the pavement surface at node (m,n) and the air, L is the characteristic

length described for horizontal flat plates as the ratio of the area to the perimeter

(Incropera and DeWitt, (996), and the thennal properties (X, ~, and v are evaluated at the

film temperature, which can be approximated as the average of the air and the pavement

surface temperature at node (m,n). In external free convection flows over a horizontal

flat plate, the critical Rayleigh Number is about 107
. Therefore, two empirical relations

for the Nusselt number are used in this model as described by lncropera and DeWitt

(1996) for free convection from the upper surface of a heated plate or the lower surface of

a cooled plate (Equations 3-15a and 3-15b). The convection coefficient (/1,.) for fr e

convection can then be detennined from Equation 3-16 where k is the thermal

conductivity of air evaluated at the film temperature and L is the characteristic length

described above.

In forced convection heat transfer, Nu is usually correlated to the Reynolds (Re)

and Prandtl (Pr) Numbers. For external forced convection over a flat plate (i.e. the

pavement surface), the critical Reynolds Number is approximately 105
. Therefore, two

empirical relations for the Nusselt number are used in the model as described by

lncropera and DeWitt (1996) for forced convection over a flat plate (Equations 3-19a and



11

3-19b). The convection coefficient (he) for forced convection can then be determin d by

Equation 3-16 with the characteristic length value de cribed as the rati.o of the length

(parallel to the wind direction) to the perimeter.

Finally, the convection heat flux at each pavement surface node (q;onvec/;oll) i

computed by:

q"c,J/Ivec/;on =hc (Ta;r - T(m,n) ) (4-10)

where Tair is the dry-bulb air temperature and he is taken as the maximum of the free

convection coefficient and the forced convection coefficient. This practice of choo ing

the larger of the free and forced convection coefficients is recommended by Duffie and

Beckman (1991) and McAdams (1954) and is used in the absence of additional

experimental evidence regarding combined free and forced convection.

4.4.3.4. Heat Flux Due to Rain and Snow

This heat transfer mechanism includes both sen ible and latent effects. This

model uses a simple mass/energy balance on water at the pavement surface to account for

heat and mass transfer. The thermal properties of water are computed from correlations

given in the Handbook of Chemistry and Physics (CRC, 1980).

The sensible heat flux due to falling rain or snow at each pavement surface node

(q:a;n,snow) is given by:
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where m" rain ,snow is the rainfall or snowfall rate in water equivalent m
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4-11)

per unit time per

unit area and cp is the specific heat capacity of water at the air temperature.

Latent heat transfer is considered only if the air temperature or the slab urface

temperature is above 33<>P (O.55°C). Accumulation of rain is not considered; rainfaJI i

assumed to drain instantaneously from the pavement surface, forming a thin film from

which evaporation occurs.

This model uses the j-factor analogy to compute the mass flux of evaporating

water at each pavement surface node (mil w):

riz"w= hd(wl/ir -W(m,I») (4-12)

where hd is the mass transfer coefficient, Wair is the humidity ratio of the ambient air, and

W(m,I} represents the humidity ratio of saturated air at the surface node. The mass transfer

coefficient (hd) is defined using the Chilton-Colburn analogy defined previously by

Equation 3-26 where he is the convection coefficient defined above, cp is the specific heat

capacity of the air evaluated at the pavement node - air film temperature, and Le is the

Lewis number described by Equation 3-27 where aand DAB are each evaluated at the

pavement node - air film temperature. The heat flux due to evaporation (q:Vl/I'(J/"(Jli"n) i

then given by:

-
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q ~vaporn'itln = fg In w

II

(4-13)

where hfg is the latent heat of vaporization and is computed from the relationship given by

Irvine and Liley (1984).

The heat flux due to melting snow and ice is determined using a mas balance on

freezing precipitation that has accumulated at the pavement surface. The accumulation of

ice at the beginning of each time step is determined from the sum of the rainfall rate and

the snowfall rate if the air temperature or the slab surface temperature i below 33°F

(O.55°C). Although snow is a porous medium, it is treated in the model as an equivalent

ice layer. Sublimation of ice is not considered. The mass flux of water due to melting ice

(rh"jc~me!J ) at the pavement surface is then given by:

" +" +" +" +" +"• It q solar q thermal q CfJnVfClirm q rain ..,·n(Jw-.f~nx;bl~ q ~aporllfinn q ,,:mJdul't;on,ice
m ic~mell = h

If

(4-14)

where q;nnduclinn,iu is the conduction heat flux from the pavement surface into the ice layer

and hif is the latent heat of fusion of water. The other heat flux terms have been defined

previously. If the ice thickness is greater than zero, the heat flux into each pavement

sutface node (q~/Il,I» is given by:

II "II h
q (m,1) = -m ic~mel, if

The thickness of the ice layer at the end of the time step (f. ice.llew) is computed by:

(4-15)

-



[

'" '11 }m w +m iumell '
f iu,new = f ia.nld - . t

P,ce

4.4.3.5. Heat Transfer Due to the Heat Exchange Fluid
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(4-16)

Heat transfer due to the heat exchange fluid is represented by heat flux at the pipe

surface nodes. This model has been developed to account for water or antifreeze as the

heat exchange fluid. The thermal properties of the fluid are computed at each time step

from correlations given in the Handbook of Chemistry and Physics (CRC, 1980) for

water and from correlations given by Wadivkar (1997) for an antifreeze solution. The

thennal properties are computed at the average fluid temperature (Tjlllid). This

temperature is computed as the average of the inlet and outlet temperatures at the gi ven

time step. Since the outlet temperature at any current time step is not known, the

previous converged value is used as an initial guess and calculation of Tflllid is iterative.

The heat flux due to the heat exchange fluid (q;lIid) is computed per flow circuit

hy:

q" j1l1id =U pi"e (Tjluid - T(m,n)

where Upipe is the overall heat transfer coefficient for the pipe and is expressed as:

U pipe = 1 f
--+-­
hpipe k pipe

(4-17)

(4-18)

--
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where hpipe is the convection coefficient due to fluid flow through the pipe, kpipe i the

thermal conductivity of the pipe material, and f plp~ is the wall thickne s of the pipe.

The convection coefficient due to fluid flow in the pipe i determined u ing

correlations for the Nusselt Number in flow through a horizontal cylinder. A constant

heat flux at the pipe surface is assumed. For laminar flow in the pipe (Re<2000), the

Nusselt Number is a constant equal to 4.36 (Incropera and DeWitt, 1996, Equation 8-53).

For turbulent flow, the Dittus-Boelter relation is used to compute the Nusselt Number as

described by Equation 3-36. The value of the exponent x in Equation 3-36 is dependent

upon whether the entering fluid is being heated or cooled; x is equal to 0.3 if the entering

fluid is greater than the slab temperature and x is equal to 0.4 if the entering fluid is less

than the slab temperature. The convection coefficient (hf/uid) is given by Equation 3-16

where k is the thermal conductivity of the heat transfer fluid and the characteristic length

(L) is defined as the inner diameter of the pipe.

The outlet fluid temperature (Tout) is computed from an overall energy baJanc on

the pipe flow circuit:

" AT - T _ q jluid "ip~
nul - fluid 2 .

mc"
(4-19)

where A is the inside surface area of the pipe per flow circuit, m. is the ma s flow rate of

the heat exchange fluid per flow circuit, and cp is the specific heat capacity of the heat

exchange fluid. This outlet temperature is used to compute the average fluid temperature

at the next iteration as described above.
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The total heat transfer due to the fluid flow (qtrans/erj1uid) is given by:

q,rans/u,j7uid = rnc p (Tin - Tour)N circuil

where Ncircuit is the number of flow circuits.

4.4.4. Computer Implementation

(4-20)

The component configuration for the pavement heating model is shown in Figure

4-6. A companion model was also developed which manipulates any weather data

needed for the pavement heating model. The weather component model make use of the

TRNSYS psychrometric subroutine to compute moist air properties given two known

state properties. The two state properties are dry bulb temperature and one of wet bulb

temperature, relative humidity, or dew point temperature. The weather component model

also computes the sky temperature, the solar radiation on a horizontal urface, and the

solar incidence angle. A computer algorithm is shown in Figure 4-7 in the form of a flow

chart.



wind
speed

+

rainfall
rate

au sky
temperature temperature

jhu~~tY j
wind solar angle

uirection of incidence

jr~Yon j sn~fl j

119

inlet m
flow rate

inlet

fluid j
temperatur

+
PAVEMENT HEATING MODEL PARAMETERS:

I . slab length
3. slab orientation from north
5. pipe spacing
7. pipe depth below surface
9. thennal conductivity, layer 1

II. emissivity coefficient
13. volumetric heat capacity, layer 1
15. thennal conductivity, pipe material
17. flag for fluid type (water or antifreeze)
19. number of flow circuits
21. time step for finite difference method

2. slab width
4. thickness of slab + fill
6. pipe diameter
8. depth to material 1-2 interface

10. thermal conductivity, layer 2
12. absorptivity coefficient
14. volumetric heat capacity, layer 2
16. pipe wall thickness
18. antifreeze concentration if used
20. pipe length per flow circuit
22. flag for bottom boundary condo

1 1 1 1
slab surface outlet fluid rna s flow heat
temperature temperature rate rejected/absorbed

Figure 4-6. Pavement heating model component configuration.
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Figure 4-7. Pavement heating model computer algorithm.
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4.5. Results and Discussion

4.5.1. Model Comparison to Experimental Results with No Heat Rejection

The first step in the model verification process was to compare the model

pavement slab temperatures to measured slab temperatures during times when no heat

was being rejected to the slab. This comparison allowed a validity check of the

simulation of the several environmental heat transfer mechanism occurring within the

pavement. Simulated and actual pavement average hourly temperatures are hown for

the parking lot test section in Figure 4-8 for an 8-day period in July 1998 when no heat

was rejected to the pavement. Therefore, in this case, the model is driven by weather

data input only.

A review of the plot in Figure 4-8 shows that the model slab surface temperatures

compare favorably to the measured slab surface temperature. The simulated peak daily

and nightly temperatures are generally lower than the measured values. These

discrepancies are generally within 3°F (1.67°C) .

4.5.2. Model Comparison to Experimental Results with Heat Rejection

Heat rejection to the bridge-deck test section was simulated for the nights of

March 7-8, 1996 and March 24-25, 1996. During the night of March 7-8, 1996, a thin

layer of ice had formed on the bridge deck prior to the heat rejection test. Heat rejection

to the parking lot test section was simulated over a 36-day period from November 12 to
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December 18, 1998. Input data to the model consisted of weather data a de crib d

previously in addition to measured slab heat exchanger upply water temperatur and

flow rates on 5- minutely time intervals for the bridge deck field tests and 6-minutely

time intervals for the parking lot field tests.
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Figure 4-S. Comparison of observed and simulated slab surface temperature for
the parking lot test section with no heat rejection to the lab.

Since different parameters had been measured during the bridge deck field tests

and the parking lot field tests, the model performance was evaluated accordingly. For

comparison of the model results to the bridge deck field test data, the model performance

was evaluated by comparing (I) the simulated to the observed bridge deck urface

temperature and (2) the simulated to the observed return temperature of the heat

exchange fluid. For comparison of the model results to the parking lot field test data, the

---
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model performance was evaluated by comparing (I) the simulated to the ob erved r turn

temperature of the heat exchange fluid and (2) the simulated cumulative heat rejected to

the pavement slab to the measured water heating element and pump power input. The e

comparisons are shown in Figures 4-9 and 4-10 respectively.

A review of the plots in Figure 4-9 shows that model predicted the bridge deck

surface temperature and fluid return temperature quite well. For the night of March 7-8,

1996, the average observed and modeled surface temperatures were 27.9°F (-2.27°C) and

27.2OP (-2.67°C), respectively, and the average observed and modeled fluid return

temperatures were 84.8°F (29.33°C) and 85.l oF (29.50°C), respectively. For the night of

March 24-25, 1996, the average observed and modeled surface temperatures were 36.9°F

(2.72°C) and 36.8°F (2.67°C), respectively, and the average observed and modeled fluid

return temperatures were 85.0°F (29.44°C) and 85.7°F (29.83°C), respectively. One main

purpose for the bridge deck simulations was to verify the model's applicability to y tern

performance over relatively short time periods. Another important purpose of thes

simulations was to verify the model's applicability to the serpentine pipe arrangem nt.

The quantity of data was limited regarding snow and ice conditions and further

experiments need to be conducted to fully evaluate the model's capability to account for

snow and ice events.
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A review of the plots in Figure 4-10 shows that model a1 0 pr dicted the

fluid return temperature and heat rejected to the parking lot te t ection favorably. The

average observed and modeled fluid return temperatures over the test period w r 73.1°F

(22.8°C) and 73.4°F (23.0°C), respectively. At the end of the 36-day t t period, the

percent difference between the cumulative simulated heat rejected and the cumulative

measured heat rejected is -5.01 %. These discrepancies may be due partly to heat 10 es

from the supply/return pipes to the ground and to the atmosphere in the equipment

building. A model and experimental uncertainty analysis is presented in Appendix A.

Further explanation is required regarding the parking lot test section imulations.

Explicit modeling of a slinky pipe is difficult because there are no true lines of symmetry

along its cross-section. As shown in Figure 4-2b, the pipe spacings are not uniform.

Another complicating factor is quantifying the thermal interferences induced by overlap

of the pipe coils. To circumvent these difficulties, a heuristic approach was u ed to

determine an effective pipe spacing along the center-line of the Iinky coil. For a IO-inch

pitch, an effective pipe spacing of 8.4 in. (0.21 m) was determined by taking the

arithmetic average of the pipe spacing at the points where the pipe coils overlap.

However, this approach may not be as appropriate for other slinky configuration

4.5.3. Model Application

To illustrate the applicability of the model as well as the viabi Iity of using

pavement heating systems as supplemental heat rejecters in GSHP systems, a model of a

hypothetical GSHP system was constructed in the TRNSYS modeling environment. A
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simplified system schematic is shown in Figure 4-11. For this example a pavem ot

heating system similar to the parking lot test section described above wa u ed. That i , a

slinky coil installed at the interface of a 6-inch (0.1524 m) concrete slab and underlying

sand fill material. Each of the component models is described briefly below.

Pavement Heating

System

Builcing Heal

Loads I--'-.-----i Pumps

Ground Loop

Heat Exchanger

Figure 4-11. System schematic for the example model of a GSHP system with a
pavement heating system supplemental heat rejecter.

The building is not modeled explicitly in this application. The hourly building

therrnalloads are pre-computed using a proprietary building energy analysis program and

are read from a file and passed to the heat pump subroutines. The building, the same one

described in Section 3.5.3, is an actual four-story, 45,000-ft2 (4181-m2
) office building

located in Tulsa, Oklahoma and is highly cooling dominated. The building thermal loads

are shown in Figure 3-8.
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A simple water-to-air heat pump model was developed for thi and other G P

system simulations. Inputs to the model include sensible and latent building load,

entering fluid temperature, and fluid mass flow rate. The model u e quadratic curve-fit

equations to manufacturer's catalog data to compute the heat of rejection in cooling

mode, heat of absorption in heating mode, and the heat pump power con umption.

Outputs provided by the model include exiting fluid temperature, power con umption

and fluid mass flow rate. In this application, one heat pump component model handle

the heating load and a second heat pump component model handles the cooling load.

The ground-loop heat exchanger model used in this application is that described

by Yavuzturk and Spitler (1999) which is based partly on the work of Eskilson (1987)

who developed "long time-step" (monthly) response factors for vertical ground-coupled

V-tube heat exchangers. The model of Yavuzturk and Spitler (1999) extends the work of

Eskilson (1987) to hourly or less ("short-time step") time intervals. The developm nt of

the short time-step response factors are based on an analytically validated, transient two­

dimensional implicit finite volume model (Yavuzturk et aI., 1999) that simulates the heat

transfer over a vertical V-tube ground heat exchanger. In this application, the modeled

borehole field consisted of one hundred 250-feet (76.2-m) deep boreholes arranged in a

10 by 10 square pattern. A total system flow rate of 270 gpm (6"\.36 m3/hr) was as umed.

Representative thermal properties of sedimentary rock were chosen.

Ancillary components such as pumps, t-pieces, flow diverters, and the differential

controller are described by SEL (1997). The control strategy used to activate the

circulating pump to the pavement was chosen somewhat arbitrarily by using the
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temperature difference between the pavement surface and the exiting fluid t mp ratuT

from the heat pumps. When this temperature difference exceed 9~ (SOC), the

circulating pump to the pavement is energized and heat will be rejected 'to the pavement.

During these times, all flow is diverted to the pavement system. The propertie of each

heat exchanger coil in the example model are the same as those de cribed in the parking

lot test section experiments. Hourly input weather data for the model were taken from a

typical meteorological year (TMY) record for Tulsa, Oklahoma.

The model was run for two cases for a duration of 3 years with a time step of one

hour. The first case was the GSHP system with no pavement and the second case was the

GSHP system with the pavement. Hourly heat pump entering water temperatures are

shown in Figure 4-12 for both cases.
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Figure 4-12. Entering heat pump water temperatures for the example GSHP
system simulation with no pavement heating and with a 24,000 ft2
(2230 m2

) parking lot with pavement heating.
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A review of the data presented in Figure 4-12 show the advantag of u ing a

pavement heating system as a supplemental heat rejecter. Assuming that a maximum

heat pump entering water temperature of tOO°F (37.78°C) is de irable the system without

the pavement system would fail during the second year of operation. In fact, b eel on th

results of a ground-loop heat exchanger sizing program (Spitler et al., 1996), the

boreholes of a to by to square pattern would need to be approximately 400 feet (121.9

m) deep to accommodate the cooling dominated loads of this building for 20 year of

operation. Such a system would be eliminated from consideration early on in the design

phase because of excessive first cost.

Using the TRNSYS model as a design tool, the size of the pavement supplemental

heat rejecter was detennined under the assumption that the 10 by 10 borehole field could

not be feasibly deeper than 250 feet (76.2 m). The heat pump entering water

temperatures for the GSHP system with the pavement heating y tern shown in Figure 4­

12 were produced by simulating a 24,000 ft2 (2230 m2
) with 200 slinky heat exchanger

coils. This size of a parking lot would have a capacity of 75 cars (in parking lot design,

an area per car of 320 ft2 (29.73 m2
) will allow for access through lots (Lindeburg, 1992)

). A summary of the pavement system performance is given in Table 4-1. By adding the

pavement supplemental heat rejecter in this example, the depth of the borehole field

could be decreased by approximately 35%. A more detailed system analy is could

involve system life-cycle operating cost analyses, control strategy variation , and design

variable optimization.



Table 4-1. Summary of Pavement Heating System Performance for
Example GSHP System Simulation

,..
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Year Hours Average Surface Heat Pump Maximum Heat Rejected
ON Temperature Entering Fluid

Temperature
(OF) (0C) (OF) (0C) (kBtu) (MJ)

1 6245 63.65 17.58 97.71 36.51 3,418,368 3,605,695
2 6448 63.96 17.76 99.41 37.45 3,670,277 3,871,409
3 6603 64.15 17.86 100.79 38.22 3,837,759 4,048,068

4.6. Concluding Remarks and Recommendations for Future Work

A design and simulation tool for modeling the performance of a pavement heating

system as a supplemental heat rejecter in ground-source heat pump systems has been

developed. The model has been developed in the TRNSYS modeling environment (SEL,

1997) and can be coupled to other GSHP system component models for short-time tep

(hourly or minutely) system analyses. The model has been validated by comparing

simulation results to experimental data.

The model accounts for several environmental heat transfer mechanisms plus

convective heat transfer due to a closed-loop heat exchanger coil. The heat transfer fluid

is assumed to be carried by a series of pipes in a "serpentine" configuration or a "slinky"

configuration. Environmental heat transfer mechanisms that are simulated by the model

include solar radiation heat gain, convection heat transfer to the atmosphere, thermal or

long-wave radiation heat transfer, and sensible and latent heat and mass transfer due to

rain and snow. The model uses an explicit hnite-difference method to solve the transient

two-dimensional heat conduction equation. Some outputs provided by the model include
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the pavement surface temperature, the exiting fluid temperature, and the amount f h at

rejected to the pavement slab.

An example application has been presented to demonstrate the use of the model as

well as the viability of the use of pavement areas as supplemental heat rejecter in GSHP

systems. Through this example, it is shown that ground-loop heat exchanger size can be

significantly decreased by incorporating a pavement heating system into the GSHP

system.

The potential exists for significantly increasing the performance of pavement

heating systems used as supplemental heat rejecters in GSHP systems. Further research

is suggested in the following areas:

• Optimization of the design procedure and control strategy as described for the

shallow pond supplemental heat rejecter in Section 3.6.

• Additional validation of the model, using data from a working ystem, would b

useful.

• Additional validation of the model, using data collected under a wider range of

weather conditions (i.e. rain, snow, and lee conditions), would be useful.

• The impact of the pipe configuration on the overall system performance, particularly

with regard to accounting for slinky pipe spacing in models.

• Application of the model to other uses such as modeling the performance of

horizontal ground-loop heat exchanger systems and snow melting systems.

---
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5. Summary and Conclusions

Ground-source heat pump (GSHP) systems have received con iderable att ntion

in recent decades as an alternative energy source for residential and commercial pace

heating and cooling applications. GSHP systems offer proven advantage over

conventional heating and cooling systems, specifically with respect to efficiency.

maintenance costs, and overall operating costs. Depending on the configuration, a GSHP

system may either use the earth, ground water, or surface water as a heat source and/or

sink. Hybrid GSHP systems use combinations of these or a combination of a GSHP

system with conventional equipment (i.e. a cooling tower).

This study has dealt with the modeling of vertical closed-loop and hybrid, ground­

source heat pump systems. UJe challenges associated with the design of these ystem

originate from the fact that they present a unique type of heat transfer problem. First,

there are inherent inabilities to make direct observations in the sub urface environment

with respect to both space and time. Second, heat transfer within the subsurface

environment can be highly transient. Consequently, a considerable amount of re earch in

the past decade has been geared toward optimizing the design and performance of GSHP

systems and this study is part of those efforts.

The objectives of this study were threefold: (I) to examine the effects of ground­

water flow on closed-loop GSHP systems, (2) to develop a design and simulation tool for

modeling the performance of a shallow pond as a supplemental heat rejecter with c1osed­

loop GSHP systems, and (3) to develop a design and simulation tool for modeling the
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performance of a hydronic pavement heating system as a upplemental heat reject r with

closed-loop GSHP systems.

Chapter 2 of this thesis has presented a preliminary assessment of the effect of

ground-water flow on closed-loop ground-source heat pump systems. A compilation of

"typical" hydraulic and thennal properties of soils and rocks was u ed in the tudy.

A simple but useful method of assessing the relative importance of heat

conduction in the ground versus heat advection by moving ground water wa

demonstrated through the use of the dimensionless Peclet number.

A finite-element numerical ground-water flow and heat tran port model was used

to simulate and observe the effects of ground-water flow on the heat transfer from a

single V-tube closed-loop ground heat exchanger in various geologic materials. From

those simulations, it appears that it is only in geologic material with high hydrauli.c

conductivities, such as coarse-grained soils (sands and gravel) and in rock exhibiting

secondary porosities such fractures and solution channels, that ground-water flow could

be expected to have a significant effect on closed-loop heat exchanger performance.

The finite-element numerical ground-water flow and heat transport model was

also used to examine the effect of ground-water flow on in-situ thermal conductivity te t

results. This was done by numerically simulating test conditions around a ingle

borehole under different flow conditions. As expected, in all cases of ground-water flow,

--
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these values were artificially high. Result from one week te t data hav b n h wn to

be no more reliable than data from 50-hour tests when ign ificant ground-water flow i

present.

The finite-element numerical ground water flow and heat tran port model w

also used to simulate the 1O-year performance of borehole fields de igned from

appLication of conventional design procedures using the derived thermal conductivity

data. Even the presence of moderate ground-water flows had the effect of removing the

year-by-year increase in ground temperature found in systems where there i no ground­

water flow. The borehole fields designed using conventional method and the deri ved

effective thermal conductivities were generally over-designed. However, in some cases

at very high ground-water flow rates, temperatures were found to rise above the de ign

criteria.

From this preliminary asse sment of the effects of ground-water flow, it appears

difficult to adapt results from current design and in-situ measurement method to fully

account for ground-water flow conditions. Over the last decade, considerable progress

has been made in developing both in-situ test methods and design procedures for

borehole field design for situations where there is no ground-water flow. Research would

be required in a number of areas before the same progress could be made to deal with the

situations of ground-water flow. These include:

• Identification of suitable numerical and/or analytical models that include ground­

water flow and could be used to analyze in-situ test data.
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• Experimental investigation of potential in- itu te t data analy i method at it with

significant ground-water flow.

• Identification of suitable design methods, or adaptations to exi ting methods, that

could be used for closed-loop ground heat exchanger design.

• Development of design guidelines and software tools that could be used by practicing

engineers for in-situ testing and system design tasks in situation of ignificant

ground-water flow.

Chapter 3 of this thesis has described the development and validation of a model

for simulating the performance of a shallow pond as a supplemental heat rejecter with

closed-loop ground-source heat pump systems. The model has been developed in the

TRNSYS modeling environment and can be coupled to other GSHP system component

models for short-time step (hourly or minutely) system analyses. The model has been

validated by comparing simulation results to experimental data.

The model accounts for several natural heat transfer mechanisms within a surface

water body plus convective heat transfer due to a closed-loop heat exchanger coil. The

heat transfer fluid is assumed to be carried by a series of pipes in the form of bundle

spools or "slinky" coils. Environmental heat transfer mechanisms that are simulated by

the model include solar radiation heat gain, heat and mass transfer due to evaporation,

convection heat transfer to the atmosphere, thermal or long-wave radiation heat tran fer,

conduction heat transfer to the surrounding soil or fill material, and ground water

discharge contributions. The solution scheme involves a lumped-capacitance approach
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and the resulting first-order differential equation de cribing the overall en rgy bal oc on

the pond is solved numerically. Some output provided by the model include average

pond temperature, exiting fluid temperature, and heat rejected to the pond.

An example application has been presented to demonstrate the u e of the model

well as the viability of the use of shallow ponds as supplemental heat rejecter in GSHP

systems. Through this example, it is shown that the size of ground-loop heat exchanger

can be significantly decreased by incorporating a shallow pond into the GSHP y tern.

The potential exists for significantly increasing the performance of shallow ponds

used as supplemental heat rejecters in GSHP systems. Further research is uggested in

the following areas:

• Optimization of the design procedure and control strategy. Hybrid ground source

heat pump systems have many degrees of freedom; there are tradeoffs between the

reduction in size of the ground loop heat exchanger, the ize of the pond, and the

control strategy. To more fully understand this, additional research using the

simulation techniques developed in this paper is needed. This research would al 0

take into account the economic costs and benefits, which we have not investigated.

• Additional validation of the model, using data from a working system, would be

useful.

• Extension of the model to cover deep ponds for situations where an exi ting pond or

lake is available.

-------



• The use of spray fountains and other aeration device in the pond to enhan pond

cooling.

• The impact of pipe configuration within the pond on the overall y tern performanc .

Chapter 4 of this thesis has described the development and validation of a model

for simulating the performance of a pavement heating system a a supplemental heat

rejecter with closed-loop ground-source heat pump systems. The model has been

developed in the TRNSYS modeling environment and can be coupled to other GSHP

system component models for short-time step (hourly or minutely) system analyses. The

model has been validated by comparing simulation results to experimental data.

The model accounts for several environmental heat transfer mechanisms plu

convective heat transfer due to a dosed-loop heat exchanger coil. The heat transfer fluid

is assumed to be carried by a series of pipes in a "serpentine" configuration or a .. !inky"

configuration. Environmental heat transfer mechanisms that are simulated by the model

include solar radiation heat gain, convection heat transfer to the atmosphere, thermal or

long-wave radiation heat transfer, and sensible and latent heat and mass transfer due to

rain and snow. The model uses the finite-difference method to solve the tran ient two­

dimensional heat conduction equation. Some outputs provided by the model include the

pavement surface temperature, the exiting fluid temperature, and the amount of heat

rejected to the pavement slab.

-



An example applicat.ion has been presented to demonstrate the u e of the model

well as the viability of the use of pavement areas as supplemental heat rejecters in GSHP

systems. Through this example, it is shown that ground-loop heat exchanger izes can be

significantly decreased by incorporating a pavement heating sy terns in a th GSHP

system.

The potential exists for significantly increasing the performance of pavement

heating systems used as supplemental heat rejecters in GSHP systems. Further re earch

is suggested in the following areas:

• Optimization of the design procedure and control strategy as described for the

shallow pond supplemental heat rejecter.

• Additional validation of the model, using data from a working system, would be

useful.

• Additional validation of the model, using data collected under a wider range of

weather conditions (i.e. rain, snow, and ice conditions), would be useful.

• The impact of the pipe configuration on the overall system performance, particularly

with regard to accounting for slinky pipe spacing in models.

• Application of the model to other uses such as modeling the performance of

horizontal ground-loop heat exchanger systems and snow melting systems.

- -----
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This appendix presents an analysis of parameter uncertainty and experimental

uncertainty regarding the validation and application of the pond and pavement models.

Mod.el Uncertainty

This section presents a sensitivity analysis to quantify the uncertainty in the final

model results caused by uncertainties in the estimates of input and parameter value used

in the models. The results of this analysis are shown in Tables A- t and A-2 for the pond

and the pavement models, respectively, and are discussed below.

The pond and pavement model uncertainty is quantified using influence

coefficients as described by Spitler et aL (1989). An influence coefficient is the partial

derivative of a simulation result with respect to a parameter which, for the purposes of

this study, is approximated as:

. MesuLt
Influence CoeffiCIent = -----

!lParameter
(A-I)

where Result is the cumulative heat rejected and Parameter is a variable with some

uncertainty. The tenn Parameter should not be confused with TRNSYS model

parameters. Here, Parameter refers to any variable with a significant uncertainty,

including TRNSYS model parameters as well as TRNSYS model inputs such as weather

factors, fluid supply temperature, and fluid flow rate.
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Modeled cumulative heat rejected from Nov.12, 1998 to Dec. 7, 1998: Horizontal Slinkyl_...:1~48;;6:---1
Vertical Slinky _...:1",50~8::.-....J

kW-hr
kW-hr

Value Uncertainty Perturbed Perturbed t,(resu)ll Uncerlalnty Model
Used in in Model Model 6(parameter) in Para.meter

Final Parameter Value Result Resull Unc.ertalnty

Analysis
(kW-hr) (kW-hr) (%)

"/:,.. '>\
Horizontal Slinky 0.391 (2) 0.06 (3) 0.5 1554 623.85 37.43 2.52%
Vertical Slinky 0391 (2) 0.06 (3) 0.5 1578 642.20 38.53 2.56%

]!I~

Horizontal Slinky 2.5 (4) 0.2 (1) 3.0 1520 68.00 13.60 0.92%
Vertical Slinky 2.5 (4) 0.2 (1) 3.0 1543 70.00 14.00 0.93%

_llbl. I!!
Horizontal Slinky 7.5 (4) 2.5 (4) 3.0 1510 -5.33 13.33 0.90%
Vertical Slinky 7.5 (4) 2.5 (4) 3.0 1535 -6.00 15.00 0.99%

- "1f"'"
Horizontal Slinky 0.97 (5) 0.02 (1) 0.9 1473 185.71 3.71 0.25%
Vertical Slinky 0.97 (5) 0.02 (1) 0.9 1495 185.71 3.71 0.25%

J.i'~.~

Horizontal Slinky 1 (a) 0.10 (6) 2.0 (a 1847 361.00 36.10 2.43%
Vertical Slinky 1 (a) 0.10 (6) 2.0 (a 1880 372.00 37.20 2.47%

ii!' .i
Horizontal Slinky 1 (a) 0.05 (6) 2.0 (a 1242 ·244.00 12.20 0.82%
Vertical Slinky 1 (a) 0.05 (6) 2.0 (a 1256 ·252.00 12.60 0.84%

HOrlJontal Slinky 0 (b) 0.35 (6) 2.0 (b 1284 ·100.86 35.30 2.38%
Vertical Slinky 0 (b) 0.35 (6) 2.0 (b 1305 -101.43 35.50 2.35%

i

Horizontal Slinky 1 (a) 0.05 (6) 1.05 (a 1452 -674.13 33.71 2.27%
Vertical Slinky 1 (a) 0.05 (6) 1.05 (a 1474 -679.80 33.99 2.25%

~ 0 (b) 0.12 (7) 0.2 (b 1400 -431.90 51.83 3.49%
Vertical Slinky 0 (b) 0.12 (7) 0.2 (b 1413 -477.43 57.29 3.80%

Horizontal Slinky 0 (b) 0.025 (7) 0.05 (b 1486 6.66 017 0.01%
Vertical Stinky 0 (b) 0.025 (7) 0.05 (b 1508 704 0.18 0.01%

Tolal Uncertalnlv In Results

Horizontal Slinky 6.13%
Vertical Slinky 6.35%

~
(a) - a multipllcallon factor Is used to vary the hoUrly Input value of this item for this uncertainty analysis
(b) • an addition factor is used to vary the hourly input value of this item for this uncertainty analysis
(1) - estimated value
(2) • value given by pipe manufacturer Phillips Driscopipe
(3) - based on data given by Mills (1995)
(4) - based on in-situ thermal conductivity test data
(5) - value given by Incropera and DeW'" (1996)
(6) - measurement error given by Elliot et al. (1994)
(7) - based on standard error of calibration curves



TABLE A-2

Pavement Model Parameter' Uncertainty Analysis
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Modeled cummulative heat rejected from Nov.12, 1998 to Dec. 19, 1998: Horizontal Slinkyl 1255 kW-hr

~~
, Value Uncertainty Perturbed Perturbed ~(resulll Uncertainty Model

Used in in Model Model ~(parameter) in Parameter

Final Parameter Value Result Result Uncertainty
Analysis

(kW-hrl (%)(kW-hrl

l"'tW~
...

Slinky test section 0,391 (2) 0.06 (3) 0.5 1293 348.62 20.92 1.67%

II., Ii ..'IIfil k-"

Slinky test section 1.663 (4) 0,2 (1 ) 2,9 1314 47.70 9.54 0.76%

eest section 0.4 (5) 0.2 (1 ) 1.0 1146 -181,67 36.33 2.90%

ID. i!JI CDIIllIBM ("!'l. GIl
Slinky test seclion 0.4 (6) 0.1 (6) 0,6 1135 -600.00 60.00 4.78%

- ,',
Slinky test section 0.9 (6) 0.05 (6) I 0.8 1192 630,00 31.50 2.51%

IIII.iIIII iiIII
Slinky test section 1 (a) 0.10 (7) 2,0 (a) 1327 72.00 7.20 0.57%

AIr ........ ,Iti
Slinky test section 0 (b) 0.35 (7) 2.0 (b) 1092 -81.26 28.44 2.27%

.I11III
Slinky test section 1 (aj 0..05 (7) 1.05 (a) 1250 -103.99 5.20 0.41%

8Joel
Slinky test section 0 (b) 0.12 (8) 0.2 (b) 1089 ·831,18 99.74 7.95%

Iflow ndelmm\
Slinky test section 0 (b) 0,025 (8) 0.05 (b) 1256 16.48 0.41 0.03%

Total UncertainlY In Results

Slinky test section 10.47%

tiQIE.S.;
(a) - a multiplication factor is used 10 vary the hourly input value of this item for this uncertainty analysis
(b) - an addition factor is used to vary the hourly input value of this item for this uncertainty analysis
(1) - estimated value
(2) - value given by pipe manufacturer Phillips Driscopipe
(3) - based on data given by Mills (1995)
(4) • based on data given by Tinker and Cabrera (1992)
(5) - value given by Spillar at al. (1996) for light soil
(6) • valua given by ASHRAE (1997) Iight-colorad surlacas
(7) - measurement error given by Elliot at al. (1994)
(8) .. based on standard error of calibration curves
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The influence coefficient for each parameter of intere: t i determin d by running

the model with a "perturbed" value of the parameter. The Uncertainty in Result with

respect to the parameter, is then determined by:

Uncertainty in Result =(Influence Coefficient )x(Uncertainty in Parameter) (A-2)

where Uncertainty in Parameter is the estimated parameter error (for example, ± 0.5

W/m-°C). The non-dimensional Model Parameter Uncertainty is then determined by:

. Uncertainty in Result
Model Parameter Uncertainty = ------'-----

Result
(A-3)

The errors introduced to the model result by each parameter are assumed to be

independent of each other. Therefore, the Total Uncertainty in Result is given by:

n

Total Uncertainty in Result = 2)Model Parameter Uncertainty)/ (A-4)
;=1

where n is the number of parameters considered in the analysis.

The parameters investigated in this uncertainty analysis can be divided into two

groups: (1) TRNSYS model parameters and (2) TRNSYS model inputs. For the pond

model, these items consisted of: (1) (a) pipe thermal conductivity (kpipe), (b) soil thermal

conductivity (ksoil), (c) depth to constant sink temperature, and (d) emissivity of the water
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surface (E) and (2) (a) wind speed, (b) solar radiation, (c) air temperature, d) relati .

humidity, (e) supply fluid temperature, and (f) supply fluid flow rate. For the pav ment

model, these items consisted of: (1) (a) pipe thermal conductivity (kpipe), (b) concrete

thermal conductivity (k:ollcrete), (c) soil thermal conductivity (ksoil), (d) absorptivity of the

concrete surface (a) and (d) emissivity of the concrete surface (E) and (2) (a) wind peed,

(b) air temperature, (c) relative humidity, (d) supply fluid temperature, and (e) upply

fluid flow rate. The model values used in the final analysis and the uncertainty in each

value were taken from the sources shown in Tables A-I and A-2.

For the pond model, the supply fluid temperature has the greatest effect on the

model uncertainty, on the order of 3.5%. Four other parameters have lesser uncertainties

on the model results, on the order of 2.5%; these are kpipe, wind speed, air temperature,

and relative humidity. Of still lesser significance are ksoiI, the depth to constant sink

temperature, and the solar radiation, which produce model uncertainties on the order of

0.9%. The emissivity of the water surface has a relatively insignificant uncertainty of

0.25%. The fluid flow rate has an insignificant effect on the model uncertainty,

contributing only 0.01 % to the total.

For the pavement model, the supply fluid temperature also has the greatest effect

on the model uncertainty, on the order of 8%. The absorptivity of the concrete surface

possesses the next highest uncertainty, on the order of 5%. Air temperature, ksoiI, and £ of

the concrete surface all have uncertainties on the order of 2.5%. kpipe ha an uncertainty

of 1.7% and wind speed and relative humidity have relatively low uncertainties on the
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order of 0.5%. As with the pond model, the fluid flow rate has an in ignificant f ton

the model uncertainty, contributing only 0.03% to the total.

Based on the results shown in Table A-I, the total uncertainty in the result of the

pond model are ± 6.13% for the horizontal slinky case and ± 6.35% for the vertical

slinky case. Based on the results shown in Table A-2, the total uncertainty in the results

of the pavement model is ± 10.47% for the slinky case.

The results of this uncertainty analysis can be used to identify items of concern to

one who may use the model(s) for the purposes of GSHP system design or system

simulation. For this study, estimates of the TRNSYS model parameter are likely no

better than those that could be made by a typical user, and therefore, similar uncertainties

can be expected for those items. However, the TRNSYS model input cannot be known

exactly by a typical user because they consist of weather factors and system fluid

temperature and flow rate.

A user performing some type of system design or simulation must u e typical or

synthetic weather data based on historical observations for the location of interest. The

use of "typical weather data" is one inherent difficulty in building simulation studies

because the it is obviously impossible to quantify uncertainties in future weather

conditions. However, the longer the simulation time (10-20 years), the greater the

probability is that average actual weather conditions approach the "typical weather



I 2

conditions". For shorter-term simulation (up to 5 year) the con ervativ u r may want

to use weather data with more extreme values, if available.

Other model inputs include the supply fluid temperature and flow rate which wj)J

be provided either as a constant value or by another model. From the result of thi

uncertainty analysis, model results are much more sensitive to the upply fluid

temperature, and a user should therefore pay more attention to this item.

Experimental Uncertainty

This section presents an analysis of the experimental errors contributing to the

measurement of heat rejected to the ponds and to the concrete slab. The purpo e of this

analysis is to quantify the error in the experimental results that were u ed to validate the

pond and pavement models. The re ults of thi anaJysi are shown in Table A-3 and ar

discussed below.

The main sources of error in the measurements of heat rejection to the ponds and

to the concrete slab are identified as: (l) calibration error in the watt meter u ed for

power measurements and (2) heat losses or gains to the ground from the pipes between

the heat rejecter and the instrumentation building.

Error in the watt meter measurements was determined from the calibration

procedure. Heat losses/gains to the ground from the supply and return pipes were
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estimated using the pavement model. The model was run from October 1 1998 t

December 19, 1998 with actual weather conditions and a uming a con tant fluid upply

temperature of 75°F (23.9°C) and constant fluid supply flow rate of 4 gpm (908 kg/hr).

The thermal conducti vity of the ground and the pipe backfill material were taken as 1.0

Btu/hr-ft-OP (1.73 W/m-OC) and the average pipe burial depth was taken a 1.5 ft (0.48

m). The model was used to determine the heat losses per foot of pipe for the period of

November 12,1998 to December 19,1998, which is the period of intere t for the model

validation. The cumulative heat lost through the supplylretum pipe wa then e timated

by considering the distances from the instrumentation building to each of the

supplemental heat rejecters (62 ft (18.9 m) for the pond with the vertical slinky, 37 ft

(] 1.3 m) for the pond with the horizontal slinky, and 12 ft (3.7 m) for the concrete slab).

TABLE A-3

Heat Rejection Experimental Uncertainty Analysis

Item Value Experimental
Uncertainty

Error in Power Measurement (a) -- 0.50%

Estimated Cumulative Heat Losses to Ground: (b)
Pond with horizontal slinky 20.25 kW-hr 1.36%
Pond with vertical slinky 33.83 kW-hr 2.24%
Slab with slinky 10.92 kW-hr 0.87%

Total Experimental Uncertainty
Pond with horizontal slinky 1.45%
Pond with vertical slinky 2.30%
Slab with slinky 1.00%

NOTES:
(a) - based on instrument calibration precision
(b) - includes heat lost through supply and return headers, estimated using

the pavement model
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Based on the results shown in Table A-3, the total uncertainty in the cumulative

heat rejection is 1.45% for the pond with the horizontal Iinky, 2.30% for the pond with

the vertical slinky, and l.oo% for the concrete slab. These errors are con idered

acceptable.

Summary

In summary, the experimentally-determined cumulative heat rejection and the

model-predicted cumulative heat rejection for the test period are compared in Table A-4.

TABLEA-4

Summary of Experimental and Model Cumulative Heat Rejected

Test Configuration Experimental Model
Cumulative Heat Rejected Cumulative Heat Rejected

(kW-hr) (kW-hr)

Pond with horizontal slinky 1532 +/- 22.2 1486 +/- 91.1
Pond with vertical slinky 1591 +/- 36.6 1508 +/- 95.8
Slab with slinky 1321 +/- 13.2 1255 +/- 131.4

Two conclusions may be drawn from the above comparison: (J) the model

predictions match the experimental results within the bands of estimated uncertainty and

(2) the model predictions match the experiment better than would be expected by the

uncertainty analysis. The second conclusion implies that the uncertainty prediction may

be over-conservative.
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