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CHAPTER I 

INTRODUCTION 

1.1 The Need for Numerical Prediction 

Traditional methods of design involve a great deal of experiments, 

time, and expense. This is true for most of the design situations, 

where an engineer has to seek an optimum path between irreconcilable 

alternatives. The general aim of most investigations is to provide 

information which is useful to designers by "characterizing" or 

11 modeling 11 certain features of the phenomenon in question. Investiga­

tions may be theoretical or experimental; the two approaches are 

complimentary. Up to now designers have relied heavily on the experi­

mental approach. The mathematical modeling approach is now finding 

favor and being used to supplement existing design procedures. Also, 

empirical trial-and-error design procedures are becoming increasingly 

more expensive. Hence, the role of numerical modeling becomes very 

important where realistic questions of design, sizing, inlet and outlet 

boundaries can be investigated more easily, quickly, and economically. 

Numerical procedures for predicting three-dimensional turbulent 

reacting and nonreacting flows consist of two main parts: mathematical 

models of physical processes (turbulence, species diffusion, chemical 

reactions, and two-phase effects) and computer programs for solving the 

resulting differential equations. In deciding on and justifyinq the use· 

of a particular procedure, the user raises some questions: how much 



time is needed to understand the code and use it to obtain a solution? 

Does it predict with sufficient accuracy? what is the cost? 

Existing three-dimensional flowfields prediction codes, although 

incorporating many complexities and being efficient in their solution 

algorithms, present a major struggle to the code user who is faced with 

the task of understanding, amending, and utilizing the available 

codes (1). 

There is a need for simplified techniques for persons with little 

or no experience in computational fluid dynamics CFO, and into which 

user-oriented complexities can be easily added. Such techniques are of 

great practical importance to experimental researchers who can use them 

to supplement their experiments and broaden their investigations by 

using the ability of the numerical model to adapt easily, qucikly and 

economically to different conditions and boundary conditions and 

boundary configurations. 

1 .2 General Research Goal 

The goals of the present work are: 

1. To develop simple computing codes that are easy to use and yet 

accurate enough for a wide variety of fluid dynamics problems. 

2. Codes into which user-oriented complexities can be easily 

added. 

3. The variety of fluid dynamics applications of the codes would 

include two and three-dimensional turbulent flowfields, buoyancy effects 

and species diffusion. 

2 



1 .3 Techniques to be Used 

This thesis develops a method which, in a series of computer pro­

grams of approximately 700 statements each, solves 2-D and fully 3-D 

time-dependent turbulent flow equations in cartesian or cylindrical 

coordinates. Turbulence is to be simulated by means of the two-equation 

k-s turbulence model (2), and species diffusion and buoyancy effects 

are to be properly simulated. The computational method is based on the 

transient 2-0 Los Alamos SOLA prediction technique (3) (for laminar 

flows), which is a finite difference scheme based on the marker and 

cell method. 

Consideration is given here to a primitive, pressure-velocity 

variable, finite difference code which will be developed to predict 

turbulent 3-D transient flows. The techniques to be developed here 

incorporate the following: 

1. A finite difference procedure in which the dependent variables 

are the velocity components and pressure, formulated in cartesian and 

cylindrical coordinates. 

2. The pressure is deduced from the continuity equation and the 

latest velocity field, using a guess-and-correct procedure for the 

latter. 

3. The procedure incorporates displaced grids for the three 

velocity components, which are placed between the nodes where pressure 

and other variables are stored. 

4. The codes are designed for persons with little or no exper­

ience in CFD with the purpose of demonstrating-that many useful and 

difficult problems can be solved without restoring to large, complicated 

computer programs. As specific complexities can be added easily, the 

3 



codes provide a basis for developing many new numerical capabilities. 

5. The codes incorporate the two-equation k-s turbulence model 

( 4) . 

1.4 Applications 

In order to demonstrate the capability of the developed codes, 

several applications are considered. These applications 

include laminar and turbulent, two-dimensional and three-dimensional 

4 

flow problems in cartesian and cylindrical coordinates. The applications 

to be considered are as follows: 

1. local destratifications of reservoirs: this application con­

sists of a low-energy axial flow propeller placed just below the surface 

so as to provide a downward directed jet of fluid and thereby locally 

mix reservoirs near the release structure of the dam. 

2. Deflected turbulent jet: this application arises when a turbu­

lent jet enters normally into a uniform steady cross-flow. 

3. Gas turbine combustor: this application involves modeling 

nonreacting turbulent flow in a 60 degree segment of the combustor. 

Further details, backqround and problem schematics for these 

applications are given later in Chapter V. 



CHAPTER II 

LITERATURE REVIEW 

Numerical simulation of fluid dynamics problems concentrates on 

the physical process of interest and closely resembles a physical 

experiment rather than a theoretical solution. A numerical analyst 

sets up his equations and boundary conditions, runs his program and 

then analyzes the computed results. This is very similar to what an 

experiment does in terms of (experimental) set up, runs and results 

analysis. Moreover, actual discovery (5) of physical phenomena is 

possible by using numerical experiments. For example, Campbell and 

Mueller (6) discovered the phenomenon of subsonic ramp-induced separa­

tion numerically before verifying it experimentally in the wind tunnel. 

Computational fluid dynamics has progressed remarkably in the last 

two decades. This can be attributed mainly to the modern large-scale 

computers introduced in this period such as CDC 3600 and IBM 4794 in the 

1960's and CDC 6000 and 7000 series and IBM 360 and 370 series in the 

1970's. 

The first two sections of this review discuss the background to 

time-dependent and steady state simulation of incompressible flow in 

cartesian and cylindrical coordinates. The third section surveys ir­

regular boundary approaches. The turbulence modeling review is present­

ed in the final section. 

5 



2.1 Time-Dependent Schemes 

Time-dependent finite difference codes usually use an explicit 

solution procedure utilizing a time-marching process. Such techniques 

can be used to model 2-D and 3-D flow problems. An extensive review 

and discussion of these techniques and their applications can be found 

in textbooks by Roache (5) and Chow {7). 

2.1.1 Two-Dimensional Simulation 

Significant prediction procedures of two-dimensional laminar fluid 

flow were first presented by the Los Alamos group in 1965 (8, 9). The 

concept of numerical simulation or computer experiment was then intro­

duced for the first time. Moreover, it was the first time the famous 

Marker and Cell (MAC) method was introduced. The method used a primit-

ive variable explicit solution procedure for laminar transient flows 

simulation. 

The MAC technique requires the simultaneous solution of the dif­

ference equations of pressure and velocities (i.e. Poissan equation for 

pressure and conservation of momentum equation). The Marker particles 

6 

introduced in the incompressible flow calculation are only for the pur­

pose of indicating fluid configurations especially in free surface flows. 

Other developments based on the MAC method continued with the Los 
-

Alamos group being the major contributor. The SMAC method (10) is 

somewhat a simplified MAC method in which pressure is not solved, but the 

continuity equation is satisfied directly by solving the Poissan equa­

tion for the potential function. An implicit continuous-fluid Eulerian 

(ICE) technique has been used to model fluid flow for all Mach numbers 



from zero (incompressible limit) to infinity (hypersonic limit) (11). 

The method utilizes an arbitrary equation of state and the fully viscous 

stress tensor. A further development of the same method (ICE) included 

a multiphase fluid flow simulation (12, 13). An arbitrary Lagrangian­

Eulerian technique for all flow speeds (14) was introduced using a 

finite-difference-mesh with vertices that may be moved with the-fluid 

(Lagrangian), be held fixed (Eulerian), or be moved in any other pre­

scribed manner. The method has also been developed for multi . .:f-.la·id flow 

calculations at all Mach numbers (15). 

A program for multi component chemically-reactive flows at a 11 flow 

speeds RICE (16) was also introduced by Los Alamos. Another technique, 

the original SOLA code (3), was designed for persons with little or no 

experience in comfJU-tational fluid dynamics·. 

The SOLA technique involves an iterative process for adjusting cell 

pressure and velocitiesto satisfy the ir:~compressibility condition 

instead of solving Poisson's equation for---p_r_e.ssure. The simplified SOLA 

technique includes the basic algorithm SOLA for confined flows and SOLA­

SURF, a modified SOLA for modeling free or curved rigid surface bound­

aries. Th~ code coordinates were easy to change from two-dimensional 

cartesian to cylindrical (axisymmetric) coordinates. SOLA-ICE (17) a 

version of the SOLA code for transient compressible fluid flow includes 

the Implicit Continuous-Fluid Eulerian (ICE) technique. 

Another development based on the concept of a fractional volume of 

fluid (VOF) was introduced as SOLA-VOF (18). The code was designed for 

treating complicated free boundary configurations with more efficiency 

and flexibility. The code used a variable mesh version of the SOLA 

code SOLA-VM. 

7 



Recent developments by the author based on the SOLA Code include 

species diffusion and buoyancy for stratified flow simulation (19-21), 

and swirl flow modeling (22). 

2.1.2 Three-Dimensional Simulation 

8 

The first three-dimensional version of the Marker and Cell method 

was introduced in 1972 (23). The method used an iterative process to 

modify the cell pressure and velocity to satisfy the continuity require­

ment. The code also included thermal buoyancy as an option, using the 

Boussinesq approximation, and solving the energy equation for tempera­

ture. 

A three-dimensional code with an Eulerian computing mesh for fluid 

flows at all speeds (25) was introduced in 1975. The method was used 

to model subsonic (incompressible) and hypersonic (compressible) flows. 

Recent development by the author also based on the MAC method 

includes species diffusion and buoyancy for stratified flow simulation 

(26). The above mentioned 3-D codes were used to simulate transient 

laminar imcompressible flow in cartesian coordinates. They did not, 

however, address turbulent flow situations. A more recent development 

by the atuhor did include turbulent flow simulation, usinq a two­

equation k-E turbulence model with buoyancy and speci.es diffusion (27). 

Applications of the code were presented for a turbulent deflected jet 

and local destratification of reservoires. 

2.2 Steady-State Schemes 

Steady-state finite difference codes usually use an implicit solu- . 

tion procedure. Applications of the steady-state schemes will be 



discussed for 2-D and 3-0 flow situations. An excellent review and 

discussion of the steady-state schemes and their applications can be 

found in textbooks by Patankar (28) and Roache (5). 

2.2.1 Two-Dimensional Simulation 

There are two types of steady flow problems; parabolic (boundary 

layer type with prominent directions, processing one coordinate direc­

tion with first-order derivative only) and elliptic (recirculating type 

with upstream influence, possessing second-order derivatives in all 

directions). An example (29) of sophisticated marching method for 2-D 

boundary layer flows involves one-dimensional storage, automatic expand­

ing grid using nondimensional stream function ~ instead of r as radial 

coordinate, and implicit solution procedure. 

Relaxation methods for 2-D recirculating flows involve two-dimen­

sional storage and often implicit solution procedures. Examples of 

pertinent reference include the work of Imperial College, London, on 

stream function ~-w (30) and primitive pressure-velocity p-u-v (31) 

formulations. 

2.2.2 Three-Dimensional Simulation 

Three-dimensional parabolic boundary layer flows may be solved by 

marching methods which often use two-dimensional storaqe, primitive 

formulation and explicit or semi-implicit solution procedure (32). 

Sample calculations concern fuel being injected into a furnace of 

rectangular cross section, resulting in a diffusion flame (32). 

Relaxation methods are used for three-dimensional elliptic recir­

culating flows. Typically, they make use of three-dimensional storage, 

9 
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primitive formulation,and an implicit solution procedure (34-43). Some 

of the most interesting practical combustion phenomena are in this 

category including furnaces, combustion chambers, diffusers, compressor 

cascades, and automotive reciprocating engines. Flow patterns and heat 

transfer inside a furnace were investigated (34) with the same mathema-

tical model a relaxation method based on the original TEACH code 

(31). A typical problem is the flow and reaction inside a segment of an 

annular combustion chamber. This type of flow is steady but fully 3-0, 

with axial recirculation due in part to the laterally induced additional 

air supply. In such problems a single-step combustion model is usually 

used (35-37), 39-41). Methods using a three-dimensional spray combus­

tion model for two-phase reacting flows in gas turbine combustors based 

on the same procedure hav.e a 1 so been reported ( 42, 43). 

2.3 Irregular Boundary Schemes 

Several methods for flow problems with irregular boundaries exist. 

Finite-element methods which use a triangular cell-mesh have the advan­

tage of fitting irregular boundaries with relative ease. The finite­

element method has been applied to viscous laminar flow problems in 

two-dimensional (44, 45) and three-dimensional (46) configurations. 

Independent variable transformation techniques are considered as an 

accurate approach for numerical presentation of irregular boundaries (47). 

These methods map an irregular physical domain onto a transformed 

rectangular domain through coordinate transformation equations which are 

either directly specified (analytical transformation) (48-51), or effect­

ed by finite difference solution of two boundary value problems (numer- . 

ical transformation) (52-56). Such techniques were modified for simula-



ing 3-D flow problems with irregular boundaries using a conformal map­

ping technique for computation of steady three-dimensional supersonic 

flows (57). 

11 

Numerical transformation method were also used to model three­

dimensional flow. Such applications include using orthogonal curvilinear 

coordinates to model flow in an accelerating rectangular 90 degree elbow 

(58). Nonorthogral coordinates were also widely used for three-dimen­

sional flow problems, such as compressible potential flow around arbit­

rary geometries (59), and incompressible flow in ducts of arbitrarily 

varying rectangular or polar cross sections (60). Although these methods 

(especially 3-D techniques) are suitable for modeling flow problems with 

irregular boundaries, most of them did not address turbulent flow 

simulation because of the difficulties involved. Such difficulties 

involve variables positioning and simulation of turbulence and its 

boundary condition in complex grid forms. 

These techniques, however, are not going to be used in the present 

study. 

2.4 Turbulence Simulation 

Fluid flow problems of practical importance are almost always 

turbulent. The turbulent motion is highly random, three-dimensional 

and time-dependent. Numerical solutions for three-dimensional time­

dependent flows are well advanced. However, in spite of these advances, 

there is no exact method for turbulent flow modeling. The reason is 

that current computer storage and speed are not sufficient to solve the 

full equations for turbulent flow, resolving very small eddies when 

the flow domain exceeds by many orders of magnitude the size of these 



eddies (4). 

Hence, the only economically feasible approach is to solve the 

statistically-averaged equations governing the time-mean flow. The 

averaging is carried out over all the turbulent motions in such a way 

that the averaging time is long compared with the time scale of the 

large-scale motion. 

This approach introduces turbulent stress terms, turbulent viscos-

ity ~~and eddy viscosity vt with a turbulence model to determine tur­

bulent and sea 1 ar transport terms. An exce 11 ent review of turbulence 

models and their applications can be found in Refs. 2 and 61. 

2.4.1 No-Equation Models 

One of the first attempts to model turbulence was proposed by 

Prandtl (62). The Prandtl mixing length model assumes that eddy vis­

cosity is proportional to mean flow fluctuating turbulent velocity Vt 

and a mixing length ~m· Considering thin shear layers only Vt is set 

equal to the local mean velocity gradiant times the mixing length: 

v = ~ 1~1 t m 8y 

Hence, the eddy viscosity can be expressed as: 

( 2. 1 ) 

(2.2) 

The mixing length parameter ~m can be specified by simple empirical 

formulae in many simple flow situations (63, 64). For example in a 

12 

round free jet ~m = .075 8 where 8 is the local mixing layer width, 

that is 8 =width of l/2 jet. This implies that the mixing length model. 

lacks the universality of the empirical input. Moreover, based on its 



implied assumption that turbulence is in local equilibrium, the model 

ignores the influence of turbulence production. Another obvious dis-

advantage is that whenever the velocity gradiant is zero, the model 

predicts the eddy viscosity to be zero. This is a clear indication that 

the mixing length model neglects the transport and history effect of 

turbulence. Other no-equation models are described in Ref. 2. 

2.4.2 One-Equation Models 

13 

Models that account for transport and history effects of turbulence 

were developed in order to overcome the main disadvantage of the mixing 

length model. A transport equation for a velocity scale such as /k where 

k is the kinetic energy of turbulence motion per unit and a measure of 

the itensity of the turbulent fluctuations and defined as: 

k - 1 ( .2 + .2 + .2) - 2 u v w ( 2. 3) 

The turbulence energy dissipation rate per unit volume E is given 

by: 

(2.4) 

where Q, is the length scale and c0is an empirical constant. This is 

based on the assumption that E is governed by the large-scale turbulent 

motion characterized by velocity scale /K and Q, • The eddy viscosity 

as a function of the velocity scale and length scale is given by: 

where C is an empirical constant. 
11 

(2.5) 



This relation is known as the Kolmogorov-Prandtl expression (65, 

66). The length scale ~is defined by empirical relations similar to 
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those of the mixing length ~m· These empirical relations work well for 

simple shear layers (67), but it is not possible to prescribe them in complex 

flows. Therefore, the one-equation model was limited mainly to shear-

layer flows. However, for strongly accelerating boundary layer the 

model gave fairly poor predictions (68). 

2.4.3 Two-Equation Models 

A transport equation for the length scale was suggested to accomp­

any the k-equation and give the so-called k-~ turbulence model. A 

length scale equation is not necessary in the k-~ model; any combination 
m n of the form z = k ~ , where m and n are constants will suffice. Two 

differential equations are solved for k and z. Other combinations with 

k such as the k-w model has been proposed; but the k-s model became the 

most popular, mainly because the s-equation requires no extra terms at 

the wall. The k-s model uses the Kolmogorov-Prandtl relation which 

relates the eddy viscosity to k and s as: 

(2.6) 

The model contains five empirical constants which will be discussed 

with the governing equations in Chapter III. The model is not applicable 

in the near-wall region (viscous layer) and,hence, the so-called wall-

function approach is used to account for the near-wall viscous effect. 

The k-s model has been widely tested and used to simulate free shear 

layers (69), wall boundary layers and duct flows. Ref. 69 presented 

predictions of the velocity profile development in mixing layer at the 
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end of a splitter plate using the mixing length model, one-equation k-s 

model and the two-equation k-s model. When comparing predictions made 

using the three models, the velocity profiles were best predicted by 

the k-s model. Calculations of wall boundary layers under the influence 

of free-stream turbulence showed that the friction factor was well pre-

dieted using the k-s model (70). 

Most confined separating flows were successfully predicted using the 

k-s model. Predictions of unconfined separating flows, however, were 

not always satisfactory. The k-s model also fails to predict confined 

strongly swirling flows (71). Further applications of the k-t model to 

a variety of flow problems are presented in Refs. (63 and 69). Attempts 

to include buoyancy effect in the k-s turbulence model are discussed 

in Chapter II I . 

2.4.4 Multi-Equation Models 

In the k-s model, the eddy viscosity and diffusivity are assumed to 

be isotropic. This assumption is not valid for all flow situations, 

for instance in complex flows eddy viscosity and diffusivity depend on 

the stress or the flux component considered. Moreover, the k-s model 

assumes that the local state of turbulence can be characterized by one 

velocity scale /K and that the individual stresses u~u~ can be rela-
J J 

ted to that scale, dropping the primes from here onward. Hence, 

models using transport equations for~ and u.~ were proposed to ac-
J J J 

count for the different development of the individual stresses and 

scalar fluxes. An extensive discussion of such models and their applic-

ation can be found in Refs. (71- 74). The suggested stress equation 

model assumes local isotropy so that the dissipation of the three 
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normal stress terms is the same and thus 2/3 of the total dissipation. 

The stress/flux-equation model is often called second-order scheme 

in the literature. The following transport equations for u.u. and u.¢ 
1 J 1 

were proposed in Refs. (72 and 73) as one of the stress-equation models. 

Other models somewhat different from the one introduced below are dis-

cussed in Refs. (74 and 75). 

au. au. 
--_J_ - 1 a . u n 3 - u . u9 -3 -

1 N X)(, J ' X£ 

~ -----­rate of convective diffusive transport P.J. = stress production 
1.., 

change transport 

-ct ~k (u.u. - £3 o .. k)-c2(P .. - -32 o .. P)-c3(G .. - £3 8 . . G) 
1 J 1J 1J 1J 1J 1J 

-------~---~-----------pressure strain 

2 -S(gtu.¢ + g.u.¢)- -3 so .. J J 1 1 J 

~--
G. . = buoyancy 

lJ 
production 

viscous 
dissipation 

au.¢ au.¢ 3 k au.¢ 
1 +U - 1-=c -(-uu-1-) at t ax£ s¢ ax£ s k t ox k 

rate of convective 
change transport 

~ 

diffusive 
transport 

--~ __ 3Ui 
- u.u."' u.¢ -"'-

, J oXj J oXj 

~ 

mean-flow production 

--- -------~--~-----------buoyancy pressure scrambling 
production 

( 2. 7) 

(2.8) 
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The buoyancy terms in the two equations simulate the buoyancy pro-

duction and its effect on turbulance generation and dissipation. 

Although shear-stress models are supposed to account for the shortcoming 

of the k-E model, they also need wall corrections in local-equilibrium 

shear layers. In this type of shear layers the rate of change, convec­

tion and diffusion terms in Equation (2.7) are absent and the ratios of 

the individual stresses ~ to one another are determined by the 
1 J 

pressure-strain term only. Flow in an asymmetric channel with one of 

the walls roughened so that the shear stress ratio between the walls is 

5:1 was predicted (74). Predictions showed that shear stress- unlike 

predictions made with eddy viscosity models - did not vanish at the 

maximum velocity location. Another application of the stress-equation 

model was the simulation of a fully developed flow in a square duct 

where gradients of Reynolds stresses cause a turbulence-driven secondary 

motion. This type of motion cannot be predicted with an eddy-viscosity 

model such as the k-s model. The stress-equation model was capable of 

simulating this type of motion (75), but not without modification to the 

pressure-strain model in Equation (2.7). 

A stress-equation model using differential transport equations for 

individual turbulent stresses and fluxes consists of a large number of 

these equations which makes the model costly and difficult to use. In 

order to make the model application practical and simple, the so-called 

algebraic stress/flux models have been developed by reducing the dif­

ferential equations into algebraic expressions (77, 78). The simplest 

approximation was done by neglecting the convection and diffusion terms. 

Another approximation based on the assumption that the transport of 
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~is proportional to the transport of k was suggested (77). Such an 
1 J 

approximation yields algebraic expressions for uiuj and ui~' from the 

original model's differential equations. This approximation requires 

the calculation of the k and s equations because they appear in the 

expressions and, therefore,considered as an extended k-s model. 

The algebraic stress/flux model is applicable only when the trans­

port of uiuj and u1~·' is not very important. They are not also applic­

able to flows with counter-gradient diffusion such as boundary layers. 

However, in modeling flows of practical engineering relevance success 

has been claimed over the k-s model. One such flow, a plane wall jet in 

stagnant surroundings, was simulated using the k-s model and the 

algebraic stress model (78). The former model overpredicted the jet 

spreading rate by 30% where the latter (algebraic stress model) predict-

ed it correctly. This was not, however, without wall correction to the 

pressure-strain model. 

2.5 Closure 

This literature survey was given to provide a general background 

about the different numerical modeling possibilities. State of the art 

numerical methods are surveyed and discussed along other areas of the 

on-going research activities, 

The present work emphasizes: the transient SOLA code (3-0 in 

cartesian and cylinderical), turbulent flows (usinq the k-s turbulence 

mode 1), speci-es . diffusion and buoyancy effects. · Severa 1 applications of 

the developed codes are considered fn order to demonstrate their capabil­

ity. 



CHAPTER III 

THEORETICAL MODEL 

A typical simulation of the turbulent three-dimensional cartesian 

and cylindrical versions technique is discussed in this chapter. 

Other problems such as laminar or two-dimensional simulations can be 

handled as a simplified version of the developed technique. 

3.1 Governing Equations 

The turbulent Reynolds equations for conservation of mass, 

momentum, turbulent kinetic energy, and its dissipation rate are taken 

in the conservative form for two different coordinate systems. Two 

sets of governing differential equations are presented in this 

section: The first set is expressed in three-dimensional cartesian 

coordinates with species diffusion and buoyancy forces included~ 

These equations are employed in modeling one of the applications 

(local destratification of lakes) which will be discussed in the 

forthcoming chapters. The equations for incompressible stratified 

fluid flow are taken in the common form (26): 

M_ + -.-1_ (u.¢) = _1 [_a_ ( 11eff 11._ ) + s, ] 
at ax. 1 p1 ax. cr"' ax. 'I' 

1 1 'I' 1 
(3.1) 

where¢ stands for any of the dependent variables u, v, w, m1, k,and E. 

When ¢ = 1 the above equation represents the conservation of mass 

(continuity) equation. The first three variables u, v, and w are time 
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mean velocity components u; in x; directions x,·y, and z, 

respectively. A buoyancy term occurs in the vertical z-direction 

equation (26). The local mass fraction m1 of fluid having a density 

of Pl allows the local density to be found using 

(3.2) 

Density changes are sli.ght and allow incompressible equations to be 

used, with the addition of an upward buoyancy force. 

The second set of equations are expressed in three dimensional 

cylindrical polar system of coordinates, and can be taken in the 

common form: 

()A- 1 d 1 d d 
--~ + --- (pru¢) +--- (pw¢) +-- (pv¢) at r ar r ae az 

= .! _1_ ( r lleff ~) + .! ...£__ ( lleff ~ ") + ...£__ ( lleff ~) 
r ar cr¢ ar r ae cr¢ r9¢ ax cr¢ az 

(3.3) 

+ s<P 

where¢ stands forany of the dependent variables, u, v, w, m1, k, and s, 

and ¢ = 1 for the continuity equation. The time-mean velocity 

components u, v, and w are in the r, z, and 8 directions, 

respectively. The turbulent viscosity is calculated from the standard 

k-s turbulence model (4). 

(3.4) 

where k is the turbulence energy and s [ =· k3/2; £] is the energy 
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dissipation rate, both of these being obtained from solution of their 

respective partial differential equations. The equations differ 

primarily in their Schmidt numbers cr¢ and final source terms S¢, as 

indicated in Table I for cartesian coordinates and Table II for 

cylindrical coordinates. Turbulence and other constants appearing in 

the tables are given the usual recommended values: c0 = 1.0, C~ = 

0.09, c1 = 1.44, and c2 = 1.92. These values have been used in a wide 

variety of turbulent flow situations and exhibited good predictive 

capability (4). 

3.2 The Grid System 

The three-dimensional grid systems used for cartesian and 

cylindrical coordinates are divided into cell divisions with uniform 

spacings. The solution domain is complemented by a layer of cells on 

all sides, so as to allow easy simulation of the required boundary 

conditions BCs. These fictitious cells increase the number of cells 

in each direction. Figure 1 illustrates the total mesh arrangement 

for the cartesian coordinate system and Fig. 2 represents the 

cylindrical coordinates mesh arrangement. Figure 1 also represents 

the physical problem of the local destratification application, which 

contains a downward flowing jet of fluid from a propeller. Initially, 

two fluids occupy positions above and below the interface as shown so 

that their mass fractions are m1 = 1 and m2 = 0 (for z > ZT, the 

height of the interface) and vice versa. Also shown is how the inlet 

and outlet flows are handled. The exit release flow is via a 

rectangular area in the release structrue with the flow rate specified 

a priori. Figure 2 represents the physical problem of a can combustor 
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application, which involves a swirling jet penetration simulation in 

60 degrees segment of a gas turbine combustor (1, 40). 

Figures 3 and 4 portray a single cell in cartesian and 

cylindrical coordinates respectively, and show the location of each 

field variable p, u, v, w, and m1, relative to this (I,J,K)-cell. The 

pressure and mass fraction variables are located at the center of each 

cell and the velocities are on the faces as follows: 

uijk = x-direction velocity located at center of right face of 

the (I,J,K)-cell touching the (1+1, J, K)-cell. 

vijk = y-direction velocity located at center of top face of the 

(I,J,K)-cell touching the (1, J+l, K)-cell. 

wijk = z-direction velocity located at center of near face of the 

(I,J,K)-cell touching the (I, J, K+l)-cell. 

Thus normal velocities lie directly on the physical boundaries of the 

solution domain, while the tangential velocities and pressure are 

displaced half a cell interval inside the flowfield. In this way the 

exterior fictitious cells are particularly convenient when applying 

the boundary conditions. 

3.3 The Boundary Conditions 

Finite difference equations simulating the problem are set up and 

solved by way of a time-march process applied to cells within the flow 

domain of interest. Cells touching the boundary thus utilize the 

value on the boundary (in the case of a normal velocity) or values 

half a cell distant beyond the boundary (in the case of tangential 

velocities). 

22 



Specifications of normal velocities at an outflow boundary often 

pose a problem, as it can have detrimental upstream influence. One 

might merely impose the zero-normal gradient or continuative condition 

and set these values equal to their immediate upstream values (3). 

When primary interest is being focused on the final steady-state 

solution, it has been found (21) that a suitable constant may be added 

to each such extrapolated value, with advantage to the rapidity of 

convergence. This constant value is chosen so as to make the total 

outlet flux equal to the total inlet flux, thus ensuring the 

requirement of a macroscopic mass balance. To illustrate the 

technique further, consider the application of a deflected jet in a 

cross flow as an example. The total inlet flux is represented by the 

sum of the cross flow and the deflected jet inlet fluxes. The outlet 

flux is calculated using the current values of the outlet 

velocities. Then the constant additive (UINC) is calculated using the 

inlet and outlet fluxes as: 

UINC = (FLUXIN - FLUXOU)/AREA 

where AREA represents the outlet area. This constant is then added to 

each extrapolated axial velocity (parallel flow) at the outflow 

boundary. Outlet boundary specification is imposed~ after each 

time-step and not after each pass through the mesh during the pressure 

iteration. 

At planes of symmetry~the us~al zero normal velocity and free­

slip tangential velocity specifications are applicable. 

Inlet boundary specification is imposed after each time-step and 
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during the pressure iteration using prespecified inlet values. 

The inlet value for the turbulent kinetic energy k is taken as 

0.03u2 and the dissipation € is given by 

where t is the length scale of turbulence, taken typically as 3 

percent of the characteristic size of the passage. 

(3.5) 

At a plane of symmetry both k and ~ are given the zero-gradient 

condition. At a wall, k is treated similarly but values are 

specified just inside the computational field at a point P in terms of 

the local value of k via {4) 

E = p 
(3.6) 

Wall shear stress is evaluated via the modified log-law with the 

assumption of a constant shear region near the wall. 

3.4 Wall Functions 

Wall functions are used to avoid the need for detailed 

calculations near the wall. The one-dimensional Couette flow 

characterization (diffusion perpendicular to the wall is dominant)is 

used to link velocities, k and € on the wall to those in the 

logarithmic region. The wall functions are used in the momentum 

equations and k-generation terms of near-wall points (2,4). 

3.4.1 Northern Wall 

Wall function formulation in three-dimensional flow requires that 

the tangential velocities u and w are expressed in terms of total 

24 



tangential velocity near the northern top wall (32) V = (u2 + w2)112 

for cartesian and V = (v2 + w2)112 for cylindrical coordinates. This 

velocity is correlated by the universal velocity profile 

V + = ( 1 I K) 1 n ( EY +) ( 3. 7) 

where K and E are constans. The dimensionless total 'velocity v+ and 

total distance y+ are obtained by nondimensionalizing with respect to 

the total shear velocity (Ttlp)l12• Thus the total tangential shear 

stress at the north wa 11 Tt = ( T 2 + T 2 ) 1 12 for cartesian yz yx 

coordinates and Tt = (T2rz + T~ )112 for cylindrical coordinates is 

obtained from 

where Tk is an approximation for Tt very near the wall. T k is 

formulated by deleting the convection and diffusion of turbulent 

kinetic energy from the k-transport equation (where they are 

considered negligible in this region (2)) and invoking isotropic 

viscosity ~eff leads to 

T = (C C ) ll2 pk 
k 0 ~ 

and thus from Eqn. (3.8) and (3.9) 

T = -v Kpc114 c114 k 1 ln(E v+) 
t p ~ p p 

(3.8) 

(3.9) 

(3.10) 

where the negative sign is inserted since Tt and Vp must have opposite 

directions, suffix P refers to the conditions at the near-wall grid 

node. K and E are constants possessing the values 0.4186 and 9.793, 

respectively. The total tangential shear stress is then substituted 
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in the k-generation term (near the wall} as follows: 

G = 2 lleff [(~~} 2 + (~~} 2 + (-~~) 2 ] + -ri/11eff 
(3.11) 

+ [ aw + au]2 11eff ax az 

for cartesian coordinates and 

(3.12) 

for cylindrical coordinates. 

For the x-momentum equation the shear stress component ofT t is 

given by 

(~ + ~) . '[ yx = 11eff ay ax (3.13) 

for cartesian coordinates and for z-momentum equation in cylindrical 

coordinates 

(3.14) 

for cylindrical gradients ~~ and ~~ approach zero near the north 

wall (31). The above wall function formulation, Equation (3.10), is 

multiplied by the factor cos 8~(= u/V) to obtain Tyx and cos 8l= v/V) 

to obtain Trz' where e~is.the angle between the total tangential 

velocity vector near the wall and the axial velocity vector which is u 

in the cartesian coordinates and v in the cylindrical. The angle e• 

is also considered constant near the wall (79). Thus the wall 

functions for the x-momentum equation in cartesian coordinate is 
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(3.15) 

and for z-momentum equation in cylindrical coordinate the shear stress 

is 

(3.16) 

The quantities with subscript p are evaluated at the appropriate near­

wall points as shown in Fig. 5(a) for cartesian and 5(b) for 

cylindrical coordinates. Then, for z-momentum equation in cartesian 

and 8-momentum equation in cylindrical coordiantes the shear stress 

along the north wall will be given by 

r:yz = lleff aw 
ay 

for cartesian and 

( 3. 17) 

(3.18) 

for cylindrical coordinates. 

function yields 

Applying the factor sine .... to the r: t wa 11 

( 3. 19) 

The shear stress will be substituted in the momentum equations near 

the northern wall. For example, consider the x-momentum equation in 

cartesian coordinates: 

au - a ( 2) a ( ) a ( ) --'+.-. u +- uv +- uw at ax · ay az 
ar: ar: ar: 

=- ~ + ~ + ~+~ (3.20) ax ax ay az 

In Equation (3.20) r:yx will have a different value near the northern 

wall and therefore 
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d'T 
~ = (-r - 'T )jt::,y ay yxS yxN ( 3. 21 ) 

where the shear stress at the wall is subtracted from the shear stress 

inside the field adjacent to the wall. In this way -r yxN wi 11 be the 

wall function formulating Equation (3.15). 

3.4.2. Southern Wall 

Wall functions along the southern wall are formulated similar to 

the northern wall formulation. Referring to Equation (3.21) of the 

shear stress -ryx gradient, TyxS will be the wall function formulation 

at the southern wall where 

(3.22) 

where -ryxS is equal to -ryx in Equation (3.15). 

3.4.3 Western Wall 

Wall functions along the west wall are similarly formulated. The 

total tangential velocity is now V = (v 2 + w2)112 for cartesian and V 

= (u 2 + w2)112 for cylindrical coordinates. Equation (3.10) for Tt is 

obtained using the new total tangential velocity V for the k­

generation term and substituted in a similar fashion to the northern 

and southern wall procedure. Momentum wall functions are also 

obtained for y-momentum and r-momentum equations for cartesian and 

cylindrical coordinates, respectively. Thus for they-momentum 

equation 

28 



(3.23) 

and for r-momentum 

(3.24) 

Then for the z-momentum and 8-momentum equations in cartesian and 

cylindrical coordinates respectively the shear stress will be 

(3.25) 

The quantities with subscript p are evaluated at the appropriate near­

wall points. Then, these relations are substituted in the momentum 

equation near the western wall. Consider the z-momentum equation in 

cartesian coordinates for example 

aw a ( ) a ( a ( 2 ap aTXZ aTyz aTZZ - + - wu + - wv) + - w ) = - - + -- + -- +- ( 3 26) at ax ay az az ax ay az • 

In Equation (25) Txz will have a different value near the western wall 

and therefore 

where Txz will equal to the wall function formulation (3.25). 
w 

3.4.4 Eastern Wall 

(3. 27} 

Wall functions along the eastern wall are formulated similar to 

the western wall for the k-generation term. Refereing to Equation 

(3.27), TxzE will be at the wall and expressed as 

<hxz 
ax = ( TxzW - TxzE)/ b. X (3.28) 
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where TxzE is equ~l to Txz in Equation (3.25). The shear stress 

gradient at the wall in Equations (3.21, 3.22, 3.27 and 3.28) for 

north, south, west,and east walls respectively should always be 

negative (relative to the flow direction). To insure a negative shear 

gradient at the wall, the shear stress at the wall should be 

subtracted from the shear stress inside the field adjacent to the wall 

as shown in the above mentioned equations. 
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CHAPTER IV 

THE SOLUTION PROCEDURE 

Computations for one calculation cycle (time-step) can be 

summarized in three steps: 

1. Computing the velocity at all internal points via application 

of momentum principles. 

2. Adjusting the cell pressure and velocities iteratively to 

satisfy the continuity equation. 

3. When convergence is achieved, the pressure and velocity 

values will be at the advanced time-level and can be used to 

start the calculation for the next time-step. 

4.1 The Finite Difference Equations 

Finite difference representations are required of the governing 

PDEs. The usual. intuitive estimates of one-sided first-derivatives, 

centered first-derivatives and centered second-derivatives are used in 

representing the momentum equations. Superscripts n and (blank) are 

used to denote values at time-level t and t + ~t, respectively. 

Portrayed now are equations enabling one such forward time-step to be 

accomplished. Thus, starting from initial field values throughout the 

domain of interest, a time-march process is used so as to advance 

. toward the final steady-state solution, which is usually of special 

interest as opposed to the en route calculations. 
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In Equations (3.1) and (3.3) the time-derivatives are 

approximated by forward one-sided derivatives; most spatial 

derivatives are approximated by central differences based on values at 

time-level t. Special techniques are required in computational fluid 

dynamics. For instance, in the representation of the convection 

terms, a certain amount of upstream differencing is required. The 

difference equations representing the PDEs may be written explicitly 

as: 

uijk = u~jk + b.t (~(p~jk- p~+l,j,k) + gx- FUX- FUY -FUZ + VISX) 

n ( 1 n n v1.J·k = v. ·k + b.t -;:-- {p .. k- P· ·+l k) + g - FVX- FVY- FVZ + VISY) 1 J uy 1 J 1 , J , y . 

_n {l(n n ·, w •. ·k- w .. k + b.t -;:-- p. ·k- P· . k 1) +g - A~X- A~Y -FWZ + VISZ). 
1 J 1 J uZ 1 J 1 , J , + Z 

( 4.1) 
. n 

sijk = Sijk +At (-FMX - FMY - FMZ + VIMX) 

kijk = k~j k + b.t ( -FKX - FKY - FMZ + VISK) 

n . 
Eijk = Eijk + t {- FEX - FEY - FEZ + VISE) 

where si,j,k is the symbol used for the mass fraction m1 in the finite 

difference equation. The four terms on the right hand side of each 

equation FUX, FUY, etc., are shown in Table 1 for cartesian and Table 2, 

for cylindrical coordinate systems (Appendix A). The right hand side 



terms represent convection, diffusion,and source terms in Equation 

(3.1) and (3.3). For the turbulence quantities k and E,the source 

term linearization is handled in the manner recommended for always 

positive variables (28). In all six of these forward marching 

equations, donor cell differencing is used with the convection 
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terms. In this way, a coefficient a takes constant value between 0 and 1, 

so giving the desired amount of upstream differencing (3). A value of 

0 gives merely central differencing as in the original MAC code and 

numerical instability problems arise; a value of 1 gives the full 

upstream or donor cell for which, although less accurate, is stable 

provided among other things that the fluid is not allowed to pass 

through more than one cell in one time-step. 

Although Equation (4.1) accomplishes one forward time-step based 

on coservation of momentum principles, the newly calculated velocities 

will not, in general, satisfy the continuity requirement, as expressed 

by the central finite difference form of the continuity equation in 

cartesian coordinates Equation (3.1): 

. 1 1 
-Av. (u. "k- u. 1 · k) +--;.-- (v. "k- v. · 1 k) 
01\ 1J 1- ,J, uy 1J 1,J-, 

1 +-,.-- (w. "k - w .. k 1) = 0 uZ 1 J 1 ,J , -

(4.2) 

or from Equation (3.3) which gives the cylindrical version of the 

continuity equation: 

1 ( ) 1 
rijk (!J.r) rijk uijk- ri-l,j,kui-l,j,k + rijk(!J.e) 

( w i j k - w i , j , k-1 ) + iz ( vi j k - vi , j - 1 , k ) ; 0 ( 4 • 3 ) 

Terms here are evaluated at time-level t + !J.t. 



4.2 Iterative Procedures 

This incompressibility condition is imposed by iteratively· 

adjusting the cell pressure and velocities {3, 23, 26). That is, if 

the divergence D of a cell is positive (the left hand side of 

Equations {4.2) and {4.3) is positive),there is a net mass outflow 

from that cell. This is corrected by reducing the cell pressure. If 

the divergence is negative, an increase in cell pressure is 

appropriate. 

First, consider the cartesian 3-D situation. When a cell 

pressure changes from p to p + 6p, the velocity components on the 6 

faces of that cell change, given from a linear analysis from Equation 

{4.1), by the amounts: 

u .. k = u .. k + 6t 6p/6x 1,J, 1,J, 

u. 1 . k = u. 1 . k - 6t 6p/ 6x 1- ,J, 1- ,J, 

v .. k = v .. k + 6t 6p/6y l,J, 1,J, (4.4) 
v. . 1 k = v. . 1 k - 6t 6p/ 6y 
1,J- ' 1,J- ' 

W • • k = W. • k + 6t 6p/ 6Z l,J, 1,J, 

w. . k 1 = w. . k 1 - 6t 6p/ 6z 
1 ,J' - 1 ,J ' -

Substitution of these in equation (4.2) yields the amount of 

correction to p required as: 

where D is the current (nonzero) value of the left hand side of 

equation (4.2). Pressure update iteration continues until the Ds of all 

the cells are less than some prescribed small positive quantity. 
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Equations in cylindrical coordinates are handled in a similar 

manner: 

u. 1 . k = u. 1 . k- t;t t;p/t;r 
1- ,J, 1- ,J, . 

v .. k = v .. k + t;t t;p/ t;z 1J 1J (4.6) 

v .. _1 k = v. J"-l k- t;t t;p/t;z l,J ' 1, ' 

w •. k = w .. k + t;t t;p/(rt;e) 1J lJ 

w. ·--k 1 = w .. k 1 - t;t t;p/(rt;e) 
1,J~ - l,J, -

Also, similarly, the amount of pressure correction required is: 

( 4. 7) 

where D is the current nonzero value of the left hand side of Equation 

(4.3). The Equations (4.4) and (4.6) are applied with an over-

relaxation factor w between 1 and 2, a value near 1.8 is considered 

optimal in order to speed up the convergence of the pressure 

iteration process. After the continuity equation is sufficiently well 

satisfied, the values are accepted as new-time values and preparation 

for the next step of the time-march can begin. 

In the lake destratification application, the diffusion equation 

(conservation of chemical species) is applied at each step of the 

time-march to the low-density fluid 1 (initially the top layer of 

fluid in the solution domain), and this enables the respective 

proportions of fluid 1 and fluid 2 (the high density fluid initially 

forming the bottom layer of fluid in the solution domain) to be 

calculated, and hence the density at all locations. 



4.3 Convergence and Stability 

Convergence to the steady-state solution is established by taking 

many forward time-steps. The choice of time increment must be 

restricted (for stability) in two ways. First, fluid should not pass 

through more than one cell in ore time-step. Therefore, ~t must be 

less than (usually 0.25 to 0.33 times) the minimum cell transit time 

taken over all cells. 

~t < min { ~~ , -fu , ~~~ } {4.8) 

Secondly, with a nonzero kinematic viscosity, momentum must not 

diffuse more than approximately one cell in one time-step, for which 

an estimate is: 

(4.9) 

A similar criterion is given in (23). 

When the time-step is so restricted, the required amount of 

upstream (donor cell) differencing must be achieved by choosing a 

slightly larger than (typically 1.2 to 1.5 times) the largest of the 

right hand side members of: 

1 >a> max { luj~t lvj~t lwl~t} (4.lO) 
- ~ '~y '~z 

where the maximum is taken over all cells. If a is chosen to be too 

large, stability is being achieved at the expense of the introduction 

of an unnecessar~ly large amount to diffusion-like truncation errors 

(called numerical smoothing). 
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CHAPTER V 

APPLICATIONS AND DISCUSSION 

In order to demonstrate the capability of the codes described in 

Chapter 3, several applications are considered. In each case involving 

turbulence simulation, predictions are given via the use of the 

recommended values (4) of the empirical constants in the turbulence 

model. Typically, a rather coarse grid system is used in the demon­

strations, although clearly finer meshes are needed if accuracy is 

paramount. The three applications consist of fully three-dimensional 

problems. All applications will include laminar or turbulent non­

reacting flow simulation. 

5.1 Local Destratification of Reservoirs 

The Garton pump consists of a low-energy axial flow propeller 

placed just below the surface so as to provide a downward directed jet 

of fluid and thereby locally mix reservoirs near the release structure 

of the dam. In this way high-quality epilimnion water is 

transported downward, so obtaining local destratification and improved 

release water quality in the vicinity of low-level release structures. 

The flowfield is fully three-dimensional and the solution procedure 

needs to include species diffusion and buoyancy forces. Figure 6 shows 

a schematic of the mixing so produced when there is no exist beneath 

the propel.ler. The jet or plume penetrates some distance below the 
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level of the thermocline. Figure 7 illustrates the practical applica­

tion of localized mixing in the proximity of the release structure 

of a dam with low-level release gate. The flowfield so produced is 

fully three-dimensional. Earlier work (21) was restricted to this 

axisymmetric formulation about a vertical axis; and good results were 

portrayed for cases in which the propeller was close to the release 

structure. More recently, a three-dimensional version (26) has been 

developed using a constant eddy viscosity model, based on round turbu­

lent free jet theory. Comparison of those predictions with the main 

source of experimental data (80) confirmed that the main dynamic effects 

are modeled better than the previous two-dimensional predictions. The 

present study extends the three-dimensional simulation to include 

turbulent mixing via the two-equation k-E turbulence model (27). 

5.1.1 Special Boundary Conditions 

Figure 7 represents the physical problem, and contains a downward 

flowing jet of fluid from the propeller. Initially, two fluids occupy 

positions above and below the interface as shown so that their mass 

fractions are m1 = 1 and m2 = 0 (for z > ZT' the height of the inter­

face) and vice versa. A grid system of 7 x 5 x 9 internal cells (in 

x, y and z directions, respectively) is employed. (This corresponds 

to 10 x 8 x 12 grid lines). No slip boundary conditions with the wall 

function approach (in the turbulent prediction) are taken at the 

vertical dam wall and the horizontal floor of the reservoir. Free slip 

conditions are taken at the free surface which is also assumed to main­

tain a constant height, The propeller is positioned sufficiently far 

beneath the surface for surface effects to be neglected. Velocities are 



specified ~ priori with flat profiles at the propeller and exit 

location~! U~e i~ 111ade of the plane of symmetry through the center 

of the propeller and the exit) free slip conditions are applied there. 

The available volume of the flow domain is very limited. To allow the 

outlet of relea~e water without dramatically decreasing the fluid 

leyel, there is a compen~ating incoming flow which is distributed among 

the top and bottom layers in amounts equal to the epilimnetic and 

hypolimnetic water released, The peripheral inflow is at all elevations 

in such a way that eplimnetic water enters into the upper layer and does 

not di~trub the density profile. The large area of the inflow allows it 

to be at a low velocity in order to avoid any disturbance to the flow­

field. Similarly, hypolimnetic water is fed into the bottom layer. 

5,1 ,2 Laminar Predictions 

The ability to characterize the flowfield in the vicinity of low­

level release structures during destratification is of prime importance 

in addressing questions of design and sizing of applicable propeller 

pumps. Comparison of results with hydraulic laboratory model data of 

Moon (_80) shows that the numerical simulation of local destratification 

phenomena is a useful predictive tool, The dilution factor DF (release 

water quality) is found to be a function of turbulent viscosity llt' 

densimetric Froude number Frd, nondimensional metalimnion (interface) 

height Zr~ nondimens;onal flow rate Q*, and nondimensional propeller 

diameter D*, horizontal distance K*,and depth L*. 

A standard ba.se ca.se is taken with parameters 

J:lt/ll "" 142 

K* = 0 .. 211 



Frd = 1,6 and 2.0 

Q* = 2.6 

D* =0.131 
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from which certain changes are made and individually assessed in the 

subsequent discussion, Figures 8-12 show the computed effect of 

variation of each of these parameters on the dilution factor OF, while 

the other parameters are maintained at their respective base values, 

with the parameters ZT = 0.6 and L* = 0.211 held constant for all the 

figures. An indication of the effect of these two parameters on the 

axisymmetric flowfield were investigated (21). Appropriate experimental 

results are also shown where available, and it is to be observed that the 

main dynamic effects are modeled adequately ~nd show the same trends as 

the available physical data. A constant turbulent viscosity is used 

in the predictions. Such a value is appropriate for a round tur­

bulent free jet (64, 81). Hinze (81), for example, asserts that the 

turbulent viscosity in a round free jet is approximately constant and 

given by 

llt = 0.00196 p(x + a)um (5.1) 

in terms of station maximum axial velocity urn. In terms of jet initial 

velocity umo this can be written 

llt = 0.00196 A pum0 d (5.2) 

where A is a parameter 5,.4 and 6,39. Our work in general uses the 

latter value in accordance with the early recommendation (82). For 

the particular propeller diameter and initial jet velocity used in 
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most of the subsequent predictions, this choice gives 

(5. 3} 

Figure 8 shows the effect of varying the magnitude of the turbulent 

vi seas ity l-It on the dilution factor OF-. Only a minor effect is to be 

seen indicating that results are not too susceptible to the particular 

choice. Since the computed effects were minor, it may be concluded 

that ·the precise modeling of turbulence is not crucial to obtaining 

good results. The present work also incorporates a constant turublent 

Schmidt number equal to unity used in the species equation. The 

result is a good similitude between temperature-stratified field 

tests, chemically-stratified laboratory tests,and numerical predictions. 

Another question is the difference between axisymmetric problems 

on which the previous theory was based (21) and asymmetric problems on 

which the experimental data of Moon (80) were obtained, and with which 

those results were compared. Identical results could not be expected, 

but the work reported (21) showed that similar parametric trends were 

to be observed in both geometries. This would undoubtly not be the 

case if the geometry of the asymmetric case was no longer compact with 

the release gate laterally far away from the plume. With the present 

3-D prediction procedure,this effect can be investigated. Figure 9 

shows the effect of the nondimensional distance from the release 

structure to the propeller axis K*. The figure shows that the dilution 

factor is maximum when the propeller is next to the wall and it 

decreases gradually as the propeller is moved further away from the 

release structure. It can be inferred from this that the previous 

axisymmetric simulaj:ion tends to over-predict the release water quality 



as compared with the practical case. 

In Figure 1~ the dilution factor OF is shown to be a strong func­

tion of the densimetric Froude number Frd in both predictive and 

laboratory data. The general result is that release water quality 

(fraction of epilimnetic (top) water in the exit stream) increases with 

higher values of the Froude number, such conditions being achieved with 

higher jet velocities from the propeller and/or a lower degree of 

stratification in the lake. The figure clearly shows the difference 

between the 2-D and 3-D models: the former over-predicting the release 

water quality and the latter giving more accurate predictions when 

compared to the experimental data. From the designer's view, the 

important result is the Froude number at which the dilution factor 

rises sharply, since that determines the velocity required at the pro­

peller for the given conditions. Clearly, the 3-D simulation is superior 

to the 2-D simulation, and this Froude number is predicted better via 

the 3-D approach. 

Figure 11 illustrates that the dilution factor OF is a strong 

function of the flow-rate ratio Q*. Generally, release water quality 

improves with the increase in the value of Q*, a condition achieved with 

low release rates and high propeller flow rates. The figure shows 

the relationship found in both hydraulic laboratory model and computer 

simulations. Again, the 2-D model over-predicts the dilution factor 

whereas the 3-D model shows realistic results, especially at higher 

values of Q*, which are better for obtaining higher water quality 

in the release flow, 

The effect of changing the propeller diameter, but retaining 

the propeller flow rate Q* the same, is shown in Figure 12. Over-
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prediction with the 2-D approach was present as expected, The 3-D 

approach, however, show·s good agreement between predicted and experi­

mental evidence of the effect of normalized diameter D* on dilution 

factor DF. These and other results show that a value of D* = 0.211 

gives best results at this value of Q* = 2,6. At different values of 

Q*, different values of D* give optimum results (21). 

Transient behavior of the flowfield is exhibited in the vector 
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velocity plots and the three-dimensional representation of the vertical 

velocity at the thermocline (the interface). The plots are shown in a 

series of time-frames, using a time-interval of 2 seconds which is 

equ:ivalent to 40 time-steps. This two-second time-interval may be 

comprehended better when it is considered that the jet velocity v. = 
.J 

0.2134 m/s and the propeller height above the reservoir bottom h = 

0,42. With h/Vj = 1.968 s(the.time required for the jet to reach the 

bottom). Ei·ght plots are produced sta,rting with the first time-step 

to the final steady state solution (which corresponds to 16 seconds or 

320 time-steps). 

Figure 13 shows the first four frames of the laminar vector 

velocity plots. In the first frame, the fluid near the reservoir 

bottom is being affected by the presence of the propeller after as 

little as one time-step. Fluid in the free shear layer surrounding 

the jet shows further movement in the second frame. This movement 

continues to increase slowly in the third frame. Very little change 

is shown in the last four fra,mes in Figure 14. This indicates that 

the solution is approa,ching the fina.l steady state solution rapidly. 

Velocity vectors are plotted at the vertical x-y plane which is the 

pl~ne of symmetry in the flowfield. 



The same trend is shown in the three-dimensional velocity plots at 

the thermocline (interface between the top and bottom fluid layers), 

These plots represent the vertical velocity v plotted as a function 
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of x and z coordinates where the vertical coordinate is y. The plots 

(offering a bottom view of the vertical velocity at the interface) are 

shown in a series of time-frames, utilizing the same time-interval used 

for the vector velocity plots. The first four time-frames are displayed 

in Figure 15. The first frame exhibits initial jet plunge into the 

fluid showing the initial jet width or area, The second frame shows 

an increase of about 150 percent in the jet area indicating that the jet 

is spreading at the interface. As shown by the vector velocity plots, 

transient behavior in the last four frames,displayed in Figure 16 shows 

very little change. This is an indication of approaching the steady 

state solution. These three-dimensional velocity plots offer a view 

of the action generated by the propeller jet pentration in the fluid 

at the interface. 

5.1.3 Turbulent Predictions 

Thi:s section extends the three-dimensional laminar simulation to 

include turbulent mixing via the two-equations k-s turbulence model. 

The dilution factor OF (release water quality) is found to be a 

function of turbulent viscosity ~t' densimetric Froude number Frd, non­

dimensional thermocline height ZT' nondimensional flow rate Q*, 

nondimensional propeller diameter D*, horizontal distance K*, and 

depth L * .. Results are now discussed about the application of the 

present 3-D turbulent code to this problem with the following base values 

of the parameters: Frd;::; 2.0, D*;: 0.131, K*;: 0.211, L* = 0.211, 
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Q* = 2.6, and ZT = 0.6. These values are taken so as to represent the 

same conditions as the available experimental data (80}. 

The rate of progress of the transient computations toward the 

steady state solution is illustrated in Figure 17. Prediction of 

the dilution factor OF as a function of iteration time is shown for both 

a laminar and a turbulent flow with k-E model. The latter approach is 

closer to the experimental evidence. It may also be noted that steady 

state conditions have established themselves in approximately 17 

seconds (corresponding to about 320 forward steps). 

In Figure 18,the dilution factor OF is shown to be a strong 

function of the densimetric Froude number Frd in both predictive 

and laboratory data. The above base values are retained for the other 

parameters. The general result is that release water quality (fraction 

of epilimnetric (top) water in the exit stream) increases with higher 

values of the Froude number, such conditions bei-ng achieved with higher 

jet velocities from the propeller and/or a lower degree of stratifica-

tion in the lake. The figure clearly shows the difference between the 

use of a constant eddy viscosity model and the k-E turbulence model: 

the former under-predicting the release water quality and the latter 

giving more accurate predictions when compared to the experimental 

data, From the designer's view, the important result is the Froude 

number at which the dilution factor rises sharply, since that determines 

the velocity required at the propeller for the given conditions. 

Clearly,the 3-D turbulent simulation is superior to the constant eddy 

viscosity model, and this Froude nUillber is predicted better via this 

approach. The computations were performed with the standard k-E turbu­

lence model for the mixing. The influence of buoya-ncy was via the buoyancy 
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term ;n the vertical momentum equation. No attempt has been made 

to include the effects of buoyancy on the generation rates of the 

turbulence parameters k and s, a practice advocated elsewhere (63, 83), 

since there is as yet no adequate generalization of the rather meagre 

evidence, 

The relationship between the dilution factor OF and the flow 

rate ratio Q* is represented in Fig. 19. The figure shows the dilution 

factor strongly dependent upon Q* for Q* < 0, 6 whereas Q* increases 

the release flow rate decreases. Comparison between Figure 19 and 

the corre·sponding laminar predictions in Figure 11 shows that the 

turbulence simulation gives a slightly better predictio~ at a high 

v~lue of Q* (move mixing). On the otherhand, the laminar simulation 

gives better predictions at lower values of Q* which indicates move 

entrainment and less mixing. 

The normalized propeller diamter D* effect on the dilution factor 

is shown in Fig. 20, Predictions compared with the laminar simulation 

in Figure 12.show better agreement with experiments at a low value 

of D*. On the other _hand, the laminar model gives much better· 

predictions at higher value of 0*. This can be explained by the fact 

that with the 1 a rge a rea for the jet (for higher va 1 ues of 0*) and 

since the propeller axis is at the same position, the resulting 

jet will be very close to the release structure and eventually to the 

release gate, This also indicates more entrainment than mixing since 

the large size of the jet will occupy much of the area between the 

jet axis and the release structure and eventually will displace the fluid 

in that area, Also, as indicated in the discussion of Figure 19 this 



emph~sis the fact that the turbulent. model performs better in cases 

involving more mixing and less entrainment and the opposite is true 

for the laminar model. 

The relation between the dilution factor DF and the normalized 

metalimnion location (thermocline or interface) ZT is shown in Figure 

21. The normalized metalimnion location ZT range is from 0 to 1.0. 

At a Zj value of zero,the fluid in the reservoir consists only of 

epilmnion water (top layer). On the other hand, when ZT has the 

value of 1.0 the reservoir fluid will contain hypolimion water (bottom 

layer) only. This clearly indicates that the dilution factor will be 

unity in the first case (ZT = 0.0) because all the release fluid will 

be high quality water (epilmnion). In the second case (ZT = 1.0) the 

dilution factor will be zero because the release flow will consist of 

low quality water (hypolimnion) only. The figure shows that the dilu­

tion factor is a strong function of the metalmnion location ZT. The 

practical value observed in reservoirs for ZT is between 0.5 and 0.6. 
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Transient behavior of the flowfield is shown for the turbulent 

flow case in terms of vector velocity and 3-D velocity plots .. The 

plots are shown in a similar fashion to the laminar flow plots using 

the same number of frames and time-interval. Figure 22 shows the first 

four frames of turbulent vector velocity plots. Comparing the first 

frame with the laminar one (Figure 13), it is clear that the turbulent. 

jet does not affect the fluid as far as the reservoir bottom in the 

first time-step. 

The fact of the matter is that the jet barely affects the flow be­

neath the interface (thermocline). This can be explained by the fact that 

the turbulent jet has a higher viscosity than its laminar counterpart 
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and?.thus~spreads faster in the fluid and does not pentrate as far. 

Furthermore,the turbulent jet does not reach the reservoir bottom in the 

second frame,although it traveled significantly further than it did in 

the first frame. The turbulent jet does pentrate as far as the 

bottom in the third time-frame. The last four frames displayed in 

Figure 23 show more mixing taking place in the reservoir and around 

the Jet specially in the last two frames. 

The 3-D velocity plots for the turbulent prediction are presented 

for three cases of turbulence model variations: 

1. k-s turbulence model without the wall shear stress calculations. 

2. k-s turbulence model with the wall shear stress calculations 

used in the turbulence model only. 

3, k-s turbulence model with the wall shear stress calculations 

used in the turbulence model as well as the momentum equations. 

In the first case shown in Figures 24 and 25, where the only tur­

bulence introduced into the flowfield is by means of the propeller jet, 

the plots are very similar to the laminar simulation plots. Apart 

from the first frame in which the jet appears to spread faster than 

its laminar counterpart, the rest of the frames are almost identical to 

the laminar plots. 

The second case plots, shown in Figures 26 and 27, exhibita com­

pletely different behavior as compared to the first case and the lam­

inar plots. The first frame is similar to its first case counterpart, 

but advancing through the frames shows that the jet spreads faster. 

Also, the indication of mixing is present where velocities are 

negative (an indication of the flow going up) around the jet. Although 

the 3-D velocity plots is still showing more mixing around the jet in 



the last two time-frames,. the last frame is considered to be ·the 

steady st~te solution according to Fig. 17. 

The third case shown in Figures 28 and 29 is somewhat similar to 

the second case, although the negative velocities around the propeller 

are higher which indicates more mixing. This case, however, did not 

yield exactly a steady state solution.compared to the second where 
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the dilution factor reached a constant steady state value in Figure 17. 

The dilution factor in the third case was still decreasing after thirty 

seconds, The instability is generated by the amount of shear stress 

imposed near the wall in the momentum equation which results from the 

thick boundary layer near the wall, This thick boundary layer was 

unavoidable because of the uniform coarse grid used in the computations. 

The second case is the one used in the computations and it is also 

the one used to generate the vector velocity plots. 

5,1,4 Closure· 

The fully three~dimensional simulation represents a low-cost 

basic tool to show the influence of design parameters on local destratif­

ications in reservoirs with low-level release structures. Comparison 

with hydraulic models shows that this numerical simulation of the local 

destratification phenomenon is useful for the prediction of the dilution 

factor (released water quality}. The main dynamic effects are modeled 

adequately. The dilution factor is found to be a function of the 

densimetric Froude number, the ratio of propeller flow rate to the release 

flow rate,. the propeller diameter, the propeller distance from the 

release structure, and the metalimnion (interface} location. 
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5,2 Deflected Turbulent Jet 

A.n interesting three-dimensional problem arises when a turbulent 

jet enters normally into a uniform steady cross-flow. Figure 30 shows 

a schematic of the problem, which has previously b~en discussed (28), 

predicted l38) and experimentally investigated (84-87). Such problem 

configurations arise in chimney plumes, flow under a V/STOL aircraft, 

film cooling and dilution air mixing in combustor applications. Clearly, 

the problem is more complicated than corresponding free jet flows into 

quiescent surroundings, which are axisymmetric parabolic problems. 

Earlier predictions (38) utilized a proprietary three-dimensional 

implicit computer code to obtain steady state predictions. This sophis­

ticated code is more complicated to use than the present code. Moreover, 

it is not generally available~ Hence, the capability of the present 

straightforward explicit sol uti on scheme is now i 11 ustrated for this 

problem, 

5,2.1 Speciq,l Boundary Conditions 

The simulation is for the turbulent jet of inlet velocity vj' see 

Figure 30, Use is made of the vertical symmetry plane. A horizontal 

top plane is located 18 jet radii above the bottom plane. A grid 

system of 7 x 9 x 9 internal cells (in x,y,and z directions, respect­

ively) is used, Uniform steady crossflow is specified at the upstream 

plq,ne of the main inflow with velocity u;n• The usual zero normal 

gradients are taken at the exit plan~. Free slip boundary conditions 

are used on the top, bottom, and side planes. 
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5.2.2 Predictions 

Figure 31 shows the predicted velocity vectors in the yz-plane 

through x ~ 0. This gives a clear indication of the behavior, magnitude, 

and direction of the deflected jet. These predictions are for the jet 

to cross-flow velocity ratio R = uj/uin = 6, and the standard values in 

the k-s turbulence model are used (4). Velocity vector plots of this 

type allow the jet trajectory(the line joining points of maximum vel­

ocity) to be determined. 

Experimental work for comparison purposes include: Jordinson 

(84), Keffer and Baines (85){who studied the structure of turbulence), 

Ramsey and Goldstein {86) (who presented velocity and temperature plots 

in cross-sectional and symmetry planes), and Chassaing-et al (87) (who 

studied both cylindrical and co-axial jets). The predicted effect of 

jet to cross-flow velocity ratio R on jet trajectories is illustrated 

in Figure 32 with appropriate experimental data for comparison. 

Earlier predictions (38) are very much in agreement with the present 

study as shown in the figure. Effect of grid size on the solution is 

illustrated in Figure 33 for a jet to cross-flow velocity ratio R = 2. 

Predictions made with larger grid size (as expected) show better 

agreement with the experimental data than the small grid size predic­

tions. The difference between the two predictions, however, is 

relatively small (7 percent) and considering the high cost of 

using a large grid size (about 23 minutes of computer time compared to 

8 minutes for small grid size) the·smaller grid size may be considered 

as a more practical choice, Considering the scatter in the data, 

the quality of the predictions is very good, thus confirming that the 



main dynamic and turbulence roixing effects are modeled adequately in 

the present code. 

5.2.3 Closure 

The round turbulent jet emerging into uniform cross-flow requires 

a fully three-dimensional simulation for which one solution procedure 

is admirably suited. Comparison of predictions with experimental 
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data and earlie·r predictions shows that this 3-D simulation is useful 

for the prediction of the jet centerline location and velocity vectors. 

Predictions show, as expected, that the location of jet centerline is a 

strong function of the jet-to-cross-flow velocity ratio. 

5.3 Dilution Jets in Gas Turbine Combustors 

Dilution jets in gas turbine combustors is a design area which 

receives considerable attention during the design and development of 

combustors. Lateral jets are used to maintain a stable burning zone, 

dilute near-stoichiometric mixtures and to cool and evenly mix the 

products before introduction to the turbine as shown in Figure 34 (88). 

High temperature streaks in a combustor outlet traverse or a skewed 

radial temperature profile (hub oriented) are detrimental to turbine 

vanes.and blades (89}. Also with the advent of high temperature-rise 

combustors, the dilution mixing will become an increasingly more 

difficult problem. High temperature-rise combustors require an 

additional amount of air for combustion and linear cooling which 

in return reduces the amount of air available for the dilution process. 

Present design practices rely on extensive rig and engine develop­

ment testing in order to adjust the exit temperature traverse to meet 
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the demands of engine hot section durability, This development 

testing is guided by empirical design analysis and experience of de$ign 

engineers. These empirical design techniques, however, are becoming 

inadequate when used for predicting stringent temperature traverse 

requirement~ and low-pollution generating combustors, 

Earlier modeling of the dilutiori zone utilized analytical as well 

as computational techniques. A simple analytical model was used for 

predicting dilution jet trajectories inside a can combustor with zero 

swirl (89). Also the characteristic-time model (9.0) which is a semi­

empricial correlation for gas turbine emissions, ignition, and flame 

stabilization is considered as one of the successful models for 

modeling the dilution zone (91). These types of models form the basis of 

the most current preliminary design systems. 

Computational or numerical models which provide 3-0 predictions 

of velocities, pressure, temperatures, species, and concentratins are 

relatively new. Examples of application of these type of models have 

been presented in the literature (40, 42). A good review of the 

application of these models is also available (1). These 3-0 codes, 

however, are not released for the general use. Moreover, they are more 

complicated to use than the present code and will be a major obstacle 

for users with little experience is computational fluid dynamics. 

5.3,.1, Special BotmdarY Conditions 

The finite-difference grid employed here exhibits 10 x 10 x 7 

internal cells in the z, r, and e directions, with velocity components 

v, u? and w, respestively. The three-dimensional grid system is shown 

in Figure 2, The dilution jet is located one diameter downstream of the 



inlet. The combustor is 0.6 m in length and 0.3 m in diameter. 

Also, since the flow pattern repeats itself in each 60 deg. sector 
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in the combustor cross section, the grid system (or the solution domain) 

covers only one 60 degrees sector. 

The e-boundary conditions of the solution domain are cyclic ones 

lperiodic). That is the given boundary condition will be that all the 

e-planes separated by multiples of 60 degrees are corresponding planes 

with identical profiles. Thus the e-boundary conditions are handeled 

in a manner that preserve the cyclic status by letting the inelt pro­

file and gradient of the first e-plane equal the outlet profile and 

gradient of the last e-plane. This periodic boundary condition applies 

not only to velocities and pressure, but also to all the other 

dependent variables. Inlet axial velocity v0 has the value of 10.0 m/s 

which corresponds to a Reynolds number based on inlet diameters of 105. 

5.3~2 Predictions 

Predictions were made using inlet velocity profiles based on mean 

flowfield measurements (71) for the axial velocity v and tangent veloc-
. 0 

ity w0 . Radial velocity u0 , however, is given the value of zero at the 

inlet. Predicted time-mean velocities are shown (with the radial scale 

stretched by a factor of two) for three cases: 

1. Nonswirling flow with and without a dilution jet (shown in 

Figure 35). 

2. Swirling flow with and without a dilution jet in a low Rey­

nolds number flow (shown in Figure 36). 

3. Swirling flow with and without a dilution jet in a high Rey-

nolds number flow (shown in Figure 38). 
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In the first case, shown ·in Figure .35(a), the velocity vectors are 

showing magnitude and direction in the e-plane for nonswirling flow 

without dilution, The predicted velocity vectors show the expected 

corner recirculation zone as a result of the sudden expansion. Figure 

35(b) illustrates the effect of the dilution jet with a jet-to-inlet 

velocity ratio of Lid/v0 = l. The predicted velocity vectors show the 

pentration and deflection of the dilution jet in the combustor. The 

amount of deflection corresponds to a jet to cross-flow velocity ratio R 

of 4 as shown in Figure 32 for cartesian coordinates. This is a result 

of the change in the chamber area which reduces the inlet velocity and 

makes the dilution jet to average axial velocity ratio close to 4. 

In the second case, velocity vectors for swirling flow with swirl 

vane angle e = 45° and zero dilution jet velocity are shown in Figure 

36(a). The figure shows a swirling low Reynolds number flow (Re = 8000) 

that exhibits the expected central and corner recirculation zones 

observed in experiments (71). The corresponding flow with a dilution jet 

that has a jet-to-inlet velocity ratio of 1.0 is shown in Figure 36(b). 

Both vector velocity plots show essentially the same pattern with the 

corner and central recirculation zones being present. The effect of 

swirl on the dilution jet pentration is shown in the latter vector 

velocity plot where the jet shows a shorter pentration than the zero 

swirl case. Earlier predictions for a low Reynolds number flow with 

a dilution jet-to-inlet velocity ratio of 1.0 is shown in Figure 37 

(40). The shown predictions are for a hot flow with single-phase, 

diffusion-controlled combustion, and 45° swirl vane angle. These pre­

dictions were made using a version of the TEACH code with a similar 

combustion chamber. Notice that there is no scale stretch in this 
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figure. Velocity vectors in the above mentioned figure exhibit the same 

trend shown previously in Figure.,36(b). 

In the third case, high Reynolds number swirling flow (Re = 105) 

with and without a dilution jet are shown in Figure 38. Figure 38(a) 

shows swirling flow with swirl vane angle¢~ 45° and a zero dilution 

jet velocity. The figure exhibits a larger recirculation zone at the 

axis (central), compared to the low Reynolds flow, but it shows little 

or no recirculation at the corner. This may be explained by the strong 

centrifugal effect which promotes a very large forward velocity near the 

wall and almost eliminates the corner region. Figure 38(b) shows a 

swirling flow with the same degree of swirl and a dilution jet-to-inlet 

velocity ratio of 1.0. The figure displays a similar pattern to Figure 

38(a) with little or no corner recirculation and a larger central recir­

culation zone. The dilution jet pentration is far less than low Reynolds 

number jet pentration, basically because of the strong centrifugal force 

which causes the jet additional deflection. Figure 39 shows velocity 

vectors with swirl and dilution and high Reynolds number flow in the 

seven 8-planes from K=l to K=7. The figure shows that the flow is by no 

means symmetric around the dilution jet plane, mainly because of the 

swirl velocity which tends to deflect the jet in the 8 direction. 

5.3.3 Closure 

Dilution jets in gas turbine combustors is a fully three-dimension­

al problem which must be simulated using cylindrical coordinates system. 

The developed prediction procedure represents a basic tool to show the 
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influence of design parameters on the dilution zone i'n combustors. 

Predicted results show the expected trends in the flow such as the size· 

of corner and central recirculation zones and dilution jet deflection. 

Comparison with earlier predictions shows that the quality of the 

predicted results is very good; thus, confirming that the main dynamic 

and the turbulence mixing effects are modeled adequately. Discrepancy 

in predicted velocity profiles compared to the measured ones can be 

overcome by moving the downstream boundary condition away from the 

field of interest. 



CHAPTER VI 

CLOSURE 

6. 1 Cone 1 us ions 

A,-predict~on procedure for fully three-dimensional transient 

tu~sulent swirling flows has been developed. Based on the Los Alamos 

2-D SOLA ideas, the transient ·Reynolds equations of an incompressible 

fluid in cartesian or cylindrical coordinates are solved via their 

associated finite difference equations in terms of the primitive 

pressure velocity variables. Turbulence is simula-ted by means of the 

two-equation k-e: turbulence model. Species diffus-i-on anGI-buoy.a-ncy 

forces are included. The developed code is a simplified yet effective 

prediction procedure for use by persons with little or no experience in 

computational fluid dynamics. The code thus represents a basic tool, 

to which user-oriented complexities and sophistications can easily be 

added as required. 

flow. 

Three applications of the code are presented: 

l. Local destratification near the release structure of a resevoir. 

2. The deflection of a jet entering normally into a uniform cross-

3. Dilution jets in gas turbine combustors, 

Predicted results of the three applications exhibit good agreement 

with available experimental data and earlier predictions (obtained using 

different codes), showing that a useful characterization of fully 
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three-dimensional turublent swirling flows is now available. 

6.2 Recommendations for Further Work 

Imprev-ernents and modifications to further enhance the code 

capability should be continued in several areas. F-irst; nonuniform 

grid Gapability could be added to the code to provide a finegrid 

for the boundary layer calculations near interesting flow regions 

and walls without increasing computer storage requireme-nts. Second, 

the range of applications could be broadened-even further by adding 

chem'i-c-a-r-rea-ction and compressible flow simulatiens toth·e code. 

This requires using the energy equations, the equafion of state, and 

species equations. I-t- would be _particularly useful for combustor 

applicati-ons. Third, pcrssible--us-e--of- an implicit solution algorithm 

should be investigated as an option in the code. This would be 

beneficial for stability reasons in transient cases. In steady state 

type applications, this would also reduce computer time requirements. 
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u 

v 

w 

m1 

k 

E: 

TABLE I 

SCHMIDT NUMBERS AND SOURCE TERMS 
TN THE GENERAL EQUATION (3. 1) 

()"¢ s¢ 

0 0 

- l.E. +_a_ au. 
l 

1 ax ax. (]Jeff~) 
l 

- l.J2. +_a_ au. 
l 

1 ax ax. (lJeff Ty) 
l 

- l.E. +_a_ au. 
l 

1 (]Jeff Tz) ax ax. 
l 

1 0 

1 G - CDps 

1.3 
2 (C1Gs - c2ps )/k 

- g(p - p ) 
1 

The rate of generation of k by the action of velocity gradients is 

taken as: 

au. au. au. 
G = lJ (-1 + ~) 1 

t ax. ax. ax. 
J l J 
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1 0 

u 1 

v 1 

w 1 

1 

k 1 

1.3 

TABLE II 

SCHMIDT NUMBERS AND SOURCE TERMS 
IN THE GENERAL EQUATION (3.3) 

0 

~eff [ l. aw + :!.._ + _CJ av 
- 2 ---r-- r ae r J Clz (~eff ~ ) 

+ ~eff [ r a (w/r) + 1. ~ J 
r ar r 38 

0 

The rate of generation of k by the action of velocity qradients is taken as: 
2 2 2 

G = { 2 ( av) + 2 (~) + 2 ( aw + .!:!.) ~t az Clr ra8 r 

2 2 2 } + (dV + dU) + (ClW + ~) + (~ + aw _ W ) 
Clr Clz dZ r(l8 rCJ8 ar r 
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Figure 5. Arrangement of Finite Difference. Variables Near the Wall. 
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Figure 6. Schematic of a Typical Propeller Pump and 
the Flowfield Produced Without Exit 
Flow ( 80). 
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Figure 7. Schematic of a Typical Propeller 
Pump and the Flowfield Pro­
duced with Exit Flow via a 
Low Level Release Structure 
of the Dam (20). 
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Figure 13. Velocity Vectors in zx-plane (at the Plane of 
Symmetry) Showing Magnitude and Direction of 
the Flow in the First Four Time Frames of 
the Laminar Predictions [Q* = 2.6, D* = 0. 131, 
Frd = 2.0, K* = 0 .. 211]. 
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Figure 14. Velocity Vectors in zx-plane (at the Plane of 
Symmetry) Showing Magnitude and Direction 
of the Flow in the Last Four Time Frames of 
the Laminar Predictions LO* = 2.6, D* = 
0.131, Frd = 2.0, K* = 0.211]. 
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Figure 22. Velocity Vectors in xz-plane (at the Plane of 
Symmetry) Showing Magnitude and Direction 
of the Flow in the First Four Time Frames 
of the Turbulent Predictions [Q = 2.6, D* = 
0.131, Frd = 2.0, K* = 0.211]. 
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Figure 23. Velocity Vectors in xz-plane (at the Plane of 
Symmetry) Showing Magntiude and Direction 
of the Flow in the Last Four Time Frames of 
the Turbulent Predictions [Q* = 2.6, D* = 
0.131, Frd = 2.0, K* = 0.211]. 
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Figure 35. Velocity Vectors Showing Magnirude and 
Directions with Swirl Vane Angle¢= oo 
and Dilution Jet Velocity: (a) ud = 0.0, 
(b) ud = v0 . 
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Figure 40, Flow Chart of the Computer 
Program ( 3). 
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This User•s Guide presents the important Fortram variables and 

defines them. It also gives a test case with the standard conditions 

used in order to demonstrate a sample run of the program. Changing the 

dimensions, number of cells, fluid properties, input velocities and 

their locations can be easily handled by changing the corresponding 

defined Fortran variables. Other changes such as considering a 

different geometry (that includes a sloping wall for example) require 

an alteration in the boundary condition section in the program. Such 

changes could be easily made by referring to the original SOLA report 

which provides specific instruction for boundary condition alterations. 

Higher velocity values (subsonic) could be accommodated easily in the 

code provided that the time-step is reduced by the same factor. 

The program output gives the velocity, pressure, mass fraction m1, 

and density values everywhere in the solution domain. The value of the 

dilution factor (in the first application) is given in the beginning 

of every cycle along with the time in seconds. The cycle [number of 

forward time-steps] and iterations [number of iterations for pressure and 

velocity correction at each time-step] are also given. It should be 

mentioned here that the steady state conditions have been obtained 

before computations cease at a cycle number of 300. 

A good indication of convergence is the iteration number. When it 

approaches a small value (close to one) this means that the flow is 

approaching steady state, as the momentum forward time-steps are then 



not dlsturbing the flowfield as measured by lack of mass continuity. 

The program's flow chart is shown in Figure 40. 

1. Local Destratification of Reservoirs 

Application 
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A description is given of the important points needed in order to 

use the first of the programs listed in Appendix D. 

1.1 Important Fortran Variables 

These parameter values are all supplied in the first part of the 

computer program in lines 1 to 32. 

IP Gives the propeller location in x-direction (measured from the 

Release structure) 

JP Gives the propeller location in they-direction 

KP Gives the propeller location in the z-direction (measured from 

the bottom). Used to specify propeller depth, L = (KMl-KP)~Z, 

m 

KR Gives Release Gate height, h = (KR-l)~Z,m 

JR Gives Release Gate width, w = (JMAX-JR)~y, m 

KIN Gives interface location, ZT = (KIN-l)~Z, m 

IBAR Gives length of the flow domain (IBAR)~X, m 

JBAR Gives width of the flow domain, (JBAR)~Y, m 

KBAR Gives total depth of the flow domain, (KBAR)~Z, m 

DELX Cell length, m 

DELY Cell height, m 

DELZ Cell width, m 
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VINITL Initial velocity of propeller, m/s 

QSTAR Flow rate ratio, Q* 

FRO Densimetric Froude number,. Frd 

1.2 Standard Conditions 

These conditions simulate a flowfield with (D* = .183 or D = 

0.089m), and corresponding to the standard case discussed in Section 5.1. 

IP 

JP 

KP 

JR 

KR 

KIN 

!BAR 

JBAR 

KBAR 

DELX 

DELY 

DELZ 

VINITL 

QSTAR 

FRO 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

3 

6 

8 

5 

2 

6 

7 

9 

5 

corresponding to K* = .211 

corresponding to L* = .211 

* corresponding to ZT = .6 

corresponding to H = 0.478 m 

0.07, m 

0.06, m 

0.04, m 

0.2134 initial velocity V0 = 0.2134 m/s 

2.6 

2.0 

2. Deflected Turbulent Jet Application 

A description is given of the important points needed in order to 

use the second of the programs listed in Appendix D. 



2.1 Important Fortran Variables 

DELX = cell length. m 

DELY = cell height, m 

DELZ = cell width, m 

IBAR = number of cells in x~direction 

JBAR = number of cells in y-direction 

KBAR = number of cells in z-direction 

JJET = J-index of the jet height 

KJET = K-index of the jet location in the z-direction 

IJET = I-index of the jet location in the x-direction 

IJETF 

VIS COS 

DEN 

sc 

RAT 

UJET 

UIN 

DELT 

= final cell of the jet in the z-direction 

= absolute laminar viscosity, N s/m2 

= density 

= Schmidt number 

= jet-to-cross flow ratio 

= jet velocity m/s 

= inlet cross flow velocity 

= time-step s 

2.2 Standard Conditions 

These conditions correspond to the standard case discussed in 

Section 5.2. 

DELX = 0.02 m 

DELY = 0.015 m 

DELZ = 0.01 m 

IBAR = 9 
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JBAR = 9 

KBAR = 7 

JJET = 
KJET = 8 

IJET = 5 

IJETF = 5 

VIS COS 1. 983 X 1 o- 5 N 
2 = s/m 

DEN = 1.2 Kg/m 3 

sc = 1.0 

RAT = 6.0 

UIN = 0. l m/s 

DELT = 0.05 s 

3. Dilution Jets in Gas Turbine 

Combustors Application 

A description is given of the important points needed in order to 

use the third of the programs listed in Appendix D. 

3.1 Important Fortran Variables 

INl = I-index of first entrance plane, within calculation domain 

IN2 = I-index of last entrance plane, within calculation domain 

RIN = Inside radius, m 

VINELT 

RAT 

UDIL 

KDIL 

= Inlet velocity, m/s 

= Ratio of the dilution jet velocity to the inlet velocity 

= Dilution jet velocity, m/s 

= K-index of the dilution jet location in e-direction 
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JDIL ::; J-index of the dilution jet location in z-direction 

LFS = Index for swirl angle 

ITMAX ::; Maximum number of iteration 

CYCMAX = Maximum number of cycles (time-steps) 

DELR = Cell height in R-direction, m 

DELZ = Cell length in z-direction, m 

DELTH = Cell width in a-direction, m 

DELT ::; Time step, sec 

IBAR = Number of cells in R-direction 

JBAR = Number of cells in z-direction 

KBAR Number of ce 11 s in a-direction 

VIS COS = Absolute laminar viscosity, N s!m2 

DEN = Density, K 1m3 
g 

sc = Schmidt number 

3.2 Standard Conditions 

These conditions correspond to the standard case discussed in 

Section 5.3. 

INl = 2 

IN2 = 6 

RIN = 0.0, m 

VINLET = 10.0 m/s 

UDIL = lO.Om/s 

KDIL = 5 

JDIL = 6 

LFS = 2 

ITMAX = 60 
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CYCMAX = 300 

DELR = 0,05, m 

DELZ = 0.01, m 

DELTH = 0.14957 Radians 

IBAR = 10 

JBAR = 10 

KBAR = 7 

VIS COS 1. 983 X 10-5 N · 2 = s/m 

DEN = 1.2 K /m3 
g 

sc = 1.0 
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c 
(*********************************************************************** 
C>'<>'< 

C·'··'· ........ 
c ,.,,., 
C'"''' 
C •.••.• .... .. ~ 

C'~''' 
C'~''' 
C''d< 

c*~' 
C''c·l< 
C''d< 

C''"'' 
C'':''' 
C>'d< 

c~"'' 
C>'<>'< 

C>'<>'< 

C>'<>'< 

THREE-DIMENSIONAL PREDICTION TECHNIQUE FOR TURBULENT 
RECIRCULATING FLOWFIELDS IN CARTESIAN COORDINATES 

PH.D. THESIS 
BY 

AHMED A. BUSNAINA 

MAY, 1983 
SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING 

OKLAHOMA STATE UNIVERSITY 
STILLWATER , OKLAHOMA 

(*********************************************************************** 
C*********************************************************************** 
c 
C-------- APPLICATION 1 : LOCAL DESTRATIFICATION OF RESERVOIRS -------­
C 
C * "J'r -1:-;': .,., -;': -;': .,•: ,-: * ··k -k ,•c "k .,., .,•: ,., ·k;lc -Jc * -Jc ''c.,., -Jc * '" * ·lc*''c * -;': -Jc '" .,., .,., ·;': ·,': .,•: .,., ·;'-: .,., -;': .,., -;': .,., "'k -;'c * 'i'r -;': * .,., .,•, '" .,': * * -;':-;': "1: -;': -;': -J: '" .,., -J: ··k -;': .,•: 

C*********************************************************************** 
c 
c 
C-------- THIS PROGRAM SOLVES THREE DIMENSIONS NAVIER STOKES EQUATION. 
C--------THE FLUID SHOULD BE INCOMPRESSIBLE I.E. MACH NUM SHOULD NOT BE 
C-------- GREATER THEN .3. 
C--------THE DATA THAT SHOULD BE ENTERED IS, 
C DELX IS THE SIZE OF MESH IN X-D. 
C DELY IS THE SIZE OF MESH IN Y-D. 
C DELZ IS THE SIZE OF MESH IN Z-D. 
C IBAR NUMBER OF DEVISIONS IN X-D. 
C KBAR NUMBER OF DEVISIONS IN Z-D. 
C JBAR NUMBER OF DEVISIONS IN Y-D. 
C DELT IS THE TIME INCREMENT AND IT IS LIMITED BY STABULITY 
C IT SHOULD BE SMALLER MAX SIZE MESH OVER MAX VELOCITY. 
C TYPICALLY .25 TO .33 TIMES IT. 
C EPSI IS THE CONVERGENCE CRITERIA. 
C NU IS THE KINEMATIC VISCOSITY. 
C VI IS THE INITIAL VELOCITY IN Y-D. 
C UI IS THE INITIAL VELOCITY IN X-D. 
C WI IS THE INITIAL VELOCITY IN Z-D. 
C GX,GY,GZ ARE ACCELERATIONS. 
C ALPHA SHOULD BE BETWEEN 1. AND (DELT'''VELOCITY) /MESH SIZE. 
C--------- KM STANDS FOR YHE LOCATION OF THE SLICE TO BE PLOTTED. 
C---------- LC IS THE NUMBER OF CYCLE AT WHICH THE PLOTTER WILL BE CALLE 
c 
c 
c----------------------------------------------------------------------



c 
c 

INTEGER CYCLE 
REAL NU,MU,MUN 

DIMENSION U(10,11,10) ,V(10,11,10) ,W(10,11,10) ,P(l0,11,10), 
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ff UN (1 0 , 11 , 1 0) , VN (1 0 , 11 , 1 0) , WN (1 0 , 11 , 1 0) , S (1 0 , 11 , 10) , SN (1 0 , 11 , 1 0) 

c 

c 

c 

c 

ff , DEN (1 0 , 11 , 10) , S 2 (1 0 , 11 , 1 0) , B 1 (1 0, 11 , 1 0) 
DIMENSION IBLOCK(10) 

DIMENSION TK (1 0, 11 , 10) , TKN (1 0, 11 , 10) , E (1 0, 11 , 10) , EN (1 0, 11 , 10) , 
ff MU (10, 11, 10) , GG (10, 11, 10) ,MUN (10, 11, 10) 

DIMENSION YPLUSS(10,10),TAUS(10,10),XPLUSW(11,10),TAUW(11,10) 

DIMENSION XX(lO, 11,3), YY(lO, 11,3) ,X(330), Y(330) 

c---------------------------------------------------------------------­
c--------DATA CARDS.---------------------------------------------------

DELX=0.04 
DELY=0.06 
DELZ=0.04 
IBAR=7 
JBAR=9 
KBAR=5 
JIN=6 
JP=8 
KP=6 
IP=4 
JR=2 
KR=5 
CMU=0.09 
CD=l. 0 
C1=1. 44 
C2=1. 92 
SK=1.0 
SE=l. 21 
PK=0.4187 
CAPPA=PK 
ELOG=9.793 
URFVIS=0.7 
NU=1.3E-6 
VISCOS=1.3E-3 
VISMAX=142. o···viscos 
DEN1=1000.0 
REN=10000.0 
RLARGE=DEL Y"'' JBAR 
SC=l. 0 

c 0'~=0.131 
C FROUDE NUMBER = 2.0 

FRD=2.0 
DR=1. 0+ (0. 49) I (1.595>'<32. 2>'< (FRO) >'<>'<2) 
VINITL=0.2134 
QSTAR=2.6 
DEN2=DEN1>'•DR 



c 

c 

DATA U,UN,V,VN,W,WN,P /7700 .~ 0.0 I 
DATA EPSI,GX,GY,GZ,OMG,DZRO /1.E-3,0.0,-9.81,0.0,1.7,1.0/ 
ALPHA=0.6 
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c----------------------------------------------------------------------
c 

c 

c 

UI= 0.0 
VI=O.O 
WI=O.O 
PI=O.O 
UINT=0.2134 
ASR=DELY~'DELZ''<2. 0 
ASP=DELX"'DELZ 
RDX = 1/DELX 
RDY = 1/ DELY 
RDZ = 1/ DELZ 
IMAX=IBAR+2 
JMAX = JBAR + 2 
KMAX = KBAR + 2 
IM1=IBAR+1 
JM1=JBAR+1 
KM1=KBAR+1 
IM2=IBAR 
JM2=JBAR 
KM2=KBAR 

DELT=0.05 
DTMAX1=0.33*DELY/VINITL 
DTMAX2=0. 5'''DELX**2''DELY*''<21'DELZ1"''2/ ( (DELX*>'•2+DELY>'<>'<2+DELZ*'''2) *NU) 
ALF AMI= 1 • 5 >'<V INITL '''DEL T /DEL Y 
BETA=OMG/ (2*DELP'' (1/ (DELXi<>'<2) +1/ (DELY''',.'2) +1/ (DELZ''<>'<2))) 
WRITE(6,92)DELT,DTMAX1,DTMAX2,DR 
WRITE(6,93) ALPHA,ALFAMI 

C DELT REDUCTION FOR STABILITY 
c 

c 

IF(DELT.GT.DTMAX1) DELT=DTMAX1 
92 FORMAT(//,2X,'DELT = I ,E12.4,2X, 'DTMAX1 

@ E12.4, I DR= ',E12.6,/) 
93 FORMAT(/,2X, 'ALPHA= ',E12.4,2X, 'ALFAMI 

JNP=JIN+1 
QPROP=VINITL*ASP 
QREL=QPROP/QSTAR 
UOUT=QREL/ASR 

I ' E 12 • 4 ' 2X' I DTMAX2 

',E12.4,//) 

c----------------------------------------------------------------------

c 

T=O 
ITER=O 
CYCLE=O 

C. INITIAL FIELD VALUES. 
c 

DO 560 I=2,IM1 



DO 560 J=2,JM1 
DO 560 K=2,KM1 
U(I,J,K)=UI 
V (I, J, K) =VI 
P (I , J , K) =PI 

560 W(I,J,K)=WI 
c 
c 
c 
c 
c 
C ---------- INITIAL DENSITY AND MASS FRACTION FIELD 
c 

555 

556 
c 

DO 555 I=l,IMAX 
DO 555 J=l,JIN 
DO 555 K=l,KMAX 
S(I,J,K)=O.O 
S2 (I, J, K) = 1. 0 
DEN (I , J, K) =DEN2 
CONTINUE 
DO 556 I=l,IMAX 
DO 556 K=l,KMAX 
DO 556 J=JNP,JMAX 
S (I, J, K) = 1. 0 
S2(I,J,K)=O.O 
DEN(I,J,K)=DENl 
CONTINUE 

c----------- INITIAL TURB ENERGY & DISSIAPATION 
c 

c 

TIN=0.03*(UINT**2)*20 
EIN= (TIN''d•I. 5) /DELZ 
VISC= (UINT''RLARGE"•2. ''DEN 1) /REN 

IF(EIN.LT.l.E-6) EIN=l.E-6 

DO 557 I=l,IMAX 
DO 557 J=l,JMAX 
DO 557 K=l,KMAX 

TK (I, J, K) =TIN 
E(I,J,K)=EIN 
MU(I,J,K)=VISC 

557 CONTINUE 
c 
c 
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c--------------~-------------------------------------------------------
c 

ASSIGN 5000 TO KRET 
GOTO 2000 

1000 CONTINUE 

c 

ITER=O 
FLG=l. 0 
ASSIGN 3000 TO KRET 

c----------------------------------------------------------------------



c 

c 

c 

c 

c 

c 

c 

c 
c 

c 

c 

DO 1100 I=2, IM1 
DO 1100 J=2, JM1 
DO 1100 K=2,KM1 

TMXE= (MUN (I+ 1 , J , K) + MUN ( I , J , K) ) / 2 . 0 

TMXW= (MUN(I-1,J,K)+MUN(I,J,K))/2.0 

TMYN= (MUN(I,J+1,K)+MUN(I,J,K))/2.0 

TMYS= (MUN(I,J-1,K)+MUN(I,J,K))/2.0 

TMZO= (MUN(I,J,K+1)+MUN(I,J,K))/2.0 

TMZI= (MUN(I,J,K-1)+MUN(I,J,K))/2.0 

TMUN=(MUN(I+1,J,K)+MUN(I,J,K)+MUN(I+1,J+1,K)+MUN(I,J+1,K))/4.0 
TMUS=(MUN(I,J,K)+MUN(I+1,J,K)+MUN(I,J-1,K)+MUN(I+1,J-1,K))/4.0 
TMUO=(MUN(I,J,K+1)+MUN(I+1,J,K)+MUN(I+l,J,K+1)+MUN(I,J,K))/4.0 
TMUI=(MUN(I,J,K)+MUN(I+1,J,K)+MUN(I,J,K-1)+MUN(I+1,J,K-1))/4.0 
TMVE=(MUN(I,J,K)+MUN(I+1,J,K)+MUN(I+1,J+1,K)+MUN(I,J+1,K))/4.0 
TMVW=(MUN(I,J,K)+MUN(I,J+1,K)+MUN(I-1,J,K)+MUN(I-1,J+1,K))/4.0 
TMVO= (MUN (I, J ,K) +MUN (I, J ,K+1)+MUN (I, J+1 ,K) +MUN (I, J+1 ,K+1)) /4.0 
TMVI=(MUN(I,J,K)+MUN(I,J+1,K)+MUN(I,J+1,K-1)+MUN(I,J,K-1))/4.0 
TMWE=(MUN(I,J,K+1)+MUN(I,J,K)+MUN(I+1,J,K)+MUN(I+1,J,K+1))/4.0 
TMWW=(MUN(I,J,K+1)+MUN(I,J,K)+MUN(I-1,J,K)+MUN(I-1,J,K+1))/4.0 
TMWN=(MUN(I,J,K)+MUN(I,J,K+1)+MUN(I,J+1,K)+MUN(I,J+1,K+1))/4.0 
TMWS=(MUN(I,J,K)+MUN(I,J,K+1)+MUN(I,J-l,K)+MUN(I,J-1,K+1))/4.0 
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DVXY=(TMUN*(VN(I+1,J,K)-VN(I,J,K))-TMUS*(VN(I+1,J-1,K)-VN(I,J-1,K 
1 )))*RDX*RDY 

DWXZ= (TMUO'' (WN (I+ 1, J, K) -WN (I, J, K)) -TMUI* (WN (I+ 1, J, K-1) -WN (I, J, K-
1 1))) '''RDX*RDZ 

DUYX= (TMVE~' (UN (I, J+ 1, K) -UN (I, J, K)) -TMVW''' (UN (I-1, J+ 1, K) -UN (I-1, J, 
1 K) ) ) '''RDY'''RDX 

DWYZ= (TMVO''' (WN (I, J+ 1, K) -WN (I, J, K)) -TMVI~' (WN (I, J+ 1, K-1) -WN (I, J, K-
2 1) ) ) *RDY'''RDZ 

DUZX= (TMWE~' (UN (I, J ,K+ 1) -UN (I, J, K)) -TMWW''< (UN (I-1, J, K+1) -UN (I-1, J, 
2 K) ) ) *RDZ ~'RDX 

DVZY= (TMWN1< (VN (I, J, K+ 1) -VN (I, J, K)) -TMWS''' (VN (I, J-1, K+ 1) -VN (I, J-1, 
2 K))) 1'RDZ*RDY 

VISX=(RDX**2*(TMXE*(UN(I+1,J,K)-UN(I,J,K))-TMXW*(UN(I,J,K)-UN(I-1 
2 , J, K))) "'2. +RDY**2* (TMYN''< (UN (I, J+ 1, K) -UN (I, J ,K)) -TMYS'' (UN (I, J, K)-
3 UN (I, J-1, K))) +DVXY+RDzM•Z* (TMZO''< (UN (I, J ,K+1) -UN (I, J, K)) -TMZP'< (UN ( 
4 I,J,K)-UN(I,J,K-1)))+DWXZ)/DEN1 

FUX = RDX/4''' ((UN(I,J,K) +UN(I+1,J,K))•'<>'<2 
1 +ALPHA'''ABS (UN (I, J, K) + UN (I+1, J, K)) ,., ( UN (I, J, K) -UN (I+1, J, K)) 
2 - (UN(I-1, J ,K) +UN(I, J ,K)) •':*2 
3 -ALPHA,., ABS(UN(I-1,J,K)+UN(I,J,K))'''(UN(I-1,J,K)- UN(I,J,K))) 

FUY=RDY/4''< ( (VN (I, J ,K)+VN( I+1, J ,K)) 1< (UN (I, J ,K)+UN(I, J+1 ,K)) 
1 +ALPHA >'<ABS (VN (I, J ,K) +VN (1+1 ,_J ,K)) ~< ( UN (I, J ,K) -UN (I, J+1 ,K)) 



c 

c 

c 

c 

2 -(VN(I ,J-l,K)+VN( I+l,J-l,K))* (UN(I,J-l,K)+UN(I,J,K)) 
3 -ALPHA1' ABS (VN(I,J-l,K)+VN(I+l,J-l,K)) 
4 ,., ( UN ( I , J -1 , K) - UN (I , J , K) ) ) 

FUZ = RDZ/4*(( WN(I,J,K) +WN(I+l,J,K))*(UN(I,J,K)+UN(I,J,K+l)) 
1 + ALPHA1'ABS(WN(I,J,K)+WN(I+l,J,K))'''(UN(I,J,K)-UN(I,J,K+l)) 
2 -(WN(I,J,K-1) +WN(I+l,J,K-l))'''(UN(I,J,K-1) + UN(I,J,K)) 
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3 -ALPHA'''ABS(WN(I,J,K-1) +WN(I+l,J,K-1))'''( UN(I,J,K-1)-UN(I,J,K))) 

VISZ= (RDXH2'" (TMXE''' (WN (I+l, J, K) -WN (I, J, K)) -TMXW''' (WN (I, J, K) -WN (I-
1 1, J, K))) +DUZX+RDY>'<i'2''' (TMYN"' (WN (I, J+l, K) -WN (I, J, K)) -TMYS"' (WN (I, J, K 
2 ) -WN (I, J-1, K))) +DVZY+RDZ>h''2"' (TMZO* (WN (I, J, K+ 1) -WN (I, J, K)) -TMZI* ( 
3 WN (I, J, K) -WN (I, J, K-1))) '''2.) /DEN! 

FWZ=RDZ/4 * ( (WN(I,J,K) +WN(I,J,K+l)) ''"''2 
1 +ALPHA i: ABS( WN(I,J,K) +WN(I,J,K+l)) ,., ( WN(I,J,K) 
2 -WN(I,J,K+l)) 
3 -( WN(I,J,K-1) +WN(I,J,K)) >'<>'<2 
4 -ALPHA ,., ABS( WN(I,J,K-1) +WN(I,J,K)) '''(WN(I,J,K-1) 
5 -WN(I,J,K) ) ) 

FWX= RDX/4'" ((UN (I, J ,K) +UN (I, J ,K+l)) >: (WN (I, J ,K) +WN (I+l, J ,K)) 
1 +ALPHA "'ABS( UN(I,J,K) +UN(I,J,K+l)) * (WN(I,J,K) 
2 -WN(I+l,J,K) ) 
3 -(UN(I-l,J,K) +UN(I-l,J,K+l) ) 1'(WN(I-l,J,K) +WN(I,J,K)) 
4 -ALPHA '''ABS( UN(I-l,J,K) +UN(I-l,J,K+l) ) ,., 
5 (WN(I-l,J,K) -WN(I,J,K) ) ) 

FWY=RDY/4 ,., ((VN(I,J,K)+VN(I,J,K+l))'''(WN(I,J,K) + WN(I,J+l,K)) 
1 +ALPHA 1'ABS( VN(I,J,K) +VN(I,J,K+l) ) '''( WN(I,J,K) 
2 -WN(I,J+l,K) ) . 
3 -( VN(I,J-l,K) +VN(I,J-l,K+l) )'''(WN(I,J-l,K) +WN(I,J,K) ) 
4 -ALPHA "'' ABS ( VN(I,J-l,K) +VN(I,J-l,K+l) ) 1' 

5 ( WN(I,J-l,K) -WN(I,J,K) ) ) 

VISY= (RDX'"''•2>'' (TMXE1' (VN (I+ 1, J, K) -VN (I, J, K)) -TMXW''' (VN (I, J, K) -VN (I-
1 1, J, K))) + DUYX + RDY''<>'•2* (TMYN''' (VN (I, J+ 1, K) -VN (I, J, K)) -TMYS"' 
2 (VN(I,J,K)-VN(I,J-l,K)))>'< 2. + RDZ'"'''2>'' (TMZO''' (VN(I,J,K+l)-
3 VN(I,J,K))-TMZI* (VN(I,J,K)-VN(I,J,K-1)))+ DWYZ )/DEN! 

FVZ= RDZ/4 '" ((WN(I,J,K) + WN(I,J+l,K)) ,., ( VN(I,J,K) 
l+VN(I,J,K+l) )+ALPHA '''ABS( WN(I,J,K) +WN(I,J+l,K)) '''(VN(I,J,K) 
2 -VN(I,J,K+l))- ( WN(I,J,K-1) +WN(I,J+l,K-1)) "'(VN(I,~,K-1) 
3 +VN(I,J,K)) -ALPHA'" ABS( WN(I,J,K-1) +WN(I,J+l,K-1) )''' 
4 ( VN (I , J , K -1) - VN (I , J , K) ) ) 

FVX = RDX/ 4 '''((UN(I,J,K) + UN(I,J+l,K))'''(VN(I,J,K )+VN(I+l,J,K)) 
1 +ALPHA 1'ABS(UN(I,J,K) +UN(I,J+l,K))'"(VN(I,J ,K)-VN(I+l,J,K)) 
2 -(UN(I-l,J,K)+UN(I-1, J+l,K))'"(VN( I-l,J,K)+ VN(I,J,K)) 
3 - ALPHA"'ABS(UN(I-l,J,K) +UN(I-l,J+l,K)) >'<(VN(I-l,J,K)-VN(I,J,K)) 
4 ) 

FVY = RDY/4*((VN(I,J,K) +VN(I,J+l,K))**2 
1 + ALPHA*ABS(VN(I,J,K)+VN(I,J+l,K))"'( VN(I,J,K) -VN(I,J+l,K)) 
2. -(VN(I,J-l,K)+VN(I,J,K) )*1'2 
3 -ALPHA'"ABS(VN(I,J-l,K) +VN(I,J,K))''(VN (I,J-l,K) -VN(I,J,K))) 

FMX= (UN (I, J, K) ,., (SN (I, J, K) +SN (I+l, J ,K)) +ALPHA'''ABS (UN (I, J ,K)) * 
1 (SN(I,J,K)-SN(I+l,J,K))-UN(I-l,J,K)*(SN(I-l,J,K)+SN(I,J,K))-
2 ALPHA'''ABS (UN (I-1, J, K)) ,., (SN (I-1, J ,K) -SN (I, J ,K))) / (2. "'DELX) 



c 

c 

c 

FMY= (VN (I, J, K) ,., (SN (I, J, K) +SN (I, J+ 1, K)) +ALPHA'''ABS (VN (I, J, K)) ~' 
1 (SN(I,J,K)-SN(I,J+l,K))-VN(I,J-l,K)*(SN(I,J-l,K)+SN(I,J,K))-
2 ALPHA'''ABS (VN (I' J-1 ,K)) '1: (SN(I' J-1 ,K)-SN(I, J ,K))) I (2. '''DELY) 

FMZ= (WN (I, J ,K) ,., (SN (I, J, K) +SN (I, J, K+l)) +ALPHA~'ABS (WN (I, J, K)) ,., 
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1 (SN(I,J,K)-SN(I,J,K+l))-WN(I,J,K-l)*(SN(I,J,K-l)+SN(I,J,K))-ALPHA 
2 '''ABS (WN(I' J ,K-1)) ,., (SN(I' J ,K-1)-SN(I' J ,K))) I (2. '''DELZ) 

VIMX= (RDX*'~2''' (TMXE'" (SN (I+ 1, J, K) -SN (I, J, K)) -TMXW''' (SN (I, J, K) -
1 SN (I-1, J, K))) +RDY*~'2~' (TMYN1' (SN (I, J+ 1, K) -SN (I, J, K)) -TMYS* (SN 
2 (I, J, K) -SN (I, J-1, K))) +RDZ*'''2''' (TMZO'" (SN (I, J, K+ 1) -SN (I, J, K))-
3 TMZI''' (SN (I, J, K) -SN (I, J ,K-1)))) I (DEN! >''SC) 

C IF(I.EQ.2) GO TO 1200 
C IF(J.EQ.2) GO TO 1200 
c 

1200 

c 

c 

DVX=((VN(I,J,K)+VN(I+l,J,K)+VN(I,J-l,K)+VN(I+l,J-l,K)) -
1 (VN(I,J,K)+VN(I,J-l,K)+VN(I-l,J,K)+VN(I-l,J-l,K)))I 
2 (4. *DELX) 

DUY=((UN(I,J,K)+UN(I,J+l,K)+UN(I-l,J+l,K)+UN(I-l,J,K)) -
1 (UN(I,J,K)+UN(I,J-l,K)+UN(I-l,J-l,K)+UN(I-l,J,K))) I 
2 (4. >'<DELY) 

DWY= ( (WN (I , J, K) +WN (I , J + 1 , K) +WN (I , J + 1, K -1) +WN (I, J, K -1)) -
1. (WN(I,J,K)+WN(I,J,K-l)+WN(I,J-l,K)+WN(I,J-l,K-1))) I 
2 (4.'~DELY) 

DVZ=((VN(I,J,K)+VN(I,J,K+l)+VN(I,J-l,K)+VN(I,J-l,K+l)) -
1 (VN(I,J,K)+VN(I,J-l,K)+VN(I,J-l,K-l)+VN(I,J,K-1))) I 
2 ( 4. '''DELZ) 

DUZ=((UN(I,J,K)+UN(I,J,K+l)+UN(I-l,J,K)+UN(I-l,J,K+l)) -
1 (UN(I,J,K)+UN(I-l,J,K)+UN(I-l,J,K-l)+UN(I,J,K-1))) I 
2 (4. >'<DELZ) 

DWX=((WN(I,J,K)+WN(I+l,J,K)+WN(I+l,J,K-l)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-l)+WN(I-l,J,K-l)+WN(I-l,J,K))) I 
2 ( 4 • '''DELX) 

1 
2 
3 

GG(I,J,K) = MUN(I,J,K)'" (2. 1'(((UN(I,J,K)-UN(I-l,J,K))IDELX)>'<>'<2 + 
( (VN (I, J, K) -VN (I, J-1 ,K)) IDELY) >'<>'<2 + ( (WN (I, J ,K) -WN (I, J, 
K-1)) IDELZ) '"'''2) + (DVX+DUY) >'<>'<2 + (DWY+DVZ) >'d<2 + 

(DUZ+DWX) ~dc2 ) 
VISK=((RDX''"''2''' (TMXE''' (TKN(I+l,J,K)-TKN(I,J,K)) - TMXW''' ( 

1 TKN(I,J,K)-TKN(I-l,J,K))) + RDY*'''2''' (TMYN''' (TKN(I,J+l,K) -
2 TKN(I,J,K)) -TMYS'" (TKN(I,J,K)-TKN(I,J-l,K))) + RDZ**2''' 
3 (TMZO"' (TKN(I,J,K+l)-TKN(I,J,K))-TMZP'' (TKN(I,J,K)-TKN 
4 (I,J,K-l))))ISK)IDENl 

SORKl=DEN(I,J,K)*EN(I,J,K)IDENl 
SORK= GG(I,J,K)IDENl 
SORK2= 1. O+DELT ;, DEN (I, J ,K) 1'EN{I, J, K) I (TKN (I, J, K) *DEN!) 
VISK=VISK+SORK 

FKX= (UN(I,J,K) 1'(TKN(I,J,K)+TKN(I+l,J,K)) +ALPHA,., ABS 
1 (UN(I,J,K))'''(TKN(I,J,K)-TKN(I+l,J,K))- UN(I-l,J,K) * 
2 (TKN(I-l,J,K)+TKN(I,J,K))- ALPHA,., ABS(UN(I-l,J,K)) ,., 
3 (TKN(I-1 'J ,K) -TKN(I' J ,K))) I (2. '"DELX) 

FKY= (VN (I, J, K) ,., (TKN (I, J ,K) +TKN (I, J+ 1, K)) + ALPHA "'ABS 



c 

1 ( VN (I , J , K) ) ~' ( TKN (I , J , K) - TKN (I , J + 1 , K) ) - VN ( I , J -1 , K) ,., 
2 (TKN(I,J-l,K)+TKN(I,J,K)) -ALPHA 1• ABS(VN(I,J-1,K)) 1< 

3 (TKN (I' J-1 ,K) -TKN (I' J ,K))) I (2. "'DELY) 
FKZ= (WN(I,J,K)'''(TKN(I,J,K)+TKN(I,J,K+l)) +ALPHA,., ABS 

1 (WN(I,J,K))>'< (TKN(I,J,K)-TKN(I,J,K+l))- WN(I,J,K-1) .,., 
2 (TKN(I,J,K-l)+TKN(I,J,K)) -ALPHA,., ABS(WN(I,J,K-1)) .,., 
3 (TKN(I,J,K-1)-TKN(I,J,K)))/(2.*DELZ) 

C CALCULATE NEW TIME VALUES. 
c 

U(I,J,K) = UN(I,J,K) +DELP''(RDX1'(P(I,J,K) -P(I+l,J,K)) 
1 + GX + VISX - FUX -FUY -FUZ) 

V (I, J, K) =VN (I, J ,K) +DELI>'' (RDY"' (P (I, J, K) -P (I, J+l, K)) /DEN! +GY'~ 
1 (DEN(I,J,K)-DENl)/DENl-FVX-FVY-FVZ+VISY) 

W(I,J,K) = WN(I,J,K) + DELT*(RDZ .,., (P(I,J,K) -P(I,J,K+l)) 
1 +GZ -FWX -FWY -FWZ +VISZ) 

TK(I,J,K) =(TKN(I,J,K) +DELI'' (-FKX-FKY-FKZ +VISK))/SORK2 
C WRITE(6,37) I,J,K,SORK,SORKl,SORK2,VISK,TK(I,J,K) 

FKSUM=FKX+FKY+FKZ 
C WRITE(6,39) I,J,K,FKX,FKY,FKZ,FKSUM 
C IF(TK(I,J,K).LT.O.O) TK(I,J,K)=TIN 

IF(TK(I,J,K).LT.l.E-3) TK(I,J,K)=l.E-3 
c 

c 

c 
C37 
C39 
c 

VISOLD=MUN(I,J,K) 
IF(EN(I,J,K).LT.l.E-3) EN(I,J,K)=1.E-3 
MU (I, J, K) = (CMU'~''DEN (I, J, K) .,., (TKN (I, J, K)) ""~2) /EN (I, J, K) + VISCOS 
MU (I, J, K) =URFVIS'''MU (I, J, K) + (1. -URFVIS) '~VI SOLD 

IF(MU(I,J,K) .LT.VISC) MU(I,J,K)=VISC 
IF(MU(I,J,K).GT.VISMAX) MU(I,J,K)=VISMAX 

S (I, J ,K) =SN (I, J ,K) +DELT7' (-FMX-FMY-FMZ+VIMX) 
IF(CYCLE.EQ.l) S(I,J,K)=SN(I,J,K) 
S2(I,J,K)=l.O-S(I,J,K) 
DEN(I,J,K)=S(I,J,K)*DENl+S2(I,J,K)*DEN2 
B 1 (I, J, K) =GY"' (DEN (I, J, K) -DEN!) /DEN! 

FORMAT(1X,3(I2,1X),5(E14.6)) 
FORMAT(1X,3(I2,1X), 'CONV IN X,Y,Z',4(E14.6)) 

1100 CONTINUE 
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c----------------------------------------------------------------------
c 
2000 CONTINUE 
c 
c 

c 

c 

QS=O.O 
QS2=0.0 

DO 551 J=2,JR 
DO 551 K=KR,KM1 

QS=QS+S (2, J, K) '''DELZ"'DELY'''UOUT 
QS2=QS2+S2 (2, J, K) *DELZ'''DELY*UOUT 

551 CONTINUE 



c 

c 

AT= (KBAR.,.'DELZ+IBAR''<DELX) "' (JM1-JIN) >'<DELY 

AB= (KBAR'<DELZ+IBAR*DELX) '" (JIN-1) "'DELY 
UT=QSIAT 
UB=QS2/AB 

c 
DENAC= (QS'''DEN1 +QS2''<DEN2) I ( (KMAX-5) .,., (JR-1) >''DELY'''DELZ'''UOUT) 

DF=(DENAC-DEN2)I(DEN1-DEN2) 
·c 
c 
C ===========BOUNDARY CONDITIONS.===================== 
c 
C VERTICAL 
C X - Y PLANE 
c 

DO 20 J=1,JMAX 
DO 20 I=1,IMAX 

c 
c 
c 
c 

------ END PLANE -- FREE SLIP K=1 

U(I,J,1)=U(I,J,2) 
V(I,J,1)=V(I,J,2) 
S(I,J,1)=S(I,J,2) 
TK(I,J,1)=TK(I,J,2) 

C TK(I,J,1)=0.0 

c 
c 
c 
c 

c 

20 
c 
c 
c 

E(I,J,1)=E(I,J,2) 
MU(I,J,1)=MU(I,J,2) 

SYMMETRY PLANE FREE SLIP 

W(I,J,KM1)=0.0 
W(I,J,KMAX)=W(I,J,KM1) 
U(I,J,KMAX)=U(I,J,KM1) 
V(I,J,KMAX)=V(I,J,KM1) 
S(I,J,KMAX)=S(I,J,KM1) 
TK(I,J,KMAX)=TK(I,J,KM1) 
TK(I,J,KMAX)=O.O 
E(I,J,KMAX)=E(I,J,KM1) 
MU(I,J,KMAX)=MU(I,J,KM1) 

CONTINUE 

Y - Z PLANE 

DO 21 J=1,JMAX 
DO 21 K=1,KMAX 
S ( 1, J, K) =S (2, J ;K) 
TK(1,J,K)=TK(2,J,K) 

FREE SLIP 

C TK(1,J,K)=O.O 

K=KMAX 

I=l THE DAM WALL 

C E (2, J, K) = ( ( (CMU.,.'CD) >'<>'co. 75) >'<TK (2, J, K) , . .,., 1. 5) I (CD'''PK''<DELX'''O. 5) 
E(1,J,K)=E(2,J,K) 
MU(1,J,K)=MU(2,J,K) 
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c 

W(1,J,K)=W(2,J,K) 
V(l,J,K)=V(2,J,K) 

U (1 , J, K) =0. 0 
21 CONTINUE 

C HORIZONTAL 
C X - Z PLANE 
c 

c 
c 
c 

DO 22 I=1,IMAX 
DO 22 K=1,KMAX 

TOP FREE SLIP 

V(I,JM1,K)=O.O 
V(I,JMAX,K)=V(I,JM1,K) 
U(I,JMAX,K)=U(I,JM1,K) 
W(I,JMAX,K)=W(I,JM1,K) 
S(I,JMAX,K)=S(I,JM1,K) 
TK (I, JMAX,K) =TK (I, JM1,K) 

C TK(I,JMAX,K)=O.O 
E(I,JMAX,K)=E(I,JM1,K) 
MU(I,JMAX,K)=MU(I,JM1,K) 

J=JMAX 

c 
c 
c 

---- BOTTOM -- FREE SLIP 

V(I,1,K)=O.O 
U(I, 1,K)=U(I,2,K) 
W (I, 1, K) =W (I, 2, K) 
S (I , 1 , K) = S (I , 2 , K) 
TK(I,1,K)=TK(I,2,K) 

C TK(I,1,K)=O.O 

]=1 

c E (I, 2, K) = c c (cMu,··cD) ''"'•o. 75) '''TK (I, 2, K) ,..,.,1. 5) 1 CcD*PK'''DELY'''O. 5) 
E(I,1,K)=E(I,2,K) 
MU(I,1,K)=MU(I,2,K) 

22 CONTINUE 
c 
C PROPPELER B.CS. 
c 

c 

c 

JPM1=JP-1 

DO 27 K=KP,KM1 
DO 27 I=IP,4 
U(I,JP,K)=O.O 
V(I,JP,K)=-VINITL 
V(I,JPM1,K)=-VINITL 
W(I,JP,K)=O.O 
TK(I,JP,K)=0.03*(VINITL**2)*20.0 
E(I,JP,K)~(TK(I,JP,K)**1.5)/DELZ 

27 CONTINUE 

C OUTLET FLOW B.CS. 
c 

DO 30 J=2,JR 
DO 30 K=KR,KM1 
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c 

U (1, J ,K) =-UOUT 
V (1, J, K) =0. 0 
W(l,J,K)=O.O 

30 CONTINUE 

C INLET ~OUNDARY CONDITIONS 
c 

c 

c 

c 
c 

c 

c 

DO 25 J=2,JIN 
DO 25 K=2,KM1 
U(IMAX,J,K)=-UB 
U(IM1,J,K)=-UB 
TK (IMAX, J, K) =0. 03*UB'"'*:p'•10. 0 
E (IMAX, J, K) = (TK (IMAX, J 'K) ~d<1. 5) I (0. 01 *JBAR~'DELY) 
S(IMAX,J,K)=O.O 
V(IMAX,J,K)=V(IM1,J,K) 
W(IMAX,J,K)=W(IM1,J,K) 
MU(IMAX,J,K)=MU(IM1,J,K) 

25 CONTINUE 

JINP=JIN+1 

DO 26 J=JINP,JM1 
DO 26 K=2,KM1 
U(IMAX,J,K)=-UT 
U(IM1,J,K)=-UT 
TK (IMAX, J, K) =0. 03*Ur>'•*2•'•10. 0 
E (IMAX, J 'K) = (TK (IMAX' J, K) '"''•1. 5) I (0. 01-1: JBAR >'<DELY) 
W(IMAX,J,K)=W(IM1,J,K) 
V(IMAX,J,K)=V(IM1,J,K) 
MU(IMAX,J,K)=MU(IM1,J,K) 
S(IMAX,J,K)=1.0 

26 CONTINUE 

DO 35 J=2,JIN 
DO 35 I=2,IM1 
S(I,J,1)=0.0 
S(I,J,2)=0.0 
TK(I,J,1)=0.03*UB**2*10.0 
E (I' J' 1) = (TK(I' J' 1) *''<1.5) I (0. Ol''<JBAR>'<DELY) 
MU(I,J,1)=MU(I,J,2) 

35 W(I,J,1)=UB 

DO 36 J=JINP,JMAX 
DO 36 I=2,IM1 
S(I,J,1)=1.0 
S(I,J,2)=1.0 
TK (I, J, 1) =0. 03*UT7'*2' ... 10. 0 
E (I, J' 1) = (TK (I' J' 1) *' ... 1. 5) I (0. 01 '''JBAR>'<DELY) 
MU(I,J,1)=MU(I,J,2) 

36 W(I,J,1)=UT 

IF(CYCLE.EQ.O) GO TO 2990 
IF(ITER.GT.O) GO TO 2990 
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c 
c 
c 
c 
c 
c 
C1102 
c 
c 
c 
C1103 
c 
Cl101 
c 

DO 1101 I=1,IMAX 
WRITE(6,47) I 
WRITE (6, 57) 
DO 1102 JJ=1,JMAX 
J=JMAX-JJ+1 
WRITE(6,44) (TK(I,J,K) ,K=1,KMAX) 
WRITE(6,58) 
DO 1103 JJ=1,JMAX 
J=JMAX--JJ+1 
WRITE(6,44) (E(I,J,K) ,K=1,KMAX) 

CONTINUE 

DO 1110 I=1,IMAX 
DO 1110 J=1,JMAX 
DO 1110 K=1, KMAX 

EN(I,J,K)=E(I,J,K) 
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111 0 CONTINUE 
c 
c 
C-------------- DISSIAPATION EQUATION --~-------------­
C 

c 

c 

c 

c 

c 

c 

c 

c 

DO 1111 I=2,IM1 
DO 1111 J=2,JM1 
DO 1111 K=2,KM1 

IF(TKN(I,J,K).LT.1.E-3) TKN(I,J,K)=1.E-3 

TMXE= (MUN(I+1,J,K)+MUN(I,J,K))I2.0 

TMXW= (MUN(I-1,J,K)+MUN(I,J,K))I2.0 

TMYN= (MUN(I,J+1,K)+MUN(I,J,K))I2.0 

TMYS= (MUN(I,J-1,K)+MUN(I,J,K))I2.0 

TMZO= (MUN(I,J,K+1)+MUN(I,J,K))I2.0 

TMZI= (MUN(I,J,K-1)+MUN(I,J,K))I2.0 

FEX=(UN(I,J,K)*(EN(I,J,K)+EN(I+1,J,K))+ALPHA* ABS(UN(I,J,K))* 
1 (EN(I,J,K)-EN(I+1,J,K))-UN(I-1,J,K)*(EN(I-1,J,K)+EN(I,J,K)) 
2 -ALPHA *ABS(UN(I-1,J,K)) *(EN(I-1,J,K)-EN(I,J,K))) I 
3 (2. * DELX ) 

FEY=( VN(I,J,K)* ( EN(I,J,K)+ EN(I,J+1,K)) + ALPHA*ABS(VN(I,J,K) 
1) * ( EN(I,J,K)- EN(I,J+1,K))- VN(I,J-1,K)*(EN(I,J-1,K)+EN(I,J,K 
2 )) -ALPHA* ABS(VN(I,J-1,K)) * ( EN(I,J-1,K)- EN(I,J,K))) I 
3 (2. * DELY ) 

FEZ= (WN(I, J ,K) * ( EN(!, J ,K)+ EN (I, J ,K+1)) +ALPHA,~ABS ( WN (I, J ,K 
1 ))*(EN(I,J,K)-EN(I,J,K+1)) - WN(I,J,K-1) * (EN(I,J,K-1)+EN(I,J,K 
2 )) -ALPHA* ABS(WN(I,J,K-1)) * ( EN(I,J,K-1)- EN(I,J,K))) I 
3 (2. * DELZ) . 

DVX=((VN(I,J,K)+VN(I+1,J,K)+VN(I,J-1,K)+VN(I+1,J-1,K)) -
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1 (VN(I,J,K)+VN(I,J-1,K)~VN(I-1,J,K)+VN(I-1,J-1,K)))I 
2 ( 4 • '''DELX) 

DUY=((UN(I,J,K)+UN(I,J+1,K)+UN(I-1,J+1,K)+UN(I-1,J,K)) -
1 (UN(I,J,K)+UN(I,J-1,K)+UN(I-1,J-1,K)+UN(I-1,J,K))). I 
2 ( 4. '''DEL Y) 

DWY=((WN(I,J,K)+WN(I,J+1,K)+WN(I,J+1,K-1)+WN(I,J,K-1)) -
1 (WN (I, J, K) +WN (I , J, K -1) +WN (I, J -1 , K) +WN (I , J -1 , K -1) ) ) I 
2 (4.~'DELY) 

DVZ=((VN(I,J,K)+VN(I,J,K+1)+VN(I,J-1,K)+VN(I,J-1,K+1)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) I 
2 (4. *DELZ) 

DUZ=((UN(I,J,K)+UN(I,J,K+1)+UN(I-1,J,K)+UN(I-1,J,K+1)) -
1 (UN (I , J, K) +UN (I -1 , J , K) +UN (I -1 , J , K -1) +UN (I , J , K -1) ) ) I 
2 ( 4 • >'<DELZ) 

DWX=((WN(I,J,K)+WN(I+1,J,K)+WN(I+1,J,K-1)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-1)+WN(I-1,J,K-1)+WN(I-1,J,K))) I 
2 ( 4 • '''DELX) 

GG(I,J,K) = MUN(I,J,K)''< (2.'''(((UN(I,J,K)-UN(I-1,J,K))IDELX)''<>'<2 + 

c 
c 

1 ((VN(I,J,K)-VN(I,J-1,K))IDELY)''d:2 +((WN(I,J,K) -WN(I,J, 
2 K-1)) IDELZ) >'<>'<2) + (DVX+DUY) **2 + (DWY+DVZ) ''~'2 + 
3 (DUZ+DWX) >b':2 ) 

VISEX=RDX'b'<2''' (TMXE''< ( EN (I+ 1, J, K)- EN (I, J, K)) -TMXW >'< (EN (I, J, 
1 K)- EN(I-1,J,K))) 

VISEY=RDY''d'2 >'<(TMYN '"( EN(I,J+1,K)- EN(I,J,K))-TMYS''<( EN(I,J,K) 
1 - EN(I,J-1,K))) 

VISEZ=RDz~n':2 >'<(TMZO ~<( EN(I,J,K+l)- EN(I,J,K))-TMZI~'(EN(I,J,K) 
2- EN(I,J,K-1))) 

VIS=(VISEX +VISEY +VISEZ )I(SE*DEN1) 
GC=GG(I,J,K) 
ENC=EN (I, J ,K) 
DENC=DEN (I , J, K) 
TKNC=TKN (I, J, K) 
TKC=TK (I, J, K) 
SORE= GG (I, J, K) •<c1 , .• EN (I, J, K) I (TKN (I, J, K) >'<DEN1) 
SORE1=C2*DEN (I, J, K) , .• (EN (I, J, K) >'<>'<2) I (TKN (I, J, K) >'<DEN I) 

SORE2=1. 0 + DELT''•C2''' DEN (I, J, K) >'<EN (I, J, K) I (TKN (I, J, K) '''DEN1) 
VISE=VIS + SORE 

C38 FORMAT(1X,3(I2,1X),7(E12.5)) 
c 
c 

E(I,J,K)=(EN(I,J,K) + DELT >'< (-FEX-FEY-FEZ+VISE))ISORE2 
C WRITE(6,38) I,J,K,SORE,SORE1,SORE2,VIS,VISE,E(I,J,K),GC 

IF(E(I,J,K).LT.O.O) E(I,J,K)=EIN 
IF(E(I,J,K).LT.1.E-3) E(I,J,K)=1.E-3 

FESUM=FEX+FEY+FEZ 
C WRITE(6,39) I,J,K,FEX,FEY,FEZ,FESUM 
c 
c 
1111 CONTINUE 
c 
c 
2990 CONTINUE 



c 

3000 

3050 
c 

GOTO KRET, (3000,5000) 
CONTINUE 
IF(FLG.EQ.O.)GO T04000 
ITER=ITER+1 
IF(ITER.LT.50) GO TO 3050 
IF(CYCLE .LT.320) GO TO 4000 
T= 1E+10 
GOTO 5000. 
FLG=O.O 
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c----------------------------------------------------------------------
c ====CONVERGENCE=== 
C PRESSURE ITERATIONS. 
c 

3500 

4000 
5000 
c 

DO 3500 I=2,IM1 
DO 3500 J=2,JM1 
DO 3500 K=2,KM1 

D=1/DELX*(U(I,J,K)-U(I-1,J,K)) +1/DELY*(V(I,J,K) 
+ + 1/DELZ'':(W(I,J,K)-W(I,J,K-1)) 

IF(ABS(D/DZRO).GE.EPSI) FLG=1. 
DELP=-D'':BETA 
P(I,J,K)=P(I,J,K)+DELP 
U (I, J, K) =U (I, J, K) +DELT'~DELP /DELX 
U (I-1, J ,K) =U (I-1, J ,K) -DELT'~DELP /DELX 
V (I, J, K) =V (I, J, K) +DELT''1DELP /DELY 
V (I, J-1 ,K) =V (I, J-1 ,K) -DELT'''DELP/DELY 
W (I, J, K) =W (I, J, K) +DEL r>'<DELP /DELZ 
W (I, J, K-1) =W (I, J ,K-1) -DELT~<DELP /DELZ 
CONTINUE 
GOTO 2000 
CONTINUE 
CONTINUE 

GO TO 5245 
C------------SHEAR STREES ON THE BOTTOM WALL 
c 

DO 5100 I=2,IM1 
DO 5100 K=2,KM1 

J=2 
UAVG=(U(I,J,K)+U(I+1,J,K))/2. 
WAVG=(W(I,J,K)+W(I,J,K+1))/2. 
UEFF=SQRT (UAVG'':UAVG+WAVG.,.'WAVG) 
DENU=DEN(I,J,K) 
YP=DELY/2. 
SQRTK=SQRT(TK(I,J,K)) 
CMUPQ=CMU**0.25 

- V (I , J -1 , K) ) 

YPLUSS (I ,K) =DENU'~CMUPQ"'SQRTK''YP /VISCOS 
IF(YPLUSS(I,K).LE.11.63) GO TO 5101 
TMULT=DENU'''CMUPQ.,.:SQRTK''<CAPP A/ ALOG (ELOG>''YPLUSS (I , K) ) 
TAUS (I , K) =- TMUL T.,.'UEFF 
GO TO 5102 

5101 TAURX=-VISCOS'''UAVG/YP 
· TAURW=-VISCOS'''WAVG/YP 



5102 

5100 
c 

TAUS (I ,K) =SQRT (TAURX'~TAURX+TAURW~'TAURW) 
DUZ=((U(I,J,K)+U(I,J,K+1)+U(I-1,J,K)+U(I-1,J,K+1)) -

1 (U(I,J,K)+U(I-1,J,K)+U(I-1,J,K-1)+U(I,J,K-1))) I 
2 ( 4. '''DELZ) 

DWX=((W(I,J,K)+W(I+1,J,K)+W(I+1,J,K-1)+W(I,J,K-1)) -
1 (W(I,J,K)+W(I,J,K-1)+W(I-1,J,K-1)+W(I-1,J,K))) I 
2 ( 4. '''DELX) 

GG (I, J ,K) =MU (I, J ,K) >'<2, ,., ( ( (U (I, J ,K) -U (I-1, J ,K)) IDELX) >'d<2+ 
1 ( (V (I, J ,K)-V (I, J-1 ,K)) IDELY) "'*2 + ( (W (I, J ,K)-W(I, J ,K-1)) IDELZ) 
2 >b':2 )+ TAUS(I,K)'"''2IMU(I,J,K) +MU(I,J,K)~• (DUZ+DWX)""''2 -

CONTINUE 

C----------- SHEAR STRESS 
c 

ON THE SIDE WALL 

DO 5200 J=2,JM1 
DO 5200 K=2,KM1 

1=2 
IF(J.EQ.JR.AND.K.GE.KR) GO TO 5200 
VAVG=(V(I,J,K)+V(I,J+1,K))I2. 
WAVG=(W(I,J,K)+W(I,J,K+1))12. 
VEFF=SQRT (VAVG"~'VAVG+WAVG"~'WAVG) 
XP=DELXI2. 
DENV=DEN(I,J,K) 
SQRTK=SQRT(TK(I,J,K)) 
XPLUSW (J, K) =DENV'''CMUPQ'''SQR TK'''XP IV ISCOS 
IF(XPLUSW(J,K).LE.11.63) GO TO 5201 
TMULT=DENV*CMUPQ'''SQRTK*CAPPAI ALOG (ELOG*XPLUSW (J, K)) 
TAUW (J, K) =-TMULT"'VEFF 
GO TO 5202 

5201 TAUXR=VISCOS*VAVGIXP 
TAUXW=VISCOS*WAVGIXP 
TAUW (J, K) =SQRT (TAUXR '''TAUXR+TAUXW'''TAUXW) 

5202 DWY=((WN(I,J,K)+WN(I,J+1,K)+WN(I,J+1,K-1)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-1)+WN(I,J-1,K)+WN(I,J-1,K-1))) I 
2 (4.*DELY) 

DVZ=((VN(I,J,K)+VN(I,J,K+1)+VN(I,J-1,K)+VN(I,J-1,K+1)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) I 
2 ( 4. '''DELZ) 

GG (I, J, K) =MU (I, J, K) >'<2. ,., ( ( (U (I, J, K) -U ( I-1, J, K)) IDE LX) '""~2 + 
1 ((V(I,J,K)-V(I,J-1,K))IDELY)''c*2 + ((W(I,J,K)-W(I,J,K-1)) I 
2 DELZ) >'<>'<2) + TAUW (J, K) ""''2IMU (I, J, K) + MU (I, J, K) >'< (DVZ+DWY) >'<>'<2 

5200 CONTINUE 
c 
5245 CONTINUE 
c 
C========PRINT===== 

c 

WRITE(6,49) ITER,T,CYCLE 
PRINT 54,DF 

54 FORMAT(II,5X, 'DILUTION FACTOR', 2X,1E12.4,1) 
WRITE(6,666) V(3,3,3) ,W(3,3,3) ,U(3,3,3), V(3,2,4) ,W(3,2,4), 

II U(3,2,4) 

DO 5280 IW=1,320,40 
IF(CYCLE.EQ.IW) GO TO 646 
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5280 CONTINUE 
GO TO 636 

646 CONTINUE 
c 

DO 5300 I=2,IMAX 
DO 5300 J=2,JMAX 
K=6 
UA=(U(I,J,K)+U(I-1,J,K))/2. 
VA=(V(I,J,K)+V(I,J-1,K))/2. 
XX (I, J, 1) = (0. 4'''I) -0. 2-UA/2. 
XX(I,J,2)=XX(I,J,1)+UA/2. 
XX(I,J,3)=XX(I,J,2)+UA/2. 
YY(I,J,1)=(0.6*J)-0.3-VA/2. 
YY(I,J,2)=YY(I,J,1)+VA/2. 
YY(I,J,3)=YY(I,J,2)+VA/2. 

5300 CONTINUE 
M=O 
DO 5400 I=2,IMAX 
DO 5400 J=2,JMAX 
DO 5400 L=1,3 
M=M+1 
X(M)=XX(I,J,L) 
Y(M)=YY(I,J,L) 

5400 CONTINUE 
c 

MAX=JM1 1'IM1 1'3. 0 
DO 5450 I=1 ,MAX 
WRITE(14,559) X(I),Y(I) 

5450 CONTINUE 
559 FORMAT(E12.5,5X,E12.5) 
c 

DO 5460 I=1,IMAX 
DO 5460 K=1,KMAX 
J=JIN 
V (1, J, K) =0. 0 
V (IMAX, J, K) =0. 0 
V(I,J,1)=0.0 
V(I,J,KMAX)=O.O 
V(I,J,K)=-V(I,J,K) 

5460 CONTINUE 
DO 5470 K=1,KMAX 

J=JIN 
WRITE (15, 558) (V (I, J, K) , I= 1, IMAX) 

5470 CONTINUE 
558 FORMAT(1X,10E11.4) 
c 

DO 5480 I=l,IMAX 
DO 5480 K=1,KMAX 
J=JIN 
V(1,J,K)=V(2,J,K) 
V(IMAX,J,K)=V(IM1,J,K) 
V (I, J, 1) =V (I, J, 2) 
V(I,J,KMAX)=V(I,J,KM1) 
V(I,J,K)~-V(I,J,K) 
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5480 CONTINUE 
636 CONTINUE 
c 

IF(CYCLE.EQ.O) GO TO 
IF(CYCLE.EQ.1) GO TO 
IF(CYCLE.EQ.2) GO TO 
DO 66 II=10,400,50 

c DO 66 II=3, 400 
IF(CYCLE.EQ.II) 

66 CONTINUE 
c 

GOTO 5251 
c 

5152 CONTINUE 
c 

GO 
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5152 
5152 
5152 

TO 5152 

c----------------------------------------------------------------------­
c----------- OUTPUT ------------------------------------------------
C 
c----------------------------------------------------------------------
c 
5230 

5252 

5253 

5254 

5255 

5256 

5257 

5258 

CONTINUE 
DO 5250 KK = 1 ,KMAX 
K=KMAX-KK+1 
WRITE (6, 47) K 
WRITE(6,48) 
DO 5252 JJ = 1, JMAX 
J = JMAX -JJ+1 
WRITE(6,44) (U(I,J,K) ,I=1,IMAX) 
WRITE (6, 50) 
DO 5253 JJ = 1,JMAX 
J = JMAX -JJ+1 
WRITE(6,44) (V(I,J,K) ,I=1,IMAX) 
WRITE(6,51) 
DO 5254 JJ = 1,JMAX 
J = JMAX -JJ+1 
WRITE(6,44) (W(I,J,K) ,I=1,IMAX) 
WRITE(6,52) 
DO 5255 JJ = 1,JMAX 
J = JMAX -JJ+1 
WRITE(6,44) (P(I,J,K) ,I=1,IMAX) 
WRITE(6,55) 
DO 5256 JJ = 1,JMAX 
J = JMAX -JJ+1 

PRINT 44,(S(I,J,K),I=1,IMAX ) 
WRITE (6, 56) 
DO 5257 JJ=1,JMAX 
J=JMAX-JJ+1 

PRINT 44, (DEN(I,J,K),I=1,IMAX) 
WRITE(6,57) 
DO 5258 JJ=1,JMAX 
J=JMAX-JJ+1 
WRITE (6, 44) (TK (I, J, K) , I= 1, IMAX) 
WRITE(6,58) 
DO 5259 JJ=1,JMAX 



J=JMAX-JJ+l 
5259 WRITE (6, 44) (E (I, J, K), I=l, !MAX) 

WRITE(6,59) 
DO 5260 JJ=l,JMAX 
J=JMAX-JJ+l 

5260 WRITE(6,44) (MU(I,J,K) ,I=l,IMAX) 
WRITE (6, 60) 

c 

c 
5250 
5251 

6100 

c 
6200 

6500 
6550 

c 

WRITE (6, 44) (YPLUSS (I, K) , I= 1, !MAX) 

WRITE (6, 61) 
WRITE(6,44) (XPLUSW(J,K),J=l,JMAX) 

CONTINUE 
CONTINUE 
DO 6100 I=l,IMAX 
DO 6100 J=l,JMAX 
DO 6100 K=l,KMAX 
VN(I,J,K)=V(I,J,K) 
UN (I, J, K) =U (I, J, K) 
WN(I,J,K)=W(I,J,K) 
SN(I,J,K)=S(I,J,K) 
TKN(I,J,K)=TK(I,J,K) 
EN(I,J,K)=E(I,J,K) 
MUN(I,J,K)=MU(I,J,K) 
CONTINUE 
T=T+DELT 
IF(T.GT.320*DELT) GO TO 6500 
IF(CYCLE .EQ.O )GOTO 6200 
IF(ITER.LE.l) GO TO 6550 

CYCLE=CYCLE+l 
GOTO 1000 
STOP 
WRITE (6, 53) 
STOP 

138 

c-------------------------~--------------------------------------------
c 

47 
49 
44 
48 
50 
51 
52 

53 
55 
56 
57 
58 
59 
60 
61 
666 

FORMAT(//,20X, 'K =',I2,/,19X, 7('=')) 
FORMAT(//,6X, 'ITER=',I5,9X, 'TIME=',1PE12.5,10X, 'CYCLE=',I4,/) 
FORMAT(1X,12(El1.4)) 
FORMAT(//,2X, 'U-FIELD',/) 
FORMAT(//,2X, 'V-FIELD',/) 
FORMAT(//,2X,'W-FIELD',/) 
FORMAT(//,2X,'P-FIELD',/) 
FORMAT (/I. lOX, 7 (I= I) ' I CONVERGENCE HAS BEEN REACHED. I) 
FORMAT(//,2X,'S-FIELD',/) 
FORMAT(//,2X,'DEN-FIELD',/) 
FORMAT(/ I' 2X, I TK-FIELD I '/) 
FORMAT(//,2X, 'E -FIELD',/) 
FORMAT(//,2X, 'MD-FIELD',/) 
FORMAT(/ I. 2X, I YPLUSS I. 4X, I J = 2 I./) 
FORMAT(//,2X, 'XPLUSW I ,4X, 'I= 2 I,/) 
FORMAT(//,lOX, 'V(3,3,3)=',Ell.4,2X, 'W(3,3,3)=',E11.4,2X, 

II 'U(3,3,3)=' ,E11.4,//,10X, 'V(3,2,4)=',El1.4_,2X, 'W(3,2,4)=',E11.4, 



II 2X, 'U(3,2,4)=' ,E11.4,//) 
END 
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c 
c 
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THREE-DIMENSIONAL PREDICTION TECHNIQUE FOR TURBULENT 
RECIRCULATING FLOWFIELDS IN CARTESIAN COORDINATES 

PH.D. THESIS 
BY 

AHMED A. BUSNAINA 

MAY, 1983 
SCHOOL OF MECHANICAL AND AROSPACE ENGINEERING 

OKLAHOMA STATE UNIVERSITY 
STILLWATER , OKLAHOMA 

C********************************************************************** 
C*********************************************************************** 
c 
C------- APPLICATION 2 : DEFLECTED.TURBULENT JET IN A CROSSFLOW -------­
C 
C*********************************************************************** 
C*********************************************************************** 
c 
c 
c 
c 
C-------- THIS PROGRAM SOLVES THREE DIMENSIONAL NAVIER STOKES EQUATION. 
C--------THE FLUID SHOULD BE INCOMPRESSIBLE I.E. MACH NUM SHOULD NOT BE 
C-------- GREATER THEN .3. 
C--------THE DATA THAT SHOULD BE ENTERED IS, 
C DELX IS THE SIZE OF MESH IN X-D. 
C DELY IS THE SIZE OF MESH IN Y-D. 
C DELZ IS THE SIZE OF MESH IN.Z-D. 
C IBAR NUMBER OF DEVISIONS IN X-D. 
C KBAR NUMBER OF DEVISIONS IN Z-D. 
C JBAR NUMBER OF DEVISIONS IN Y-D. 
C DELT IS THE TIME INCREMENT AND IT IS LIMITED BY STABULITY 
C IT SHOULD BE SMALLER MAX SIZE MESH OVER MAX VELOCITY. 
C TYPICALLY .25 TO .33 TIMES IT. 
C EPSI IS THE CONVERGENCE CRITERIA. 
C NU IS THE KINEMATIC VISCOSITY. 
C VI IS THE INITIAL VELOCITY IN Y-D. 
C UI IS THE INITIAL VELOCITY IN X-D. 
C WI IS THE INITIAL VELOCITY IN Z-D. 
C GX,GY,GZ ARE ACCELERATIONS. 
C ALPHA SHOULD BE BETWEEN 1. AND(DELT;•VELOCITY) /MESH SIZE. 
c 
(-----------------------------------------------------------------------
( 
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c 
c-----------------------------------------------------------~----------
c 
c 

c 

c 

c 

c 
c 

INTEGER CYCLE 
REAL NU,MU,MUN 

DIMENSION U(11;11,11),V(11,11,11),W(11,11,11),P(11,11,11), 
II UN(11,11,11) ,VN(11,11,11) ,WN(11,11,11) 

DIMENSION IBLOCK (11) , VEL (11, 11) , TR (11, 11) . 

DIMENSION TK (11, 11, 11) , TKN (11, 11, 11) , E (11, 11, 11) , EN (11, 11, 11) , 
II MU(11,11,11) ,GG(ll,ll,ll) ,MUN(11,11,11) 

DIMENSION YPLUSS(11,11),TAUS(11,11),XPLUSW(11,11),TAUW(11,11) 

DIMENSION XX(ll,l1,3) ,YY(11,11,3) ,X(ll1,3) ,Y(111,3) 

c-------------------------------------------.--------------------------­
c--------DATA CARDS.---------------------------------------------------

DELX=0.02 
DELY=0.02 
DELZ=0.01 
IBAR=9 
JBAR=9 
KBAR=7 
JJET=1 
KJET=8 
IJET=3 
CMU=0.09 
CD=l.O 
C1=1.44 
C2=1. 92 
SK=l. 0 
SE=l. 21 
PK=0.4187 
CAPPA=PK 
ELOG=9.793 
URFVIS=0.7 
NU=l5.68E-6 
VISCOS=1.983E-5 
DEN=1.2 
SC=l.O 

C ---------- VELOCITY RATIO BETWEEN JET & MAIN STREAM 
c 

c 

c 

RAT=6.0 
UIN=0.1 
UJET=RAT*UIN 

DATA U,UN,V,VN,W,WN,P /9317 * 0.0 I 
DATA EPSI,GX,GY,GZ,OMG,DZRO /1.E-3,0.0,0.0,0.0,1.7,1.0/ 
ALPHA=0.6 

c----------------------------------------------------------------------



c 

c 

UI= UIN 
VI=O.O 
WI=O.O 
PI=O.O 
ASJ=DELX'''DELZ 
RDX = 1/DELX 
RDY = 1/ DELY 
RDZ = 1/ DELZ 
IMAX=IBAR+2 
JMAX = JBAR+2 
K11AX = KBAR + 2 
IM1=IBAR+1 
JM1=JBAR+1 
KM1=KBAR+1 
IM2=IBAR 
JM2=JBAR 
KM2=KBAR 

DELT=O.OS 
DTMAX1=0.33*DELY/UJET 
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DTMAX2=0. 5'''DELX1"~2*DEL Y''<>'<2'''DELZ''"''2/ ( (DELX'"'~2+DELY"'<>'"2+DELZ''"''2) >'<NU) 
ALF AMI= 1 • 5 '~U JET.,.'DEL T /DEL Y 
BETA=OMG/ (2*DELP'< (1/ (DELX>'"''2) +1/ (DELYM"2) +1/ (DELZ''"''2))) 
WRITE(6,92)DELT,DTMAX1,DTMAX2,DR 
WRITE(6,93) ALPHA,ALFAMI 

c 
C DELT REDUCTION FOR STABILITY 
c 

92 

93 
c 

IF(DELT.GT.DTMAX1) DELT=DTMAX1 
FORMAT(//,2X, 'DELT = ',E12.4,2X, 'DTMAX1 

@ E12.4,' DR = ',E12.6,/) 
FORMAT(/,2X, 'ALPHA= ',El2.4,2X, 'ALFAMI = 

',E12.4,2X, 'DTMAX2 

',E12.4,//) 

c----------------------------------------------------------------------

c 

T=O 
ITER=O 
CYCLE=O 

C INITIAL FIELD VALUES. 
c 

DO 560 I=l,IMAX 
DO 560 J=1,JMAX 
DO 560 K=1,KMAX 
U (I, J, K) =UI 
V(I,J,K)=VI 
P(I,J,K)=PI 

560 W(I,J,K)=WI 
c 
c 
c 
c 
c 
c 



C----------- INITIAL TURB ENERGY & DISSIAPATION 
c 

c 

TIN=0.01*(UIN)**2 
EIN=(TIN**1.5)/0.3 

IF(EIN.LT.1.E-4) EIN=1.E-4 

DO 557 I=1,IMAX 
DO 557 J=1,JMAX 
DO 557 K=1,KMAX 

TK (I, J, K) =TIN 
E(I,J,K)=EIN 

IF(EIN.LE.1.E-06) MU(I,J,K)=VISCOS 
MU (I, J, K) =CMU'''DEN~' (TIN'"'''2) /EIN 

557 CONTINUE 
c 
c 
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c----------------------------------------------------------------------
c 

ASSIGN 5000 TO KRET 
GOTO 2000 

1000 CONTINUE 

c 

ITER=O 
FLG=l. 0 
ASSIGN 3000 TO KRET 

c----------------------------------------------------------------------
c 

c 

c 

c 

c 

c 

c 

c 
c 

DO 1100 I=2,IM1 
DO 1100 J=2,JM1 
DO 1100 K=2,KM1 

TMXE= (MUN(I+1,J,K)+MUN(I,J,K))/2.0 

TMXW= (MUN(I-1,J,K)+MUN(I,J,K))/2.0 

TMYN= (MUN(I,J+1,K)+MUN(I,J,K))/2.0 

TMYS= (MUN(I,J-1,K)+MUN(I,J,K))/2.0 

TMZO= (MUN(I,J,K+1)+MUN(I,J,K))/2.0 

TMZI= (MUN(I,J,K-1)+MUN(I,J,K))/2.0 

TMUN=(MUN(I+1,J,K)+MUN(I,J,K)+MUN(I+1,J+1,K)+MUN(I,J+l,K))/4.0 
TMUS=(MUN(I,J,K)+MUN(I+1,J,K)+MUN(I,J-l,K)+MUN(I+l,J-1,K))/4.0 
TMUO=(MUN(I,J,K+1)+MUN(I+1,J,K)+MUN(I+1,J,K+1)+MUN(I,J,K))/4.0 
TMUI=(MUN(I,J,K)+MUN(I+1,J,K)+MUN(I,J,K-1)+MUN(I+l,J,K-1))/4.0 
TMVE=(MUN(I,J,K)+MUN(I+1,J,K)+MUN(I+1,J+1,K)+MUN(I,J+1,K))/4.0 
TMVW=(MUN(I,J,K)+MUN(I,J+l,K)+MUN(I-1,J,K)+MUN(I-1,J+l,K))/4.0 
TMVO=(MUN(I,J,K)+MUN(I,J,K+l)+MUN(I,J+l,K)+MUN(I,J+1,K+l))/4.0 
TMVI=(MUN(I,J,K)+MUN(I,J+1,K)+MUN(I,J+1,K-1)+MUN(I,J,K-1))/4.0 
TMWE=(MUN(I,J,K+1)+MUN(I,J,K)+MUN(I+1,J,K)+MUN(I+l,J,K+l))/4.0 
TMWW=(MUN(I,J,K+l)+MUN(I,J,K)+MUN(I-1,J,K)+MUN(I-1,J,K+l))/4.0 



c 

c 

c 

TMWN=(MUN(I,J,K)+MUN(I,J,K+1)+MUN(I,J+1,K)+MUN(I,J+1,K+1))/4.0 
TMWS=(MUN(I,J,K)+MUN(I,J,K+1)+MUN(I,J-1,K)+MUN(I,J-1,K+1))/4.0 
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DVXY= (TMUN''< (VN (I+1, J, K) -VN (I, J, K)) -TMUS''< (VN (I+1, J-1 ,K) -VN (I, J-1, K 
1 ) ) ) .,.,RDX'''RDY 

DWXZ= (TMUO.,., (WN (I+1, J, K) -WN (I, J ,K)) -TMUP'' (WN (I+1, J ,K-1) -WN (I, J ,K-
1 1))) *RDX''<RDZ 

DUYX= (TMVE''' (UN (I, J+1, K) -UN (I, J ,K)) -TMVW* (UN (I-1, J+1, K) -UN (I-1, J, 
1 K) ) ) '''RDY''<RDX 

DWYZ= (TMVO''' (WN (I, J+ 1, K) -WN (I, J ,K)) ..:.TMVP'' (WN (I, J+ 1, K-1) -WN (I, J, K-
2 1))) ''<RDY*RDZ 

DUZX= (TMWE"' (UN (I, J, K+1) -UN (I, J, K)) -TMWW1' (UN (I-1, J ,K+ 1) -UN (I-1, J, 
2 K) ) ) >'<RDZ >'rRDX 

DVZY=(TMWN*(VN(I,J,K+1)-VN(I,J,K))-TMWS*(VN(I,J-1,K+1)-VN(I,J-1, 
2 K))) 1'RDZ'''RDY 

VISX= (RDX.,."''2''< (TMXE"' (UN (I+ 1, J, K) -UN (I, J, K)) -TMXW"' (UN (I, J, K) -UN (I-1 
2 , J, K))) >'•2. +RDY''"''2''' (TMYN.,., (UN (I, J+ 1, K) -UN (I, J, K)) -TMYS''' (UN (I, J, K)-
3 UN (I, J-1", K))) +DVXY+RDZ.,."''2''< (TMZO''' (UN (I, J, K+ 1) -UN (I, J, K)) -TMZP'' (UN ( 
4 I,J,K)-UN(I,J,K-1)))+DWXZ)/DEN 

FUX = RDX/ 4,., ((UN (I, J, K) +UN (I+1, J, K)) >'<>'<2 
1 +ALPHA'''ABS (UN (I, J ,K) + UN (I+1, J ,K)) ,., ( UN(I, J ,K) -UN (I+1, J ,K)) 
2 -(UN(I-1,J,K)+UN(I,J,K))'b':2 
3 -ALPHA;, ABS(UN(I-1,J,K)+UN(I,J,K)),.'(UN(I-1,J,K)- UN(I,J,K))) 

FUY=RDY/4*((VN(I,J,K)+VN( I+1,J,K))*(UN(I,J,K)+UN(I,J+1,K)) 
1 +ALPHA '''ABS(VN(I,J,K) +VN(I+1,J,K))*( UN(I,J,K)-UN(I,J+1,K)) 
2 -(VN(I ,J-1,K)+VN( I+1,J-1,K))''< (UN(I,J-1,K)+UN(I,J,K)) 
3 -ALPHA''' ABS (VN(I,J-1,K)+VN(I+1,J-1,K)) . 
4 *( UN(I,J-1,K) - UN(I,J,K))) 

FUZ = RDZ/ 4''' ( ( WN (I, J, K) +WN (I+ 1, J, K)) ,., (UN (I, J, K) +UN (I, J, K+ 1)) 
1 + ALPHA.,.'ABS (WN (I, J, K) +WN (I+ 1, J, K)) ,., (UN (I, J, K) -UN (I, J, K+ 1)) 
2 -(WN(I,J,K-1) +WN(I+1,J,K-1))>'<(UN(I,J,K-1) + UN(I,J,K)) 
3 -ALPHA'''ABS(WN(I,J,K-1) +WN(I+1,J,K-1))'''( UN(I,J,K-1)-UN(I,J,K))) 

VI~Z= (RDX''<>'t2>': (TMXE* (WN (I+1, J, K) -WN (I, J, K)) -TMXW''' (WN (I, J, K) -WN (I-
1 1, J, K))) +DUZX+RDY'''*2''< (TMYN''' (WN(I, J+ 1, K) -WN (I, J, K)) -TMYS''' (WN (I, J, K 
2 ) -WN (I, J-1, K))) +DVZY+RDZ''"''2''' (TMZO''' (WN (I, J, K+ 1) -WN (I, J, K)) -TMZI,., ( 
3 WN(I, J ,K) -WN (I, J ,K-1))) '''2.) /DEN 

FWZ=RDZ/4 ,., ( (WN(I,J,K) +WN(I,J,K+1)) >'<>'<2 
1 +ALPHA .. k ABS( WN(I,J,K) +WN(I,J,K+l)) ·k ( WN(I,J,K) 
2 -WN(I,J,K+1)) 
3 -( WN(I,J,K-1) +WN(I,J,K)) id<2 
4 -ALPHA ,., ABS( WN(I,J,K-1) +WN(I,J,K)) .,.,(WN(I,J,K-1) 
5 -WN(I,J,K) ) ) 

FWX= RDX/4''' ((UN (I, J ,K) +UN (I, J ,K+1)) * (WN (I, J ,K) +WN(I+1, J ,K)) 
1 +ALPHA *ABS( UN(I,J,K) +UN(I,J,K+1)) >'< (WN(I,J,K) 
2 -WN(I+1,J,K) ) 
3 -(UN(I-1,J,K) +UN(I-1,J,K+1) )"'(WN(I-1,J,K) +WN(I,J,K)) 
4 -ALPHA >'< AB S ( UN (I -1 , J , K) +UN (I -1 , J , K + 1) ) >'< 
5 (WN(I-1,J,K) -WN(I,J,K) ) ) 

FWY=RDY/4 ;, ((VN (I, J ,K)+VN (I, J ,K+1)) ,., (WN (I, J ,K) + WN (I, J+1 ,K)) 
1 +ALPHA *ABS( VN(I,J,K) +VN(I,J,K+1) ) ,.,( WN(I,J,K) 
2 -WN(I,J+1,K) ) 
3 -( VN(I,J-1,K) +VN(I,J-1,K+1) ) 1'(WN(I,J-1,K) +WN(I,J,K) ) 



c 

c 
c 
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4 -ALPHA * ABS ( VN(I,J-1,K) +VN(I,J-1,K+1) )* 
5 ( WN(I,J-1,K) -WN(I,J,K) ) ) 

VISY= (RDX''"''2''' (TMXE''' (VN (I+ 1, J, K) -VN (I, J, K)) -TMXW''' (VN (I, J ,K) -VN (I-
1 1,J,K)))+ DUYX + RDY''"''2 1' (TMYN'~ (VN(I,J+1,K)-VN(I,J,K))-TMYS'' 
2 (VN(I,J,K)-VN(I,J-1,K)))>'< 2. + RDZ''"''2''' (TMZO'' (VN(I,J,K+1)-
3 VN(I,J,K))-TMZP'' (VN(I,J,K)-VN(I,J,K-1)))+ DWYZ )/DEN 

FVZ= RDZ/4 ,., ((WN(I,J,K) + WN(I,J+1,K)) ;, ( VN(I,J,K) 
1+VN(I,J,K+1) )+ALPHA 1'ABS( WN(I,J,K) +WN(I,J+1,K) ) '~(VN(I,J,K) 
2 -VN(I,J,K+1))- ( WN(I,J,K-1) +WN(I,J+1,K-1)) '''(VN(I,J,K-1) 
3 +VN(I,J,K)) -ALPHA'~ ABS( WN(I,J,K-1) +WN(I,J+1,K-1) )>'' 
4 ( VN (I , J , K- 1) - VN (I , J , K) ) ) 

FVX = RDX/ 4 '''((UN(I,J,K) + UN(I,J+1,K))'~(VN(I,J,K )+VN(I+1,J,K)) 
1 +ALPHA *ABS(UN(I,J,K) .+UN(I,J+1,K))'''(VN(I,J ,K)-VN(I+1,J,K)) 
2 -(UN(I-1,J,K)+UN(I-1, J+1,K)) 1'(VN( I-1,J,K)+ VN(I,J,K)) 
3 - ALPHA1'ABS(UN(I-1,J,K) +UN(I-1,J+1,K)) '''(VN(I-1,J,K)-VN(I,J,K)) 
4 ) 

FVY = RDY/4*((VN(I,J,K) +VN(I,J+1,K))**2 
1 + ALPHA'~ABS(VN(I,J,K)+VN(I,J+1,K))''( VN(I,J,K) -VN(I,J+1,K)) 
2 -(VN(I,J-1,K)+VN(I,J,K) )**2 
3 -ALPHA'''ABS(VN(I,J-1,K) +VN(I,J,K))'''(VN (I,J-1,K) -VN(I,J,K))) 

C IF(I.EQ.2) GO TO 1200 
IF(J.EQ.2) GO TO 1200 

c 

1200 

c 

DVX= ( (VN (I, J, K) +VN (I+ 1, J, K) +VN (I, J-1, K) +VN(I+ 1, J-1, K)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I-1,J,K)+VN(I-1,J-1,K)))/ 
2 ( 4. •'<DELX) 

DUY=((UN(I,J,K)+UN(I,J+1,K)+UN(I-1,J+1,K)+UN(I-1,J,K)) -
1 (UN(I,J,K)+UN(I,J-1,K)+UN(I-1,J-1,K)+UN(I-1,J,K))) I 
2 (4.'''DELY) 

DWY=((WN(I,J,K)+WN(I,J+1,K)+WN(I,J+1,K-1)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-1)+WN(I,J-1,K)+WN(I,J-1,K-1))) I 
2 (4.'''DELY) 

DVZ=((VN(I,J,K)+VN(I,J,K+1)+VN(I,J-1,K)+VN(I,J-1,K+1)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) I 
2 ( 4. "'DELZ) 

DUZ=((UN(I,J,K)+UN(I,J,K+1)+UN(I-1,J,K)+UN(I-1,J,K+1)) -
1 (UN(I,J,K)+UN(I-1,J,K)+UN(I-1,J,K-1)+UN(I,J,K-1))) I 
2 (4. >'<DELZ) 

DWX=((WN(I,J,K)+WN(I+1,J,K)+WN(I+1,J,K-1)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-1)+WN(I-1,J,K-1)+WN(I-1,J,K))) I 
2 ( 4. '"DELX) 

1 
2 
3 

GG(I, J ,K) = MUN(I, J ,K) >'< (2. ,., ( ( (UN(I, J ,K) -UN (I-1, J ,K)) /DELX) i<>':2 + 
( (VN (I, J ,K) -VN(I, J-1 ,K)) /DELY) *"'2 + ( (WN (I, J ,K) -WN (I, J, 
K-1)) /DELZ) 1'*2) + (DVX+DUY) >'<>'<2 + (DWY+DVZ) *.,.'2 + 

(DUZ+DWX) *>''2 ) 
VISK=((RDX''"''2''' (TMXE''' (TKN(I+1,J,K)-TKN(I,J,K)) - TMXW''' ( 

1 TKN (I, J, K) -TKN (I-1, J, K))) + RDY''d<2''' (TMYN''' (TKN (I, J+ 1, K) -
2 TKN(I,J,K)) -TMYS''' (TKN(I,J,K)-TKN(I,J-1,K))) + RDZ*'''2''' 
3 (TMZO''' (TKN(I,J,K+1)-TKN(I,J,K))-TMZI''' (TKN(I,J,K)-TKN 
4 (I,J,K-1))))/SK)/DEN 



c 

c 

SORK1=EN (I, J, K) 
SORK= GG(I,J,K)/DEN 
SORK2=1.0+DELT "' EN(I,J,K) /(TKN(I,J,K)) 
VISK=VISK+SORK 

FKX= (UN(I,J,K)'''(TKN(I,J,K)+TKN(I+1,J,K)) +ALPHA,., ABS 
1 (UN(I,J,K))'''(TKN(I,J,K)-TKN(I+1,J,K))- UN(I-1,J,K) ;, 
2 (TKN(I-1,J,K)+TKN(I,J,K))- ALPHA,., ABS(UN(I-1,J,K)) ,., 
3 (TKN(I-1,J,K)-TKN(I,J,K))) /(2.'~DELX) 

FKY= (VN (I, J, K) ,., (TKN (I, J, K) +TKN (I, J+ 1, K)) + ALPHA '''ABS 
1 ( VN (I , J , K) ) '~ ( TKN (I , J , K) - TKN (I , J + 1 , K) ) - VN (I , J -1 , K) ,., 
2 (TKN(I,J-1,K)+TKN(I,J,K)) -ALPHA ·1< ABS(VN(I,J-1,K)) ,., 
3 (TKN (I' J-1 ,K) -TKN (I' J ,K))) I (2. "'DELY) 

FKZ= (WN (I, J, K) ,., (TKN (I, J, K) +TKN (I, J, K+ 1)) + ALPHA ,., ABS 
1 (WN(I,J,K))'~ (TKN(I,J,K)-TKN(I,J,K+1))- WN(I,J,K-1) ;, 
2 (TKN(I,J,K-1)+TKN(I,J,K)) -ALPHA"' ABS(WN(I,J,K-1)) "' 
3 (TKN (I ' J' K -1) -TKN (I' J' K) ) ) I (2. "''DELZ) 

C CALCULATE NEW TIME VALUES. 
c 

U(I,J,K) = UN(I,J,K) +DELP''(RDX"'(P(I,J,K) -P(I+1,J,K)) 
1 + GX + VISX - FUX -FUY -FUZ) 

V (I, J, K) =VN (I, J, K) +DELT;' (RDY"'' (P (I, J, K) -p (I, J+ 1, K)) +GY 
1 -FVX-FVY-FVZ+VISY) 

W(I,J,K) = WN(I,J,K) + DELT"'(RDZ ,., (P(I,J,K) -P(I,J,K+1)) 
1 +GZ -FWX -FWY -FWZ +VISZ) 

TK(I,J,K) =(TKN(I,J,K) + "DELP'' (-FKX-FKY-FKZ +VISK))/SORK2 
C WRITE(6,37) I,J,K,SORK,SORK1,SORK2,VISK,TK(I,J,K) 

FKSUM=FKX+FKY+FKZ 
C WRITE(6,39) I,J,K,FKX,FKY,FKZ,FKSUM 
C IF(TK(I,J,K).LT.O.O) TK(I,J,K)=TIN 

IF(TK(I,J,K).LT.1.E-4) TK(I,J,K)=1.E-4 
c 

c 
c 
C37 
C39 
c 

VISOLD=MUN(I,J,K) 
IF(EN(I,J,K) .LT.l.E-4) EN(I,J,K)=l.E-4 
MU (I, J, K) = (CMU*DEN"' (TKN (I, J, K)) ,~·,'<2) /EN (I, J, K) + VISCOS 
MU (I, J ,K) =URFVIS'''MU (I, J ,K) + (1. -URFVIS) '"VISOLD 

FORMAT(1X,3(I2,1X),5(E14.6)) 
FORMAT(1X,3(I2,1X), 'CONV IN X,Y,Z' ,4(E14.6)) 

1100 CONTINUE 
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c------------------------------------------------------~---------------
c 
2000 CONTINUE 
c 
c 
c 
C ===========BOUNDARY CONDITIONS.===================== 
c 
c 
c 
c 

VERTICAL 
X - Y PLANE 



DO. 20 J=1,JMAX 
DO 20 I=1,IMAX 

c 
c 
c 
c 

------ END PLANE -- FREE SLIP K=1 

c 
c 
c 
c 

20 
c 
c 
c 

U (I, J, 1) =U (I, J, 2) 
V (I, J, 1) =V (I, J, 2) 
W (I, J, 1) =0. 0 
TK(I,J,1)=TK(I,J,2) 
E(I,J,1)=E(I,J,2) 
MU(I,J,1)=MU(I,J,2) 

SYMMETRY PLANE FREE SLIP 

W(I,J,KM1)=0.0 
W(I,J,KMAX)=W(I,J,KM1) 
U(I,J,KMAX)=U(I,J,KM1) 
V(I,J,KMAX)=V(I,J,KM1) 
TK(I,J,KMAX)=TK(I,J,KM1) 
E(I,J,KMAX)=E(I,J,KM1) 
MU(I,J,KMAX)=MU(I,J,KM1) 

CONTINUE 

Y - Z PLANE 

DO 21 J=1,JMAX 
DO 21 K=1,KMAX 

FREE SLIP 

TK (1, J, K) =0. 01 >'<UIN''<>'<2 
E(1,J,K)=(TK(1,J,K)**1.5)/0.3 
MU(1,J,K)=MU(2,J,K) 
W (1, J, K) =0. 0 
V (1, J ,K) =0. 0 

U (1, J, K) =UIN 
21 CONTINUE 

c 
C HORIZONTAL 
C X - Z PLANE 
c 

c 
c 
c 

DO 22 I=1,IMAX 
DO 22 K=1,KMAX 

TOP FREE SLIP 

V(I,JM1,K)=O.O 
V(I,JMAX,K)=V(I,JM1,K) 
U(I,JMAX,K)=U(I,JM1,K) 
W(I,JMAX,K)=W(I,JM1,K) 
TK(I,JMAX,K)=TK(I,JM1,K) 
E(I,JMAX,K)=E(I,JM1,K) 
MU(I,JMAX,K)=MU(I,JM1,K) 

J=JMAX 

c 
c ---- BOTTOM -- FREE SLIP 

K=KMAX 

I=1 

J=l 
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INLET FREE STREAM VEL. 



c 

c 

V(I,l,K)=O.O 
U(I,l,K)=U(I,2,K) 
W(I,l,K)=W(I,2,K) 
TK(I,l,K)=TK(I,2,K) 
E(I,2,K)=(((CMU*CD)**0.75)*TK(I,2,K)**l.5)/(CD*PK*DELY*0.5) 
E(I,l,K)=E(I,2,K) 
MU(I,l,K)=MU(I,2,K) 

22 CONTINUE 

C INLET B.CS. FOR JET 
c 
c 

c 

c 

c 

c 

c 

DO 27 K=KJET,KMl 
DO 27 I=IJET,3 
U(I,JJET,K)=O.O 
V(I,JJET,K)=UJET 
W(I,JJET,K)=O.O 
TK(I,JJET,K)=0.03*(UJET**2) 
E(I,JJET,K)=(TK(I,JJET,K)**l.5)/0.01 

27 CONTINUE 

AREA=DELZ'''DEL y>'< JBAR "'KBAR 
FLUXIN=AREA"'UIN+ U JET'''DELX'~DELZ 

• UOUT=FLUXIN/AREA 

FLUXOU=O.O 
DO 26 J=2,JM1 
DO 26 K=2,KM1 

26 FLUXOU=FLUXOU+DELZ 1'DELY*U (IM2, J, K) 
UINC=(FLUXIN-FLUXOU)/AREA 

IF(ITER.GT.O) GO TO 29 

C OUTLET BOUNDARY CONDITIONS 
c 

DO 25 J=2,JM1 
DO 25 K=2,KM1 
U(IMl,J,K)=U(IM2,J,K)+UINC 

C U(IMl,J,K)=UOUT 
U ( IMAX, J, K) =U (IMl , J, K) 
V(IMAX,J,K)=V(IMl,J,K) 
W(IMAX,J,K)=W(IMl,J,K) 
MU(IMAX,J,K)=MU(IMl,J,K) 
TK(IMAX,J,K)=TK(IMl,J,K) 

E(IMAX,J,K)=E(IMl,J,K) 
25 CONTINUE 
c 
c 
c 
29 IF(CYCLE.EQ.O) GO TO 2990 

IF(ITER.GT.O) GO TO 2990 
c 
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c 
c 
c 
c 
c 
C1102 
c 
c 
c 
C1103 
c 
C1101 
c 

1110 
c 
c 

DO 1101 I=1,IMAX 
WRITE(6,47) I 
WRITE (6, 57) 
DO 1102 JJ=1,JMAX 
J=JMAX-JJ+1 
WRITE (6, 44) (TK(I, J ,K) ,K=1 ,KMAX) 
WRITE (6, 58) 
DO 1103 JJ=1,JMAX 
J=JMAX-JJ+1 
WRITE(6,44) (E(I,J,K) ,K=1,KMAX) 

CONTINUE 

DO 1110 I=1,IMAX 
DO 1110 J=1,JMAX 
DO 1110 K=1,KMAX 
EN(I,J,K)=E(I,J,K) 

CONTINUE 
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C-------------- DISSIAPATION EQUATION ----------------­
C 

c 

c 

c 

c 

c 

c 

c 

c 

DO 1111 I=2,IM1 
DO 1111 J=3,JM1 
DO 1111 K=2,KM1 

IF(TKN(I,J,K).LT.2.E-4) TKN(I,J,K)=2.E-4 

TMXE= (MUN(I+1,J,K)+MUN(I,J,K))I2.0 

TMXW= (MUN(I-1,J,K)+MUN(I,J,K))I2.0 

TMYN= (MUN(I,J+1,K)+MUN(I,J,K))I2.0 

TMYS= (MUN(I,J-1,K)+MUN(I,J,K))I2.0 

TMZO= (MUN(I,J,K+1)+MUN(I,J,K))I2.0 

TMZI= (MUN(I,J,K-1)+MUN(I,J,K))I2.0 

FEX= (UN (I, J, K) 1' (EN (I, J, K) +EN (I+ 1, J, K)) +ALPHA''' ABS (UN (I, J, K)) ~. 
1 (EN (I , J , K) -EN (I+ 1 , J, K) ) -UN (I -1 , J , K) 1• (EN (I -1 , J , K) +EN (I , J , K) ) 
2 -ALPHA ~·ABS(UN(I-1,J,K)) '~(EN(I-1,J,K)-EN(I,J,K))) I 
3 (2. * DELX ) 

FEY=( VN(I,J,K)•'• ( EN(I,J,K)+ EN(I,J+1,K)) + ALPHA'~ABS(VN(I,J,K) 
1) 1' ( EN(I,J,K)- EN(I,J+1,K))- VN(I,J-1,K)'''(EN(I,J-1,K)+EN(I,J,K 
2 )) -ALPHA 1' ABS(VN(I,J-1,K)) * ( EN(I,J-1,K)- EN(I,J,K))) I 
3 (2. 1' DELY ) 

FEZ=(WN(I,J,K) * ( EN(I,J,K)+ EN(I,J,K+1)) +ALPHA'''ABS( WN(I,J,K 
1 )) 1'(EN(I,J,K)-EN(I,J,K+1))- WN(I,J,K-1) ,., (EN(I,J,K-1)+EN(I,J,K 
2 )) -ALPHA"' ABS(WN(I,J,K-1)) "' ( EN(I,J,K-1)- EN(I,J,K))) I 
3 (2. ,., DELZ) 

DVX=((VN(I,J,K)+VN(I+1,J,K)+VN(I,J-1,K)+VN(I+1,J-1,K)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I-1,J,K)+VN(I-1,J-1,K)))I 



2 (4. ~'DELX) 
DUY=((UN(I,J,K)+UN(I,J+1,K)+UN(I-1,J+1,K)+UN(I~1,J,K)) -

1 (UN(I,J,K)+UN(I,J-1,K)+UN(I-1,J-1,K)+UN(I-1,J,K))) I 
2 (4.~'DELY) 

DWY=((WN(I,J,K)+WN(I,J+1,K)+WN(I,J+1,K-1)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-1)+WN(I,J-1,K)+WN(I,J-1,K-1))) I 
2 (4. 7'DELY) 

DVZ=((VN(I,J,K)+VN(I,J,K+1)+VN(I,J-1,K)+VN(I,J-1,K+1)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) I 
2 ( 4. ~'DELZ) 

DUZ=((UN(I,J,K)+UN(I,J,K+1)+UN(I-1,J,K)+UN(I-1,J,K+1)) -
1 (UN(I,J,K)+UN(I-1,J,K)+UN(I-1,J,K-1)+UN(I,J,K-1))) I 
2 (4. "'DELZ) 

DWX=((WN(I,J,K)+WN(I+1,J,K)+WN(I+1,J,K-1)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-1)+WN(I-1,J,K-1)+WN(I-1,J,K))) I 
2 ( 4. '''DELX) 
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GG(I,J,K) = MUN(I,J,K)>'< (2.'''(((UN(I,J,K)-UN(I-1,J,K))IDELX) 7d<2 + 
1 ((VN(I,J,K)-VN(I,J-1,K))IDELY)H2 +((WN(I,J,K) -WN(I,J, 

c 
c 

2 K-1)) IDELZ) >'<>'<2) + (DVX+DUY) >':7:2 + (DWY+DVZ) >'d:2 + 
3 (DUZ+DWX) >'<>''2 ) 

VISEX=RDX''o'<2 7'(TMXE''' ( EN(I+1,J,K)- EN(I,J,K))-TMXW >': (EN(I,J, 
1 K)- EN(I-1,J,K))) 

VISEY=RDY"'~'2 7'(TMYN >'<( EN(I,J+1,K)- EN(I,J,K))-TMYS"'( EN(I,J,K) 
1 - EN(I,J-1,K))) 

VISEZ=RDZ''<>'<2 >'<(TMZO *( EN(I,J,K+1)- EN(I,J,K))-TMZI'''(EN(I,J,K) 
2 - EN(I,J,K-1))) 

VIS= (VISEX +VISEY +VISEZ ) I (SE'~DEN) 
GC=GG (I, J ,K) 
ENC=EN(I,J,K) 
TKNC=TKN (I, J, K) 
TKC=TK (I, J, K) 
SORE= GG(I,J,K) 7'C1 * EN(I,J,K) I(TKN(I,J,K)''<DEN) 
SORE1=C2 ;, (EN (I, J, K) ""''2) I (TKN (I, J, K)) 
SORE2=1.0 + DELT >': C2 *EN(I,J,K) I(TKN(I,J,K)) 
VISE=VIS + SORE 

C38 FORMAT(1X,3(I2,1X),7(E12.5)) 
c 
c 

E(I,J,K)=(EN(I,J,K) + DELT * (-FEX-FEY-FEZ+VISE))ISORE2 
C WRITE(6,38) I,J,K,SORE,SORE1,SORE2,VIS,VISE,E(I,J,K),GC 
C IF(E(I,J,K).LT.O.O) E(I,J,K)=EIN 

IF(E(I,J,K).LT.1.E-4) E(I,J,K)=1.E-4 
FESUM=FEX+FEY+FEZ 

C WRITE(6,39) I,J,K,FEX,FEY,FEZ,FESUM 
c 
c 
1111 CONTINUE 
c 
c 
2990 CONTINUE 
c 

GOTO KRET, (3000,5000) 



3000 

3050 
c 

CONTINUE 
IF(FLG.EQ.O.)GO TO 4000 
ITER=ITER+1 
IF(ITER.LT.150) GO TO 3050 
IF(CYCLE .LT. 64) GO TO 4000 
T= 1E+10 
GOTO 5000 
FLG=O.O 

151 

c----------------------------------------------------------------------
c ====CONVERGENCE=== 
C PRESSURE ITERATIONS. 
c 

DO 3500 I=2,IM1 
DO 3500 J=2,JM1 
DO 3500 K=2,KM1 

D= 1/DELx~·, (U (I, J, K) -U (I -1, J, K)) + 1 /DEL Y"' (V (I, J, K) -V (I, J-1, K)) 
+ + 1/DELZ'''(W(I,J,K)-W(I,J,K-1)) 

IF(ABS(D/DZRO).GE.EPSI) FLG=1. 
DELP=-D"''BET A 
P(I,J,K)=P(I,J,K)+DELP 
U (I, J, K) =U (I, J, K) +DELT'''DELP /DELX 
U(I-1,J,K)=U(I-1,J,K)-DELT*DELP/DELX 
V (I, J ,K) =V (I, J ,K) +DELT'''DELP /DELY 
V(I,J-1,K)=V(I,J-1,K)-DELT*DELP/DELY 
W (I, J, K) =W (I, J, K) +DEL T'''DELP /DELZ 
W (I, J, K-1) =W (I, J, K-1) -DEL T'''DELP /DELZ 

3500 CONTINUE 
GOTO 2000 

4000 CONTINUE 
5000 CONTINUE 
c 
C------------SHEAR STREES ON THE BOTTOM WALL 
c 

DO 5100 I=2,IM1 
DO 5100 K=2,KM1 

J=2 
UAVG=(U(I,J,K)+U(I+1,J,K))/2. 
WAVG=(W(I,J,K)+W(I,J,K+1))/2. 
UEFF= SQR T (UAVG*UAVG+WAVG'''WAVG) 
DENU=DEN 
YP=DELY/2. 
SQRTK=SQRT(TK(I,J,K)) 
CMUPQ=CMU''<>'co. 25 . 
YPLUSS (I, K) =DENU"''CMUPQ*SQRTK*YP /VISCOS 
IF(YPLUSS(I,K).LE.11.63) GO TO 5101 
TMULT=DENU"''CMUPQ'''SQRTK'''CAPPA/ ALOG (ELOG'''YPLUSS (I, K)) 
TAUS(I,K)=-TMULT*UEFF 
GO TO 5102 

5101 TAURX=-VISCOS"''UAVG/YP 
TAURW=-VISCOs~·'WAVG/YP 

TAUS (I ,K) =SQRT (TAURX'~TAURX+TAURW*TAURW) 
5102 DUZ=((U(I,J,K)+U(I,J,K+1)+U(I-1,J,K)+U(I-1,J,K+1)) -

1 (U(I,J,K)+U(I-1,J,K)+U(I-1,J,K-1)+u(I,J,K-1))) I 



2 ( 4. 1'DELZ) 
DWX=((W(I,J,K)+W(I+1,J,K)+W(I+1,J,K-1)+W(I,J,K-1)) -

1 (W(I,J,K)+W(I,J,K-1)+W(I-1,J,K-1)+W(I-1,J,K))) I 
2 ( 4 . >'<DELX) 

GG(I,J,K)=MU(I,J,K)*2.*(((U(I,J,K)-U(I-1,J,K))IDELX)**2+ 
1 ((V(I,J,K)-V(I,J-1,K))IDELY)'h'c2 + ((W(I,J,K)-W(I,J,K-1))1DELZ) 
2 '"'~2 )+ TAUS(I,K)''d•21MU(I,J,K) +MU(I,J,K)''' (DUZ+DWX)**2 

5100 CONTINUE 
c 
c 

GO TO 5210 
c 
C----------- SHEAR STRESS ON THE SIDE WALL 
c 

DO 5200 J=2,JM1 
DO 5200 K=2,KM1 

I=2 
VAVG=(V(I,J,K)+V(I,J+1,K))I2. 
WAVG=(W(I,J,K)+W(I,J,K+1))12. 
VEFF=SQRT (VAVG''<VAVG+WAVG'''WAVG) 
XP=DELXI2. 
DENV=DEN 
SQRTK=SQRT(TK(I,J,K)) 
XPLUSW (J, K) =DENV'~CMUPQ'''SQRTK>'<XP IVISCOS 
IF(XPLUSW(J~K).LE.11.63) GO TO 5201 
TMULT=DENV"'CMUPQ''<SQRTK'''CAPPAI ALOG (ELOG''<XPLUSW (J, K)) 
TAUW(J,K)=-TMULT*VEFF 
GO TO 5202 

5201 TAUXR=VISCOS'''VAVGIXP 
TAUXW=VISCOS>'<WAVGIXP 
TAUW (J ,K) =SQRT (TAUXR"'TAUXR+TAUXW"'TAUXW) 

5202 DWY=((WN(I,J,K)+WN(I,J+1,K)+WN(I,J+1,K-1)+WN(I,J,K-1)) -
1 (WN(I,J,K)+WN(I,J,K-1)+WN(I,J-1,K)+WN(I,J-1,K-1))) I 
2 (4. "'DELY) 

DVZ=((VN(I,J,K)+VN(I,J,K+1)+VN(I,J-1,K)+VN(I,J-1,K+1)) -
1 (VN(I,J,K)+VN(I,J-1,K)+VN(I,J-1,K-1)+VN(I,J,K-1))) I 
2 ( 4. >'<DELZ) 

GG (I, J, K) =MU (I, J, K) "'2. ,., ( ( (U (I, J, K) -U (I -1, J, K)) IDE LX) >'<>'<2 + 
1 ((V(I,J,K)-V(I,J-1,K))IDELY)**2 + ((W(I,J,K)-W(I,J,K-1)) I 
2 DELZ) >'o'<2) + TAUW (J, K) >'o'<2IMU (I, J, K) + MU (I, J, K) ,., (DVZ+ DWY) *'~2 

5200 CONTINUE 
c 
5210 CONTINUE 
c 
C========PRINT===== 

c 

WRITE(6,49) ITER,T,CYCLE 
WRITE(6,666) V(3,3,3) ,W(3,3,3) ,U(3,3,3) ,V(3,2,4) ,W(3,2,4), 

II U(3,2,4) 
IF(CYCLE.NE.320) GO TO 636 

DO 5300 I=1,IMAX 
DO 5300 J=1,JMAX 
K=8 
XX(I,J,1)=(0.4*I)-0.2-U(I,J,K)I2. 
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XX(I,J,2)=XX(I,J,1)+U(I,J,K)/2. 
XX(I,J,3)=XX(I,J,2)+U(I,J,K)/2. 
YY(I,J,l)=(0.6*J)-0.3-V(I,J,K)/2. 
YY(I,J,2)=YY(I,J,1)+V(I,J,K)/2. 
YY(I,J,3)=YY(I,J,2)+V(I,J,K)/2. 

5300 CONTINUE 
DO 5400 I=1,IMAX 
DO 5400 J=1,JMAX 
DO 5400 1=1,3 
M=I 1'J . 
X (M, L) =XX (I , J, L) 
Y (M, L) =YY (I, J, L) 

5400 CONTINUE 
c 
c 

c 
c 

WRITE(14) X 
WRITE(14) Y 

636 CONTINUE 
c 

c 

DO 5500 I=l,IMAX 
DO 5500 J=1,JMAX 

VEL(I,J)=SQRT(V(I,J,8)**2)+(U(I,J,8)**2) 
TR (I, J) = (J-1) *DELY -DELY /2. 

5500 CONTINUE 
c 
c 
c 

IF(CYCLE.EQ.O) GO TO 5152 
IF(CYCLE.EQ.1) GO TO 5152 
IF(CYCLE.EQ.2) GO TO 5152 
IF(CYCLE.EQ.320) GO TO 5152 
DO 66 II=10,400,50 

C DO 66 II=3,400 
IF(CYCLE.EQ.II) GO TO 5152 

66 CONTINUE 
c 

GOTO 5251 
c 

5152 CONTINUE 
c 
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c----------------------------------------------------------------------­c----------- OUTPUT ------------------------------------------------
( 

c----------------------------------------------------------------------
c 
5230 CONTINUE 

DO 5250 KK = 1 ,KMAX 
K=KMAX-KK+1 
WRITE(6,47) K 
WRITE(6,48) 
po 5252 JJ = 1, JMAX 



c 

J = JMAX -JJ+1 
5252 WRITE (6, 44) (U (I, J, K) , I= 1, IMAX) 

WRITE (6, 50) 
DO 5253 JJ = 1,JMAX 
J = JMAX -JJ+1 

5253 WRITE(6,44) (V(I,J,K),I=1,IMAX) 
WRITE(6,51) 
DO 5254 JJ = 1,JMAX 
J = JMAX -JJ+1 

5254 WRITE (6, 44) (W (I, J, K) , I= 1, IMAX) 
WRITE (6, 52) 
DO 5255 JJ = 1,JMAX 
J = JMAX -JJ+1 

5255 WRITE (6, 44) (P (I, J, K) , I= 1, IMAX) 
WRITE(6,57) 
DO 5258 JJ=1,JMAX 
J=JMAX-JJ+1 

5258 WRITE (6, 44) (TK (I, J, K) , I=1, IMAX) 
WRITE(6,58) 
DO 5259 JJ=1,JMAX 
J=JMAX-JJ+1 

5259 WRITE (6, 44) (E (I, J, K) , I= 1, IMAX) 
WRITE(6,59) 
DO 5260 JJ=1,JMAX 
J=JMAX-JJ+1 

5260 WRITE(6,44) (MU(I,J,K) ,I=1,IMAX) 
WRITE (6, 60) 
WRITE (6, 44) (YPLUSS (I, K), I=1, IMAX) 

WRITE (6, 61) 
WRITE(6,44) (XPLUSW(J,K),J=1,JMAX) 

WRITE(6,62) 
DO 5261 JJ=1,JMAX 
J=JMAX-JJ+1 

5261 
c 

WRITE (6, 44) (VEL (I, J) , I= 1, IMAX) 

5262 
c 
5250 
5251 

6100 

WRITE (6, 63) 
DO 5262 JJ=1,JMAX 
J=JMAX-JJ+1 
WRITE (6, 44) (TR (I, J) , I= 1, IMAX) 

CONTINUE 
CONTINUE 
DO 6100 I=1,IMAX 
DO 6100 J=1,JMAX 
DO 6100 K=1,KMAX 
VN(I,J,K)=V(I,J,K) 
UN(I,J,K)=U(I,J,K) 
WN(I,J,K)=W(I,J,K) 
TKN(I,J,K)=TK(I,J,K) 
EN(I,J,K)=E(I,J,K) 
MUN(I,J,K)=MU(I,J,K) 
CONTINUE 
T=T+DELT 
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IF (T. GT. 320~''DELT) GO TO 6500 
IF(CYCLE .EQ.O )GOTO 6200 

C IF(ITER.LE.l) GO TO 6550 
6200 CYCLE=CYCLE+l 

GOTO 1000 
6500 STOP 

c 

6550 WRITE(6,53) 
STOP 
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c----------------------------------------------------------------------
c 

47 
49 
44 
48 
50 
51 
52 

53 
57 
58 
59 
60 
61 
62 
63 
666 

FORMAT(//,20X, 'K =' ,I2,/,19X, 7('=')) 
FORMAT(//,6X, 'ITER=',I5,9X, 'TIME=',1PE12.5,10X, 'CYCLE=',I4,/) 
FORMAT (lX, 12 (Ell. 4)) 
FORMAT(//,2X, 'U-FIELD',/) 
FORMAT(//,2X, 'V-FIELD' ,/) 
FORMAT(//,2X, 'W-FIELD' ,/) 
FORMAT(//,2X, 'P-FIELD' ,/) 
FORMAT (//,10X,7('='), 'CONVERGENCE HAS BEEN REACHED. ') 
FORMAT(//,2X, 'TK-FIELD' ,/) 
FORMAT(//,2X, 'E -FIELD',/) 
FORMAT(// ,2X, 'MU-FIELD' ,/) 
FORMAT(//,2X, 'YPLUSS I ,4X, 'J = 2 I,/) 
FORMAT(//,2X, 'XPLUSW I ,4X, 'I= 2 ',/) 

FORMAT(//,2X, 'VELOCITY-RES',/) 
FORMAT(/ I' 2X, I TRAJECTORY ',/) 

FORMAT(//, lOX, 'V(3,3,3)=' ,El1.4,2X, 'W(3,3,3)=' ,E11.4,2X, 
II 'U(3,3,3)=' ,E11.4,//,10X, 'V(3,2,4)=' ,E11.4,2X, 'W(3,2,4)=' ,Ell.4, 
# 2X, 'U(3,2,4)=' ,E11.4,//) 

END 



c 
c 
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C*********************************************************************** 
C''"''• 
C*''~ 
C'b'< 

c~···· 
c~<* 

C** 
C""" 
c•<>'< 
C*"'• 
C1<>'< 

C*''< 
C** 
C*''' 
C*''< 
C'b'< 
C, . ..,., 

THREE-DIMENSIONAL PREDICTION TECHNIQUE FOR TURBULENT 
SWIRLING FLOWFIELDS IN CYLINDRICAL COORDINATES 

PH.D. THESIS 
BY 

AHMED A. BUSNAINA 

MAY, 1983 
SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING 

OKL~~OMA STATE UNIVERSITY 
STILLWATER , OKLAHOMA 

C*********************************************************************** 
C*********************************************************************** 
c 
C-------- APPLICATION 3 : DILUTION JETS IN GAS TURBINE COMBUSTORS -----­
C 
C*********************************************************************** 
C*********************************************************************** 
c 
c 
c 

c 

c 

c 

c 

DIMENSION U(12,12,9) ,V(12,12,9) ,W(l2,12,9) ,P(12,12,9), 
1UN(12,12,9),VN(12,12,9),WN(12,12,9) 
DIMENSION TK(12,12,9),TKN(12,12,9),E(12,12,9),EN(12,12,9) 

1 ,MU(12,12,9),MUN(12,12,9) 
1 ,GG(12, 12, 9) ,RPLUSS (12, 12), TAUS (12, 12) ,ZPLUSW(12, 12), 
2 TAUW(12,12),RU(12,12,9),RV(12,12,9),TAUN(l2,12).TNWRTE(l2,12), 
3 TNWRZE (12, 12) , VANB (7) , VEL (12, 12) , TR (12, 12) , 
3 TSWRTE(12,12),TSWRZE(12,12),TWWRZ0(12,12),TWWTZ0(12,12) 

DIMENSION XX(12,12,3),YY(12;12,3),X(432),Y(432), 
1 vv ( 12' 9 ' 5) • uu ( 12' 9 ' 5) 'ww ( 12' 9 '5) 

DATA VANB /0.0,45.0,55.0,60.0,65.0,68.0,70.0/ 

REAL NU,MU,MUN 
INTEGER CYCLE,CYCMAX 

C PARAMETER SETTING 
c 

EPSI=l. OE-3 
OMG=l. 7 
OMG=l. 7 
GR=O. 
GZ=O. 



c 

GTH=-0. 
DZRO=l. 0 
IN1=2 
IN2=6 
KIN=4 
RIN=O.O 
VINLET=O.l*lOO.O 

C--------- DILUTON JET DATA ·-------------------------------------------
( 

c 

c 
c 

RAT=l. 0 

UDIL=VINLEP'(RAT 
KDIL=5 
JDIL=6 

C---------- SWIRL VELOCITY AND LOOP --------------------------­
( 

c 

c 

LFS=2 
WIN=VINLEP''TAN (VANB (LFS) •'<3. 14159 I 180.) 

NS=4 
IWRITE=O 
ITMAX=60 

C--------.Z.lAXIMUM NUMBER OF CYCLES 
c 

CYCMAX=300 
NU=2.0E-4 
ALPHA=0.6 
DELR=O.Ol5 
DELZ=0.06 
DELTH=O.l4957 
DELT=0.008/100.0 
IBAR=lO 
JBAR=lO 
KBAR=7 
DIAM=IBAR*DELR*2.0 + RIN 

C PARAMETER 
IMAX=IBAR+2 
JMAX=JBAR+2 
KMAX=KBAR+2 
IMl=IBAR+l 
JMl=JBAR+l 
KMl=KBAR+l 
IM2=IBAR 
JM2=JBAR 
KM2=KB.AR 
RDR=l. /DELR 
RDZ= 1. /DELZ 
RDTH= 1. /DEL TH 
CMU=0.09 
CMUPQ=CMU**0.25 
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c 

CD=l.O 
C1=1. 44 
C2=1. 92 
SK=1.0 
SE=1.21 
PK=0.4187 
CAPPA=PK 
ELOG=9.793 

- URFVIS=O. 7 
NU=15.68E-6 
viscos=1.983E-5 
DEN=1.2 
SC=1.0 

c -------------------------------
c INITIALIZATION 

T=O 
ITER=O 
CYCLE=O 

C GUESS INITIAL VELOCITY FIELD 
DO 560 I=1,IMAX 

c 

DO 560 J=1,JMAX 
DO 560 K=1,KHAX 

U (I, J, K) =0. 0 
V(I,J,K)=VINLET/4.0 
W(I,J,K)=WIN/4.0 

UN(I,J,K)=O.O 
VN (I, J, K) =0. 1 
WN(I,J,K)=O.O 
P(I,J,K)=O.O 

560 CONTINUE 
DTMAX1=0.33*DELZ/VINLET 
DTMAX2=0. 5 '~DELR *''2'''DELZ**2*DELTH''d•2/ ( (DELR **2+DELZ**2+DELTH".,.•2) 

1 'tNU) 
ALF AMI= 1. 5 '''VINLET*DELT /DELZ 
BETA=OMG/ (2"~•DELT* (RDR**2+RDZ*1•2+RDTH**2)) 
WRITE(6,92) DELT,DTMAXl,DTMAX2,ALPHA,ALFAMI 

C DELT REDUCTION FOR STABILITY 
c 

IF(DELT.GT.DTMAXl) DELT=DTMAX1 
92 FORMAT(//,2X, 'DELT =',El2.4,2X, 'DTMAX1 =',E12.4,2X,'DTMAX2 =' 

c 
c 

1 ,E12.4,2X, 'ALPHA=' ,E12.4,2X, 'ALFAMI =' ,E12.4,//) 

DO 540 J=1,JMAX 
·DO 540 K=l,KMAX 

DO 540 I=1, IMAX 
RU(I,J,K)=(I-l.)*DELR+RIN 
RV(I,J,K)=(I-1.5)*DELR +RIN 

IF(RIN.LE.l.E-15) RU(1,J,K)=l.E-3 
540 CONTINUE 
c 
C-------------- INITIAL TURB ENERGY & DISSIAPATION ----------------
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c 
TIN=0.01*(VINLET)**2 
EIN=(TIN**1.5)/0.01 
IF(EIN.LT.1.E-3) EIN=l.E-3 
TINMAX= 10. 01'TIN 
EINMAX"' 10. O'''EIN 
DO 557 I=1, !MAX 
DO 557 J=1, Jl1AX 
DO 557 K=1,KMAX 

TK(I,J,K)=TIN 
E(I,J,K)=EIN 

557 
c 

MU (I, J, K) =CMU'''DEN'~ (TIN"d(2) /EIN + VISCOS 
CONTINUE 

ASSIGN 5000 TO KRET 
GO TO 2000 

1000 CONTINUE 
ITER'"'O 
FLG=l. 0 
ASSIGN 3000 TO KRET 

c ------------------------------
( APPLY MOMENTA EQUATIONS FOR TIME ADVANCE 
C U,V,W 

c 

c 

DO 1100 I=2,IM1 
DO 1100 J=2,JM1 
DO 1100 K=2,K?i.l 

TMRE=(MU(I+1,J,K)+MU(I,J,K))/2. 
TMRW=(MU(I-1,J,K)+MU(I,J,K))/2. 
TMTN=(MU(I,J,K+l)+MU(I,J,K))/2. 
TMTS=(MU(I,J,K-1)+MU(I,J,K))/2. 
TMZO=(MU(I,J+1,K)+MU(I,J,K))/2. 
TMZI= (MU (I, J-·1, K) +MU (I, J, K)) /2. 
TMUN=(MU(I,J,K)+MU(I+1,J,K)+MU(I+1,J,K+1)+MU(I,J,K+1))/4. 
TMUS=(MU(I,J,K)+MU(I+l,J,K)+MU(I+l,J,K-1)+MU(I,J,K-1))/4. 
TMUO=(MU(I,J,K)+MU(I+1,J,K)+MU(I+1,J+l,K)+MU(I,J+1,K))/~. 
TMUI=(MU(I,J,K)+MU(I+1,J,K)+MU(I+l,J-1,K)+MU(I,J-1,K))/4. 
TMWE= (MU (I, J, K) +MU (.I+ 1, J, K) +MU (I+ 1 , J, K+ 1) +MU (I, J, K+ 1)) /4. 
TMHW= (MU (I, J, K) +MU (I -1 , J, K) +MU (I-1, J, K+ 1) +MU (I, J, K+ 1)) /4. 
TMWO=(MU(I,J,K)+MU(I,J,K+1)+MU(I,J+1,K+1)+MU(I,J+1,K))/4. 
TMWI=(MU(I,J,K)+MU(I,J,K+1)+MU(I,J-1,K+1)+MU(I,J-1,K))/4. 
TMVE=(MU(I,J,K)+MU(I+1,J,K)+MU(I+1,J+1,K)+MU(I,J+1,K))/4. 
TMVW=(MU(I,J,K)+MU(I-l,J,K)+MU(I-1,J+1,K)+MU(I,J+1,K))/4. 
TMVN=(MU(I,J,K)+MU(l,J,K+1)+MU(I,J+1,K+1)+MU(I,J+1,K))/4. 
TMVS=(MU(I,J,K)+MU(I,J,K-1)+MU(I,J+l,K-1)+MU(I,J+l,K))/4. 

TAURRE=2. *MU (I+l, J ,K) >'< (UN(I+1, J ,K) -UN (I, J ,K)) 
TAURRW=2.*MU(I,J,K)*(UN(l,J,K)-UN(I-1,J,K)) 
DTARRU=RDR**2* (RV (I+1, J ,K) *TAURRE-RV (I, J ,K) '''TAURRW) /RU(I, J ,K) 
TAURTN=TMUN*(RU(I,J,K)*RDR*(WN(I+1,J,K)/RV(I+1,J,K)-WN(I,J,K)/ 

1RV (I, J ,K)) + (RDTH/RU(I, J ,K)) '~(UN(!, J ,K+1) -UN(I, J ,K))) 
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TAURTS=TMUS''' (RU (I, J, K) "'RDR* (WN (1+1, J ,K-1) /RV (I+1, J ,K-1) -WN (I, J ,K-1 
1)/RV(I,J,K-1))+(RDTH/RU(I,J,K))*(UN(I,J,K)-UN(I,J,K-1))) 
DTARTU=RDTH*(TAURTN-TAURTS)/RU(I,J,K) 



TAUTTU=2. •'•TMRE'~ (. 5"•RDTH'': (WN (I, J, K) +WN (I+ 1, J, K) -WN (I, J, K-1)­
HlN (I+ 1 , J, K -1)) +UN (I, J, K) ) IRU (I, J, K) >b~2 

TAURZO=TMUO''< (RDR'': (VN (I+ 1, J, K) -VN (I, J, K)) +RDZ'': (UN (I, J+ J., K) -
1 UN(I,J,K))) 

TAURZI""TMUI''< (RDR* (VN (I+ 1, J-1, K) -VN (I, J-1, K)) +RDZ'': (UN (I, J, K)-
1 UN (I , J -1 , K) ) ) 

IF(I.LE.IN2.AND.J.EQ.2) GO TO 334 
IF(J.EQ.2) TAURZO=TWWRZO(I,K) 

334 DTARZU=RDZ'~ (TAURZI-TAURZO) 
TAURTE=TMWE* (RU(I, J ,K) '''RDR"• (WN (I+1, J ,K) IRV (I+1, J ,K) -WN (I, J ,K) I 

1RV(I,J,K))+RDTH*(UN(I,J,K+1)-UN(I,J,K))IRU(I,J,K)) 
TAURTW=TMWH"' (RU (Ic-1, J, K) ~'RDR ;, (WN (I, J, K) IRV (I, J, K) -WN (I-1, J, K) I 

lR V (I -1 , J, K) ) +ROTH'* (UN (I -1 , J, K+ 1) -UN (I -1 , J, K) ) IRU (I -1 , J, K) ) 
IF(I.EQ.2.AND.RIN.GT.O.O) TAURTE=TSWRTE(J,K) 
IF(I.EQ.IMl) TAURTE=TNWRTE(J,K) 

1125 DT.ARTW=RDR* (Ru cr-1, 1 ,K) •b-cz,··TAURTW-RU (I, 1 ,K) *"•2*TAURTE) 1 
1RV (I, J, K) ,·:;:2 

TAUTTN=2. ,~;MU (I, J ,K+1) ,., (RDTH* (WN (I, J ,K+1) -WN (I, J ,K)) +(UN (I, J, K+1) 
1 +UN(I-1,J,K+1))12.) 

TAUTTS=2. '~MU (I, J, K) ~'<(ROTH''< (WN (I, J, K) -WN (I, J, K-1)) +(UN (I, J, K) 
1 +UN (I -1 • J' K) ) I 2 • ) . 

DTATTW=RDTH''< (TAUTTN-TAUTTS) IRV (I, J, K) >'<*2 
TAUTZO=TMWO'': (RDZ'~ (WN (I, J+ 1 ,K) -WN (I, J, K)) +RDTH''t (VN (I, J, K+ 1)-

1 VN(I,J,K))IRV(I,J,K)) 
TAUTZl=TMWI*(RDZ*(WN(I,J,K)-WN(I,J-1,K))+RDTH*(VN(I,J-1,K+1)-

1 VN(I,J-1,K))IRV(I,J,K)) 
IF(I.LE.IN2.AND.J.EQ.2) GO TO 335 
IF(J.EQ.2) TAUTZO=TWWTZO(I,K) 

335 DTATZW=RDZ''< (TAUTZI-TAUTZO) 

c 

c 

c 

TAURZE=TMVE* (RDR''< (VN (I+1, J ,K) -VN (I, J ,K)) +RDZ"' (UN(I, J+1 ,K)-
1 UN (I, J, K))) . 

TAURZW=TMVW''< (RDR1< (VN(I, J, K) -VN (I-1, J, K)) +RDZ''< (UN (I-1, J+ 1, K) 
1 -UN(I-1,J,K))) 

IF(I.EQ.2.AND.RIN.GT.O.O) TAURZE=TSWRZE(J,K) 
IF (I. EQ. IM1) TAURZE=TNWRZE (J, K) 

DTARZV=RDR* (RU (I-1, J ,K) "'TAURZW-RU (I, J ,K) *TAURZE) IRV (I, J ,K) 
TAUTZN=TMVN,.'(RDZ''< (WN (I, J+1,K) -WN (I, J ,K)) +ROTH''< (VN (I, J ,K+1)-

1 VN(I,J,K))IRV(I,J,K)) 
TAUTZS=TMVS''t (RDZ"'' (WN (I, J+ 1, K-1) -WN (I, J ,K-1)) +ROTH>'< (VN (I, J, K) -

1 VN(I,J,K-l))IRV(I,J,K)) 
DTATZV=RDTH*(TAUTZN-TAUTZS)IRV(I,J,K) 

IF (RIN. LE.1.E-15 .AND. I .EQ. 2) DTATZV=·o. 0 

TAUZZ0=2.*MU(I,J+1,K)*RDZ*(VN(I,J+1,K)-VN(I,J,K)) 
TAUZZI=2. "'MU(I, J ,K) *RDZ* (VN(I, J ,K) -VN (I, J-1 ,K)) 
DTAZZV=RDZ*(TAUZZO-TAUZZI) 

C VELOCITY IN THE RADIAL DIRECTION R 
c 

FUR= (RV (I+1, J, K) >'<(UN (I, J ,K) + UN (I+1, J ,K)) >'o'<2+ALPHA*RV (I+1, J ,K) 
1*ABS(UN(I,J,K)+UN(I+1,J,K))*(UN(I,J,K)-UN(I+1,J,K))-RV(I,J,K) 
2 . *(UN (I ·-1 , J, K) +UN (I, J, K) ) *"''2 -ALPHA *RV (I, J, K) * ABS (UN (I -1 , J, K) + 
3 UN (I, J, K)) >':(UN (I -1, J, K) -UN (I, J, K))) I ( 4. *DELR "''RU (I, J, K)) 
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c 

c 

c 

c 
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FUZ = ( (VN (I, J, K) +VN (I+ 1, J, K)) ,., (UN (I, J, K) +UN (I, J+ 1, K)) +ALPHi1.1~ABS (VN 
1 (I, J, K) +VN (I+ 1, J, K)) ,., (UN (I, J, K) -UN (I, J + 1, K))- (VN (I, J-1, K) +VN (I+ 1, 
2J-1, K)) ,., (UN (I, J-1, K) +UN (I, J, K)) -ALPHN''ABS (VN (I, J-1, K) +VN (I+ 1, J-1, K 
3)) ;, (UN (I' J-1 'K) -UN (I. J 'K))) I (41'DELZ) 

FUT= ((WN (I, J ,K) +WN (I+ 1, J ,K)) •'< (UN (I, J ,K) +UN (I, J ,K+1)) +ALPHA1'ABS (WN ( 
1I, J, K) +WN (I+ 1, J, K)) >'<(UN (I, J, K) -UN(I, J, K+ 1))- (WN (I, J, K-1) +WN (I+1, J, 
2K-1)) >'<(UN (I, J, K-1) +UN (I, J, K)) -ALPHA'''ABS (WN (I, J ,K-1) +WN (I+ 1, J, K-1) 
3 ) ,., (UN (I' J 'K-1) -UN (I' J 'K))) I ( 4 0 1'DELTH"'RU (I' J' K)) 

FUC=((WN(I,J,K)+w~(I+1,J,K))**2+ 
1 (WN(I,J,K-l)+WN(I+1,J,K-1))**2+ALPHA*ABS(WN(I,J,K)+WN(I+1,J,K)) 
2'\- (WN (I, J ,K) -WN (I+1, J ,K)) +ALPHA,.'ABS (WN (I, J ,K-1) +WN (I+1, J ,K-1)) •'< (WN ( 
3I,.T,K-1)-WN(I+l,J,K-1)))/(8>'< RU(I,J,K)) 

VISR=(DTARRU+ DTARTU- TAUTTU+ DTARZU )/DEN 
c 
C VELOCITY IN THE AXIAL DIRECTION ZETA 
c 

c 

c 

c 
c 

FVR= (RU (I, J, K) ,., (UN (I, J, K) +UN (I, J+ 1, K)) ;, (VN (I, J, K) +VN (I+ 1 , J, K)) + 
1 ALPHA *RU (I, J, K) ;,ABS (UN (I, J, K) +UN (I, J+ 1, K)) ;, (VN (I, J, K) -VN (I+ 1, J 
2 , K)) -RU (I -1, J·, K) *(UN (I -1, J, K) +UN (I -1, J+ 1, K)) ,., (VN (I -1, J, K) +VN (I, 
3 J, K)) -ALPHA *RU (I-1, J, K) •'<ABS (UN (I -1, J, K) +UN (I -1, J + 1, K)) ,., (VN (I-1, 
4 J , K) - VN (I , J , K) ) ) I ( 4 o >'<DELR '"R V (I , J , K) ) . 

F'VZ= ( (VN (I, J ,K) +VN (I, J+1, K)) •'•*2+ALPHA*ABS (VN (I, J, K) +VN (I, J+1 ,K)) * ( 
1 VN (I, J • K) -VN (I, J+1 ,K))- (VN (I, J-1 ,K) +VN (I, J ,K)) **2-ALPHN''ABS (VN (I, J 
2-1,K)+VN (I 0 J ,K)) ,., (VN(I 'J-1 ,K) -VN(I, J ,K))) I (4'"DELZ) 

FVT= ( (WN (I, J ,K) +WN (I, J+1 ,K)) ,., (VN (I, J ,K) +VN (I, J ,K+1)) +ALPHA,.'ABS (WN ( 
1I,J,K)+WN(I,J+1,K))*(VN(I,J,K)-VN(I,J,K+1))-(WN(I,J,K-1)+WN(I,J+1, 
2K-l)) .,., (VN (I, J ,K-1) +VN (I, J, K)) -ALPHA'''ABS (WN (I, J ,K-1) +WN (I, J+1 ,K-1)) 
3>'< (VN (I' J ,K-1) -VN (I' J ,K))) I (4'''DELTH* RV (I' J' K)) 

VISZ=(DTARZV+ DTATZV+ DTAZZV )/DEN 
c 
C VELOCITY IN THE ANGULAR DIRECTION THETA 
c 

c 

c 

FWR= (RU (I, J, K) ;, (UN (I, J, K) +UN (I, J, K+ 1)) ;, (WN (I, J, K) +WN (I+ 1, J, K)) + 
1 ALPHA*RU(I,J,K)*ABS(UN(I,J,K)+UN(I,J,K+1))*(WN(I,J,K)-WN(I+1,J,K) 
2 )- RU(I-1,J,K)'"(UN(I-1,J,K)+UN(I-1,J,K+1))*(WN(I-1,J,K)+WN(I,J,K) 
3 ) - ALPHA*RU (I-1, J ,K) *ABS (UN (I-1, J ,K) +UN (I-1, J ,K+l)) ,., (WN (I-1, J ,K) 
4- WN(I,J,K)))/(4o*DELR*RV(I,J,K)) 

FWZ=((VN(I,J,K)+VN(I,J,K+1))*(WN(I,J,K)+WN(I,J+1,K))+ALPHA*ABS(VN( 
1I,J,K)+VN(I,J,K+l))*(WN(I,J,K)-WN(I,J+l,K))-(VN(I,J-1,K)+VN(I,J-l, 
2K+1)) * (WN (I, J-1, K) +WN (I, J ,K)) -ALPHA"'ABS (VN (I, J-1 ,K) +VN (I, J-1 ,K+1)) 
3>'< (WN (I' J-1 'K) -WN (I' J ,K))) I (4*DELZ) 

FWT= ( (WN (I, J ,K) +WN(I, J ,K+1)) **2+ALPHA'"ABS (WN (I, J ,K) +WN(I, J ,K+1)) * ( 
lWN(I,J,K)-WN(I,J,K+l))-(WN(I,J,K-l)+WN(I,J,K))**2-ALPHA*ABS(WN(I,J 
2, K-1) +WN (I, J, K)) ,., (WN (I, J, K-1) -WN (I, J, K))) / ( 4*DELTH"' RV (I, J, K)) 



c 

c 

c 

c 
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FWC= ((UN (I, J, K) +UN (I, J, K+ 1)) ,., (WN (I, J, K) +WN (I+ 1, J, K)) +(UN (I-1, J, K) 
1 +UN (I -1 , J , K + 1) ) 1' (WN (I -1 , J , K) +WN (I , J , K) ) +ALPHA,., AB S (UN (I , J, K) +UN (I , J 
2, K+ 1)) 1' (WN (I, J, K) -WN (I+ 1, J, K)) + ALPHN'' ABS (UN (I -1, J, K) +UN (I -1, J, K+ 1) 
3) ,., ( WN (I -1 , J , K) -WN (I , J , K) ) ) / ( 8 ,., R V (I , J , K) ) 

VIST=(DTARTW+ DTATTW+ DTATZW )/DEN 

IF(RIN.LE.1.E-15.AND.I.EQ.2) GO TO 1135 
IF(I.LE.IN2.AND.J.EQ.2) GO TO 1135 
IF(I.EQ.2.0R.I.EQ.IM1.0R.J.EQ.2) GO TO 1150 

1135 DWR=RDR*((WN(I,J,K)+WN(I,J,K-1)+WN(I+1,J,K)+WN(I+1,J,K-1))/(4.0 
1 ) -(WN(I,J,K)+WN(I,J,K-1)+WN(I-1,J,K-1)+WN(I-1,J,K))/ 

c 

c 

c 

c 

c 

2 (4.) ) - (WN(I,J,K)/RV(I,J,K)) 
IF(RIN.LE~1.E-15.AND.I.LT.4) DWR=O.O 

DUT=RDTH*((UN(I,J,K)+UN(I,J,K+1)+UN(I-1,J,K+1)+UN(I-1,J,K))/4. 
1 -(UN(I,J,K)+UN(I-l,J,K)+UN(I-1,J,K-1)+UN(I,J,K-1))/4.)/RV(I,J,K) 
DVT=RDTH*((VN(I,J,K)+VN(I,J,K+l)+VN(I,J-1,K+l)+VN(I,J-1,K))/4. 

1 -(VN(I,J,K)+VN(I,J-1,K)+VN(I,J,K-1)+VN(I,J-1,K-1))/4.)/RV(I,J,K) 
DWZ=RDZ''< ( (WN (I, J, K) +WN (I, J+ 1, K)+WN (I, J+ 1, K-1) +WN (I, J, K-1)) /4. 

1 -- (WN (I , J, K) +WN (I , J, K -1) +WN (I , J -1 , K) +WN (I , J -1 , K -1) ) /4. ) 
DUZ=RDZ*((UN(I,J,K)+UN(I,J+l,K)+UN(I-1,J,K)+UN(I-1,J+1,K))/4. 

1 -- (UN (I , J, K) +UN (I -1 , J , K) +UN (I , J -1 , K) +UN (I -1 , J- 1 , K) ) /4. ) 
DVR =RDR * ( (VN (I, J , K) +VN (I+ 1 , J, K) +VN (I, J -1 , K) +VN (I+ 1 , J -1 , K) ) /4. 

1 -- ( VN (I , J , K) + VN (I , J -1 , K) + VN (I- 1 , J , K) + VN (I -1 , J -1 , K) ) / 4 • ) 

GP=MU (I, J, K) '"' (2, "~< ((RDR7' (UN (I, J, K) -UN (I-1, J, K))) >'<>'<2 + 
1 (UN (I, J, K) /RU (I, J, K) + (RDTH/RV (I, J, K)) * (WN (I, J, K) -WN (I, J, K-1))) 
2 **2 + (RDZ*(VN(I,J,K)-VN(I,J-1,K)))**2) ) 

GG(I,J,K)= GP + (DWR+DUT)**2 + (DVT+DWZ)**2 + (DUZ+DVR)**2 

IF(CYCLE.LT.400) GO TO 1150 
IF(I.NE.2) GO TO 1150 
WRITE(6,95) I,J,K,DWR,DUT,DVT,DWZ 
WRITE(6,97) DUZ,DVR,GP,GG(I,J,K) 

95 FORMAT(1X,3(I2,1X), 'DWR,DUT,DVT,DWZ' ,3X,4(E12.5,1X)) 
97 FORMAT(2X, 'DUZ,DVR,GP,GG ',3X,4(E12.5,1X)) 
c 
c 
115 0 CONTINUE 
c 
c 
C TURBULENT ENERGY 
c 

c 

FKR= ( 1. /RV (I, J, K)) * (RU (I, J, K) *UN (I, J, K) 'i< (TKN (I, J, K) +TKN (I+ 1, J, K)) 
1 + ALPHN''ABS (UN (I, J, K)) *RU (I, J, K) * (TKN (I, J, K) -TKN (I+ 1, J, K)) -
2 UN(I-l,J,K)*RU(I-1,J,K)*(TKN(I-1,J,K)+TKN(I,J,K)) - ALPHA* 
3 ABS (UN (I-1, J, K)) *RU (I -1, J, K) .,., (TKN (I-1, J, K) -TKN (I, J, K))) 1'RDR/2. 

FF'..Z=RDZ''< (VN (I, J, K) * (TKN (I, J, K) +TKN (I, J+ 1, K)) +ALPHA~'ABS (VN (I, J, K 



c 

c 

c 

c 
c 
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1 ) ) :'c (TKN (I, J, K) -TKN (I, J+ 1, K)) -VN (I, 1-1, K) ;, (TKN (I, J-1, K) +TKN (I, J, K 
2 ) ) -ALPHA~'ABS (VN (I, J -1, K)) ,., (TKN (I, J -1, K) -TKN (I, J, K))) /2. 

FKT=RDTH* (WN (I, J, K) ,., (TKN (I, J, K) +TKN (I, J, K+ 1)) +ALPHA'''ABS (WN (I, J, K) 
1 ) '' (TKN (I, J, K) -TKN (I, J, K+ 1)) -WN (I, J, K -1) ,., (T}{.N (I, J, K-1) +TIU~ (I, J, K) 
2 ) -ALPHA*ABS(WN(I,J,K-l))*(T~~(I,J,K-1)-TKN(I,J,K)))/2. 

VISK= ( (RDR1"~2/RV (I, J, K)) ''" (RU (I, J, K) *TMRE* (TKN (I+ 1, J, K) -TKN (I, J ,K)) 
1 -RU (I-1, J, K) ''<TMRW* (TKN (I, J, K) -TKN (I-1, J ,K))) + (RDTH'''*2/RV (I, J ,K 
2 ) *"<2) ''< (TMTN'~ (TKN (I, J, K+ 1) -TK."l (I, J, K)) -TMTS''< (TKN (I, J, K) -TKN (I, J, K 
3 -1))) +RDZ''dcz * (TMZO* (TKN (I, J+ 1, K) -TKN (I, J, K)) -TMZI"' (TKN (I, J, K)-
4 TKN(I,J~l,K))))/(DEN*SK) 

SORK=GG(I,J,K)/OEN 
SORK2= 1. O+DEL p'c EN (I, J, K) /TKN (I, J, K) 
VISK1=VISK+SORK 

C VELOCITIES UPDATE 
C RADIAL VELOCITY 
c 

U (I, J, K) :.UN (I, J ,K) +DELT"' ( (P (I, J, K) -p (I+l, J, K)) "'RDR+GR-FUR-FUZ-FUT+ 
lFUC+VISR) 

C AXIAL VELOCITY 
c 

V (I, J, K) =VN (I, J, K) +DELT* ( (P (I, J, K) -p (I, J+l, K)) "'RDZ+GZ-FVR-FVZ-FVT 
l+VISZ) 

C TANGENTIAL VELOCITY 
c 

c 

c 

c 

W (I, J, K) =WN (I, J, K) +DELT* ((P (I, J, K) -p (I, J, K+ 1)) "'RDTH/ (RV (I, J, K)) 
1 +GTH-·FWR-FWZ-FWT-FWC+VIS!) 

IF(W(I,J,K).LT.O.O) W(I,J,K)=O.O 

IF (RIN. LE. 1. E-15 .AND. I. EQ. 2) W (I, 1 ,K) =0. 3333'''W (I+1, J, K) 

C TURBULENCE ENERGY 
c 

c 

c 

IF(CYCLE.LE.40) GO TO 1800 

TK(I, J ,K) = (TKN (I, J ,K) +DELT'~ ( -FKR-FKZ-FKT+VISKl)) /SORK2 
IF(TK(I,J,K).LT.l.E-3) TK(I,J,K)=1.E-3 
IF(EN(I,J,K).LT.1.E-3) EN(I,J,K)=1.E-3 
IF(TK(I,J,K).GT.TINMAX) TK(I,J,K)=TINMAX 

1800 CONTINUE 
c 

c 

c 

VISOLD=MUN(I,J,K) 
MU (I, J, K) = (CMU*DEN* (TKN (I, J, K)) 'b'<2) /EN (I, J, K) + VISCOS 
MU (I, J ,K) =URFVIS*MU (I, J ,K) + (1. -URFVIS) *VI SOLD 

IF(CYCLE.LT.400) GO TO 1100 
IF(I.NE.2) GO TO 1100 



c 

c 

WRITE(6,40) I,J,K,FKR,FKZ,FKT,VISK 
WRITE(6,41) SORK,SORK2,VISKl,GG(I,J,K) 

WRITE(6,96) I,J,K,FUR,FUT,FUZ,FUC,VISR 
WRITE(6,93) FVR,FVT,FVZ,VISZ 
WRITE(6,94) FWR,FWT,FWZ,FWC,VIST 

96 FORMAT(1X,3(I2,1X), 'FUR,FUT,FUZ,FUC,VISR 1 ,3X,5(E12.5,1X)) 
93 FORMAT(lX, 'FVR,FVT,FVZ,VISZ I ,2X,4(E12.5,1X)) 
94 FORMAT(lX, 'FWR,FWT,FWZ,FWC,VIST 1 ,3X,5(E12.5,1X)) 
c 

c 
c 

40 FORMAT(1X,3(I2,1X), 'FKR,Z,T,AND VISK',2X,4(E12.5,1X)) 
41 FORMAT (lX, 1 SORK, SORK2, VISKl, GG', 2X, 4 (E12.5, lX)) 

1100 CONTINUE 
c 

2000 CONTINUE 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 

GENERAL BOUNDARY CONDITIONS 

PERIODEC BOUNDARY CONDITIONS 

BOUNDARY CONDITIONS ON THE RIGHT SIDE 
DO 2200 J=l,JMAX 
DO 2200 I=l,IMAX 
U(I,J,l)=U(I,J,Kl-11) 
V(I,J,l)=V(I,J,~~l) 
W(I,J,l)=W(I,J,KMl) 
P(I,J,l)=P(I,J,KMl) 
TK(!,J,l)=TK(I,J,KMl) 
E(I,J,l)=E(I,J,KMl) 
MU(I,J,l)=MU(I,J,KMl) 
BOUNDARY CONDITIONS ON THE LEFT SIDE 
U(I,J,2)=U(I,J,KM1) 
V(I,J,2)=V(I,j,KMl) 
W(I, J, 2) =W (I ,J ,KMl) 
P(I,J,2)=P(I,J,KM1) 
TK(I,J,2)=TK(I,J,KM1) 
E(I,J,2)=E(I,J,KM1) 
MU (I, J, 2) =MU (I, J ,.KMl) 

U(I,J,KMAX)=U(I,J,KMl) 
V(I,J,KMAX)=V(I,J,KMl) 
W(I,J,KMAX)=W(I,J,KMl) 
P(I,J,KMAX)=P(I,J,KMl) 
TK(I,J,KMAX)=TK(I,J,KMl) 
E(I,J,KMAX)=E(I,J,KMl) 
MU(I; J ,KMAX) =MU(I, J ,KMl) 

2200 CONTINUE 
c 
C BOUNDARY CONDITIONS ON THE WEST WALL 

164 



C NO SLIP BCS 
c 

DO 2500 I=1,IMAX 
DO 2500 K=l,KMAX 
U (I , 1 , K) ""-U (I , 2 , K) 
V (I, 1, K) =0. 0 
W(I,1,K)=-W(I,2,K) 
TK(I,l,K)=TK(I,2,K) 
IF (RIN. LE. 1. E-15. AND. I. LE. IN2) GO TO 2501 
E (I' 2 'K) = ( ( (CMU'''CD) "'*0. 75) '''TK (I' 2 'K) **1. 5) I (CD'''PK,.'DELZ*O. 5) . 

2501 E(I,1,K)=E(I,2,K) 
MU (I, 1, K) =MU (I, 2, K) 

c 
C BOUNDARY CONDITIONS ON THE EAST WALL 
C COMBUSTOR OUTLET 
c 

U (I , JMAX , K) = U (I , JM 1 , K) 
C V(I,JMAX,K) =0.0 
C V(I,JMl,K)=O.O , 

W(I, JMAX,K) =W (I, JM1 ,K) 
TK(I,JMAX,K)=TK(I,JM1,K) 
E(I,JMAX,K)=E(I,JMl,K) 
MU(I,JMAX,K)=MU(I,JM1,K) 

2500 CONTINUE 
c 
C BOUNDARY CONDITIONS ON THE INNER CYLINDER 
C NO SLIP BCS 
c 

DO 2020 J=1, JMAX 
DO 2020 K=1,Y~ 

IF(RIN.LE.1.E-15) GO TO 2021 
U(l,J,K)=O.O 
V(l,J,K)=-V(2,J,K) 
W(1,J,K)=-W(2,J,K) 
E (2, J ,K) = ( ( (CMU'''CD) '"*O. 75) *TK(2' J,K) **1. 5) I (CD'"PK~'DELR'''0.5) 
GO TO 2022 

C SYMMETRY AXIS WHEN RIN=O.O 
2021 V(1,J,K)=V(2,J,K) 

W(1,J,K)=-W(2,J,K) 
2022 U(l,J,K)=O.O 

TK(1,J,K)=TK(2,J,K) 
E ( 1, J, K) =E (2, J, K) 
MU(l,J,K)=MU(2,J,K) 

c 
C BOUNDARY CONDITIONS ON THE OUTER CYLINDER 
C NO SLIP BCS 
c 

U (IMAX, J, K) =0. 0 
U (IM1, J, K) =0 •. 0 
V(IMAX,J,K)=-V(IM1,J,K) 
W(IMAX,J,K)=-W(IM1,J,K) 
TK(IMAX,J,K)=TK(IM1,J,K) 
E (IM1 'J ,K) = ( ( (CMU"'CD) *'''0. 75) *TK(IM1' J ,K) ""''1. 5) I (CD*PK'''DELR*0.5) 
E(IMAX,J,K)=E(IMl,J,K) 
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MU(IMAX,J,K)=MU(IM1,J,K) 
2020 CONTINUE 

c 
C SPECIAL BOUNDARY CONDITIONS 
c 

c 
c 

c 
c 

c 

c 

IF(WIN.LE.O.O) GO TO 2111 

DO 2120 K=l,KMAX 

V (2, 1, K) =0. 0 
W (2, 1 , K) =0. 0 
V(3,1,K)=0.4*VINLET 
W(3,l,K)=0.4*WIN 
V(4,l,K)=0.8*VINLET 
W(4,l,K)=0.8*WIN 
V(5,1,K)=1.2*VINLET 
W(5,l,K)=1.2*WIN 
V(6,1,K)=l.6*VINLET 
W(6,1,K)=l.6*WIN 

2120 CONTINUE 

2111 CONTINUE 
c 
C INLET FLOW 
c 
c 

DO 2220 I=IN1 ,IN2 
DO 2220 K=1,KMAX 

c 
IF(WIN.GT.O.O) GO TO 2221 

c 
V(I,1,K)=VINLET 

W(I,l,K)=WIN 
2221 U(I,1,K)=O.O 

TK(I, 1 ,K) =0. 03~·, (V (I ,1 ,K) >'d•Z) 
E (I' 1 ,K) = (TK(I' 1 'K) )b~l. 5) I (0. 01 1'DIAM) 

2220 CONTINUE 
c 
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C------------ INLET BCS FOR THE DILUTION JET -------------------------­
( 

c 
c 

c 
c 

U(IM1,JDIL,KDIL)=-UDIL 
U(IMAX,JDIL,KDIL)=-UDIL 

FLUXDJ=UDIL*DELZ*DELTH*RU(IM1,JDIL,KDIL) 

C OUTLET FLOW 
IF(ITER.GT.O) GO TO 2813 

C USE OF FLUXRAT TO AMEND V AT OUTLET AT ITER=O ONLY 
C COMPUTATION OF IN AND OUT FLUXES 



FLUXIN=O.O 
DO 6112 I=IN1,IN2 
DO 6112 K=2,KM1 

C K=KIN 

c 

c 

FLUXIN= ( (RU (I, 1 ,K) >'d<2-RU (I-1, 1 ,K) '"'~2) "'DELTH/2) *V (I, l, 
1K) +FLUXIN 

6112 CONTINUE 

FLUXIN=FLUXIN+FLUXDJ 
AROUT= ( (RIN+IM2*DELR) '~*2-RIN*'~2) *KM2*DELTH/2 
VOUT=FLUXIN/AROUT 

FLUXOU=O.O 
DO 6122 I=2,IM1 
DO 6122 K=2,KM1 

J=JM2 
FLUXOU= (RU (I, J ,K) **2-RU (I-1, J, K) ,..,~2) ,., (DELTH/2) '~V (I, J ,K) +FLUXOU 

6122 CONTINUE 

c 
VINC=(FLUXIN-FLUXOU)/AROUT 

DO 2817 I=2,IM1 
DO 2817 K=2,KM1 

C V(I,JM1,K)=VOUT 

c 
c 

c 
c 

V(I,JM1,K)=V(I,JM2,K)+VINC 
V (I, JMAX,K) =V (I, JM1 ,K) 
U(I,JMAX,K)=U(I,JM1,K) 

2817 W(I,JMAX,K)=W(I,JM1,K) 
2813 CONTINUE 

IF.(CYCLE.EQ.O) GO TO 2990 
IF(CYCLE.LE.40) GO TO 2990 
IF(ITER.GT.O) GO TO 2990 

DO 1110 I=1,IMAX 
DO 1110 J-=1, JMAX 
DO 1110 K=1,KMAX 
EN(I,J,K)=E(I,J,K) 

111 0 CONTINUE 
c 
C------------- DISSIAPATION EQUATION --------------------­
C 

c 
c 

c 

c 

IS=3 
IF(RIN.LE.l.E-15) IS=2 

DO 1111 I=IS,IM2 
JS=3 
IF(RIN.LE.1.E-15.AND.I.LE.IN2) JS=2 

DO 1111 J=JS,JM1 
DO 1111 K=2,KM1 
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c 

c 

c 

c 

c 

c 

TMRE=(MU(I+1,J,K)+MU(I,J,K))/2. 
TMRW=(MU(I-1,J,K)+MU(I,J,K))I2. 
TMTN=(MU(I,J,K+1)+MU(I,J,K))I2. 
TMTS=(MU(I,J,K-l)+MU(I,J,K))I2. 
TMZ 0= (till (I , J + 1 , K) + MU (I , J , K) ) I 2 • 
TMZ I= (MU .(I , J -1 , K) + MU (I , J , K) ) I 2 • 

FER= RDR ''< (RU (I , .T , K) 1'UN (I , J, K) * (EN (I , J , K) +EN (I+ 1 , J , K) ) +ALPHA 
1 '''R U (I , J , K) * AB S (UN (I , J , K) ) 1< (EN (I , J , K) -EN (I+ 1 , J , K) ) -UN (I -1 , J , K) 1' 
2 RU (I-1, J ,K) 1< (EN (I-1, J ,K) +EN (I, J ,K)) -ALPH.A''<RU (I-1, J ,K) *ABS 
3 (UN (I -1 'J 'K)) 1' (EN (I -1 'J' K) -EN (I' J 'K))) I (2. 1'RV (I']' K)) 

FEZ=RDZ''< (VN (I, J ,K) ,., (EN (I, J, K) +EN (I, J+ 1, K)) +ALPHA'''ABS (VN (I, J, K)) 
1 1' (EN (I, J, K) -EN (I, J+ 1, K))- VN (I, J-1, K) 1' (EN (I, J-1, K) +EN (I, J, K))-
2 ALPHA1'ABS (VN(I, J-1 ,K)) * (EN(I, J-1 ,K) -EN (I, J ,K))) 12. 
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FET=RDTH''< (WN (I, J, K) *(EN (I, J, K) +EN (I, J, K+ 1)) +ALPHA'''ABS (WN (I, J, K)) 
1 ,., (EN (I, J, K)-EN (I, J, K+ 1) ) - WN (I, J, K-1) •'< (EN (I, J, K -1) +EN (I , J, K) ) -
2 ALPHA*ABS (WN(I, J ,K-1)) 1< (EN (I, J ,K-1) -EN (I, J ,K))) /2. 

VISE= ( (RDR'''*2IRV (I, J, K)) 1' (RU (I, J, K) *TMRE"' (EN (I+1, J, K) -EN (I, J, K)) 
1 -RU (I-1, J ,K) 1'TMRW* (EN (I, J ,K) -EN (I-1, 1 ,K))) + (RDTH"k*21RV (I, J ,K) 
2 ''<*2) 1'(TMTN* (EN (I, J, K+ 1) -EN (I, J, K)) -TMTS* (EN (I, J, K) -EN (I. J, K-1)) 
3) +RDZ*''<2* (TMZO*(EN(I,J+1,K)-EN(I,J,K))-TMZI'''(EN(I,J,K)-EN(I,J 
4 -1,K))))I(DEN*SE) 

SORE=GG(I,J,K)*Cl *EN(I,J,K) I(TKN(I,J,K)*DEN) 
SORE2=1.0+ DELT*C2 *EN(I,J,K)I(TKN(I,J,K)) 
VISEl=VISE +SORE 

C TURBULENCE DISSIAPATION 
c 

c 

c 

c 
c 

E(I,J,K)=(EN(I,J,K)+DELT *(-FER-FEZ-FET+VISE1))1SORE2 
IF(E(I,J,K).LT.1.E-3) E(I,J,K)=1.E-3 
IF(E(I,J,K).GT.EINMAX) E(I,J,K)=EINMAX 

IF(CYCLE.LT.400) GO TO 1111 
IF(I.NE.2) GO TO 1111 

WRITE(6,39) I,J,K,FER,FEZ,FET,VISE 
WRITE(6,38) SORE,SORE2,VISE1,GG(I,J,K) 

39 FORMAT(1X,3(I2,1X), 'FER,Z,T,AND VISE',2X,4(E12.5,1X)) 
38 FORMAT(1X, 'SORE,SORE2,VISEl,GG',2X,4(E12.5,1X)) 

1111 CONTINUE 
c 
c 
2990 CONTINUE 
c 
c 
c ------------------------------------------------------------------
c PRESSURE ITERATION AND P U V UPDATE 
c 



GO TO KRET , (3000,5000) 
3000 CONTINUE 

IF(FLG.EQ.O)GO TO 4000 
ITER= ITER+ 1 
STORIT=ITER 

IF(ITER.LT.ITMAX) GO TO 3050 
IF(CYCLE.LT.300)GO TO 4000 

C TERMINATION CONDITION 
T=lE+10 
GO TO 5000 

3050 FLG=O.O 
C CHECK IF CONVERGENCE HAS BEEN REACHED 

SUMD=O.O 

c 

c 

DO 3500 I=2,IM1 
DO 3500 J=2,JM1 
DO 3500 K=2,KM1 

D= ( 1. /R V (I, J, K)) 1: (RU (I, J, K) *U (I, J, K) -RU (I -1, J, K) ~··u (I -1, .J, K)) ,., 
1 RDR + (l./RV(I,J,K))>'•(W(I,J,K)-W(I,J,K-1))*RDTH + RDZ >'< 

2 (V(I,J,K)-V(I,.J-1,K)) 

IF(ABS(D/DZRO).GE.EPSI) FLG=1.0 
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DELP=- (D1'0MG) / (2'"DELT* (1/ (DELR'"''<2) + 1/ (DELz>'d<2) +1/ ( ( ( (I-·1.5) *D 

3500 
c 
c 

c 

c 
3501 

c 

1ELR+RIN) '"DELTH) '"*2))) 
P (I, J, K) =P (I, J, K) +DELP 
U(I, J ,K) =U (I, J ,K) +DELT'"DELP*RDR 
V(I,J,K)=V(I,J,K)+DELT*DELP*RDZ 
W(I,J,K)=W(I,J,K)+DELT*DELP*RDTH/ RV(I,J,K) 

IF(W(I,J,K) .LT.O.O) W(I,J,K)=O.O 
U (I-1, J ,K) =U (I-1, J, K) -DELT'''DELP*RDR 

V (I, J-1 ,K) =V (I, J-1 ,K) -DELT'"DELP*RDZ 
W(I,J,K-1)=W(I,J,K-1)-DELT*DELP*RDTH/RV(I,J,K) 
IF(W(I,J,K-1).LT.O.O) W(I,J,K-1)=0.0 

SUMD = SUMD+ABS(D) 
CONTINUE 

CHECKPRINTS DURING PRESSURE CYCLE 
IWRITE=O 
IF(ITER.LE.2)IWRITE=1 
IF(CYCLE.GT.2.AND.CYCLE.LT.CYCMAX)IWRITE=O 
IF(IWRITE.EQ.1) GO TO 5152 
RETURN FROM PRINTING SECTION 
CONTINUE 
IWRITE=O 

GO TO 2000 
4000 CONTINUE 
5000 CONTINUE 

c 
C------------ SHEAR STRESS ON THE BOTTOM WALL 
c 

c 
c 

IF(RIN.LE.1.E-15) GO TO 5105 



DO 5100 J=2,JM1 
DO 5100 K=2,KM1 
1=2 
VAVG=(V(I,J,K)+V(I,J+1,K))/2. 
WAVG=(W(l,J,K)+W(I,J,K+1))/2. 
VEFF=SQRT(VAVG*VAVG + WAVG*WAVG) 
DENV=DEN 
RP=DELR/2. 
SQRTK=SQRT(TK(I,J,K)) 
RPLUSS (J, K) =DENV'~CM:UPQ'~SQRTK1'RP /VISCOS 
IF(RPLUSS(J,K).LE.11.63) GO TO 5101 
TMUL T=DENV~'C.MUPQ 1'SQRTK'~CAPPA/ ALOG (ELOG*RPLUSS (J, K)) 
TAUS (J, K) =-T.MULT*VEFF 
GO TO 5102 
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5101 TAURX=-VISCOS*VAVG/RP 
TAURW=-VISCOS'''WAVG/RP 
TAUS(J,K)=SQRT(TAURX*TAURX+TAURW*TAURW) 

5102 DVT=RDTH*((V(I,J,K)+V(I,J,K+1)+V(I,J-1,K+1)+V(I,J-1,K))/4. 

c 

c 

c 

5103 

5100 
c 
c 
5105 
c 
c 

1 -(V(I,J,K)+V(I,J-l,K)+V(I,J,K-1)+V(I,J-l,K-1))/4.)/RV(I,J,K) 
DWZ=RDZ''' ( (W (I, J, K) +W (I, J+ 1, K) +W (I, J+ 1, K-1) +W (I, .T, K-1)) i 4. 

1 -(W(I,J,K)+W(I,J.K-1)+W(I,J-1,K)+W(I,J-l,K-1))/4.) 

1 
2 
2 
3 

1 

1 

GG (I, J, K) =.MU (I, J, K) '~ (2. >'< ( (RDR '~ (U (I, J, K) -U ( I-1, J, K))) '"1'2 + 
(U(I,J,K)/RU(I,J,K) +(RDTH/RV(I,J,K))*(W(I,J,K)-W(I,J,K-1))) 
"''*2 + 
(RDZ*(V(I,J,K)-V(I,J-1,K)))**2) + TAUS(J,K)**2/MU(I,J,K)+ (DVT 
+DWZ) '"*2 ) 

IF(RPLUSS(J,K).LE.11.63) GO TO 5103 

TSWRTE (J, K) =DENV,.'C.MUPQ*CAPPA'~'SQRTK*W (I, J ,K) / ALOG (ELOG"'RPLUSS (J ,K 
)) 
TSWRZE (J, K) =DENV'''C.MUPQ*CAPPA *SQRTK*V (I, J, K) / ALOG (ELOG'"RPLUSS (J, K 
)) 
GO TO 5100 
TSWRTE(J,K)=VISCOS*W(I,J,K)/RP 
TSWRZE(J,K)=VISCOS*V(I,J,K)/RP 
CON.TINUE 

CONTINUE 

C------------- SHEAR 
c 

STRESS ON THE TOP WALL (OUTER CYLINDER) 

DO 5120 J=2,J.M1 
DO 5120 K=2,K.M1 
I=I.M1 
VAVG=(V(I,J,K)+V(I,J+1,K))/2. 
WAVG=(W(I,J,K)+W(I,J,K+1))/2. 
VEFF=SQRT (VAVG*VAVG+WAVG'"WAVG) 
DENV=DEN 
RP=DELR/2. 
SQRTK=SQRT(TK(I,J,K)) 



RPLUSS ( J, K) =DENV.,.~CMUPQ~'SQR TK~'~RP IVISCOS 
IF(RPLUSS(J,K).LE.11.63) GO TO 5121 
TMULT=DENV.,.~c:t-1UPQ.,.~SQR TK'~CAPPAI ALOG (ELOG*RPLUSS (J, K)) 
TAUN (J, K) =-TMULT''~VEFF 
GO TO 5122 

5121 TAUTX=-VISCOS''<VAVGIRP 
TAUTW=-VISCOS''~WAVG/RP 
TAUN (J ,K) =SQRT (TAUTX*TAUTX+TAUXW"''TAUXW) 

5122 DVT=RDTH''~ ((V (I, J, K) +V (I, J, K+ 1) +V (I, J-1, K+ 1) +V (I, J-1, K)) I 4. 

c 

c 

c 

1 -(V(I,J,K)+V(I,J-1,K)+V(I,J,K-1)+V(I,J-1,K-l))/4.)1RV(I,J,K) 
DWZ=RDZ"' ( (W (I, J, K) +W (I, J+ 1, K) +W (I, J+ 1, K-1) +W (I, J ,K-1)) I 4. 

1 - (\-l (I, J, K) +W (I, J, K-1) +W (I, J-1, K) +W (I, J-1, K--1)) /4.) 

GG (I, J, K) =MU (I, J, K) .,., (2. ,·~ ( (RDR * (U (I, J, K) -U (I-1, J, K))) >'<*2 + 
1 (U (I, J, K) IRU (I, J, K) + (RDTHIRV (I, J, K)) ;~ (W (I, J, K) -W (I, J, K-1))) 
2 >'o'<2 + 
3 (RDZ 1~ (V (I, J .K) -V (I, J-1 ,K))) '~*2) + TAUN(J ,K) '''*2IMU(I, J ,K) + (DVT 
4 +DWZ)**2 ) 

IF(RPLUSS(J,K).LE.11.63) GO TO 5123 
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TNWRTE (J, K) =DENV'~CMUPQ''<CAPPA''<SQRTK*W (I, J ,K) I ALOG (ELOG~"RPLUSS (J, K 
1 ) ) 

TNWRZE (J, K) =DENV~'<CMUPQ1'CAPPA *SQRTK*V (I, J, K) I ALOG (ELOG*RPLUSS (J, 
1 K)) 

GO TO 5120 
5123 TNHRTE (J, K) =VISCOS~'<w (I, J, K) IRP 

TNWRZE(J,K)=VISCOS*V(I,J,K)IRP 
c 
5120 CONTINUE 
c 
c 
C------------ SHEAR STRESS ON WEST WALL 
c 

DO 5220 I=2,IM1 
DO 5220 K=2,Kl:f.1 
J=2 
IF(K.EQ.4.AND.I.EQ.4.0R.I.EQ.5) GO TO 5220 
UAVG=(U(I,J,K)+U(I+1,J,K))/2. 
WA VG= (W (I , J , K) +\-1 (I , J , K + 1) ) I 2 • 
VEFF=SQR T (UAVG*UAVG+WAVG1~WAVG) 
DENU=DEN 
zP ... DELZI2. 
SQRTK=SQRT(TK(I,J,K)) 
ZPLUSW(I,K)=DENU*CMUPQ*SQRTK*ZPIVISCOS 
IF(ZPLUSW(I,K).LE.11.63) GO TO 5221 
TMUL T=DENU*CMUPQ''<SQR TK*CAPPAI ALOG (ELOG*ZPLUSW (I, K)) 
TAUW(I,K)=-TMULT*VEFF 
GO TO 5222 

5221 TAUXR=VISCOS.,.'UAVGIZP 
TAUXW=VISCOS*WAVGIZP 
TAUW (I ,K) =SQRT (TAUXR*TAUXR+TAUXW''<TAUXW) 

5222 DWR=RDR* ( (W (I, J, K) +W (I, J, K-1) +W (I+1, J, K) +W (I+ 1, J, K-1)) I (4 • .,.~ 
1 RU(I,J,K)) -(W(I,J,K)+W(I,J,K-1)+W(I-1,J,K-l)+W(I-1,J,K))I 



c 

c 

c 

2 (4.*RU(I-1,J,K)) )IRV(I,J,K) 
DUT=RDTH1' ( (U (I, J, K) +U (I, J, K+ 1) +U (I -1, J, K+ 1) +U (I -1, J, K)) /4. 

1 - (U (I , J, K) + U (I -1 , J, K) +U (I -1 , J, K -1) + U (I , J, K-1) ) I 4. ) IRV (I, J, K) 

GG(I, J ,K) =MU(I, J ,K) * (2. >'< ( (RDR>'< (U(I, J ,K)-U(I-1, J ,K))) ~~>'<2 + 
1 (U(I,J,K)IRU(I,J,K) +(RDTHIRV(I,J,K))*(W(I,J,K)-W(I,J,K-1))) 
2 ~'<>'<2 + 
2 (RDZ'~ (V (I, J, K) -V (I, J-1, K) ))>b~2) + TAUW (I, K) >'<>'<2IMU (I, J, K) + (DWR 
3 +OUT) *•'<2 ) 

IF(ZPLUSW(I,K).LE.11.63) GO TO 5223 
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TWWRZO (I ,K) =DENU>''CMUPQ'''CAPPA'~SQRTK''<U (I, J ,K) I ALOG (ELOG''<ZPLUSW (I ,K 

c 

1 ) ) .. 
TWWTZO (I ,K) '"'DENU*CMUPQ~''CAPPA''<SQRTK'"'W (I, J .K) IALOG (ELOG'''ZPLUSW (I, 

1 K)) 

GO TO 5220 
5223 TWWRZO (I, K) =VISCOS~~u (I, J, K) /ZP 

TWWTZO(I,K)=VISCOS*W(I,.J,K)/ZP 
5220 CONTINUE 
c 
C============== PLOTTING DATA GENERATION ============================= 
c 
c 

c 

c 

c 

IF(CYCLE.NE.300) GO TO 636 

DO 5280 K=2,KM1 
DO 5300 I=2,IMAX 
DO 5300 J~2,JMP~ 

UA= (U (I, J, K) +U(I-1, J, K)) /2. 
VA=(V(I,J,K)+V(I,J-1,K))I2. 

UA=UA>'<Q. 045 
VA=VA*0.045 

XX (I, J, 1) = (0. 3'~I) -0.15-UA/2. 
XX(I,J,2)=XX(I,J,1)+UA/2. 
XX (I, J, 3) =XX (I, J, 2) +UAI2. 
YY(I,J,1)=(0.6*J)-0.3-VA/2~ 
YY(I,J,2)=YY(I,J,1)+VAI2. 
YY(I,J,3)=YY(I,J,2)+VAI2. 
VEL (I, J) =SQRT (VA**2 +UN'<*2 ) 
TR(I,J)=(J-1)*DELZ-DELZ/2. 

5300 CONTINUE 
c 
c 

M=O 
DO 5400 I=2,IMAX 
DO 5400 J=2,JMAX 
DO 5400 1=1,3 
M=M+1 
X (M) =XX (I, J, L) 
Y(M)=YY(I,J,L) 



5400 CONTINUE 
c 

DO 5450 I=1,432 
WRITE(14,555) X(I),Y(I) 

5450 CONTINUE 
555 FORMAT(E12.5,5X,E12.5) 
c 
5280 CONTINUE 
c 
c------------·---------------------------------------------------------
c 

DO 5500 K"'2,I011 
DO 5500 I=2,IM1 
VV(I,K,1)=V(I,l,K) 
VV (I, K, 2) = (V (I, 3, K) +V (I, 4, K)) /2. 
VV(I,K,3)~V(I,6,K) 
VV(I,K,4)=(V(l,8,K)+V(I,9,K))/2. 
VV(I,K,5)=V(I,11,K) 
UU(I,K,1)=U(I,l,K) 
WW(l,K, 1)=W(I,l,K) 
UU(I,K,2)=U(I,4,K) 
WW(I,K,2)=W(I,4,K) 
UU(l,K,3)"'(U(I,6,K)+U(I,7,K))/2. 
WW(I,K,3)=(W(I,6,K)+W(I,7,K))/2. 
UU(I,K,4)=U(I,9,K) 
WW(I,K,4)=W(I,9,K) 
UU (I, K, 5) =U (I, 11, K) 
WW(I,K,5)=w(I,11,K) 

5500 CONTINUE 
c 
c 

DO 5550 K=2,KMAX 
DO 5550 1=1,5 
WRITE (15, 556) (UU (I, K, L) , I=2, IM1) 
w"RITE(l5,556) (VV(I,K,L) ,I=2,IM1) 
WRITE(l5,556) (WW(I,K,L) ,I=2,IM1) 

5550 CONTINUE 
c 
556 FORMA.T (5 (E12. 5) , /, 5 (E12. 5)) 
c 
636 CONTINUE 
c 
c 

173 

C=====~========== PRINTING SECTION ===x==========~==================== 

c 
PRINT 53,ITER,T,CYCLE 
PRINT 200,D 
PRINT 201, DELP 

200 FORMAT(lX,' D= ',E16.6,/) 
201 FORMAT(1X,' DELP = ',E16.6,/) 

C INTERMEDIATE PRINTING 
IF(CYCLE.LE.40) IIN=40 
IF(CYCLE.GT.40) IIN=40 
DO 363 II=10,400,IIN 



c 

IF(CYCLE.EQ.II) GO TO 5152 
363 CONTINUE 

IF(CYCLE.EQ.290) GO TO 5152 
IF(CYCLE.EQ.CYCHAX) GO TO 5152 
IF(CYCLE.EQ.1) GO TO 5152 

GO TO 5251 
5152 CONTINUE 

DO 5250 KK=1,KMAX 
K=KM..I\."{-KK+ 1 
WRITE(6,42) K 
WRITE(6,48) 
DO 7001 J=1,JMAX 
JJ=JMAX-.T+1 
WRITE(6,4i) (U(I,.TJ.K) ,I=1,IMAX) 

7001 CONTINUE. 
WRITE(6,49) · 
DO 7002 J=1,JNAX 
J J=JMAX-.I·t-1 
WRITE(6,47) (V(I,JJ,K) ,I=1,IMAX) 

7002 CONTINUE 
WRITE (6, 52) 
DO 7003 J=l,JMAX 
JJ=J.HAX-J+1 
WRITE(6,47) (W(I,JJ,K) ,!'"'1,IM.AX) 

7003 CONTINUE 
7014 CONTINUE 

WRITE(6,51) 
DO 7004 J=l,JMAX 
JJ=JMAX-.T+1 
WRITE(6,47) (P(I,JJ,K) ,I=1,IMAX) 

70.04 CONTINUE 
WRITE (6, 54) 
DO 7005 J=1,JMAX 
JJ=JMAX-J+1 
WRITE(6,47) (TK(I,JJ,K) ,I""1,IMAX) 

7005 CONTINUE 
WRITE (6, 55) 
DO 7006 J=1,JMAX 
JJ=JMAX-J+l 
WRITE (6, 47) (E (I, JJ ,K), !=1, IMAX) 

7006 CONTINUE 
WRITE(6,56) 
DO 7007 J=1,JMAX 
JJ=JMAX-J+1 
WRITE(6,47) (MU(I,JJ,K),I=1,IMAX) 

7007 CONTINUE 
5250 CONTINUE 

c 
5251 CONTINUE 

SUMU=O.O 
SUMV=O.O 
SUMW=O.O 
DO 6100 I=2,IM1 
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DO 6100 J=2,JM1 
DO 6100 K=2,KM1 
SUMU=SUUU+ABS(UN(I,J,K)-U(I,J,K)) 
SUMV=SUMV+ABS(VN(I,J,K)-V(I,J,K)) 
SUMW=SUMW+ABS(WN(I,J,K)-W(I,J,K)) 
CONTINUE 
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6100 
c RETURN TO PRESSURE ITERATION CYCLE IF THESE WERE ONLY CHECKPRINTS 
c 
c 

IF(IWRITE.EQ.l) GO TO 3501 
c 
C REPACKAGING 

DO 6101 I=l,IMAX 
DO 6101 J=l,JMAX 
DO 6101 K=l,KMAX 
UN(I,J,K)=U(I,J,K) 
VN(I,J,K)=V(I,J,K) 
vlN (I, J, K) =W (I, J, K) 
TKN (I , J , K) = TK (I , J , K) 
EN (I, J, K) =E (I, J ,K) 
MUN(I,J,K)=MU(I,J,K) 

6101 CONTINUE 
PRINT 90 
PRINT 91,U(3,4,3),V(3,4,3),W(3,4,3),STORIT,SUMU,SUMV,SUMW,SUMD 

C ADVANCE TIME AND CYCLE 
T=T+DELT 

c 

IF (T. GT. CYCMAX~'DELT) GO TO 6500 
CYCLE=CYCLE+l 
GO TO 1000 

6500 CONTINUE 
42 FOR11.AT(//,20X, 'K =' ,I2,/,19X, 7( 1 =1 )) 

STOP 
47 FORMAT(lX,12(E11.4)) 
48 FORMAT(//,2X,8H U-FIELD,/) 
49 FORMAT(///,2X,8H V-FIELD,/) 
51 FORMAT(///,2X,8H P-FIELD,/) 
52 FOR~1AT(///,2X,8H W-FIELD,/) 
53 FORHAT(6X,5HITER=,I5,9X,5HTIME=,lPE12.5,10X!6HCYCLE=,I4) 
54 FORMAT(/ I I' 2X' I TK .:.. F'IELD I '/) 

55 FORMAT(/ //,2X, 'E - FIELD',/) 
56 FORMAT(///,2X, 'MU- FIELD',/) 
90 FORMAT(/ i /4X, I UMON I' 8X, I VMON I' 7X, I WMON I' 7X, I PRESS ITER I' 4X, 

1 I SUMU I' lOX,' SUMV' 'lOX,' SUMW' 'lOX, I SUMD I I/) 
91 FORMAT(8E14.4) 

END 
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