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PREFACE

In 1828, George Green introduced a function which is in an integral
solution of the potential equation. It is known as Green's function.
Green's function is now associated with most boundary value problems.
For example, the boundary value problem u'"(x) = f(x), 0 < x < 1, with
the boundary conditions u(0) = u(l) = 0 has the solution

1
u(x) = G(x,t) f(t)dt.
0

The function G(x,t) is called Green's function. This is the function
which we want to determine.

The aim of this study is to present Green's function as a kernel 6f
the integral for the solution of a boundary value problem in an ordinary
differential equation (or a partial differential equation). Emphasis
will be on finding Green's function. The purpose is fo make this as
easy and simple as possible by illustrating with examples. It is hoped
that this study will be of interest to students of mathematics, physics,
or engineering following a first course in both ordinary énd partial
differential equations.

This study has two parts. There is the ordinary differential
equation part, which is in Chapter II, and the partial differential
equation part, which is in Chapters III, IV and V.

Chapter I is concerned with background material used in this study,

such as Green's second identity, Euler's theorém, and Leibnitz's rule.
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It is hoped that the reader is already familiar with these things.

In Chapter II, Green's functions are introduced by means of boundary
value problems associated with second-order ordinary differential
equations. A number of examples serve to illustrate how Green's
functions of the problems are found. A simple example is given first
and more information is added in each succeeding example. In each
example, properties of Green's function are given which lead to the
properties of Green's function in more general caseé. In particular,
the case of unmixed boundary conditions, mixed boundary conditions, an
initial condition, and boundedness as a boundary condition are con-
sidered. After giving the properties for a given case the problem is
solved by using these properties. Then the other methods for finding
Green's functions, namely, the use of a formula and the method of
variation of parameters, are introduced. The example of unmixed bounda-
ry condition is used to show how to find Green's function by using the
formula as well as the method of variation‘of‘parameters for mixed
boundary conditions. After finding Green's function for the equations
of the second order, an example of a third-order equation with unmixed
conditions is given. This is then gxtended to the discussion of Green's
function for an equation of order n. Most of the examples deal with
homogeneous boundary conditions, since the problem of nonhomogeneous
boundary conditions depend on it. Section 2.6 shows how to solve the
problem with nonhomogeneous boundary conditions. In some special cases
Green's functions cannot Be found; then generalized Green's functions
are necessary. Example of generalized Green's functions are discussed
in Section 2.8. For the purpose of making things simple, the examples

customarily deal with the interval [0,1]. For the case of the interval
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[a,b], it is shown that Green's function can be found in a similar way.

Chapters III through V are concernea with boundary value problems
associated with second order partial differential equations. In particu-
lar, Laplace's equation, Helmholtz's equation, and the heat equation are
considered. The Dirichlet boundary condition and the Neumann boundary
condition are used in the exgmples. In the beginning of each chapter,
the fundamental éolution which is a part of Green's function is intro-
duced. Then, the properties of Green's function are given. This leads
to a method of finding Green's function, namely, the method of images.
A number of examples show how to find Green's function by the method of
images. The regions considered are those of a half-plane, a quarter-
plane, an angular region with angle 7/3, an angular region with angle
m/k, a region between parallel lines, some intersections of parallel
strips, a disk and a half-disk, some intersections between a disk and
an angular region, a half-space, a sphere, and a hemisphere. Regions
in one dimension, in particular, a line, a half—line, and a segment of a
line are also considered for the heat equation. The method of images
for each region is illustrated. Then, the method of images is extended
to problems in n-space. The other method used in finding Green's
function is the method of eigenfunctions, which is used for the problem
of a region that is a half-disk, a quarter-disk, or a cube. The
conformal mapping is used in two dimensions in finding Green's function
for the Laplace's equation with a Dirichlet boundary condition. A ﬁumber
of examples illustrate this. In the case of Laplace's equation, the
symmetry of Green's functions is shown.

By the t;me the re%der completes Chapter V, it is hoped that he

will be able to solve particular problems where Green's functions are



work out in detail.
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CHAPTER I

INTRODUCTION

Green's function was first introduced by George Green in 1828.

Green gave the solution V of the potential equation

2 2 2
d Z + o) Z + 5] g _
dx dy oz

0

in a region R in xyz-space with boundary surface S as

47f\5=—ffvg—gdo:
S

He introduced the function U with three properties:

(1). U must be 0 on the surface, S,

(2). U satisfies the potential equation in g%, and

(3). at a fixed undetefmined point P in the interior, U becomes infinite
as 1/r where r is the distance of any point from P.

The function U was later called Green's function by Riemann. Green's

achievement was followed with additional work by Gauss in 1839 and

Hilbert in 1904. Hilbert used Green's function to formulate the Sturm-

Liouville boundary value problem. Thus, Green's function is associated

with both ordinary and partial differential equations as will be shown

in the later chapters.



1.1. Background

As a basis of understanding this study, it will be helpful to have
handy for quick reference several things. These will be mentioned in
brief detail with references to a larger treatment. The first two of

these are used with ordinary differential equations.

1.1.1. Leibnitz's Rule

For any continuous function f(x,t) whose derivative fx(x,t) is

piecewise continuous, we have

8, (%) g, (x)
g—; f(x,t) dt = £(x, g,(x))g,(x) - £(x,8;(x))g;(x) + [ £ (x,t) dt
g, (%) g, (x)

where gl(x) and gz(x) are differentiable [16, P 285].

1.1.2. Dirac Delta Function

The §-function is zero for every value of x except the origin,

where it is infinite in such a'way that

e ]
[8(x) dx = 1.

—00

Some properties of the §~function that will be used are:

[e 2]

(. J'S(x-xo) f(x) dx = f(xo)

—00
for every continuous function f(x).

(2). 8(x) = 6(-x).



oo

n
(3). /5(“) (x) f(x) dx = (-1)* £ .
- dxn x=0

A good discussion of the §-function may be found in [7, PP. 135-141].
For the later discussion of Green's functions for partial

differential equations, the following background is used.

1.1.3. Euler's Theorem

If f(yl,yz,...,yp) is a homogeneous function of the nth degree in

the variables AR SYRERIN A that is,

P
f(Ayl,)\Yz,---,)\Yp) = >\n f(yl’yzsn-’yp)
_.n _ . n _ 0
and let X = yll, X, y22,..., xP ypp
then
of f of
n.x, =~ +nx, = +nx = =nf
171 3 1 272 8x2 PP Sxp
[17, p. 10].
1.1.4. Kelvin's Inversion Theorem
If Y(g,n,E) is a solution of
2 2 2
7Y . 3%y | 7Y -
M =—+—5+—5=0

2
in a region @, then élll(azx 2
'\r®  r r

/
in the region ﬂ?, the region to which 6{ is carried by the transformation



[

2X azz a 2z
c=Fon= 38" 7
r r r

For the proof see [20, PP. 164—165].

1.1.5. Divergence Theorem

-
Let.ﬂabe a region in xyz-space with boundary S, F be a continuous

vector-valued function in R, the closure of R such that the first-

order partial derivatives of the components are bounded and continuous

[(F-'ﬁ) ds =/‘v‘.F av (1.1.1)

S ®

S =
where n is the outward unit vector normal to S and V-F is the divergence

on 62, then

of F. Precise details about the nature of & and its boundary are
purposely omitted because of the difficulty in describing these in

general. More information on the divergence theorem can be found in

[16, pp. 329-335].

1.1.6. Green's Theorem

This is a special case of the divergence theorem in two dimensions.

Let % be a bounded opened set in the plane whose boundary C is a simple

closed curve. Let L and M be continuous on R and let g%, %% be
bounded and continuous on @2, then
oM dL
Ldx+Md = — = — ) dv. 1.1.2
f( y ) /<3x =) (1.1.2)
c R

The proof of this theorem and more details about this theorem can

be found in [16, Th. 6-5.1, p. 342].



1.1.7. Green's First Identity

In xyz-space suppose that the functions u and v are such that if
E in the divergence theorem, (1.1.5), is v Vu then (1.1l.1) holds. Then

) - =Y
taking F = v Vu in the divergence theorem gives

- - ‘
/v Au dV+/( Vu - Vv)dv =/v%§ds (1.1.3)
4 S

®

-
where n is the outward unit vector normal ¢f S and Au is the Laplace

operator [12, P- 212]. This can be demonstrated as follows: Set

3 Py oydu,  du. 3u
F=vVus=v % + v 3y + v Py

then the left-hand side of equation (l.1.1) becomes

du du Jdu
/(va—x~n1 +v-3-}7-n2+v 8z-nB)dS
S

du =2 a2 du

-—
where n = (nl,nz,nB). Or, we can write j[; o dS, since Vu.n = 3a’
the normal derivative. S

The right-hand side of equation (l.1.1) becomes

"

d 0 0 du du du
<a—'+—87+—$>'<v-§+vé§-+v§;)dv

or

du dv ., du _ 0odv , du  ov
(-E)E —a;-i-a—y 3—y+3~z -a—z)dv

or finally



/SN
v Au dv +jVu-VV av.
R %

Thus, we have (1.1.3).

1.1.8. Green's Second Identity

Suppose that both u and v are continuously differentiable in 4%

and have continuous partial derivatives of the second order in ge.

- dv _ , du
f(uAv—vAu) dV—/(u . V8n>ds

(/2 S

Then

(1.1.4)

where n is the outward unit vector normal to S and Au is the Laplace

operator [12, p. 215].

The derivation of equation (l.1.4) can be shown as follows:

Applying Green's first identity, we have

S . 811'
v Au dV + | (VveVu) aV = | v n ds (1.1.5)
R R 8
Interchanging the roles of u and v we have
3 = ov
u Av dV + (Vu+Vv) dv = u 5 ds (1.1.6)
R R S
Subtracting (1.1.5) from (l.1.6) gives
/(uAv—vAu) dV=/(u%z-v§£)dS
n on
aR® S
which is the same as (1.1.4).
If in Green's theorem we let M = %%, L = - 323 then we have
y



Au av =

=/g_§ s (1.1.7)
C

which is the special case of either Green's second identity or Green's
|

first identity in two dimensions when v = 1.

1.2. Solutions of Laplace's Equation

for a Compact Region

In Sections 3.1 and 3.7 the formulas for solutions to the
Dirichlet's problem and Neumann's problem are given. In this section
these formulas are derived in two dimensions. The following processes

are also applicable to Helmholtz's equation and the heat equation.

Suppose P = (x,y) is a point in the interior of a compact region
@2 with boundary C. The function u is assumed to satisfy Au = 0 in the
interior of %R and to be such that it is continuous on R. Its partial
derivative of second orders are continuous within R. Draw a circle Fe
of the center P and of radius € small enough that the circle lies in the

interior of R (cf. Figure 1.1). Let

v ln—tr
|x'- x|
where r = P = (x,y) and T o= (x',y"). Taking partial derivatives, we
have
2 2
Av = 0 V2 + 9 v2 -0
ox' oy'



Applying the Green's second identity to the region @E which consists @R

with the interior of I‘E removed, then

=f(u Av - v Au) dv' = f—!—f)(u_%% —v%—i—i—)ds' (1.2.1)
%, r. Jc

where Fe and C are oriented in the positive sense (cf. Figure 1.1). As

=, 1 1
' is on ', —————— = =, Therefore,
€ "v "“ € .

In —E— du g g 10U
|r _ rl Bn € 31’1 ’
T,

and

3 1 >,
'/Vus-gln—e—ds' = 2T u(rE')

r
€

-
where r'E' is some point on Fe' Hence

1im |u 53 InLds' = 1im 2m w@) = 21 u(@®),
e ~0f, n £+ 0
€

since u is continuous. Substituting into (l1.2.1), then
2 1 0 1 1 ou
= — -— —_— —_—— + ! . .
u(r) 2“[( u 1n |?' — 1n —-—-—-—_" — an)d (1.2.3)
C

This is called Green's third identity. Now apply Green's second identity

to u and H(x,y;x',y"') where H is such that

in %% and H has continuous second partial derivatives in ¢R. Therefore,






10

[(B_H_ %) R— (1.2.4)
\C\

u(@® = 5%

]
Il—-

I

c

3|

3_ (H + 1In ——1‘—;—)+(H + lnTl-—:—)aéz—] ds'
]r - 7| [r'- r|
] 0 , '
%-f(-u °C G——u->ds' (1.2.5)
27 on yn

where

G(x,y;x',y") = H (x,y3x',y") + 1In ———— I [ (1.2.6)
r'-r

If now G

0 on C then G is called Green's funetion of the first

kind. If u(¥) f(Y¥) on C, then

u@@) = - é?r/ EE) 92 ds' (1.2.7)

C
which is Poisson's formula. If instead-%% = 0 on C then G is called

Green's function of the second kind. If in addition-%% = f(f) on C,

(1.2.5) becomes
u(x) =%fc-f(?') ds', (1.2.8)
C

which is also called Poisson's formula. Equation (1.2.7) and (1,2.8)
give the solution to the Dirichlet's problem and the solution to

Neumann's problem, respectively, for two dimensions.

In the case of three dimensions, the solution o the Dirichlet's

problem and the solution to Neumann's problem are, respectively,
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u@) = - —}:— (r")——- ds’ (1.2.9)
S
and
u@) = Zlﬁ'r G-£(2) ds' (1.2.10)
S
where
G(#,T') = H@E,E") + = —L T (1.2.11)
- T

£ = (x,y,z),'?' = (x',y',2') and H is such that AH = 0 in . The deri-
vation of (1.2.9) and (1.2.10) can be shown analogously to (l1.2.7) and

(1.2.8).

We have discussed the solution for a compact region in two and
three dimensions. In the next section we will show how to get the
solutions for the Dirichlet's problem and Neumann's problem in the

exterior of a compact region.

1.3. Solutions for the Exterior

of a Compact Region

Let u(x,y) be the solution of Laplace's equation whose partial
derivatives of the second order are continuous outside a compact region
GE. Assume that u is continuous on #. Suppose furthermore that for r
sufficiently large there exists M such that Iul < (M/r), ]ux| < (M/rz)

2‘ -
and [uyl < (M/r"). Let FR be a circle containing 6{, with r as center

and the radius R (cf. Figure 1.2). Apply (1.2.3) to the compact region

FR shown in Figure 1.2. Then



Figure 1.2.

The circle I' Containing the Compact
Region R

12
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u(®) = f f ln——;—l——_-é—+l ———l——-au)ds
|T'- T | I3 - %l '

(1.3.1)

where 1 is the unit outward normal of gQR' Let T' be on FR’ therefore,

'r
3 1 1 du .
/(-—u 3z 1n o + In o Bn)ds (1.3.2)
l'\ .
R
where r' = f?'—'?|. Then using the mean-value theorem on the right-hand

side of (1.3.2) gives

1 1 )
u('f") o + 1n 7' 3n ¢ u(r 2) 2T r' (1.3.3)

where ?i and ?é are points on FR. Giving the above conditions, then
[u(x") ]| < %3 and |3§ u(f')[ < 2M( %ﬁ)z as r' becomes large. Letting

r' > o, then (1.3.3) becomes

0@ == [ (-u@) L0 —— 1 —L— B Vg (1.3.4)
2T 3n == 2 N n
|t'- 7| |T'- |
C

where n is the unit outward vector normal to C with respect to the
exterior of #. Equation (1.3.4) is the same as (1.2.3). Therefore, if
we repeat the discussion after (1.2.3), we obtain (1.2.7) and (1.2.8) to
be, respectively, the solutions of the Dirichlet's problem and Neumann's

problem for the exterior problem.
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In the case of three dimensions, (1.2.9) and (1.2.10) are, respec-
tively, the solution of the Dirichlet's problem and Neumann's problem
for the exterior problem if the conditions for r sufficient large,

lul < /o), fu | < a/r?), lug| < @/r%) and |u | < @/x%) are given.

We have discussed the solution of the Dirichlet's problem and
Neumann's problem for a compact region and the exterior of a compact
region. For the case of a region that is neither an interior nor an
exterior problem, like an upper half-plane &, we will find the solution
analogously by drawing a circle with center T in ® and the radius R
such that the intersection of the circle and 62 is not an. empty set.

Let QQR be the intersection (cf. Figure 1.3). If R »>® then qeR becones

GR.. Apply (1.2.3) to R Then, let R - x. Giving the same conditions

R’
as in the exterior problem in two dimensions, we will find that (1.2.7)
and (1.2.8) are also, respectively, the solution of the Dirichlet's

problem and Neumann's problem for a region that is neither an interior

nor an exterior region in two dimensions.



Figure 1.3. The Region (RR Being an Upper
Half-Plane as R » @«

15



CHAPTER II

GREEN'S FUNCTIONS FOR ORDINARY

DIFFERENTIAL EQUATIONS
2.1. Unmixed Boundary Conditions

The Green's function for 'a linear second order differential equa-
tion with boundary conditions is found directly in the following

examples.

Example 2.1. Consider, first, the simple boundary value problem

u"(x) = £(x); u(0) = u(l) = 0, where f is the differentiable function in

[0,1].

The Green's function for this problem is G(x,t), 0 L x < 1,
0< t <1, defined by
G, (x,t), x < t,

G(x,t) =0 1
Gz(x’t)S X > t’

such that G has the following properties:

(1). G is continuous on 0 < x <1, 0 < t <1, in particular, it follows
G2(t,t) - Gl(t,t) = 0, and (Gl)xx =0 for x < t and (G2)xx = 0 for
X > t,

(2). G satisfies the boundary conditions, that is, Gl(O,t) = Gz(l,t) =0,

(3). the partial derivative of G with respect to x has a jump disconti-

nuity of magnitude 1 at x = t, that is, 5% Gz(t,t) - 5% Gl(t,t) = 1,

16
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From (1), G1 and G2 are solutions of the differential equation

G = 0. Therefore, let
XX

G, (x,t) = a;x + ays X <ty

1

Gz(x,t) = blx + b2, X > t.

G(x,t) =

Properties (1) and (3) imply

(bz—az) + (bl—al)t = 0,

and
(bl—al) = 1.

Therefore b2—a2 = —-t. Property (2) implies a, = 0 and b1 + b2 = 0.
Hence b2 = -t which implies b1 = t. Then'a1 =t - 1. Substituting,
we have

(t-1)x, x < t,

G(x,t) =
(x-Dt, x > t.

The graph of G is shown on Figure 2.1. The usefulness of the
function G is that it provides a solution of the given differential equa-

tion with the other conditions. That is,

1
G(x,t)f(t) dt

X 1
f (x-1)t £(t) dt +/ (t.-1)x £(t) dt
0

X

u(x)

1]
o\

is such a solution.

We check that u is the solution as followss
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1

) _
[tf(t)dt+x]
0 X

(t-1) £(t) dt]

u' (x) = %; [(x—l)

X
= (x-1)x £(x) +f t £(t) dt - x(x-1)f(x) +
0
1
f (t-1) £(t) dt
X

1
f (t-1) £(t) dt

X

X
= f t £(t) dt +
0

u"'(x) = x f(x) - (x-1) f(x) = f(x).

Futhermore,
u(0) =0
1

1
f t £(t) dt + 1/ (1I-t) £(t) dt
0 1

Now let us look at another example

= 0.

and
u(l) = (1-1)

Thus u has the required properties.
f(x); u(0) = u'(1) = 0, where f is

Consider u'"(x) + 9u

Example 2.2.
a differentiable function on [0,1].

The Green's function G(x,t), 0 < x <1, 0 < t < 1, where
Gl(X;t), x < t,

G(x,t) =
Gz(x,t), X > t,

has the following properties:
Thus, in particular,
= 0 for x < t and

G is continuous on 0 < x <1, 0 <t <1
1

(1.
G2(t,t) ,Gl(t,t) = 0, and (Gl)xx + 9G
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= >
(G " + 9G2 0 for x > t,

2)x
(2). G satisfies the boundary conditions Gl(O,t) = 5% G2(1,t) = 0, and

(3). The partial derivative of G with respect to x has a jump of

magnitude 1 at x = t, that is, gi'Gz(t,t) - 3% Gl(t,t) =1,

From (1), G1 and G2 are solutions of the differential equation

32
—— G + 9G = 0. Hence
3 2
X
Gl(x,t) = alsin 3x + a,cos 3x, x < t,

= i >
Gz(x,t) b151n 3x + bzcos 3x, x t.

G(x,t) =

The coefficients will be determined by using the indicated properties.
Properties (1) and (3) give

(bl—al)sin 3t + (bz—az)cos 3t = 0,

3(b1—a1)cos 3t - 3(b2—a2)sin 3t = 1.

Solving these two equations for bl—al and bz—a2 gives bl—al= (cos 3t)/3

and b2—a2 =

which implies that a, = 0. The condition 5% Gz(l,t) = 0 gives

- (sin 3t)/3. From (2), Gl(O,t) = alsin 0+ a,cos 0=0

b,cos 3 - b,sin 3 0. Hence, we have a, = 0, b2—a2 = —(sin 3t)/3,

1 2
blcos 3 - bzsin 3 =0 and bl—al = (cos 3t)/3. solving these four
equations gives a, = 0, b2 = —(sin 3t)/3, b1 = -sin 3t(sin 3)/3 cos 3
and a, = -cos(3t-3)/3 cos 3. Substituting we have
-cos(3t-3)sin 3x/3 cos 3, x< t,
G(x,t) =
-cos(3x-3)sin 3t/3 cos 3, x> t.

As in Example 2.1 the solution of the given problem is R

1
u(x) =/ G(x,t) f£(t) dt =
0
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X 1
—f [cos(3x-3)sin 3t f(t)/3cos 3]dt —f [eos (3t=-3)sin 3x f(t)/3cos3]dt.

0 X

The graph of G is shown in Figure 2.2.
We shall now look at an example that is still more complicated.

Example 2.3. Comsider u'"(x) - 6u' + 5u = £(x), or in self-adjoint form,

(e—exu')' +'5e—6xu = f(x)e_6x, such that u(0) +. u'(0) = 0,

2u(l) - u'(1) = 0.

The Green's function G(x,t), 0 < x <1, 0 <t <1, is written

Gl(xst)s x < t,
G(x,t) =
GZ(X9t)’ X > t,

and has the following properties:
(1). G is continuous on 0 £ x <1, 0 < t < 1, in particular

Gl(t,t) - Gz(t,t) = 0 and G1 and G2 satisfy the homogeneous

differential equation for x < t and x > t, respectively,

(2). G satisfies the boundary conditions, that is Gl(O,t) +-%§ Gl(O,t)=0

3
and 2G2(l,t) - sg-Gz(l,t) =0,
(3). The x-derivative of G has a jump of magnitude e6t at x = t, that
: _9 _9 _ 6t
is, 3% G2(t,t) -~ 3= Gl(t,t) =e .

From (1), G1 and G, are solutions of the differential equation

2
52 5 |
—— G - 6 v G + 5G = 0 and, therefore,
2 ox

ox

G, (x,t) = a e5x + a ex,~x < t,

1 1 2
G(x,t) = 5% x
Gz(x,t) = ble + b2e , X > t.

The coefficients are determined as follows: Properties (1) and (3) give
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5t t _
(bl—al)e + (b2—a2)e = 0,
5t t _ 6t
5(b1—a1)e + (b2—a2)e =e .
Solving these two equations for b1 a; and b2—a2 we have bl—a1 = et/4 and
_ 5t 0 P .
b2—a2 = -e” /4. From (2), Gl(O,t) + e Gl(O,t) = 0 implies
(a1+a2) + (5a1 +a2) = 0, or 3al+a2 = 0. The condition 2G2(l,t) -
_ . . 5 _ = - 5 =
x Gz(l,t) = 0 implies 2(ble +b2e) (5b1+b2e) = 0, or 3ble + b2e 0.
Solving b,-a, = e /4, b-a, = —eSt/4 3a.+a, = 0 and -3b e5 +b,e=0
171 > 72 72 ’ 1 72 1 2 ’
we have
a, = -@" + 3" /12¢e* + 1),
a, = 32t + 36Ty /126 + 1),
by = (et - &H/12¢e" + 1) and
b, = 3e*(3et - 2%y /12¢e* + 1).
Substituting gives
{(e5t + 3et+4)(3ex - e5x)/12(e4 + 1), x <t,
G(x,t) =
(* + 3y (36t - 5y 12¢* + 1), x > t.

Notice in each of these three examples G(x,t) = G(t,x), that is, G is

a symmetric function.

Summary

Figure 2.3 shows the graph of G for t =

.75.

The differential equations in Examples 2.1 through 2.3 can be

written in the self—adjoint form

4
dx

<p(x> %;3)+ q(x)u =

f(x). (2.1.1)
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AG(x,t)

Green's Function for Example 2.3

Figure 2.3.
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In fact, any second degree differential equation

2 .
Q—% + b(x) %& + c(x)u = g(x)

dx

can be written in the form (2.1.1) by multiplying the equation with

ef%(x)dx JL(x)dx’

and letting p(x) = e q = cp and £ = gp.
The boundary conditions in Example 2.1 through 2.3 are unmixed

homogeneous conditions, that is, they are of the form

1
clu(O) + c,u (0) 0,

|
dlu(l) + d2u (1) 0
where the coefficients are real numbers. The Green's functions
Gl(x,t), x < t,
G(x,t) =
Gz(xst)s X > t,
for Examples 2.1 through 2.3 have the following properties which are,
in fact, properties of the Green's function for a second order equation
of the form (2.1.1) with unmixed boundary conditions:
(1). G 4is continuous on 0 < x <1, 0 < t < 1 and with respect to x.
G satisfies the homogeneous differential equation for 0 < x < t
and for t < x < ],
(2). G satisfies the given boundary conditions, that is,
9 3 _
chl(O,t) + ¢y % Gl(O,t) = 0, leZ(l’t) + d2 = Gz(l,t) = 0, and
(3). The partial of G with respect to x has a jump magnitude of 1/p(t)

at x = t, that is,

9 )
% G2(t,t) i Gl(t,t) = 1/p(t).

The Green's function is found by the following steps:

-1, Write the differential equation in self-adjoint equation, i.e.,
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%;(p(x) %%>+ q(x)u = f(x), (2.1.2)
2. Then
a.u, (x) +a,u,(x), x < t,
G(x,t) = 171 272
blul(x) + bzuz(x),‘x > t

where ul(x) and uz(x) are linearly independent solutions for (2.1.2).

3. Use (1) and (3), obtain

|
o

(bl—al)ul(t) + (bz—az)uz(t) =0,

1/p(t).

(bl—al)ui(t) + (b2—a2)ué(t)

Then solve for b,-a, and b,.-a

171 2 72°
4., Use (2) and the results of step 3 to solve for the ajs 2y, bl’ and b2
5. Substituting a;s a5 b1 and b2 into the equations of step 2 gives

Green's function.

Formula for Finding Green's Function

Given the equation (pu')' + qu = f(x) with boundary conditions

clu(O) + czu'(O) 0,

0.

Il

dlu(l) + dzu'(l)

Let wl(x) be the solution of (pw')' +qw = 0, satisfying the unmixed

boundary condition clw(O) + c,w'(0) = 0 and let wz(x).be the solution

2
of the same differential equation satisfying the unmixed condition
dlw(l) +’d2w'(1) = 0. Then Green's function is given by the following

formula:

w, (X)w, (£)/IT(w,,w,), X < t,
G(x,t) ={ 1 2 2’71
WZ(X)wl(F)/J(Wz,Wl), x>t

where

J(wz,wl) = [wé(t)wl(t) - Wi(t)wz(t)]p(t)-
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For example, the Green's functioh in Example 2.2 can be found by
using the formula as follows:
Step 1. Find the solution of w"(x) + 9w = 0. The general solution is
c,sin 3x + c,cos 3x.
Step 2. Find a solution Wl(x) such that wl(O)»= 0. Take wl(x) = gin 3x

and therefore wl(O) = 0.

Step 3. Find a solution WZ(X) of the homogeneous equation such that

wé(l) = 0. A general solution of the differential equation is
wé(x) = cos(3x+bj. Therefore, wé(x) = -3 sin(3x+b). Since
wé(l) = -3 sin(3+b) = 0 we have 3 + b = 0. Hence, b = -3, and

thus WZ(X) = cos(3x-3).

Step 4. Find J(WZ’WI)'

T(wyyw) = [wh(E)w) (£) = Wl (D)w, () 1p(t)

it

-3 sin(3t-3)sin 3t - 3 cos 3t cos(3t-3)

-3 cos 3.
Step 5. Use the formula. Then

-[sin 3x cos(3t-3)]/(3 cos 3), x < t,

G(x,t) ={ .
~{cos(3x-3)sin 3t]/(3 cos 3), x > t

which is the same function as was found in Example 2.2.

From the Examples 2,1 through 2.3, notice that the differential

equations can be written in the form -g—};(p(x) %}%>+ qu = f(x) with

unmixed homogeneous boundary conditions clu(O) + c,u'(0) = 0 and

2

dlu(l) + d,u'(l) = 0 where the coefficients are real constants. Substi-

2
tuting x for t and t for x gives G(x,t) = G(t,x). That is, G(x,t) is

symmetric. For example, from Example 2.1

(1-t)x, x < t,
G(x,t) =

(1-x)t, x > t.
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Then
(I-x)t, t < x,
G(t,x) =
(I-t)x, t > x.

After Green's function is known, the solution of the problem

-?ﬁ(p(x) —g—;l—{->+ qu = £(x) with the same unmixed homogeneous boundary
conditions is of the form

1
u(x) = f(t)G(x,t) dt.
0

Recall that this was demonstrated in Example 2.1.
2.2. Mixed Boundary Conditions

In the first three examples each boundary condition involved only
one of the endpoints. In this sense the boundary conditions are unmixed.
This section will remove that requirement and allow the boundary condi-
tions to involve a relationship between the two endpoints, that is,

mixed conditions..

A second degree differential equation with mixed conditions can be
solved as in the following examples. This first example illustrates
periodic boundary conditions, that is, u(0) = u(l), and u'(0) = u'(1l).
The name of the conditions comes from the properties possessed by a

differentiable function u of period omne, that is, u(x) = u(x+l).

I

Example 2.4. Consider u" 4+ u = £(x); u(0) u(l), u'(0) = u'(1).

The Green's function G where

Gl (X,t) 9

™
A
rt

G(x,t) ={
Gz(x,t),

]
\
ot
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<X é:l, 0 <t 5-1 has the following properties:

G1 and G2 are solutions with respect to x to the homogeneous
differential equation for O <x <t and t < X é:l, respectively,
and G is continuous on 0 <X é:l, 0 <t ézl’ that is,

Gl(t,t) = Gz(t,t),

G satisfies the boundary conditions

G(1,t) - G(0,t) = 0 and Gx(O,t) - Gx(l,t) = 0, and,

Gx has a jump discontinuity at x = t of magnitude 1.

The Green's function will be found by using these properties.

Since

Using

G. and G. are solutions of G__+ G = 0,
1 2 XX
G, (x,t) = a,sin x + a,cos X, X < t,
G(x,t) = { 1 1 2
Gz(x,t) = b131n x + bzcos X, * > t.
(1) and (3), we have

|
o
-

(bl—al)sin t + (bz-az)cos t =

(bl—al)cos t - (bz—az)sin t =1.

Solving these two equatiomns -gives,

Using

d

bl-al = cos t (2.2.1)
b2-a2 = -sin t (2.2.2)

(2), Gl(O,t) = Gz(l,t), we have
a, = blsin 1+ bzcos 1 (2.2.3)

and —G, (0,t) = e (1,t). We have
1 9x 2

ox

a; = blcos 1 - bzsin 1. (2.2.4)

Solving equations (2.2.1) through (2.2.4) for the coefficients we have

a = [cos(l-t) - cos t]/2(l-cos 1),
a, = [sin(1-t) + sin t]/2(l-cos 1),
b. =

1 [-cos(14+t) + cos t]/2(l-cos 1), and
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b2 = [sin(l+t) - sin t]/2(l-cos 1).

Substituting gives

[sin(l-t+x) + sin(t-x)]}/2(l-cos 1), x < t,

G(x,t) =

[sin(l+t-x) + sin(x-t)]/2(l-cos 1), x > t.
Notice that G(x,t) is symmetric in x and t, that is, G(x,t) = G(t,x).
This will always happen whén the boundary conditions are periodic and
when p(0) = p(l) where p éomes from the self-adjoint form of the given
differential equations.

The solution of the given problem is

1
u(x) =f f(t)G(x,t) dt
0

X
=/ f(t)[sin(l+t-x) + sin(x-t)]/2(l-cos 1) dt +
0

1
f f(t)[sin(l-t+x) + sin(t-x)]1/2(l-cos 1) dt.
x

This can be demonstrated as being a solution as in Example 2.1. Notice
that the boundary conditions for G are the same as for u. This is true

since the boundary conditions are periodic and p(0) = p(l).

Determining the Boundary Conditions

In Example 2.4 the correct boundary conditions for G were given,
but just how they arise from the given problem is not clear. For the

moment let it just be said that we must make

x=1
p(x) [Gu' - u 3% GJ = 0. (2.2.5)
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Later it will be shown why this is appropriate. In Example 2.4, the
equation (2.2.5) implies that

G(l,t)u' (1) - Gx(l,t) - G(0,t)u'(0) + Gx(O,t)u(O) = 0. (2.2.6)

Using the periodic boundary conditions, (2.2.6) :can be written

[6(1,6) - 6(0,)]u’ (1) + [G_(0,8) - 6 (1,£)]u(1) = 0.

Thus the required condition will be met by taking

G(l,t) - G(0,t) = 0 and Gx(O,t) - Gx(l,t) = 0, or
G(l,t) = G(0,t) and Gx(l,t) = Gx(O,t).

The next example shows for the first time that Green's function is

not always symmetric. The boundary conditions of the given problem are

periodic, but this time p is not such that p(0) p(l). This will make

for some differences that should be noted.

Example 2.5. Consider (x+l)2u" - 2(x+1)u" + 2u = f(x); u(0) = u(l) and

u'(0) = u'(1).

The differential equation can be written in the self-adjoint form

[(+1) 201" + 2(x+1) %0 = £(x) (1) 2,

The condition (2.2.5) gives

-1
(x+1)—2<su' - u 5§ G) =0
X -0
or
~G(0,t)u’ (0) + G_(0,£)u(0) + % G(L,t)u' (1) - % G _(1,t)u(l) = o.

Substituting from the given boundary cenditions gives

[% G(l,t) - G(O,t)]u'(l) + [Gx(O,t) —'-14- Gx(l,t)]u(l) = 0.

This requirement is met if the quantities in the brackets are zero.
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Thus, take

4G(0,t) = G(1,t) and 4Gx(0,t) = Gx(l,t).

Notice for the first time that these boundary conditions are different
from those in the given problem. The Green's function
;Gl(xat)’ x < t,

G(x,t) =
QGz(x,t), X > t,

0<x<1, 0<t< 1 has the following properties:

2
2 9 E) _
(D). (x+1) ——E-Gl - 2(x+1) T G1 + 2G1 =0 for x < t,
ox
and
(x+1) 2 92 G. - 2(x+l) =2 G, + 2G, = 0 £ >t
X N T2 3% U2 2 or X ’

and G is continuous on 0 <x<1,0¢ t < 1, that is, in particular,
Gz(t,t) = Gl(t,t),
(2). The boundary conditions for G are
4G(0,t) = G(1,t) and 4Gx(0,t) = Gx(l,t).

(3). The derivative of G has the jump of magnitude (t+l)2 at x = t,

. 3 3 _ 2
that is, T Gz(t,t) - e Gl(t,t) = (t+1)".

The Green's function will be found by using its properties. From

(n, G1 and G2 are solutions of

2
2 9 a _
(x+1) 2 G - 2(x+1) e G+ 2G = 0,

ox~ :
therefore,

a (x+1) + a. (x+1)2, x < t,
3 2

G(x,t) = 9
bl(x+1) + bz(x+l) , X > t.

Using (1) and (3), we have
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2 _
(bl—al) (t+1) + (b2—a2) (te+1)” = 0,
2
(bl—al) + 2(b2—a2)(t+1) = (t+1)".
Solving these two equations for b -ay and b2-a2 gives bl—a1 = —(t+l)2;

1

b = t+1. Then 4G(0,t) = G(1l,t) and 4Gx(0,t) = Gx(l,t) give

273

4(a1+a2) = 2b, + 4b2 and 4(a1+2a2) = b, + 4b2. From the above equations

1 1
1 1
a, = (1+t) (1-t), a, = 7t(1+t), b1 = -2t (1+t) and b2 =7 (14+t) (2+t) .

Substituting gives

(x+1) (1+t) (xt-t+2) /2, x < t,

G(x,t) = {
(z+1) (1+t) (xt+2x-3t+2) /2, x > t.

Notice that G(x,t) is not symmetric. This was due to the fact that

p(0) # p(1).

Again the solution of the given problem is

1
‘/-f(x)(x+1)_4G(x,t) dx
0

u(t) =
t
=f f(x) (x+1)_4[(x+1)(1+t) (xt-t+2)/2] dx +
0
1
f £(x) (1) T (kD) (1+e) (xt+2x-3t+2) /2] dx.
t
1
Notice that in this case u(x) =./.f(t)(t+l)—4G(x,t) dt is not the solu-
_ 0
tion, since G is not symmetric, G(x,t) # G(t,x). The fact that u(t) =
t 1
/ f(x) (x+1)'3(1+t)(xt—t+2)/2 dx +f f(x) (x+1)-3(l+t) (xt+2x-3t+2)/2 dx
0 t

is a solution which can be shown directly as follows:
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First, for the boundary conditions, we see that

]
u(0) =f £(x) (x+1) "> (2x42) /2 dx,
0

1
u(l) =/ £(x) (x41) 22 (x+1) /2 dx.
0

Hence u(0) = u(l). Differentiating u(t) with respect to t and using

Leibnitz's rule for differentiating integrals, we have

t
u' (t) =./.[f(x)(x+1)—3(2xt+x-2t+l)/2] dx +
0 ‘

1
J[ f(x)(x+l)_3(2xt+3x—6t—1)/2 dx.
t

Substituting t = 0 and t = 1, we have
1
u' (0) = u'(1) =[ £(x) (x+1) 73 (3x-1) /2 dx.
0

Therefore, u(t) satisfies the boundary conditions. To check that u(t)

satisfies the differential equation

(t+1)2u" - 2(t+1D)u’ + 2u = £(t),

we shall proceed as follows: Calculating u"(t) we have after using

Leibnitz's rule

. 1
" (t) =/ £(x) (x+1) S (xt1) dx +f £(x) (x+1) "3 (x=3) dx + £(t) (t+1) 2.
0 ¢

Therefore,
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t 1
(t+1) 20" = /f(x) (x+1) 3 (e41) 2 (1) dx + /f(x) (e+1) "3 (x-3) (£41) Zdx + £(b)
0 .

t
—2(eH)u’ = | £ (x) (x+1) T3 (t+1) (2xt-2t+x+1) dx +
o .

1
/—f (x) (x+1)-3 (t+1) (2xt-6t+3x-1)dx
t

and
t 1
2u = f f(x) (x+1)‘3(t+1) (2-t+xt) dx + f f(x) (x+1)_3(t+1) (242x-3t+xt) dx.
0 t
Hence

(e+1)%u' (£) - 2(t+1)u' + 2u = £(t).
2.3. The Method of Variation of Parameters

The Green's function for a second degree differential sequence with
-mixed boundary conditions can also be found by the method of variation

of parameters. It will be illustrated by using Example 2.5,

(x+1)2u" - 2(x+1)u' + 2u = f(x),
u(0) = u(l) and u'(0) = u'(1),
as follows:

First, we write the differential equation in self-adjoint form, that is,

[GetD) " 2ut]" + 2(et) M = £(0) (e 74,
Recall that the boundary conditions on G were 4G (0,t) = G(l,t) and

4Gx(0,t) = Gx(l,t). For this method requires that Green's function

satisfies
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()26 ]+ 2(x+1) %6 = s(x-t),
where O is the Dirac delta function. Then rewrite in the form
¢ - 26+ t6 + 2(x+1)726 = (x+1)%5 (x-t)
XX X ’

thus making the coefficient of Gxx to be one. Let r(x,t) = (x+l)2(x—t).
The Green's function will be found by writing.
clu1 + C2u2’ X< t,

G(x,t) =

ciyy + Cou, + Gp’ x> t,

where u, and u, are linearly independent solutions of

1 2

+ v, u,.

2 - ' = =
(x+1)"u 2(x+1)u' + 2u = 0 and Gp ViU oYUy

The functions vy and v, are variation parameters which are found by

v, =f[-u2r(x,t)/w]dx,

v, =f[u1r(x,t)/w]dx

where

In this case, u = (x+1) and u, = (x+l)2 which give w = (x+l)2,

v, =f—(x+l)25(x—t)dx = —(t+1)?,
and

& =f(x+l)6(x—t)dx =t + 1.
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Therefore,

cl(x+l) + cz(x+1)2, x < t,
6Cx,t) = 2 2 2
cl(x+1) + cz(x+l) - (t+D)"(x+1) + (e+1) (x+HD) 7, x> t.

Using the boundary conditions for G, 4G(0,t) = G(l,t) and 4Gx(0,t) =
Gx(l,t) give

4(c1+c2) = 2c1 + 4c2 + 2(t+1) (1-t)

and

4(c1+2c2) =c. + 4c2 + (t+1)(3-t).

1

Solving these two equations for ¢y and Cys We have

¢ (t+1) (1-t) and c, = t(t+l) /2.
Substituting gives
(t+1) (x+1) (xt-t+2) /2, x < t,
G(x,t) =
(t+1) (x+1) (xt+2x-3t4+2) /2, x > t,

which is the same as was found in Example 2.5. The method of variation

of parameters also can be used for unmixed boundary conditions.

Summarz

Green's function, G(x,t) for a second degree equation

%;(p ) %) +qu = £(x)

with mixed homogeﬁeous boundary conditions is found by using the method
of variation of parameters as in Section 2.3 or by using the direct
method shown in Example 2.4. 1In these cases Green's function is not
necessarily symmetric, i.e., G(x,t) # G(t,x). After the Green's function

is known, the solution of the given problem is
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1
u(t) =f f(x)G(x,t)dx.
0

2.4. Green's Functions for Equations of Order n

So far the discussion has been related to ordinary differential

equations of order two—a good starting ?oint. However, for the sake of
completeness higher order equations need to be considered as well. The
following example illustrates the appropriate adjustments for the case

of n = 3.

Example 2.6. Consider u"' = f(x); u(0) = u'(0) = u"(1) = 0.

To find the Green's function, G(x,t), 0 < x ézl,'O

A
r+

A
—
g
(]

shall proceed as follows:

Integrating by parts we have

1 1 1
] Gu'''dx = <Gu' - Gu' +6G u) —f G udx.
x XX XXX
0 0 Jo

In order to get the solution of the given problem in the form

1
u(t) =/ f(x)G(x,t)dx,
0

we have to put

1

(Gu” - Gxu' + Gxx u> = 0, (2,6,1)

—Gxxx = §(x-t),

0

and require that G, Gx are continuous on 0 < x <1, O

A

t < 1. Using

the boundary conditions, u(0) = u' (0) = u"(l) = 0 and (2.6.1) we get
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-G(0,t)u"(0) - Gx(l,t)u'(l) + Gxx(l,t)u(l) = 0.

Hence take G(0,t) = Gx(l,t) = Gxx(l,t) = 0, and thus (2.6.1) is
satisfied. Therefore, Green's function,
Gl(x:t)s x < t,

G(X’t) =
Gz(XQt)’ X > t’

has the following properties:
3 3

(). o G, =0 for x <t and-—a— G, =0 for x > t and G, G_ are
371 3 72 X
ox ox
continuous at x = t, that is, in particular G2(t,t) - Gl(t,t) = 0,
9 ) N
i Gz(t,t) " e Gl(t,t) = 0,
5 52
(2). Gl(O,t) =$€G2(l,t) ='a—x—2G2(1,t) = 0,

(3). The second derivative of G with respect to x has a jump disconti-

nuity of magnitude -1 at x = t, that is,

2 2

2 G,(t,t) - . G, (t,t) = -1.
2 72 271
ox ox
By (1)

2
a1 + azx + a3x sy X < t,

G(x,t) = 9
b1 + bzx + b3x , X > t.

Properties (1) and (3) give

(bj-a)) + (by-a)t + (by-a)t” = 0,
(bz-az) + 2(b3—a3)t = 0,
2(b3—a3) = -1.
Solving these three equations for bi—ai, i=1,2,3,
bo-a, = - = b,-a, = t and b,-a, = -t2/2.
373 2" 2 72 171
Using (2), Gl(O,t) = 0 implies a; = 0, and therefore b1 = —t2/2;
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3 _ 0 _ . . -
T Gz(l,t) = 0 and ;;5 Gz(l,t) = 0 imply, respectively, that b2+2b3
| da ol
and b3 = 0. Hence b2 = 0. Then a, = -t and az =3 Therefore,
2
-tx + x7/2, x < t,
G(x,t) = 2
-t“/2, x > t.

Then the solution of the given problem becomes

1
u(t) = / f(x)G(x,t)dx
0

1

t
-_-/ f(x)Gldx +f f(x)szx
0 t

1

t
=[ f(x) (—tx+x2/2)dx +f —f(x)(t2/2)dx.
0 t

Generally speaking for a differential equation order n,

n n-1

du d u du
n TPy oot PP ax

dx dx

Lu = + pu = f(x) in [0,1]

Py

with n boundary conditions, the Green's function, G(x,t) will be found

as in Example 2.6. That is, first, we integrate

1 l d"u "ty du
GLudx = G(po-—r'l'+p1—-;—]?+...+pn_1'a}—<'+pnu)dx
0 0 dx dx .

by parts until we have the form

1 ) 1
/ GLu dx = p(u,G) +/ uL*e dx
0 0 Jy

*
where L G is the adjoint differential operator on G with respect to X,

40

0



41

in particular,

-1
* n -1 _d"
16 = D" < e + D"

dx dx

d
n-1 (pIG) oo = dx (pn—lG) + pnG

and

d n-1 a%1
PG = ulpy 10 - g (B y® + oo + (DT Sy (@) +

n-2

d
dxn—Z

u'fp__,G - %; (p_40) + ... + (-1)*2 (@] +

. + u(n—l)(poG).
1
The boundary conditions on G, B(G), are found by using p(u,G) = 0 and
: 0
the given boundary conditions on u.
The Green's function .
Gl(x,t), x < t,

G(x,t) = {

Gz(x,t), x > t,

has the following properties:

* * 3 3“'2
(1) LG, =0andL G, =0, and G, — G, ... , G are continuous
1 2 ox axn—2
on 0 <x <1, 0<t<1, in particular, the derivatives of G, and

1
G2 join up smoothly along x = t,

(2). G satisfies the boundary condition B(G),

n-1

nfl

(3). The jump discontinuity of G at x = t has magnitude
ox

n
(-1) /po(t).

By using these properties of G we can find that for x € [0,1],

. Gl(xst)’ x < t,
G(x,t) = ‘

Gz(XQt)’ X > t’
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for an ordinary differential equation order n, Lu = f£(x) with n homoge-
neous boundary conditions. Furthermore, one may prove that the solution
to the problem is

t 1
u(t) = f(x)Gl(x,t)dx + f(x)Gz(x,t)dx.
0 t

2.5. 1Initial Value Problems

Up until now the problems that have been considered are two point
boundary value problems. That is, we have been seeking a solution to
an ordinary linear differential equation on an interval [a,b], usually
[0,1], such that the solution and its derivatives at the two endpoints
satisfy certain linear homogeneous boundary conditions. In this section,
a differential equation on the interval [a,») (usually a = 0) will be
considered. At the point x = a, the solution and its derivatives take on
certain given or specified values. These problems arise very naturally
in physical circumstances where the independent variable is time. Thus,

such a problem is called an initial value problem. Again a Green's

function will be found and then it will be used to write a solution to

the given problem.

Example 2.7. Consider u" - u = f(x); u(0) = u'(0) 0.

A

The Green's function G(x,t), 0 < x < ©, 0 < t < » has the following
properties:

» 0 < x < ¢,

0
(1). G(x,t) ={

GZ(Xst), X > t,

2

where —35 G2 - G2 = 0, G(x,t) is continuous on 0 < x < o,
ox
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0 < t < ©, meaning that Gz(t,t) = 0,

(2). G(,t) = Gx(O,t) = 0, are the boundary conditions (automatically
satisfied by (1)), and

3). 5% Gz(t,t) = 1, that is, the partial derivative of G with respect

to x has a jump discontinuity of magnitude one at x = t.

2

: . . 9 _ _ X _ -X
Since G2 is the solution of sz G2 - G2 = 0, Gz(x,t) =cje cye
Using (1) and (3),
t -t _
G2(t,t) ce —cye = o,
and
<3 G,(t,t) = ¢ et + c e_t =1
ox 2°°° 1 2 :
Solving these two equations for ¢ and Cys We have ¢y = %-e_t and
1 t . . .
Cp =5 e Substitution gives

0, 0 <x<t,

G(x,t) = 1, x-t t-x
E(e - e

The solution to the given problem is
X
u(x) = f —é(e"‘t - " ®yf(t)de.
0

The following example with variable coefficients again illustrates

this method.

Example 2.8. Consider (14+x)u" + xu' - u = £(x); u(0) = u'(0) = 0.

The differential equation is first written in the form

u" + x40 Mt - () "l = (1) 7E

f(x).
Green's function G(x,t), 0< x< o, 0< t< » has the following

properties:
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0, X< t,

(. G(x,t) = {

G2(X,t), x> t,

where
2’ ¢ 4 x(1+) L 26 - (140 e = 0
aX2 2 3x 2 2

and G(x,t) is continuous on 0:i X < o, O:i t < ©, in particular,
Gz(t,t) = 0,

(2). (The boundary conditions on G are automatically satisfied by the
requirements of (1)),

9 =
3. 5% Gz(t,t) = 1.

Since by (1) the function Gz(t,t) is a solution of the homogeneous

differential equation, Gz(x,t) =cx ¥ cze_x. The continuity of G makes

c,t + cze—t = 0 and (3) gives ¢, - cze_t = 1. Solving the last two
equations for cy and c, we have ¢, = (l+t)_1 and c, = —tet(1+t)_l.

Substituting gives

{0, x< t,
G(x,t) =
(1+t) 1(x—tet x), x> t.

The solution of the given problem is

X
u(x) =f £(t) (14t) "2 (x-te" F)dt.
0

In Example 2.6 and 2.7 we have a second degree equation of the form

u" + p(x)u' + qx)u = r(x)
with initial conditions u(0) = u'(0) = 0. Then Green's function G(x,t),

0 < X< oo, 0 ¢« t <« » has the following properties:
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0, x < t,
(). G(x,t) =
GZ(X,C), X > t’

where
2

3 3
—— —— = >
o2 G2 + p(x) 5 G2 + q(x)G2 0 for x > t

and G(x,t) is continuous on 0 < x < ®, 0 < t < @, in particular,
Gz(t,t) =0,
(2). (The boundary conditions fqr G are automatically satisfied by the
requirements of (1)), and
3

(3). Tx G2(t,t) = 1.

The solution u(x) of the differential equation

u" + p(x)u' Hq(x)u = r(x)

with the given initial conditions is

X
u(x) =[ r(t)Gz(x,t)dt.
0

If we consider the nth order differential equation

GV plu(n—l) + pzu(n"z) + ..ot pu=1(x)

with initial conditions
1(0) = u'(0) = u"(0) = u"'(0) = ... = u® V(o) =0,
then Green's function, G(x,t), 0 < x < ®, 0 < t < ©, has the following
properties:
0, x < t,

(1). G(x,t) =
Gz(x,t), X > t,

where Gz(x,t) satisfies
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a0 an—l
X G2 + P T G2 + ... + pnG2 =0
9x ox
3 il

2 S i < <
for x > t and G2’ 5% GZ’ cee axn_l G2 are continuous on 0 £ x < ®,
0 < t < ©, which, in particular that

3 an—2
G2(t,t) =§£G2(t,t) = ... = - - Gz(t,t) =0,
X

(2). (The condition that G(x,t) = 0 for x < t, assures certain boundary

conditions for G at x = 0.),

n-1
(3). G,(t,t) = 1, that is, there is a jump discontinuity in
axn—l 2
n-1
1 G(x,t) at x = t of magnitude one.
ox

The solution, u(x), to the given nth order differential equation

with the initial conditions is
X
u(x) =f r(t)Gz(x,t)dt.
0

The following example illustrates this for n = 4.

Example 2.9. Consider u(iv) - u=r(x); u(0) = u'(0) = u"(0) =

u'"'(0) = 0.

The Green's function G(x,t), 0 < x < ©, 0 < t < © can be obtained
as follows: From (1)
0, x<t,

G(x,t) =
Gz(x,t), X > t,

where
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aiv
— G, - G, = 0, and
ax1v 2 2
G, ( ) = —E-G (t,t) = —EE-G (t,t) =0 (2.5.1)
2068 =gy Bpth B =g Fpth ) = e
X
From (3)
3
3——§G2(t,t) = 1. (2.5.2)
X

Since Gz(x,t) is the solution of the differential equation then

Gz(x,t) = c

1

X -X
"+ e + c,cos + i .
e. c2 3 X c451n X

Then from (2.5.1) and (2.5.2) we have

t -t

cle + c2e + c3cos t + c431n t=20
c et -c e_t - in t + os t =20
1 9 cqsin c,cos
c et + c e-t - c,cos t - int =20
1 9 €08 c,sin
c et - c e_t + c,sin t - t=1
1 9 38in c,cos t = 1.
. -t t .
Solving, we have ¢ =-e /4, c, =e /4, cg = -(sin t)/2 and
¢, = (cos t)/2. Substituting gives
{0, x < t,
G(x,t) =
[—ex t et X _2sin t cos x + 2cos t sin x1/4, x > t.

Then the solution, u(x) to the problem is

X
u(x) =./.r(t)[—ex_t + et—X -2sin t cos x + 2cos t sin x]/4 dt.
0

2.6. Nonhomogeneous Conditions

A differential eqﬁation of order n with nonhomogeneous conditions

can be solved by reducing it to the consideration of problem with homo-~
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geneous boundary values. TFor an example, consider u"(x) = f(x) with

nonhomogeneous conditions u(0) = a and u(l) = b. If we let u = u, + u,

where
"o o_ . = =
uj = f(x); ul(O) 0, ul(l) 0
and
"wo_ . = =
uy = 0; u2(0) a, u2(1) b.
It is easy to see that u = Uy + u, satisfies
u" = £(x); u(0) = a, u(l) = b.
Therefore, u is the solution of the problem.
In Example 2.1,
x 1
uy =f (x-1)t f£(t)dt +/»(t-1)x f(t)dt.
0 X

The function uz(x) can be found directly as follows: The differential

equation, u; = 0 has the general solution u, = ¢x + Coe The conditions

u2(0) = a and uz(l) = b give c, =a and c; + c, = b. Hence c, =a and
¢y = b - a. Substituting, we have

u, = (b-a)x + a.
Therefore,

X 1
u(x) =f (x-1)t f£(t)dt +f (t-1)x £(t)dt + (b-a)x + a.
0 X

2.7. Boundedness as a Boundary Condition

One special type of nonhomogeneous condition is the condition that
the solution u(x) of the differential equation is bounded as it

approaches an endpoint. Green's function, in this case, is found
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directly as the following examples.

Example 2.10. Consider xu" + u' = f(x) where u(x) is bounded as x

approaches 0, and u(l) = 0.

The differential equation can be written in the form (xu')' = f(x).
Green's function for this problem, G(x,t), 0 < x< 1, 0<t< 1, is
defined by
Gl(x,t), Xx < t,

G(x,t) ={

GZ(X’t)s x> t,

where G has the following properties:

(1). G is continuous on 0 < x <1, 0 < t <1, in particular, it follows
Gz(t,t) - Gl(t,t) = 0, and (% §§'G%)x = (0 for x < t, and
(x 5% G2>X = 0 for x > t,

(2). G satisfies the same boundary conditions as u, that is, Gl(x,t)
is bounded as x approaches 0 and G2(1,t) = 0,

(3). The partial derivative of G with respect to x has a jump of

magnitude t_1 at x = t, that is, Sg-Gz(t,t) - 5% Gl(t,t) = t_l.

From (1), G

[]
o

and G, are the solution of x—a G
1 2 ox %

Therefore,

Gl(x,t) = alln x + ays X < t,

G(x,t) = {
Gz(x,t) = lln X +'b2, x > t.

!
o

Properties (1) and (3) give

(b2—a2) + (bl—al)ln t =0,
(bl—al)t_l = ¢ L
From the last two equations, we have bl—a1 =1, b2—a2 = ~-ln t. By (2)
alln x + a, is bounded as x~+ 0, hence a; = 0. Also (2) gives



50

blln 1+ b2 = 0 which implies b2 = 0. Hence a; = o, b2 = 0 and a, = In t.
Substituting gives
jln t, x < t,
G(x,t) =
(ln X, X > t.

The solution u(x) of the problem is

1
u(x) =[ f(t)6(x,t)dt
0

X 1
=f f(t)ln x dt +/ f(t)ln t dt.
0 X

The next example has boundedness required at both endpoints.

Example 2.11. Consider u" - u = f(x) where u(x) is bounded as le - oo,

The Green's function for this problem is G(x,t), —© < x < ®,
- < t < ® yhere
Gl(x,t), x < t,
Gz(x,t), X > t,

G(x,t) =

such that G has the following properties:
(1). G is continuous on —=® < x < ®, —» < t < ®, in particular, at x = t,

it follows that Gl(t,t) = Gz(t,t). Also

2
9
5—5 G1 - G1 =0
X
for x < t,
2
a . —
32(;2'"(;2‘o
X

for x > t,
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(2). G satisfies the same boundary condtions as u, that is, G1 is
bounded as x->.—x, and G2 is bounded as x * %,
(3). The partial derivative of G with respect to x has a jump of

magnitude 1 at x = t, that is,

9

- =
axGZ(t’t) axGl(t,t) 1.

From (1) G, and G, are solutions of

1 2
2
—6-6=o.
x
Hence
G, (x,t) = aleX + aze_x, X <t,
G(x,t) = x _
Gz(x,t) = ble + bze s, X > t.

Properties (1) and (3) give

t -t _
(bl—al)e + (bz—az)e =0,
t -t _
(bl—al)e - (bz-az)e = 1.
Solving the last two equations, we have b.-a -1 et and b -a, = - l—et.
171 2 2 72 2
. From (2) alex + aze_x is bounded as x»> = and blex + bze—x is bounded
as X »> o which imply, respectively, that a, = 0 and b1 = 0. Since
Lt I S - _1l.t
bl-a1 =5e and b2 a, = 5 € it follows that a; = > e and
b2 = - %-et. Substituting gives
—-% Xt x <,
G(x,t) = 1 t-x
-Ee sy X > t.

The solution of u(x) of the problem is
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[ee]
u(x) = f(t)G(x,t)dt
-0
X [¢ 0]
= —-% £(t)et ¥dt - %— £(t)eX tae.
—00 X

2.8. Generalized Green's Functions

If there is a solution of second order homogeneous differential
equation which satisfies both endfoint conditions, then a Green'é func-
tion for the differential equation with these conditions does not exist.
However, in order to have Poisson type solution, a generalized Green's

function is defined, as illustrated by the following example.

Example 2.12. Consider u" 4+ u = f(x); u(0) = u(w) = 0.

The general solution of u" + u = 0 is

u(x) = clsin X + c,cos X.

The conditions u(0) = u(m) = 0 imply only that c, = 0. Therefore,

c, may be an arbitrary constant. Hence u(x) = sin x is a solution of

1
u" + u = 0; u(0) = u(m) = 0.
We shall now see that Green's function for the problem does not

exist.

Define Green's function G(x,t), 0 < x <7, O

A

t < m as in Example
2.4 except that property 2 is
(2'). G satisfies the boundary conditions that u satisfies, that is,

Gl(O,t) = 0 and Gz(w,t) = 0.

\

Notice that the difference of this problem and Example 2.4 is that the
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right endpoint is T instead of one. Following Example 2.4, and by using

(1) and (3), we have

alsin x + azcos X, X < t,

blsin x + bzcos X, X > t,

G(x,t) = {
and (bl—al)cos t - (b2—a2)sin t = 1. Property (2') implies az= 0 and
b2 = 0. Therefore, b2—a2 = 0 which implies (bl—al)cos t = 1, a contra-
diction since there is no constant bl—a1 that make (bl—al)cos t =1 for

all t. In such a case the generalized Green's function H(x,t),
0O<x<qm O < t<m is used. Define
Hl(x,t), X < t,

H(x,t) =
H2 (x,t),

"
\%

t,

such that H has the following properties:
(1). H is continuous on 0 < x <7, 0 < t < m. In particular, at x = t,
we have Hz(t,t) - Hl(t,t) = 0. Also H1 and H2 satisfy the

differential equation

32
——E-H + H=0C u(x) u(t)
ox

where u(x) is a solution of u" + u = 0; u(0) = u(m) = 0, that
is, in particular, u(x) = sin x, C is avconstant,

(2). H satisfies the same boundary conditions as u, that is, Hl(O,t)=0
and HZ(W,t) =0,

(3). The partial derivative of H with respect to x has a jump of

magnitude 1 at x = t, that is,

) ) _
3; Hz(t,t) " 3% Hl(t’t) =1,

(4). H satisfies the condition
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m

fﬂ(x,t)u(x) dx = 0,
0

that is,

t L
le(x,t)u(x)dx +[H2(x,t)u(x)dx = 0,
0 t

One can prove that the solution of the problem is

m
u(x) =f H(x,t)f(£)dt
0

X . ™
=f Hz(x,t)f(t)dt +[ Hl(x,t)f(t)dt.
0

X

The function H will be found directly as follows: From (1)

82
— H+ H=2C sin x sin t.
ox

The general solution Hg of the homogeneous equation is

Hg = a sin x + b cos x. A particular solution Hp = —(Cx/2)cos x sin t of
a2
—5 H+ H=2C sin x sin t
2
ox

can be obtained by using the method of variations of parameters. Hence

alsin x + a,cos x - (Cx/2)cos x sin t, x < t,

blsin x + bzcos x - (Cx/2)cos x sin t, x > t.

H(x,t) =

From (1) and (3) we have

(b —al)sin t + (bz-az)cos t =0,

1
(bl—al)cos t - (bz-az)sin t =1,

which imply that b.~a, = cos t and b,-a, = -sin t. From (2), Hl(O,t) =0

171 2 72
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gives a, = 0 and H(m,t) = 0 gives b2 (Cm/2)sin t. Hence

2

-sin t = (Cm/2)sin t which implies C = -2/m. At this point we have

a, = 0, b2 = -gin t, C = -2/7T and b1 a; + cos t. Substituting gives

cos x sin t + alsin X, Xx < t,

% - 1) cos x sin t + (a

R

H(x,t)=
+cos t)sin x, x > t.

o

1

Using (4) we have

t
f <$ cos X sin t + alsin x)sin x dx +
0

i
f[(% —l>cos x sin t + (a1+cos t)sin x:,sinx dx =0
t

which implies that

= (sin t - 2 sin3t - 2T cos t + 2t cos t - sin 2t cos t)/2m.

!
Therefore,
[2x cos x sin t + sin x sin. t cos 2t + 2(t-T)sin x cos t
sin x sin 2t cos t]/2m, x < t
H(x,t) =

[2x cos x sin t + sin x sin t cos 2t + 2t sin x cos t -
sin x sin 2t cos t - 27 sin t cos x]/2m, x > t.

The solution of the problem is

AT
fH(x,t)f(t)dt
0

™

u(x)

1 . . . .
o (2% cos x sin t + sin x sin t cos 2t + 2t sin x cos t =

0

T
sin x sin 2t cos t)f(t)dt - sin x./.cos t £(t)dt -

X
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X
cos xf sin t f(t)dt.
0

2.9. Interval [a,b]

Green's function for a differential equation of order n in the
interval [a,b] with boundary conditions can be found by the same method

as for [0,1]. The only difference is that the algebra is slightly more

cumbersome.

Example 2.13. Consider u" + (b—a)_zu = £f(x); u(a) = u(b) = 0, where

a < b.

Green's function G(x,t), a < x < b, a < t < b defined by

{Gl(x,t), x < t,
G(x,t) =

Gz(x,t), X > t’

has the following properties:
(1). G is continuous on a < x < b, a <t <b. In particular, at x = t,

it follows that Gz(t,t) - Gl(t,t) = 0. Also the functions Gl and

G2 satisfy the equation

o
sz

+ (b-a) "% = 0,

[ep}

(2). Gl(a,t) = 0 and G2(b,t) = 0,

(3). The jump of the derivative of G with respect to x has magnitude 1
d 9

at x = t, that is, . Gz(t,t) - e Gl(t,t) = 1.
52 -2
From (1) Gl and G2 are solutions of-——z G + (b-a) "G = 0, therefore

ox
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a sin[(b—a)—lx] + a cos[(b—a>_lx], x < t,

1 2

G(x,t) = -1 -1
blsin[(b—a) x] + bzcos[(b—a) x], x > t.

" Properties (1) and (3) give

I
o

(bz—az)cos[t/(b—a)] + (bl—al)sin[t/(b—a)]

]
p—
.

~[(by=a,)/ (b-a) Isinlt/(b-a)] + [(b;-a;)/(b-a)]cos[t/ (b-a)]

Solving these two equations for (bl-al) and (bzéaz) gives

o'
I

[V)
]

(b-a)cos[t/(b-a)]
and

—-(b-a)sin[t/(b-a)].

=2
1

()]
Il

Applying property (2) to G(x,t), we have

i
o

alsin[a/(b—a)] + azcos[a/(b—a)]
and |

blsin[b/(b—a)] + bzcos[b/(b—a)]

I
o

Solving the last four equations for the a and b coefficients, gives
a, = (b-a)cos[a/(b-a)]sin[ (t-b)/(b-a)]/sin 1,
a, = -(b-a)sin[a/(b-a)lsin[ (t-b)/(b-a)]/sin 1,
b, = (b-a)cos[a/(b-a)]sin[ (t-b)/(b-a)] + sin 1 cos[t/(b-a)]/sin I,
b, = —(b-a)sin[a/(b-a)]sin[(t-b)/(b-a)] + sin 1 sin[t/(b-a)]/sin 1.
Substituting gives
(b-a)sin[ (t-b)/ (b-a) Isin[ (x-a)/ (b-a)]/sin 1, x < t,
G(x,t) = { (b-a)sin[ (x-a)/(b-a)]sin[ (t-b)/(b-a)]/sin 1 +

(b-a)sin[ (x-t)/(b-a)], x > t.

Warning: Green's function cannot be obtained by changing variables x,t
to x', t' by the transformation x' = (b-a)x + a and t' = (b-a)t + a such

that [0,1] maps onto [a,b]. This is illustrated as follows:
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Let
x' = (b-a)x + a amd t' = (b-a)t + a.
Then (0,0) maps onto (a,a) and (l1,1) maps onto (b,b). Suppose we work

Example 2.13 by changing variables. Then

du _ du dx _ _. -1l du
dx'  dx dx' (b-a) dx
d2u -2 dzu
5 = (b-a) —5-
dx' dx

Therefore, the differential equation of Example 2.13 becomes
11 2
u" + u = (b-a)f(x)

with boundary conditions u(0) = u(l) = 0. By the previous methods
Green's function for [0,1] would be
sin(t-1)sin x/sin 1, x < t,
G(x,t) =
sin(x-1)sin t/sin 1, x > t.
Since x = (x'-a)/(b-a) and t = (t'-a)/(b-a) we would have by substituting
sin[ (t'-b)/(b-a)] sin[ (x'-a)/(b-a)]/sin 1, x' < t',

G(x,t) = {
sin[ (x'-b)/(b-a)]sin][ (t'-a)/(b-a)]/sin 1, x' > t'.

Calculating 5% G(t'+,t') - 5% G(t' ,t') gives, the jump of the derivative
of G(x',t") at x' = t' to be (b-—a)n1 but, in fact the jump of the
derivative of G(x',t') at x' = t' should be 1. Thus, Green's function

cannot be obtained by simply changing the variables in the expected way.
It is thus necessary to just solve for Green's function on the interval

[a,b] in a way analogous to finding Green's function on [0,1].



CHAPTER III

GREEN'S FUNCTIONS FOR LAPLACE'S EQUATION

In a study of a variety of steady state problems, (oscillations,
heat~ conduction, diffusion and others) one often arrives at equations of
elliptic type. The most common equation of this type is Laplace's

equation

3.1. Green's Function and the Dirichlet's

Problem

]

Let % be a region in the n-space, n 2,3,..., with boundary S for
which Green's theorem is applicable for n = 2 and the divergence theorem
is applicable for n > 3. The solution u(r) of the problem

Au =0 in R (3.1.1)

with Dirichlet's boundary condition,

u(r) = g(¥) on C, n = 2,

g(r) on S, n >3 (3.1.2)
is desired. This problem is called the Dirichlet's problem for the
region R. The solution of the Dirichlet's problem is given by the
expression

u(@) = - %F g(?') 3% G(f,?')ds', n=2

c
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u(f) = -t g(f')-gg G(r,t')ds', n > 3 (3.1.3)

(n—2)wn g

where n is the outward-drawn normal to the boundary C or houndary ctive

S, and
22
n F(n/Z)’

w

I'(x) is the gamma function of x, G(¥,T') is the Green's function which

can be written as

G(T,T") = W(E,T") + w(E,t") (3.1.4)

where W is a particular solution of AG = 0 except when T = T' which need
not satisfy the required boundary condition, and w i#s a solution of the
homogeneous equation AG = 0, such that the combination W + w does satisfy
those boundary conditions. The function W is called a fundamental

solution or a principal solution or an elementary solution. It contains

the basic singularity of the Green's function. Considering T in R as
a fixed point and T' in R as a variable point, the Green's function has
the following properties:
(1). AG =0, T' # T,
Y -
(2). G=0,r" €eCforn=20rG=0, 71" €S for n > 3,

(3). G assyptotically equals W as *' > T, or G VW as t' > T.
3.2. Fundamental Solutions

Let us now determine the fundamental solutions for the Laplace's
equations in n-dimensions, n = 2,3,..., so that, in constructing the
Green's function, the function w is determined so as to satisfy the

required boundary conditions.
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3.2.1. Two Dimensions

Some particular solutions of Laplace's equation which are of great
interest depend only on the one variable r, i.e., the distance from the
origin.

From Laplace's equation in polar coordinates, we will see that if

u(r) is the solution of the ordinary differential equation

2
d"u 1 du _
2+_1:—dr—0 (3.2.1)
dr
then u(r) is a solution of
- 1 1 _
us=u + = U + 5 uee = 0.

Integrating (3.2.1), we find the general solution

u(r) = clln r + Cye

Choosing ¢, = -1 and c, = 0 we shall have

u(r) = 1In

R =

(3.2.2)

. 1 . e . ’
The function 1n T satisfies Laplace's equation everywhere except
. . e e s . /2 2
at the point r = 0 where it becomes infinite. The variable r = vx + vy

gives the distance between the point P(x,y) and the origin. If we let

R = V(x'—x)2 + (y'—y)2

be the distance between P(x,y) and Q(x',y'), then 1n %»alsq,satisfies
Laplace's equation @verywhere except at the point R = 0, i.e. except at
(x,y) = (x',y'). Let £ = x'-x and n = y'-y, then

W(x,y3x',y") = 1n 1

=]
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satisfies w££+ T/gm = 0. However, vgg + erm = wx'x' + wy'y" hence,

W= ln-% satisfies AW = 0 except when P = Q. Thus W = ln-% is a funda-
mental solution in the plane.

3.2.2. Three Dimensions and n-Dimensions

In three dimensional rectangular coordinates, Laplace's equation

has the form

2
r r T r sin§ r sin“ g 99

The solution of Laplace's equation of the form u = u(r) can be determined

from

£1—-(rz du ) _ 0
dr dr / 7

Integrating this equation, we find that

€
u(r) =r— + C2
where Cl and C2 are arbitrary constants. Choosing C1 =1, 02 = 0 we
obtain
1
u(r) = =

which is called a fundamental solution of Laplace's equation in three

dimensions. If we let

R = /4;T-x)2 + (y'—y)2 + (Z'—Z)2
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be distance between the point P(x,y,z) and Q(x',y',z'), then following

an argument analogous to that of two dimensions then

W(X,Ysz;x' ’y' ,Z') =

==

is also a fundamental solution of Laplace's equation. The function

W =-% satisfies Laplace's equation everywhere except when R = 0, i.e.
when (x,y,z) = (x',y',z') where it becomes infinite.
Similarly, in the case of Euclidean n-space En, n = 4,5,... the

function

is the solution which satisfies Laplace's equation everywhere except
R =0. In this case, R = If'-fl, is the distance from P = T = (Xqy50005%)
1 n

to Q = r' = (xi,...,xg).

3.3. The Method of Images in the Plane

The following examples will show how Green's function for

Dirichlet's problem in a region R is found by the method of images.

Example 3.1. Solve the problem

aZu 32u
——§+—-—i'=0_
Ox dy

for x >0; u=f(y) on x=0and u >0 as x >,

Notice that this region is unbounded. 1In this case a condition as x > ®

"must be added, namely, u >0 as x > ®,
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This is the Dirichlet's problem for the region R being the right

half-plane. If P is the point (x,y), x > 0, then take P, to be (-x,y),

1
the image point of P across the y-axis, and let Q be (x',y')
(cf. Figure 3.1). Then

QP,

e o) = —_—
G(x,y;x",y") = 1In G

where QP1 and QP is distance from Q to P, and Q to P, respectively.

1

\

Hence

G(x,y;x',y') = %-ln[}x'+x)2 + (y'—y)z] + 1n Tjrltq-.
r'-r

The function G is Green's function for this problem. If we let

w(x,y;x',y') = % ln[(1<'+x)2 + (y'—y)z]

then its required properties can be shown as follows:

2
(0. o w + oW _ 0

by directly calculating the partial derivatives.
(2). From Figure 3.1, if Q is on the boundary C, that is, x' = 0 then

elementary geometry, tells us that QP1 = QP. Hence

G(x,y3;0,y") = ln--c-)‘-Ii =1n1 = 0.

QP
(3). lim [G(x,y;x',y') - 1In — 1 ] = 1im 1n ]?’—?ll = 1n |;'4?|
F BRI

where ?1 = (-x,y).

The solution of this problem by using (3.1.3) is

oo}

u(x,y) = - %T £(y") g% dy'

- 00
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+ _—

’ P(X,Y)

|
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—_

— R

|

Y

Figure 3.1, The Image of

\

|

\

Q&',y")

\
\

W

1

a Point in a Half-Plane
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where

2 _ <AG_) g} 2%
. ' —n -~ .
on ax' | x'=0 X2 + (y,_y)z

Substituting, gives

o]

- X fGy") '
u(x,y) = s fxz N (y'—y)2 dy'.

—0o0

Notice that u > 0 as x - » as required.

We will consider thé region which gives images of P across the

x-axis and the y-axis in the following example.

Example 3.2. Consider

32u + Bzu -0
2 2

X oy
for x >0, y >0; u= f(y) on x =0, u=g(x) ony =0.

If P is the point (x,y), x > 0, y > 0, then take P. to be (-x,y),

1

P, to be (-x,-y), P, to be (x,-y) and Q to be (x',y') where (x',y') ¢ R

2 3

(cf. Figure 3.2). Notice that P1 and P2 are images of P and P3, respec—

tively, across the y-axis. Let P have a plus sign and Pl have a minus

sign. Signs for P, Pl’ P, and P, are then +, -, + and -, respectively.

2 3
Note that pairs of image points across each axis have opposite signs.
Then

QP QP4

G(x,y3x',y") = 1n

QP-QP,

% 1n [t 24" =9 2 [ =20 2y ") 2] + 1n _1_:_

(x"+x) 2+(y "' -y) 2 T3
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Pl ("XQY)

Figure 3.2. The Image of a Point in Quarter-Plane
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If we let

] 2 ' 2 _ 2 ' 2
w(x,y;x',y") = % In (x40 “+(y ‘Y)Z] [Gx Xé +(y"+y) ]
(x"+x) “+(y'-y)

then again G has properties (1), (2) and (3). On the boundary C, we can

find 96 as follows:
on

On x' =0,

3G _ (_a_c_;) _ 2x N 2x
T ') x'=0 T 2 2 2 2°
on ox X x24+(y'=y) X+ (y " +y)

/
E_G_:_(_B_(i') L= 2y + 2y
on ay' J y'=0 (x'+x)2+y2 (x'-x)2+y2

Therefore, by using (3.1.3), the solution for the problem is

1 9 1 G
u(x,y) = - Z;ff(y') '5% dy' - Efg(X') B dx'
0 0

00

- X f<y’)[— L + ]dy'—
TJ(; x2+(y'-y)2 x2+(y'+y)2

v ' 1 1 '
g(x )[— + } dx'.
ﬂ,]; (x'+x)2+-y2 (x'—x)2+-y2

Now notice how Green's function was obtained in these two examples.

In Example 3.1, the point with the - sign is P. and

1
QP,
G = 1n a—P—-,
and in Example 3.2, points with minus signs are P1 and P3 and
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The following example is of the region which gives more images of P

m
and across the x—-axis and the line through the origin with inclination-g.

Example 3.3. Find u such that

2 2
] .
g—%+—-‘3 =0
0x dy
i6
for a region @2 =¢{re” : 026K 7T/3, r> O} and u = f(x,y) on the
boundary C.
Let P be the point (r,0), 0 < r <o, 0 < 0 < m/3, let Pl’ Pps een s

Ps be the points (r,2n/3 -6), (r,2n/3 +8), (r, 4m/3 -0), (r,4m/3 40) and
(r, 6m/3 -0), respectively, and Q be the point (x',y') € R
(cf. Figure 3.3).

The points Pi’ i=1,2,3,4,5 are obtained by beginning with P and
successively generating all possible points by reflections across either
the x-axis or the line through the origin with inclination m/3. Label
P with a plus sign, label with a minus sign the two images of P and
successively alternate signs for each new image point. Thus P, P, and

2

P4 are labeled plus and the others are labeled minus. Then

QP 1' QP3‘ QPS

! 1) =
G(X’Y9X »y') In QP- Qch QPA

3
l-:z:ln [x'"-r cos(2n’n/3—6)]2 + [y'-r sin(2nﬁ/3—6)]2.
2 n=1 [x"-r cos(2nﬂ/3+6)]2 + [y'-r Sin(2nn/3+6)]2

As before let

wix,y;x',y") = %—2{:1n[(x'—r cos(2n1r/3—6))2 + (y'-r sin(2nﬂ/3—9))2] -
n=1



Figure 3.3. Images of a Point in a Region -
with Angle 7/3
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2

A.ZE: 1n[(x'--rcos(2nTr/3+6))2 + (y'-r sin(2nﬂ/3+9))2],
2 n=1 ‘

then

1

G=w+1n—_‘—_\—.
|x'-z]

One can show that G has properties (1), (2), and (3).

We have used the method of images in finding Green's functions in
Examples 3.1-3.3. 1In general, Green's function for Dirichlet's problem
for a region R with angle Y = m/k, k = 1,2,... can be found by using

the method of images. The next example illustrates this.

Example 3.4. Consider

82u Bzu _
'——2+—-§—0
ox ay

for a region

R ={r19: 0<6<mk, r>0, k=1,2,... ,}
u = f(x,y) on the boundary C.
Let P be the point (r,0), 0 < r <o, 0 < 6 < m/k, Pi be a point

(r,ei), i=1,2,...,2k-1 where

0, =

{(i+1)¢ -6, i =1,3,5,...,2k-1
i

iy +6, i = 2,4,6,...,2k-2
and Q be (x',y') € ® (cf. Figure 3.4).
Following Example 3.3 Green's function is given by

QP;- QP4eQPg ... *QPy,
QP*QP, QP < ... *QP,, ,

G(x,y3x"',y"') = 1n
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Figure 3,4, Images of a Point in a Region
with Angle Y = m/k
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1 :E: [x'-r cos(Zi\p-Q)]2 + [y'-r sin(Ziw—-e)]2
A 2 2
i=1 [x"-r cos(2iY+0)]™ + [y'-r sin(2iy+0)]

and k
w(x,y;x',y'") = %—j{:ln.{[x'—r cos(Zitp—e)]2 + [y'-r sin(Ziw—G)]z} -
i=1
k-1
%- 1n {[x'—r cos(2iw+6)]2 + [y'-r sin(21w+6)]2}.
i=1 .

Again G has properties (1), (2) and (3).

Example 3.4 gives us the form of Green's function for the region
between the x—axis and a line through the origin with inclination vy,
Y =7m/k, k = 1,2,.... The number of points Pi are 2k-l1. Generally, for
the case of Y = rm, where r is a rational number, the number of points
Py is finite. It is not neccessary to be unique for a given region.
For example, if ¢ = 7m/18 and 6 = 7/12 there are 35 points P, but if
® = m/6 then there are 17 points Pi' In these cases the method of images
also can be used, In the other case when y = qn; q is an irrational
number, the number of points Pi will be infinite. For this type of
" region, we have a lot of difficulties in using the method of images.
However, the method of images can be used for the special type of region
which gives an infinite number of images. The following example is of a
region bounded by two parallel lines, In this case there will be two
infinite sequences of images.

2 32u

Example 3.5. Find u such that é—%-+-——§ = 0 for the partial strips

9% oy

9Q== (x,¥); 0< x< a) such that u = f(x,y) on the boundary C.
f

Let P be (x,0), 0 < x < a, and let Q be a point (x',y') € R
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Figure 3.5.
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Images of a Point between Parallel Lines
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(cf. Figure 3.5). Signs for the points P, are shown in Figure 3.5.

i

Therefore

) QP,- QBY: QP4: QP: QP4+ QP - ..
QP- QP}-QP,- QP%-QP,- QP .. ..

1

G(X,Y;X' ,Y')

o g}

12 1_oy2 ' 2 v_oy2
1, &) +G-y)” 1 Zln (2na-x'-x) +(y'-y)~ .

(x'—x)2+(y'—y)2 2 n=1 (2na+-x'—x)2+(y'—y)2

o0 , 2 , 2
1 E 1 (2na+x'+x) “+(y'-y)
2 n 2 2
n=1 (2na-x"+x) “"+(y"'-y)

which we can shown to have properties (1), (2) and (3).

Following Example 3.5, we can solve Dirichlet's problem in a region
that is an intersections of parallel strips, e.g. rectangles, parallelo-
grams, hexagons, etc. (cf. Figure 3.6). 1In such cases the number of

infinite sequences is twice the number of parallel strips involved.

The method of images can also be applied to a region that is a disk.

The following example will show this.

Example 3.6. Find u such that

ﬁ+
2
r

d

82u
302

N
o)lo;
a8 [

+ 528,
r

0<r<a, 06 <2rm such that u = £(0) for r = a.

Let P be the point (r,0), Q be (r',0'), such that P and Q belong

to 92=‘{(r,6): 0

A

be (az/r,e), the inverse point

r < a} and let P1

(or image point) to P with respect to C, the boundary of R

(cf. Figure 3.7). If we let
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Some Intersections of
Parallel Strips

76



Pl(az/r,e)
CIGERN L
] \ \ ’//
: + //
N
Vd

Figure 3.7. Image of a Point in a Disk
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et AT = L a/r
G(rse:r » 0 ) In QP 1 QP]_
1 r*QP1
= P
and take
r.QPl
w(r,08;3r',8") = 1ln =
\ ]
= 1n = +—1' ].n(r'2+a—2 22 cos(@'—@))
a T
2,2
= % 1n< r2 + a2 —er'cos(e'—e)),
a
then
G(x,y3x',y") =w + ln-—:l—:— .
r'-x |

We can show that G has the following properties:

h 1w . 1 P
(. 2¥ 4= &, 9¥ _ 0 within the circle except at the
AR S o 02 12
or T 36
point P,
(2). G =0 on the circle r' = a,
(3). G~nl1n — as r' > T.
-2
Therefore, using (3.1.3) the solution to the problem is
2m
N 1y G '
u(r,g) = Zﬂff(e) 5 & db
0
where
iG—= ;w——
on or' Jr'=a
_(aZ_ r2)

a[a2—2ar cos(6'~e)+r2]

78
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Hence
2T

a“- r2 £(6')do'

2m 0 aZ—Zar cos(e'—6)+r2

u(r,f) =

(3.3.2)

This is the well-known Poisson integral for a disk.
We have seen how to use the method of images for a half-plane in
Example 3.1 and for a disk in Example 3.6. The following example of a

semidisk will combine the techniques of the other two examples.

Example 3.7. Find u such that

82u ou
2 ¥ T or
or r~ 96

32u
2

R

+ 128,

0<r<a, 0<6<7; and u = £f(6) for r = a.

Let P be the point (r,0), Q be (r', 6'), such that P and Q belong

1

‘be (r,-9). Notice that P2, P3 are images of P1 and P,

to R = {(r,e): 0<r<a,0<6 ;'n} and let P, be (a2/r,6), P2 be

(a2/r,—6), and P,

respectively, across the x-axis. The points P P2 are images of P, P

1,
respectively, with respect to the disk (cf. Figure 3.8). Signs for P,

3’

Pl’ P2 and P3 are shown in Figure 3.8. If we let

ee! Aty = _1__ a/r_ _1_ i/l
G(r,6;3r',06") l @ In QP 1n QP3 + 1n QPz
Qp ) QP
= lnm (3.3.3)

[r r' 2+a4-2rr azcos(e -0)]1[r' 2+-rz-2rr 'cos(0'+9) ]
[r r' 2+a4—2rr azcos(e +9) ][’ +r2-2rr 'cos(6'-9)]

then G is the Green's function for this problem.
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Notice that equation (3.3.3) is obtained by considering the images
across the x-axis and the image in the disk. Note also that Pl and

P3 have minus signs. For showing G = 0 on the!circular part of the
boundary, we should use the first form of (3.3.3).

Now if we wish to find Green's functions for a region that is the
intersectionAof a disk and an angular region, e.g., a quarter-disk,
one-sixth disk, etc. (cf. Figure 3.9). The following steps will be used:
Step 1. Find all possible images across the boundary of the disk and
lines forming the straight portions of the boundary. Then assign
either a minus or a plus sign such that each pair of image points has
opposite signs. The point P is always assigned the plus sign.

Step 2. Construct Green's function by comparing with (3.3.3). Thus,
those Pi with a minus sign produce a factor QPi in the numerator and

those Pi with a plus sign produce a factor QPi in the denominator.

Thus, Green's function

QP, » QP53+ QP + QP
Q- Q@, - @, - Q7

G(r,6:r',0') = 1n

Notice that the method of images has been applied only to regions of a
plane that is an intersection of a half-space and a disk. It is
generally not applicable to a general plane region. To be a problem
where an infinite series is avoided, the number of generated image

points must be finite.
3.4. Conformal Mapping and Green's Function

The relationship between Green's function for a simply connected
domain and the conformal mapping of that domain onto the unit circle
can be used in solving the two-dimensional Dirichlet's problem. Some

examples ‘in Section 3.3 will be used for the purpose of finding Green's
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function by the method of conformal mapping. Then we can compare

answers with the answers by the method of images.

Example 3.8. The same as Example 3.1, that is, find u such that

Bzu 82u
——2+-—2"0
ox oy

for x > 0; u= f(y) onx=0 and u~+ 0 as x > .

Let Pbe z = x + iy, x> 0, Q be z' = x' + iy' and P1 be

z; = -x + iy, then

G(z;z') = -1n |f(z,z")| (3.4.1)

where f(z,z') maps the right half-plane, x > 0 in the z-plane onto the
interior of the unit circle in w-plane in a one-to-one conformal manner
such that f(z,z) = 0 and |f(z,z')| = 1 for z' on the boundary, x' = 0,

(cf. Figure 3.10). Such a function is

f(z.z") =-§T———— .

Then

If(z'z')l =J|z" - ZI =j(x'_x)2+(zl_l)2

T2 N (k") 2y ) 2

and hence by using (3.4.1)

—

. (x'+x>§+<y'-y)2.
(x"-x) "+(y'-y)

G(x,y;x',y") =

N

This is the same Green's function as found in Example 3.1.

To get the conformal mapping of the region @R onto the interior

of the unit circle we may, first, find the comformal mapping of the



zzzzzz
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region R onto an upper half-plane by using a table of conformal
transformations of regions, for examples [3, pp. 284-291], and the
mapping, £(z.z') which maps the upper half-plane onto the interior of
the unit circle such that f(z,z) = 0 and If(z,z')|= las z' is ony = 0.

The following examples illustrate the mapping process.

Example 3.9. Find u(r,8) such that Au = 0 in R where

R = {(‘r,e) :0<r, 0<6< 'rr/n}, n=1,2,... and u(¥) = £f(I) where t

belong to C, the boundary of .

. el
Let P be the point z = re;_Le and Q be the point z' = r'ele as shown

in Figure 3.11(a).

From Figure 3.11 the mappings are w = z" and
‘- in— Vp _ LN
W, - W z'® - ;ﬁ ’
P

where WQ and v, are the images of P and Q, respectively, in the w-plane.
The conformal map ¢ = f(z,z') is such that f(z,z) = 0 and ]f(z,z')|= 1

for z' on the line y = 0. The mapping from z-plane to Z-plane is

(r,eie')n _ (reie)n

f(z,z") = — —
(r,ele )n - (re 16)n
,0_inf' n_in6
_xr'e -re
,0_inb' n -inf"’
r'e -re
Then
' r'2n + r2n -2r'nrncos(n6'—n6)
|f(z,z )I = 2n 2n n n '
r' +r " =2r' r cos(nf'+nb)

Therefore, using equation (3.4.1) we have
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2n
2

G(r,6:r',8") _ 1 1n r'2n + 7 - 2r'nrncos(n9'+n6)
b ] bl b 2 '2 .
r

n —2r'nrncos(n8'—n6)

n + r

Example 3,10, Find u such that

Bzu 32u
._2+———2—=O
ox oy

in #; u = fl(y) on x =0 and u = fz(y) on X = a. The region ﬂ? is the

region between the lines x = 0 and x = a.

Let P be z = x + iy and Q be z' x'" + iy' in K. The desired map

will be obtained by the conformal maps (cf. Figure 3.12),

. m w' P
w=1iz, w' = oV w' =e g = L2 P

/

where w;, wa are the images of P, Q in the w'"-plane, and WY is the image

of w; with respect to the u''-axis. From the composite function we

obtain the mapping of the points P and Q in w''-plane to be

]

miz Tiz
e @ and e 2 s
respectively. Now
i . il .
5 (y+ix) S (-y-ix)
— 1] =
W, = e and Wy e .
Hence
Tyt tig! LIPGu—
AR S (-y+ix)
_e - e .
CT L) Lyt
Sy'-1 5 (-y-ix
e - e

Therefore
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G(X,y;x' ’y') =1n ICI

-2my'  =2my - (y'+y)

1 e & +e?2 -2 2 cos g— (x'+x)
=7 In -2y =21y - (y"+y)
e & +e? -2 cos % (x'-x)

Example 3,11, Find u such that

2 2
0 u 9 u
__+_=0

2 2
0%

oy

in 8 and u = £(8) on C where ’R={reie;0<r<a,0<6<7r}andC

is the boundary of the region &K.

i6

89

0t
Let Pbe z = e and Q be z' = ele in ®R. The desired map will be

obtained by the conformal maps (cf. Figure 3.13)

w! - w!

W=£,w'=-—w-—-1—, and?;=—9‘—P
a w
1

where wé, Wl" are the images of Q and P in the w'-plane and w

)

image of Vp with respect to the real axis in the w'-plane.

1

! is the

From the

composite function, we obtain the points w! and w! in the w'-plane to be

P Q

—[(£+E>cos 0 + i(£ —i)sin 6}
a T a r

and

Therefore

Hence
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where
o =r
B=r
S =

Since G(r,0;r',0') = -1

2 2

az + BZ

2rr'{(r2r
[ 2(r4+-a4)
2rr' {(r r'

[rzr 2+-a4--2rr

'(r2+a2)cos o - r(r'2+a2)cos e',

'(rz-az)sin o - r(r'z—az)sin 9',

—r'(r2—a2)sin 8 - r(r'z—az)sin 8'.

n ICI, therefore

-% 1n [ [ 2(r4+a4) +r (r +a ) + 4a T 2rzcos(6'+6)cos(9'-6) -

'2+a4)cos(6'+6) + (52r2+a2r'2cos(6'—9)}]/

+r (r +a ) + 4a T 2rzcos(6'+6)cos(6’—6_) -

2+a Ycos(6'-0) + (a2r2+a2r 2)cos(6'+6)}]}

a2cos(6 —6)][4,2+r2—2rr'cos(6'+6)]

='l 1n
2 [r r' +a4-2rr

a“cos (6 +6)][r +r —2rr cos (0’ —eﬂ

3.5. The Method of Images in n-Space, n > 3

Suppose we wish to

3-space, that is,

2

sz

in ® with the Dirichle

on S the boundary of R .

find the solution of Laplace's equation of

2 2

9u u(x,y,z) + 2 u(x,y,z) + 3——2- u(x,y,z) =0

ay2 0z

t boundary condition
u(x,y,z) = £(x,y,2)

The solution, u(x,y,z) to this problem is

91
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Poisson's formula, namely,
y

u(x,y,z) = - %;T-ff(x',y',z') 3_r31 G(x,y,z3x",y"',2")dS"' (3.5.1)
: S

where n is the outward-drawn unit normal to the boundary surface S. The

function G is the Green's function for ® which can be written as

G(E,2") = w(B,F'") + ——
3]
where T = (x,y,2) and T = (x',y',z") both of which belong to R. The

function G has the following properties:

Bzw dw 82w
- 0 12 * 9 ' 2 ¥ 3 12 = 0 for (x' 9y’,z')' € ’ (x',y’,z') # (x,y,z),
X y z . .

(2). 6 =0 for (x',y',z') €8S,

(3). GV ——— as T' > T.

The following examples will show how to find Green's function for

Dirichlet's problem on a half-space and a sphere.

Example 3,12, Find u(x,y,z) such that

for x > 0, u= f(y,z) on x =0 and u~ 0 as x > .

Let P be the point (x,y,z), Q be the point (x',y',z'), and P1 be

the image of P across the yz-plane (cf. Figure 3.14). If Q is on the

plane x = 0, then QP = QPl' Therefore, let



Qx',y'sz")

Pl (-X’Y!z) 7/ H P(x’y’z)

Figure 3.14., 1Image of a Point in a Half-Space
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_ 1 . 1 ’

\/EX’+X)2+(y'-y)2+(2'-2)2 ‘v&X'—X)2+(Y"Y)2+(Z’-Z)2

we can show that G has the properties (1), (2) and (3). We have

( 8(}) - 2x /
ox' x'= 2]3/2

=0 [x2+(y'-y)2+(2'-2)

Q
[p]
[N}

(¢34
[=}

hence, using the equation (3.5.1), the solution to the given problem is

u(x,y,z) - - / / f(y',Z') ]3/2 dy'dz'.
2

x +(y —y) +(z'-z)

Example 3.13. (Dirichlet's problem for a sphere) Find u(r,0,¢) such

that Au = 0 in .6/2, u= £f(6,06 ) on S, where R is a sphere with center at

the origin and its radius is a.

Let P, Q be the points (r,0,¢), (r',0',06'), respectively, in 6?,
and Pl(az/r,6,¢) be the image of P with respect to S (cf. Figure 3.15).

From a proposition of Euclidean geometry, if Q lies on S then

QP _r
QP1 a
Therefore, let
--a._1 1
¢ r QP1 + QP’
- _.% 1 + 1 ,

a4 2 a2 2: ,2
—§-+ r'c=2 e r'cos 0O r+r'“-2rr'cos O
r

cos Ocos 6' + sin 6 sin O'cos(p-¢"'), then we can show that

where cos 0



Figure 3,15.

Image of a Point in
a Sphere
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G has properties (1), (2) and (3). Property (l) can be shown by

Kelvin's inversion theorem [20, pp. 164—165]._ We have

where R2 = r2+a2-Zar cos O. Hence, using the equation (3.5.1), the

solution to the given problem is

u(r,0,¢) =':%5-Jr£(e',¢') %%w ds'
S

2 9 2T AT Do .
_a(a-r") £©',0')sin 6 o' d4'.
4 R3
0 Y0

If we consider a region which is the intersection of a sphere and

a finite number of half-spaces the Green's function can be found by
using the method of images and by forming Green's functions in a manner
similar to that of Examples 3.12 and 3.13. For example, let the region

be a hemisphere.

Example 3.14. Find u(r,0,$) such that Au =0 in Rand u = £(r,0,¢) on

S, where R is a hemisphere with center at origin and of radius a.

Let P, Q, be points (r,0,¢), (r',0",¢"') in R, respectively,

Pl’ P2 are images of P, P3, respectively, across the surface of the

sphere and P,, P, are images of P, and P, respectively, across the plane

2’ 73 1
of the base of the sphere (cf. Figure 3,16). Assign plus and minus

signs such that P is a plus and image point pairs have opposite signs.

Form the function G as

1l _a/r
QF QP,

a/r _ 1
B, QB3°

G(r,r'") = + (3.5.2)



Figure 3,16.

Images of a Point in a Hemisphere
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then G has properties (1), (2) and (3). Note that the signs in the
expression (3.5.2) are the same as the signs of P, Pl, P2 and P3.

The fundamental solution, the idea of images points and an analogy
to Kelvin's inversion theorem will be used in guessing Green's function
in n-space. For example, in 4-dimensions, a fundamental solution for
Dirichlet's problem for a region R is

.)-\' = 1

77"

Let P, P P, and Q be the points shown in Figure 3.2. Analogous to

1° P2’ 3
Kelvin's inversion theorem we can show that if W(£1,£2,£3,54) is a

harmonic function with respect ot the variables gi in a domain &, then

2 a2x a2x azx azx

a 1 2 3 4
7 W\ T3 ’

r r

r r r

the

is a harmonic function with respect to the variables X in the domain

gg', where ® and R' are related by the transformation

azx azx a2x azx
= -1 - —2 - —3 R
E1T T3 8 Tz 83773 573
r r r r
and
r2 = x2 + x2 + x2 + x2.

1 2 3 4

Green's function would be

11
lep|% e, |2
1

G(T,r'") =

if R is a half-4-space,
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if ® is a 4~sphere, or

2 2
> 1
|qp| jap |2 7 e, |t ez

if R is a sémi-4-sphere.
The solution, u(%¥), to the Dirichlet's problem of a region of R

in 4-space is

a2y oo L y 28 4g
u(r) = o / 5, 98
I 3G Lav
= 2[ (r ) ™ ds’, (3.5.3)
S

where S is the boundary of R, 2 is the unit outward normal and w4 is
the area at a unit sphere in 4-space.
Similarly, the solution.u(¥) to the Dirichlet's problem for a region

?R in n-dimensions is

2y = _L 2 _3_G_ ' =
u(r) = 2,ﬂ/‘f(r)ands,n—Z
C
- —1 ff(?') %S ds', n > 3 (3.5.4)
(n—Z)wn g
2,,Tn/2
where w_ = ———, I'(x) is the gamma function of x.

" r(/2)

3.6. Symmetry of Green's Function

Green's function G(%¥,r') for Dirichlet's problem is symmetric,
that is, G(T¥,¥') = G(¥',T). We can show the symmetry directly, as for

an example, Green's function from Example 3.6 is -
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23 = 1n Lo - 1p 2
G(r,r') = 1n 0P 1In QP1
or

G(T,r') = 1n__._1.____ - 1n a_ 1

_s' - r 2
[r —r[ a = =
— r-r

r

(cf. Figure 3.17). Substituting T for r' and T' for ?, we have

G(£',T) = 1n L a2 ——El;——-
l?—?’l Tola® o,
S r'-r
r2
e lnit--128 ._L
“anP lnr, QPl.

Since AOPQ, and AOP.Q are similar, we have
1 1

QEL -z or 1 r'QP
= ’ —— R — .
Q1P r QlP r °1
By substituting
') = lni--1nd L -G
G(r'yr) = 1n 0P 1n ” QP1 = G(r,r').

In general, we can prove that Green's function for Dirichlet's
problem in n-space is symmetric by using Green's second identity,

namely,

/[uAv - vAuldv = f [u %—E - v g—:‘;]ds,
R S

and let u = G(f',?l) and v = G(F',?Z) where ?1 and ;2 are the singular

points [6, p. 158].



Figure 3.17. Images of P and Q in a Circle

A\ 4
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3.7. Neumann's Problem

Suppose we wish to find the solution u(xl,x ..,xn) of Laplace's

2"

equation in an n-dimensional region @E, that is, find u such that

2 2 2
u=9u, 9w L 0u_ g,
%> x> 5x>
1 x2 xn

in R such that u satisfies the Neumann's boundary condition, namely,

) a
5§-= f(¥) on C, n = 2,

= £(¥) on S,

=}
v

3,

where C or S is the boundary of ® for n = 2 or n > 3. This problem is

called Neumann's problem. The solution to this problem is given by

) = | cE,ENEEds", n = 2,
C
1 A - S
= (n-2)w fG(r,r')f(r')dS', n> 3, (3.7.1)
n
S
n/2
where w_ = mn .
I'(n/2)

The function G(¥,r') is called Green's function of the second kind

which is expressed as

G(t,r'") = w(¥,r') + 1n — , n = 2,
|r'-r
>, 1
= w(r,r') + 5> D 23, (3.7.2)
EER

with the following properties:
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(1). Aw(E,t') =0, € R except at T =7,

2). %% is a constant when r' is on the boundary C or S, 7 is the unit

outward-drawn normal to the boundary C or S,

(3). Galn ——i———-, if n= 2,

if n > 3.

By using Neumann's condition and the divergence theorem, we have

/f(?')ds' =fg—g as' = f'v’u-ﬁ as’ =[’v’-€udv' =fAudV' = 0.
S S S & R

Therefore, for Neumann's problem to have a solution, it is necessary

that the function f(¥) satisfies the condition
/f(i")ds' = 0,
S

By the method of images, we shall obtain Green's function for R

[4, p. 100].

wvhere K is a half-space and for an n-sphere in En, n=2,3,....

3.7.1, Half-Space in E"

Suppose we wish to find a solution of Neumann's problem in the

right half-plane, that is, we want to find a solution u(x,y) such that

Bzu Bzu
ox ay
for x > 0; du f(y) onx =0
’ 9n y '

If P is the point (x,y), x > 0, then take P, to be (~x,y), the

1
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image point of P across the y-axis, and let Q be (x',y') ¢ & |

(cf. Figure 3.1). From'(3.7.2)

1
G(x,y3x",y") = w(x,y;x"',y') + 1n @
If we let

| ] _ 1 . L
G(x,y;x',y') = In 0, + 1n @

= - % In [ [(x'—x)2+(y'—y) 2] [(x'-!-x)2+(y'—y) 2]} (3.7.3)
then
w(x,y;x',y') = - -21- 1n [(x'+x)2+(y'—y)2J.

We can show that G has properties (1), (2), and (3). They follow from

earlier demonstrations. To show property (2), that is, %% = constant

on the boundary, differentiate directly, Then we hawve

3G _ 3G

?n ox'

x"'=0

The solution to the problem is obtained from (3.7.1)
o0}

u(x,y) = - ;_—TT f(y')ln[x2+(y'-y)2}dy'-

—00

Generally, suppose we consider Neumann's problem in é‘right half-

space in E°, n > 3. Let

- =y - 1 1
G(r,xr') = - + ~—
QP QPl
where P = ¢ = (xl,xz,...,xn), Q=1r'-= (xi,x',...,x&), and

P1 = (—xl,xz,...,xn), the image of P across the hyperplane X = 0

(cf. Figure 3.14). Figure 3.14 shows P, Q and Pl in E3. We can show



105

that G has properties (1), (2), and (3). The solution to the problem by

using (3.7.1) is

@ f(xz,...,x;) s ;
u(t) = x! dx! ... dx'.
(“'2)‘” f [ f[x Zeagmn) P bl AP 23 n

=00 =00

3.7.2. n-Sphere in E"

First, we will consider Neumann's problem in a disk, that is, we

want to find a solution u(r,8) such that Au = 0 in AR and %§'= £(6) on

C, where R ={rele; 0<r<a, 0’< 8 < 277} and C is the boundary of R .

If P is the point (r,0) € 4R, then take P. to be (az/r,e), the

1
image point of P with respect to C, and let Q be (r',6"') ¢ &® (cf. Fig-
ure 3.7). TFrom (3.7.2), if we let

3

1 a
in 0P + 1n QP1

G(r,0;r',0")

3
ar

In

r'¢Tr'2+r2-2rr'cos(e'—9)]-[r'2r2+a4—2a r'r cos(6'-6)]

then

3
ar

= 1n

r' \/r ! 2r2+a4—23.2rr 'cos(8'-0)

We can show that G has properties (1), (2) and (3). The normal deriva-

tive, %9- %%T : = - éu By using (3.7.1), the solution to the
T
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problem is

2T pa
u(r,0) =-%E £(6")(1n ) ar a dr'de'.
o Yo a“+r“-2ar cos(6'-96)

Generally, Green's function for the n-sphere in En, n> 3, is

o]
n-2 -2
G(F,T') = 111_2 +< 2 ) + ————2(2___? 773 - ——Ill_z (——::R> dt
QP r-QF) a A t

where P ='?, Q=71', P1 = aZFVrz, the image of P across the boundary of

the n?sphere, r = I?I and R = ]?'—tZFszl (cf. Figure 3.15). Figure

3.15 shows P, Q, P1 in E3. It can be shown that G satisfies Laplace's

equation by using Euler's theorem and it can be shown that

3.8. Green's Function in Terms

of Eigenfunctions

We will  consider the following problem in n-dimensions, n = 2,3,..,.

Au(r)

£(z), ?:“ in R,

B(u) g(®), Ton S or Cif n = 2,

where B(u) is Dirichlet or ‘Neumann:boundary condition and R be a
bounded region with boundary S or C if n = 2. Green's function for

this problem is

. — ¥_E"W @)
G(F,r') = - S nzr (3.8.1)
n=l  A_|v_|
n 'n
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where wn and Xn are eigenfunction and corresponding eigenvalue,

respectively, of the following eigenvalue problem:

M + AP = 0 in R,
B() =0on S, or C if n = 2,
[4, ppc 132_133]0
The solution is
> = = 21 ' 2y, G '
u(r) = fG(r,r YE(r')dV +fg(r ) n ds', (3.8.2)
R S
if B(u) is Dirichlet boundary condition,
u(f) =fG(f,'f')f(f')dV' -/gﬁ')c(i‘,?')ds', (3.8.3)
R S

if B(u) is Neumann boundary condition, [4, pp. 140-141]. For n =2, S

is replaced by C, the boundary of R.

Example 3.15. Find u such that Au= f(r,8) in R and u = g(r,8) on C
if

where ='{re s 0<r<a, 0<6< n}, and C is the boundary of R.

The associated eigenvalue problem is
Ap +Ap =0 in K and y = 0 on C.
By the method of separation of variables, we have
¥(r,6) = R(r)o(6),
hence

R(r) = AJv(ur) + BYv(ur),

©(®) = E cosvd + D sin V6,

A, B, E, and D are arbitrary constants, v = /i, u is the separation
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constant, & = VA, and Jv, Yv are, respectively, the Bessel functions of
the first and second kind, [4, pp. 110-112]. Since Y(r,8) = 0 on C,
therefore Y(a,0) = P(r,0) = Y(r,m) =0 for 0 < 6 <7, 0 < r < a, which
imply R(a) = 0, ©(0) = O(m) = 0, (cf. Figure 3.18). Hence E = 0,v = n,
n=1,2,3,.... Since the Bessel function of the second kind, Yv is
unbounded near r = 0, it is necessary to choose B = 0, The condition
R(a) = 0 impltes Jn(ana) = 0 or o a are the positive zeroes of Jn, that

is Jn(gmn) =0 form= 1,2,.... Therefore, we have

, Emnr)
wmn(r,e) = sin nb Jn 2

and

The magnitude of

i a
2 _ 2
oI = f f o |2 ® ar e
0 0
a m
E r
f Jrzl( :n )r dr fsinzne de
0 0

2.2
Ta Jn+1 (gmn)

4

[4, pp. 345-346]. Using (3.8.1), we obtain Green's function

G(r,0;r'e") = <4 :E: :E:sin nd Jn(gmnr/a')Sin rl\e"\\‘-I‘n(gmnr'/a)
- =1 m=1 2 2 . .

2
TTEmn Jn+1$€mn)

The following example illustrate the adjustments that would be made

if the region were a quarter-~disk instead of a semi-disk.



(a,0)=0

/

Y(m,r)=0 ¥(0,r)=0 a

Figure 3,18. Boundary Conditions for Associated
Eigenvalue Problem
in Example 3,15

X

>
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Example 3.,16. Find u such that Au = f(r,f) in R and u = g(r,0) on C
if

where R = { re 3 0<r<a, 0<0< n/Z}, and C is the boundary of &R,

The associated eigenvalue problem is again
Ap + \p =0 in R and p = 0 on C.
By the method of separation of variables, we have
Y(r,0) = R(x)O(0)

and

R(r)

AJ (ar),

0(0) E cos v® + D sin V6,

(cf. Example 3.16). Since y(r,6) = 0 on C, therefore Y(a,0) = Y(r,0) =

Y(r,m/2) = 0, for 0 < B < w/4y, 0 < r < a, (cf. Figure 3.19). Hence

R(a) = 0(0) = ©(m/2) = 0. This gives E=0, v=2n, n = 1,2,..., and

Jzn(azna) = 0 or a, 2

m=1,2,.... Therefore, we have

= gm(Zn) are the positive zeroes of Jn, for

wm(2n>(r,6) = sin 2nb J2n(£m(2n)r/a)

2

and‘>\m(2n) = oLm(Zn) = (Em(Zn)

/a)z, m=1,2,...; n=1,2,....

Then

7 (2
2 2
“wm(Zn) ” = f f lwm(Zn)l r dr do
' 0o Jo0
™

2 an Ja)r d
sin"2n6 do 2n Em(Zn)r alr dr
0 .

0

- ﬂéE.JZ <
=78 Jont1\ Enen) /¢
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Y(r/2,r)=0

Figure 3.19. Boundary Conditions for Associated
Eigenvalue Problem in
Example 3.16
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Using (3.8.1), Green's function is

Z w=sin 206 J, ( r/a)sin 2ng" J ( T /a)
G(r,0;r',0') = -8 :E: :E: 2n &m(z ) 2 Em(2n)
ﬂgm(zn) 2n+1(£m(2n))

n=1 m=1

Lastly, the method of finding Green's function in terms of eigen-—

functions will be applied to a closed parallelepiped in xyz-space.

Example 3.17. Find u such that Au = £(x,y,z) in R and u = g(x,y,2) on

S where R = {(x,y,z); 0<x<a,0<y<b, 0<zc< c} and S is the
boundary of R.
The associated eigenvalue problem is
A) +\p =0in%Rand Y = 0 on S.
By separation of variables, let
V(x,y,2) = X(x)Y(y)Z(2).
Substituting gives

YzX" + XZY" + XYZ" + \XYZz = 0,

or

Xll Yll le
or

X" " le

V is a separatton constant. Since y = 0 on S, we have y(a,y,z) =
‘JJ(O,Y,Z) = tb(x,b,z) = ‘P(X,Osz) = W(X’Yso) = lb(x,y,c) = 0 (cf. Figure 3.20).

These conditions imply that X(0) = X(a) = Y(0) = Y(b) = Z(0) = Z(c) = O.

Hence, the function X satisfies X" + vX = 0 and X(0) = X(a) = 0.



c---—______-

1 (x,7,c)=0

IP(X,O,Z)=0 -

V(a,y,2z)=0 \..,,/

Figure 3.20.

!

»¥,2)=0

<;Lw(x,b,z)=0

o e e -

Eigenvalue Problem in

Example 3.17

y

Boundary Conditions for Associated

N
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Therefore, X = sin «Jvnx and v, = (nﬂ/a)z, n=1,2,.... Since

" "

therefore,

Y" Z"
- = -U, and 7 =W

where U and w are positive constants. The function Y satisfies

%. = -y and Y(0) = Y(b) = O.

Therefore Y = sin\fpny and w, o= (mﬂ/b)z, m=1,2,.... The function Z

satisfies

z"

7 -w and Z(0) = Z(c) = 0.

1]

Hence Z = sinannz and W, (kﬂ/c)z, k =1,2,.... Therefore,

- nmx mny . krnz
wn,m,k sin 2 sin b sin =
and
NI Y E S-S
n,mk "\ 27 27 2)
a b c
Hence

c b a
2 = sin2 anx sin2 E'-"Iz-s:i.nz knz dx dy dz = 225.
l'w “ a b c . 8
n,m,k 0 0 0

Using (3.8.1), Green's function, G(x,y,z;x",y',z"'), is

\] \] L
nrx' ., mr . krnz n T . krz
oMY gin M2 gqp DX o4 HOY o4p XM2

' [<9) [+ [ 1
G = - 8abc§ : 2 : 2 :S n P b c a b n c
2 2.2 2 222 2 2,2 '

nb ¢ +mac” + k"a’d
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It should be obvious that we cannot find Green's function by the
method of eigenfunctions if there are no eigenfunctions for the
associated eigenvalue problem. Such a region is, for example,

R = {(x,y); 0<x<a, 0<yc< w}. The associated eigenvalue problem

has only the solution Y = 0,



CHAPTER IV
GREEN'S FUNCTIONS FOR HELMHOLTZ'S EQUATION
From the homogeneous wave equation
82

u
b
at2

Au li
c

we assume the solution is in the form

u(f\’t) = lP(f)T(t) ’

If the partial derivatives are calculated and substitution is made into

the wave equation, the relation

uT" = c2TAp
is obtained. Therefore,
"
T 2
e nil
c T

where k2 is a separation constant, Thus the functions ¥ and T must,
respectively, satisfy

"

M+ K% = 0and T + c’k°T = 0.

The equation AY + kzw = 0 is called the space form of the wave equation

or Helmholtz's equation.

116
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4.1. Fundamental Solutions

4.1.1. Two Dimensions

Consider the homogeneous Helmoltz's equation in polar coordinates

2 1 1 2
Au + k"u = u + - U + rz Uso + k"u = 0. (4.1.1)

Similarly as was done in Section 3.2, we want to find a solution of

(4.1.1) that depénds only on r, that is, find u(r) of

du , 6 1du _
— tT g tEu=0 (4.1.2)

Let n = kr that u(r) = u(n/k) = v(n). Then (4.1.2) is transformed into

dzv
dn

qv v=20
n

3 =

which is Bessel's equation of zero order. Therefore, two linearly
independent solutions of the equation are Jo(kr) and No(kr) where.J0 and
N0 are Bessel's and Neumann's function, respectively. If we consider
the Hankel function of the first kind, namely,

B3P () = T kr) + 1N Gen)

then Hél)(kr) is a solution of (4.1,.,2), hence it is also a solution of
(4.1.1). It is unbounded near zero since No is unbéunded near zero.
The function Hél)(kr) is called the fundamental solution of Helmholtz's
equation in two dimensions.

Consider the function Hél)(k[§‘<?|). Since Hél)(kr) is a solution
of (4.1.1) except at r = 0, we can show that Hél)(kl?'-?l), which is a

(1)
0

translation of the origin to T' of the original function H , is also
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a solution of (4.1.1) except at Tr',

Weber's Theorem. We are now going to find the solution of

Helmholtz's equation with boundary conditions. Weber's theorem and
Green's second identity are used. Weber's theorem, [20, p. 241], is
that, if u(r) is a solution of the two dimensional Helmholtz's equation
Au + kzu = 0 whose partial derivatives of the first and second orders

are continuous within a region ® and on the closed curve C, the boundary

of R, then

u@), T eRs

0’ E *: ﬁ)
(4.1.3)

%:I /(u(?‘)—a—tal- Hél) (kl-;"';‘) - Hél) k|z'-T|) —8% u(f")) ds' -_-{
C

where %R is the interior of %R and n is the outward normal to C. Now,

define
cEN = 8P &|TE]) + 6 E,EY (4.1.4)

where
se, + 176

1= 0

- O
for t' € R. By using Weber's theorem and Green's second identinty, we
can find the solution of the Helmholtz's equation in the integral form
with a part of the kernel as Green's function as follows:

From Green's second identity, we have

. 8G1 3
(u(i"')L\G1 - GlAu(i'")>dv' = (u(r') Ereie Glé—;\l(?’))ds'
c

R

[12, p. 215]. Substituting into the left-hand side gives

0 = -u(i")kzc +Gk2 E&"))dv' = (“')Ef-l‘-c—a(")d'
A 1] T epxulr "'C“r an 190 U /)98
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Then

%—/ u(r) ( )) 0. (4.1.5)

C

Adding (4.1.5) and (4,1,3) and using (4.1.4) gives
1 21y 96 _ o 2 L3 LE—e- 7 R
i1 /(u(r ) o G o u(r ))ds u(r), if r € R, (4.1.6)
C
If G(r,t') = 0 and u(¥') = £(¢¥') for *' on C then (4,1.6) becomes

u(f) = ff( ") —- ds , if Te @O. (4,1.7)
C

One can show that (4.1,7) is the solution of the Helmholtz's equation in
two dimensions with the Dirichlet boundary condition, that is, (4.1.7)

is the solution of

hux,y) + KPu(x,y) = 0, (x,y) € R,

u(x,y) = f(x,y), (x,y) € C.

The function G in (4,1,7) is called thé Green's function of the first

kind. It has the form (4,1.4) and it has the following properties:

2
(1). AGl + k G1 = 0,

(2). G satisfies the homogeneous boundary condition, G(x,y3x',y'") =

if (x',y'") is on C,

3). G H(l)(klr -zr|), if ' > T,

it %%'= 0 and 5% u(t') = £(£') for ' on C then (4,1.,6) becomes |

u(r) = - %—i-fc £(r') ds', if T € R’ (4.1.8)
C
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which is the solution of the Helmholtz's equation in two dimensions with

the Neumann boundary condition, that is, (4.1.8) is the solution of

Mu(x,y) + kzu(xv,y) 0, (x,y) € B

% u(x’Y) = f(x’Y)a (XSY) € C.

The function G in (4.1.8) is called the Green's function of the second
kind. It has the form (4.1.4) and the same properties as the Green's
function of the first kind except property (2) is changed to

(2'). G satisfies the homogeneous boundary condition,

%% =0 if (x',y') is on C.

Weber's theorem applies to a compact region R. 1If the region is
the complement of the region %R, then Weber's theorem can be used by
applying to the circle containing R and of center the origin with a very
large radius r. Letting r - « and adding the conditions vr u(r) be

bounded and /?(‘%% - iku) - 0 uniformly, we have

O

0, T eR,

{u(f), T {R,
41

Lf[Hél)(k -2 ) 33 u@") - u@E" -3—: Hél)(kli:'—f‘vdes' -
C

where n is the outward normal to C with réspect to the exterior region
of ﬂ?.> |

The results of Weber's. theorem and the application to the exterior
of a compact region can be extend to include the regions which are
neither the interior or the exterior of the compact region when the

conditions at infinity are maintained.
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4.1.2. Three Dimensions

As in two dimensions, we consider the homogeneous Helmholtz's
equation in spherical coordinates, namely,
2 1 323 1 5 3u )
M+ ku = = 2" 2 —— Zsin 6 =)+ ——— =2 + k“u = 0.
2 or or 2 00 a6 2 .2 2
r sin © r sin 0 9¢
(4.1-9)

We want to find a solution of (4,1,9) that depends only on r. That is,

find u(r) a solution of

1 d 2 du 2
-r—z—'a-r—_<r -a-;>+ku=0

or of
d2 2
——E-(ru) + k" (ru) = 0. (4.1.10)
dr

A solution of (4.1.10) is

hence u, is also a solution of (4.1.9). Consider the function

ik|T'-7|
e

Since u; is a non-zero solution of (4.,1.,9) except at r = 0, we can show

that u, which is a translation of the origih to T' of the original
function, is also a non-zero solution of (4.1.9) except at rT=71'.

The function u, is called the fundamental solution of Helmholtz's equa-

tion in three dimensions.

Helmholtz's First Theorem, Helmholtz's first theorem [20, pp. 239~

240] and Green's second identity are used in writing the solution of
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Helmholtz's equation in the integral form, Such a solution can be used
as a solution of boundary value problem, Helmholtz's first theorem is
that, if u(¥) is a solution of the space form of the wave equation

Au + k2u = 0 whose partial derivatives of the first and second orders
are continuous within é and on the closed surface S bounding R, then

ik|7'-7| ik|T'-2| u@, T e R,
21:';1- [g_____ 32 u(f') - u(¥") 3—2-‘3—7——:— ds' =j _)’ ’
S Ir' I (09 r ¢ ﬁ’

B

where n is the outward normal to S.

Define
. ik|T'-T| .
G(r,r') = E.?_;___ + Gl(r,r') (4.1.11)
|z -x|
where
AG, + k%G, = 0
1 1

- (o)
for ¥' ¢ R. By using Helmholtz's first theorem and Green's second

identity on Gl’ we obtain

u(t) ='11Ef[G ‘5%11(?') - u@") g—g]dS', (4.1.12)
S

(o]
if r e@..

If G = 0 and u(r') = £(¢'), ¥' on S, then (4.1,12) becomes

4m
S

- (o]
u(r) =—L/f(r') g—g-ds', ifre R. (4.1.13)
One can show that (4.1.13) is the solution of .the Helmholtz's equation
in three dimensions with the Dirichlet boundary condition, that is,

(4.1.13) is the solution of
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2

Au + k"u o, ; e R,

u(r) = £(¥), T on S.

The function G in (4.1.13) has the form (4.1.11) and the following
properties:
2, _
(1. AGl + k G1 = 0,
(2). G satisfies the homogeneous boundary condition, G(?,?') = 0, T' on
S’ Y -
eik|r'-—r| . .
3). 6Gnv—m—m— if r' > r.

The function G is called Green's function of the first kind.

1f %% = 0 and S%u(f') = f(¢'), £' on S, then (4.1.12) becomes

u(r) = _}:TF_/‘G £(r') ds', if T z—:@o. (4.1.14)
S
which is the solution of the Helmholtz's equation in three dimensions:
with the Neumann boundary condition, that is, (4.1.14) is the solution

of

Au+k2u O,? e R,

2 u@) = £(), T on S.

on
The function G in (4.1.14) is Green's function of the second kind which
has the. form (4.1.11) and the same properties as G in (4.1.13) except
property (2) is changed to‘

- D

(2'). G satisfies the homogeneous boundary condition, 3%-G(r,r') = 0,

el |
r on S,

Helmholtz's first theorem is for a compact region. If the region

is the exterior of a compact region Helmholtz's second theorem
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[20, p. 240] is used in the similar way. The theorem is for the comple-
ment of a compact region R with surface S bounding ® and the condition
ru(%) is bounded and r( %%-—iku) -+ 0 uniformly with respect to the angle
variables as ¥+ © is added, The result of these two theorems can be

extended to include regions that are neither the interior or the exterior

of a compact region when the conditions at infinity are maintained.
4.2, The Method of Images

Finding Green's function by the method of images for Helmholtz's
equation is similar to the method of finding Green's function by the
method of images for Laplace's equation (cf. Sections 3.3 and 3.5). The
following example will show how to find Green's function for a half-space.

Compare this example with Example 3.11.

Example 4.1, Solve the problem

Au + k2u =0in®R, u= f(y,z) on S,

The region R = {(x,y,z); 0< X< o, ©< y,z < }, and S is the boun-

dary of R.

Green's function must be of the form:

. ik|r'-7| .
G(T,t") = =—— + G, (F,r"),
| " -x|
where T = (x,v,2z) and ?f = (x',y',z"). Consider
ik|T' -7 ik|T'-1,|
G(?’;')=e_>. - -2 - _>O
B HEX

where ?0 = (-x,y¥,2), the image of T across the yz-plane. Then
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Jk-QP  _ikeQP,

G(T,r') = F T TE,

(cf. Figure 3.14). It is easy to see that

G(E,t'") = 0,
x'=0

ikr

Property (2) can be shown by recalling that v(r) = e k /r is the solution

of Av + k2v = 0. Hence, elklr—r0|/|?«f0|, the translation of the origin

to ;0 satisfies Helmholtz's equation. The normal derivative of G gives

3 _ _ 36 .,z_a_(ei“‘)
on ox'| _,_ oax'"\ R
x'=0

where R2 = x2 + (y'—y)2 + (z'—z)z.

Using (4.1.13), the solution to the problem is

© 1) (R
1 3 et
u(x’y,z) = - '2—,”/ ff(Y',Z') '5';{'1 eR dy'dz'.
-0 Ye—co ’

Table I provides Green's function of Helmholtz's equation with

Dirichlet boundary condition for some regions in two and three
dimensions. Green's functions in this table can be found by using the

method of images (cf. Sections 3.3 and 3.5).

4.3. Green's Function in Terms of Eigenfunctions

We have used the method of images to find Green's function for the
homogeneous Helmholtz's equation with nonhomogeneous boundary condition
in the preceeding section. We are now considér the different problem,
the nonhomogeneous Helmholtz's equation with the homogeneous boundary

condition, that is,



GREEN'S FUNCTION FQOR HELMHOLTZ'S EQUATION WITH THE DIRICHLET BOUNDARY CONDITION

TABLE 1

Region

Green's Function

Reference

,{(x,y): 0

{ (x,5): 0

< X < 0, -0 < y < m}

< x <o (< y < m}

™
< B < 33 r > 0}
< x < a, —» < y < m>}

<@<2m, 0<rc< a}

<@<m 0<r< a}

B (k-qp) -

D (eop) -

1)
Hy” (keQP))

(P keqp) - w8 eeqp) + 88D egpy) -
(1) ) )
Ho (koQP) - Ho (kaPl) + HO (kaPz) -
(1) )
H (k.QP4) - H; (kaPs)

H('l)(kaP .

Te QP
)

H(l)(chPz) -

8 te.qp) - (1)(

(1) (1) '
Hy™* (keQP))+ Hy ™~ (keQP]) -

1S ke,

(@))
Hy o (k-QPy) +

(1) '
Hy ' (k-QPp) +

() B (D £-QPy ) ) r'sz) ()
By " (k-QB) = ( — )+ By (k) - By (keqR))

Figure 3.1,
Example 3.1

Figure 3.2,

Example 3.2

Figure 3.3,

Example 3.3

Figure 3.5,

Example 3.5

Figure 3.7,
Example 3.6
Figure 3.8,

Example 3.7

971



TABLE I (Continued)

Region

Green's Function

‘Reference

A sphere with center at (0,0,0)

and radius a

A hemisphere with center at

(0,0,0) and radius a and z>0

Aelk'QP

eik (rl QPl/a)

@ = rQe/a

eik;QP eik(rnQPl/a) eik(r.QPz/a)

eik(rgQP3/a)

<+

QP - r.QP,/a r.Qp,/a

r-QP3/a

Figure 3.15,

- Example 3.13

Figure 3.16,

Example 3.14

LT1
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;-')E:Rs

TonSoronCifn-= 2,

Au + k2u

]
ty

B(u)

L]
o
-

where B(u) is Dirichlet or Neumann boundary condition, that is,

(o34

u

e 0, respectively, on S or C if n = 2.

u=20 or

In this case Green's function is found by using the associated eigenvalue
problem.
- Let wn and An be eigenfunctions and the corresponding .eigenvalues

of the eigenvalue problem

in R,

2 X7

Ay + Ay

It

0,

0, T on S.

B@W)

Write
[e ]

u® = 2. c b @

n=1
where Cn is a constant to be determined. Let m be fixed, m = 1,2,.,..,

then we have

/u(f")wm(f') av' =/Z cnwn(f')wm(f')dv'

n=1

R R

By the orthogonal property of eigenfunctions, we obtain

= 1 = s | '
c —“w “2/u(r W_E")av
n ‘R

where

v JI* = /wﬁ av'.
R

Now,



' _];__ '
/u ll)m av' = X fdmwm dv
R nJe

1 '
—');quU)de.
R

Using Green's second identity, the right-hand side equals

N
py

oY
oL —m_ oy 84y o
fl,bmAu v’ - A /(u on lpm Bn) ds
m R m /g

Since B(u) = 0 and B(wm) = 0 on S, then

Therefore,

and thus

Hence,

or,

' 1_ - 2 1
/ull)m dav' = - }\m/:pm(F k"u)dv',
R R

j/;wm av'
R

1 / ,

c_ = Y F av'.
m 2 2 m
MJ(&—k)m

A =y (B (F)
u(x) =/ F(r')<—§ Z 5 L 5 )dV'
| w=1 ¥ [“Q - k%)

R

u(t) =/F(f‘)G(f,f’) av',
R

129

(4.3.1)
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The function,

o)

. b G ) (4.3.2)

G(r,r') =

— 2,2
m=1 Iwml (k"2 )
is called Green's function,

Table II gives Green's functions in terms of eigenfunctions for
a half-circle, a quarter-circle and
{(x,y,z):0<x<a,0<y<b,0<z<c}
for the Dirichlet boundary condition. They are obtained by using the
solutions of the associated eigenvalue problems of Examples 3.15-3.17

and using (4.3.2).



TABLE II

GREEN'S FUNCTION IN TERMS OF EIGENFUNCTIONS

Region

Green's Function

References

{reieto <8 <m,
0<r<a }
{reie: 0<e@ <~g,

O<rc« a}

{(XSYaz): 0 <x<a,
0<y<b,

0 <z < c}

8

s . ' '
sin nb Jn(Emnr/a)sin nb Jn(Emnr /a)

n=1 m=1 T J§+l(£mn)<a2k2 - Ein)

4

s

N\ sin 2nd Jzn(Em(zn)r/a)sin 2n6'J2n(£m(2n)r'/a)
=1

2 72 .2
m J2n+1<‘5m(zn)) (a k- Em(Zn))

n=

=

' nmy "' krz' nmx my i kmz

= = sin sin sin sin sin n
8abe ZZ N N PR 22b2 2
a’ b ck” - 1T (b cn"+a"cm +a b k")

Figure 3.18,

Example 3.15

Figure 3.19,

Example 3.16

Figure 3.20,

Example 3,17

1€1



CHAPTER V
GREEN'S FUNCTIONS FOR THE HEAT EQUATION
5.1, Fundamental Solutions

Consider the homogeneous heat equation with an initial condition

and zero boundary conditions,

ut = Kuxx’ 0<x<L, t>0, kK is a positive constant,

u(x,0)

¥(x), 0 < x< L,

u(0,t) = 0, u(L,t) = 0,

Using the method of the separation of variables, the solution of the

problem is
L © (wn)th‘
“\7 '
u(x,t) =f [%Z e L sin-r-l%}isin %}-{-]‘F(x') dx'.
n=1
0
Define
2
d -<HE> Kt
1
H(x,x',t) = Z_ZZ: e L sin T0X gyip X
L L L
n=1
L , , L
Let v = x - E-and vi =x' -7, Therefore,

L 2 L 2

° ()
H(v,v',t) = % Z e \I sin _n_1r_<v+ L)sin -n—TI-<v'+ l‘-)
2 ‘
- ~ 1
N % Z e \I sin (m_____v + .f_ﬂT_)sin<mTv + E’[)

L 2 L 2
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® |, < ) ct © (nTT)ZKt
o — ) -\ L}
=3}: e L sinmsinn—ﬂy- +—2-Ze L cos amv cos LA
L =0 L L L = L L

® ®
where Z (Z ) indicates that the summation is carried out over
n=0 n=1

even (odd) values of n. Let

2
=27kt
_ on _2m - n '
An I AX e fl(kn) e cos Anv cos Anv
and
—AiKt
- ‘ 0 L}
fz(kn) e sin Anv sin Anv .
Therefore,

®© 0
' =1 1
H(v,v',t) = p 22; fl(Kn)Al + “EZ% fz(ln)AK.

As L - o, AA - 0, It can be shown that

1im Z £,(0 DA\ = jfz(k)dk
AX +> 0 n=0 n 0

as follows:

We have

2t 2t
|f2()\)| = |e sinm\v' sinlv| < e .

2
Let g(A) = e A Kt, Applying the limit test to g(\), it follows that

fg(k)dk < .
0
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Using the comparison test, then

flfz(l)ld}\ <
0

co

which implies that J~ fz(x)dx is convergent, Therefore, given € > 0,
0
0

(1)> such that for A 3{fl)then

there exists a A

o0}
€
'ffz(k)dk < 12°
A
o " —AZKt
Now e A\ is convergent since by the ratio test
n=
Mpp4 KE (32, - A2 )et
2i+2 21
e AA
> = e <1
-A,, Kt
e 21 AX

Therefore, choose AA = A A, there exists an even integer kl such that

o " —AiKt c
L}

E e A'A < 13

n=

1 |
for an even integer k z=kl' Let {XO’ 12, AA, ...} be such that XO = 0,

' > )\(1)

' 1
A - Am =AA, m=0,2,4,.... Let k be an even integer that A

m+2 k

and k > kl' Since fz(k) is a continuous function on [0,®), therefore
1 .
fz(A) is Riemann integrable over [O,Ak]. Therefore, there exists a

61 > 0 for which

|

A
k . '
J. fz(A)dA - Riemann sum of f, over [O,Ak] < &
0

2 12

for all partitions such that A) > 61.
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% -q ' % e %
Choose A A = 2 “A X such that A X\ é=TE and A A é=61' Let
* *

* *
0 0, A,m+2—A.m=AA,m=O’2’4’oa-o

Anhgshy hat,\
{ 0’ 2, 4,.00} be SUCh t at’

~ %
Let M = Zik therefore AM = Ak. We have

2
" =A%kt
e O A*A < %E
n=
since
X o n —)\(l>2l<t A'}\ ® n __}\th ,
- e B = é::z: e T A (5.1.1)
n=2k - n=k
(cf. Figure 5.1). Similarly
© n” -A*Kt * 11 _(%(i))th A'A
Z e n AA= ie n — ;.“;
n=M n=2"k 2

=22k 92 ™ p=2k =k

i) . @ i i
where {AO’ ,12 ),...,Agn), i= 1,2,3,...} is such that Xé ) - 0 and

, (@)

_a @) i ()
e Am = 2 TAA s, m=0,2,4,....

*
Let §= A A. Consider A)X <§, let '{AO’AZ’A4""} be the partition
over [0,) such that Am+2 - Am = A\, m=0,2,4,,... Let K be the least

*
even integer such that AK=; AM' We have

2 * \2
Akt —(? - A A) Kt
e n < e n+2

’ n = 0’2’4’...

%
since An+2 = An + AA and AX <A )A. It follows that
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Figure 5.1, Illustration for Inequality (5.1.1)
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o]

o *. 2
-(Xn- A N)Tkt

" -Xth
Z e T M < e dax (5.1.2)

n=K+2
AK+2

(cf. Figure 5.2). The right-hand side of (5.1.2) equals

[e’e] o] 2
2 " ATkt
fe""“dx <Y e T M < £
A n=M
K
Then
AT ® R 2
-AKt ,
n €
2_: fzcxn)m‘ < D1 500)IMeD, e P &
n=K+2 n=K+2 n=K+2
Consider
® ® AR+2
fz(X)dKl = fz(l)dk - fz(l)dl :
AK+2 AK AK
® A2
< £,00d] + £,0)d\
AK AK
€
< I§~+ max [fz(A)l (AK+2 - AK)
e € LE _E
SN Bt
* (1) % <A™y < E-
since )‘K—Z— )\M > X7, max]fz(A)] < 1 and AX ;A A< 3

On the interval [0,AK+2].

AK+2 Ku

£,00a = ) £,0) | =
~ n

0 n=0
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Illustration for Inequality (5.1.2)

Figure 5.2.
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* .
Ay [ }\K+2 3’5’" N
£,00d1 + j* £,(0)d\ - n=0f2<xn>m = £, 0 ) Oy rp p) -
0 ' AM

*
£,0pog) Ay = £,008 ] <

*

AM K-4
*
J. fz(k)dk - :Z: fz(An)AX - fz(AK_z)(AM—AK_Z)
0

)‘K+2
+ fz(x)dx +
*
A

n=0
M

lfz()\K)A)\‘
€
I3 + max lfz(x)l(xK+2 M) + |f o) )|A>\ <
€ € €
T3+ Agpo™ M) tMLTFHIMET

We have

e} oo

/fz(x)d',\ Y £, )M | =
0

n=0

<

M2 Kon
£ Q0@ +| £,00 - ), £,0 M - Zf O
0

n=0 n=K+
A2
(r+2 K " 0 C e .
£,0d - fz()\n)AA + £,00d0 | + Z £,QM|< S+E+I5<
n=0 A D=K+2
0 K+2 ‘
Therefore,

lin Z £,0 )0 = ffzmdx.

A0 n=0 0

Similarly, we can show that



o o] , 0
lim 2 :fl()\ YAN = jf (W) ax.
n 1
A0 n=1 0

Substituting, we have

00 o0
lim H(v,v',t) = lff Oodx + = ff ) dr
k) 1 ki) 2
L > o 0 0

o]
2
= -Tl? fe_x Kt cos \v cos Av'd\ +
0

m
0

® 2
= -l—fe")‘ Kt cos Av'=v)d),
0

)
—l-fe-x Kt sin Av sin Av' d)

m

[o0]

2 _

Consider Je‘}‘ Kt cos A(v'-v)d\ as the function on the variable
0

B =v'-v. Let

1) = | e " %cos AB d,
0
where o = kt., Using Leibnitz's rule,

® 2
a1 _ f—xe"‘ % sin A8 d\.
0

Integrate the right-hand side by parts, we have

- | Rge %cos AB dA

0 Jy

2

dI o

a8 }Za-sin )\Be—)\

S
= -5 10)
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(5.1.3)

(5.1.4)

(5.1.5)
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The general solution of (5.1.5) is
-B8" /4o (5.1.6)

From (5.1.4),

Substituting into (5.1.6), we have

C = ﬁ = /’iT-
276 2/kt’
Therefore,
2/Kt ' T
Define

G(v,v',t) = 1lim H(v,v',t).
L » o

Substituting (5.1.7) into (5.1.3), we have

1 e—(v'—v)2/4Kt
YaTkt

G(v,v',t) = (5.1.8)

This function is called the fundamental solution of the heat equation in

one dimension, that is, of

The function G(x,x',t) of (5.1.8) has the following properties:
(1). G satisfies the heat equation, that is,

G, = kG —0 < x < o, w0 < x' <, t> 0,
t x'xl’ H b

This property can be shown directly by taking partial derivative.
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(2). G satisfies the initial condition, that is,
G(x,x',0) = 0 for x' # x.
This property cén be shown as follows:

Let 6§ = 1/t and c = (x'-x)2/4K, then

lim G(x,x',t) = 1lim /0 5
t >0 0o ke
l . i——
6o J4mccte”
RPTR W
B> 2c4ftmkBe
=0,

Therefore,

G(x,x',0) =0, x' # x.
(3). G has discontinuity at t = 0, and x' = x, that is,
G(x,x,0) = o,
This property can be shown directly as follows:
Since x' = x, then

1 -G 2 4kt

V4t

G(x,x,t) =

Therefore,

G(x,x,0) = o,

The expressions for the fundamental solutions of the heat equations
in two dimensions and three dimensions are obtained in similar way as

the fundamental solution of the heat equation in one dimension. The
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fundamental solutions of the heat equations in two, three and n-dimen-

sions, respectively, are

' 2
&0+ -y)
1 e 4t
4Tkt ’

G(x,y,x',y',t)

_ (x'—x32+(y'—y)2+(z'—z)2

G(x;5,z,x',y',2",t) =_1—3—72— € 4kt ’
(4mkt)
and
2y 2 2
G2, t) = —L  IET[ ke
(AﬂKt)n/z

forn=1,2,....
The fundamental solution, G(?,f',t), of the heat equation in
n-dimensions, n = 2,3,... has properties as in one dimension, that is,

(1). G satisfies the heat equation, that is,

G, = KAG, —= < X]s Xy 5 een s x; <o, t >0

where A is the Laplace operator with respect to ;',
(2). G satisfies ;he initial condition, that is,
G(f,r',0) =0, ' # 1,
(3). G has discontinuity at t = 0, and T = ?, that is,

G(%,7,0) = =.

Let t' > 0 and consider

_|§'—§|2/4K(t—t')

G(z,r',t-t") = L —5 e , t-t' > 0.
[éme(e-t")] (5.1.9)
Let T = t-t'. Since G(T,T',T) satisfies G = KAG
and
G, = oG , ot so G, = 26

T 3t oT ° T ot
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and
_ 9G ot' _ _ oG
Gp =3¢ 31 » S° 6 =~ 3
Hence
3% G(F,T',t-t") = kAG(T,T',t-t") (5.1.10)
and

=2 a(E P, e-t") = KAG(E, R, t-t"). (5.1.11)

at'

5.2. Green's Function for the Whole Space

Sﬁppose we want to find the solution of the heat equation with
initial value condition given in the whole space for the case of one

dimension. That is, consider

u - Ku
t XX

u(x,0)

F(X:,t)’ o < X <v°°’ t >0,

f(x), —» < x < o, (5.2.1)

From (5.1.7) and (5.1.9), the fundamental solution

C(x"-x) 2k (-t )
e

1
[41n<(t—t')]1/2'

G(x,x",t-t") =

satisfies
%%. + KGX,X, =0, t>¢t'. (5.2.2)

Using (5.2.1) with variables x',t' instead of x,t and (5.2.2), we have
after multiplying the equations by G and u, respectively, and adding

G Ju _
us + G ony = GF + KGuyy 4 = WG, ,

or

)
T (uG) = GF + K(Gux,x, - qu'x')'

Let € be an arbitrary small positive constant. Then
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~t—€ L t—g p
j fa%, (uG)dx'dt' = [ f [GF + K(Gux'x'—-qu'x')] dx'dt'
00 0 v —oo

0 - (5.2.3)
On the left-hand side, we interchange the order of integrations and

integrate, that is,

t-€ ®
f —E)%'(UG) dt'dx' = f (uG)
0 —00

= jG(x,x',e)u(x',t-—s)dx' - fG(x,x',t)u(x' ,0)dx'

—00 -—00

t'=t-g
dx'

t'=0

=00

{a 0] (o]
= /G(x,x',e)u(x’,t—e)dx' - | G(x,x",t)f(x")dx",
-—00 00

where in the last step the initial condition of (5.2.1) is used.

Consider
0
lim G(x,x',e)u(x',t-e)dx'

e >0

where
' 2
1 -(x'-x) /e
G(X,X',E) = _——1/—2' e .
(4mke)

Let n2 = (x'—x)2/4K€. Therefore, x' = x+ 2nvke. Changing variable of

integration from x' to n, we have

00 e o] 2
lim fG(x,x',e)u(x',t—e)dx' = 1im —‘171—T-fe_n u(x+2nvke ,t-g)dn =

e-»O_m e+ 0

)
u(x, t) }—ﬂfe‘” dn = u(x,t). (5.2.4)
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Integrating

by parts, gives

x' =

(Guxv - qul)

x' = -

Assume u and Uy are bounded functions. Since

lim G(x,x',t-t") 0, lim G(x,x',t-t') =0

x' > ~» x' > o
and
1im Gx,(x,x',t—t') =0, lim Gx,(x,x',t—t') = 0.
x' > —o x' > o
Therefore,
f(Gux'x' - qu,x,)dx' =0 (5.2.5)
-0

Substituting (5.2.4), (5.2.5) into (5.2.3), we have

oo 00

t
u(x,t) =[f(x’)G(x,x',t)dx' +[ / G(x,x',t-t")F(x',t')dx"'dt'
) 0 oo (5.2.6)

Similarly, the solution of the heat equation with initial condition

for the whole space in two dimensions is

[o0] o
u(x,y,t) =f f f(x',y')G(x,st'sY':t)dx'dy' +

-0 =00

t [e0] [0 .
f f f G(x,y,x",y',t~t")F(x',y',t")dx"'dy'dt’
0 Jow Yo (5.2.7)
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where

1 “[(X'—x)2+(y'—y)2]/4l<(t—t').

UL R S
G(x,y,x',y',t-t") Gk (-t ")

Also, in n-dimensions

[o 0] [e 0] 00
u(T,t) =] fj f(f')G(?,f',t)dxidxé...dxr'l +

—00 Y =0 —00
t Lo © © :
/[ [/ G(f,?',t-t')F(?',t')dxidxé...dxr'ldt'
0 J-o J-x© -0 (5.2.8)
where o a2
N 1 —|r'-r| /b4t
G(r,r',t) = —= e v ,
n/2
(4mct)
> A' ) 1 1
T = (xl,xz,...,xn) and r' = (XI’XZ""’xn)

is the solution of

%% - KAu = F(?,t), —0 < XisXgsesesX, <o, t >0,
u(¥,0) = £(¥), == < LI NN L
Here A is the Laplace operator with respect to the variables X sXyse e X o

The function G(?,?',t) is the Green's function of the given problem.

Futher comments on Solutions

In the case where F(?,t) = 0, we will have the homogeneous heat

equation with the given initial condition, that is,

u, - KAu = 0, —o < X sKgseeesX <@, £ o,

u(r,0)

(1), = <’x1,x2,..,.,xn < o,

Green's function for the problem is



. -131-2) %/t
6, ,t) = —LE— e :
Chmet)™/?

and the solution from (5.2.8) is

o] 00 o0
u(T,t) =f ff f(E')G(?,?',t)dxidx;_...dxn
-00 -00 v =00

For example, in one dimension, by using (5.2.9)

[ee]

u(x,t) = Jﬂf(x')G(x,x',t)dx'
-00
where
' 2
1 -(x"-x) /4t
G(x,x",t) = ———— e
(4ﬂKt)1/2
is the solution of
u - Ku = 0, @< x<o, £t>0,

u(x,0) = f(x), =0 < x < o,
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(5.2.9)

In the other case, when f(¥) = 0, we will have the nonhomogeneous

heat equation with the zero initial condition. Therefore, by using

(5.2.8)

t 0o o o4}
u(t,t) =[ f ff G(f,f',t—t')F(f',t')dxidxé
0 00 ¥ -0 -0 .

is the solution of

u, - kAu = F(T,t), —o < X{sXgseeesX <o, t> 0,

u(r,0)

0, == < X)5X X < o,

gomee
For example, in one dimension, by using (5.2.10)

o

t
u(x,t) =f [G(x,x',t—t')F(x',t')dx'dt'
0 Y=

...dx'dt’
n
(5.2.10)



149

where 2
1 -(x"-x) " /b4kt
G(x,x',t) = ——1-/—2' e
(4mkt)
is the solution of
u - Ku o= F(x,t), —o© < x <o, t >0,

u(x,0) = 0, ~» < x < o,
5.3. Green's Function for a Half-Space

Suppose we want to find the solution of the heat equation with a
Dirichlet‘boundary condition and an initial condition on a semi-infinite

straight line. That is, we want to solve the problem

u - Ku o= F(x,t), 0 < x <o, t >0, (5.3.1)
u(0,t) = h(t), t > 0,
u(x,0) = f(x), 0 < x < o,

Green's function w(x,x',t-t') for the problem has the following
properties:
(1). w satisfies the equation
r =0, 0 < x,x" < o0, t,t"> o,

Wt, + KWX'X

(2). w satisfies the zero boundary condition and the zero initial
condition, that is,

w(x,0,t-t') =

I
o
-

and

w(x,x',0)

Il
o

when x' # x,
(3). w is continuous everywhere, x > 0, t > t', at t' = t and x' = x
where w has an infinite discontinuity. In particular,

w(x,x,0) = o,
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Define
w(x,x',t-t") = G(x,x',t-t') - G(-x,x",t-t") (5.3.2)
where G is the function (5.1.6). Notice that we used -x, the image of x
across the boundary x = 0, in defining the function w. The function w

has property (1) since G(x,x',t-t') and G(-x,x',t-t') have property (1).

To show w has property (2), we have

. —(x"=x) % /br (t-t ") —(x'+x)2/4|<(t-t')]

w(x,x',t-t'") = ——— |e - e

N dme(t-t?) (5.3:3)

Substituting x' = 0, then w(x,0,t-t') = 0. We have G(x,x',0) = 0, when
x' # x and G(-x,x',0) = 0 when x' # -x. It follows that w(x,x',0) =0
when x' # x. Therefore, w satisfies (2).

Since G(x,x',t-t') is continuous everywhere except when x' = x,
t = t' where G >~ » it follows that w has property (3).

The solution to the problem is

oo t
u(x,t) = ff(x')w(x,x',t)dx' + Kf h(t')wx,(x,O,t-—t')dt' +
0 0

t o
/ /F(x',t')W(x,x',t—t')dx'dt'. (5.3.4)
0 Y0

The solution can be derived as follows: TUsing (5.3.1) with

variables x',t' instead of x,t, respectively, and (5.3.2), we have
3 - -
a~t—,(uw) = w, +wu , = wF +|<(Wux,x, - uW_y_ ).

t X' X

Let € be an arbitrary small positive number. Then

t—-€ p© t—-€ o
f f %,(uw)dx'dt' =/ f[wF + K(wux,x,—uwx,x,)]dx'dt'
0 0 0 0



Interchanging the order of integrations, the left-hand side is

©o
[=
0

t'=t-€ ® ®
dx' = | u(x',t-e)w(x,x"',e)dx' - | f(x")w(x,x',t)dx"' =
t'=0 0 0

00 (o o]

[u(x',t—e) e(x,x',e)dx"' - fu(x',t-s)G(—x,x',e)dx' -
0 0

co

ff(x')w(x,x' ,t)dx'.
0

Let n = (x'—x)//4kt, we have

00 o]
lim | u(x',t-e)G(x,x',e)dx' = lim — | _ e u(x+2nvke ,t=€)dn
e-+0 0 e>0 /T X

2vke

u(x,t)

(cf. Section 5.2). Let B = (xt+x')/V4Kt, we have

00

0 2
lim | u(x',t-e)G(-x,x"',e)dx' = 1lim — e-B u(-x+2Bvke ,t-c) dB
>0 0 >0 /1? X
' 2Vke
= o.

Therefore, as € - 0 the left-hand side becomes

u(x,t) - ff(x')w(x,x',t)dx'
0

Integrating

1]

[e¢]
[e ]
f(wux.x.—uwx.x.)dX' (Wux,—uwx') o
0

W(x’w,t‘t')uxv (°°’t')‘ - u(w,t')wxv (x,0,t-t")

(]

u(O,t')wx, (x,0,t-t")

\,
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—W(x,O,t-t')ux,(O,t') + u(O,t')Wx,(x,O,t—t') +
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As x' > o, w(x,o,t=t') = 0, and wx,(x,oo,t—t') = 0. Assume u and u_ be

bounded at x = ». Hence, as ¢ - 0, the right-hand side is

t t )
K/ h(t')wx,(x,O,t-—t')dt' +f wa dx'dte’'.
0 0 0

Hence,

oo

t
u(x,t) = ff(x')w(x,x',t)dx' + th(t')wx,(x,o,t-t')dt' +
0 0

t
/ [ w(x,x',t-t")F(x',t")dx'dt"'.
0 0

In the case of Neumann condition, -a—g- u(0,t) = h(t), then Green's

which is (5.3.4).

function, w(x,x',t~t') has property (1), (3) and instead of property (2)
(2'). The function w satisfies the boundary conditiom, that is,
3
Ew(x,o,t—t') = wx,(x,O,t—t') = 0.
In this case define
w(x,x',t-t') = 6(x,x',t-t") + G(-x,x',t-t"),

Then w has property (1), (2') and (3).

00 t
u(x,t) = ff(x’)w(x,x',t)dx' - K/h(t’)w(x,o,t—t')dt' +
0 0

00

t
[ fw(x,x',t—t')F(x',t')dx'dt'. (5.3.5)
0 Y0

The solution can be derived similarly to (5.3.4).

We will see that the solution (5.3.4) and (5.3.5) can be applied

to the problem which has F(x,t) = 0 or h(t) = 0 or £(x) = 0 but not all
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of them are zero as is shown in the following examples:

Example 5.1. Assume that a homogeneous conductor occupies the semi-

infinite rod x > 0. The temperature at x = 0 is zero at time t > 0.
The initial temperature in the rod is Y (u0 a positive constant).

Assume there are no heat sources within the rod. Determine the

temperature.

In this case F(x,t) = 0, h(t) = 0 and f(x) = Applying (5.3.4),

u, .
0
we have

o

U, fw(x,x',t)dx'
0

uy f‘” . [-(x'—x)zllm(t—t') -(x'+x)2/ln<(t-t'):]
—_— e - e
v o Vet

u(x,t)

]

.

P

Let n = (x'~x)//4k(t=t') and B = (x“x)/v/bk(t=t"'), Then

sl 2 v g2
u(x,t) = I e dn - e " dB
-X X
T Vit Vit

—

U, _
=T erf(x )— erf( i_)
L V/Z}—K'—E }/4K’t
uoerf ( = )
Vit

where the error function is defined by

X 2
erf(x) = %T?f e N dn, 0 < x < o,
0

We shall now apply (5.3.4) to the homogeneous heat equation with
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a nonzero Dirichlet boundary condition and a zero initial condition.

Example 5.2. Given the same conditions as in Example 5.1 except that

the temperature at x = 0 is u1 (ul a nonzero constant) and the initial

temperature is zero.

In this case h(t) = u, and f(x) = 0. Applying (5.3.4), we have

1

t
u(x,t) Kul.’ﬂ wx,(x,O,t—t')dt'
0

-x2/4K(t—t')
e dt’'.

t
Kul./. : X

0 k(t=-t")vamk(t-t"')
Let n = x//4k(t-t'). Then

u(x,t) = e dn

I
N
2
\
o]
N

vakt

IR

The next example is again dealing with the homogeneous heat equa-

tion with a nonzero Dirichlet boundary condition but the initial

condition is also not zero.

Example 5.3. Given the same conditions as in Example 5.1 but with the

temperature at x = 0 is u, for t > 0 and the initial temperature is u

1 2

(ul, u, are nonzero constants).

This is the combination problem of Example 5.1 and 5.2. We have

F(x,t) =0, h(t) = u, and f(x) = u Applying (5.3.4), then

1 2°
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o t
u(x,t) u, /W(x,x',t)dx' + Kulf wx,(x,O,t—t')dt'
0 0

Uy erf( X )+u1|:1— erf( X )]
Vhct vhct

= (u, - u,) erf X ) +u
2 1 <VZEE. 1

(cf. Examples 5.1 and 5.2).

The following example will show the application of (5.3.5) to the
homogeneous heat equation with a nonzero Neumann boundary condition and

a zero initial condition.

Example 5.4. Find the solution of the equation

u, - KAu =0, 0 < x <o, t >0

satisfying the initial condition
u(x,0) =0

and the Neumann boundary condition

) -
Y u(x,t) w0 = uy (u0 a nonzero constant).

We have F(x,t) = 0, f(x) = 0 and h(t) = Applying (5.3.5), then

Uy
t

u(x,t) = —K[ uow(x,O,t-t')dt'
0

where

1

[ —(x"=x) 2/ 4k (t=t ")
_— e
/ZﬂK(t—t')

—(x'+x)2/4K(t-t'ﬂ

w(x,x',t-t') = + e

Therefore
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2cu,) t 1 —X2/4K(t-t')
]
u(x,t) = - 7= e dt’.
0 Vac (t-t")
Let n = x/V4k(t-t'). Then
[e 0]
u.x : 2
I 1 .
u(x,t) = ﬁf 5 e dn
X n
vakt
_2 n= o oo
_ Yo¥ | ™ -ﬂz
== - < + 2 e dn
n= X
vkt et
u.x _J2 /
=%[————M$e’{/4'<t+/'-/ﬁerf(x )
vakt

Now, suppose we want to find the solution of the heat equation with
Dirichlet boundary condition and an initial condition for a half space

in n-dimensions, n = 2,3,.... That is, we want to solve the problem,

F(t,t), Te R, t>0,

ut - KAu =
u(¥,t) = h(F,t), Tt e S, t >0,
w(E,0) = £(), Te R =~

where T (xl,xz,...,xn),
R = {(xl,xz,...,xn); 0 < X, < o, —o < XysXgseeesX < w},
and S is the boundary of R.
Green's function W(?,?',t-t') for the problem has the following

properties:

(1). w satisfies the equation w,_, + KAw = 0 where A is an operator in

t

the prime variables,

(2). w satisfies the zero Dirichlet boundary condition and zero initial

condition, that is,
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w(T,r',t-t') =0, " €S, T e R, t-t' >0,

B
0, r, ' e R,

Ik

w(t,t',0)

(3). w is continuous everywhere in R and t > t' except at t' = t,
' = T where w has an infini;e discontinuity. In particular,
w(E,r,0) = .
Define

w(z,r',t-t') = G(¥,r',t-t") - Gl(?l,?',t—t')

where ;1 is the image of T across the boundary X, = 0, and G(?,f',t—t')
is the function in equation (5,1,9)., One can show that w has properties

(1), (2) and (3), To find the solution u(¥,t), we have

t-€ t-€
/ f (wut, + uwt,)dV'dt' =/ f[wF + k (wAu - qu)]dV'dt .
0 YR 0 YR

Applying Green's second identity and the method used in one dimension,

obtain

t
u(t,t) =/f(i")w(?,?',t)dv' - K‘f fh(i"',t') -,a—i-w(f,?',t—t') ds'dt' +
R 0°’s “ ' e S
t
/ fw(f,i‘:",t—t')F(?',t')dv'dt'. (5.3.6)
0 YR

Similarly, in the case of the Neumann boundary condition,

5%-u(?,t) = h(r,t), T € S, t > 0.

Green's function is

W(T,r',t-t') = G(Ff,r',t-t') + G(?l,?',t—t')

which has properties (1), (3) and



= 0‘
t'e S

The solution to the problem is

t i-‘"v__v
2. ™ w(t,r',t-t")

: t
u(t,t) = f@EDw(E,T',t)dV" + K/ fh(i"',t')w(i",f',t—t') ds'dt'
0 ’s

T'e S

t
/ fF(f',t')w(f,;',t—t')dV'dt'.
0 YR

Particularly in two dimensions, suppose we want to solve the

problem in a half-plane,

32u | 22
u(x’y’t)"K—'P""—‘E =0, 0< x<® -0w< y< oo t>0,
t 2 2
ox ay
u(os}’st) =h(Y,t)s —~o < y <o, t>0,

U(X,y,o) = f(XSY): 0< x< ooy =< y< oo,
Green's function for the problem is

W(Xsy’x"y':t"t') = G(X,Y:x' 9y'9t_t') - G(—X’Y:x"y"t—t')

- 1 e—[(x'—x)g+(y'—y)2]/4K(t—t') _
lark (=t ") .

1 e"[(X'+X)2+(Y"‘Y)2]/4K(t—t')
4 (e-t ')

which has the following properties:

32w Bzw
(). Wt,+|< 2+—2"=0,
ox' oy'

(2). w(x,y,O,y',t—t') = 0, and W(x’y,X',y"o) = 0,
(3). w is continuous everywhere in the half-plane except at t' =
and (x',y') = (x,y) where w has an infinite discontinuity.

is, w(x,y,X,y,0) = o,
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+

(5.3.7)

t

That
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Now,

e—[.x2+(y'—y> 21 /4K (et ")

4WK2(t—t')2

Applying (5.3.6), the solution is

[o o] o]

u(xay:t) = f ff(x',Y')W(X,Y,X',Y',t)dx'd}" +
-0 Y0

[}

2 [] 2 T
2 f h(yl’t') e"[x +(y'-y) 1/4x (t—~t )dy'dt'.
0 4ﬂK (t-t") -

5.4, The Method of Images

Finding Green's function for the heat equation by-the method of
images is similar to the method of finding Green's function by the
- method of images for Laplace's equation and Helmholtz's equation (cf.
Sections 3.3, 3.5, and 4.2). The next exampié‘will'show how to find
Green's function by the method of images for the heat equation in a

finite interval.

Example 5.5. Find Green's function for the heat equation

u, - Kuxx = F(x,t), 0 < x<a, t>0

satisfying the initial condition u(x,0) = £(x), and the Dirichlet

boundary condition u(0,t) = hl(t) and u(a,t) = h2(t), t > 0.

Green's function, w(x,x',t-t') of the problem has the following

properties:
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(1. LA + KWy 1 = 0, 0 < x,x"<a, t>t',

(2). w satisfies the zero initial condition and the zero boundary
condition, that is, w(x,x',0) = 0 and w(x,0,t-t') = w(x,a,t-t')=0,

(3). w is continuous everywhere, 0 < X,x' < a, t > t' except at t' =t
and x' = x where x has an infinite discontinuity, In particular,
w(x,x,0) = o,

The images of x across x = 0 and x = a are shown in Figure 5.3.

Define
oo
w(x,x',t-t'") = ZZ: [G(Zna+x,x',t—t') - G(2na—x,x',t—t')]
n=—oo

where G is the fundamental solution,

. - (x"-x) 2/t (e-t")
G(x,x',t-t'") = ————— e .

V4 (t-t')

It is not difficult to show that w has properties (1), (2) and (3).

The solution to the problem is

t ~a t
R =/fF(x"t')w‘x”"’t“">dX'dt""'K/ [hl(tw%yal .
) "
0 Y0 0 x'=0
a
hy(t") 5o ]dt' + | f&Dwx',tdx" (5.4.1)
Mx'=a 0

The derivation of the solution can be done similarly to the
derivation of the solution for a semi-infinite straight line (cf.
Section 5.3).

The other form of Green's function for this problem is

o 2
-(mn/a) k (t-t") '
w(x,x',t-t") = Z,E e v sin TX gy X
a = a a
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" "
- v L —

~(2a+x) —(2a-—x5 -x 0 x HaZa—x 2'a+x 4ar-x

Figure 5.3, Images of x Across x = 0 and x = a
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which is obtained by using the method of eigenfunctions, This method

will be discussed in the next section,

In the case of the Neumann boundary condition,

ou

- du -
B = hy(t) and = = h,(t),

x=0 X=a

Green's function has properties (1), (3) and (2') w satisfies the zero

ow

boundary condition, that is, T -2

=T = 0 and the zero initial

x'=a

x"'=0

0. If we define

condition, w(x,x',0)

w(x,x"',t-t") :E:[G(Zna+x,x',t—t') + G(2na—x,x',t—t')]

=00
then w has properties (1), (2') and (3). The solution is

t .a t
u(x,t) = / [ F(x',t")w(x,x',t-t")dx"'dt"' + K‘f [hl(t')w(x,o,t—t') +
0YJ0 0

a
hz(t')w(x,a,t—t')]dt' +./. fFxDwx,x",t)dx". (5.4.2)
0

Following Example 5.5, we can find Green's function for a region
which is an intersection of parallel strips (cf. Figure 3.6). The
method of images can be used for the region whose boundary is composed
of pairs of parallel lines as it has been used in the preceding examples.
Again, the next example shows how to find Green's function for the heat

equation in a quarter-plane.

Example 5.6. Suppose we want to solve the problem of the heat equation

u, - KAu = F(x,y,t), 0 < x <o, 0 <y<owo t>0
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satisfying the initial condition u(x,y,0) = f(x,y) and the Dirichlet

boundary condition u(0,y,t) = hl(y,t) and u(x,0,t) = hz(x,t).

Green's function w(x,y,x',y',t-t') has the following properties:
(L. Wt + KAw = 0 where A is an operator with respect to the prime
variables,
(2). w satisfies the zero initial condition and the zero boundary
condition, that is, w(x,y,x',y',0) = 0 and w(x,y,0,y',t-t') =
w(x,y,x"',0,t-t"') = 0,

(3). w is continuous everywhere, 0 < x,x' < ©, 0 < y,y' < o, t ;}t'

except at ‘t' = t and (x',y'") (x,y) where w has an infinite

discontinuity.

The images of P(x,y) across x = 0 and y = 0 are shown in Figure 3.2.

Define

W(X,Y,X' ,Y' ’t"t') = G(Pstt—t')"G(Pl »Q, t—t')+G(P2,Q, t‘t')—G(P39Q9t-t')
where G is the fundamental solution

1 —QP2/4K(t—t')

G(P,Q,t-t') = m e .

One can show that w has properties (1), (2) and (3). Applying (5.3.6),

the solution to the problem is

© a0
u(x,y,x',y',t) = f ff(x' ,y')w(x,y,x',y',t)dx'dy' -
00

t o]
K/ [hl(y‘,t‘) 31?-;w(x,y,x',}_r',t«t')\ dy'dt' ~
0 Yo x'=0

t (e0]
K h (x',t')—g-w(x,y,x',y',t—t') dx'dt' +
2 on '
- Jodo y'=0



t (¢
f f W(x,y,x',y',t-—t')F(x',y',t')dx'dy'dt'
0“0 Y0

The next example will show how to determine Green's function

a radially dependent problem.

Example 5.7, Let (r,6,¢) be sperical coordinates, A temperature

distribution u(r,t) which is purely radially dependent satisfies

2
k(r ur)
u ————Z_r = F(r,t), r >0, t >0

r

and the initial condition u(r,0) = £(r) for r > 0,

Let v(r,t) = ru(r,t), then

vV, - KV rF(r,t), r > 0, t > O,

t T
v(0,t) = 0, t > O,

v(z,0) = rf(r), r > 0,

This is a kind of problem like (5.3.1), Therefore, applying (5.3.

using v = ru, the solution is

u(r,t)
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for

4) and

]r f(ew(x,r',t)dr’ +-—f fr F(r',t"Dw(r,r',t-t')dr'dt’
(5.4.3)

where w(r,r',t) = G(r,r',t) - G(~r,r',t) and G(r,r',t) is the fundamental

solution for one dimension. Using (5.3.6) for the region

R = {(r,es¢); 0<r<ow, 0<6B6<7, 0<¢< Zﬂ}, the solution is

u(r,t) = /f(r YHE(x,r',t)dV' + f f F(r',t")H(r,r',t-t"')dv'dt’'
f f ]f(r JH(r,r',t)x" 31n 6'dp"detdr" +
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t o™ T P27
f f f f F(r',t')H(r,r',t—t')r'zsin 8'de'do'dr'dt’
0“0 Y0 0
o0 t .o
=f4'rrr'2f(r')H(r,r',t)dr' +f flmr'zF(r',t')H(r,r',t—t')dr'dt'
0 00 (5.4.4)

where H(r,r',t-t') is the Green's function for the problem. Comparing

(5.4.4) to (5.4.3), we find that

w(r,r',t-t")
4mrr!

H(r,r',t-t') =

In the case of a disk or a sector of a disk, Green's function
cannot be determined by using the method of images, The circumstance is
different from that of Laplace's equation and Helmholtz's equation since
Kelvin's theorem is not applicable. Green's function can be found by
using Laplace transforms [20, p. 297] or by using the method of

eigenfunctions which is mentioned in the following section.
5.5. Green's Function in Terms of Eigenfunctions

We have used the method of images to find Green's functions in the
preceding sections. We are now obtaining Green's functions in terms of
eigenfunctions for the heat equation of the function u(?,t) in the
region R of the boundary S, with the boundary condition B(u) = h(?,t),
the Dirichlet boundary condition or the Neumann boundary condition.

Green's function is

=Y @Y G =Kk (e-t")

, t=t' > 0 (5.5.1)
sl y_|?

- D
w(r,r',t-t') =

where An and wn are, respectively, eigenvalues and corresponding
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eigenfunctions of the associated eigenvalue problem,

Ay + 2 =0 in R,

B[y (¥)] = 0 on 8

{4, pp. 297-298].

Table III provides Green's functions in terms of eigenfunctions
for the heat equation with the Dirichlet boundary condition in a semi-
circle, a quarter-circle, and {(x,y,z): 0<x<a, 0<y<b,0<zc< c}.
Green's funétions are obtained by finding eigenfunctions and eigenvalues
of the associated eigenvalue problems then using (5.5.1) to write out

Green's functions.



GREEN'S FUNCTION FOR THE HEAT EQUATION WITH THE DIRICHLET BOUNDARY CONDITION

TABLE III

Region

Green's Function

References

ib
{re : 0<r«<a,

0 < 8 < n}

{rele:0< r < a,

0<9<1T/2}

{(x’}"z):
0<x< a,
0<y<hb,

0<z< c}

_ﬁL_zi:zié sin nb Jn(gmnr/a)sin n@'Jn(gmnr'/a) e—K(gmn/a)z(t—t')
2 2
ma® n=1 m=1 I €
8 ZE: sin 2nf Jzn(gm(zn)r/a)sin 2n6'J2n(Em(2n)r'/a)‘
2 2
Ta  n=1 m=1

J2n+l(£m(2n))

G an) /a)% (e-t")

Figure 3.18,

Example 3.15

Figure 3.19,

Example 3.16

Figure 3.20,

Example 3.17

L91



CHAPTER VI
SUMMARY

In this thesis a number of boundary value problems have been solved
in an integral form which has a function as a kernel of the integral.
This function is called Green's function. If the Green's function of
the problem is known then the solution for the problem is found. Thus,
we are interested in finding Green's function of the problem. It all
started in 1828 when George Green first found Green's function for the
solution of a potential equation. In order to find Green's function,

a definition of the function is needed. From this study, knowing its
properties is very helpful in finding the function. This thesis shows
that there seems to be three propertieg in common for each Green's

function. The following general definition of Green's function points

out these three properties. L
Definition

For a given differential equation with boundary conditions on
region R in Euclidean n-space, a function G(F,¥') (or G(F,r',t-t'))
where T and r' belong to R with T fixed but T' arbitrary (and t-t' > 0)
is a Green's function for the differential equation with respect to the
region R if
(1). G satisfies certain continuity conditdions on the region and G

with respect to T' satisfies a certain form of the given differ-
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ential equation,

(2). G satisfies certain boundary (and/or initial) conditions on 4,
and

(3). G satisfies certain discontinuity conditions at T in the 7'

variables.

The many Green's functions discussed througout the thesis satisfy
this definition. For example, notice that Green's function, G(x,t), for
a second order differential equation (p(x)u')' + qu = f(x), a < x<b
with unmixed homogeneous conditions has properties
(1). G is continuous in [a,b], and G satisfies the homogeneous form of
the given equation,

(2). G satisfies the given boundary cbnditions, and

(3). The partial derivative of Green's function with respect to x has
a jump discontinuity at x = t of the magnitude 1/p(t).

Furthermore, note that for the case of mixed conditions, Green's
function has properties (1), (3) and
(2'"). G satisfies the conditions which are obtained from the given

conditions and
x=b
p(Gu' - qu) = 0.
x=a

The pattern continues for Green's functions for partial differ-
ential equations. In particular, Green's function, G(?,?') for Laplace's
equation (or Helmholtz's equation) with a boundary condition on a region
A has the following properties:

(1). G is continuous in éi, T' # T, and G satisfies Laplace's equation

(or Helmholtz's equation),
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(2). G satisfies the homogeneous boundary condition, and
(3). G has infinite discontinuity as ' > T.

Finally, note that Green's function G(%,r',t-t"') for the heat
equation u, - kAu = 0 with an initial condition and a boundary condition
in a region R has the following properties:

(1). G is continuous in 55, except at t-t' =0 and ¥' =T and G
satisfies Gt' + kAG = 0,
(2). G satisfies the zero initial condition and the homogeneous

boundary condition, and

(3). G has an infinite discontinuity at t-t' = 0 and r' = T.

Green's function for an ordinary differential equation with mixed
or unmixed conditions has been found by using several methods: direct
use of its properties, a formula, the method of variation of parameters
or in some cases, generalized Green's function. These methods have been
illustrated by examples. This study has applied the method of variation
of parameters in finding Green's function for second order ordinary
differential equations with either mixed or unmixed conditions. Warning
and notices about shortcoming of the method are made througout the study.
In the partial differential equation part of the thesis, Green's function
has been found by the method of images, conformal mapping, or the method
of eigenfunctions. Many regions in one, two, and three dimensions are
considered. In addition, the form of Green's function for Dirichlet's
problem in an angular region of angle ﬂ/k, k=1,2,3,... and the form of
Green's function for Neumann's prpblem in n-sphere were given. Tables
of Green's functions for Helmholtz's equation and the heat equation with

Dirichlet boundary condition in some regions are constructed.
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